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Preface

This volume contains the invited and the contributed papers selected for presen-
tation at the 32nd Annual Conference on Current Trends in Theory and Practice
of Computer Science SOFSEM 2006, held January 21–27, 2006, in the Hotel
VZ MĚŘÍN, located about 60 km south of Prague on the right shore of Slapská
přehrada (“Slapy Dam”) in the Czech Republic.

Transformed over the years from a local event to a fully international confer-
ence, contemporary SOFSEM keeps the best of its original winter school aspects
– high number of invited talks (10) and the multidisciplinary trends in computer
science – illustrated this year by the selection of the following four tracks:

– Computer Science Foundations (Track Chair: Gerard Tel)
– Wireless, Mobile, Ad Hoc and Sensor Networks (Track Chair: Jǐŕı Wieder-

mann)
– Database Technologies (Track Chair: Jaroslav Pokorný)
– Semantic Web Technologies (Track Chair: Július Štuller)

An integral part of SOFSEM 2006 was the Student Research Forum (Chair:
Mária Bieliková) organized with the aim to discuss students’ projects in the
theory and practice of computer science and to publish them in a separate local
proceedings.

The aim of SOFSEM 2006 was, as always, to promote co-operation among
professionals from academia and industry working in various areas of computer
science.

The SOFSEM 2006 Program Committee, consisting of 50 members coming
from 19 countries, obtained a record number of 157 submissions. After a careful
reviewing process (at least three reviewers per paper), followed by a detailed dis-
cussion at the PC meeting held on October 3, 2005, in the Institute of Computer
Science of the Academy of Sciences of the Czech Republic in Prague, 55 papers
were selected for presentation at SOFSEM 2006:

– 45 Contributed Talks papers selected by the SOFSEM 2006 PC for publi-
cation in the Springer LNCS series (acceptance rate 28.7 %), including the
Best Paper of the SOFSEM 2006 Student Research Forum

– 10 Posters to be presented at the SOFSEM 2006 Poster Session and to
appear in a separate volume of SOFSEM 2006 proceedings published by
MatFyzPres, Charles University, Prague (acceptance rate 6.4 %)

The Springer proceedings comprise the ten Invited Talks papers.
As editors of these proceedings, we are much indebted to all the contributors

to the scientific program of the conference, especially to the authors of the papers.
Special thanks go to those authors who prepared their manuscripts according to
the instructions and made life easier for us. We would also like to thank those
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who responded promptly to our requests for minor modifications and corrections
in their manuscripts.

SOFSEM 2006 is the result of a considerable effort by a number of people. It
is a great pleasure to express our thanks to the:

– SOFSEM Steering Committee for its general guidance,
– SOFSEM 2006 Program Committee and additional referees who made an

extraordinary effort in reviewing a high number of assigned papers (in aver-
age about 10 papers per PC member),

– Springer LNCS series editor, Alfred Hofmann, for his continuing trust in
SOFSEM,

– Springer for publishing the proceedings,
– SOFSEM 2006 Organizing Committee for a smooth preparation of the con-

ference.

Our special thanks go to:

– Hana B́ılková from the Institute of Computer Science (ICS), Prague, who
did an excellent job in the completion of the proceedings,

– Martin Řimnáč from ICS for realizing SOFSEM 2006 web pages,
– Roman Špánek from ICS for running the SOFSEM 2006 submission and

review system, which helped to prepare a smooth PC session in Prague.

Finally we highly appreciate the financial support of our sponsors (ERCIM
and others) which assisted with the invited speakers and helped the organizers
to offer lower student fees.

November 2005 Jǐŕı Wiedermann
Gerard Tel

Jaroslav Pokorný
Mária Bieliková

Július Štuller
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Július Štuller, Chair Institute of Computer Science, Prague, Czech Republic
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Václav Šebesta Institute of Computer Science, Prague,

Czech Republic
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Sören Balko Andreas Malcher
Fredrik Bengtsson Daniel Moelle
Robbert-Jan Beun Yvonne Moh
Hans L. Bodlaender Frantǐsek Mráz
Hans-Joachim Boeckenhauer Daniel Mölle
Martin Bosman Marc Müller
Stefan Brass Gonzalo Navarro
Sergio Bravo Rolf Niedermeier
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How Can Nature Help Us Compute?

S. Barry Cooper

School of Mathematics, University of Leeds,
Leeds LS2 9JT, UK
pmt6sbc@leeds.ac.uk

http://www.maths.leeds.ac.uk/~pmt6sbc

Abstract. Ever since Alan Turing gave us a machine model of algo-
rithmic computation, there have been questions about how widely it is
applicable (some asked by Turing himself). Although the computer on
our desk can be viewed in isolation as a Universal Turing Machine, there
are many examples in nature of what looks like computation, but for
which there is no well-understood model. In many areas, we have to
come to terms with emergence not being clearly algorithmic. The posi-
tive side of this is the growth of new computational paradigms based on
metaphors for natural phenomena, and the devising of very informative
computer simulations got from copying nature. This talk is concerned
with general questions such as:

• Can natural computation, in its various forms, provide us with
genuinely new ways of computing?

• To what extent can natural processes be captured computationally?
• Is there a universal model underlying these new paradigms?

1 Introduction

Freeman Dyson, in his introduction to George Odifreddi’s [27] The Mathematical
Century : The 30 Greatest Problems of the Last 100 Years, divides scientists into
Cartesians and Baconians:

“According to Bacon, scientists should travel over the earth collecting
facts, until the accumulated facts reveal how Nature works. The scientists
will then induce from the facts the laws that Nature obeys. According to
Descartes, scientists should stay at home and deduce the laws of Nature
by pure thought. . . . Faraday and Darwin and Rutherford were Baconians:
Pascal and Laplace and Poincaré were Cartesians. Science was greatly
enriched by the cross-fertilization of the two contrasting . . . cultures.”

When it comes to computability, an important role of Cartesians has been to
theoretically map out the boundaries of what is practically computable, while
Baconians may point to new computational paradigms in the real world, so chal-
lenging theoretical barriers. Here too there is a synergistic relationship between
these two approaches, and many researchers (Alan Turing is an obvious example
of a Baconian delimiter cum Cartesian practioner) move between them, with
varying degrees of ease and success.

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 1–13, 2006.
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In this short article we make some observations on the extent to which this is
important for current attempts to take computing to radically new levels, and
to try to give a modest but much needed Cartesian shove to the search for new
ways of computing. And far from being put off by the difficulties hypercompu-
tationalists (like Hava Siegelman, Jack Copeland, and Tien Kieu) have run into
— with Martin Davis [13], like Tom Sawyer’s Aunt Polly, admonishing their
foolishness and metaphorically packing them off to bed with no supper — we
will argue for a positive role for the black box model of computation, despite its
being wielded by Davis with such destructive effect.

Of course, whenever one attempts to characterise some process, one is impos-
ing some kind of inductive structure on nature, often of a particularly simple
kind. The argument here is that new computational paradigms are in evidence
when nature goes beyond that induction. That homogeneity of information is
unknown in nature with its variable divide between matter (information) and
energy (algorithmic content). And that on this, and the breakdown of inductive
structure, rests a powerful mechanism for elevating information content — one
which may well be modelled in new kinds of computers.

2 Natural Phenomena as Discipline Problem — or How
We Found Out That Nature Computes Differently to
Us

The relationship between nature and computation has always involved a two-way
process comprised of observation, prediction and theory. For the scientist, caught
by the dream of Laplace’s [23] predictive ‘demon’, the special contribution of
nature to the way we think has not been an explicit one. Nature more discipline
problem than role model. Implicit in the search for a theory of everything is the
assumption that it is a short step from understanding to prediction:

“Given for one instant an intelligence which could comprehend all the
forces by which nature is animated and the respective situations of the
beings who compose it — an intelligence sufficiently vast to submit these
data to analysis — it would embrace in the same formula the movements
of the greatest bodies and those of the lightest atom; for it, nothing would
be uncertain and the future, as the past, would be present to its eyes.”

But when Albert Einstein [14] wrote in 1950 (p.54 of Out of My Later Years):

“When we say that we understand a group of natural phenomena, we
mean that we have found a constructive theory which embraces them.”

he opens the door to a world in which a mainstream scientific theory may strug-
gle for predictive consequences, and in which nature may determine observable
phenomena, based on well-understood local mechanisms, which are not globally
predictable. At the same time we have van Leeuwen and Wiedermann’s [39] ob-
servation that “the classical Turing paradigm may no longer be fully appropriate
to capture all features of present-day computing.”
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At the mathematical level, the 1930s had already seen the discovery of a whole
range of observable, but not predictable, phenomena. As we all know, Turing [36]
showed we cannot predict in general whether a given computation of a com-
puter will ever terminate. And (along with Church [6]) that recognising the
non-validity of an argument may completely elude us, even though Gödel had
given us a computable procedure for listing all valid mathematical arguments.
But, as described in [9], the more natural the examples of incomputable sets
in mathematics became, the more inured became the working scientist to their
irrelevance to the real world. It is not so much that the thickening mathemati-
cal smoke (too much for even Martin Davis to explain away) has obscured the
flames of real world incomputability — more that the anomalies, decoherence,
and lack of persuasiveness at the margins of a number of the most basic of stan-
dard scientific models are very hard to characterise in a precise enough way. It is
the nature of the connection which is incomplete. And this is often reflected in
a parallel dichotomy between Baconians (including many computer scientists)
and Cartesians (most mathematicians and logicians). Paradoxically, some of the
most determined guardians of this situation are mathematicians, particularly
those whose careers have been built on the study of incomputability. But a wide
spectrum of scientists know something is wrong, if only they could explain what.

There are some obvious examples of Baconian confrontation with incom-
putability (or at least something which looks very like it), and Cartesian in-
terpretations of them. For instance, as we commented in [8]:

“To find a single body of empirical evidence which is clearly inconsistent
with a narrowly mechanistic Laplacian determinism, one must first look
to the quantum level.”

While noting that quantum computation, as currently conceived, “appears to
hold few surprises for the classical recursion theorist”, we went on to mention
the problem of explaining why the so-called ‘collapse of the wave function’, with
its associated probabilities, takes the particular form it does. This predictive
incompleteness of quantum theory gives rise to different ‘interpretations’ which
leave us a long way from characterising the algorithmic content of the events
it seeks to describe. This is how Andrew Hodges sums up the situation (in his
article What would Alan Turing have done after 1954? , from Teuscher [35]):

“Von Neumann’s axioms distinguished the U (unitary evolution) and
R (reduction) rules of quantum mechanics. Now, quantum computing
so far (in the work of Feynman, Deutsch, Shor, etc)̇ is based on the U
process and so computable. It has not made serious use of the R process:
the unpredictable element that comes in with reduction, measurement, or
collapse of the wave function.”

Above the quantum level, Etesi and Nemeti [15] describe how relativistic
considerations (involving the actuality of such things as large rotating black
holes in galactic nuclei) may lead to effectively computable functions which are
not Turing computable. They have since set out to explain more thoroughly how
and why such general relativistic computers work.
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At all levels between these physical extremes we find chaotic phenomena
and turbulence — difficult to handle computationally, but are superficially less
threatening to standard models of computation. One is reassured by the extent
to which one understands the underlying local behaviour, and by the overall pat-
terns emerging to constrain what appears to be merely practical unpredictability.
If one was just a little cleverer at solving differential equations, one assumes, or
had a large enough computer, one could get much closer to predicting the details
of chaotic contexts.

Kreisel [21] was one of the first to separate cooperative phenomena (not known
to have Turing computable behaviour), from classical systems and and pro-
posed [22–p. 143, Note 2] a collision problem related to the 3-body problem as
a possible source of incomputability, suggesting that this might result in “an ana-
log computation of a non-recursive function (by repeating collision experiments
sufficiently often)”. This was before the huge growth in the attention given to
chaos theory, with its multitude of different examples of the generation of infor-
mational complexity via very simple rules, accompanied by the emergence of new
regularities (see for example the two classic papers of Robert Shaw [33], [32]). We
now have a much better understanding of the relationship between emergence
and chaos, but this still does not provide the basis for a practically computable
relationship. As described in Cooper and Odifreddi [11]:

“As one observes a rushing stream, one is aware that the dynamics of the
individual units of flow are well understood. But the relationship between
this and the continually evolving forms manifest in the stream’s surface
is not just too complex to analyse — it seems to depend on globally
emerging relationships not derivable from the local analysis. The form of
the changing surface of the stream appears to constrain the movements
of the molecules of water, while at the same time being traceable back to
those same movements.”

Relevant here is the widely recognised link between structures in nature, and
mathematical objects, such as the Mandelbrot and Julia sets, which provide
a metaphor for the way real-world complexity is generated by the iteration of
simple algorithmic rules. Recently, high-profile names (such as Roger Penrose,
Steve Smale) have been associated with investigations of the computability of
such objects. Penrose (p. 124) points to the apparent unpredictability of struc-
ture in computer generated approximations to the Mandelbrot set as indications
of an underlying incomputability:

“Now we witnessed ... a certain extraordinarily complicated looking set,
namely the Mandelbrot set. Although the rules which provide its definition
are surprisingly simple, the set itself exhibits an endless variety of highly
elaborate structures.”

So the extraordinary richness of structure we observe in nature is matched
by the as yet unsolved problems of showing that aspects of structures such
as the Mandelbrot and certain Julia sets are computable (for recent progress
see [20], [31], [1] and [30]).
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Of course, just as a turbulent stream is constrained within emergent flow
patterns, different scientific disciplines are often associated with successive levels
of emergent physical reality, hierarchically resting one on the other. Again, the
relationship can be described, but but there is no correspondingly reductive
framework to capture it computationally. Just as one cannot develop the theory
of fluid dynamics on the basis of quantum mechanics, the life sciences extend
over entirely new levels, each with their own distinctive parameters. As we shall
see below, the different levels give rise to their own algorithmic content, from
which computational paradigms can be extracted. But the higher one goes up the
hierarchy, the more controversy there is about exactly how it has developed, and
the less clear is the computational content of the links between local mechanisms
and emergent global relations. This is Gregory Chaitin’s [5] try at extracting
incomputability from the complexities of biological evolution (while taking Ω to
be the halting probability for a suitably chosen universal computer U):

“We have seen that Ω is about as random, patternless, unpredictable and
incomprehensible as possible; the pattern of its bit sequence defies under-
standing. However with computations in the limit, which is equivalent to
having an oracle for the halting problem, Ω seems quite understandable: it
becomes a computable sequence. Biological evolution is the nearest thing
to an infinite computation in the limit that we will ever see: it is a com-
putation with molecular components that has proceeded for 109 years in
parallel over the entire surface of the earth. That amount of computing
could easily produce a good approximation to Ω, except that that is not
the goal of biological evolution. The goal of evolution is survival, for ex-
ample, keeping viruses such as those that cause AIDS from subverting
one’s molecular mechanisms for their own purposes.

This suggests to me a very crude evolutionarymodel based on the game of
matching pennies, in which players use computable strategies for predicting
their opponent’s next play from the previous ones. I don’t think it would be
too difficult to formulate this more precisely and to show that prediction
strategies will tend to increase in program-size complexity with time.

Perhaps biological structures are simple and easy to understand only if
one has an oracle for the halting problem.” (italics added)

But the part of nature we are least able to make behave properly, and the part
we are most familiar with (but understand least), is the human brain. Baconian
experience of it comes first through our everyday experience of solving problems,
while feeling nothing like a Turing machine. Such subjective impressions may not
be scientific, but they can force themselves on us in a dramatic fashion. And can
be the intuitive basis for the most informative of scientific work.

Jacques Hadamard [19] derived seminal observations on the role of intuition
in mathematical thinking from this account of how Poincaré struggled unsuc-
cessfully, and then successfully, to solve a problem:

“At first Poincaré attacked [a problem] vainly for a fortnight, attempt-
ing to prove there could not be any such function . . . [quoting Poincaré:]
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Having reached Coutances, we entered an omnibus to go some place or
other. At the moment when I put my foot on the step, the idea came to
me, without anything in my former thoughts seeming to have paved the
way for it . . . I did not verify the idea . . . I went on with a conversation
already commenced, but I felt a perfect certainty. On my return to Caen,
for conscience sake, I verified the result at my leisure.”

A few years earlier, Turing envisaged his technically complex 1939 paper [37]
as an attempt to pin down the computable content of such creativity. He claimed
to clarify there the relationship between ‘ingenuity’ (subsumed within his ordinal
logics) and ‘intuition’ (needed to identify good ordinal notations for levels of the
resulting hierarchy). Turing clearly regarded ingenuity as being what a clever
Turing program is capable of, and intuition as something else. There was a clear
implication that intuition is a feature of human mental processes, and to that ex-
tent Turing is certainly saying that his hierarchies have something to say about
how the mathematician’s mind transcends his own model of machine computabil-
ity – even if the results can be subsequently translated into proofs implementable
by a Turing machine. This is what Turing [37–pp. 134–5], actually says about
the underlying meaning of his paper:

“Mathematical reasoning may be regarded . . . as the exercise of a combi-
nation of . . . intuition and ingenuity . . . . In pre-Gödel times it was thought
by some that all the intuitive judgements of mathematics could be re-
placed by a finite number of . . . rules. The necessity for intuition would
then be entirely eliminated. In our discussions, however, we have gone to
the opposite extreme and eliminated not intuition but ingenuity, and this
in spite of the fact that our aim has been in much the same direction.”

My emphasis is to highlight the extent to which Turing was striving to bring
mental processes within something approaching the standard model of com-
putability, and failing.

An important roleof suchobservationandanalysis ofmentalhigher functionality
is to bring out, by contrast, differences with more obviously mechanical processes.
The main problem with this approach is that because it does not really get us to
grips with what underlies this higher functionality — that is, the particularities of
the process of emergence — it is hard to fit the real world persuasively within any
model derived from it. The temptation is to over-speculate and fudge the details,
which is what some logicians think Roger Penrose [28] has succumbed to.

At the other end of the spectrum, bottom-up approaches involving trying to
build intelligent machines, or developing models based on what we actually do
understand about the physical workings of the brain, struggle to reproduce any
recognisable or useful higher functionality. As Rodney Brooks [4] puts it “neither
AI nor Alife has produced artifacts that could be confused with a living organism
for more than an instant.”

But this does not mean that paradigm-stretching features are not strongly
in evidence. For instance Smolensky [34–p. 3], in his influential Behavioral and
Brain Sciences paper, goes so far as to say:
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“There is a reasonable chance that connectionist models will lead to the
development of new somewhat-general-purpose self-programming, mas-
sively parallel analog computers, and a new theory of analog parallel
computation: they may possibly even challenge the strong construal of
Church’s Thesis as the claim that the class of well-defined computations
is exhausted by those of Turing machines.”

We may be a long way from artificially performing the sort of mental marvels
we observe, but there is plenty of evidence that the new ingredients on which to
base a workable new computational discipline are already present.

3 Swimming with the Tide

As Boris Kogan, a pioneer developer of the Soviet Union’s first analog and hybrid
computers, comments (in an interview with Daniel Abramovitch, on pages 52–62
of the June 2005 issue of the IEEE Control Systems Magazine):

“Some of the great physical systems to be studied as objects of control are
the dynamic processes in the living organisms, especially under patholog-
ical conditions.”

In the face of the sheer complexity of natural computational processes, one can
take the Baconian outlook one step further, and allow Nature to take over the
driving seat. This kind of abrogation of executive control can be quite fruitful. In
April, 2001, Daniel Hillis, Chief Technology Officer of Applied Minds, Inc. (and
ex-Vice President, Research and Development at Walt Disney Imagineering), was
quoted as saying this about his experiences trying to make intelligent machines:

“I used to think we’d do it by engineering. Now I believe we’ll evolve
them. We’re likely to make thinking machines before we understand how
the mind works, which is kind of backwards.”

It is certainly true that the closest anyone has got so far to actual computers
with recognisably hypercomputational ingredients is by surfing physical reality in
some way. This is consistent with our Baconian suspicion that the world cannot
be satisfactorily located within the standard computational model. Of course, it
is not necessary for one to have any interest in hypercomputation for one to have
an interest in new computational paradigms based on nature. As in the case of
quantum computation, there may be very important operational benefits, even
though there is an underlying classical model. But the above suspicion does get
stronger the more difficult it is to divorce ones computational approach from its
real-world origins.

The way forward adopted very widely now (as remarked in [10]), is to utilise
the physical world’s rich potential for computation, without worrying too much
about understanding the underlying rules of the game. The likely success of
this approach may be limited — it takes ingenuity to get a natural process to
compute more than itself — but may bring practically useful results and be the
best we can do in the short to medium term. Here is the analogy suggested
in [10]:
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“The domestication of horses around five or six thousand years ago brought
a revolution in transportation, only achieved through a creative interaction
between humans and the natural world. At that time, trying to understand
the principles underlying the equine organism in order to synthesise an
artificial horse was unthinkable. But a few thousand years later there
was enough understanding of scientific basics to underpin the invention
of the ‘iron horse’, leading, amongst other things, to the opening up of
many previously isolated parts of the world to people with no riding skills
whatsoever.”

While Cartesian theorising may deliver computation with consciousness, won-
derful things can still be achieved without consciousness. We would probably
still have had present day computers even if Turing had not invented the uni-
versal Turing machine when he did. In our introduction to the CiE 2005 LNCS
Proceedings volume, we referred to how Bert Hölldobler and Edward O. Wil-
son’s book on The Ants runs to over eight-hundred pages, and mentioned how
ants and similar biological examples have inspired new problem-solving strate-
gies based on ‘swarm intelligence’. But how the limits to what a real-life ant
colony can achieve are very apparent, more so than those of recognisably con-
scious beings. For instance, as the constructors move in and tarmac over our
richly structured ant colony, the ants have no hope of expanding their exper-
tise to deal with such eventualities. In contrast, for us algorithmic content gives
rise to new emergent forms, which themselves become victim to our algorithmic
appetites, and even the inevitable limits on this inductive process we hope to
decode. There is an important role for conscious and interventionist observation
of our more ant-like everyday computational activities. It may well be that par-
ticular computational models expressing metaphors for natural processes, such
as quantum and molecular computing, membrane computing, neural networks,
evolutionary computation, relativistic computing, or evolving real-world models
like grids and the internet, are currently the most exciting and practical exam-
ples of new computational paradigms. But we have to keep in mind the Holy
Grail of synthesising and controlling in a conscious way that higher functionality
which we observe in Nature but not in computers based on the standard Turing
model. Conversely, we will never achieve this without engaging with the real
world. To quote Rodney Brooks [2–p. 139] again:

“I, and others, believe that human level intelligence is too complex and
little understood to be correctly decomposed into the right subpieces at
the moment and that even if we knew the subpieces we still wouldn’t know
the right interfaces between them. Furthermore, we will never understand
how to decompose human level intelligence until we’ve had a lot of practice
with simpler level intelligences.”

In regard to connectionist models of computation based on the workings of the
human brain — these have come a long way since Turing’s [38] discussion of ‘un-
organised machines’, and McCulloch and Pitts’ early paper [24] on neural nets.
But (quoting from [10]) “despite the growth of computational neuroscience as
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an active research area, putting together ingredients from both artificial neural
networks and neurophysiology, something does seem to be missing”. For Steven
Pinker “. . . neural networks alone cannot do the job”. And focussing again on
that elusive higher functionality, he describes [29–p. 124] “a kind of mental fe-
cundity called recursion”:

“We humans can take an entire proposition and give it a role in some
larger proposition. Then we can take the larger proposition and embed it
in a still-larger one. Not only did the baby eat the slug, but the father
saw the baby eat the slug, and I wonder whether the father saw the baby
eat the slug, the father knows that I wonder whether he saw the baby eat
the slug, and I can guess that the father knows that I wonder whether he
saw the baby eat the slug, and so on.”

So while there does seem to be a great deal to be got from an ad hoc compu-
tational relationship with the real world, we should not be daunted by the sheer
wonder natural structures inspire in us. It may be that the human brain, as an
emergent phenomenon, has an intimate relationship with processes which are
not easily simulable over significantly shorter time-scales than those to which
natural evolution is subject. Maybe we will never build an artificial brain, any-
more than we can make an artificial horse. But this does not mean we may
not one day have a good enough understanding of basic hypercomputational
principles to build computers — or firstly non-classical mathematical models of
computation — which do things undreamt of today.

4 The Constructive Approach to Computational Barriers:
In Defense of the Black-Box Model of Computation

As Robin Gandy [16] points out in his article The confluence of ideas in 1936,
Alan Turing did not set out in his 1936 paper to give a mathematical model of
machine computation. That is not even a well-defined objective — machines as
a part of nature require much more radical analysis. Odifreddi [26] (reporting
on his discussions with Georg Kreisel, see pp. 101–123) sets out some of the
underlying difficulties. What Turing had in mind was a model of how humans
compute in a very specific manner:

‘The real question at issue is “What are the possible processes which can
be carried out in computing a [real] number?” ’

What is different, and theoretically liberating, about Turing’s approach to
characterising what a computable function is is his avoidance of the teleolog-
ical constraints on how computation is viewed. Ultimate aims are put to one
side in the interests of seeing and modelling atomic detail. Applying this ap-
proach to modelling how Nature computes is much more difficult, and certainly
more Cartesian.

The first thing that strikes one about physical processes is their basis in the of-
ten illusive dichotomy between matter and energy. This has a parallel in various
mathematical frameworks in which data and process are put on an equal footing,
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with the distinction only re-emerging at the semantical level. To an extent, it
is the way the universe is observed which leads to the observer seeing process
or information. What science tells us is that energy in nature tends to express
algorithmic content, implementable over a wide range of appropriate physical
contexts which we seek to encapsulate in corresponding informational content.
In fact, it appears that nothing interesting exists without this dichotomy, and
this is bad news for those looking for the most reductive of foundational ex-
planatory frameworks. At the same time, this observation gives an important
role, corresponding to what we experience in the physical context, for algorith-
mic content — it provides the glue whereby local information content comes
together to form a global entity which is more than the sum of its parts, and
which is the source of information content qualitatively different from that of its
origins. The classical counterpart of this picture is the so-called Turing universe,
giving a framework based on oracle computation for mathematically analysing
the computationally complex in terms of its algorithmic content. An important
aspect of this way of structuring the Universe in accordance with the observed
energy-matter dichotomy is the way in which simple global concepts (like defin-
ability and invariance) lead to explicit and structurally integrated counterparts
to natural laws and large-scale formations whose origins were previously quite
mysterious. As we argued in [7]:

“If one abstracts from the Universe its information content, structured via
the basic . . . fundamental laws of nature, one obtains a particular . . .
manifestation of the Turing universe . . . , within which vague questions at-
tain a precise analogue of quite plausible validity.”

This is useful not just in an explanatory role, but as a pointer to how we might
achieve that control of higher-order computational structure that we observe in
human thinking. The key ingredient here is just that local to global transfer and
and elevation of information content, based on quite elementary local interactive
infrastructure. Here is how Antonio Damasio [12–p. 169] describes the hierarchi-
cal development of a particular instance of consciousness within the brain (or,
rather, ‘organism’), interacting with some external object:

“. . . both organism and object are mapped as neural patterns, in first-order
maps; all of these neural patterns can become images. . . . The sensorimotor
maps pertaining to the object cause changes in the maps pertaining to
the organism. . . . [These] changes . . . can be re-represented in yet other
maps (second-order maps) which thus represent the relationship of object
and organism. . . . The neural patterns transiently formed in second-order
maps can become mental images, no less so than the neural patterns in
first-order maps.”

As we commented in [10]:

“Notice that what is envisaged is the re-representation of neural patterns
formed across some region of the brain, in such a way that they can have
a computational relevance in forming new patterns. This is where the
clear demarcation between computation and computational effect becomes
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blurred. The key conception is of computational loops incorporating these
‘second-order’ aspects of the computation itself. Building on this one can
derive a plausible schematic picture of of the global workings of the brain.”

How one synthesises in practice the sort of representational mechanisms in-
tegral to intelligent thought is a problem which goes far beyond any schematic
picture of the underlying structures, but these structures give a reassuring so-
lidity to our attempts. The sort of current developments which are brought to
mind are the sort of large interactive structures such as the internet and large
computing grids. One already observes global phenomena emerging in such con-
texts, initially as problems, such as those which threaten economic planning,
but potentially with computational outcomes which are more ‘new paradigm’
than generally expected. Robin Milner commented in his 1991 Turing Award
lecture [25–p. 80] that:

“Through the seventies, I became convinced that a theory of concurrency
and interaction requires a new conceptual framework, not just a refinement
of what we find natural for sequential computing.”

Such observations have been taken up by Goldin and Wegner [18] in support
of new thinking concerning models of today’s highly interactive non-linear com-
putation. This takes us beyond thinking of intelligence as something that resides
purely within the autonomous brain. As Brooks [3] points out:

“Real computational systems are not rational agents that take inputs,
compute logically, and produce outputs . . . It is hard to draw the line at
what is intelligence and what is environmental interaction. In a sense, it
does not really matter which is which, as all intelligent systems must be
situated in some world or other if they are to be useful entities.”

Particularly relevant to future computing capabilities is Brooks’ [2–p. 139] ar-
gument that there is a realistic approach to AI involving no internally generated
representations, but rather using “the world as its own model”. Which brings us
back to Danny Hillis’ idea that “we’ll evolve” intelligent machines rather than
“do it by engineering”. A Baconian enterprise, no doubt, but one in which we
should be prepared for Cartesian surprises.
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Abstract. One of the crucial tasks towards the realization of the Semantic Web 
vision is the efficient encoding of human knowledge in ontologies. Thus, the 
proper maintenance of these, usually large, structures and, in particular, their 
adaptation to new knowledge (ontology evolution) is one of the most 
challenging problems in the current Semantic Web research. In this paper, we 
uncover a certain gap in the current research area of ontology evolution and 
propose a research direction based on belief revision. We present some results 
in this direction and argue that our approach introduces an interesting new 
dimension to the problem that is likely to find important applications in  
the future. 

1   Introduction 

Originally introduced by Aristotle, ontologies are often viewed as the key means 
through which the vision of the Semantic Web can be realized [4]. The importance of 
ontologies in current research is emphasized by the interest shown by both the 
research and the enterprise community to various ontology-related problems [27].  

Ontologies are often large and complex structures, whose development and 
maintenance give rise to certain sturdy and interesting research problems. One of the 
most important such problems is ontology evolution, which is the problem of 
modifying an ontology in response to a certain change in the domain or its 
conceptualization.  

There are several cases where ontology evolution is applicable. An ontology, just 
like any structure holding information, may need to change simply because the world 
has changed [31]; in other cases, we may need to change the perspective under which 
the domain is viewed [29], or we may discover a problem in the original 
conceptualization of the domain; we might also wish to incorporate additional 
functionality, according to a change in users’ needs [13]; furthermore, new 
information, which was previously unknown, classified or otherwise unavailable may 
become accessible or different features of the domain may become important [18].  

In this paper, we argue that the currently used ontology evolution model has 
several weaknesses. We present an abstract proposition for a future research direction 
that will hopefully resolve these weaknesses, based on the related field of belief 
change [11]. Finally, we present an application of our research model in which the 
AGM theory [1] is generalized so as to be applicable to ontology evolution. 
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2   Ontology Evolution 

An ontology can be defined as a specification of a conceptualization of a domain [23]. 
Thus, ontology evolution may be caused by either a change in the domain, a change in 
the conceptualization or a change in the specification [23]. Our understanding of the 
term ontology evolution covers the first two types of change (changes in the domain 
and changes in the conceptualization). The third type of change (change in the 
specification) refers to a change in the way the conceptualization is formally recorded, 
i.e., a change in the representation language; this is dealt with in the field of ontology 
translation [7], [20]. Unlike [30], we don’t consider the (important) issue of 
propagating the changes to dependent elements, as this part of ontology change is 
handled by the related field of ontology versioning [23]. 

In order to tame the complexity of the problem, six phases of ontology evolution 
have been identified, occurring in a cyclic loop [30]. Initially, we have the change 
capturing phase, where the changes to be performed are identified; these changes are 
represented in a suitable format during the change representation phase. There are 
two major types of changes, namely elementary and composite changes [30]. 
Elementary changes represent simple, fine-grained changes; composite changes 
represent more coarse-grained changes and can be replaced by a series of elementary 
changes. However, it is not generally appropriate to use a series of elementary 
changes to replace a composite change, as this might cause undesirable side-
effects [30]. The proper level of granularity should be identified at each case. 
Examples of elementary changes are the addition and deletion of elements (concepts, 
properties etc) from the ontology. There is no general consensus on the type and 
number of composite changes that are necessary. In [30], 12 different composite 
changes are identified; in [29], 22 such operations are listed; in [32] however, the 
authors mention that they have identified 120 different interesting composite 
operations and that the list is still growing! In fact, the number of definable composite 
operations can only be limited by setting a granularity threshold on the operations 
considered; if we allow unlimited granularity, we will be able to define more and 
more operations of coarser and coarser granularity, limited only by our 
imagination [24].  

The third phase of ontology evolution is the semantics of change phase, in which 
possible problems that might be caused in the ontology by the identified changes are 
determined and resolved; for example, if a concept is removed, we should decide 
what to do with its instances. The role of the implementation phase is to implement 
the changes identified in the two previous phases, to present the changes to the 
ontology engineer for final verification and to keep a log of the implemented 
changes [14]. The change propagation phase should ensure that all induced changes 
will be propagated to the interested parties (agents, ontologies etc). Finally, the 
change validation phase allows the ontology engineer to review the changes and 
possibly undo them, if desired. This phase may uncover further problems with the 
ontology, thus initiating new changes that need to be performed to improve the 
conceptualization; in this case, we need to start over by applying the change capturing 
phase of a new evolution process, closing the cyclic loop. 



16 G. Flouris, D. Plexousakis, and G. Antoniou 

3   Discussion on Current Research Directions 

Current ontology evolution tools have reached a high level of sophistication; the 
current state of the art can be found in [14]. While some of these tools are simple 
ontology editors, others provide more specialized features to the user, like the support 
for evolution strategies, collaborative edits, change propagation, transactional 
properties, intuitive graphical interfaces, undo/redo operations etc. 

Despite these nice features, the field of ontology evolution is characterized by the 
lack of adequate formalizations for the various processes involved [7]. Most of the 
available tools attempt to emulate human behavior, using certain heuristics which are 
heavily based on the expertise of their developers. They are not theoretically founded 
and their formal properties remain unspecified. Moreover, they require varying levels 
of human intervention to work, a rather unrealistic assumption ([7], [20]). In short, 
current work on ontology evolution resorts to ontology editors or other, more 
specialized tools whose aim is to help users perform the change(s) manually rather 
than performing the change(s) automatically. 

We believe that this is not a practical approach to be taken. First of all, the human 
user that intervenes in the process should be an ontology engineer and have certain 
knowledge on the domain. Very few people can be both domain and ontology experts. 
But even for these specialized experts, it is very hard to perform ontology evolution 
manually [13], [30]. So, it is simply not practical to rely on humans in domains where 
changes occur often, or where it is difficult, impossible or undesirable for ontology 
engineers to handle the change themselves (autonomous robots or software agents, 
time-critical applications etc). 

Moreover, different ontology engineers may have different views on how a certain 
change should be implemented [30]. These views are affected by commonsense 
knowledge, personal preferences or ideas, subjective opinions on the domain etc. This 
means that there is no single “correct” way of changing an ontology. Computer-based 
evolution could (at least) guarantee determinism, objectivity and reproducibility of the 
results, even though some people may disagree on how a change was implemented. 
But then, is there a consensus on the effects of a given change even among humans?  

Another source of problems for manual ontology evolution is the complexity of 
modern day ontologies. Complex ontologies are usually developed by several 
engineers. A change in one part of the ontology might have unintended effects in 
other parts of the ontology [31]. The person who made the change may be unaware of 
the full extent of the change’s effects, as he doesn’t know all the parts of the ontology.  

These points uncover the need for automatic ontology evolution; computer-based 
ontology evolution is not only necessary for many applications, it is also desirable in 
certain contexts. Human supervision by specialized experts should be highly welcome 
and encouraged whenever possible; however, the system should be able to work even 
without it. Human intervention should constitute an optional feature guaranteeing the 
quality of the evolution process, but should not be a necessary one. 

Another problem with current research directions is related to the representation of 
changes. In tools that are simple ontology editors, there is usually little or no support 
for any kind of composite changes to the ontology [14]. In more specialized tools for 
ontology evolution, there is a pre-defined set of elementary and/or composite 
operations that are supported, providing a greater flexibility to the user. For each such 
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operation, there is an associated procedure that handles the change as well as the 
effects of the change (semantics of change phase); this procedure can, in some cases, 
be parameterized to cover different needs. Unfortunately, there is no guarantee that 
the provided parameterization is enough to cover any possible need of the knowledge 
engineer. Unforeseeable needs may require unforeseeable reactions to a given change. 
Furthermore, there is no limit on the number of composite operations that can be 
considered and, even if we restrict ourselves to the most common types, there is 
a large number of them [32]; this makes the process non-scalable. A unifying 
approach is necessary to cover all cases.  

The problem becomes even more complicated due to the fact that not all different 
types of change are readily available at design-time. New needs may require new 
operations. For operations that are not in the supported list, the ontology engineer 
should choose a sequence of two or more simpler (more elementary) operations of 
different granularity. Unfortunately, such a choice will undoubtedly affect the quality 
of the change, leading to unforeseeable problems [30]. In addition, it cannot be 
performed without human participation. 

In current approaches, a change request is an explicit statement of the 
modifications to be performed upon the ontology; however, this request must be 
determined by the knowledge engineer in response to a more abstract need (e.g., an 
observation). Thus, current systems do not determine the actual changes to be made 
upon the ontology when faced with a need for a change; the user should determine 
them and feed them to the system for implementation. This way, whenever the 
ontology engineer is faced with a new fact (observation), he decides on his 
alternatives and selects the “best” one for implementation by the system. This 
decision is based on his expertise on the subject, not on a formal, step-by-step, 
exhaustive method of evaluation. 

However, to develop a fully automatic ontology evolution algorithm, several issues 
need to be resolved in a definite, formal manner. For example, how could one track 
down all the alternative ways to address a given change, using a formal and 
exhaustive process? How can a computer system decide on the “best” of the different 
alternatives? Most importantly, what is the definition of “best” in this context? Are 
there any properties that should be satisfied by a “good” ontology evolution 
algorithm? 

Unfortunately, resolving the above issues in a general manner is not easy using the 
current research direction because each type of change is treated differently, using 
a stand-alone, specialized process. Unless a more formal path is taken, the ontology 
evolution research is doomed to never find answers to these questions. 

4   Belief Change and Ontology Evolution 

4.1   General Idea, Problems and Opportunities 

Our key idea towards resolving the aforementioned deficiencies of current research on 
ontology evolution is to exploit the extensive research that has been performed in the 
field of belief change. Belief change deals with the adaptation of a Knowledge 
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Base (KB) to new information [11]; this fact allows us to view ontology evolution as 
a special case of the more general problem of belief change. Therefore, it makes sense 
to apply techniques, methods, tools, ideas and intuitions developed by the belief 
change community to ontology evolution. Recently, the idea of using results from the 
belief change literature as an inspiration for ontology evolution research has been 
independently considered in [21], [25], [28], giving interesting preliminary results. 

We believe that our approach allows us to kill several birds with one stone. The 
mature field of belief change will provide the necessary formalizations that can be 
used by the immature ontology evolution field. Belief change has always dealt with 
the automatic adaptation of a KB to new knowledge, without human participation; the 
ideas and algorithms developed towards this aim will prove helpful in our effort to 
loosen up the dependency of the ontology evolution process on the knowledge 
engineer. Finally, previous work on belief change can protect us from potential 
pitfalls and prevent reinventing the wheel for problems whose counterparts have 
already been studied in the rich belief change literature, while belief change intuitions 
that are not directly applicable to ontology evolution may serve as an inspiration for 
developing solutions to similar problems faced by ontology evolution researchers. 

Unfortunately, a direct application of belief change theories to ontology 
evolution is generally not possible, because most such approaches focus on classical 
logic, using assumptions that fail for most ontology representation languages like 
Description Logics (DLs) [2] and OWL [6]; despite that, the intuitions behind the 
theories are usually independent of the underlying language. In the sequel, we 
revisit some of the most important concepts that have been considered in the belief 
change literature under the prism of ontology evolution in order to demonstrate the 
main tradeoffs and intuitions involved in their migration to the ontology evol- 
ution context.  

4.2   Belief Change Issues in the Context of Ontology Evolution 

One of the major issues involved in belief change is a fundamental philosophical 
choice regarding the representation of the knowledge, i.e., whether the explicitly 
represented knowledge serves as a justification for our beliefs (a belief base under the 
foundational semantics) or whether it simply forms a manageable representation of an 
infinite structure (a belief set under the coherence semantics) [12]. Under the 
foundational model, there is a clear distinction between knowledge stored explicitly 
(which can be changed directly) and implicit knowledge (which cannot be changed, 
but is indirectly affected by changes in the explicit knowledge). Under the coherence 
model, both explicit and implicit knowledge may be directly modified by the ontology 
evolution (or belief change) algorithm in an unambiguous manner. 

The choice of the viewpoint to employ is very important, greatly affecting the 
ontology evolution (and belief change) algorithms considered. This choice depends on 
philosophical intuition, personal preference and on the intended use (application) of 
the KB (ontology in our context). Therefore, all the arguments, ideas and results 
discussed in the belief change literature ([12], [16]) are equally applicable here.  

As already mentioned, standard ontology evolution approaches are “modification-
centered”: the fact (observation, experiment etc) that initiated the change is not 
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important and is not known by the system; the system is fed with the actual 
modifications that should be physically performed upon the ontology in response to 
this fact. 

On the other hand, the belief change approaches are “fact-centered”: a new fact 
reflects a certain need for change. This fact is directly fed into the system, which is 
responsible for identifying the actual modifications to perform upon the KB to 
address the change (new fact) and for performing these modifications automatically. 

We propose the use of the latter model for ontology evolution. Of course, the issue 
of determining the modifications to perform upon the ontology in the face of some 
abstract new fact is far from trivial, but there are several belief change techniques that 
could be of use here. This way, we add an extra layer of abstraction to ontology 
evolution: the changes to be performed upon the ontology are decided by the system, 
not by the ontology engineer. This allows the ontology engineer to deal with high-
level facts only, leaving the low-level modifications that should be performed upon 
the ontology in response to these facts to be determined by the system. 

There are two general scientific approaches towards the determination of these low-
level modifications: postulation or explicit construction [26]. Under the postulation 
approach one seeks to formulate a number of formal conditions (postulates) that a belief 
change (or ontology evolution) algorithm should satisfy in the given context. Under the 
explicit construction approach, one seeks certain explicit algorithms or constructions 
leading to algorithms. The two approaches are not rivalrous but complementary [26]. 
Both methods have been used in belief change with very interesting results. On the other 
hand, current research on ontology evolution uses only the explicit construction method; 
one interesting side-effect of our approach is that it provides the necessary formalisms 
for the development of a postulation method. 

Another issue is related to the acceptance of the new information. It is usually 
assumed that the new information is accepted unconditionally, implying a complete 
reliance to the incoming data, according to the Principle of Primacy of New 
Information [5]. This principle coincides with common intuition, because the new 
information generally reflects a newer and more accurate view of the domain. In the 
ontology evolution context however, the distributed and chaotic nature of the 
Semantic Web implies that data may be obtained by unreliable or untrustworthy 
sources; thus, it makes sense to apply techniques from non-prioritized belief 
change [15], where the new data may be partially or totally rejected. 

Some researchers argue that semantical (rather than syntactical) considerations 
should be the driving force behind belief change, so the result of a change should be 
independent of the syntactical representation of the KB or the change (Principle of 
Irrelevance of Syntax [5]). This principle generally fails for foundational belief bases, 
because logically equivalent bases may be formed using completely different sets of 
axioms, implying different justifications [17]. In current works of ontology evolution, 
this principle is usually ignored, as the explicit part (syntax) of the ontology has 
a major impact on the result. 

Inconsistent KBs (under classical logic) exhibit explosive behavior: anything is 
implied from them. This is clearly an undesirable behavior, so the result of a change 
should be a consistent KB, according to the Principle of Consistency 
Maintenance [5]. The only thing that remains to be settled is the exact meaning of the 
term “consistency”; in the belief change literature, the meaning of the word is clear: 
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a KB is inconsistent iff it implies a proposition that is tautologically false. For 
ontology change however, the term “consistency” has been used (others would say 
abused) to denote several different things.  

In [7], several uses of the term were presented and a certain terminology was fixed. 
More specifically, an ontology was termed inconsistent iff it exhibits the explosive 
behavior of classical logic, implying falsehood; it was termed incoherent iff it does 
not satisfy certain pre-defined conditions related to the quality of the 
conceptualization. Such conditions include the use of unsatisfiable concepts, 
properties with no predefined range and/or domain and others. We also argued that 
ontology evolution needs to be concerned only with consistency (just like belief 
change); coherency is a very important issue, but is more related to the area of 
ontology design. We also showed, by means of intuitive examples, that attempting to 
resolve incoherencies during ontology evolution could lead to unnecessary loss of 
information (see [7]). 

Undoubtedly, the most important issue in belief change is the Principle of Minimal 
Change, which states that the new KB should be as “close” as possible to the original 
KB, being subject to minimal “loss of information”. The terms “closeness” and “loss 
of information” have no single interpretation in the literature. There have been several 
proposals on metrics that count information loss in different ways, being used in 
different algorithms or representation results, as well as postulations that capture this 
principle in different ways. The formal realization of this principle is in the core of 
each belief change algorithm, determining its properties to a large extent. 

The same considerations are true in the ontology evolution context. In this context, 
the loss of information could be counted in terms of the number and importance of the 
modifications that need to be performed upon the ontology during the change. 
Alternatively, the loss of information could be counted in model-theoretic terms (via 
some kind of distance metric between the models satisfying the original and the 
modified ontology), through some specially designed distance metric between 
ontologies or via certain conditions (postulates) that identify acceptable and non-
acceptable transitions. The counterparts of each of these approaches have been 
considered and evaluated in the belief change literature, greatly simplifying our task. 

The above considerations form only a partial list of the issues that have been 
discussed in the belief change literature. This analysis shows that the determination of 
the change(s) to be made in response to some new data is a complex and multifaceted 
issue and that several considerations need to be taken into account before choosing 
the modifications to be made upon a KB. The same considerations hold for any type 
of knowledge change, including ontology evolution. Unfortunately, in the ontology 
evolution literature, most of these issues are dealt with implicitly, if at all, with no 
formal (or informal) justification of the various choices and without exhaustively 
considering the different alternatives.  

Furthermore, it is interesting to note that, in the belief change literature, there is no 
human involved in the process of change; all related approaches deal with the 
problem in a fully automatic manner. In fact, to the authors’ knowledge, the option of 
using a human in the loop of belief change was never even considered as an option, 
despite the complexity of the problem. This fact forms an additional argument in 
favor of the use of belief change techniques for automatic ontology evolution. 
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5   Reformulating the Problem of Ontology Evolution 

Notice that the above discussion was made without any explicit mentioning of the 
underlying knowledge representation formalism; this supports our belief that most of 
the intuitions involved in belief change are transferable to other contexts as well 
(including ontology evolution). However, the migration of belief change techniques to 
ontology evolution will ultimately require some formal setting to be based upon. In 
this section we will provide some definitions that set the formal foundations upon 
which future research in this direction could be based. 

5.1   Description Logics (DLs) and Web Ontology Language (OWL) 

Before going into the details of our formalization, we will make a brief introduction to 
two important families of logics that will be useful for our purposes, namely DLs and 
OWL. Description Logics [2] form a family of knowledge representation languages, 
heavily used in the Semantic Web [3]. In DLs, classes are used to represent basic 
concepts, roles to represent basic binary relations between objects and individuals to 
represent objects. Those primitive notions can be combined using certain operators 
(such as ¬, , ∃ etc) to produce more complex terms. Finally, connectives are used to 
represent relationships between terms, such as inclusion ( ), disjointness (disj) and 
others. Each such relationship is called an axiom. Axioms dealing with classes and 
roles form the Tbox, while axioms dealing with individuals form the Abox. The 
operators and connectives that a certain DL admits determine the type and complexity 
of the available axioms, which, in turn, determine the expressive power and the 
reasoning complexity of the DL. Reasoning in DLs is based on standard model-
theoretic semantics. For more details on DLs and their semantics, see [2]. In this 
paper, the term DL Knowledge Base (DL KB) will refer to a set of general Tbox 
and/or Abox axioms representing knowledge regarding a domain of interest. 

The Web Ontology Language [6], known as OWL, is a knowledge representation 
language that is expected to play an important role in the future of the Semantic Web, 
as it has become a W3C Recommendation. OWL comes in three flavors (or species), 
namely OWL Full, OWL DL and OWL Lite, with varying degree of expressive power 
and reasoning complexity. In OWL, knowledge is represented using an RDF-like 
syntax. OWL contains several features allowing the representation of complex 
relationships between classes, roles and objects in a pattern very similar to the one 
used in DLs; this close relationship was verified in [19], where OWL DL and OWL 
Lite (with their secondary annotation features removed) were shown equivalent to the 
DLs SHOIN+(D) and SHIF+(D) respectively. On the other hand, OWL Full provides 
a more complete integration with RDF, containing features not normally allowed in 
DLs; furthermore, its inference problem is undecidable [19]. For more details on 
OWL and the differences between its flavors, refer to [6].  

5.2   Representation of Ontologies 

Most current ontology evolution algorithms use a graphical representation to visualize 
the knowledge that is stored in an ontology. This graph-based representation is 
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pervasive in such algorithms, as it affects the decisions on how each change should be 
implemented. Graphical representations are extremely useful for visualizing the way 
that the domain conceptualization was implemented in an ontology. They also help 
novice users and domain experts get acquainted with the field and understand the 
conceptualization, by hiding much of the semantic and syntactic complexity of the 
ontology behind intuitive interfaces and simple visual metaphors.  

However, such representations are often not expressive enough for certain 
applications, because some complex facts expressible using DL axioms cannot be 
easily expressed using a graph [7]. More importantly, they have led ontology 
evolution research towards a more informal direction, by shifting the relevant 
research to concepts, roles, individuals and how they are structured in the ontology 
graph. As a result, most existing work on ontology evolution builds on frame-like or 
object models [13] and arbitrary axioms are often not considered part of an ontology 
(little or no attention is paid to them), leading to unnecessary loss of expressive 
power.  

For knowledge engineers and ontology experts, an algebraic representation 
provides a more concise and formal representation of the conceptualization, has 
a cleaner semantics and allows easier formal manipulation than the graph-based 
approach. In fact, a combination of the two approaches usually works best, as it 
allows us to use the best of both worlds.  

Under the algebraic approach, the knowledge of the ontology is stored as a pair 
<S,A>, where S is the vocabulary (or signature) containing information on the 
elements appearing in the ontology (concepts, roles, individuals) and A is a set of 
ontological axioms [20]. The vocabulary may be a single unstructured set 
containing all the concepts, roles and individuals relevant to the ontology, or it may 
have some structure denoting, for example, the concept hierarchy; the set of 
ontological axioms contains an arbitrary number of axioms representing certain 
facts on these elements. 

In this work, we will use a simplification of the algebraic approach, by dropping 
the signature structure and representing an ontology as a set of DL axioms (i.e., a DL 
KB), under a given, predefined DL. This way, our approach focuses on axioms, 
following the axiom-centered ontology model [13], ignoring the signature of the 
ontology. The graphical structure of the ontology can be completely determined by 
a set of axioms, so our approach provides a more general representation method. 

This viewpoint of ontologies facilitates the definition of a common formalism in 
terms of which both classical logic and ontologies can be described, thus expediting 
the task of migrating belief change methods (mostly based on classical logic) to 
ontologies. It is also simpler and more straightforward than the algebraic approach. 

The main disadvantage of this model is that we lose the information normally 
stored in the signature of the ontology. This is not as major a problem as it seems, 
because most of the information in S can be represented using axioms as well. For 
example, if S is a poset representing a certain hierarchy between concepts, then the 
hierarchy information can be expressed in the form of axioms using the subconcept 
connective of DLs (⊆). Things become more complicated when one tries to describe 
the elements relevant to the ontology, because, in current DLs, there is no way to 
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express the information that a certain element (concept, role or individual) is 
relevant to the ontology (i.e., it exists in the signature of the ontology). To deal with 
this problem, we have introduced the Existence Assertion Operator, the Closed 
Vocabulary Assumption (CVA) and the Open Vocabulary Assumption (OVA)  
[7], [8].  

The existence assertion operator enhances the expressiveness of any given DL by 
allowing the formation of axioms that express the fact that a certain element is 
relevant to the conceptualization of the ontology; the formal semantics of this 
operator are described in detail in [8]. CVA asserts that no element is relevant to the 
ontology unless its relevance can be deduced by the ontology through the semantics 
of the existence assertion operator; CVA and the existence assertion operator can be 
used to express the knowledge originally in the signature structure using axioms. On 
the other hand, under OVA, all elements are assumed relevant to the ontology and the 
existence assertion operator is not used. For a detailed account on the existence 
assertion operator and the differences between CVA and OVA see [7], [8]. 

5.3   Tarski’s Logical Model: The Common Ground 

The proposed representation for ontologies was chosen because it allows them to be 
placed under a very general logical framework in a clean and smooth manner; this 
framework was introduced by Tarski and defines a logic as a pair <L,Cn>, where L is 
a set of propositions of the underlying language and Cn is a function mapping sets of 
propositions to sets of propositions (consequence operation). The intuitive meaning of 
Cn is that a set X⊆L implies exactly the propositions contained in Cn(X). It is 
assumed that Cn satisfies three intuitive properties (iteration, inclusion, monotony) 
that allow it to behave in a rational manner. For details see [7], [26]. 

It can be easily shown that the above framework engulfs most logics used for 
knowledge representation. In particular, all monotonic DLs and all the formalisms 
that have been used for belief change are expressible through some <L,Cn> pair. This 
way, a KB (ontology) is a set K⊆L of an underlying logic (DL) <L,Cn>. This 
viewpoint provides the necessary connection between ontologies and belief change. 

5.4   Ontology Evolution Operations 

As already mentioned, our approach is “fact-centered”: each new fact leads to one 
operation upon the ontology, which is implemented through an automatically 
generated sequence of modifications. However, not all types of facts have the same 
semantics. In this respect, the belief change literature shows the way once again: 
four types of changes have been identified, each having different semantics and 
being addressed by a different operation (see [7], [22]). More specifically, a fact 
may denote that something should be added or retracted from the KB; it may also 
enhance our knowledge regarding a static world, or denote the way in which the 
real world has changed (dynamic world). Each of these combinations is handled by 
a different operation, namely revision, contraction, update and erasure, as  
table 1 shows: 
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Table 1. Operations for Belief Change and Ontology Evolution 

Operation 
Type of Change  

(Addition/Retraction) 
State of the World 
(Static/Dynamic) 

Revision Addition Static 
Contraction Retraction Static 

Update Addition Dynamic 
Erasure Retraction Dynamic 

In the same sense, we could define four different operations for ontology 
evolution. This approach has the advantage of dealing with four operations only 
(covering all types of changes), thus resolving the scalability problems discussed in 
section 3. Under this viewpoint, a change involves the identification of the 
operation (out of the four operations above) as well as the operand of the change 
(new fact), which are then fed into the system for implementation. But what should 
be the operand of such an operation? In other words, what constitutes a “change 
request” in our framework?  

In belief change, the change is usually represented using a single proposition; we 
will slightly generalize this viewpoint by assuming that a change request can be any 
set of propositions (i.e., axioms) of the underlying DL. Our approach is, of course, 
more general than the standard belief change option; the question is, is this 
generalization appropriate or necessary for ontology evolution? We argue that the 
properties of the representation languages commonly used in ontologies (such as DLs) 
make such an option necessary. 

Most belief change approaches assume that the underlying logic contains the usual 
operators of classical logic (like ∧, ∨ etc) and includes classical tautological 
implication. Moreover, sets of expressions have conjunctive semantics, so any finite 
set can be equivalently represented as the conjunction of the set’s propositions (i.e., 
a singular set). The above assumptions fail for DLs and OWL [9], because, in many 
DLs, the conjunction of axioms is not possible (among other things); thus, in such 
DLs, there are facts which are expressible by a set of axioms, yet non-expressible by 
any single axiom. For this reason, we believe it would be unnecessarily restrictive to 
constraint the change to be a single axiom only, as this does not take full advantage of 
the expressive power of the underlying DL. 

6   An Application: The AGM Theory in Ontologies 

The AGM theory of contraction [1] is undoubtedly the most influential work in belief 
change. For this reason, we chose to apply our ideas to this theory first, and determine 
whether this particular theory can be applied to ontology evolution. In this section, we 
provide a short introduction on the generalization of the AGM theory, as well as the 
main results regarding its applicability in the ontological context. For more details on 
this work, refer to [8], [9], [10]. 
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6.1   The AGM Theory and Its Generalization 

Alchourron, Gärdenfors and Makinson (AGM for short), in their seminal paper [1], 
dealt with revision and contraction, as well as with a trivial operation, expansion. The 
main contribution of their work was the introduction of a set of rationality postulates 
that should apply to each of revision and contraction. These postulates provided 
a solid theoretical foundation upon which most subsequent research on the subject 
was based. Our work has focused on the operation of contraction which, according to 
AGM, is the most fundamental among the operators considered [1], [11].  

AGM used certain assumptions when formulating their theory. One such 
assumption is that the underlying logic follows Tarski’s model; this was the only 
assumption that was kept during our generalization of the AGM theory [8], [9]. AGM 
additionally assumed that the logic is closed under the usual operators (¬, ∧ etc) and 
that the consequence operator includes classical tautological implication, is compact 
and satisfies the rule of introduction of disjunctions in the premises. Unfortunately, 
these additional assumptions fail for DLs and OWL [8]. On the other hand, Tarski’s 
more general framework engulfs DLs, as explained above. 

Regarding the operation of contraction, AGM assumed that a KB is a set of 
propositions of the underlying logic (say K⊆L) which is closed under logical 
consequence (i.e., K=Cn(K)), also called a theory. Any single expression x∈L of the 
logic can be contracted from the KB. The operation of contraction can be formalized 
as a function mapping the pair (K, x) to a new KB K′ (denoted by K′=K−x).  

As explained above, these restrictions may cause problems in the ontological 
context; for this reason, we generalized the AGM model by including cases where 
both operands are sets of expressions of the underlying logic (i.e., K′=K−X, for K, 
X⊆L). This is in accordance to the framework we described in section 5. 

The above assumptions allow any binary operator to be a “contraction” operator, 
which, of course, should not be the case; for this reason, AGM introduced several 
restrictions on the result of a contraction operation. First, the result should be a theory 
itself. As already stated, contraction is an operation that is used to remove knowledge 
from the KB; thus the result should not contain any previously unknown information. 
Moreover, contraction is supposed to return a KB such that the contracted expression 
is no longer believed or implied. Finally, the result should be syntax-independent and 
should remove as little information from the KB as possible. The above intuitions 
were formalized in a set of six postulates, the basic AGM postulates for contraction; 
these are omitted due to lack of space, but can be found in [1]. 

As shown by the above analysis, the intuitions that led to the development of the 
AGM postulates are independent of the underlying knowledge representation 
language. On the other hand, the formulation of the AGM postulates themselves 
depends on the AGM assumptions (see [1]). This problem is typical of the problems 
encountered during the migration of belief change techniques to the ontology 
evolution context: the differences on the underlying intuitions are minimal, but the 
representation languages and formalisms used are quite different. In such cases, it 
makes sense to recast the theory under question (in this case the AGM theory) in 
a setting general enough to contain ontology representation languages (like DLs 
and OWL).  
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Towards this aim, each AGM postulate was reformulated so as to be applicable to 
all logics under our framework, while preserving the intuition that led to its definition. 
The resulting postulates can be found below, where the naming and numbering of 
each postulate corresponds to the original AGM naming and numbering [9]: 

(K−1) Closure:  Cn(K−X)=K−X 
(K−2) Inclusion:  K−X⊆Cn(K) 

(K−3) Vacuity:  If X Cn(K), then K−X=Cn(K) 

(K−4) Success:  If X Cn(∅), then X Cn(K−X) 
(K−5) Preservation: If Cn(X)=Cn(Y), then K−X=K−Y 
(K−6) Recovery:  K⊆Cn((K−X)∪X) 

It can be easily shown that these postulates are equivalent to the original ones in 
the presence of the AGM assumptions. Unfortunately, it soon became clear that not 
all logics in our wide framework can admit a contraction operator that satisfies the 
(generalized) AGM postulates, unlike the logics satisfying the AGM assumptions.  

6.2   AGM-Compliance and Related Results 

Following this observation, we defined a logic to be AGM-compliant iff a contraction 
operator that satisfies the generalized AGM postulates can be defined in the given 
logic. This class of logics was characterized using three different necessary and 
sufficient conditions based on the notions of decomposability, cuts and max-cuts [9]. 
These results allow one to determine whether any given logic (in the wide sense of 
Tarski’s model) is AGM-compliant or not; notice that this is true even for logics that 
are not interesting for the purposes of the Semantic Web or ontology representation. 

The above research had several interesting side-effects. Firstly, a certain 
connection between the AGM theory and the foundational model was uncovered. The 
AGM theory follows the coherence model and there is a known result from the 
literature stating that the AGM theory is not suitable for a foundational KB [17]; our 
results verified that this holds even for the generalized AGM theory. More 
specifically, the dual notions of base decomposability and base cuts for the 
foundational case under a belief base were defined; it was shown that these notions 
form the basis for two necessary and sufficient conditions under which the AGM 
theory can be applied in the foundational model. Unfortunately, these conditions are 
very powerful, being satisfied by only few uninteresting logics (which don’t satisfy 
the AGM assumptions) [9]. 

Another result follows from the definition of a certain equivalence relation which 
was shown to preserve AGM-compliance [8]. This relation uncovered a certain 
connection between the AGM theory and the lattice theory: the class of logics 
modulo this equivalence relation is isomorphic to the class of complete lattices 
modulo the standard equivalence relation of lattices. These results combined show 
that AGM-compliance is a feature that can be solely determined by the structure of 
the complete lattice that is used to represent the logic under question, allowing us to 
use the richness of results related to lattice theory in the context of AGM-
compliance [8]. 
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Given the theoretical foundations set by this work, we were able to determine the 
AGM-compliance of many DLs (and OWL), as well as to provide specialized 
conditions and heuristics allowing one to determine the AGM-compliance of any 
given DL, including those not covered by our work [10]. These results determine, to 
a large extent, the applicability of the AGM theory to languages used for ontology 
representation. In addition, a preliminary study on revision was performed [10]. 

6.3   Evaluation of AGM-Compliance 

There is still a long way to go before fully determining the connection between the 
AGM theory and ontologies. It should be emphasized that AGM-compliance is 
a property that simply guarantees the existence of a contraction operator satisfying 
the (generalized) AGM postulates in the DL under question. The extent to which the 
richness of results related to the AGM theory [11] can be applied to AGM-
compliant DLs still remains undetermined. Also, the connection of AGM-
compliance with the operation of revision and the related representation results [11] 
is still unexplored. 

On the other hand, this work indicates that important theories from the belief 
change literature can be migrated, at least partially, to the world of ontologies. Thus, 
not only the intuitions of the belief change research can be used in our quest for 
ontology evolution algorithms; certain theories themselves could also prove helpful. 
Moreover, the application of the AGM theory in this context showed that our 
ontological framework is suitable not only for capturing the peculiarities of the 
ontology representation languages and the needs of the related applications, but also 
for allowing the application of belief change theories to the problem of ontology 
evolution. 

7   Conclusion and Future Work 

This paper introduced a formal, logic-based approach to ontology evolution, which 
will hopefully provide the necessary formalization to this yet immature [29] field. 
This approach was based on a reformulation of the problem which allows us to view it 
as a special case of the more general, and extensively studied, problem of belief 
change. This way, most of the techniques, ideas, algorithms and intuitions expressed 
in the belief change field can be migrated to the ontology evolution context.  

We argued that our approach will lead to several formal results related to ontology 
evolution and resolve several weaknesses of the currently used model. Our study did 
not provide any concrete solutions to the problem; our goal was to provide solid 
theoretical foundations upon which deeper results can be based, thus paving the road 
for the development of effective solutions to the problem of ontology evolution. 

As an application of the proposed research direction, we evaluated the feasibility of 
applying the AGM theory of contraction [1], one of the most important belief change 
theories, to the ontological context. The difficulties encountered during this migration 
attempt are probably typical of the difficulties that will be encountered during the 
application of other belief change ideas to ontology evolution. 
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Our approach uncovered a different viewpoint on the problem of ontology 
evolution. We have scratched the surface of the relation between this problem and 
belief change; much more work needs to be done on this issue, both in theoretical and 
in practical grounds. The application of specific belief change algorithms or 
postulations in the context of ontology evolution could prove interesting and uncover 
useful approaches to this problem. The proposed migration of the AGM theory to the 
ontology evolution context is not complete either, as only the contraction operator 
was considered; future work should address the problem of revision as well. 
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Abstract. We study the core fragment of the Elog wrapping language
used in the Lixto system (a visual wrapper generator) and formally com-
pare Elog to other wrapping languages proposed in the literature.

1 Introduction

Querying semi-structured data is relevant in two important contexts – first,
where information is to be retrieved from XML databases and documents, and
second, where information is to be extracted from Web documents formatted in
HTML or in similar display-oriented languages. At TU Wien, much work has
been dedicated to both aspects of querying semi-structured data in the recent
years. We have recognized that many query and extraction tasks are inherently
monadic [17] and have, in particular, studied monadic datalog over trees [18],
proving among other things that this language has the same expressive power
as monadic second order logic, while its combined complexity is much lower
(size of the query times size of the database). It was shown that Core XPath,
the “clean logical kernel” of the well-known XPath language has the same low
complexity as monadic datalog by translating Core XPath in linear time into
a version of monadic datalog [17], and fast evaluation algorithms were developed
both for Core XPath and for the full XPath 1.0 language [19]. An in-depth study
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the expressive power of monadic datalog over trees and establishes the connection
to the monadic fragment of the visual wrapper language Elog. The topic of the
present second part – this paper – is to study and compare Elog to other practical
visual wrapper languages. This research was supported by the Austrian Science Fund
(FWF) under project No. I47-N04 Query Induction for Visual Web Data Extraction.
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of the complexity of XPath showed that while Core XPath is PTIME-complete
(combined complexity), and thus inherently sequential, very large fragments of
XPath can actually be evaluated in parallel and reside in the low complexity
class LOGCFL [20]. In [18], which is the basis for the present paper, it was
shown that monadic datalog appears to be the right formalism for capturing
the essence of Web information extraction (web wrapping) with dedicated tools
such as the Lixto visual wrapper generator [8]. The present paper continues and
refines this work.

The problem of extracting structured information from HTML documents,
i.e. the Web wrapping problem, and has been intensely studied over the past
years due to its significant practical relevance. This research including theoret-
ical research (e.g., [5]) as well as systems. Previous work can be classified into
two categories, depending on whether the HTML input is regarded as a sequen-
tial character string (e.g., TSIMMIS [28], Editor [5], FLORID [25], and DE-
ByE [21]) or a pre-parsed document tree (for instance, W4F [29], XWrap [23],
and Lixto [8], [7], [24], [18]).

The practical perspective of tree-based wrapping must be emphasized [18].
Robust wrappers are easier to program using a wrapper programming language
that models documents as pre-parsed document trees rather than as text strings.
A second candidate for a substantial productivity leap, which in practice requires
the first (tree-based representation of the source documents) as a prerequisite, is
the visual specification of wrappers. By visual wrapper specification, we ideally
mean the process of interactively defining a wrapper from one (or few) example
document(s) using mainly “mouse clicks”, supported by a strong and intuitive
design metaphor. During this visual process, the wrapper program should be
automatically generated and should not actually require the human designer to
use or even know the wrapper programming language. Visual wrapping is now
a reality supported by several implemented systems [23], [29], [7], however with
varying thoroughness.

One may thus want to look for a wrapping language over document trees
that (i) has a solid and well understood theoretical foundation, (ii) provides a
good trade-off between complexity and the number of practical wrappers that
can be expressed, (iii) is easy to use as a wrapper programming language, and
(iv) is suitable for being incorporated into visual tools, since ideally all con-
structs of a wrapping language can be realized through corresponding visual
primitives.

The core notion that we base our wrapping approach on is that of an infor-
mation extraction function, which takes a labeled unranked tree (representing
a Web document) and returns a subset of its nodes. In the context of the present
paper, a wrapper is a program which implements one or several such functions,
and thereby assigns unary predicates to document tree nodes. Based on these
predicate assignments and the structure of the input tree, a new tree can be
computed as the result of the information extraction process in a natural way,
along the lines of the input tree but using the new labels and omitting nodes
that have not been relabeled.
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That way, we can take a tree, re-label its nodes, and declare some of them
as irrelevant, but we cannot significantly transform its original structure. This
coincides with the intuition that a wrapper may change the presentation of
relevant information, its packaging or data model (which does not apply in the
case of Web wrapping), but does not handle substantial data transformation
tasks. We believe that this captures exactly the essence of wrapping.

In [18], we proposed unary queries in monadic second-order logic (MSO) over
unranked trees as an expressiveness yardstick for information extraction func-
tions. MSO over trees is well-understood theory-wise [30], [13], [12], [15] (see
also [31], [32]) and quite expressive.

We studied monadic datalog and showed that it is equivalent to MSO in its
ability to express unary queries for tree nodes (in ranked as well as unranked
trees). We also characterized the evaluation complexity of our language. We
showed that monadic datalog can be evaluated in linear time both in the size of
the data and the query, given that tree structures are appropriately represented.
Interestingly, judging from our experience with the Lixto system, real-world
wrappers written in monadic datalog are small. Thus, in practice, we do not
trade the lowered query complexity compared to MSO for considerably expanded
program sizes.

Monadic datalog over labeled trees is a very simple programming language and
much better suited as a wrapping language than MSO. Consequently, monadic
datalog satisfies the first three of our requirements.

Moreover, in [18] we presented a simple but practical Web wrapping language
equivalent to MSO, which we call Elog−. Elog− is a simplified version of the core
wrapping language of the Lixto system, Elog (“Extraction by datalog”), and can
be obtained by slightly restricting the syntax of monadic datalog. Programs of
this language (even recursive ones) can be completely visually specified, without
requiring the wrapper implementor to deal with Elog− programs directly or to
know datalog. We also give a brief overview of this visual specification process.
Thus, Elog− satisfies all of our four desiderata for tree-based wrapping languages.

The work [18] was – to the best of our knowledge – the first to provide a the-
oretical study of an advanced tree-based wrapping tool and language used in an
implemented system.

The present paper extends the results of [18] by the following contributions.

– The capability of producing a hierarchically structured result is essential to
tree wrapping. We define the language Elog∗2 in order to be able to make the
creation of complex nested structures explicit. Elog∗2 is basically obtained by
enhancing Elog− with binary predicates in a restricted form, which allow to
represent hierarchical dependencies between selected nodes in the fixpoint
computation of an Elog− program. Elog∗2 is an actual fragment of the wrap-
ping language Elog used internally in the Lixto system [7], a commercial
visual wrapper generator.

– We take a closer look at two other tree-based approaches to wrapping HTML
documents. The first is the language of regular path queries (e.g., [1], [2])
with nesting. Regular path queries are considered essential to Web query
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languages [1], and by extending the language of regular path queries by
capabilities for producing nested output (and for restricting queries by ad-
ditional conditions), one obtains a useful wrapping language. We show that
this formalism is strictly less expressive than Elog∗2.

– The second formalism that we compare to Elog∗2 is HEL [29], the wrapping
language of the commercially available W4F framework, which is the only
tree-based wrapping formalism besides Elog of which a formal specification
has been published. Again, we are able to show that HEL is strictly less
expressive than Elog∗2.

The structure of the paper follows this list of contributions.

2 Preliminaries

We give a brief background and language definitions and refer to [18] for further
material and examples.

2.1 Trees and Regular Languages

Throughout this paper, only finite trees will be considered. Trees are defined in
the normal way and have at least one node. We assume that the children of each
node are in some fixed order. Each node has a label taken from a finite nonempty
set of symbols Σ, the alphabet. We consider both ranked and unranked trees.
Ranked trees have a ranked alphabet, i.e., each symbol in Σ has some fixed arity
or rank k ≤ K (and K is the maximum rank in Σ, i.e. a constant integer). We
may partition Σ into sets Σ0, . . . , ΣK of symbols of equal rank. A node with
a label a ∈ Σk (i.e., of rank k) has exactly k children. Nodes with labels of rank
0 are called leaves. Each ranked tree can be considered as a relational structure

trk = 〈dom, root, leaf, (childk)k≤K , (labela)a∈Σ〉.

In an unranked tree, each node may have an arbitrary number of children. An
unranked ordered tree can be considered as a structure

tur = 〈dom, root, leaf, (labela)a∈Σ , firstchild, nextsibling, lastsibling〉

where “dom” is the set of nodes in the tree, “root”, “leaf”, “lastsibling”, and
the “labela” relations are unary, and “firstchild”, “nextsibling”, and the “childk”
relations are binary. All relations are defined according to their intuitive mean-
ings. “root” contains exactly one node, the root node. “leaf” consists of the
set of all leaves. childk denotes the k-th direct child relation in a ranked tree.
In unranked trees, “firstchild(n1, n2)” is true iff n2 is the leftmost child of n1;
“nextsibling(n1, n2)” is true iff, for some i, n1 and n2 are the i-th and (i + 1)-th
children of a common parent node, respectively, counting from the left. labela(n)
is true iff n is labeled a in the tree. Finally, “lastsibling” contains the set of right-
most children of nodes. (The root node is not a last sibling, as it has no parent.)
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Whenever the structure t may not be clear from the context, we state it as
a subscript of the relation names (as e.g. in domt, roott, . . . ).

By default, we will always assume ranked and unranked trees to be represented
using the schemata outlined above, and will refer to them as τrk (for ranked trees)
and τur (for unranked trees), respectively.

The regular tree languages (for ranked as well as for unranked alphabets) are
precisely those tree languages recognizable by a number of natural forms of finite
automata [9]. A tree language is regular iff it is definable in MSO [30], [13], [27].

A regular path expression (cf. [2]) over a set of binary relations Γ is a regular
expression (using concatenation “.”, the Kleene star “*”, and disjunction “|”)
over alphabet Γ . Caterpillar expressions (cf. [10]) furthermore support inversion
(i.e. expressions of the form E−1, where E is a caterpillar expression)1 and unary
relations in Γ (cf. [18]).

2.2 Monadic Datalog and Elog−

We assume the syntax and semantics of datalog known (cf. [33, 11]). Monadic
datalog is obtained from full datalog by requiring all intensional predicates to be
unary. By unary query, for monadic datalog as for MSO, we denote a function
that assigns a predicate to some elements of dom (or, in other words, selects
a subset of dom). For monadic datalog, one obtains a unary query by distin-
guishing one intensional predicate as the query predicate. In the remainder of
this paper, when talking about a monadic datalog query, we will always refer
to a unary query specified as a monadic datalog program with a distinguished
query predicate.

Theorem 1 ([18]). Over τrk as well as τur, monadic datalog has O(|P|∗|dom|)
combined complexity (where |P| is the size of the program and |dom| the size of
the tree). A query is definable in unary MSO over τrk (resp., τur) if and only if
it is definable in monadic datalog over τrk (resp., τur).

Definition 1. Let Σ be an alphabet not containing “ ”. For strings π ∈ (Σ∪ )∗,
the predicate subelemπ is defined inductively as follows:

subelemε(x, y) := x = y.

subelem .π(x, y) := child(x, z), subelemπ(z, y).
subelema.π(x, y) := child(x, z), labela(z), subelemπ(z, y). �

Subsequently, we refer to monadic intensional predicates as pattern predicates or
just patterns . Patterns are a useful metaphor for the building blocks of wrappers.

Definition 2. Let Π = (Σ ∪ { })∗ denote our language of fixed paths. The
language Elog− is a fragment of monadic datalog over

〈root, leaf, firstsibling, nextsibling, lastsibling, (subelemπ)π∈Π , (containsπ)π∈Π〉
1 In [10] the inverse is only supported on atomic expressions, i.e. relations from Γ . We

do not assume this restriction, but this is an inessential difference.
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where “root”, “leaf”, “nextsibling”, and “lastsibling” are as in τur, “firstsibling”
has the intuitive meaning symmetric to “lastsibling”, “subelemπ” was defined in
Definition 1, “containsπ” is equivalent to “subelemπ”, except that ε-paths must
not be used, “leaf”, “firstsibling”, “nextsibling”, “lastsibling”, and “contains”
are called condition predicates , and rules are restricted to the form

p(x)← p0(x0), subelemπ(x0, x), C, R.

such that p is a pattern predicate, p0 – the so-called parent pattern – is either
a pattern predicate or “root”, R (pattern references) is a possibly empty set
of atoms over pattern predicates, and C is a possibly empty set of atoms over
condition predicates. Moreover, the query graph of each rule must be connected.

We may write rules of the form p(x) ← p0(x0), subelemε(x0, x), C, R.
equivalently as p(x)← p0(x), C, R. and call such rules specialization rules. �

Proposition 1 ([18]). An Elog− program P can be evaluated on a tree t in
time O(|P| ∗ |domt|). A set of information extraction functions is definable in
monadic datalog over τur iff it is definable in Elog−.

3 Binary Pattern Predicates and Paths with the Kleene
Star and Ranges: Elog∗

2

In this section, we step out of our framework of unary information extraction
functions. We enhance Elog− by a limited form of binary pattern predicates,
which allow to explicitly represent the parent-child relationship of the tree com-
puted as a result of the wrapping process, but not more than that. This approach
to wrapping is basically a mild generalization of our wrapping framework based
on unary information extraction functions. The syntax of the full Elog language
employs binary pattern predicates in precisely the same way as shown below.
The subtle increase in expressive power will be needed in Section 4 when we
compare Elog with other practical wrapping languages. A further feature that
we will need in Section 4 will be a way of specifying a path using a regular
expression with the Kleene star and a “range”. We will call the new language
obtained Elog∗2.

We mildly generalize the predicate subelemπ of Definition def:subelem to sup-
port arbitrary regular expressions π over Σ (notably, including the Kleene star).
Again, subelemπ(v0, v) is true if node v is reachable from v0 through a downward
path labeled with a word of the regular language defined by π.

A range ρ defines, given an integer k, a function that maps each 1 ≤ i ≤ k to
either 0 or 1. Given a word w = w1 · · ·wk, ρ selects those wi that are mapped
to 1. A range applies to a set of nodes S (written as S[ρ]) as follows. Let v1 · · · vk

be the sequence of nodes in S arranged in document order. Then, S[ρ] is the set
of precisely those nodes vi for which i is mapped to 1.

Definition 3. Let π be a regular expression over Σ and let ρ be a regular expres-
sion in the normal form of Proposition 4.13 in [18] which defines a regular word
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language of density one over the alphabet {0, 1}. The binary relation subelemπ,ρ

is defined as the set of all pairs of nodes 〈v, v′〉 such that v′ ∈ S[ρ], where S is
the set of all nodes v0 with subelemπ(v, v0). �
The normal form of Proposition 4.13 in [18] is a convenient syntax for specifying
regular word languages of density one, which in turn allow to elegantly assign a
unique word over alphabet {0, 1} to a sequence of known length. Note, however,
that throughout the remainder of the paper, in all languages that we will discuss,
only much weaker forms of ranges will be required that can always be easily
encoded as regular expressions of this normal form. For example, a range of the
form “i-th to j-th node” (where i and j are constant) can be specified by a
regular expression

0j−1.1j−i+1.0∗.

Lemma 1. The predicate subelemπ,ρ is definable in MSO over τur.

Proof. From the proof of Lemma 5.9 in [18], it is obvious how to define a
monadic datalog program Pπ which defines a predicate S for the set of all nodes
reachable from a node x distinguished by a special predicate. From this we obtain
an MSO formula ϕπ(x, S) with the obvious meaning using Proposition 3.3 in [18].

Let ρ be the range definition, as a regular expression over the alphabet {0, 1} in
the normal form of Proposition 4.13 in [18]. We define an MSO formula ϕρ(S, Y )
which is true if there is a word w of length |S| in the language L(ρ) and Y is
the set of nodes in S that, when traversed in document order, are at a position
which is occupied by a “1” in w.

Let Pρ be the program shown in the construction for down transitions of the
proof of Theorem 4.14 in [18], with a few modifications. Rather than on a list of
siblings, we try to match ρ with the set S put into document order. Thus, we have
to replace occurrences of “firstchild” and “nextsibling” with analogous relations
for navigating the document order ≺. For example, an atom nextsibling(x, y)
is replaced by ψ≺(x, y) (using an input relation S), where ψ≺ is defined in
MSO as

ψ≺(x, y, S) := S(x) ∧ S(y) ∧ x ≺ y ∧ (� ∃z) S(z) ∧ x ≺ z ∧ z ≺ y.

That the document-order relation ≺ itself is MSO-definable is clear from its
definition as a caterpillar expression in Example 2.5 in [18], from Lemma 5.9
in [18], and Proposition 3.3 in [18].

In the down-transition construction from the proof of Theorem 4.14 in [18],
the goal is to assign (state assignment) predicates that are actually the symbols
of the regular language to be matched. In the same way, the unary query that
we are interested in is the predicate “1” defined by program Pρ. The formula ϕρ

such that, given set S, ϕρ(S, Y ) is true iff Y is the set of all nodes assigned “1”
by Pρ is obtained from Pρ as described in the proof of Proposition 3.3 in [18].

Now, it is easy to see that

subelemπ,ρ(x, y) := (∀S)(∀Y )
(
ϕπ(x, S) ∧ ϕρ(S, Y )

)
→ y ∈ Y

indeed defines the desired relation. �
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Remark 1. The previous proof makes it easy to extend the formalism to support
also the matching of the range backward (using the reverse document order
relation � rather than ≺), and in particular selecting only the last element
matching path π (using the range 1.0∗ and reverse document order). �
Now we are in the position to define the language Elog∗2.

Definition 4. Let Elog∗2 be obtained by changing the Elog− language as follows.
All pattern predicates are now binary and all rules are of the form

p(x0, x)← p0( , x0), subelemπ,ρ(x0, x), C, R.

where subelemπ,ρ is the predicate of Definition 3, C is again a set of condition
atoms as for Elog− but “contains” is now equivalent to subelemπ,ρ (permitting
ranges and paths defined by arbitrary regular expressions), and R is a set of
pattern atoms of the form pi( , xi). The underscore is a way of writing a variable
not referred to elsewhere in the rule. The predicate “root” is also pro-forma
binary and can be substituted as a pattern predicate.2 �
The meaning of a binary pattern atom p(v0, v) is that node v is assigned predicate
p and the inference was started from a parent pattern at node v0. We define
unary queries in Elog∗2 in the natural way, by projecting away the first argument
positions of our binary pattern predicates. For instance, a program P (containing
a head predicate p) defines the unary query Qp := {x | (∃x0) p(x0, x) ∈ T ω

P }
based on p.

Theorem 2. A unary query is definable in Elog∗2 iff it is definable in MSO.

Proof. Let P be an Elog∗2 program and let P ′ be the program obtained from
P by adding a rule

p′(x)← p(x0, x).

for each pattern predicate appearing in P . It is easy to show by induction on
the computation of T ω

P′ that replacing each rule

p(x0, x)← p0( , x0), subelemπ(x0, x), C, p1( , x1), . . . , pn( , xn).

of P ′ (where C is a set of condition atoms) by

p(x0, x)← p′0(x0), subelemπ(x0, x), C, p′1(x1), . . . , p′n(xn).

does not change the meaning of the program. But then, if we only want to
compute the unary versions of the pattern predicates, we can just as well replace
the heads p(x0, x) by p′(x) as well. This leads to a monadic datalog program over
τur ∪ {subelemπ,ρ}. The theorem now follows immediately from Lemma 1 and
Proposition 3.3 in [18]. �
The rationale of supporting binary pattern predicates in Elog is to explicitly
build the edge relation of an output graph during the wrapping process. The
obvious unfolding of this directed graph into a tree is what we consider the
result of a wrapper run.
2 As in Elog−, we need “root” as a parent pattern “to start with”.
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Definition 5. The output language of Elog∗2 is defined as follows. An Elog∗2 pro-
gram P defines a function mapping each document t to a node-labeled directed
graph

G = 〈V = domt, E = {〈v1, v2〉 | pi(v1, v2) ∈ T ω
P }, (Qp)p∈P 〉

where Qp = {v | (∃v′) p(v′, v) ∈ T ω
P } and P is the set of pattern predicate names

occurring in P . �

The edge relation E constitutes a partial order of the nodes. The graph is acyclic
except for loops of the form 〈v, v〉 ∈ E, which are due to specialization rules that
produce such loops. In all other rules with a head p(x, y), y matches only nodes
strictly below the nodes matched by x in the tree.

Lemma 2. Each Elog∗2 binary pattern predicate is definable in MSO.

Proof. Let P be an Elog∗2 program and r be a rule of P with head P (x0, x),
undistinguished variables xj1 , . . . , xjl

(i.e., x0 and x are precisely the variables of
rule r not contained in this list), and a body that consists of the pattern atoms
Pi1( , xi1 ), . . . , Pim( , xim) and the set B of remaining atoms.

We use the representation of P as a monadic program P ′ as described in the
proof of Theorem 2 to define a formula ϕ such that ϕ(w1, . . . , wm) is true iff
there exist nodes v1, . . . , vm such that the atoms Pi1(v1, w1), . . . , Pim(vm, wm)
evaluate to true on the input tree. Let

ϕ(xi1 , . . . , xim) := (∀P1) · · · (∀Pn) SAT (P1, . . . , Pn)→
(
Pi1(xi1 )∧· · ·∧Pim(xim)

)
where SAT is obtained from P ′ as shown in the proof of Proposition 3.3 in [18].
Clearly,

Pr(x0, x) := (∃xj1 ) · · · (∃xjl
) ϕ(xi1 , . . . , xim) ∧B

is equivalent to the relation defined by the single rule r in P .
Now let PP ⊆ P be the set of rules in the input program whose head predicate

is P . The formula
P (x0, x) :=

∨
r∈PP

Pr(x0, x)

defines the desired relation of pattern predicate P . �

Theorem 3. The relations of G are MSO-definable.

Proof. Let P be an Elog∗2 program. The edge relation E is simply the union
of the relations defined by each of the pattern predicates in P , i.e. a disjunction
of their MSO formulae that we have constructed in the proof of Lemma 2. The
MSO-definability of the Qp relations was shown in Theorem 2. �
We have seen that Elog− has linear-time data complexity (see Theorem 4.1).
The fixpoint of an Elog∗2 program (or an Elog program) and equally the edge
relation of the output graph, however, can be of quadratic size.
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Example 1. Let t be a tree where all leaves are labeled “l”, while all other nodes
are labeled “b”. The single-rule program

p(x0, x)← dom( , x0), subelemπ=l̄∗l,ρ=∗(x0, x).

evaluates to a fixpoint of quadratic size at worst. For instance, consider a tree
with branch nodes b1, . . . , bm and leaf nodes l1, . . . , ln such that bi is the parent
of bi+1 (for 1 ≤ i < m) and bm is the parent of l1, . . . , ln. Here, the binary
relation defined by p is {〈bi, lj〉 | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. �

Remark 2. Note that in full Elog as currently implemented, a range [ρ] can be
put at the end of each rule, such that a rule

p(x0, x)← p0( , x0), subelemπ(x0, x), C, R [ρ].

has the meaning that p(v0, v) is inferred from this rule if v ∈ S[ρ], where v′ ∈ S
iff there is an assignment of the variables in the body of the rule to nodes that
renders the body true and x0 is assigned to v0 and x to v′. �

4 Other Wrapping Languages

In this section, we compare the expressiveness of two further wrapping languages,
namely regular path queries with nesting and HEL, the wrapping language of
the W4F framework [29], to Elog∗2.

Other previously proposed wrapping languages were evaluated as well. The
majority of previous work is string-based (e.g., TSIMMIS [28], EDITOR [5],
FLORID [25], DEByE [21], and Stalker [26]) and artificially restricting these
languages in some way to work on trees would not be true to their motivation.
Thus, we decided not to include them in this discussion. For some other systems
(such as XWrap [23], which is essentially tree-based like W4F or Lixto), no formal
specifications have been published which can be made subject to expressiveness
evaluations.

Web query languages were also evaluated, but some (e.g., WebSQL [4], We-
bLOG [22]) are unsuitable for wrapping because they cannot access the structure
of Web documents, and others3 (e.g., WebOQL [3]) are highly expressive query
languages that permit data transformations not in the spirit of wrapping.

4.1 Regular Path Queries with Nesting (RPN)

The first language we compare to Elog∗2 is obtained by combining regular path
queries [2] with nesting to create complex structures. This new language –
which we will call RPN (Regular Path queries with Nesting) – on one hand
is simple yet appropriate for defining practical wrappers, and on the other hand
serves to prepare some machinery for comparing further wrapping languages
later on.
3 For a survey of further Web query languages see [14].
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Definition 6. The syntax of RPN is defined by the grammar

rpn: patom ‘.’ rpn | ‘txt’ | ‘(’ rpn ‘#’ · · · ‘#’ rpn ‘)’
patom: patom0 | patom0 conds
patom0: path | path ‘[’ range ‘]’
range: range0 ‘;’ · · · ‘;’ range0
conds : ‘{’ cond ‘and’ · · · ‘and’ cond ‘}’
cond : patom ‘.’ cond | ‘txt’ ‘=’ string

where rpn is the start production, a “range0” is either ‘*’, i, or i − j (where
i and j are integers), “path” denotes the regular expressions over HTML tag
names, and “string” the set of strings. �
Example 2 below shows an RPN wrapper in this syntax.

Definition 7 ((Denotational semantics of RPN)). Let π denote a path, ρ
a range, s a string, and v, v′ tree nodes. Without loss of generality, we assume
that every patom has a range4. The semantics function E maps, given a tree,
each pair of an RPN statement W and a node to a complex object as follows:

E[[π[ρ]{Y1 and . . . and Yn}.X ]]v :=
⋃
{E[[X ]]v′ | subelemπ,ρ(v, v′) is true ∧

C[[Y1]]v′ ∧ · · · ∧ C[[Yn]]v′}
E[[X1# . . . #Xn]]v := {〈E[[X1]]v, . . . , E[[Xn]]v〉}

E[[txt]]v := {v.txt}
Here, v.txt denotes the string value of a node, the concatenation of all text below
node v in the input document. Above we assume that both a range description ρ
and n conditions are present in a patom, but it is clear how to handle the cases
where either one or both are missing.

This definition makes use of the semantics function

C : L(cond)→ dom→ Boolean

for RPN conditions, which we define as follows.

C[[π[ρ]{Y1 and . . . and Yn}.X ]]v := (∃v′) subelemπ,ρ(v, v′) is true ∧
C[[Y1]] ∧ · · · ∧ C[[Yn]] ∧ C[[X ]]

C[[txt = s]]v := if v.txt = s then true else false

Given a tree t, an RPN statement X evaluates to E[[X ]]roott. �
RPN statements can be strongly typed. It is easy the verify that an RPN state-
ment W evaluates to a complex object of type T[[W ]] on all trees, where

T[[patom X ]] := T[[X ]]
T[[(X1# . . . #Xn)]] := {〈T[[X1]], . . . , T[[Xn]]〉}

T[[.txt]] := {String}
for rpn statements X, X1, . . . , Xn.
4 We can always add a range [*] to a patom without a range without changing the

semantics.
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Example 2. The RPN statement

html.body.table.tr{td[0].txt = “item”}.td[1].txt

selects the second entries (“td[1]”) of table rows (“table.tr”) whose first entries
have text value “item”. The type of this statement is

T[[html.body.table.tr{td[0].txt = “item”}.td[1].txt]] = {String}

Note in particular that the type is not {{String}}, even though there are two
patoms not counting the condition! �

Remark 3. Note that the semantics of paths and conditions in RPN is similar
to the semantics of a fragment obtained from XPath [34] by prohibiting most
of its function library (and therefore its arithmetic and string manipulation fea-
tures). The simple RPN wrapper of Example 2 is basically equivalent to the
XPath query

/html/body/table/tr[td[1] = ”item”]/td[2].

A path of the form · · · //a/ · · · in XPath corresponds to · · · . ∗.a. · · · in RPN.
The main difference is that while XPath selects nodes of the input tree, RPN

extracts text below nodes rather than selecting the nodes themselves. Another
significant difference between XPath and RPN is that RPN statements may
create complex objects (using the nesting construct) that cannot be built in
XPath. �

Next, we will show that each wrapper expressible in RPN is also expressible in
Elog∗2. Clearly, there is a mismatch between the forms of output Elog∗2 and RPN
produce which needs to be discussed first. The former language produces trees
while the latter produces complex objects containing records.

In the following, we will require Elog∗2 programs to be of a special form that
allows for a canonical mapping from the binary atoms computed by an Elog∗2
program to a complex object.

Given an RPN statement W , each predicate must be uniquely associated to
one set or record entry subterm of the type term T[[W ]].

– For a predicate p that is associated to a distinguished set of T[[W ]], an atom
p(v, w) asserts that node w is in a set of the output object uniquely identified
by p and v.

– For a predicate p that is associated to a distinguished (set-typed) record
entry of T[[W ]], an atom p(v, w) asserts that w is an element of a record
entry in the output object uniquely identified by p and v.

By ordering predicates5 defining the entries of an RPN record appropriately
and mapping two nodes w1, w2 such that there is a node v and two edges
5 Note that in the reference implementation of Elog (the Lixto system [7], [8]), an

ordering of pattern predicates can be defined such that edges of the tree unfolding of
the output graph with a common parent node are ordered by their predicate (rather
than by document order).
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〈v, w1〉, 〈v, w2〉 labeled with the same predicate into a common set, we obtain
the desired mapping to the complex object model of RPN.

It can be easily argued that the distinction between the complex object model
of RPN and the output of an Elog∗2 program that satisfies the above-designed
semantics is only cosmetical, indeed that what we produce is a canonical repre-
sentation of a complex object data model by binary atoms.

RPN also produces string values, while we have not discussed the form in
which a tree node is output in Elog so far. We assume that the output of Elog
for a node is the concatenation of all text below the node in the document
tree. We also assume that text strings are accessible in the document tree (say,
string “text” is represented as path-shaped subtree t → e → x → t → ⊥)
and can be checked using the predicate containsπ,ρ. (For instance, we can check
whether a node x has string value “text” using containst.e.x.t.⊥,1∗(x, y), where y
is a dummy variable.)

Theorem 4. For each wrapper expressible in RPN, there is an equivalent wrap-
per in Elog∗2.

Proof. Ranges in RPN are regular and can be encoded using the subelemπ,ρ

and containsπ,ρ predicates. Clearly, each RPN range can be easily encoded as an
Elog∗2 range. Without loss of generality, let W be an RPN statement in which
every patom has a range. We create the Elog∗2 program P := PE[[W ]](root) using
the function PE which maps each pair of an RPN statement and a “context”
predicate to an Elog∗2 program, and which is defined as follows.

PE[[π[ρ]{X1 and . . . and Xn}.Y ]](p0) :=
{ p′(x0, x) ← p( , x0), subelemπ,ρ(x0, x), r1( , x), . . . , rn( , x). } ∪
PC[[X1]](r1) ∪ · · · ∪ PC[[Xn]](rn) ∪ PE[[Y ]](p′),

PE[[(X1# . . .#Xn)]](p) := PE[[X1]](p) ∪ · · · ∪ PE[[Xn]](p),
PE[[txt]](p) := ∅,

where X1, . . . , Xn, Y are RPN statements, n ≥ 0, π is a path, ρ is a range, and
p′, r1, . . . , rn are new predicates.

As an auxiliary function for conditions, we have PC, defined as

PC[[π[ρ]{X1 and . . . and Xn}.Y ]](p) :=
{ p(x0, x) ← dom(x0, x), containsπ,ρ(x, y), r1( , y), . . . , rn( , y), s( , y). } ∪
PC[[X1]](r1) ∪ · · · ∪ PC[[Xn]](rn) ∪ PC[[Y ]](s)

PC[[txt = s]](p) := { p(x0, x) ← dom(x0, x), containss(x, y). }

where s is a string.
A number of predicates generated in this way may correspond to patoms

that are followed by further patoms in the RPN statement W and for which no
corresponding set exists in T [[W ]] (see Example 2).
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The reference implementation of Elog, Lixto, allows to define pattern predi-
cates of a given Elog program as auxiliary. Atoms p(v0, v) of such predicates are
then removed from the result of a wrapper run such that if atom p′(v, w) has
also been inferred, we add p′(v0, w) (closing the “gap” produced by dropping the
auxiliary predicate).

It is easy to see that the described mapping produces an Elog∗2 program that,
when auxiliary predicates are eliminated in this way, maps to canonically to
RPN complex objects. �

Theorem 5. There is an Elog∗2 wrapper for which no equivalent RPN wrapper
exists.

Proof. For trees of depth one, all RPN queries are first-order. We therefore
cannot check whether, say, the root node has an even number of children, which
we can do in MSO and thus, by Theorem 2, in Elog∗2. �

4.2 HTML Extraction Language (HEL)

In this section, we compare the expressive power of the HTML Extraction Lan-
guage (HEL) of the World Wide Web Wrapper Factory (W4F) with the ex-
pressiveness of Elog∗2. For an introduction to and a formal specification of HEL
see [29].

Defining the semantics of HEL is a tedious task. (The denotational semantics
provided in [29] takes nearly nine pages and does not yet cover all features!)
Here, we proceed in three stages to cover HEL reasonably well. We will define
a fragment of HEL called HEL− which drops a number of marginal features
and introduce a slightly simplified version of it, HEL−

vf , which does not use
HEL’s index variables . HEL−

vf has the desirable property that the semantics of
HEL− and HEL−

vf entail a one-to-one relationship between wrappers in the two
languages [6]. This variable-free syntax is possible because of the very special and
restricted way in which index variables may be used in HEL. For simplicity, we
first introduce HEL−

vf and subsequently HEL−. Finally, we discuss the remaining
features of HEL.

Let RPN− be the fragment of RPN obtained by requiring that all patoms are
restricted to the form t or ∗.t (we will write the latter as → t ), where t is a
tag, and conditions may not be nested inside conditions.

The language HEL−
vf (that is, variable-free HEL−) differs from RPN− seman-

tically in that ranges apply only to those nodes for which all given conditions
hold (i.e., intuitively, conditions are evaluated “first”).

Let π be either .t or → t (where t is a tag), and let π1 . . . πm be paths
without conditions. We denote the HEL−

vf semantics function H (with
ranges) by

H[[π[ρ]{π1.txt = s1 ∧ · · · ∧ πm.txt = sm}.X ]]v :=
{H[[X ]]w | w ∈ Rρ(E[[π{π1.txt = s1 ∧ · · · ∧ πm.txt = sm}]]v)}
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where E is the RPN semantics function and Rρ(V ) denotes the set of nodes of
V matching the range w.r.t. document order, e.g. for range i

Ri(V ) := {yi | (∃y0) · · · (∃yi−1) y0, . . . , yi ∈ V ∧ ¬∃y−1 ∈ V : y−1 ≺ y0 ∧∧
0≤k<i(yk ≺ yk+1 ∧ ¬∃y′∈V :yk ≺ y′≺yk+1)}.

This selects the i + 1-th node of V . (In HEL, the index of the first node is 0.)
On the remaining forms of HEL−

vf statements (X1# . . . #Xn) and txt, H is
defined analogously to E.

Theorem 6. (1) For each wrapper expressible in the HEL−
vf language, there

is an equivalent wrapper in Elog. (2) There is an Elog∗2 wrapper for which no
equivalent HEL−

vf wrapper exists.

Proof. (1) can be shown using essentially the same proof as that of Theorem 4,
with thedifference thatweusea featureofElog (see e.g. [8]) thatallows toput ranges
on the nodes over which the variable x ranges (relative to x0) and replace rules

p′(x0, x)← p( , x0), subelemπ,ρ(x0, x), r1( , x), . . . , rn( , x).

by
p′(x0, x)← p( , x0), subelemπ(x0, x), r1( , x), . . . , rn( , x) [ρ].

(2) can be justified by the same argument used previously for showing Theorem 5.
�

Next we discuss the HEL− language, a proper fragment of HEL. The syntax
of HEL− is considerably different from that of HEL−

vf , using a form of index
variables in ranges and a special “where” block at the end of a wrapper statement
that collects all of the conditions, similar to database query languages such as
SQL. To give a better overview of the language, we provide its full syntax.

Definition 8. The syntax of the language HEL− is defined by the following
grammar.

HEL−: cc | cc ‘where’ conds
cc: pseq.txt | pseq ‘(’ cc ‘#’ · · · ‘#’ cc ‘)’
pseq: patom ((‘.’|‘→’) patom)∗

patom: tag | tag ‘[’ vrange ‘]’
vrange: range | var ‘:’ range | var
conds : cond ‘and’ · · · ‘and’ cond
cond : pseq.‘txt’ = string

where “var” is a set of index variable names, “int” is the set of integers, “tag”
the set of HTML tag names, “string” the set of strings, and range is defined as
in RPN (see Definition 6). �

There are a number of further syntactical conditions that restrict the way in
which variables can be used in a wrapper. Each index variable used in a HEL−

statement occurs exactly once in its cc construct. Moreover, let P the set of paths
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that can be constructed by concatenating paths in the cc construct starting from
the left and always choosing one element of a record while going to the right.
Each cond construct c in the where clause of a wrapper is constrained in that the
smallest prefix of c that contains all ranges with index variables has to match
a prefix of a path (in terms of both tags and index variables appearing in ranges)
in P .

For example,

html.body.table(tr[0].td[0].txt # tr[i:*].td[1].txt)
where html.body.table.tr[i].td[0].txt = “item”;

is correct HEL, because we can construct the path html.body.table.tr[i:*].td[1].txt
while reading the cc construct from left to right, and this path and its index vari-
ables math the condition. (There is a single index variable i occurring in both paths
at the same position, and the prefix html.body.table.tr is the same.)

The semantics of HEL− will not be introduced in detail but index variables
are simply a tool to relate paths in the first “construction” part of the wrapper
(everything up to the where clause) with conditions in the second part.

A HEL− wrapper can be easily transformed into HEL−
vf by simply removing

its conditions one by one and merging them into the construction part of the
wrapper. Starting from the left, each condition is deleted up to the rightmost of
its variables, and the remaining condition is nested into the construction part
of the wrapper at the position of that variable. For example, the HEL wrapper
shown above can be written as

html.body.table(tr[0].td[0].txt # tr[*]{td[0].txt = “item”}.td[1].txt);

in HEL−
vf .

Proposition 2 ([6]). A wrapper is expressible in HEL− iff it is expressible in
HEL−

vf .

Therefore, HEL− inherits the expressiveness results of Theorem 6.
HEL− is the fragment of HEL obtained by taking HEL without string extrac-

tion using match and split expressions (although we support strings in conditions
as essential to the philosophy of HEL) and without the getNumberOf and getAttr
functions. Note that this is done to compare HEL in our framework based on
the language Elog∗2. Full Elog again supports string extraction in the way HEL
does. Using the getNumberOf function of HEL, one may require that the num-
ber of nodes (in the document tree) reachable through a given path starting
from some node is equal to some constant number, which is easy to define in
MSO. The getAttr function of HEL extracts HTML attributes, which we man-
age as tree nodes. In our framework, the function is redundant with those for
accessing nodes.

Some HEL statements can be required to be single-valued (i.e., for a statement
W relative to node v, E[[W ]]v must contain exactly one node). This is in particular
true for condition paths, which must always be single-valued. These issues are
best handled at runtime (during complex object creation) using an exception
handling mechanism as in W4F.
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Remark 4. HEL also supports some form of Prolog-like cut “!” with which some
conditions can be marked. The cut causes the evaluation of a path to stop if
a condition marked with the cut is false. The HEL cut, however, has not been
covered in the formal semantics definition of [29] or unambiguously explained
elsewhere. Several different meanings are imaginable.

Let us consider one meaning of the cut, where, given a node v, we first evaluate
the path π, and then remove all nodes w that either violate a condition or for
which there is a different node w0 such that w0 is reachable from v through π
and w0 ≺ w.

We can formally denote the changed semantics of paths with conditions and
the cut (but without ranges) by a semantics function H0 such that

H0[[π{π1.txt = s1 ∧ · · · ∧ πm.txt = sm}]]v :=
{z | subelemπ(v, z) ∧ C(z) ∧ (∀x) (x � z ∧ subelemπ(v, x))→ C !(x)}

where C(v) :=
∧

1≤k≤m C[[πk.txt = sk]]v and C !(z) if for all conditions πk.txt =
sk with the cut, C[[πk.txt = sk]]v is true.6 This semantics function H0 can easily
be integrated into the above-described function H to cover ranges as well.

This essentially provides us with a definition of the edge relation that deter-
mines the complex objects computed by full HEL wrappers in MSO (see the
previous section where we have discussed the relationship between such a binary
relation and complex objects). It follows that all unary HEL queries (for any
reasonable definition of such queries) are definable in Elog−. �
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14. Fernandez, M., Siméon, J., Wadler, P., Cluet, S., Deutsch, A., Levy, D.F.A.,
Maier, D., Robie, J.M.J., Suciu, D., and Widom, J.: XML Query Languages:
Experiences and Exemplars (1999)
http://www-db.research.bell-labs.com/user/simeon/xquery.html.

15. Flum, J., Frick, M., and Grohe, M.: Query Evaluation via Tree-Decompositions. In
J. Van den Bussche and V. Vianu (eds), Proc. of the 8th International Conference
on Database Theory (ICDT’01), Lecture Notes in Computer Science, Springer,
London, UK 1973 (Jan. 2001) 22–38

16. Gottlob, G., and Koch, C.: Monadic Datalog and the Expressive Power of Web
Information Extraction Languages. In Proceedings of the 21st ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’02),
Madison, Wisconsin, (2002) 17–28

17. Gottlob, G., and Koch, C.: Monadic Queries over Tree-Structured Data. In Pro-
ceedings of the 17th Annual IEEE Symposium on Logic in Computer Science
(LICS), Copenhagen, Denmark, July 2002, 189–202

18. Gottlob, G. and Koch, C.: Monadic Datalog and the Expressive Power of Web
Information Extraction Languages. Journal of the ACM 51 1 (2003) 74–113

19. Gottlob, G., Koch, C., and Pichler, R.: Efficient Algorithms for Processing xpath
Queries. ACM Trans. Database Syst. 30 2 (2005) 444–491

20. Gottlob, G., Koch, C., Pichler, R., and Segoufin, L.: The Complexity of xpath
Query Evaluation and XML Typing. J. ACM 52 2 (2005) 284–335

21. Laender, A.H.F., Ribeiro-Neto, B., and da Silva, A.S.: DEByE – Data Extraction
By Example. Data and Knowledge Engineering 40 2 (Feb. 2002) 121–154

22. Lakshmanan, L.V., Sadri, F., and Subramanian, I.N: A Declarative Language
for Querying and Restructuring the World-Wide-Web. In Workshop on Research
Issues in Data Engineering (RIDE-NDS’96), New Orleans, USA, Feb. 1996

23. Liu, L., Pu, C., and Han, W.: XWRAP: An XML-Enabled Wrapper Construction
System for Web Information Sources. In Proceedings of the 16th IEEE Interna-
tional Conference on Data Engineering (ICDE), San Diego, USA (2000) 611–621

24. http://www.lixto.com.



48 G. Gottlob and C. Koch
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Abstract. ERCIM (European Research Consortium for Informatics and 
Mathematics) has produced over the years, at the request of the EC (European 
Commission), strategic documents on future ICT research based on work by its 
technical working groups representing the knowledge and vision of > 12000 
ICT researchers in 18 countries. The EC suggested that ERCIM submit a 
proposal for a coordinated action to produce a focused view for EC DG INFSO 
Unit F1: Future and Emerging Technologies. The proposal was successful and 
the BEYOND-THE-HORIZON (BTH) project is underway. The major 
objectives are: to identify advanced strategic areas and challenging long-term 
goals; to analyse their scientific, societal, and industrial impact and to deliver 
roadmaps for paving advances in these areas within a timeframe of fifteen 
years; and to investigate new frontiers for ICT research, to identify the 
boundaries with other disciplines, as well as interrelationships among them and 
opportunities for cross-fertilization. The chosen topics are: Pervasive 
Computing and Communications; Nanoelectronics and nanotechnology; 
Security, dependability and trust; Bio-ICT synergies; Intelligent and Cognitive 
Systems; Software Intensive Systems. This is clearly an important discussion in 
Europe about future R&D and providing input to the EC for FP7 (Framework 
Programme 7). The method of the project and the current state of the work are 
presented and the objective of the presentation is to engage actively the 
SOFSEM community in the discussion. 

1   Introduction 

The EC (European Commission) has for many years supported R&D (Research and 
Development) through various initiatives now brought together under Framework 
Programmes. The programmes cover all areas of R&D and include as a large 
component ICT (Information and Communication Technologies). However, the EC 
R&D funding accounts for < 5% of total European R&D funding. National 
government R&D funding sources are now being encouraged to cooperate with the 
EC such that EC–funded R&D can leverage the national R&D funding and results to 
continental scale. This requires agreement from national representatives and will lead 
to ERA, the European Research Area. 

The EC manages a long-term process for each framework programme starting with 
indicative budgets and topics, going through various rounds of consultation and 
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ending with a published budget and a workprogramme including detailed topic 
descriptions and milestones for calls for proposals and submission dates for proposals. 
It is in this process that national governments, individuals and pan-European 
groupings are invited to contribute to the consultation. 

ERCIM has been asked to contribute because it provides wide representation of the 
academic and industrial communities of 18 countries via national nodes which are the 
ERCIM member institutions. These node institutes each have a constituency of 
academic and commercial/industrial organisations with which they interwork. In 
addition many of the ERCIM institutions host the national or regional W3C office, 
providing many opportunities for interaction with the community. However, there are 
many other bodies such as ERCIM including trade groupings.   

In addition the EC sets up committees of groups of experts to advise it in the ICT 
area: the best-known and highest-level committee is ISTAG (Information Systems 
Technology Advisory Group). This included members from ERCIM institutions, 
notably José Encarnaçao from Fraunhofer Institute, Germany and Michael Wilson 
from CCLRC, UK. Recently a particularly effective group of experts has been the 
NGG (Next Generation GRIDs) expert group. This has also had significant 
participation by individual experts from ERCIM institutions and was initiated by 
Thiérry Priol from INRIA, France, Domenico Laforenza from CNR, Italy and the 
author. Locally to the geographical area of this conference, Ludek Matyska has 
participated. The first and second NGG expert groups have produced reports [2]; the 
third NGG started in September 2005. 

During May 2004 discussions between the late ERCIM president, Stelios 
Orphanoudakis, and staff from EC DG INFSO F1: FET (Directorate General, 
Information Society, Unit F1: Future and Emerging Technologies) led by Thiérry van 
der Pyl, led to the idea that ERCIM should propose a CA (Coordination Action) to 
gather and provide advice for FET on the content of their component of FP7 
(Framework Programme 7).  The proposal was made, accepted and the ‘Beyond-the-
Horizon’ (BTH) Project started in January 2005 with an 18 month timeframe.   

2   Beyond-the-Horizon (BTH) Project 

2.1   DG INFSO F1: FET 

DG INFSO Unit F1 (Future and Emerging Technologies) has a defined remit. Sister 
Units cover topics such as e-infrastructure, including networks and such services and 
SGSD (Software, GRIDs, Security, Dependability).  These ICT topics are thus not 
considered directly in F1. As part of IST, the Future and Emerging Technologies 
(FET) Programme has the role of stimulating the emergence and development of new 
IST-related disciplines and technologies, which promise to have significant scientific, 
industrial, and societal impact. In this perspective, FET is supporting long-term, 
visionary, high-risk research in advanced strategic areas. FET has to address two 
major challenges. First, information technology is developing at a very high pace, so 
the horizon comes closer much faster than in many other disciplines. And second, 
information technologies have become a foundational science for many other 
disciplines ranging from engineering (nanotechnology, robotics) and life sciences 
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(bioinformatics) to social sciences (economics, sociology, management) and arts and 
humanities (museums, computer-generated art). As a consequence of this 
multidisciplinary environment, the full scope of investigation has broadened 
substantially, making the identification and fostering of emerging research challenges 
more complex. 

2.2   Proposal 

Aims. In the light of the above, it is critically important for FET’s visionary ambition to 
regularly receive from the IST-related European research community focused and 
structured input, based on shared understanding, about emerging trends and strategic 
areas that require support, in order to build up European excellence, develop a scientific 
critical mass and keep European research a step ahead. The purpose of the BTH 
initiative is to provide such input through a well-organised, extensive and systematic 
consultation of the relevant research community throughout Europe, involving the main 
actors and experts in the related fields. The main aims of BTH are to: 

− identify advanced strategic areas and grand science and technology challenges 
related to ICT; 

− discuss the scientific, commercial and social importance of these challenges; 
− draw basic research directions in ICT and related disciplines for addressing the 

above challenges; 
− design roadmaps for making advances in these areas with a timeframe of fifteen 

years; 
− identify new frontiers for ICT basic research, and boundaries between “pure ICT” 

research and other disciplines; 
− identify the potential for cross-fertilization of research in disciplines involved in 

these areas; 
− establish communication and cooperation mechanisms within and beyond Europe 

in order to facilitate and support the formation and functioning of a related 
scientific community during the project lifecycle in a field characterised by rapid 
and continuous evolution. 

A secondary objective of BTH is to make a contribution towards raising awareness 
of IST-related basic research in the European industry and society at large. 

The Method. The project follows an open method of consultation and coordination 
that utilises a continuous working group on methodology, combined with major 
brainstorming workshops, in the form of a foresight exercise. A scientific coordinator 
holds the work together advised by a Scientific Steering Committee. The project is 
managed by the ERCIM Office. 

Approach Outline. The project will last 18 months and will be based on a number of 
Thematic Groups (expert panels) working in a parallel, yet coordinated fashion. 

The thematic groups cover the following topics:  

− Pervasive Computing and Communications;  
− Nanoelectronics and nanotechnology;  
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− Security, dependability and trust;  
− Bio-ICT synergies;  
− Intelligent and Cognitive Systems;  
− Software Intensive Systems.   

Each Thematic Group will focus on a particular research area, and will deliver 
a staged roadmap for the particular area, depicting the research paths that are believed 
to be most promising for achieving substantial progress in the particular area. Each 
Thematic Group will also analyse the potential scientific, industrial and societal 
impact of advances in its designated area.  

The Thematic Groups were established at Opening Workshops to be held during 
early months of the project.   The intermediate findings of the Thematic Groups will 
be discussed at a Consolidation Workshop to be held at Month 12.   Subsequently, the 
Thematic Groups will finalise their work, and the outcomes of the individual 
Thematic Groups’ reports will be integrated into a final project report.  

Initiating a Successful Exercise. The first significant milestone of the project is the 
preparation of a Background Document by the Scientific Steering Committee. The 
aims of this document were to suggest an initial, non-binding list of Grand 
Challenges, to be taken into consideration during the Opening Workshops. The 
document takes into account already identified proactive FET initiatives under FP6, 
as well as related initiatives in the USA and Japan. In practice – and as a result of the 
shortened timescale required by the EC - the recently-prepared ERCIM Research 
Strategy Document (November 2004) [1] was taken as the background. 

Bringing the Scientific Community Together. Given the complexity of the tasks to 
be carried out, the selection of the participants in this exercise is a critical issue. The 
invited participants were carefully selected by the Scientific Steering Committee to 
include expertise across all IST-related science and technology fields, high quality 
researchers, research managers, representatives of other stakeholders (scientific 
disciplines and sectors of society) of IT, and industry representatives. In addition, the 
contribution of other relevant foresight activities in Europe is assured. 

Many Grand Challenges, related to IST, have an interdisciplinary nature, thus it is 
critical to mobilise communities other than ICT, so as to ensure the formation of 
interdisciplinary teams. This mobilization is expected to be successful for two 
reasons. First, the key role of ICT in other areas is widely recognised, therefore, other 
scientific communities will appreciate the opportunity of shaping the future of ICT 
research towards taking into account the needs of their specific domains. And second, 
there is already a number of interdisciplinary research teams working on current 
research challenges, e.g. in the context of the FET Proactive initiatives; the 
interdisciplinary nature of areas, such as robotics, complex systems, nanotechnology, 
etc., is self-evident. BTH intends to capitalise on such existing interactions between 
IST and other disciplines. 

BTH involves industry representatives in all its activities. In fact, a secondary 
objective of the project is to raise awareness of IST-related basic research in 
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industry, thus promoting industrial participation in “curiosity-driven” (or basic/-
foundational) research as a mechanism for ensuring its long-term competitiveness. 

Advanced Collaboration Support. Beyond the Opening Workshops, the operation 
of the Thematic Groups is based on teleconferencing and on advanced on-line 
communication facilities rather than on physical meetings, to increase cost efficiency 
and to minimize time and place constraints imposed on their members. An online 
community dedicated to each one of the Thematic Groups is established, based on the 
deployment of an information portal and a collaborative work system. Technological 
support for BTH online communities is provided through a suite of web-based tools 
that facilitate the sharing of information among a group of people, and collaboration 
towards the achievement of shared goals. The technological infrastructure is designed 
to support authorization, virtual networking facilities, task allocation and monitoring, 
voting and survey tools, and navigation and query facilities in an easy-to-use 
environment. Online communities are not restricted to the core Thematic Group 
members. They are open to any interested party to comment on preliminary findings, 
ensuring that the Thematic Groups do not work in a closed environment, but are able 
to receive critical feedback, especially during the early stages of their work. 

In addition to the use of the online community infrastructure, physical meetings 
take place, as necessary. In fact, each Thematic Group plans its own operation making 
use of the available tools (workshops, online community, other communication 
means, physical meetings). 

Delivering an Integrated View on FET. The Consolidation Workshop, that will take 
place during Month 12 (December 2005) of the project, together with the integration 
of the Thematic Groups’ outcomes, will deliver a shared vision of future directions, 
which will be analysed for scientific and technological validity, industrial and societal 
impact, and level of payoff compared to risks. The project outcomes will, therefore, 
have the potential to contribute to the structuring and the shaping of the content of 
RTD and Innovation schemes within the Seventh Framework Programme (FP7) and 
the European Research Area (ERA) through comprising a guide for the IST/FET 
policy-making authorities in Europe. 

Disseminating the Objectives and Results. The BTH project plans an intense 
dissemination strategy to publicise broadly its objectives and results in order to: 
(a) mobilise the European IST-related research potential in individuals and 
institutions, so as to maximise their participation in the project; (b) increase awareness 
of key stake holders in the so-called horizontal themes (application domains); 
(c) influence future ERA policies towards materialising the forecast future; and 
(d) foster bottom-up research activities in the recommended emerging areas. This 
strategy is being implemented through an integrated marketing plan for the project 
and its results (through the use of WWW, CORDIS, affiliated institutes, European 
Research Consortium for Informatics and Mathematics - ERCIM, ERCIM News, 
conferences, etc.). As part of this strategy, a number of reports targeting different 
audiences, such as the research community, industry, policy makers and the general 
public, will be produced. 
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2.3   Project 

The topics were chosen by ERCIM bearing in mind the area of responsibility of FET 
and the topics arising through analysis by ERCIM.  This analysis covered technology 
foresight and business foresight – but with a long-term perspective of future 
requirements and opportunities in a timeframe greater than 15 years – in ICT this is 
truly beyond the horizon.  As an example, fifteen years ago the Web was a prototype 
on a desktop computer in a workshop at CERN and had not yet reached any kind of 
acceptance. 

Each topic was addressed by a task group with a nominated leader. The aim was to 
provide, based on foresight and analysis, a roadmap for the particular theme or area of 
technology. 

The project objectives included consensus-building in the community on how to 
address ‘grand challenges’; the building of networks of excellence for European 
research and the stimulation of interdisciplinary research where it is widely predicted 
much wealth creation and quality of life advances will be made in the future. The 
project is intended to stimulate both the R&D community and to engage industry. 
Furthermore it is intended to engage in a public debate on the challenges facing 
Europe.  Finally, the project intends to provide for the EC appropriate text for use in 
the construction of FP7, the seventh framework programme. 

All areas identified as Grand Challenges fulfill certain criteria: 

− They pose unsolved challenges and require significant, long-term basic research to 
address these challenges; 

− They will have possible significant impact on industry in the future; 
− They will potentially improve in a significant way the quality of life of citizens in 

the European Information Society.  

There is a considerable risk that some of the visions may not necessarily 
materialise to their full extent, even in a timeframe of fifteen years. However, based 
on today’s facts, all Grand Research Challenges appear to be scientifically and 
technologically feasible if significant investment (intellectual and financial) is made 
in them.   

2.4   Project Schedule 

The project was planned to run from January 2005 to end-June 2006 in order to 
coincide with the schedule for creating the FP7 workprogramme. In fact the formation 
of the workprogramme has been brought forward, and the key components will need 
to be in place in December 2005 although they are subject to refinement in the 
succeeding months. This has put considerable pressure on the project to provide 
deliverables earlier than previously envisaged. 

2.5   Synergy and Emergent Themes 

One expectation of the project was that the task groups, in mapping the 15-year future 
for each topic, would come across emergent sub-topics or themes that would have 
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implications on the work and planning of other task groups and which may open up 
new interdisciplinary areas of R&D leading to novel products and services for wealth 
creation and improvement of the quality of life. 

3   Results to Date 

This paper is written at the half-way point of the project and so only interim results 
are presented. By the time of the SOFSEM conference (January 2006) more up-to-
date results will be available, particularly from the major project workshop in 
December 2005. 

3.1   Pervasive Computing and Communications  

Ambient systems refer to ICT systems for the user-centric provision of services 
aiming at enhancing the quality of life by seamlessly offering relevant information 
and services to the individual, anywhere and at any time. This is realised by 
a synergistic combination of intelligent-aware interfaces, and ubiquitous computing 
and networking.  

Intelligence and context awareness of interfaces enables: the support of natural 
ways of interaction; automatic adaptation to users’ personal preferences; proactive 
interactive behaviour, based on users’ location, history and activities.  

The ubiquitous (pervasive) and global properties imply a useful, pleasant, flexible, 
dependable, secure and efficient presence of a system everywhere in the physical 
environment, e.g. at home, en route, in public spaces, at work, etc. The computing and 
networking facilities are distributed and accessible through a variety of devices, as 
needed.  

Progress on these problems will have a clear impact on procurement, brokerage 
and financial transactions, and will affect industry developing large scale information 
systems for national security, control of safety-critical systems, and services to the 
citizen. 

The realization of this vision requires massive foundational research to determine 
how to design such systems, how to analyse them and reason about their behaviour, 
how to control systems and their environments, and an in-depth understanding of their 
potential and limits. Also how to model and understand their behaviour, since the 
global, ubiquitous and ambient systems are arguably the largest engineered artefact in 
human history. Advances are needed in various areas of ICT, including mobile 
technology, hardware systems, sensors, low-cost broadband communications, mobile 
communications, software architectures, context management, adaptive services, 
models of computation, programming languages, system development methodologies, 
theories of modelling large-scale, distributed and dynamic systems. 

3.2   Nanoelectronics and Nanotechnology 

With nanoscale devices reaching characteristic dimensions of 10 nanometres (nm) in 
2015-2020, new opportunities will emerge to combine ultimate “top-down” 
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semiconductor platforms with “bottom-up” developments in materials, physics, 
chemistry and biology. A number of Grand Challenges were identified that summarise 
the multidisciplinary research themes where research is required for bringing these 
visions into tomorrow’s innovations.  

Advances in nano-scale materials science will provide the basis for adding 
significant extra functionality and performance to devices and systems on mainstream 
silicon platforms. These in turn will require new system architectures that will 
underpin new applications in ICTs and life sciences. Two main issues demand 
particular attention, namely heat generation and dissipation, and architectures. 
Inorganic nanowires and nanotubes will likely have a prominent position in these 
developments. The second Grand Challenge is to enable the combination and 
interfacing of a growing diversity of materials, functions, devices and information 
carriers. These “information carriers” could be electrons, photons, spins, ions, etc.  

New materials, devices and circuits will require cost-effective fabrication 
techniques for complex systems integrating deep nanometre scale devices. Nanoscale 
components must be grown and patterned at scales around and below 10 nm, going 
far beyond the current limitations of lithography. Self-assembly of nano-objects 
mediated by (bio)chemical interactions appears as one of the promising routes for 
a sustainable manufacturing of downscaled nano-components. 

Pushing the limits of miniaturisation to the nanometre scale requires new methods 
and tools to accurately model, manipulate, fabricate and characterise nano-objects 
down to the atomic scale. It also requires new paradigms to exchange information 
with single atoms or molecules. Denser integration and combination of top-down, 
bottom up and self-organised devices will vastly increase the complexity of ICT 
components and architectures. These require methods and tools to master the giga- 
complexity of future ICT architectures, integrating billions of devices with nano-scale 
dimensions and coping with variability, defects and energy-dissipation issues. 
Inspiration from biosystems is likely to lead to innovative and lower cost solutions. 

A number of new physical phenomena or properties of matter at the meso-scale 
have recently been discovered or demonstrated. These should be further investigated 
and, as appropriate, developed into new functions or technological developments for 
the ICT. Research for the discovery and further investigation of such new phenomena 
also needs to be supported. 

The increasingly fading boundaries between ICT and other related fields such as 
materials sciences, physics, chemistry, biochemistry and life sciences, were stressed 
all long the discussions in this session. Future research is hence expected to become 
more multidisciplinary and to be based on strong and effective integration of excellent 
researchers from all these disciplines. 

Breakthroughs towards achieving these goals are anticipated to have great impact. 
Application scenarios include health and environment, engineering, consumer 
electronics, efficient scientific computations etc.  

3.3   Security, Dependability and Trust  

As human dependence on technical infrastructure and systems grows, the threats of 
major failures grow accordingly. This fact calls for a concentrated effort to improve 
the quality of ICT-based systems along the following axes:  
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− Security: Factors that contribute to increased risks include: growing autonomy and 
mobility of technologies and systems; increasing size and complexity; increased 
heterogeneity; inherent interdependencies resulting from the pervasiveness of 
technologies and systems. These challenges call for novel, advanced methods to 
address the involved problems, such as real-time detection and response to threats, 
and proactive measures. Additionally, in the new technological environment 
threats may be caused not only by system failures, but also through active human 
involvement. Interesting social and ethical questions will be raised in this process, 
for example concerning the acceptable trade-off between level of risk and privacy.  

− Dependability: There are many application areas where system failure may lead to 
loss of financial resources, and even loss of human lives (e.g., control of aircraft 
and nuclear plants). In such cases, scientifically rigorous evidence is needed in 
advance to back up promises about a product’s future service. The problem is 
complicated by the need for practical ICT systems to evolve in response to changes 
in their requirements, technology and environments, without compromising their 
dependability. This is even stronger in applications where system boundaries are 
not fixed and are subject to constant urgent change (e.g. in e-business). Scientific 
and technological advances are required to (a) demonstrate that commercial and 
industrial-scale software can be developed to be truly dependable, and with less 
development risk than today; and (b) dependable systems can be evolved 
dependably including, for a class of applications, just-in-time creation of required 
services.  

− Trust: Even if a technological infrastructure is secure and dependable, users will 
not necessarily trust it. For example, lack of trust is considered to be a major 
inhibiting factor for a much stronger and faster development of B2C e-commerce. 
Additionally, privacy concerns may in the future inhibit the take up of location-
based services. To overcome these problems it is necessary to develop novel 
methods for trust creation and management, possibly inspired by social human 
behaviour.  

While these objectives mostly call for ICT basic research (e.g. in cryptography), 
interaction with other disciplines will be useful. For example, social sciences and 
ethics may give useful input regarding the trade-off between security and privacy, and 
the emergence of trust; and input from mathematics will be essential for the 
development of novel cryptography techniques.  

3.4   Bio-ICT Synergies  

The convergence of ICT with bio and life sciences, but also with cognitive science 
and nanotechnology promises to initiate a new technological revolution, with 
implications ranging from medicine to education and response to natural and man-
made threats. Particular objectives in this direction include:  

− Large-scale functional genomics and proteomics: The availability of (nearly) 
complete genome sequences of a growing number of model organisms, offers 
scientists a unique opportunity to study global biomolecular changes in cellular 
compartments, cells, tissues and organisms. As for studying proteins, the genome 
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should be regarded as a sort of blueprint since the gene products (proteins) are the 
key players in all aspects of cell structure and function. Proteomics enables 
researchers to study the overall protein content of a subcellular compartment, cell, 
tissue or organism at a particular moment in time and under certain environmental 
conditions.  

− Modelling the development of behaviour in plants and animals: model 
development from fertilised cells to full organisms, model cell function and 
interaction, capture interactions between organisms and the surrounding 
environment.  

− Modelling of the function of organs and their simulation: Theoretical modelling of 
the brain and mind (Human Cognome Project): chart the structure and functions of 
the human mind; create a computational architecture of the brain and mind which 
is inspired both by the neural architecture of the brain and high level cognitive 
functioning of humans; capture information processing principles present in the 
brain, leading to bio-inspired computational paradigms; explain how low-level 
neuronal processes are linked to high-level cognitive capabilities, such as self 
awareness and creativity.  

− Enhancing and/or substituting human performances: once progress on the previous 
points is made, we can come up with a host of devices that enhance human sensory 
capabilities, extent or substitute deficient human senses, organs and physical 
capabilities (e.g. motor skills) through intimate sensory, cognitive and neural bi-
directional connections (for example using a nano-bio processor for programming 
complex biological pathways on a chip that mimic responses of a human body).  

The above problems demonstrate the great impact ICT will have in biology and 
medicine. However, this field poses also challenges to IT. Here we mention a few:  

− Develop methods for maintenance and interoperability of biological data, and for 
the semantic organisation of biological knowledge;  

− Develop methods for visualising biological data;  
− Increase the reliability of bioinformatics predictions.  
− In addition, if we manage to capture the information processing principles present 

in organisms and the human brain, we will be able to develop advanced bio-
inspired computational paradigms. 

From a scientific perspective, research in these directions is most promising and 
fulfilling. And the potential impact on health, engineering, education, etc. are obvious. 
These challenges call for interdisciplinary research including ICT, cognitive science, 
biology and biotechnology. 

3.5   Intelligent and Cognitive Systems  

With virtually limitless computing power available for the first time, it is possible 
to build truly intelligent systems that perceive, reason, understand and learn. Such 
systems will be useful for extracting meaning from huge data flows, thus addressing 
one of the key emerging problems of human participation in an Information 
Society, namely the information overflow. Truly intelligent systems will be able to 
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operate in an autonomous way, naturally interact with the world and with human 
users, and be (self-)adaptive to changing situations and contexts, including users’ 
preferences and needs. Long-term objectives included in this Grand Research 
Challenge include:  

− Complex adaptive systems consisting of collections of simple, often 
heterogeneous, entities exhibiting collective behaviour and functionality through 
high connectivity. This idea is based on studies of complex systems that occur in 
nature and society, such as living organisms, animal societies, ecosystems, markets 
and cultural groupings.  

− Introspective reasoning: self-awareness, knowledge of internal state and capacity; 
intensional query answering; knowledge communication among introspective 
systems; multi-modal reasoning.  

− Emotional and affective computing: develop systems that can make hypotheses on 
a user’s likely affective state and produce believable, affective behaviour, where 
necessary.  

− Mixed realities: This includes pulling ICT systems out of the digital and into our 
physical world. This includes handling massive sensory input, as a tool for 
establishing more genuine communication between humans and machines. Also 
projecting a human’s mind through media to other places and designed 
environments. 

The research challenges outlined above call for interdisciplinary research effort 
from disciplines such as: AI, engineering (robotics and control), cognitive science and 
philosophy. 

3.6   Software Intensive Systems 

Society’s dependence on software-intensive systems is increasing, to the point where 
a growing range of products and services from all sectors of economic activity, but 
also our daily lives, depend on software-intensive systems, e.g. banking, 
communications, transportation, entertainment and health. While a large number of 
methods and tools for engineering software-intensive systems has been developed, 
they suffer from some severe quality and methodological deficiencies: pragmatic 
modelling languages and techniques lack a formal foundation, thus inhibiting the 
development of powerful analysis and development tools, while formal approaches 
are not well-integrated with pragmatic methods, do not scale easily to complex 
software- intensive systems and are often too difficult to use. 

The increasing complexity of software systems, e.g. in the area of pervasive 
computing, poses new engineering challenges for modelling data and processes; 
building adequate system architectures; ensuring reliability, dependability and 
compliance; supporting interoperability; managing change and enhancing usability. 
The Grand Challenge is to develop practically useful and theoretically well-founded 
methods and tools for engineering complex software-intensive systems, supporting 
the entire life cycle.  

An interesting line for future research lies with Service-Oriented Computing, 
a computing paradigm that utilizes services as fundamental elements for developing 
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distributed applications/solutions. Services are self-describing, platform-agnostic 
computational elements that support rapid, low-cost and easy composition of loosely 
coupled distributed applications; moreover formal methods may be used to 
verify/ensure the correctness and dependability of service-oriented software systems. 
The service-oriented computing paradigm promises to revolutionise the process of 
developing and deploying distributed software applications. Benefits of applying the 
service-oriented computing paradigm include reduced complexity and costs, exposing 
and reusing core business functionality, increased flexibility, resilience to technology 
shifts and improving operational efficiency. 

3.7   Synergy and Emergent Themes 

At the time of writing, some synergies are starting to emerge. It is expected that these 
will be clearer at the Month 12 consolidation workshop. 

4   Conclusion 

The BTH project is providing DG INFSO F1: Future and Emerging Technologies 
with appropriate input for a future research programme drawing on widespread 
representative community input coordinated by ERCIM. It has also made many 
people aware of the process of producing a workprogramme. It has clearly established 
ERCIM as an authoritative and representative organisation for this strategic work. 
The project encourages participation from all researchers. This is best achieved by 
contacting the thematic leaders or the project leader (details on the website 
http://www.beyond-the-horizon.net/). 
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Abstract. One of the most widely used solution concepts for strategic
games is the concept of Nash equilibrium. A Nash equilibrium is a state
in which no player can improve its objective by unilaterally changing
its strategy. A Nash equilibrium is called pure if all players choose a
pure strategy, and mixed if players choose probability distributions over
strategies. Of special interest are fully mixed Nash equilibria where each
player chooses each strategy with non-zero probability.

Rosenthal [12] introduced a special class of strategic games, now
widely known as congestion games. Here, the strategy set of each player
is a subset of the power set of given resources. The players share a private
objective function, defined as the sum (over their chosen resources) of
functions in the number of players sharing this resource. In his seminal
work, Rosenthal showed with help of a potential function that conges-
tion games (in sharp contrast to general strategic games) always admit
at least one pure Nash equilibrium. An extension to congestion games
are weighted congestion games, in which the players have weights and
thus different influence on the congestion of the resources. In (weighted)
network congestion games the strategy sets of the players correspond to
paths in a network.

In order to measure the degradation of social welfare due to the selfish
behavior of the players, Koutsoupias and Papadimitriou [8] introduced
a global objective function, usually coined as social cost. They defined
the price of anarchy, also called coordination ratio, as the worst-case ra-
tio between the value of social cost in a Nash equilibrium and that of
some social optimum. Thus the coordination ratio measures the extent
to which non-cooperation approximates cooperation. As a starting point
for studying the coordination ratio, Koutsoupias and Papadimitriou con-
sidered a very simple weighted network congestion game, now known as
KP-model. Here, the network consists of a single source and a single
destination which are connected by parallel links. The load on a link is
the total weight of players assigned to this link. Associated with each
link is a capacity representing the rate at which the link processes load.
Each of the players selfishly routes from the source to the destination by
choosing a probability distribution over the links. The private objective
function of a player is defined as its expected latency. In the KP-model
the social cost is defined as the expected maximum latency on a link,
where the expectation is taken over all random choices of the players.
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Union within the 6th Framework Programme under contract 001907 (DELIS).
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In this paper, we give a thorough survey on the most exciting results
on finite (weighted) congestion games and on special classes which are
related to the KP-model. In particular, we review the findings on the
existence and computational complexity of pure Nash equilibria. Fur-
thermore, we discuss results on the price of anarchy. Last but not least,
we survey known facts on fully mixed Nash equilibria.
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Abstract. Does new physics give us a chance for designing computers,
at least in principle, which could compute beyond the Turing barrier? By
the latter we mean computers which could compute some functions which
are not Turing computable. Part of what we call “new physics” is the
surge of results in black hole physics in the last 15 years, which certainly
changed our perspective on certain things [3], [9], [1]. The two main
directions in this line seem to be quantum computers and relativistic,
i.e. spacetime-theory-based, ones. We will concentrate on the relativistic
case, e.g. [1], [2], [4], [6]. Is there a remote possibility that relativity can
give some feedback to its “founding grandmother”, namely, to logic?
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Abstract. Recent rapid developments in micro-electro-mechanical sys-
tems (MEMS), wireless communications and digital electronics have al-
ready led to the development of tiny, low-power, low-cost sensor devices.
Such devices integrate sensing, limited data processing and restricted
communication capabilities.

Each sensor device individually might have small utility, however the
effective distributed co-ordination of large numbers of such devices can
lead to the efficient accomplishment of large sensing tasks. Large num-
bers of sensors can be deployed in areas of interest (such as inaccessible
terrains or disaster places) and use self-organization and collaborative
methods to form an ad-hoc network.

We note however that the efficient and robust realization of such large,
highly-dynamic, complex, non-conventional networking environments is
a challenging technological and algorithmic task, because of the unique
characteristics and severe limitations of these devices.

This talk will present and discuss several important aspects of the
design, deployment and operation of sensor networks. In particular, we
provide a brief description of the technical specifications of state-of-the-
art sensor, a discussion of possible models used to abstract such networks,
a discussion of some key algorithmic design techniques (like randomiza-
tion, adaptation and hybrid schemes), a presentation of representative
protocols for sensor networks, for important problems including data
propagation, collision avoidance and energy balance and an evaluation
of crucial performance properties (correctness, efficiency, fault-tolerance)
of these protocols, both with analytic and simulation means.

1 Introduction

1.1 A Short Description of Wireless Sensors

Recent dramatic developments in micro-electro-mechanical (MEMS) systems,
wireless communications and digital electronics have already led to the develop-
ment of small in size, low-power, low-cost sensor devices. Such extremely small
devices integrate sensing, data processing and wireless communication capabil-
ities. Current devices have a size at the cubic centimeter scale, a CPU running
at 4 MHz, some memory and a wireless communication capability at a 4Kbps
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rate. Also, they are equipped with a small but effective operating system and are
able to switch between “sleeping” and “awake” modes to save energy. Pioneering
groups (like the “Smart Dust” Project at Berkeley, the “Wireless Integrated Net-
work Sensors” Project at UCLA and the “Ultra low Wireless Sensor” Project at
MIT) pursue further important goals, like a total volume of a few cubic millime-
ters and extremely low energy consumption, by using alternative technologies,
based on radio frequency (RF) or optical (laser) transmission.

Their wide range of applications is based on the possible use of various sen-
sor types (i.e. thermal, visual, seismic, acoustic, radar, magnetic, etc.) in order
to monitor a wide variety of conditions (e.g. temperature, object presence and
movement, humidity, pressure, noise levels etc.). Thus, sensor networks can be
used for continuous sensing, event detection, location sensing as well as micro-
sensing. Hence, sensor networks have important applications, including (a) mil-
itary (like forces and equipment monitoring, battlefield surveillance, targeting,
nuclear, biological and chemical attack detection), (b) environmental applica-
tions (such as fire detection, flood detection, precision agriculture), (c) health
applications (like telemonitoring of human physiological data) and (d) home
applications (e.g. smart environments and home automation). For an excellent
survey of wireless sensor networks see [1] and also [7], [13].

1.2 Critical Challenges

Features including the huge number of sensor devices involved, the severe power,
computational and memory limitations, their dense deployment and frequent
failures, pose new design, analysis and implementation aspects which are es-
sentially different not only with respect to distributed computing and systems
approaches but also to ad-hoc networking techniques. We emphasize the follow-
ing characteristic differences between sensor networks and ad-hoc networks:

– The number of sensor particles in a sensor network is extremely large com-
pared to that in a typical ad-hoc network.

– Sensor networks are typically prone to faults.
– Because of faults as well as energy limitations, sensor nodes may (perma-

nently or temporarily) join or leave the network. This leads to highly dynamic
network topology changes.

– The density of deployed devices in sensor networks is much higher than in
ad-hoc networks.

– The limitations in energy, computational power and memory are much more
severe in sensor networks.

Because of the above rather unique characteristics of sensor networks, efficient
and robust distributed protocols and algorithms should exhibit the following crit-
ical properties:

Scalability. Distributed protocols for sensor networks should be highly scalable,
in the sense that they should operate efficiently in extremely large networks com-
posed of huge numbers of nodes. This feature calls for an urgent need to prove by
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analytical means and also validate (by large scale simulations) certain efficiency
and robustness (and their trade-offs) guarantees for asymptotic network sizes.

Efficiency. Because of the severe energy limitations of sensor networks and also
because of their time-critical application scenaria, protocols for sensor networks
should be efficient, with respect to both energy and time.

Fault-Tolerance. Sensor particles are prone to several types of faults and un-
availabilities, and may become inoperative (permanently or temporarily). Vari-
ous reasons for such faults include physical damage during either the deployment
or the operation phase, permanent (or temporary) cease of operation in the case
of power exhaustion (or energy saving schemes, respectively). The sensor net-
work should be able to continue its proper operation for as long as possible
despite the fact that certain nodes in it may fail.

1.3 Trade-Offs, Algorithmic Design and Modeling

Since one of the most severe limitations of sensor devices is their limited energy
supply, one of the most crucial goals in designing efficient protocols for wireless
sensor networks is minimizing the energy consumption in the network. This
goal has various aspects, including: (a) minimizing the total energy spent in
the network (b) minimizing the number (or the range) of data transmissions
(c) combining energy efficiency and fault-tolerance, by allowing redundant data
transmissions which however should be optimized to not spend too much energy
(d) maximizing the number of “alive” particles over time, thus prolonging the
system’s lifetime and (e) balancing the energy dissipation among the sensors in
the network, in order to avoid the early depletion of certain sensors and thus the
breakdown of the network.

We note that it is very difficult to achieve all the above goals at the same
time. There even exist trade-offs between some of the goals above. Furthermore,
the importance and priority of each of these goals may depend on the particular
application. Thus, it is important to have a variety of protocols (and hybrid
combinations of protocols), each of which may possibly focus at some of the
energy efficiency goals above (while still performing well with respect to the
rest goals). Furthermore, there exist fundamental, inherent trade-offs between
important performance measures, most notably between energy dissipation and
latency (i.e. time for information to get to the control center). Also, the per-
formance of protocols in such networks depends highly on a diverse variety of
parameters and each protocol seems to best fit a certain network type. Finally,
such networks are highly changing (sensors come and go, sleep and awake, the
network connectivity changes) or even heterogeneous (i.e. composed of sensors
of various types and capabilities) thus adaptive distributed algorithms that lo-
cally (and implicitly) sense network changes and appropriately adapt (possibly
performing random choices) are very useful.

In this chapter, we present three energy efficient protocols:

– The Local Target Protocol (LTP), that performs a local optimization trying
to minimize the number of data transmissions.
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– The Probabilistic Forwarding Protocol (PFR), that creates redundant data
transmissions that are probabilistically optimized, to trade-off energy effi-
ciency with fault-tolerance.

– The Energy Balanced Protocol (EBP), that focuses on guaranteeing the same
per sensor energy dissipation, in order to prolong the lifetime of the network.

We believe that a complementary use of rigorous analysis and large scale sim-
ulations is needed to fully investigate the performance of data propagation pro-
tocols in wireless sensor networks. In particular, asymptotic analysis may lead
to provable efficiency and robustness guarantees towards the desired scalability
of protocols for sensor networks that have extremely large size. On the other
hand, simulation allows to investigate the detailed effect of a great number of
technical specifications of real devices, a task that is difficult (if possible at
all) for analytic techniques which, by their nature, use abstraction and model
simplicity.

The definition of abstract (yet realistic) models for wireless sensor networks
is very important, since it enables rigorous mathematical analysis of protocol
performance. Such models include: a) random geometric graphs [9], [18], where
a random plane network is constructed by picking points (that abstract sen-
sors) in the plane by a Poisson process, with density d points per unit area,
and then joining each pair of points by a line if they are at distance less than
r (this captures transmission range). Interesting properties under this model
are investigated in [5]. b) Another interesting model is that of random sec-
tor graphs, where each randomly chosen point (sensor) in the plane chooses
an angle and a euclidean distance (that together define a cyclic sector cor-
responding to the sensor’s transmission area [6]). Interesting properties (con-
nectivity, chromatic number) are investigated in [20]. A new relevant model is
that of random intersection graphs, where each vertex randomly picks elements
from a universe, and two vertices are adjacent when they pick at least one el-
ement in common ([14]). Independence properties and algorithms are proposed
in [16].

2 LTP: A Hop-by-Hop Data Propagation Protocol

2.1 The Model

The LTP Protocol was introduced by Chatzigiannakis, Nikoletseas and Spirakis
in [2]. The authors adopt a two-dimensional (plane) framework: A smart dust
cloud (a set of particles) is spread in an area (for a graphical presentation, see
Fig. 1).

Let d (usually measured in numbers of particles/m2) be the density of parti-
cles in the area. Let R be the maximum (radio/laser) transmission range of each
grain particle.

A receiving wall W is defined to be an infinite line in the smart-dust plane.
Any particle transmission within range R from the wall W is received by W .
The wall represents in fact the authorities (the fixed control center) who the
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realization of a crucial event should be reported to. The wall notion generalizes
that of the sink and may correspond to multiple (and/or moving) sinks. Note
that a wall of appropriately big (finite) length suffices.

The notion of multiple sinks which may be static or moving has also been
studied in [21], where Triantafilloy, Ntarmos, Nikoletseas and Spirakis intro-
duce “NanoPeer Words”, merging notions from Peer-to-Peer Computing and
Smart Dust.

Sensor nodesSensor field

Control Center

Fig. 1. A Smart Dust Cloud

Furthermore, there is a set-up phase of the smart dust network, during which
the smart cloud is dropped in the terrain of interest, when using special con-
trol messages (which are very short, cheap and transmitted only once) each
smart dust particle is provided with the direction of W . By assuming that each
smart-dust particle has individually a sense of direction, and using these control
messages, each particle is aware of the general location of W .

2.2 The Protocol

Let d(pi, pj) the distance (along the corresponding vertical lines towards W) of
particles pi, pj and d(pi,W) the (vertical) distance of pi from W . Let info(E)
the information about the realization of the crucial event E to be propagated.
Let p the particle sensing the event and starting the execution of the protocol.
In this protocol, each particle p′ that has received info(E), does the following:

– Search Phase: It uses a periodic low energy directional broadcast in or-
der to discover a particle nearer to W than itself. (i.e. a particle p′′ where
d(p′′, W) < d(p′, W)).

– Direct Transmission Phase: Then, p′ sends info(E) to p′′.
– Backtrack Phase: If consecutive repetitions of the search phase fail to dis-

cover a particle nearer to W , then p′ sends info(E) to the particle that it
originally received the information from.

For a graphical representation see figures 2, 3. [2] first provides some basic
definitions.
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Fig. 2. Example of the Search Phase

W
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p3
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a2

Fig. 3. Example of a Transmission

Definition 1. Let hopt(p, W) be the (optimal) number of “hops” (direct, ver-
tical to W transmissions) needed to reach the wall, in the ideal case in which
particles always exist in pair-wise distances R on the vertical line from p to W .
Let Π be a smart-dust propagation protocol, using a transmission path of length
L(Π, p, W) to send info about event E to wall W . Let h(Π, p, W) be the ac-
tual number of hops (transmissions) taken to reachW . The “hops” efficiency of
protocol Π is the ratio

Ch =
h(Π, p, W)
hopt(p, W)

Clearly, the number of hops (transmissions) needed characterizes the energy
consumption and the time needed to propagate the information E to the wall.
Remark that hopt =

⌈
d(p,W)

R
⌉
, where d(p,W) is the (vertical) distance of p from

the wall W .
In the case where the protocol Π is randomized, or in the case where the

distribution of the particles in the cloud is a random distribution, the number of
hops h and the efficiency ratio Ch are random variables and one wishes to study
their expected values.
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The reason behind these definitions is that when p (or any intermediate par-
ticle in the information propagation to W) “looks around” for a particle as
near to W as possible to pass its information about E , it may not get, for
a variety of reasons, any particle in the perfect direction of the line vertical
to W .

Note that any given distribution of particles in the smart dust cloud may
not allow the ideal optimal number of hops to be achieved at all. In fact, the
least possible number of hops depends on the input (the positions of the grain
particles). [2] however, compares the efficiency of protocols to the ideal case.
A comparison with the best achievable number of hops in each input case will
of course give better efficiency ratios for protocols.

To enable a first step towards a rigorous analysis of smart dust protocols,
[2] makes the following simplifying assumption: The search phase always finds
a p′′ (of sufficiently high battery) in the semicircle of center the particle p′ cur-
rently possessing the information about the event and radius R, in the direction
towardsW . Note that this assumption on always finding a particle can be relaxed
in many ways.

[2] also assumes that the position of p′′ is uniform in the arc of angle 2a around
the direct line from p′ vertical to W . Each data transmission (one hop) takes
constant time t (so the “hops” and time efficiency of our protocols coincide in this
case). It is also assumed that each target selection is stochastically independent
of the others, in the sense that it is always drawn uniformly randomly in the arc
(−α, α).

Lemma 1 ([2]). The expected “hops efficiency” of the local target protocol in
the a-uniform case is

E(Ch) � α

sin α

for large hopt. Also

1 ≤ E(Ch) ≤ π

2
� 1.57

for 0 ≤ α ≤ π
2 .

Proof. A sequence of points is generated, p0 = p, p1, p2, . . . , ph−1, ph where
ph−1 is a particle within W ’s range and ph is part of the wall. Let αi be the
(positive or negative) angle of pi with respect to pi−1’s vertical line to W . It is:

h−1∑
i=1

d(pi−1, pi) ≤ d(p, W) ≤
h∑

i=1

d(pi−1, pi)

Since the (vertical) progress towards W is then Δi = d(pi−1, pi) = R cosαi,
we get:

h−1∑
i=1

cosαi ≤ hopt ≤
h∑

i=1

cosαi
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From Wald’s equation for the expectation of a sum of a random number of
independent random variables (see [19]), then

E(h− 1) · E(cos αi) ≤ E(hopt) = hopt ≤ E(h) · E(cosαi)

Now, ∀i, E(cos αi) =
∫ α

−α cosx 1
2αdx = sin α

α . Thus

α

sin α
≤ E(h)

hopt
= E(Ch) ≤ α

sin α
+

1
hopt

Assuming large values for hopt (i.e. events happening far away from the wall,
which is the most interesting case in practice since the detection and propagation
difficulty increases with distance) we have (since for 0 ≤ α ≤ π

2 it is 1 ≤ α
sin α ≤

π
2 ) and the result follows.

2.3 Local Optimization: The Min-Two Uniform Targets Protocol
(M2TP)

[2] further assumes that the search phase always returns two points p′′, p′′′ each
uniform in (−α, α) and that a modified protocol M2TP selects the best of the two
points, with respect to the local (vertical) progress. This is in fact an optimized
version of the Local Target Protocol.

In a similar way as in the proof of the previous lemma, the authors prove the
following result:

Lemma 2 ([2]). The expected “hops” efficiency of the min-two uniform targets
protocol is

1 ≤ E(Ch) ≤ π2

8
� 1.24

for large h and for 0 ≤ α ≤ π
2 .

Remark that, with respect to the expected hops efficiency of the local target
protocol, the min-two uniform targets protocol achieves, because of the one ad-
ditional search, a relative gain which is (π/2 − π2/8)/(π/2) � 21.5%. [2] also
experimentally investigates the further gain of additional (i.e. m > 2) searches.

3 PFR – A Probabilistic Forwarding Protocol

The LTP protocol, as shown in the previous section manages to be very efficient
by always selecting exactly one next-hop particle, with respect to some opti-
mization criterion. Thus, it tries to minimize the number of data transmissions.
LTP is indeed very successful in the case of dense and robust networks, since in
such networks a next hop particle is very likely to be discovered. In sparse or
faulty networks however, the LTP protocol may behave poorly, because of many
backtracks due to frequent failure to find a next hop particle. To combine energy
efficiency and fault-tolerance, the Probabilistic Forwarding Protocol (PFR) has
been introduced. The trade-offs in the performance of the two protocols implied
above are shown and discussed in great detail in [4].
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3.1 The Model

The PFR protocol was introduced by Chatzigiannakis, Dimitriou, Nikoletseas
and Spirakis in [3]. They assume the case where particles are randomly deployed
in a given area of interest. Such a placement may occur e.g. when throwing
sensors from an airplane over an area.

As a special case, they consider the network being a lattice (or grid) deploy-
ment of sensors. This grid placement of grain particles is motivated by certain
applications, where it is possible to have a pre-deployed sensor network, where
sensors are put (possibly by a human or a robot) in a way that they form
a 2-dimensional lattice.

Let N be the number of deployed grain particles. There is a single point in
the network area, which we call the sink S, and represents a control center where
data should be propagated to.

We assume that each grain particle has the following abilities:

(i) It can estimate the direction of a received transmission (e.g. via the tech-
nology of direction-sensing antennae).

(ii) It can estimate the distance from a nearby particle that did the transmis-
sion (e.g. via estimation of the attenuation of the received signal).

(iii) It knows the direction towards the sink S. This can be implemented during
a set-up phase, where the (very powerful in energy) sink broadcasts the
information about itself to all particles.

(iv) All particles have a common co-ordinates system.

Notice that GPS information is not needed for this protocol. Also, there is no
need to know the global structure of the network.

3.2 The Protocol

The PFR protocol is inspired by the probabilistic multi-path design choice for
the Directed Diffusion paradigm mentioned in [11]. Its basic idea of the protocol
(introduced in [3]) lies in probabilistically favoring transmissions towards the sink
within a thin zone of particles around the line connecting the particle sensing
the event E and the sink (see Fig. 4). Note that transmission along this line is
energy optimal due to a variety of reasons.

The protocol evolves in two phases:

Phase 1: The “Front” Creation Phase. Initially the protocol builds
(by using a limited, in terms of rounds, flooding) a sufficiently large
“front” of particles, in order to guarantee the survivability of the data
propagation process. During this phase, each particle having received
the data to be propagated, deterministically forwards them towards the
sink. In particular, and for a sufficiently large number of steps s = 180

√
2,

each particle broadcasts the information to all its neighbors, towards the
sink. Remark that to implement this phase, and in particular to count
the number of steps, we use a counter in each message. This counter
needs at most �log 180

√
2� bits.
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Phase 2: The Probabilistic Forwarding Phase. During this phase,
each particle P possessing the information under propagation, calculates
an angle φ by calling the subprotocol “φ-calculation” (see description
below) and broadcasts info(E) to all its neighbors with probability IPfwd

(or it does not propagate any data with probability 1 − IPfwd) defined
as follows:

IPfwd =

{
1
φ
π

if φ ≥ φthreshold

otherwise

where φ is the angle defined by the line EP and the line PS and
φthreshold = 134o (the selection reasons of this φthreshold will become
evident in Section 3.4).

In both phases, if a particle has already broadcast info(E) and receives it again,
it ignores it. Also the PFR protocol is presented for a single event tracing. Thus
no multiple paths arise and packet sizes do not increase with time.

Remark that when φ = π then P lies on the line ES and vice-versa (and
always transmits).

If the density of particles is appropriately large, then for a line ES there
is (with high probability) a sequence of points “closely surrounding ES” whose
angles φ are larger than φthreshold and so that successive points are within trans-
mission range. All such points broadcast and thus essentially they follow the line
ES (see Fig. 4).

S

E

Particles that
particiapate in

forwarding path

Fig. 4. Thin Zone of particles

3.3 Properties of PFR

Consider a partition of the network area into small squares of a fictitious grid G
(see Fig. 5). Let the length of the side of each square be l. Let the number of
squares be q. The area covered is bounded by ql2. Assuming that we randomly
throw in the area at least αq log q = N particles (where α > 0 a suitable con-
stant), then the probability that a particular square is avoided tends to 0. So
with very high probability (tending to 1) all squares get particles. [3] conditions
all the analysis on this event, call it F , of at least one particle in each square.
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EParticles

Lattice
Dissection

Fig. 5. A Lattice Dissection G

3.4 The Correctness of PFR

Without loss of generality, we assume each square of the fictitious lattice G to
have side length 1.

In [3] the authors prove the correctness of the PFR protocol, by using a geo-
metric analysis. We below sketch their proof. Consider any square Σ intersecting
the ES line. By the occupancy argument above, there is with high probability
a particle in this square. Clearly, the worst case is when the particle is located in
one of the corners of Σ (since the two corners located most far away from the ES
line have the smallest φ-angle among all positions in Σ). By some geometric cal-
culations, [3] finally proves that the angle φ of this particle is φ > 134o. But the
initial square (i.e. that containing E) always broadcasts and any intermediate
intersecting square will be notified (by induction) and thus broadcast because
of the argument above. Thus the sink will be reached if the whole network is
operational.

Lemma 3 ([3]). PFR succeeds with probability 1 in sending the information
from E to S given the event F .

3.5 The Energy Efficiency of PFR

[3] considers the fictitious lattice G of the network area and let the event F
hold. There is (at least) one particle inside each square. Now join all nearby
particles of each particle to it, thus by forming a new graph G′ which is “lattice-
shaped” but its elementary “boxes” may not be orthogonal and may have var-
ied length. When G′s squares become smaller and smaller, then G′ will look
like G. Thus, for reasons of analytic tractability, in [3] the authors assume
that particles form a lattice. They also assume length l = 1 in each square,
for normalization purposes. Notice however that when l → 0 then “G′ →
G” and thus all results in this Section hold for any random deployment “in
the limit”.

The analysis of the energy efficiency considers particles that are active but are
as far as possible from ES. Thus the approximation is suitable for remote particles.
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[3] estimates an upper bound on the number of particles in an n × n (i.e.
N = n× n) lattice. If k is this number then r = k

n2 (0 < r ≤ 1) is the “energy
efficiency ratio” of PFR.

More specifically, in [3] the authors prove the (very satisfactory) result be-
low. They consider the area around the ES line, whose particles participate
in the propagation process. The number of active particles is thus, roughly
speaking, captured by the size of this area, which in turn is equal to |ES|
times the maximum distance from |ES| (where maximum is over all active
particles).

This maximum distance is clearly a random variable. To calculate the expec-
tation and variance of this variable, the authors in [3] basically “upper bound”
the stochastic process of the distance from ES by a random walk on the line,
and subsequently “upper bound” this random walk by a well-known stochastic
process (i.e. the “discouraged arrivals” birth and death Markovian process, see
e.g. [15]). Thus they prove the following:

Theorem 1 ([3]). The energy efficiency of the PFR protocol is Θ

((
n0
n

)2
)

where n0 = |ES| and n =
√

N , where N is the number of particles in the
network. For n0 = |ES| = o(n), this is o(1).

3.6 The Robustness of PFR

To prove the following robustness result, the authors in [3] consider particles
“very near” to the ES line. Clearly, such particles have large φ-angles (i.e. φ >
134o). Thus, even in the case that some of these particles are not operating,
the probability that none of those operating transmits (during the probabilistic
phase 2) is very small. Thus, [3] proves the following.

Lemma 4 ([3]). PFR manages to propagate the crucial data across lines parallel
to ES, and of constant distance, with fixed nonzero probability (not depending
on n, |ES|).

4 The Energy Balance Problem

Most data propagation techniques do not explicitly take care of the possible
overuse of certain sensors in the network. As an example, remark that in hop-
by-hop transmissions towards the sink, the sensors lying closer to the sink tend
to be utilized exhaustively (since all data passes through them). Thus, these
sensors may die out very early, thus resulting to network collapse although there
may be still significant amounts of energy in the other sensors of the network.
Similarly, in clustering techniques the cluster-heads that are located far away
with respect to the sink, tend to spend a lot of energy.

In this section, we present a protocol trying to balance energy dissipation
among the sensors in the network: the EBP (Energy Balance) protocol, intro-
duced in [8] by Euthimiou, Nikoletseas and Rolim, that probabilistically chooses
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between either propagating data one hop towards the sink or sending directly to
the sink. The first choice is more energy efficient, while the latter bypasses the
critical (close to the sink) sectors. The appropriate probability for each choice
in order to achieve energy balance is calculated in [8].

4.1 The Model and the Problem

We assume that crucial events, that should be reported to a control center, occur
in the network area. Furthermore, we assume that these events are happening
at random uniform positions. Let N be their total number in a certain period
(i.e. during the execution of the protocol).

The sensors are spread in the network area randomly uniformly so their num-
ber in a certain area is proportional to the area’s size. Sensors can be aware
of the direction (and position) of the sink, as well as of their distance to the
sink. We assume the transmission range of sensors can vary with time (in fact,
for each sensor our protocol may use only two different ranges: R and i · R,
where i is a measure of the sensor’s distance to the sink). The sensors do
not move.

We virtually “cover” the network area by a cycle sector of angle φ (see Fig. 6).
The cycle sector is divided into n ring sectors or “slices”. The first slice has
radius R (i.e. the sensors’ transmission range). Slice i (2 ≤ i ≤ n) is defined by
two cycles sectors, one of radius i ·R and the other of radius (i− 1) ·R. Taking
a sufficiently large angle φ and/or by taking multiple sectors, we can cover the
whole area.

Fig. 6. Sensor Network with n ring sectors, angle φ and ring “width” R

As far as energy dissipation is concerned, we assume that the energy spent at
a sensor when transmitting data is proportional to the square of the transmit-
ting distance. Our protocol’s performance analysis can be however extended
to any energy cost model. Note that the energy dissipation for receiving is
not always negligible with respect to the energy when sending such as in case
when transmissions are too short and/or radio electronics energy is high
(see [10]).
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Definition 2. The area between two consecutive cycle sectors is called a ring
sector (or “slice”). Let Ti (1 ≤ i ≤ n) be the i-th ring sector of the network.

T1 stands for the ring sector with center the sink and radius equal to R.

Definition 3. Let Si be the area size of the ring sector Ti of the network (1 ≤
i ≤ n).

We wish to solve the “energy balanced data propagation problem”, i.e. to prop-
agate data to the sink in such a way that the “average” energy dissipation in
each sensor is at each time the same. The average energy dissipation per sensor
is taken to be the fraction of the total energy spent by sensors in a ring sector
over the number of sensors in that sector. Because of our assumption that the
number of sensors in an area is proportional to the area size, the average energy
dissipation per sensor is calculated by dividing the total energy spent in a sector
by the sector size.

4.2 The Protocol

A sensor sensing an event generates then a data message which should be even-
tually delivered to the sink. On each ring sector, Ti, a number of events occur
and a corresponding number of messages (one for each event) is generated.

Randomization is used to achieve some “load balancing” by evenly spread-
ing the “load” (energy dissipation). In particular, on ring sector Ti each event
is propagated to Ti−1 (i.e. the “next” sector towards the sink) with probabil-
ity pi, while with probability 1 − pi it is propagated directly to the sink S.
Each message in Ti is handled stochastically independently of the other events’
messages.

The choice of probability pi for Ti is made so as the average energy consump-
tion per area unit (and thus per sensor) is the same for the whole network. There
is a trade-off from choosing pi: if pi increases then transmissions tend to hap-
pen locally, thus energy consumption is low, however sensors closer to the sink
tend to be overused since all data passes through them. On the other hand, if
pi decreases, there are distant transmissions (thus a lot of energy is consumed)
however closer to sink particles are bypassed. Calculating the appropriate proba-
bility pi for each Ti and solving the problem of energy balance is very important
since it combines efficient data propagation with increased network’s lifetime.

By using an underlying subprotocol ([2], [11]) we can guarantee that only
one “next hop” sensor receives the transmitted message. Note also that data
messages are of fixed size i.e. no further info is added to a message on its route
towards the sink.

4.3 Basic Definitions – Preliminaries

We aim at calculating probability pi for each i in order to ensure the energy
balance property. Using simple geometry, one can easily prove the following
Lemmas.



78 S. Nikoletseas

Lemma 5. The area size, S1, of the ring sector T1 is S1 = φ
2 · R2

Lemma 6. The relation between the area size of the ring sector Ti and that of
T1 is Si = (2i− 1) · S1

Definition 4. Let λi the probability that an event will occur on the ring
sector Ti.

There are n ring sectors in the network.

Lemma 7. Assuming a random uniform generation of events in the network
area, the probability λi of an event occurring on the ring sector Ti (1 ≤ i ≤ n),
is:

λi =
(2i− 1)

n2

Let us now consider sector Ti.

Definition 5. An area Ti “handles” an event generated in ring sector j if ei-
ther the message was generated in the area Ti (i.e. j = i) or the message was
propagated to Ti from the ring sector Ti+1.

Definition 6. Let hi be the number of the messages that are “handled” by the
area Ti.

We now define energy εij spent for message j when sector i handles it.

Definition 7. Let εij a random variable which measures the energy that dissi-
pates the sector Ti so as to handle the message j. For εij we have that:

εij =
{

cR2 with probability pi

c(iR)2 with probability 1− pi

where cR2 is the energy dissipation for sending a message j from Ti to its adjacent
ring sector Ti−1 and c is a constant.

Thus, the expected energy dissipation in sector i for handling a message is

E[εi,j ] = cR2 · [i2 − pi(i2 − 1)] (1)

Note: The expected energy above is the same for all messages; we use j just for
counting purposes.

Definition 8. Let Ei the total energy spent by sensors in Ti. Clearly:

Ei =
hi∑

j=1

εij (2)

Energy balance is defined as follows:

Definition 9. The network is energy balanced if the average per sensor energy
dissipation is the same for all sectors, i.e. when

E[Ei]
Si

=
E[Ej ]
Sj

i, j = 1, . . . , n (3)
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4.4 The General Solution

We next provide a lemma useful in the estimation of the total energy dissipation
in a sector.

Lemma 8. The expected total energy dissipation in sector i is:

E[Ei] = E[hi] · E[εik]

Definition 10. Let gi be the number of the messages that are generated in the
area Ti.

Note that messages are generated in an area only when events occur in this area.

Definition 11. Let fi be the number of the messages that are forwarded to the
area Ti.

We note that messages are forwarded to a ring sector (say i) only because of
an event generation at a sector j > i and successive one-hop propagations from
sector j to sector i.

We notice the following important relation:

hi = gi + fi (4)

which means that the number of messages that area Ti handles equals the number
of the messages that are generated in Ti, plus the number of messages that are
forwarded to it. By linearity of expectation, we get:

Lemma 9. E[hi] = E[gi] + E[fi]

We establish a relationship between E[fi] and E[hi+1].

Lemma 10. E[fi] = pi+1 · E[hi+1]

Recall that, according to Definition 9, to achieve the same on the average energy
dissipation per area unit (and thus per sensor) in the network area, the following
equality should hold:

E

[∑hi

k=1 εik

Si

]
= E

[∑hj

k=1 εjk

Sj

]
∀i, j ∈ {1, . . . n} (5)

i.e. the average energy consumption per sensor should be equal in any two ring
sectors. By induction, it suffices to guarantee this for any two adjacent sec-
tors. In what follows, we guarantee the above balance property, requiring a cer-
tain recurrence relation to hold. This recurrence basically relates 3 successive
terms of the E[fi] sequence (the E[gi] terms depend only on i and on input
parameters).

Theorem 2. To achieve energy balance in the network, the following recurrency
equation should hold:

ai+1E[fi+1]− (di + ai)E[fi] + di−1E[fi−1] = aiE[gi]− ai+1E[gi+1]
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where
ai = i2

2i−1 di = (i+1)2−1
2i+1

To solve the above recurrency we must compute E[gi].

Lemma 11. If N is the total number of events that are generated in the network,
the mean value of gi is given by the following relationship:

E[gi] = N · λi

In order to have a simpler recurrence involving only two (successive in fact)
terms of the E[fi] sequence, we will transform the recurrency relation of Theo-
rem 2 into the following (easier to solve) relation:

Lemma 12. The recurrency relation:

ti − ti−1 = ai · E[fi]− ai+1 ·E[fi+1]
for i = 1, . . . n− 1
and t0 = a1 · E[f1]

has as a solution the function

ti =
i∑

j=1

(ajE[gj ]− aj+1E[gj+1]) + a1 · E[f1]

Now the recurrency relation of Thrm 2 is simplified:

ai+1 ·E[fi+1]− di ·E[fi] = ti i = 1, . . . , n− 1

Thus, we get a recurrence for sequence E[fi] involving only two successive terms
of the sequence:

Theorem 3. The recurrency relation

ai+1E[fi+1]− diE[fi] = ti i = 1, . . . n− 1

where ti is defined in lemma 12, has the following solution

E[fn−i] = −
i∑

k=1

∏i−1
j=k an−j∏i
j=k dn−j

· tn−k

The full expression for E[fi] can be expressed by substituting i with n− i, thus

E[fi] = −
∑n−i

k=1

n−i+1
j=k an−j

n−i
j=k dn−j

·
(∑n−k

j=1 (ajE[gj ]− aj+1E[gj+1]) + a1 ·E[f1]
)

where
∏i−1

i ai = 1.
We note that all the parameters of the recurrency solution above are expressed

as a function of E[f1] and i. So as to compute them, we firstly compute the value
of E[f1]. Then we can compute all the other parameters by replacing the already
computed E[f1].
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Now, the calculation of the probabilities pi is quite easy.

Theorem 4. The energy balance property is achieved if any ring sector (say Ti)
propagates each message it handles with probability pi to the next ring sector,
Ti−1, and with probability 1− pi it propagates the message directly to the sink.
The value of each pi is given by the following relation

pi =
E[fi−1]

E[gi] + E[fi]

where the values of E[fi] and E[gi] are obtained from lemma 3 and lemma 11,
respectively.

We note that the analysis above allows the exact derivation of probabilities pi’s
as a function of i and n which (although complicated and not obviously leading
to a closed form) can be easily calculated by the sensors in the network by
carrying out very simple calculations.

4.5 A Closed Form

Under specific assumptions (that we discuss and motivate in [8]) we can make
the calculation of probabilities pi simpler. Combining lemma 9 and lemma 11
we have that:

Theorem 5. If E[fi] � E[fi−1], 3 ≤ i ≤ n, then the one-hop forwarding prob-
ability, guaranteeing energy balance, is

pi = 1− 3x

(i + 1)(i− 1)

where p2 = x ∈ (0, 1) a free parameter and p1 = 0.

5 Future Directions

Wireless sensor networks constitute a new fascinating field, where complemen-
tary approaches (algorithms, systems, applications and technology) are needed.
From an algorithmic perspective, new abstract models and model extensions
are needed (hiding details but still being realistic) to enable the necessary per-
formance analysis – occasionally evel asymptotic analysis. The interplay of ge-
ometry, graph theory and randomness create many challenging problems for
rigorous treatment ([17]). Inherent trade-offs, lower bounds and impossibility
results should be further investigated towards properly guiding technological ef-
forts by pointing out inherent limitations. New efficient but simple algorithms
should be designed and analysed and paradigms should be established. At the
system level, versatile network stacks and lightweighted operating systems and
middleware are needed.
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14. Karoński, M., Scheinerman, E.R., and Singer-Cohen, K.B.: On Random Intersec-
tion Graphs: The Subgraph Problem. Combinatorics, Probability and Computing
Journal 8 (1999) 131-159

15. Kleinrock, L.: Queueing Systems, Theory. John Wiley & Sons, I (1975) pp. 100



Models and Algorithms for Wireless Sensor Networks (Smart Dust) 83

16. Nikoletseas, S., Raptopoulos, C., and Spirakis, P.: The Existence and Efficient
Construction of Large Independent Sets in General Random Intersection Graphs.
In the Proceedings of the 31st International Colloquium on Automata, Languages
and Programming (ICALP), Lecture Notes in Computer Science (Springer Verlag),
2004. Also, invited paper in the Theoretical Computer Science (TCS) Journal,
Special Issue on Global Computing, under review, to appear in 2005

17. Papadimitriou, C.: Algorithmic Problems in Ad Hoc Networks. In IEEE Inter-
national Conference on Distributed Computing in Sensor Systems (DCOSS 05),
Springer/LNCS 3560 (2005)

18. Penrose, M.: Random Geometric Graphs. Oxford University Press (2003)
19. Ross, S.M.: Stochastic Processes, 2nd Edition. John Wiley and Sons, Inc. (1995)
20. Sanwalani, V., Serna, M., and Spirakis, P.: Chromatic Number of Random Scaled

Sector Graphs. In the Theoretical Computer Science (TCS) Journal, to appear in
2006

21. Triantafilloy, P., Ntarmos, N., Nikoletseas, S., and Spirakis, P.: NanoPeer Networks
and P2P Worlds. In Proc. 3rd IEEE International Conference on Peer-to-Peer
Computing (2003)



SomeWhere in the Semantic Web

M.-C. Rousset, P. Adjiman, P. Chatalic, F. Goasdoué, and L. Simon
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Abstract. In this paper, we describe the SomeWhere semantic peer-
to-peer data management system that promotes a “small is beautiful”
vision of the Semantic Web based on simple personalized ontologies (e.g.,
taxonomies of classes) but which are distributed at a large scale. In this
vision of the Semantic Web, no user imposes to others his own ontology.
Logical mappings between ontologies make possible the creation of a web
of people in which personalized semantic marking up of data cohabits
nicely with a collaborative exchange of data. In this view, the Web is
a huge peer-to-peer data management system based on simple distributed
ontologies and mappings.

1 Introduction

The Semantic Web [1] envisions a world wide distributed architecture where
data and computational resources will easily inter-operate based on semantic
marking up of web resources using ontologies. Ontologies are a formalization of
the semantics of application domains (e.g., tourism, biology, medicine) through
the definition of classes and relations modeling the domain objects and properties
that are considered as meaningful for the application. Most of the concepts, tools
and techniques deployed so far by the Semantic Web community correspond
to the “big is beautiful” idea that high expressivity is needed for describing
domain ontologies. As a result, when they are applied, the current Semantic
Web technologies are mostly used for building thematic portals but do not scale
up to the web. In contrast, SomeWhere promotes a “small is beautiful” vision of
the Semantic Web [2] based on simple personalized ontologies (e.g., taxonomies
of atomic classes) but which are distributed at a large scale. In this vision of
the Semantic Web introduced in [3], no user imposes to others his own ontology
but logical mappings between ontologies make possible the creation of a web of
people in which personalized semantic marking up of data cohabits nicely with
a collaborative exchange of data. In this view, the web is a huge peer-to-peer
data management system based on simple distributed ontologies and mappings.

Peer-to-peer data management systems have been proposed recently [4]-[7]
to generalize the centralized approach of information integration systems based
on single mediators. In a peer-to-peer data management system, there is no
central mediator: each peer has its own ontology and data or services, and can

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 84–99, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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mediate with some other peers to ask and answer queries. The existing systems
vary according to (a) the expressive power of their underlying data model and
(b) the way the different peers are semantically connected. Both characteristics
have impact on the allowed queries and their distributed processing.

In Edutella [8], each peer stores locally data (educational resources) that are
described in RDF relatively to some reference ontologies (e.g., http://dmoz.org).
For instance, a peer can declare that it has data related to the concept of the
dmoz taxonomy corresponding to the path Computers/Programming/
Languages/Java, and that for such data it can export the author and the date
properties. The overlay network underlying Edutella is a hypercube of super-
peers to which peers are directly connected. Each super-peer is a mediator over
the data of the peers connected to it. When it is queried, its first task is to check
if the query matches with its schema: if that is the case, it transmits the query to
the peers connected to it, which are likely to store the data answering the query;
otherwise, it routes the query to some of its neighbour super-peers according
to a strategy exploiting the hypercube topology for guaranteeing a worst-case
logarithmic time for reaching the relevant super-peer.

In contrast with Edutella, Piazza [4], [9] does not consider that the data dis-
tributed over the different peers must be described relatively to some existing
reference schemas. Each peer has its own data and schema and can mediate with
some other peers by declaring mappings between its schema and the schemas
of those peers. The topology of the network is not fixed (as in Edutella) but
accounts for the existence of mappings between peers: two peers are logically
connected if there exists a mapping between their two schemas. The underlying
data model of the first version of Piazza [4] is relational and the mappings be-
tween relational peer schemas are inclusion or equivalence statements between
conjunctive queries. Such a mapping formalism encompasses the Local-as-View
and the Global-as-View [10] formalisms used in information integration systems
based on single mediators. The price to pay is that query answering is undecid-
able except if some restrictions are imposed on the mappings or on the topology
of the network [4]. The currently implemented version of Piazza [9] relies on
a tree-based data model: the data is in XML and the mappings are equivalence
and inclusion statements between XML queries. Query answering is implemented
based on practical (but not complete) algorithms for XML query containment
and rewriting. The scalability of Piazza so far does not go up to more than
about 80 peers in the published experiments and relies on a wide range of op-
timizations (mappings composition [11], paths pruning [12]), made possible by
the centralized storage of all the schemas and mappings in a global server.

In SomeWhere, we have made the choice of being fully distributed: there
are neither super-peers nor a central server having the global view of the overlay
network. In addition, we aim at scaling up to thousands of peers. To make it pos-
sible, we have chosen a simple class-based data model in which the data is a set of
resource identifiers (e.g., URIs), the schemas are (simple) definitions of classes
possibly constrained by inclusion, disjunction or equivalence statements, and
mappings are inclusion, disjunction or equivalence statements between classes
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of different peer schemas. That data model is in accordance with the W3C rec-
ommendations since it is captured by the propositional fragment of the OWL
ontology language (http://www.w3.org/TR/owl-semantics).

The paper is organized as follows. Section 2 defines the SomeWhere data
model. In Section 3, we show how the corresponding query rewriting problem
can be reduced by a propositional encoding to distributed reasoning in proposi-
tional logic. In Section 4, we describe the properties of the message based dis-
tributed reasoning algorithm that is implemented in SomeWhere, and we report
experiments on networks of 1000 peers. Section 5 surveys some recent related
work on peer-to-peer data management systems. We conclude and present our
forthcoming work in Section 6.

2 SomeWhere Data Model

In SomeWhere a new peer joins the network through some peers that it knows
(its acquaintances) by declaring mappings between its own ontology and the
ontologies of its acquaintances. Queries are posed to a given peer using its local
ontology. The answers that are expected are not only instances of local classes
but possibly instances of classes of peers distant from the queried peer if it can
be inferred from the peer ontologies and the mappings that those instances are
answers of the query. Local ontologies, storage descriptions and mappings are
defined using a fragment of OWL DL which is the description logic fragment
of the Ontology Web Language recommended by W3C. We call OWL PL the
fragment of OWL DL that we consider in SomeWhere, where PL stands for
propositional logic. OWL PL is the fragment of OWL DL reduced to the dis-
junction, conjunction and negation constructors for building class descriptions.

2.1 Peer Ontologies

Each peer ontology is made of a set of class definitions and possibly a set of
equivalence, inclusion or disjointness axioms between class descriptions. A class
description is either the universal class (�), the empty class (⊥), an atomic class
or the union (�), intersection (�) or complement (¬) of class descriptions.

The name of atomic classes are unique to each peer: we use the notation P :A
for identifying an atomic class A of the ontology of a peer P . The vocabulary of
a peer P is the set of names of its atomic classes.

Class descriptions
Logical notation OWL notation

universal class � Thing
empty class ⊥ Nothing
atomic class P :A classID
conjunction D1 � D2 intersectionOf(D1 D2)
disjunction D1 � D2 unionOf(D1 D2)
negation ¬D complementOf(D)
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Axioms of class definitions
Logical notation OWL notation

Complete P :A ≡ D Class(P :A complete D)
Partial P :A � D Class(P :A partial D)

Axioms on class descriptions
Logical notation OWL notation

equivalence D1 ≡ D2 EquivalentClasses(D1 D2)
inclusion D1 � D2 SubClassOf(D1 D2)
disjointness D1 � D2 ≡ ⊥ DisjointClasses(D1 D2)

2.2 Peer Storage Descriptions

The specification of the data that is stored locally in a peer P is done through the
declaration of atomic extensional classes defined in terms of atomic classes of the
peer ontology, and assertional statements relating data identifiers (e.g., URIs) to
those extensional classes. We restrict the axioms defining the extensional classes
to be inclusion statements between an atomic extensional class and a description
combining atomic classes of the ontology. We impose that restriction in order to
fit with a Local-as-View approach and an open-world assumption within the in-
formation integration setting [10]. We will use the notation P :V iewA to denote
an extensional class V iewA of the peer P .

Storage description
declaration of extensional classes:
Logical notation OWL notation
P :V iewA � C SubClassOf(P :V iewA C)

assertional statements:
Logical notation OWL notation

P :V iewA(a) individual(a type(P :V iewA))

2.3 Mappings

Mappings are disjointness, equivalence or inclusion statements involving atomic
classes of different peers. They express the semantic correspondence that may
exist between the ontologies of different peers.

The acquaintance graph accounts for the connection induced by the mappings
between the different peers within a given SomeWhere peer-to-peer network.

Definition 1 (Acquaintance graph). Let P = {Pi}i∈[1..n] a collection of
peers with their respective vocabularies V ocPi . Let V oc =

⋃n
i=1 V ocPi be the

vocabulary of P. Its acquaintance graph is a graph Γ = (P ,acq) where P is the
set of vertices and acq ⊆ V oc × P × P is a set of labelled edges such that for
every (c, Pi, Pj) ∈ acq, i �= j and c ∈ V ocPi ∩ V ocPj .

A labelled edge (c, Pi, Pj) expresses that peers Pi and Pj know each other to be
sharing the class c. This means that c belongs to the intentional classes of Pi (or
Pj) and is involved in a mapping with intentional classes of Pj (or Pi).
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2.4 Schema of a SomeWhere Network

In a SomeWhere network, the schema is not centralized but distributed through
the union of the different peer ontologies and the mappings. The important point
is that each peer has a partial knowledge of the schema: it just knows its own
local ontology and the mappings with its acquaintances.

Let P be a SomeWhere peer-to-peer network made of a collection of peers
{Pi}i∈[1..n]. For each peer Pi, let Oi, Vi and Mi be the sets of axioms defining
respectively the local ontology of Pi, the declaration of its extensional classes and
the set of mappings stated at Pi between classes of Oi and classes of the ontologies
of the acquaintances of Pi. The schema S of P is the union

⋃
i∈[1..n] Oi∪Vi∪Mi of

the ontologies, the declaration on extensional classes and of the sets of mappings
of all the peers of P .

2.5 Semantics

The semantics is a standard logical formal semantics defined in terms of inter-
pretations. An interpretation I is a pair (ΔI , .I) where Δ is a non-empty set,
called the domain of interpretation, and .I is an interpretation function which
assigns a subset of ΔI to every class identifier and an element of ΔI to every
data identifier.

An interpretation I is a model of the distributed schema of a SomeWhere
peer-to-peer network P = {Pi}i∈[1..n] iff each axiom in

⋃
i∈[1..n] Oi ∪ Vi ∪Mi is

satisfied by I.
Interpretations of axioms rely on interpretations of class descriptions which

are inductively defined as follows:

• �I = ΔI , ⊥I = ∅
• (¬C)I = ΔI\CI

• (C1 � C2)I = CI
1 ∪ CI

2 , (C1 � C2)I = CI
1 ∩ CI

2

Axioms are satisfied if the following holds:

• C � D is satisfied in I iff CI ⊆ DI

• C ≡ D is satisfied in I iff CI = DI

• C �D ≡ ⊥ is satisfied in I iff CI ∩DI = ∅
A SomeWhere peer-to-peer network is satisfiable iff its schema has a model.
Given a SomeWhere peer-to-peer network P = {Pi}i∈[1..n], a class description

C subsumes a class description D iff in each model I of the schema of P , DI ⊆ CI .

2.6 Illustrative Example

We illustrate the SomeWhere data model on a small example of four peers mod-
eling four persons Ann, Bob, Chris and Dora, each of them bookmarking URLs
about restaurants they know or like, according to their own taxonomy for cate-
gorizing restaurants.

Ann, who is working as a restaurant critics, organizes its restaurant URLs
according to the following classes:
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• the class Ann:G of restaurants considered as offering a “good” cooking,
among which she distinguishes the subclass Ann:R of those which are rated:
Ann:R � Ann:G
• the class Ann:R is the union of three disjoint classes Ann:S1, Ann:S2,

Ann:S3 corresponding respectively to the restaurants rated with 1, 2 or 3 stars:
Ann:R ≡ Ann:S1 �Ann:S2 �Ann:S3
Ann:S1 �Ann:S2 ≡ ⊥ Ann:S1 �Ann:S3 ≡ ⊥
Ann:S2 �Ann:S3 ≡ ⊥
• the classes Ann:I and Ann:O, respectively corresponding to Indian and

Oriental restaurants
• the classes Ann:C, Ann:T and Ann:V which are subclasses of Ann:O de-

noting Chinese, Täı and Vietnamese restaurants respectively: Ann:C � Ann:O,
Ann:T � Ann:O, Ann:V � Ann:O
Suppose that the data stored by Ann that she accepts to make available deals
with restaurants of various specialties, and only with those rated with 2 stars
among the rated restaurants. The extensional classes declared by Ann are then:
Ann:V iewS2 � Ann:S2, Ann:V iewC � Ann:C,
Ann:V iewV � Ann:V , Ann:V iewT � Ann:T ,
Ann:V iewI � Ann:I

Bob, who is found of Asian cooking and likes high quality, organizes his
restaurant URLs according to the following classes:

• the class Bob:A of Asian restaurants
• the class Bob:Q of high quality restaurants that he knows

Suppose that he wants to make available every data that he has stored. The ex-
tensional classes that he declares are Bob:V iewA and Bob:V iewQ (as subclasses
of Bob:A and Bob:Q): Bob:V iewA � Bob:A, Bob:V iewQ � Bob:Q

Chris is more found of fish restaurants but recently discovered some places
serving a very nice cantonese cuisine. He organizes its data with respect to the
following classes:

• the class Chris:F of fish restaurants,
• the class Chris:CA of Cantonese restaurants

Suppose the extensional classes Chris:V iewF and Chris:V iewCA as subclasses
of Chris:F and Chris:CA class respectively: Chris:V iewF � Chris:F , and
Chris:V iewCA � Chris:CA

Dora organizes her restaurants URLs around the class Dora:DP of her pre-
ferred restaurants, among which she distinguishes the subclass Dora:P of pizze-
rias and the subclass Dora:SF of seafood restaurants.

Suppose that the only URLs that she stores concerns pizzerias: the only ex-
tensional class that she has to declare is Dora:V iewP as a subclass of Dora:P :
Dora:V iewP�Dora:P

Ann, Bob, Chris and Dora express what they know about each other using
mappings stating properties of class inclusion or equivalence.



90 M.-C. Rousset et al.

Ann is very confident in Bob’s taste and agrees to include Bob’ selection
as good restaurants by stating Bob:Q � Ann:G. Finally, she thinks that Bob’s
Asian restaurants encompass her Oriental restaurant concept: Ann:O � Bob:A

Bob knows that what he calls Asian cooking corresponds exactly to what
Ann classifies as Oriental cooking. This may be expressed using the equivalence
statement : Bob:A ≡ Ann:O (note the difference of perception of Bob and Ann
regarding the mappings between Bob:A and Ann:O)

Chris considers that what he calls fish specialties is a particular case of Dora
seafood specialties: Chris:F � Dora:SF

Dora counts on both Ann and Bob to obtain good Asian restaurants : Bob:A
� Ann:G � Dora:DP

Figure 1 describes the resulting acquaintance graph. In order to alleviate
the notations, we omit the local peer name prefix except for the mappings.
Edges are labeled with the class identifiers that are shared through the
mappings.

Dora
ontology :
DP � �,
P � DP , SF � DP,
V iewP � P
mappings :
Bob:A � Ann:G � Dora:DP

Bob
ontology :
A � �, Q � �,
V iewA � A,
V iewQ � Q
mappings :
Bob:A ≡ Ann:O

Chris
ontology :
F � �, CA � �,
V iewF � F ,V iewCA � CA
mappings :
Chris:F � Dora:SF

Ann
ontology :
G � �, O � �, I � �,
R � G,
(S1 � S2 � S3) ≡ R,
S1 � S2 ≡ ⊥,
S1 � S3 ≡ ⊥,
S2 � S3 ≡ ⊥,
(C � V � T ) � O,
V iewC � C,
V iewV � V ,
V iewT � T ,
V iewI � I ,
V iewS2 � S2
mappings :
Ann:O � Bob:A,
Bob:Q � Ann:G

Dora:SF

Bob:A

Ann:G

Bob:Q,
Bob:A,
Ann:O

Fig. 1. The restaurants network
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3 Query Rewriting

In SomeWhere, each user interrogates the peer-to-peer network through one peer
of his choice, and uses the vocabulary of this peer to express his query. Therefore,
queries are logical combinations of classes of a given peer ontology.

The corresponding answer sets are expressed in intention in terms of the
combinations of extensional classes that are rewritings of the query. The point is
that extensional classes of several distant peers can participate to the rewritings,
and thus to the answer of a query posed to a given peer.

Given a SomeWhere peer-to-peer network P = {Pi}i∈[1..n], a logical combina-
tion Qe of extensional classes is a rewriting of a query Q iff Q subsumes Qe. Qe

is a maximal rewriting if there does not exist another rewriting Q′
e of Q (strictly)

subsuming Qe.
In the SomeWhere setting, query rewriting can be equivalently reduced to

distributed reasoning over logical propositional theories by a straightforward
propositional encoding of the distributed schema of a SomeWhere network.

Before presenting the propositional encoding in Section 3.2 and the distributed
consequence finding algorithm in Section 4, we illustrate the corresponding query
processing on the example of Section 2.6.

3.1 Illustrative Example (Continued)

Consider that a user queries the restaurants network through the Dora peer by
asking the query Dora:DP , meaning that he is interested in getting as answers
the set of favorite restaurants of Dora:

• Using Dora:P�Dora:DP and Dora:V iewP�Dora:P , we obtain Dora:
V iewP as a local rewriting corresponding to the extensional class of pizzeria
URLs stored by Dora.
• Using Dora:SF�Dora:DP , the fact that Dora:SF is shared with Chris

by the mapping Chris:F�Dora:SF , and Chris:V iewF�Chris:F , we obtain
Chris:V iewF as a new rewriting meaning that another way to get restaurants
liked by Dora is to obtain the Fish restaurants stored by Chris.
• Finally, using the mapping Bob:A�Ann:G�Dora:DP , the query leads to

look for rewritings of Bob:A�Ann:G, where both Bob:A and Ann:G are shared
with neighbor peers. In such cases our algorithm uses a split/recombination
approach. Each shared component (here Bob:A and Ann:G) is then processed
independently as a subquery, transmitted to its appropriate neighbors and as-
sociated with some queue data structure, where its returned rewritings are ac-
cumulated. As soon as at least one rewriting has been obtained for each com-
ponent, the respective queued rewritings of each component are recombined to
produce rewritings of the initial query. This recombination process continues in-
crementally, as new rewritings for a component are produced. Note that since
each subcomponent is processed asynchronously, the order in which recombined
rewritings are produced is unpredictable. For the sake of simplicity, in the follow-
ing we consider sequentially the results obtained for the two subqueries Bob:A
and Ann:G:
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– On the Bob peer, because of Bob:V iewA�Bob:A, Bob:V iewA is a local rewrit-
ing of Bob:A, which is transmitted back to the Dora peer, where it is queued for
a future combination with rewritings of the other subquery Ann:G.

In addition, guided by the mapping Ann:O≡Bob:A, the Bob peer transmits
to the Ann peer the query Ann:O. The Ann peer processes that query locally
and transmits back to the Bob peer the rewriting Ann:V iewC �Ann:V iewT �
Ann:V iewV , which in turn is transmitted back to the Dora peer as an additional
rewriting for the subquery Bob:A and queued there.
– On the Ann peer, using Ann:R�Ann:G, (Ann:S1�Ann:S2 �Ann:S3)≡Ann:R
and Ann:V iewS2�Ann:S2, Ann:V iewS2 is obtained as a local rewriting of
Ann:G. It is transmitted back to the Dora peer where it is queued for recom-
bination. Let us suppose that the two rewritings of Bob:A (Bob:V iewA and
Ann:V iewC�Ann:V iewT�Ann:V iewV ) have already been produced at that
time. Their combination with Ann:V iewS2 gives two rewritings which are sent
back to the user:
∗ Ann:V iewS2�Bob:V iewA, meaning that a way to obtain restaurants liked

by Dora is to find restaurants that are both stored by Ann as rated with 2 stars
and by Bob as Asian restaurants,
∗ Ann:V iewS2�(Ann:V iewC�Ann:V iewT�Ann:V iewV ) meaning that an-

other way to obtain restaurants liked by Dora is to find restautants stored by
Ann as restaurants rated with 2 stars and also as Chinese, Thai or Vietnamese
restaurants. Note that this rewriting, although obtained via different peers after
splitting/recombination, turns out to be composed only of extensional classes of
the same peer: Ann.

Still on the Ann peer, because of the mapping Bob:Q � Ann:G, Ann transmits
the query Bob:Q to Bob, which transmits back to Ann Bob:V iewQ as a rewriting
of Bob:Q (and thus of Ann:G). Ann then transmits Bob:V iewQ back to Dora
as a rewriting of Ann:G, where it is queued for combination. On Dora’s side,
Bob:V iewQ is now combined with the queued rewritings of Bob:A (Bob:V iewA
and Ann:V iewC �Ann:V iewT�Ann:V iewV ). As a result, two new rewritings
are sent back to the user:
∗ Bob:V iewQ�Bob:V iewA meaning that to obtain restaurants liked by Dora

one can take the restaurants that Bob stores as high quality restaurants and as
Asian restaurants,
∗ Bob:V iewQ�(Ann:V iewC�Ann:V iewT�Ann:V iewV ) providing a new

way of getting restaurants liked by Dora: those that are both stored as high
quality restaurants by Bob and as Chinese, Thai or Vietnamese restaurants
by Ann.

3.2 Propositional Encoding of Query Rewriting in SomeWhere

The propositional encoding concerns the schema of a SomeWhere network and
the queries. It consists in transforming each query and schema statement into
a propositional formula using class identifiers as propositional variables.

The propositional encoding of a class description D, and thus of a query, is
the propositional formula Prop(D) obtained inductively as follows:
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• Prop(�) = true, Prop(⊥) = false
• Prop(A) = A, if A is an atomic class
• Prop(D1 �D2) = Prop(D1) ∧ Prop(D2)
• Prop(D1 �D2) = Prop(D1) ∨ Prop(D2)
• Prop(¬D) = ¬(Prop(D))

The propositional encoding of the schema S of a SomeWhere peer-to-peer
network P is the distributed propositional theory Prop(S) made of the formulas
obtained inductively from the axioms in S as follows:

• Prop(C � D) = Prop(C)⇒ Prop(D)
• Prop(C ≡ D) = Prop(C)⇔ Prop(D)
• Prop(C �D ≡ ⊥) = ¬Prop(C) ∨ ¬Prop(D)

From now on, for simplicity purpose, we use the propositional clausal form
notation for the queries and SomeWhere peer-to-peer network schemas.

As an illustration, let us consider the propositional encoding of the example
presented in Section 2.6. Once in clausal form and after the removal of tautolo-
gies, we obtain (Figure 2) the acquaintance graph where each peer schema is
described as a propositional theory.

Dora :

¬Dora :V iewP ∨ Dora :P
¬Dora :P ∨ Dora :DP
¬Dora :SF ∨ Dora :DP

¬Bob :A ∨ ¬Ann :G ∨ Dora :DP

Bob :

¬Bob :V iewA ∨ Bob :A
¬Bob :V iewQ ∨ Bob :Q
¬Bob :A ∨ Ann :O
¬Ann :O ∨ Bob :A

Chris :

¬Chris :V iewF ∨ Chris :F
¬Chris :V iewCA ∨ Chris :CA
¬Chris :F ∨ Dora :SF

Ann :

¬Ann :R ∨ Ann :G
¬Ann :S1 ∨ Ann :R
¬Ann :S2 ∨ Ann :R
¬Ann :S3 ∨ Ann :R
¬Ann :R ∨ Ann :S1∨

Ann :S2 ∨ Ann :S3
¬Ann :S1 ∨ ¬Ann :S2
¬Ann :S1 ∨ ¬Ann :S3
¬Ann :S2 ∨ ¬Ann :S3
¬Ann :C ∨ Ann :O
¬Ann :V ∨ Ann :O
¬Ann :T ∨ Ann :O
¬Ann :V iewC ∨ C
¬Ann :V iewV ∨ Ann :V
¬Ann :V iewT ∨ T

¬Ann :V iewI ∨ Ann :I
¬Ann :V iewS2 ∨ Ann :S2
¬Ann :O ∨ Bob :A
¬Bob :Q ∨ Ann :G

Dora:SF

Bob:A

Ann:G

Bob:Q,
Ann:O,
Bob:A

Fig. 2. Propositional encoding for the restaurant network

Proposition 1 states that the propositional encoding transfers satisfiability
and establishes the connection between (maximal) conjunctive rewritings and
clausal proper (prime) implicates.

Definition 2 (Proper prime implicate wrt a theory). Let T be a clausal
theory and q be a clause. A clause m is said to be:

• a prime implicate of q wrt T iff T ∪ {q} |= m and for any other clause m′,
if T ∪ {q} |= m′ and m′ |= m then m′ ≡ m.
• a proper prime implicate of q wrt T iff it is a prime implicate of q wrt T

and T �|= m.
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Proposition 1 (Propositional transfer). Let P be a SomeWhere peer-to-peer
network and let Prop(S(P)) be the propositional encoding of its schema. Let Ve

be the set of all the extensional classes.

• S(P) is satisfiable iff Prop(S(P)) is satisfiable.
• qe is a maximal conjunctive rewriting of a query q iff ¬Prop(qe) is a proper

prime implicate of ¬Prop(q) wrt Prop(S(P)) such that all its variables are ex-
tensional classes.

Proposition 1 gives us a way to compute all the answers of a query. The maximal
conjunctive rewritings of a query q within a peer-to-peer networkP correspond to
the negation of the proper prime implicates of ¬q wrt the propositional encoding
of the schema of S(P). Since the number of proper prime implicates of a clause
wrt a clausal theory is finite, every query in SomeWhere has a finite number of
maximal conjunctive rewritings. Therefore, according to [13], the set of all of its
answers is exactly the union of the answer sets of its rewritings and is obtained
in PTIME data complexity.

In the following section, we present a distributed consequence finding algo-
rithm which computes the set of proper prime implicates of a literal wrt a dis-
tributed propositional clausal theory. According to Proposition 1, if this algo-
rithm is applied to a distributed theory resulting from the propositional encoding
of the schema of a SomeWhere network, with the extensional classes symbols as
target variables, and triggered with a literal ¬q, it computes in fact the negation
of the maximal conjunctive rewritings of the atomic query q. Since in our setting
the maximal rewritings of an arbitrary query can be obtained by combining the
maximal rewritings of its atomic components, we focus on the computation of
the rewritings of atomic queries.

4 Algorithmic Machinery

The SomeWhere peer-to-peer data management system relies on a distributed
algorithm presented in [14]. For this paper to be self-contained, we describe
the three message passing procedures of the algorithm which are implemented
locally at each peer. They are triggered by the reception of a query (resp. answer,
final) message, sent by a Sender peer to a receiver peer, denoted by Self, which
executes the procedure. Procedures handle an history initialized to the empty
sequence. An history hist is a sequence of triples (l, P, c) (where l is a literal,
P a peer, and c a clause). An history [(ln, Pn, cn), . . . , (l1, P1, c1), (l0, P0, c0)]
represents a branch of reasoning initiated by the propagation of the literal l0
within the peer P0, and the splitting of the clause c0: for every i ∈ [0..n − 1],
ci is a consequence of li and Pi, and li+1 is a literal of ci, which is propagated
in Pi+1.

ReceiveQueryMessage is triggered by the reception of a query message
m(Sender, Receiver, query, hist, l) sent by the peer Sender to the peer Receiver
which executes the procedure: on the demand of Sender, with which it shares
the variable of l, it processes the literal l.
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ReceiveAnswerMessage is triggered by the reception of an answer mes-
sage m(Sender, Receiver, answer, hist, r) sent by the peer Sender to the peer
Receiver which executes the procedure: it processes the answer r (which is
a clause the variables of which are target variables) sent back by Sender for
the literal l (last added in the history) ; it may have to combine it with other
answers for literals being in the same clause as l.

ReceiveFinalMessage is triggered by the reception of a final message
m(Sender, Receiver, final, hist, true): the peer Sender notifies the peer Re-
ceiver that computation for the literal l (last added in the history) is completed.

Those procedures handle two local data structures:
answer(l, hist) caches answers resulting from the propagation of l within the
reasoning branch corresponding to hist;
final(q, hist) is set to true when the propagation of q within the reasoning
branch of the history hist is completed. The reasoning is initiated by the user (de-
noted by a particular peer User) sending to a given peer P a message m(User, P,
query, ∅, q), which triggers the procedure ReceiveQueryMessage(m(User, P,
query, ∅, q)) that is locally executed by P .

In the following procedures, since they are locally executed by the peer which
receives the message, we denote by Self the receiver peer. We also assume that:
• for a literal q, Resolvent(q, P ) denotes the set of clauses obtained by reso-

lution between q and a clause of P ,
• for a literal q, q̄ denotes its complementary literal,
• for a clause c of a peer P , S(c) (resp. L(c)) denotes the disjunction of literals

of c whose variables are shared (resp. not shared) with any acquaintance of P .
S(c) = � thus expresses that c does not contain any shared variable,
• T arget(P ) is the language of clauses (including �) involving only variables

that are extensional classes of P .
• � is the distribution operator on sets of clauses: S1� · · ·�Sn = {c1∨· · ·∨cn

|c1 ∈ S1, . . . , cn ∈ Sn}. If L = {l1, . . . , lp}, �l∈LSl denotes Sl1 � · · ·� Slp .

The following theorems summarize the main properties of this distributed
message passing algorithm and thus of the SomeWhere peer-to-peer data man-
agement system. Theorem 1 states the termination and the soundness of the
algorithm. Theorem 2 states its completeness under the condition that each
peer theory is saturated by resolution. Theorem 3 states that the user is notified
of the termination when it occurs, which is crucial for an anytime algorithm. Full
proofs are given in [15]. In the following theorems, let T be the propositional
encoding of the schema S(P) of a peer-to-peer SomeWhere network, let ¬q the
negation of an atomic query q, let T be the propositional encoding of the local
schema and mappings of the asked peer.

Theorem 1 (Soundness). If T receives from the user the message
m(User, T, query, ∅,¬q), then:
• a finite number of answer messages will be produced ;
• each produced answer message m(T, User, answer, [(¬q, T, )], r) is such that

r is an implicate of ¬q wrt S(P) which belong to T arget(P).
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Algorithm 1. Message passing procedure for processing queries
ReceiveQueryMessage(m(Sender,Self, query, hist, q))
(1) if (q̄, , ) ∈ hist
(2) send m(Self, Sender, answer, [(q, Self, �)|hist], �)
(3) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(4)else if q ∈ Self or (q, Self, ) ∈ hist
(5) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(6)else
(7) local(Self) ← {q} ∪ Resolvent(q, Self)
(8) if � ∈ local(Self)
(9) send m(Self, Sender, answer, [(q, Self, �)|hist], �)
(10) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(11) else
(12) local(Self) ← {c ∈ local(Self)| L(c) ∈ T arget(Self)}
(13) if for every c ∈ local(Self), S(c) = �

(14) foreach c ∈ local(Self)
(15) send m(Self, Sender, answer, [(q, Self, c)|hist], c)
(16) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(17) else
(18) foreach c ∈ local(Self)
(19) if S(c) = �

(20) send m(Self, Sender, answer, [(q, Self, c)|hist], c)
(21) else
(22) foreach literal l ∈ S(c)
(23) if l ∈ T arget(Self)
(24) answer(l, [(q, Self, c)|hist]) ← {l}
(25) else
(26) answer(l, [(q, Self, c)|hist]) ← ∅
(27) final(l, [(q, Self, c)|hist]) ← false
(28) foreach RP ∈ acq(l, Self)
(29) send m(Self, RP, query, [(q, Self, c)|hist], l)

Algorithm 2. Message passing procedure for processing answers
ReceiveAnswerMessage(m(Sender,Self, answer, hist, r))
(1) hist is of the form [(l′, Sender, c′), (q, Self, c)|hist′]
(2)answer(l′, hist) ← answer (l′, hist) ∪ {r}
(3)result← �l∈S(c)\{l′}answer(l, hist) � {L(c) ∨ r}
(4)if hist′ = ∅, U←User else U← the first peer P ′ of hist′

(5)foreach cs ∈ result
(6) send m(Self,U, answer, [(q, Self, c)|hist′], cs)

Theorem 2 (Completeness). If each local theory is saturated by resolution
and if T receives from the user the message m(User, T, query, ∅,¬q), then for
each proper prime implicate r of ¬q wrt S(P) belonging to T arget(P), an answer
message m(T, User, answer, [(¬q, T, )], r) will be produced.

Theorem 3 (Termination notification). If r is the last result returned in an
answer message m(T, User, answer, [(¬q, T, )], r) then the user will be notified
of the termination by a message m(T, User, final, [(¬q, T, true)], true).
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Algorithm 3 Message passing procedure for notifying termination
ReceiveFinalMessage(m(Sender,Self, final, hist, true))
(1) hist is of the form [(l′, Sender, true), (q, Self, c)|hist′]
(2) final(l′, hist) ← true

(3) if for every l ∈ S(c), final(l, hist) = true

(4) if hist′ = ∅ U←User else U← the first peer P ′ of hist′

(5) send m(Self,U, final, [(q, Self, true)|hist′], true)
(6) foreach l ∈ S(c)
(7) answer(l, [(l, Sender, ), (q, Self, c)|hist′]) ← ∅

.

It is important to notice that � can be returned by our algorithm as a proper
prime implicate because of the lines (1) to (3) and (8) to (10) in Receive-
QueryMessage. In that case, as a corollary of the above theorems, the union
the propositional encoding of the schema of the SomeWhere network and the
query is detected unsatisfiable. Therefore, our algorithm can be exploited for
checking the satisfiability of the global schema at each join of a new peer.

5 Related Work

As we have pointed it out in the introduction, the SomeWhere peer data man-
agement system distinguishes from Edutella [8] by the fact that there is no need
of super-peers. It does not require either a central server having the global view
of the overlay network, as in Piazza [4], [9] or in [16].

The recent work around the coDB peer data management system [17] supports
dynamic networks but the first step of the distributed algorithm is to let each
node know the network topology. In contrast, in SomeWhere no node does not
have to know the topology of the network.

The Kadop system [18] is an infrastructure based on distributed hash tables
for constructing and querying peer-to-peer warehouses of XML resources seman-
tically enriched by taxonomies and mappings. The mappings that are considered
are simple inclusion statement between atomic classes. Compared to KadoP (and
also to DRAGO [19]), the mapping language that is dealt with in SomeWhere
is more expressive than simple inclusion statements between atomic classes. It
is an important difference which makes SomeWhere able to combine elements of
answers coming from different sources for answering a query, which KadoP or
DRAGO cannot do.

SomeWhere implements in a simpler setting the vision of peer-to-peer data
management systems proposed in [20] for relational databases.

6 Conclusion and Future Work

We have presented the SomeWhere semantic peer-to-peer data management sys-
tem. Its data model is based on the propositional fragment of the Ontology
Web Language recommended by W3C. SomeWhere implements a fully peer-to-
peer approach. We have conducted a significant experimentation on networks of
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1000 peers. It is presented in [21]. To the best of our knowledge, this is the first
experimental study on such large peer-to-peer data management systems. The
motivations of this experimentation was twofold. First, to study how deep and
how wide reasoning spreads on the network. Second, to evaluate the time needed
to obtain answers and to check to what extent SomeWhere is able to support
the traffic load.

SomeWhere is the basis of the MediaD project with France Télécom, which
aims at enriching peer-to-peer web applications (e.g., Someone [3]) with reason-
ing services.

We plan to extend SomeWhere in three directions.

We first plan to tackle the problem of possible inconsistency of the distributed
schema which can occur because of the mappings, even if the local theories are
all consistent. In principle, our algorithm is able to check whether adding a new
theory and set of mappings to a consistent SomeWhere network of theories leads
to an inconsistency. Therefore, we could forbid a new peer to join the network
if it makes the global schema inconsistent, and thus guarantee by construction
that query processing applies on consistent SomeWhere networks. However, this
solution is probably too rigid and restrictive to be accepted in practice by users
who want to join a SomeWhere network. At least, a new peer whose join leads
to an inconsistency would like to know with which other peer(s) its ontology
is inconsistent. The problem of detecting the causes of an inconsistency is not
trivial and has been extensively studied for centralized theories or knowledge
bases. We need to investigate that issue in the SomeWhere distributed setting.
We could also decide not to correct the inconsistency but to confine it and answer
queries within consistent sub-networks.

Second, we want to extend the SomeWhere data model with binary relations.
We are currently exhibiting another propositional transfert for peers relying on
the RDF/RDFS data model and accepting conjunctive queries.

Finally, we plan to plug SomeWhere onto a Chord infrastructure [22] in order
to make SomeWhere more robust to frequent changes in the network due to
peers joins and leaves. In addition, the look-up service offered by Chord could be
exploited for optimization purposes of the current SomeWhere query processing.
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Abstract. This article surveys mobility patterns and mobility models
for wirelss networks. Mobility patterns are classified into the following
types: pedestrians, vehicles, aerial, dynamic medium, robot, and outer
space motion. We present the characteristics of each and shortly mention
the specific problems.

We shortly present the specifics of cellular networks, mobile ad hoc
networks, and sensor networks regarding mobility. Then, we present the
most important mobility models from the literature. At last we give
a brief discussion about the state of research regarding mobility in wire-
less networks.

1 Introduction

Today, it is hard to imagine the difficulties to send information over large dis-
tances before the invention of radio communication. First, such devices were so
large and heavy that they could not be carried around but had to be carried by
vehicles. So, the history of mobile communication starts with radio devices on
boats which emerged in the 1890s and helped ocean vessels to overcome insu-
lation for navigation and emergency situations. It took some time until mobile
radio transceiver could be used on non-marine vehicles. Such technology was
available in the 1930s when a radio transceiver could be operated on a bicycle
and a radio sender could be operated on an airplane. Both as show cases and
not really for practical use. At the end of the 30s portable solutions were avail-
able in form of the famous “walky-talky”, which could be carried by a single
person. In the beginning of the 1940s a radio transceiver was available which
could be held in a single hand: “The Handy-Talky”, see Fig. 1. Needless to say
that these communication devices played an important role in the second world
war. With the upcoming of transistors, large scale integrated chip layout, and
new battery technology allowed the size of radio devices to shrink unbelievably
small. Today, one can buy fully equipped sensor nodes with radio transceiver
and micro-controller in the size of a small coin (and within reasonable price),
see Fig. 2. Furthermore, there is the vision of communication devices being so
small called “smart dust”.
� Supported by the DFG Sonderforschungsbereich 376: “Massive Parallelität: Algorith-

men, Entwurfsmethoden, Anwendungen.” and by the EU within the 6th Framework
Programme under contract 001907 “Dynamically Evolving, Large Scale Information
Systems” (DELIS).

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 100–116, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. The Handy-Talky Fig. 2. The Mica2Dot from Crossbow

Also the underlying radio communication technology has changed much from
the analogous broadcast signal (still surprisingly widely distributed) to digital
multi-hop networks with time, frequency and code division multiplexing for the
parallel use of the medium. Such packet oriented radio devices have been devel-
oped in the 1970s and filled the interior of a van, i.e. Vint Cerf’s Stanford Re-
search Institute (SRI) van. Then, the packet radio underwent a miniaturization
process and packet radio has become the dominating radio technology, so far.

For two-way radio communication central radio stations are used which serve
as relay station for transmitting the radio signals. Many of these central relay
stations partition the radio landscape into cells. In such cellular networks the
mobility of users (more or less) reduces to problems of handover from one radio
station to a neighbored station. Networks without such centralized infrastructure
are called mobile ad hoc networks. There, the impact of mobility is much higher,
since everything is moving. One can easily imagine the possible negative impact
of mobility on wireless networking. Recent results point out that mobility has
also a positive impact.

This article surveys mobility and radio networks from a wide perspective.
We refrain from going into the very details of mobility aspects and head for
giving a broader picture. The goal of this survey is to endorse new approaches to
mobility in wireless networks based on the current situation. For this, we discuss
on mobility patterns, mobility models, algorithmic aspects and on mobile ad hoc
networks. Very often the mobility models and mobility patterns are mixed up.
However, one must carefully distinguish between them. Real mobility pattern
can be obtained by tracking moving objects of reality, while mobility models try
to generalize such patterns by forming a mathematical model.

We begin with a very short introduction of cellular networks, ad hoc networks,
and wireless sensor networks. Then, we continue with an overview how and
where mobility occurs and how it might affect wireless networks. After that we
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elaborate mobility models from literature. In the last section we present positive
aspects of mobility on the wireless networks, research perspectives, and open
research problems.

This is not the first survey on mobility of wireless networks. There is an
excellent survey paper of Camp, Boleng and Davies [12] which presents and
discusses mobility models for ad hoc networks. It is based on the more detailed
PhD thesis of Vannessa A. Davies [17]. A survey of random direction based
models can be found in [41].

2 Wireless Networks in a Nutshell

The radio frequency spectrum is divided into several bands, starting as low as
30 kHz for maritime communication and ranging up to 300 GHz. Low frequency
radio waves easily pass through human bodies, walls, water, etc. Higher frequen-
cies are absorbed and reflected by obstacles. There are numerous other facts to
be told from physics. For some frequency bands the ionosphere reflects signals.
The background noise level differs in various bands. Signal strength is influenced
by obstruction, diffusion, reflection, multi-path fading, and the Doppler effect.
A man-made problem is the interference of radio signals of multiple senders.

Furthermore, in theory the signal strength is fading with a power of two with
respect to the distance, which is only true in empty space. In other environments
the exponent is larger and can have values from 3-5. This implies that if one tries
to send over a distance of d transmission power has to chosen ∼ d2 in empty
space. Many transmission models assume that the covered area by a radio signal
can be modeled by a disc. However, practical measurements show that this is
not at all the case.

2.1 Cellular Networks

Cellular networks are defined by static base stations which divide the fields into
cells. All radio communication is between these base stations and the clients.
Usually, each static base station forwards and receives packets to other base sta-
tions by another (hard-wired) network. Regarding movement of clients one is only
interested in whether the node enters or leaves a cell. It is not interesting where
the node is exactly located within a cell. In some cellular networks (like UMTS)
the size of the cell changes with the number of nodes. Usually network cells over-
lap and so, there are areas where a client can choose among several base stations.

The main mobility problems and applications for cellular networks are Cellu-
lar Handoff: Provide a robust protocol that allows to move between cells without
interrupting and disturbing communication; Location Service: Use the cell infor-
mation and the power strength to locate a client within the network.

2.2 Mobile Ad Hoc Networks

A Mobile Ad Hoc Wireless Network (MANET) is a self-configuring network of
mobile nodes. Nodes serve as routers and may move arbitrarily. There is no
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static infrastructure and the communication network must be able to adapt to
changes because of movement and other dynamics. Most of the MANET pro-
tocols do not assume that position data is available. However, if such position
data is available then efficient location based communication protocols are ap-
plicable (for a survey on such routing algorithms see [39]). The main problem
in MANET is to find a multi-hop route between the source and the target of
information. It is clear that if all the intermediate router nodes are moving
that this type of network is very much affected by mobility. Especially if one
takes into account that the transmitting range is rather restricted to a lim-
ited supply of energy (e.g. batteries). See [44] as an introduction to ad hoc
networks.

The main mobility problems for a MANET are routing a message, multicas-
ting a message, and upholding the network routing tables for these issues.

2.3 Sensor Networks

A sensor network is a wireless network connecting many, specially distributed
sensor devices. These devices are equipped with sensors, such as for temperature,
vibration, pressure, sound, or motion. Like in a mobile ad hoc network this infor-
mation has to be communicated without a special infrastructure over a multi-hop
path. Similar as for cellular networks there are specially equipped base stations
(sometimes connected over an ad hoc network) to collect this information and
control the network.

The main difference between a sensor network and a mobile ad hoc network
is that a sensor network is data-driven. It is important to receive the tempera-
ture reading of an area not from a specific device. So, some of the sensors may
be switched off for most of the time. Furthermore, these cheap and massively
deployed sensors are equipped with the bare minimum of computing resources.
Sometimes they have to work for some 10 years being solely powered by small
coin cell batteries.

The main application of a sensor network is to read out the sensor read-
ing of a particular area. At the moment mobile sensor networks are the excep-
tion (which we will discuss here). For surveys on sensor networks, see [14], [30],
[46], [57].

3 Mobility Patterns: How People and Things Move

We now give a overview over realistic mobility patterns and classify them as
follows: pedestrians, vehicles, aerial, dynamic medium, robot, and outer space
motion. We present their characteristics and mention the specific radio problems.

3.1 Pedestrians

The oldest and most common way of mobility is to walk. Pedestrian mobility
has the slowest velocity compared to other modern mobility patterns. Although
low in speed, even in cellular networks walking patterns cause sincere trouble
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since typically people walk through places where obstacles obstruct the signal.
It is often a matter of meters whether or not the access point is to be reached
by a client (fast signal fading). In such a case clients need to be handed over
rapidly to the next available access point.

So, pedestrian mobility describes the walking patterns of people or animals.
Its main characteristics are the full use of the two-dimensional plane with occa-
sional obstacles and its chaotic nature. Group behavior may occur, but has not
necessarily to be. Such pedestrian mobility is always limited in speed because
the legs act like inverted pendula.

Typical examples of pedestrian mobility in wireless networks are people in the
street or mall using cellular phones or PDAs (personal digital assistants), and
animals in herds with sensor nodes being observed by biologists, e.g zebras [56].
Upcoming examples of wireless mobility patterns are mobile devices attached to
any moving object (parasitic mobility) [31], or even radio devices for pets. A side
effect is that pedestrian clients have limited energy-resources. So they need to
carry their batteries around to communicate, by that imposing further restraints
to the communication network.

3.2 Marine and Submarine Mobility

Like pedestrians boats and vessels are limited by an intrinsic maximum speed,
resulting from the friction in the water and the available motor power. Unlike
in vehicular (earth bound) mobility the motion is truly two-dimensional, and in
the case of submarine mobility even three-dimensional, whereas for most cases
no group mobility is involved (except regattas, fleet operation and fish swarms).
The communication upon the water service is very good and only the globe’s
curvature may become a problem.

Water absorbs radio signals with high frequencies. Submarine boats circum-
vent this problem by using very low frequencies ranging form 15 kHz to 33 kHz
with an antenna length of 10 to 20 meters. A solution to this problem is acoustic
communication, since sound travels very well underwater [2]. Also under wa-
ter speed is the decisive limitation to mobility. Unlike in aerial mobility ascent
and descent is easily possible (if the devices are equipped to withstand to the
enormous changes of water pressure), so truly three-dimensional movement is
realistic.

3.3 Earth Bound Vehicles

Such as pedestrian mobility is connected to the pendulum, the vehicular mobility
is connected to the wheel. By this term we describe the mobility patterns of cars,
railways, bicycles, motor bikes, etc. The wheel based movement reduces friction
and allows high speed. So, the danger of collision increases dramatically, and this
is the reason why (nearly) all vehicles are bound to one-dimensional movement
on streets, paths, or tracks. This reduces the problem of preventing collisions to
certain places like crossings.



Mobility in Wireless Networks 105

For railway traffic there is fixed predictable train schedule and only delays
cause aberrations. However, even in the seemingly well-planned world of the
railway companies, freight wagons do disappear. This happens very often in the
large wide-spread network of railway system spanning over different countries
and railway network providers. Therefore, some companies start to use GPS-
based wireless tracking devices to locate the wagons.

Another feature of railway traffic is an extreme group mobility pattern. When
the passengers are inside a train, then their relative speed reduces to nearly zero,
while the whole train can move up to some 300 km/h. The high relative speed
between trains makes direct communication very challenging, especially since
they move through a landscape with obstacles, or even tunnels. At these speeds
the Doppler-effect starts to kick in. Further the noise of reflections of the scenery
decreases the quality of the connection.

A very interesting study of this effect in practice can be seen in [38]. It shows
the difficulty that already arises if cars traveling on the same road in the same
direction communicate with each other over W-LAN, both in simulation and in
practice. Even a street sign impacts the quality of communication by its reflection
of radio signals.

3.4 Aerial Mobility

In this context monitoring flying patterns of migratory birds is a challenging task
for biologists. In former times, marking caught exemplars was the only reliable
source of information. Nowadays, some birds are equipped with radio tracking
devices and can be publicly monitored over the Internet, likewise the monitoring
of the black storks by the WWF1.

Flying objects reach high speeds and travel over long distances. Actually birds
and airplanes behave quite similar, here. As a communication medium open air
is nearly optimal. Still, the signal fades quadratically with the distance, such
that multihop communications may reduce the energy consumption of the radio
transceiver.

The aerial mobility pattern can be best described as a two and a half di-
mensional individual movement with limited (yet high) speed. The motion is
not completely three-dimensional since each ascent is very costly to the flying
object. So, flying objects usually preserve their flight heights. One exception
may be air fights between a raptor and his prey, or flight combats between war-
planes. Another exception is the group mobility of bird swarms which perfectly
coordinate their flight behavior.

The main applications of radio communication in aerial mobility are anti-
collision systems, message passing, position tracking, and of course flight control.

3.5 Medium Based Mobility

One method to explore the interior of hurricanes are dropwindsondes [18]. These
are sensor devices dropped from an airplane equipped with a parachute, sensors,
1 See http://www.flyingover.net/
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GPS-system, and a radio unit. Besides the constant drop speed the main move-
ment comes from the interior winds of the hurricanes. Other wireless devices with
medium based mobility are weather balloons and drifting buoys in the oceans. The
main application of all these devices is to measure the currents of the medium.
Dropwindsondes communicate directly to the aircraft releasing them. Also for
other such sensor nodes cellular networks is the prevalent technique to collect the
tracking information. A different approach has been used for measuring the cur-
rents at the British coast. In [47] a mobile ad hoc network has been used to col-
lect the information of the sensor network over a multihop path (with hardware
equipped as few as 384 Bytes of RAM). Using flying sensor devices for the explo-
ration of mars was recently suggested by [3].

To understand the mobility of the sensor devices in the medium one has to
study the medium itself. This can be done by numerical solution of the underlying
Navier-Stokes-equations. Medium based mobility can be one-, two- or three-
dimensional depending on the medium and the circumstances (piped gas, surface
of fluids, open air). Group behavior can occur and is usually unwanted since
grouping sensors deliver less information than individual moving sensors.

3.6 Mobility in Outer Space

For radio communication outer space is the perfect environment. Energy for
communication is usually no tight resource since space vehicles are equipped
with solar paddles. Mobility is, however, restricted since common space ships
use rockets for acceleration and fuel supply is limited. Hence, space vehicles
drift through space most of the time to save on this resource. At the moment
numerous satellites surround the earth forming a mobility pattern of a giant
chaotic carrousel, see Fig. 3. But space explorations may produces even more
complicated mobility patterns.

Space ships closely fly by planets to increase speed, e.g. Voyager 2 used Sat-
urn’s strong gravity to change its course and gather speed (to continue its mission
to Uranus and Neptune). Herds of space vehicles may be used for a coordinated
view into deep space. These herds will be placed in non-circular orbits between
earth and sun. Note that there exist five further stable positions, called Lagrange
or libration points (see Fig. 4), between every pair of massive bodies such the
sun and its planets, the planets and their moons, and so on. And around these
Lagrange points non-circular orbits exist, see Fig 5. These herds of space vehi-
cles have to change formation from time to time forming complicated mobility
patterns. Ad hoc networks will coordinate this movement, prevent collisions and
recalibrate the relative positions [29].

3.7 Robot Motion

Any of the above mobility scenarios can occur in robot motion. The main dif-
ference is the mobility pattern given by the designer of the robots. For some
application this pattern is easy to predict, likewise other robots seem to move
completely erratic and unpredictable. Clearly, the robot motion is driven by the
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Fig. 3. Space vehicles and debris in low
orbit (from NASA Orbital Debris Program
Office)

Fig. 4. The five Langrange points [28]

Fig. 5. Family of Halo orbits in the vicinity
of the Lagrange point [28]

robot’s task and usually little attention is given to the impact of the robot’s
behavior on the communication network.

Currently, in Paderborn the project “Smart Team”2 has been launched to
make a difference. The goal of this project is to coordinate the robots’ task with
the necessities of a radio communication network.

3.8 Characterization of Mobility Patterns

We have seen that in our modern world mobility is manifold and ubiquitous.
Radio communication networks are strongly affected by the different types of
mobility and the understanding of each observed mobility pattern can help to
improve the network behavior. Throughout this section the following properties
played a role.

– Group behavior : Is there a set of nodes staying together for a considerably
long time? Clearly, exploiting group behavior improves the performance of
radio communication by clustering.

– Limitations : What are the speed and/or acceleration bounds in the mobility
pattern?

– Dimensions: Do the nodes move in three-dimensions or only planar or linear?

2 Funded by the DFG SPP 1183 Organic computing.
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– Predictability: How well can the behavior of the nodes be predicted, e.g.
by a simulation model? Is the behavior completely erratic? Or can it be
described by a random process or even by deterministic selfish behavior?

Also hybrid models might appear. In this context we would like to mention
the parasitic mobility pattern [31]. They present a sensor network where the
nodes harvest the mobility from people, animals, vehicles, fluids, cellular organ-
isms, and nature. Furthermore, the nodes can change hosts. Depending on the
type of host, parasitic mobility can reproduce nearly all of the above mobility
patterns. Such parasitic mobility pattern does not constitute a mobility pattern
of its own.

3.9 Measuring Mobility Patterns by Localization

To measure a mobility pattern one needs to track a large number of nodes for
a long period of time. In fact this is the perfect application area for wireless
sensor networks specialized in localization. Localization can be solved by mea-
suring ranging information from signal strength [5], time of arrival [53], or the
time difference of arrival [50], or angle of arrival [42]. Other localization schemes
make use of the quantities of base stations seeding sensors. Some hopcount based
techniques avoid this large number of seeding base stations, [43], [45] by relying
on a uniform node distribution. In [26] a different approach is presented. They
exploit the mobility of the sensor networks to improve the accuracy and reliabil-
ity of the sensor node localization even if the sensors are seeded by mobile base
stations. This is only one of many examples where mobility helps to improve the
network behavior.

4 Models of Mobility

We classify the mobility models as cellular mobility models, random trip models,
group mobility models, particle based models, non-recurrent models, and worst
case mobility models.

4.1 Cellular Mobility Model

Since for cellular networks the main aspect of mobility is the handoff between
cells, one is not particularly interested in every detail of the movement of a mobile
node. For a survey for cellular models see [32].

1. The Random Walk Model
In this model, a node stays in a cell or moves to a neighbored cell according to
some given transition probabilities. These probabilities are often adjusted to
practical observations of client behavior in cells. The Random Walk Mobility
Model is one of the most widely used mobility models because it describes
individual movements relative to cells [7, 49, 58]. Since this model is memory-
less, there is no such concept as a path or consecutive movement. Therefore,
nodes stay in a vicinity of the starting cell for a rather long time.
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2. Trace based Models
Cellular phone companies have large records of mobility patterns of their
users. These traces are a valuable source for the evaluation and improvement
of handoff protocols. The only drawback is that usually such data is not
publicly available and therefore cannot serve as benchmarks for the scientific
community.

3. Fluid Flow Mobility Model
In this model the individual nodes are modeled on a macroscopic level [32],
[54], [36], [52]. The behavior of the generated traffic is similar to a fluid
flowing through a pipe. As a result, the Fluid-Flow Mobility Model represents
traffic on highways very well (for cellular networks). In [33] this model is used
to represent the behavioral characteristics of traffic on a highway. [34] shows
that the Fluid-Flow Mobility Model is insufficient for individual movements
including stopping and starting.

4.2 Random Trip Mobility

These mobility models are the prevalent mobility model for MANETs. There are
numerous variants of this model. In [12] these models are presented as follows.

1. Random Walk Mobility Model
Each node moves from its current location to a new location by randomly
choosing an arbitrary direction and speed from a given range. Such a move is
performed either for a constant time for a constant distance traveled. Then
new speed and direction are chosen. At the boundaries nodes bounce off like
billiard balls on a pool table.

In [34] the Random Walk Mobility Model is described as a memory-
less mobility pattern because it retains no knowledge concerning its past
locations and speed values. This characteristic inhibits the practicality of
the Random Walk Mobility Model because mobile nodes typically have a
pre-defined destination and speed in mind, which in turn affects future des-
tinations and speeds.

One observation is that the stationary probability distribution can be
described depending on the probabilites. But, the convergence against this
stable distribution can be slow, if the points are not randomly chosen [55].
So, there is some danger that the simulation result highly depends on the
start position, if the simulation time is not long enough.

In the Smooth Random Mobility Model [9] an extension of the simpler
random walk model is given. Here, two independent stochastic processes
choose direction and speed changes. The new speeds (or directions) are cho-
sen from a weighted distribution of preferred speeds. Upon a trigger, the
speed (resp. direction) changes as determined by a Poisson process.

2. Random Waypoint Mobility Model
The model is equivalent to the Random Walk model except that before any
change of speed and direction a predetermined pause time is performed [11].
This model is widely used for evaluating ad hoc network routing protocols.
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3. Random Direction Mobility Model
Here, the node must travel to the edge of the simulation area (or some other
condition is met) at a constant speed and direction. Then, the nodes pause
and a new direction and velocity is chosen randomly [48]. Then, the process
repeats.

4. A Boundless Simulation Area Mobility Model: The model exchanges the
planar rectangular simulation field by a boundless torus.

5. Gauss-Markov Mobility Model: A model that uses one tuning parameter to
vary the degree of randomness in the mobility pattern.

The Random Gauss-Markov Mobility Model is introduced as an improve-
ment over the Smooth Random mobility model [34]. A node’s next location is
generated by its past location and velocity. Depending upon parameters set,
this allows modeling along a spectrum from Random Walk to Fluid-Flow.

6. A Probabilistic Version of the Random Walk Mobility Model [15]
In this model the last step made by the random walk influences the next one.
Under the condition that a node has moved to the right the probability that
it continues to move in this direction is then higher than to stop movement.
This leads to a walk that leaves the starting point much faster than the
original random walk model.

7. City Section Mobility Model [17]
Here the random waypoint movement is combined with a street map of
a virtual city. The paths of the mobile nodes are limited to these streets in
the field. In a related model, the streets are replaced by Voronoi graphs [27].
Furthermore, obstacle are used which obstruct also radio signals.

For some models there is a slow convergence towards the stationary distribu-
tion [40]. This influences simulation results, since in previous work simulation
usually starts with the uniform distribution which is not necessarily the station-
ary distribution of the mobility model. Some random waypoint models do not
provide a stationary distribution at all. These problems are mentioned in [55]
for many random waypoint mobility models.

In [10] the Random Trip model has ben defined. This model describes a wide
class of mobility models, contain most of the mobility models in this section.
Therefore we use this name for this class of mobility models. Examples include
random waypoint on general connected domain, restricted random waypoint,
random walk models with either wrap-around or reflection, and the city street
model. In [10] it is shown how a simulation algorithm can start from unique
steady-state distribution. So, no time must be spent for waiting until the random
process stabilizes in the simulator.

4.3 Group-Mobility Models

The group-mobility models are usually an extension of the above models, where
either a function describes the group behavior or the nodes are somehow asso-
ciated with a group leader or a target. For a more extensive description of these
models we refer to [12] and [25].
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1. Exponential Correlated Random Mobility Model: Here a motion function
creates a group behavior.

2. Column Mobility Model: The set of mobile nodes form a line and move
forward in a particular direction.

3. Nomadic Community Mobility Model: A group mobility model where a set
of MNs move together from one location to another.

4. Pursue Mobility Model: For each group the group members follow a target
node moving over the simulation area.

5. Reference Point Group Mobility Model: The group movement is based upon
the path traveled by a logical center. Again the logical center moves according
to an individual mobility model.

4.4 Particle Based Mobility

There has been a lot of research in predicting pedestrian behavior. One of
the main motivations is to understand erratic mass panic caused by many
pedestrians causing the death and injuries of hundreds of people in a single
event [24]. The best model to describe the individual behavior of each per-
son in such occasions is a particle based model [23]. Each person is character-
ized by a sum of forces, describing his desire to move in a direction, keeping
a distance to others and the result of contact and frictions with other per-
sons. The simplicity and the accuracy of this model is surprising. It allows
even to simulate typical behavior in crowded streets where strangers form queue
patterns.

4.5 Combined Mobility Models

Many the above mobility models have been combined in a number of theoretical
frameworks, simulation environments and analysis toolboxes [6], [9], [22].

4.6 Non-recurrent Models

In the context of computational geometry Basch et al. introduced the concept
of kinetic data structures (KDS) [8] which describes a framework for analyzing
algorithms on mobile objects. In this model the mobility of objects is described
by pseudo-algebraic functions of time. These functions are fully or partially pre-
dictable. The analysis of a KDS is done by counting the combinatorial changes of
the geometric structure that is maintained by the KDS. The worst case mobility
depends, therefore, on the specific application for which the KDS is designed.
Another approach capturing unpredictable mobility is the concept of soft kinetic
data structures (SKDS) [16].

Usually the underlying trajectories of the points are described by polynomials.
Then, the corresponding Davenport-Schinzel-sequences [1] can be used to receive
an overall bound on the number of events. Because of the polynomials these
trajectory eventually move to infinity, which is somehow the worst case for a
wireless network.
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The idea of kinetic data structures is also used in [19] to maintain a clustering
of moving objects. This approach is used in [20] to determine the head of each
cluster in a mobile network. In each cluster the nodes are directly connected
to the head. To react on mobility the clustering is updated by an event-based
kinetic data structure.

Another non-recurrent approach has been proposed in [37]. They investigate
a contraction mobility model, an expansion mobility model, and a circling mo-
bility model (which is the only recurrent model). In the contraction model the
nodes move toward a center on a straight line. Within some time interval a new
speed will be chose from time interval and in addition the nodes may pause.
The expansion model is the same model, but now the nodes move from the
center on some beams. In the circling model the nodes move on concentric cir-
cles around a center. These mobility models can be combined with a street
network.

4.7 Worst-Case Mobility Models

A worst case model is introduced in [51]. Here, any movement is allowed as long
as it is bounded by a velocity or an acceleration bound. The authors call the first
model the pedestrian mobility model. Here all mobile nodes obey a system-wide
speed limit. The other model, where all mobile nodes can move arbitrarily fast,
yet obey the same acceleration bound, is called vehicular mobility. Based on this
worst case assumption the authors try to maintain a network for some constant
amount of time and then allow to completely rebuild the infrastructure. For this
the location (and speed vector) at the beginning of a round is known, yet further
movement is completely unpredictable (within the limits). So, the transmission
length needs to be adjusted appropriately. In this model the authors investigate
the quality of the topology control similar to the models presented in [4].

In this worst-case approach scenarios may appear where all networks have bad
performance. These scenarios are caused by large crowds of mobile nodes. They
introduce a location dependent measure, called crowdedness, and can prove for
restricted crowdedness that the optimal network topology can be approximated
in both mobility models by the so-called Hierarchical Grid topology.

5 Discussion

5.1 Mobility Is Helpful

One might think that mobility has only a negative impact on the behavior of
wireless networks. But recent work has shown that this is not the case. Mobility
improves the coverage of wireless sensor networks [35]. It helps security in ad
hoc networks [13]. Furthermore it can help with network congestion as shown
in [21]. This approach overcomes the natural lower bound for throughput of
Ω(
√

n) by instrumenting the random movement of nodes. They design a proto-
col where mobile nodes relay packets and literally transport them towards the
destination node.
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5.2 Mobility Models and Reality

There is an obvious discrepancy between the manifold mobility pattern observ-
able in reality and the mobility models used as benchmark tools and as theoretical
models for wireless networks. The prevalent mobility are the random trip models.
It relies on the assumption that individuals move more or less erratically. Some of
the random trip models have been adapted with realistic assumptions like street
maps, velocity bounds, etc. Yet, on the one hand it is still unproven whether these
modifications describe realistic mobility patterns. And even if this is the case they
describe only the earthbound pedestrian or vehicular mobility patterns.

In the case of group mobility, little information is available on how real group
mobility patterns look like. Sometimes group mobility patterns are not caused
by social interaction but by a physical process. As an example, pedestrians in
crowded pathways form queues merely to avoid the approaching pedestrians [23].
At the moment little is known whether the group mobility models actually de-
scribe the reality.

The worst-case mobility approach seems to be a step towards a more gen-
eral understanding of mobility. Some drawbacks need to be mentioned. First, it
relies on homogeneous velocity or acceleration bounds, which is not at all real-
istic. Second, the implications for wireless networks are rather weak. For that,
the performance of the network depends very much of the crowdedness of the
underlying mobility pattern.

In principle, is possible to formulate the missing mobility models for marine,
aerial, medium based, and outer space mobility patterns. Also for the pedestrian
and vehicular models we expect even more realistic mobility models to be con-
sidered as benchmarks for wireless networks. The research of mobility models is
quite vivid. Nevertheless, some challenges remain:

– Find mobility models for specific mobility patterns and prove their validity
by comparing them with reality.

– Prove the efficiency and reliability of a real network protocols with respect
to a given mobility model.

References

1. Agarwal, P.K., and Sharir, M.: Davenport–Schinzel Sequences and Their Geometric
Applications. Cambridge, New York, Cambridge University Press (1995)

2. Akyildiz, I.F., Pompili, D., and Melodia, T.: Underwater Acoustic Sensor Networks:
Research Challenges. Ad Hoc Networks (Elsevier) 3 3 (May 2005) 257–279

3. Antol, J., Calhoun, P., Flick, J., Hajos, G.A., Kolacinski, R., Minton, D., Owens, R.,
and Parker, J.: Low Cost Mars Surface Exploration: The Mars Tumbleweed. Tech-
nical Report, NASA Langley Research Center. NASA/TM 2003 212411 (August
2003)

4. Meyer auf der Heide, F., Schindelhauer, C., Volbert, K., and Grünewald, M.: En-
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Abstract. Improving the dependability of computer systems is a criti-
cal and essential task. In this context, the paper surveys techniques that
allow to achieve fault tolerance in distributed systems by replication. The
main replication techniques are first explained. Then group communica-
tion is introduced as the communication infrastructure that allows the
implementation of the different replication techniques. Finally the diffi-
culty of implementing group communication is discussed, and the most
important algorithms are presented.

1 Introduction

Computer systems become every day more and more complex. As a consequence
the probability of problems in these systems increases over the years. To avoid
this from becoming a major issue, researchers have since many years worked
on improving the dependability of these systems. The methods involved are
traditionally classified as fault prevention, fault tolerance, fault removal and fault
forecasting [22]. Fault prevention refers to methods for preventing the occurrence
or the introduction of faults in the system. Fault tolerance refers to methods
allowing the system to provide a service complying with the specification in
spite of faults. Fault removal refers to methods for reducing the number and the
severity of faults. Fault forecasting refers to methods for estimating the presence
of faults (with the goal to locate and remove them). We concentrate here on
fault tolerance.

Several techniques to achieve fault tolerance have been developed over the
years. The different techniques are related to the specificity of applications. For
example, a centralized application differs from a distributed application involv-
ing several computing systems. We consider here distributed applications. Fault
tolerance for distributed applications can be achieved with different techniques:
transactions, checkpointing and replication.

Transactions have been introduced many years ago in the context of database
systems [3]. A transaction allows us to group a sequence of operations while
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ensuring some properties on these operations, called ACID properties [3]: Atom-
icity, Consistency, Isolation and Durability. Atomicity requires that either all
operations of the transaction are preformed, or none of them. Consistency is
a requirement on the set of operations, namely that the sequence of operations
brings the database from a consistent state to another consistent state. Trans-
actions can be executed concurrently. The isolation property requires that the
effect of transactions executed concurrently is the same as if the transactions
where executed in some sequential order (in isolation from each other). Durabil-
ity requires that the effect of the operations of the transaction are permanent,
i.e., survive crashes. Durability is achieved by storing data on stable storage,
e.g., on disk. Atomicity and durability are the two properties specifically related
to fault tolerance. A single protocol is used to ensure these two properties, the
so called atomic commitment protocol executed at the end of the transaction.
If all the data accessed by a transaction is located on the same machine, the
transaction is a centralized transaction. If the data is located on different ma-
chines, the transaction is a distributed transaction. Distributed transactions are
more difficult to implement then centralized transactions. The main technical
difficulty lies in the atomic commitment protocol. Except for this problem, the
implementation of distributed transactions derives more or less easily from the
implementation of centralized transactions. We discuss atomic commitment in
Section 4.5.

Checkpointing is another technique for achieving fault tolerance. It consists
of periodically saving the state of the computation on stable storage; in case of
a crash, the computation is restarted from the most recently saved state. The
technique has been developed for long running computations, e.g., simulations
that last for days or weeks, and run on multiple machines. These computations
are modelled as a set of processes communicating by exchanging messages. The
main problem is to ensure that, after crash and recovery, the computation is
restarted in a consistent state. We do not discuss checkpointing techniques here.
A good survey can be found in [12].

Replication is the technique that allows the progress of the computation dur-
ing failures (which is called failure masking). In a system composed of several
components, without replication, if one single component fails the system is no
more operational. Replicating a component C, and ensuring that the replicas
of C fail independently, allows the system to be tolerant to the failure of one
or several replicas of C. Replicating a component is very easy if the component
is stateless or if its state does not change during the computation. If the state
of the component changes during the computation, then maintaining the con-
sistency among the replicas is a difficult problem. Surprisingly, it is one of the
most difficult problems in distributed computing. We concentrate here on the
problems related to replication.

While replication allows us to mask failures, this is not the case of trans-
actions or checkpointing. However, the different techniques mentioned above
can be combined, e.g., transactions can be run on replicated data. Implement-
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ing such a technique requires to combine transaction techniques and replication
techniques. This will not be discussed here.

The rest of the paper is structured as follows. Section 2 introduces issues
related to replication, and presents the two main replication techniques. Section 3
defines group communication as the middleware layer providing the tools for
implementing the different replication techniques. The implementation of these
tools is discussed in Section 4. Finally, Section 5 concludes this survey.

2 Replication

In this section we first introduce a model for discussing replication. Then we
define what it means for replicas to be consistent. Finally we introduce the two
main replication techniques.

2.1 Model for Replication

Consider a system composed of a set of components. A component can be a pro-
cess, an object, or any other system structuring unit. Whatever the component
is, we can model the interaction between components in terms of inputs and
outputs. A component CO receives inputs and generates outputs. The inputs
are received from another component COin, and the outputs are sent to some
component COout. Whether COin is equal or not to COout does not make any
difference for CO. In the case COin = COout, the component CO is called
a server, and the component COin = COout is called a client. In this case we
will denote the server component by S and the client component by C. The
input sent by the client C to the server S is called a request, and the output
sent by the server S to the client C is called a response. From the point of
view of the client, the pair request/response is sometimes called an operation:
for a client C, an operation consists of a request sent to a server and the corre-
sponding response. We assume here that the client is blocked while waiting for
the response.

2.2 Consistency Criteria

A server S can have many clients C, C′, C′′, etc. For a non-replicated server S,
the simplest implementation is to handle client requests sequentially, one at
a time. A more efficient implementation could consist for the server to spawn
a new thread for each new incoming request. However, in this case the result
that the client obtains must be the same as if the operations were executed
sequentially, one after the other. The same holds if the server S is replicated,
with replicas S1, . . ., Sn: the result that the clients obtain must be the same as
if the operations were executed sequentially by one single server. This can be
defined more precisely, by the consistency criterion called linearizability [16] (also
called atomic consistency [24]). A weaker consistency criterion is called sequential
consistency [19]. We discuss only linearizability, which is the consistency criterion
that is usually implemented.
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Linearizability. An execution σ is linearizable if it is equivalent to a sequential
execution such that (a) the request and the response of each operation occur both
at some time t, and (b) t is in the interval [treq, tres], where treq is the time when
the request is issued in σ, tres is the time when the response is received in σ. We
explain this definition on two examples. A formal definition can be found in [16].

Consider a server S that implements a register with the two operations read
and write:

– S.write(v) denotes the request to write value v in the register managed by
server S. The operation returns an empty response, denoted by ok.

– S.read( ) denotes the request to read the register managed by server S. The
operation returns the value read.

Figure 1 shows an execution σ that is linearizable:

– Client C issues the request write(0) at time t1, and receives the empty
response ok at time t3.

– Client C′ issues the request write(1) at time t2, and receives the empty
response ok at time t5.

– Client C issues the request read( ) at time t4, and receives the response 0 at
time t7.

– Client C′ issues the request read( ) at time t6, and receives the response 1
at time t8.

The bottom time-line in Figure 1 shows a sequential execution equivalent to
σ that satisfies the two requirements (a) and (b) above (ta is in the interval
[t1, t3], tb is in the interval [t4, t7], etc.).

Figure 2 shows an execution that is not linearizable. In an equivalent sequen-
tial execution write(1) issued by C′ must precede read( ) issued by C. So there
is no way to construct a sequential execution in which read( ) returns 0 to C.

C

C’

S.write(0)

S.write(1)

S.read( )

S.read( )

Equivalent sequential 
execution

t1

t2 t6

t3 t4

t5 t8

t7

ok 0

ok 1

ta tb tc td

Execution 

Fig. 1. A linearizable execution

C

C’

S.write(0)

S.write(1)

S.read( )

S.read( )

ok 0

ok 1

Fig. 2. A non linearizable execution
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2.3 Linearizability vs. Isolation

Linearizability differs from the isolation property of transactions. There are two
main differences. First, linearizability is defined on the whole sequence of op-
erations issued by a client process in the system, while isolation is defined on
a subset of the operations of a client process. Consider for example that process
p issues operations op1 and op2 within transaction T1, and later operations op3
and op4 within transaction T2. Isolation does not require that the operations
of T1 are ordered before the operations of T2 (they can be ordered after those
of T2). However, if opi precedes opj on process p, then linearizability requires
opi to be ordered before opj .

The second difference is that linearizability does not ensure isolated execution
of a sequence of operations. If process p issues operation op1

p = S.read( ) that
returns v and later op2

p = S.write(v+1), and process q issues operation op1
q =

S.read( ) that returns v′ and later op2
q = S.write(v′+1), linearizability does not

prevent the operation op1
q of q to be executed between the two operations op1

p and
op2

p of p. There are basically two ways to prevent this from occurring. The first
solution is for p and q to explicitly use locks or semaphores. The second solution
is to add a new operation to the server S, e.g., increment, and to invoke this
single operation instead of read followed by write. The second solution is better
than the first one (locks and semaphores lead to problems in the presence of
failures).

2.4 Replication Techniques

In the previous section, linearizability defined the desired semantics for oper-
ations issued by clients on servers. In the definition of linearizability, servers
are black boxes. This means that the definition applies to non-replicated single-
threaded servers, to non-replicated multi-threaded servers, to replicated single-
threaded servers and to replicated multi-threaded servers. In this section we
address the question of implementing a replicated server while ensuring lin-
earizability. We discuss only the single-threaded case. The two main replication
techniques are called active replication and passive replication. Other replication
techniques can be seen as variants or combinations of these two basic techniques.

Active Replication. Active replication is also called state-machine replica-
tion [18], [28]. The principle is illustrated on Figure 3, which shows a replicated
server S with three replicas S1, S2 and S3. The client sends its request to all the
replicas, each replica processes the request and sends back the response to the
client. The client waits for the first response and ignores the others. This client’s
behavior is correct if we assume that the servers do not behave maliciously, and
the servers are deterministic1: in this case all the responses are identical.

In Figure 3 there is only one client. The problem becomes more difficult with
multiple clients that concurrently send their requests. In this case it is sufficient
1 A server is deterministic if its new state and the response depend only on the request

and on the state before processing the request.
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that all replicas Si receive the clients’ requests in the same order, as shown in
Figure 4. This allow the replicas to process the clients’ requests in the same
order. In Section 3 we introduce a group communication primitive that ensures
such an ordering of client requests.

Passive Replication. The principle of passive replication is illustrated on Fig-
ure 5, which shows the same replicated server S with its three replicas S1, S2
and S3. One of the replicas, here S1, is the primary replica; the other replicas,
S2 and S3 are called backups. The client sends its request only to the primary,
and waits for the response. Only the primary processes the request. Once this
is done, the primary sends an update message to the backups, to bring them to
a state that reflects the processing of the client request. In Figure 5 the update
message is also sent to the primary. The reason is that, if we include failures, it is
simpler to assume that the modification of the state of the primary occurs only
upon handling of the update message, and not upon processing of the request.

If several clients sent their requests at the same time, the primary processes
them sequentially, one after the other. Since the primary sends an update mes-
sage to the backups, the processing can be non-deterministic, contrary to active
replication. Note that this superficial presentation hides most of the problems
related to the implementation of passive replication. We mention them in the
next paragraph. With active replication, the implementation problems are hid-
den in the implementation of the group communication primitive that orders the
clients’ requests.
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Problems Implementing Passive Replication. When the primary crashes,
a new primary must be selected. However, requiring the failure detection of the
primary to be reliable (i.e. never making mistakes) is a very constraining as-
sumption. For this reason, solutions to passive replication that do no require
a reliable failure detection mechanism for the primary have been developed. The
three main problems to address are the following: (a) prevention of multiple pri-
maries being able to process requests, (b) prevention of multiple executions of
a request, and (c) reception of the update message by all replicas. Problem (a) is
related to the unreliable failure detection mechanism. Problem (b) arises when
the current primary is falsely suspected to have crashed. Consider a client C
sending its request to the primary S1. Assume that S1 is incorrectly suspected
to have crashed, and S2 becomes the new primary. If this happens, and C did not
receive any response, it will resend its request to S2. This may lead to execute
the client request twice. Multiple execution of a request can be prevented by
attaching a unique identifier to each request (this request identifier being pig-
gybacked on the update message). Problem (c) arises when the primary crashes
while multicasting the update message. In this case, we must prevent the unde-
sirable situation where the update message is received by some replicas, but not
by all of them. In Section 3 we present the group communication primitive that
allows us to solve the problems (a) and (c).

3 Group Communication

In the previous section we have introduced the two basic replication techniques,
namely active replication and passive replication. We have also pointed out the
need for communication primitives with well defined ordering properties to im-
plement these techniques. Group communication is the infrastructure that pro-
vides these primitives. A group is simply a set of processes with an identifier.
Messages can be multicast to the members of some group g simply by refer-
ring to the identifier of group g: the sender of the message does not need to
know what processes are members of g. For example, if we consider a replicated
server S with three replicas S1, S2 and S3, we can refer to these replicas as the
group gS = {S1, S2, S3}. As illustrated by Figure 6, group communication is
a middleware layer between the transport layer and the layer that implements
replication. In this section we define the two main group communication prim-

Replication technique

Group communication

Transport layer

Fig. 6. Group communication
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itives for replication, namely atomic broadcast and generic broadcast. Before
doing so, we introduce some concepts needed to understand the various aspects
of group communication.

3.1 Various Group Models

Static Group vs. Dynamic Group. A static group is a group whose member-
ship is constant over time: a static group is initialized with a given membership,
and this membership never changes. This is the simplest type of group. How-
ever, static groups are often too restrictive. For example consider the replicated
server S implemented by the group gS = {S1, S2, S3}. If one of the replicas Si

crashes, it might be desirable to replace Si with a new replica, in order to main-
tain the same degree of replication. A group whose membership changes over
time is called a dynamic group. Dynamic groups require to manage the addition
and the removal of members to/from the group. This problem is called the group
membership problem: it is discussed in Section 3.4.

Benign vs. Malicious Faults. The group (or system) model encompasses also
the type of faults that are considered. The distinction is made between benign
faults and malicious faults (also called Byzantine faults). With benign faults,
a process or a channel does its job correctly, or does not do its job. A process
crash, or a channel that looses a message, are benign faults. With malicious
faults, a process or a channel can behave arbitrarily.

Crash-Stop vs. Crash-Recovery. In the context of benign faults, the dis-
tinction is made between the crash-stop and the crash-recovery process model.
In the crash-stop model processes do not have access to stable storage. In this
case, a process that crashes looses its state: upon recovery, the process is indis-
tinguishable from a newly started process. In the crash-recovery model processes
have access to stable storage, allowing them to periodically save their state. In
this case, a process that crashes can recover its most recently saved state.

Combining these Models. Combining these three dimensions lead to differ-
ent models for group communication. The simplest model is the benign static
crash-stop model. Other models have been considered in the literature, but they
lead to more complexity in the specification of group communication and in the
algorithms. There are some subtle differences between the different models, as
we explain now.

Figure 7 shows the difference between active replication with dynamic crash-
stop groups (left) and active replication with static crash-recovery groups (right).
In the crash-stop model, to keep the same replication degree, a crashed process
(here replica S3) must be replaced with a new process (here S4). The initial
membership of the group gS is denoted by v0(gS) = {S1, S2, S3} (v stands for
view, see Section 3.4). When S3 crashes, the membership becomes v1(gS) =
{S1, S2}. Once S4 is added, we have the membership v2(gS) = {S1, S2, S4}.
Note that the state of p4 must be initialized. This is done by an operation
called state transfer : when S4 joins the group, the state of one of its members
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Fig. 7. Active replication with a dynamic crash-stop group (left), or a static crash-
recovery group (right)

(here S2) is used to initialize the state of S4. In the static crash-recovery model
(Figure 7, right), the same degree of replication is kept by assuming that crashed
replicas recover (here S3). However in this context, since S3 remains all the time
a member of gS , a message broadcast to the group while S3 is down must be
delivered to S3 (here m2). As a result, no state transfer is needed. The static
crash-recovery model is preferable to the dynamic crash-stop model whenever
the state of the replicas is large.

In the following we consider mainly the static crash-stop model, which is
the most widely model considered in the literature, and the simplest. Dynamic
groups are briefly mentioned in Section 3.4.

3.2 Atomic Broadcast for Active Replication

One of the most important group communication primitives is atomic broad-
cast [8]. Atomic broadcast is also sometimes called total order broadcast, or sim-
ply abcast. The primitive ensures that messages are delivered ordered. To give
a more formal specification of the properties of abcast, we need to introduce the
following notation:

– The atomic broadcast of message m to the members of some group g is
denoted by abcast(g, m)2.

– The delivery of message m is denoted by adeliver(m).

It is important to make the distinction between abcast/adeliver, and the
send/receive primitives at the transport layer (see Figure 8). The semantics of
send/receive is defined by the transport layer. The semantics of abcast/adeliver
is defined by atomic broadcast. An atomic broadcast protocol uses the semantics
of send/receive to provide the semantics of abcast/adeliver.

The definition of atomic broadcast in the static crash-stop model relies on
the definition of a correct process: a process is correct if it does not crash. Oth-
erwise it is faulty. Note that even though these definitions are simple, they are
2 The primitive should be called atomic multicast. For simplicity, we keep the term

broadcast here.
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Fig. 8. Send/receive vs. abcast/adeliver

easily wrongly understood. Correct/faulty are predicates that characterize the
whole lifetime of a process. This means that if some process p crashes at time
t = 10, then p is faulty (even at time t = 9). With this definition, atomic
broadcast in the static/crash-stop model is specified by the following four prop-
erties [15], [2]3:

– Validity: If a correct process executes abcast(g,m), then some correct process
in g eventually adelivers m or no process in g is correct.

– Uniform agreement: If a process in g adelivers a message m, then all correct
processes in g eventually adeliver m.

– Uniform integrity: For any message m, every process p adelivers m at most
once, and only if p is in g and m was previously abcast to g.

– Uniform total order: If process p in g adelivers message m before message m′,
then no process in g adelivers m′ before having previously adelivered m.

Validity, uniform agreement and uniform integrity define the primitive called
reliable broadcast4. Atomic broadcast is defined as reliable broadcast with the
uniform total order property.

It is easy to see that active replication is easily implemented using atomic
broadcast. If gS is the group of replicas that provide some service S, clients C
send requests using the primitive abcast(gS, req). The validity property ensures
that if C does not crash, its request is received by at least one member of gS

(unless all members of gS crash). Combining this guarantee with uniform agree-
ment ensures that all correct processes in gS eventually adeliver m. The uniform
total order property ensures that all replicas adeliver the clients’ requests in the
same order.

The response from a replica in gS to a client is sent using a unicast message,
i.e., a point-to-point message. The transport layer must ensure the following
quasi-reliable channel property [1]: if a correct process p sends message m to
a correct process q, then q eventually receives m. This property is stronger than
the property provided by TCP (if a TCP connection breaks, reliability is no
more guaranteed).

3 More precisely, the specification corresponds to the primitive called uniform atomic
broadcast. We will call it here simply atomic broadcast.

4 More precisely, uniform reliable broadcast.
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3.3 Generic Broadcast for Passive Replication

Atomic broadcast can also be used to implement passive replication, but this
is not necessarily the best solution in terms of cost. Atomic broadcast can be
used as follows. Consider a replicated server S defined by the (static) group gS ,
and assume that the members of gS are ordered in a list. Initially, the mem-
ber at the head of the membership list is the primary. The primary sends the
update message to gS using abcast. Whenever some member of gS suspects
the current primary to have crashed, it abcasts the message 〈primary change〉.
Upon adelivery of this message every process moves the process at the head
of the list to the tail. The new primary is the new process at the head of
the list.

Passive replication can also be implemented using the group communication
primitive called generic broadcast [25], [2], which can be cheaper to implement
than atomic broadcast. While atomic broadcast orders all messages, generic
broadcast orders only messages that conflict. Conflicts are defined by a relation
on the set of messages. This conflict relation is part of the specification of the
primitive, and makes the primitive generic. The generic broadcast of message m
to the group g is denoted by gbcast(g, m); the delivery of message m is denoted
by gdeliver(m). Formally, generic broadcast is defined by the same properties
that define atomic broadcast, except that the uniform total order property is
replaced with the following weaker property:

– Generic total order: If process p in g gdelivers message m before message m′,
and m, m′ conflict, then no process in g gdelivers m′ before having previously
gdelivered m.

We have seen that passive replication can be implemented with atomic broad-
cast for the update messages and the primary-change messages. Consider the
following conflict relation between these two types of messages:

– Messages of type primary-change do not conflict with messages of the same
type, but conflict with messages of type update.

– Messages of type update conflict with messages of the same type, and also
with messages of type primary-change.

This ensures enough ordering to implement generic broadcast correctly. Note
that most of the time one single process considers itself to be the primary, and
during this period no concurrent update messages are issued. So most of the
time no concurrent conflicting messages are issued.

The implementation of generic broadcast (and atomic broadcast) is discussed
in Section 4.

3.4 About Group Membership

With dynamic groups, the successive membership of a group is called a view.
Consider for example a group g, with initially three processes p, q, r. This initial
membership is called the initial view of g, and is denoted by v0(g). Assume that
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later r is removed from g. The new membership is denoted by v1(g) = {p, q}.
If s is added later to the group the resulting membership is denoted by v2(g) =
{p, q, s}. So the history of a dynamic group is represented as a sequence of views,
and all group members must see the sequence of views in the same order. The
problem of maintaining the membership of a dynamic group is called the group
membership problem [27].

3.5 About View Synchronous Broadcast

View synchronous broadcast or vscast (sometimes also called view synchrony), is
another group communication primitive, defined in a dynamic group model [4],[7].
However, the importance of vscast has been overestimated, and stems from a time
where the difference between static groups and dynamic groups was not com-
pletely understood.

Consider some message m vscast by process p in view vi(g): vscast orders m
with respect to view changes. In other words, vscast ensures that m is delivered
by all processes in the same view vj . The property is also called same view
delivery [7]. A stronger property, called sending view delivery, requires i = j:
the view in which the message is delivered is the view in which the message was
sent [7].

The overestimated importance given to view synchronous broadcast has led
to several misunderstandings. The first is that dynamic groups are needed to
implement passive replication: Section 3.3 has sketched an implementation of
passive replication with a static group. The second misunderstanding is that the
specification of group communication with dynamic groups is inherently different
from the specification of group communication with static groups. This is not
the case, as shown in [26].

3.6 Group Communication vs. Quorum Systems

In the previous sections we have shown the use of group communication for
implementing replication. Quorum systems is another technique for replication,
anterior to group communication and also more widely known. In this section
we explain the advantage of group communication over quorum systems in the
context of replication [11].

Definition of Quorum Systems. Consider a set Π = {p1, . . . , pn} of pro-
cesses. The set of all subsets of Π is called the powerset of Π , and is denoted by
2Π . We have for example:

{p1}, {p2}, {p1, p2}, {p2, p3, p4}, . . . , {p1, . . . , pn} ∈ 2Π .

A quorum system of Π is defined as any set Q ⊂ 2Π such that any two Qi ∈ Q
have a non empty intersection:

∀Q1, Q2 ∈ Q, we have Q1 ∩Q2 �= ∅.
Each Qi ∈ Q is called a quorum. For example, if Π = {p1, p2, p3}, then the set
Q = {{p1, p2}, {p1, p3}, {p2, p3}} is a quorum system of Π ; {p1, p2}, {p1, p3},
{p2, p3} are quorums.
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Fig. 9. Replication: quorum systems (left) vs. group communication (right)

Quorum Systems for Implementing a Fault Tolerant Register. The
use of quorums systems for fault tolerance can be illustrated on a very simple
example: a server that implements a register. A register is an object with two
operations read and write: read returns the value of the register, i.e., the most
recent value written; write overwrites the value of the register.

The register can be made fault tolerant by replication on three replicas e.g.,
Π = {p1, p2, p3} with the quorum system Q = {{p1, p2}, {p1, p3}, {p2, p3}}. Each
operation needs only to be executed on one quorum of Q, i.e., on {p1, p2}, on
{p1, p3}, or on {p2, p3}. In other words, the quorum system Q tolerates the crash
of one out of the three replicas. Using the quorum system Q, linearizability of
the read and write operations is easy to implement [11].

Requiring Isolation. A fault tolerant register is easy to implement using quo-
rum systems. However, clients usually want to perform more complex operations.
Consider for example the operations (a) increment a register and (b) decrement
a register. These two operations can be implemented as follows: (1) read the
register, then (2) update the value read, and finally (3) write back the new
value. However, one client C may increment the register, while at the same time
another client C′ decrements the register. To ensure a correct execution, the
two operations must be executed in mutual exclusion. With group communica-
tion, no mutual exclusion is needed: atomic broadcast can be used to send the
corresponding operation to the replicated servers.

This difference between quorum systems and group communication is illus-
trated in Figure 9. The left part illustrates the quorum solution, and the right
part the group communication solution. In the quorum solution, the increment
operation is performed by the client, after reading the register and before writing
the new value. The implementation requires mutual exclusion, represented by
ECS (enter critical section) and LCS (leave critical section). In the group com-
munication solution, the increment operation is sent to the replicas using atomic
broadcast; no mutual exclusion is required5. Implementing atomic broadcast
requires weaker assumptions about the crash detection mechanism than imple-
menting mutual exclusion [11].

5 The reader may wonder why no increment operation can be sent with quorum sys-
tems. Sending the increment operation requires atomic broadcast!
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4 Implementation of Group Communication

In the previous section we have seen the role of group communication for repli-
cation. We discuss now the implementation of the two group communication
primitives that we have introduced, namely atomic broadcast and generic broad-
cast. We consider only static groups, non Byzantine processes and the crash-stop
model.

4.1 Impossibility Results

Consider a static group g, and processes in g communicating by message ex-
change. The most general assumption is to consider that the time between
the sending of a message m and the reception of m by its destination is not
bounded, i.e., the transmission delay can be arbitrarily long. Similarly, if we
model the execution of a process as a sequence of steps, the most general as-
sumption is to consider that while the slowest process performs one step, the
fastest process can perform an unbounded number of steps. These two assump-
tions define the asynchronous system model. The absence of bounds for the
message transmission delay models an open network in which the load of the
links are unknown. The absence of bounds on the relative speed of processes
models processes running on CPUs with an unknown load. The asynchronous
system model is the most general model, but it has a major drawback: several
problems are impossible to solve in that model when one single process may
crash.

One of these problems is consensus. The problem is defined on a set of pro-
cesses, e.g., on some group g. Every process p in g starts with an initial value
vp, and all correct processes in g have to decide on some common value v that
is the initial value of one of the processes. Formally, the consensus problem is
defined by the following properties [6]:

– Validity: If a process decides v, then v is the initial value of some process.
– Agreement: No two correct processes decide differently.
– Termination: Every correct process eventually decides some value.

An explanation of problem solvability is needed here. Consider a distributed al-
gorithm AP that is supposed to solve problem P . Algorithm AP can be launched
many times. Due to the variability of the transmission delay of messages, each
execution of AP can go through a different sequence of states. However, in all of
these executions, AP must solve P . If there is one single execution in which this
is not the case, then we say that algorithm AP does not solve P . This clarifi-
cation is important in the context of the consensus problem: it has been shown
that consensus is not solvable by a deterministic algorithm in an asynchronous
system with reliable links if one single process may crash. This result is known
as the FLP impossibility result [13].

The FLP impossibility result is easy to extend to atomic broadcast by the
following argument [9]. Assume for a contradiction that atomic broadcast can be
implemented in an asynchronous system with process crashes. Then consensus
can be solved as follows (in the context of some group g):
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– Each process p in g executes abcast(vp), where vp is p’s initial value.
– Let v be the first message adelivered by p.
– Process p decides v.

If there is a least one correct process, then at least one message is adelivered.
By the property of atomic broadcast, every correct process adelivers the same
first message, and so decides on the same value. Consensus is solved, which shows
the contradiction.

4.2 Models for Solving Consensus

Consensus and atomic broadcast are not solvable in an asynchronous system
when processes may crash. We thus need to find a system model in which consen-
sus is solvable (whenever consensus is solvable, atomic broadcast is also solvable,
see Section 4.3). One such system is the synchronous system model, defined by
the following two properties:

– There is a known bound on the transmission delay of messages.
– There is a known bound on the relative speed of processes.

Consensus is solvable in a synchronous system [23], but the synchronous sys-
tem model has drawbacks from a practical point of view. The model requires to
consider the worst case: the worst case for the transmission delay of messages,
the worst case for the relative speed of processes. These bounds have a direct
impact on the time it takes to detect the crash of a process: the higher these
bounds are, the higher the time it takes to detect a process crash, i.e., the longer
it takes to react to a crash. In a replicated service a long reaction to a crash
leads to a long delay before clients get the replies.

The drawback of the synchronous model has led to look for system mod-
els weaker than the synchronous model, but strong enough to solve consensus
(and so atomic broadcast). The first of these models is called the partially syn-
chronous model [10]. The model considers bounds on the message transmis-
sion delay and on the relative speed of processes. There are two variants of the
model:

1. There is a bound on the relative speed of processes and a bound on the
message transmission delay, but these bounds are not known.

2. There is a known bound on the relative speed of processes and on the message
transmission delay, but these bounds hold only from some unknown point
on.

The two definitions are equivalent, but the first variant seems more appealing
from a practical point of view.

A different approach was proposed later in [6]. It consists in augmenting the
asynchronous model with an oracle that satisfies some well defined properties.
In other words, the system is assumed to be asynchronous, but the processes
can query an oracle about the status crashed/not crashed of processes. For this
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reason the oracle is called failure detector oracle, or simply failure detector. If
the failure detector returns the reply crashed q to process p, we say p suspects q.
Note that this information may be incorrect: failure detectors can make mistakes.
The legal replies to a query of the failure detector are defined by two properties
called completeness and accuracy. For example, the replies of the failure detector
called �S must satisfy the following completeness and accuracy properties [6]:

– Strong completeness: Eventually every process that crashes is permanently
suspected to have crashed by every correct process.

– Eventual weak accuracy: There is a time after which some correct process is
never suspected by any correct process.

Consensus is solvable in the asynchronous system augmented with the failure
detector �S and a majority of correct processes [6]. Moreover, it has been shown
that �S is the weakest failure detector that allows us to solve consensus in an
asynchronous system [5]. This result shows the power of the failure detector
approach and explains its popularity.

4.3 Solving Consensus

The first algorithm to solve consensus in a model weaker than the synchronous
model is the consensus algorithm by Dwork, Lynch and Stockmeyer for the par-
tially synchronous model [10]. The algorithm – called here DLS – requires a ma-
jority of correct processes, and is based on the rotating coordinator paradigm.
In this paradigm, the computation is decomposed into rounds r = 0, 1, 2, . . .,
and in each round another process, in some predetermined order, is the coor-
dinator. Typically, with n processes p0, . . . , pn−1, the coordinator of round r is
process pr mod n. In each round the coordinator leads the computation in order
to try to decide on a value. The algorithm is based on the notions of locked value
and acceptable value. The coordinator of round r tries to lock a value, say v, and
if it learns that a majority of processes have locked v in round r, it can decide v.
If the coordinator of round r is suspected to have crashed, then the computation
proceeds to the next round r + 1 with a new coordinator. Note that a process
can become coordinator more than once, e.g., in rounds k, n + k, 2n + k, etc.
The key property of the DLS algorithm is that the safety properties of consensus
(validity and agreeement) hold even if the properties of the partially synchronous
model do not hold. In other words, these properties are only needed for liveness,
i.e., to ensure the termination property of consensus.

Two other consensus algorithms had a major impact and led to the devel-
opment of variations of these algorithms. The first one is the Paxos algorithm
proposed by Lamport [20], [21]. The second one is the Chandra-Toueg consensus
algorithm (denoted CT hereafter) based on the failure detector �S [6]. Paxos
and CT, similarly to DLS, require a majority of correct processes. CT, similarly
to DLS, is based on the rotating coordinator paradigm. Paxos is also based on
a coordinator, but the coordinator role is not predetermined as in the rotating
coordinator paradigm, but determined during the computation (the algorithm
tolerates multiple coordinators for the same round). Paxos and CT are also
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based on the notion of locked value (but there is no notion of acceptable value):
each coordinator, one after the other, tries to lock a value v, and if it learns
that a majority of processes have locked v, it can decide v. In this sense Paxos
and CT are very similar. The two algorithms also share the key property of
DLS, namely that no matter how asynchronous the system behaves, the safety
properties of consensus are never violated. However, Paxos and CT differ on the
following issues:

– CT requires reliable channels, while Paxos tolerates message loss (similarly
to DLS ).

– The condition for termination is rigorously defined for CT, namely the even-
tual weak accuracy property of �S. No such condition that ensure termina-
tion exists for Paxos.

Note that after the publication of Paxos, the failure detector Ω – which even-
tually outputs at each process the identity of the same correct process [5] – has
been mentioned as ensuring the termination of Paxos. However, this makes sense
only if we consider Paxos with reliable channels.

4.4 Implementing Atomic Broadcast and Generic Broadcast

A large number of atomic broadcast algorithms have been proposed in the last
20 years. These algorithms can be classified according to several criteria. One of
those criteria is the mechanisms used for message ordering [8]: fixed sequencer,
moving sequencer, privilege-based, communication history, destinations agree-
ment. For example in a fixed sequencer algorithm, one process is elected as the
sequencer and is responsible for ordering messages. Obviously this solution is
not tolerant to the crash of the sequencer. The solution must be completed by
a mechanism for electing a new sequencer in case the current sequencer crashes.
This is usually done using a group membership service (see Section 3.4) to re-
move the current sequencer from the group. Once this is done, a new sequencer
can be elected. Thus the solution implements atomic broadcast in the context
of dynamic groups (see Section 3.1). The same comment applies to most of the
implementations of atomic broadcast described in the literature. These imple-
mentations require order to provide order : the group membership service orders
views, and this order is used to implement the ordering required by atomic
broadcast.

Atomic broadcast can also be solved in the context of static groups. The
solutions rely on consensus (which explains the fundamental role of the consensus
problem in the context of fault tolerance computing). The consensus problem
allows processes to agree on a value. This value can be of any type. Atomic
broadcast can be implemented by solving a sequence of consensus problems,
where each instance of consensus agrees on a set of messages. The idea is the
following [6]. Consider a static group g and abcast(g, m). Each process p in g
has a variable kp used to number the various instances of consensus. Whenever
p has received messages that need to be ordered, p starts a new instance of
consensus, uniquely identified by kp, with the set of messages to be ordered as
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its initial value. By the properties of consensus, all processes agree on the same
set of messages for consensus #kp, say msg(kp). Then the messages in the set
msg(kp) are adelivered in some deterministic order (e.g., according to their IDs),
and before the messages in the set msg(kp + 1). This solution for static groups
can be extended to dynamic groups [26].

The implementation of generic broadcast is more difficult to sketch. The basic
idea of the implementation is to control whether conflicting messages have been
gbcast. As long as only non conflicting messages are gbcast, these messages can
be gdelivered without invoking consensus, i.e., without the cost of consensus.
However, as soon as conflicting messages are detected, the gdelivery of messages
require to execute an instance of the consensus problem. More details can be
found in [25], [2].

4.5 Solving the Atomic Commitment Problem

In Section 1 we have mentioned the atomic commitment problem as the main
problem related to the implementation of distributed transactions. The problem
has similarities with the consensus problem, but also has significant differences.

In the atomic commitment problem, each process involved in the transaction
votes at the end of the transaction. The vote can be yes or no. A yes vote
indicates that the process is ready to commit the transaction; a no vote indicates
that the process cannot commit the transaction. As in the consensus problem,
all processes must decide on the same outcome: commit or abort. The conditions
under which commit and abort can be decided make the difference between
consensus and atomic commitment. If one single process votes no, the decision
must be abort ; if no failure occurs and all processes vote yes, then the decision
must be commit ; if there are failures, the decision can be abort. So “failures” can
influence the decision of atomic commitment, which is not the case for consensus.

Another important difference is that, for practical reasons, the atomic com-
mitment problem needs to be solved in the crash-recovery model (in the context
of transactions, processes have access to stable storage). A third difference is
related the notion of blocking vs. non-blocking solution, a difference that has
not been made for consensus (the distinction between a blocking and a non-
blocking solution exists only in the crash-recovery model). In the crash-recovery
model, a protocol is blocking if a single crash during the execution of the protocol
prevents the termination of the protocol until the crashed process recovers. In
contrast, a non-blocking protocol can terminate despite one single process crash
(or even despite more than one crash).

The most popular atomic commitment protocol is the blocking 2PC (2 Phase
Commit) protocol [3]. The first non-blocking atomic commitment protocol was
proposed by Skeen [29]. At that time the consensus problem was not yet identified
as the key problem in distributed fault tolerant computing. This explains that
the protocol proposed in [29] does not solve atomic commitment by reduction to
consensus. Today such a reduction is considered to be the best way to solve the
non-blocking atomic commitment problem (see for example [14], for a solution
in the crash-stop model).
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5 Conclusion

More than twenty years of research have contributed to a very good understand-
ing of many issues related to fault tolerance, replication and group communi-
cation. However, the understanding of theoretical issues is not the same in all
models. For example, while static group communication in the crash-stop model
has reached maturity, the same level of maturity has not yet been reached for
dynamic group communication or for group communication in the crash-recovery
model. More work needs also to be done to quantitatively compare different al-
gorithms in the context of replication. Typically, while a lot of atomic broadcast
algorithms have been published, little has been done to compare these algorithms
from a quantitative point of view. Specifically, more work needs to be done to
compare these algorithms under different fault-loads, as done for example in [30].
Addressing real-time constraints, e.g., [17], needs also to get more attention.
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Abstract. Data reduction by polynomial-time preprocessing is a core
concept of (parameterized) complexity analysis in solving NP-hard prob-
lems. Its practical usefulness is confirmed by experimental work. Here,
generalizing and extending previous work, we present a set of data reduc-
tion preprocessing rules on the way to compute optimal dominating sets
in graphs. In this way, we arrive at the novel notion of “data reduction
schemes.” In addition, we obtain data reduction results for domination
in directed graphs that allow to prove a linear-size problem kernel for
Directed Dominating Set in planar graphs.

1 Introduction

Data reduction and kernelization rules are one of the primary outcomes of re-
search on parameterized complexity: Attacking computationally hard problems,
it always makes sense to simplify and reduce the input instance by efficient pre-
processing. In this work, considering the graph problem Dominating Set, we
introduce and study the notion of a data reduction schemes.

Our work is based on two lines of research both concerned with solving NP-
hard problems. On the one hand, there is the concept of polynomial-time ap-
proximation algorithms and, in particular, the concept of polynomial-time ap-
proximation schemes (PTAS) where one gets a better approximation guarantee
at the cost of higher running times (see [4] for details). On the other hand, there
is the paradigm of local search (see [1] for details). In this paper, we combine
ideas from both research areas. More specifically, based on Dominating Set,
generalizing and extending previous work [3], we develop a whole scheme of data

� Supported by the Deutsche Forschungsgemeinschaft (DFG), project PEAL (param-
eterized complexity and exact algorithms), NI 369/1, and Emmy Noether research
group PIAF (fixed-parameter algorithms), NI 369/4.

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 137–147, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



138 J. Alber, B. Dorn, and R. Niedermeier

reduction rules. The central goal is to gain a stronger data reduction at the cost
of increased preprocessing time (thus relating to the PTAS paradigm) through
an approach that searches through “increasing neighborhoods” of graph vertices
(thus relating to local search).

The Dominating Set problem is: given a graph G = (V, E) and a positive
integer k, find a dominating set of size at most k, i.e., a set V ′ ⊆ V , |V ′| ≤ k,
and every vertex in V \V ′ is adjacent to at least one vertex in V ′. When dealing
with the corresponding optimization problem, we will use ds(G) to denote the
size of an optimal dominating set in G.

The idea of data reduction is to efficiently “cut away easy parts” of the given
problem instance and to produce a new and size-reduced instance where then
exhaustive search methods etc. can be applied. In [3] it is shown that, for planar
graphs, with two easy to implement polynomial-time data reduction rules one
can transform an instance (G, k) of Dominating Set into a new instance (G′, k′)
with k′ ≤ k and the number of vertices of G′ bounded by O(k) such that (G, k)
is a yes-instance iff (G′, k′) is a yes-instance. Thus, by means of these rules in
polynomial time one can usually find several vertices that are part of an optimal
dominating set, whilst reducing the size of the input graph considerably.

In this work, we provide a whole scheme of data reduction for minimum dom-
ination in graphs. We develop a general framework of data reduction rules from
which the two data reduction rules given in [3] can be obtained as easy spe-
cial cases. In fact, the more complex one of these two rules is even improved.
Moreover, we demonstrate that this extension makes it possible to handle graphs
that are not amenable to the previous rules. Exploring the joint neighborhood
of � vertices for fixed � ≥ 1, our data reduction rules run in nO(�) worst-case-
time1. Besides introducing and analyzing the concept of a general data reduction
scheme for domination in undirected graphs, we additionally demonstrate how
to transfer data reduction for undirected graphs to directed graphs. Despite its
practical significance (e.g., in biological and social network analysis [2]), domina-
tion in directed graphs so far has been neglected in parameterized algorithmics.
First, we show a direct translation of undirected into directed reduction rules.
Second, we present new reduction rules that make it possible to prove a linear-
size problem kernel for Dominating Set on directed planar graphs.

Due to the lack of space, some details and proofs had to be omitted. Significant
parts of this work are based on [6].

2 Preliminaries and Previous Work

A data reduction rule for, e.g., Dominating Set replaces, in polynomial time,
a given instance (G, k) by a “simpler” instance (G′, k′) such that (G, k) is a yes-
instance iff (G′, k′) is a yes-instance. A parameterized problem (the parameter
is k) is said to have a problem kernel if, after the application of the reduction
rules, the resulting reduced instance has size g(k) for a function g depending only
1 Based on our experiences [2] with implementing the two reduction rules from [3], we

would expect to get faster running times in practice.
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on k. For instance, Dominating Set restricted to planar graphs has a problem
kernel consisting of at most 335 · k vertices [3], recently improved to the upper
bound 67 · k [5]. Extensions to graphs of bounded genus appear in [7].

All our data reduction rules have in common that they explore local structures
of a given graph. Depending on these structures the application of a reduction
rule may have the following two effects:

1. Determine vertices that can be chosen for an optimal dominating set.
2. Reduce/shrink the graph by removing edges and vertices.

We revisit two polynomial-time reduction rules which were introduced in [3].
Neighborhood of a single vertex. Consider a vertex v ∈ V of a given graph G =
(V, E). Partition the vertices of the open neighborhood N(v) := { u ∈ V | {u, v} ∈
E } of v into three different sets:

• the exit vertices Nexit(v), through which we can “leave” the closed neighbor-
hood N [v] := N(v) ∪ {v},

• the guard vertices Nguard(v), which are neighbors of exit vertices, and
• the prisoner vertices Nprison(v), which have no neighboring exit vertex:

Nexit(v) := { u ∈ N(v) | N(u) \N [v] �= ∅ },
Nguard(v) := { u ∈ N(v) \Nexit(v) | N(u) ∩Nexit(v) �= ∅ },
Nprison(v) := N(v) \ (Nexit(v) ∪Nguard(v)).

A vertex in Nprison(v) can only be dominated by vertices from {v}∪Nguard(v)∪
Nprison(v). Since v will dominate at least as many vertices as any other vertex
from Nguard(v) ∪Nprison(v), it is safe to place v into an optimal dominating set
we seek for, which we simulate by adding a suitable gadget to G.

Old-1-Rule. Consider a vertex v of the graph. If Nprison(v) �= ∅ then choose v
to belong to the dominating set: add a “gadget vertex” v′ and an edge {v, v′}
to G and remove Nguard(v) and Nprison(v) from G.2

Neighborhood of a pair of vertices. Similar to Old-1-Rule, explore the union of
the joint neighborhood N(v1, v2) := (N(v1) ∪ N(v2)) \ {v1, v2} of two vertices
v1, v2 ∈ V . Setting N [v1, v2] := N [v1] ∪N [v2], define

Nexit(v1, v2) := { u ∈ N(v1, v2) | N(u) \N [v1, v2] �= ∅ },
Nguard(v1, v2) := { u ∈ (N(v1, v2) \Nexit(v1, v2)) | N(u) ∩Nexit(v1, v2) �= ∅ },
Nprison(v1, v2) := N(v1, v2) \ (Nexit(v1, v2) ∪Nguard(v1, v2)).

Here, we try to detect an optimal domination of the vertices Nprison(v1, v2) in
our local structure N(v1, v2). A vertex in Nprison(v1, v2) can only be dominated
by vertices from {v1, v2} ∪ Nguard(v1, v2) ∪ Nprison(v1, v2). The following rule
determines cases in which it is “safe” to choose one of the vertices v1 or v2 (or
both) to belong to an optimal dominating set we seek for.
2 Of course, in practical implementations (as in [2]) one would directly put v into the

dominating set. Similar observations hold for the other data reduction rules.
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Old-2-Rule. Consider a pair of vertices v1 �= v2 ∈ V with |Nprison(v1, v2)| > 1
and suppose that Nprison(v1, v2) cannot be dominated by a single vertex from
Nguard(v1, v2) ∪Nprison(v1, v2).

Case 1. If Nprison(v1, v2) can be dominated by a single vertex from {v1, v2}:
(1.1) If Nprison(v1, v2) ⊆ N(v1) as well as Nprison(v1, v2) ⊆ N(v2), then

• as a gadget add two new vertices w1, w2 and edges {v1, w1}, {v2, w1},
{v1, w2}, {v2, w2} to G and
• remove Nprison(v1, v2) and Nguard(v1, v2) ∩N(v1) ∩N(v2) from G.

(1.2) If Nprison(v1, v2) ⊆ N(v1), but not Nprison(v1, v2) ⊆ N(v2), then
• add a gadget vertex v′1 and an edge {v1, v

′
1} to G and

• remove Nprison(v1, v2) and Nguard(v1, v2) ∩N(v1) from G.
(1.3) If Nprison(v1, v2) ⊆ N(v2), but not Nprison(v1, v2) ⊆ N(v1), then

choose v2: proceed as in (1.2) with roles of v1 and v2 interchanged.
Case 2. If Nprison(v1, v2) cannot be dominated by a single vertex from {v1, v2},

• add two gadget vertices v′1, v′2 and edges {v1, v
′
1}, {v2, v

′
2} to G and

• remove Nprison(v1, v2) and Nguard(v1, v2) from G.

The practical usefulness of these two rules on real-world graphs (e.g., Internet
graphs) has been demonstrated in [2].

3 A Data Reduction Scheme for Domination

In this section we establish the “mother rule” from which Old-1-Rule and Old-
2-Rule can be derived as easy special cases. The idea is to explore the joint
neighborhood of � distinct vertices for a given constant �. To cope with this
more complex setting we will introduce a new gadget which generalizes the easy
gadget vertices as they were used in the above two basic reduction rules.

A General Gadget. Our general reduction rule will – on the fly – generate a
boolean “constraint formula” for an optimal dominating set D of the given graph:
We identify the vertices V of a graph G = (V, E) with 0/1-variables, where the
meaning of a 1(0)-assignment is that the corresponding vertex will (not) belong
to D. A boolean formula over the variables V then can be thought of as a
constraint on the choice of vertices for an optimal dominating set.

Definition 1. Let W ⊆ 2V be a collection of subsets of V . The constraint as-
sociated with W is a boolean formula FW in disjunctive normal form:

FW :=
∨

W∈W

∧
w∈W

w.

A set D ⊆ V fulfills constraint FW if the assignment where each vertex in D is
set to 1 and each vertex in V \D is set to 0 satisfies FW .
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A constraint that was generated by a reduction rule will be encoded by a cor-
responding gadget in our graph which “implements” the formula as a subgraph.
To keep the gadget as small as possible, it is desirable that the constraint itself
is as compact as possible. We use the following notion of “compactification.”
A set system W ⊆ 2V is said to be compact if no two elements in W are subsets
of each other, i.e., if for all W, W ′ ∈ W we have: W ⊆W ′ ⇒ W = W ′.

Lemma 1. Let W ⊆ 2V . There exists a minimal compact subset Ŵ ⊆ W such
that FW is logically equivalent to FW and Ŵ can be found in polynomial time.

In the remainder, we call Ŵ the compactification of W .
The above mentioned gadgets will be of the following form.

Definition 2. Let G = (V, E) and let FW be a constraint associated with some
set system W = {W1, . . . , Ws} ⊆ 2V of � := |

⋃s
i=1 Wi| vertices. An FW -gadget

is a set of p :=
∏s

i=1 |Wi| new selector vertices

S := {u(x1,...,xs) | xi ∈ {1, . . . , |Wi|}}

and if p < � another (� − p) blocker vertices B which are connected to G by
the following additional edges: For each 1 ≤ i ≤ s with Wi = {wi1, . . . , wi|Wi|}
and each 1 ≤ j ≤ |Wi|, we add edges between wij and all selector vertices in
{u(x1,...,xs) ∈ S | xi = j} and between wij and all blocker vertices in B. We
denote the resulting graph by G⊕ FW .

The idea is, firstly, that a set of vertices V ′ ⊆ V fulfills the constraint FW iff
V ′ dominates all selector vertices in the FW -gadget. And, secondly, the blocker
vertices are used to enforce that we can always find an optimal dominating
set of G ⊕ FW without using any selector or blocker vertex at all. Encoding
a constraint FW by an FW -gadget, indeed, has the desired effect:

Proposition 1. Let G = (V, E) and let FW be a constraint associated with
some set system W ⊆ 2V . Then the size of an optimal dominating set of G
which fulfills FW is equal to the size of an optimal dominating set of G ⊕ FW .
Moreover, there exists an optimal dominating set of G⊕FW which contains only
vertices in V , i.e., it contains no selector or blocker vertex.

A Reduction Rule for the Joint Neighborhood of � Vertices. In analogy to Old-
1-Rule and Old-2-Rule, we explore the union of the neighborhoods of � vertices.
As a convention, we let, for V ′ ⊆ V , N(V ′) := (

⋃
v∈V ′ N(v)) \ V ′ and N [V ′] :=⋃

v∈V ′ N [v]. Consider a fixed set of � vertices V� := {v1, . . . , v�} ⊆ V and set

Nexit(V�) := { u ∈ N(V�) | N(u) \N [V�] �= ∅ },
Nguard(V�) := { u ∈ N(V�) \Nexit(V�) | N(u) ∩Nexit(V�) �= ∅ },
Nprison(V�) := N(V�) \ (Nexit(V�) ∪Nguard(V�)).

The left-hand side of Figure 1 shows an example for these three sets for � = 3.
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Fig. 1. Example for 3-Rule. The left-hand side shows the partitioning of N(V3) for
V3 := {v1, v2, v3} into the sets Nexit(V3), Nguard(V3), and Nprison(V3). The com-
pactification of W (all subsets of vertices in V3 that dominate Nprison(V�)) is W =
{{v1}, {v2, v3}}. The compactification of all alternative dominations of Nprison(V�) is
Waltern = {{v1}, {v2, v3}, {v2, c}, {v2, d}, {v3, a}, {v3, b}, {a, d}, {b, d}}. Since, for each
element in Waltern, we find a better element in W, 3-Rule applies. The compactified
formula generated by 3-Rule is FW = v1 ∨ (v2 ∧ v3). The right-hand side shows N(V3)
after the application of 3-Rule. The FW -gadget is constructed according to Definition 2
using two selector vertices of degree 2 and one blocker vertex of degree 3.

Definition 3. For two sets ∅ �= W, W ′ ⊆ V , we say that W is better than W ′

if |W | ≤ |W ′| and N [W ] ⊇ N [W ′]. If W is better than W ′, we write W ≤ W ′.
If W ′ = ∅ and W �= ∅, then always W ≤W ′.

Checking whether W ≤ W ′ can be done in O((|W | + |W ′|) · n) time if we use
the adjacency matrix of the given graph.

Using this notation, for each � ≥ 1, we obtain the following generalization of
the first two reduction rules, yielding a whole scheme of reduction rules. The idea
of the reduction scheme below is to deduce a constraint based on the question
which vertices from a given set V� dominate Nprison(V�).

�-Rule. Consider � pairwise distinct vertices V� := {v1, . . . , v�} ⊆ V and sup-
pose Nprison(V�) �= ∅.

• Compute the set

W :=
{

W ⊆ V� | Nprison(V�) ⊆ N [W ]
}

of all vertex subsets of V� that dominate all prisoner vertices Nprison(V�), and
the set of all alternatives to dominate Nprison(V�) with less than � vertices:

Waltern :=
{

W ⊆ N [Nprison(V�)] | Nprison(V�) ⊆ N [W ] and |W | < �
}
.

• Compute the compactifications Ŵ of W and Ŵaltern of Waltern.

• If ( ∀W ∈ Ŵaltern ∃W ′ ∈ Ŵ : W ′ ≤W ), then
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- remove R :=
{
v ∈ Nguard(V�)∪Nprison(V�) | N [v] ⊆

⋂
W∈W N [W ]

}
, and

- put an FW -gadget to G for the constraint associated with Ŵ.

An example for � = 3 is given in Figure 1. If V� forms a size-� dominating set,
then �-Rule actually solves the domination problem. Moreover, �-Rule provides
a mathematically more elegant formalism than for instance Old-2-Rule does. In
addition, it generalizes Old-2-Rule:

Theorem 1. For each �, �-Rule is correct, i.e., for every graph G, we have
ds(G) = ds(G′), where G′ denotes the graph obtained from G by applying the
rule to � distinct vertices. Moreover, 1-Rule is identical to Old-1-Rule and 2-Rule
applies to even more cases than Old-2-Rule.

Proof (Sketch). Observe that �-Rule only applies if for all W ∈ Ŵaltern we find
a W ′ ∈ Ŵ such that W ′ ≤W (∗). Let G′′ := G⊕FW . We first of all argue that
ds(G′′) = ds(G). It is clear that ds(G′′) ≥ ds(G). Conversely, suppose that D is
an optimal dominating set for G. We distinguish two cases. First, suppose that
Nprison(V�) needs less than � vertices to be dominated. Then, by definition of
Waltern, D has to fulfill FWaltern . Hence, by the definition of compactification, we
know that D also fulfills FWaltern

. In other words, this means that there has to

be a W ∈ Ŵaltern with W ⊆ D. But then, by assumption (∗), we have a W ′ ∈ Ŵ
with W ′ ≤W . Since W ′ is better than W , this implies that D′ := (D \W )∪W ′

is a dominating set for G which fulfills FW and, hence, it is a dominating set
for G′′ (by Proposition 1) with |D′| ≤ |D|. Second, suppose that Nprison(V�)
needs exactly � vertices D′ ⊆ D to be dominated. Then, it is clear that D′′ :=
(D \D′) ∪ V� also forms a dominating set for G. But then, by construction, D′′

dominates all FW -gadget vertices, and, thus, D′′ is a dominating set for G′′ with
|D′′| = |D|.

It remains to show ds(G′′) = ds(G′). Observe that G′ = G′′ \ R = (G ⊕
FW) \ R = (G \ R) ⊕ FW with R as defined in �-Rule. First of all, we show
that ds(G′′) ≤ ds(G′). To see this, let D be an optimal dominating set for G′.
Then, by Proposition 1, there exists a dominating set D′ ⊆ V (G) of equal
size for G \ R which fulfills FW . This means that there exists a W ∈ Ŵ with
W ⊆ D′. By definition of R, this implies that R ⊆ N [R] ⊆ N [

⋂
X∈W X ] ⊆

N [W ] ⊆ NG′=G′′\R[D′] ⊆ NG′′ [D′], which shows that D′ is a dominating set
for G′′ = G⊕ FW with |D′| = |D|. Similarly, one shows that ds(G′) ≤ ds(G′′).

It is not hard to see that 1-Rule is identical to Old-1-Rule and that 2-Rule
applies whenever Old-2-Rule applies. In addition, there are examples where Old-
2-Rule does not apply and where 2-Rule does apply. For instance, we can con-
struct a graph where a single vertex v from Nprison(V2) dominates Nprison(V2).
(i.e., Old-2-Rule does not apply) and 2-Rule still applies, since, e.g., {v} ≤ {w}
where w ∈ V2. ��

The following proposition gives a simple worst-case estimate on the time needed
to apply �-Rule, and, together with the subsequent Theorem 2, shows that we
have a relationship between “quality” of data reduction and running time as
mentioned in the introductory section.
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Proposition 2. Let G = (V, E). Applying �-Rule for all size-� vertex sets V� :=
{v1, . . . , v�} ⊆ V takes O(n2�) time for � > 1 and O(n3) time for � = 1.

A graph G = (V, E) is said to be reduced with respect to �-Rule if there is no
set of distinct vertices v1, . . . , v� for which �-Rule can be applied. In a sense, the
data reduction scheme given by �-Rule builds a “strict hierarchy” of rules:

Theorem 2. Let H� := {1-Rule, . . . , �-Rule}, � ≥ 1. Then, for each � > 1, H�

is strictly more powerful than H�−1.

Proof (Sketch). For each level � > 1 of this hierarchy, we can construct a graph
which is reduced with respect to all rules in H�−1 but which is still reducible
with respect to �-Rule. For example, let G� = P2 × P2�−1 be the complete grid
graph of width 2 and length 2�− 1. Then, it can be verified by induction on �
that G� has the above mentioned property. ��

4 Directed Dominating Set

In several applications we have to deal with directed graphs
−→
G = (V, A). Here,

a vertex v ∈ V is dominated iff it is in the dominating set or if there is an
arc (u, v) ∈ A (i.e., v is an outgoing neighbor of u) and u is in the domi-
nating set.

Transforming Directed Graphs into Undirected Graphs. Let
−→
G = (V, A) be a di-

rected graph. Construct an undirected graph G′ = (V ′, E), where V ′ := {u′, u′′ |
u ∈ V }, and E :=

{
{u′, u′′} | u ∈ V

}
∪

{
{u′′, v′}, {u′′, v′′} | (u, v) ∈ A

}
.

Proposition 3. Using the notation above, ds(
−→
G) = ds(G′).

Clearly, in order to find an optimal dominating set for a directed graph
−→
G , we can

use the above transformation and then apply our undirected reduction rules (see
Section 3) to the transformed instance G′. The drawback of this process is that
the transformed graph G′ contains twice as many vertices as

−→
G . Moreover, the

transformation in general does not preserve planarity. Hence, we subsequently
modify the data reduction scheme for the undirected case to obtain a “directed
data reduction scheme” for domination.

A Reduction Scheme for Directed Dominating Set. Let
−→
G = (V, A) be a di-

rected graph. Define N(v) := {w ∈ V | (v, w) ∈ A}. For an �-vertex set V� :=
{v1, . . . , v�}, explore N(V�) :=

⋃
v∈V�

N(v) \ V�.
Suppose we defined the partitioning Nexit(V�), Nguard(V�), and Nprison(V�)

and the reduction scheme in complete analogy to the undirected case, then we
would run into the following problem: The vertices in Nprison(V�) (if this set is
non-empty) may also be dominated by vertices outside N [V�].3 This difficulty
3 For example, there might be a single vertex v (with in-degree 0) which dominates

N(V�), but which is not contained in N(V�). Then, clearly, it would be optimal
to choose v. Deducing a constraint—based on the question which vertices from V�

dominate Nprison(V�) as done in the undirected case—would lead to a wrong result.
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is circumvented by slightly modifying the definition of the sets Nguard(V�) and
Nprison(V�). More precisely, we additionally define the set

Nenter(V�) := { u ∈ (N(V�) \Nexit(V�)) | ∃w ∈ (V \N [V�]) : (w, u) ∈ A}.

Herein, we used

Nexit(V�) := { u ∈ N(V�) | ∃w ∈ (V \N [V�]) : (u, w) ∈ A}.

The modified versions of Nguard(V�) and Nprison(V�) are defined as follows:

Nguard(V�) := { u ∈ (N(V�) \ (Nexit(V�) ∪Nenter(V�))) | (N(u) ∩Nexit(V�)) �= ∅ },
Nprison(V�) := N(V�) \ (Nexit(V�) ∪Nenter(V�) ∪Nguard(V�)).

In this way, we can build a data reduction scheme for Directed Dominating
Set as a slight modification of �-Rule in the undirected case.

Directed �-Rule. Consider � pairwise distinct vertices V� := {v1, . . . , v�} ⊆ V
and suppose Nprison(V�) �= ∅. Compute the sets

W :=
{

W ⊆ V� | Nprison(V�) ⊆ N [W ]
}
,

Waltern :=
{

W ⊆ N [Nprison(V�)] | Nprison(V�) ⊆ N [W ] and |W | < �
}
,

and the compactifications Ŵ of W and Ŵaltern of Waltern.

If ( ∀W ∈ Ŵaltern∃W ′ ∈ Ŵ : W ′ ≤W ), then remove

• R :=
{
v ∈ Nenter(V�)∪Nguard(V�)∪Nprison(V�) | N [v] ⊆

⋂
W∈W N [W ]

}
and

• put an FW -gadget4

Directed Dominating Set on Planar Graphs. Here, we provide a linear-size prob-
lem kernel for domination on directed planar graphs. To show this, we cannot
make use of the transformation from directed to undirected graphs as described
at the beginning of the section because the construction there does not preserve
planarity. Hence, we use the Directed �-Rules (� = 1 and � = 2 suffice and
preserve planarity), yielding:

Theorem 3. Directed Dominating Set on planar graphs has a linear-size
problem kernel which can be found in O(n4) time. This implies that Directed
Dominating Set on planar graphs is fixed-parameter tractable.

We again omit the proof and just remark on the pitfalls behind: An ad-hoc idea
to prove this result might be to take a reduced directed graph and to replace
each arc by an undirected edge. If the directed graph was reduced, then one
might hope that the corresponding undirected one is, too. But this is gener-
ally wrong. Moreover, even if the corresponding undirected graph was reduced,
4 In contrast to the gadget with undirected edges as introduced in Definition 2, the

newly introduced arcs now point from vertices in W ∈ W to selector vertices.
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then still it is a problem that, as a rule, the undirected graph would have a
usually smaller dominating set than the original directed one; however, there
is no general relationship between these two set sizes. Hence one has to turn
back to a direct analysis of the Directed �-Rules. Fortunately, much of the proof
work can be carried out by similar constructions as in the undirected case dealt
with in [3].

5 Outlook

We showed (Theorem 2) that the presented reduction rules form a strict hierar-
chy when considering larger and larger joint neighborhoods. It would be of hight
interest to strengthen this result in the sense that one can mathematically relate
the degree of increased reduction (e.g., by proving smaller problem kernel sizes)
and the running time to be spent. Note that this would parallel relations that
hold in the case of approximation schemes, and it would tie the notions of data
reduction scheme and PTAS closer.

Presenting our reduction rules, for theoretical reasons we expressed boolean
constraints as graph gadgets. From a practical point of view, in implementations
it might make more sense not to use the graph gadgets (as has also been done
when (successfully) experimentally testing the two reduction rules from [3] in [2])
but to use the boolean constraint formulas in a direct combination with the
reduced graph instance. So far, this issue is completely unexplored.

From a parameterized complexity point of view, it would be interesting to
gain further “tractability results” for W[1]-hard problems with respect to data
reduction. More specifically, consider Dominating Set: Since Dominating Set
is W[2]-complete, unless an unlikely collapse in parameterized complexity theory
occurs, our data reduction scheme cannot serve for showing that using 1-Rule,
2-Rule, . . ., c-Rule, for some constant c, generates a problem kernel in general
graphs. A more realistic and nevertheless interesting kind of investigation would
be to see what happens when c becomes dependent on the dominating set size k,
e.g., c = k/4 or c =

√
k. If then the generated problem kernel consisted of

g(k) vertices, this would imply an algorithm with O(2g(k) + n2c) running time
for Dominating Set, which might be considered as a significant (theoretical)
improvement over the trivial exact algorithm running in O(nk+2) time.
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Abstract. In this paper, we are dealing with the topic of view maintenance 
which consists of maintaining materialized views in response to data 
modifications on the data sources. We propose an incremental method to 
maintain XML views. This is achieved by defining first how to store XML 
views, which may be obtained over different data sources, in a relational 
DBMS. The identifiers used to store the view definition (in particular mapping 
patterns, unions and joins) allow the definition of the incremental method in the 
sense that the materialization of the view does not require re-computing all 
stored data to maintain XML views. 

1   Introduction 

To provide data access in large scale and/or dynamic environments with autonomous 
data sources, pertinent data are often collected and stored in a redundant way using 
a data warehouse. At abstract level, a data warehouse can be defined as set of 
materialized views. An important feature in a data warehouse is taking changes 
arising on the data sources into account. In this paper, we are dealing with the topic of 
view maintenance which consists of maintaining the materialized views in response to 
data modifications on the data sources. More precisely, we are interested in 
maintaining XML views that are stored in relational DBMS. 

The main contribution of this paper is how to specify source patterns, and how to 
maintain materialized views of such source patterns. This is achieved by defining first 
how to store XML views (which may be obtained over different data sources) in 
a relational DBMS. We have designed a method using a relational DBMS for storing 
XML views. The originality of this method lies in the use of multi view graph, which 
allows representing common sub expressions between different views in order to 
reduce the cost of the view maintenance. This means that each view is not 
materialized as a whole part but as a set of fragments. Work that we present in this 
article was implemented like a functionality of the prototype DAWAX [2]. 

This paper is organized as follows. In Section 2, we present our view model for 
integrating XML data. The related view specification language is described in 
Section 3. Our storage method is presented in Section 4. The algorithms of view 
maintenance are presented in Section 5. Section 6 presents an overview of related 
work and Section 7 contains the conclusion and future work. 
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2   The View Model VIMIX 

We have designed the VIMIX (VIew Model for Integration of XML sources) to 
integrate XML data sources. Due to the lack of space, we will not present the whole 
view model [2]. XML data are represented by a graph having three types of nodes 
(element, attribute and text). Moreover, operations were defined to handle the nodes 
of the graph (navigation and treatment of strings). The integration process consists in: 
(i) specifying the data to be extracted from the sources by defining patterns on them 
(source-pattern), (ii) reorganizing the views data by using relational like 
operations: union and join and (iii) specifying the result form of the XML views. 

Our view specification language is based on pattern-matching: the data of the 
sources are related to variables which are declared in a pattern describing the source. 
The definition of the variables is done using a mechanism of research axes like in 
XPath for location steps in an XML document.  

<<source-pattern name="sp_authors_biblio" source="biblio"> 
<search-axis function="children"> 

<source-node reg-expression="author" type="element"> 
<search-axis function="children"> 

<source-node reg-expression="firstname" 
type="element" 
bindto="fname"> 

</source-node> 
<source-node reg-expression="lastname" 

type="element" 
bindto="lname"> 

</source-node> 
</search-axis> 

</source-node> 
</search-axis> 
</source-pattern> 

Fig. 1. VIMIX Source Pattern 

Figure 1 gives an example of a VIMIX source pattern, which retrieves first and 
lastname of authors. This pattern is named sp_authors_biblio and is defined 
over the data source biblio. The first element search-axis is the principal 
research axis of the pattern, meaning that one applies the function children 
starting from the root of the document. This function returns a set of nodes, which 
will be filtered starting from the contents of this axis: the element source-node 
specifies that the nodes must match the regular expression author and be of type 
element. The specification of this source node is supplemented by a research axis 
specifying that the nodes must have two subelements firstname and lastname. 
These subelements are bound to variables (attribute bindto). 

In our approach, the data extracted by patterns are stored in relational tables. 
Therefore, this allows makes it possible to restructuring the data by using relational 
algebra. We namely adapted two operations of them which are relevant for data 
integration: union and join. The operation of union that we defined takes as input 
several operands, which result from patterns, either union or join. The result is stored 
in a relational table whose attributes are computed as the union of the attributes of the 
operand tables. This table values is built as the union of the tuples of the sources and 
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by assigning NULL value to the attributes which do not exist at a source. Unlike the 
relational union ours may be applied when the sources have different schemas. 
Moreover, our operation of union allows to filter the data and to solve conflicts of 
identity by eliminating the duplicates coming from different sources. To solve the 
conflicts we use a mechanism specifying a priority source.  

The join operation allows to "cross" information coming from two sources, 
patterns, union or other join. Its result is stored in a relational table, whose columns 
are computed as the union of the attributes of the sources. The join predicate is 
evaluated by applying a function which returns the textual representation of the 
nodes. 

3   Specification of the Views 

A VIMIX view is defined as a tuple including the following properties: (i) its name, 
(ii) a source pattern, union or join which contains the data to populate the view 
(iii) a pattern which describes the result structure using a tree. This tree has three 
types of nodes: element, attribute and expression. The expression nodes allow to 
populate the view result. We have defined conversion functions of types to facilitate 
this task. Finally, aggregation functions and group by expressions may be also used 
in the view result specification. 

Figure 2 describes the view computing for each author: its name, the number of 
books which he wrote, the average price and titles of these books. 

The name view is v_books is defined over the data source j_books_lirmm. 
The tree specifying the result of the view is the element source-node and is 
structured as follows: each element author will have three attributes: name, 
number of books and their average price. The titles of the books of an author are 
sub-elements. 

<view name="v_books" 
source="j_ books " 
order-by="author" 
group-by="author"> 

<result-node type="element" value="author"> 
<result-node type="attribute" value="name"> 
<result-node type="expression" value="text(author)" /> 

</result-node> 
<result-node type="attribute" value="nb- books"> 
<result-node type="expression" value="count()" /> 

</result-node> 
<result-node type="attribute" value="Avrage-price"> 
<result-node type="expression" value="avg(float(price))" /> 

</result-node> 
<result-node type="element" value="book"> 
<result-node type="expression" value="text(title)" /> 
</result-node> 

</result-node> 
</view> 

Fig. 2. Integrated view of the books for each author  
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4   Storage of VIMIX Views 

Our storage architecture avoids redundancy of XML data in the warehouse since we 
separate the data storage of that of the metadata (i.e. the mappings). 

4.1   Generic Schema of XML Data Storage 

The generic schema which we utilize to store the XML data is described in Figure 3. 
The generic schema is designed to store nodes coming from the sources, without 
storing all the data of these sources. For each source (or document) one needs simply 
to know his identifier and his URL, without being concerned with root of the 
document which is not necessarily stored in the data warehouse. The table Document 
contains the urls of the data sources. 

The tables Element and Attribute are dictionaries of the elements and 
attributes. They contain a code identifying the element or the attribute like its name. 
The dictionaries accelerate the queries involving an element name or attribute. 

The table XmlNode stores the data nodes. Each node has an identifier: nodeID. 
Our data model considers three types of nodes: Element, Attribute and Text which 
respectively represents elements, attributes and text in a XML document. The 
columns elemID and attID provide the type of a node of the table. If elemID is 
not NULL, the node is of type element and elemID indicates its name. If attID is 
not NULL, the node is of type attribute and attID indicates its name. The value of 
the attribute is stored in the column value. Lastly, if elemID and attID have both 
NULL value, the node is of type text and value contains the string. 

The table Children contains the composition links between the nodes of the 
stored documents and has as attributes: 

− parentID contains the identifier of the parent node, 
− childID contains the identifier of the child node, 
− rank contains the row of the son. 

LinksParentId,
childId, rank 

Descendants

LinksParentID,
childID, rank 

Children 

XML Nodes nodeID, elemID,
attID, value, docID

XmlNode

Dict. of attributes attID, name Attribute

Dict. of elements elemID, name Element

Dict. of sourcesdocID, url Document

RoleTable Column

 

Fig. 3. The generic schema for storing the XML data 
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The table Descendants contains the descendance links between the nodes. These 
links can be computed from the children table, using the fact that descendants are 
children and children of children and so on. However, SQL doesn’t offer a way to 
compute children at any level; it’s why we prefer storing them in the Descendants 
table, which is made up of the following columns: 

− parentID contains the identifier of the parent node, 
− childID contains the identifier of the children node, 
− rank initially contains the rank of the children by considering an in-depth 

traversal. The identifiers parentID and childID are foreign keys of the column 
nodeID in the table XmlNode. 

The tables Element and Attribute contain the metadata of the elements and the 
attributes. The table XmlNode contains all the nodes of the source which are stored in 
the warehouse. The table Children contains the composition links between the 
nodes of XML documents in the warehouse. It involves the following columns: 

−  parentID contains  the identifier of the parent node, 
−  childID contains  the identifier of the child node, 
−  rank contains  the  rank of the child node. 

4.2   Storage of the Mappings 

The key idea of our approach is: rather than materializing complete views, it is better 
to materialize portions (fragments) of views, to allow reuse and improved incremental 
maintenance. Obviously, it allows reducing space storage. Figure 4 describes the 
graph of mapping between the data sources and the views. The nodes of this graph are 
tables names storing the data specified by patterns on the sources, union or join. 

SP1(id,A,B)
SP2(id,A,B)

SP3(id,C,D)

U(id,sid,A,B)

J(id,lid,rid,A,B,C,D)

 

Fig. 4. The Graph of Mappings 

The table schema of the pattern SP: SP(id, variablessp) where SP is the name of the 
pattern, id is a numerical identifier of integer type. This identifier value corresponds 
to the order in the table defined by the extraction of the data. Finally, variablessp 
describe the pattern variables. 

The schema of the union table is:  U(id; sid; variablesu ) where U is the name of 
the union and id is numerical identifier of real type, whose semantics of the integer 
and decimal parts is defined as follows. The integer part contains the sequence 
number of the source whose the tuple comes from data of the union. This sequence 
number is obtained by the position of the source in the list of the sources of the union.  
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The decimal part contains the identifier of the source whose data come from. If this 
identifier is a real number, it is transformed into an integer number by concatenating 
the integer and decimal parts. For example, if the identifier of a tuple of the source to 
be inserted in the union is 2123, the transformation will give the result 2123. 
Moreover, the decimal part of the source at the position i is preceded by n-k zeros, 
with n and k are defined as follows. 10

n
 is the minimal upper limit of the number of 

sources of the union and 10k is the minimal upper limit of i. For example, if a union is 
defined over a list of 11 sources, the minimal upper limit of the number of sources of 
the form 10n is 102, therefore one has n = 2. The decimal part of the identifiers of the 
tuples coming from the sources at the position i, for i ∈ [1..9] will be preceded by one 
zero, because the minimal upper limit of i, is 101, say k = 1, one thus has n - k = 1. 
The decimal part of the identifiers of the tuples coming from the sources at the 
position i, for i∈ [10..11] will be preceded by no zero, because the minimal upper 
limit of i is 102, say k = 2, one thus has n- k = 0. This method allows to preserve the 
order between the tuples of the tables containing the sources of the union. In this way, 
this identifier preserves the order defined during the retrieval of the data.  

The column sid is the identifier of the inserted tuple, in the source from which it 
comes. This column is of real type, because it must contain the identifiers of the data 
sources of the union, which can be of type integer or real. Finally, variablesu is the set 
of the variables specified by the union U. Each variable references a data node stored 
in the generic schema. 

The schema of the join mapping table is: J(id; lid; rid; variable j) where J is the 
name of the join; id i is a numerical identifier of real type, whose semantics of the 
integer and decimal  parts is defined as follows. The integer part contains the 
identifier of the data coming from the left part of the join. If this identifier is a real 
number, it is transformed into an integer number. The decimal part contains the 
identifier of the data coming from the right part of the join. If this identifier is a real 
number, it is transformed into an integer number. lid is an identifier of real type, 
which references the identifier of the tuple used to calculate the left part of the join. 
This column is of real type, because it must contain the identifiers of the two sources 
of the join which can be of type integer or real. rid is also identifier of real type, 
which references the identifier of the tuple used to calculate the right part of the join. 
This identifier is of real type, because it must contain the identifiers of the two 
sources of the join which can be of type integer or real. variablesj are the variables 
specified by the join. Each variable references a data node stored in the generic 
schema. 

5   Maintenance of VIMIX Views 

5.1   Refreshing a Pattern XML View from a Data Source 

Data sources available on the Web or produced by various applications cannot easily 
be monitored. Therefore, the smallest operation of refreshing the data stored in the 
warehouse is thus the one of pattern matching expression defined over one source. 
Our method is incremental because it does not require to re-compute the entire view 
but only the view fragment defined over the source that has been updated.  
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The algorithm1 runs as follows. For each pattern sp defined over this source, the 
content of the table Tsp is copied into table Tdeletes then the table Tsp is cleared. 
This process of data extraction is repeated to populate again the table Tsp. At this 
stage, the data of a pattern on the source are updated. It is then necessary to propagate 
the update to the related mappings: union and join. For that, the function refresh-
mappings is executed for all the tables which are parents nodes of in the graph of 
mappings. Lastly, one removes the XML data coming from the source, which are 
stored in the tables of the generic schema. The deletion cannot be made earlier, 
because the data of the old mappings could be necessary for the maintenance. 

Algorithm 1. Refresh-Pattern (s) 
Result : refreshing data from a source s 

foreach pattern sp related to the source s  do 
copy the table Tsp   in T   deletes; 
clear the table Tsp; 
extract the data from the source s to populate Tsp; 
foreach T parent parent of Tsp in the graph of mappings do 
refresh-mappings(T parent, sp, T deletes, Tsp) ; 
end 

end 
delete the data coming from the source s         ; 

5.2   Refreshing the Union and the Join Views 

The algorithm 2 presents the strategy of updating a table representing a union or a join 
in the graph of mappings. The function refresh-mappings has four parameters: (i) the 
table containing the data of a union or a join which must be updated, (ii) the child 
source representing the pattern, the union or the join which were updated and (iii) the 
table Tdelete containing the deleted tuples  and the table T insert containing the added 
tuples.. This Algorithm  is incremental, because it uses the data removed and added to 
the updated source to carry out only the necessary modifications. The updates are 
propagated to the parent tables of the graph of mappings. This propagation is carried 
out by a recursive call of the function. The condition is carried out by the tables which 
do not have a parent, which is ensured by the fact that the graph of mappings is 
acyclic. 

Algorithm 2.  refresh-mappings(T s, child, Tdeleteschild, Tinsertchild) 
Result : Refreshing the mappings of an union or a join Ts  

computes in Tdeletes the tuples to be deleted in T s  (by using Tdeleteschild) ; 
compute in Tinserts  the tuples to be added in T s (by using T insertchild) ; 
delete in T s the tuples of T deletes; 
add in T s the tuples of T inserts; 
foreach Tparent parent of T s in the graph of mappings do 

refresh-mappings(Tparent, s, T deletes, T inserts); 
end 
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Fig. 5. Illustration of the update propagation 

Figure 5 illustrates the update propagation. The graph of mappings used on this 
example consists of three patterns on three sources, noted SP1, SP2 and SP3. The 
variable u contains the union of the data of the patterns of SP1 and SP2. Finally, j 
contains the join of the data of u and SP3. To facilitate the legibility of the example, 
the patterns store the values of the elements XML corresponding to the instantiation 
of the variables rather than the references to these elements (which should be stored 
by using the generic schema). This example illustrates the propagation of updates 
when the source of the pattern SP2 is modified. The dashed tuples of the mappings 
corresponds to those which have been updated. As it is shown in this figure, the 
maintenance is incremental. 

6   Related Work 

There are mainly two approaches for storing XML data: the flat storage and the meta- 
modelling. In Flat storage approach, XML data are stored by using their textual form. 
It is the simplest method to implement, because it is sufficient to use a files system, or 
the type BLOB of a DBMS to store the documents in a database. This method is very 
efficient when one tries to find the whole document or large contiguous parts of an 
XML document. The main disadvantage of this method is the need for parsing the 
document to discover its structure: that results into slow down the query processing. 

In meta-modelling approach XML data are stored in the target DBMS by using 
transformation rules [3, 6]. This method is very efficient when queries are based on 
the structure of the stored data. Indeed, the data were already analyzed at the time of 
their transformation to be stored in the target DBMS. The principal disadvantage of 
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this method lies in the transformations which are necessary to store and rebuild the 
data of the XML documents. When the XML documents to be stored are bulky, this 
phase of transformation is costly.  

Inside the meta-modelling, there is two approaches:.(i) generic schema which can 
be used for any XML data instance and (ii) The schemas depending of the data which 
must be generated for each data instance to store. Intuitively, the use of a generic 
schema can be simpler when the data to be stored come from heterogeneous 
documents. Indeed, if one uses a schema depending of the data, it would be necessary 
to generate a schema of storage for each document. 

There is also a third family of solutions which combines the two previous 
approaches: the hybrid approaches. There are two ways of doing it.  

The first one is redundant; it consists in storing the data by using the two 
methods. That allows a fast querying of the documents thus stored, but naturally the 
updates are slowed down and storage spaces it is far from being optimal because all 
the data are duplicated. The second method consists in using a mixed approach: 
starting from a certain level of granularity called threshold, the data are stored as 
flat whereas with the top of this level they are stored in a DBMS by using the meta-
modelling [7], [8].  

The maintenance of XML views is a recent problem which is currently studied. 
Early work was on semi-structured views had been considered for OEM data [1]: 
proposed an algorithm which calculates a set of queries used to propagate a source 
modification on a view. An index for accelerating the update of XML data was 
proposed in [4]: APIX. This work has been done in the case of monitored data 
sources.  Another algorithm was proposed to calculate the changes between two XML 
documents [5]. XML views can be used like interfaces to update relational 
sources [3], [9].  

The major differences between the related work and our approach are the 
following. Related work is based on the full materialization of the view therefore 
view maintenance is performed view per view. Our contribution is the first one 
dealing with the XML view maintenance for fragment-based approach. In our 
approach, view maintenance is performed regarding all the materialized views 
therefore it encourages the reuse of materialized fragments.  

7   Conclusion and Future Work 

In this paper, we present a storage method and algorithms for the maintenance of 
XML views stored in a relational DBMS. We have designed a storage method which 
separates the storage of XML data from that of the metadata describing the mappings. 
The identifiers used to store the view definition (in particular mapping patterns, 
unions and joins) allow incremental maintenance in the sense that the materialization 
of the view does not require re-computing all stored data to maintain XML views. The 
other originality of this method lies in the use of multi view graph, which allows 
representing common sub expressions between different views. Consequently, this 
allows reducing the storage space and the view maintenance time. Querying XML 
views stored in a relational DBMS requires a phase of rebuilding them. As future 
work, we are planning to develop a cache strategy to store the XML data which are 
frequently rebuilt.  
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Abstract. A new complexity measure for Boolean functions is intro-
duced in this article. It has a link to the query algorithms: it stands
between both polynomial degree and non-deterministic complexity on
one hand and still is a lower bound for deterministic complexity. Some
inequalities and counterexamples are presented and usage in symmetri-
sation polynomials is considered.

1 Introduction

This paper deals with the approach of query algorithm in the theory of compu-
tational complexity. It is, perhaps, the simplest approach when we narrow down
to the calculation of one fixed Boolean function and do not care about resources
needed to get values of the variables. We act as if they are already given in one
of the forms (depending on the type of algorithm) and the only we deal with is
the number of queries about their values we must ask to get known the value of
the function.

The theory of computation studies various models of computation: determin-
istic, non-deterministic, probabilistic and quantum (see [7] on traditional models
of computation and [3] on quantum computation). Similarly, there are query al-
gorithms of all those types [2].

Although we consider only traditional models in this paper, in fact all these
models have a lot of connections. For example, we forward our attention for
polynomial degree that is of a great importance in quantum exact computation.
Respectively, holds [2] inequality QE ≥ deg/2. And still we need a better under-
standing of traditional models, because it is the only we can compare the power
of quantum or other non-traditional computation with.

The concept of non-intersecting complexity has arisen from the study of func-
tions with a low polynomial degree. Kushilevitz function described further is
the best known example in this field. It has D = 6 and deg = 3. It is the case
when sensitivity is a lower bound for the deterministic complexity, respectively,
this function has s = bs = 6. But nobody knows whether this approach can-
not fail constructing better examples. As it is proved in [2] bs ≤ 2 · deg2, but
simultaneously the best known estimation on the deterministic complexity [4] is
D = O(deg3). So, a need for other lower bounds for the deterministic complexity
arises.
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Moreover, the approach of non-intersecting complexity comparing to the other
complexities such as deterministic complexity or polynomial degree has a simple
geometric interpretation and it is similar with a number of well-known combi-
natorial quizzes.

2 Preliminaries

For more information about mentioned definitions and results see [2]. Let F :
{0, 1}n → {0, 1} be a Boolean function throughout all this section.

Deterministic complexity. A decision tree is a rooted binary tree each internal
node of which is marked with a variable xi and each leaf contains a value 0 or 1.
Decision tree computes in a following way. It starts with the root and depending
on the value of the variable it is marked with continues with the computing of
the left or right subtree. When it reaches a leaf it outputs a value it contains.

A decision tree is said to compute a Boolean function F , if its output is equal
with the value of F for all possible variable values. A complexity of the decision
tree is its depth (the longest path from the root to a leaf). A deterministic
complexity of a function F notated as D(F ) is a minimal complexity of a decision
tree that computes this function.

Non-deterministic complexity. This complexity is mentioned under the name of
certificate complexity in [2]. We slightly changed the definition in order to show
a similarity with the non-intersecting complexity presented later.

In this case we represent a function using a ND table. Its columns correspond
to the variables. Each cell contains one of symbols ’0’, ’1’ (fixed elements) or
’-’ (arbitrary element). Each row describes a set of input vectors where each
variable is fixed to a value of 0, 1 or can be arbitrary.

Table consists of two parts, describing input vectors with function value equal
to 0 and 1. The table fully describes function, i.e. each input vector must be in at
least one row. Note that no vector can appear in both 0- and 1-parts of a table.

A complexity of the table is a maximal number of fixed elements in a row. Non-
deterministic complexity of a function (ND(F )) is equal with a minimal com-
plexity of a table representing this function. Complexity of the 0-part (1-part)
of the best ND table we will notate as ND0(F ) (ND1(F )).
Sensitivity and block sensitivity. Let x be an input vector. A block sensitivity
of the function F on this vector bsx(F ) is a maximal number of disjoint blocks
B1, . . . , Bk ⊂ {1, . . . , n} (i �= j ⇒ Bi ∩ Bj = ∅) such that ∀iF (x) �= F (xBi).
Here variables from Bi in xBi are flipped ((xBi

k = xk)⇔ (k /∈ Bi)).
A block sensitivity of a function is defined with bs(F ) = maxx bsx(F ). We will

use also notations bsi(F ) = maxx∈F −1(i) bsx(F ) where i = 0, 1. Notation F−1(i)
stands for a full preimage.

Sensitivity of a function is block sensitivity with sizes of all blocks restricted
to 1. In other words, sensitivity sx(F ) of the function F on a vector x is equal
with the number of indexes i such that

F (x1, . . . , xi−1, xi, xi+1, . . . , xn) �= F (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn).
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Complexities s0(F ), s1(F ) and s(F ) are defined in a same way as in the case
of block sensitivity. Obviously, si(F ) ≤ bsi(F ). It is proved also that s(F ) ≤
bs(F ) ≤ ND(F ) ≤ D(F ).

Representing polynomial. For any Boolean function F there exists a unique
multilinear polynomial P (x1, . . . , xn) that is representing F . This means that
equality

P (x1, . . . , xn) = F (x1, . . . , xn)

holds for all possible x values. The degree of the representing polynomial notated
as deg(F ) is a significant property of a Boolean function.

3 Definition of the NI Complexity

Let F be a Boolean function. As it has been done in a non-deterministic case we
will construct a table describing the function. The only difference: we demand
that any two rows must be non-intersecting, i.e. no input vector can satisfy two
different rows. In other words, for any two rows there exists a column which is
intersecting with these rows on cells containing ’0’ and ’1’. We say these two
cells ensures a non-intersection of this pair of rows.

A table describing input vectors for a function value of 0 we will call a NI
0-table. In a same way we define a NI 1-table. A table containing both parts is
a full NI table. An example of a full NI table (with 0 part on the left, and 1 part
on the right) follows:

S :

x1 x2 x3 x4

0 1 - 1
- 0 1 1
1 - 0 1
0 0 0 -

x1 x2 x3 x4

1 1 1 -
0 1 - 0
- 0 1 0
1 - 0 0

(1)

A maximal number of fixed elements in a row for the best NI 0-table we
will notate as NI0. NI1 complexity is defined in a same way. Also we will use
notations NImin = min{NI0, NI1} and NImax = max{NI0, NI1}.

4 Some Inequalities on the NI Complexity

Given a new characteristic of an object, one of the first questions to appear is
the way it goes on with other characteristics. In this section we will show some
main inequalities containing NI complexity.

4.1 Main Inequalities

The four main inequalities that rise the interest to this complexity are following:

NImax(F ) ≤ D(F ) (2)
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Proof. This one is a key inequality. For each leaf we write down a row that
describes all input vectors when this leaf is reached. It is obvious that number
of fixed elements in every row is equal with a depth of a leaf and rows are non-
intersecting. ��

ND(F ) ≤ NImax(F ) (3)

Every full NI table is also a full ND table.

NImin(F ) ≤ NImax(F ) (4)

Trivial.
deg(F ) ≤ NImin(F ) (5)

Proof. We can suppose that NImin(F ) = NI1(F ), in the opposite case we con-
sider a function 1−F (x) instead. Each row of the NI 1-table can be represented
by a polynomial

∏n
i=1 pi, where

pi =

⎧⎨⎩
1, xi is a free variable
xi, xi is fixed to 1
1− xi, xi is fixed to 0

Obviously, the degree of this product is equal with the number of fixed elements.
Entire function is given as a disjunction of all row-functions that can be replaced
by a sum because rows are non-intersecting. ��

4.2 Other Inequalities

Sometimes the following result can be useful

Lemma 1. bsi(F ) ≤ NDi(F ) ≤ NIi(F ) for i = 0, 1.

The first inequality is well-known [2]. Every row in the ND-table, containing the
input vector with the maximal bs, must contain at least one fixed variable from
any of the blocks. The proof of the second inequality is the same as for (3). The
following result is not so trivial.

Theorem 1. For any non-constant Boolean function F :

bs(F ) ≤ 2 ·NImin(F )− 1.

Proof. If the maximal block sensitivity is reached on an input vector x such
that NIF (x)(F ) = NImin(F ) then bs(F ) ≤ NImin(F ) (lemma 1). The function is
non-constant, hence NImin(F ) ≥ 1 and NImin(F ) ≤ 2NImin(F )− 1.

Let us focuss on another case. At first, we can suppose that bs is maximal
on the input vector 0 consisting of all zeros. Otherwise we can replace some
variables with their negations. Let us consider a NI table for a function value
that is opposite to the function value on this input. It will be table for NImin.
Let {Bk} be the blocks from the definition of block sensitivity.

Vectors 0Bk must be in this table. As Bi ∩ Bj = ∅ for i �= j and vector 0
should not be in this table then there can be extracted such bs(F ) rows that
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– each of them suits for exactly one of the vectors 0Bk ,
– at least one variable is fixed to 1 in each of them,
– no variable is fixed to 1 in more than 2 rows (there is at most one ’1’ in any

column).

Hence each zero on the selected rows ensures a non-intersection of at most
one pair of these rows. There are 1

2bs(F )(bs(F )− 1) pairs, so there are at least
the same number of zeroes. Using the pigeonhole principle there is a row with
at least 1

2bs(F ) − 1) zeroes and remembering variables fixed to 1: NImin(F ) ≥
1
2 (bs(F )− 1) + 1. Or bs(F ) ≤ 2NImin(F )− 1. ��

As a special case we have s(F ) ≤ 2 ·NImin(F )− 1. This inequality is tight as
it can be considered from the following example [1] of a function with such a NI
1-table:

x1 x2 x3 x4 x5

0 0 1 - -
- 0 0 1 -
- - 0 0 1
1 - - 0 0
0 1 - - 0

In a same way for any natural k a function with NImin = k and s = 2k − 1 can
be constructed.

5 Some Other Results

5.1 A Case When NI Complexity Is Equal with the Number of
Variables

It seems natural to study a case when NImax is maximal possible to guarantee
that deterministic complexity also is maximal. It can be taken into attention
then that a system of all possible input vectors can be treated as a graph G in
which two vectors are connected with an edge if and only if they differ in exactly
one variable. This graph is bichromatic. Following obvious result holds:

Lemma 2. NIi ≤ n − 1 if and only if the graph G ∩ F−1(i) has a maximal
matching.

Maximal matching here means that all vertices of this graph are divided into
disjoint pairs and two vertices in any of these pairs are connected with an edge.
This result makes it possible to use classical theorems (such as Hall theorem) and
algorithms to check whether non-intersecting complexity is a maximal possible.

5.2 Iterations

One way of getting new functions from existing ones is to iterate them. Given
a Boolean function F (x1, . . . , xn) and n functions Gi : {0, 1}ki → {0, 1} the
iteration is a function of s =

∑
ki variables of a form:

F (G1(x1, x2, . . . , xk1), G2(xk1+1, . . . , xk1+k2), . . . , Gn(xs−kn+1, . . . , xs)).
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As a special case the second iteration of a function F is

F 2 = F (F (x1, . . . , xn), F (xn+1, . . . , x2n), . . . , F (xn2−n+1, . . . , xn2)).

Next iterations are defined in a similar way:

F i+1 = F (F i, F i, . . . , F i).

It is known that D(Gk) = D(G)k, deg(Gk) = deg(G)k and ND(Gk) ≤
ND(G)k. The NI complexity also can be estimated from the top having NI
complexities of iterated functions. In fact it is rather tricky operation because
using NI tables (not essentially the best ones for NI complexity) bounds can be
improved.

Let us consider a case of a function H = F (G1, G2, . . . , Gm). Having the NI
table for the function F we can put 0-table of G1, . . . , Gm in the place of 0,
1-tables in the place of 1 and take all possible combinations of rows. It is the
way NI table of iteration function can be constructed. So the bound can be:
NImax(H) is not larger than the sum of NImax(F ) maximal numbers from the
set {NImax(G1), NImax(G2), . . . , NImax(Gm)}. As a special case it can be got
that NImax(Gk) ≤ NImax(G)k.

6 Counterexamples

Considering the section 4.1 three questions can appear. We answer negative on
all these three questions constructing corresponding counterexamples.

6.1 NImax

?= D

We will use a function S from the example (1). As it can be seen NImax(S) = 3.
But still D(S) = 4. Following algorithm of answering guarantees such
complexity:

While the value of the last variable from the set {x1, x2, x3} is not asked,
answer ’0’, otherwise answer ’1’.

Using results from the section 5.2 we have NImax(Sk) ≤ 3k and D(Sk) = 4k.

6.2 NImin

?= deg

A good example here is Kushilevitz function (quoted in [6]). It is a function
F (x1, . . . , x6) defined with

– F = 0 if x1 + . . . + x6 is equals with 0,4 or 5.
– F = 1 if x1 + . . . + x6 is equals with 1,2 or 6.
– If x1 + . . .+x6 = 3 then F = 0 only in this 10 cases: x1 = x2 = x3 = 1, x2 =

x3 = x4 = 1, x3 = x4 = x5 = 1, x4 = x5 = x1 = 1, x5 = x1 = x2 = 1, x1 =
x3 = x6 = 1, x1 = x4 = x6 = 1, x2 = x4 = x6 = 1, x2 = x5 = x6 = 1, x3 =
x5 = x6 = 1.
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It is known that deg(F ) = 3 and NImin(F ) = 6 because of sensitivity 6 on
input vectors of all ones and of all zeros due to what s0(F ) = s1(F ) = 6. In
a similar way we have deg(F k) = 3k and NImin(F k) = 6k.

6.3 NImax

?= max{NImin, ND}

In this case a counterexample can be constructed. Consider a function T with
following NI 0-table and ND 1-table.

x1 x2 x3 x4

1 - - 0
0 0 - 1
0 1 1 -
- 1 0 1

x1 x2 x3 x4

0 - 0 0
0 0 - 0
1 0 - 1
1 - 1 1

But this function does not have a NI 1-table with a complexity 3 (see section 5.1).
So we have: ND(T ) = 3, NImin(T ) = 3, but NImax(T ) = 4.

7 Usage in Symmetrisation Polynomials

7.1 Symmetrisation

In a study of function degree a subject of symmetrisation polynomial presented
in [5] is used. Symmetrisation polynomial of a Boolean function F is such a one-
variable polynomial F sym(x) that

F sym(x) =
1(
n
x

) ∑
x1+x2+···+xn=x

F (x1, x2, . . . , xn).

for x ∈ {0, 1, . . . , n}. It always exists due to the Lagrange interpolation polyno-
mial method.

It is proved that deg(F ) ≥ deg(F sym). For the last expression deg(F sym) we
will use a notation degsym(F ).

7.2 Usage of the NI Complexity

Non-intersecting complexity goes well into symmetrisation. Given a symmetrisa-
tion polynomial F sym it is possible to lower bound NIi with a NIsym

i constructed
in way described further(i = 0, 1).

Let us assume that there exists NI i-table for initial Boolean function. We
can consider a case when all rows in this NI table is of equal number of fixed
elements. Otherwise we can divide a row having smaller number of fixed elements
into several rows fixating arbitrary variable. Each row geometrically describes
a hypercube of a known dimension. We known number of elements on all levels
of x1 + x2 + · · · + xn in this hypercube, the only it can be shifted as a whole.
Because hypercubes are non-intersecting knowing the total number of elements
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on each level (and we know it because we know symmetrisation polynomial) we
can make the following consideration:

We know the number of input vectors from the preimage F−1(i) with x1 +
x2 + · · ·+ xn = 0. It is equal with the number of rows in NI i-table that has no
elements fixed to ’1’. Substract number of elements these rows use on each level
from the total number of elements on it. Then consider the number of remaining
vectors from F−1(i) with x1 +x2 + · · ·+xn = 1. It is equal with number of rows
with exactly one element fixed to 1. And so on.

The minimal number of fixed elements in a row when this process goes through
we will notate with NIsym

i . So NIi(F ) ≥ NIsym
i (F sym).

8 Future Work

We have already described one of the possible usage of this complexity in the
preface. It was the usage for functions with a low polynomial degree, of course
any other usage in order to show that deterministic complexity is high enough
could be very nice. But the situation can be watched in another direction. Non-
intersecting complexity is higher than a couple of other complexities and the
study of functions with a large gap between non-intersecting and deterministic
complexity can success in some problems because it is still possible that there
exists some unnoticed links between these majored complexities and some other
investigated complexity. For example we are mostly interested in the usage for
quantum exact computing. Developing of some methods to link NImax and QE
complexities seems to be of great importance.

Of course some questions can appear not only in the usage. One possible di-
rection is to try to enlarge gaps in the mentioned counterexamples especially
between NI complexity and the deterministic one. Also it is interesting to get
some results like the theorem 1 but for non-deterministic or NImax complex-
ities. And finally it can be possible to find some other lower bounds for the
deterministic complexity.
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Abstract. A wireless ad-hoc network can be represented as a graph in
which the nodes represent wireless devices, and the links represent pairs
of nodes that communicate directly by means of radio signals. The inter-
ference caused by a link between two nodes u and v can be defined as the
number of other nodes that may be disturbed by the signals exchanged
by u and v. Given the position of the nodes in the plane, links are to
be chosen such that the maximum interference caused by any link is
limited and the network fulfills desirable properties such as connectivity,
bounded dilation or bounded link diameter. We give efficient algorithms
to find the links in two models. In the first model, the signal sent by u
to v reaches exactly the nodes that are not farther from u than v is. In
the second model, we assume that the boundary of a signal’s reach is
not known precisely and that our algorithms should therefore be based
on acceptable estimations. The latter model yields faster algorithms.

1 Introduction

Wireless ad-hoc networks consist of a number of wireless devices spread across
a geographical area. Each device has wireless communication capability, some
level of intelligence for signal processing and networking of the data, and a typ-
ically limited power source such as a small battery.

This paper studies networks that do not depend on dedicated base stations: in
theory, all nodes may communicate directly with each other. In practice however,
this is often a bad idea: if nodes that are far from each other would exchange
signals directly, their signals may interfere with the communication between
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other nodes within reach. This may cause errors, so that messages have to be sent
again. Communicating directly over large distances would also require sending
very strong signals, since the necessary strength depends at least quadratically
on the distance (in practice the dependency tends to be cubic or worse). Both
issues could lead to rapid depletion of the devices’ limited power sources.

Therefore it is advisable to organize communication between nodes such that
direct communication is restricted to pairs of nodes that can reach each other
with relatively weak signals that will not disturb many other nodes. We model
such a network as a graph G = (V, E), in which the vertices V represent the
positions of the mobile devices in the plane, and the links (or: edges) E repre-
sent the pairs of nodes that exchange signals directly. Communication between
nodes that do not exchange signals directly should be routed over other nodes
on a path through that network. According to Prakash [13], the basic com-
munication between direct neighbours becomes unacceptably problematic if the
acknowledgement of a message is not sent on the same link in opposite direction.
Hence, we will assume that the links are undirected.1 Our problem is therefore
to find an undirected graph on a given set of nodes in the plane, such that
all nodes are connected with each other through the network (preferably over
a short path), interference problems are minimized, and direct neighbours in the
network can reach each other with signals of bounded transmission radius. In
this paper we focus on guaranteeing connectivity and minimizing interference;
bounding the transmission radius is an easy extension, which we discuss in the
full paper. Since wireless devices tend to move frequently, we need to be able to
construct networks with the desired properties fast.

The optimal network structure depends ultimately on the actual communica-
tion that takes place. This is generally not known a priori. Therefore we strive
to optimize a property of nodes or links in the network that is expected to be
a good indicator of the likelihood that interference problems will in fact occur.
Assuming that each node can adjust the strength of each signal so that it can
just reach the intended receiver, such indicators may be:

sending-link-based interference of a link {u, v}: the number of third nodes
that are within reach of the signals from the communication over a particu-
lar link {u, v} in the network (proposed by Burkhart et al. [2], also studied
by Moaveni-Nejad and Li [9])—in other words: the number of nodes that are
hindered when the link {u, v} is active. This is the definition of interference
we focus on in this paper.

sending-node-based interference of a node u: the number of nodes that
receive signals transmitted by u (proposed by Moaveni-Nejad and Li [9])—
in other words: the number of nodes that are hindered when u is active.

receiving-node-based interference of a node u: thenumber ofnodes trans-
mitting signals that reach u (proposed by Rickenbach et al. [16])—that is: the
number of nodes that may prevent u from communicating effectively.

1 Nevertheless, most of the algorithms presented in this paper can be extended to
work in the directed model, as will be discussed in the full version of the paper.
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Previous results. To construct a network that connects all nodes and minimizes
the maximum and total sending-link-based interference, we could run Prim’s
minimum-spanning-tree algorithm [14] with a Fibonacci heap. Assuming that the
interference for each feasible link is given in advance, this takes O(m+n log n) =
O(n2) time, where n is the number of nodes and m is the number of eligible links.
If all

(
n
2

)
possible links are considered, we can compute their interference values

in O(n9/4 polylogn) time (see the proof of Lemma 3). This will then dominate
the total running time.

To make sure that nodes are connected by a relatively short path in the
network, one could construct a t-spanner on the given set of nodes. A network G
is said to be a t-spanner if, for every pair of vertices u and v, the length of the
shortest path in the network is at most a chosen constant t times the Euclidean
distance between u and v. The dilation of a graph G is the smallest t such that
G is a t-spanner. Burkhart et al. [2] presented a first algorithm to construct
a t-spanner for given t > 1. It was later improved by Moaveni-Nejad and Li
in [9]. Assuming that the interference for each possible link is again given in
advance, the running time of their algorithm is O(n log n(m+n log n)). If all

(
n
2

)
possible links are considered, the running time is O(n3 log n).

The approach for sending-linked-based interference also works for sending-
node-based interference, by defining the interference of a link (u, v) to be the
maximum of the sending-node-based interferences of u and v. Unfortunately
the same approach does not work for receiving-node-based interference. With
sending-link-based interference we can decide whether a link causes too much
interference independently of the other links that may be active. With receiving-
node-based interference this is not possible, so that completely different algo-
rithms would be needed. Rickenbach et al. [16] only give an approximation al-
gorithm for the case where all nodes are on a single line (the highway model).

Our results. We improve and extend the results of Burkhart et al. and Moaveni-
Nejad and Li in two ways.

First, apart from considering networks that are simply connected (spanning
trees) and networks with bounded dilation (t-spanners), we also consider net-
works with bounded link diameter, that is: networks such that for every pair of
nodes {u, v}, there is a path from u to v that consists of at most d links (or:
’hops’), where d is a parameter given as input to the algorithm. Such d-hop net-
works for small d are useful since much of the delay while sending signals through
a network is typically time spent by signals being processed in the nodes rather
than time spent by signals actually travelling.

Second, we remove the assumption that the interference of each possible link is
given in advance. For each of the three properties (connectivity, bounded dilation
or bounded link diameter), we present algorithms that decide whether the graph
Gk with all links of interference at most k has the desired property. The main
idea is that we significantly restrict the set of possible links for which we have
to determine the interference, in such a way that we can still decide correctly
whether Gk has the desired property. To find the smallest k such that there
is a network with interference k and the desired property, we do a combined
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Table 1. Running times of our algorithms to find a minimum-interference network with
the required property. The running times are given in O-notation, n is the number of
nodes, k is the maximum interference of any link in the resulting network, and ε specifies
the relative inaccuracy with which a signal’s reach and the dilation of a spanner is
known. Worst-case running times for deterministic algorithms for the exact model are
slightly worse than the expected running times of the randomized algorithms listed in
the table. The listed running times for the estimation model are worst-case.

exact model (expected) estimation model (determ.)

spanning tree min{n9/4 polylog n, nk2 + n log n} n log n/ε2 + n/ε3

t-spanner n2k log k + n2 log n log k n2 log n log k/ε4

d-hop network min{n9/4 polylog n, nk2} + n2 log n log k n2 log k/ε2 + n/ε3

exponential and binary search that calls the decision algorithm O(log k) times.
The resulting algorithms are output-sensitive: their running times depend on k,
the interference of the resulting network.

Our algorithms work for sending-link-based and sending-node-based interfer-
ence. We present algorithms that optimize these interference measures for two
models of the area that is reached by a sender. In the exact model, we assume
that the signal sent by a node u to a node v reaches exactly the nodes that are
not farther from u than v is. Our algorithms for this model are faster than the
algorithm by Moaveni-Nejad and Li [9] for k ∈ o(n). In the estimation model,
we assume that it is not realistic that the boundary of a signal’s reach is known
precisely: for points w that are slightly farther from u than v is, counting w as
being disturbed by the signal sent from u to v is as good a guess as not counting
w as disturbed. It turns out that with this model, the number of links for which
we actually have to compute the interference can be reduced much further, so
that we get faster algorithms, especially for spanning trees with larger values
of k. Our results are listed in Table 1.

Most of the techniques discussed in this paper generalize to three (or more)
dimensions. Details are in the full paper.

This paper is organized as follows. In Section 2 we propose our output-sensitive
algorithms for the case of exact interference values, and examine their running
times. In Section 3 we introduce our model for reasonable estimations of link
interference and describe one algorithm for each of the network properties (con-
nectivity, bounded dilation, and bounded link diameter). All proofs are omitted
from this extended abstract but can be found in the full paper.

2 Computing Exact-Interference Graphs

We are given a set V of n points in the plane in general position. Our aim
is to establish a wireless network that minimizes interference. First, we de-
fine interference. Let u, v be any two points in V . If the edge (link) {u, v} is
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contained in a communication network, the range of u must be at least |uv|.
Hence, if u sends a signal to v this causes interferences within the closed disk
D(u, |uv|) that has center u and radius |uv|. The same holds for v. This leads
to the following definition that was first given by Burkhart et al. [2]. See also
Figure 1.

Definition 1 ([2]). The sphere of an edge e = {u, v} is defined as S(e) :=
D(u, |uv|)∪D(v, |uv|). For any edge e = {u, v} in V×V we define the interference
of e by Int(e) :=

∣∣V ∩S(e)\{u, v}
∣∣. The interference Int(G) of a graph G = (V, E)

is defined by Int(G) := maxe∈E Int(e).

e

Fig. 1. The sphere of e.
Here Int(e) = 9.

In this section, we will give algorithms to compute
interference-minimal networks of three types. The first
type is a spanning tree T . The algorithm that we use
to compute T can simply be extended such that the
resulting tree T not only minimizes Int(T ) but also∑

e∈T Int(e). The second type of network is, for an
additionally given t ≥ 1, a t-spanner. And the third
type is a d-hop network, for a given integer d > 1.

The main idea of the algorithms is the same. For
given j ≥ 0 let, in the following, Gj = (V, Ej) de-
note the graph where Ej includes all edges e with

Int(e) leq j. Exponential and binary search are used to determine the minimum
value of k for which Gk has the desired property P , see Algorithm 1. We first
try k = &upper' = 0, and compute all edges of G0. If G0 does not have the de-
sired property, we continue with upper = 1 and then keep doubling upper until
Gupper has the desired property. We compute the interference values for each
of its edges, and continue with a binary search between lower = upper/2 and
upper. In each step we construct Gmiddle, the graph to be tested, by selecting
the edges with interference at most middle from Gupper , which had already been
computed.

To get a spanning tree, we test with the property P = connectivity. After
running Algorithm MinInterferenceNetwork that finds the minimum k for
which Gk is connected, we run a standard minimum spanning tree algorithm
on Gk. The result is a tree T that minimizes both maxe∈T Int(e) and

∑
e∈T Int(e)

among all spanning trees. For the t-spanner and the d-hop network, the test
consists of determining the dilation or the link diameter of the network. We do
this with an all-pairs-shortest-paths computation.

Note that the only non-trivial steps in algorithm MinInterferenceNet-
work are the subroutines FulfillsProperty and ComputeEdgeSet. We first give
details on how to implement ComputeEdgeSet, that is: how to compute Ej and
the interference values of the edges in Ej efficiently for any j.

2.1 Computing Edge Interferences

An edge {u, v} is an order-j Delaunay edge if there exists a circle through u and
v that has at most j points of V inside [5].
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Algorithm 1. MinInterferenceNetwork(V,P)
// exponential search
upper ← 1

4 , repeat
lower ← upper, upper ← 2 · upper
Eupper ← ComputeEdgeSet(V, �upper�), Gupper ← (V, Eupper)

until FulfillsProperty(Gupper , P)
// binary search
while upper > lower + 1 do

middle ← 1
2 (lower + upper)

Gmiddle ← (V, all edges in Eupper with interference at most middle)
if FulfillsProperty(Gmiddle, P) then upper ← middle else lower ← middle

return Gupper

Lemma 1. All edges in Ej are order-j Delaunay edges.

There is a close connection between order-j Delaunay edges and higher-order
Voronoi diagrams that we will use.

Lemma 2. (Lemma 2 in [5])
Let V be a set of n points in the plane, let j ≤ n/2 − 2, and let u, v ∈ V .
The edge {u, v} is an order-j Delaunay edge if and only if there are two in-
cident faces, F1 and F2, in the order-(j + 1) Voronoi diagram such that u is
among the j + 1 points closest to F1 but not among the j + 1 points closest to
F2, while v is among the j + 1 points closest to F2 but not among those closest
to F1.

Since the worst-case complexity of the order-(j + 1) Voronoi diagram is O((j +
1)(n − j − 1)) [8], it follows that O(nj) pairs of points give rise to all order-
j Delaunay edges. This is because any two incident faces induce exactly one
point pair that corresponds to a Delaunay edge. These pairs can be computed
in O(nj2c log∗ j +n logn) expected time [15] (the best-known deterministic algo-
rithm has a worst-case running time that is only slightly worse [4]). Note that
this also implies that the number of edges in Ej is bounded by O(nj).

Lemma 3. Given n points in the plane, (i) any edge set Ej with j ≤ n/2 − 2
can be computed in O(nj2 + n logn) expected time; (ii) after O(n9/4 polylog n)
preprocessing time, any edge set Ej can be computed in O(nj) worst-case time.

Proof. (i) Computing the order-(j + 1) Voronoi diagram and thus all O(nj)
order-j Delaunay edges takes O(nj2c log∗ j + n log n) expected time. In the full
version we explain how to compute the interference of an order-j Delaunay edge,
and thus, whether or not it is in Ej , in O(j) time. Thus, computing Ej takes
O(nj2 + n log n) expected time in total.

(ii) We use results by Matoušek [10] to preprocess the set of points in
O(n9/4 polylogn) time, so that we can answer range queries with disks and
intersections of two disks in O(n1/4 polylog n) time. We query this data struc-
ture for all O(n2) possible edges, which takes O(n9/4 polylog n) time, sort the
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results for all edges by interference value, and store them. After that, any edge
set Ej can be computed by selecting only those with interference at most j. ��

2.2 The Total Running Time

Theorem 1. Algorithm MinInterferenceNetwork can run in O(min{nk2+
n log n, n9/4 polylog n}+ P (n, nk) log k) expected time, where n is the number of
nodes, k is the interference of the network output, and P (n, m) is the running
time of FulfillsProperty on a graph with n nodes and m edges.

Proof. During the exponential-search phase, ComputeEdgeSet is called O(log k)
times to compute an edge set E�upper�, for geometrically increasing values of
upper. Thus, the last call to ComputeEdgeSet dominates and the total expected
time spent by ComputeEdgeSet is O(nk2 + n logn) (by Lemma 3). Once the
total time spent by ComputeEdgeSet has accumulated to Ω(n9/4 polylog n), we
compute the interference values for all possible edges at once inO(n9/4 polylog n)
time, after which we can identify all sets E�upper� easily in O(nk) time. In the
binary-search phase, selecting edges of Emiddle from Eupper takes O(nk) time,
which is done O(log k) times for a total of O(nk log k). A total of O(log k) tests
for the property P on graphs with O(nk) edges takes O(P (n, nk) log k) time. ��
For a graph with n nodes and m edges, connectivity can be tested in O(n + m)
worst-case time by breadth-first search. The dilation can be computed inO(nm+
n2 log n) time by computing all pairs’ shortest paths, where the length of an
edge {u, v} is the Euclidean distance between u and v. The link diameter can
be computed in the same time (defining the length of every edge to be 1),
or in O(n2 log n) expected time with the all-pairs-shortest-paths algorithm by
Moffat and Takaoka [11]. By filling in P (n, m) in Theorem 1 we get the
following:
Corollary 1. We can compute a minimum-interference...
(i) ...spanning tree in O(min{nk2 + n log n, n9/4 polylog n}) expected time.
(ii) ...t-spanner in O(n2k log k + n2 log n log k) expected time.
(iii) ...d-hop network in O(min{nk2, n9/4 polylog n}+ n2 log n log k) expected

time.

3 Estimating Interference
In this section we show how to compute interference-minimal networks if nodes w
just outside the intended transmission radius of a node u may or may not be
counted as being disturbed by u—it may not be realistic anyway to assume
that we could predict correctly whether w will actually be disturbed. We define
estimated interference as follows:

Definition 2. Let D(u, r) be the closed disk centered at u with radius r. The
(1+ε)-sphere S1+ε(e) of an edge e = {u, v} is defined as S1+ε(e) := D(u, (1 + ε)·
|uv|) ∪D(v, (1 + ε) · |uv|). For 0 ≤ ε′ ≤ ε we say that an integer I is an (ε′, ε)-
valid estimation of the interference of e if and only if

∣∣V ∩ S1+ε′(e) \ {u, v}
∣∣ ≤

I ≤
∣∣V ∩ S1+ε(e) \ {u, v}

∣∣.
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We will use ε-valid estimation as a shorthand for (0, ε)-valid estimation. Our
aim is to compute interference-minimal networks based on ε-valid estimations
of interference. We will do so for a particular assignment Intε : V × V → N of
estimations for all edges, which will be explained below. This assignment Intε

has the following properties that allow for efficient algorithms:

sparseness. It comes with a set of O(n/ε2) representative edges E′
n,ε ⊆ V ×V .

representing interference. Each edge e ∈ V × V is represented by an edge
e′ ∈ E′

n,ε s.t. Intε(e) = Intε(e′) and Intε(e) is an ε-valid estimation of Int(e).
representing properties. We can test whether the graph Gj,ε = (V, Ej,ε),

with Ej,ε = {e | e ∈ E ∧ Intε(e) ≤ j}, has the desired property P , by testing
the graph G′

j,ε = (V, E′
n,ε ∩ Ej,ε).

For larger values of j and ε, we have better bounds on the size of G′
j,ε than

for Gj,ε or Gj and we get better bounds on the running times of the algo-
rithms to construct and test G′

j,ε than for the graphs Gj used in the exact
model.

Below we define the edge set E′
n,ε and the assignment Intε. Its sparseness

follows from the method of construction. In the full paper we prove that Intε

correctly represents interference. We describe how to determine the connectiv-
ity, dilation, and link diameter of Gj,ε efficiently by running a test on G′

j,ε.
Our construction uses the well-separated pair decomposition by Callahan and
Kosaraju [3], which we briefly review before we define E′

n,ε and Intε.

Definition 3 ([3]). Let s > 0 be a real number, and let A and B be two finite
sets of points in R2. We say that A and B are well-separated with respect to s,
if there are two disjoint disks DA and DB of same radius r, such that (i) DA

contains A, (ii) DB contains B, and (iii) the minimum distance between DA

and DB is at least s · r.

Definition 4 ([3]). Let V be a set of n points in R2, and let s > 0 be a real num-
ber. A well-separated pair decomposition (WSPD) for V with respect to s is a se-
quence of pairs of non-empty subsets of V , {A1, B1}, {A2, B2}, . . . , {Am, Bm},
such that (i) Ai and Bi are well-separated w.r.t. s, for i = 1, . . . , m, and for
any two distinct points u and v of V , there is exactly one pair {Ai, Bi} in the
sequence, such that (a) u ∈ Ai and v ∈ Bi, or (b) v ∈ Ai and u ∈ Bi. The
integer m is called the size of the WSPD.

Callahan and Kosaraju [3] showed that a WSPD of size O(s2n) can be computed
in O(s2n + n log n) time.

We now define the assignment Intε and the set E′
n,ε. For a well-separated

pair {Ai, Bi}, let Ei be the set
{
{u, v} | u ∈ Ai, v ∈ Bi

}
. To obtain Intε

we compute an (1
3ε, 2

3ε)-valid interference estimation of one exemplary edge
ei ∈ Ei for each pair {Ai, Bi}. We then assign that interference estimation
Intε(ei) to all edges in Ei, that is, Intε(e) := Intε(ei) for all edges e ∈ Ei.
The set E′

n,ε consists of the exemplary edges e1, ..., em for all well-separated
pairs.
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Algorithm 2. MinEstimatedInterferenceNetwork(V,P)
E′

n,ε ← ∅, s ← 4 + 16/ε
W ← ComputeWSPD(V, s)
B ← ComputeBBDTree(V )
for each {Ai, Bi} ∈ W do

choose an arbitrary edge e ∈ Ei

query B to determine a ( 1
3ε, 2

3ε)-valid estimation Intε(e) of Int(e)
add e to E′

n,ε

// exponential search
upper ← 1

4
repeat

lower ← upper, upper ← 2 · upper
E′

upper,ε ← all edges in E′
n,ε with estimated interference at most upper

G′
upper,ε ← (V, E′

upper,ε)
until FulfillsProperty(G′

upper,ε , P)
// binary search
while upper > lower + 1 do

middle ← 1
2 (lower + upper)

E′
middle,ε ←all edges in E′

n,ε with interference at most middle
G′

middle,ε ← (V, E′
middle,ε)

if FulfillsProperty(G′
middle,ε, P) then upper ← middle else lower ← middle

return Gupper,ε

In the full paper we show that if we choose the separation constant of the
well-separated pair decomposition to be at least 4+16/ε, the estimated interfer-
ence Intε(e) of any edge e is indeed an ε-valid estimation of Int(e). The general
algorithm for finding a minimum-interference network based on estimated inter-
ferences is given in Algorithm 2.

3.1 The Total Running Time

Theorem 2. Algorithm MinEstimatedInterferenceNetwork can run in
O(n/ε3+n logn/ε2+P (n, n/ε2) log k) time, where n is the number of nodes, k is
the maximum ε-valid estimated interference of any edge in the network output,
and P (n, m) is the running time of FulfillsProperty on a graph G′

j,ε with n nodes
and m edges.

Proof. We first construct a well-separated pair decomposition inO(n/ε2+n log n)
time, and choose, for each of its O(n/ε2) pairs, a representative edge. We con-
struct a BBD-tree [1] on the points in O(n log n) time, and do a range query
in the BBD-tree for each representative edge to determine its estimated inter-
ference in O(1/ε + log n) time per edge (following the analysis by Haverkort et
al. [7]). In total this amounts to O(n/ε3 + n log n/ε2) time. We then do expo-
nential and binary search in O(log k) steps, each of which takes O(n/ε2) time
to select edges from E′

n,ε and O(P (n, n/ε2)) time to test the graph, for a total
of O(n log k/ε2 + P (n, n/ε2) log k) time. ��



Constructing Interference-Minimal Networks 175

In the full paper we prove that we can test if Gj,ε is connected by testing if
G′

j,ε is connected in time O(n + m). Furthermore, we prove that any minimum
spanning tree of G′

j,ε is a minimum spanning tree of Gj,ε.
When the dilation of Gj,ε is t, an approximate dilation t′ such that t/

√
1 + ε ≤

t′ ≤ t
√

1 + ε can be computed inO(n2 log n/ε2+mn/ε2) time with the algorithm
by Narasimhan and Smid [12].

The link diameter of Gj,ε can be computed inO(mn) time by doing an implicit
breadth-first search from each node. The algorithm is essentially the same as the
one in [6] but slightly modified to fit our setting. The search traverses the edges of
G′

j,ε and the split tree used to construct the well-separated pair decomposition,
rather than following the edges of Gj,ε itself.

By filling in P (n, m) in Theorem 2 we get the following:

Corollary 2. We can compute a:
(i) minimum-estimated-interference spanning tree in O(n log n/ε2 + n/ε3) time.
(ii) (1 + ε)t-spanner with estimated interference at most min{k | Gk,ε is a t-
spanner } in O(n2 log n log k/ε4) time.
(iii) minimum-estimated-interference d-hop network in O(n2 log k/ε2 + n/ε3)
time.
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Abstract. In this paper we deal with the following natural family of
geometric matching problems. Given a class C of geometric objects and
a point set P , a C-matching is a set M ⊆ C such that every C ∈ M
contains exactly two elements of P . The matching is perfect if it covers
every point, and strong if the objects do not intersect. We concentrate
on matching points using axis-aligned squares and rectangles. We give
algorithms for these classes and show that it is NP-hard to decide whether
a point set has a perfect strong square matching. We show that one of
our matching algorithms solves a family of map-labeling problems.

1 Introduction

The problem of matching points with geometric objects is an attempt to gen-
eralize the notion of a graph-theoretical matching to geometric environments.
Regarding edges of a geometric graph as line segments is a first step towards
matching with geometric objects. Instead of using segments to match points,
a matching can be defined to consist of axis-aligned rectangles that contain ex-
actly two points. Analogously, a matching can be defined to consist of elements
of any family of convex geometric objects, like squares and disks. This class of
geometric matching problems has been introduced by Ábrego et al. [1].

In this paper we deal with the problem of matching points with axis-aligned
rectangles and squares. Given a set of points in the plane, a rectangle matching
is a set of axis-aligned closed rectangles such that each rectangle contains exactly
two points of the point set. A square matching is defined analogously for axis-
aligned squares. A geometric matching of either type is called strong, if the
geometric objects do not intersect. Otherwise the matching is called weak. Similar
to matchings in graphs, we call a geometric matching perfect, if it covers every
point of the point set. We describe the general problem and give a summary of
previous results in Section 2.

Whereas a strong perfect rectangle matching always exists if the point set is
in general position, we show in Section 3 that there are point sets which only
� Work supported by grant WO 758/4-2 of the German Science Foundation (DFG).

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 177–186, 2006.
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allow strong rectangle matchings that cover less than a fraction of 2/3 of the
points. We also give an algorithm that always matches 4n/7− 5 out of n points.

For the problem of matching points with axis-aligned squares, we give in
Section 4 efficient algorithms that decide the following problems: given a point
set and a combinatorial matching of the points, can the matching be realized by
a weak or by a strong square matching? In Section 5 we show that our algorithm
for strong square matching can also be used to solve a family of point-labeling
problems. Finally, in Section 6 we show that it is NP-hard to decide whether
a given point set admits a perfect strong square matching.

2 The General Problem

Following Ábrego et al. [1] we define the problem formally as follows:

Definition 1. Let C be a family of geometric objects and P a point set with an
even number of points. A C-matching for P is a set M ⊆ C, such that every
C ∈M contains exactly two points of P . A C-matching M is called strong if no
two elements of M intersect, and it is called perfect if every p ∈ P is contained
in some C ∈M .

The link between a matching with geometric objects and a graph-theoretical
matching is established by the following definition:

Definition 2. Let C be a family of geometric objects and P a point set in the
plane. The matching graph for C, P is the graph GC(P, EC), where two nodes
p �= q are adjacent if and only if there is an object C ∈ C that contains
exactly those two points, i.e. C ∩ P = {p, q}. We regard a geometric matching
as a realization of the underlying combinatorial matching.

The problem of matching points with geometric objects was introduced by
Ábrego et al. [1]. Their results base on the assumption that the points are in
general position, i.e. if there are no two points with the same x- or y-coordinate.
Ábrego et al. showed that for a point set in general position a matching with
axis-aligned squares always exists. They also showed that for every point set
P with n points, there is always a strong square matching that covers at least
2�n/5� points. If the point set is additionally in convex position, a perfect strong
square matching always exists, provided that n is even. On the other hand, they
give point sets with 13m points such that any strong matching covers at most
6m of the points.

For the family D of disks, Ábrego et al. also showed that a disk matching
always exists, provided that n is even. They prove this assumption by using
the matching graph for D. By definition, two points p, q ∈ P are adjacent in
GD if and only if there is a disk that contains exactly those two points. This
is equivalent to p and q being neighbors in the Delaunay triangulation of P .
Dillencourt [2] proved that for n even the Delaunay triangulation always contains
a perfect matching. Ábrego et al. also showed that for any point set there is
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always a strong disk matching covering at least 2�(n − 1)/8� points. On the
other hand, there are arbitrarily large point sets with n points, such that any
strong disk matching covers at most 72n/73 points.

3 Rectangle Matching

If points are in general position, the problem of matching points with axis-aligned
rectangles is trivial. An obvious algorithm that yields a perfect strong rectangle
matching is the following: Sort the points lexicographically and connect every
point with odd index to its successor. Since the order of the x-coordinates is
strictly monotonous, two consecutive rectangles cannot overlap.

However, if we drop the condition of general position, the problem becomes
interesting. Consider the point set Pn = {(i, i), (i − 1, i), (i, i − 1) | 1 ≤ i ≤ n}
∪{(n, n + 1), (n + 1, n)} and its matching graph Gn, which has 3n + 2 vertices
and 4n edges. Each of the central nodes (1, 1), . . . , (n, n) has degree 4 in Gn, and
each edge is incident to a central node. Clearly, only one of the edges incident
to a central node can be in a matching. Thus a maximum rectangle matching
of Pn has cardinality n; it covers 2n out of 3n+ 2 points. This shows that 2/3 is
an upper bound for the ratio of points that can always be covered by a rectangle
matching.

We now present a simple and efficient algorithm that always yields a strong
rectangle matching that covers at least 4n/7 − c points in an n-element point
set, where c is a small constant. The algorithm has been implemented and is
accessible via a Java applet at the URL http://i11www.ira.uka.de/matching.
The idea of our algorithm is the following. We partition the given point set P into
vertical subsets Vi, maximum chains of points with equal x-coordinate (allowing
|Vi| = 1). Let vi be the cardinality of Vi. We process these subsets from left to
right, making a cut as soon as a matching for the current point set has been
found that matches at least a fraction of 4/7 of the points since the last cut.
After making a cut, we disregard the points already processed and start over
again. If each of the subsets – except possibly the last – has a matching that
covers at least a fraction of 4/7 of the points, the overall matching will cover at
least 4n/7− c of the points in P if c is the size of the last subset.

If v1 is even or if v1 ≥ 3 is odd, we can match at least a fraction of 2/3 > 4/7 of
the points and make a cut after V1. Thus we assume v1 = 1 and consider V1∪V2.
Again, if v2 is even or if v2 �= 3 is odd, we can match enough points to make
a cut after V2. However, if v2 = 3, the middle point in V2 may have the same
y-coordinate as the point in V1, see Figure 1(a). This is the only configuration
with cardinalities v1 = 1 and v2 = 3 (for short [1, 3]) that we cannot match
perfectly. In this case consider the point set V1∪V2∪V3. If v3 is even or if v3 ≥ 5
is odd, we can match enough points to make a cut after V3. The cases [1, 3, 1]
and [1, 3, 3] need to be considered separately.

In case v3 = 1, the points may only allow two out of five points to be matched,
as shown in Figure 1 (b) (in every other configuration we can match four out of
five points and make a cut). In this case, consider V1 ∪ V2 ∪ V3 ∪ V4. It can be
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(a) (b) (c) (d)

Fig. 1. Some special cases for the 4/7-approximation: a) only 2 out of 4 points can be
matched, b) only 2 out of 5 points can be matched. Matching that covers at least 2/3
of the points c) for v4 even and d) for v4 odd.

shown that we can always match at least 2/3 of these points, regardless of the
cardinality of V4 (see Figures 1 (c) and (d)).

In case v3 = 3, we can always match four points within their respective vertical
sets. This covers four out of seven points. and allows us to make a cut after V3.

Note that there might be some points left after the last cut, that cannot be
processed. The number of left-over points is at most 5, since we can always cut
after [1, 3, 1, ∗] and after [1, 3,≥ 2]. This means that our algorithm in fact always
matches at least 4n/7− 5 out of n points. We assume that a similar technique
may be used to find an approximation algorithm that covers at least 2/3 of the
points minus some constant, which would reach the highest fixed ratio that can
be guaranteed. The time complexity of our algorithm is O(n log n) due to the
lexicographical sorting. We summarize:

Theorem 1. There are point sets of arbitrary size where any strong rectangle
matching covers at most 2/3 of the points. There is an algorithm that computes
in O(n log n) time a strong rectangle matching that covers at least 4n/7−5 points
in an n-element point set.

4 Square Matching

Note that, contrary to rectangle matchings, a square matching is not uniquely
defined by a given combinatorial matching. In this section we present efficient
algorithms that decide whether a given combinatorial matching M ⊆

(
P
2

)
of

a point set P has a weak or a strong square realization, where
(
P
2

)
= {{p, q} |

p, q ∈ P, p �= q} is the set of all unordered pairs of points in P .
Consider a square matching for a given point set P . Let the squares of this

matching shrink as much as possible while still covering the points. The resulting
squares are of minimum size among all squares that contain the two points, and
the points now lie on the square boundary. This new matching consists of squares
that are contained in the squares of the initial matching. This means that when
deciding whether a given matching can be realized as a square matching, it
suffices to examine square matchings where all the squares are of minimum size.

How many ways are there to place a minimum-size square Qi that contains
two given points pi and qi? It is easy to see that the edge length αi of a minimal
square is the distance of the two points in the maximum (or L∞-) metric (see
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Figure 2). If the two coordinate differences are not equal, the square can be slid
– to some extend – in the direction of the smaller coordinate difference βi. This
leads to the model of the sliding squares illustrated in Figure 2.

The kernel Ki of a point pair {pi, qi} is their bounding box, i.e. the smallest
axis-aligned rectangle that contains the two points. The kernel consists of the
part of the plane that is contained in every (minimal) square that contains the
two points. In other words, the kernel is the intersection of these squares. We
define the sliding space Si of {pi, qi} to be the union of those squares minus the
kernel, see Figure 2. Note that the kernel degenerates to an axis-parallel line
segment if the two points share a coordinate, and that the sliding space vanishes
if the two points lie on a line of slope +1 or −1. Then the minimal square that
contains the two points is uniquely defined. In spite of this we will consider
such squares to be vertically sliding. In what follows, the position of a vertically
sliding square Qi always corresponds to the y-coordinate of its bottom edge and
the position of a horizontally sliding square correspond to the x-coordinate of
its left edge. Let Q be a minimal square that contains p and q. If at least one of
the two points lies in a corner of Q, we say that Q is in extremal position.

Now it is easy to give an algorithm that checks whether a given matching M
of a point set P has a weak square realization: for each point pair {p, q} in M we
compute kernel and sliding space. If the kernel contains input points other than
p or q, then M does not have a square realization. Otherwise we check whether
there are input points in both connected components of the sliding space. If
not we can place a square matching p and q into the union of the kernel and
the empty component. If both components contain input points, we compute in
each component the point closest to the kernel. We call the resulting points a
and b. If the L∞-distance a and b is larger than the L∞-distance of p and q, then
we can place a square that contains the kernel and matches p and q anywhere
between a and b. Otherwise, if the L∞-distance of a and b is at most that of p
and q, M does not have a square realization. Using priority search trees [6], this
algorithm can be implemented to run in O(n log n) time.

Theorem 2. Given a set P of n points and a combinatorial matching M ⊆
(
P
2

)
,

it can be decided in O(n log n) time whether M has a weak square realization.

Now we turn to the problem of finding a strong square realization for a given
combinatorial matching. Due to the above observations, this problem simplifies
to examining combinations of placements of squares of fixed size. The idea be-
hind our algorithm for solving the strong realization problem is that instead of
considering a combination among all possible positions of the squares, we need
only check combinations among a few relevant positions for each square. The
correctness of the algorithm follows if we prove that the existence of a strong
realization implies the existence of a strong realization among the combinations
we considered.

It turns out that a problem in map labeling is related to our problem, namely
the problem of labeling a rectilinear map with sliding labels. That problem is
defined as follows: Given a set of axis-aligned segments that do not intersect
and a positive real h, is there a labeling with axis-aligned rectangles with width
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qi

αi

piSi

βi

Ki

Qi

Qk

Qk′
Qk′′

Qi(y)
Ki

Sk

h

h

Fig. 2. Notation for
sliding squares

Fig. 3. (k, k′) causes
Qi(y); (k, k′′) doesn’t

Fig. 4. Set of line segments (bold)
with height-h rectangle labeling

the same as the segment and height h? Each label must contain the segment it
labels. See Figure 4 for an example.

The link between the two problems is obvious: in both cases the solution con-
sists of positioning axis-aligned objects of fixed size that can slide in one axis
direction. In both problems the sliding objects must contain some other given
geometric object (a segment or a kernel). Contrary to the map-labeling problem,
in our case the kernels expand in both dimensions and the sliding objects are
not of fixed height h, which makes the problem harder. Kim et al. [3] showed
that the map-labeling problem can be solved in O(n log2 n) time. In this pa-
per we adapt their algorithm to solve the matching problem within the same
time.

Note that there is no strong matching if two kernels intersect. This can be
checked in O(n log n) time by a simple plane sweep [9]. Furthermore, if the sliding
space of a square and a kernel intersect, the sliding space can be truncated. This
can be done via a trapezoidal (i.e. vertical) decomposition in O(n log n) time.

We define the interaction graph G({1, . . . , n}, E) in which {i, j} ∈ E if and
only if the truncated sliding spaces Si and Sj interact, i.e. Si∩Sj �= ∅. Recall that
αi is the edge length of Qi. It is easy to see that Si intersects only a constant
number of truncated sliding spaces Sj with αj ≥ αi. Thus |E| ∈ O(n). Let
(xi, yi) be the lower left corner of kernel Ki. Define Ki < Kj to hold if yi < yj

or if yi = yj and xi < xj . In the sequel we assume that K1 < · · · < Kn. Now we
direct the edges of the interaction graph G, namely from small to large index
(according to the new order). For ease of disposition we add a dummy node 0
and dummy edges (1, 0), . . . , (n, 0) to G.

Now we discretize the problem. For each point pair {pi, qi} in M we com-
pute O(n) positions of the minimal square Qi that contains {pi, qi}. We only
detail how to do this for vertically sliding squares, the algorithm for horizontally
sliding squares is analogous. We denote the square Qi in position y by Qi(y).
We say that an edge (k, k′) ∈ E causes Qi(y) if (a) there is a directed path
k = v1, v2, . . . , vm = i in G, (b) the squares Qv2 , . . . , Qvm are vertically sliding,
(c) Qk is vertically sliding if k′ = 0, else Qk is horizontally sliding and v2 = k′,
and (d) yk + αv2 + · · ·+ αvm−1 = y, where yk is the y-coordinate of the top edge
of Kk. See Figure 3 for illustration.

For i ∈ {1, . . . , n} our algorithm computes a set Πi of pairs of the form (y, e),
where y ∈ R is the y-coordinate of some position of Qi and e ∈ E causes Qi(y).
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for i← 1 to n do
1. if Qi is vertically sliding then

Πi ← Πi ∪ {(yi − αi + βi, (i, 0))} {lower extremal position}
2. for each e ∈ E do te ← −∞ {initialize auxiliary variables}
3. for each (j, i) ∈ E do

(a) if Qj is horizontally sliding then
Πi ← Πi ∪ {(yj + αj , (j, i))} {y-coordinate of top edge}

(b) else {Qj vertically sliding}
for each (y, e) ∈ Πj with Qj(y) ∩ Si �= ∅ do

te ← max{te, y + αj} {update position of Qi caused by e}
4. for each e ∈ E do

if te > −∞ then Πi ← Πi ∪ {(te, e)}

The asymptotic running time of the above algorithm is dominated by the
total time spent in step 3(b), which sums up to O(

∑
(i,j)∈E |Πj |). Note that for

every edge in E there is at most one element in Πj . Thus |Πj | ≤ |E|, and the
algorithm runs in O(|E|2) = O(n2) time.

Now assume that there is a strong realization R of the given matching M .
We show that we can transform it into a strong realization R′ in canonical form
such that for each square Qi(y) there is a pair (y, e) ∈ Πi. We go through the
squares in order Q1, . . . , Qn. Let Qi be a vertically sliding square. The proof for
horizontally sliding squares is analogous. Move Qi downwards until Qi reaches
its lower extremal position, or the top edge of the sliding space of a horizontally
sliding square, or the top edge of some other vertically sliding square (that has
already been moved). Let Qi(y) be the resulting position of Qi. If Qi(y) is the
lower extremal position of Qi, we are done due to step 1 of our algorithm. If
Qi(y) touches the top edge of a sliding space of a horizontally sliding square, we
are done due to step 3(a). Finally, if Qi(y) touches the top edge of a vertically
sliding square Qj(z) with z = y − αj , then we know (by induction over i) that
there is an edge e ∈ E that has caused Qj(z) and that (z, e) ∈ Πj . Now due to
step 3(b) of the algorithm it is clear that the top edge y of Qj(z) was considered
in the computation of te and that Qj(y) is also caused by e = (k, k′). This in turn
yields that (y, e) ∈ Πi, since there cannot be another path from k, the origin
of e, to i in G that uses only vertically sliding squares and ends in a higher
y-coordinate than y. Otherwise Qi would have stopped there.

After we have computed the sets of type Πi, it remains to check whether
the square positions stored in these sets can be combined such that no two
squares overlap. Poon et al. [7] showed that this can be solved by examining the
satisfiability of a 2-SAT formula in O(kmaxn

2) time, where kmax = maxi |Πi|.
Strijk and van Kreveld [10] improved the running time to O(kmaxn log n). Since
kmax ∈ O(n), the resulting time complexity of our algorithm is O(n2 log n).

Since every strong square matching can be mapped to one in canonical form
as described above, the non-satisfiability of the 2-SAT formula implies the non-
existence of a strong square matching. On the other hand, if the 2-SAT formula is
satisfiable, a witness of its satisfiability translates into a strong square matching
(in canonical form). We conclude with the following theorem.
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Theorem 3. Given a set P of n points and a combinatorial matching M ⊆
(
P
2

)
,

it can be decided in O(n2 log n) time whether M has a strong square realization.

5 Application to Point Labeling

In this section we show that the algorithm for strong square matching described
in Section 4 can be applied to solve a family of point-labeling problems.

Poon et al. [8] describe the problem of labeling points with sliding labels as
follows: The labels are fixed-size rectangles that touch the point they label with
their boundary. Every label may slide along a fixed direction (horizontally or
vertically) and may not occlude other points.

The transformation of an instance of the point-labeling problem to an instance
of the square-matching problem is obvious, provided that labels are squares. The
algorithm of Section 4 can solve a more general problem though. Varying the
position of the auxiliary point, one can vary the size of the quadratic label. The
space within which the label may slide can be shortened too, by forming a kernel
of the respective thickness with the use of a different auxiliary point. Note that
the sliding space may even be shortened asymmetrically. Shortening the sliding
space of some labels can be of practical interest, e.g. when there are physical
landmarks on the map—like rivers—that must not be occluded.

Note that, even though labeling points with rectangles cannot be reduced to
examining the realizability of a square matching, the same techniques used for
the square-matching algorithm can be applied to sliding rectangles, too. This
generalizes the family of solvable point-labeling problems even further.

6 NP-Completeness

In this section we investigate the complexity of square matching.

Theorem 4. It is NP-hard to decide whether a given point set admits a perfect
strong square matching.

Proof. Our proof is by reduction fromPlanar 3-SAT, which is NP-hard [5]. Note
that the variables and clauses of φ can be embedded in the plane such that all
variables lie on a horizontal line and all clauses are represented by non-intersecting
three-legged combs [4]. Let φ be a planar 3-SAT formula. We construct a finite
point set S such that S has a perfect square matching if and only if φ is satisfiable.

For the general layout of our variable and clause gadgets, see Figure 5. Each
variable of φ is represented by a box, i.e. an axis-parallel rectangle (dark shaded
in Figure 5). The points on the boundary of these rectangles can only be matched
among each other and only in two different ways. This is true for two reasons:
neighboring points on the boundary are closer to each other than to any other
point, and between any two corner points there is an odd number of other points.

If the center point of the left edge of the rectangle is matched to its neighbor
above, the corresponding variable is true, otherwise it is false. The point pairs in
the matching are connected by thick solid line segments in Figure 5, respectively.
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(a) Non-perfect matching corresponding to u = true , v = false, w = false
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(b) Perfect matching corresponding to u = true , v = false, w = true

Fig. 5. A gadget for the clause ¬u ∨ v ∨ w

The variable boxes are connected via adapters to vertical pipes, the legs of our
clause gadgets. We say that a pipe transmits pressure if the lowest point on its
right side is matched upwards. This is the case e.g. for the point p in Figure 5 (a),
but not in Figure 5 (b). Generally the long vertical arrows in the pipes in Figure 5
indicate that (no) pressure is transmitted if they point upwards (downwards).
Note that our description assumes that the clause gadget lies above the variable
boxes; the reverse case is symmetric.

The adapters between the variable boxes and the pipes make sure that pressure
is transmitted if and only if the variable (such as v or w in Figure 5 (a)) is set to false
and occurs as a positive literal in the clause or the variable (such asu inFigure 5(a))
is set to true, but occurs as a negated literal. For the adapters we need a special
construct, so-called stoppers, i.e. configurations of eight points arranged in a 3× 3
grid without the center point. A stopper is designed such that its points can only
be matched to neighboring points on its boundary, but not to any other points –
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just like a variable box. The stoppers make sure that the large squares stick out
sufficiently far from the variable box and the clause legs to synchronize each other.

Our clause gadget (light shaded in Figure 5) with the special points a, b, c,
and x is built such that two points cannot be matched if all three pipes transmit
pressure, see e.g. the points a and c in Figure 5 (a). This corresponds to the
situation where all three literals of a clause are false. Note that no point of a
clause gadget can be matched to any point of another clause gadget if the clauses
are nested. In the case of neighboring clause gadgets this can simply be avoided
by making sure that they have sufficient distance and different height (or by
placing stoppers next to the corner vertices).

On the other hand we claim that all points in a clause gadget can be matched
if at most two pipes transmit pressure. To prove the claim it is enough to check all
seven cases of at most two pipes transmitting pressure. Figure 5 (b) depicts one
of these cases. We conclude that the point set S has a perfect square matching
if and only if φ is satisfiable. Our reduction is polynomial. ��
Corollary 1. Perfect strong square matching is NP-complete.

Proof. Theorem 4 yields the NP-hardness. To show that the problem actually
lies in NP , we non-deterministically guess a combinatorial matching. Then we
have to decide deterministically and in polynomial time whether this matching
has a strong square realization. For this we use the algorithm of Theorem 3. ��

Acknowledgments. We thank one of the anonymous referees for valuable com-
ments and Marc van Kreveld for information on [10].
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Abstract. As a generalization of paths, the notion of paths of band-
width w is introduced. We show that, for constant w ≥ 1, the corre-
sponding search problem for such a path of length k in a given graph is
NP-complete and fixed-parameter tractable (FPT) in the parameter k,
like this is known for the special case w = 1, the LONGEST PATH prob-
lem. We state the FPT algorithm in terms of a guess and check protocol
which uses witnesses of size polynomial in the parameter.

1 Introduction

A path within a graph is one of the most elementary notions of graph the-
ory and its applications. The LONGEST PATH is the computational problem
which asks for a given graph G and an integer k whether there is a path of
length k in G which is simple, i.e. all vertices are different from each other. The
LONGEST PATH is NP-complete [4]. Moreover, the LONGEST PATH prob-
lem is fixed-parameter tractable (FPT) in the parameter k. This was shown by
Monien [5] and improved with respect to running time by Alon, Yuster, Zwick [1],
using randomization techniques.

In this paper we generalize the notion of a path: a path of bandwidth w, or
for short w-path, in a graph G is a sequence (v1, . . . , vn) of vertices such that
for all vi, vj with 1 ≤ j− i ≤ w the pair (vi, vj) is an edge in G, see Fig. 1 for an
example of a 2-path. 1-paths are paths in the usual sense. It will be easy to show
that for every w ≥ 1 the corresponding computational problem BANDWIDTH-
w-PATH, which asks for a given graph G and an integer k whether there exists
a simple w-path of length k in G, is NP-complete.

The BANDWIDTH-w-PATH problem for every w is fixed-parameter tractable
in the parameter k, this will be shown according to the characterization of FPT
∩ NP by Cai, Chen, Downey & Fellows [2] via an “FPT guess and check pro-
tocol” using witnesses of size only dependent on the parameter. The runtime
obtained for our guess and check protocol, for the case w = 1, which is the
LONGEST PATH problem, and seen as a deterministic exhaustive search algo-
rithm, is worse than the algorithms of Monien [5] and Alon, Yuster, Zwick [1].
On the other hand, our algorithm is more easily stated and can immediately
be applied to the BANDWIDTH-w-PATH problem. Moreover, the algorithms
of [5], [1] do not seem to give better FPT guess and check protocols.

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 187–196, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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v1

v2

v3 v7v5

v4 v6

v1 v2 v3 v4 v5 v6 v7

Fig. 1. Two drawings of the same 2-path of length 5, vertex-disjoint and deterministic

2 Paths of Constant Bandwidth

Let G be a digraph and let w, k ≥ 1. A path of bandwidth w and length k in G
is a sequence of k + w vertices (v1, . . . , vk+w) such that the pair (vi, vi+j) is an
edge of G for every i with 1 ≤ i ≤ k and every j with 1 ≤ j ≤ w. A path of
bandwidth w and length k will also be called w-path of length k or, even shorter,
(w, k)-path. A 1-path of length k is a path of length k in the usual sense. (For
a path of length k some authors count the number of vertices while others count
the number of edges – which is one less. In this paper we count the number
of edges.) In Figures 2 and 3 some 2-paths and 3-paths are shown. Note that
a (w, 1)-path is a (w + 1)-clique: every two nodes are connected by an edge.
A (w, k)-path can actually be seen as a sequence of k (w + 1)-cliques with two
subsequent cliques “glued” together by their common w elements.

A (w, k)-path (v1, . . . , vk+w) is vertex-disjoint if all vi are different from each
other, it is simple if all k w-tuples (v1, . . . , vw), (v2, . . . , vw+1), . . . , (vk, . . . , vk+w)
are different from each other. A vertex-disjoint (w, k)-path is simple, but not vice
versa for w ≥ 2, see Figure 3. A vertex-disjoint (w, k)-path, as a graph on its
own, is the graph with k + w vertices having bandwidth w and a maximal set of
edges, that is why we choose the name “bandwidth” for the number w (see [6], [4]
for the definition of bandwidth of a graph).

v1

v2

v3 v5

v4 v6

v7

v8

Fig. 2. A 3-path of length 5, vertex-disjoint and deterministic
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v1 v3 v5

v4

v7v9v11

 = v10
v2 v6

 = v8

Fig. 3. A 2-path of length 10, deterministic and simple but not vertex-disjoint

Though the notion of w-paths within a graph G is a rather natural general-
ization of paths the authors could not find references for it in the literature. The
closest concept found is the w-ray from Proskurowski & Telle [6], corresponding
to a vertex-disjoint w-path (as a graph on its own).

A (w, k)-path (v1, . . . , vk+w) is deterministic in G if for every 1 ≤ i ≤ k
vi+w is the only vertex in the graph G having the property that all edges
(vi, vi+w), . . . , (vi+w−1, vi+w) are edges of the graph. For example, a determin-
istic 1-path has the property that every vertex of it – besides the last one – has
exactly one outgoing edge in G.

For w < k, a (w, k)-path (v1, . . . , vk+w) is a cycle of bandwidth w and length k,
for short w-cycle of length k or (w, k)-cycle, if (vk+1, . . . , vk+w) = (v1, . . . , vw).
The cycle is vertex-disjoint if v1, . . . , vk are different from each other, it is
simple if (v1, . . . , vk+w−1) is a simple w-path, see Fig. 4 for an example. For
undirected graphs the definitions can be transfered literally. For a fixed w let
BANDWIDTH-w-PATH be the set of pairs 〈G, k〉 such that the digraph G con-
tains a simple (w, k)-path. BANDWIDTH-1-PATH = LONGEST-PATH. Let
BANDWIDTH-PATH be the double-parameterized problem consisting of the
triples 〈G, w, k〉 such that the digraph G contains a simple (w, k)-path.

Fig. 4. A 2-cycle of length 8, deterministic and vertex-disjoint
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Some variations of these problems: Let the prefixes UNDIRECTED- and
DISJOINT- in front of these problem names indicate that the input graph is
undirected, or, independently, that the path to be found has to be not only
simple but vertex-disjoint, respectively. Let CYCLE instead of PATH in a prob-
lem name denote that the path to be found has to be a cycle. Call these
further 7 problems the variations of the BANDWIDTH-w-PATH problem,
resp. BANDWIDTH-PATH.

Proposition 1. For every w ≥ 1 the problem BANDWIDTH-w-PATH is NP-
complete, likewise its variations.

Proof. Obviously all problems are in NP. In order to show NP-completeness of
BANDWIDTH-w-PATH we reduce LONGEST PATH to it. Let some directed
graph G = (V, E) be given. Let the vertices V ′ of the graph φ(G) = (V ′, E′)
consist of 3w copies vi with 1 ≤ i ≤ 3w for each v ∈ V and w copies (u, v)i with
1 ≤ i ≤ w for each (u, v) ∈ E and let the edges be E′ = {(ui, uj) | i < j, u ∈ V }∪
{(ui+w, (u, v)j), ((u, v)i, vj+w) | 1 ≤ j ≤ i ≤ w, (u, v) ∈ E} ∪ {((u, v)i, (u, v)j) |
i < j, (u, v) ∈ E}.

It holds: G has a simple path of length k iff φ(G) has a simple w-path of
length (2k + 3)w iff φ(G) has a vertex-disjoint w-path of length (2k + 3)w.
Observe that a w-path (. . . uw+1, . . . , u2w, (u, v)1) in φ(G) can only be continued
by ((u, v)2, . . . , (u, v)w, vw+1, . . . , v2w, . . .) which forces a simple w-path to be
vertex-disjoint and to correspond with a path in G. Starting with (v1, . . . , vw, . . .)
or ending with (. . . v2w+1, . . . , v3w) allows to have the same length as starting in
vertices corresponding to possibly unused edges in G. q.e.d.

DISJOINT-BANDWIDTH-PATH is NP-complete because LONGEST PATH is
a subproblem and the length of a path is still at most linear. On the other hand, a
simple path may have a length of

(
n
w

)
and we conjecture PSPACE-completeness

for BANDWIDTH-PATH.
We mention that for fixed w the problem of searching for a deterministic

simple w-path of a given length k can be done in PTIME by a straightforward
marking algorithm.

3 Fixed-Parameter Tractability

The following notion is from Downey & Fellows [3] though it can already be
found – without giving it a name – in Monien [5–p. 240, the two paragraphs
before and after Th. 1, resp.].

Definition 1 (fixed-parameter tractability [5], [3]). A computational prob-
lem consisting of pairs 〈x, k〉 is fixed-parameter tractable in the parameter k if
there is a deciding algorithm for it having run-time f(k) · |x|c for some recursive
function f and some constant c.

We use the following characterization of FPT ∩ NP by Cai, Chen, Downey &
Fellows [2]:
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Theorem 1 (Cai et al. [2]). A language L ∈ NP consisting of pairs 〈x, k〉 is
fixed-parameter tractable in the parameter k iff there exists a recursive function
s(k) and a PTIME computable language C such that 〈x, k〉 ∈ L ⇐⇒ ∃y ≤ s(k):
〈x, k, y〉 ∈ C.

We call the function s the witness size function, and the language C the wit-
ness checker, and we say that these two together form an FPT guess and check
protocol for L.

Theorem 2. For every w ≥ 1 the problem BANDWIDTH-w-PATH is fixed
parameter tractable in the parameter k, likewise its variations. More specifically,
there exists an FPT guess and check protocol for it with a witness size function
s(k) =

(
k
2

)
·log k and a witness checker having running time O(w ·k2 ·|E|w ·|V |w).

Proof. We first consider the case w = 1, i.e. the LONGEST PATH problem.
Afterwards we will see that the algorithm is generalizable to the BANDWIDTH-
w-PATH problem for w > 1. We state an FPT guess and check protocol for
LONGEST PATH with the witness size function s(k) =

(
k
2

)
· log k and a witness

checker with runtime O(k2 · |E| · |V |).
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Fig. 5. Witness table for a simple path of length 4

Let a digraph G with n vertices be given. We want to find out whether the
graph contains a simple path p = (v1, . . . , vk+1) of length k. We will work with
witnesses. The intention of a witness is to tell the algorithm in the moment
when it is trying to build an initial segment (v1, . . . , vi) of the simple path of
length k which are the future vertices vi+1, . . . , vk+1 of the simple path – so
that the algorithm does not pick one of these future vertices as a part of the
initial segment. Unfortunately, we cannot use the tuple (v1, . . . , vk+1) as a wit-
ness, because that way we would have nk+1 potential witnesses, so we would
need at least (k + 1) log(n) bits to encode them, a number growing in n. But for
the FPT guess and check protocol we need some witness size function s(k) only
dependent on k.

We choose the following kind of witnesses. A witness for such a simple path
of length k consists of k(k + 1)/2 =

(
k+1
2

)
numbers ai,j ∈ {0, 1, . . . , k}, for

2 ≤ i ≤ k + 1 and j ∈ {1, . . . , k− i+2}. The witness can be visualized as a half-
matrix a, see Figure 5. Let ai for 2 ≤ i ≤ k + 1 be the tuple (ai,1, . . . , ai,k−i+2).
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We can restrict the witnesses to have these properties: ai contains only numbers
≤ i − 1 and at least one 0. There is some redundancy, for example ak+1,1 will
always be 0. Nevertheless, the order of magnitude of the witness size function
s(k) does not seem to be improvable by these “little savings”.

For every witness a the main algorithm C does the following: In each of
the k steps i = 2, 3, . . . , k + 1 it uses ai to compute for every vertex v a
value fa,i(v), defined further below, which is either a vertex or has the value
nil (standing for “not existing”), and stores this function for use in the fol-
lowing steps. The following pseudo code shows the main structure of the
algorithm.

Main algorithm C

Input: graph G, number k ≤ |G|, and a witness a

for every vertex v set fa,1(v) := v;

for i = 2, . . . , k + 1 do

for every vertex v in G do

compute fa,i(v) and store it;

if i = k + 1 and fa,i(v) �= nil ACCEPT and STOP;

REJECT and STOP;

The computation of the value fa,i(v) – which is either nil or a vertex –
is described in the pseudo code below. Assume w.l.o.g. that for each vertex
there is a list of incoming edges (ending with the nil list element) in which
the edges appear according to the order on the vertices. As a useful abbre-
viation let fd

a,i(v) for a vertex v and d with 1 ≤ d ≤ i + 1 be defined via

(v)

f (v)

2

3

f (v)4

v =  f

u =  f

(v)1

a,4

a,4

a,4

a,4

Fig. 6. A “backward path”, starting in v
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f1
a,i(v) := v, f2

a,i(v) := fa,i(v), and fd+1
a,i (v) := fd

a,i−1(fa,i(v)) with this value
being nil in case fa,i(v) or fd

a,i−1(fa,i(v)) equals nil. Intuitively, fd
a,i(v) follows

– starting in v – for growing d = 1, . . . , i + 1 the “backward path” given by
the fa,i−d-functions, see Figure 6. The upper index d numbers the vertices of
this path, and the witness elements ai,j ≥ 0 will refer to this numbering. The
information provided by ai,j ≥ 0 means that the ai,j-th vertex in the “backward
path” starting with a vertex u is the “reason” to dismiss the j-th attempt to
assign a possible predecessor u of v to fa,i(v). (The set F in the following pseudo
code collects such “reasons”.)

By easy induction on i, the following invariant will be guaranteed for every
witness a, every i with 2 ≤ i ≤ k + 1, and every vertex v:

(Inv1) If fa,i(v) �= nil then the “backward path” (f i
a,i(v), . . . , f2

a,i(v), f1
a,i(v))

is a simple path of length i− 1.

Computing fa,i(v)

Input: i, a, and v. Already computed: fa,1, . . . , fa,i−1.

set F := {v};
set j := 1;

if there are no incoming edges for v set fa,i(v) := nil and STOP;

set e = (u, v) to be the first edge incoming to v;

while e �= nil do

if fa,i−1(u) �= nil and

none of the vertices f1
a,i−1(u), f2

a,i−1(u), . . . , f i
a,i−1(u) is in F do

set c := ai,j ;

if c = 0

set fa,i(v) := u and STOP;

otherwise

set F := F ∪ {f c
a,i−1(u)};

set j := j + 1;

set e = (u, v) := next edge going into v;

set fa,i(v) := nil and STOP;

Verification of the main algorithm C: If the algorithm accepts, then it has found
for this witness a a vertex v such that fa,k+1(v) �= nil. By invariant (Inv1), case
i = k + 1, the backward path starting in v is a simple path of length k.
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On the other hand assume that there is a simple path of length k in G. Let
s = (s1, . . . , sk+1) be the lexicographically smallest among them (largest weight
on sk+1, unlike, for example, with decimal numbers). With the knowledge of this
path and its vertices we will construct a witness b such that the main algorithm
will accept for witness b.

Constructing b

Input: s1, . . . , sk+1.

for every vertex v set fb1,1(v) = v;

for i = 2 to k + 1 do

set e = (u, si) := first edge going into si;

set F = {si};
set j := 1;

repeat

while fbi−1,i−1(u) = nil

or some of the vertices f1
bi−1,i−1(u), . . . , f i

bi−1,i−1(u) is in F

set e = (u, si) := next edge going into si;

if there is a c ∈ {1, . . . , i} such that f c
bi−1,i−1(u) ∈ {si+2, . . . , sk+1}

set bi,j := c for the smallest such c;

set F := F ∪ {f c
bi−1,i−1(u)};

set j := j + 1;

until there is no such c;

bi,j := 0

compute fbi,i(v) for all vertices v;

The crucial invariant kept by this construction is the following:

(Inv2) For every i with 2 ≤ i ≤ k + 1 it holds: fb,i(si) = si−1.
The invariant holds via induction on i: the construction of bi prevents fb,i(si)

from choosing one of the vertices si+1, . . . , sk+1 which will be needed in the fu-
ture but which would be – without the witness – unknown at step i. Because
there are at most k−i+1 such vertices the repeat loop will always terminate and,
moreover, the part bi of the witness has sufficient size. For every 2 ≤ i ≤ k +1 it
is guaranteed that the computation of fb,i(si) will terminate, i.e. will be not-nil,
because at least (si−1, si) is a suitable edge, and this will be the first suitable edge
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which fb,i(si) will find, i.e. fb,i(si) = si−1, because otherwise s = (s1, . . . , sk+1)
would not be lexicographically minimal. Invariant (Inv2) implies for i = k+1 that
the backward path (fk+1

b,k+1(sk+1), . . . , f2
b,k+1(sk+1), f1

b,k+1(sk+1)) at sk+1 equals
s = (s1, . . . , sk+1), i.e. the main algorithm C will accept the input graph for
this witness b via a non-nil value of fb,k+1 at vertex sk+1. This finishes the
correctness proof for the FPT guess and check protocol.

The running time of all fai(v) for a fixed i is O(k · |E|) as it is dominated
by checking the backward path of length ≤ k for each edge incoming to v (we
ignore some log(k) factors for the comparison algorithms). Therefore, the main
algorithm C has runtime O(k2 · |V | · |E|). Representing all witnesses can be done
with

(
k
2

)
· log k bits, i.e. the witness size function can be chosen this way (note

that the diagonal of the half matrix does not need to be stored – it can be as-
sumed to consist of 0’s). This finishes the proof that an FPT guess and check
protocol exists for LONGEST PATH.

Cases w > 1. We first do a graph transformation. From the given graph G con-
struct the following graph G′: Consider all w-tuples (v1, . . . , vw) of vertices of G.
Make such a tuple a vertex of G′ if the tuple represents a directed w-clique in G,
i.e. (vi, vj) is an edge in G for 1 ≤ i < j ≤ w. The edges in G′ are defined to consist
of the pairs of such w-cliques of the special form ((v1, . . . , vw), (v2, . . . , vw, vw+1))
such that also (v1, vw+1) is an edge in G. We have the property: G contains a simple
w-path of length k iff G′ contains a 1-path of length k. The witness checker consists
therefore of this graph transformation and subsequently the checking algorithm C
for w = 1 running on G′. In total the checking takes O(w · |V |w · |E|w) time, the
first w stems from a slightly higher comparison time for tuples. The witnesses size
function does not change.

Variants: For the vertex disjoint case with w > 1 it is not enough to do
the graph transformation, one has to go inside the checking algorithm C and
maintain the vertex lists appropriately. q.e.d.

4 Conclusions and Open Questions

We introduced for every w ≥ 1 the NP-complete problem BANDWIDTH-w-
PATH and showed that it is fixed-parameter tractable in the length parameter k
by presenting an FPT guess and check protocol for it, according to the charac-
terization of Cai et al. [2].

As an open problem we suggest to study whether the witness size function,
especially for the case LONGEST PATH, can be improved from the quasi-
quadratic function

(
k
2

)
log k to some quasi-linear function, for example by the

methods of Monien [5] or Alon, Yuster & Zwick [1].
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Abstract. Graph searching is the game of capturing a fugitive by a
team of searchers in a network. There are equivalent characterizations in
terms of path-width, interval thickness, and vertex separation. So far the
interest has mainly focused on the search number of a graph, which is the
minimal the number of searchers to win the game, and accordingly on the
width and the thickness. These parameters measure the needed resources
and correspond to space complexity. As its dual, we introduce the search
time, which has not yet been studied in graph searching. We prove that
all main results on graph searching can be generalized to include search
time, such as monotone or recontamination free graph searching, and
the characterizations in terms of path-width, interval graphs, and vertex
separation, for which we introduce appropriate length parameters. We
establish the NP-completeness of both search-width and search-time. Fi-
nally we investigate the speed-up by an extra searcher. There are ’good’
classes of graphs where a single extra searcher reduces the search time
to one half and ’bad’ ones where some extra searchers are no real help.

1 Introduction

Graph searching has been introduced by Parsons [26] as a game on graphs,
where an invisible fugitive moving fast along paths shall be captured by a team
of searchers. Alternatively, we may think of a network whose edges are contam-
inated with a gas, and the objective is to clean the network. However, the gas
immediately recontaminates cleaned edges, if its expansion is not blocked by
valves at the vertices, and the fugitive may re-enter already searched parts of
the graph, if there are unguarded paths. Several variants of graph searching have
been investigated and equivalent characterization have been elaborated, relating
graph searching e.g., to path-width and tree-width, see e.g. [2], [3], [9], [11], [12],
[13], [14], [19], [20], [21], [25], [23], [26].

In a move a searcher is placed at a vertex, and searchers are removed from
other vertices of the graph. A searcher at a vertex v guards all paths through v
and prevents the fugitive or the gas to pass. In node searching an edge is cleared
if simultaneously both ends are visited by a searcher. In edge searching an edge
is cleared by a sweep of a searcher along the edge. Mixed versions allow the
clearance of an edge by either mode. These versions are closely related [21]. In
other versions of graph searching the fugitive is visible [28] or it is lazy [9]. Then
the number of searchers is directly related to the tree-width of the graph. Yet
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another variant with mobility restrictions of the fugitive has been studied in [15]
to model issues of privacy in distributed systems.

The classical goal of graph searching is a sequence of moves to win the game
and definitively capturing the fugitive while minimizing the maximal number
of searchers needed at any time. This minimum value is the search number of
a graph G. The search number aims at minimizing the used resources. As such
it corresponds to space complexity. It has been shown that the search number
equals the interval thickness of G and is one above than the path-width and the
search number of G [11], [19], [21]. Thus graph searching corresponds directly
to other important graph parameters. Fomin et al. [13], [14] have introduced
the expenditure as another optimality criterion. The expenditure minimizes the
total payment for the searchers and equals the sum of the lengths of the intervals
in the canonical interval representation of the graph. Finally, Chang [8] has
investigated the single step edge search problem. Then node searching and edge
searching differ essentially. Every graph with n vertices and m edges can be
searched in one step by n node searchers, and m edge searchers are necessary
and sometimes not sufficient. Here every odd cycle needs one extra searcher, and
it is NP-hard to determine the minimal number of single step edge searchers [8].

In this paper we consider time complexity and introduce the length as a new
cost measure in graph searching. How fast can a team of k searchers search
a graph, and conversely how many searchers are needed to search a graph in
time t. This induces parameterized double-complexity and time-space trade-offs,
which parallels traditional approaches in computational complexity [30]. And it
introduces time as a graph parameter in representations with restricted path-
width or interval thickness. In general, if k searchers are sufficient to search
a connected graph of size n and n ≥ 2, then the search time ranges between
�(n − k)/(k − 1)� + 1 and n + 1 − k. Hence, there is at most a factor of k − 1
between the fastest and the slowest search strategy, provided k searchers suffice.

The objective of this paper is a generalization of the main results on graph
searching to include search time. This can be accomplished completely. First, we
prove the monotonicity of graph searching or graph searching without recontam-
ination. As a consequence the graph searching problem is in NP, and optimal
graph searching is NP-hard. For the search number this has been shown in [25]
and for the search time it is proved in Section 3. However, while search num-
ber is fixed parameter tractable, this is yet unknown for search time. Secondly,
we establish the equivalence between graph searching and path-width, interval
thickness and search number, both for time and space parameters. Finally, we
consider the speed-up by an extra searcher. There are classes of graphs where an
extra searcher reduces the search time roughly to one half, and there are other
classes of graphs where some extra searchers do not really help in saving time.

The paper is organized as follows: In Section 2 we introduce the concepts from
graph searching. We establish the monotonicity in Section 3 and prove the NP-
hardness. Section 4 shows the equivalence between graph searching, path-width,
interval thickness and search number with the generalization to time or length.
Finally, in Section 5, we discuss the speed-up by an extra searcher.
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2 Preliminaries

We consider node searching on simple, connected, undirected graphs G = (V, E)
with a set of vertices V and a set of edges E. For convenience there are no loops
and no multiple edges. By n we denote the size of G, and we assume n ≥ 2,
which excludes trivial cases.

The rules for node searching are as follows: Initially, all edges are contaminated
and in the end all edges must be cleared. In a move at time i = 1, 2, . . . searchers
are placed on vertices, or searchers are removed from other vertices. In a move
many searchers can be placed or removed, but not simultaneously at a single
vertex. An edge is cleared at time i, if both endnodes are visited by a searcher
and both searchers remain at least one unit of time. A contaminated edge is
not cleared if a searcher is placed at one endnode and simultaneously the last
searcher is removed from the other endnode. A clear edge e is instantaneously
recontaminated, if there is a path from a contaminated edge to e without a
searcher on a vertex of that path. A search strategy is a sequence of moves that
results in all edges being simultaneously clear. Then the search game is won.
A search strategy describes the computation on a graph by the rules of node
searching. For linear graph languages, i.e., the sets of graphs generated by linear
graph grammars, the search strategy can be represented by a finite state graph
automaton, which accepts the linear graph language [7].

Our formal definition generalizes the concepts of Bienstock and Seymour [3]
and Fomin et al. [13], [14].

Definition 1. A search strategy σ on a (connected) graph G = (V, E) is a se-
quence of pairs σ = ((C0, B0), (C1, B1), . . . , (Ct, Bt)) such that:

1. For i = 0, . . . , t, Ci ⊆ E is the set of clear edges and Bi ⊆ V is the set of
boundary vertices which are visited by searchers at time i. The edges from
E − Ci are contaminated.

2. (initial state) C0 = ∅ and B0 = ∅. All edges are contaminated.
3. (final state) Ct = E and Bt = ∅. All edges are cleared.
4. (place and remove searchers and clear edges) For i = 0, . . . , t − 1 there are

sets of vertices Pi ⊆ V −Bi and Ri ⊆ Bi such that Bi+1 = Bi−Ri∪Pi. Then
searchers are places at the vertices from Pi and are removed from Ri. The
set of cleared edges is Ci+1 = Ci∪{{u, v} ∈ E |u, v ∈ Bi+1}−{{u, v} ∈ Ci |}
there is a path from a vertex w with an edge {w, w′} ∈ E−Ci to u or v such
that no vertex on the path is in Bi+1.

Let width(σ) = max{|Bi| |i = 0, . . . , t} and length(σ) = t−1 be the maximum
number of searchers and the number of moves of σ. Note that we discard the last
move, which only removes searchers.

A search strategy σ is monotone, if Ci−1 ⊆ Ci for every i = 1, . . . , t. At
other places the term progressive [3], [14], augmenting [13], and recontamina-
tion free [21], [23] is used.
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Definition 2. For a connected graph G with at least two vertices and integers k
and t let search-widthG(t) be the least width(σ) for all search strategies σ with
length(σ) ≤ t and let search-timeG(k) be the least length(σ) for all search
strategies σ with width(σ) ≤ k. Set search-widthG(t) resp. search-timeG(k) to
infinity, if there is no such search strategy.

A search strategy σ is called time-space optimal, if width(σ) = search-widthG(t)
with length(σ) = t for a given t, or if length(σ) = search-lengthG(k) with
width(σ) = k for a given k.

search-widthG(t) is the least number of searchers that can search G in time at
most t (with at most t+1 moves), and search-timeG(k) is the shortest time such
that at most k searchers can search G. Thus, we can parameterize search-width
in terms of search-time, and vice versa. Clearly, search-widthG(t) = k implies
search-timeG(k) ≤ t, and search-timeG(k) = t implies search-widthG(t) ≤ k.

The commonly known node search number equals search-widthG(t) for all
sufficiently large t, and t ≤ n by the monotonicity. Search-time has not yet been
studied for node search. The single step edge search in [8] is different.

Example 1. Consider an n×m grid G with m ≤ n and m ≥ 2. Then G can be
searched by m + 1 searchers, and this is minimal. m + 1 searchers search G by
a plane-sweep in time m ∗ (n − 1) and with m ∗ (n− 1) + 1 moves first placing
m searchers at the vertices of the leftmost row and the m + 1-st searcher in the
second row. In every further move one searcher is free and is placed at a new
vertex in the next row. In the final move all searchers are removed.

Here m + 2 searchers can do much better visiting two new vertices at every
move and so reducing the search time to m(n− 1)/2, and 2m searchers can win
the game in time n− 1 searching a new row in every move.

3 Monotonicity

Recomputations must be avoided in the design of time efficient algorithms. Clas-
sical paradigms are the greedy method and dynamic programming. In graph
searching recomputations are necessary after a recontamination of cleared edges.
This can be avoided, as was first shown by LaPaugh [23] for edge searching. The
existence of monotone or progressive search strategies with the same number
of searchers has been proved for several versions of graph searching and cost
measures, see [3], [14], [13], [21], [28]. We follow the technique of Bienstock and
Seymour [3] and adapt the construction from Fomin and Golovach [13], [14].
This is a key requirement for the characterizations in terms of the graph repre-
sentations in Section 4.

For a subset of edges X ⊆ E of a graph G = (V, E) let V (X) ⊆ V be the set
of endnodes of the edges from X and let B(X) = V (X)∩ V (E −X) denote the
boundary vertices of X . Every boundary vertex of X is incident to at least one
edge in X and an edge not in X . v is an inner vertex of X , if all incident edges
of v are in X .
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We consider clews in graphs of a special structure. Let G0 = (V, E0) be
obtained by adding a loop {v, v} at every vertex of a graph G = (V, E). A clew
in G0 is a sequence γ = (X0, X1, . . . , Xt) of subsets of E0 such that the following
holds:

1. X0 = ∅ and Xt = E0.
2. for i = 1, . . . , t, |V (Xi)− V (Xi−1)| ≤ k for some k ≥ 1.
3. for i = 1, . . . , t, if v ∈ V (Xi) then the loop at v belongs to Xi.

The width of γ is max{|B(Xi)| |i = 1, . . . , t}, the length is t−1 and the weight
is

∑t
i=0 |B(Xi)|.

A clew is monotone if X0 ⊆ X1 ⊆ . . . ⊆ Xt and |V (Xi) − V (Xi−1)| ≥ 1 for
i = 1, . . . , t.

Our clews are extensions of the ones in [14] with up to k vertices between
V (Xi) and V (Xi−1) and at least one for monotone clews. Fomin and Golovach
enforce k = 1 which implies long clews of length at least n− 1.

Our first theorem establishes the existence of a monotone search strategy with
the same width and length as a given strategy.

Theorem 1. For every (connected, simple) graph G and integers k, t ≥ 1 the
following statements are equivalent:

1. there is a search strategy σ with width(σ) ≤ k and length(σ) ≤ t

2. there is a clew γ on G0 with width at most k and length at most t
3. there is a monotone clew γ on G0 with width at most k and length at most t
4. there is a monotone search strategy σ with width(σ) ≤ k and length(σ) ≤ t.

Proof (Sketch). We argue as in the monotonicity proofs in [3], [13], [14]. The
monotone strategy can be obtained from the ’lightest’ clew, which is the clew
with the least weight and such that the sum of the size of the sets of edges is
a secondary criterion.

As a consequence, we can restrict ourselves to monotone graph searching.
There are linear bounds on the lengths of optimal search strategies, and graph
searching is in NP. Moreover, good and bad searches differ at most by a factor
of (k − 1) in time and by a factor of t in width. This comes from the fact that
in the first move at most k vertices are visited and in any other move at most
k− 1 new vertices can be visited, since at least one searcher must remain on an
’old’ vertex by the connectivity. The upper bound comes from monotone graph
searching.

Theorem 2. For every connected graph G with |G| = n and integers k and
t such that k is at least the search number of G there is a (monotone) search
strategy σ such that

�(n− k)/(k − 1)�+ 1 ≤ length(σ) ≤ n + 1− k and (1)
�n− 1/t�+ 1 ≤ width(σ) ≤ n. (2)



202 F.J. Brandenburg and S. Herrmann

From the complexity point of view graph searching is NP-hard. It has been
shown that whether or not the search number of a graph is less than a given
bound k is NP-complete, see [24] and [25]. The computation of the search number
remains NP-hard even for chordal graphs [17], star-like graphs [17], bipartite [22]
and cobipartite (i.e. complement of bipartite) graphs [1], and for planar graphs
of maximum degree three [29], whereas it can be computed in polynomial time,
e.g., for cographs [6], permutation graphs [5], split graphs [17], [22], and graphs of
bounded treewidth [4]. Hence, it is NP-hard whether or not search-widthG(t) ≤ k
for t = n, or with unbounded time.

Concerning search-time, Chang [8] has considered edge searching in a single
step. In unit time a searcher can sweep an edge and search it. Hence, at least
m searchers are necessary to search a graph with m edges. This number may not
suffice. A fugitive can hide between two edge searchers, if they leave a gap. For
example, a path of length l cannot be searched by l searchers, if they move in
the same direction. In particular, an odd cycle needs one more searcher than its
length. In this model, Chang states that it is NP-hard, whether or not k searchers
can search a graph in a single step. This result cannot be transferred to node
searching, where n searchers are necessary and sufficient to search a connected
graph of size n. Hence, search time leads to a distinction between node and edge
searching.

For independent parameters k and t we show the NP-hardness both for search-
time and for search-width by a reduction from 3-PARTITION [16]. Given an
instance of 3-PARTITION with 3m items and a total size of mB, the size s(a) of
every item is transformed into a clique of that size, and every vertex is connected
to a distinguished center to establish connectivity. Then B + 1 searchers can
search the graph in time m if and only if there is a solution of the instance of
3-PARTITION.

Theorem 3. For connected graphs G and integers k and t it is NP-complete
whether or not search-timeG(k) ≤ t and search-widthG(t) ≤ k.

From the equivalence between graphs searching and path-width and interval
thickness and 2D layouts established in the next section we can conclude the
NP-completeness of the following question:

Corollary 1. For (connected) graphs and integers k and t it is NP-complete
whether or not there is a path-decomposition, an interval representation, or
a 2D layout of G of width k and length t.

The computation of the width is known to be fixed parameter tractable FPT [10],
and for fixed k there are linear time algorithms to compute the search number, the
path-width of the interval thickness of a graph. We don’t know of a similar result
for search time or the length of the graph representations. It would be interesting
to see how far the NP-hardness for the length goes, when the width is chosen freely.
In particular, is the width computable in polynomial time for bounded length? Is
search-time fixed parameter tractable?
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4 Path-Width, Interval Thickness, and Search Number

In this section we generalize well-know characterizations of graph searching in
terms of particular graph representations. At the first glance the correspondence
between the search number of a graph, its path-width, interval thickness and
vertex separation is surprising. First, we recall the necessary definitions, and
add the notion of length.

The notions of tree-width and path-width were introduced by Robertson and
Seymour [27].

Definition 3. The path-decomposition of a graph G = (V, E) is a sequence
(X1, X2, . . . , Xr) of subsets of V such that

–
⋃r

i=1 Xi = V
– for every edge e = {u, v} there is an i with u, v ∈ Xi

– for all i, j, k with 1 ≤ i < j < k ≤ r: Xi ∩Xk ⊆ Xj.

The width of a path-decomposition (X1, X2, . . . , Xr) is max1≤i≤r|Xi|−1, and
the length is r. For integers k and t the parameterized path-width and path-
length of a graph G are the minimum width over all path-decompositions of
length at most t and the minimum length over all path-decompositions of width
at most k. The (absolute) path-width of a graph is the minimum path-width
over all lengths t. Clearly, t ≤ n and in fact t ≤ n−k+1, where k is the absolute
path-width. The absolute path-length is meaningless, since it is one for k = n.

Interval graphs have first been defined by Hajos [18]. The interval representa-
tion of a graph G consists of an open interval Iv = (lv, rv) on the real line with
integer boundaries lv, rv for every vertex v and such that for every edge {u, v}
the intervals Iu and Iv overlap.

The thickness (or width) of an interval representation is the maximal number
of intervals that overlap at some point. The interval thickness is the smallest
thickness over all interval representations. The length of an interval represen-
tation is the maximal difference between interval boundaries. This is rv − lu,
where rv is is maximal for all vertices v und lu is minimal for all vertices u. For
integers k and t the interval-thickness and the interval-length of a graph G are
the minimum thickness over all interval representations of length at most t, and
the minimum length over all interval representations of thickness at most k. The
(absolute) interval thickness of a graph is the minimum interval-thickness over
all lengths t, where t ≤ n suffices. The absolute interval-length is meaningless,
since it is one for k = n, where G is seen as a subgraph of the complete graph Kn.

Finally, we consider the vertex separation of a graph and its relation to graph
searching as established by Ellis et al. [11]. The vertex separation uses a lin-
ear layout of the graph, which is folded into a 2D layout for a more compact
representation in X-dimension.

A linear layout of a graph G is a one to one mapping L of the vertices into the
set {1, . . . , n}. Now identify each vertex with its position. For every i consider
the set of left endpoints of edges {u, v} with u ≤ i and with a right endpoint to
the right v > i. The vertex separation of G with respect to L is the maximum size



204 F.J. Brandenburg and S. Herrmann

of the above sets of left endpoints over all positions i. Thus at every position p
count the number of vertices to the left of and including p which have an edge
to a vertex to the right of p.

For a more compact representation we fold the linear layout in two dimensions.
Let f be a one to one function with f(i) = (x, y) with integers x and y and x ≥ 1
and such that i < i′ implies f(i′) = (x′, y′) with x < x′ or x = x′ and y < y′.
Thus f transforms the linear into a lexicographic order.

The 2D layout of a graph is obtained by the composition of L and f . The
width of a 2D layout at some x is the number of vertices (x′, y′) with x = x′

plus the number of vertices (x′, y′) with x′ < x and such that there is an edge
of G which is mapped to ((x′, y′), (x′′, y′′)) and x′′ > x. In other words, we count
the vertices in the x-th column and add the number of vertices to the left of
the x-th column with an edge to the right of the x-th column. The length of the
2D-layout is the maximal x-coordinate.

For integers k and t the 2D vertex separation width and the 2D vertex sepa-
ration length of a graph G are the minimum width over all 2D layouts of length
at most t, and the minimum length over all 2D layouts of width at most k.
The vertex separation of a graph is the minimum 2D vertex separation over all
lengths t. Here t = n suffices, which is the known linear layout. The absolute
vertex separation length is meaningless, since all vertices are mapped to a single
column with coordinates (1, y) for the vertices y = 1, . . . , n of G.

With these extensions of the measures on the path-width, interval thickness,
and vertex separation, we obtain the following characterization.

Theorem 4. For a connected graph G and parameters k and t the following are
equivalent:

1. search-widthG(t) = k and search-lengthG(k) = t.
2. path-widthG(t) = k − 1 and path-lengthG(k) = t.
3. interval thicknessG(t) = k and interval thicknessG(k) = t.
4. vertex-separationG(t) = k − 1 and vertex-lengthG(k) = t.

Proof (Sketch). For the proof we use the monotonicity of graph searching and
follow the constructions from [11], [19], [20], [21]. For a path decomposition
(X1, X2, . . . , Xr) of G let (Y1, Y2, . . . , Yr) be a 2D layout with Y1 = X1 and
Yi = Xi − ∪j<iXj for j = 2, . . . , r, and construct the interval representation
with Iv = (lv, rv) for every vertex v, where lv and rv are the first resp. last
occurrences of v in the sets Xi from the path decomposition, and vice versa.
Finally, let X0 = ∅ and in the i-th move place searchers on the vertices from
Xi − ∪j<iXj and remove searchers from all vertices in ∪j<iXj which have no
edge to a vertex in ∪q≥iXq, and vice versa. Then the width and the length are
preserved by these constructions.

5 Speed-Up

If k searchers can search a connected graph G of size n in time t, how much
faster can k+1 searchers do? From the observation in Section 3 it is known that
good and bad search strategies differ at most by a factor of k − 1.
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Clearly, increasing the path-width by a factor of q reduces the path-length
accordingly. Hence, if k searchers can search a (connected) graph G in time t,
then for every integer q ≥ 2, qk − (q − 1) searchers can search G in time �t/q�.
In particular, 2k − 1 searchers are twice as fast as k. However, there are classes
of graphs where a single extra searcher achieves a twofold speed-up. Conversely,
there a classes of graphs where some extra searchers do not help.

Theorem 5. There are classes of graphs Gi,i∈I and Hi,i∈I with search-number ki

such that

1. Gi is searched by ki searchers in time ti = |Gi|+1−ki, and ki +1 searchers
can search Gi in time 1 + �ti/2�.

2. search-timeHi(ki) = search-timeHi(2ki − 1).

Proof. First consider the set of k-1-paths, which are degenerated k-1-trees, see [1].
These graphs consist of a sequence of cliques of size k-1 and can be searched by
k searchers. k is also the lower bound. Then search-timeG(k) = n − k + 1 and
search-timeG(k + 1) ≤ �(n − k)/2�. Observe that n × m grids have a similar
behaviour.

Secondly, consider graphs Cq which are a ’star’ of q-cliques. Thus the graphs
have pq+1 vertices with a center Z and p disjoint q-cliques. Z is connected with
every other vertex. Then Cq needs exactly q + 1 searchers, which search Cq in
p moves. A single or up to q-1 extra searchers do not really help since search-
timeCq(k) = p for every k with q + 1 ≤ k ≤ 2q.

6 Conclusion

We have introduced the notion of time or length to graph searching, path-width,
interval thickness and search number and have shown that the major results can
be generalized to include time.

This introduces a speed-up by extra searchers, which raises the question which
classes of graphs have good and which have a bad speed-up. What does this mean
for the path-width?
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Abstract. It has been widely recognized that inconsistencies often ap-
pear and are inevitable when specifying large and complex concurrent
systems. The logic QCL (quasi-classical logic) has therefore been devel-
oped for handling such specifications. But, on the one hand, temporal
aspects, significant for ensuring the correct behavior of concurrent sys-
tems, cannot be specified by QCL, on the other hand, Classical tem-
poral logics like CTL (computation tree logic) fail for system specifica-
tions with inconsistent information due to the trivial inference problem.
To bridge this gap, in this paper a non-classical temporal logic QCTL
(quasi-classical temporal logic) is introduced, including a novel seman-
tics in term of paraKripke structures and a sound and complete proof
system. It is paraconsistent, i.e., it can be used to non-trivially reason
about inconsistent system specifications. Furthermore, an example is pre-
sented, showing the use of QCTL for reasoning about concurrent systems
containing inconsistent information.

1 Introduction

In recent years, researchers and practitioners have to focus their mind on how to
properly handle those unavoidable inconsistent information frequently existing in
the stage of developing large and complex concurrent systems [1]. In fact, the de-
velopment of most complex concurrent systems necessarily involves many people
with their own perspectives on the systems, therefore, inconsistencies inevitably
appear when integrating components developed by these people; Moreover, in
some stages like requirements specifications, information is ambiguous and even
inconsistent. In a word, inconsistencies are a fact of life, and we must learn to
live with them.

Traditionally, inconsistencies are seen as undesirable and something to be
avoided if at all possible, therefore tools and techniques are developed to remove
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the inconsistencies as soon as or soon after they are detected. But such an
approach is always unrealistic in practice. For example, in a number of case
studies it is revealed that some inconsistencies never get fixed in some period.
Even if some inconsistencies have been fixed, the decision to repair them is risk-
based, which may bring about more other inconsistencies in open distributed
processing, or even sometimes a completely consistent stage is unreachable in
practice [2]-[4]. Furthermore, checking consistency of specifications from multiple
sources is computationally expensive.

From another point of view, existing inconsistencies are not always bad things,
which can be used as a tool to improve the developers’ shared understanding to
targeted systems, guide the future development, and assist with verification and
validation.

Thus it is a better choice to manage inconsistencies in a more general fash-
ion [1], [5]. But, to the best of our knowledge, many formal specification lan-
guages, like Z, are based on classical logics. When concurrent specifications
contain inconsistent information, classical logic is insufficient due to the triv-
ial inference problem. Therefore, it is natural and necessary to employ other
logical foundations to handle inconsistent specifications, such as paraconsistent
logics, as did Hunter and Nuseibeh in [2].

Paraconsistent logics [6], [7] provide a solution to reasoning under inconsis-
tency, which permit some contradictions to be true, without resulting in trivi-
alization of classical logics. Generally speaking, paraconsistent logics are weaker
than classical logics in the sense that not all classically valid inferences are pos-
sible. This is achieved by non-standard behavior of logical connectives, by the
introduction of new logical connectives, by disallowing established proof rules, or
by other means. More details about paraconsistent logics can been found in [8]-
[10]. Additionally, Multi-valued logics [11], [12] provide a mean for non-trivially
reasoning under inconsistency.

The paraconsistent logic QCL [2], [7] is a suitable replacement for many other
logics in the context of inconsistent specifications. In [3], [13], QCL is used to
reason about inconsistent Z specifications. However, it cannot be used to specify
temporal properties of concurrent systems. Temporal aspects [14] are significant
and vital for ensuring the correct behavior of concurrent systems. On the other
hand, as we have already mentioned classical temporal logics like CTL cannot ef-
fectively handle inconsistent system specifications. Motivated by this, we present
in this paper a non-classical temporal logic termed QCTL, which subsumes both
QCL and CTL. QCTL is a paraconsistent logic. Within QCTL, properties espe-
cially temporal properties of concurrent systems with inconsistent specifications
can be handled non-trivially.

The paper is organized as follows: Section 2 defines the syntax and semantics
of QCTL. Section 3 proposes a sound and complete proof system for QCTL.
Section 4 shows the use of QCTL for reasoning about concurrent systems by
a simple phone system. Section 5 summarizes the paper. For lack of space, all
involved proofs have been omitted.
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2 QCTL

2.1 Syntax

The syntax of QCTL is that of CTL, but they are very different in essence.
QCTL is based on the paraconsistent logic methodology, whereas CTL is based
on classical propositional logic. This fact leads to great difference in its proof
system and semantics.

Temporal operators are introduced as follows: © − at the next state, ♦ −
eventually, � − always, and U − until. Moreover, the two path quantifiers E and A
have the intuitive meaning “there is a path” and “for all paths”, respectively.
Let P denote a set of atomic propositions. Formulas of QCTL have the following
abstract syntax, where p ranges over P :

α := p | ¬α | α1 ∧ α2 | α1 ∨ α2 | E(A)© α | E(A)♦α | E(A)�α | E(A)(α1 U α2)

Let Lt denote the set of formulas by the above abstract syntax. Moreover, α→ β
is the abbreviation for ¬α ∨ β as usual. Conventionally for each p ∈ P , p or ¬p
is called a literal. A formula of the form l1 ∨ . . . ∨ ln for n ≥ 1 is called a clause,
where l1, . . . , ln are literals.

Definition 2.1.1. Such formula in the form of σ(α U β), ¬σ(α U β), σxα
or ¬σxα for α, β ∈ L is called a quasi-literal, where σ represents the path

quantifier E or A and x represents one of the temporal operators ©, �,♦. l1 ∨
. . . ∨ ln ∨ ql1 ∨ . . . ∨ qlm ∈ L is called a quasi-clause, where ∀i.1 ≤ i ≤ n, li is
a literal and ∀i.1 ≤ i ≤ m, qli is a quasi-literal. Moreover, a clause or quasi-
literal is a special quasi-clause (note that σ and x have the above meaning in
the context, when they are not explicitly interpreted ).

QCTL has the same syntax with the classical temporal logic CTL, but it differs
from CTL at the semantic level. This is exactly the point making QCTL a
paraconsistent logic.

2.2 Semantics: ParaKripke Structures

QCTL is motivated by the need to reason about concurrent systems with in-
consistent specifications. The notion of truth or falsity is thus discarded. We
here view each formula as a belief, following the idea in [7]. QCTL achieves the
paraconsistent methodology by decoupling the relationship between a formula
and its negation at the level of semantics. To reach this aim, a set of positive
and negative objects is first constructed from the set P of atomic propositions.
For each p ∈ P , +p is called a positive object and −p a negative object.

Definition 2.2.1. The set of positive and negative objects in QCTL is defined
as Ot = {+p | p ∈ P} ∪ {−p | p ∈ P}.
As well known, Kripke structures are widely used as semantic models of temporal
logics such as CTL [15]. We provide QCTL a novel semantics by extending Kripke
structures to paraKripke structures.
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Definition 2.2.2. A tuple M = (S, R, L) is called a paraKripke structure,
where

– S is a non-empty state set.
– R ⊆ S × S is a total relation, which implies for each s ∈ S there exists t ∈ S

satisfying (s, t) ∈ R.
– L : S ,→ 2Ot is a label function, which labels each state with a set of the

positive or negative objects satisfiable in this state.

ParaKripke structures are similar to the general Kripke structures except for
the label functions. The label function grasps the essential idea behind the struc-
tures. In a paraKripke structure, the states are labelled by positive or negative
objects included in Ot. In what follows, we will define the semantic models of
QCTL in terms of paraKripke structures.

Definition 2.2.3. Let M = (S, R, L) be a paraKripke structure. A computing
path x of M is defined as x = (s1, . . . , si, . . .), where for all i ≥ 1, si ∈ S and
(si, si+1) ∈ R. s1 is called the initial state of x, and (s1, s2, . . . , sk) for k ≥ 1 an
initial prefix of x.

Before defining the satisfiability relation in QCTL, we first present the satisfiabil-
ity notion of a literal belief in a state. For a paraKripke structure M = (S, R, L),
let s ∈ S, Es = L(s) and p ∈ P . Then (1) p is satisfiable in s iff +p ∈ Es, and
(2) ¬p is satisfiable in s iff −p ∈ Es.

From the above discussion, we see that paraKripke structures incorporate the
notion of belief, in which it is possible that both an atomic proposition and its
negation are satisfiable in a same state. Therefore, QCTL decouples the link
between a formula and its negation at the level of semantics. This makes it
a paraconsistent logic.

For achieving the non-trivial inference under inconsistencies, a proof proce-
dure in QCTL is a two-stage affair: decompositional steps followed by compo-
sitional steps, as shown in the next section. To capture this idea, we need to
establish the semantics for both stages. Here we present the notion of strong
satisfaction, which corresponds to the decompositional phase and the notion of
weak satisfaction, which corresponds to the compositional phase.

Definition 2.2.4. Let M = (S, R, L) be a paraKripke structure. The strong
satisfiability relation |=ts is defined as follows, where p, q ∈ Lt:

1. For atomic formula p, (M, s) |=ts p iff + p ∈ L(s).
2. For atomic formula p, (M, s) |=ts ¬p iff − p ∈ L(s).
3. (M, s) |=ts α ∧ β iff (M, s) |=ts α and (M, s) |=ts β.
4. For a clause α = l1 ∨ . . . ∨ ln, where l1, . . . , ln are literals, (M, s) |=ts α

iff ∃i.1 ≤ i ≤ n, (M, s) |=ts li and ∀i.1 ≤ i ≤ n, (M, s) |=ts ¬li implies
(M, s) |=ts Disj(α, li), where Disj(α, li) is the original formula l1 ∨ . . . ∨ ln
without the disjunct li (note that when α is only a literal, Disj(α, li) is its
own).
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5. For a quasi-clause α = l1∨. . .∨ln∨ql1∨. . .∨qlm, (M, s) |=ts α iff (M, s) |=ts

l1 ∨ . . .∨ lm or ∃i.1 ≤ i ≤ m, (M, s) |=ts qli, where l1, . . . , ln are literals, and
ql1, . . . , qlm are quasi-literals.

6. (M, s) |=ts E© α iff there is t ∈ S satisfying (s, t) ∈ R and (M, t) |=ts α.
7. (M, s) |=ts A© α iff for all t ∈ S with (s, t) ∈ R, (M, t) |=ts α.
8. (M, s) |=ts E♦α iff there is a computing path x = (s0, . . . , sn, . . .) with s0 = s

and ∃i.i ≥ 1, (M, si) |=ts α.
9. (M, s) |=ts A♦α iff for all computing paths x = (s0, . . . , sn, . . .) with s0 = s,
∃i.i ≥ 1, (M, si) |=ts α.

10. (M, s) |=ts E(α U β) iff there is an initial prefix (s0, . . . , sk) of a computing
path x with the initial state s0 = s, satisfying that (M, sk) |=ts β and
(M, si) |=ts α for all i < k.

11. (M, s) |=ts A(α U β) iff for all computing paths with initial state s, there
is an initial prefix (s0, . . . , sk) with the initial state s0 = s, satisfying that
(M, sk) |=ts β and (M, si) |=ts α for all i < k.

12. (M, s) |=ts E�α iff there is a computing path x = (s0, . . . , sn, . . .) with s0 = s
and ∀i.i ≥ 0, (M, si) |=ts α.

13. (M, s) |=ts A�α iff for each computing path x = (s0, . . . , sn, . . .) with the
initial state s0 = s, (M, si) |=ts α, where i ≥ 0.

Definition 2.2.5. The weak satisfiability relation |=tw is defined as follows:

1. In all the items except for the fourth in Definition 2.2.4, |=ts is replaced
by |=tw.

2. For a clause α = l1 ∨ . . . ∨ ln, (M, s) |=tw α iff ∃i.1 ≤ i ≤ n, (M, s) |=tw li.

The strong satisfiability is much more restricted than the weak satisfiability
relation with regard to disjunction, as shown in the fourth and fifth items of
Definition 2.2.4. The reason we need such motivation is that we have decoupled
the link between a formula and its negation. By putting the link between each
disjunct in a quasi-clause and its negation into the definition for disjunction, we,
on the one hand, to some degree provide the meaning of negation operator ¬, on
the other hand, provide a semantics account for paraconsistent reasoning using
resolution.

Clearly, the strong and weak satisfiability relations do not cover all formulae
in Lt, For instance, α∧(β∨γ) and ¬E♦p, where α, β, γ, p ∈ Lt, therefore we need
extend Definition 2.2.4 and 2.2.5. Before accomplishing this, we define a binary
relation ≈t on Lt.

Definition 2.2.6. Let α, β ∈ Lt. α ≈t β iff for every paraKripke structure M =
(S, R, L) and every s ∈ S, (M, s) |=ts α ((M, s) |=tw α) implies (M, s) |=ts β
(respectively (M, s) |=tw β), and vice versa.

Proposition 2.2.1. ≈t is an equivalence relation on Lt.

For defining full semantics of QCTL, we make the strong and weak satisfiability
relations cover all formulae in Lt by extending Definition 2.2.4 and 2.2.5. The
strong and weak satisfiability models of formulae of the form ¬σxα and ¬σ(α U β)



212 D. Chen and J. Wu

can be indirectly defined as E’1-E’6 by ≈t. In a similar way, we further define
the full behavior of ¬,∨, and → as E1-E7 in order that the strong and weak
satisfiability relations cover all formulas in Lt.

E1. ¬¬α ∨ β ≈t α ∨ β E’1. ¬E© α ≈t A© (¬α)
E2. ¬(α ∧ β) ∨ γ ≈t ¬α ∨ ¬β ∨ γ E’2. ¬A© α ≈t E© (¬α)
E3. ¬(α ∨ β) ∨ γ ≈t (¬α ∧ ¬β) ∨ γ E’3. ¬E♦α ≈t A�(¬α)
E4. α ∨ (β ∧ γ) ≈t (α ∨ β) ∧ (α ∨ γ) E’4. ¬A♦α ≈t E�(¬α)
E5. α ∧ (β ∨ γ) ≈t (α ∧ β) ∨ (α ∧ γ) E’5. ¬E(α U β) ≈t A�(¬β) ∨ A((α∧

¬β)U(¬α ∧ ¬β))
E6. (α→ β) ∨ γ ≈t ¬α ∨ β ∨ γ E’6. ¬A(α U β) ≈t E�(¬β) ∨ E((α∧

¬β)U(¬α ∧ ¬β))
E7. ¬(α→ β) ∨ γ ≈t (α ∧ ¬β) ∨ γ

So far, all preparations have been made for defining the entailment relation
|=t of QCTL. Let 2Lt denote the power set of Lt:

Definition 2.2.7. The entailment relation |=t of QCTL is defined as follows:

– |=t⊆ (2Lt − ∅)× Lt, where ∅ is the empty set.
– For Γ ∈ 2Lt − ∅ and β ∈ Lt, Γ |=t β iff for all paraKripke structure M =

(S, R, L) and s ∈ S, (M, s) |=ts α for all α ∈ Γ implies (M, s) |=tw β.

In this section, we have developed a logic QCTL, including its syntax and
semantics. In the next section, we propose a sound and complete formal proof
system for QCTL, which makes QCTL suited for reasoning under inconsistent
system specifications.

3 A Proof System for QCTL

The logic QCTL is used to handle beliefs rather than the truth, and it speci-
fies the change of beliefs with abstract time in concurrent systems. We provide
a novel proof theory in this section, which is different from that of classical tem-
poral logics. Like QCL, it is presented as a set of decomposition rules and a set
of composition rules, but not as a set of axioms and a set of inference rules. De-
composition rules apply to the assumptions and composition rules apply to the
query. In QCTL, we regard a proof procedure as a two-stage affair: decomposing
and composing. Moreover, the composing step applying composition rules must
follow the decomposing step applying decomposition rules.

Let R(Lt) = {α
β
| α, β ∈ Lt}, where α

β
reads “β is a consequence of α”.

Definition3.1. T : R(Lt)→ 2R(Lt) is a function, which satisfies that for α, β∈Lt,

T (α
β

) = {σxα
σxβ | σ ∈ {A,E}, x ∈ {�, ♦, ©}} ∪ {σ(γ U α)

σ(γ U β) | σ ∈ {A,E}, γ ∈ Lt}

∪ {σ(α U γ)
σ(β U γ) | σ ∈ {A,E}, γ ∈ Lt}.
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Example 3.1. For α, β ∈ Lt,
E © (α ∧ β)

E © α
, A♦(E © (α ∧ β))

A♦(E© α) ∈ T (α ∧ β
α ).

The decomposition and composition rules of the proof system of QCTL are given
in the following.

Definition 3.2. Let conjunction and disjunction be commutative and associa-
tive. Decomposition rules are as follows:

– Conjunction elimination: α ∧ β
α

σx(α ∧ β)
σxα

σ((α ∧ β) U γ)
σ(α U γ)

– Negation elimination: ¬¬α ∨ β
α ∨ β

¬E © α
A © (¬α)

¬A♦α
E�(¬α)

¬A © α
E © (¬α)

¬A(α U β)
E�(¬β) ∨ E((α ∧ ¬β)U(¬α ∧ ¬β))

¬E♦α
A�(¬α)

¬E(α U β)
A�(¬β) ∨ A((α ∧ ¬β)U(¬α ∧ ¬β))

– Quasi-resolution: ¬α ∨ β1 α ∨ β2
β1 ∨ β2

¬α ∨ β1 ∨ γ1 α ∨ β2 ∨ γ2
β1 ∨ β2 ∨ γ1 ∨ γ2

Here α, β1 and β2 are literals, and γ1 and γ2 are formulae in the form of
σxp, σ(p U q) or their negation

– Disjunction contraction: α ∨ α ∨ β
α ∨ β

α ∨ α
α

– Arrow elimination: α ∨ (β → γ)
α ∨ ¬β ∨ γ

α ∨ ¬(β → γ)
α ∨ (β ∧ ¬γ)

– Decompositional distribution: α ∨ (β ∧ γ)
(α ∨ β) ∧ (α ∨ γ)

(α ∧ β) ∨ (α ∧ γ)
α ∧ (β ∨ γ)

– Decompositional de Morgan laws: ¬(α ∧ β) ∨ γ
¬α ∨ ¬β ∨ γ

¬(α ∨ β) ∨ γ
(¬α ∧ β) ∨ γ

– The increment of temporal operator rule: If α
β

is a decomposition rule, then each

α′

β′ ∈ T (α
β

) is also one.

In the decomposition rules, the quasi-resolution rule plays a similar role as
the resolution theory for classical logics [16]. It can be applied to quasi-clauses
to generate further quasi-clauses.

Definition 3.3. Let conjunction and disjunction be commutative and associa-
tive. Composition rules are as follows:

– Conjunction introduction: α β
α ∧ β

– Disjunction introduction: α
α ∨ β

σxα
σx(α ∨ β)

σ(α U γ)
σ((α ∨ β) U γ)

– Negation introduction: α ∨ β
¬¬α ∨ β

A © (¬α)
¬E © α

E�(¬α)
¬A♦α

E © (¬α)
¬A © α

E�(¬β) ∨ E((α ∧ ¬β)U(¬α ∧ ¬β))
¬A(α U β)

A�(¬α)
¬E♦α

A�(¬β) ∨ A((α ∧ ¬β)U(¬α ∧ ¬β))
¬E(α U β)

– Arrow introduction: ¬β ∨ γ
β → γ

β ∧ ¬γ
¬(β → γ)

– Compositional distribution: (α ∨ β) ∧ (α ∨ γ)
α ∨ (β ∧ γ)

α ∧ (β ∨ γ)
(α ∧ β) ∨ (α ∧ γ)
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– Compositional de Morgan laws: ¬α ∨ ¬β ∨ γ
¬(α ∧ β) ∨ γ

¬(α ∧ β) ∨ γ
¬α ∨ ¬β ∨ γ

– The increment of temporal operator rule: If α
β

is a composition rule, then each

α′

β′ ∈ T (α
β

) is also one.

In essence, the strong satisfiability relations and weak satisfiability relation grasp
respectively the ideas of the decomposition and composition rules. This fact is
easily affirmed from their definitions. The inference relation .t on Lt is defined
by using the decomposition rules and composition rules.

Definition 3.4. The inference relation .t of QCTL is defined as follows:

– .t∈ (2Lt − ∅)× Lt, where ∅ is the empty set.
– For Γ ∈ (2Lt − ∅) and ψ ∈ Lt, Γ .t ψ iff there exists γ1, . . . , γn ∈ Γ by

applying the decomposition rules of Definition 3.2 and ψ is a consequence of
γ1, . . . , γn by applying the composition rules of Definition 3.3.

According to the principle of paraconsistency [8, 9, 10], the following conclu-
sion can be derived:

Proposition 3.1. QCTL equipped with the inference relation .t does not lead
to trivial reasoning, that is, the principle that anything can be derived from
inconsistent assumptions in classical logics does not hold.

Theorem 3.1. The proof system for QCTL is sound and complete.

The next section will demonstrate that QCTL can be used to specify and verify
inconsistent concurrent systems by a simple example.

4 Example

To motivate our work, we here present an example of a simplified phone system.
In what follows, we first provide the notion of models of specifications of incon-
sistent concurrent systems using paraKripke structures. Because the entailment
relation |=t of QCTL is defined in a mode very different from that of classical
logics, the notion of models based on paraKripke structures differs from that
based on standard Kripke structures:

Definition 4.1. Let α ∈ Lt, and M = (S, R, L, S0) be a paraKripke structure,
where S0 ⊆ S is a non-empty set of initial states. M is a model of α iff for all
s ∈ S0, there exists a finite set of formulas Γ ⊆ Lt, which satisfies that for all
γ ∈ Γ , (M, s) |=ts γ and Γ |=t α.

We now demonstrate how QCTL can be used to derive fewer and more useful
information in a paraKripke model of a phone system containing inconsistent
information.

A phone system can be taken into account from different angles of view.
Fig.1(a) and (b) show two different visions of viewpoints of callee1 and callee2
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on the phone system. The two models are specified using standard Kripke struc-
tures based on two-valued logic. Note that in this example, each state has
a transition back to itself, which is not explicitly drawn for simplicity, and
the meaning expressed by the state names and the propositions in states can
be literally understood. We can easily find that the disagreement arises be-
tween callee1 and callee2. Callee1 considers that a phone allows one to re-
place the receiver during an incoming call without getting disconnected, and
yet callee2 considers that replacing the receiver always leads to disconnect
the call.

idle
O FFH O O K = F

CO N N ECTED = F

c onne c te d
O FFH O O K = T

CO N N ECTED = T

ringing
O FFH O O K = F

CO N N ECTED = T

dia ltone
O FFH O O K = T

CO N N ECTED = F

 (a)

connected
OF F HOOK= T

C ALLER  S EL= T
C ONNEC T ED= T

dia lt o n e
O FFH O O K =T

CA L L E R SE L =F
CO N N E CT E D =F

rin gin g
O FFH O O K =F

CA L L E R SE L =T
CO N N E CT E D =F

idle
O FFH O O K =F

CA L L E R SE L =F
CO N N E CT E D =F(b)

dialtone
+OFFHOOK

-CALLER SEL
-CONNECTED

connected
+OFFHOOK

+CALLER SEL
+CONNECTED

ringing
-OFFHOOK

+ALLER SEL
±CONNECTED

idle
-OFFHOOK

-CALLER SEL
-CONNECTED(c)

Fig. 1. (a) Viewpoint of Callee1; (b) Viewpoint of Callee2; (c) Merger of Two View-
points

Having specified the models of the targeted system, even though partial and
inconsistent, we wish to deeply analyze these models. Naturally, we can sepa-
rately reason about these models, but more interestingly, we can integrate the
two models (even if they are inconsistent) to perform reasoning about the merged
model containing more comprehensive information on the phone system. In-
tegrating multiple models is complicated when inconsistent information exists
among models. We here do this as follows:

– Choose the underlying logic QCTL for the merged model.
– Choose signature maps, which stipulate the relationships of items between

the merged model and the corresponding source models, such as states’
names and propositional variables in states. We adopt the similar princi-
ple in [17].

– Choose the measure of handling the inconsistencies existing among models.
Optimistically, we argue that some conflicting viewpoints on the system do
not exclude each other, for instance, each model does not deny the exis-
tence of transitions that it does not describe. This argument, we think, is
appropriate for evolving specifications, especially in the early stage of the
development.

Fig.1(c) shows the resulting paraKripke model. Despite conflicting viewpoints
on the system, we can verify some temporal properties of the phone system. The
representational examples include:
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1. A�(CONNECTED → E © (¬OFFHOOK)) “if you are connected, you can hang up.”
2. A�(¬CALLER SEL → ¬CONNECTED) “if no caller is selected, you cannot be con-

nected.”
3. A�(¬OFFHOOK → ¬CONNECTED) “if you hang up, you are disconnected”.

According to Definition 4.1, we can easily derive that the first property is
satisfiable in the merged model, that is, Fig.1(c) is a model of the first property.
The rest of the three properties is more interesting. The second property is not
expressible in callee1, but callee1 can have this property as long as it accepts the
definitions in callee2 for CALLER SEL, which callee1 does not describe. Con-
sider the third, from Fig.1(c), we know the merged model satisfies the property.
Just on this property are callee1 and callee2 conflicting. Note that the listed
properties are simple, therefore, we do not explicitly explain the details of deriv-
ing the three properties from Fig.1(c). In essence, the paraconsistent character of
the entailment relation increases the complexity of model checking over QCTL.

Though this example mentioned above is small and rather artificial, it suf-
fices for illustrating the type of reasoning under inconsistency one might wish
to perform.

5 Concluding Remarks

In this paper, we presented a non-classical temporal logic QCTL with a novel
semantics and proof system. It extends QCL with the ability to specify temporal
properties of concurrent systems such as safety and liveness properties, and
extends CTL with the ability to reason under inconsistent system specifications.

Just as shown in Section 4, QCTL provides a temporal logic framework for
nontrivially reasoning under inconsistent specifications, which provides a formal
support for the continually evolving process. But it is inadequate job. We in-
tend to conduct a series of nontrivial case studies, showing that the proposed
paraconsistent temporal logic QCTL provides developers with a efficient auto-
mated reasoning tool when the developers have to face the unavoidable incon-
sistencies. Further, it is not accepted to directly transform a model checking to
an inference problem according to Definition 4.1, hence the efficient algorithm
for model checking over QCTL is absolutely required. Finally, combining the
foregone work, et al., we will study the framework of managing inconsistencies
integrating automated reasoning tools in the context of inconsistency.
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Abstract. In this paper we focus on the combinatorial properties of
the Fibonacci strings rotations. We first present a simple formula that,
in constant time, determines the rank of any rotation (of a given Fi-
bonacci string) in the lexicographically-sorted list of all rotations. We
then use this information to deduce, also in constant time, the character
that is stored at any one location of any given Fibonacci string. Finally,
we study the output of the Burrows-Wheeler Transform (BWT) on Fi-
bonacci strings to prove that when BWT is applied to Fibonacci strings
it always produces a sequence of ‘b’s’ followed by a sequence of ‘a’s’.

Keywords: Block-sorting, Fibonacci strings, data compression, text
compression, BWT Transformation.

1 Introduction

Fibonacci strings1 have been widely studied and are considered to be a matter of
common knowledge, see, for example, [1] for a good reference. Fibonacci strings
are important in many contexts, but they are frequently often cited in jour-
nal articles and elsewhere as worst-case scenarios for string pattern matching
algorithms such as KMP2, Boyer-Moore and Aho-Corasick automaton, and in
string statistics like for computing all the Abelian squares in a given string [3].
Another domain in which the combinatorial properties of the Fibonacci strings
are of great interest is in some aspects of mathematics and physics, such as
number theory, fractal geometry, formal language, computational complexity,
quasicrystals, etc.

Informally, a Fibonacci string Fn is a string of characters with the prop-
erty that each successive string of the sequence is obtained as the concatena-
tion of the previous two. For example, the first five Fibonacci strings are: b,
a, ab, aba and abaab (c.f. also Fig. 1(left)). Here we are concerned with the
lexicographic ordering of the rotations of a Fibonacci string, we show that for
a given rotation of a particular Fibonacci string, one can identify the order

1 a.k.a. Fibonacci words.
2 Knuth-Morris-Pratt.

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 218–225, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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of that rotation in the lexicographically-sorted list of all the rotations of Fn,
without the need for explicit sorting of the rotations. The inverse problem, con-
sisting of finding the rotation that has a given order in the sorted list, can
also be solved without sorting. In addition, we show how the ordering of the
rotations can be used to determine the symbols of any Fibonacci string with-
out using the traditional recursive definition of Fibonacci strings or the Golden
Ratio φ.

Analysing rotations of strings can be useful for algorithms whose operation
depends on rotations of strings and their lexicographic ordering. One such al-
gorithm is the block-sorting transformation known as Burrows-Wheeler Trans-
form (BWT) [4] used to bring repeated characters together as a preliminary
to compression. When BWT is applied to a string x of length n, it produces
the lexicographically-sorted list of all n rotations of x and outputs the last
symbol of every rotation of the sorted list together with the rank of the 0th
rotation. By making best use of the already mentioned rationale, we show
how to compute the output of BWT when applied on Fibonacci strings with-
out engaging in any costly sorting operation. In particular, we prove that the
output is always the permutation that consists of all the ‘b’s that are con-
tained in the particular Fibonacci string, followed by all its ‘a’s. Fibonacci
strings are closely related to Sturmian words3, hence related work can be found
in [5], where Mantaci et. al. derived a very similar result using a different
approach.

The remainder of this paper is organised as follows. In the next section, we pro-
vide some basic definitions and prove some properties of the Fibonacci numbers
which will play a key role in proving the main results in the succeeding sections.
In Sect. 3 we prove that the rank of any rotation of a Fibonacci string in the
sorted list of all rotations of the particular Fibonacci string, can be computed
in constant time. Section 4 explains how to use the above results to instantly
deduce the symbol stored in any position of a Fibonacci string. Finally, in Sect. 5
we prove why the output of BWT when applied to a Fibonacci string, produces
a sequence of ‘b’s followed by a sequence of ‘a’s. Concluding remarks follow in
the last section.

2 Preliminaries

We define Fibonacci number by f0 = 1, f1 = 1, fn = fn−1 + fn−2 and Fibonacci
strings are defined by F0 = b, F1 = a, Fn = Fn−1Fn−2, for n ≥ 2. Obviously,
|Fi| = fi. See Fig. 1(a) for some examples.

Definition 1. The ith rotation of a string x = x0 . . . xn−1 is defined by the
string Ri(x) = xixi+1 . . . xn−1x0x1 . . . xi−1.

3 Sturmian words are infinite words over a two-letter alphabet of minimal subword
complexity which are not eventually periodic, or, in other words, that have exactly
n + 1 factors of length n for each n ≥ 0.
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n Fn fn

0 b 1
1 a 1
2 ab 2
3 aba 3
4 abaab 5
5 abaababa 8
6 abaababaabaab 13
7 abaababaabaababaababa 21

rank (ρ) rotation index (i) rotation
0 7 R7 = aabaabab
1 2 R2 = aababaab
2 5 R5 = abaabaab
3 0 R0 = abaababa
4 3 R3 = ababaaba
5 6 R6 = baabaaba
6 1 R1 = baababaa
7 4 R4 = babaabaa

(a) Fibonacci strings and numbers (b) Lexicographically-sorted rotations of F5

Fig. 1. Fibonacci strings and their rotations

Note that Ri+j(x) = Ri(Rj(x)) = Rj(Ri(x)). Thus the ith rotation4 can be
defined for 0 < i ≥ n as Ri(x) = Ri mod n(x). For F5, for example, Fig. 1(b)
gives the sorted list of all rotations.

We denote by rank(i, x) the rank of Ri(x) in the lexicographically-sorted
list of all rotations of x. We write rot(ρ, x) to denote the index of the rotation
with rank ρ, that is, rot(ρ, x) = i iff rank(i, x) = ρ. For instance, in Fig. 1(b)
rank(3, F5) = 4, and rot(5, F5) = 6.

Next, we state, without proof, two easily established lemmas that will be
required later. The first is an elementary result from number theory, while the
second corresponds to Fibonacci number analysis.

Lemma 1 ([7–page 243]). The congruence ax ≡ b (mod n) has a unique so-
lution x ∈ [0, n) if a is relatively prime to n.

Lemma 2 ([8–page 151]). fn is relatively prime to fn−1, for every n ≥ 2.

2.1 Some New Properties of Fibonacci Numbers

Here we prove some properties of Fibonacci numbers which will be used in the
proofs of subsequent lemmas regarding Fibonacci strings.

Lemma 3. fn is relatively prime to fn−2, for every n ≥ 2.
Proof. Assume fn is not relatively prime to fn−2; that is, fn = mk and fn−2 =
m for some integers m, k, , where m �= 1 and k > . Then

fn = fn−1 + fn−2 ⇐⇒ mk = fn−1 + m ⇐⇒ m(k − ) = fn−1

and thus fn−1 is not relatively prime to fn, since they have a common factor,
m �= 1. This contradicts Lemma 2. �

Lemma 4.

f2
n−1 mod fn =

{
−1, if n odd

1, if n even for n ≥ 2

4 In the sequel, when refering to the ith rotation, we imply the (i mod n)th rotation.
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Proof. By Cassini’s identity [2–page 80] fn−1fn+1 − f2
n = (−1)n.

fn−1fn+1 − f2
n = (−1)n =⇒

fn−1(fn + fn−1)− f2
n = (−1)n =⇒

fn−1fn + fn−1fn−1 − f2
n = (−1)n =⇒

(fn−1fn + f2
n−1 − f2

n) mod fn = (−1)n mod fn =⇒
f2

n−1 mod fn = (−1)n mod fn =⇒

f2
n−1 mod fn =

{
−1 if n odd
1 if n even �

Corollary 1.

f−1
n−2 mod fn =

{
fn−1 if n odd
fn−2 if n even

Proof. By Lemma 4, for n odd:

f2
n−1 mod fn = −1 ⇐⇒

fn−1(fn − fn−2) mod fn = −1 ⇐⇒
fn−1fn − fn−1fn−2 mod fn = −1 ⇐⇒

fn−1fn−2 mod fn = 1 ⇐⇒
f−1

n−2 mod fn = fn−1

By Lemma 4, for n even:

f2
n−1 mod fn = 1 ⇐⇒

(fn − fn−2)2 mod fn = 1 ⇐⇒
(f2

n − 2fnfn−2 + f2
n−2) mod fn = 1 ⇐⇒
f2

n−2 mod fn = 1 ⇐⇒
f−1

n−2 mod fn = fn−2 �

3 Ranking the Rotations of Fibonacci Strings

Lemma 5. For every integer n ≥ 2, Fn = Fn−2Fn−3 . . . F1u, where

u =
{
ba if n odd
ab if n even

Proof. This follows from Lemma 2.8 in [6]. �

Lemma 6. The ith rotation of Fn Ri(Fn), for i ∈ [0, fn), n ≥ 2, matches
the (i + fn−2)th rotation, Ri+fn−2(Fn) in all but two positions. Moreover, if
i �= fn−1 − 1 the two mismatches occur in consecutive positions.

Proof. Consider i = 0, then R0(Fn) = Fn = Fn−2Fn−3 . . . F1u, by Lemma 5,
where u = ba if n is odd, and u = ab if even. Then the (i + fn−2)th rotation is

Rfn−2(Fn) = Fn−3 . . . F1uFn−2 (1)
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but also

R0(Fn) = Fn = Fn−1Fn−2 = Fn−3 . . . F1u
′Fn−2 (2)

where Fn−1 has been written in the form given by Lemma 5, and u′ = ab if n−1
is even (i.e n is odd), u′ = ba for n − 1 odd (i.e n is even). So for i = 0 the
rotations do not match at positions fn−1 − 2 and fn−1 − 1 (the positions where
the two symbols of u occur; see (1) and (2)).

For any i ∈ [0, fn) the rotations Ri(Fn) = Ri(R0(Fn)) and Ri+fn−2(Fn) =
Ri(Rfn−2(Fn)) do not match in the same two symbols located now at positions
fn−1−2− i and fn−1−1− i (modulo fn). These two positions are unconsecutive
only for rotation i = fn−1 − 1, because for this rotation, the first symbol of u
will be located at position (fn − 1), and the second symbol of u will be located
at position 0. �

Lemma 7. The ith rotation of Fn (n ≥ 2), Ri(Fn), is lexicographically smaller
(resp. larger) than the (i+fn−2)th rotation, Ri+fn−2 (Fn), for n odd (resp. even),
for all i ∈ [0, fn), i �= fn−1− 1. For i = fn−1− 1, the ith rotation is lexicograph-
ically larger (resp. smaller) for n odd (resp. even).

Proof. From the proof of Lemma 6 we know that

R0(Fn) = Fn−3 . . . F1u
′Fn−2 and Rfn−2(Fn) = Fn−3 . . . F1uFn−2

where u′ = ab and u = ba when n is odd, u′ = ba and u = ab when n is even.
Thus, the 0th rotation is lexicographically smaller (resp. larger) from the fn−2th
for n odd (resp. even). The same is true for every other rotation i �= fn−1 − 1,
since the two symbols of u (and u′) occupy consecutive positions.

For i = fn−1 − 1 and n odd

Rfn−1−1(Fn) = bFn−2 . . . F1a (u′ = ab)
Rfn−1−1+fn−2(Fn) = Rfn−1(Fn) = aFn−2 . . . F1b (u = ba).

Consequently Ri is lexicographically larger than Ri+fn−2 . Similarly, for n even
Ri is lexicographically smaller than Ri+fn−2 . �

Theorem 1. The rotation of Fn rot(ρ, Fn) with rank ρ in the lexicographically-
sorted list of all the rotations of Fn, for n ≥ 2, ρ ∈ [0..fn), is the rotation

rot(ρ, Fn) =
{

(ρ · fn−2 − 1) mod fn if n odd
(−(ρ + 1) · fn−2 − 1) mod fn if n even

Proof. We will prove the theorem by constructing the list of lexicographically
sorted rotations. Consider n odd, intuitively, rotationRi = Rfn−1 is the smallest
and therefore the first in the sorted list (it is the only rotation not preceded by
Ri−fn−2 , using Lemma 7). We will prove later that no other rotation can be
smaller. Now, consider that Ri = Rfn−1 occupies position 0 in the sorted list.
By Lemma 7, underneath (but maybe not immediately below, but at some later
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point) there will be Ri+fn−2 . This rotation at the same time will be followed by
Ri+2fn−2 , followed by . . ., followed by Ri+kfn−2 (k ≥ 2), for as long as

i + kfn−2 �= fn−1 − 1 (mod fn)

(by Lemma 7). We solve the following equation to find the smallest k for which
the above inequality is not true:

i + kfn−2 = fn−1 − 1 (mod fn)
fn − 1 + kfn−2 = fn−1 − 1 (mod fn)

fn + kfn−2 = fn−1 (mod fn)
fn − fn−1 + kfn−2 = 0 (mod fn)

fn−2 + kfn−2 = 0 (mod fn)
(k + 1)fn−2 = 0 (mod fn)

which means that (k+1)fn−2 and fn share a common factor m �= 1. By Lemma 3,
fn−2 is relatively prime to fn, thus it must be k+1 = 0 (mod fn), or identically
k = fn−1.5 Therefore, there are no more rotations left out which could possibly
be placed anywhere between the rotations that we have already inserted in the
sorted list. Hence the ρth position in the sorted list is occupied by rotation

(fn − 1 + ρfn−2) mod fn = (ρfn−2 − 1) mod fn.

For n even, we construct the sorted list in a similar fashion, only now we
start by placing Rfn−1 at the bottom of the list (position fn−1), and place any
Ri+fn−2 atop rotation i. Thus now, R(fn−1+kfn−2) mod fn

= R(kfn−2−1) mod fn

take up position fn − k − 1; that is, the ρth position is occupied by rotation

((fn − ρ− 1)fn−2 − 1) mod fn = (−(ρ + 1)fn−2 − 1) mod fn. �
Corollary 2. The rank of the ith rotation of Fn, rank(i, Fn), in the lexico-
graphically sorted list of all the rotations of Fn, for i ∈ [0..fn), n ≥ 2, is:

rank(i, Fn) =
{

((i + 1) · fn−2) mod fn if n odd
((i + 1) · fn−2 − 1) mod fn if n even.

Proof. For n odd, by Theorem 1, the ith position is occupied by rotation
(i · fn−2 − 1) mod fn, thus the ith rotation is located at position

(i + 1) · f−1
n−2 mod fn = (i + 1) · fn−2 mod fn

since, by Lemma 1, f−1
n−2 = fn−2 for n odd.

Similarly, for n even, by Theorem 1, the ith position is occupied by rotation

(−(i + 1) · fn−2 − 1) mod fn = ((i + 1) · fn−1 − 1) mod fn

thus the ith rotation is located at position

((i + 1) · f−1
n−1 − 1) mod fn = ((i + 1) · fn−2 − 1) mod fn

since, by Lemma 1, f−1
n−1 = fn−2 for n even. �

5 Note that, by Lemma 1, this solution is unique in [0, fn).
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4 Predicting the Symbols of Fibonacci Strings

Lemma 8. The number of ‘a’s in Fn (n ≥ 2) is fn−1.

Proof. By induction.

– [basis] The number of ‘a’s in F2 = ab is f2−1 = f1 = 1.
– [hypothesis] Assume that the number of ‘a’s in Fk is fk−1, for all k ∈ [2, n).
– [induction proof] The number of ‘a’s in Fn = Fn−1Fn−2 is the sum of ‘a’s in

Fn−1 and Fn−2, i.e. by induction hypothesis fn−2 + fn−3 = fn−1. �

Lemma 9. The number of ‘b’s in Fn (n ≥ 2) is fn−2.

Theorem 2. For all i ∈ [0, fn), the ith symbol of Fn (n ≥ 2) is

Fn[i] =

⎧⎨⎩a, if n odd and ((i + 1) · fn−2) mod fn < fn−1,
or n even and ((i + 1) · fn−2 − 1) mod fn < fn−1

b, otherwise

Proof. Observe that, the ith symbol of Fn is the first symbol of the ith rotation.
In the lexicographically-sorted list of rotations, all rotations that start with ‘a’
appear before all rotations that start with ‘b’. Therefore, Fn[i] will be ‘a’ iff the
ith rotation has rank less than fn−1; otherwise it is ‘b’. �

5 Burrows-Wheeler Transform on Fibonacci Strings

Lemma 10. The first fn−2 rotations in the lexicographically-sorted list of rota-
tions of Fn (n ≥ 2) end in ‘b’.

Proof. The last symbol of the ith rotation is the ((i + fn− 1) mod fn)th symbol
of Fn; that is, the ((i− 1) mod fn)th symbol of Fn.

Consider n odd. By Theorem 1, the first fn−2 rotations are the rotations
(i · fn−2 − 1) mod fn, i ∈ [0, fn−2). The last symbol of these rotations is then
(i · fn−2 − 2) mod fn, i ∈ [0, fn−2). Whence, by using Theorem 2 we identify the
last symbol of the first fn−2 rotations:

(i · fn−2 − 2 + 1)fn−2 mod fn = if2
n−2 − fn−2 = i− fn−2 = i + fn−1

which is ≥ fn−1, since i ∈ [0, fn−2). Thus the symbol is ‘b’.
Equally for n even, by Theorem 1, the first fn−2 rotations are (−(i + 1) ·

fn−2 − 1) mod fn, i ∈ [0, fn−2). The last symbol of these rotations is then
(−(i + 1) · fn−2 − 2) mod fn, i ∈ [0, fn−2). Then, by using Theorem 2 we iden-
tify the last symbol of the first fn−2 rotations:

[(−(i + 1) · fn−2 − 2 + 1)fn−2 − 1] mod fn = (−(i + 1) · f2
n−2)− fn−2 − 1 =

= (i + 1)− fn−2 − 1 = i− fn−2 = i + fn−1 ≥ fn−1

since again i ∈ [0, fn−2). Thus the symbol is ‘b’. �
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Corollary 3. The last fn−1 rotations in the lexicographically-sorted list of ro-
tations of Fn, n ≥ 2, terminate in an ‘a’.

Theorem 3. The output of BWT when applied to Fn, n ≥ 2 is

( bb . . . b︸ ︷︷ ︸aa . . .a︸ ︷︷ ︸ , k )

fn−2 fn−1

where k denote the rank of the 0th rotation in the lexicographically-sorted list,
which is

k =
{

fn−2 + 1 if n odd
fn−2 if n even.

Proof. The output string of BWT is the last column of the lexicographically-
sorted list of rotations, which by Lemma 10 and Corollary 3 is bb . . . baa . . .a.

The index produced by BWT is the rank of the initial string (the 0th rotation),
which by Corollary 2 is

rank(0, Fn) =
{

fn−2 mod fn if n odd
(fn−2 − 1) mod fn if n even. �

6 Conclusion

In this paper we focused on the combinatorial properties of the rotations of
Fibonacci strings. We first presented a simple formula that determines the rank
of any rotation (of a given Fibonacci string) in the lexicographically-sorted list of
all rotations and then used this information to deduce, also in constant time, the
symbols stored in any position of that Fibonacci string. We also proved that the
output of the Burrows-Wheeler Transform (BWT) when applied to a Fibonacci
string Fn, is always the permutation of Fn consisting of all the ‘b’s of Fn followed
by all the ‘a’s.
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Abstract. This paper is devoted to an oriented coloring problem mo-
tivated by a task assignment model. A recent result established the NP-
completeness of deciding whether a digraph is k-oriented colorable; we
extend this result to the classes of bipartite digraphs and circuit-free di-
graphs. Finally, we investigate the approximation of this problem: both
positive and negative results are devised.

1 Introduction

1.1 The Problem

In this paper, G = (V (G), E(G)) denotes a simple graph and
−→
G = (V (

−→
G), A(

−→
G ))

a digraph (i.e. a directed graph). A mixed graph M = (V (M), A(M), E(M))
contains both arcs (A(M)) and edges (E(M)). Graphs and digraphs can be seen
as mixed graphs. We do not allow loops or parallel arcs or edges, but M may
have an edge and an arc with the same end-vertices. If S is a subset of V (M), we
denote by M [S] the sub-mixed graph of M induced by S. If v ∈ V (M), Γ+(v) =
{w|(v, w) ∈ A(M)} and Γ−(v) = {w|(w, v) ∈ A(M)}. Given U ⊂ V (M), we
denote Γ+(U) =

⋃
v∈U Γ+(v); Γ−(U) =

⋃
v∈U Γ−(v).

Let G, G′ be graphs, and
−→
G,
−→
G′ be digraphs. An homomorphism of G to G′

[resp. of
−→
G to

−→
G′] is a mapping f : V (G) → V (G′) [resp. f : V (

−→
G) → V (

−→
G′)]

which preserves the edges [resp. the arcs]: i.e. {x, y} ∈ E(G) [resp. (x, y) ∈ A(G)]
implies {f(x), f(y)} ∈ E(G′) [resp. (f(x), f(y)) ∈ A(G′)]. Homomorphisms of
undirected and directed graphs have been studied as a generalization of graph
coloring in the literature [8], [9]. A k-coloring of a graph G is equivalent to an
homomorphism of G to the complete graph Kk. Therefore, the chromatic number
χ(G) of a graph G is equal to the smallest integer k such that there exists an
homomorphism of G to Kk and Min Coloring is to find such an homomorphism.

Generalizing previous definition, an oriented k-coloring of
−→
G is an homomor-

phism of
−→
G to an oriented graph

−→
G′ on k vertices. The oriented chromatic number

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 226–236, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Oriented Coloring: Complexity and Approximation 227

of a digraph
−→
G , denoted by χo(

−→
G), is the smallest integer k such that there is

an oriented k-coloring of
−→
G . This problem will be called Min Oriented Coloring.

Given an homomorphism c of
−→
G to

−→
G′, the color digraph of

−→
G (for homomor-

phism c) will refer to digraph
−→
G′. For i ∈ {1, 2, . . . , |V (

−→
G′|}, subsets c−1(i) of

V (
−→
G) are independent set of V (

−→
G′). We call those sets monochromatic classes

(for c) of digraph
−→
G . If there is no possible confusion, we omit the reference to

homomorphism c.
An oriented coloring of

−→
G can also be define as follows. Given two independent

sets S and S′ in a graph G, we say that they don’t respect the unidirection-
property if two arcs (i, i′) and (j′, j) exist such that {i, j} ⊂ S and {i′, j′} ⊂ S′

(we may have i = j or i′ = j′); in the opposite case, the unidirection-property
holds (and we note S → S′). Then, an oriented k-coloring is a partition of the
vertex set into k independent sets such that, all pairs of independent sets in this
family respect the unidirection-property.

The notion of oriented chromatic number has been first introduced by Nesetril
and Sopena [16], [14] and has been also studied in [15], [17], [11], [13]. Most of
these works focus on upper and lower bounds of the oriented chromatic number.
Recently, Klostermeyer and MacGillivray [12] studied its complexity, but to our
knowledge, its approximation behavior has not been studied until now. In [12],
it is stated that, deciding if the oriented chromatic number of a given digraph
is at most k is NP-complete for every k ≥ 4. In section 2, we extend this result
to the case of bipartite digraphs or circuit-free digraphs.

In section 3, we are interested in polynomial time algorithms providing guaran-
tees on the number of colors. Two kinds of approximation ratios are usually used
to characterize the performance guarantees of an approximation algorithm A.
The most classical one is, for a given instance G, the ratio between the minimum
number χ0(

−→
G) of colors required and the number of colors used by the algorithm,

denoted by mA(
−→
G). Algorithm A is said to guarantee a ratio of ρ(G) if, for every

instance, the related ratio is bounded below by ρ(G). A(
−→
G ) will denote the so-

lution computed by A for
−→
G . The analysis of approximation algorithms for Min

Coloring started with Johnson [10] who showed that the greedy algorithm colors
k-colorable graphs with O(n/ logk n) colors, leading to a performance guaran-
tee of O(n/ log n). So far, the best known approximation algorithm achieves a
O(n(log log(n)2/(log(n))3-approximation [5]. Another framework, called differ-
ential ratio or also z-approximation, is also widely used [6], [2], [18], particularly
for coloring problems [7], [3], [1]; Min Coloring is known to be constant ap-
proximable under this ratio although it is hard to approximate in the usual
sense. Given an instance G, the differential ratio of an algorithm A is defined
by [w(G) −mA(G)]/[w(G) − β(G)], where mA(G), β(G) and w(G) respectively
denote the value of the computed solution, the optimal value of instance G and
its worse value. w(G) is obtained by maximizing (minimizing) the same objective
under the same constraints for a minimization (maximization) problem. In the
frame of Min Oriented Coloring, the worst value of an instance

−→
G is the number
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n of vertices and the ratio for
−→
G is [n−mA(

−→
G)]/[n− χo(

−→
G )]. For this problem,

we can see the differential framework as maximizing the number of unused colors
among n potential colors.

1.2 Motivation

Oriented coloring is a natural extension of Min Coloring arising in scheduling
models. Indeed, Min coloring models some simple tasks assignment problems.
Let us consider a set V = {T1, T2, . . . , Tn} of different tasks to be handled
on n identical processors when no preemption is possible. Every processor can
perform only one task at a time and every task is supposed to have a unit
processing time on any processor. Let E ⊂ {{t, t′}/t ∈ V, t′ ∈ V, t �= t′} be
a set of incompatibilities: two incompatible tasks cannot be performed during
the same time by (different) processors. On the other hand, a set of p tasks
without incompatibility can be performed at a time by using p processors.
Let us consider the incompatibility graph G = (V, E); it is well known that
the minimum time required to handle all tasks in V is the chromatic number
of G, denoted by χ(G). Color classes correspond to tasks that are performed
simultaneously.

Let us now consider a similar model where incompatibilities are oriented and
defined by

−→
E ⊂ {(t, t′)/t ∈ V, t′ ∈ V, t �= t′}; an incompatibility (t, t′) ∈ −→E means

that t′ cannot be neither performed (on any processor) at the same time as t, nor
during the next time unit after t: if t and t′ are performed consecutively, then
t must be performed after t′. One has to find a feasible scheduling minimizing
the total amount of time, that is a proper coloring (in the usual sense) together
with the order in which colors have to be performed. If color i is performed
just after color j, then only arcs from i to j are allowed. Let us also note that
such problem can be defined with a mixed incompatibility graph. Suppose now
that such a scheduling is organized in two steps. First, batches of compatible
tasks are performed (middle-term decisions) and one wants to minimize their
number. During the second step, (short-term step) a subset of p batches with
priority is selected and one wants to perform every p selected batches in p time
units (without break). The batches defined during the first step correspond to
independent sets in the incompatibility graph; a family of p such independent
sets corresponds to batches that can be handled in p time units if they can be
numbered S1, . . . , Sp in such a way there is no arc from Si to Si+1. It is easily
shown that such a numbering exists for every family of p sets if and only if
every two independent sets satisfy the unidirection-property. So this scheduling
problem can be seen as an oriented coloring problem.

2 The Complexity of Oriented Chromatic Number

The k-chromatic number problem OCNk is formally defined as follows: an in-
stance is an oriented graph

−→
G and the question is: does

−→
G have an oriented

k-coloring ?
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Theorem 1. ([12]) Let k be a fixed positive integer. If k ≤ 3, then OCNk can
be decided in polynomial time. If k ≥ 4, then OCNk is NP-complete, even if the
input is restricted to connected digraphs.

In what follows, we study the complexity of Min Oriented Coloring for particular
classes of digraphs.

Proposition 1. Let G be a tree (with at least one edge), and let
−→
G be an orien-

tation of G. Then,
−→
G admits an oriented k-coloring, with k = 2 or k = 3. Conse-

quently OCNk is polynomial when the input is restricted to an
oriented tree.

Proof is done by induction on the order n. Bipartite or circuit-free digraph are
natural generalization of orientation of tree. In what follows, we show that OCNk

is NP-complete even if the input graph is supposed to be bipartite or circuit-free.
A tournament is a complete antisymmetric digraph. If

−→
G is a tournament of

order n, then χo(
−→
G) = n. We denote by B(

−→
G) the bipartite representation of

−→
G

defined by: V (B(
−→
G )) = {xi, yi/i ∈ V (

−→
G)}, A(B(

−→
G )) = {(xi, yj), (yi, xj)/(i, j) ∈

A(
−→
G)}. Then, the following lemma can be easily shown:

Lemma 1. χo(B(
−→
G )) = n. Moreover,

−→
G is the color-digraph of B(

−→
G ) and the

only optimal oriented coloring of B(
−→
G) is given by: c(xi) = c(yi) = i,∀i ∈ V (

−→
G).
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Fig. 1. Digraph
−→
Lj and its color digraph T 1

4

Let c be an homomorphism of
−→
Lj to the tournament T 1

4 (cf. Fig.1) such that
c(zj

1), c(z
j
2), c(z

j
3) ∈ {T, F}, then we have:

Lemma 2. c exists if and only if (c(zj
1), c(z

j
2), c(z

j
3)) �= (F, F, F ).

The main argument of the proof is: if c(zj
3) = c(zj

2) = F , then c(uj
6) = F .
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Theorem 2.

(i) OCN4 is NP-complete even if the input is restricted to bounded degree bi-
partite digraphs.

(ii) OCN4 is NP-complete even if the input is restricted to bounded degree
circuit-free digraphs.

Proof (Sketch): (i) OCN4 trivially belongs to NP. We then reduce 3-Sat to
OCN4. Let us consider an instance (X, C) of 3-Sat: X = {x1, x2, . . . , xn} is
a set of boolean variables and C = {C1, . . . , Cm} contains m clauses of 3 literals.
The main idea is the following: every clause Cj is associated to the gadget

−→
Lj

guaranteeing that at least one among zj
1, z

j
2, z

j
3 is associated to color ”True” and

every variable xi is associated to the gadget
−→
Hi defined below guaranteeing that

vertices xi and x̄i are assigned to color ”True” or ”False” and have different
colors.

More precisely, the reduction devises the following digraph
−→
G : V (

−→
G) =⋃

1≤j≤m Uj ∪
⋃

1≤i≤n Vi, with Uj = V (Lj) = {uj
l /1 ≤ l ≤ 12} and Vi =

{xi, xi, exi
, al

i, x
F
i , yF

i , xT
i , yT

i , xR
i , yR

i , xB
i , yB

i /1 ≤ l ≤ 16}. The arc set of
−→
G is

A(
−→
G ) =

⋃
1≤j≤m A(

−→
Lj) ∪

⋃
1≤i≤n A(

−→
Hi), where

−→
Hi = (Vi, A(

−→
Hi)), 1 ≤ i ≤ n, is

defined by Fig. 2:

xF
i xi

a9
i a10

i a11
i a12

i a13
i

a14
i

a15
i a16

i

a1
ia2

ia3
ia4

ia5
i

xi
a6

i

a7
ia8

i

exi

yF
i

xT
i

xR
i

xB
i

yT
i

yR
i

yB
i

Fig. 2. Digraph
−→
Hi

For each clause Cj = zj
1 ∨ zj

2 ∨ zj
3, with zj

k ∈ {xi, xi, i ∈ {1, 2, . . . , n}}, k =
1, 2, 3, (j ∈ {1, 2, . . . , m}), we take a copy of

−→
Lj , identifying vertices zj

1, z
j
2, z

j
3 to

the related vertices of
⋃

1≤i≤n Vi.

The construction of
−→
G can be performed in polynomial time. Digraph

−→
G

is bipartite and its degree is bounded by Max(p + 3; 7), where p denotes the
maximum number of occurrences of a literal in clauses.
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If c is an oriented coloring of
−→
G , as xi and xi are linked by a 2-path, c(xi) �=

c(xi). The sub-digraph
−→
Hi[{xF

i , XT
i , xR

i , xB
i , yF

i , yT
i , yR

i , yB
i }] is isomorphic

to B(T 1
4 ) for any fixed i in {1, 2, . . . , n}. Then, χo(

−→
G) ≥ 4 and if c is an oriented

4-coloring of
−→
G , its color digraph is tournament

−→
T 1

4 . Moreover, using lemma 1,
xF

i is necessarily colored by F and the existence of a 4-path and a 6-path from
xF

i to xi and xi imply that {c(xi), c(xi)} = {T, F}.
Given a truth assignment t : {xi, xi, i ∈ {1, 2, 3, . . . , n}} −→ {True, False},

we associate mapping c : V (
−→
G) → {T, F} defined as c(xi) = T if t(xi) = True,

t(xi) = F otherwise. If t satisfies all clauses {Cj}1≤j≤m, then applying lemma 2,
there exists an homomorphism of

−→
G to T 1

4 .
Conversely, if such an homomorphism c exists, then we define the truth as-

signment t by t(xi) = True if c(xi) = T , t(xi) = False otherwise. By previous
lemma, t satisfies all clauses Cj (1 ≤ j ≤ n).

Consequently, there exists a truth assignment t : {xi, xi, i ∈ {1, 2, 3, . . . , n}}
−→ {True, False} satisfying all clauses {Cj}1≤j≤m, if and only if

−→
G admits an

oriented 4-coloring. As
−→
G is bipartite, statement (i) of the theorem is proved.

Proof of statement (ii.) is similar by replacing
−→
Hi by

−→
H ′

i:

xF
i xi

a9
i a10

i a11
i a12

i a13
i

a14
i

a15
i a16

i

a1
ia2

ia3
ia4

ia5
i

xi
a6

i

a7
ia8

i

exi

xB
i

xT
ixR

i

yF
i

Fig. 3. Digraph
−→
H ′

i

The resulting digraph
−→
G is circuit-free and its color digraph is T 1

4 .

2.1 Case of Complete Multipartite Digraphs

The bipartite representation of a tournament gives existence of bipartite graphs
of order 2n with χo(B) = n. We focus here on the analysis of general multipar-
tite digraphs. Let

−→
G = (V1 ∪ V2 ∪ · · · ∪ Vl, A(

−→
G )) be a complete multipartite

digraph. Given a digraph
−→
G , we define the mixed graph M(

−→
G) associated to−→

G by: V (M(
−→
G)) = V (

−→
G), A(M(

−→
G )) = A(

−→
G) and E(M(

−→
G)) = {{x, y}|∃z ∈

V (
−→
G), (x, z), (z, y) ∈ A(

−→
G ) or (y, z), (z, x) ∈ A(

−→
G )}.
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Proposition 2.

(i) χo(
−→
G ) =

∑l
i=1 χ(M(

−→
G)[Vi]).

(ii) for i ∈ {1, 2, . . . , l}, if x, y ∈ M(
−→
G)[Vi],

{y, x} /∈ E(M(
−→
G )) ⇒ ∀z, {x, z} ∈ E(M(

−→
G)), {y, z} ∈ E(M(

−→
G))

(iii) Min Oriented Coloring is polynomial for complete multipartite digraphs.

Proof:(i) Any given optimal oriented coloring of
−→
G induces a (usual) color-

ing of (undirected) graphs {M(
−→
G)[Vi]}1≤i≤l. As no oriented color class con-

tains vertices from both Vi and Vj for 1 ≤ i �= j ≤ l, we have: χo(
−→
G ) ≥∑l

i=1 χ(M(
−→
G)[Vi]). For i ∈ {1, 2, . . . , l}, let ci be a ki-coloring of M(

−→
G)[Vi]. Any

couple of monochromatic classes in {ci}1≤i≤l satisfies the unidirection property
in
−→
G . Indeed, let 1 ≤ i < j ≤ l and let {x, y} ∈M(

−→
G)[Vi] and {z, t} ∈M(

−→
G)[Vj ].

Without lost of generality, we suppose (x, z) ∈ A(
−→
G). As {x, y} /∈ E(M(

−→
G)[Vi]),

then (x, t) ∈ A(
−→
G ). As {z, t} /∈ E(M(

−→
G)[Vj ]), then (y, t) ∈ A(

−→
G ). Then

{x, y} → {z, t}, and the unidirection property is verified. Mapping c : V (
−→
G) →

{1, 2, . . . , k1 + k2 + · · · + kl} defined by c(x) = ci(x) +
∑

j=1,...,i kj if x ∈ Vi, is

an oriented (k1 + k2 + · · ·+ kl)-coloring of
−→
G .

(ii) Let x, y, z be vertices of M(
−→
G)[Vi] (1 ≤ i ≤ l), such that {y, x} /∈ E(M(

−→
G))

and {z, x} ∈ E(M(
−→
G)). Without lost of generality, we suppose that the 2-path

from x to z (x, α, z) exists. As {y, x} /∈ E(M(
−→
G)), {y, α} ∈ E(

−→
G ), then {z, y} ∈

E(M(
−→
G)).

(iii) Note finally that graphs {M(
−→
G)[Vi]}1≤i≤l are cographs (P4-free) and con-

sequently their chromatic number can be computed in polynomial time ([4]).

3 Approximation

As OCNk is NP-complete, for k ≥ 4 and for various classes of digraphs, we are
interested in approximate this problem. The objective of the first subsection is
to obtain negative results by the use of a reduction from a well known problem:
Maximum Independent Set. In the second subsection, we obtain positive result
by the analysis of a greedy algorithm.

3.1 Reduction from Maximum Independent Set

Let G = (V,E) be an instance of the Maximum Independent Set problem with
V = {1, 2, 3, . . . , n}. Let us define a digraph

−→
G′ as follows:

V (
−→
G′) = X ∪ Y ∪ Z with: X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn} and

Z = {z1, z2, . . . , zn}. A(
−→
G′) = AXY ∪ AXZ ∪ AY Z with: AXZ = {(xi, zj), i ≤

j} ∪ {(zi, xj), i < j}, AY Z = {(yi, zj), i ≤ j} ∪ {(zi, yj), i < j} and AXY =
{(xi, yj), i < j} ∪ {(xj , yi), i < j and (j, i) ∈ E} ∪ {(yi, xj), i < j, (i, j) /∈ E}.
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Let us note that digraphs
−→
G′[X ∪ Z] and

−→
G′[Y ∪ Z] are isomorphic, that

−→
G′[X ∪ Z] and

−→
G′[Y ∪ Z] are complete bipartite digraphs and that

−→
G′[X ∪ Y ] ∪

{(xi, yi)/1 ≤ i ≤ n} is a complete bipartite digraph. Moreover, χo(
−→
G′[X ∪Z]) =

χo(
−→
G′[Y ∪ Z]) = 2n: indeed, as there is always an oriented 2-path from xi to xj

(i < j), and from zi to zj , color classes contain only one vertex.

Lemma 3. Let n = |G|, then, χo(
−→
G ) = 3n−α(G), where α(G) denotes the in-

dependent number of G, and every k-oriented coloring of
−→
G′ allows us to compute

in polynomial time an independent set of G of size 3n− k.

Proof: Any color class of
−→
G′ is either a single vertex or the pair {xi, yi} for

i ∈ {1, 2, . . . , n}. Consequently χo(
−→
G′) = k with 2n ≤ k ≤ 3n. Any k-oriented

coloring of
−→
G′ is formed by (3n−k) pairs of vertices and (2k−3n) single sets. Let

S be the set {i ∈ V/{xi, yi} is a color }. ∀(i, j) ∈ S × S, i < j, both definition
of AXY and the unidirection property imply that {(xi, yj), (yi, xj)} ⊂ A(

−→
G′);

consequently (i, j) /∈ E. Then, S is an independent set of G.
Conversely, let S ⊂ V be an independent set of G. By definition of

−→
G′,

it is straightforward to verify that we can define an oriented coloring c of−→
G′ as follows: color by a same color xi and yi, for i ∈ S, and color every
other vertex by a new color. Consequently, there is a bijection between the
oriented colorings of

−→
G′ and the independent sets of G, which achieves the

lemma.

Theorem 3. There exists a reduction from Maximum Independent Set to Min
Oriented Coloring transforming any differential ratio ρ(n) for the Min Oriented
Coloring into a ρ(3n)-standard approximation for the Maximum Independent
Set.

Proof: Let A be an algorithm guaranteeing a differential ratio of ρ(n) for the
Min Oriented Coloring. Let G be a graph. We define

−→
G′ as previously. We denote

by χ′
o(
−→
G′) be the number of color classes used by algorithm A for instance

−→
G′.

By lemma 3, we get an independent set of G of size α′(G) = 3n−χ′
o(
−→
G′). So we

have: α′(G)/α(G) = (3n− χ′
o(
−→
G′))/(3n− χo(

−→
G′)) ≥ ρ(3n), which concludes the

proof.

Corollary 1. If P �= NP, then Min Oriented Coloring is not approximable
within a constant differential approximation ratio. If P �= ZPP, then Min
Oriented Coloring is not approximable within a differential ratio of O(nε−1),
ε > 0.

3.2 A Greedy Algorithm

In this section, we propose a natural generalization of the usual greedy algorithm
consisting in iteratively applying a greedy independent set algorithm [10]. The
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main difference for the oriented case arises from the fact that an oriented coloring
of a sub-digraph cannot systematically be completed into an oriented coloring
of the whole digraph (two vertices of the same color in the sub-digraph can
be connected by a 2-path in the whole graph). To overcome this difficulty, the
algorithm is devised in the framework of mixed graphs.

We first introduce a generalization of oriented coloring to mixed graph. A
mixed k-coloring of a mixed graph M = (V,A,E) is a mapping c : V (M) →
{1, 2, . . . , k} such that, for all 1 ≤ i ≤ k, sub-mixed graph M [c−1(i)] of M
contains no arc nor edge, and for all 1 ≤ i ≤ k, color classes c−1(i) and c−1(j)
are in unidirection in M . Given a mixed graph M = (V,A,E) and a vertex
v ∈ V , we define B(v, 2) as the set of vertices y such that c(v) �= c(y) for all
mixed coloring c of M : B(v, 2) = {y|[{v, y} ∈ E]∨[(v, y) ∈ A]∨[(y, v) ∈ A]∨[∃z ∈
V, (v, z), (z, y) ∈ A] ∨ [∃z ∈ V, (y, z), (z, v) ∈ A]}.

It is obvious that an oriented k-coloring of
−→
G is also a mixed k-coloring

of M(
−→
G), and conversely. Note also that notions of Γ+ and Γ− in

−→
G and

M(
−→
G) coincide. It is straightforward to verify that the following proposition

holds for mixed coloring of M(
−→
G) and does not hold for oriented coloring of

−→
G .

Nevertheless, every mixed k-coloring of M(
−→
G) induces an oriented k-coloring

of
−→
G .

Proposition 3. Let
−→
G be a digraph and z ∈ V (

−→
G ). Every mixed k-coloring c

of M(
−→
G)[V (

−→
G ) \ {z}] can be completed into a mixed (k + 1)-coloring of M(

−→
G).

We then consider Greed-monochromatic (GMC) algorithm which can be seen as
an adaptation of the usual greedy independent set algorithm:

Proposition 4. : Let
−→
G be a directed graph and M(

−→
G) its associated mixed

graph. GMC computes an independent set S of (M(
−→
G)) (and hence of

−→
G) such

that |S| ≥ log
χo(

−→
G)(|

−→
G |) and ∀z ∈ V (

−→
G ), {z} and S verify the unidirection

property implying: Γ+(S) ∩ Γ−(S) = ∅

The proof is a simple adaptation of the usual analysis of greedy independent set
algorithm [10].

GMC
Input: A mixed graph MG = (V,A,E).
Output: GMC(MG) is an independent set S of MG.
(0) S ← ∅, U ← V ;
(1) While U �= ∅ do:
(2) Let v minimizing |B(v, 2)| in MG[U ];
(3) S ← S ∪ {v}; U ← U \B(v, 2)

Let us now consider algorithm Greed-Oriented-Coloring (GOC) that itera-
tively calls GMC:
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GOC
Input A digraph

−→
G = (V,A).

Output GOC(
−→
G) is a mixed coloring of

−→
G .

(0) Construct M(
−→
G); U ← V , i ← 1.

(a) While |U | > 0 do:
(b) Select at most log(|U |) vertices in GMC(G[U ]) for color i.
(c) Let Vmin be the subset of minimum order between Γ+(GMC(G[U ])) and
Γ−(GMC(G[U ])).
(d) Every vertex of Vmin receives a different color in {i+1, . . . , i+ |Vmin|}.
(e) U ← U \ (GMC(G[U ]) ∪ Vmin); i ← i + |Vmin|+ 1.

Let Gi denote the mixed graph G[U ] at the ith iteration of inner loop. Let
ni = |Gi| and λi = Min{log(ni); |GMC(Gi)|} and let k = χo(

−→
G). Then we have:

logk(ni) ≤ |GMC(Gi)| ≤ log(ni) and ni+1 ≥ ni−λi

2 ≥ ni−log(ni)
2 ≥ ni

3 if ni ≥ 5.
Thus, with p = �log3(n)� calls of algorithm GMC, the number of vertices colored

by these p colors is at least:

logk(n) + logk(
n

3
) + logk(

n

32 ) + . . . logk(
n

3p−1 ) = O(
log2(n)
log(k)

)

Then, the number of colors used by the algorithm GOC is at most log3(n) + n−
O( log2(n)

log(k) ). We deduce : (n− λ)/(n− k) ≥ O[(log2(n))/(n log k)]. So we have:

Theorem 4. Min-Oriented-Coloring admits a differential O[(log2(n))/(n log
(χo(

−→
G)))]-algorithm. In particular, if χo(

−→
G) is bounded, then a differential ratio

of O[(log2(n))/n] is guaranteed.

Acknowledgement. We are grateful to ananymous referees for their helpful
comments.
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Abstract. We provide parameterized algorithms for nonblocker, the
parametric dual of the well known dominating set problem. We ex-
emplify three methodologies for deriving parameterized algorithms that
can be used in other circumstances as well, including the (i) use of
extremal combinatorics (known results from graph theory) in order to
obtain very small kernels, (ii) use of known exact algorithms for the
(nonparameterized) minimum dominating set problem, and (iii) use of
exponential space. Parameterized by the size kd of the non-blocking set,
we obtain an algorithm that runs in time O∗(1.4123kd ) when allowing
exponential space.

1 Introduction

The minimum dominating set of a graph G = (V,E) is a subset V ′ ⊆ V of
minimum cardinality such that for all u ∈ V − V ′ there exists a v ∈ V ′ for
which (u, v) ∈ E. The problem of finding a minimum dominating set in a graph
is arguably one of the most important combinatorial problems on graphs, hav-
ing, together with its variants, numerous applications and offering various lines
of research [11]. The problem of finding a set of at most k vertices dominat-
ing the whole n-vertex graph is not only NP -complete but also hard to ap-
proximate [2], [10]. Moreover, this problem is also intractable when viewed as
a parameterized problem [5]. The status is different if the problem is to find
a set of at most k = n − kd vertices dominating a given n-vertex graph, where
kd (k−dual) is considered the parameter. Our focus in this paper is to present
a new O∗(2.0226kd)-algorithm for this dual problem which we will henceforth
call the nonblocker problem. (We will make use of the O∗-notation that has
now become standard in exact algorithmics: in contrast to the better known
O-notation, it not only suppresses constants but also polynomial-time parts.)

Interesting relationships are known for the optimum value nb(G) of kd for
a graph G: Nieminen [16] has shown that, for a non-trivial connected graph,
nb(G) equals the maximum number of pendant edges among all spanning forests
for G (an edge {u, v} in a forest F is pendant iff either u or v have degree one

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 237–245, 2006.
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in F ), and therefore nb(G) is again equal to the size of a maximum minimal
edge cover of G due to a result of Hedetniemi [12]. How to algorithmically relate
minimum dominating sets and maximum minimal edge covers is shown in [14].

On graphs of degree at least one, Ore [17] has shown (using different termi-
nology) that the nonblocker problem admits a kernel of size 2kd . Ore’s result
was improved by McCuaig and Shepherd [15] for graphs with minimum degree
two; in fact, their result was a corollary to the classification of graphs that satisfy
a certain inequality stated by Ore with equality. Independently, the result had
been discovered by the Russian mathematician Blank [3] more than fifteen years
ago, as noticed by Reed in [19]. More precisely, they have shown:

Theorem 1. If a connected graph G = (V,E) has minimum degree two and is
not one of seven exceptional graphs (each of them having at most seven vertices),
then the size of its minimum dominating set is at most 2/5 · |V |.

The algorithms we present are easy to implement, addressing an important need
of professional programmers. They essentially consist only of exhaustively apply-
ing simple data reduction (preprocessing) rules and then doing some search in
the reduced problem space. (The mathematical analysis of our simple algorithm
is quite involved and non-trivial, however.)

Our data reduction rules make use of several novel technical features. We
introduce a special annotated catalytic vertex, a vertex which is forced to be in
the dominating set we are going to construct. The catalytic vertex is introduced
by a catalyzation rule which is applied only once. The graph is reduced and
when no further reduction rules are applicable, a special de-catalyzation rule is
applied. The de-catalyzation rule also is applied only once. We believe that the
use of (de-)-catalyzation rules that might also increase the parameter size (since
they are only applied once) is a technique that might find more widespread use
when developing kernelization algorithms.

2 Definitions

We first describe the setting in which we will discuss minimum dominating set
in the guise of nonblocker.

A parameterized problem P is a subset of Σ∗×N, where Σ is a fixed alphabet
and N is the set of all non-negative integers. Therefore, each instance of the
parameterized problem P is a pair (I, k), where the second component k is
called the parameter. The language L(P) is the set of all YES-instances of P . We
say that the parameterized problem P is fixed-parameter tractable [5] if there is
an algorithm that decides whether an input (I, k) is a member of L(P) in time
f(k)|I|c, where c is a fixed constant and f(k) is a recursive function independent
of the overall input length |I|. The class of all fixed-parameter tractable problems
is denoted by FPT .

The problems dominating set and nonblocker are defined as follows:
An instance of dominating set (DS) is given by a graph G = (V,E), and
the parameter, a positive integer k. The question is: Is there a dominating set
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D ⊆ V with |D| ≤ k? An instance of nonblocker (NB) is given by a graph
G = (V,E), and the parameter, a positive integer kd. The question is: Is there
a non-blocking set N ⊆ V with |N | ≥ kd?

A subset of vertices V ′ such that every vertex in V ′ has a neighbor in V � V ′

is called a non-blocking set. Observe that the complement of a non-blocking set
is a dominating set and vice versa. Hence, G = (V,E) has a dominating set of
size at most k if and only if G has a non-blocking set of size at least kd = n− k.
Hence, dominating set and nonblocker are called parametric duals.

Let P be a parameterized problem. A kernelization is a function K that is
computable in polynomial time and maps an instance (I, k) of P onto an instance
(I ′, k′) of P such that (I, k) is a YES-instance of P if and only if (I ′, k′) is a YES-
instance of P , |I ′| ≤ f(k), and k′ ≤ g(k) for arbitrary functions f and g. The
instance (I ′, k′) is called the kernel (of I). The importance of these notions for
parameterized complexity is due to the following characterization.

Theorem 2. A parameterized problem is in FPT iff it is kernelizable.

Hence, in order to develop FPT -algorithms, finding kernelizations can be seen
as the basic methodology. The search for a small kernel often begins with finding
local reduction rules. The reduction rules reduce the size of the instance to which
they are applied; they are exhaustively applied and finally yield the kernelization
function. In this paper we introduce a small variation of this method; namely, we
introduce a catalyzation and a de-catalyzation rule, both of which are applied
only once. Contrary to our usual reduction rules, these two special rules might
increase the instance size.

We use this approach to solve the following Catalytic Conversion form of the
problem. An instance of nonblocker with catalytic vertex (NBcat) is
given by a graph G = (V,E), a catalytic vertex c, and the parameter, a positive
integer kd. The question is: Is there a non-blocking set N ⊆ V with |N | ≥ kd

such that c /∈ N? The special annotated catalytic vertex is assumed to be in the
dominating set (not the non-blocking set).

3 Catalytic Conversion: FPT Agorithm for nonblocker

Our kernelization algorithm for solving nonblocker uses two special rules 1
and 2 to introduce and then finally to delete the catalytic vertex. The actually
preprocessing then uses five more rules that work on an instance of NBcat.

Reduction rule 1 (Catalyzation rule). If (G, kd) is a nonblocker-
instance with G = (V,E), then (G′, c, kd) is an equivalent instance of
nonblocker with catalytic vertex, where c /∈ V is a new vertex, and
G′ = (V ∪ {c}, E).

Reduction rule 2 (De-catalyzation rule). Let (G, c, kd) be an instance of
nonblocker with catalytic vertex. Then, perform the following surgery to
obtain a new instance (G′, k′

d) of nonblocker (i.e., without a catalytic vertex):
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Add three new vertices u, v, and w and introduce new edges cu, cv, cw, uv
and vw. All other vertices and edge relations in G stay the same. This describes
the new graph G′. Set k′

d = kd + 3.

Reduction rule 3 (The Isolated Vertex Rule). Let (G, c, kd) be an instance
of NBcat. If C is a complete graph component (complete subgraph) of G that
does not contain c, then reduce to (G− C, c, kd − (|C| − 1)).

Observe that Rule 3 applies to isolated vertices. It also applies to instances that
do not contain a catalytic vertex. A formal proof of the soundness of the rule
is contained in [18]. Notice that this rule alone gives a 2kd kernel for general
graphs with the mentioned result of Ore (details are shown below). By get-
ting rid of vertices of degree one, we can improve on the kernel size due to
Theorem 1.

Reduction rule 4 (The Catalytic Rule). Let (G, c, kd) be an instance of
nonblocker with catalytic vertex. Let v �= c be a vertex of degree one
in G with N(v) = u (where N(v) refers to the set of neighbor vertices of v).
Transform (G, c, kd) into (G′, c′, kd − 1), where:

– If u �= c then G′ = G[c↔u] � v, i.e., G′ is the graph obtained by deleting v
and merging u and c into a new catalytic vertex c′ = 〈c ↔ u〉.

– If u = c then G′ = G � v and c′ = c.

Lemma 1. Rule 4 is sound.

Proof. “Only if:” Let (G, c, kd) be an instance of NBcat. Let V ′ ⊂ V (G) be
a non-blocking set in G with |V ′| = kd. The vertex v is a vertex of degree one
in G. Let u be the neighbor of v in G. Two cases arise:

1. If v ∈ V ′ then it must have a neighbor in V (G)�V ′ and thus u ∈ V (G)�V ′.
Deleting v will decrease the size of V ′ by one. If u = c, then (G′, c′, kd − 1)
is a YES-instance of NBcat. If u �= c, merging u and c will not affect the
size of V ′ as both vertices are now in V (G′) � V ′. Thus, (G′, c′, kd − 1) is
a YES-instance of NBcat.

2. If v ∈ V (G) � V ′, then two cases arise:
2.1. If u is also in V (G) � V ′ then deleting v does not affect the size of V ′.

Note that this argument is valid whether u = c or u �= c.
2.2. If u ∈ V ′ then u �= c. If we make v ∈ V ′ and u ∈ V (G) � V ′, the size

of V ′ remains unchanged. Since u did not dominate any vertices in the
graph, this change does not affect N(u) � v, and Case 1 now applies.

“If:” Conversely, assume that (G′, c′, kd − 1) is a YES-instance of NBcat.

1. If u = c, then we can always place v in V ′ and thus (G, c, kd) is a YES-
instance for nonblocker with catalytic vertex.

2. If u �= c, getting from G′ to G can be seen as (1) splitting the catalytic
vertex c′ into two vertices c and u, (2) taking c as the new catalytic ver-
tex, and (3) attaching a pendant vertex v to u. As the vertex u is in
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V (G) � V ′, v can always be placed in V ′, increasing the size of this set by
one. Thus (G, c, kd) is a YES-instance for NBcat, concluding the proof of
Lemma 4.

Reduction Rule 3 can be generalized as follows:

Reduction rule 5 (The Small Degree Rule). Let (G, c, kd) be an instance
of nonblocker with catalytic vertex. Whenever you have a vertex x ∈
V (G) whose neighborhood contains a non-empty subset U ⊆ N(x) such that
N(U) ⊆ U ∪{x} and c /∈ U (where N(U) is the set of vertices that are neighbors
to at least one vertex in U), then you can merge x with the catalytic vertex c
and delete U (and reduce the parameter by |U |).

Without further discussion, we now state those reduction rules that can be used
to get rid of all consecutive degree-2-vertices in a graph:

Reduction rule 6 (The Degree Two Rule). Let (G, c, kd) be an instance
of NBcat. Let u, v be two vertices of degree two in G such that u ∈ N(v) and
|N(u) ∪N(v)| = 4, i.e., N(u) = {u′, v} and N(v) = {v′, u} for some u′ �= v′. If
c /∈ {u, v}, then merge u′ and v′ and delete u and v to get (G′, c′, kd − 2). If u′

or v′ happens to be c, then c′ is the merger of u′ and v′; otherwise, c′ = c.

Reduction rule 7 (The Degree Two, Catalytic Vertex Rule). Let
(G, c, kd) be an instance of NBcat, where G = (V,E). Assume that c has degree
two and a neighboring vertex v of degree two, i.e., N(v) = {v′, c}. Then, delete
the edge vv′. Hence, we get the new instance ((V,E \ {vv′}), c, kd).
Notice that all cases of two subsequent vertices u, v of degree two are covered in
this way: If u or v is the catalytic vertex, then Rule 7 applies. Otherwise, if u and
v have a common neighbor x, then Rule 5 is applicable; x will be merged with
the catalytic vertex. Otherwise, Rule 6 will apply. This allows us to eliminate all
of the exceptional graphs of Theorem 1 (since all of them have two consecutive
vertices of degree two).

Algorithm 1. A kernelization algorithm for nonblocker
Input(s): an instance (G, kd) of nonblocker
Output(s): an equivalent instance (G′, k′

d) of nonblocker with V (G′) ⊆ V (G),
|V (G′)| ≤ 5/3 · k′

d and k′
d ≤ kd OR YES

Apply the catalyzation rule.
Exhaustively apply Rules 3 to 7. In the case of Reduction Rule 5, do so only for
neighborhoods U up to size two.
Apply the de-catalyzation rule.
{This leaves us with a reduced instance (G′, k′

d).}
if |V (G′)| > 5/3 · k′

d then
return YES

else
return (G′, k′

d)
end if
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Corollary 1. Alg. 1 provides a kernel of size upperbounded by 5/3 · kd + 3 for
any nonblocker-instance (G, kd), where the problem size is measured in terms
of the number of vertices.

4 Searching the Space

4.1 Brute Force

With a very small kernel, the remaining reduced nonblocker-instance can be
solved by brute-force search. Hence, we have to test all subsets of size kd within
the set of vertices of size at most 5/3 · kd. Stirling’s formula gives:

Lemma 2. For any a > 1,
(
ak
k

)
≈ ak

(
a

a−1

)(a−1)k
.

Corollary 2. By testing all subsets of size kd of a reduced instance (G, kd) of
nonblocker, the nonblocker problem can be solved in time O∗(3.0701kd).

4.2 Using Nonparameterized Exact Algorithmics

The above corollary can be considerably improved by making use of the fol-
lowing recent result of F. Fomin, F. Grandoni, and D. Kratsch [7] on general
graphs:

Theorem 3. minimum dominating set can be solved in time O∗(1.5260n)
with polynomial space on arbitrary n-vertex graphs.

The corresponding algorithm is quite a simple one for hitting set, considering
the open neighborhoods of vertices as hyperedges in a hypergraph; the quite
astonishing running time is produced by an intricate analysis of that algorithm.
Due to the 5/3 · kd-kernel for nonblocker, we conclude:

Corollary 3. By applying the algorithm of Fomin, Grandoni, and Kratsch [7] to
solve minimum dominating set on a reduced instance (G, kd) of nonblocker,
the nonblocker problem can be solved in time O∗(2.0226kd) with polynomial
space.

4.3 Trading Time and Space

Due to the fact that the kernel we obtained for nonblocker is very small, it may
be worthwhile looking for an algorithm that uses exponential space. According
trade-off computations are contained in [7], so that we may conclude:

Corollary 4. By using exponential space, nonblocker can be solved in time
(and space) O∗(1.4123kd).
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5 Discussion: Further Results and Open Questions

Questions on general graphs. We have presented two efficient parameterized
algorithms for the nonblocker problem, the parametric dual of dominating
set. With the help of known (non-trivial) graph-theoretic results and new exact
algorithms for minimum dominating set, we were able to further reduce the
involved constants.

It would be possible to use the result of Reed [19] to obtain a smaller kernel for
nonblocker if rules could be found to reduce vertices of degree two. Perhaps
such rules may be possible only for restricted graph classes, e.g., nonblocker
restricted to bipartite graphs.

Finally, notice that our reduction rules get rid of all degree-two vertices
that have another degree-two vertex as a neighbor. Is there an “intermediate”
kernel size theorem (that somehow interpolates between the result of Blank,
McCuaig and Shepherd and that of Reed)? Our use of the additional struc-
tural properties of the reduced graphs was to cope with the exceptional graphs
from [15].

Planar graphs. Since the rules that merge the catalyst with other vertices may
destroy planarity, we may only claim the 2kd kernel in the case of planar graphs.

We now use the following result on planar graphs by Fomin and Thilikos [9]:

Theorem 4. Every planar n-vertex graph has treewidth at most 9/
√

8 ·
√
n.

Together with the treewidth-based algorithm for minimum dominating set as
developed in [1], we can conclude:

Corollary 5. The nonblocker problem, restricted to planar graphs, can be
solved in time O∗(29

√
kd).

Is it possible to find a better kernelization in the planar case? This would be
interesting in view of lower bound results of J. Chen, H. Fernau, I. A. Kanj,
and G. Xia [4] who have shown there is no kernel smaller than (67/66 − ε)kd.
Such a result would immediately entail better running times for algorithms
dealing with the planar case. Observe that the kernelization of Ore also ap-
plies to planar cubic graphs. Since nonblocker is also NP -complete for that
graph class (see [13]) and since dominating set has a 4k-kernel in that case,
we know that there is no (4/3 − ε)kd-kernel for nonblocker on planar cubic
graphs.

Graphs of bounded degree. Interestingly, there are better algorithm for solving
minimum dominating set on cubic graphs (graphs whose degree is bounded
by three). More precisely, in [8] it is shown that this restricted problem can
be solved in time O∗(3n/6) = O∗(1.2010n) based on pathwidth decomposition
techniques. As in the planar case, we cannot make use of the catalyst rule, since
its application may increase the degree of a vertex.

Due to the 2kd-kernel for nonblocker based on Ore’s result [17], we conclude:
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Corollary 6. By applying the algorithm of Fomin, Grandoni, and Kratsch [8]
to solve minimum dominating set on a reduced instance (G, kd) of non-
blocker, the nonblocker problem, restricted to instances of maximum de-
gree three, can be solved in time O∗(3kd/3) = O∗(1.4423kd) with polynomial
space.

Notice however that we can even do better in this case. Namely, by applying all
of our reduction rules but the decatalyzation rule, at most one vertex (namely
the catalyst) will have a degree higher than three, when starting with a graph
of maximum degree of three. Now, we can incorporate the information that all
neighbors of the catalyst are already dominated in the pathdecomposition based
algorithm for minimum dominating set run on the graph G obtained from the
reduced graph by deleting the catalyst. Since G has maximum degree three, the
pathwidth bound of Fomin, Grandoni, and Kratsch [8] applies, so that we can
conclude:

Corollary 7. By applying the algorithm of Fomin, Grandoni, and Kratsch [8] to
solve minimum dominating set on a reduced instance (G, kd) of nonblocker
(that is modified as described), the nonblocker problem, restricted to instances
of maximum degree three, can be solved in time O∗(35kd/18) = O∗(1.3569kd) with
polynomial space.

Moreover, the kernelization primal/dual game can be played, since there is a triv-
ial 4k kernel for minimum dominating set on cubic graphs (each vertex in a
dominating set can dominate at most three vertices). The lower bound results of
J. Chen, H. Fernau, I. A. Kanj, and G. Xia [4] on kernel sizes yield a 2k kernel
size lower bound for minimum dominating set on cubic graphs. So, in that
case, upper and lower bound are not far off each other, at least when compared
to the planar case.

Related problems. Our approach seem to be transferrable to similar problems, al-
though then several additional technical hurdles appear. For example, for a suit-
able definition of “parametric dual”, we were able to derive similar kernel results
as given in this paper for minimum Roman domination, see [6].

In view of the fact that the minimum dominating set algorithm only makes
use of minimum hitting set in its analysis, the same time bounds are also
valid for the variant of minimum total dominating set, where each vertex
is required to be dominated by a neighbor (also the ones in the dominating
set). However, our catalyzator technique only works for vertices that are in the
dominating set and that are already dominated; vertices that are in the domi-
nating set (e.g., since they are neighbors of a vertex of degree one) but not yet
dominated themselves cannot be merged (only if their open neighborhoods are
comparable with respect to inclusion). There exist results similar to Blank, Mc-
Cuaig and Shepard’s that might provide kernelizations for total nonblocker,
see [20].
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Quantum Finite Automata and Logics
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Abstract. The connection between measure once quantum finite au-
tomata (MO-QFA) and logic is studied in this paper. The language class
recognized by MO-QFA is compared to languages described by the first
order logics and modular logics. And the equivalence between languages
accepted by MO-QFA and languages described by formulas using Lind-
ström quantifier is shown.

1 Introduction

The connection between automata and logic goes back to the work of Büchi [10]
and Elgot [13]. They showed that finite automata and monadic second-order
logic over finite words have the same expressive power, and that the transforma-
tion from finite automata to monadic second order formulas and vice versa are
effective. Later Büchi [11], McNaughton [21], and Rabin [24] showed equivalence
between finite automata and monadic second-order logics over infinite words
and trees. In the eighties, temporal logics and fixed-point logics took the role
of specification languages and more efficient transformations from logic formu-
las to automata were found. The research of the equivalence between automata
and logic formalism also influenced language theory, the classification theory
of formal languages was deepened by including notations and techniques, and
the logical approach helped in generalizing language theoretical results from the
domain of words to more general structures like trees and partial orders.

The equivalence between logic formulas and automata has also influenced
complexity theory. Fagin [14] showed that many complexity classes, such as NP,
P, PSPACE, could be characterized by different versions of second-order logic,
involving such operators as fixed point operator or transitive closure operator.

A finite automaton is a natural model of classical computing with finite mem-
ory, the same is a quantum finite automaton (QFA), it is a natural model of
quantum computation. There are known several models of quantum automata.
The two most popular quantum finite automata are quantum finite automata in-
troduced by Moore and Crutchfield [22] and quantum finite automata introduced
by Kondacs and Watrous [19] and they have a seemingly small difference, the first
definition of quantum finite automata allows the measurement only at the end of
the computation, but the second definition of quantum automata allows the mea-
surement at every step of the computation. Because of this difference these kinds
of quantum automata are usually called measure-once quantum finite automata
(MO-QFA) and measure-many quantum finite automata (MM-QFA). MO-QFA
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and MM-QFA with isolated cut point recognise only the subset of the regular
languages. The notions of quantum finite automata which are strictly more capa-
ble than MM-QFA are quantum finite automata with mixed states (introduced
by D.Aharonov, A.Kitaev and N.Nisan [1]) and quantum finite automata with
quantum and classical states (introduced by A.Ambainis and J.Watrous [5]). If
quantum finite automata are compared to their classical counterparts, QFA have
their strengths and weaknesses. The strength of quantum automata is in the fact
that QFA can be exponentially more effective [3], but the weakness is caused by
necessity that a quantum process has to be reversible.

For most of the notations of quantum finite automata the problem to describe
the class of the languages recognizable by the quantum automata is till open and
as logic has had a large impact on Computer Science, it is interesting to look
at the languages recognizable of quantum finite automata in the terms of logic.
The connection between measure once quantum finite automata and first order
logics and modular first order logics has been studied in this paper. As well as
the equivalence between measure once quantum finite automata and formula
with Lindström quantifier has been shown.

2 Main Notations

2.1 Quantum Finite Automata

Definition 1. A measure-once quantum finite automaton is a tuple

A = (Q;Σ; δ; q0;Qacc;Qrej)

where Q is a finite set of states, Σ is an input alphabet, q0 ∈ Q is a initial state,
Qacc ⊆ Q andQrej ⊆ Q are sets of accepting and rejecting states (Qacc∩Qrej = �),
and δ is the transition function δ : Q × Γ × Q → C[0,1], where Γ=Σ ∪ { 
; $ } is
working alphabet of A, and 
 and $ are the left and the right endmarkers.

The computation of A is performed in the inner-product space l2(Q), i.e.,
with the basis {| q〉 | q ∈ Q}, using the linear operators Vσ, σ ∈ Γ , defined by
Vσ(| q〉) =

∑
q′∈Q δ(q, σ, q′) | q′〉, which are required to be unitary.

A computation of A on input 
σ1σ2 . . . σn$ proceeds as follows. It starts in super-
position | q0〉. Then a transformation corresponding to the left end marker 
, the
letters of the input word and the right end marker $ are performed. After reading
the right end marker $ the final superposition is observed with respect to Eacc

and Erej where Eacc = span{| q〉 : q ∈ Qacc} and Erej = span{| q〉 : q ∈ Qrej}.
It means if the final superposition is ψ =

∑
qi∈Qacc

αi | qi〉 +
∑

qj∈Qrej
βj | qj〉

then the measure once quantum finite automaton A accepts the input word with
probability

∑
α2

i and rejects
∑

β2
j .

2.2 Logics and Classical Automata

Let A a finite alphabet and let ω = a1a2 . . . an be a word over A. The corre-
sponding word model for the word ω is represented by the relational structure

ω = (dom(ω), S,<, (Qa)a∈A)
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where dom(ω) = {1, 2, . . . , n} is the set of the letter “positions” of ω (the “do-
main” of ω), S is the successor relation on dom(ω) with (i, i + 1) ∈ S for all
1 ≤ i ≤ n, < is the order relation on dom(ω), and Qa = {i ∈ dom(ω) | ai = a}
(“position carries letter a”).

Consider word models over the finite alphabet A. The corresponding first
order language has variables x, y, . . . ranging over positions in the word models,
and is built from atomic formulas of the form

x = y, S(x, y), Qa(x)

by means of the connectivities ¬,∨,∧,→,↔ and quantifiers ∃ and ∀. The no-
tation ϕ(x1, x2, . . . , xn) indicates that in the formula ϕ at most the variables
x1, x2, . . . , xn are free, i.e. they are not in the scope of some quantifier. A
sentence is a formula with no free variables. If p1, p2, . . . , pn are positions from
dom(ω) then (ω, p1, p2, . . . , pn) |= ϕ(x1, x2, . . . , xn) means that ϕ is satisfied in
word model ω when p1, p2, . . . , pn serve as an interpretation of x1, x2, . . . , xn.
The language defined by sentence ϕ is L(φ) = {ω ∈ A∗ | ω |= ϕ}. Languages
defined by such sentences are first-order languages. For example, the sentence
∀x(Qa(x)) over the alphabet A = {a, b} defines the language containing all the
words that have only letters a. This language is first-order language. The classical
equivalence result of first-order logic is results by Schützenberg[25]:

Theorem 1. For a language L ∈ A∗ the following are equivalent

1. L is star-free (the smallest class that satisfies - all finite languages over A
belong to star free languages, if languages L1, L2 are star free then so are
L1 · L2, L1 ∪ L2, L1 ∩ L2 and L̄1 = A∗ \ L).

2. L is recognizable by a finite aperiodic monoid - a finite monoid M for which
there is and n ≥ 1 such that mn+1 = mn holds for all m ∈M .

3. L is defined by a first-order formula.

We will consider a new quantifier ∃m,nxϕ(x) that means ϕ(x) is true for
a number of x equal to n mod m. It is called a modular quantifier. Lan-
guages defined by first-order atomic formulas by means of the connectivities
¬,∨,∧,→,↔ and the modular quantifier are modular logic definable. An exam-
ple of such language is the language containing all words that has even number of
letter “a”, the corresponding formula for this language is ∃2,0xQa(x). Straubing,
Therie and Thomas [26] characterized the subclass of regular languages that can
be expressed by modular logic, as exactly those regular languages which have
solvable syntactic monoids.

The first-order logical formalism can be extended by second-order variables
X,Y, . . . which range over the element’s sets of the model, i.e, sets of letter
positions, and atomic formulas X(x), X(y), . . . that means “x belongs to X”,
“y belongs to X”, etc. Since the sets are “monadic second-order objects” the
resulting logical system is called monadic second − order logic (MSO). The
language (aa)∗ is defined by the formula

∃X∃Y (∀x(first(x) → X(x)) ∧ ∀x, y(X(x) ∧ S(x, y) → Y (y)) ∧ ∀y(last(y) →
Y (y)) ∧ ∀xQa(x))
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where first(x) : ¬∃y(y < x) and last(x) : ∀y(y ≤ x). The most important result
for Monadic second-order logic is Büchi theorem.

Theorem 2. (Büchi [10], Elgot [13]) A language of finite words is recognizable
by a finite automaton iff it is monadic second-order definable, and both conver-
sations, from automata to formulas and vice versa, are effective.

Logical framework can also be extended with generalized quantifiers; they have
been introduced by Mostowski [23]. One of such quantifiers is Lindström quan-
tifier that is studied in this paper.

Definition 2. Consider a language L over the alphabet Σ = (a1, a2, . . . , as).
Let x̄ be a k-tuple of variables (each ranging from 1 to the input length n). In
the following, we assume the lexical ordering on {1, 2, . . . , n}k, and we write
X1, X2, . . . , Xnk for this sequence of the potential values taken on by x̄. Let
φ1(x̄), φ2(x̄), . . . , φs−1(x̄) be s-1 Γ -formulas for some alphabet Γ . The

QLx̄[φ1(x̄), φ2(x̄), . . . , φs−1(x̄)]

holds on string ω = ω1ω2 . . . ωn, iff the word of length nk whose i-th letter (1 ≤
i ≤ nk) is ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a1 if ω |= φ1(Xi),
a2 ifω |= ¬φ1(Xi) ∧ φ2(Xi),
a3 ifω |= ¬φ1(Xi) ∧ ¬φ2(Xi) ∧ φ3(Xi),
. . .
as ifω |= ¬φ1(Xi) ∧ ¬φ2(Xi) ∧ . . . ∧ ¬φs−1(Xi),

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
belongs to L.

Consider alphabet Σ = {0, 1} and a language L which is defined by regular
expression(0, 1)∗0(0, 1)∗, then formula QL(φ(x)) is equal to the classical first-
order existential quantifier applied to some quantifier-free formula φ with free
variable x, i.e. ∃xφ(x). It is easy to see, that the formula will be true if there is
at least one position of x for which φ(x) will be true.

3 Quantum Finite Automata and Logics

As it is already know the most popular notations of quantum finite automata
(measure-once quantum finite automata and measure-many quantum finite au-
tomata) recognize only regular languages but not all regular languages. It follows
from the theorem of Büchi that the logical description of these language classes
should be weaker than monadic second-order logic described by Büchi. The first
intention is to study “natural” subclasses of MSO.

Theorem 3. If a language in alphabet Σ can be recognized by measure-once
quantum finite automaton and it is first-order definable, then it is trivial, i.e. an
empty language or Σ∗.
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Proof. Suppose that there exists a language L which is not trivial, it can be
recognized by MO-QFA, and it is first-order definable. If the language L is rec-
ognized by MO-QFA, it can also be recognized by a deterministic finite reversible
automaton (RFA). As L is not trivial, the corresponding RFA has accepting and
rejecting states. Look at the one of accepting states qa, it can be reached by
a word ω, and there exists a letter δ, such that after reading the word δk (k > 1)
the RFA returns in the state qa. Consider the monoid which recognizes the lan-
guage, as it accepts words ω and ωδk, it means that the monoid has subgroup
{1M , δδ, δδ2 , . . . , δδk−1}, but from this follows that this monoid is not aperiodic,
so the language cannot be first-order definable.

Another “natural” attempt could be look at connection between modular logic
and measure-once quantum finite automata. If we consider languages in a single
letter alphabet, it is easy to see that all such languages accepted by measure-
once quantum finite automaton can be defined by modular logic. But it is not
true for larger alphabets.

Lemma 1. There exists a language that can be recognized by measure-once
quantum finite automata, but cannot be defined by modular logic.

Proof. One of such languages is the language accepted by quantum finite au-
tomaton A = (Q,Σ, δ, q0, Qa, Qr), where Q = {q0, q1, q2, q3}, Σ = {a, b, },
Qa = {q0}, Qr = {q1, q2, q3}, for letter a corresponds transformation with matrix⎛⎜⎜⎝

0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1

⎞⎟⎟⎠, and

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠,

for letter b. The monoid which accepts given language is M = {1M , δa, δb, δaa}
and its binary operation is defined as follows:

1M · 1M = 1M ;
1M · δa = δa = 1M · δa;
1M · δb = δb = 1M · δb;

1M · δaa = δaa = 1M · δaa;
δa · δa = δaa;
δa · δb = δab;
δa · δaa = 1M ;
δb · δa = δb;
δb · δb = 1M ;
δb · δaa = δb;
δaa · δa = 1M ;
δaa · δb = δa;
δaa · δaa = δa.

This monoid is a group. Next we will find out if this group is solvable. Given
a group G and elements g, h ∈ G we define the commutator of g and h, denoted
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[g, h], as [g, h] = g−1h−1gh, and for any two subgroups H,K ⊆ G we write
[G,K] to denote the subgroup of G generated by all commutators [g, k] with
k ∈ K and g ∈ G. The derived subgroup of G is G′ = [G,G], and in general we
write G(0) = G,G(1) = G′, G(2) = (G′)′, .., G(j) = (G(j−1))′,etc. A group is said
to be solvable if G(m) = 1 for some value of m.

G0 = {1M , δa, δb, δaa} ; G1 = {1M , δa, δaa} = G2 = G3 = . . .. The group M
is unsolvable, and from this follows that this language cannot be defined by
modular logic.

Lemma 2. There exists a language that cannot be recognized by measure-once
quantum finite automata, but is definable by modular logic.

Proof. Consider language L1 which have all those words that have odd number
of occurrences of the substring “ab”. The language L1 can be defined by modular
formula ∃(2,1)xy(Qa(x) ∧ S(x, y) ∧Qb(y)). The minimal deterministic finite au-
tomaton of this language contains “forbidden construction” [4] that means the
language L1 cannot be recognized by a measure-once quantum finite automaton.

��
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��
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��
��
��
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��
��
��
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�����a �����
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�����
a

����� b
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� �
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MO-QFA recognizable languages could not be described by these “natural”
subclasses of MSO, so less standard logic should be considered, one of extensions
could be use of generalized quantifiers.

Theorem 4. A language can be recognized by a measure-once quantum finite
automaton if and only if this language can be described by Lindström quantifier
formula corresponding to the group languages (languages recognized by determin-
istic finite reversible automata) using atomic formulas Qa(x).

Proof. As group languages are those languages that are recognized by a de-
terministic finite reversible automaton, these languages are also recognized by
measure-once quantum automata. So for given MO-QFA, that recognizes a lan-
guage L in alphabet Σ = {a1, . . . , ak} the corresponding formula with Lindström
quantifier the Lindström quantifier is over the language L in the same alphabet
and the formula is QLx(Qa1(x), Qa2(x), .., Qak−1(x)).

For a given formula QLGx(Qa1 , Qa2 , .., Qas−1) in alphabet Σf = {b1, . . . , bk}
and ai ∈ Σf over a group language LG in alphabet ΣL = {δ1, δ2, . . . , δs} consider
the language, that it defines. And look at mapping from Σf to ΣLG. If the letter
bi is in the position x, then there are three possibilities:

1. Lindström quantifier has exactly one Qbi then for the letter bi the corre-
sponding letter is δj , where j is occurrence of Qbi .
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2. Lindström quantifier contain more than one Qbi then for the letter bi the
corresponding letter is δj , where j is first occurrence of Qbi .

3. Lindström quantifier has none Qbi then for the letter bi the corresponding
letter is δs.

The transformation of MO-QFA that recognizes the given language for a let-
ter bi corresponds to transformation of MO-QFA that recognizes language LG
for bi mapping.
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Abstract. In this paper, a fully distributed spatial index tree (FDSI-tree) is 
proposed for efficient & power-aware range queries in sensor networks. The 
proposed technique is a new approach for range queries that uses spatial 
indexing. Range queries are most often encountered under sensor networks for 
computing aggregation values. However, previous works just addressed the 
importance but didn’t provide any efficient technique for processing range 
queries. A FDSI-tree is thus designed for efficiently processing them. Each 
node in the sensor network has the MBR of the region where its children nodes 
and the node itself are located. The range query is evaluated over the region 
which intersects the geographic location of sensors. It ensures the maximum 
power savings by avoiding the communication of nodes not participating over 
the evaluation of the query.  

1   Introduction 

A sensor network consists of many spatially distributed sensors, which are used to 
monitor or detect phenomena at different locations, such as temperature changes or 
pollutant level. Sensor nodes, such as the Berkeley MICA Mote [1] which already 
support temperature sensors, a magnetometer, an accelerometer, a microphone, and 
also several actuators, are getting smaller, cheaper, and able to perform more complex 
operations, including having mini embedded operating systems. The applications have 
gained significant momentum during the past three years with the acceleration in 
wireless sensor network research. The heterogeneity in the available sensor 
technologies and applications, hence, requires a common standardization to achieve 
the practicality of sensor networks applications. 
                                                           
* This research was supported by the MIC (Ministry of Information and Communication), 

Korea, under the ITRC (Information Technology Research Center) support program 
supervised by the IITA (Institute of Information Technology Assessment). 
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While these advances are improving the capabilities of sensor nodes, there are still 
many crucial problems with deploying sensor networks. Limited storage, limited 
network bandwidth, poor inter-node communication, limited computational ability, 
and limited power still persist. 

The works we describe under have laid out the importance to the need of spatial 
indexing schemes in sensor networks, and have even proposed [8], [9] a similar 
structure. Traditionally, the database community has focused mostly on centralized 
indices [7], [10] and our approach essentially is to embed them into sensor nodes. But, 
the index structure is decided not just upon the data, but also considering the 
performance metrics and power measurements of collective sensors. Hence our design 
is different from the traditional indexing techniques. 

The Cougar project at Cornell [12] discusses queries over sensor networks, which 
has a central administration that is aware of the location of all the sensors. Madden 
et.al., in [13], Fjord architecture for management of multiple queries is introduced 
focusing on the query processing in the sensor environment. However the information 
is available in a catalog. The TinyOS group at UC Berkeley has published a number 
of papers describing the design of motes, the design of TinyOS, and the 
implementation of the networking protocols used to conduct ad-hoc sensor networks. 
TAG [5] was proposed for an aggregation service as a part of TinyDB1 [14], which is 
a query processing system for a network of Berkeley motes. They also described 
a distributed index, called Semantic Routing Trees (SRT). SRTs are based on single 
attributes, historical sensor reading and fixed node query originations, as contrasting 
to our design over these aspects. The work on directed diffusion [4], which is a data 
centric framework, uses flooding to find paths from the query originator node to the 
data source nodes. The notion is grouping to compute aggregates over partitions of 
sensor readings. [15] proposes a scheme for imposing names onto related groups of 
sensors in a network, in much the same way our scheme groups sensor nodes into 
regions according to their geographic location. Interestingly, [8] has an R-tree based 
scheme, but no verification and/or evaluation is presented. Moreover, it is more 
concerned over the text book discussions of spatial queries lacking focus on range 
queries and their energy requirements. Our work is most closely related to geographic 
hash-tables (GHTs) [16], DIFS [17] and DIMENSIONS [18]. DIMENSIONS and 
DIFS can be thought of as using the same set of primitives as GHT (storage using 
consistent hashing). The scheme for routing followed by the tributaries and delta 
approach [19] is more efficient. Pre-computed indices are used to facilitate range 
queries in traditional database systems, and have been adopted by the above 
mentioned works. Indices trade-off some initial pre-computation cost to achieve 
a significantly more efficient querying capability. For sensor networks, we emphasize 
that a centralized index for range queries are not feasible for energy-efficiency as the 
energy cost of transmitting 1Kb a distance of 100m is approximately the same as that 
for executing 3 million instructions by a 100 (MIPS)/W processor [2], [3]. 

In this paper, we propose the design of fully distributed spatial index tree (FDSI-
tree), with specifications to work under the constraints of individual sensor node. 
The concept of traversal and node selection is the derived version of traditional  

                                                           
1 http://telegraph.cs.berkeley.edu/tinydb/ 
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R-tree [7] structure. As R-tree is the primary choice when handling spatial attributes 
efficiently, almost all index structures are motivated from it. 

The remainder of this paper is structured as follows. In section 2, we propose the 
structure and energy efficient & power-aware query processing of the FDSI-tree, 
under the assumptions and system model. Section 3 presents the performance 
evaluation based on emulated environment. Finally, we conclude in Section 4 
providing insights into future works.  

2   FDSI-Tree 

In this section, we propose the Fully Distributed Spatial Index tree (FDSI-tree) used 
for querying with spatial attributes. All the schemes reviewed earlier are based on 
grouping of the sensor nodes either by event/attribute, which are data centric 
demanding communication that is redundant. Our scheme overcomes these inherent 
deficiencies.  

2.1   Assumptions and System Model 

Wireless Sensor networks have the following physical resource constraints and 
unique characteristics: 

Communication. The wireless network connecting the sensor nodes is usually 
limited, with only a very limited quality of service, with high variance in latency, and 
high packet loss rates. 

Power consumption. Sensor nodes have limited supply of energy, most commonly 
from a battery source. 

Computation. Sensor nodes have limited computing power and memory sizes that 
restrict the types of data processing algorithms that can be used and intermediate 
results that can be stored on the sensor nodes.  

Streaming data. Sensor nodes produce data continuously without being explicitly 
asked for that data. 

Real-time processing.  Sensor data usually represent real-time events. Moreover, it is 
often expensive to save raw sensor streams to disk at the sink. Hence, queries over 
streams need to be processed in real time. 

Uncertainty. The information gathered by the sensors contains noise from 
environment. Moreover, factors such as sensor malfunction, and sensor placement 
might bias individual readings. 

We consider a static sensor network distributed over a large area. All sensors are 
aware of their geographical position. Each sensor could be equipped with GPS device 
or use location estimation techniques. The network structure, which is common to 
both Cougar and TinyDB, consists of nodes connected as a tree (tree-based routing). 
As it’s evident that nodes within the same level do not communicate with each other, 
the communication boundary is constrained within children and their respective 
parent. This communication relationship is viable to changes due to moving nodes, 
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the power shortage of the nodes, or when new nodes appear. TinyDB has a list of 
parent candidates. The parent changes if link quality degrades sufficiently. The 
Cougar has a similar mechanism: a parent sensor node will keep a list of all its 
children, which is called the waiting list, and will not report its reading until it hears 
from all the sensor nodes on its waiting list. We use Cougar’s approach in our system 
under similar semantics. 

2.2   The Tree Structure 

A FDSI-tree is an index designed to allow each node to efficiently determine if any of 
the nodes below it will need to participate in a given query over some queried range.  

The routing protocol, the tributary-delta approach for example, determines the 
parent-child relationship and their extent. However, to accommodate the spatial query 
in the network we need additional parameters to be stored by individual nodes. Each 
node must store the calculated2 MBR of its children along with the aggregate values 
as have already been existing in each node under the in-network query processing 
paradigm and noted by several literatures, [22,23] in particular. The parent node of 
each region in the tree has a structure in the form <child-pointers, child-MBRs, 
overall-MBR, location-info>. The child-pointers helps traverse the node structure. As 
we are following the Cougar, the waiting-list carries the same semantics as these 
pointers. In addition, we have added the MBR in each node which confines the 
children into a box over which a query can be made. The confinement algorithm is 
responsible to analyze and distribute the sensor nodes into the appropriate MBR. This 
classification is largely based on their proximity to their respective parent and the 
contribution factor to the dead space of the resulting MBR. Any other promising 
factor can be explored and analyzed, which we consider for our future work. 
However, it is this classification that brings about efficient routing and accuracy to the 
queried result. 

   
 
                                (a)                                                                          (b)  

Fig. 1. Node positions in one section of our sensor test bed. (a) Simulated Physical 
Environment showing region of interest. (b) The MBR under each parent node of a sub tree. 

                                                           
2  Each MBR is updated during the ascending of the tree so that the modified MBR is stored in 

each node. 
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Figure 1 shows an emulated environment settings consisting of distributed sensor 
nodes on which we base our experiments. For the construction of FDSI-tree, in the 
descending stage, a bounded box which overlaps the children and the parent itself 
should be stored by each parent in that region. Each descent correspondingly stores 
the MBR of the region where link exists until the leaf node is reached. At the end of 
the descent, when all the nodes have been traversed, the parent node of each region is 
notified about their child nodes’ MBR. Hence, in the ascending stage the parent of 
each region gets updated the new MBR of their children which now should include 
the sub-tree under that node, and a distributed R-tree like structure is formed among 
the sensor nodes.  

2.3   Energy Efficient & Power-Aware Query Processing 

One critical operation of FDSI-tree, called energy efficient forwarding, is to isolate 
the regions containing the sensor nodes that can contribute to the range query. Our 
prime objective is to maintain the minimum count of nodes taking part in the query. 
As we explained in section 2.2, the construction of the FDSI-tree determines the ease 
of forwarding the query to pin point the sensor nodes. 

Having established the structure and the objectives, we have some routing 
algorithms handy to our scheme. Using GPRS [16] algorithm the packets are 
delivered to a node at a specified location. It includes efficient techniques for 
perimeter traversal that are based on planarized graphs. Tributary-delta provides 
a suitable solution for sensor networks. Unlike TAG and synopsis diffusion [11], it 
can yield significantly more accurate answers for the same energy cost. The resulting 
aggregation topology has an analogy to a river flowing to a gulf, where the 
aggregation initially proceeds along trees and then switches to multi-path when 
obstacles are encountered. 

A range query returns all the relevant data collected/relayed that is associated with 
regions within a given query window W (e.g., a rectangle in a two-dimensional 
space). To process a range query with FDSI-tree, at first the root node receives the 
query; originating at any node. The disseminating of this request to the children node 
now is based on the calculation of the child node/s whose overall-MBR overlaps W. 
Each parent under that overlapping region receives this query and based on the 
overlapping regions of its children, the corresponding network (sub-tree) is flooded. It 
is here that the child-MBR is used to decide the particular regions which need precise 
selection in-order to limit unnecessary node traversal. These child-MBRs are 
comparatively small regions that cover only the perimeter of the children including 
their parent. So the selection operation needs minimum traversal to include the nodes 
in the list needed for range query. The optional parameter location-info should help to 
get accurate result for overlapping, independent regions. Its inclusion is based on the 
type of sensor network and its scalability factor. In addition to the geographic 
information it may include additional values e.g., time t, location attributes etc., that 
should act as a filter, which again is largely dependent on the computational power of 
each sensor node. Figure 1 also shows the pictorial representation of node selection. 
The path for node selection is highlighted. The code isn’t provided so as to leverage 
the robustness in choosing efficient algorithm for independent implementations of  
our design.  
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3   Performance Evaluation  

To study the performance of the proposed scheme in sensor networks, we created 
a emulation environment using AVRORA [20]. Following typical sensor network 
simulation practices, the emulated network of sensors was chosen to be consisting of 
regular tessellation, in particular like grid squares. Each node could transmit data to 
sensors that were at most one hop away from it. In a grid this means it could only 
transmit to at most 8 other nodes.  

Our calculations are based on sensor nodes distributed over a large area where 
scalability factor determines the cost, efficiency and quality of data thus obtained. 
Another factor to be considered is the delivery cost. The query delivery cost directly 
depends upon the size of range query. As we base our experiments upon the TinyDB, 
we assume the same use of motes and sensors for our test bed. Light and humidity 
values are sensed and transmitted.  
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Fig. 2. Number of nodes participating in range queries of different sizes (20 × 20 grid,  
400 nodes) 

In the emulation we evaluated the performance of our proposed scheme, FDSI-tree, 
against the best-case approach and closest parent as used by TinyDB. We used the 
random distribution to select the query range. As due to the lack of any benchmarks 
for evaluating query performance in sensor networks, we selected the queries that 
would be regarded as suitable for range queries, resembling to Sequoia 2000 [2]. 
Figure 2 shows the number of nodes that participate in queries over variably sized 
range query. It is drawn over the average values obtained after the emulation. TinyDB 
concludes that only 1% of the 81% energy spent is on processing. As per the example 
given in that literature, 41% was spent in communication. That amount of 
communication can be reduced by 20% if our design is incorporated in the system. 
But, the processing time is increased due to the addition of extra message bits, 
approximately 17 bits, and also due to the related algorithms. Nevertheless, this slight 
increase over shadows the significant decrease in communication. So, the number of 
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nodes that are involved in the query is significantly reduced in comparison to the 
closest parent approach of TinyDB in its SRT. In order to emphasize the effectiveness 
of using the partially aggregated value for in-network aggregation and thus to reduce 
the power utilization, we also simulated the performance following the TiNA [22] 
scheme and due to space constraints couldn’t include. We can readily conclude that 
our approach is up to 20% more energy efficient than the centralized version as 
evident from the graph. 

There exist rooms for integrating existing as well as new techniques that optimizes 
the performance of the query processing. Lifetime estimation in TinyDB performed 
periodically in network for better performance. Cross-layer interaction, using network 
filters as in Cougar, or collapsing the whole network stack as in TinyDB, is indeed the 
necessity for avoiding unnecessary communication between sensor nodes.  

In addition to the choosing of the optimized algorithm for splitting MBR, periodic 
reorganization of some indexes would largely increase the performance. This mean, 
for the long running queries, if regions that are most frequently queried be tracked, 
the MBR associated with those regions can be expanded to include all the relevant 
sensor nodes. The query would then be accessing only one or a few MBRs. 

4   Conclusion and Future Work 

In this paper, we contribute a new technique to group the sensors in a region for 
spatial range queries. We proposed an energy efficient design for range query 
processing using the FDSI-tree in sensor networks. 

FDSI-tree can reduce the number of nodes that disseminate queries by nearly an 
order of magnitude. Isolating the overlapping regions of sensor nodes with the range 
query, non-relevant nodes can be avoided in the communication. Only the sensor 
nodes leading to the path of the requested region are communicated, and hence 
substantial reduction in power is achieved due to reduced number of sub-trees 
involved. In addition, the aggregate values for the region of interest is collected, 
following the in-network aggregation paradigm which has an advantage over the 
centralized index structure in that it does not require complete topology and sensor 
value information to be collected at the root of the network. Since data transmission is 
the biggest energy-consuming activity in sensor nodes, using FDSI-tree results in 
significant energy savings. 

In conclusion, FDSI-tree provides a scalable solution to facilitate range queries 
adopting similar protocols and query processing used so far, making it highly 
portable. Currently, we are expanding our scheme to consider moving objects trying 
to achieve moreover the same throughput as in static networks. Our work on 
clustering the nodes based on several factors contributing to the performance of the 
network is still underway. Adoption of distributed redundant architecture for efficient 
processing of concurrent queries and for supporting join operations, are challenges 
which are under scrutiny as the capabilities of sensor nodes reaches higher levels. 
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Abstract. We analyze Roman domination from a parameterized per-
spective. More specifically, we prove that this problem is W[2]-complete
for general graphs. However, parameterized algorithms are presented for
graphs of bounded treewidth and for planar graphs. Moreover, it is shown
that a parametric dual of Roman domination is in FPT .

1 Introduction

Roman domination is one of the many variants of dominating set problems [7],
[11], [15]. It comes with a nice (hi)story: namely, it should reflect the idea of how
to secure the Roman Empire by positioning the armies (legions) on the various
parts of the Empire in a way that either (1) a specific region r is also the location
of at least one army or (2) one region r′ neighboring r has two armies, so that
r′ can afford sending off one army to the region r (in case of an attack) without
loosing self-defense capabilities.

Britain

Spain

Gaul

Rome

Africa

Constantinople

Asia Minor

Egypt

Fig. 1. The Roman Empire in the times of Constantine

More specifically, Emperor Constantine had a look at the map of Fig. 1 or
a variant thereof (as discussed in [21]). The historical background is also nicely
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described in the online John Hopkins Magazine, more specifically, visit page
http://www.jhu.edu/∼jhumag/0497web/locate3.html. This problem is simi-
lar to the island hopping strategy pursued by General MacArthur in World War
II in the Pacific theater to gradually increase the US-secured areas.

A good overview on problems related to Roman domination can be found
in [2]. We assume that solving algorithms similar to the ones presented in this
paper can be also found for most of these variants, in particular regarding multi-
attack variants [8], [14], [16], [17]. Efficient algorithms for various graph classes
have been presented in [11], [19]. Relations with the concrete problem under
consideration and (more practical) network problems have been exhibited in [20].

2 Definitions

Let us first formally describe the problem. To this end, notice that we will use
standard notions from graph theory. Throughout the paper, we deal with simple
undirected graphs. N(v) is the open neighborhood of vertex v, and N [v] =
N(v) � {v} is the closed neighborhood, where � denotes disjoint set union. An
instance of Roman domination (ROMAN) is given by a graph G = (V,E),
and the parameter, a positive integer k. The question is: Is there a Roman
domination function R such that R(V ) :=

∑
x∈V R(x) ≤ k?

Here, a Roman domination function of a graph G = (V,E) is a function
R : V → {0, 1, 2} with

∀v ∈ V : R(v) = 0 ⇒ ∃x ∈ N(v) : R(x) = 2.

DR = R−1({1, 2}) is then the Roman domination set. The minimum of R(V )
over all valid Roman domination functions R is also called the Roman domination
number of a given graph.

In the following, we give the necessary background on parameterized com-
plexity: A parameterized problem P is a subset of Σ∗ × N, where Σ is a fixed
alphabet and N is the set of all non-negative integers. Therefore, each instance of
the parameterized problem P is a pair (I, k), where the second component k is
called the parameter. The language L(P ) is the set of all YES-instances of P . We
say that the parameterized problem P is fixed-parameter tractable [10] if there is
an algorithm that decides whether an input (I, k) is a member of L(P ) in time
f(k)|I|c, where c is a fixed constant and f(k) is a function independent of the
overall input length |I|. The class of all fixed-parameter tractable problems is
denoted by FPT .

There is also a hardness theory, most notably, the W[t] hierarchy, that com-
plements fixed-parameter tractability:

FPT = W [0] ⊆ W [1] ⊆W [2] ⊆ . . .

It is commonly believed that this hierarchy is strict. Since only the second level
W[2] will be of interest to us in this paper, we will only define that class below.
We do this in the “Turing way” as (partially) followed in [5], [4], [6], [12].
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A parameterized reduction is a function r that, for some polynomial p and
some function g, is computable in time O(g(k)p(|I|)) and maps an instance
(I, k) of P onto an instance r(I, k) = (I ′, k′) of P ′ such that (I, k) is a YES-
instance of P if and only if (I ′, k′) is a YES-instance of P ′ and k′ ≤ g(k). We
also say that P reduces to P ′.

W[2] can be characterized by the following problem on Turing machines:

An instance of short multi-tape nondeterministic Turing machine com-
putation (SMNTMC) is given by a multi-tape nondeterministic Turing ma-
chine M (with two-way infinite tapes), an input string x, and the parameter, a
positive integer k. The question is: Is there an accepting computation of M on
input x that reaches a final accepting state in at most k steps?

More specifically, a parameterized problem is in W[2] iff it can be reduced with
a parameterized reduction to short multi-tape nondeterministic Turing
machine computation, see [4].

3 Roman domination on General Graphs Is Hard

Lemma 1. Roman domination is in W[2].

Proof. Let G = (V,E) be an instance of Roman domination. We have to
transform it into an instance of short multi-tape nondeterministic Turing
machine computation. We also assume that k > 0 (k = 0 is a trivial instance).

The corresponding Turing machine T has |V | + 1 tapes; let they be indexed
by {0} ∪ V . As tape symbols, we will use (V × {1, 2}) on tape 0 and # on
the other tapes (besides the blank symbol). The edge relation of G is “hard-
wired” into the transition function of T as described below. The input string
is empty.

In a first phase, T nondeterministically guesses the Roman domination func-
tion R and writes it on tape 0 using the letters from V × {1, 2} as follows:
T moves the head on tape 0 one step to the right, and writes there a guess
(v, i) ∈ (V × {1, 2}). Upon writing (v, i), T also increments an internal-memory
counter c by i. As long as c ≤ k, T can nondeterministically continue in phase
one or transition into phase two; if c > k, T hangs up.

In a second phase, T has to verify that the previous guesses are correct.
To this end, upon reading symbol (v, 1) on tape 0, T writes # on the tape
addressed by v and moves that head one step to the right. Upon reading (v, 2)
on tape 0, T writes # on all tapes addressed by vertices from N [v] and moves
the corresponding heads one step to the right. Moreover, after reading symbol
(v, i) on tape 0, T moves the head on tape 0 one step to the left. Upon reading
the blank symbol on tape 0, T moves all other heads one step to the left; only if
then all V -addressed tapes show # under their respective heads, T accepts. The
second phase will take another k + 1 steps.

It is now easy to see that (G, k) is a YES-instance to Roman domination iff T
has an accepting computation within 2k+1 steps, so that we actually described a
parameterized reduction.
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We will show W[2]-hardness with the help of the following problem: An instance
of red-blue dominating set (RBDS) is given by a graph G = (V,E) with V
partitioned as Vred�Vblue, and the parameter, a positive integer k. The question
is: Is there a red-blue dominating set D ⊆ Vred with |D| ≤ k, i.e., Vblue ⊆ N(D)?

We need the following result, that can be easily distilled from [10]:

Lemma 2. red-blue dominating set, restricted to bipartite graphs
is W[2]-hard.

To prove the hardness result, we need one fact about the Roman domination of
complete graphs that follows from [7–Prop. 9].

Lemma 3. For the complete graph Kn on n vertices, the Roman domination
number is two iff n ≥ 2.

Theorem 1. Roman domination is W[2]-complete.

Proof. By Lemma 1, we already know that Roman domination lies in W[2].
Assume that G = (V,E) is an instance of red-blue dominating set, re-

stricted to bipartite graphs (see Lemma 2), i.e., V = Vred�Vblue. W.l.o.g.,
we can assume that |Vred| > 1. In the simulating Roman domination instance,
we construct a graph G′ = (V ′, E′), where

V ′ = (Vred ∪ {1, . . . , 2k + 1})× {1, . . . , k} ∪ Vblue,

and E′ contains the following edges (and no others):

1. G′[Vred × {i}] is a complete graph for each i ∈ {1, . . . , k}.
2. For all i ∈ {1, . . . , k} and x ∈ Vred, y ∈ Vblue, {x, y} ∈ E iff {[x, i], y} ∈ E′.
3. For all i ∈ {1, . . . , k}, j ∈ {1, . . . , 2k + 1} and x ∈ Vred: {[x, i], [j, i]} ∈ E′.

We are going to show the following claim: G has a red-blue dominating set D
of size k iff G′ has a Roman domination function R with

∑
x∈DR

R(x) = 2k.
If G has a red-blue dominating set D = {d1, . . . , dk} of size k, then consider

the following function R : V ′ → {0, 1, 2}: R assigns zero to all vertices but
to d′i = [di, i], to which R assigns two. Since d′i is connected to all vertices in
(Vred ∪ {1, . . . , 2k + 1}) × {i}, the vertices in V ′ \ V are all dominated by this
assignment. Moreover, since D is a red-blue dominating set of G, all vertices in
Vblue are dominated in G′, as well.

Now consider a Roman domination function R for G′ with
∑

x∈DR
R(x) = 2k.

Due to Lemma 3 and according to the first condition on edges, the Roman
domination number of each induced graph G′[Vred×{i}] is two, assuming |Vred| >
1. Since G′[Vred×{1, . . . , k}] can be decomposed into k components, the Roman
domination number of G′[Vred × {1, . . . , k}] is 2k. More specifically, to achieve
that bound, the domination function would have to assign two to one vertex
from Vred × {i} for each i and zero to all other vertices. Observe that such an
assignment would be also a valid Roman domination function R′ for G′[(Vred ∪
{1, . . . , 2k + 1})× {1, . . . , k}] if we assign zero to all vertices from {1, . . . , 2k +
1} × {1, . . . , k}.
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Since there are “too many” vertices in {1, . . . , 2k+1}×{1, . . . , k}, we cannot
simply replace one or more vertices to which R′ assigns two by vertices from
{1, . . . , 2k + 1} × {1, . . . , k} to which R′ (as constructed) had assigned zero.

Observe that we have left over yet some degrees of freedom for finally con-
structing a valid Roman domination function R from R′; namely, we have not
been specific about how to choose a vertex from Vred × {i} (for each i) to
which we assign two. However, if we find k assignments of two to vertices
from Vred × {1, . . . , k} such that also all vertices from Vblue are dominated,
i.e., DR = {[d1, 1], . . . , [dk, k]} = R−1({2}), then D = {d1, . . . , dk} is a valid
dominating set of G.

Since there are no edges between vertices from {1, . . . , 2k + 1} × {1, . . . , k}
and Vblue, there is no way of replacing some of the vertices selected from (Vred ∪
{1, . . . , 2k+1})×{1, . . . , k} (by assigning two to them) by vertices from Vblue, so
that there cannot be a Roman domination function R that assigns one or two to
any of the vertices from Vblue without violating the condition

∑
x∈DR

R(x) = 2k.
So, the Roman domination function as constructed above is the only possibility;
that construction works if and only if G has a dominating set of size k.

The previous Theorem also sharpens [11–Theorem 2.42].
Let us finally mention one further problem, also taken from [20]; in fact, some

more (and similar) problems can be found there and treated alike. An instance of
dominating rearrangement (DR) is given by a graph G = (V,E), a subset
S ⊆ V , and the parameter, a positive integer k = |S|. The question is: Is there
a dominating rearrangement r : S → N [S], s �→ r(s) ∈ N [s] such that r(S) ⊆ V
is a dominating set?

Again, this problem can be viewed from a military perspective: S is the set of
locations where currently armies are placed on, and the question is if by a one-
step rearrangement of each army (if necessary) a situation can be created in
which each region (modeled by graph vertices) is sheltered by either a defending
army in the region itself or in a neighboring region.

This problem is interesting for at least two reasons from a parameterized
perspective:

– The parameterization is not arising from an optimization problem.
– The problem can be viewed as a local search problem, parameterized by

a given “temporary” solution. Such type of problems can show up in many
disguises in practice.

Theorem 2. dominating rearrangement is W[2]-complete.

Proof. Membership in W[2] can be seen by a guess-and-verify strategy as seen in
the proof of Lemma 1. For the hardness, take again an instance (G = (V = Vred�
Vblue, E), k) of red-blue dominating set. Let S = {1, . . . , k} be disjoint from
V , and consider the graph G′ = (V ′, E′) with V ′ = V ∪S and E′ = E∪(S×Vred).
Hence, G′[S ∪ Vred] forms a complete bipartite graph. This gives the instance
(G′, S) of dominating rearrangement. Obviously, D ⊆ Vred is a dominating
set of size (at most) k iff (G′, S) can be solved by moving |D| of the armies in S
onto the vertices from D.
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4 Roman domination on Planar Graphs

From a historical perspective, this is somehow the “original” problem, indeed: tak-
ing a map of the Roman Empire and assuming firstly that different regions are in-
terpreted as vertices of a graph and finally that regions are neighbored if they share
a common borderline (as opposed to having boundaries meeting in a single point),
then this neighborhood (multi-)graph is (as the geometric dual of the map) planar.

We will first sketch a search tree algorithm that puts planar Roman dom-
ination into FPT . From the standpoint of parameterized algorithmics, this is
an interesting algorithm, since it “recycles” most of the rules and terminology
that was earlier developed for planar dominating set in [1], [12].

There,we introducedthenotionofablackandwhitegraph.ThevertexsetV ofG is
partitioned into two disjoint setsB andW of black and white vertices, respectively,
i.e., V = B �W . Black vertices are those vertices which still need to be dominated,
whilewhite vertices are alreadydominated, but it is still possible toplace twoarmies
on such a vertex in order to protect the neighboring vertices. In each step of the
search tree, we would like to branch according to a low degree black vertex.

Formally, thismeans thatwesolveanannotatedversionofRomandomination,
namely on black and white graphs. We propose to use the following reduction rules:

(R1) Delete an edge between white vertices.
(R2) Delete a pendant white vertex, i.e., a vertex of degree one.
(R4) If there is a white vertex u of degree 2, with two black neighbors u1 and

u2 connected by an edge {u1, u2}, then delete u.
(R5) If there is a white vertex u of degree 2, with black neighbors u1, u3, and

there is a black vertex u2 and edges {u1, u2} and {u2, u3} in G, then delete u.
(R6) If there is a white vertex u of degree 2, with black neighbors u1, u3, and

there is a white vertex u2 and edges {u1, u2} and {u2, u3} in G, then delete u.
(R7) If there is a white vertex u of degree 3, with black neighbors u1, u2, u3 for

which the edges {u1, u2} and {u2, u3} are present in G (and possibly also
{u1, u3}), then delete u.

The peculiar numbering is in accordance with our rule numbering scheme for
planar dominating set in [12] and should make clear that we actually must
only replace one of the rules with some additional branching in our algorithm,
in order to get rid of pendant black vertices.

Lemma 4. The reduction rules are sound.

Proof. (R1), (R2) are immediate.
(R4): Let G = (V,E) be a black and white graph and G′ = (V ′, E′) be obtained

from G by applying (R4) once. Hence, there are vertices u, u1, u2 in V as described
in (R4). If R′ is a valid Roman domination function ofG′, then R′ can be extended
to a valid Roman domination function R′ on V by setting R′(u) = 0. Obviously,
R′(V ′) = R′(V ). IfR is a valid Roman domination function ofG, then R restricted
toV ′ will be valid ifR(u) = 0.Then,R(V ′) = R(V ).The caseR(u) = 1neednot be
considered, sinceu is white. IfR(u) = 2, thenR(u1)+R(u2) ≤ 1, since otherwise by
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redefining R(u) := 0 a smaller valid Roman domination function can be obtained.
However, if R(u) ≤ 1, then R(u1) = 0 or R(u2). Assuming R(u1) = 0, we can
obtain a valid Roman domination function by setting R(u) := 0 and R(u1) := 2
without changing the overall value. Hence, after the indicated modifications, R
restricted to V ′ will be valid, and R(V ′) = R(V ).

(R5), (R6), (R7) can be argued in a similar fashion.

A careful check of the reduction rules as developed for planar dominating
set show that all are valid but one, namely rule (R3) in [12], which is dealing
with a black vertex x of degree one (it is not clear if one army should be put
on x or two armies on the neighbor of x). That particular rule is not used in
the (non-trivial) proof of the following theorem from [1], [12], where “reduced”
refers to all reduction rules from [12] but (R3).

Theorem 3. If G = (B�W,E) is a planar black and white graph that is reduced,
then there exists a black vertex u ∈ B with degG(u) ≤ 7.

A simple search tree algorithm would now pick a black vertex v of smallest degree
and branch according to if R(v) = 1 or if R(u) = 2 for some u ∈ N [v]; this
branching reduces the parameter by two for each u; according to Thm. 3, N [v]
contains at most eight vertices. Solving the corresponding recurrence T (k) ≤
T (k−1)+8T (k−2) for the size of the search tree shows the following assertion:

Theorem 4. planar Roman domination can be solved in O∗(3.3723k) time.

The O∗(·) notation has by now become standard in exact algorithms. It is meant
to not only suppress constants (as the more familiar O(·)-notation does) but also
polynomial parts of the functions.

5 Roman domination on Graphs of Bounded Treewidth

In this section, we reconsider the problem of determining the minimum Roman
domination set on graphs of bounded treewidth. This problem has been previ-
ously attacked in [20], but their algorithm is not quite correct, as we will explain.
Then, we apply this treewidth-based algorithm to obtain O(c

√
k) algorithms for

planar Roman domination. Details on on tree decompositions can be found
in [18] and are provided in an appendix.

On graphs of bounded treewidth, many otherwise combinatorially hard prob-
lems can be efficiently solved by dynamic programming. Given a so-called nice
tree decomposition of a graph, we have to specify the operations in four different
types of nodes, see [3], [18], [22]. Generally speaking, these operations are rather
straightforward for all types of nodes but the join nodes. Therefore, we focus on
that node type. Recall that a join node has two children nodes, and all three
corresponding bags contain the same vertices. In the dynamic programming, to
each node a table is associated that stores all possible combinations of “vertex
states” together with their optimal value. With Roman domination, we need
to store four states per vertex (only three are used in [20]):
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– 0,1,2 are the values that the Roman domination function is assumed to assign
to a particular vertex.

– 0̂ also tells us that the Roman domination function assigns 0 to that vertex.

Thedifference inthesemanticsof0, 0̂ is the following: theassignmentof0meansthat
the vertex is already dominated at the current stage of the algorithm, and 0̂ means
that, at thecurrent stageof thealgorithm,westill ask foradominationof thisvertex.
Let us only point to the following additional complication when dealing with join
nodes: ifwe update an assignment thatmaps vertexx onto 0, it is not necessary that
both children assign 0 to x; it is sufficient that one of the two branches does, while
the other assigns 0̂.Anaive implementationofwhatwe said in theprevious sentence
would amount in spendingO(16tw(G)) time for the join node processing. However,
the “monotonicity trick” observed in [1] also works for this problem. Namely, for
every vertex x in the parent bag, we consider the following cases:

– either 2, 1 or 0 is assigned to x; then, the same assignment must have been
made in the two children;

– or 0̂ is assigned to x; then, we have two possible assignments in the child
nodes: 0 to x in the left child and 0̂ to x in the right child or vice versa.

Theorem 5. minimum Roman domination, parameterized by the treewidth
tw(G) of the input graph G, can be solved in time O(5tw(G)|V (G)|).

This also generalizes Dreyer’s result on trees [11–Sec. 2.9]. Besides having a cor-
rected version of the PT AS for minimum Roman domination explained in [20],
we can also state an O∗(c

√
k) algorithm for planar Roman domination. To

get such an algorithm, we link Roman domination with dominating set:

Lemma 5. If D ⊆ V is a Roman domination set for G = (V,E) (with respect
to a Roman domination function R, i.e., D = DR), then D is also a dominating
set. Moreover, if

∑
x∈DR

R(x) ≤ k, then |D| ≤ k.

Theorem 6. [Fomin and Thilikos [13]] If G is a planar graph which has a dom-
inating set of size k, then G has treewidth of at most 4.51.5

√
k ≤ 9.55

√
k.

Corollary 1. planar Roman domination can be solved in time

O∗
(
54.51.5√k

)
= O∗

(
222.165

√
k
)
.

6 A Dual Version of Roman domination

We finally mention that the following version of a parametric dual of ROMAN
is in FPT by the method of kernelization, relying on [7–Proposition 4(e)]: given
a graph G and a parameter kd, is there a Roman domination function R such
that |R−1(1)|+ 2|R−1(0)| ≥ kd ?

The definition of a dual of Roman domination might look a bit funny at
first glance: But since Roman domination is a sort of weighted version of dom-
inating set, it is not quite clear what the notion of a parametric dual should
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be in this case. With our definition, we have the possibly desirable property that
(G, kd) is a YES-instance of this variant of a dual of Roman domination iff
(G, 2|V (G)|−kd) is a YES-instance of ROMAN. In other words, R is maximum
for this dual version of ROMAN iff R is minimum for ROMAN.

Theorem 7. Our version of parametric dual of Roman domination allows
for a problem kernel of size (7/6)kd, measured in terms of vertices. Hence, this
problem is in FPT .

Proof. Note that we can easily get rid of all isolates with a first reduction rule:
If x is an isolate, assign zero to x and decrease the parameter kd by two.

As a second reduction rule, we claim that if kd < (6/7)|V (G)|, then we can
answer YES. Of course, this gives the claimed problem kernel.

Assume to the contrary that (G, kd) is a NO-instance and that kd < (6/7)
|V (G)|. Hence, for any optimum Roman domination function R for G,

|R−1(1)|+ 2|R−1(0)| < kd < (6/7)|V (G)|.

Hence, |R−1(0)| < (3/7)|V (G)|. This is also true for any optimum Roman dom-
ination function R that also minimizes |R−1(1)| (as a second priority). This
contradicts [7–Proposition 4(e)].

This shows that also this dual version of Roman domination is in FPT .

Notice that this results parallels the situation found with dominating set [9].

7 Conclusion

This paper contains a number of technical results concerning a parameterized
view on Roman domination. Besides these technical results, we like to com-
municate the following messages:

– As can be seen from the W[2] completeness section, the “Turing way” to
parameterized complexity is often quite amenable and may offer advantages
over the standard approach as exhibited in [10].

– Strive to obtain structural results when developing algorithms: this turned
out to be very beneficial for planar Roman domination, since the results
obtained for planar dominating set could be “recycled.”
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Abstract. Sedna is an XML database system being developed by the MODIS 
team at the Institute for System Programming of the Russian Academy of 
Sciences. Sedna implements XQuery and its data model exploiting techniques 
developed specially for this language. This paper describes the main choices 
made in the design of Sedna, sketches its most advanced techniques, and 
presents its overall architecture. In this paper we primarily focus on physical 
aspects of the Sedna implementation. 

1   Introduction 

Although XQuery is already a powerful and mature language for XML data 
querying and transformation, it is still a growing language. The authors of XQuery 
point out two principal directions of the XQuery evolution [4]: (1) extending it with 
data update facilities, and (2) growing it to a programming language. Thus, future 
XQuery is going to be a language for querying, updating and general-purpose 
programming. Implementing XQuery, researchers have been often focused on some 
of these aspects from the logical viewpoint1 while an advanced industrial-strength 
implementation requires considering all three aspects as a single whole providing a 
physical layer that efficiently supports all these aspects. The layer is primarily 
based on data organization and memory management techniques. Query processing 
requires support for vast amounts of data that can exceed main memory and thus 
requires processing in secondary storage (i.e. on disk). Update processing requires a 
compromise between data organizations optimized for querying and updating. 
Using XQuery as a programming language requires fast processing in main memory 
without essential overheads resulting from support for external memory. In this 
paper we give an overview of our native XML DBMS implementation named Sedna 
focusing on its physical layer that provides efficient support for all the three aspects 
mentioned above. 

The paper is organized as follows. Section 2 presents an overview of the system 
including its architecture, query optimization and concurrency control techniques. 
Section 3 describes principal mechanisms underlying the Sedna storage system, 
                                                           
1  We have also contributed to this work by developing a set of logical optimization techniques 

for XQuery [5], [6], [7]. 
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namely data organization and memory management. In Section 4, we discuss 
execution of XQuery queries over the Sedna storage system. We conclude in 
Section 5. 

2   Sedna 

2.1   Overview 

Sedna is designed with having two main goals in mind. First, it should be the full-
featured database system. That requires support for all traditional database services 
such as external memory management, query and update facilities, concurrency 
control, query optimization, etc. Second, it should provide a run-time environment for 
XML-data intensive applications. That involves tight integration of database 
management functionality and that of a programming language. 

Developing Sedna, we decided not to adopt any existing database system. Instead 
of building a superstructure upon an existing database system, we have developed 
a native system from scratch. It took more time and effort but gave us more freedom 
in making design decisions and allowed avoiding undesirable run-time overheads 
resulting from interfacing with the data model of the underlying database system. 

We take the XQuery 1.0 language [1] and its data model [2] as a basis for our 
implementation. In order to support updates we extend XQuery with an update 
language named XUpdate. Our update language is very close to [13]. 

Sedna is written in Scheme and C++. Static query analysis and optimization is 
written in Scheme. Parser, executor, memory and transaction management are written 
in C++. Supported platforms are Windows and Linux. 

2.2   Architecture 

Architecture of the Sedna DBMS is rather traditional (Fig.1) and consists of the 
following components. The governor serves as the “control center” of the system. It 
knows which databases and transactions are running and controls them. The listener 
component listens for clients and creates an instance of the transaction component for 
each client and sets up the direct connection between the client and the transaction 
component. From this point client’s session is supported by the transaction 
component that encapsulates the following query execution components: parser, 
optimizer, and executor. The parser translates the query into its logical 
representation, which is a tree of operations close to the XQuery core. The optimizer 
takes the query logical representation and produces the optimized query execution 
plan which is a tree of low-level operations over physical data structures. The 
execution plan is interpreted by the executor. Each instance of the database manager 
encapsulates a single database and consists of database management services such as 
the index manager that keeps track of indices built on the database, the buffer 
manager that is responsible for the interaction between disk and main memory, and 
the transaction manager that provides concurrency control facilities. 
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Fig. 1. Sedna Architecture 

 

Fig. 3. Common Structure of Node Des-
criptor 

 

Fig. 2. Data Organization 

 

2.3   Optimization 

In Sedna, we have implemented a wide set of rule-based query optimization 
techniques for XQuery. The cost-based optimization is the subject of future work. 

Function inlining technique [8] allows replacing calls to user-defined functions 
with their bodies. Function inlining eliminates function call overhead and allows us to 
optimize in static the inlined function body together with the rest of the query. This 
essentially facilitates the application of the other optimization techniques. We have 
implemented an inlining algorithm that can properly handle non-recursive functions 
and structurally recursive functions. The algorithm reasonably terminates infinite 
inlining for recursive functions of any kind that makes the algorithm applicable to any 
XQuery query. 

Predicate push down XML element constructors [6] changes the order of 
operations to apply predicates before XML element constructors. It allows reducing 
the size of intermediate computation results to which XML element constructors are 
applied. This kind of transformation is of great importance because XML element 
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constructor is an expensive operation, the evaluation of which requires deep copy of 
the element content. Projection of transformation [6] statically applies XPath 
expressions to element constructors. It allows avoiding redundant computation of 
costly XML element constructors. 

Query simplification using schema is useful when a query is written by the user 
that has vague notion about XML document schema. Making query formulation more 
accurate allows avoiding redundant data scanning that is peculiar to such queries. This 
optimization technique is based on the XQuery static type inference. 

Making query formulation as declarative as possible allows the optimizer to widen 
search space with optimal execution plans. The technique is the adaptation of 
analogous SQL-oriented technique [9] that is aimed at unnesting subexpressions  
into joins. 

Join predicates normalization consists in rewriting joins predicates into 
conjunctive normal form to take the advantage of using different join algorithms, but 
not only nested loop join. To achieve this goal we extract subexpressions like XPath 
statements from join predicates and place them outside join operations, where they are 
evaluated only once. 

Identifying iterator-free subexpressions in the body of iterator-operations reduces 
the computation complexity of the query by putting subexpressions which do not 
contain free occurrences of iterator outside the body of the iterator-operation. 

2.4   Concurrency Control 

Sedna supports multiple users concurrently accessing data. To ensure serializability of 
transactions we use a well-known strict two phase locking protocol. For now, the 
locking granule is the whole XML document. In many cases locking of the whole 
XML document is not needed and this leads to the decreasing of concurrency. This is 
the reason why we are going towards a new fine-granularity locking method. The 
main idea behind our method is to use descriptive schema of the XML document for 
locking subtrees of the XML document according to the path query issued by the 
user [17], [18]. The notion of descriptive schema (that is a basis of our storage 
system) is introduced in the next section. 

3   Storage System 

3.1   Data Organization 

Designing data organization, we would like it to be efficient for both queries and 
updates. 

Designing data organization in Sedna we have made the following main decisions 
to speed up query processing. First, direct pointers are used to represent relationships 
between nodes of an XML document such as parent, child, and sibling relationships. 
An overview of pointers and their structures is given in Section 3.2. Second, we have 
developed a descriptive schema driven storage strategy which consists in clustering 
nodes of an XML document according to their positions in the descriptive schema of 
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the document. In contrast to prescriptive schema that is known in advance and is 
usually specified in DTD and XML Schema, descriptive schema is dynamically 
generated (and increasingly maintained) from the data and presents a concise and 
accurate structure summary of these data. Formally speaking, every path of the 
document has exactly one path in the descriptive schema, and every path of the 
descriptive schema is a path of the document. As it follows from the definition, 
descriptive schema for XML is always a tree. Using descriptive schema instead of 
prescriptive one gives the following advantages: (1) descriptive schema is more 
accurate then prescriptive one; (2) it allows us to apply this storage strategy for XML 
documents which come with no prescriptive schema. 

The overall principles of the data organization are illustrated in Fig. 2. The central 
component is the descriptive schema that is presented as a tree of schema nodes. Each 
schema node is labeled with an XML node kind name (e.g. element, attribute, text, 
etc.) and has a pointer to data blocks where nodes corresponding to the schema node 
are stored. Some schema nodes depending on their node kinds are also labeled with 
names. Data blocks belonging to one schema node are linked via pointers into 
a bidirectional list. Node descriptors in a list of blocks are partly ordered according to 
document order. It means that every node descriptor in the block i precedes every 
node descriptor in the block j in document order, if and only if i < j (i.e. the block i 
precedes the block j in the list). 

Nodes are ordered between blocks in the same list in document order. Within a 
block nodes are unordered2 that reduces overheads on maintaining document order in 
case of updates. 

In our storage we separate node's structural part and text value. The text value is 
the content of a text node or the value of an attribute node, etc. The essence of text 
value is that it is of variable length. Text values are stored in blocks according to 
the well-known slotted-page structure method [10] developed specifically for data 
of variable length. The structural part of a node reflects its relationship to other 
nodes (i.e. parent, children, sibling nodes) and is presented in the form of node 
descriptor. 

The common structure of node descriptors for all node kinds is shown in Fig. 3. 
The label field contains a label of numbering scheme. The main purpose of 
a numbering scheme is to provide mechanisms to quickly determine the structural 
relationship between a pair of nodes. Numbering scheme in Sedna is close to the one 
described in [11] and supports dynamic updates when order is a concern. 

The node handle is discussed in Section 3.1.1. The meaning of the left-sibling and 
right-sibling pointers is straightforward. The next-in-block and prev-in-block 
pointers are used to link nodes within the block to allow reconstructing document 
order as was mentioned above. The next-in-block and prev-in-block pointers allow 
reconstructing document order among nodes corresponding to the same schema node, 
whereas the left-sibling and right-sibling pointers are used to support document 
order between sibling nodes. 

Storing pointers to all children in the node descriptor may result in the node 
descriptor the size of which exceeds the size of block. To avoid this, we store only 

                                                           
2 The order within a block can be reconstructed using pointers as described below. 
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pointers to the first children by the descriptive schema. Let us illustrate this by the 
example of the library element in Fig. 2. It has two books and one paper as child 
elements. In the descriptive scheme the element library schema node has only two 
children. In spite of the actual number of books and papers, the node descriptor for the 
library element has exactly two children pointers. These are pointers to the first book 
element and the first paper element. To traverse all the child book elements of the 
library element, we use the pointer to the first book element and then follow the 
next-in-block pointers (if all the children do not fit one block, we go to the next block 
via the interblock pointer). Having only pointers to the first children by schema 
allows us to save up storage space and, that is more important, to make node 
descriptors a fixed size. The latter is of crucial importance for efficient execution of 
updates because it simplifies managing free space in blocks. However, this approach 
leads to the following problem. If a node is inserted into the document for which there 
is no corresponding schema node, we have to rebuild all node descriptors in blocks 
belonging to the parent schema node of the inserted node. To solve this problem we 
maintain node descriptors to be of a fixed size only within one block by storing the 
number of children pointers in the header of all blocks. The number informs us that 
all node descriptors stored in the block have exactly this number of children pointers. 

Using direct pointers is the main source of problems for efficient update execution. 
To make the data organization good for updates, we should minimize the number of 
modifications caused by the execution of an update operation. Let us consider an 
update operation that moves a node. This operation is invoked by the procedure of 
block's splitting as a result of inserting a node into the overfilled block. If the node to 
be moved has children, they all must be modified to change their parent pointers to 
the node. The solution is to use indirect pointers, that is implemented via indirection 
table, to refer to the parent. 

In conclusion of this section we would like to sum up the features of our data 
organization that are designed to improve update operations: 

− Node descriptors have a fixed size within a block; 
− Node descriptors are partly ordered; 
− The parent pointer of node descriptor is indirect. 

Node Handle. Implementation of some operations and database mechanisms requires 
support for node handle that is immutable during the whole life-time of the object and 
can be used to access the node efficiently. For instance, node handle can be used to 
refer to the node from the index structures. As discussed in Section 4, node handle is 
also necessary for the proper implementation of update operations. As mentioned 
above, execution of some update operations (e.g. insert node) might lead to block 
splitting that in turn results in moving nodes. Therefore, pointers to nodes do not 
possess the property of immutability. Although the label of numbering scheme is 
immutable and allows uniquely identifying the node, it requires document tree 
traverse to get the node by the label. Our implementation of node handle is shown in 
Fig. 3. We exploit the indirection table that is also used to implement indirect pointers 
to parent. Node handle is the pointer to the record in the indirection table which 
contains the pointer to the node. 
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3.2   Memory Management 

As discussed in Section 3.1, one of the key design choices concerning the data 
organization in Sedna is to use direct pointers to present relationships between nodes. 
Therefore, traversing the nodes during query execution results in intensive pointer 
dereferencing. Making dereferencing as fast as possible is of crucial importance to 
achieve high performance. Although using ordinary pointers of programming 
languages powered by the OS virtual memory management mechanism is perfect for 
performance and programming effort required, this solution is inadequate for the 
following two reasons. First, it imposes restrictions on the address space size caused 
by the standard 32-bit architecture that still prevails nowadays. Second, we cannot 
rely on the virtual memory mechanism provided by OS in case of processing queries 
over large amounts of data because we need to control the page replacement 
(swapping) procedure to force pages to disk according to the query execution 
logic [14]. 

To solve these problems we have implemented our own memory management 
mechanism that supports 64-bit address space (we refer to it as Sedna Address Space - 
SAS for short) and manages page replacement. It is supported by mapping it onto the 
process virtual address space (PVAS for short) in order to use ordinary pointers for 
the mapped part. The mapping is carried out as follows. SAS is divided into layers of 
the equal size. The size of layer has been chosen so that the layer fits PVAS. The 
layer consists of pages (that are those in which XML data are stored as described in 
Section 3.1). All pages are of the equal size so that they can be efficiently handled by 
the buffer manager. In the header of each page there is the number of the layer the 
page belongs to. The address of an object in SAS (that is 64-bit long) consists of the 
layer number (the first 32 bits) and the address within the layer (the second 32 bits). 
The address within the layer is mapped to the address in PVAS on an equality basis. 
So we do not use any additional structures to provide the mapping. The address range 
of PVAS (to which the layers of SAS are mapped) is in turn mapped onto main 
memory by the Sedna buffer manager using memory management facilities provided 
by OS. 

Dereferencing a pointer to an object in SAS (layer_num, addr) is performed as 
follows. addr is dereferenced as an ordinary pointer to an object in PVAS. This may 
result in a memory fault that means there is no page in main memory by this address 
of PVAS. In this case buffer manager reads the required page from disk. Otherwise 
the system checks whether the page that is currently in main memory belongs to the 
layer_num layer. If it is not so, the buffer manager replaces the page with the 
required one. It is worth mentioning that the unit of interaction with disk is not a layer 
but a page so that main memory may contain pages from different layers at the  
same time. 

The main advantages of the memory management mechanism used in Sedna are  
as follows: 

− Emulating 64-bit virtual address space on the standard 32-bit architecture allows 
removing restrictions on the size of database; 

− Overheads for dereferencing are not much more than for dereferencing ordinary 
pointers because we map the layer to PVAS addresses on an equality basis; 
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− The same pointer representation in main and secondary memory is used that allows 
avoiding costly pointer swizzling (i.e. the process of transformation of a pointer in 
secondary memory to the pointer that can be used directly in main memory  
is called). 

4   Query Execution 

In this section we discuss XQuery query execution over the storage system described 
in the previous section. 

The set of physical operations also provides support for updates. The statement of 
XUpdate is represented as an execution plan which consists of two parts. The first 
part selects nodes that are target for the update, and the second part perform the 
update of the selected nodes. The selected nodes as well as intermediate result of any 
query expression are represented by direct pointers. The update switches to indirect 
pointers presented as node handles. It is necessary because the sequential updating of 
the selected nodes might invalidate pointers to them by performing a number of move 
operations. Switching to node handles fully avoids this problem. 

4.1   Query Execution Aspects 

In this section we would like to emphasize the query processing aspects that are 
specific to our executor. 

Element Constructors. Besides the well-known heavy operations like joins, sorting 
and grouping, XQuery has a specific resource consuming operation - XML element 
constructor. The construction of an XML element requires deep copy of its content 
that leads to essential overheads. The overheads grow significantly when a query 
consists of a number of nested element constructors. Understanding the importance of 
the problem, we propose suspended element constructor. The suspended element 
constructor does not perform deep copy of the content of the constructed element but 
rather stores a pointer to it. The copy is performed on demand when some operation 
gets into the content of the constructed element. Using suspended element constructor 
is effective when the result of the constructor is handled by operations that do not 
analyze the content of elements. Our previous research [6] allows us to claim that for 
a wide class of XQuery queries there will be no deep copies at all. Most XQuery 
queries can be rewritten in such a way that above the element constructors in the 
execution plan there will be no operations that analyze the content of elements. 

Different Strategies for XPath Queries Evaluation. Using descriptive schema as an 
index structure allows us to avoid tree traverse and speed up query execution. Let us 
consider the following XPath query: title. We call it structural path query, because it 
exploits only information about structure in such a way that we do not need to make 
any tests depending on data to evaluate this query. Structural path queries are ideal to 
be evaluated using descriptive schema. We start evaluation of the query with 
traversing the descriptive schema for the context document (See Fig. 2). The result of 
traverse is two schema nodes that contain pointers to the lists of blocks with the data 
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we are looking for. Simply passing through the first list of blocks and then through 
the second one we may break document order, so before outputting the result the 
merge operation is performed. The merge operation receives several lists of blocks as 
an input and produces the sequence of node descriptors, which are ordered with 
respect to document order. The merge operation uses labels of the numbering scheme 
to reconstruct document order. The computation complexity of this operation is 

)(
i

inO comparisons of labels,  where in  is the number of node descriptors in the 
i-th list of blocks. 

The second query /library/book[issue/year=2004]/title requires more effort to be 
evaluated. As for the previous queries we can select /library/book elements using the 
descriptive schema, then apply the predicate and the rest of the query using pointers in 
data. But it seems to us the following algorithm could be more attractive. Firstly, we 
evaluate the structural path query /library/book/issue/year/text(). Secondly, we apply 
the predicate (we select only those nodes, for which the text is equal to 2004). And at 
last, we apply ../../../title to the result of the previous step. The idea is that we select 
blocks to which the predicate applies on the first step omitting blocks with book 
elements. Then we apply the predicate which potentially cuts off lots of data and then 
go up the XML hierarchy to obtain the final result. 

4.2   Combining Lazy and Strict Semantics 

All queries formulated to databases have one thing in common - they usually operate 
with great amounts of data even if results are small. So query processors have to 
(should) deal with intermediate huge data sets efficiently. To accommodate these 
needs the iterative query execution model, which avoids unnecessary data 
materialization, has been proposed. Being developed for relational DBMSs it is 
general enough to be adapted for other data models. We did this for XQuery in [12]. 
Keeping in mind that XQuery is a functional language, iterative model can be 
regarded as an implementation of lazy semantics. On the other hand, it is generally 
accepted [15] that computation efficiency of implementation of strict semantics for 
a programming language is higher comparing with implementation of lazy semantics 
for this language. As far as we consider XQuery as a general-purpose programming 
language that can be used for expressing application logic, implementing lazy 
semantics only has bad impact on overall executor performance. To let the XQuery 
implementation be efficient for both query and application logic processing we 
combine these two evaluation models. We have developed the XQuery executor, 
which keeps track of amounts of data being processed and automatically switches 
from the lazy to strict modes and vice versa at run-time. 

The query evaluation starts in the lazy mode having the execution plan constructed. 
The overheads of the lazy model strongly correlates with a number of function calls 
made during the evaluation process. The more function calls are made, the more 
copies of function bodies are performed. The goal is to find the tradeoff between the 
copying of function body and the materializing of intermediate results of function’s 
operations. The mechanism is as follows. Every function call is a reason to switch to 
strict mode if the sizes of arguments are relatively small. Vice versa, the large input 
sequence for any physical operation in the strict mode is a subject to switch this 
operation to the lazy mode. 
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5   Conclusion 

In this paper we have presented an overview of the Sedna XML DBMS focusing on 
its physical layer. Sedna is freely available at our web site [16] and readers are 
encouraged to download it and have a look at it themselves. 

References 

1. XQuery 1.0: An XML Query Language, W3C Working Draft, 04 April 2005, 
http://www.w3.org/TR/2005/WD-xquery-20050404/ 

2. XQuery 1.0 and XPath 2.0 Data Model, W3C Working Draft, 04 April 2005, 
http://www.w3.org/TR/2005/WD-xpath-datamodel-20050404/ 

3. XQuery 1.0 and XPath 2.0 Functions and Operators, W3C Working Draft, 04 April 2005, 
http://www.w3.org/TR/2005/WD-xpath-functions-20050404/ 

4. Fernandez, M.F., Simeon, J.: Growing XQuery. ECOOP 2003: 405-430 
5. Grinev, M.: XQuery Optimization Based on Rewriting (2003) Available at 

www.ispras.ru/~grinev 
6. Grinev, M., Pleshachkov, P.: Rewriting-Based Optimization for XQuery Transformational 

Queries. Available at www.ispras.ru/~grinev 
7. Grinev, M., Kuznetsov, S.: Towards an Exhaustive Set of Rewriting Rules for XQuery 

Optimization: BizQuery Experience. In Proc. ADBIS Conference, 2002 
8. Grinev, M., Lizorkin, D.: XQuery Function Inlining for Optimizing XQuery Queries. In 

Proc. ADBIS Conference (2004) 
9. Dayal, U.: Of Nests and Trees: A Unified Approach to Processing Queries that Contain 

Nested Subqueries, Aggregates, and Quantifiers. In Proc. VLDB Conference (1987) 
10. Silberschatz, A., Korth, H., Sudarshan, S.: Database System Concepts. Third Edition, 

McGraw-Hill (1997) 
11. Wu, X., Lee, M.L., Hsu, W.: A Prime Number Labeling Scheme for Dynamic Ordered 

XML Trees. Proceedings of ICDE’04 
12. Antipin, K., Fomichev, A., Grinev, M., Kuznetsov, S., Novak, L., Pleshachkov, P., 

Rekouts, M., Shiryaev, D.: Efficient Virtual Data Integration Based on XML. In Proc. 
ADBIS Conference (2003) 

13. Lehti, P.: Design and Implementation of a Data Manipulation Processor for an XML 
Query Language. Technische Universitt Darmstadt Technical Report No. KOM-D-149, 
http://www.ipsi.fhg.de/~lehti/diplomarbeit.pdf, (August 2001) 

14. Chou, H.-T., DeWitt, D. J.: An Evaluation of Buffer Management Strategies for Relational 
Database Systems, Proceedings of VLDB (1985) 

15. Ennals, R., Jones, S.P.: Optimistic Evaluation: an Adaptive Evaluation Strategy for Non-
Strict Programs. Proceedings of the ICFP'03, August 25-29, 2003, Uppsala, Sweden 

16. Sedna XML DBMS - http://modis.ispras.ru/Development/sedna.htm 
17. Pleshachkov, P., Chardin, P., Kuznetsov, S.: XDGL: XPath-Based Concurrency Control 

Protocol for XML Data. BNCOD 2005: 145-154 
18. Pleshachkov, P., Chardin, P., Kuznetsov, S.: A Locking Based Scheduler for XML 

Databases. SEBD 2005: 356-367 



Optimal Memory Rendezvous of Anonymous
Mobile Agents in a Unidirectional Ring

L. G ↪asieniec1, E. Kranakis2, D. Krizanc3, and X. Zhang1

1 Department of Computer Science,
University of Liverpool, Liverpool L69 7ZF, UK

2 Carleton University School of Computer Science,
1125 Colonel By Drive Ottawa, Ontario K1S 5B6, Canada

3 Computer Science Group, Mathematics Department,
Wesleyan University, Middletown, CT 06459, USA

Abstract. We study the rendezvous problem with k≥2 mobile agents in
a n-node ring. We present a new algorithm which solves the rendezvous
problem for any non-periodic distribution of agents on the ring. The mo-
bile agents require the use of O(log k)−bit-wise size of internal memory
and one indistinguishable token each. In the periodic (but not symmetric)
case our new procedure allows the agents to conclude that rendezvous is
not feasible. It is known that in the symmetric case the agents cannot
decide the feasibility of rendezvous if their internal memory is limited
to ω(log log n) bits, see [15]. In this context we show new space optimal
deterministic algorithm allowing effective recognition of the symmetric
case. The algorithm is based on O(log k + log log n)-bit internal memory
and a single token provided to each mobile agent. Finally, it is known
that both in the periodic as well as in the symmetric cases the rendezvous
cannot be accomplished by any deterministic procedure due to problems
with breaking symmetry.

1 Introduction

The mobile agent rendezvous problem is a search optimization problem, whereby
a number of autonomous deterministic agents starting from two (or more) given
nodes of a network are required to rendezvous at some node eventually, so as
to optimize either the number of steps or the memory used by the robots or
a tradeoff of both. The mobile agents are autonomous entities that move along
nodes of the network acting on the basis of collected information and the rules
provided by a given protocol.

There are instances where the rendezvous problem is easy, e.g., if the nodes of
the network have distinct identities, in which case the mobile agents can move
to a node with a specific pre-assigned identity. However, even in this case the
problem becomes more difficult to solve if the agents do not have enough memory
to “remember” and distinguish identities. In general, solutions of the rendezvous
problem are challenging under conditions that delimit what the mobile agents
can do and/or know about the status of the overall system. We are interested
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in studying trade-offs between the use of memory and time required by mobile
agents to rendezvous in a ring.

There is a variety of interesting scenarios under consideration that may involve
1) (minimum) number of tokens used by the mobile agents, 2) knowledge of the
status of the network and presence of other mobile agents in the system (e.g.,
number of mobile agents participating in the rendezvous problem, feasibility
of rendezvous for a given starting configuration), 3) knowledge of inter-agent
distances at the start, etc. For example, under some conditions the rendezvous
task is impossible to accomplish. The mobile agents will either execute the code
of their rendezvous algorithm indefinitely (less favourable solution) or they will
stop eventually claiming that the rendezvous is not feasible. Thus it is crucial to
be able to determine conditions under which the rendezvous can be accomplished
or at least the agents can conclude that the rendezvous is not possible.

Communication model. A number of mobile agents are situated at the nodes
of a unidirectional synchronous ring. Each mobile agent marks its original posi-
tion (node) by an indistinguishable token just after initiation of the rendezvous
process. An original distribution (marked by the tokens) of agents on the ring can
be either: symmetric, when the distances between the agents are uniform; peri-
odic, when the distances between the consecutive agents form a periodic (cyclic)
pattern; or non-periodic otherwise. During the execution of the algorithm, at the
beginning of any time unit a mobile agent occupies some node of the ring. And
during this time unit it may decide to: 1) stay at its current position, 2) move
to the next position, 3) detect the presence of one or more agents at the node
it is currently occupying, and 4) detect the presence of one or more tokens at
the node it is currently occupying. We say that one or more mobile agents ren-
dezvous when they meet at the same node. Mobile agents may communicate and
exchange information with each other only when they rendezvous.

In this paper we study the rendezvous problem with k≥2 mobile agents in a
n-node ring. We use the following model of communication. The ring and the
agents are anonymous. The links in the ring are unidirectional and there is a sense
of direction [13]. The ring consists of n nodes but this size is neither known to the
nodes of the ring nor to the agents. The nodes of the ring are identical, i.e., they
do not have distinct identities. The k participating agents use indistinguishable
tokens only once to mark their original positions in the ring. The agents move
along the ring in synchronous steps. We assume that all agents start to traverse
the ring at the same time and they execute the same deterministic algorithm.
The agents may communicate and exchange information with one another only
when they meet each other at some node. Moreover, when an agent finds a token
that has been released at a node in the ring it can not distinguish it from its
own token(s) or from the token(s) of the other mobile agents (this is equivalent
to identifying tokens with erasable marks).

Related work. There has been considerable literature on the rendezvous prob-
lem. The problem initiated with the work of Alpern (see the survey [2]). Re-
search conducted over the years by Alpern and various collaborators [1], [3],



284 L. G ↪asieniec et al.

[4], [5], [17] concentrated on the optimization problem for probabilistic search
in operations research. Additional research with emphasis on either optimiza-
tion on rendezvous as a competitive game was also conducted by Pikounis and
Thomas [18], Anderson and Essegaier [6], Anderson and Fekete [7], Anderson
and Weber [8], Baston and Gal [10], [11], Chester and Tutuncu [12].

Here we are interested in time-memory trade-offs for achieving rendezvous as
well as for detecting the feasibility of rendezvous. The main concern in all ren-
dezvous algorithms is how to “break symmetry”. In previous works mentioned
above, symmetry in the rendezvous problem is typically broken either by using
randomized algorithms or by mobile agents running different deterministic algo-
rithms [3], e.g., based upon distinct identities. Baston and Gal [10] consider the
case where agents may mark their starting points but they still rely on random-
ization or different deterministic algorithms to achieve rendezvous. The current
token model used to break symmetries was initiated by Sawchuk [19].

Several possibility and impossibility results on the rendezvous problem for
two mobile agents were considered in Kranakis et al. [14], whereby two mobile
agents on an n node ring can use identical tokens to break the symmetry. In
Flocchini et al. [15] it is proved that the agent rendezvous problem has no so-
lution when both values of k and n are unknown. Since we assume that k ≤ n
this implies that agents require at least log k bits to store the value k. Flocchini
et al. also show that rendezvous is feasible iff the original distribution of the
distances between agents on the ring is non-periodic. Further, they show that
any deterministic algorithm for an n-node unidirectional ring using a single to-
ken to mark the starting positions of the agents requires Ω(log logn) memory
to recognize if rendezvous is feasible. They present several unconditional and
conditional solutions to the agents rendezvous problem with different memory
and time requirements. In particular, they provide an algorithm that performs
rendezvous when it is possible or recognises that rendezvous is not possible. This
requires O(k log log n) bits of memory per agent. This result is not optimal for
non-constant k.

Results and organization of the paper. In this paper we show a new determin-
istic rendezvous algorithmbased on the use of optimalO(logk+log logn)-bitmem-
ory. The paper is organised as follows. In Section 2 we present a new rendezvous
algorithm which performs rendezvous when it is possible or recognises the periodic
(non-symmetric) input case. This algorithm requires O(log k) bits of memory per
agent. Note that in the symmetric case this algorithm will not halt. In Section 3 an
algorithm for identifying symmetric distributions of mobile agents is given. This
algorithm requires O(log k + log log n) bits of memory per agent. In both cases we
provide analysis and proof of correctness. Together, the algorithms provide an op-
timal memory solution to the rendezvous problem on the ring.

2 Efficient Rendezvous of Agents

In this section we give a detailed description of the communication model, the
task to be performed as well as our new algorithm. The k anonymous agents



Optimal Memory Rendezvous of Anonymous Mobile Agents 285

A1, A2, . . . , Ak are placed on an anonymous directed n−node ring R, where, the
distance between agents Ai and Ai+1 is denoted by Si, for all i = 1, . . . , k. Equiv-
alently (depending on the context) we will also refer to distances S1, . . . , Sk as
segments, see Figure 1. Note that reference to agent Aj is always understood
as A(j−1 mod k)+1. All agents are anonymous (indistinguishable) and each of
them possesses local memory limited to log k bits. Moreover, each agent Ai is
allowed to leave a mark Ti (indistinguishable token) at its original position on
the ring. We assume here that the actions of all agents are totally synchro-
nised. I.e., the agents wake up at the same time and later proceed in perfectly
synchronised time units, called also time steps. During each step an agent de-
cides whether to move to the next node (in clockwise direction) or to remain
stationary according to the algorithm and the content of its O(log k)−size mem-
ory. Later we show that each agent uses exactly 2 log k + 2 bits of its internal
memory. At the conclusion of each time step the content of the local mem-
ory is updated. We also assume that the agents detect one another only when
they meet at some node of the ring. When an agent moves back to its start-
ing point, we say that the it has accomplished a full turn or a traversal of
the ring.

The main task considered here is to rendezvous all participating agents (if possi-
ble) at one of the nodes of the ringR at some specific moment in time. The outcome
of the rendezvous process depends on the size of the local memory of each agent.
When the memory is limited to O(log k) bits then if the the distribution of the
agents on the ring is: 1) symmetric - the agents run forever; 2) periodic (but not
symmetric) - the agents do not rendezvous, though they eventually learn that the
initial distribution is periodic and they stop; 3) otherwise, the rendezvous is always
accomplished. In case when internal memory of each participating agent is limited
to O(log k + log logn) bits agents are able to learn that the initial distribution is
symmetric, and they stop having this knowledge.
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Further details. In this paper, we introduce a new rendezvous mechanism
which is based on variable speed of agents. The use of different speeds by agents
performing similar tasks, such as leader election, can be found in [16]. In our
mechanism, a current speed of an agent Ai depends on the relative index of seg-
ment Sj , see Figure 1, as follows. We say that agent Ai traverses with speed Vi(j)
if it uses segment Si+j to calculate its speed. And when this happens, Ai always
moves to the next node during each time step while being in Si+j (we say that the
agent goes with the full speed 1 in Si+j); and it alternates moves with stationary
steps (the agent goes with the speed 1/2) in all other segments.

There are three possible states in which the agents find themselves while
moving: a runner state, a marker state and a loser state. An agent is called
a runner, a marker and a loser in these states respectively. All agents start to
traverse the ring while being in the runner state or in other words being runners.
While being a runner agent Ai traverses the ring using Algorithm Rendezvous.
Agent Ai becomes a marker when it is caught by Ai−1. When this happens,
Ai loses its self-control and becomes the slave of agent Ai−1. From now on,
Ai follows instructions only from its master Ai−1. When agent Ai is caught
by Aj , for j �= i − 1, agent Ai becomes a loser. In other words, agent Ai is
switched off until a winning agent picks it up at the final stage of the rendezvous
process.

The utilisation of the internal memory limited to 2 log k+2 bits per each agent
is done as follows: State: 2 bits of memory are used to store an agent’s state.
I.e., 0∗ means the agent is a runner, 10 means it is a marker, and 11 means it is
a loser. Position bits: the first chunk of log k bits is used to count the number
(modulo k) of tokens an agent passed from its original position. This value is
always between 0 and k−1. As soon as this value turns to 0, the agent knows that
it is back in its starting position, i.e., a full turn has been accomplished. Speed
indicator: the second chunk of log k bits informs an agent in which segment
the full speed should be used. This value is also within range 0, . . . , k − 1. In
particular, in round i this value is i and the agent uses full speed on the (i+1)th
segment counting from its starting position. When this value turns back to 0,
the agent is aware of the fact that it already tried all available speeds. And when
this happens, it goes to stage (2) where this part of the internal memory is used
to count the number of agents for which the rendezvous has been accomplished.

The algorithm. In this section we present our new rendezvous algorithm. Each
of the participating agents executes the following code splitting the rendezvous
procedure into three consecutive stages. During Stage (0) every running agent
is expected either to catch its direct predecessor or to be caught by one of its
successors. We show later that if the initial distribution is not symmetric every
agent accomplishes Stage (0) eventually. Otherwise all agents remain in Stage (0)
for ever. In the next section we also show how to recognise this situation with the
use of O(log logn) bits of extra memory. Stage (1) is used to eliminate (switch
off) all agents apart from one who eventually gathers all (switched off) agents in
its original position. We prove that this rendezvous process is entirely successful
if the initial distribution is not periodic. In the periodic case there is more than
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one winner. The final stage is used to collect all losers (including their markers)
by the winner. If the winning agent manages to collect all (k−1) other agents it
knows (and this knowledge is passed on collected agents too) that the rendezvous
process was accomplished successfully. Otherwise the agents know that the case
is periodic. Finally note that since we deal with anonymous agents the indices
of agents, segments, and tokens are relative. The code of the algorithm follows.

Algorithm Rendezvous (Ai)

Stage (0)
Run with the speed Vi(0) until:
(state bits of Ai are set to 00, position bits start to count tokens.)
(1) if Ai catches Ai+1

(1.a) Ai overpowers Ai+1 to create its marker Mi;
(Change Ai+1’s state from 00 to 10.)
(1.b) Ai moves with Mi to Ti, and leaves Mi there;
(When position bits turn back to 0, Ai knows that it is back at Ti.
Also, position bits of the marker are set to 0.)
(1.c) go to Stage(0.5);

(2) if Ai is caught or meets a marker of another agent Ai gets switched off.
(In the symmetric case, all the agents remain in Stage (0) for ever.)

If the sequence of segments Si is not uniform there are at least two neighbor-
ing agents, Ai and Ai+1, that will traverse the ring using two different speeds
Vi(0)>Vi+1(0). In this case, after every full turn, agent Ai gets closer to agent
Ai+1 by at least one position on the ring. Since the original distance between
respective tokens Ti and Ti+1 is less than n we know that agent Ai will catch
Ai+1 (if Ai is not caught earlier by its predecessor) within the first n full turns,
which correspond to O(n2) units of time.

Stage (0.5)
Leave the marker Mi at the position containing Ti, and
run with the full speed for one full turn.
(1) When Ai catches another agent, switches it off;
(2) Go to Stage (1).

After agent Ai moves to Stage (0.5), it leaves its marker Mi at the node
containing token Ti and immediately it makes one full turn with full speed (one
node per time unit). Note that during n time units (full turn), all other agents
who are still in Stage (0) will be switched off (if they do not manage to find their
own marker on time) either by being caught or by encountering the marker of
another agent already being in Stage (0.5). The main purpose of Stage (0.5) is
to ensure that on its completion by any agent (including the most advanced one)
all other agents are either switched off or they are at least in Stage (0.5). This
allows to assume that the largest time difference between the events in which
two agents enter Stage (1) is never larger than n, see Figure 3.
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Stage (1)
For the round j = 0, 1, . . . (k − 1) run with speed Vi(j).
(The speed indicator counts from 0 to k − 1 informing
agent Ai when it should use full speed to traverse.)

(1) When Ai meets again its marker Mi, it moves Mi one position
ahead;
(Agent Ai identifies its marker by comparing their position bits.)
(2) When Ai catches another agent, Ai switches it off;
(Change the state of the caught agent to 11.)
(3) Until Mi is back to Ti, then j = j + 1;
(*) If Ai is caught by another agent, then it gets switched off.

After entering Stage (1), agent Ai traverses the ring using k variable speeds
Vi(j), for j = 0, . . . , k − 1, based on sizes of consecutive segments following
token Ti (i.e., the original location of Ai). More precisely, the ring traversal in
Stage (1) is split into k consecutive rounds (see main loop for), s.t., during the
lth round the speed Vi(l) is used for exactly n full turns. Note that full turns
are counted with the help of position bits (1st chunk of log k bits in the internal
memory) of marker Mi, see Step (1) in the body of the main loop and Figure 2).
Similarly, a current (relative to the original) segment location of agent Ai is
also identified by properly updated position bits in its memory. A switch from
one speed to another is recorded via addition of 1 modulo k to the number
represented by the last log k bits in the internal memory. We say that agent Ai



Optimal Memory Rendezvous of Anonymous Mobile Agents 289

accomplishes Stage (1) successfully if it runs all rounds of this stage without
being caught by another agent. This process requires O(kn2) units of time. The
following lemma holds.

Lemma 1. On the successful completion of Stage (1) an agent Ai becomes either
a unique winner (non-periodic case) or one of multiple winners (periodic case).

Proof: Consider the non-periodic case and behaviour of two arbitrary agents Ai

and Aj who managed to progress to Stage (1). Note that patterns of segments
following initial positions of the agents must be different; otherwise we would
have the periodic case. Thus there will be a round (with n full turns) in which
the agents will use different speeds. And during this round one of the agents
will have to catch the other if not caught by someone else in the meantime. In
other words any agent entering Stage (1) will have a chance to challenge any
other agent in one of the k rounds. And since during each challenge one of the
competing agents gets switched off, after k rounds only one survivor is left alive
on the ring. This is the winner who will accomplish the rendezvous process in
Stage (2). Note that this dueling process is feasible because the maximum time
difference between the entry of two agents to the Stage (1) is limited to at most
n units of time. And since each rounds is based on n full turns there will be
enough time to challenge any two agents.

We know that in the periodic case the rendezvous of agents governed by any
deterministic procedure is not feasible. In this case the agents entering Stage
(1) are partitioned into several classes of abstraction. The nodes in one class
are represented by the same pattern of segments. Note that these agents will
never compete (challenge each other) during the k consecutive rounds. How-
ever they will (potentially) challenge agents belonging to different classes. As
a consequence of this at the end of Stage (1) there will be survivors in at
most one class of abstraction. The survivors will enter Stage (2) when they
will learn that the rendezvous is not feasible. This process takes n units
of time.

Stage(2) cleaning-up stage
The survivor Ai makes yet another full turn and
collects all switched off agents left on the ring.

If the number of collected agents is (k − 1),
agents know that rendezvous is successful.
Otherwise, agents recognise the periodic case.

(In this stage, agents do not need to calculate their speed anymore,
so they use their speed indicators to count collected agents.)

Theorem 1. The use of O(log k) bits of memory per each participating agent
enables rendezvous of k agents in the non-periodic case. Moreover, in the periodic
(but non-symmetric) case agents learn that the rendezvous is not feasible.

The time complexity of the rendezvous process is dominated by Stage (1) and it
is bounded by O(kn2).
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3 How to Identify the Symmetric Distribution

If the distribution of k agents on the ring is entirely symmetric, then there
is no deterministic algorithm that can complete the rendezvous task. So, it
is important to be able to test the initial distribution of the agents for
symmetry.

Handling the symmetric case. In this section we show how to recognise the
symmetric case with a help of extra O(log logn) memory bits. It has been proved
in [15] that this is the minimal memory required to recognise the symmetric case.
So our algorithm uses asymptotically optimal size of internal memory also in the
symmetric case.
The algorithm is based on the use of a sequence of prime numbers and a simplified
version of the Chinese Remainder Theorem (see Apostol [9]). The main line of
our reasoning is that for any two numbers 0 < n1 < n2 < n the sequence
of remainders (of integer division by consecutive prime numbers) of length C ·

log n
log log n , for small constant C must differ eventually. Otherwise the number 0 <

n2 − n1 < n would have more than C · log n
log log n distinct prime divisors which is

not possible for C large enough.
Note that a value of the largest prime in the sequence is linear in logn.

In fact we can either consider remainders based on prime numbers, or alter-
natively we can use a testing procedure based on a sequence of initial inte-
gers 1, . . . , O(log n), which includes all primes required by the symmetry testing
procedure.

The algorithm is split into consecutive rounds. During the ith round based
on the ith prime (integer) every agent performs a full turn and calculates the
remainder of division of each |Si| by the prime (integer). If the remainder is the
same within each segment, the next prime is taken and the test is performed
within each segment with the new prime, etc. If the remainders are uniform
across all primes the agents know that the case is symmetric. If at any time of
this process different remainders (based on the same prime) are discovered (i.e.,
the case is not symmetric), the testing process is halted (at the end of the round)
and all agents proceed (at the very same moment) to Stage (0).

The pseudo-code of the symmetry test algorithm follows.
(0) Place token Ti at the starting position and set the flag to symmetric-case.
(Then start traversing the ring with the full speed
in rounds based on consecutive prime numbers.)
(1) Loop for prime = 2, 3, 5, . . . , pO( log n

log log n ) and flag = symmetric-case.
(1.1) Visit consecutive segments Si, Si+1, . . . , Si−1 and

(1.1.1) Set the counter of steps to 0;
(1.1.2) Traverse each segment adding after each move one modulo
prime to the counter of steps;
(1.1.3) At the end of each segment test whether current content
of the counter (representing the value of the remainder)
is consistent with its content at all previous segments;
(to implement this test we need one extra counter based on
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O(log logn) bits to remember a uniform value of reminders
computed in previous segments)
(1.1.4) If the answer is negative, set the flag to non-symmetric-case.

Finally note that to implement this process each agent needs at most O(log k +
log logn) bits of memory, since all values computed during the symmetry test
procedure do not exceed neither k nor logn. The time complexity of this test in
O(n log n

log log n ).

Theorem 2. The use of O(log k + log logn) bits of memory per each partici-
pating agent enables rendezvous of k agents in the non-periodic case. Moreover,
in both periodic and symmetric cases agents learn that the rendezvous is not
feasible.
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Abstract. The paper presents a new method for representation and
processing ontological knowledge - Knowledge Cartography. This method
allows for inferring implicit knowledge from both: terminological part
(TBox) and assertional part (ABox) of a Description Logic ontology. The
paper describes basics of the method and gives some theoretical back-
ground of the method. Knowledge Cartography stores and processes on-
tologies in terms of binary signatures, which gives efficient way of query-
ing ontologies containing numerous individuals. Knowledge Cartography
has been applied in KaSeA - a knowledge management system that is be-
ing developed in course of a European integrated research project called
PIPS. Results of efficiency experiments and ideas of further development
of the system are presented and discussed.

1 Introduction

Rapid development of Internet reveals new needs for exploring and processing
data that are stored in resources of the global Web. There is a steady inter-
est among researches (particularly - knowledge engineers) in providing theoreti-
cal backgrounds and building practically applicable prototypes of systems that
would be able to efficiently integrate, use and exploit Web resources. These sys-
tems should be able to assimilate the newly acquired data with the data that
already have been acquired and stored in data and knowledge bases. It is clear
that data coming from different sources cover only partially a given area of inter-
est, so it is of utmost importance that a powerful data acquisition system should
be equipped with a reasoning engine that could infer new facts, not explicitly
stated in the data.

To this aim, a knowledge representation method is necessary. In this paper,
we present a novel method of knowledge representation called Knowledge Car-
tography. This method is based on Description Logic (DL) [1] - a decidable part
of first-order logic that is aimed at describing terminology systems. Description
Logic (actually, one of DL dialects, because DL is in fact a family of formalisms
of different levels of expressiveness) became a basis of OWL (Web Ontology Lan-
guage, [2]) that is a standard recommended by W3C Consortium for development
of Web ontologies. In this context, the work presented in this paper, contributes

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 293–302, 2006.
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to the Semantic Web initiative [3] that strives for development of standard tech-
nologies for knowledge management over the Web, particularly for making Web
sources semantics machine-readable.

The Knowledge Cartography, primarily proposed by one of the authors of this
paper, W. Waloszek, has been applied in a prototype knowledge management
system called KaSeA (Knowledge Signatures Analyzer). KaSeA is a part of
a system PIPS (Personal Information Platform for Life and Health Services) [4]
that is being developed within a 6th European Union Framework Programme
integrated project (priority ”e-Health”) involving 17 partners from 12 countries,
mainly from EU. PIPS’s main goal is to create a Web infrastructure to support
health and promote healthy life style among European communities. PIPS con-
centrates on providing health-related assistance to its users: citizens, patients
and healthcare professionals. PIPS serves citizens and patients by helping them
in making decisions concerning their everyday practices and deciding whether
they should consult their doctors. PIPS can also be used by healthcare profes-
sionals and can provide them with health-related knowledge and advise about
course of therapies.

PIPS system must efficiently process large (particularly – in terms of number
of individuals) ontologies. The KaSeA system allows both for inferring and for
storing the inferred results (in this way it somehow resembles the InstanceStore
system [5] that also stores results of its inferences but in quite different way). The
price we pay for this is a slight reduction of expressiveness of queries that can be
submitted to the system and longer time of ontology loading. These limitations,
however, turned out not to be critical for the system clients.

The rest of the paper is organized as follows. Section 2 describes the basics of
Knowledge Cartography. Section 3 illustrates implementation issues of KaSeA.
Section 4 presents results of performance analysis and tests in comparison with
other DL reasoners. Section 5 summarizes the paper by discussing limitations of
the presented approach and proposing the ways of its further development.

2 The Knowledge Cartography

Motivation behind the Knowledge Cartography is based on the three assump-
tions:

1. Terminological part of the knowledge base (TBox) is updated so rarely that
it might be considered constant in time.

2. A knowledge base is queried much more often than updated (by updating
we understand addition of new ABox assertions). Therefore performance of
information retrieval is crucial, while performance of updating is less critical.

3. A knowledge base should be able to hold and efficiently process information
about large numbers of individuals.

On the basis of these assumptions a cartographic approach has been devel-
oped. It aims at storing in the knowledge base as many conclusions about con-
cepts and individuals as possible. The conclusions can be quickly retrieved in the
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process of query answering and remain valid due to the fact that terminology
cannot be updated. By proper organisation of the knowledge base (see Sec. 3.1)
the same conclusions can be applied to any number of individuals, facilitating
information retrieval and reducing size of the base.

2.1 A General Idea

The Knowledge Cartography takes its name after a map of concepts. A map
of concepts is basically a description of interrelationships between concepts in
a terminology. The map is created in the course of knowledge base creation.
A map of concepts can be graphically represented in a form similar to a Venn
diagram (Fig. 1). Each atomic region (i.e. a region that does not contain any
other region) represents a unique valid intersection of base concepts. By valid
we mean an intersection that is satisfiable with respect to a given terminology.
Intersections of concepts that are not allowed by terminological axioms are ex-
cluded from the map (as in Fig. 1b, where two additional axioms eliminated
four regions from the map). Cartographer calculates a number of valid atomic
regions n and assigns each atomic region a subsequent integer number from the
range [1, n]. Because any region in the map consists of some number of atomic
regions it can be represented by an array of binary digits of length n with ”1”s
in positions mapped to contained atomic regions and ”0”s elsewhere.

Using this technique we can assign any concept in the terminology a signa-
ture – an array of binary digits representing a region covered by the concept in
the map. In this way we can describe any combination of complement, union
and intersection of described concepts by simply mapping these operations to
Boolean negation, disjunction and conjunction.

Formally, we define a function s from concepts to elements of a Boolean al-
gebra Bn = {0, 1}n. The only condition that should be met by the function s to
have all desired characteristics is:

s(C) ≤ s(D) ⇔ C � D (1)

Fig. 1. A map of concepts (a) with two terminological axioms added (b)
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In any such function atomic regions are mapped to atoms of the algebra, i.e.
arrays of ”0”s with a sole ”1”. Moreover, for any concepts C and D the following
equalities hold:

s(¬C) = ¬s(C), s(C �D) = s(C) ∧ s(D), s(C  D) = s(C) ∨ s(D) (2)

After determination of s function one can solve any TBox reasoning problem
(after reducing it to subsumption [1] on the basis of (1)) by signature calculations.
Namely:

– query about equivalence of concepts C and D can be performed by checking
whether s(C) = s(D),

– query about subsumption of concepts C and D can be performed by checking
whether s(C) ≤ s(D),

– query about disjointness of concepts C and D can be performed by checking
whether s(C) ∧ s(D) = {0}n.

It can be proven that for any ALC terminology T that does not contain ∃R.C
and ∀R.C constructors we can create the function s for which (1) and (2) hold.

Following the (1) we can notice that the order of the range of s should be equal
to the number of terminologically unequivalent concepts that can be expressed.
With introduction of ∃R.C and ∀R.C constructors the latter number can easily
reach infinity (namely ℵ0) rendering direct use of signatures infeasible.

Because of this fact, we have made an important decision restricting the use of
∃R.C and ∀R.C constructors in queries. The only concepts of the form ∃R.C and
∀R.C that can be used in queries are those explicitly included in the ontology.
In that way we restrict the number of expressible terminologically unequivalent
concepts. This restriction limits capabilities of the system, but our experiences
show that this limitation is not critical for knowledge base users.

The same techniques as for TBoxes can be applied to ABox reasoning. We
can assign each individual a in ABox a signature of the most specific concept
(we denote this concept Ca; this concept need not to be defined explicitly in the
terminology).

After determination of signatures for individuals we can reduce ABox rea-
soning problems to TBox reasoning problems which in turn can be solved by
signature calculations. For example, an instance checking problem (check if an
individual a is a member of a concept C) can be reduced to a question whether
the concept Ca is subsumed by the concept C.

2.2 The Map Creation Algorithm

The key algorithmic problem in Knowledge Cartography is determination of
function s, i.e. map of concepts. We define this problem as follows: for input
ALC terminology T for each atomic concept and each concept of the form ∃R.C
(∀R.C are converted to the equivalent form ¬∃R.¬C), called together mapped
concepts, generate the sequence of bits describing its signature.

The problem itself cannot be polynomial, unless P = NP , because of its
reducibility to CNF-satisfiability. However use of some optimization techniques
can make this process efficient for real-life ontologies.
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For creation of signatures we base on the fact that atomic regions are mapped
to the atoms of Boolean algebra being a range of the function s. Atomic regions
can be viewed simply as valid intersections of all mapped concepts or their
complements in the terminology, i.e. all possible complex concepts of the form:

L1 � L2 � · · · � Ln (3)

where n is the number of the mapped concepts and Li is a placeholder for i-th
mapped concept or its complement.

Using this approach we may view a terminology as a set of first-order logic for-
mulae, mapped concepts as variables, and reduce the problem to finding a truth
table for the terminology. Each satisfiable combination of variable values may
be treated as an atomic region.

From among many techniques available we decided to exploit Ordered Binary
Decision Diagrams (henceforth OBDD) originally proposed by Bryant in [7].
In our approach we systematically build a tree of the whole terminology by
combining it with logical ”AND” operation with the tree generated for formulae
corresponding to consequent axioms. Axioms are converted into first order logic
formulae in accordance with [7] but the method is somehow simplified because
of the fact that concepts of the form ∃R.C and ∀R.C are represented as a single
variable. Each new mapped concept is given a new variable name.

For example, the axiom:

Momo ≡ Person � ∀hasChild.Man � ∃hasChild.Man

would be converted to the form:

Momo ≡ Person � ¬∃hasChild.¬Man � ∃hasChild.Man

and consequently to the formula:

c1 ↔ (c2 ∧ ¬e1 ∧ e2)

The outline of the main part algorithm is presented below:

Data: Terminology T in ALC
Result: OBDD T for terminology T
Initiate T to OBDD of any true formula;1

for each axiom A from T do2

Convert A to the formula F in the way described above;3

Generate the OBDD U for the formula F ;4

T := T ∧ U (where ∧ denotes conjunction of two OBDD trees [7]);5

end6

Direct application of the algorithm to specific terminologies may lead to gen-
eration of spurious atomic regions, as shown in Fig. 2a. According to the ter-
minology an individual cannot belong to ∃R.B not belonging to ∃R.A (because
each member of B is a member of A). In order to avoid this effect we perform
postprocessing.
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Fig. 2. Incorrect (a) and correct (b) assignment of roles to regions

The postprocessing produces a tree T ′ on the basis of T . The postprocessing
may be basically brought down to checking whether for each combination of
values of variables ei concerning the role R and satisfiable in accordance with T
it is possible to create a set of individuals that would satisfy the combination.
In the example from Figure 2a the following family of atomic intersections is
satisfiable in accordance to T :

¬A � ¬B � C¬∃R.A � ∃R.B . . .

But this region is excluded from T ′ during post-processing because the fol-
lowing family of concepts:

¬A �B � . . .

is not satisfiable in accordance with T (there cannot exist any individual that
belongs to B and does not belong to A).

The outline of the post-processing algorithm is presented below:

Data: OBDD T produced in the course of processing
Result: OBDD T ′ with some regions excluded
Initiate T ′ to T .1

repeat2

for each role R from T do3

for each combination of values of ei satisfiable in accordance with T ′ do4

Check whether it is possible to create a set of individuals that, being5

role R fillers of some individual a, would make a satisfy the
intersection of ∃R.C and ¬∃R.C implied by values of ei.
if there is no such set then6

Create the formula F making combination of values unsatisfiable.7

Generate the OBDD U for the formula F .8

T ′ := T ′ ∧ U9

end10

end11

end12

until no changes to T ′ have been made.13

It can be shown that the postprocessing is sound and complete, i.e. all intersec-
tions it excludes are invalid and there is no invalid intersection it does not exclude.
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3 The KaSeA System

The Cartographic Approach has been successfully exploited in the PIPS sys-
tem. The Knowledge Inference Engine (KIE), a vital component of the KaSeA
system, exploits Knowledge Cartography to inferring and storing inferred infor-
mation. KIE allows for processing a terminology (TBox) and assertions (ABox).
Information is stored in a relational database (PostgreSQL 8.0 has been exploited
in the most up-to-date version of KIE).

In the following we present scenarios that take place in situations of database
update (Tell) and query (Ask) in the context of the previously described data-
base schema. KIE is able to handle queries expressed in the DIGUT language
[8], a special language for querying the KaSeA system, based on DIG/1.1 [9].

Tell queries that can be handled by the KaSeA system are concept assertion
of the form C(a) and role assertions of the form R(a, b).

In processing of a concept assertion C(a), C has to be an expression built
of concepts used in the terminology. Constructors of the form ∃R.C are allowed
only if a signature for this constructor has been determined. The course of actions
is as follows:

Calculate a signature s(C);1

If a is not in the database add it and assign it a signature s(C). End the2

procedure.;
Otherwise combine the signature of Ca with s(C) using logical AND operation;3

If a signature of Ca has been changed update the neighbourhood of a (see below);4

In processing of role assertions of the form R(a, b) only neighbourhood update
is performed.

Necessity of updating neighbourhood is a consequence of the fact that chang-
ing our knowledge about membership of the individual a may change our knowl-
edge about the individuals related to a. In the current version of the KaSeA
system a simple mechanism of positive and negative role checking has been ap-
plied. In positive role checking every pair (a, b) related with R is checked against
all defined concepts of the form ∃R.C. If b is a member of the concept C the sig-
nature of Ca is combined with s(∃R.C) using logical AND operation. In negative
role checking every pair (a, b) related with R is also checked against all defined
concepts of the form ∃R.C. If a is a member of the concept ∃R.C the signature
of Cb is combined with s(¬C) using logical AND operation.

This process is recursively repeated if a signature of any individual has been
changed. The process has to end in a finite number of steps because of the fact
that the number of individuals is finite and each update may only decrease the
number of “1”s in signatures of individuals being processed.

Almost all Ask operations can be brought down to subsumption checking. For
example instance retrieval problem for the concept C can be viewed as finding
all individuals a such that Ca is subsumed by C. In the course of subsumption
checking section counters are exploited to do the preliminary selection of “can-
didate” signatures. Then bitwise Boolean operations are performed in order to
check whether two signatures are in ≤ relation.
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4 Performance Results

The space and time complexity of processing a terminology by Cartographer is
in the worst case exponential. Indeed, the maximum number of regions that the
space can be divided into by k concepts is 2k, which results in signatures of such
a length. The corresponding terminology would consist of k concepts that are
not related to each other at all. However, such a case is very rare in practical
terminologies (if found at all). Specifically, this would mean that any subset of
concepts may have common instances, because no pair of concepts is declared
disjoint. For instance, consider the terminology T containing one root concept
and three direct subconcepts (axioms 1, 2, and 3 below):

1. Bird � Animal 4. Bird � Fish ≡ ⊥
2. Fish � Animal 5. Bird �Mammal ≡ ⊥
3. Mammal � Animal 6. Fish �Mammal ≡ ⊥

In this terminology, Bird, Fish and Mammal are unrelated, which means
that we could declare one individual to be simultaneously a bird and a fish.
Such a terminology would create a domain space with 9 regions (Fig. 3a). Let
us add three disjoints to T (axioms 4, 5, and 6 above). The number of regions
in the domain space decreased to 5 (Fig. 3b). Actually, T is now a pure tree
taxonomy, which reflects reality among animals.

For taxonomies the signature size grows linearly with k. The theoretical
processing time is proportional to k log k for taxonomies except of inherently
quadratic (O(k2)) signature generation phase (the algorithm has to generate
k signatures of length proportional to k). The results of our experiments show-
ing the observed time complexity of map generation algorithm are presented in
Table 1 (all tests were performed on a PC with Pentium IV 2GHz and 2GB
RAM). The time was independent on the order of axioms in terminologies, as
special heuristics has been used to estimate the best possible ordering.

The ABox queries processing performance of our Knowledge Inference Engine
has been tested and compared with several freely available tools: Jena 2 [3] [10],
FaCT [12], Racer [13]. The results of the tests are presented in Table 2 (FaCT
is not included in the table because of its lack of support for ABoxes).

The main difference between analysed reasoning algorithms is related to time
of loading an ontology (ABox tell queries). The time of loading ontology is longer

a)

Animal

Fish Bird

Mammal

T

b)

Animal

Fish Bird

Mammal

T

Fig. 3. The division of a domain space for the exemplary ontology: a) without disjoints,
and b) with disjoints
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Table 1. Results of efficiency experiments concerning signature generation for pure
tree taxonomies

Number of concepts Processing and Signature generation
in taxonomy postprocessing time [s] time [s]

3357 72 <1
82706 380 12
184086 857 115
545450 1386 2253

Table 2. Results of efficiency experiments. Hyphens denote that the activity could not
be completed within 2 hours.

Loading time [s] Query-processing time [s]
Size of ABox 400 1000 3800 400 1000 3800

Jena 1 22 - 6 250 -
RACER 3 4 5 58 - -

Cartographer 43 122 465 <1 <1 1

for KIE. In return we obtain a very short time of response. While RACER was
unable to answer an instance retrieval query when 1000 individuals have been
loaded, KIE could process the same query for 11000 individuals in 1.4 seconds.

5 Further Development

Our present work concentrates on overcoming limitations of the KaSeA system.
The most notable ones are: restriction on use of ∃R.C concepts in queries and
the shortcomings of neighbourhood update mechanism.

Although the former limitation may seem inherent to Cartographic represen-
tation we work on overcoming it by using signatures with variable length. The
range of the function s becomes in this way infinite, but longer signatures are
assigned to complex concepts that are unlikely to appear in client queries.

The latter limitation comes out from the fact that neighbourhood update mech-
anism is not fully OWA (Open World Assumption) compliant. Consider the ontol-
ogy in Figure 4. It can be easily noticed that there are only two possible cases of
membership of a and b individuals: a can be aMan and b aWoman or alternatively
a can be aWoman and b aMan. In both the cases c is a member ofBisexual. That
fact will not be inferred by the KaSeA system because in the processing of Tell
queries only signatures of direct neighbours are taken into consideration.

Fig. 4. An exemplary ontology showing limitations in OWA support of the KaSeA
system
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Our present work concentrates on overcoming the above limitations. Moreover
we are gradually extending expressiveness of the KaSeA system constructs in
order to support such constructs as cardinality constraints, symmetric, transitive
and functional roles so that KIE could be able to reason at least over the whole
SHIQ (a DL dialect that OWL is based on). We are also working on extending
signature analysis on roles. Another research focuses on knowledge distribution
and embedding trust issues into the knowledge base.
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Abstract. The Multicut problem is defined as: given an undirected
graph and a collection of pairs of terminal vertices, find a minimum set
of edges or vertices whose removal disconnects each pair. We mainly
focus on the case of removing vertices, where we distinguish between
allowing or disallowing the removal of terminal vertices. Complement-
ing and refining previous results from the literature, we provide several
NP-completeness and (fixed-parameter) tractability results for restricted
classes of graphs such as trees, interval graphs, and graphs of bounded
treewidth.

1 Introduction

Motivation and previous results. Multicut in graphs is a fundamental network
design problem. It models questions concerning the reliability and robustness
of computer and communication networks. Informally speaking, the problem is,
given a graph, to determine a minimum size set of either edges or vertices such
that the deletion of this set disconnects a prespecified set of pairs of terminal
vertices in the graph. In most cases, the problem is NP-complete. There are
many results and variants for Multicut and we refer to Costa, Létocart, and
Roupin [2] for a recent survey.

The major part of the literature deals with the “edge deletion variant” of
Multicut (Edge Multicut) [2, 6, 7, 8] whereas our main focus here lies on
the “vertex deletion variant” (Vertex Multicut). Relatively little seems to
be known for Vertex Multicut problems; we are only aware of two recent
investigations [3, 9]. Călinescu, Fernandes, and Reed [3] introduced two variants
of Vertex Multicut:

Unrestricted Vertex Multicut (UVMC)
Input: An undirected graph G = (V,E), a collection H of pairs of
vertices H ⊆ V × V , and an integer k ≥ 0.

� Research supported by the Deutsche Forschungsgemeinschaft (DFG), Emmy Noether
research group PIAF (fixed-parameter algorithms), NI 369/4.
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Task: Find a subset V ′ of V with |V ′| ≤ k whose removal separates each
pair of vertices in H .

The vertices appearing in the vertex pairs in H are called terminals and, through-
out this paper, we use S to denote the set of terminals, i.e., S :=

⋃
(u,v)∈H{u, v}.

By way of contrast, in the case of Restricted Vertex Multicut the removal
of terminal vertices is not allowed.

Restricted Vertex Multicut (RVMC)
Input: An undirected graph G = (V,E), a collection H of pairs of
vertices H ⊆ V × V , and an integer k ≥ 0.
Task: Find a subset V ′ of V with |V ′| ≤ k that contains no terminal
and whose removal separates each pair of vertices in H .

Călinescu et al. show that RVMC is NP-complete in bounded-degree trees and
the “easier” UVMC is polynomially solvable in trees but becomes NP-complete
in bounded-degree graphs of treewidth two. Moreover, they give a polynomial-
time approximation scheme (PTAS) for UVMC in bounded treewidth graphs.
Marx [9] extends the results for UVMC (which he calls Minimum Termi-
nal Pair Separation) by providing an O(2k� · kk · 4k3 · |G|O(1)) time algo-
rithm for UVMC in general graphs, where k is an upper bound on the ver-
tices to be removed and � is the number of terminal pairs. In other words,
UVMC is fixed-parameter tractable (FPT) with respect to the combined pa-
rameter (k, �).

Our results. We continue and complement the work of Călinescu et al. [3] and
Marx [9] as follows: We show that the NP-complete RVMC in trees is fixed-
parameter tractable with respect to the parameter k (number of vertex dele-
tions) with the modest running time O(2k · |G| · �) (again, � is the number of
terminal pairs). Whereas in trees UVMC is polynomial-time solvable but RVMC
is NP-complete [3], we have the surprising result that UVMC is NP-complete in
interval graphs but RVMC is polynomial-time solvable here.1 We also strengthen
the NP-completeness result for RVMC in trees of Călinescu et al. by showing that
NP-completeness already holds for maximum-vertex-degree-three trees whereas
their result only holds for maximum vertex degree four. Note that RVMC is
clearly polynomial-time solvable in paths, that is, trees with maximum vertex de-
gree two. Moreover, we show that RVMC in general graphs is NP-complete even
in case of only three terminal pairs, hence excluding fixed-parameter tractability
with respect to the parameter “number of terminal pairs”. By way of contrast,
we show that RVMC can be solved in O(|S||S|+ω+1 · |G|) time on graphs of
treewidth ω, where S denotes the set of terminal vertices; thus, RVMC is fixed-
parameter tractable with respect to the combined parameter “treewidth” and
“terminal set size”. Observe that there is no hope for fixed-parameter tractabil-
ity exclusively with respect to the parameter |S| or ω. This fixed-parameter
tractability result directly transfers to UVMC as well; indeed, it also works for
1 More specifically, the NP-completeness result for UVMC even holds in interval

graphs of pathwidth four.
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Table 1. Complexity of Multicut problems for several graph classes. For the parame-
ters, |S| is the number of terminals, k is the number of deletions, and ω is the treewidth
of the input graph. In a row with a parameter, “NP-c” implies hardness even for some
constant parameter value.

Graph class Parameter EMC UVMC RVMC

Interval graphs NP-c [6] NP-c (Thm. 4) P (Thm. 5)

Trees NP-c [6] P (Sect. 2) NP-c [3]
k FPT [8] — FPT (Thm. 2)

General graphs NP-c [4] NP-c [3] NP-c [3]
k open open open
|S| NP-c [4] FPT [9] NP-c (Thm. 6)
ω NP-c [6] NP-c [3] NP-c [3]
ω & |S| FPT (Thm. 9) FPT (Cor. 1) FPT (Thm. 8)

the Edge Multicut (EMC) variant. Finally, for Edge Multicut we also prove
NP-completeness in caterpillar graphs with maximum vertex degree five.

Table 1 summarizes most of the presented results.

Preliminaries. We introduce some additional terminology. By default, we con-
sider only undirected graphs G = (V,E) without self-loops. A graph is an interval
graph if we can label its vertices by intervals of the real line such that there is an
edge between two vertices iff their intervals intersect. A tree is called caterpillar
if all vertices with degree at least three have at most two neighbors of degree
two or greater. For any graph G = (V,E), we can construct its line graph as
(E, {{e1, e2} ∈ E | e1 ∩ e2 �= ∅}). We use G[V ′] to denote the subgraph of G in-
duced by the vertices V ′ ⊆ V . A set of vertices V ′ ⊆ V is called vertex separator
if G[V \ V ′] has more connected components than G.

A tree decomposition of G is a pair 〈{Xi | i ∈ I}, T 〉, where each Xi is a subset
of V , called bag, and T = (I, F ) is a tree with node set I and edge set F . The
following must hold:

⋃
i∈I Xi = V ; for every edge {u, v} ∈ E, there is an i ∈ I

such that {u, v} ⊆ Xi; and for all i, j, l ∈ I, if j lies on the path between i and l
in T , then Xi ∩Xl ⊆ Xj. The width of 〈{Xi | i ∈ I}, T 〉 is max{|Xi| | i ∈ I}− 1.
The treewidth of G is the minimum width over all tree decompositions of G.
A path decomposition is a tree decomposition where T is a path.

A problem of size n is called fixed-parameter tractable (FPT) with respect to
a parameter k if it can be solved in f(k) ·nO(1) time, where f is a function solely
depending on the parameter k.

Due to the lack of space, some proofs had to be omitted.

2 Trees

Unrestricted Vertex Multicut in trees is trivially solvable in O(|V | · |H |)
time: Root the tree at an arbitrary vertex. Then, compute the least common
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ancestors for all terminal pairs in H and sort these ancestors in a list L according
to the decreasing order of their depth in the rooted tree. Finally, while L �= ∅,
remove the first element of L and its corresponding vertex from T and delete all
separated terminal pairs from H and their least common ancestors from L. The
solution is then the removed vertices. We omit further details.

Călinescu et al. [3] show that RVMC is NP-complete in trees with maximum
vertex degree four by giving a reduction from EMC in binary trees. It is easy to
observe that RVMC on trees with maximum vertex degree two, i.e., paths, can
be solved in polynomial time. The complexity of RVMC in trees with maximum
vertex degree three remained open. Here we close this gap.

Theorem 1. Restricted Vertex Multicut in trees with maximum vertex
degree three and pathwidth two is NP-complete.

Proof. The reduction is from the NP-complete Vertex Cover problem, which
for a graph G = (V = {v1, v2, . . . , vn}, E) and k ≥ 0 asks whether there is a set
of vertices V ′ ⊆ V with |V ′| ≤ k such that for every edge {v, w} ∈ E at least
one of v and w is in V ′. Construct the tree T = (W,F ) with

W := {li, ai, ri | 1 ≤ i ≤ n} ∪ {p, q}

and

F := {{li, ai}, {ai, ri} | 1 ≤ i ≤ n} ∪ {{ri, ri+1} | 1 ≤ i < n} ∪ {{rn, p}, {p, q}}.

As the set of terminal pairs H we take for each vertex vi ∈ V the pair (ri, q)
and, moreover, for each edge {vi, vj} ∈ E, we add (li, lj). See Fig. 1 for an
example of the construction.

It is easy to show that the Vertex Cover instance has a solution with
no more than k vertices iff the constructed RVMC instance can be solved by
removing at most k + 1 vertices. The constructed tree clearly has maximum
vertex degree three and a path decomposition with pathwidth equal to two. � 

1

2

3

4

5 p qr1 r2 r3 r4 r5

l1 l2 l3 l4 l5

a1 a2 a3 a4 a5

Fig. 1. An example for the reduction from Vertex Cover to RVMC. The left figure
is a Vertex Cover instance and the right is the corresponding RVMC instance with
H = {(l1, l2), (l2, l3), (l3, l4), (l4, l1), (l3, l5), (l4, l5)} ∪ {(ri, q) | 1 ≤ i ≤ 5}. Only the
rectangular vertices can be deleted (all others are terminals).
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In the following, we show that RVMC in trees can be solved in O(2k · |V | · |H |)
time, where k denotes the allowed number of vertex removals. The basic idea is
to modify the above polynomial-time algorithm for UVMC in trees into a depth-
bounded search tree algorithm.

Let T = (V,E) be the input instance and S :=
⋃

(u,v)∈H{u, v} the set of
terminals. The first step is to “contract” edges with both endpoints being ter-
minals: For an edge {u, v} with u, v ∈ S, we have (u, v) /∈ H , since otherwise
the instance is not solvable. Delete both u and v and the edge between them
from T ; insert a new vertex w into T and set N(w) := N(u) ∪ N(v) \ {u, v}.
Furthermore, replace each u and v in H by w. It is easy to see that this step
does not change the solution.

Then, the search tree algorithm proceeds as the polynomial-time algorithm
for UVMC in trees: root T in an arbitrary vertex, compute the least common
ancestors of all terminal pairs and sort them by decreasing depth in a list L.
While L �= ∅, consider the first element u of L, which is the least common
ancestor of a terminal pair (v, w). If u is a nonterminal, then remove it and
update L and T ; otherwise, there are two cases: If u = v or u = w, then we
delete the neighbor of u that lies on the path from u to w or v. This neighbor has
to be a nonterminal due to the first step. Otherwise, we have u �= v and u �= w.
Then u has two nonterminals as neighbors lying on the path between v and w
and we branch into two cases, in each case removing one of the two neighbors.

Finally, if there is a node in the search tree where L = ∅ and at most k vertices
have been removed, then we have a solution. It is easy to observe that the depth
of the search tree is bounded by k and its size is O(2k).

Theorem 2. Restricted Vertex Multicut in trees can be solved in O(2k ·
|V | · |H |) time, where k is the number of allowed vertex removals.

3 Interval Graphs

As mentioned in the introduction, RVMC is at least as hard as UVMC in general
graphs and many special graph classes: From an instance of UVMC we can
obtain an RVMC instance by adding for each terminal s a new degree-1 vertex s′

adjacent only to s. Each terminal pair (s, t) is substituted by (s′, t′). Then,
solving RVMC in this new instance is equivalent to solving UVMC in the original
instance. However, the class of interval graphs is an exception, that is, UVMC
is NP-complete in interval graphs while RVMC is solvable in polynomial time:

Unrestricted Vertex Multicut in Interval Graphs. To show the NP-completeness
of UVMC in interval graphs, we first show that Edge Multicut is NP-complete
in caterpillars and then reduce EMC in caterpillars to UVMC in interval graphs.
We use a reduction from 3-SAT, which is similar to the reduction used to show
the NP-completeness of EMC in binary trees [3–Theorem 6.1].

Theorem 3. Edge Multicut in caterpillars with maximum vertex degree five
is NP-complete.
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The second reduction from EMC in caterpillars with maximum vertex degree
five to UVMC in interval graphs with pathwidth four is—analogous to [3]—
executed by constructing the line graph of the caterpillar:

Theorem 4. Unrestricted Vertex Multicut in interval graphs with path-
width at least four is NP-complete.

Restricted Vertex Multicut in Interval Graphs. In contrast to EMC2 and UVMC,
which are NP-complete for interval graphs even with bounded pathwidth, we
now give a dynamic programming algorithm solving RVMC in interval graphs
in polynomial time.

For an interval graph G = (V,E), we can construct a path decomposition
in O(|V | + |E|) time such that each bag one-to-one corresponds to a maximal
clique of G (see Booth and Lueker [1]). The minimal vertex separators of G
are the intersections of two neighboring bags in the path decomposition and are
also cliques. The following lemma shows that the minimal vertex separators are
crucial for solving RVMC in interval graphs.

Lemma 1. Any optimal solution of RVMC in interval graphs consists of a se-
lection of the minimal vertex separators, that is, for each vertex v in an optimal
solution C for RVMC in an interval graph G, there is a minimal vertex separa-
tor Y of G such that v ∈ Y and Y ⊆ C.

Based on Lemma 1, we only consider the minimal vertex separators of G. Note
that we exclude the vertex separators containing terminals since such vertex sep-
arators cannot be contained in an optimal solution for RVMC. Let Y1, Y2, . . . , Yr

with r ≤ |V | be the minimal vertex separators obtained by the path decom-
position of G. For each 1 ≤ i ≤ r we define Pi ⊆ H as the set containing the
terminal pairs that are disconnected in G[V \ Yi]. Let Hi :=

⋃
1≤j≤i Pj . Note

that Hr = H ; otherwise, the given instance has no solution. Due to the third
property of the path decomposition (see Sect. 1), the minimal separators can
be linearly ordered such that they fulfill the following “consistency condition”:
Yi ∩ Yl ⊆ Yj for all Yi, Yj , Yl with i ≤ j ≤ l. In addition, the sets Pi associated
with Yi, 1 ≤ i ≤ r, fulfill also this consistency condition.

Now, we can formulate RVMC as a covering problem: Solving RVMC in inter-
val graphs is equivalent to finding a subset Z of {1, 2, . . . , r} with

⋃
i∈Z Pi = H

and |
⋃

i∈Z Yi| ≤ k. Observe that, although at first sight they are very simi-
lar, there is a decisive difference to the classical Set Cover problem.3 In our
case, we have two subset systems, one is the set H and its subsets P1, P2, . . . , Pr

and the other is V and its subsets Y1, Y2, . . . , Yr. Each Pi is associated with
the subset of V with the same index, i.e., Yi. The task is to select some sets

2 EMC is NP-complete even in stars [6], which are interval graphs with pathwidth
one.

3 The in general NP-complete Set Cover problem can be solved in polynomial time
on instances where the subsets in the subset collection can be linearly ordered such
that they fulfill the consistency condition described above [10].
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from P := {P1, P2, . . . , Pr} to cover H . However, instead of minimizing the
number of selected subsets from P as in Set Cover, we minimize |

⋃
Pi∈P′ Yi|

where P ′ denotes the set of the selected subsets from P .
Observe that the minimal separators are not pairwise disjoint, i.e., there may

be two Yi and Yj with i �= j and Yi ∩ Yj �= ∅. On the one hand, this forbids
assigning to each Pi a weight equal to |Yi| and solving a “weighted” version of
Set Cover, since |

⋃
Pi∈P′ Yi| is not always equal to

∑
Pi∈P′ |Yi|. On the other

hand, for two separators Yi and Yj with i �= j and Yi∩Yj �= ∅, the selection of Yj

may affect the decision concerning the selection of Yi and vice versa.
The key idea of the algorithm for this special covering problem is to exploit the

consistency property of the minimal separators Yi and their associated sets Pi:
Order the minimal vertex separators Yi and the associated sets Pi linearly such
that they fulfill the consistency property. Then, the algorithm processes this
linear ordering from i = 1 to i = r. At each i, it computes the best “local
solution” to cover Hi by using only P1, . . . , Pi. As mentioned above, the selection
of Yj with j > i may affect the decision concerning the selection of Yi. To cope
with this, the algorithm computes not only one local solution but r − i + 1
values for each i. The first value Bi represents the best local solution under the
assumption that no j with i < j ≤ r and Yj∩Yi �= ∅ will be added into the global
solution. Each of the other r−i values Fi,j represents, for each i < j ≤ r, the best
local solution under the assumption that j but no l with i < l < j and Yl∩Yi �= ∅
will be added to the global solution. Note that due to the consistency condition,
Fi,j is equal to the best local solution under the assumption that j and l will be
added to the global solution for any l > j.

When reaching r, there are at most two cases to consider: r is in the global solu-
tion or it is not. If it is not, then the local solution Br−1 turns out to be the global
solution; otherwise, |Yr|+ min1≤i<r{Fi,r | (H \ Pr) ⊆ Hi } is the global solution.

In the following, we give the formal description of the algorithm.
For each i, 1 ≤ i ≤ r, we will compute Bi and Fi,j , i < j ≤ r, such that the

following invariants hold:

Bi = min{ |
⋃
l∈Z

Yl| | Z ⊆ {1, . . . , i} and Hi =
⋃
l∈Z

Pl },

Fi,j = min{ |
⋃
l∈Z

(Yl \ Yj)| | Z ⊆ {1, . . . , i} and Hi =
⋃
l∈Z

Pl }.

In order to simplify the presentation, we introduce Y0 := ∅, P0 := ∅, H0 := ∅,
B0 := 0, and F0,j := 0 for all 1 ≤ j ≤ r. We start with the initialization B1 :=
|Y1| and for all 1 < j ≤ r let F1,j := |Y1 \ Yj |.

When reaching i with 1 < i < r, we consider two cases.

Case 1. Pi � Pi−1.
We set

Bi := |Yi|+ min
0≤l<i

{Fl,i | (Hi \ Pi) ⊆ Hl };

Fi,j := |Yi \ Yj |+ min
0≤l<i

{Fl,i | (Hi \ Pi) ⊆ Hl }, for each i < j ≤ r.
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This computation is correct since we have to take i to have a local solution.
Then, Bi is set equal to the sum of |Yi| and the minimum of the local solutions
to cover Hi \ Pi under the assumption that i is already a part of the solution.
The value of Fi,j is set analogously.

Case 2. Pi ⊆ Pi−1.
We set

Bi := min{Bi−1, |Yi|+ min
0≤l<i

{Fl,i | (Hi \ Pi) ⊆ Hl }};

Fi,j := min{Fi−1,j , |Yi \ Yj |+ min
0≤l<i

{Fl,i | (Hi \ Pi) ⊆ Hl }}, for each i < j ≤ r.

In this case, we choose the minimum of the two alternatives of adding i to
the solution or not. Therefore, the correctness follows from the correctness of
Case 1.

Theorem 5. Restricted Vertex Multicut in interval graphs can be solved
in O(|V |2 · |H |2) time.

4 General Graphs and Bounded Treewidth

In this section, we present a fixed-parameter algorithm for RVMC in general
graphs with treewidth and the number of terminals as parameters. Marx [9]
shows that UVMC is fixed-parameter tractable with respect to the number of
vertex removals and the number of terminal pairs.

As shown in Theorem 1, RVMC is NP-complete for tree networks with bounded
vertex degree and bounded pathwidth. Therefore, we cannot hope for a fixed-
parameter algorithm with only treewidth or pathwidth as parameter. Moreover,
in the following theorem we show that RVMC is not fixed-parameter tractable
with respect to the number of terminals. For the proof, we give a reduction from
EMC to RVMC that preserves the number of terminals and the number of termi-
nal pairs. The theorem follows then from the fact that EMC is NP-complete for
more than two input terminal pairs [4].

Theorem 6. Restricted Vertex Multicut is NP-complete if there are at
least six terminals.

Now we know that there is no hope for a fixed-parameter algorithm for RVMC
with respect to the single parameter treewidth or number of terminals. In the
following, we present the fixed-parameter algorithm for RVMC with treewidth
and the number of the terminals as parameters. The basic idea of this algo-
rithm comes from the observation that any solution of RVMC divides the input
graph into at least two connected components such that any two terminals of
an input terminal pair are not in the same connected component. Based on this
observation, the algorithm consists of two phases. The first phase enumerates all
possible partitions of the terminal set that separate all input terminal pairs. It is
easy to observe that there are at most O(|S||S|) many partitions of the terminal
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set S. To check whether a partition separates the given terminal pairs in H can
be done in O(|H |) time. Then, the run time of the first phase is O(|S||S| · |H |).

The second phase of the algorithm, for each partition, uses dynamic program-
ming on the tree decomposition to compute the minimum number of vertex
removals dividing the input graph into connected components such that each
set in this partition is contained in a connected component and no two sets are
contained in the same connected component. To simplify the presentation, we
give an equivalent formulation of the task of the second phase:4

Coloring Extension
Input: An undirected graph G = (V,E), a set of terminals S ⊆ V , and
a pre-coloring LS : S → C with the colors from a set C where |C| ≤ |S|.
Task: Find an extension LG,S of LS with the colors from C ∪ {r}
where r /∈ C such that
1. for every s ∈ S, LG,S(s) = LS(s),
2. for every edge {u, v} ∈ E, either LG,S(u) = LG,S(v) or LG,S(u) = r

or LG,S(v) = r, and
3. the cost |{v ∈ V | LG,S(v) = r}| is minimized.

Assume we have a fixed partition of the terminal set. If we assign to every
terminal in a set of this partition a color from C, then a solution of the coloring
problem ensures that every path between two terminals with different initial
colors has to pass through at least one vertex v with LG,S(v) = r. This implies
that the removal of the vertices with color r separates the sets, which is a solution
for the RVMC problem.

Theorem 7. Given an undirected graph G = (V,E) with a tree decomposition
of width ω, Coloring Extension with the terminal set S ⊆ V pre-colored by
the color set C can be solved in O((|C| + 1)ω+1 · (|V |+ |E|)) time.

In summary, the first phase of the algorithm for RVMC enumerates all possible
partitions of the terminal set S that separate all input terminal pairs. In the
second phase, for each partition, the algorithm colors the terminal set according
the partition by using at most |S| colors and, then, calls the dynamic program-
ming algorithm for the Coloring Extension problem. The minimum of the
outputs of the dynamic programming algorithm for all partitions is then the op-
timal solution for RVMC. By a simple traceback phase, one can easily construct
the set of the vertices to be removed. The main theorem then follows directly
from the correctness and run times of the two phases.

Theorem 8. Given an undirected graph G = (V,E) with a tree decomposition
of width ω, Restricted Vertex Multicut can be solved in O(|S||S|+ω+1 ·
(|V |+ |E|)) time, where S is the terminal set.

UVMC can be reduced to RVMC with the same number of terminals and the
same treewidth (Sect. 3). Therefore, the above algorithm also works for UVMC.
4 A similar coloring problem is defined by Erdős and Székely [5]. Note that here we

have a different cost function.
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Corollary 1. Given an undirected graph G = (V,E) with a tree decomposition
of width ω, Unrestricted Vertex Multicut can be solved in O(|S||S|+ω+1 ·
(|V |+ |E|)) time, where S is the terminal set.

Actually, the same approach can also be applied to EMC. Here, the goal is
to minimize the number of the “color-changing” edges, whose endpoints have
different colors, while extending a coloring of the terminal set. The dynamic
programming on the tree decomposition is almost the same. We omit the details.

Theorem 9. Given an undirected graph G = (V,E) with a tree decomposition
of width ω, Edge Multicut can be solved in O(|S||S|+ω+1 · (|V | + |E|)) time,
where S is the terminal set.
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Abstract. Transforming a heterogeneous data model to another heterogeneous 
data model involves mapping of structural information and data layout. For 
performing the transformation processes this paper presents a flexible and 
extensible approach for heterogeneous database transformation using XML. 
Basics steps involved are forward transformation and reverse transformation. 
Between these two steps lie two XML documents; one representing the 
database structure; the other representing the database data. The XML 
documents define tags for representing an arbitrary database thus making the 
representation independent of the source and target database management 
systems. The advantage of having standard XML representations for the 
database model is that it can be easily extended to support new database models 
with a maximum of two transformers per database management system. 

1   Introduction 

We present a flexible and extensible approach to transforming databases in one 
management system paradigm to databases in another management system paradigm; 
for example, the source database might be relational, while the target database is 
object-oriented. The transformation is divided into a forward transformation and 
a reverse transformation. The principal interface between the forward and reverse 
transformations is two Data Type Documents (DTDs): The structure DTD and the 
data DTD. The structure DTD defines a set of XML tags for embedding the structural 
information of a database independent of its management system format. The data 
DTD defines a set of XML tags for embedding data of a database independent of its 
data representation format. A data-type mapping DTD defines tags for embedding 
data-type mapping information between heterogeneous database models, for example, 
XML and relational. A forward transformation transforms the database structure and 
data of the source heterogeneous database to the hierarchical structure of XML 
documents specified by the structure DTD and the data DTD. A reverse 
transformation transforms the database structure and data represented by the XML 
documents to the destination heterogeneous database structure and data.  

There have been numerous prior research efforts in mapping between different data 
models. Lee et al. [8] specify two algorithms, NET and COT to translate relational 
schemas to XML schemas using various semantic constraints. They used XSchema 
(XML representation), a language independent formalism. Fong et al. [4] provide 
a methodology of translating the conceptual schema of a relational database into an 
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XML schema through an EER (extended entity relationship) model. Baru [1] 
proposes an X-Database system to support import and export of XML documents 
from relational repositories. The base of this system is an XML-Schema file that 
describes the logical model of interchanged information. Hohenstein [5] proposes data 
migration between relational and object-oriented database systems using the 
Federation Approach. Given any relational database, a migration program filing an 
object-oriented database is generated. The other direction is automated the same way. 
Jahnke et al. [6] describe an integrated design environment that supports the 
migration process and overcomes major drawbacks of comparable approaches. They 
employed structure-oriented editors for the representation and manipulation of the 
SQL and the ODMG schema. These structure-oriented editors internally store an 
abstract syntax tree representation of the edited schemas. Mani and Lee [9] studied 
various steps for translating XML to relational models while maintaining semantic 
constraints. Their work is based on the theory of regular tree grammars, which proves 
a useful formal framework for understanding various aspects of XML schema 
languages. Bohannon et al. [3] propose LegoDB, a cost-based XML-to relational 
mapping engine that addresses the problem of storing XML documents in relational 
databases. LegoDB explores a space of possible mappings and selects the best 
mapping for a given application (defined by an XML Schema, XML data statistics, 
and an XML query workload). Bierman [2] proposes OIFML, a XML based language 
defined to dump and load the current state of ODMG-complaint databases. In this 
paper, he defined a new XML document type, OIFML, and showed how it can be 
used to specify ODMG-objects. 

2   Methodology 

In order to transform an arbitrary source database structure and data to an arbitrary 
destination database model, we interpret the database structural information and the 
format of data stored in the source database. We capture the database structural and 
data format information in XML documents that are processed according to the 
database structure and data format of the destination database. The tag definitions of 
these XML documents are independent of the source database. Conceptually, the 
database structure consists of a principal entity representing some particular aspect of 
the real world. In relational databases, a table represents the real world entity; in 
object-oriented databases a class; and in native XML, a database element represents 
the real world entity. This principal entity exhibits properties, attributes and keys.  

The database data is organized according to the format specified by the database 
structure. For a relational database, database data is stored in tables of rows of 
columns. For an object-oriented database, data is stored in attributes of objects. For 
a native XML database, data is stored in attributes of elements. A structure DTD 
defines a set of tags to constrain the database structural information in a hierarchical 
order of an XML document which is independent of the database paradigm. The 
structure DTD can be extended to support new database formats by adding new tag 
definitions according to the new database theoretical base, thus enabling less overload 
for transforming the database between the existing database formats and the new  
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database format. The tag definitions of the structure DTD are capable of representing 
relational, object-oriented and native XML database paradigms. The data DTD 
defines a set of tags to hold the database data in the hierarchical order of a XML 
document independent of the source database paradigm.  

The transformation process consists of two stages: Forward transformation and 
reverse transformation. The forward transformation translates the source database 
structure and data into XML documents. The reverse transformation is translates the 
XML structure and data documents into the formats of the destination database 
management system. Fig. 1 shows the transformation process. An extended 
description of this process may be found at [10]. A less detailed explanation forms the 
balance of this chapter. 
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Fig. 1. Overview of database transformation process 
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2.1   Forward Transformation 

In a forward transformation, heterogeneous data structure and data are mapped to 
the hierarchical structure of XML documents specified by the structure DTD and 
the data DTD. The hierarchical structure for storing the database structure 
information is generated according to the tag constraints specified in the structure 
DTD. The hierarchical structure for storing database data is generated according to 
the tag constraints specified in the data DTD. Fig. 2 illustrates the forward 
transformation process. The following paragraphs describe the principal 
components of this process: 

Front End GUI: The Front End GUI consists of a series of java swing windows; each 
window providing a set of options. The user specifies the direction of transformation, 
the DBMS type, and related essential information. 
Structure Extractor: The Structure Extractor retrieves structural information from the 
source database.  

If the source database is a relational database, the Structure Extractor retrieves 
information table and column information, such as the names of columns, size of 
columns, data type of columns, if columns are NULL, if columns have values 
generated automatically and the key information. Extracted information is stored in 
a Hash table so that the Structure Transformer, GUI Builder, and Data Extractor can 
use the information later in the process.  

Source
DBMS 

Front
End
GUI 

Visual GUI 

Structure 
Transformer 

Data Extractor 

Data Transformer 

Structure 
Extractor

GUI  
Builder 

Config.xml

XML Structure Document XML Data Document

Location 
Informer 

 

Fig. 2. Architecture of Forward Transformation 
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If the source database is an object-oriented database, the structure extractor parses java 
class files, and extracts class names, names of variables, data type of variables, object 
references, and method definitions. Extracted information is stored in a Hash table so that 
the Structure Transformer and GUI Builder can use it in later parts of the transformation. 

If the source database is a hierarchical database, structure extractor extracts 
required XML schemas from the hierarchical database. It parses the XML schema and 
extracts XML schema ELEMENTS, attributes of the ELEMENTS, child elements of 
the ELEMENTS, data types of the attributes, data types of the child elements, and 
keys defined on the ELEMENTS. Extracted information is stored in a Hash table so 
that the Structure Transformer, GUI Builder, and Data Extractor can use the data in 
later parts of the transformation. 

GUI Builder: The GUI Builder generates logical diagrams to represent the structure 
of the source database. For a relational database, it generates an ER diagram to 
represent table structures and their relationships. For an object-oriented database, it 
generates UML class diagrams to represent the class structure and relationships. For 
a hierarchical database it generates UML class diagrams to represent different 
elements of the schema and their relationships. 

Data Extractor: The Data Extractor extracts the data associated with each component 
of the database such as tables, objects, and XML documents, and stores it in a hash 
table. For a relational database, it extracts all rows related to the tables. For an object-
oriented database, it retrieves all required objects and their data. For hierarchical 
database, it retrieves and parses the XML document. 

Visual GUI: The Visual GUI displays the logical diagrams built by GUI Builder. 
Visual GUI is built on top of JGraphpad [7]. 

Location Informer: The function of the Location Informer is to provide information 
about the location of XML structure and data documents and data type-mapping XML 
documents.  

Database Structure Transformer: The Database Structure Transformer generates the 
XML structure document from the information stored in the hash table. The document 
is stored at the location given by the Location Informer. 

Database Data Transformer: The Database Data Transformer uses the information 
stored in the Hash table for generating the XML data document and stores the 
generated file at the location provided by Location Informer. 

Source DBMS and Target DBMS: The transformation tool supports the following 
DBMS. 
− Relational databases: SQL Server, Oracle, and My SQL 
− Object-oriented database: Ozone 
− Native XML database:  IPEDO 

Relational Database to XML Documents Mapping. The mapping of relational 
database structure and data to XML documents consists of structural mapping and 
data mapping. 

Structural mapping maps table structure information. This includes table descr-
iptions, relationship between tables, and keys defined on tables. Table descriptions 
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consist of table names and column descriptions. Column description consists of data 
types, size, and other properties, including allowing NULL values, default values, and 
auto increment.   

In data mapping, data contained within rows and columns of a relational table are 
mapped to the hierarchical structure of an XML document specified by a data DTD. 
This row column information is stored in tags specified by a data DTD.  

Object-Oriented Database to XML Documents Mappings. Object-oriented 
database structure and data must be mapped to the hierarchical structure of XML 
documents specified by the structure DTD and data DTD. 

A class is the main component of an object-oriented database structure. Structural 
mapping, maps the class structure to the hierarchical structure of an XML document 
specified by a structure DTD. Class structure consists of class name, variable names, 
and data types and default values for variables, and inheritance and associations 
between classes.  

Native XML Database to XML Documents Mapping. A hierarchical database 
(Native XML database) consists of XML documents as the storage unit. Data is 
embedded within tags of an XML document and the tag hierarchy defined in the 
XML schema. 

2.2   Reverse Transformation 

In the reverse transformation process, database structure and data represented by 
XML documents are mapped to the database structure and data according to the 
destination database. The first step is to generate the database structure which 
includes data type mapping of source database data type naming conventions to 
destination database data type naming conventions; the second step is to generate the 
database data. Fig. 3 illustrates the reverse transformation process. The principal 
components of this process are described in the following paragraphs. 

Datatype Transformer: The Datatype Transformer maps data types between 
heterogeneous databases using data type mapping XML document. 

Reverse Structure Transformer: The Reverse Structure Transformer derives the 
structure of the target DBMS from the structure DTD. For a relational database, it 
generates XML files containing SQL CREATE statements embedded within XML 
tags. For an object-oriented database, it generates XML files containing class 
declarations, variables, and methods embedded within XML tags. For a hierarchical 
database, it generates the XML Schema document. 

Structure Inserter: The Structure Inserter generates the database structure in the target 
DBMS from the XML files created by the Reverse Structure Transformer. For 
a relational database it executes the SQL CREATE statements embedded within the 
tags of the XML document to create table structures in relational database. For an 
object-oriented database it executes the driver program, which inserts the class 
structures into the Ozone database. For a hierarchical database, it inserts the XML 
Schema into the IPEDO database. 
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Fig. 3. Reverse transformation consists of two stages: structure mapping and data mapping 

Reverse Data Transformer: The Reverse Data Transformer populates the structure of 
the DBMS from the data DTD. For a relational database, it generates Insert statements 
embedded within XML tags.  For an object-oriented database, it generates object 
creation statements embedded within XML tags. For a hierarchical database, it 
generates the XML data document. 

Data Inserter: The purpose of the data inserter is to insert the data into the database 
structure generated in the target DBMS.  

Reverse structure mapping. In reverse structure mapping, the database structure 
information represented by the XML structure document is interpreted and processed 
to generate the destination database structure. 

Component Description tag attributes mapping: With the Component tag name 
attribute mapping for relational databases, table names take the value of the name 
attribute of the Component tag; for object-oriented databases, class name represents 
the value of the name attribute of the Component tag; for hierarchical databases, XML 
schema element name attribute represents the value of the name attribute of the 
Component tag. 
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Attribute tag mappings: For relational databases, table columns are created for each 
Attribute tag of the AttributeList tag. Mapping of the Attribute tag attributes is as 
follows: the name of the column represents the value of the name attribute of the 
Attribute tag; the data type of the column takes the value of the datatype attribute of 
the Attribute tag, the size of the column is determined based on the datatype and the 
other properties are set according to appropriate attribute values.  

For object-oriented databases, for each class, variables are declared for each 
Attribute tag of the AttributeList tag. Mapping of the Attribute tag attributes is as 
follows: name of the variable is the value of name attribute of the Attribute tag, data 
type of the variable is the value of datatype attribute of Attribute tag, and get and set 
methods are defined for each variable.  

For hierarchical databases, each top-level element corresponds to the 
ComponentDescription tag, child elements are created for each Attribute tag of the 
AttributeList tag. Mapping of the Attribute tag attributes is as follows: the name of the 
child element is the value of name attribute of Attribute tag and the type of the child 
element is the value of the datatype attribute of the Attribute tag.  

Key mappings: The XML structure document provides three tags for representing 
keys. These tags are PrimaryKey for primary keys, ForeignKey for representing 
foreign keys, and UniqueKey for unique keys.  

For relational databases, we define primary keys, foreign keys and unique keys on 
the columns of relational tables according to each tag description. In primary key tag 
mapping, column definitions of tables are updated to primary keys using the value of 
the name attribute of the PK tags. In foreign key tag mapping, column definitions of 
tables are updated to foreign keys using the value of name, referComponent and 
referField attributes of the FK tag.  In unique key tag mapping, column definitions of 
tables are updated to unique keys using the value of the name attribute of the UK tag. 

For object-oriented databases, programming languages do not have appropriate 
constructs for defining keys, unless provided by the DBMS vendor. 

For hierarchical databases, we transform the key definitions to appropriate tags of 
XML schema. In primary key tag mapping, for each PK tag, a key tag is defined in 
topelement declaration of the XML schema, the name attribute of key tag is set by 
appending “PK” to the value of the name attribute of PK tag, the field attribute of 
xpath tag within the key tag is set to the value of the name attribute of the PK tag. In 
foreign key tag mapping, for each FK tag, the corresponding keyref tag is defined in 
the topelement declaration of the XML schema. The name attribute of the key tag is 
set by appending “FK” to the value of the name attribute of the FK tag. The refer 
attribute of keyref tag is set to the value of the primary key defined for the element 
represented by the value of referComponent, the field attribute of the xpath tag within 
the keyref tag is set to the value of the name attribute of the FK tag. In unique key tag 
mapping, for each UK tag, a unique tag is defined in the topelement declaration of the 
XML schema; the name attribute of the unique tag is set by appending “UK” to the 
value of the name attribute of the UK tag, and the field attribute of the xpath tag 
within the unique tag is set to the value of the name attribute of the UK tag. 

Inheritance tag mapping: Relational databases do not provide support for inheritance. 
Therefore we resolve the inheritance structure defined in the XML structure document 
as follows: for each child table we will add column definitions of its parent table. 
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Object-oriented databases provide inheritance through the use of keywords. 
Depending on programming language used, parent classes are inherited using 
language-specific keywords. XML schema provides inheritance support through the 
use of keywords like extension and restriction. All child tags use these keywords to 
inherit their parents. 

Relationship tag mapping: The Relationship tag holds information about how each 
component is related to the other components. For relational databases, relationships 
are automatically created when we update the column definitions using the key 
definitions provided by XML structure document. For object-oriented databases, class 
references are created for each class existing in the relationship tag. For a hierarchical 
database, corresponding key and keyref tags are created. 

Reverse Data Mapping. In the case of a relational database, each ComponentData 
tag maps to the relational table, and the name of the relational table is the value of the 
name attribute of the ComponentData tag. Each ObjectData tag forms the rows of the 
relational table, and each Contains tag attribute values are mapped to corresponding 
row-column position. 

For an object-oriented database, each ComponentData tag maps to class definition, 
the name of the class is the value of the name attribute of the ComponentData tag. For 
each ObjectData tag, an object for the class is instantiated whose variable values are 
set according to the attribute of the Contains tag.  

For a hierarchical database, XML elements are generated for each ObjectData tag 
with data embedded in the child tags. 

3   Conclusion 

In this research we proposed a generic framework for automated database 
transformation between heterogeneous databases using XML as intermediate format. 
We learned that each data model has its own theoretical base for representing 
components, attributes of components, data type conventions, size of attributes, 
relationships between components. 

Based on these criteria for data models, we were able to successfully evolve the 
structure DTD and data DTD. Structure DTD and data DTD define generic tags for 
representing heterogeneous database structure and data independent of its underlying 
paradigm. Along with these DTDs we defined several mapping techniques from 
heterogeneous databases to the hierarchical structure of XML documents specified by 
the structure DTD and the data DTD and vice versa.  
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Abstract. We prove that P-sel, the class of all P-selective sets, is EXP-
immune, but is not EXP/1-immune. That is, we prove that some infinite
P-selective set has no infinite EXP-time subset, but we also prove that
every infinite P-selective set has some infinite subset in EXP/1. Infor-
mally put, the immunity of P-sel is so fragile that it is pierced by a single
bit of information.

The above claims follow from broader results that we obtain about the
immunity of the P-selective sets. In particular, we prove that for every
recursive function f , P-sel is DTIME(f)-immune. Yet we also prove that
P-sel is not Πp

2 /1-immune.

1 Introduction

This paper studies whether the class of P-selective sets is so complex as to be
immune to various uniform and nonuniform classes. A set B is P-selective ([18];
among the other early key papers that started the study of P-selectivity are [19],
[20], [21], [12]) exactly if there is some polynomial-time computable function h
such that, for each x and y, it holds that

1. h(x, y) ∈ {x, y}, and
2. if either x or y belongs to B then h(x, y) ∈ B.

There are many reasons for studying the P-selective sets. Among those reasons
are that the P-selective sets can give insight into the relative power of polynomial-
time reductions, the P-selective sets are related to heuristic search in which at
each stage one merely wants to know “between these two alternatives, which is
more likely to succeed,” the study of selectivity can provide insights into seem-
ingly unrelated areas (the nondeterministic analog of P-selectivity was used to
show that if NP has unique solutions then the polynomial hierarchy collapses [6]),
the P-selective sets are the most intensely studied of a broad range of classes
� Supported in part by grant NSF-CCF-0426761. Work done in part while visiting the
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of “partial information” classes [15], and the P-selective sets are particularly
interesting in that they seem to have conflicting results on their complexity –
in some ways they are complex and in some ways they are easy. For a far more
detailed presentation of the motivations for studying the P-selective sets, see [10,
Preface].

Let us turn to the last-mentioned theme. Are the P-selective sets complex
or are they easy? In some senses they are known to be simple, e.g., if SAT is
P-selective then P = NP, the P-selective sets are in the extended low hierar-
chy, and the P-selective sets all have small circuits (belong to P/poly). In some
senses, they are known to be hard, e.g., every tally set (no matter how difficult)
polynomial-time Turing reduces to some P-selective set.

The focus of the present paper is on whether the P-selective sets are so hard as
to be immune to standard uniform and nonuniform complexity classes. A class
C is said to be immune to a class D exactly if there is some infinite set in C that
has no infinite subset that belongs to D. Informally put, no D set can recog-
nize an infinite number of the elements of C’s “difficult” set without incorrectly
claiming that nonelements of that set belong to that set – in some sense, D
cannot “approximate well from the inside” the hard set. Immunity is a so-called
“strong separation,” and clearly C being D-immune always implies that C−D �= ∅
(see Figure 1a). (This paper provides an example for which the converse fails.
Though such failure is not common, at least one example is widely known: Not
all r.e. sets are recursive, but each infinite r.e. set has an infinite recursive subset.
Another – admittedly relativized – example is that with probability one relative
to a random oracle the high levels of the boolean hierarchy separate from the
boolean hierarchy’s second level [2], yet regardless of the oracle, each infinite set
in the boolean hierarchy contains an infinite subset from the second level of the
boolean hierarchy [3].)

It is very often the case in complexity theory that when two classes can be
(absolutely or with some oracle) separated, then they can be (absolutely or with
some other oracle) separated with immunity. Nonetheless, we will show that
such an extension is impossible in some cases regarding the P-selective sets. In
particular, it is known that P-sel �⊆ EXP/n (although it also is known that
P-sel ⊆ NP/n + 1) [9]. Nonetheless, this result cannot possibly be extended to
immunity, as we note that every infinite P-selective set has an infinite Πp

2/1 (and
thus certainly EXP/1) subset.

So, as mentioned above, P-sel is not immune to sufficiently powerful nonuni-
form classes. Nonetheless, we show that P-sel is immune to any nice time-
bounded class. In particular, we show that for any recursive function f , P-sel is
DTIME(f)-immune.

In fact, we will show a bit more. Building on the result of [9] that for any
recursive function f , P-sel is not contained in DTIME(f)/n (a result that this
paper shows cannot possibly be extended to immunity), Hemaspaandra, Hempel,
and Nickelsen [4] showed that for any recursive function f , A-P-sel is not con-
tained in DTIME(f)/n (also a result that this paper shows cannot possibly be
extended to immunity), where A-P-sel is the class of all sets that are P-selective
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C �⊆ EXP

C �⊆ EXP/nC is EXP-immune

C is EXP/n-immune

(a)

P-sel is EXP/n-immune and P-sel is EXP/n + 1-immune both FAIL [this paper]

P-sel is EXP-immune [this paper]

P-sel �⊆ EXP holds [20,12]

P-sel �⊆ EXP/n but

P-sel ⊆ EXP/n + 1 [9]

(b)

Fig. 1. (a) Lattice of separation strengths comparing a class C with EXP and EXP/n.
(b) P-sel versus EXP, in the context of separation-vs-immunity and n or n + 1 advice
bits.

via some selector function that itself is associative (it is known that all such sets
are contained in P/n + 1 [4]). We will show that for any recursive function f ,
P/1 ∩A-P-sel is DTIME(f)-immune.

Thus, from our results it follows that in many cases the immunity of the
P-selective set hinges on a single bit (per length). For example, P-sel is EXP-
immune but P-sel is not EXP/1-immune. We know of no other natural examples
of standard classes whose immunity relative to a class is pierced by the very first
extra bit of information.

2 Definitions

Recall that a set B is P-selective exactly if there is some polynomial-time com-
putable function h such that, for each x and y, it holds that (a) h(x, y) ∈ {x, y}
and (b) if either x or y belongs to B then h(x, y) ∈ B [18]. We say that
such a function h is a P-selector function for B. P-sel is defined as {A | A is
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P-selective}. If B is P-selective via some P-selector function that is associative,
we way that B is associatively P-selective (equivalently, B ∈ A-P-sel) [4].

As mentioned in the introduction, a class C is said to be immune to a class D
exactly if there is some infinite set in C that has no infinite subset that belongs toD
(see [16], and introduced into complexity theory at least as early as [1], see also [17]).

As is standard, Πp
2 denotes coNPNP and EXP denotes

⋃
k>0 DTIME(O(2nk

)).
Karp–Lipton advice classes – which capture the power of a given complexity

class when augmented by a certain number of bits of free, nonuniform “advice”
at each length – are defined in the standard way ([11]; for uniformity, we take
the wording of the following definition directly from [7]). In particular, phrased
very informally, a class A/g captures the power of the class A when it is helped,
on each input string x, by being given a g(|x|)-bit “advice” string whose value
depends only on |x|.

Definition 1.

1. For any set A and any function g, A/g denotes the class of all sets L such
that for some function r satisfying (∀n) [|r(n)| = g(n)] it holds that

L = {x | 〈x, r(|x|)〉 ∈ A}.

2. For any class C and any function g, C/g denotes

{L | (∃C ∈ C) [L ∈ C/g]}.

3 Results

As mentioned in the introduction, it is known that for any recursive function f ,
P-sel (and even A-P-sel) is not contained in DTIME(f)/n [9], [4]. The following
two results show that this nonuniform result cannot possibly be extended to
immunity, but that its uniform analog does extend to the case of immunity.

Theorem 1.For each recursive function f,P-sel (and indeed even P/1∩A-P-sel)
is DTIME(f)-immune.

Theorem 2. P-sel is not Πp
2/1-immune.

Corollary 1. If P = NP, then P-sel is not P/1-immune.

Corollary 2. P-sel is not EXP/1-immune.

We will prove Theorem 2 first, as it is the easier to prove.

Proof of Theorem 2. Consider an arbitrary infinite P-selective set B. Let h
be a P-selector function for B. Without loss of generality, we may assume that
h is commutative – otherwise replace it with h(min(x, y),max(x, y)), which re-
mains a P-selector for B and is clearly commutative. At each length n, consider
the tournament induced by this selector function on the strings in Σn. By the
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induced tournament, we mean the graph on the strings in Σn such that between
each pair of distinct strings x and y there is an edge in exactly one direction,
namely, if f(x, y) = x then the edge points from x to y. We say a node w of
a tournament is a king if each node in the tournament can be reached from w via
paths of length at most two. By an old result of Landau, each nonempty tourna-
ment has a king [13]. Hemaspaandra, Ogihara, Zaki, and Zimand [8] proved that
testing whether a given string is a king of a tournament can be done in Πp

2 .1 Note
that if any string at length n belongs to B, then certainly each king of length n
belongs to B. Thus, infinite set B has an infinite Πp

2/1 subset. In particular,
our Πp

2 /1 set works as follows: The one bit regarding length n says whether
B ∩Σn �= 0, and our Πp

2 set, on input 〈z, b〉, z ∈ Σ∗, b ∈ {0, 1}, accepts exactly
if advice bit b is one and the string z is a king in the tournament induced by f
on the strings in Σ|z|. �
We now turn to our main result, namely, Theorem 1: For each recursive function
f , P-sel (and indeed even A-P-sel) is DTIME(f)-immune.

As mentioned earlier, for each recursive function f , P-sel (and even A-P-sel)
has been separated previously, though not with immunity, from DTIME(f) [9],[4].
Each of those proofs works by direct diagonalization. Unfortunately, due to the
fact that machines can “play possum” (can for long periods of time accept no
strings), direct diagonalization does not seem to work for the more demanding
case of separation with immunity. To handle this, we differ from those previous
papers, and create immunity, by employing an injury-free “waiting”/priority-
type construction. Our construction is a rather unusual one in that, though some
requirements may remain active and unsatisfied forever, we ensure that at each
stage we simultaneously satisfy all active requirements that can be satisfied via
acting just at the current, relevant length. In short, we given a “waiting”/priority-
type argument that is so egalitarian as to not need explicit priorities. While do-
ing so, we integrate the strengths of each of the earlier proofs mentioned above,
namely, we retain the gap-like approach of [9] and part of the scheme of [4] for
assuring associativity, and for purposes of clarity, comparison, and connection,
where possible we retain as far as we can their notations and arguments. How-
ever, note that our proof creates a simpler framing structure: By putting all
strings at a length in or out as a block, we avoid not just explicit priorities, but
also we avoid the issues of “left cut”ing (or in [4], “right cut”ing) that are central
to the earlier work, since (unlike those earlier proofs that truly needed them)
here they would just be needlessly entangling the proof and argument.

1 Indeed, though we do not need these facts here, king-testing in tournaments in
fact is Πp

2 -complete [5], and kings have also played a key role in proving the first-
order definability of – and thus upper-bounding the complexity of – the reachability
problem for certain nonsuccinctly specified restricted graph types [14]. Also, we
mention that [8] itself proves some immunity claims, most particularly that P-sel is
not bi-immune to the class of weakly-P-rankable sets, and that P-sel is not immune
to the class of weakly-FPΣ

p
2 -rankable sets. However, due to the nature of the notion

of weak-rankability (which we do not define here), those nonimmunity results seem
to be of no help regarding obtaining the current result.
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Proof of Theorem 1. Let f be a recursive function. Then there will always
exist a strictly increasing recursive function f ′ such that: (a) for each n, f ′(n) >
max(f(n), 2), and (b) for some Turing machine M that computes f ′ it holds
that for each n the machine computes f ′(n) using at most f ′(n)O(1) steps. Fix
such a function f ′.

Let �1 = 2. For each i ≥ 1, let �i+1 = 2222
f′(�i)

. Let L = {�1, �2, . . .}. Our set
B will have the following properties: (a) B ∈ DTIME(22f′(n)

), (b) x ∈ B =⇒
|x| ∈ L, and (c) (|x| = |y| ∧ x ∈ B) =⇒ y ∈ B.

We must and will also ensure that B is an infinite set.
Note that any set satisfying (c) is in P/1, since at each length it will contain

either all strings or no strings, and so one bit of advice easily suffices to accept
the set. So, in our particular case, B ∈ P/1. (In fact, even the P interpreter is
overkill. The complexity is even lower, at least if one’s pairing function from the
definition of advice classes is such that it doesn’t really require the full power
of P to decode its subparts.)

Any set B satisfying (a), (b), and (c) is associatively P-selective. This follows
by an argument given (though not in the explicit context of the f ′-based gaps
we use above) in [4], and for completeness, we argue that B is in A-P-sel. Let L̂
denote {x | |x| ∈ L}. Our selector function for B will be

h(x, y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

max(x, y) if ||{x, y} ∩ L̂|| = 0
{x, y} ∩ L̂ if ||{x, y| ∩ L̂|| = 1
min(x, y) if ||{x, y} ∩ L̂|| = 2 ∧ |x| = |y|
min(x, y) if ||{x, y} ∩ L̂|| = 2 ∧ |x| �= |y| ∧ min(x, y) ∈ B

max(x, y) if ||{x, y} ∩ L̂|| = 2 ∧ |x| �= |y| ∧ min(x, y) �∈ B.

In the second line here, by {x, y} ∩ L̂ we, in a slight abuse of type rules, mean
the unique element in the named 1-element set, rather than the set itself. It
is clear that h is in P since, if ||{x, y} ∩ L̂|| = 2 ∧ |x| �= |y|, then – since
B ∈ DTIME(22f′(n)

) and the lengths in L̂ are quadruple-exponentially spaced –
we given x and y can brute-force test “min(x, y) ∈ B?” in time polynomial in
|max(x, y)|. It is also clear that h is a P-selector function for B. To see that h is
associative, first notice that h, which is clearly commutative, has the following
properties. When both of h’s inputs belong to B, h outputs the (lexicographi-
cally) smaller input. When exactly one input belongs to B, h outputs that one.
And when neither input belongs to B, h outputs the lexicographically smallest
input whose length equals the largest value in L that is the length of one of the
inputs if any input belongs to L̂, and otherwise h outputs the larger input. In
light of these observations, it is clear that when for any a, b, and c the func-
tion h is applied twice in any of the 12 possible ways (six possible orderings of
a/b/c and two possible groupings for each, though due to commutativity some
are instantly seen as the same), the result is the same, namely, if at least one
of a/b/c belongs to B then the result is the lexicographically smallest string in
{a, b, c} ∩ B. If none of a/b/c belong to B, then the result is the lexicographi-
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cally smallest string of length max({|a|, |b|, |c|} ∩ L) if {|a|, |b|, |c|} ∩ L �= ∅, and
otherwise is max(a, b, c). So h is associative.

Let M1, M2, M3, . . . be a simple enumeration of Turing machines such that
this enumeration has the properties that (a)

⋃
k L(Mk) ⊇ DTIME(f ′), and

(b) for each k and each y, the running time of machine Mk on input y is at
most 2kf ′(|y|) steps. And let our enumeration be such that each language in
DTIME(f ′) is accepted by infinitely many machines from this enumeration (this
keeps us from having to worry about problems if a few small values of k might
seem to cause tension with respect to our B ∈ DTIME(22f′(n)

) constraint).
We now turn to the stage construction that will define B. Our construction

proceeds in stages. Let requirement Ri be defined as “L(Mi) �⊆ B.” Once we
start trying to satisfy a requirement, it will be said to be active (until we mark
it, if ever, as satisfied).

At stage k, we will define which strings of length �k are in B. At stage k, we
will have as active all requirements R1, . . . , Rk/2, other than those that we have
marked as being satisfied.

At the start of stage k, we will rebuild the history of this construction, and in
doing so, will determine which strings are in B at each interesting (i.e., member
of L̂) length of B that is strictly less than �k, and – rather crucially – will
also determine which requirements were, during that part of the construction,
marked as being satisfied. (Since this involves objects that are at most quadruple-
exponentially smaller than our input, it his not hard to see that this will not
interfere with the goal of ensuring that B ∈ DTIME(22f′(n)

).) After doing so, we
seek to extend B at the current length, �k, in such a way as to satisfy at least
one active requirement. So, for each Mi corresponding to an active requirement,
see if there is any string of the current length that the machine accepts. Let
I denote the set of all Mi’s corresponding to active requirements for which there
is such a string. If I �= ∅, we will leave B at the current length completely empty,
and for each i ∈ I we will mark Ri as satisfied (Mi accepts a string that is not
in B, so Mi certainly does not accept a subset of B).

On the other hand, if I = ∅ then we will put into B all strings of of length �k.
Note that since, through stage k, we have activated no more than k/2 require-
ments, this case (I = ∅) happens at least half the stages, and so our set B will
indeed be an infinite set.

Note that each requirement eventually becomes active. There are two cases. If
in some stage after the point where it becomes active the requirement is one of
those that can be satisfied, then it be marked as satisfied then. Otherwise, it (say,
Ri) indeed will never be marked as satisfied, but that means – since there were
only finitely many stages that occurred before the point where Ri became active
– that L(Mi) contains only a finite number of strings at lengths in the set L, and
so certainly is not an infinite subset of B. Thus, for each i, we know that it will
be the case that L(Mi) cannot be an infinite subset of B. �
We start to wind up by giving an example of how these theorems can be applied
to a concrete class. Theorem 1 on its surface applies to a class defined by a
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single time-function, f . Note that for natural time classes, the class is defined
by an infinite collection of functions that in general have no single function that
majorizes them (since each may have bigger and bigger constants). Nonetheless,
to inherit our result it suffices to majorize each almost everywhere, and so our
result is inherited by all standard time-bounded and space-bounded classes. For
example, consider EXP. From the fact that P-sel is immune to DTIME(22n

) it
is easy to see that P-sel is immune to EXP. This holds because if a set B has an
infinite subset in EXP, it clearly (regardless of what huge constants may apply
to the EXP algorithm) has an infinite subset in DTIME(22n

), e.g., by having the
time 22n

machine accept no strings at all except when n has become so large that
22n

is so much bigger than the exponential bound of the EXP machine that our
machine can easily simulate the EXP machine. So, we have that P-sel is clearly
EXP-immune (and, for that matter, EEEEEXP/immune too). Combining this
observation with the known result that P-sel is contained in EXP/n + 1 (even
NP/n + 1) but is not contained in EXP/n [9], Figure 1b now as an example
presents (in light of Corollary 2) what regular and strong separations hold for
EXP with respect to n and n + 1 bits of advice.

On the other hand, we leave as an open issue whether Theorem 1 can be
extended to show that P-sel is RECURSIVE-immune. Note that our result shows
something weaker, namely, that for each recursive function f , P-sel is immune
to DTIME(f); though trivially

RECURSIVE =
⋃

{f | f is a recursive function}

DTIME(f),

our result nonetheless does not imply that P-sel is RECURSIVE-immune, and
the proof technique does not seem to generalize to yield that.

Finally, we mention that our result is not really specific to P-selectivity, but
that the natural analogs exist for other selectivity types (based on the corre-
sponding complexity for generating and evaluating king-ness in their induced
tournaments), e.g., EXP-sel is immune to DTIME(f) for each recursive func-
tion f , and yet EXP-sel is not EXP/1-immune (as one can, still within EXP-
time, brute-force king-finding in tournaments based even on EXP-selectors).
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Abstract. Database services are tightly connected to network nodes, in present 
distributed query processing. We believe that dynamic changes of data and 
services environment are unpreventable. Currently, moving services to other 
locations, while continuing operations’ execution without notifying their clients 
(service migration), is not supported. We analyze requirements for transparent 
migration of database services, in this paper. We also sketch a solution based on 
so called migration agents and middle layer for abstract network 
communication. We emphasize the importance of the research in the wide area 
heterogeneous networks, Grid databases and mobile solutions, in the 
conclusion.  

1   Introduction 

A database service in OGSA [17] may be of the two general kinds: data access 
component and data integration component. Tasks of a component of the latter kind 
consist in integration and transformation of data according to certain requests. Such 
a service may not be assigned to any particular network node or data repository, but 
may be automatically moved by a Distributed Query Processing Service [16] around 
the network to find optimal working conditions (the fastest node in reasonable 
distance between data source and a user). Therefore, service creation is often dynamic 
in nature, according to the client’s requests. 

The traditional roles of permanently working server and querying client are 
evolving. In dynamic agent-based networks this change goes even further: agent 
systems offer new ability to build autonomously communicating software moving 
around computer networks. Combination of agent systems and dynamic services, 
creates new quality in database services, which are serving their clients as before in 
traditional architectures, but are no longer limited by any particular network node. 

This ability is crucial for dynamically changing networks, where nodes’ 
availability may change unexpectedly. For example, some machines are going down 
every day in wide area networks like PlanetLab consisting of more than 580 machines 
all over the world.  

Similarly, Grid databases deal with an important assumption on high independence 
of participating nodes. It is then possible that an administrator of a node forces 
a service migration due to machine’s servicing procedure. In such situations, service 
clients have to react properly – messages in network protocol cannot be lost or 
broken. This feature is currently not supported by standard services’ interfaces over 
TCP/IP protocol.  
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Such dynamically changing environments were rarely concerned to be 
a background for distributed database system. However, modern agent systems, Grid 
databases, distributed query processing and emerging OGSA-DAI standard, which 
defines dynamic creation of database services [16], force us to reconsider those 
assumptions.  

A new solution of database services usage, in unpredictably changing networks, is 
presented in this paper. In such an environment, stability of a service requires ability 
to move it. However, database services often based on views of different kinds may 
have state unlike normal Web Services, which are stateless. Additionally, if they 
perform long lasting computation in case of aggregating queries or joins in large 
distributed databases, they cannot be moved anytime. Our transparent service 
migration also overcomes this problem. As a result we get possibility to use a service 
and do not focus on a place where it operates or will operate in the future. Service 
location is orthogonal to basic clients’ interests.  

It means that new highly reliable grid database services should operate in an 
abstract layer, which hides all unimportant networking aspects and thus creates a new 
quality in client application development. Similar revolution on the level of data 
objects is used in CORBA. Apart from other limitations, it hides data location and 
thus enables higher data processing sophistication. It is widely accepted that we need 
the same approach in Web services, particularly in database services.  

Summarizing, the advantages of using our migrating services would be: advanced 
network architecture transparency, higher level of network programming and database 
processing, better reliability, availability, continuity and quality of services, plus 
accommodation of dynamically changing environments.  

The paper proposes a feasible solution to the sketched problem and is organized as 
follows. The next section discusses related research and summarizes motivation of 
this work. Section 3 describes our approach, while section 4 concludes. 

2   Related Research and Motivation 

There are many systems that create abstract layers on existing networks. One of the 
most spectacular is Ocean Store [15] – a persistent distributed data repository 
accessible from everywhere. Users simply put their data inside the store and the 
system is responsible for finding space for it, making replicas, managing it and 
migrating in case of network problems. It hides all implementation, network 
architecture and data storage details that are not important for users. It is based on 
another important project: PlanetLab [18], which creates a uniform access method to 
distributed machines and hides administration and authorization details (adding new 
user action is automated).  

In Globus Toolkit project [8], a distributed computation and data storage system, 
certain tools are responsible for automatic execution of a job in the best possible 
place. Users just have to describe it in a dedicated language [5], supply binaries, point 
to required data and the system does the rest. All jobs are queued [4] and invoked 
again in case of failures, which are invisible for users. Globus is a good abstraction 
layer designed to run jobs in Grid systems but not supporting service continuity in 
case of migration and rather for computing applications not long working services. 
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These three projects and OGSA-DAI data virtualization [16] as well as many other 
initiatives, prove that creation of high-level access methods and virtual abstractions is 
still an important topic in which much has to be done. Also service mobility and 
availability in case of mobile devices, which may switch between heterogeneous 
networks like GSM, WLAN or BlueTooth is in the center of our interest. Services 
should be available at any time and any place [11]. 

Processes migration itself is a broad area with many tools and theories. There are 
two major groups of solutions. Solutions within the first one, based on process 
checkpoints, propose dedicated programming languages, interfaces or libraries to 
support threads’ migration [2]. For example, Sumatra [1], a widely known solution 
dedicated for Java programs, puts certain checkpoints inside an application, stores 
them together with current state and execution counter, and then uses them to restore 
the thread in case of a system failure. Systems of this kind are focused on process 
recovery, which means persistent threads, not on process migration, which requires 
also persistent network connections. After the migration, an application must 
somehow reestablish network transmission – migration is not transparent. We claim 
that is one of the major problems of processes migration. Fortunately it is not 
completely abandoned. JADE [9] system offers a common and standardized [7] 
platform for migration and intercommunication of agents. Usually, they are small 
applications that behave in a special way and are enabled for transparent mobility. 
From our point of view their most important feature is that they may communicate 
regardless to their locations. We use it to organize migration of our database services. 

Within the second group of solutions, process migration tools like Mosix [14] based on 
Linux and similar, extended operating systems are used offering more advanced 
possibilities. They modify system’s kernel or virtual machine and are able to perform 
transparent migration of a lightweight running process to another machine within a cluster 
and thus distribute computations. All network connections are controlled by the system in 
a centralized manner that may be a source of potential communication overhead.  

Finally, LAMS is a system designed to perform a transparent Web Services 
migration [13]. It supports automatic transfer of all service’s files but it assumes that 
the service is stateless. The big advantage of LAMS is that it also changes DNS 
entries for the service, thus if a client uses a domain name server lookup, the service 
will be found in the new location automatically.  

After noticing problems of transparent migration of database services and finding 
existing solutions and standards inadequate we show our proposal in this field. The 
motivation of this paper is thus to create a framework for transparent migration of 
database services. To achieve this goal, we try to put together several of the described 
related technologies avoiding their drawbacks. The result is a significantly new 
quality in distributed databases integration. 

3   Transparent Service Migration Layer 

We say, that a service migration layer has desired level of transparency if: 

1. services are unaware of its existence, concrete network locations, etc.,  
2. services may be moved to another location anytime in a transparent manner while 

their availability and continuity is maintained, 
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3. connected to services users are unaware of network nodes nor of any concrete 
service location, 

4. users do not notice migration and do not have to modify his/her behavior if 
a service is moved, 

5. migration layer is orthogonal to other features of system functionality which is not 
limited neither on service’s nor on client’s side, 

The abstract layer creates kind of a cloud in which network architecture details 
disappear. Only the service itself stays in the center of user’s interest (Fig. 1). There 
should be no limitation in combining several migration layers allowing clients to 
migrate. 

On the other hand, transparency of layer architecture should also assure 
independence of applications and the migration layer, which may change as network 
infrastructure or protocols change. All networking aspects that are not important for a 
user are hidden between mobility agents and client façade library. 

Facade Lib. Facade Lib. Facade Lib.

Client Client Client

Service 
Migration 
Layer

Client  
Layer

CBA

 

Fig. 1. A transparent service migration system – general architecture. Client applications are 
hidden behind façade libraries. Mobility agents (circles) wrap services ‘A’, ‘B’, ‘C’. 

3.1   Service Migration Problems 

In this paper, we address seamless service mobility [11], rather than user or terminal 
mobility. In case of our database services, the service migration mechanism has to 
assure that: 

1. service’s state will be maintained and unchanged, 
2. service’s data (files, registers, logs, etc.) will be moved or at least remain 

accessible, 
3. service’s network connections will be sustained and all sent data will not be lost. 

This goal is not easy to achieve taking into account that nowadays we face different 
communication domains, heterogeneous networks, different platforms, different 
access and connection methods, authorization, message filtering and firewalls. Also 
the destination for the migration cannot be random but has to fulfill certain service’s 
requirements. Fig. 2 presents relationships between agent, node, service and metadata 
constraining them. A candidate node has to fulfill capabilities required by a service. 
Node’s metadata description must allow an agent to choose, accept or reject it 
according to at least the following parameters: virtual machine type and version; 
available network transport; local storage support; computational power; system 
resources; available privileges. 
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Fig. 2. The data required by mobility agent. Metadata contain description of both service 
working constraints and node capabilities. If they fit, the service may be located at the 
particular node. 

Only complete consistency between node’s capabilities and service’s requirements 
assure correct migration to that node. Neither JDL job description [5] used in Globus 
Toolkit project, nor JADE mobility ontology [10] is not enough for these purposes – 
a more powerful metadata standard must be developed.  

3.2   Architecture 

Two notions define the network layer within which our services may migrate. The 
first one is the user-side façade library. Its task is to make service migration fully 
transparent for the service users. As it was explained earlier, one should not focus on 
network as it is only a means to communicate, but rather concentrate on available 
services. Broken network connections, changed service’s locations and other network 
related topics should be taken away from application’s developer. For example, 
a service must not be searched using a concrete IP address but rather using its location 
independent unique name or its semantic description.  

The second dimension of transparent services migration is the service wrapper, 
which we call a mobility agent. These perform two general tasks: assure transparent 
service migration and wrap services’ network connections. An agent working on 
JADE [9] platform is a kind of vehicle that moves around the network with a service 
inside. It performs all necessary actions to find a new place, prepare migration, 
perform migration, restore service’s state in the new place and reopen network 
connections. After that, a service is ready to continue operations without any 
obstacles. Each client has exactly one façade but may connect to arbitrarily many 
services. Separation of JADE mobile agent and the service is necessary as it was 
explained earlier.  

3.3   Mobility Agent 

The agent is autonomous from a service it wraps and is able to undertake independent 
decisions. Migration to another server may be triggered by several events:  

− system signal informing on machine malfunction or halting procedure, 
− system signal requesting freeing more system resources, 
− detecting not enough system resources, 
− user’s request to move to another location due to other reasons. 
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Fig. 3. Mobility agent - states. After the migration is complete, a new agent is created at 
initialization state. 

If one of the migration causing events occurs, the agent transits to preparing 
migration state and migration procedure begins (Fig. 3):  

1. Find new server, establish a connection and authorize (supported by multi-agent 
environment); 

2. Contact all clients façades, halt transmissions, stop the service and serialize its 
state; 

3. Inform all connected client façade libraries about migration destination; 
4. Transfer all necessary files, logs, checkpoint data and agent binaries; 
5. Initialize agent in a new destination (supported by multi-agent environment); 
6. Recreate the service state and all network connections in a new destination; 
7. Inform client façade libraries about the successful migration; 
8. Let the service continue its operations; 
9. Delete all old local data and destroy service process; 

10. Remove the agent from the old location (supported by multi-agent 
environment). 

A service is not working between steps (2) and (8). The length of this time period 
may vary depending on the size of necessary data transfer or connection problems. 
The client application cannot recognize the reason of temporal service inactivity, 
since it is hidden behind façade library. It may be interpreted as network delays or 
periodical communication problems. However, this time should be as short as 
possible due to database locks and transaction management. Distributed system is 
highly dependent on these mechanisms and prolonging this unavailability state, 
especially in case of system-critical services, could halt whole database for 
unacceptable long time.  

Serialization of service’s state and its recreation (steps 2 and 6) is done by 
dedicated tools. Agent implementation may choose here between many known 
software tools with different capabilities. The state should be recreated without any 
changes and special behavior of the service application.  

Service migration requires also transferring all of its local files (4). Service must 
list all its necessary files in dedicated agent’s register before it starts operations 
(Fig. 2). This may be done by the service itself or by its administrator through service 
meta-description. The bigger files are the longer transition procedure lasts. A big 
improvement may be achieved by storing all data in a distributed storage like Ocean 
Store [15]. In such a case, the service do not create or use any local files but forwards 
all requests to the store, which handles them automatically. The storage is accessed in 
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the same way from all places, so after migration data access remains the same. The 
distributed storage mechanism may decide to move data closer to the new destination, 
if it finds it reasonable. 

Old service destruction must be done after the successful migration, that is, after 
the system is sure that the service is running properly in the new destination. These 
two tasks may be easily handled by JADE platform beforeMove and afterMove 
methods. The first one is invoked in the old location, and the second one in the new 
location just after the agent is successfully moved. The old instance of the agent and 
the new one have to agree, that the service is safely running and all the network 
connections are recreated. This agreement may be done by JADE inter-agent 
messages. After it is done step 9 and 10 are performed. 

3.4   Client Façade Library 

Client façade library is necessary in order to achieve full transparency of service 
location and hide network details. Its goals are following: 

1. Find the service in the network upon its name or other description; 
2. Wrap network transfer and hide service migration; 
3. Perform necessary authorizations and assure secure connection to an agent.  

In order to open a connection to a service, client supplies service’s name, thus unique 
naming is an important topic, which has to be resolved by a consortium agreement [6] 
or other standardization initiatives. Service’s name must be different than a name of 
an agent within the migration layer. An agents’ name is used only for communication 
inside the layer between façade and the agent and between agents, while service’s 
name is used for accessing it by clients.  

Wrapping the network transfer and hiding network details by our façade is similar 
to Client Stub in SUMA meta-system [3]. The library takes control over all network 
operations and creates a more abstract network access. Client applications are no 
longer limited by direct IP addresses or hosts’ names. They only know what is to be 
done and how to name it. The rest of the communication is done by the façade. If 
a service is about to migrate the library suspends transmission and after a migration 
reestablishes connection and continues data transfer (Fig. 4). The façade may buffer  
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Fig. 4. States of the façade library for each service’s connection 
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data transfer until the service is ready to receive it, so client application does not 
recognize any changes. The library knows the new service location from the mobility 
agent and thus must be connected to the migration layer.  

4   Conclusions and Future Work 

At present, database services are tightly connected to certain network nodes, which is 
unfortunate in case of dynamic changes of the network environment. Besides, there is 
generally no way of abstracting from service's location and there is also no tool 
allowing clients to move a service to another (safe) location and continue performing 
operations without client notification. As a consequence, service migration (and 
location) is not supported.  

We propose to solve the problem using a new network communication layer that 
hides all network details and create a new paradigm of communication between 
clients and services. To this goal, we propose to use multi-agent systems like JADE 
which enable us to discover new places and, what is the most important, supplies us 
with universal communication mechanism between agents working on servers. 

We have presented a way of transparent migration of database services between 
servers - in the Internet and other networks. The ability to move services without 
notification of their users is important for achieving high level of abstraction and 
transparency. Database services nature makes this task more complex due to their 
required high reliability, their state, and critical network connectivity. A database 
service is wrapped by an agent and a client is hidden behind a facade; agent's tasks are 
to find a new service location and perform safe migration. Our approach opens a new 
area in this field and creates a new data processing paradigm decreasing the required 
effort to produce both reliable database services and client applications.  
Some of the concrete advantages of transparent database services migration are: 

1. Improved reliability and availability - services may move to another machine in 
case of server malfunctioning in a transparent manner; 

2. Dynamic job distribution in cases when more computation power is needed; 
a client may ask an agent not only to migrate but also to clone and thus distribute 
query processing - the same may be requested by a DQP service; 

3. Transparent optimization of job’s scenario - selected mobile services working on 
the same task like in case of distributed query processing, may migrate 
transparently to be closer to data while other ones are not aware of such movement;  

4. Higher culture of data processing - abstract communication layer between clients 
and services increases quality and improves their design and implementation.  

Our prototype grid object database system is already working. It supports data 
transformation services based on updatable object views [12]. The system is unique 
due to its transparent data integration and transformation and, what is the most 
important, supports data updates which is unusual among other database views 
mechanisms. We are now working on a stable extension allowing transparent 
migration of these services over the nodes within PlanetLab slices using JADE multi-
agent platform as described in the paper.  
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Current server and service description languages are not fully adequate to present 
useful and convenient solutions we are looking for – we plan to continue the work. 
Our future work will also focus on analysis of the working system behavior in 
different network settings and under different load and environmental conditions. 
Also, new metadata for network servers and services, allowing agents to find a new 
proper place for a service, is under development.  
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Abstract. We present two merging algorithms on a single-channel
single-hop radio network without collision detection. The simpler of these
algorithms merges two sorted sequences of length n in time 4n with en-
ergetic cost for each station ≈ lg n. The energetic cost of broadcasting is
constant. This yields the merge-sort for n elements in time 2n lg n, where
the energetic cost for each station is 1

2 lg2 n + 7
2 lg n (the energetic cost of

broadcasting is only 2 lg n), which seems to be suitable for practical appli-
cations due to its simplicity and low constants. We also present algorithm
for merging in time O(n lg∗ n) with energetic cost O(lg∗ n).

1 Introduction

A radio network consists of processing units (called stations) which communi-
cate with each other by broadcasting radio messages. There are two important
complexity measures of the radio network algorithms: time and energy consump-
tion. Most of energy is consumed by broadcasting and listening to messages.
The stations are often powered by batteries. If a single station fails due to bat-
tery exhaustion, then the whole task performed by the network may also fail.
Therefore we want to implement algorithms in such a way that the maximal
energy used by a single station is minimized. There are many problems con-
cerning self-organization of the network (such as leader election and initializa-
tion [8], [5], [6]) that are nontrivial even in the single-hop networks. We may
also need to process or organize data distributed among the stations (for exam-
ple some measurements made by the stations). Some of the typical examples of
such problems are finding minimum, maximum, median [10], average value [7], or
sorting [11].

We consider a network of n numbered stations s1, . . . , sn communicating
through a single radio channel. Each station si knows the value n, its own number
i and stores a single key in its variable key[si]. We want to sort the keys within
the network. (The keys are sorted if, for each pair of stations, the station with
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a lower number holds the lower key.) All stations are synchronized. Time is di-
vided into slots. Within a single time slot a single message can be broadcast. We
consider single-hop network: Message broadcast by any station can be received
by any other station. A single message contains O(max{B, lgn}) bits, where B
is the number of bits of a single key. (Typically B = Θ(lg n).) Broadcasting and
listening in a single time slot requires a unit of energetic cost. Each station has
limited memory. It can contain a constant number of words of O(max{B, lgn})
bits each. By energetic cost of the algorithm we mean the maximal energy dis-
sipated by a single station. We do not assume the existence of the “wake up
mechanism” with a low power paging channel, as described in [10], [11]. Each
station predicts its next time slot for listening or broadcasting using only its
internal clock and state.

There exists an algorithm [9] that sorts n elements in time O(n) with ener-
getic cost of broadcasting O(1). However the energetic cost of listening in this
algorithm is Θ(n). A comparator network can also be transformed into algorithm
for single-hop networks: each comparator is simulated in two consecutive time
slots, when two endpoints of the comparator exchange their values. The time
of such algorithm (in single channel) is two times the number of comparators,
and the energetic cost is not greater than two times the depth of the network.
Thus the AKS sorting network [1] can be transformed into (impractical) sort-
ing algorithm with time O(n lg n) and energetic cost O(lg n) and the Batcher
networks [2] can be transformed into sorting algorithms with time O(n lg2 n)
and energetic cost O(lg2 n). However, in radio network, a single message can be
listened by many stations and the messages may contain other information be-
sides the keys. Singh and Prasanna [10], [11] proposed algorithm sorting in time
O(n lg n) with energetic cost O(lg n) by implementing quick-sort and selecting
the median as the partitioning element in each recursive call with energetically
balanced implementation of asymptotically optimal selection algorithm [3]. It is
sophisticated and the constants involved are large (although not as large as in
the AKS network) (see simulation results in [11]).

1.1 Result

We present two merging procedures. The first one merges two sequences of
length n in time O(n) with energetic cost of listening O(lg n) and of broad-
casting O(1). It can be used for implementation of sorting in time O(n lg n) and
energetic cost of listening O(lg2 n) and of broadcasting O(lg n) based on the
classical merge-sort algorithm (see [4]). Although the asymptotic energetic cost
of listening for sorting is worse than that obtained by Singh and Prasanna, it
seems to be more suitable for practical implementations due to the low constants
and simplicity. The energetic cost of broadcasting in merging is only O(1) and in
merge-sort is O(lg n). This is important since in practice broadcasting requires
more energy than listening. The second presented merging algorithm works in
time O(n lg∗ n) with energetic cost of listening and broadcasting O(lg∗ n). To the
knowledge of the author it is not known whether there exists merging algorithm
with asymptotically lower energetic cost or whether there is any non-constant



Merging and Merge-Sort in a Single Hop Radio Network 343

lower bound for energetic cost of merging. This algorithm can also be used for
merge-sorting in time in time O(n lg n lg∗ n) with energetic cost O(lg n lg∗ n).
Implementations of the simulations of these algorithms can be found at [12].

Theorem 1. There exist algorithms that merge two sorted sequences of length m
on a single hop radio network without collision detection:

– in time 4m with energetic cost of listening %lg(m+ 1)&+ 1 and of broadcast-
ing 2.

– in time O(m lg∗ m) with energetic cost of listening and broadcasting O(lg∗ m)

2 Merging

For simplicity of description we assume that all the keys are pairwise distinct. Let
Tm denote a balanced binary tree consisting of the nodes 1, . . . ,m: If m = 2k − 1,
for some integer k > 0, then Tm is a complete binary tree. Ifm = 2k−1−l, for some
positive integer l < 2k−1, then the l rightmost leaves are missing. The nodes are
placed in Tm in the inorder order (i.e. for each node x the nodes in its left subtree
are less than x and the nodes in its right subtree are greater than x). By l(m,x)
(respectively r(m,x)), for 1 ≤ x ≤ m, we denote the left (respectively right) child
of nodex inTm. (Anon-existing child is representedbyNIL.)By p(m,x)wedenote
the index of node x in Tm in preorder ordering. (I.e. the preorder index of the root
is 1, then the nodes on the second level are indexed from left to right, then on the
third level, and so on.) We also assume that p(m,NIL) = NIL. An example of
Tm for m = 6 is given in Figure 1. Note that the height (number of levels) of Tm is
min{k : 2k − 1 ≥ m} = %lg(m + 1)& (where “lg” denotes “log2”). For m ≥ 1, we
define a sequence h(m, 0), h(m, 1), . . . as follows:

h(m, i) =
{

m if i = 0
%lg(h(m, i− 1) + 1)& if i ≥ 1 (1)

Let l∗(m) = min{i : h(m, i) ≤ 2}. Note that l∗(m) = O(lg∗ m). (Note also, that
l∗(m) ≤ 4, for m ≤ 2127 − 1.) The functions l(m,x), r(m,x), p(m,x), h(m, i)
and l∗(m) can be computed internally by each station.

We want to merge two sorted sequences of keys stored in stations 〈a1, . . . , am〉
and 〈b1, . . . , bm〉 into a single sorted sequence of length 2m stored in 〈a1, . . . , am ,

1 4 3 5 5 6

6 32 2

4 1

Fig. 1. Tree T6. Right to the nodes are their preorder indexes
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procedure Rank(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
Each station ai does: timer[ai] ← 1; rank[ai] ← 0;
for time slot d ← 1 to m do

let x be such that p(m,x) = d; (* d is preorder index of x *)
station bx broadcasts 〈k〉, where k = key[bx];
each station aj with timer[aj ] = d listens and does:
if key[aj ] < k then

timer[aj ] ← p(m, l(m, x)); (* preorder index of left child of x *)

else
timer[aj ] ← p(m,r(m,x)); (* preorder index of right child of x *)
rank[aj ] ← x;

Algorithm 1. Procedure Rank

procedure Merge(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
Rank(〈a1, . . . , am〉,〈b1, . . . , bm〉);
Rank(〈b1, . . . , bm〉,〈a1, . . . , am〉);
All stations ai and bi do: idx[ai] ← i + rank[ai]; idx[bi] ← i + rank[bi];
(* for 1 ≤ i ≤ m let ci = ai and cm+i = bi *)
for time slot t ← 1 to 2m do

station ci with idx[ci] = t broadcasts 〈k〉, where k = key[ci];
station ct listens and does: new[ct] ← k;

Each station ci does: key[ci] ← new[ci];

Algorithm 2. Procedure Merge

b1, . . . bm〉. Procedure Rank (see Algorithm 1) computes the rank of each element
of the first sequence in the second sequence. (By the rank of ai in 〈b1, . . . , bm〉 we
mean the number of elements bj with key[bj] < key[ai].) The result of Rank for
each ai is in rank[ai]. Note that it is a parallel implementation of the classical
bisection algorithm, where each station ai predicts when its next bisecting key
will be broadcast by some bj. The bisecting keys are broadcast in appropriate
order, since in preorder each key is preceded by all the keys from the higher
levels of Tm. The time of Rank is m slots. The energetic cost of broadcasting
is 1. (Each bi broadcasts once.) The energetic cost of listening is %lg(m + 1)&,
since each ai listens at most once at each level of Tm. Rank can be used for
merging two sorted sequences as in the procedure Merge (Algorithm 2). The
time of Merge(〈a1, . . . , am〉, 〈b1, . . . , bm〉) is 4m. The energetic cost of listening
is %lg(m + 1)&+ 1. (Each station listens at most %lg(m + 1)& times in one of the
Rank procedures and once in the “for” loop.) The energetic cost of broadcasting
is 2: Each station broadcasts at most twice (in one of the Rank procedures and
in the “for” loop). Thus the total energetic cost is %lg(m + 1)&+ 3. (This could
be compared to the time ≈ 2 · m lgm and energetic cost ≈ 2 lgm of merging
procedures obtained by the transformation of Batcher merging comparator net-
works [2].) Note that the algorithm is correct: The key key[ai] is preceded by
idx[ai] − 1 = i − 1 + rank[ai] keys in the sorted sequence of keys from both
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sequences. (The same holds for each key[bi].) Since the keys are pairwise dis-
tinct, no two elements ci have the same idx[ci] and there are no transmission
collisions in the “for” loop.

2.1 Reducing the Asymptotic Energetic Cost of Merging to
O(lg∗ m)

We reduce the asymptotic energetic cost of listening. Instead of computing the
ranks of each ai in 〈b1, . . . , bm〉, we first compute the ranks of some stations bj

(b-splitters) in 〈a1, . . . , am〉. The b-splitters split the sequence 〈b1, . . . , bm〉 into
blocks (b-blocks) of size h(m, 1). The energetic cost of computing the rank of
each b-splitter is balanced among all stations in its b-block. Then the stations
a1, . . . , am are grouped so that the stations of each group are ranked in separate
b-block. Then we split 〈a1, . . . , am〉 into a-blocks of size h(m, 2) which compute
the rank of their a-splitters (it is enough, to find the rank of a-splitter in its cor-
responding b-block) and regroup the stations b1, . . . , bm into separate a-blocks.
We iterate this procedure while the sizes of the blocks decrease rapidly. We de-
fine an auxiliary procedure Regroup (see Algorithm 3)Let g(m, i) = % m

h(m,i)& and
α(m, i, j, k) = (j − 1) · h(m, i) + k. By ci,j,k and di−1,j,k we denote the stations
from {a1, . . . , am} and {b1, . . . , bm} as follows. For 1 ≤ k ≤ h(m, i):

ci,j,k =
{

aα(m,i,j,k) if α(m, i, j, k) ≤ m,
bα(m,i,j,k)−m if α(m, i, j, k) > m.

For 1 ≤ k ≤ h(m, i− 1): for α(m, i− 1, j, k) ≤ m, let di−1,j,k = bα(m,i−1,j,k) and,
for α(m, i−1, j, k) > m, di,j,k does not exist (it is treated as if key[di,j,k] = +∞).

For 1 ≤ j ≤ g(m, i), ci,j,1 is jth a-splitter and, for k > 1, ci,j,k is a slave of ci,j,1.
For parameter i > 1, we assume that the stations a1, . . . am are grouped between
the b-splitters di−1,1,1, . . . , di−1,g(m,i−1),1 as follows. For any al and j = group[al]:

– If 1 ≤ j ≤ g(m, i− 1)− 1 then key[di−1,j,1] < key[al] < key[di−1,j+1,1].
– If j = 0 then key[al] < key[b1]. (Note that b1 = di−1,1,1)
– If j = g(m, i− 1), then key[al] > key[di−1,g(m,i−1),1].

Note that, for parameter i = 1, we do not have any assumptions. In this case
g(m, i− 1) = 1 and each al has group[al] = 1. The task of Regroup is grouping
of the stations b1, . . . , bm between the splitters ci,1,1, . . . , ci,g(m,i),1.

We divide the code into fragments (phases) and analyze each phase separately.
Each station has a clock variable t, that is increased after each time slot. In Phase
1 the rank of each splitter ci,j,1 in 〈b1, . . . , bm〉 is computed. Each splitter di−1,j′,1
together with its slaves forms a binary tree Th(m,i−1). These trees are scanned level
by level: first all the nodes of all the trees at level 1 (i.e. roots), then all the nodes of
all the trees at level 2, and so on. The number of levels (the height of Th(m,i−1)) is
h(m, i). To compute the rank of ci,j,1 we have to consider only the tree correspond-
ing to group[ci,j,1]. At level l each station listens at most once and corrects its rank′

and timer. (The new value of timer is either NIL or preorder index of some bi′ on
the next level.) Between the levels l and l + 1, after all stations bi′ on level l in all
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procedure Regroup(i, 〈a1, . . . , am〉, 〈b1, . . . , bm〉)
(* Phase 1 *)
Each station ci,j,1 does: begin

group′[ci,j,1] ← group[ci,j,1]; key′[ci,j,1] ← key[ci,j,1]; timer[ci,j,1] ← 1;
rank′[ci,j,1] ← 0;

end
for l ← 1 to h(m, i) do

(* l denotes level in Th(m,i−1)*)
for v ← 2l−1 to min{2l − 1, h(m, i − 1)} do

(* v – preorder index on level l *)
let x be such that p(h(m, i − 1), x) = v;
for g ← 1 to g(m, i − 1) do

di−1,g,x (if exists) broadcasts 〈k′〉, where k′ = key[di−1,g,x];
Each ci,j,l with group′[ci,j,l] = g and timer[ci,j,l] = v listens and
does:
if there was no message or key′[ci,j,l] < k′ then

timer[ci,j,l] ← p(h(m, i − 1), l(h(m, i − 1), x));

else
timer[ci,j,l] ← p(h(m, i − 1), r(h(m, i − 1), x));
rank′[ci,j,l] ← α(m, i − 1, g, x); (* index of di−1,g,x *)

all stations increase clock t;

if l < h(m, i) then
(* not last level – TRANSFER TO THE NEXT SLAVES *)
for j ← 1 to g(m, i) do

ci,j,l broadcasts 〈t′, r′, g, k′〉 where t′ = timer[ci,j,l], r′ = rank′[ci,j,l],
g = group′[ci,j,l], and k′ = key′[ci,j,l];
ci,j,l+1 listens and does: begin

timer[ci,j,l+1] ← t′; rank′[ci,j,l+1] ← r′; group′[ci,j,l+1] ← g;
key′[ci,j,l+1] ← k′;

end
all stations increase clock t;

(* Phase 2 *)
Each station ci,j,1 does: winner[ci,j,1] ← TRUE;
for j ← 1 to g(m, i) do

ci,j,h(m,i) broadcasts 〈r′〉 where r′ = rank′[ci,j,h(m,i)];
ci,j,1 and (if j > 1) ci,j−1,1 listen;
ci,j,1 does rank[ci,j,1] ← r′;
ci,j−1,1 (if exists) does: if rank[ci,j−1,1] = r′ then
winner[ci,j−1,1] ← FALSE;
all stations increase clock t;

(* Phase 3 *)
Each station bl does: if l = 1 then group[bl] ← 0 else group[bl] ← NIL;
for l ← 1 to m do

if exists ci,j,1 with winner[ci,j,1] = TRUE and rank[ci,j,1] = l − 1 then
ci,j,1 broadcasts 〈j〉;

bl listens and does: if there was a message then bl does group[bl] ← j;
all stations increase clock t;

(* Phase 4 *)
for l ← 1 to m − 1 do

bl broadcasts 〈g〉 where g = group[bl];
if group[bl+1] = NIL then bl+1 listens and does: group[bl+1] ← g;
all stations increase clock t;

Algorithm 3 Procedure Regroup

.

.
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the trees have broadcast their messages, the collected information and the task of
further computation is transferred from each ci,j,l to the next slave ci,j,l+1. The
time slot of this transfer is known in advance, since the size of each level is known.
The time of Phase 1 is O(m) since the number of all stations ci,j,k and di−1,j′,k′ is
O(m) and in each time slot a different one of them broadcasts. The energetic cost
is O(1), since each ci,j,k listens once and broadcasts once and each di−1,j′,k′ broad-
casts once. After Phase 1 each ci,j,h(m,i) stores in rank′[ci,j,h(m,i)] the rank of ci,j,1
in 〈b1, . . . , bm〉. (The value rank′[ci,j,1] is deliberately initiated to 0 at the begin-
ning of Phase 1: If i > 1 and group[ci,j,1] ≥ 1 then key[ci,j,1] is compared to at least
one lesser key, since key[di−1,group[ci,j,1],1] < key[ci,j,1]. If i = 1 or group[ci,j,1] = 0,
this ensures that we do not start with too large rank′[ci,j,1].) In Phase 2 each split-
ter ci,j,1 learns its rank and computes Boolean value winner[ci,j,1]. A splitter
ci,j,1 is a winner if it is the last splitter with given rank. Time of Phase 2 is
g(m, i) and energetic cost is O(1). In Phase 3 each winner ci,j,1 informs its suc-
cessor b′ in 〈b1, . . . bm〉 about its block number j (i.e. new group number for b′).
The uninformed stations bl with l > 1 end up with group[bl] = NIL. (b1 ends
up with group[b1] = 0 or higher.) The time of Phase 3 is m and energetic cost is
O(1). In Phase 4 each bl with group[bl] = NIL learns its proper group number
from its predecessor. After Phase 4 each station bl with group[bl] = j, knows
that it is ranked somewhere between ci,j,1 and ci,j+1,1. The time of Phase 4 is
m−1 and energetic cost is O(1). The time of Regroup is O(m) and the energetic
cost is O(1), since the time of each phase is O(m) and energetic cost of each
phase is O(1).

procedure Rank’(〈a1, . . . , am〉, 〈b1, . . . , bm〉)
if m ≥ 2 then

Each ai does: group[ai] ← 1;
for i ← 1 to �l∗(m)/2� + 1 do

Regroup(2i − 1, 〈a1, . . . , am〉, 〈b1, . . . , bm〉);
Regroup(2i, 〈b1, . . . , bm〉, 〈a1, . . . , am〉);

(* RANK EACH bj IN 〈a1, . . . , am〉 *)
Each station bj does: rank[bj ] ← 0;
for i ← 1 to m do

ai broadcasts 〈k〉, where k = key[ai];
each bj with group[bj ] = �i/2� listens and does:
if k′ < key[bj ] then rank[bj ] ← i;
all stations increase clock t;

DO SYMMETRICAL RANKING OF EACH aj IN 〈b1, . . . , bm〉
else a1 and b1 simply compare-exchange their keys

Algorithm 4. Procedure Rank’

WeapplyRegroup in the procedureRank’ (Algorithm4) that ranks two sorted se-
quences of lengthm in each other in timeO(m lg∗ m) with energetic costO(lg∗ m).
Note that in the last iteration of the first “for” loop we have h(m, 2i − 1) =
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h(m, 2i) = 2. Thus we only need to rank each element in a block of size 2 of the
other sequence. The number of iterations of the first “for” loop is O(lg∗ m), and
hence the time of it is O(m lg∗ m) and the energetic cost is O(lg∗ m). The time of
the remaining part is O(m) and energetic cost is O(1). By replacing both invoca-
tions of Rank in Merge by a single Rank’(〈a1, . . . , am〉, 〈b1, . . . , bm〉), we obtain an
algorithm merging in time O(m lg∗ m) with energetic cost (of both listening and
broadcasting) O(lg∗ m).

3 Merge-Sort

For simplicity, we assume that n = 2k for some positive integer k. The sta-
tions c1, . . . , cn contain initially unsorted sequence of keys 〈key[c1], . . . , key[cn]〉.
Merge-Sort (Algorithm 5) sorts the sequence stored in the network. Assume that
we apply the first of the described merging algorithms. The time for merging two
sequences of length n/2 is 4n/2 = 2n. On the next level of recursion we have to
merge two pairs of sequences of length n/4 in time 2 ·4n/4 = 2n. And so on. The
number of levels is lg n, thus the total sorting time is 2n lgn. The energetic cost
is
∑k−1

l=0 (%lg(2l +1)&+3) = 1
2 lg2 n+ 7

2 lg n. For example, for n = 213 = 8192, the
bounds on time and energetic cost are 212992 and 130, respectively. If we apply
the second merging algorithm, then the time of Merge-sort is O(n lg n lg∗ n) and
the energetic cost of listening and broadcasting is O(lg n lg∗ n).

procedure Merge-Sort(〈c1, . . . , cn〉)
if m > 1 then

Merge-Sort( c1, . . . , cn/2 )
Merge-Sort( cn/2+1, . . . , cn )
Merge( c1, . . . , cn/2 , cn/2+1, . . . , cn )

Algorithm 5. Procedure Merge-Sort

Remark: The presented algorithms can be parallelized and accelerated Ω(k)
times if we use k channels instead of one, where k is O(

√
n).

Acknowledgment. I would like to thank Miros�law Kuty�lowski for helpful
comments.
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Abstract. We introduce a new stable in place merging algorithm that
needs O(m log( n

m
+1)) comparisons and O(m+n) assignments. According

to the lower bounds for merging our algorithm is asymptotically optimal
regarding the number of comparisons as well as assignments. The stable
algorithm is developed in a modular style out of an unstable kernel for
which we give a definition in pseudocode.

The literature so far describes several similar algorithms but merely
as sophisticated theoretical models without any reasoning about their
practical value. We report specific benchmarks and show that our algo-
rithm is for almost all input sequences faster than the efficient minimum
storage algorithm by Dudzinski and Dydek. The proposed algorithm can
be effectively used in practice.

1 Introduction

Merging denotes the operation of rearranging the elements of two adjacent sorted
sequences of size m and n, so that the result forms one sorted sequence of m+n
elements. An algorithm merges two sequences in place when it needs O(1) bits
additional space. It is regarded as stable, if it preserves the initial ordering of
elements with equal value.

There are two significant lower bounds for merging. The lower bound for the
number of assignments is m + n because every element of the input sequences
can change its position in the sorted output. As shown by Knuth in [1] the lower
bound for the number of comparisons is Ω(m log( n

m + 1)), where m ≤ n.
So far there are three publications about optimal stable in place merging.

The work of Symvonis [2] shows how to get an optimal algorithm by combining
several given concepts but contains no information about the involved asymp-
totic constants or implementation aspects. Geffert et. all present in [3] a rather
complex algorithm together with its asymptotic constants, but there are no
notes regarding any successful implementation or benchmarking. Chen [4] sim-
plified Geffert’s algorithm for the price of slightly worse asymptotic constants
but also without any remarks about a concrete implementation. All three pub-
lications have some resemblance. They take the algorithm from Mannila and

� This work was supported by the Kookmin University research grant in 2005.

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 350–359, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Ukkonen [5] as starting point, rely on the concept of an internal buffer intro-
duced by Kronrod in [6] and develop a stable algorithm out of an unstable
one. We will follow this path but with the focus on an improved stable algo-
rithm as well as concrete benchmarking. The proposed stable algorithm can
be effectively used in practice as shown by the fact that it can compete with
the algorithm of Dudzinski and Dydek [7] that is used as foundation of the
merge without buffer function contained in the C++ Standard Template Li-
braries (STL) [8].

Significant older works in the area of in place merging are the publications of
Pardo [9], Salowe and Steiger [10] and Huang and Langston [11]. All algorithms
introduced there are asymptotically optimal regarding the number of assign-
ments, but lack in meeting the lower bound for comparisons. Another class of
merging algorithms are the minimum storage algorithms presented in [7] and [12]
which both rely on O(log2(m+n)) bits of extra storage. The latter two algorithms
are effective in practice and simply structured, but they are not asymptotically
optimal regarding the number of assignments.

We will begin with the introduction of our notation and some toolbox algo-
rithms, followed by the presentation of an unstable core algorithm. Afterwards
the unstable core algorithm is extended to an unstable in place algorithm which
in turn is extended to a stable in place algorithm. We will report some bench-
marks and finish with a short conclusion.

2 Notation/Algorithm Toolbox

We now introduce some notations that we will use throughout the paper. Let
u and v two ascending sorted sequences. We define u ≤ v (u < v) iff. x ≤ y
(x < y) for all elements x ∈ u and for all elements y ∈ v. |u| denotes the size of
the sequence u. Unless stated otherwise, m and n (m ≤ n) are the sizes of two
input sequences u and v respectively.

Table 1. Complexity of the Toolbox-Algorithms

Algorithm Arguments Comparisons Assignments

Hwang and Lin u, v with |u| ≤ |v| m(t + 1) + n/2t

let where
m = |u| , n = |v| t = �log(n/m)�

(1) - ext. buffer 2m + n
(2) - m rotat. n + m2 + m

Block Swapping u, v with |u| = |v| - 3 |u|
Floating Hole u, v with |u| = |v| - 2(|u| + 1)

(element x is in front of u)
Block Rotation u, v - |u| + |v| + gcd(|u| , |v|)

≤ 2(|u| + |v|)
Binary Search u, x (searched element) �log |u|� + 1 -
Insertion Sort u, let m = |u| m(m−1)

2 + (m − 1) m(m+1)
2 − 1



352 P.-S. Kim and A. Kutzner

We will use six other algorithms as subcomponents. We now briefly introduce
these algorithms and their complexity (A summary is given in Tab. 1):

(1) Hwang and Lin [13] introduced a merging-algorithm that is optimal regarding
the number of comparisons as well as assignments. Unfortunately their algorithm
is not in-place, it relies on an external buffer of size m when the merging shall
be achieved by applying a linear number of assignments only. The algorithm
granulates the longer input sequence into segments of size 2�log(n/m)� and uses
a smart combination of a sequential search together with several binary searches
for staying asymptotically optimal regarding the number of comparisons. Hwang
and Lin’s algorithm can be modified so that it works in place, but for the price
of m2 assignments. The modified form avoids the usage of an external buffer by
using repeated rotations instead. Geffert et al. give a detailed description of that
variant in [3].
(2) Block Swapping denotes the operation of exchanging the contents of two
(not necessarily adjacent) blocks u and v with |u| = |v|. Floating Hole denotes
a technique that can sometimes be applied in order to reduce the number of
assignments necessary for achieving a block rearrangement. In our algorithms
we will have to accomplish a rearrangement from . . . xu p v . . . to . . . vx p u . . .,
where x is a single element, u and v are blocks of equal size and p is some
arbitrary subsequence. [3] gives a detailed description for both operations and
their complexity.
(3) Let u and v be two adjacent blocks of not necessarily equal size. The circular
rearrangement from . . . uv . . . to . . . vu . . ., is called a Block Rotation. If we have
an intermediate storage of one element only we need at least |u|+|v|+gcd(|u| , |v|)
assignments for accomplishing a block rotation. Here gcd(a, b) denotes the great-
est common divisor of two positive integers. An algorithm that meets this lower
bound is presented in [7].
(4) Binary Search and Insertion-Sort are two standard algorithms described in
almost all introducing literature about algorithms (e.g. [14]).

3 The Core Algorithm

We now give the definition of our unstable core algorithm that relies on extra
storage of size �√m� for local merges.

Algorithm 1: Unstable-Core-Merge
Let k = �

√
m� and l = �m/k�. We granulate the sequence u into blocks u0u1 . . . ul,

so that all blocks ui with 0 < i ≤ l have size k. The first block u0 gets the size
m−l∗k. (u0 is empty in the case l∗k = m). Let ui = bixi for all i (0 ≤ i ≤ l), where
xi corresponds to the last element of ui. If u0 is empty, then b0 and x0 are empty as
well. We separate the sequence v into l+2 sections v = v0v1 . . . vlvl+1 using the xi

(0 ≤ i ≤ l) , so that we get for all i: vi < xi ≤ vi+1. Using these granulations of v
and u we rearrange our input sequences to b0v0x0b1v1x1 . . . blvlxlvl+1. Eventually
we get the desired sorted result by local merging of all pairs bivi (0 ≤ i ≤ l). Please
note that all xi are at their final position after the rearrangement-step and do not
need to be part of the local merges.
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Algorithm 1. Unstable Core Algorithm

Unstable-Core-Merge(A, first1, first2, last)
1 � u is in A[first1 : first2 − 1], v is in A[first2 : last − 1]
2 m ← first2 − first1; k ← �sqrt(m)�; delta ← 0;
3 if m mod k = 0
4 then blockEnd ← first1 + k
5 else blockEnd ← first1 + (m mod k)
6
7 while true
8 do � Processing of the current minimal block
9 b ← Binary-Search(A, first2, last, A[blockEnd − 1])

10 to ← b − (first2 − blockEnd)
11 if to > first2
12 then Block-Rotation(A, blockEnd − 1, first2, b)
13 else Floating-Hole(A, blockEnd, first2, b − first2)
14 delta ← (b − first2 + delta) mod k
15 Hwang-And-Lin(A, first1, blockEnd − 1, to − 1)
16 first2 ← b; first1 ← to
17 if first1 ≥ first2
18 then break � No more blocks to be placed - leave the while-loop
19
20 � Search the next minimal block
21 t ← first1 + k − delta; e ← first2 − delta
22 if delta > 0
23 then startMin ← Search-Minimal-Block(A, k, t, e, e)
24 else startMin ← Search-Minimal-Block(A, k, t, e, first1)
25 t ← first1
26
27 � Move the minimal block to the front of sequence q
28 if startMin = e
29 then Block-Swap(A, t, e, delta)
30 Block-Rotation(A, first1, t, first1 + k)
31 else Block-Swap(A, t, startMin, k)
32 Block-Rotation(A, first1, t, t + k)
33 blockEnd ← first1 + k

In order to keep the optimality the rearrangement must be achieved by apply-
ing a linear number of assignments only. The following technique can be used to
do so. It is similar to the following method described by Mannila and Ukkonen
in [5]:

The rearrangement happens in a sequential style, it starts with block u0 (u1
if u0 is empty) and continues by placing the blocks in increasing order one by
one. During the rearrangement all unprocessed blocks, this means blocks that
are not moved to their final position, stay together as a group, but we allow that
these blocks become interleaved and rotated as a complete segment.
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Let us now assume that we have already successfully processed all blocks
u0 . . . uj with (0 ≤ j < l). Then we have some sequence p q vj+1 . . . vl+1,
where p = b0v0x0b1v1x1 . . . bjvjxj contains all blocks already processed and
q = c′′u′

1 . . . u
′
l−j−1c

′ comprises the unprocessed blocks uj+1 . . . ul in some in-
terleaved form. Additionally, due to the rotation, one unprocessed block can be
split into two parts, this is c′c′′. To place the next block uj+1, we have first
to find the position of that block in q. Due to the increasing order of the el-
ements in u, we have to find the block with the smallest elements in order to
find bj+1. We can do so by looking for the block with the smallest first and
last element. Depending on the result of this search, we have to distinguish two
different cases:

(Case 1.) The minimal block is c′c′′: We split u′
1 into d′d′′, so that |d′| = |c′| and

|d′′| = |c′′|. Then we exchange c′ and d′ in order to get q = c′′c′d′′u′
2 . . . u′

l−j−1d
′.

Afterwards we rotate c′′c′ to c′c′′ and get q = uj+1d
′′u′

2 . . . u′
l−j−1d

′.

(Case 2.) The minimal block is in u′
1 . . . u′

l−j−1, let u′
i (1 ≤ i < l − j)

be the minimal block. Then we exchange u′
1 and u′

i in order to get q =
c′′u′

iu
′
2 . . . u′

1 . . . u
′
l−j−1c

′. Afterwards we rotate c′′u′
i to u′

ic
′′ and get q =

uj+1c
′′u′

2 . . . u
′
1 . . . u′

l−j−1c
′.

Hence, after moving uj+1 to the front position we have some sequence
p bj+1xj+1q

′vj+1 . . . vl+1 (q = bj+1xj+1q
′). Now we will move vj+1 to its final

position just in front of xj+1. Once more we have to distinguish two cases:

(Case 1.) |vj+1| ≥ |q′| : We use a rotation in order to get vj+1xj+1q
′ out of

xj+1q
′vj+1.

(Case 2.) |vj+1| < |q′| : We split q′ into q′1q′2 so that |q′1| = |vj+1| and use
a floating-hole operation to get vj+1xj+1q

′
2q

′
1 out of xj+1q

′
1q

′
2vj+1. Please note

that q′1q
′
2 is a rotated form of q′ merely.

Table 2. Pseudocode Definitions of the Toolbox Algorithms

Pseudocode Definition Description of the Arguments

Hwang-And-Lin(A, first1, first2, last) u is in A[first1 : first2 − 1],
v is in A[first2 : last − 1]

BSearch(A, first, last, x) delivers the position of the
first occurrence of x in A[first : last−1]

Block-Swap(A, pos1, pos2, len) u is in A[pos1 : pos1 + len],
v is in A[pos2 : pos2 + len]

Floating-Hole(A, pos1, pos2, len) u, v as in Block-Swap,
element x in A[pos − 1]

Block-Rotate(A, first1, first2, last) u, v as in Hwang-And-Lin

Alg. 1 gives an implementation for the Unstable-Core-Merge algorithm
in pseudocode. Table 2 comprises the pseudocode definitions for all toolbox al-
gorithms. The pseudocode conventions are taken from [14].
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Theorem 1. The Unstable-Core-Merge algorithm needs O(m log( n
m + 1))

comparisons and O(m + n) assignments.

Proof. The l + 1 calls of Hwang and Lin’s algorithm need less than
Σl

i=0(qi log(pi

qi
+ 1)) + qi = O(m log( n

m + 1)) comparisons and Σl
i=0(2qi + pi) ≤

2m+n assignments, where pi = max{|ui|, |vi|} and qi = min{|ui|, |vi|}. Further,
since �

√
m� (�logn�+1) ≤

√
m(logn+1) = m · log n√

m
+
√
m ≤ m ·(log n− logm)+

√
m = O(m log n

m ), the l+1 calls of the binary search need O(m log( n
m +1)) com-

parisons. The l searches of the minimal block consume Σl
i=12i ≤ m+

√
m ≤ 2m

comparisons. The l extractions of the minimal block need l(7k) ≤ 7m assign-
ments. The l+ 1 movements of the minimal block need less than Σl

i=04|vi| ≤ 4n
assignments. So, altogether we have O(m log( n

m +1)) comparisons and O(m+n)
assignments. � 

3.1 Extending the Core Algorithm to an Unstable in Place
Algorithm

The Unstable-Core-Merge algorithm is asymptotically optimal, but it de-
mands an extra storage of size O(�

√
m�). We will now apply a technique called

internal buffer for reducing the necessary extra storage to O(1). The notion in-
ternal buffer is due to Kronrod and was first proposed in [6]. The basic idea
is to use some particular area of the input sequences repeatedly as buffer and
to accept that the area elements are disordered by this usage. At the end the
internal buffer is sorted by applying some sorting algorithm and afterwards the
buffer elements are merged by some way. Using this approach we now derive an
unstable in-place algorithm from our core algorithm:

Algorithm 2: Unstable-In-Place-Merge (u, v)
We split the input sequence u into u1u2 so that |u1| = �

√
m�. Let x be the

last element of u1. By applying a binary search we separate v into v1v2, so that
v1 < x ≤ v2. We rearrange u1u2v1v2 to u1v1u2v2 using a block rotation. Then
we merge u2 and v2 using the Unstable-Core-Merge algorithm (Alg. 1),
where the embedded calls of Hwang and Lin’s algorithm use the segment u1
as buffer area. Because the elements of u1 can be disordered during the last
step, we afterwards sort them using Insertion-Sort. Finally we use the rotation
based variant of Hwang and Lin’s algorithm for merging the two segments u1
and v1.

Theorem 2. The Unstable-In-Place-Merge algorithm needs O(m log( n
m +

1)) comparisons and O(m + n) assignments.

Proof. We have simply to count the additional operations. The unique additional
binary search and call of Hwang and Lin’s algorithm trivially doesn’t change the
asymptotic number of comparisons. Hwang and Lin’s call poses |v1| + |u1|2 +
|u1| = O(m + n) additional assignments. The final insertion sort needs O(m)
comparisons as well as assignments (see Table 1). So altogether the algorithm
performs O(m log( n

m + 1)) comparisons and O(m + n) assignments. � 
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A merging algorithm is called semi-stable when it preserves the initial ordering
of equal elements of at least one of either input-sequences. It is easy to check that
none of the applications of toolbox algorithms in Unstable-In-Place-Merge
changes the initial ordering of equal elements in v.

Corollary 1. Unstable-In-Place-Merge is semi-stable.

4 Deriving a Stable in Place Algorithm

The lack of stability in Unstable-In-Place-Merge is caused (1) by the block
extraction in the lines 27-32 of Alg. 1 and (2) the usage of the first elements �

√
m�

of u as internal buffer. The block extraction raises stability-problems because
there might be two blocks containing equal elements. Such two blocks can’t be
distinguished during the search of the minimal block and so we can’t reconstruct
their initial order. We will fix these problems as follows:

We extract 2 �
√
m� distinct elements out of u and create 2 buffers of size �

√
m�

by moving these elements to the front of u. Please note that we can disorder and
afterwards sort these buffers without losing stability. The first buffer will be used
by the embedded calls of Hwang and Lin’s algorithm, the second buffer will be
used to keep track of the order of unprocessed blocks in u. To keep track we
will apply a technique called movement imitation that is described by Symvonis
in [2]. Movement imitation means that we establish a 1-to-1 correspondence
between elements of the movement imitation buffer (mi-buffer) and u-blocks as
shown in Fig. 1. Each time when we change the order of the u-blocks during the
processing or extraction of a minimal block, we imitate this reordering in the
mi-buffer. Hence, we can find the minimal block by searching for the minimal
element in the mi-buffer.

Algorithm 3: Stable-In-Place-Merge (u, v)
We take the Unstable-In-Place-Merge algorithm as basis and apply the
following modifications:

(1) We start by extracting two buffers of size�
√
m� (mi-buffer and buffer for local

merges) at the beginning of u, where all buffer-elements are distinct. Such buffer
extraction can happen by performing O(m) comparisons and O(m) assignments
as described by Pardo in [9]. (2) We replace the search for the minimal block

e1 vu3

Buffer for local merges

e2e3e4 u4 u5 u6u1

Buffer for movement imitation (e1 < e2 < e3 < e4)

(all buffer-elements distinct)

Fig. 1. Partitioning scheme (here for |u| = 24)
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(lines 23-24 in Alg. 1) by a procedure using the mi-buffer. (3) Any u-block
reordering must be imitated in the mi-Buffer. (4) We need a counter variable
that counts the number of unprocessed blocks for maintaining the size of the
mi-Buffer. (5) At the end we must sort and merge the two buffers extracted in
the beginning, this replaces 2 corresponding tasks in the unstable algorithm.

Theorem 3. The Stable-In-Place-Merge algorithm needs O(m log( n
m +1))

comparisons and O(m + n) assignments.

Proof. We have to check the effect of all modifications applied to the unstable
in place algorithm. The extraction of a buffer of size 2 �

√
m� in u needs O(m)

additional comparisons and O(m) additional movements. The repeated search
of the minimal block needs Σl

i=1i ≤ m comparisons. The management of the
mi-buffer causes less than l ·2 �

√
m� ≤ 2m assignments. For the final sorting and

merging the same argumentation can be applied as in Theorem 2. � 
There might be the case that there are less than 2 �

√
m� distinct elements in u

and so, due to the lack of a buffer of appropriate size, the above algorithm fails.
In order to give a solution for this case we first slightly extend the rotation-based
variant of Hwang and Lin’s algorithm as follows:
Instead of directly inserting an element x as in the original algorithm, we first
extract a maximal segment of elements equal to x by a simple linear search.
Afterwards we treat this segment as one element. This extension causes m ad-
ditional comparisons at most but allows us to express the number of necessary
assignments depending on the number of different elements in u.

Lemma 1. Let p and q two ascending sorted sequences with p ≤ q. The rotation-
based variant of Hwang-and-Lin’s algorithm extended by the extraction of max-
imal segments of equal elements needs 2(λ|p| + |q|) many assignments at most,
where λ is the number of distinct elements in p.

Based on the above extension we handle the case of too few distinct elements as
follows:
Let us assume that we could extract a buffer of λ distinct elements, where
λ < 2 �

√
m� and that this buffer extraction divides u into u1u2 where u1 contains

the λ buffer elements. We granulate u2 into λ blocks of size k =
⌊

m−λ
λ

⌋
and one

segment containing λ elements at most. We apply the stable merging algorithm
using this modified block size and for the local merges we use the variant of
Hwang and Lin’s algorithm introduced above that doesn’t rely on any internal
buffer.

Theorem 4. In the case of λ distinct elements in u, where λ < 2 �
√
m�, two

adjacent sorted sequences can be merged stable, in place and asymptotically op-
timal.

Proof. The only significant modification compared to the Stable-In-Place-
Merge algorithm concerns the size of the u-blocks and the number of different
elements in all u-blocks. It is easy to verify that this keeps the algorithm asymp-
totically optimal. � 
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5 Experimental Results

We did some benchmarking with the algorithms developed here, in order to get
an impression of their practical value. We compared the stable and unstable
variant with the Recmerge algorithm proposed by Dudzinsky and Dydek in [7]
as well as the well known standard algorithm that needs linear extra storage.
Table 3 contains a summary of our results. Each entry shows a mean value of
30 runs with different data. We took a state of the art hardware platform with
2.4 Ghz processor speed and 512MB main memory, all coding was done in the
C programming language.

Table 3. Practical comparison of various merge algorithms

n m Unstab.-In-Pl.-Merge Stab.-In-Pl.-Merge Recmerge Standard alg.
#comp te #comp te #comp te #comp te

221 221 7373277 721 6359488 891 4631976 1172 4194166 180
221 218 1572372 185 1448275 210 1268154 550 2359280 95
221 215 290180 70 277387 90 255641 240 2129916 80
221 212 48638 60 47501 80 44238 200 2100313 80
223 29 8588 260 8538 330 8064 721 8383203 340
223 26 1257 301 1271 320 1195 611 8287178 330
223 23 176 411 180 250 172 421 7381470 330
223 20 24 70 24 110 23 101 6537757 327
te : Execution time in ms, #comp : Number of comp., m, n : Lengths of inp. seq.

Despite their rather complex inner structure, the algorithms proposed here
are surprisingly fast. The stable variant is almost always a bit slower than the
unstable one, so stability seems to have a price. Additionally we observed that our
algorithm is almost always a bit faster than Recmerge. The latter algorithm is
not optimal regarding the number of assignments. Hence, our algorithm would
be the best selection in practice, particularly if you have to cope with input
sequences of big size.

6 Conclusion

We could show that optimal stable in place merging is not merely a theoret-
ical model but effectively usable in practice. Although our stable algorithm is
fairly complex, it is fast, for almost all inputs even faster than the algorithm of
Dudzinski and Dydek that is used as foundation of the merge without buffer
function contained in the C++ Standard Template Libraries. The reason for this
performance can be seen in the algorithm’s structure. The kernel provides only
a mechanism for

√
m calls of Hwang-and-Lin’s algorithm. So most of the work

is done by Hwang-and-Lin’s algorithm that is well known for its efficiency.
A serious question that still remains is the role of the subalgorithms as driving

factor of the overall running time. E.g. there are several rotation algorithms and



On Optimal and Efficient in Place Merging 359

Bentley shows in [15] that the best one from the theoretical point of view is
not always the best one in practice. Another question is whether there exists
a structurally more homogeneous and less complex algorithm with the same
characteristics regarding optimality. Even an easy structured minimum storage
algorithm that is optimal regarding both aspects (comparisons and assignments)
would be interesting, but is not known so far. We lead these questions to further
research in this area.
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Abstract. We propose a new personalized recommendation technique, which 
dynamically recommends products based on user behavior patterns for E-
commerce. It collects and analyzes user behavior patterns from XML-based E-
commerce sites using the PRML (Personalized Recommendation Markup 
Language) approach. The collected information is saved as PRML instances 
and an individual user profile is built from the PRML instances of the user 
using a CBR (Case-Based Reasoning) learning technique. When a new product 
is introduced, the system compares, for a user, the preference information saved 
in the user profile and the information about the new product and produces 
a recommendation that best fits the user preference. 

1   Introduction 

Web personalization can be defined as the process of customizing the contents and 
structure of a Web site to the specific and individual needs of each user taking 
advantage of the user’s navigational behavior [1]. A personalized recommendation 
system, which is widely used in E-commerce, analyzes user’s behavioral patterns and 
recommends new products that best match the individual user’s preference [2]. There 
are various approaches to develop recommendation systems such as rule-based 
filtering techniques that use demographic information [3], collaborative filtering 
techniques that use other user’s rating value with similar preference [4], content-based 
filtering techniques that compare a user profile and product description [5], and item-
based filtering methods that analyze association among products [6]. However, 
existing methods have following drawbacks. First, some users are concerned about 
privacy issues and, thus, do not enter personal information or enter incorrect 
information [5]. Second, it is not easy to dynamically incorporate time-varying 
aspects of user preference in the recommendation algorithms [5], [7], [8]. Third, 
existing log files, such as CLF, do not contain enough personal information to be 
utilized by personalized recommendation systems [9]-[11]. Fourth, existing methods 
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are tailored to particular applications and are not appropriate for web-based 
recommendation systems that have to manage various types of web contents. Finally, 
they lack ability to analyze user behavior patterns from XML contents and to 
dynamically generate and recommend web contents.  

In this paper, we propose a new personalized recommendation technique that is 
based on PRML. User’s behavioral patterns are collected from XML-based E-
commerce sites and user profiles are built from them. Then, personalized 
recommendations are created by comparing the similarity between the information 
about new products and personal preference in the user profile. The personal 
preferences in the user profile are continuously updated using a CBR-based learning 
technique to reflect the changes of user’s preference and recommendations can be 
made dynamically over time. Fig. 1 shows the configuration of the proposed 
system.  

Fig. 1. Configuration of personalized recommendation system 

Fig. 2. Configuration of personal information collection system 
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2   Personal Information Collection System 

The PICS (Personal Information Collection System) first collects user’s behavioral 
patterns while a user is connected to a XML-based web site and, then, it implicitly 
extracts user’s preference on the contents of the web site. There are three major 
modules in the PICS. Fig. 2 shows the configuration of the PICS.  

The user session management module manages user sessions, where a session is 
defined as the duration between a user login and the logout. The implicit rating 
information module implicitly collects user’s preference on the XML contents the 
user accessed. The CBR information collection module collects attribute information 
of the web contents. 

2.1   User Session Management Module 

The purpose of the user session management module is to effectively identify and 
manage user information. User information is collected for each user session, from 
a login to the logout. First, an agent is created at the server side that collects user 
access information. The collected information includes the user ID, session ID, and 
the connection IP address. Also it includes the URL of the web site the user accessed, 
the size of the requested document, and the server status. So, the module collects all 
the information that is typically collected in traditional log information in CLF. The 
module removes all unnecessary image data and Javascript pages to reduce the log 
information size. Then, the collected information is converted to PRML instances 
using the PRML Schema. The PRML instances are summarized into user 
identification information and log information and stored in a XML database. Fig. 3 
shows the schema diagram of user identification information.  

 

Fig. 3. Schema structure of individual user identification section 

2.2   Implicit Rating Information Module 

This module implicitly collects rating information from XML-based web sites utilizing 
hierarchical characteristics of XML documents[12]. First, elements in the XML 
documents are assigned different weights based on their importance in the documents 
and these weights are stored in the element weight databases. Whenever a user visits a 
web site, the module collects the XML elements in the XML contents which the user 
accessed and stores them as PRML instances. This information, combined with the 
user information, is used to create personalized rating information. This approach is 
more effective in collecting user’s preference than existing methods that use the 
duration of time the user is connected or user behavioral pattern from a web log. Fig. 4 
shows the diagram that depicts how implicit rating information is collected. 
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Fig. 4. Configuration of implicit rating collection technique 

2.3   CBR Information Collection Module 

This module collects CBR attribute information to extract user’s preference on web 
site contents. To effectively reflect the characteristics of XML documents, we define 
intra-attribute weights and inter-attribute weights [13]. Intra-attribute weights 
represents weights among different attribute values of the same attribute, and inter-
attribute weights represents the weights among different attributes. The collection of 
attributes and attribute values that are accessed by a user represents the user’s 
preference on the contents of a XML-based web site. This information is stored as 
PRML instances along with the user’s implicit rating information. Fig. 5 shows the 
configuration of the CBR information collection technique. Fig. 6 shows the schema 
diagram of the implicit rating Information module and the schema structure of the 
CBR information collection module. 

Fig. 5. Configuration of CBR attribute collection technique 

 

Fig. 6. Schema structure for implicit rating and CBR attribute information collection section 

3   Personalized Recommendation System 

The Personalized Recommendation System uses a CBR-based learning technique. It 
creates user profiles based on the web contents the users accessed and the profiles are 
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saved in the user profile database. When new products are introduced, it computes the 
similarity between a user’s preference in the user profile and each new product. It, 
then, recommends to the user the new products with top n similarities. The proposed 
CBR-based recommendation system is illustrated in Fig. 7 As shown in the figure, it 
consists of three major components – personalized rating information calculation 
module, user profile creation module, and contents recommendation module.  

Fig. 7. Configuration of recommender system using CBR technique 

3.1   Personalized Rating Information Calculation Module 

This module computes the rating information of the contents a user accessed using the 
information recorded in the PRML instances of implicit rating information. The 
resulting value of this computation represents the user preference on the XML 
contents the user visited.  

The rating information of a web content a user accessed is computed using the 
element weights that are stored in the element weight database and the collection of 
elements in the content. In the element weight database, each element is given a level 
weight in addition to an element weight. The level weight of an element is determined 
by its position in the hierarchy of the XML documents, and is adopted to reflect the 
hierarchical characteristics of XML-based web contents[12]. The collection of 
elements in a web content is obtained from PRML instances that were collected by 
the implicit rating information module of the PCIS. First, all the elements collected by 
the implicit rating information module are divided into groups based on their contents. 
Next, for each content, element weights and level weights of the elements in the 
content are retrieved from the element weight database. Then, rating information of 
the content is computed as 

e
Ve

ec klR ⋅=
∈

                                                        (1) 

Here, V is the set of elements in the XML content the user accessed, le is the level 
weight of the element e, and ke is the element weight of e. The implicit rating 
information, Rc, represents the user’s preference on that particular content.  
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3.2   User Profile Management Module 

A user profile is represented as a tuple P = (u, A, R, D), where u is a user ID, A is the 
set of attributes in the web contents, R is a set of intra-attribute weights, and D is a set 
of inter-attribute weights[13]. Let A be {A1, A2,···, An}, and let each attribute Ai have m 
attribute values {ai1, ai2, ···, aim}. The intra-attribute weights R of Ai is {ri1, ri2, ···, rim}. 
rij represents how much a user prefers the attribute value aij to other attribute values, 
and is defined as: 

   ,
1=

=
m

p ip

ij
ij

k

k
r   i = 1, 2, ···, n, and j = 1, 2, ···, m.                   (2) 

Here, kij is the number of times aij is accessed. The inter-attribute weights D of A is 
{di, d2, ···, dn}. Here, again, each di represents how much Ai is preferred by the user, 
and is defined as: 
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, i = 1, 2, ···, n.                      (3) 

If di is large, that implies the attribute Ai is more important to the user than other 
attributes. Note that both rij and di are determined from the user profile.  

3.3   Contents Recommendation Module 

Unlike the collaborative filtering technique that uses other users’ rating information, 
the proposed recommendation technique analyzes individual user’s behavioral pattern 
to generate recommendation for the user. This approach is based on Case-Based 
reasoning technique. We utilize nearest-neighbor approach to compute the similarities 
between the user profile and the attributes of new products. When computing the 
similarities, we use intra-attribute weights and inter-attribute weights. When new 
products are introduced, the similarity between a new product and the profile of a user 
is computed in the following way. Let P be the user profile and I be a new product 
with the same set of attributes A = {A1, A2, ···, An} and the same attribute domains. 
Then, the similarity between P and I can be computed as: 

  Similarity(P, I) = ))',((
1 1 ijijij

n

i

m

ji raafd ⋅⋅
= =

                  (4) 

Here, aij is the attribute value of Ai in P, a’ij is that of I, and f (aij, a’ij) returns 1 if aij = 
a’ij and 0 otherwise. Note that for an attribute Ai only one aij matches a’ij and 

ij

m

j ijij raaf ⋅
=1

)',(  returns the rij of the aij (= a’ij) that appears in I. The contents 

recommendation module, then, recommends the products (or contents) to a user based 
on the similarities between the products and the user’s profile, e.g., products with top 
n similarities [13]. 

While collaborative filtering methods, which are considered more effective than 
other existing methods, use the profiles of other users in creating recommendations 
for a user, the proposed method uses the profile of the user himself/herself. So, the 
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recommendation created by the proposed method reflects the user’s preference more 
accurately. Furthermore, the profile of a user is continuously learned to reflect the 
change of user’s preference on products in the E-commerce site. 

4   Experimental Results 

To verify the effectiveness of the proposed method, we conducted experiments with 
data collected from a recruitment web site for the duration of one week. This web site 
is accessed by about 70,000 users and the size of web log file collected each day is 
approximately 250MB. In our experiments, during the one week, total 824 users 
accessed 1,144 XML contents on the web site and each user accessed on average 
10 XML contents. We analyzed the web log and created a user profile database. Then, 
we generated recommendations for 1,484 new contents. 

4.1   XML Schema Diagram 

Fig. 8 shows the schema diagram of the XML contents of the recruitment site, which 
were accessed by the users. 

 

Fig. 8. A schema structure of experimental XML content 

4.2   Personal Information Collection Experiment 

From the XML web contents which a user visited, we collected implicit rating 
information and CBR attribute information. Then, we stored the information as 
PRML instances. Fig. 9 shows an example a personalized PRML instance that was 
created by our experiment. As shown in the Fig. 9, we do not lose any important 
information in the PRML compared with the CLF. Furthermore, we can observe that 
user identification information, which is not easily collected by CLF, is more 
effectively captured in the PRML instances. Note that the PRML instances facilitate 
real-time collection of log information.  

We also assigned a level weight and an element weight to each element and stored 
them in the element database. A level weight is determined by the depth of the 
element in the XML document hierarchy and an element weight reflects the 
importance of the element. Table 1 shows an example of level weights and element 
weights stored in the database.  
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Fig. 9. An example of personalized PRML instance 

Table 1. An example of element weight database 

Element list sub_content detail_content resume company reference act 

Level 1 2 3 4 5 5 5 
Weight 1 3 5 5 5 5 5  

4.3   Personalized Recommendation System Experiment 

Personalized Rating Information Calculation. For each XML contents a user 
visited, we computed rating information of the contents using the implicit rating 
information stored in the PRML instances. Here, as discussed in Section 3.1, we use 
level weight and element weight of each element in the contents, which are stored in 
the element weight database.  

User profile creation. Among the web contents whose CBR attribute information is 
stored as PRML instances, we selected those whose rating information is high and 
used them to create user profiles. A user profile consists of user ID, all attributes and 
their values in the contents, intra-attribute weights, and inter-attribute weights. We 
also included in the profile total number of web contents accessed and how many 
times an attribute value is accessed. The intra-attribute weights and inter-attribute 
weights were computed using the Equations (2) and (3). 

Personalized recommendation. Then, we generated personalized recommendations 
by comparing the user profiles and XML contents of new products using the 
similarity measure defined in Equation (4) and selecting top n products in terms of 
their similarity measures. 
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4.4   Experiment for Effectiveness of Recommendation System 

We compared the proposed method with a collaborative filtering technique and a rule-
based demographic technique using MAE (Mean Absolute Error) and ROC (Receiver 
Operating Characteristic) measures. The  result is shown in Fig. 10. We can see 
that the proposed method outperforms the other methods for all measures. 
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Fig. 10. Experimental Results 

5   Conclusion  

We proposed a new personalized recommendation system that utilizes the PRML 
approach. A user profile is built based on the behavioral patterns of a user. In building 
a user profile, we defined the inter-attribute weights and intra-attribute weights, which 
effectively represent the preference of the user on attributes of web contents. This 
profile is saved in the user profile database and is continuously learned to reflect the 
change of user’s preferences in the E-commerce site. When new products are 
introduced, we compute the similarity between each new product and the profile of 
a user and recommend the products with top n similarities. Our experiment showed 
that the proposed method is more effective than existing methods. 
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Abstract. Finding efficient and useful ways to search and index XML 
documents is a popular research topic in the field of computer and information 
science today. The path-based indexing method shows disadvantages of 
performance degradation when performing join operations of ancestor-
descendent relationships and searching for middle and lower level nodes. To 
alleviate these disadvantages, a numbering scheme based indexing technique 
was proposed. This technique shows better performance in a variety of queries. 
However, a numbering scheme based indexing method is necessary to assign 
numbers to all nodes of all XML documents. It occurs the problem of both 
search overhead and disk space usage for indexes.  In this paper, we propose 
a novel method that can efficiently construct and manage common paths of all 
XML documents. The proposed method stores similar structured XML 
documents more efficiently. In addition, it supports both insertion and deletion 
of XML documents more flexible. 

1   Introduction 

The problem of managing and querying XML documents poses interesting challenges 
to database researchers. XML is composed of what has been termed semi-structured 
data containing a large variety of different structures of varying data types; in fact, 
XML documents can be viewed as an ordered tree and have a rather complex internal 
structure. Therefore, for XML query processing of ordered tree, an efficient index 
scheme is required. The major challenges of the most indexing scheme [2], [7], 
[9], [16] were concentrated on storing large volume of XML documents and 
processing complex queries efficiently. This representation are based upon path [1], 
[8], [11], [15] or numbering schemes [4], [5], [12], [14]. Path based indexing schemes 
encode all possible paths from root node to leaf node into one simple path [1], [8], 
[11], [15], while a numbering scheme based indexing method encodes every XML 
nodes into a pair <preorder, postorder> [4], [5], [12], [14]. The path based indexing 
scheme is an efficient approach when processing a simple path queries, but inefficient 
when processing a join operation of an ancestor-descendant relationship. The 
numbering based indexing scheme guarantees average performance in all various 
cases including above two cases, because it requires the only comparison operations 
among pairs, such as  <preorder, postorder> or <order, size> assigned to each node. 
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Nevertheless, it is not efficient only when processing queries for a large number of 
nodes, because many self-join operations are required.  

To resolve this problem, we suggest efficient indexing scheme using both Node-
Range and Pre-Order List indexes which based on a numbering scheme. The main 
contributions of this paper are summarized as following: First of all, XPath is 
analyzed rapidly. Second, the storage for indexes is managed effectively. Third, the 
retrieval range using Pre-Order List is reduced. Fourth, insertion and deletion are 
performed efficiently.  

The rest of the paper is organized as follows. Section 2 reviews related work. 
Section 3 proposes a new indexing scheme and explains the query processing through 
use of an example. Section 4 presents performance results. Section 5 concludes the 
paper. 

2   Related Work 

XML documents are represented as a tree, in which every node can also be 
a duplicate path. All paths should be traversed to retrieve specific XML data or a full 
XML document. To resolve this problem, Goldman [11] suggested the DataGuide 
indexing method that summarizes all paths in the database including XML 
documents, starting from root, as simple paths, and then using the integration path for 
duplicate paths. This method reduces the portion of the database required to be 
scanned for path queries, useful for navigating the semi-structured graph from the 
root.1-index/2-index/T-index methods [15] derived from the DataGuide indexing 
method. Index Fabric [8] adopted Patricia Trie [13] to reduce the cost of path 
operation. Patricia Trie is encoded through eliminating duplicated characters and 
storing distinct characters tagged with position information. Index Fabric 
concentrated on reducing the range influenced by the path operation through encoding 
of all paths that started from the root node, adding data in each path to form a Patricia 
Trie. As a result, in querying a simple path, the retrieval performance is enhanced, 
since XML documents are retrieved through encoded paths, from root to leaf. This 
method is not efficient when retrieving the intermediate and leaf nodes as well as 
performing the join operation of ancestor-descendant relationships ('//'). Here, the 
double slash '//' represents the ancestor-descendant relationship. A single slash '/' 
represents a parent-child relationship. To enhance the efficiency of the join operation, 
the refined path includes frequently used paths in index storage. This also is not 
suitable for processing various types of queries. The problem is such that the DBA 
should specify all possible types of queries. Xpath performs the join operation of 
ancestor-descendant relationships frequently. Indexing methods based on the 
numbering scheme were developed to process various queries efficiently, [4], [5], 
[12], [14]. In a numbering scheme, all nodes are numbered in form <d1,d2,d3>, where 
d1 is preorder, d2 is postorder, and d3 is the level. The indexing method based on 
numbering schemes performs query processing by only comparing the numbers 
assigned to each XML document. This is achieved by following the following 
conditions:  
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For any two distinct node m and n,  

− m is a descendant of n iff n.d1 < m.d1 and n.d2 > m.d2    
− m is an ancestor of n iff n.d1 > m.d1 and n.d2 < m.d2 .  
− m is a child of n iff n.d3+1 = m.d3  

However, in performing insert operations of intermediate or leaf nodes, all nodes 
assigned with a pair of numbers needs to be reassigned. This problem needs to be 
resolved. XISS[12,14] replaced a pair <preorder, postorder> assigned to all nodes by 
a pair <order, size>, where size is the information about the number of containable 
data and extensible ranges satisfying the condition that n is a descendant of m if 
order(m) < order(n) and order(n)+size(n) <= order(m) + size(m). This method can 
index a document easily, even when inserting various structural XML documents. 
Maintaining a pair <order, size> for each node of the XML document causes the 
inefficiency of index space. A high retrieval overhead is also caused from various 
self-join operations. Each of XML documents is indexed according to the number of 
nodes included in XPath queries. So, many join operations and comparison operations 
equal the number of XML documents required. As the size of data increases and the 
number of nodes in query increases, the retrieval performance decreases. This 
apparently occurs when many data comparison operations are required. 

3   Indexing Method Using Node-Range of Integration Path 

To manage XML documents efficiently, we proposed a novel indexing method using 
node-range integration paths. The contribution can be summarized as follows: First, 
the index size is small. Second, the overhead is low. Third, comparing the number of 
XML documents is not required. 

<Book>
     <Titles>
           <Title>C ++</Title>
     <Titles>
     <Store>
          
<N am e>Y oung,Kim </N ame>
     </Store>
</Book>

<Book>
     <Titles>
           <Title>Turbo C</Title>
           <Title>M S C</Title>
     <A uthors>
     
<Author>Sejong.kim </A uthor>
     </Authors>
     <Store>
          <N am e>Inchon 
St.</Name>
     </Store>

<Book>
     <Titles>
           <Title>V B 1</Title>
           <Title>V B 2</Title>
           <Title>V B 3</Title>
     <Titles>
     <Store>
          <Name>Inchon 
St.</Name>
     </Store>
</Book>

<Book>
     <Titles>
           <Title>Sql*Server</Title>
     <Titles>
     <Authors>
     <Author>Sun.Park</A uthor>
     </A uthors>
     <Store>
          <Name>Inchon 
St.</N am e>

Document id : 001

Document id : 002

D ocum ent id : 003
D ocum ent id : 004

Book

Titles Authors Store

Title A uthor N am e

Name

001 : C++
002 : Turbo C
002 : M S C

002 : Sejong, Kim
002 : Sun, Park

001 : Y oung, Kim
002 : Inchon St.
003 : Seoul St.
004 : Inchon St.  

Fig. 1. Construction of Integration paths 
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As shown in Figure 1, common nodes of all XML paths are integrated with a path 
and additional indexes. Pairs of <ID, data> are managed on each leaf node, where ID 
is the identification number of XML documents and data is XML data. The result 
traversed only through integration paths numbered, provides the result table range 
information. 

Inserting XML documents provide three attributes, <preorder, postorder, node-
range> to each node of integration path, using Numbering scheme technique, as 
shown in Figure 2. Nodes of integration paths are lined up in the order of the Pre-
Order List. Each list maintains the name of data table containing the leaf node data. 
Given XPath, we restrict the retrieval range of data and retrieve only data tables.   

As shown in Figure 3 the suggested system is constructed with four principle 
components, the Name Index, Pre-Order List, Doc_id_TB, and Data Table. Name 
Index(A) is used to analyze the XPath query using integration paths. Pre-Order 
List(B) builds all integration path information in the order of preorder and stores this 
data in the table names. Doc_id_TB(C) stores the ID of XML documents contained in 
the data table. Data Table(D) store real XML documents. When XML documents are  
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(4 , 3 , 5 )

 

Fig. 2. Index system using Integration Path 
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Parser
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XML

Documents

User
Query

Query
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Pre-Order
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Pre-order List(B)
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XML Document  ID
XML Document Name

Data Table(D)
-------------------

XML Document ID
XML Data Value

Data Table(E)
-------------------

Data Table Name
XML Document ID
XML Data Value

 

Fig. 3. Architecture of Index System 
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Node : n, Range of Pre-Order List : x 
[ Calculate Node Range ]
if n.pos = ROOT then 
   n.noderange = n.postorder
else
   if n.rightsibling is true then 
      n.noderange = rightsibling.preorder - 1
   else
      n.noderange = n.parent.noderange
   end if
[ Range calculation of Pre-Order List data table using Node 
Range ]
n.preorder <= x and x <= n.noderange and x.data_flg = ‘Y' 

 

Fig. 4. Node-Range calculation algorithm 

XPath Query : /Book//Titles[.= ‘Visual C++’]
(Comparison of the Ancestor-descendant relationship and the 
data value)
(XISS)
SELECT i1.doc_id, i1.value
FROM Element_ix e1, Element_ix e2, Value_ix i1                 
WHERE e1.doc_id = e2.doc_id
 AND   e2.doc_id = i1.doc_id
 AND   e1.tagname = 'Book'
 AND   e2.tagname = 'Titles'
 AND e1.order < e2.order AND (e1.order + e1.size) >= e2.order
 AND e2.order < e3.order AND (e2.order + e2.size) >= i1.order
 AND e1.level < e2.level
 AND i1.value = 'Visual C++'
(Pre-Order List)
(1)SELECT   e2.preorder, e2.noderange
 FROM   NameIndex e1, NameIndex e2
 WHERE e1.tagname = 'Book' AND e2.tagname = 'Titles' 
  AND e1.preorder<e2.preorder AND e1.postorder>e1.postorder) 
  AND e1.level < e2.level
(2) Result of Pre-Order List :
<3,3>, <5,5>, <10,10> => “TB_1", "TB_2", "TB_4"                
(3)SELECT * FROM TB_1 WHERE Values = 'Visual C++'UNION
SELECT * FROM TB_2 WHERE Values = 'Visual C++' UNION           
SELECT * FROM TB_4 WHERE Values = 'Visual C++' 

 

Fig. 5. Comparison of  XISS and Pre-Order List 

inserted, we store the simple path and data of the XML document in temporary raw 
data format, using a DOM parser, the information <preorder, postorder, node-range> 
is obtained by comparing with the existing information in Name Index, and using the 
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Node-range resulting from the analysis of XPath in order to access Pre-Order List 
rapidly. Figure 4 shows how to calculate the Node-range. 

Pre-Order List(B) in Figure 3 is a dynamic array stored in the order of preorder of 
Name Index(A). As storage in minimal, each item in the array only has the preorder 
of Name Index and the name of the data table. When processing a query for XPath, 
our suggested method obtains the lowest preorder and node range using the Name 
Index, accessing Pre-Order List(B) directly for the table name, and operating an XML 
document using the name of the data table. Figure 5 shows an example of a query like 
"Book//Title[.='Visual C++']".  

As shown in Figure 5, given an XPath query in the form of "Book//Title[.='Visual 
C++']", the method using Pre-Order List is processed in three steps. First, three data 
range <3,3>, <5,5>, <10,10> of a given query are obtained. Second, three data ranges 
are obtained at the second step to get the name of data table accessed. Finally, the join 
operations are performed using the tables name.  

4   Experimental Evaluation 

In this section, we evaluate the efficiency of our proposed indexing method. The Pass-
Based indexing methods were not very efficient when join operations among 
intermediate nodes or the operation for ancestor-descendant relationships is 
performed. We implemented the Pre-Order List in a disk-based dynamic array, 
comparing and evaluating the results of our method compared to the representative 
XISS method of numbered scheme indexing. The experimental results indicated that 
our proposed indexing method was more efficient than the XISS indexing methods.  

All of the experiments were run under a Window2000 Server on a 2.0GHz 
Pentium 4 CPU with main memory of 512MB and a hard disk size of 60GB. We used 
MS-SQL Server 2000 as the relational databases, Visual Basic 6.0 and T-SQL as 
development languages, and MSXML(DOM) as a parser for extracting both internal 
data and the data structure of the XML documents.  

We used three types of experimental structural property datasets for our 
experiments. The first dataset(A) consisted of statutory XML documents for business 
ends. It had two properties, the number of nodes included in the XML documents was 
small, but the number of documents was large. The second dataset(B) consisted of  
XML documents obtained from a Shakespeare play. This dataset was distinct in that 
the number of nodes was high and the data was very large. The third dataset(C) 
consisted of synthetic data. It had three kinds distinct properties, it had many 
duplicate nodes, the data size was large and it had considerable depth. Table1 shows 
the details. 

We used three types of retrieval queries for the ancestor-descendant relationship, 
simple pass query, join operation queries and conditional operation queries. The 
experimental results showed that our proposed method was much more efficient when 
compared to XISS, especially in performing join operation of ancestor-descendant 
relationship and conditional queries. And it managed the index space efficiently, 
because our proposed method didn't require numbering of each of data table or 
amalgamated passes. 
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Table 1. Characteristics of the XML documents 

 Experiment  
Dataset(A) 

Experiment 
Dataset(B) 

Experiment 
Dataset(C) 

Numer of documents 9,495  38  200  
Numer of nodes  
of total documents 

725,538 150,059  2,741,100  

Size of Documents 287MB 13 MB 251 MB 
Numer of average  
elements per a document 

24  90  58  

Numer of average data per 
a document 

52  3,967  13,647  

maximum depth 
of documents 

5 6 20 

 
 
 

Experimental Query Type_1 
Q1:/laws/contents /information management/title   (Simple Path) 

Q2: / laws /announcement revision/relevant ordinance  (Without Simple Path ) 

Q3:/laws/announcement revision/ordinance/revision data 0 (Simple Path) 

Q4:/ laws /common ordinance  (ancestor-descendant relationship) 

Q5: /laws/title  (ancestor-descendant relationship +duplicate nodes) 

Q6: / laws //text//title  (multiple ancestor-descendant relationship) 

Q7:/ laws //relevant ordinance /title  (ancestor-descendant relationship + Simple Path) 

Q8:/ laws /contents/information management /title [.=‘Local Taxes regulations’]  
(ancestor-descendant relationship +condition) 

Q9: / laws //common ordinance[.=‘ministry of agriculture & forestry ’] 

 (ancestor-descendant relationship +condition) 

Q10:/ laws //relevant ordinance/title  [.=‘Clear Air ACT’] (ancestor-descendant relationship +condition) 

Q11: / laws /announcement revision/relevant ordinance  [.=‘trade transaction regulations]  

(ancestor-descendant relationship +condition) 

Q12:/ laws //text//title  [.‘ ’] (ancestor-descendant relationship +condition) 
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Experimental Query Type_2 
Q1: /PLAY/INDUCT/TITLE  (Without Simple Path) 

Q2: /PLAY/PROLOGUE  (Without Simple Path) 

Q3: /PLAY//ACT/SCENE  (Without Simple Path) 

Q4: /PLAY//SPEECH  (ancestor-descendant relationship) 

Q5: /PLAY//INDUCT/SPEECH  (ancestor-descendant relationship) 

Q6: /PLAY//SCENE/SPEECH  (Simple Path +ancestor-descendant relationship) 

Q7: /PLAY//SPEECH/TITLE  (multiple ancestor-descendant relationship) 

Q8: /PLAY//shashi[.=‘ACT']  ( ancestor-descendant relationship +condition) 

Q9:/PLAY//SCENE/TITLE[.='SCENE']  ( ancestor-descendant relationship +condition) 

 

Experimental Query Type_3 
Q1: /A/D/E/C/B/E/E/E/E/F/E  (Without Simple Path) 

Q2: /A/B/B/C/B  (Without Simple Path) 

Q3: /A//B//C  (ancestor-descendant relationship) 

Q4: /A//D//C//B//E  (ancestor-descendant relationship + Simple Path) 

Q5: /A//D//C//B//E//F  (ancestor-descendant relationship + Simple Path) 

Q6: /A/D/E//B//E//F/F  (Simple Path + ancestor-descendant relationship) 

Q7: /A/D/E//B/E/E//F/F  (multiple ancestor-descendant relationship) 

Q8:/A//F//E[.=‘addchannel']  ( ancestor-descendant relationship +condition) 

Q9:/A/D/E//B/E/F[.='kbEnglish']  (ancestor-descendant relationship +condition) 

 

Fig. 6. Performance Evaluation 

5   Conclusion 

The path-based indexing methods have been an unqualified success when performing 
the retrieval of intermediate and leaf nodes, and the join operation of ancestor-
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descendant relationships. The numbering scheme based indexing method guaranteed 
average performance for all operations. However, under this scheme, all nodes of the 
XML document, data, and attribute should be numbered. This incurred a high 
retrieval overhead and wasted storage space.  

In this paper, we suggest a novel indexing method to resolve this problem. We 
used integration paths to reduce the storage space for indexes, three attributes 
<preorder, postorder, node-range> and an additional Pre-Order List to enhance the 
efficiency of retrieval. The suggested methods were efficient even when inserting new 
XML documents. Finally, through experimental results with XISS, it has been shown 
that our method is more efficient than others.  

Acknowledgments. This work was supported by INHA University Research Grant. 
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Ambiguity of Finite Automata�
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Abstract. The degree of nondeterminism of a finite automaton can
be measured by means of its ambiguity function. In many instances,
whenever automata are allowed to be (substantially) less ambiguous, it
is known that the number of states needed to recognize at least some
languages increases exponentially. However, when comparing constantly
ambiguous automata with polynomially ambiguous ones, the question
whether there are languages such that the inferior class of automata
requires exponentially many states more than the superior class to rec-
ognize them is still an open problem. The purpose of this paper is to
suggest a family of languages that seems apt for a proof of this (con-
jectured) gap. As a byproduct, we derive a new variant of the proof of
the existence of a superpolynomial gap between polynomial and fixed-
constant ambiguity. Although our candidate languages are defined over
a huge alphabet, we show how to overcome this drawback.

1 Introduction

Nondeterminism is a concept which – in spite of its pivotal importance regarding
our conception of complexity and computation at large – computer science has
failed to understand satisfactorily. The most widely known impact is our inability
to answer the longstanding P �= NP question, and the most plausible reason is
a considerable lack of tools we could employ in order to establish lower bounds
on the running time of deterministic Turing machines.

But not only in the context of Turing machines, where the term “efficiency”
usually relates to running time, which is hard to lower-bound, does nondeter-
minism confront us with enormous trouble. Even with regular languages there
are lots of open questions when it comes to examining sets of nondeterminis-
tic finite automata. One of these questions is how hard it is to compute the
minimal number of states a nondeterministic automaton must use in order to
recognize a given language. We know that while for deterministic automata, we
can answer the question within polynomial time, for nondeterministic automata,
it gives rise to a PSPACE-complete problem [1]. This is caused by the fact that
nondeterministic automata have plenty of possibilities to save states while the
� This work was supported by SNF grant 200021-107327/1.

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 379–388, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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states in deterministic automata always form a refinement of the appropriate
Nerode right-congruence relation. Hence, even where “efficiency” pertains to the
number of states of finite automata (their so-called succinctness), we have failed
to explain what the exact conjunctures are for improving efficiency by the intro-
duction of nondeterminism. Note that if it comes to estimating the minimal num-
ber of states (or transitions, for that matter) in a nondeterministic automaton,
a negative answer has been given recently [6] to the question of approximating
this number efficiently.

A sensible approach is to limit the “amount”of nondeterminism in an automa-
ton. The idea is that “more nondeterminism” is more likely to save states than
“less nondeterminism.” We will quantify nondeterminism by using an automa-
ton’s so-called ambiguity function which measures the number of accepting paths
for input words of a certain length. Intuitively, this function grows faster for more
nondeterministic automata. If it is bounded by a constant (however huge it may
be), do automata require (substantially many) more states to recognize the same
language than if it is not?

The answer given in [7] is yes, and, moreover, the languages presented there
even require exponential ambiguity to be recognized by succinct automata. This
gives rise to the question whether there are languages such that polynomial
ambiguity is enough to yield succinct automata, but on the other hand, it should
be hard (i.e., require many more states) to recognize these languages at an
ambiguity that is bounded by a constant. The purpose of this paper is to give
insights which will shed more light on this intriguing problem.

Note that considerable efforts have been made in order to use communication
complexity as a means to describe ambiguity [3]. However, communication com-
plexity, where one usually analyzes the behavior of two communicating comput-
ers on an arbitrarily-sized input (for a complete survey, see [2]), does not appear
to be the method of choice when it comes to distinguishing unbounded from
bounded ambiguity. This is explained in more detail in [4].

This paper is organized as follows: In Section 2, we will fix our notation and
introduce basic notions. Section 3 will introduce a family of candidate languages,
and we will prove that these cannot be recognized by succinct unambiguous au-
tomata. In Section 4, we will explore possibilities to decrease the size of the
alphabet we use (which is unusually big), and in Section 5, miscellaneous prop-
erties our languages enjoy will be discussed.

2 Preliminaries

We begin with the most basic of our definitions. First of all, we introduce the no-
tion of a finite automaton. Our definition may differ from those more commonly
used in two aspects: On the one hand, we allow for multiple initial states, and
on the other hand, we use binary vectors and matrices in order to represent sets
of states and transitions between them. This will prove more convenient later.
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Definition 1. In this work, a (nondeterministic) finite automaton is a quintuple
A = (Q,Σ, I,Δ, F ) where

Q is a finite non-empty set of states,
Σ is a finite non-empty set of input symbols,

I ∈ {0, 1}Q is the initial state vector,

F ∈ {0, 1}Q is the final state vector, and

Δ : Σ → {0, 1}Q×Q maps every input symbol to its transition matrix.

Let nfa be the set of all (nondeterministic) finite automata. For an automaton
A ∈ nfa and a word w ∈ Σ∗, let ambA(w) denote the number of paths that
A can follow from an initial to a final state while reading w. In particular,
L(A) = {w ∈ Σ∗ | ambA(w) > 0}. More formal definitions can be found in [5].

This slightly technical definition will alleviate the complexity of Definition 4.

Definition 2. Let (Ak)∞k=0 ∈ nfa be any sequence of automata where Qk is
the set of states of Ak. Now, let #A : → be defined by #A(k) := |Qk|.

When comparing classes of automata, we only consider those classes that are
not artifically deprived of their power to recognize regular languages.

Definition 3. A class of finite automata F ⊆ nfa is said to be full iff for every
regular language L there is an automaton A ∈ F such that L(A) = L.

Definition 4. Let f : → be some function. Two full classes of finite au-
tomata F1 and F2 are said to be f -separable iff there exists a sequence of lan-
guages (Lk)∞k=0 ∈ (Σ∗) and there exists a sequence of automata (Bk)∞k=0 ∈ F2
such that for all k ∈ , we have L(Bk) = Lk, #B ∈ O(k), and for every sequence
of automata (Ak)∞k=0 ∈ F1 satisfying L(Ak) = Lk for all k ∈ \ {0}, we have
#A ∈ Ω(f). In this case, we write F1 ≺f F2.

It is well-known [8]1 that dfa ≺2n nfa where dfa is the class of deterministic
finite automata. In other words, nondeterminism allows finite automata to be
exponentially more succinct than their deterministic counterparts to recognize
the same language. The same holds for interesting intermediate classes, where
in some sense, the amount of nondeterminism is bounded.

Definition 5. Let A ∈ nfa. Its ambiguity function (or simply ambiguity) is
ambA : → ; ambA(n) := max{ambA(w) | w ∈ Σ∗, |w| ≤ n}.

Intuitively, the ambiguity of an automaton is the number of accepting compu-
tations on input words of a given maximum length. A multitude of functions can

1 Please note that it is not the author’s intention to wrongly credit [8] with the orig-
inal discovery of this theorem, which has become folklore some time in prehistoric
computer science (i.e., around 1960).
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be realized as ambiguity functions, but we are only interested in their asymp-
totic behavior. The overall idea is that ambiguity functions of faster growth sig-
nify more nondeterministic automata, while those of slower growth signify less
nondeterministic automata. This constitutes a gradual measurement from non-
determinism to determinism rather than a classification. However, only classes
of automata can be separated (using Definition 4). In this paper, we will be
concerned with the following classes of automata.

Definition 6. We define unambiguous f inite automata, constantly ambiguous
f inite automata, and polynomially ambiguous f inite automata.[9]

unfa := {A ∈ nfa | ∀n ∈ : ambA(n) ≤ 1}
cafa := {A ∈ nfa | ambA ∈ O(1)}

pafa := {A ∈ nfa | ambA �∈
⋃
b>1

Ω(bn)}

The last definition is sound because it is known [3] that the ambiguity function
of an automaton is either a polynomial or an exponential function.

Fact 7 ([7]). dfa ≺2n unfa ≺2n cafa pafa ≺2n nfa

It is a longstanding question whether also cafa ≺2n pafa holds. It is tempting
to assume that language sequences like (BRIDGEk)∞k=1 where

BRIDGEk := {w = w1 . . . wn ∈ {a, b}∗ | ∃j ∈ {1, . . . , n− k} : wj �= wj+k}

were natural candidates to show cafa ≺2n pafa. In fact, {a, b}∗ \ BRIDGEk is
the set of all finite prefixes of {wω | w ∈ {a, b}k}, and intuitively, the index j
can be found in unboundedly many places, given a sufficiently long input word.
A natural automaton Bk ∈ pafa with L(Bk) = BRIDGEk can be depicted as:
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However, there are also succinct automata Ak ∈ cafa with L(Ak) = BRIDGEk.
The automaton Ak can be represented as follows:
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Note that its ambiguity is in fact bounded by k. Even for long words, there are
no more than k ways of accepting them: For every word, Ak guesses a residuum
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1 ≤ r ≤ k (by guessing an appropriate final state), and then, among the symbols
with index ∈ {r, r+k, r+2k, . . .}, it unambiguously guesses the last symbol that
is not equal to its k-th successor.

Using communication complexity [3], it is however easy to show that unam-
biguous automata which recognize BRIDGEk have an exponential number of
states (in k). Therefore, (BRIDGEk)∞k=1 can be used to show unfa ≺2n cafa.

We shall suggest a sequence of languages that seems apt to take the place of
(Lk)∞k=1 in Definition 4 to establish cafa ≺2n pafa.

3 The Candidate Languages

One of the things noteworthy about languages like BRIDGEk is that if infor-
mation is to be carried over a bounded-length infix, small constantly ambiguous
automata can usually be found to do this job. Inspired by [10], we will therefore
define languages whose complexity is not derived from such a property.

Definition 8. Let k ∈ \ {0}, and let Σk := {M ∈ {0, 1}k×k | Mij = 0 for
all 1 ≤ j < i ≤ k}, the set of upper triangular Boolean matrices of dimension
k×k. Let ι : Σ∗

k → k×k be defined such that ι(w) is the product of the matrices
which the symbols of w represent. Let CONNk := {w ∈ Σ∗

k | (ι(w))1k > 0}.

There is a very intuitive way of thinking about CONNk: Regard every symbol
as adjacency matrix of a bipartite graph with node set {1, . . . , k} ∪ {1, . . . , k}.
In fact, this is the alphabet used in [10]. But since our matrices are triangular,
these bipartite graphs have edges (i1, i2) only for i1 ≤ i2, i.e., all edges are either
horizontal or downward askew (assuming left-to-right reading direction). This
modification is crucial since it guarantees that there are canonical automata of
sub-exponential (i.e., polynomial) ambiguity (see Remark 9).

For the sake of intuition, imagine that nodes 1, . . . , k are aligned vertically in
a left column and that nodes 1, . . . , k are aligned vertically in a right column.
When collating n symbols, we identify neighboring nodes. As a consequence, we
regard a word w ∈ Σn

k as an (n+1)-partite graph with node set {(i, j) | 1 ≤ i ≤
k and 0 ≤ j ≤ n}. There is an edge between (i1, j − 1) and (i2, j) iff the j-th
symbol in w has a one in the (i1, i2)-entry.

Now, words belong to CONNk iff their corresponding (|w|+ 1)-partite graph
connects nodes (1, 0) and (k, |w|) (see Figure 1).
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Fig. 1. Two symbols and a word in CONNk
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Remark 9. Clearly, there is a finite automaton Ak for CONNk with states
{1, . . . , k}, where there are transitions from state i1 to state i2 exactly for all
symbols that contain the (i1, i2) edge in their representation as bipartite graphs.
Indeed, Ak ∈ pafa for all k ∈ because Σk contains triangular matrices only.

Using the following slightly technical definition, it is relatively easy to prove
that in order to recognize CONNk, either a huge number of states or at least
some ambiguity is necessary.

Definition 10. Let L be a family of languages over a fixed alphabet Σ. The
XOR-closure of L is defined to be

〈L〉 := {{w ∈ Σ∗ | |{L ∈ S | w ∈ L}| is an odd number} | S ⊆ L},

i.e., the set of all possible symmetric differences (XOR combinations) of the
languages in L.

Remark 11. Clearly, 〈〈L〉〉 = 〈L〉 for all language families L. Also note that 〈L〉
is infinite iff L is. For finite L, note that |〈L〉| is a power of two. More specifically,

|〈L〉| ≤ 2|L|.

Lemma 12. Let A = (Q,Σk, I,Δ, F ) ∈ unfa with L(A) = CONNk. Then,
|Q| ≥ 2k − 1.

Proof. Let M := {σ ∈ Σk | σij = 0 for all 1 < i ≤ k and all 1 ≤ j ≤ k}
N := {τ ∈ Σk | τij = 0 for all 1 ≤ i ≤ k and all 1 ≤ j < k}.

and

That is, matrices σ ∈ M are defined by their first row, and matrices τ ∈ N
are defined by their last column. Let us order the matrices inM [N ] lexicograph-
ically, such that σ(i) [τ (i)] denotes the matrix with the binary representation of
i in the first row [last column] (see Figure 2 for an example).

It is enough to look at words w ∈MN = {στ ∈ Σ2
k | σ ∈ M and τ ∈ N} and

at whether they are elements of CONNk in order to show that unambiguous
automata for CONNk require at least 2k − 1 states.

To do so, for every state q ∈ Q which is reachable via a σ-transition for some
σ ∈ M, consider the set Nq := {τ ∈ N | (Δ(τ) ·F )(q) = 1}, the set of symbols τ
from N which yield a transition from q to a final state. For states q ∈ Q which
are not reachable via a σ-transition, set Nq := ∅.

� ��

���
��

��

�
��

��
��

� � � �
� � �

�
��

��
��

� �
� � � �
� � � �
� � � �� �

Fig. 2. The graph representation of σ(13), τ (18) ∈ Σ5; τ (18) �∈ N13 because the bit-wise
AND of 13 and 18 equals 0



On Separating Constant from Polynomial Ambiguity of Finite Automata 385

We further set N := 〈{Nq | q ∈ Q}〉.
By Remark 11, we have |N| = |〈{Nq | q ∈ Q}〉| ≤ 2|{Nq|q∈Q}| ≤ 2|Q|.
For technical reasons, set N := 〈{N \Nq | q ∈ Q} ∪ {N}〉,
for which we have N ⊆ N because the languages N \Nq, which generate N, can
be written as the symmetric difference (or XOR combination) of N and Nq, and
N ∈ N. Since we also have that N ⊆ 〈N ∪ {N}〉, we may conclude |N| ≥ 1

2 |N|,
and thus 2 · 2|Q| ≥ |N|. (�)

Using just the combinatorial properties of the language CONNk (or CONNk∩
MN , to be precise), we can construct the family N independently from A:

For every number � with 0 ≤ � < 2k, consider the set (recall Figure 2)

N� := {τ ∈ N | I ·Δ(σ(�)) ·Δ(τ) · F > 0}
= {τ ∈ N | I ·Δ(σ(�)) ·Δ(τ) · F = 1}
= {τ ∈ N | σ(�)τ ∈ CONNk},

which we will use to construct a hierarchy of language families as follows:

N2k := 〈∅〉 = {∅}
N� := 〈N�+1 ∪ {N \N�}〉 = 〈{N \Ni | i ≥ �}〉 for all 0 ≤ � < 2k.

It is obvious that we have N2k ⊆ N2k−1 ⊆ · · · ⊆ N1 ⊆ N0, (��)
and, of course, N0 is finite.

Noting that N2k−1 = N , it is evident that N0 = N. It only remains to
be shown that the hierarchy (��) is strict since according to Remark 11, the
cardinalities of all N� must be powers of two, thus, |N0| = 22k

, and (�) yields:
|Q| ≥ 2k − 1.

In order to see the strictness of the hierarchy (��), we note that σ(�)τ (2k−1−�) �∈
CONNk for all � because the binary representations of � and 2k − 1 − � are
complementary. For the same reason, σ(i)τ (2k−1−�) ∈ CONNk for all i > �.

This yields τ (2k−1−�) ∈ N \N�. Now, N \N� ∈ N�, but N \N� �∈ N�+1 because
τ (2k−1−�) �∈ L for all L ∈ N�+1: Suppose that there existed L ∈ N�+1 with
τ (2k−1−�) ∈ L. Hence, τ (2k−1−�) is an element of an odd number of languages
N \ Ni with i > �, but τ (2k−1−�) ∈ Ni for all i > �, so it is an element of none
of the complement languages. �
Remark 13. Just as with (BRIDGEk)∞k=1, it is possible to use (CONNk)∞k=1
in order to show a gap between polynomial ambiguity and fixed-constant am-
biguity [3]. Contrary to the class cafa where ambiguity is bounded only with
respect to n (the length of the input word) and not to k (the index in the lan-
guage family), a sequence of automata (Ak)∞k=1 is said to have fixed-constant
ambiguity iff there is a constant c such that ambAk

(w) ≤ c for all words w
and all indices k. (Note that “fixed-constant” does not constitute a class akin to
those of Definition 6.) This result can be generalized to the case where constants
need not be fixed but must not grow too fast with respect to k [4]. Again, this
generalization is also possible using CONNk.
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Fig. 3. Simulating arbitrary symbols with Kk ∪ Zk

4 Decreasing the Alphabet Size

It is striking that CONNk is defined over alphabets not only of a non-constant
but even of a gigantic size: Since Σk contains all triangular Boolean matrices of
size k×k, we have |Σk| = 2(k+1

2 ). However, we can get rid of most of the symbols
in Σk without any impact on whether the resulting subsets of CONNk can still
be used to show cafa ≺2n pafa.

Definition 14. Let Γ and Λ be sub-alphabets of Σk. Γ is said to be Λ-full iff
for all σ ∈ Λ, there is a word w ∈ Γ ∗ such that σ = ι(w), i.e., all matrices from
Λ can be simulated by a product of matrices from Γ .

First, we will see that we can restrict ourselves to those symbols which differ
from the unit matrix in exactly one entry. In their bipartite graph representation,
these may either be symbols that connect all i with the corresponding i but one,
which they “white out.” Or, these may be symbols that, again contain all (i, i)
edges, but also exactly one (i1, i2) edge (with i1 < i2).

Definition 15. Let κ
(k)
� be the k × k unit matrix except in the �-th diagonal

entry (let it be zero there), and let χ
(k)
i1i2

be the k × k unit matrix except in the
(i1, i2) entry (let it be one there).

Let Kk := {κ(k)
� | 1 ≤ � ≤ k} and Zk := {χ(k)

i1i2
| 1 ≤ i1 < i2 ≤ k}.

Lemma 16. Kk ∪ Zk is Σk-full. (For an idea for a proof, see Figure 3.)
This means we can restrict ourselves to the analysis of the effect of the symbols

in Kk and Zk. Note that |Kk ∪Zk| = k +
(
k
2

)
=
(
k+1
2

)
, which already constitutes

a tremendous decrease of the alphabet size. We can still do better, though [5].

5 Miscellaneous Aspects of Ambiguity in Automata

It is worth noting that there is a very simple syntactic criterion as to whether
any given automaton has exponential (i.e., super-polynomial), polynomial (i.e.,
unbounded), or constant ambiguity. Since we are dealing with separating poly-
nomial (unbounded) ambiguity from constant one, we recall a result from [11]:

Lemma 17. Let A = (Q,Σ, I,Δ, F ) ∈ pafa, and let A have no superfluous
(non-reachable or non-productive) states. Then, A �∈ cafa iff there are two dis-
tinct states q1, q2 ∈ Q and there exists a word w ∈ Σ∗ such that q1 is reachable
from q1 via w, q2 is reachable from q1 via w, and q2 is reachable from q2 via w.



On Separating Constant from Polynomial Ambiguity of Finite Automata 387

� ��

�
��

��
��

� � � �� � � �� � • ��

���
��

��
��

� � ��

�
��

��
��

� � ��

�
��

��
��

� � ��

�
��

��
��

� � ��

���
��

��
��

� �
� �� � � ��

�
��

��
��

� � � �� � � �� � �� � �� � �� � �� �
� �� � � �� � � ��

���
�� � � �� � �� � �� � �� � �� �

� �� � � �� � � �� � � �� � �� � �� � �� � �� •
� �� � � �� � � �� � � �� � �� � �� � �� � �� �

Fig. 4. Three Zs from Z5 and the fifth power of the leftmost Z

In the automataAk ∈ pafa\cafa from Remark 9, all pairs of distinct states play
the role of the preceding lemma. Most notably, consider the symbols from the set
Zk from Lemma 16. The reader may notice that the notation “Zk” was chosen
deliberately: Its symbols resemble the shape of a mirrored Z (see Figure 4).

Indeed, powers of these (mirrored) “Zs” are to blame for why automata need
unbounded ambiguity in order to recognize CONNk: Since the decision to shift
from the corresponding upper row in the (|w| + 1)-partite graph (as defined in
Remark 9) to the corresponding lower row can be deferred arbitrarily often,
it seems mandatory that every automaton that recognizes CONNk have un-
bounded ambiguity unless it keeps track of sufficiently much information – as
does the deterministic automaton for CONNk: It simply keeps track of the exact
subset of reachable nodes from {1, . . . , k}.

Unfortunately, these intuitive attempts to (eventually) prove cafa ≺2n pafa
have failed so far. It seems misled to try and shrink the relevant alphabet as
long as we are unable to say anything useful about the capabilities of constantly
ambiguous automata with respect to CONNk.

Definition 18. Let S be some set and let M : S×S → {0, 1} be a binary matrix
over S×S. M is called idempotent iff M2 and M have the same non-zero pattern,
i.e., iff for all s, t ∈ S, we have

M(s, t) = 1 ⇐⇒ ∃u ∈ S : M(s, u) = M(u, t) = 1.

Fact 19. All the symbols/matrices in Kk ∪ Zk are idempotent.

The last observation means that in any automaton A with L(A) = CONNk∩
(Kk ∪ Zk)∗ where Δ(σ) is not idempotent for any σ ∈ Σk, we can make it
idempotent. Simply compute all powers (Δ(σ))i of Δ(σ) until the pattern of
non-zeros becomes stable (which happens after finitely many steps, of course).
Let Δ′(σ) be the Boolean matrix with zeros wherever all the matrices (Δ(σ))i

have zero entries (and ones in the other entries). We may replace Δ by Δ′ because
A, by definition of CONNk, must not notice the difference: Wherever a symbol
σ from Zk (or Kk) is replaced by a (non-empty) power of itself, this has no
consequences as to the membership in CONNk of words which σ is a factor of.

Hence, without loss of generality, all matrices Δ(σ) should be idempotent.
The layout of a proof to cafa ≺2n pafa should look like this: Suppose, there is
an automaton A with o(2k) states which recognizes CONNk. Then, show that
A �∈ cafa, i.e., show that it fulfills the criteria of Lemma 17.
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To have the transition matrices of A be idempotent is a strong constraint:
For all (useful) transitions (q1, q2) ∈ Δ−1(σ), we have either (Δ(σ))(q1, q1) = 1
or (Δ(σ))(q2 , q2) = 1 (but not both, since then, A �∈ cafa). If we think of the
matrices Δ(σ) as adjacency matrices of bipartite graphs again, this means there
are lots of horizontal edges and Zs that are deprived of one horizontal edge.
Hence, the task is to emulate the behavior of Zs with these “half-Zs,” which
sounds as if it could be a provably hard task.
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Abstract. We propose a dynamic, ad-hoc communication network con-
sisting of mobile units that can warn about traffic jams on motorways.

Our goal is to provide a practical, low cost solution. Therefore we
consider very simple wireless communication hardware, without colli-
sion detection, with very small bandwidth and a probabilistic model of
link failure.

We provide a complete system architecture. For this purpose we de-
sign and analyze solutions for size approximation, leader election and
broadcasting. Our algorithms are fine-tuned for fast operation in a prac-
tical setting. We provide both a theoretical and experimental evaluation
of our solutions.

Our contribution is much different from the previous work, where ei-
ther pure theoretical models with a pure theoretical analysis are provided
or algorithms working in practical models are evaluated only through
simulations.

1 Introduction

Communication in ad-hoc networks has been a broadly studied topic recently.
A wide range of algorithms for routing [6], broadcasting [8],[7], MAC protocols [2]
and algorithms for leader election [5], [3] and size approximation [4] have been
proposed. Usually, the authors consider networks, where the number of partici-
pating nodes is a parameter n that can take arbitrary values. So the focus is on
solutions that achieve good performance in parameters that depend on n.

A typical approach in the literature is to use layered solutions, where routing
and broadcasting algorithms are layered on top of MAC protocols, which them-
selves use leader election algorithms for proper operation. This ensures ease of
design and maintenance as each layer is responsible for assuring only a few prop-
erties. However, it degrades performance to some extent. This is a minor issue
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for modern communication hardware (e.g. WLAN) operating with high band-
widths. However, this becomes a significant problem, if we work with extremely
simple hardware and a low-bandwidth communication channel. Moreover, we
have to design algorithms having good performance for small parameter values,
asymptotical behavior is less important.

Problem Statement. Our goal is to design an ad-hoc communication system
for cars traveling along a motorway so that they can be warned about condi-
tions ahead (like jams, accidents, . . . ). Certainly, there are hundreds of ways,
in which one can deploy such a warning system. However our goal is to find
a low-cost solution with a minimal number of resources used, and working in an
environment with many faults. (Of course, the system will be designed in a much
more general setting, we start with a concrete scenario in order to justify some
parameter choices.)

We assume that no infrastructure can be used for the system – it consists
solely of mobile nodes installed on mobile cars. The proposed system relies on
very limited communication hardware with the following properties:

– transmission range is r,
– only one frequency channel is available for transmission,
– the available bandwidth is practically in the order of a few Kbits per second,
– the transmitters are synchronized,
– a transmission can be properly received, if it has been sent by a node within

distance r from the receiver and no other transmitters are active during this
time within the interference range of 2r, i.e. no collision has occurred.

– collision detection is limited: only a sender of a message can check whether his
message has been sent successfully, other nodes cannot distinguish between
a collision, random noise and lack of transmission,

– transmissions are unreliable – i.e. a collision free transmission is received
by a node with a constant probability pr (this models imperfections of the
wireless channel).

We design a complete system fulfilling the above goals and provide both the-
oretical and experimental analysis. The core of the system are algorithms for
size approximation, leader election and broadcasting. These algorithms cooper-
ate tightly to ensure that messages propagate fast along the motorway. In detail,
we present:

– the overall system architecture for the interaction of all necessary algorithms
(Section 2),

– a size approximation algorithm which runs in linear time with respect to the
maximum number of stations in a sector (Section 3),

– a leader election algorithm which elects a leader in logarithmic time in terms
of the maximum number of stations in a sector (Section 4),

– a reliable broadcasting algorithm (Section 5).

Section 6 concludes the paper with the results of an experimental evaluation.
Due to space limitations a proofs of several lemmas have been omitted in this

version of the paper and can be found in the full version.
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2 System Architecture

The main functionality of the system is provided by a broadcasting algorithm
(BA) which passes information from a traffic jam to other stations on the road.
For the broadcasting algorithm, the road has been conceptually divided into
geographical sectors of relatively small length, which is the half of the transmis-
sion range. This implies that cars must be able to determine the sector they are
currently in (e.g. by utilizing GPS).

For the communication to work properly, we assume that all transmitters
are synchronized. As there is only one frequency available for communication,
a time-division protocol is used in order to split available transmission time.

It may not be allowed for all sectors to broadcast their message at the same
time since the interferences would cause an excess of collisions. Thus each sector
is allowed to transmit only in specific time slots. These time slots are allocated
in such a way, that only sectors in a sufficient distance transmit in parallel. Thus
each BCAST slot (as shown in Fig. 1) is divided into a constant number of
sub-slots in which appropriate sectors can transmit. The same applies for size
approximation and leader election.

Periodically, the number of nodes in each sector is estimated by the size ap-
proximation algorithm (SA). This estimation is used by the leader election al-
gorithm (LEA). Before each time slot used for broadcasting there is a time slot
devoted to leader election, so that during broadcasting there is a leader in each
in each sector. Figure 1 illustrates this division.
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Fig. 1. Static time division between algorithms

The only algorithm utilizing communication between sectors is the broad-
cast algorithm. Size approximation and leader election work locally within re-
spective sectors. This implies that these algorithms work in a one-hop wire-
less network.

3 Size Approximation

In this section we present an algorithm estimating the number of stations in
a single-hop radio network. We assume that an upper bound on number of
stations in a sector is known to each station (the number of cars in a sector is
limited – this follows from physical sizes!). We do not demand from the nodes
to have unique IDs.
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In contrast to many previous solutions we do not pay attention to energy
cost of our algorithms (i.e. the number of time slots, when a station trans-
mits or listens to the communication channel), since in our case we have a
large amount of energy available from the car’s electrical system. Our aim is
to get algorithms which are fast and reliable. We are interested in achieving
good results for a small number of stations, without considering asymptotic
complexity.

Multi-Round Algorithm. We call a transmission proper (or successful), if it
does not collide with any other transmission. We divide stations in two groups:
active stations and inactive stations. Inactive stations are those which are allowed
to listen only. Active stations listen, too, but they can also transmit messages.
(Simultaneous transmitting and listening is feasible in our case, since transmitter
and receiver can be installed on different parts of a car.)

In our algorithm, the goal is that every station has exactly one successful
transmission during the algorithm. Then we take the number of successful trans-
missions as an estimated number of stations within the sector. We will show that
with high probability the number of successful transmissions is equal to the num-
ber of stations in the sector, if parameters are suitably chosen. In the following
paragraphs we assume that the maximum number of stations in a sector is equal
to Nmax, the actual number of stations is N and, as a result of the algorithm
each station knows n, an approximation of N .

The algorithm runs for a duration of f rounds, each consisting of Mj single-bit
transmission slots. At the beginning, all stations are active. All stations (both
active and inactive) listen all the time.

Before a round j, each active station i chooses uniformly and independently
at random a transmission slot Ti,j ∈ 1, . . . ,Mj. Then, within round j, every
active station i sends a single bit message in transmission slot Ti,j. When there
are no collisions with other transmissions, i.e. Ti,j �= Tk,j for every i �= k, the
message is received properly by every station.

Every station counts the number of proper transmissions in each round. A sta-
tion which has succeeded (i.e. its transmission was successful) becomes inactive.
Active stations, which did not manage to successfully transmit in round j, re-
main active.

After f rounds, every station computes an estimation of the number of stations
as the number of successful transmissions from all rounds.

Analysis of One Round. Now we shall investigate the properties of one round
of the Multi-Round Algorithm. Based on that knowledge, we can set an optimal
number and length of rounds.

Expected Number of Successful Transmissions. Let Sj denote the number of
successful transmissions in the jth round.

Lemma 1. Let Nj denote the number of active stations in the jth round. Let Mj

be the number of transmission slots of the jth round. Then the expected number
of new inactive stations after the j-th round is Nj(1− 1/Mj)Nj−1. � 
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Optimal Length of Rounds. Now we investigate an optimal trade-off between
the number of transmission slots for a given round and the expected number
of successful transmissions. For a fixed number of stations we want to maxi-
mize the expected number of successes per transmission slot for each round of
the algorithm.

Consider the function μ(m,n) = n(1− 1
m )n−1 equal to the expected number

of successful transmissions in one round, assuming there are exactly n active
stations in the given round and m time slots reserved for that round. Defining
a price function p(m,n) = μ(m,n)

m describing the average number of successes
per step and finding its minimum we obtain the result m = n. Thanks to this,
we have an indication on how to set the number of transmission slots per round
to achieve a good time efficiency.

To obtain a sequence of round lenghts we set M1 = Nmax, and for the next
rounds, we set the number of time slots equal to the expected number of active
stations Mi+1 = Mi − μ(Mi, Ni) = Mi − μ(Mi,Mi).

Deviation from Expectation. The previous analysis bases only on expecta-
tions and is thus insufficient. In Lemma 2 we limit the deviation of Sj from its
expectation. Its proof can be found in the full version of the paper.

Lemma 2.

Pr[E[Sj ]2 − Sj ≥ λ] ≤ exp
(
− λ2N2(2M − 1)

2(M − 1)2(N2 − E[Sj]2)

)
. (1)

� 

By Lemma 2 we estimate how many stations will become inactive after one round
with high probability. We define λ(m,n, δ) to be a number λ such that Eq. 1
is satisfied for M = m, N = n and probability not greater than δ. With this
in mind, we can redefine the price function p(m,n) = μ(m,n)−λ(m,n,δ)

m . Choosing
for each round such a length Mj that p(Mj−1, Nj−1) is maximized and setting
Nj = Nj−1 − (μ(Mj , Nj−1) − λ(Mj , Nj−1, δ)) we obtain a sequence of round
lengths {M1, . . . ,Mk} which allow the algorithm to count the number of nodes
precisely with probability greater than 1− kδ. Unfortunately the bound on the
deviation as presented in Lemma 2 is not applicable for N ≤ 10 as it is not tight
enough to produce reasonable results.

Link Unreliability. In the proofs we have omitted the problem of link unreli-
ability to avoid complex analysis. Because every node hears proper transmission
with probability pr, the expected estimated value is ≥ prN .

Evaluation. Here we give some calculated examples of the time efficiency of
the proposed algorithms. We assume a maximum of 100 stations in one sector
and try to minimize the time needed for the size approximation in such a set-
ting. The analysis based on expectations gives us a sequence of round lengths
{100, 63, 40, 25, 16, 10, 6, 4} with a total length of 264 time slots. Obviously the
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analysis taking deviations into account suggests us to allocate more time slots,
in detail this is {140, 106, 90, 75, 78, 55, 48} with a total length of 592 slots.

We have performed 100000 independent experiments for the worst case of
n = 100 and the second sequence of round’s lengths. In all cases the precise num-
ber of nodes was computed by the algorithm. In the same setting, the first sequence
achieves a probability of 0.45 to estimate the number of stations perfectly.

4 Leader Election

The algorithm consists of one-bit transmission slots, called steps. During one
step each node transmits messages with probability 1/n, where n denotes the
node’s estimation of the total number of nodes in the sector. The first node,
which successfully transmits its message becomes the leader.

During the remaining steps every node that knows that a leader has been
elected sends messages in each step in order to prevent the other stations from
becoming a leader.

For the analysis of the leader election algorithm see the full version of
this paper.

5 Broadcast

The broadcast algorithm works as follows. The key role of the stations in each
sector is to forward messages to the next sector. The only active station in
each sector in a given point of time is the leader of this sector. Thus it is his
responsibility to resend a received message. Leaders should resend a message
so that a sector as a whole resends the message a predefined constant number
of times.

Each node remembers the messages it has seen coming from the previous
sector (those which should be forwarded). It also remembers all messages it has
heard from the leader of its section, which it has not heard from the previous
sector. It remembers also for each message how many times it was heard from
a leader of its sector. If a message is resent often enough (a constant number of
times), the node marks it as processed. The message is also marked as processed
when the station leaves the sector.

Analysis. Due to the properties of the communication model, the analysis of the
broadcast algorithm is probabilistic. The reliability of the algorithm is measured
in terms of the probability of successful transmission of a message between two
distant sectors in a given time.

The key problem which underlies the broadcast reliability is the link unre-
liability. After a transmission from sector S only a fraction of all stations in
sector S + 1 knows about the transmitted message and can transmit it to the
next sector.

In order to simplify the analysis we make two assumptions. First, we disregard
node mobility (in terms of nodes leaving and joining a sector). We will show
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that a message is with high probability transmitted to the next sector within
two time slots. Even with low bandwidth for transmissions these two time slots
correspond to a fraction of a second – only a small number of stations can change
sectors in this time. The experimental evaluation presented in Section 6 takes
node mobility fully into account. Second, we assume that only one message is
traveling through the system.

We are going to analyze what happens when a message reaches some sec-
tor S, i.e. it is transmitted by sector S − 1. The number of stations which
have heard this transmission is described by the binomial distribution with
success probability pr (recall that pr denotes the probability of hearing a suc-
cessful transmission) and n trials. Then the probability that exactly k of n
stations received a message correctly is equal to

(
n
k

)
pk

r(1 − pr)n−k. The prob-
ability that this message is retransmitted by sector S in the next broadcast
slot is equal to k

n , as we assume that the leader election algorithm chooses
uniformly at random one of the stations and k of n stations know about
the message.

So the probability that a message is passed from the Sth sector to the S +1st
sector, after there has been a transmission from the sector S − 1, is equal to:

n∑
k=0

(
n

k

)
pk

r(1 − pr)n−k k

n
=

1
n

(1− pr)n
n∑

k=0

(
n

k

)
k

(
pr

1− pr

)k

= pr .

Let us describe this value by P pr,n
1 . With P pr ,n

k we describe the probability
that a message is passed successfully from sector S to sector S + 1 for the first
time in the kth broadcast slot (k − 1 previous steps were unsuccessful).

The problem with values P pr,n
k is that they are hard to compute. Thus in

Lemma 4 we develop an approximation for them, based on auxiliary Lemma 3.

Lemma 3. For every i, n and every series ki it holds⎛⎝1−
l∑

i=1

ki

n

i−1∏
j=1

(
1− kj

n

)⎞⎠ =
l∏

j=1

(
1− kj

n

)
. � 

Lemma 4. For all l and n,

l∑
i=1

P pr ,n
i ≥

n∑
k=0

l∑
i=1

(
n

k

)
pk

r(1− pr)n−k k

n

(
1− k

n

)i−1

. � 

Lemma 5. For all pr ∈ (0, 1) there exists a constant c such that for all n ≥ 1
and l ≥ 1 the following inequality holds:

n∑
k=0

l∑
i=1

(
n

k

)
pk

r (1− pr)
n−k k

n

(
1− k

n

)i−1

≥ c

l∑
i=1

pr(1 − pr)i−1 .
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Proof. The inequality has been numerically evaluated for all l ≥ 1 and n ≥ 1.
c is an increasing function of n and l for all n ≥ 1 and l ≥ 2. For l = 1 the sums
are equal. Thus c can be chosen as the value required for l = 2 for the smallest n
used practically. � 

Now, we are ready to investigate the reliability of the algorithm. We will consider
random variables F (i, j), where F (i, j) is the probability that a message travels
from the sector S to sector S + i in exactly j broadcast slots. It is easy to see
that the following recursive equation holds

F (i, j) =
{∑j−1

k=i−1 F (i− 1, k)P pr,n
j−k , if i > 1

P pr,n
j , if i = 1 .

Of course, F (i, j) = 0 for j < i.
We are interested in finding the value of

∑m
t=0 F (i, i + t), which defines the

probability that a message travels the requested distance in i + m or less trans-
mission slots. Unfortunately, the values F (i, j) are hard to compute (mainly
because of P pr,n

j−k ). Thus we will substitute F (i, j) with T (i, j). We define

T (i, j) =
{∑j−1

k=i−1 T (i− 1, k)pr(1− pr)j−k−1 , if i > 1
(1− pr)j−1pr , if i = 1 .

In Lemma 6, we show that the series T (i, j) is a lower bound for F (i, j).

Lemma 6. For given pr, and c from Lemma 5, for all i,m

m∑
j=1

F (i, j) ≥ ci
m∑

j=1

T (i, j) . � 

By Lemma 6 we can use T (i, j) instead of F (i, j).
It is easy to see that T (i, j) = w(i, j)pi

r(1 − pr)j−i as there should be ex-
actly i successful transmissions and exactly j − i failures. One can derive values
T (i, j) from T (i − 1, k), for i − 1 ≤ k ≤ j − 1. The following equality holds
for i ≥ 2:

T (i, j) =
j−1∑

k=i−1

T (i− 1, k)(1− pr)j−k−1pr .

Thanks to that, one can find the coefficient w(i, j):

T (i, j + 1) =
j∑

k=i−1

T (i− 1, k)(1− pr)j−kpr

= (1− pr)
j−1∑

k=i−1

T (i− 1, k)(1− pr)j−kpr + prT (i− 1, j)

= (1− pr)T (i, j) + prT (i− 1, j).
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Now, while comparing coefficients w, we get w(i, j +1) = w(i, j)+w(i− 1, j),
hence w(i, j) =

(
j−1
i−1

)
. Finally, we get

T (i, j) =
(
j − 1
i− 1

)
pi

r(1 − pr)j−i .

Thus we can lower bound the value of
x∑

t=0

P (i, i + t) ≥ ci
x∑

t=0

T (i, i + t) = ci
x∑

t=0

(
i + t− 1
i− 1

)
pi

r(1− pr)t .

Evaluation. With the assumption of pr = 0.9 the value of c from Lemma 5 has
to be set to 0.9818. This gives a probability of traveling a distance of 10 sectors
within 20 slots of time equal to approximately 0.83. For practical parameters
(sector length 250 meters and 10 broadcast time slots per second) this distance
and time correspond to 2.5 kilometers and 2 seconds. If we additionally assume
that there are at least 10 cars in each sector (for crowded traffic very common)
then c = 0.9909 and thus the probability of traveling 10 sectors in 20 time slots
increases to 0.91.

6 Experimental Evaluation

The system has been evaluated experimentally within an environment based on
a cellular automaton of the Helbing type (see [1]), which simulates the behavior
of cars on a road.

The cellular automaton has been extended by allowing each car to run its
own simulated wireless transceiver. Additionally each car is able to run the size
approximation, leader election and broadcasting algorithms.

The goal of the simulator was to measure message travel time, leader election
success rate and size approximation accuracy. The test environment consists of
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Fig. 2. Reliability of algorithms in simulation
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a road of 6.75 km length, thus being divided into 27 sectors. Every 3 seconds
a broadcast is issued by the last sector and is forwarded by the broadcasting
algorithm to the first sector. Figure 2(b) shows the distribution of the travel time
of messages from the last sector to the first one. As there are 10 broadcast time
slots in each second, the most common travel time of 31 time slots corresponds
to 3.1 seconds. The pr parameter has been set to 0.9.

The cars on the road travel with a maximum speed of 135 km/h, with a density
of 0.3 and all other cellular automaton parameters as suggested in [1].

The leader election success rate is equal to 0.99959 and the size approximation
accuracy is shown in Fig. 2(a). For every invocation the leader election algorithm
was allowed to run for 20 rounds and the size approximation algorithm was
allowed to run for 264 rounds, divided into 8 rounds as suggested in Section 3.
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Abstract. We propose a new semi-strong approach to types and static type 
checking in object-oriented database query and programming languages. Many 
features of current object-oriented query/programming languages, such as 
naming, ellipses, automatic coercions and irregularities in data structures, cause 
that current formal strong type systems are irrelevant to practical situations. 
There is a need for semi-strong, but still efficient type checking. We treat types 
as syntactic qualifiers (signatures) attached to objects, procedures, modules and 
other data/program entities. In our approach a type inference system is based on 
decision tables involving signatures and producing type checking decisions. 
A type checker is based on data structures which statically model run-time 
structures and processes: a metabase, a static environment stack, a static result 
stack and a type inference decision tables. To discover several type errors in 
one run we use the mechanism for restoring the state of the type checker after 
a type error. 

1   Introduction 

Apparently, strong type checking of object-oriented or XML-oriented query 
languages integrated with programming languages is exhausted by the current state-
of-the-art. There are thousands of papers on types. Many of them deal with bulk types 
typical for databases and database programming languages, including query 
languages. There are also many practical proposals of type systems implemented in 
object-oriented programming languages (e.g. C++ or Java) as well as in research 
prototypes, e.g. PS-Algol, DBPL, Galileo, Napier-89, Fibonacci, etc. (see 
overviews [2], [3]). A strong typing system (however, criticized [1]) has also been 
proposed within the ODMG standard [7] for object databases. Although typing was 
not the main concern of the SQL-99 standard, it contains many pages devoted to 
types. Recently the XQuery standard proposal is also claimed to be strongly typed and 
corresponding typecheckers have been developed (see e.g. [8]).  

However, there are features of query/programming languages and environments 
that make implementation of types difficult. Taking into account such issues as 
                                                           
* This paper presents a part of the research preceding the 6th Framework European Project 

eGov Bus, IST-026727-STP. 
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mutability, collection cardinality constraints, collection kinds, type equivalence based 
on type names, inheritance and multiple inheritance, dynamic object roles and 
dynamic inheritance, modules, export and import lists, etc. causes that the type notion 
is tangled with so many details and peculiarities that typical type systems known e.g. 
from functional languages become idealistic and impractical. Moreover, irregularities 
in data structures (null values, repeating data, variants/unions, unconstrained data 
names), ellipses and automatic coercions occurring in queries cause that strong typing 
should be relaxed to be efficient for the programmers. 

Indeed, strong type checking professionals are trying to convince the community 
that all what should be done is already done. On the other hand, the typing solutions 
of the ODMG standard and challenging implementation of types in XQuery cause 
another impression. Developers of many web and database programming tools ignore 
types totally because the theories are obscure and implementation is too difficult. If it 
is so good in theory, why it is so bad in practice? We have checked this fundamental 
question by implementation of a strong type checker within our recent project ODRA, 
an object-oriented database server devoted to Web and grid applications. ODRA is 
based on the query/language SBQL, incomparably more powerful than ODMG OQL 
(because of its algorithmic power) and Xquery (because of updating facilities and 
views). SBQL is not only a very powerful object-oriented query language, it is also 
extended by imperative constructs of programming languages (a la Oracle PL/SQL or 
SQL-99), programming abstractions such as procedures, functions and methods, and 
database abstractions such as stored procedures and updateable views. 

The report [6] and this paper present the first inferences concerning this 
experience. First, we have concluded that many theories are good guidelines, but 
eventually must be corrected by practical considerations. Second, strong typing 
systems presented by the theories are too strong and must be relaxed to meet reality. 
Therefore we propose a new semi-strong approach to the problem. Third, the major 
issues in the typing systems are not theoretical, but practical development of solutions 
that meet the typical programmer’s psychology. Psychology is hardly formalized, thus 
a lot of solutions in our typing system is dependent on (sometimes random) decisions 
which anticipate further behaviour of the programmers. 

To make our contribution more clear, we present the following example from the 
ODMG standard. The problem concerns auxiliary names or “synonyms” or “iteration 
variables” in languages such as SQL and OQL. Consider the following OQL query, 
p. 104 [7]: 

select * from Students as x, x.takes as y, y.taught_by as z 
where z.rank = "full professor" 

The query defines three names x, y, z, considered “iteration variables”. According 
to the scope rules (p. 112), their scope is limited to this query (they have no meaning 
outside it). But it appears (p. 105) that the type returned by this query is: 

bag<struct (x:Students, y:Section, z:Professor)> 

The semantic qualification of these names is changed: instead of being “iteration 
variables” they become structure field labels. Because the output of the query can be 
used in another (outer) query, these names can be used outside the query where they 
have been defined (which is inconsistent with the assumed scope rules).  
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This example shows very basic questions: 

(1) Which formal model makes it possible to change iteration variables into 
structure field labels?  

(2) What is the real scope for x, y, z? 
(3) How the semantics can be correctly formalized? 
(4) How this situation can be correctly statically typed? 
(5) Which of the currently known typing systems can handle such situations? 

In our formalization of SBQL [11] we have shown that intuitions of the ODMG are 
correct. We have precisely defined the semantics of the as operator, but this semantics 
has no precedents in programming languages. The resulting type is as shown above, 
however, the scope of variables x, y, z is restricted in a way that is different from any 
kind of textual query/program parentheses (a query, a program block, a procedure, 
a module, etc.). Obviously, the type inference engine should approximate run-time 
calculations during parse/compilation time. However, because such a semantic 
situation is unknown in programming languages, the answer for (5) is negative: no 
currently known typing systems is proper. The answer for (4) is (in particular) the 
subject of our research: we show how this case can be correctly typed.  

This is one of many examples showing that current trends in object-oriented and 
XML-oriented databases and query languages go far beyond the proposals of strong 
polymorphic typing systems that are known from previous years. Even apparently 
innocent concept of collection (bulk type) causes difficulties. In particular, it is 
normal e.g. in SQL that a collection with one value v is considered equivalent to the 
value v (see nested select clauses in SQL). This kind of coercion requires shifting 
some type checks to run time. Careful analysis has shown that collections (especially 
heterogeneous ones) are in contradictions with the fundamental for object-
orientedness substitutability and open-close principles. In XML technologies (DTD 
and XML Schema) the collection concept is replaced by the cardinality constraint 
concept, which makes quite a big difference for static typing systems (bulk types are 
type constructors, while cardinalities are attributes of internal type signatures). Again, 
we didn’t find any static typing system dealing with cardinalities rather than 
collections. Such cases have convinced us that static strong typing requires nowadays 
a quite new approach. We call it semi-strong typechecking (after semi-structured data 
concept). A thorough description of the approach and implementation can be found 
in [6]. 

Data schemata partly release programming languages from keeping type 
information. Run-time libraries or programs read this information from schemata 
stored by databases. In this way types become neutral to programming languages. 
This assumption is the basis of the type systems of CORBA [10] and ODMG [7]. 
Some hybrid solutions are proposed which consists in textual mapping of types 
(defined e.g. in CORBA IDL) to types specific to a programming language. In our 
approach we assume that the semi-strong type checking mechanism is directly based 
on the database schema. We do not consider how our type system can be mapped to 
a typical object-oriented programming language such as C++ or Java. Because our 
typing system is much more sophisticated, this probably would not be an easy task. 

Our idea follows the Stack-Based Approach [12], [11], which explains the 
mechanism of query evaluation for object-oriented databases through concepts well-
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known in programming languages. It involves three basic architectural elements: an 
object store, an environment stack and a result stack. The idea of a static type checker 
consists in simulating actions of the above three run-time structures during the 
compile time. This concept (executing programs on abstract data to obtain 
information about them) is the underlying intention of abstract interpretation, which 
was first proposed in [4] and some other work has been done later [9]. 

A static type checker consists of the following architectural elements: a metabase (a 
counterpart of an object store), a static environment stack, a static result stack and type 
inference decision tables for all operators introduced in a given query/programming 
language.  

A particular row of a decision table contains signatures of the given operator 
arguments and the decision, which is one of the three items: (1) it determines the 
resulting signature for the given operator and signatures of its arguments; (2) it 
qualifies situation as a type error; (3) it qualifies the situation as impossible to check 
statically and adds run-time coercions and/or pushes the type check to run-time. 

Type inference decision tables make type soundness a straightforward issue, 
provided that the description of query operators indeed matches their run-time 
behavior. Our approach facilitates accommodating non-standard ad-hoc features of 
practical languages better than conventional type systems, since the operational 
semantics can be modeled more directly. Such ad-hoc features are very useful in 
semi-structured processing. 

Our semi-strong approach to typing is very different from everything what till now 
has happened in the domain. The approach is supported by experimental 
implementation in the ODRA system, where we have shown that the idea is 
implementable, efficient and has many advantages over current proposals for database 
typing systems. The comparison with similar existing proposals is  difficult due to 
incompleteness and inconsistency (hence, non-implementability) of some proposals, 
much higher functionality and power of SBQL in comparison to e.g. ODMG OQL 
and XQuery, totally different formal background, unknown implementation features 
of majority of other proposals, etc. The black-box comparison convinced us that our 
approach offers for the designers of database languages much more flexible typing 
mechanisms that cover object-oriented, semi-structured and Web-oriented 
technologies.  

The rest of the paper is organized as follows. In section 2 we present database 
schemata and metabases compiled from the schemata. Section 3 introduces the idea of 
type inference decision tables. Section 4 describes the type checking procedure. 
Section 5 concludes. 

2   Database Schema and Metabase 

A type system for a database is necessary to express the information on the 
conceptual and logical structure of the data store. The information is commonly 
referred to as the database schema. Fig.1 presents an example schema in an UML-like 
notation that can be easily transformed into e.g. ODMG ODL-like specification. 
Although basically the query engine is independent of the database schema, we need 
it to reason statically about type correctness of queries and programs. We also need it 
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for other reasons, in particular, to enforce type constraints inside the object store, to 
resolve some binding ambiguities, to reason about ellipses, dereferences and 
coercions occurring in queries, and to optimize queries.  

A schema has two forms: external (as presented for programmers, e.g. Fig.1) and 
internal (as used by the type inference engine). There is a lot of syntactic freedom 
concerning the external schema form and this issue we consider important but 
secondary. In this paper we are interested in an internal schema, which will be called 
metabase. A metabase represents schema information in a form of well-structured 
data (a graph), allowing for querying and for modification. A metabase statically 
models and reflects the data store and itself it looks like a data store. This idea is 
similar to DataGuides of Lore [5]. Fig.2 presents a metabase compiled from the 
schema depicted in Fig.1. 

A node of a metabase graph represents some data entity (entities) of the object 
store: object(s), attribute(s), link(s), procedure, class, method, view, and perhaps 
others. Each node itself is a complex object having its non-printable identifier (we call 
it static identifier) which uniquely identifies the node. In this paper we assume 
a meta-language convention that the node describing entities named n has the 
identifier denoted in. The convention has no meaning for semantics and 
implementation of the static typing mechanism.  

For simplification in this paper we “stick” representation of a complex object with 
representantation of its direct class. This does not lead to ambiguity, because on the 
run-time environment stack the section with binders to a complex object has always 
a twin, neighbouring section with binders to properties of its direct class. Such 
sticking of metabase nodes implies similar sticking of these two sections on the static 
environment stack, thus simplifies the metabase and implementation. 

Person[0..*]
name: string
changeName(string)

Person[0..*]
name: string
changeName(string)

Emp[0..*]
empno: int
sal[0..1]: int
job: string
changeSal(int)

Emp[0..*]
empno: int
sal[0..1]: int
job: string
changeSal(int)

Dept[0..*]
name: string
loc[0..1]: string

Dept[0..*]
name: string
loc[0..1]: string

works_in employs[0..*]

manages[0..1] boss

 

Fig. 1. An example database schema 

As a complex object, a node of a metabase contains several attributes. In this paper 
we distinguish the following ones: name, kind (atomic, complex, link, procedure, 
method, class, etc.), type (an atomic type of objects described by the node; this 
attribute is not present in nodes describing complex and link objects, because their 
types are composed from types of other entities), card (cardinality). Cardinalities will 
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be written as i..j, where i is the minimal number of described objects and j is the 
maximal number of them. If the number of described objects is unlimited, j has the 
value *. Cardinalities 0..0 and 1..1 will be written 0 and 1, and 0..* will be written 
as *.  

There could be other attributes of the node, in particular, mutability (perhaps, 
subdivided into update-ability, insert-ability, delete-ability), a collection kind (bag, 
sequence, array, etc.), type name (if one would like to assume type equivalence based 
on type names, as e.g. in Pascal), and perhaps others. For simplicity of presentation in 
this paper we omit them, but they can be easily involved into type inference decision 
tables and then introduced in implementation. 

Edges in the metabase are of three kinds: (1) an ownership which connects 
subobjects with their owner, (2) the range of a link object and (3) the inheritance. 

 

name: works_in
kind: link 
card: 1 

name: Person 
kind: class 
card: * 

name: name
kind: object
type: string 
card: 1 

name: Emp 
kind: class 
card: * 

name: Dept
kind: class 
card: * 

name: sal 
kind: object
type: int  
card: 0..1 

name: empno 
kind: object 
type: int  
card: 1 

name: job 
kind: object
type: string
card: 1 

name: loc 
kind: object 
type: string 
card: 0..1 

name: name
kind: object
type: string 
card: 1 

name: changeName 
kind: method 
type: string → void 

name: changeSal 
kind: method 
type: int → void 

name: manages
kind: link 
card: 0..1 

name: employs
kind: link 
card: 1..* 

name: boss
kind: link 
card: 1 

 

Fig. 2. An example metabase graph 

In Fig.2 we distinguish (1) and (2) edge kinds by the attribute kind. Note that 
assuming some predefined (the same) name for all nodes, the metabase can be easily 
represented as an object store built according to the store model. In this way the 
metabase can be queried through SBQL. 
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3   Type Inference Decision Tables 

The query engine processes values which can also be object references. The purpose 
of introducing static stacks is precise simulation of the actual computation. The static 
stacks contain signatures which are descriptions of values used during the actual 
computation. The set of signatures S is recursively defined together with the set of 
signature components SC. These two sets are the smallest sets which satisfy the 
following conditions: 

1. Names of atomic types (e.g. int, float, string, date, etc.) belong to SC. 
2. All static identifiers of the metabase graph nodes (e.g. iEmp and iDept) belong to SC. 

Identifiers of graph nodes represent types defined in the database schema. Static 
identifiers are signatures of references to store objects. 

3. If x belongs to S and n is an external name, then the pair n(x) belongs to SC. Such 
a pair will be called static binder.  

4. If n ≥ 1, x1, x2, …, xn belong to SC, c is a cardinality, and o is an ordering tag, then 
(x1, x2, …, xn)[c]o belong to S.  

The last point defines collections of structures, but it also encompasses individual 
items which are just singleton structures. Although the set of cardinalities may be 
arbitrary, in our research we have limited it to {0..0, 0..1, 1..1, 0..*, 1..*}. Its elements 
have an obvious meaning. Therefore, collections are treated the same way as 
individual and optional items. It is just the matter of cardinality. The ordering tag is 
one of {o, u} which stand for ordered and unordered respectively.  

All signatures are thus uniform. Each of them determines a content, a cardinality 
and an ordering. As it can be seen all three aspects are orthogonal. Such signatures 
can be further orthogonally augmented with mutability tags, store locations (in 
distributed environments), etc. 

During the static type check we use rules to infer the type of complex expressions 
from types of their subexpressions. These rules have the form of type inference 
decision tables. Such a table is established for each operator of the 
query/programming language. The decision tables for all the non-algebraic operators 
are generalized, i.e. each row of the table represents some collection (usually infinite) 
of real cases. Such generalized decision tables will be called meta-rules.  

For example, let us consider the navigation (the dot operator) and query qL.qR. The 
type of this query depends on the types of the queries qL and qR.  

The type of qL The type of qR The type of qL.qR 
(x1, x2, …, xn)[c]o (y1, y2, …, ym)[d]p (y1, y2, …, ym)[c⊗d](o∧p) 

In this table c⊗d is the product of c and d, which is obtained by the multiplication of 
lower and upper bounds of the cardinalities c and d: [e..f]⊗[g..h] = [e*g..f*h]. The 
meaning of the conjunction of o and p is obvious. The resulting collection (even 
empty or singleton) is ordered if and only if both argument collections are ordered. 

In general, development of type inference decision tables presents a kind of art 
with no tips from theories. The art is based on precise understanding of the language 
semantics and the sense of programmers’ psychology. The devil is within a lot of 
detailed decisions concerning particular rows of the tables. 
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4   Static Type Checking 

The general architecture of the type checker is presented in Fig.3. Shaded shapes are 
program modules, while dashed lines surround data structures which are used and 
created by the modules. The query parser takes a query as a text supplied by a client 
and compiles it to produce an abstract syntax tree of the query. This syntax tree is 
analysed, decorated and sometimes modified by the type checker. If the type checking 
is successful (the query is correct), the query is executed by the query engine. The 
query engine operates on two stacks and on the data store.  

QRE
QRES 

ENVS 

Object store

Query engine Type checker 

Static stack 
S_ENVS 

Static stack 
S_QRES 

Metabase 

Abstract syntax tree of the query

Query parser client
a query

 

Fig. 3. The general architecture of the type checker 

Analogously, the type checker which is to simulate the execution of the query 
operates on corresponding static structures (the static environment stack S_ENVS, the 
static result stack S_QRES and the metabase). The type checker uses the information 
known during the parsing and does not retrieve any information from the data store. 
The static stacks contain, in particular, signatures of objects from the data store. The 
type checker processes the signatures exactly in the same way as the query engine 
could later process the concrete object from the data store, if they were not optimized. 

The procedure static_type_check is the heart of the type checker and operates on 
the syntactic tree of a query, both static stacks and the metabase. This procedure is an 
abstract implementation of our type checker. It performs the computation on 
signatures just as if they were actual data. During the signature computation, the 
procedure accomplishes the following actions: 
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− Checks the type correctness of the syntactic tree of a query by simulating the 
execution of this query on the static stacks S_ENVS and S_QRES.  

− Generates messages on type errors. 
− Augments the syntactic tree in order to resolve ellipses.  
− Augments the syntactic tree with automatic dereferences and coercions. 
− Augments the syntactic tree with dynamic type checks, if the type correctness 

cannot by asserted statically. Such augmenting means that type checks are 
postponed until run-time. 

− Possibly modifies the static stacks in order to restore the process after a type error 
has been encountered. These modifications are driven by rules which define most 
probable result types in certain cases. They allow detecting more than one error 
during one type check pass.  

Before the function static_type_check is run, the stack S_ENVS must contain the 
static base section which consists of the static binders to all static root identifiers (i.e. 
static identifiers of objects which are starting points for querying). For each static root 
identifier in defined in the schema, the base section of S_ENVS will contain the 
signature (n(in))[0..*]u. For the schema presented on Fig. 1 the base section of 
S_ENVS will consists of (Person(iPerson) )[0..*]u, (Emp(iEmp))[0..*]u and 
(Dept(iDept))[0..*]u.  

The structure of the procedure static_type_check is driven by the abstract syntax of 
queries. For each kind of a query (literal, name, unary operator, algebraic operator, 
non-algebraic operator) it contains a section which describes how to check the type of 
a query built from this kind of operator. 

5   Conclusions 

We have proposed a new semi-strong approach to static type checking assuming the 
practitioners’ viewpoint. Many interrelated aspect of a strong type checking mechanism, 
irregular, arbitrary choices that must be taken during the development, dependencies on 
programmers’ psychology, and other factors have caused our loss of believe that any 
academic type theory could bring an essential support in the development of strong 
static type systems for object-oriented database query/programming languages.  

Our type system consists of a metabase, a static environment stack, a static result 
stack and type inference rules. The rules are represented as decision tables and are 
defined for all the operators occurring in the language. We have described an 
appropriate static type checking procedure and explained how this procedure can be 
used to correct certain type errors in queries and to recover a type checking process 
from wrong state that may occur after a type error. Such restorations allow detecting 
more than one error during one type check pass. The procedure makes it also possible 
to resolve some ellipses, to accomplish some type coercions and to insert dynamic 
type checking actions into a run-time query/program code.  

We have validated our semi-strong approach to typing on our experimental object-
oriented database system ODRA devoted to Web and grid applications, where we 
have shown that the approach is implementable and efficient. 
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Abstract. Multi-adjoint logic programming represents a very recent,
extremely flexible attempt for introducing fuzzy logic into logic pro-
gramming. Inspired by previous approaches largely used in other (crisp)
declarative paradigms, in this paper we propose the development of
a fold/unfold based transformation system for optimizing such kind of
fuzzy logic programs. We prove that our set of transformation rules com-
posed by definition introduction, folding, unfolding and facting, enjoys
strong correctness properties (i.e. the semantics of computed substitu-
tions and truth degrees is preserved) and it is able to significantly improve
the execution of goals against transformed programs. To the best of our
knowledge, this is the first approach to the construction of a complete
transformation system in a fuzzy logic setting.

1 Introduction

Program transformation is an optimization technique for computer programs
that, starting with an initial program P0, derives a sequence P1, . . . ,Pn of trans-
formed programs by applying elementary transformation rules such as folding
and unfolding (i.e., contraction and expansion of sub-expressions of a program
using the definitions of this program or of a preceding one) thus generating more
efficient code. The basic idea is to divide the program development activity,
starting with a (possibly naive) problem specification written in a programming
language, into a sequence of small transformation steps. The development of
useful fold/unfold based transformation systems was first introduced in [4] to
optimize functional programs and then used for logic programs [16].

More recently, in [2], [13] we have described a complete set of fold/unfold
transformation rules (based on needed narrowing) for lazy functional–logic pro-
grams, which combine the best properties of both declarative paradigms. So-
phisticated strategies for guiding the optimal application of such rules in order
to produce significant benefits on transformed programs (for instance, by avoid-
ing the construction of intermediate data structures, redundant computations,
and so on) can be found too in [1], [12]. Having into account all these hopeful
and suggestive precedents, the main goal of the present work consists in the
adaptation of such transformation methodology to a fuzzy logic setting.
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Multi-adjoint logic programming [9]-[11] is an extremely flexible framework com-
bining fuzzy logic and logic programming. Informally speaking, a multi–adjoint
logic program can be seen as a set of rules each one annotated by a truth degree
and a goal is a query to the system plus a substitution (initially the identity substi-
tution, denoted by id). In the multi–adjoint logic programming framework, goals
are evaluated, in a given program, in two separate computational phases. During
the operational one, admissible steps (a generalization of the classicalmodus ponens
inference rule) are systematically applied by a backward reasoning procedure in a
similar way to classical resolution steps in pure logic programming, thus returning
a computed substitution togetherwith an expressionwhere all atoms have been ex-
ploited. This last expression is then interpreted under a given lattice during what
we call the interpretive phase, hence returning a pair 〈truth degree; substitution〉
which is the fuzzy counterpart of the classical notion of computed answer tradi-
tionally used in pure logic programming.

Let us now formally introduce a short summary of the main features of this
language (we send the interested reader to [9, 10, 11] for a complete formulation).
We work with a first order language, L, containing variables, function symbols,
predicate symbols, constants, quantifiers, ∀ and ∃, and several (arbitrary) con-
nectives to increase language expressiveness:

&1, &2, . . . , &k (conjunctions) ∨1, ∨2, . . . , ∨l (disjunctions)
←1, ←2, . . . , ←m (implications) @1, @2, . . . , @n (aggregations)

Although the connectives &i, ∨i and @i are binary operators, we usually gen-
eralize them as functions with an arbitrary number of arguments. In the follow-
ing, we often write @i(x1, . . . , xn) instead of @i(x1,@i(x2, . . . ,@i(xn−1, xn) . . .)).
Moreover, the truth function for any conjunction operator verifies [[&i]](1, v) =
[[&]](v, 1) = v, for all v ∈ L and i = 1, . . . , n; whereas any n-ary aggrega-
tion operator [[@]] : [0, 1]n → [0, 1] is required to be monotonous and fulfills
[[@]](1, . . . , 1) = 1 and [[@]](0, . . . , 0) = 0.

Additionally, our language L contains the values of a multi–adjoint lattice,
〈L,*,←1,&1, . . . ,←n,&n〉, equipped with a collection of adjoint pairs 〈←i,&i〉,
where each &i is a conjunctor1 intended to the evaluation of modus ponens. In
general, the set of truth values L may be the carrier of any complete bounded
lattice but, for readability reasons, in the examples we shall select L as the set
of real numbers in the interval [0, 1].

A rule is a formula A ←i B, where A is an atomic formula (usually called the
head) and B (which is called the body) is a formula built from atomic formulas
B1, . . . , Bn — n ≥ 0 —, truth values of L and conjunctions, disjunctions and
aggregations. Rules with an empty body are called facts. A goal is a body sub-
mitted as a query to the system. Variables in a rule are assumed governed by
universal quantifiers.

Roughly speaking, a multi–adjoint logic program is a set of pairs 〈R;α〉, where
R is a rule and α is a truth degree (a value of L) expressing the confidence which

1 It is noteworthy that a symbol &j of L does not always need to be part of an adjoint
pair.
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the user of the system has in the truth of the rule R. Often, we will write “R
with α” instead of 〈R;α〉. Observe that, truth degrees are axiomatically assigned
(for instance) by an expert.

The structure of the paper is as follows. In Section 2, we summarize the
main operational features of the programming language we use in this work, by
defining its procedural semantics and establishing a clean separation between
the operational and the interpretive phase of a computation. In Section 3 we
not only define, relate and illustrate our set of fuzzy transformation rules, but
we also formally prove the strong correctness properties of the complete trans-
formation system. Finally, in Section 4 we give our conclusions and propose
future work.

2 Procedural Semantics

The procedural semantics of the multi–adjoint logic language L can be thought
as an operational phase followed by an interpretive one. Similarly to [7], in this
section we establish a clear separation between both phases.

The operational mechanism uses a generalization of modus ponens that, given
a goal A and a program rule 〈A′←iB, v〉, if there is a substitution θ = mgu({A =
A′})2, we substitute the atom A by the expression (v&iB)θ. In the following, we
write C[A] to denote a formula where A is a sub-expression (usually an atom)
which arbitrarily occur in the —possibly empty— context C[]. Moreover, expres-
sion C[A/A′] means the replacement of A by A′ in context C[]. Also we use Var(s)
for referring to the set of distinct variables occurring in the syntactic object s,
whereas θ[Var(s)] denotes the substitution obtained from θ by restricting its
domain, Dom(θ), to Var(s).

Definition 1 (Admissible Steps). Let Q be a goal and let σ be a substitution.
The pair 〈Q;σ〉 is an state and we denote by E the set of states. Given a pro-
gram P, an admissible computation is formalized as a state transition system,
whose transition relation →AS ⊆ (E × E) is the smallest relation satisfying the
following admissible rules (where we always consider that A is the selected atom
in Q):

1) 〈Q[A];σ〉→AS〈(Q[A/v&iB])θ;σθ〉 if θ = mgu({A′ = A}), 〈A′←iB; v〉 in P
and B is not empty.

2) 〈Q[A];σ〉→AS〈(Q[A/v])θ;σθ〉 if θ = mgu({A′ = A}), and 〈A′←i; v〉 in P.

3) 〈Q[A];σ〉→AS〈(Q[A/⊥]);σ〉 if there is no rule in P whose head unifies
to A.

Formulas involved in admissible computation steps are renamed before being
used. Note also that rule 3 is introduced to cope with (possible) unsuccessful
2 Let mgu(E) denote the most general unifier of an equation set E (see [8] for a formal

definition of this concept).
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admissible derivations. When needed, we shall use the symbols →AS1, →AS2
and →AS3 to distinguish between computation steps performed by applying one
of the specific admissible rules. Also, when required, the exact program rule used
in the corresponding step will be annotated as a super–index of the→AS symbol.

Definition 2. Let P be a program and let Q be a goal. An admissible derivation
is a sequence 〈Q; id〉 →∗

AS 〈Q′; θ〉. When Q′ is a formula not containing atoms,
the pair 〈Q′;σ〉, where σ = θ[Var(Q)], is called an admissible computed answer
(a.c.a.) for that derivation.

We illustrate these concepts by means of the following example.

Example 1. Let P be the following program and let ([0, 1],≤) be the lattice
where ≤ is the usual order on real numbers.

R1 : p(X) ←prod q(X,Y )&G r(Y ) with α = 0.8
R2 : q(a, Y ) ←prod s(Y ) with α = 0.7
R3 : q(Y, a) ←luka r(Y ) with α = 0.8
R4 : r(Y ) ←luka with α = 0.6
R5 : s(b) ←luka with α = 0.9

The labels prod, G and luka mean for product logic, Gödel intuitionistic logic
and �Lukasiewicz logic, respectively. That is, [[&prod]](x, y) = x · y, [[&G]](x, y) =
min(x, y), and [[&luka]](x, y) = max(0, x + y − 1).

In the following admissible derivation for the program P and the goal
←p(X)&Gr(a), we underline the selected expression in each admissible step:

〈p(X)&Gr(a); id〉 →AS1
R1 〈(0.8&prod(q(X1, Y1)&Gr(Y1)))&Gr(a);σ1〉

→AS1
R2 〈(0.8&prod((0.7&prods(Y2))&Gr(Y2)))&Gr(a);σ2〉

→AS2
R5 〈(0.8&prod((0.7&prod0.9)&Gr(b)))&Gr(a);σ3〉

→AS2
R4 〈(0.8&prod((0.7&prod0.9)&G0.6))&Gr(a);σ4〉

→AS2
R4 〈(0.8&prod((0.7&prod0.9)&G0.6))&G0.6;σ5〉,

where:

σ1 = {X/X1},
σ2 = {X/a,X1/a, Y1/Y2},
σ3 = {X/a,X1/a, Y1/b, Y2/b},
σ4 = {X/a,X1/a, Y1/b, Y2/b, Y3/b}, and
σ5 = {X/a,X1/a, Y1/b, Y2/b, Y3/b, Y4/a}.

So, since σ5[Var(Q)] = {X/a}, the a.c.a. associated to this admissible derivation
is: 〈(0.8&prod((0.7&prod0.9)&G0.6))&G0.6; {X/a}〉.

Let us now explain the interpretive phase. If we exploit all atoms of a goal, by
applying admissible steps as much as needed during the operational phase, then
it becomes a formula with no atoms which can be then directly interpreted in
the multi–adjoint lattice L.



Building a Fuzzy Transformation System 413

Definition 3 (Interpretive Step). Let P be a program, Q a goal and σ a sub-
stitution. We formalize the notion of interpretive computation as a state tran-
sition system, whose transition relation →IS⊆ (E × E) is defined as the least
one satisfaying: 〈Q[@(r1, r2)];σ〉→IS〈Q[@(r1,r2)/[[@]](r1,r2)];σ〉, where [[@]] is the
truth function of connective @ in the lattice 〈L,*〉 associated to P.

Definition 4. Let P be a program and 〈Q;σ〉 an a.c.a., that is, Q is a goal not
containing atoms. An interpretive derivation is a sequence 〈Q;σ〉 →∗

IS 〈Q′;σ〉.
When Q′ = r ∈ L, being 〈L,*〉 the lattice associated to P, the state 〈r;σ〉 is
called a fuzzy computed answer (f.c.a.) for that derivation.

Usually, we refer to a complete derivation as the sequence of admissible/interpre-
tive steps of the form 〈Q; id〉 →∗

AS 〈Q′;σ〉 →∗
IS 〈r;σ〉 (sometimes we denote it

by 〈Q; id〉 →∗
AS/IS 〈r;σ〉) where 〈Q′;σ[Var(Q)]〉 and 〈r;σ[Var(Q)]〉 are, respec-

tively, the a.c.a. and the f.c.a. for the derivation.

Example 2. We complete the previous derivation of Example 1 by executing the
necessary interpretive steps in order to obtain the fuzzy computed answer (f.c.a.)
with respect to lattice ([0, 1],≤):

〈(0.8&prod((0.7&prod0.9)&G0.6))&G0.6; {X/a}〉 →IS

〈(0.8&prod(0.63&G0.6))&G0.6; {X/a}〉 →IS

〈(0.8&prod0.6)&G0.6; {X/a}〉 →IS

〈0.48&G0.6; {X/a}〉 →IS

〈0.48; {X/a}〉

Then the f.c.a for this complete derivation is the pair 〈0.48; {X/a}〉.

3 Fuzzy Transformation Rules

In this section, our aim is to define a set of program transformations rules which is
strongly correct, i.e., sound and complete w.r.t. the semantics of fuzzy computed
answers (that is, truth degrees and substitutions).

Let us first give the rule for the introduction of new predicate definitions in
a similar style to [16], in which the set of definitions is partitioned into “old” and
“new” predicates. In the following, we consider a fixed transformation sequence
(P0, . . . ,Pk), k ≥ 0.

Definition 5 (Definition introduction). We may get program Pk+1 by
adding to Pk a new rule called “definition rule” (or “eureka”) of the form3:
p(xn) ← B with α = 1, such that:

1. p is new, i.e., it does not occur in the sequence P0, . . . ,Pk,
2. xn is the set of variables appearing in B, and
3. every non-variable symbol occurring in B belongs to P0.

3 Observe that the ← symbols does not need to be labeled with any sub-index due to
the fact that the truth degree associated to eurekas are always the maximum one 1.
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We say that p is a new predicate symbol, and every predicate symbol belonging
to P0 is called an old predicate symbol.

The introduction of a new eureka definition is virtually always the first step of
a transformation sequence. Determining which definitions should be introduced
is a clever task (which justifies the name “eureka” for the new rules) which falls
into the realm of strategies (see [15] for a survey). In general, the main idea
consists in producing a new rule whose body contains a subset of predicates
appearing in the body of a program rule whose definition is intended to be
improved by subsequent transformation steps.

Example 3. Consider now the program P of Example 1 as the initial one P0 of
a transformation sequence. Inspired by its first rule whose (whole) definition we
want to enhance, we can build the eureka rule R6 : new(X,Y )←q(X,Y )&Gr(Y )
with α = 1, and then, the next program in the sequence is P1 = P0 ∪ {R6}.

Let us now introduce the folding rule, which roughly speaking consists in the
compression of a piece of code into an equivalent call. Our definition is closely
related to the reversible folding rule defined for pure logic programs in [5].

Definition 6 (Folding). Let R : (A ←i B with α = v) ∈ Pk be a non-eureka
rule (the “folded rule”) and let R′ : (A′ ← B′ with α = 1) ∈ Pk be an eureka
rule (the “folding rule”) such that, there exist a substitution σ verifying that B′σ
is contained in B. We may get program Pk+1 by folding rule R w.r.t. eureka R′

as follows: Pk+1 = (Pk − {R}) ∪ {A←i B[B′σ/A′σ] with α = v}.

There are two points regarding our last definition which are worth noticing:

– The condition which says that the folded rule R is a non-eureka rule whereas
R′ is an eureka rule is useful to avoid the risk of self-folding, that is, the
possibility of folding a rule w.r.t. itself, hence producing a wrong rule with
the same head and body which may introduce infinite loops on derivations
and destroy the correctness properties of the transformation system.

– The substitution σ of Definition 6 is not a unifier but just a matcher, simi-
larly to many other folding rules for logic programs, which have been defined
in a similar “functional style” (see, e.g., [3, 5, 15, 16]). Moreover, it has the
advantage that it is easier to check and can still produce effective optimiza-
tions at a lower cost.

Example 4. Continuing with Example 3, the goal now is to link the eureka def-
inition (which will be afterwards improved by means of unfolding steps) to the
original program. This is done by simply folding R1 w.r.t. eureka R6, thus ob-
taining P2 = (P1 − {R1}) ∪ { R7 : p(X)←prodnew(X,Y ) with α = 0.8 }.

On the other hand, the unfolding transformation can be seen as the inverse
of the previous folding rule, and it has been traditionally considered in pure
logic programming as the replacement of a program clause C by the set of
clauses obtained after applying a (SLD-resolution) symbolic computation step
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in all its possible forms on the body of C [15]. As detailed in [6], we have
adapted this transformation to deal with multi–adjoint logic programs by defin-
ing it in terms of admissible steps. However, in the following definition we in-
crease the power of the transformation by also allowing interpretive steps in its
formulation4.

Definition 7 (Unfolding). We may get program Pk+1 by unfolding (the non-
unit) rule R : (A ←i B with α = v) ∈ Pk as follows: Pk+1 = (Pk − {R}) ∪
{Aσ ←i B′ with α = v | 〈B; id〉 →AS/IS 〈B′;σ〉}.

There are some remarks to do regarding our definition:

– Similarly to the classical SLD–resolution based unfolding rule presented in
[16], the substitutions computed by admissible steps during the unfolding
process, are incorporated to the transformed rules in a natural way, i.e., by
applying them to the head of the rule.

– On the other hand, regarding the propagation of truth degrees, we solve this
problem in a very easy way: the unfolded rule directly inherits the truth
degree α of the original rule.

We illustrate the use of unfolding by means of the following example.

Example 5. The next phase in our transformation sequence is devoted to im-
prove the eureka definition by means of unfolding steps. If we want to unfold
now rule R6, we must firstly build the following one–step admissible derivations:

〈q(X,Y )&Gr(Y ); id〉 →AS1
R2 〈(0.7&prods(Y0))&Gr(Y0); {X/a, Y/Y0}〉, and

〈q(X,Y )&Gr(Y ); id〉 →AS1
R3 〈(0.8&lukar(Y1))&Gr(a); {X/Y1, Y/a}〉.

So, the resulting rules are:

R8 : new(a, Y0)←((0.7&prods(Y0))&Gr(Y0)) with α = 1, and
R9 : new(Y1, a)←((0.8 &luka r(Y1)) &G r(a)) with α = 1.

Moreover, by performing now a →AS2 admissible step on the body of rule R8,
we obtain the new rule R10 : new(a, b)←((0.7&prod0.9)&Gr(Y0)) with α = 1.
Finally, a new unfolding step (based again in the second type of admissible
step) on rule R10 generates the rule R11 : new(a, b)←((0.7&prod0.9)&G0.6) with
α = 1.

On the other hand, we can now apply an interpretive step to unfold rule
R11, obtaining R12 : new(a, b)←(0.63&G0.6) with α = 1, which, after the last
(interpretive) unfolding step finally becomes R13 : new(a, b)←0.6 with
α = 1.

So, after these five unfolding steps, the resulting program is the set of rules
P7 = {R2,R3,R4,R5,R7,R9,R13}.
4 This last case case remembers the so-called interpretive unfolding formalized in [7].
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Our last transformation rule is not previously known in the literature on pro-
gram transformation and declarative programming, with the unique exception
of [7], where we have proposed an equivalent characterization called IU2 (that
is, the second variant of interpretive unfolding) in a fuzzy setting. The idea now
is similar to apply an interpretive step to the body of program rules, but, in
contrast with unfolding, not only the truth degrees of the transformed rules
differs from the original ones, but also, and what is better, the transformation
is able to simplify program rules by directly eliminating its bodies, and hence,
producing facts.

Definition 8 (Facting). We may get program Pk+1 by facting rule
R : (A ←i r with α = v) ∈ Pk, where r ∈ L, as follows: Pk+1 = (Pk − {R}) ∪
{A← with α = [[&i]](v, r)}.

Example 6. Let’s perform now a facting step on rule R13. Since, as said before,
the truth function for any conjunction operator verifies [[&]](1, v) = [[&]](v, 1) = v,
then [[&]](1, 0.6) = 0.6, which implies that R14 : new(a, b)← with α = 0.6.

So, the final program P8 of our transformation sequence contains the original
rules R2,R3,R4 and R5 together with:

R7 : p(X) ←prod new(X,Y ) with α = 0.8
R9 : new(Y1, a) ← (0.8 &luka r(Y1)) &G r(a) with α = 1
R14 : new(a, b) ← with α = 0.6

and now, the derivation showed in Example 1 and continued in Example 2 can
be simulated in P8 in a shorter way (mainly due to the use of rule R14), with
only three admissible steps (instead of five) and two interpretive steps (instead of
four), that is, almost the half of its length, which illustrates the benefits obtained
by fold/unfold on the transformed program:

〈p(X)&Gr(a); id〉 →AS1
R7 〈(0.8&prodnew(X1, Y1))&Gr(a); {X/X1}〉

→AS2
R14 〈(0.8&prod0.6)&Gr(a); {X/a,X1/a, Y1/b}〉

→AS2
R4 〈(0.8&prod0.6)&G0.6; {X/a,X1/a, Y1/b, Y2/a}〉

→IS 〈0.48&G0.6; {X/a,X1/a, Y1/b, Y2/a}〉
→IS 〈0.48; {X/a,X1/a, Y1/b, Y2/a}〉.

As expected, by simply taking into account the bindings associated to the vari-
ables of the original goal, we have obtained the same f.c.a 〈0.48; {X/a}〉 of
Example 2.

To finish this section, we present the main property of our transformation system.

Theorem 1. (Strong Correctness of the Transformation System)
Let (P0, . . . ,Pk) be a transformation sequence where each program in the
sequence, except the initial one P0, is obtained from the immediately preced-
ing one by applying definition introduction, folding, unfolding or facting, and let
Q be a goal with no new predicate symbols. Then, 〈Q; id〉 →∗

AS/IS 〈r; θ〉 in P0

iff 〈Q; id〉 →∗
AS/IS 〈r; θ′〉 in Pk, where θ′ = θ[Var(Q)].
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Proof. [Sketch]
We treat separately the strong correctness of each fuzzy transformation rule:

– Since we only consider goals without new predicate symbols, the definition
introduction rule does not affect our claim (remember that it only generates
rules defining new predicate symbols).

– Moreover, the strong correctness of our present unfolding/facting rules fol-
lows from their equivalences with the operational/interpretive unfolding rules
described in [6], [7].

– Finally, due to the reversibility of our folding rule, (that is, if a program
rule R′ is obtained by folding a rule R, then R can be generated again by
simply unfolding R′) then, its strong correctness directly follows from the
strong correctness of unfolding.

4 Conclusions and Future Work

This paper must be thought as a first step in the development of a transfor-
mation system for fuzzy logic programs, by considering one of the most recent
and flexible languages in the field which is based in the multi-adjoint logic ap-
proach presented in [11]. Helped by our previous experiences in the study of
fuzzy variants of unfolding rules (see [6], [7]), which have inspired the present
unfolding and facting operations, we have also designed a definition introduc-
tion and a folding rule to obtain a strongly sound and complete transformation
system.

We have used a very simple, but effective strategy to guide the generation of
transformation sequences in order to produce more efficient residual programs.
Basically, the proposed heuristic proceeds in three stages as follows:

1. We first generate an eureka based on the body of a program rule R whose
definition is intended to be improved.

2. Then, by means of a folding step, we link the new predicate to R.
3. Finally, the eureka definition is improved as much as wanted by means of

unfolding and facting steps.

As we have previously done in other declarative settings [1], [2], [12], [13], but
focusing now in the fuzzy field, for the future we are interested in defining
more sophisticated variants of folding rules (for instance, those non-reversible
ones with the capability of generating recursive eureka definitions by folding
rules belonging to different programs in a transformation sequence) and more
powerful transformation strategies, such as composition, tupling, and so on
[15], [16].

In the limit, we also think that all these proposals admit a future adaptation to
the fully integrated field of functional–fuzzy–logic programming, by considering
languages as the one we are nowadays designing in [14].
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Abstract. The paper focuses on a practical use of knowledge extraction
mechanisms in mining databases. The fuzzy-based methods that enable
the linguistic interpretation of large sets of numerical data, are presented.
In particular, generating the so-called linguistic summaries of databases,
exemplified by About half of records have very high values of attribute A,
in sense of Yager [1] with further improvements [2], [3] is described.

The original contribution by the author is the class of algorithms,
based on linguistic summaries, which enable automated generating of
brief textual news or comments to be published in press and/or WWW.
The obtained messages describe quantitative dependencies among chosen
values or attributes. Moreover, the produced results are expressed in
semi-natural language which makes them readable for an average user.
Finally, a prototype implementation on sample data is described.

1 Motivation and Problem Study

Human skills of grasping large numbers of data are naturally limited. On the
other hand, the amount of information stored and processed electronically has
been growing exponentially in recent years. Collecting and managing data in
many areas, like financial or military politics, mass-media, security and rescue
systems, etc., definitely must be supported by information technologies, due the
amount of data which is impossible to be grasped manually by a human in
a reasonable time.

Therefore, needed data must be not only found and retrieved but also finally
reproduced in easy-to-use, compact, and human-consistent forms, e.g. statistical
characteristics or natural language (NL). However, statistical methods, although
precise, may seem to be too terse to describe data communicatively. Moreover,
the results obtained this way are understandable and practicable for rather small
groups of specialized people, like analysts, managers, etc. [1].

Thus, in this approach, we propose to apply the so-called linguistic summaries
of databases which are based on soft-computing methods, in particular, on fuzzy
logic. A sample linguistic summary of a database (in sense of Yager) is of the
form Few cars are cheap and very fast, where the linguistic terms few, cheap,
and very fast are handled by fuzzy sets and by operations on them [4], [5], [6].
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Some very interesting approaches of reporting large datasets via ordinary-fuzzy-
sets-based tools are given by Kacprzyk and Zadrożny [7] and by Kacprzyk and
Strykowski [8].

In this paper, the idea of linguistic summarization of databases is originally
adapted to generate NL messages which are used as press comments, memos,
news, etc. The foundations of fuzzy sets and of linguistic summarization are
recalled in sections 2 and 3, respectively. Then, in Section 4, the original authors
contribution – the algorithms which generate news – are introduced. Finally, an
application on sample data is presented in Section 5.

2 Fuzzy-Based Linguistic Interpretation of Data

2.1 Fuzzy Sets

In the classic set theory, a set A in a universe X can be represented by its char-
acteristic function χA:X → {0, 1}. Such a construction suggests that an element
belongs to the set or does not, and tertium non datur. Nevertheless, it frequently
happens in modelling elements of NL that the so-called partial belongingness of
an element to a set must be considered. The concept of a fuzzy set represented
by its membership function (MF) was introduced by Zadeh in 1965; it extends
the set of values of a characteristic function to the [0, 1] interval [4]. The gener-
alization enables modelling of linguistic statements like old man, very fast car,
which are inherently imprecise, but understandable in NL. Formally, a fuzzy set
A in a universe of discourse X is defined as:

A = {< x, μA(x) >: x ∈ X , μA:X → [0, 1]} (1)

where μA is the membership function of A; its value for x ∈ X is interpreted as
the membership level (or degree) of x to A.

2.2 Linguistic Variables

Linguistic variable (LV) is an ordered quintuple < L, V (L), X , G, M >, where:
L is the name of the variable; V (L) is the set of its linguistic values; X is the
universe of discourse in which the fuzzy sets modelling the values of L are deter-
mined; G is a grammatical/syntactical rule which enables generating names of
values (labels) of L; M is a semantic rule which associates the meaning of a value
of L with a fuzzy set in X . A sample linguistic variable is L =age of worker, and
V (L) ={novice, young, middle-aged, experienced, old}, where the given labels
are associated with fuzzy sets in X = [15, 80] — the set of numbers expressing
employees’ age in years.

Many operations on LVs, especially composing their values with and, or,
and other connectives, are defined on the base of functions called the triangular
norms [9], [10]. Popular t-norms are minimum, or the algebraic product; they
are used as models for the and connective in linguistic summaries, e.g. Few cars
are fast and cheap.
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2.3 Linguistic Quantifiers

Natural human tendencies to use imprecise quantities instead of crisp figures
may be particularly observed in expressing cardinalities of sets and amounts of
objects. The corresponding NL statements are called linguistic quantifiers, e.g.
most, very few, between 1 and 3, etc.

The most known method of modelling of linguistic quantifiers is Zadeh’s fuzzy
quantification [6], and we follow this approach in summarizing databases. Nu-
merous models of linguistic quantifiers are described in [11], [12] and in [13].
The most recent works on linguistic quantification are presented by Glöckner
and Knoll [14].

Two kinds of the Zadeh fuzzy quantifiers can be distinguished: absolute
which are fuzzy sets in a positive universe of discourse, e.g. over 190, about
1000, less than 10, and relative which are fuzzy sets in [0, 1] and express
amounts as ratios to the cardinality of the whole universe; e.g. about 1/4, al-
most all, few. Both kinds are usually represented as possibility distributions
on R+ ∪ {0} and on [0, 1], respectively [15].

In general, fuzzy quantifying in Zadeh’s approach is linked to a special case
of LV. When a LV L is to express imprecise quantities of objects and its X
is included in R+ ∪ {0} then V (L) consists of fuzzy linguistic quantifiers Qi,
i = 1, . . . , k. Q1,. . . , Qk are modelled by fuzzy sets in X , if absolute, or in
[0, 1], if relative. In addition, fuzzy sets which are the models for linguistic fuzzy
quantifiers must be normal and convex; cf. [10].

3 Linguistic Summaries of Databases

3.1 Preliminaries

In order to obtain compact and communicative (though not strictly precise)
information about the content of a given database, natural language sentences
which describe amounts of elements manifesting properties of interest, can be
generated. Such sentences are called linguistic summaries of databases. The basic
Yager approach to linguistic summaries [1], [16], and its further extensions [2], [3]
are presented in this section.

Yager’s Summaries (Y). Let us define the set of objects Y = {y1,. . . , ym},
the set of attributes V = {V1,. . . , Vn}. Let X1,. . . ,Xn be the domains of V1,. . . ,
Vn, respectively. Attributes from V describe objects from Y; it is denoted as
Vj(yi) – a value of attribute Vj for object yi. Hence, a database D which collects
information about Y, is in the form of

D = {< V1(y1), . . . , Vn(y1) >, · · · , < V1(ym), . . . , Vn(ym) >} = {d1, . . . , dm}(2)

where d1, . . . , dm are the records which describe objects y1,. . . , ym, respectively,
such that di ∈ X1× . . .×Xn. S1,. . . , Sn are fuzzy sets in X1,. . . , Xn, respectively.
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S1,. . . , Sn are the labels for linguistic values of V1,. . . , Vn, respectively. Let Q
be a fuzzy quantifier. A linguistic summary of D is in the form of

Q P are/have Sj [T ] (3)

where

T = μQ

⎛⎝∑m
i=1 μSj

(
Vj(yi)

)
m

⎞⎠ (4)

if Q is relative (for an absolute Q the denominator equals 1 instead of m). P is
the subject of summary, and Sj is the summarizer, j = 1, . . . ,m. T ∈ [0, 1] is
called degree of truth or truth of the summary and is interpreted as a quality
measure of a summary: the closer to 1 it is, the more reliable the summary is.

George and Srikanth’s Summaries (G). George and Srikanth [2] proposed
building summarizers of a few fuzzy sets using a t-norm (originally, the min-
imum), in contrary to the Yager approach in which summarizers are built of
single fuzzy sets. Thus the MF of the so-called composite summarizer S =
S1 and . . . and Sn is of the form

μS(di) = minj=1,2,...,n

{
μSj

(
Vj(yi)

)}
, i = 1, 2, . . . ,m (5)

and the formula for T is still (4) in which Sj is replaced with S. A sample (G)
summary is: Almost none of my friends is young and reach.

Kacprzyk and Zadrożny’s Summaries (K). Kacprzyk and Yager [3] pro-
posed generating summaries in which one of summarizers is chosen as the so-
called query (denoted as wg):

Q objects from Y being/having wg are/have S [T ] (6)

The form of μS is:

μS(di) = minj=1,2,...,n

{
μSj

(
Vj(yi)

)
t μwg

(
Vg(yi)

)}
, i = 1, . . . ,m (7)

where the cofactor μwg

(
Vg(yi)

)
means that only the tuples with non-zero mem-

berships to wg — μwg

(
Vg(yi)

)
> 0 — are considered in the final result; other

records are not considered. The T index is:

T = μQ

( ∑m
i=1μS(di)∑m

i=1 μwg

(
Vg(yi)

)) (8)

(for relative quantifiers only). The mechanism, apart from the meaningful cost
reduction, provides also more specific and informative summaries.
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3.2 Quality Measures for Linguistic Summaries

The indices presented in this section were first defined by Traczyk [17] to de-
termine the quality of knowledge mined from textual datasets due to lengths of
sentences expressing facts, or due to shapes of fuzzy sets modelling properties.
These indices are originally reformulated by Kacprzyk, Yager, and Zadrożny [18]
and applied in linguistic summaries by Kacprzyk and Strykowski [8]. Therefore,
imprecision (denoted as T2), covering (T2), appropriateness (T4), and length (T5)
of a linguistic summary are determined. The indices are expressed with real num-
bers from [0, 1], and it strictly corresponds to the set of truth values in fuzzy
logic. Thus, it is crucial to determine exactly their semantic interpretation.

Degree of Truth. The degree of truth is the very first measure of quality of
a summary. It was introduced by Yager [1]. In its basic form, T1 has been the
only index allowing to determine how precise a summary is; see (4).

Degree of Imprecision. The degree of imprecision, T2, is a very intuitive
criterion which describes how imprecise the summarizer used in a summary is.
It is, at first, required to define the degree of fuzziness for a fuzzy set Sj in Xj :

in(Sj) =
|{x ∈ Xj : μSj (x) > 0}|

|Xj |
(9)

The degree of imprecision is given as

T2 = 1−
(∏n

j=1
in(Sj)

)1/n

(10)

The semantics of this index shows that the flatter μSj is, the closer to unity
in(Sj) is, hence, the less precise the feature Sj . If the degrees of fuzziness for
S1,. . . , Sn grow, and, in consequence, the geometric average in (10) increases,
then the precision of the summary decreases.

Degree of Covering. The degree of covering is based on the ti function:

ti =
{

1, if μS(di) > 0 and μwg

(
Vg(yi)

)
> 0

0, otherwise (11)

and on the hi function

hi =
{

1, if μwg

(
Vg(yi)

)
> 0

0, otherwise (12)

Thus, T3 is in the form of

T3 =
∑m

i=1 ti,∑m
i=1 hi

(13)

The degree of covering determines how many objects in the database correspond-
ing to the query wg are covered by the summary.
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Degree of Appropriateness. If a summarizer S is represented by the family of
fuzzy sets {S1, . . . , Sn}, the summary may be divided into n partial summaries
based on attributes S1, . . . , Sn, respectively. The degree of appropriateness is
based on the r index computed for Sj as

rj =
∑m

i=1 gi

m
(14)

where

gi =
{

1, if μSj

(
Vj(yi)

)
> 0

0, otherwise (15)

The degree of appropriateness is in the form of

T4 =
∣∣∣∏n

j=1
rj − T3

∣∣∣ (16)

and it is said to be the most relevant degree of validity of summaries.

Length of Summary. The index of quality called a length of a summary,
denoted as T5, is defined as

T5 = 2 ·
(

1
2

)card(S)

(17)

where card(S) is the number of features. Thus, T5 indicates that the longer the
summary is, the smaller its correctness. All the presented indices can be used to
determine a reliable quality measure for the summary:

T = T (T1, T2, T3, T4, T5; w1, w2, w3, w4, w5) =
∑5

i=1
wi · Ti (18)

where: w1 + w2 + w3 + w4 + w5 = 1.

4 Automated Generating of News

The general schema of the system which generates textual messages on a given
database, is depicted in Fig. 1. As it is seen, the process is not performed au-
tomatically at all; similarly to systems that support medical diagnosis, each
artificially made decision must be corrected/verified/rejected by a human ex-
pert. Input data from a database, from user’s and expert’s entries, are pro-
cessed by the summaries generator block via the algorithms described in this
section.

We assume that the database is constructed according to the most popular
model, i.e. relational. The symbolical form of the database is given by (2). Let
a set of k linguistic quantifiers {Q1,. . . ,Qk} (e.g. many, few, about half), and
a set of l linguistic variables {L1, . . . , Ll} (e.g. L1=“age of worker”, L2=“salary”)
be given. Each linguistic variable (LV) is represented by the set of its values:
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Fig. 1. The process of generating press comments

V (Lp) = {Sp,1, . . . , Sp,np}, p = 1, . . . , l (e.g. V (L2)={low, medium, high},
thus n2 = 3). Let us denote n = n1 + . . . + nl as the number of all single sum-
marizers possible to be used by the generator.

Three algorithms which build comments: 1) on z summarizers, z = 1, . . . , n,
2) on two attributes represented by linguistic variables: Lp, Lq, p �= q, p, q =
1, . . . , l, and 3) on b, b = 1, . . . , l are described in the three following subsections,
respectively.

4.1 Commenting on z Summarizers

Let us assume that a brief textual message about dependencies among z ∈ N
features is to be generated. These z features are values of the LVs L1,. . . ,Ll, thus
z = 1, . . . , n. For instance, we choose high from “salary” and young from “age
of worker” (so z would equal 2). In general, the number of possible summaries
generated from z summarizers is:

k
(
z
0

) [(
z
1

)
+ · · ·+

(
z
z

)]
+ k
(
z
1

) [(
z−1
1

)
+ · · ·+

(
z−1
z−1

)]
+ · · ·+ k

(
z

z−1

) [(1
1

)]
=

= k
(
z
0

)
(2z − 1) + . . . + k

(
z

z−1

) (
21 − 1

)
= k

z−1∑
i=0

(
z

i

)(
2z−i − 1

) (19)

The comment to this formula must be given under the assumption that we
treat Yager’s form (Y) of a summary as a special case of George and Srikanth’s
form (G). In consequence, Kacprzyk and Zadrożny’s (K) form of a summary
(with a wg query) is a further generalization of (G), or, in other words, (G) is
a special case of (K) in which wg = ∅. Hence, the form of the first element,(
z
0

)
[
(
z
1

)
+· · ·+

(
z
z

)
]=
(
z
0

)
(2z − 1), comes from the fact that we choose 0 of z sum-

marizers to build wg and i = 1, . . . , z summarizers to build S. The next one,(
z
1

)
(2z−1 − 1) is related to the choice of exactly one summarizer for wg and

i = 1, . . . , z − 1 summarizers for S, etc.
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Formula (19) is valid under the assumption that only the and connective is
used to build composite summarizers or queries, e.g. “high salary and young”;
see (5). Nevertheless, it is worth mentioning that summarizers can be also joined
with other connectives, like or, etc.

// generating (Y) summaries
1. for each single summarizer S ∈ {S1, . . . , Sz}

1.1. for each quantifier Qh, h = 1, . . . , k
if (Qh is absolute)

compute Th = μQh

(∑m
j=1 μS(dj)

)
else // i.e. if Qh is relative

compute Th = μQh

( m
j=1 μS(dj)

m

)
1.2. compute Thmax = maxh=1,...,k Th, remember hmax
1.3. generate summary in the form of

Qhmax P is/have S [Thmax]

// generating (G) summaries

2. for each non-singleton and non-empty Ŝ ⊆ {S1, . . . , Sz}
2.1. determine μS(dj) = minSi∈Ŝ μSi(dj)
2.2. for each quantifier Qh, h = 1, . . . , k

compute T1,h analogously to step 1.1.
2.3. compute T1,hmax = maxh=1,...,k T1,h, remember hmax

2.4. compute T2 = 1−
(∏

Si∈Ŝ

card({x∈Xi:μSi
(x)>0})

card(Xi)

)1/card(Ŝ)

2.5. compute T4 =
∣∣∣∏Si∈Ŝ

d∈D g(d)
m

∣∣∣,
where g is given by (15)

2.6. compute T5 = 2 · (1
2 )card(Ŝ)

2.7. compute T = w1 · T1,hmax + w2 · T2 + w4 · T4 + w5 · T5
2.8. generate summary in the form of

Qhmax P are/have Ŝ [T]

// generating (K) summaries
3. for each non-empty query Sw � {S1, . . . , Sz}

and for each non-empty summarizer Ŝ ⊆ {S1, . . . , Sz} \ Sw

3.1. determine μSw(dj) = minSg∈Sw μSg(dj)
3.2. determine D ⊇ Dw = {d ∈ D : μSw(d) > 0}
3.3. for each d ∈ Dw determine μŜ(d) = minSi∈Ŝ μSi(d)

3.4. for each h = 1, . . . , k compute T1,h = μQh

(
d∈Dw

μŜ(d)

d∈Dw
μSw (d)

)
3.5. choose T1,hmax analogously to step 1.2.
3.6. compute T2 analogously to 2.4.

3.7. compute T3 = d∈Dw
t(d)

d∈Dw
h(d) where t and h

are given by (11) and (12), resp.

3.8. compute T4 =
∣∣∣∏Si∈Ŝ

d∈Dw
g(d)

m − T3

∣∣∣,
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where function g is given by (15)
3.9. compute T5 analogously to 2.6.

3.10. compute T = T1,hmax +
∑5

i=2 wiTi

3.11. generate summary in the form of

Qhmax P being/having Sw are/have Ŝ [T]

Ad. 2. In generating (G) summaries which are based on at most z summariz-
ers, the algorithm determining all the non-singleton and non-empty subsets of
{S1, . . . , Sz} is required; the number of such subsets is exactly 2z − 1 − z. In
the implementation, the problem is resolved via generating binary forms of all
natural numbers between 0 and 2z − 1; the forms are taken as characteristic
vectors of the sought subsets.
Ad. 2.1. When generating (G) summaries, the minimum operation can be re-
placed, in general, by a t-norm; see Section 2.2.
Ad. 2.4. The Xi set is the domain of the Si fuzzy set.
Ad. 2.6. w1 + w2 + w4 + w5 must equal 1.
Ad. 3.10. w1 + w2 + w3 + w4 + w5 must equal 1.

4.2 Commenting on Two Attributes

This variant of generating messages may be applied when dependencies between
two attributes with respect to all their values are to be referred. We model
these attributes with the LVs Lp and Lq, p �= q, p, q = 1, 2, . . . , l, therefore,
the summaries which use all the sets Sp,1, . . . , Sp,np and Sq,1, . . . , Sq,nq are to be
generated. In this case, the general number of possible summaries is:

k(np + nq)︸ ︷︷ ︸
(Y )

+ knpnq︸ ︷︷ ︸
(G)

+ 2knpnq︸ ︷︷ ︸
(K)

(20)

The first element describes the number of possible Yager summaries; it refers to
the number of values of Lp and to a single summarizer which is a value of Lq.
The second element is also related to the number of values of Lp and Lq, because
(G) summaries are generated for composite summarizers in the form of Sp,i and
Sq,j , where i = 1, . . . , np, and j = 1, . . . , nq. The third element, (K), describes
the number of summaries which use two features, Sp,i and Sq,j , as a query and
a summarizer, respectively or vice versa — that is why it is multiplied by 2. The
technical details of the algorithm are omitted, but its general idea is analogous
to the one presented in Section 4.1.

4.3 Commenting on b Attributes

The algorithm given in Section 4.2 can be generalized to obtain comments on
dependencies and trends among b = 1, . . . , l attributes (the case for b = 2 is
described above). It would require to perform the two following modifications
in the algorithm given in Section 4.1: 1) The substitution: z :=

(
n1
1

)
· · ·
(
nb

1

)
(where n1, . . . , nb are the numbers of values in linguistic variables describing the
chosen attributes), and 2) the condition that each of z summarizers is a value of
separated linguistic variable.
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5 Implementation

The prototype news generator is implemented on .NET platform in the C#
language. A sample database consists of 5000 records in the form of <ID,
seniority, profit, salary> and is implemented with MS Access. Three linguis-
tic variables are applied to interpret numerical values of the fields of records
(except of ID): L1 =“seniority”, V (L1)={beginner, intermediate, experienced},
L2 =“profit”, V (L2)={low, medium, high}, L3 =“salary”, V (L3)={low, medium,
high} with trapezoidal membership functions in the domains [0, 40] for L1,
[1000, 7000] for L2, and [2000, 14000] for L3. Three fuzzy relative quantifiers
are determined in the [0, 1] domain: Q1 =“few”, μQ1(x) = x, Q2 =“about half”,
μQ2(x) = −|2x − 1| + 1, Q3 =“many”, μQ3(x) = −x + 1. The weights for
the quality measures are w1 = w2 = w4 = w5 = 1

4 for (G) summaries and
w1 = w2 = w3 = w4 = w5 = 1

5 for (K) summaries. The sample news generated
via the algorithm described in Section 4.1 is presented below:

(Y) About half of employees are intermediates [0.98].
Many employees have medium salary [0.71]. (G) About half
of employees are intermediates and have medium salary
[0.53]. (K) Many intermediate employees have medium salary
[0.61]. About half of employees which have medium salary
are intermediates [0.59].

6 Conclusions and Further Work Directions

The presented paper is focused on fuzzy-based methods applied to linguistic
interpretation of large datasets. The linguistic summaries of databases in the
sense of Yager with their later improvements, are presented. The methods are
the foundations necessary to construct the system which generates short tex-
tual and natural language reports on databases. The original algorithms, which
mechanise the reporting of large datasets, provide linguistically formulated and
user-friendly results, are introduced. An effective application which automati-
cally generates news or messages to be published as press or WWW comments,
is presented.

The extension of the Yager approach, based on Interval-Valued Fuzzy Sets, is
successfully presented by Niewiadomski in [19] and [20]. The analysis of further
generalizations which may employ the so-called Type-2 Fuzzy Sets are made
in [21] and are currently being developed.
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Abstract. With the emergence of the World Wide Web, Web sites have
become a key communication channel for organizations. In this context,
analyzing and improving Web communication is essential to better satisfy
the objectives of the target audience. Web communication analysis is
traditionnally performed by Web analytics software, which produce long
lists of audience metrics. These metrics contain little semantics and are
too detailed to be exploited by organization managers and chief editors,
who need summarized and conceptual information to take decisions. Our
solution to obtain such conceptual metrics is to analyze the content of the
Web pages output by the Web server. In this paper, we first present a list
of methods that we conceived to mine the output Web pages. Then, we
explain how term weights in these pages can be used as audience metrics,
and how they can be aggregated using OLAP tools to obtain concept-
based metrics. Finally, we present the concept-based metrics that we
obtained with our prototype WASA and SQL Server OLAP tools.

1 Introduction

The ease and speed with which information exchange and business transactions
can be carried out over the Web has been a key driving force in the rapid
growth of the Web and electronic commerce. In this context, improving Web
communication is essential to better satisfy the objectives of both the Web site
and its target audience, and Web usage mining [17], a relatively new research
area, has gained more attention. The strategic goals of Web usage mining are
prediction of the user’s behaviour within the site, comparison between expected
and actual Web site usage, and adjustment of the Web site with respect to
the interests of its users. Web analytics [19] is the part of Web usage mining
that has the most emerged in the corporate world. Web analytics focuses on
improving Web communication by mining and analyzing Web usage data to
discover interesting metrics and usage patterns.

From the huge amount of usage data collected by Web servers, Web ana-
lytics software produce many detailed reports. The usefulness of these reports

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 430–439, 2006.
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depends on the report viewers in the organization. While Web designers are
interested in detailed reports, organization managers are only interested in sum-
mary dashboards that show the number of visitors and a list of the most viewed
pages, and the Web site chief editor needs concept-based results to redefine the
publishing rules. In addition, the temporal evolution of the Web site content
and the volatility of the scripted pages are not considered by Web analytics
software.

To solve these issues, our approach aims at analyzing the content of the Web
pages output by the Web server in order to obtain concept-based metrics. In
Section 2, we present a list of methods that we conceived to mine the output
pages, whatever the Web site technologies. In Section 3, we describe the content
processing that we apply to the pages. From the term occurrences in the pages,
we define the term-based consultation and we discuss some results obtained with
our prototype WASA. Then, we group the terms into meaningful concepts using
the concept hierarchies of ontologies. By the means of hierarchical aggregation,
we define a set of concept-based metrics and we compute them with OLAP tools.
In Section 4, we present and discuss the results obtained with our prototype
WASA and SQL Server OLAP. In Section 5, we describe the results exploitation
process. In Section 6, we expose the limitations of the metrics and our future
work. Finally, in Section 7 we discuss how our approach compares with related
work and we conclude in Section 8.

2 Output Page Mining

The first step in our approach is to mine the Web pages that are output by
the Web server. We have conceived a number of methods, each of them being
located at some point in the Web environment.

– In the Web server, log files can be coupled to a content journal that stores
the evolution of the Web site content.

– In the Web server, a plugin can store the pages after they have been sent to
the browser.

– On an Ethernet wire, a network monitor can capture the TCP/IP packets
and reassemble the Web pages.

– On the client machine, an embedded program can run inside the page and
send the content to a mining server.

This makes a number of mining methods that can be used alone or in combina-
tion. Each method has its advantages. Log file parsing combined with content
journaling is easy to setup, runs in batch, and offers good performance. Dynamic
Web sites require the use of a Web server plugin, a network monitor, or a client-
side miner. Web server plugins are usually installed in secure Web sites, and
network monitors elsewhere because of the lower risk. For the pages composed
on the client-side, like XML/XSL pages, a client-side miner is required. As far
as we can see, this set of methods can mine the pages output from any Web site.
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3 Concept-Based Audience Metrics

Once the output pages have been mined, they can be processed in order to extract
meaningful content. This processing is well-known in information retrieval [2].
Content processing includes unformatting, tokenization, stopword removal, stem-
ming, and term selection. From Pd the set of Web pages mined during day d,
content processing ultimately produces a list of stemmed terms si that appear
with a frequency which we call Consultation(si, d). The consultation represents
the number of times the term si has been displayed on visitors’ screens during
day d. To neutralize the fluctuation of the metrics along time, the consultation
can be divided by the total number of pages views. In this sense, term-based
consultation is similar to the term frequency in the vector model [16].

To experiment this notion of consultation, we developed a prototype called
WASA1. We ran WASA for the academic year 2003-2004 on our department’s
Web site cs.ulb.ac.be, which contains about 2,000 Web pages and receives an
average of 100 page requests a day. The result is a list of 30,000 terms and their
daily consultation. Term-based consultation is very promising but the list of
terms is too long and suffers from polysemy and synonymy. These observations
call for the grouping of terms into meaningful concepts.

The main difficulty in grouping the terms is to define groups that match
semantic fields for the human mind. Such groups can be found in ontologies [7].
If we define an ontology Ω := (S, r0, R, σ) where S is a set of terms, r0 is
a partial order relation on S, R is a set of relation names, and σ → P(S × S) is
a function, then meaningful term groups can be found in the hierarchy obtained
by restricting the ontology (S, r0, R, σ) to (S, r0) [20]. For each term si in S,
we define the associated concept Ci as the aggregation of the term si and its
subterms s′j in the hierarchy: Ci := {si} ∪ {. . . , s′j, . . .}. The consultation of
a concept is the sum of the consultation of the term and of the consultation of
the subterms:

Consultation(Ci, d) := Consultation(si, d) +
∑

s′
j
Consultation(s′j, d) (1)

If a term is a leaf in the hierarchy, it has no subterms and therefore Ci = {si}. In
this case, Consultation(Ci, d) = Consultation(si, d). As the term consultation
is known, the consultation of the concepts can be recursively aggregated from
the leaf terms up to the root. Similarly, we define the presence of a concept by
adding the frequency of the terms and of the subterms in the online Web pages
during day d:

Presence(Ci, d) := Presence(si, d) +
∑

s′
j
Presence(s′j, d), (2)

with Presence(si, d) =
∫

d
Presence(si, t) dt. The interest into a concept is de-

fined as the division of the two:

Interest(Ci, d) :=
Consultation(Ci, d)
Presence(Ci, d)

(3)

1 WASA stands for Web Audience Semantic Analysis.
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Fig. 1. OLAP cube with two dimensions: Time and Ontology

Recursive aggregation of the term-based metrics into concept-based metrics can
be computed by OLAP tools. Our multidimensional model (OLAP cube) is rep-
resented in Figure 1. The notation used in the figure was introduced in [9]. In
our cube, we define two dimensions: Time and Ontology. The time dimension
has two important levels: Week and Day. Metrics by week neutralize the weekly
patterns, which contain unsignificant information. More levels can be added de-
pending on the needs (year, months, quarters, . . . ). The ontology dimension is
modeled as a parent-child dimension to support ontologies with any number of
levels. Other dimensions could be added like physical geography, site geogra-
phy, Web geography, pages, users, internal referrers, external referrers, or other
variations of the time dimension. The cube fact table contains daily term con-
sultation and presence, which are provided by our prototype WASA. The cube
measures are consultation, presence, and interest, where the interest measure is
a calculated member defined as the division of the first two measures.

4 Experimentation

To test our approach, we introduced our cube into SQL Server, along with the
audience data computed by our prototype WASA for our department’s Web site
and the ACM classification. After cube processing, queries can be formulated
on any combination of dimensions and measures. For example, if we display the
ontology dimension vertically and the metrics horizontally, we can expand the
concepts to see detailed results of the subconcepts (Figure 2). The cube can be
queried and browsed with the SQL Server built-in module, from a Microsoft Ex-
cel PivotTable, or from any OLAP client like Mondrian/JPivot. With Microsoft
Excel, we can produce a variety of charts to visualize cube-queried results. For
example, we produced a multi-line chart where each curve represents the vis-
itors’ consultation of the top ACM concepts (Figure 3). This chart is easy to
relate to the problem domain. For example, Computing Methodologies, Soft-
ware, and Information Systems rank in the top, as many students follow these
courses. Also, a peak of interest in Theory of Computation can be observed at
the beginning of the academic year, when the 1st-year students starts following
the corresponding course in the computers room. Finally, the average consulta-
tion falls down during the various periods of examination: August-September,
January-February, and May-June. We can also produce a bar chart representing



434 J.-P. Norguet, E. Zimányi, and R. Steinberger

Fig. 2. Browsing the ACM classification and associated metrics in SQL Server

Fig. 3. Consultation of the ACM classification top concepts on the cs.ulb.ac.be Web
site during the 2003-2004 academic year

the various metrics for each of the top concepts. This kind of chart allows to
compare the metrics of the various concepts, as well as the different metrics to-
gether. For example, we produced a chart for our department’s Web site and the
ACM classification (Figure 4). The top 3 consulted concepts are: (1) Informa-
tion Systems, (2) Computing Methodologies, and (3) Software. However, these
concepts are major topics in the Web site, which is confirmed by high presence
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Fig. 4. Consultation, presence and interest metrics for the top concepts in the ACM
classification

values. Therefore, high consultation values are not representative of the visitors’
interest, what is indicated by low interest values. The top 3 concepts of interest
are: (1) Theory of Computation, (2) Data, and (3) Mathematics of Computing.
We can see that the ranking of the concepts can dramatically change according
to the considered metrics, and that these should be interpreted carefully.

To test the influence of the ontology on concept-based metrics, we ran WASA
on our (computer science) department’s Web site with two ontologies: Eurovoc,
the European Commission’s thesaurus, and the ACM classification. Eurovoc
knowledge domain is extremely generic, from sociology to science, while the ACM
classification knowledge domain is focused on computer science. With more than
5 times less terms than Eurovoc, the ACM classification covers much better the
Web site knowledge domain. This coverage can be quantified by the percent-
age rΩ of the ontology terms that appear in the output pages:

rΩ :=
card (S ∩ Pmax)

card (S)
(4)

where Pmax is the set of distinct terms in the output pages mined during the
maximal period of time. For our department’s Web site, the ACM classification
coverage is 16% while the Eurovoc coverage is only 0.75%. This indicates how
the meaning of the results improves with the ontology coverage of the Web
site knowledge domain. A similar problem with Eurovoc has been observed
in [18].

5 Exploitation

As concept-based metrics are extremely intuitive, they can be exploited at the
highest levels of the organization, in order to take more effective decisions [10].
As concept-based metrics target different roles than classical Web analytics soft-
ware, the exploitation process must be re-organized. With concept-based metrics,



436 J.-P. Norguet, E. Zimányi, and R. Steinberger
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redefine Web communication objectives

command organization

update Web site content

...

...

Fig. 5. Concept-based metrics exploitation life cycle

the chief editor and the sub-editors define the concepts relevant to the Web site
knowledge domain. The tool administrator encodes these concepts into WASA,
which generates the concept-based metrics reports. These reports are distributed
to the organization manager and to the chief editor. With concept-based metrics,
the organization manager is provided with an intuitive view of what messages
are delivered through the Web site. He can then redefine the organization strat-
egy according to the visitors’ interests, adapt the other communication channels,
and eventually request the chief editor to better adapt the Web site communi-
cation to the organization objectives. The chief editor on his part can redefine
the publishing orders, dispatch the reports to the sub-editors, and redefine the
writing tasks (Figure 5).

6 Future Work

Our future work will aim to study the benefits of improving ontology coverage.
First, we will evaluate a manual approach. The researchers in our department
will enrich the ACM classification with terms of the department’s Web site. Each
researcher will browse the Web pages under his/her responsability and select the
most relevant terms of his domain knowledge. At the end, the chief editor will
validate the enrichments. This method will ensure an optimal improvement of
the ontology coverage, the effect of which will be evaluated by running WASA on
the enriched ontology. Furthermore, this manual enrichment will be compared
against automatic and semi-automatic techniques.

The results obtained by our approach will be validated against WebTrends in
a particular case of Web site where the results obtained by WebTrends should
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be comparable to those obtained by WASA. Indeed, if the Web site directories
match the ontology concepts, the hits by directories obtained by WebTrends
should be comparable to the interest by concept obtained by WASA.

Although the complexity of our algorithms are linear, we will test the scal-
ability of our prototype WASA on our university’s Web site2, which contains
a very high number of pages (about 50,000) and receives a very high number of
page requests (about 200,000 a day).

Finally, variations of the metrics inspired from the vector model [16], as well
as evaluators for ontology coverage of Web site knowledge domain [8], should be
experimented.

7 Related Work

In the recent years, Web analytics software have shown little evolution. The
most interesting feature introduced is page grouping with respect to a concept.
For example, in the most popular Web analytics tool WebTrends, the pages can
be grouped into content groups, which can be defined either by enumeration or
regular expressions over the URI [21]. In the subsequent content-groups report,
WebTrends shows the score of each content group, computed by aggregating the
hits of the composing pages. The report is more intuitive than the page-views
report, but the quality of the results depends on the page-grouping operation,
which is not assisted by the software. Also, the temporal evolution of the pages
remains ignored. Finally, content groups are groups of entire pages, with no
finer-grained data units. Another attempt in the corporate world to consider
more semantics has been to map back-end product data to an id parameter in
URLs, like in IBM Tivoli Web Site Analyzer [12]. However this solution is limited
to e-commerce Web sites and remains site specific.

In the research world, the closest approach to ours is reverse clustering anal-
ysis [15], an algorithm based on self-organizing feature maps. This algorithm
integrates Web Usage Mining and Web Content Mining by integrating Web logs
and Web site text. The result of this integration is a list of pages representing
the most popular Web pages in the site. The pages are prioritized with regard to
a score called “square vicinity”. Although the results help to improve the content
of a Web site, the approach suffers from a list of drawbacks. First, the text con-
tent which is part of the analysis process does not appear in the results, which
are consequently prived from the corresponding intuitivity. Second, although the
page list is limited to a fraction of the Web site, it remains proportional to the
site size and can therefore lack summarization. Third, the technique handles
static Web sites only, which excludes the many dynamic Web sites from being
analyzed. Finally, the experimental performances and the algorithm complexity
do not guarantee the scalability of the approach.

The Information Scent model aims to infer an intuitive representation of the
user need from the user actions [5]. In particular, the IUNIS algorithm inputs
a sequence of visited pages and outputs a weighted vector of terms describing
2 http://www.ulb.ac.be/
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the visitor’s interest. These vectors are quite intuitive, but can be very vague
without context. In addition, the analysis is more user-centric than site-centric.
Finally, the scalability of the algorithm is not proven; the cited paper presents
results for single visits over a few pages, and does not discuss performance, which
makes it unclear how the algorithm can handle 50, 000 visits over 50, 000 pages.

Most of the other Web usage mining research efforts have focused on other re-
search paths, like usage pattern analysis [4], personalization [11], system improve-
ment [1], site structure modification [13], marketing business intelligence [3], and
usage characterization [14]. In these research paths, Web analytics concerns have
been mostly left aside.

Finally, many other research projects are somehow related to Web usage min-
ing, as unveiled in a recent survey [6]. To the best of our knowledge, our approach
is the first to analyze the content of output Web pages to provide site-wide
concept-based metrics in order to represent the user needs of any Web site,
whatever the Web server technologies.

8 Conclusion

In this paper we have presented our solution to answer the need for summarized
and conceptual audience metrics in Web analytics. We first described the various
techniques that we conceived to mine the Web pages output by a Web server,
showing a set of combinable options that should be applicable for any Web server.
Then, we defined three term-based metrics: consultation, presence, and interest.
We have seen that these metrics are much more interesting if the terms are
grouped into meaningful concepts. Our first experiments on automated term-
grouping algorithms showing disappointing results, we reuse the term groups
that are naturally present in the concept hierarchies of ontologies. OLAP tools
can be used to aggregate the term-based metrics into concept-based metrics.
The OLAP cube can be queried from any OLAP-enabled visualization interface.
According to our first experiments with the WASA prototype and SQL Server,
concept-based metrics prove intuitive enough to support the decision-making
process of Web site editors and organization managers. The condition to the wide
adoption of concept-based metrics in Web analytics software is the generalization
of custom ontologies for Web sites. The availability of large generic ontologies
and the development of ontology enrichment techniques and tools, as well as the
growing interest into the Semantic Web, should fill the gap with the continuous
and growing development of suitable ontologies.
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Abstract. In this paper the design and implementation of a framework, called 
jDistributor, for automatic conversion of sequential code into distributed 
program code is described. Optimal distribution of the program code is attained 
by applying a specific hierarchical clustering algorithm to partition the code 
into components with almost the same amount of speed up. To speed up the 
execution of the components, inter-component method calls are converted into 
non-blocking remote calls, when appropriate. All the inter-component remote 
calls are carried out through a component, called Proxy. The Proxy uses an 
Object Manager component to construct remote objects. A component called 
Synchronizer receives the values of reference parameters and the return value 
from remote methods. All the inter-component communications are handled by 
a connector component, which is based on a javaSymphony infrastructure. 

1   Introduction 

Recent advents in networking and PCs technologies have commoditized power and 
stability to such an extent as to make them, collectively, suitable alternatives to 
supercomputers for running computationally intensive applications in a reasonable 
amount of time. Solutions for computationally intensive classes of problems, 
previously the domain of expensive supercomputers, may now be easily implemented 
through heterogeneous networked computers. On the other hand, high-performance 
distributed applications are difficult to create in large part because the programmer 
must manually partition and distribute the application to maximize locality and 
minimize communication. There are many software tools such as ProActive [1], 
cJVM [2], JavaParty [3], Jada [4] and JavaSymphony [5] that try to overcome 
developmental complexities of distributed and parallel programs. However, in most of 
these software tools, you need to deal with a programmer to build an efficient and true 
distributed system. It is argued that system software, not the programmer, should 
partition and distribute applications [6]. Application partitioning in an object oriented 
environment is the task of breaking up the functionality of an application into distinct 
set of objects that can operate concurrently. If an application can not be partitioned in 
the way, the distribution is not beneficial.  

In this paper we introduce a framework called jDistributor. This framework 
harnesses the processing power of idle computers or computing systems in networks 
by automatically distributing the user application across available resources. This 
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system accepts a sequential Java source code, extracts an apposite class dependency 
graph by using CHA, RTA and FRTA [8]. If the classes of the Java code are 
separated amongst different stations, then the amount of processing time may be 
reduced in comparison to when the code is processed on one single station. 
Afterwards, the amount of time saved by separating any two classes is written over 
the edge which connects the two classes in the program class dependency graph. We 
shall call this amount of time saved "Distribution Gain." 

Our proposed approach to compute the Distribution Gain is described in 
section 2.1. The resulting class dependency graph is then clustered using our new 
hierarchical clustering algorithm, described in Section 2.2. Since each cluster is 
expected to be assigned to a separate station, the objective of the clustering algorithm 
is to balance the Distribution Gain amongst the clusters and minimize inter-cluster 
interactions.  

To facilitate inter-cluster communications over the network a new architecture 
including, five code blocks described in Section 3 are augmented to each cluster. 
Finally, JavaSymphony library is used to automatically convert the original program 
into a distributed program. The architecture of the distributed code is described in 
Section 3. A case study is presented in Section 4.  

2   Suitable Partitioning 

In order to distribute a given program over the network, the program code should be 
partitioned. Each partition is then assigned to a separate station. Here, the suitable 
number of stations is computed using a new hierarchical clustering algorithm. To 
achieve this, we have developed an interactive clustering environment which allows 
the user to run the clustering method step by step, view the clustering results and 
move the graph nodes to different clusters.  

2.1   Clustering Criteria 

A hierarchical clustering algorithm within the jDistributor is applied to the class 
dependency graph which is extracted from the serial code, to be distributed over the 
network. Here, the major issue is to define the clustering criteria such that the 
distributed code runs faster than its corresponding sequential code, meanwhile 
minimizing intra-cluster communication and synchronization overheads over the 
network. To accomplish this, a new relation to compute Distribution Gain is 
suggested in this Section. For each remote invocation, the Distribution Gain, alpha, is 
calculated as shown below in Figure 1. 

 

TC = Remote invocation elapsed time 
Td = Called method execution time 

     TS = Elapsed time between the call statement 
              And the first use of the call results 
     Alpha = (TS > (2*TC +Td)) ? Td :  

Fig. 1. Estimation of Distribution Gain 
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In Figure 1, a parameter called alpha is calculated for each method call from class 
A to class B. The parameter alpha indicates the Distribution Gain for remote method 
calls where the caller and the callee classes belong to different clusters. It means that 
by distributing A and B in different clusters, we expect to execute the caller, alpha 
unit of time, faster. 

Since class, A, can make several calls to methods of class B, we have to add the 
calculated alpha values for each call to obtain a total alpha value for pair A and B. 
The alpha value eventually is assigned to the edge between A and B in the class 
dependency graph. In Figure 1, Ts indicates the time elapsed to reach the first position 
where the results of the remote call to method m() in class B is required, Td is the 
execution time of the remote method, m() and Tc indicates the network delay. 
Obviously the higher the number of method calls between the two classes, the higher 
the network delay will be. Considering the definition of these three parameters, the 
Distribution Gain achieved by assigning A and B to two different stations over the 
network may be estimated as follows:  

     )*(
1

, c

n

i
iBA Tnalphaalpha +−=

=
β , for all method calls, i = 1 to n, from A to B           (1) 

In the above relation, n is the number of method calls from class A to class B and Tc 
indicates the network delay. Apparently, if the method calls reside within loops with 
symbolic bounds, the value of n can not be determined statically. This is a known 
problem in symbolic analysis of programs [9]. Using a dynamic approach such as 
profiling it is possible to have a rough estimation of the loop bounds [10]. The amount 
of Tc is increased by a coefficient, , as the number of method calls is increased. If 
the value of alpha is greater than zero, the distribution is beneficial; otherwise 
the distribution is not useful. The maximum speed up is achieved when Ts equals 
(Td + 2Tc). The value of Td and Ts can be estimated using any algorithm for 
estimating execution time for a sequence of statements.  

2.2   Interactive Clustering Environment 

After labeling the edges of the class dependency graph with the Distribution Gains, 
described in the previous section, the resulting labeled graph is clustered. The idea has 
been to assign each cluster to a distinct station across the network. To achieve load 
balancing amongst the clusters, we have developed an agglomerative hierarchical 
clustering algorithm. Unlike the existing agglomerative approaches [11], which use 
a greedy approach to select combining clusters, we combine the pair of clusters for 
which the overall Distribution Gain is maximum. The sum of the Distribution gains 
written over the edges connecting the clusters together is the overall Distribution Gain 
of the clusters. Our specific hierarchical clustering algorithm is shown in Figure 2. 

Before combining clusters, the distribution gain for the combined cluster should be 
recalculated in order to find out whether the combination is beneficial. For instance, if 
the two classes p and q are to be assigned to a same cluster. Then in the best case the 
distribution gain achieved between the cluster containing p and q and the cluster 
containing a class i is: 

Sp+q, i = Sp,i + Sq,i 
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where Sp,i is the amount of distribution gain achieved by assigning the two classes p 
and i to two different stations each containing a cluster. In the worst case the amount 
of distribution gain is: 

Sp+q, i = min(Sp,i , Sq,i) - Tc 

where Tc is the communication cost. In general the distribution gain, Sp+q,i, can be 
estimated as the average of distribution gains for the best and worst cases. Hence, the 
similarity between any two merged clusters, p + q, and another cluster, i, can be 
computed as follows:  

2

),min()(
,.,.

,

TSSSS
S ciqipiqip

iqp

−++
=+

    (2) 

Obviously, as the number of method calls between the clusters is increased the 
amount of network traffic delay, Tc, is increased. In relation (2) the number of method 
calls between the clusters p+q and cluster i affects the amount of network traffic 
delay, Tc, by a factor β. Hence, as the number of remote method calls between the 
clusters is increased, the Distribution Gain, or in other words the amount of time 
saved by distributing the clusters is reduced. 
 

NumClusters = Number of classes 
Assign each class in the class dependency graph to a distinct clsuter 
While NumClusters >1 do Begin MaxGain = 0; 
    For ClusterI=1 to NumClusters do For ClusterJ=1 to NumClusters do 
        Begin OverallGain= the overal gain achieved if  clusteri is combined with cluster j 
           If  maxGain < OverallGain  then 
              Begin  maxGain=OverallGain;  Prevc1usteri = clusteri;  prevclusterj=clusterj; end; 
           else If  maxGain=OverallGain  and   NumberOfMethodcallsBetwwen(ClusterI , ClusterJ)<          
                       NumberOfMethodcallsBetwwen (Cluster c1 , Cluster c2)   then 
                  Begin  maxGain=OverallGain; Prevc1usteri = clusteri; prevclusterj=clusterj; end;  end; 
         closestClusters = [Cluster c1,Cluster c2];  CalculateNewDistance(closestClusters); 
         Replace(closestClusters ,  Cluster c1, Cluster c2); End 

Fig. 2. Hierarchical clustering algorithm 

2.3   Data Dependency Analysis 

Accurate and efficient data dependency analysis is an important cornerstone of any 
parallelizing compiler. Data dependency analysis is performed on sequential code to 
identify the inherent parallelism within the code [12]. Here, the analysis is only 
applied to determine asynchronous intra-module method invocations. Using a data 
analysis approach, a def-use chain [12] can be constructed to find the first locations 
within a program code where the values affected by a remote method call are 
required. Restricting dependency analysis to remote method calls within each cluster, 
obviously, reduces the analysis time.   

2.4   Distributed Program Architecture 

The idea has been to automatically translate serial source code into distributed code. 
The overall layered architecture of the distributed code is shown in Figure 3. As 
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shown in Figure 3, in order to distribute a serial code, each component or cluster of 
the code is augmented with a number of code blocks described bellow: 

− Proxy: This code block acts as an interface for each cluster. Remote invocations 
are performed through the Proxy component. The Proxy component is further 
described in Section 3.1. 

− Synchronizer: Asynchronous remote calls are controlled via a Synchronizer code 
block. The Synchronizer is fully described in Section 3.2. 

− Object Manager: This component manages creation of objects. Object Manager 
creates an object and assigns it a GUID (global unique identifier) whenever an 
object creation request arrives from a remote cluster. The object manager is 
described in Section 3.3. 

− Connector: The Connector object is responsible for sending and receiving events 
between clusters. Several implementations may exist for this component depending 
on the middleware used to deliver remote method calls.  

 
 
 
 
 
 
 
 
 

Fig. 3. The main components of the proposed environment of classes 

2.5   Proxy 

A Proxy component is created for each cluster to communicate with the other clusters. 
The Proxy component performs outgoing inter-cluster invocations. Bellow in Figure 4 
is the class definition of the Proxy. 

 
 

 
 
 
 
 

Fig. 4. Proxy class definition 

To achieve this, a method of the Proxy code block called callRemoteMethod, 
described below, is invoked, is used to carry out remote method calls:  
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  Public void callRemoteMethod(String ClassName, String objectName, String methodName,      
                                                    ,String returnName,Object[] params,String []signature) 
{Jsobject remoteObject; ResultHandle result; remoteObject=objectManager.getObjectHandeler( 

  String ClassName, String objectName); 
 result=remoteObject.ainvoke(methodName,params); 

  synchronizer.addMethodCall( esult,objectname,methodName,returnName,params, 
ignature);} 

Fig. 5. AA  mmeetthhoodd  ttoo  ssuuppppoorrtt  rreemmoottee  ccaallllss 

As it can be seen in the above method definition, the name of the remote object, 
objectName, the name of the class to which the object belongs, ClassName and the 
name of the variable in which the results of the remote call is to be stored, are all 
passed to the callRemoteMethod method. The list of the actual parameters to be 
passed to the method, methodName, is kept in an array of objects called Params.  

The callRemoteMethod accesses the remote object through its handle. To access 
the handle, the getObjectHandler method of the Object manager component is 
invoked. The handle addresses a Java Symphony method, aInvoke, which is then used 
by the callRemoteMethod to invoke the remote method, methodName. After, the 
remote method is invoked, aInvoke creates a handler, ResultHandlert, to check the 
status of the remote method execution. The ResultHandler is then used by the 
Synchronizer component, described in Section 3.3, to access the return value and the 
parameter objects affected by the remote method.  

The Wait method of the proxy component checks the status of a remote method via 
its handler object in a loop. This is achieved by calling the getResult method of the 
JavaSymphony object library. 

 
   public Object wait(String ClassName,String ObjectName,String MethodTime, String []signature) 

      {ResultHandle result  = sychronizer.getResultHandeler(ClassName,objectname, 
                                            methodName,signature);  return(result.getResult()); } 
 
To receive the value returned by a remote method the wait method is used as 

follows: 
 

  ReturnValue =( Return Type) Proxy.wait(ClassName,ObjectName,MethodName,signature); 
 

In order to wait for the value of a variable, par, which is already passed as 
a reference parameter to a remote method, MethodName, another method which is 
also called wait is invoked.  The method is declared as follows: 

 
     public Object Wait(String ClassName, String ObjectName, String MethodName, String []signature,  
                                      String par) { resultHandle resHandle= synchronizer.getResultHanlde(ClassName, 
             ObjectName,MethodName,signature); int aramIndex=synchronizer.getParamIndex(ClassName, 
             ObjectName,MethodName,signature,var);  return(resHandle.getParam(paramIndex));  } 
 

TThhee  wwaaiitt  mmeetthhoodd  iinnvvookkeess  tthhee  ggeerrttPPaarraamm  mmeetthhoodd  ttoo  rreecceeiivvee  tthhee  vvaalluuee  ooff  tthhee  
rreeffeerreennccee  ppaarraammeetteerr,,  ppaarr..  To receive the value of a variable, V, from a remote method 
call the wait method is used as follows: 

 
V =( param Type) Proxy.wait(ClassName,ObjectName,MethodName,signature, param 'V'); 
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2.6   Object Manager 

Object manager is a class, providing three methods to create, remove and access 
remote objects. Below is the interface definition of the object manager class.  

 
 
 
 

 

Fig. 6. OObbjjeecctt  mmaannaaggeerr  ccllaassss  ddeeffiinniittiioonn 

In the above class definition, the method createRemoteObject constructs a new 
remote object and returns a handle including a unique identifier to access the object 
and its methods. Object handles are also associated with the information about the 
location of the object and the location where the object originates. Below is a JAVA 
code implementation of the method: 

 
public void createRemoteObject(String className,String objectName,Object[] params) 
        { int componentIndex=componentInfo.getComponent(className); 
           if(componentIndex>0) 

 {JSObject obj = new JSObject(className,params,v1.getVA(componentIndex); 
   objectTable.addObject(obj,className,objectName);   } } 

Fig. 7. RReemmoottee  oobbjjeeccttss  ccoonnssttrruuccttoorr 

In the above code, to create a remote object, a JavaSymplony method called 
JSObject is invoked. This method calls GetRemotClassLocation method of the 
JavaSymphony class ComponentsInfo to find the location of the class of the object 
and constructs the remote object in that location and then returns a handle to access 
the remote object. The handle, the name and the class name of the remote object are 
all kept in a table which is an instance of the class objectTable. 

2.7   Synchronizer 

The addMethodCall() method of the Synchronizer component retains the signature, 
the name of the variable which receives the return value and the names of all of the 
reference parameters of an asynchronous remote method call in a table called 
CallMethodsTable. The getResultHandle() method of the component calls a method 
called gerParam to receive the return values and the value of the reference parameters 
of a remote method call.   

 
 
 
 
 

Fig. 8. Synchronizer class definition 
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2.8   Connector 

The Connector code block uses JavaSymphony middleware to transfer data and 
commands between clusters. To create a remote object a JavaSymphony class called 
jsobject is used as follows: 

JSObject remoteObject=new JSObject(“ClassName”, ConstructorParameters, VA) 

Remote method calls can be carried out through the ainvoke method of the JSObject 
class as follows: 

resultHandle result=remoteObject.ainvoke(methodName,params); 

The getParam and getResult methods of the resultHandle class can be used to 
receive the results of asynchronous remote calls.   

2.9   Translation of Serial into Distributed Code 

The application of the code blocks, described above, to convert an ordinary serial 
remote call to an asynchronous remote call is shown in the following example. 

 

1.  public class A{ private  static Keyboard keyboard=new Keyboard(); 
3.    //  The following line is inserted into the serial code to define a proxy object        
4.    private static Proxy proxy=new Proxy(); 
5.    public static void main(String [] args)throws Exception{ 
6.    int i=0,j=1,k=0;  String s1,s3;  char[] s2=new char[10]; 
7.   // Below the CreateRemoteObject is called to create an object called "b" of class "B"  
8.   proxy.createRemoteObject("B","b",null);   
9.   while(i!=j) {i=keyboard.readInt();  j=keyboard.readInt(); s1=keyboard.readString(); 
10.      System.out.println("\n\n"+s1); 
11.      // The following asynchronous method call susbtitutes:   k=b.set(s1,i,j,s2);    
12.      proxy.callRemoteMethod("B","b","set",new Object[]{s1,new Integer(i),new integer(i),s2}  
13.          ,new String[]{"s1",null,null,"s2"},new String[]{"String","Integer","Integer","char[]"});  
14.      System.out.println("Start index "+i);   System.out.println("End index "+j); 
15.      // The following code is inserted into the original code to wait for the results of a remote call 
16.      k=((Integer)proxy.Wait("B","b","set",new String[] 
17.                                                       {"String","Integer","Integer","char[]"})).intValue();   
18.      System.out.println("char num "+ k); 
19.       //The following line of code is inserted in the original code to wait for the results of a remote call  
20.       if(k%2==0)       {s2=(char[])proxy.Wait("B","b","set",newString[] 
21.                                  {"String","Integer","Integer","char[]"},  s2"); 
22.       //The following asynchronous method call substitutes:  s3=b.reverse(s2,k); 
23.          proxy.callRemoteMethod("B","b","reverse",new Object[]{s2,new Integer(k)},new String[] 
24.                {"s2",null},new String[]{"String","Integer"});                                                           
25.      //The following two lines are inserted in the original code to wait for the results of a remote call  
26.         s3=(String)proxy.Wait("B","b","reverse",new String[]{"String","Integer"}); 
27.         s2=(char[])proxy.Wait("B","b","reverse",new String[]{"String","Integer"},"s2"); 
28.        } else { // The following line of code is inserted in the original code to wait for the results  
29.                    s2=(char[])proxy.Wait("B","b","set",new String[] 
30.                   {"String","Integer","Integer","char[]"},"s2");  s3=String.valueOf(s2);  } 
31.      System.out.println(s3); 
32.        s1=(String)proxy.Wait("B","b","set",new String[]{"String","Integer","Integer", 
33                  "char[]"},"s1");    }   } 

Fig. 9. An example of a distributed code 
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3   A Case Study: TSP 

In order to evaluate the applicapability of the jDistributor environment the java code 
for the traveling salesman problem was automatically converted into a corresponding 
distributed code and executed over a network of 3 personal computers. Below in 
Figure 10 the execution time of the serial and the distributed code for the TSP are 
compared. The execution time is shown in minutes: seconds: milliseconds. 

The TSP program includes three major classes called TSPShortPath, TSPMinimal 
and GraphMaker to find the shortest path, build a minimal spanning tree and handle 
graphs, respectively. The TSPminimalTree class includes three classes kruskal, prim 
and TreeMaker to build a minimal spanning tree for the input graph.  

 

 
 

 
 
 
 
 
 
 
 
 

 

Fig. 10. A comparison of the execution time of the TSP serial and distributed code 

 
  
     
 
 
 
 
 
 
 
 

                  

Fig. 11. Clustering of the TSP weighted class dependency graph 

The results of applying both our scheduling scheme and the linkage average 
scheme [11] to cluster the class dependency graph of the TSP distributed code are 
shown in Figures 11.a and 11.b, respectively.  Each cluster, in Figure 11, is shown 

(a) Linkage Average Scheme (b) Our Scheme

Execution Time Graph No. 
Distributed Serial Edges Nodes 

0:7:357 0:0:573 40 20 
0:7:810 0:1:383 81 40 
0:8:163 0:3:246 122 60 

0:11:109 0:11:214 163 80 
0:14:741 0:19:773 204 100 
0:30:722 0:43:517 245 120 
1:0:871 0:25:362 286 140 

1:45:227 2:25:721 327 160 
2:48:280 3:54:871 368 180 
4:21:412 6:0:143 409 200 
7:20:343 9:36:655 450 220 
12:54:142 16:37:653 491 240 

 No. Nodes 
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with a rectangle which contains the names of all the classes residing in that cluster. 
All the edges connecting the clusters are labelled with Distribution Gains. The overall 
Distribution Gain using our approach is 1708 which is much more than the 
Distribution Gain for the linkage approach which is 355.  

As shown in Figure 11, within the jDistributor environment our hierarchical 
clustering algorithm can be executed step by step, by pressing the two buttons 'Next 
Step' and 'Previous Step'. To move a node from one partition to another partition the 
'Manual' button should be pressed.   

4   Conclusions 

Optimal distribution of a program code over network can be achieved by clustering its 
class dependency graph and assigning each cluster to a distinct station over the 
network. The clustering objective can be to balance the amount of time saved, by 
concurrent execution of the caller and callee in inter-cluster method invocations 
across the clusters. The type and number of instructions between two positions  of  the 
program code can be used as a measure to estimate the execution time. To locate the 
very first positions within the caller, where the results of a method call are required, 
dependency analysis techniques may be employed.  

Within the proposed architecture, remote calls are carried out through a code block 
called Proxy. In order to reduce the network communication overhead, objects can be 
created remotely. Remote objects are created using the object manager component. To 
synchronize the concurrent execution of the caller and callee a component called 
synchronizer is presented in this paper. The experimental results show that 
jDistributor is a reliable environment to transform a serial Java code into an efficient 
distributed code.  
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Unifying Framework for Message Passing�

Tomas Plachetka

Comenius University, Bratislava, Slovakia

Abstract. Theoretical models are difficult to apply for the analysis of
practical message passing systems used today. We propose a model which
can be used for such an analysis. Our framework for message passing is
in many ways similar to the framework for transactional database sys-
tems. The abstract message passing system is defined in our framework
independently of hardware, operating system and means of communi-
cation. The interface between the application and the message passing
system consists of four basic abstract message passing operations. The
application can be written in any programming language, provided that
the application’s communication primitives can be translated into se-
mantically equivalent sequences of the basic message passing operations.
We prove that a restricted version of our model is as powerful as the un-
bounded asynchronous channel model. We also prove that MPI, the Mes-
sage Passing Interface, is in some sense weaker than our restricted model
and therefore also than the unbounded asynchronous channel model.

1 Introduction

The reason for the introduction of a unifying framework is that we know of no
theoretical message passing model which can be directly mapped onto contem-
porary practical systems. For instance, the abstract channel model [1], [7] has
been used in computer languages and software libraries which support parallel
computation, e.g. [9], [4], [7]. Nevertheless, the mapping of the abstract channel
model onto a computer network is not apparent for the following reason. A chan-
nel is an unbounded first-in-first-out data structure which stores messages sent
to the channel by a sender process; a receiver process removes the messages from
the channel, or blocks if the channel is empty. The wires in computer networks
have no capacity—either the receiver or the sender processes can store messages,
but not the wire between them. Therefore channels cannot be directly mapped
onto wires and vice versa. We propose a model which uses neither channels nor
wires. It uses an abstraction of communication which can be efficiently mapped
onto different communication mechanisms provided by contemporary networking
and shared-memory systems. Mutual simulations of various abstract models are
summarised in the invariance thesis: “‘Reasonable’ machines can simulate each
other with a polynomially bounded overhead in time and a constant overhead in
space.” [12]. We will show that our model is ‘reasonable’ in this sense.
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Our framework fits into the framework for transactional database systems
which is well-accepted among academic researchers and implementors of the sys-
tems [3], [2], [5]. The latter defines a clean interface between a database transac-
tion and a database system. This interface consists of only four basic operations
which operate on database records: READ, WRITE, INSERT and DELETE
(the last two operations are often omitted in database textbooks which silently
assume that the database is non-empty and its cardinality does not change).
The semantics of these basic operations is defined independently of the actual
database programming language (e.g. SQL). It is only required that the ap-
plication’s language primitives can be automatically translated into equivalent
sequences of the basic operations. This allows for the programming of database
transactions without any knowledge as to how the four basic operations are
implemented, independently of whether the database system is centralised or
distributed and independently of the hardware or the operating system used to
run the database system. This also gives rise to the development of important
abstract theories such as serialisability and recovery which help the implementors
of database systems to optimise their systems by reordering the basic operations
in the system, while adhering to the semantics of the basic operations. Alto-
gether, the framework for transactional database systems is a standard with a
solid scientific background which helps to make complex database systems robust
and reliable. In our opinion, this all holds for our message passing framework—
only the set of the basic operations is different. The basic database operations
work with database records, whereas the basic message passing operations work
with messages.

This paper is organised as follows. Section 2 describes the components of our
framework and formally defines its main component, the message passing sys-
tem. This definition induces the semantics of basic message passing operations.
We prove in Section 3 that a restricted version of our model can simulate the
unbounded asynchronous channel model and vice versa within the bounds of
the invariance thesis. This means that our restricted model is as powerful as
other abstract models. We then prove that MPI, the Message Passing Inter-
face [11], [10] cannot simulate our restricted model within the bounds of the
invariance thesis and is therefore weaker than the asynchronous channel model.
The same holds for other practical systems—we chose MPI as it is becoming
a de facto industrial standard for programming parallel applications. Section 4
concludes the paper.

2 Components of the Message Passing Framework

This section describes the roles of the components used in our framework.Fig. 1 de-
picts the relationships between the components. Process communicates with other
processes only by submitting basicmessage passing operations to themessage pass-
ing system. (We will assume throughout this paper that the set of processes does
not change with time; we only make this restriction for the sake of simplicity.) A
process can be a process in the POSIX sense but our framework does not require



Unifying Framework for Message Passing 453

Process

Language binding

Basic message passing operations
CREATE, DESTROY, RECV, SEND

Architecture binding

Message passing system

Transaction

Language binding

Basic database operations
INSERT, DELETE, READ, WRITE

Architecture binding

Database system

Fig. 1. Left: Components of the message passing framework; Right: Components of
the database framework

that. The system regards a process as a single entity with a unique identifier from
which it reads a stream of basic message passing operations. A process corresponds
to a transaction in the database framework. Language binding translates commu-
nication primitives used in processes (e.g. a broadcasting primitive, a barrier prim-
itive etc.) into semantically equivalent sequences of basic message passing opera-
tions. The use of synchronous and asynchronous communication primitives in pro-
cesses does not influence the semantics of basic message passing operations. The
interface between the processes and the message passing system consists of four
types of basic message passing operations which work with messages: CREATE,
DESTROY, RECV, SEND. The semantics of the basic message passing operations
is induced by the definition of the message passing system. The representation and
contents of messages is arbitrary and does not influence the semantics of the basic
operations. Architecture binding maps the semantics of the basic message passing
operations onto a specific architecture of the message passing system. This map-
ping may for example include routing algorithms for distributed architectureswith
different network topologies, algorithms which guarantee faults tolerance; etc. Ar-
chitecture binding hides similar mechanisms from processes and guarantees that
the semantics of the basic operations does not depend on the actual implementa-
tion of the system. Message passing system is an abstract component which reads
basic message passing operations and executes them as it is defined in the rest of
this section.

Definition 1 (Submission of a basic message passing operation). Sub-
mission of a basic operation denotes the act of passing the operation from a
process (or the language binding layer) to the message passing system.

Definition 2 (Representation of basic message passing operations).
All basic message passing operations are tuples [op, x, Y,m, f, s, t], where op ∈
{CREATE,DESTROY, SEND,RECV}; x is the identifier of the process which
submits the operation; Y is a set of process identifiers; m is a message; f is
a boolean function defined on messages (a filter); s is either a reference to
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a semaphore object which can be accessed by the message passing system, or
NULL; t is the time stamp of the submission of the operation (i.e. the time
when the operation has been read by the message passing system).

Definition 3 (Scope of a process). The scope of a process is a memory
space where messages relating to the process are stored. A message can only be
accessed (i.e. read from, written into, shrunk or expanded) by the process in the
scope of which the message is stored. A process can create and destroy messages
only by submitting CREATE and DESTROY operations. The system creates,
destroys and accesses messages in scopes of processes only as it is defined in this
section. In addition, the system stores operations which it has read in the scope
of the process which submitted the operation. SC(x) will denote the scope of the
process x and SC(∗) will denote the union of the scopes of all the processes.

To keep things simple, we will deliberately mix messages with pointers to mes-
sages in the field m. It is obvious where in the text m denotes a message and
where it denotes a reference to a message.

Definition 4 (Processing of submitted operations). The system may at
any one time either read one operation or execute one operation. The system only
reads those operations which have been submitted. Every submitted operation is
only read once by the system. When the system reads an operation, then it updates
the operation’s time stamp and stores the operation in the scope of the process
which submitted the operation. At any time t, the system can only execute an
operation which is stored in SC(∗) at the time t. The system may postpone the
execution of a submitted operation (i.e. operations are not necessarily executed
by the system in the order in which they are submitted).

Definition 5 (Matching operations). We will say that two basic message
passing operations
BO1 = [op1, x1, Y1,m1, f1, s1, t1], BO2 = [op2, x2, Y2,m2, f2, s2, t2], (or BO2 =
[op1, x1, Y1,m1, f1, s1, t1], BO1 = [op2, x2, Y2,m2, f2, s2, t2], respectively) are
a matching pair (we will also say that BO1 is an operation matching the opera-
tion BO2 and vice versa) iff

(op1 = SEND ∧ op2 = RECV ∧ x1 ∈ Y2 ∧ x2 ∈ Y1 ∧ f2(m1)∧

(∀BO′
1 = [op′1, x

′
1, Y

′
1 ,m

′
1, f

′
1, s

′
1, t

′
1] ∈ SC(∗) : (BO′

1 ≡ BO1∨
op′1 �= SEND ∨ x′

1 /∈ Y2 ∨ x2 /∈ Y ′
1 ∨ ¬f2(m′

1) ∨ t′1 ≥ t1))∧
(∀BO′

2 = [op′2, x
′
2, Y

′
2 ,m

′
2, f

′
2, s

′
2, t

′
2] ∈ SC(∗) : (BO′

2 ≡ BO2∨
op′2 �= RECV ∨ x1 /∈ Y ′

2 ∨ x′
2 /∈ Y1 ∨ ¬f ′

2(m1) ∨ t′2 ≥ t2)))

Informally, a send operation BO1 = [SEND, x1, Y1,m1, f1, s1, t1] matches a re-
ceive operation BO2 = [RECV, x2, Y2,m2, f2, s2, t2] iff the set of recipients Y1
contains x2, the set of senders Y2 contains x1, the filtering function f2 accepts the
message m1 and neither BO1 nor BO2 can be replaced with an older operation
so that all the previous properties hold.
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The definition of matching operations can be weakened if we do not require
the messages sent from a process to another process to be received in the same
order by the latter process. In such a case, the time-stamps are ignored and the
predicate in the definition 5 becomes

(op1 = SEND ∧ op2 = RECV ∧ x1 ∈ Y2 ∧ x2 ∈ Y1 ∧ f2(m1))

We will use the definition with message ordering (i.e. Definition 5) in the sequel.

Definition 6 (Execution of CREATE operations). The execution of an ope-
ration [CREATE, x, Y,m, f, s, t] consists of the following actions performed in an
atomic step:

1. The system creates a new message m in SC(x).
2. If s �= NULL then the system performs semaphore signal(s).
3. The system removes this operation from SC(x).

Definition 7 (Execution of DESTROY operations). The execution of an
operation [DESTROY, x, Y,m, f, s, t]. consists of the following actions performed
in an atomic step:

1. The system removes m from SC(x).
2. If s �= NULL then the system performs semaphore signal(s).
3. The system removes this operation from SC(x).

Definition 8 (Execution of RECV and SEND operations). The system
may execute an operation BR = [RECV, x, Y,m, f, s, t] at time t only if a match-
ing operation BS = [SEND, x′, Y ′,m′, f ′, s′, t′] exists in SC(∗) at the time t. If
the system decides to execute BR then it must also execute the matching BS in
the same atomic step which consists of the following actions:

1. The system creates a new message m in SC(x).
2. The system copies the contents of the message m′ into the contents of the

message m.
3. The system removes the message m′ from SC(x′).
4. If s �= NULL then the system performs semaphore signal(s).
5. If s′ �= NULL then the system performs semaphore signal(s′).
6. The system removes BS from SC(x′).
7. The system removes BR from SC(x).

Definition 9 (Progress of processing). The system will eventually read ev-
ery submitted operation and it will eventually execute all CREATE and
DESTROY operations which have been read. Moreover, if a matching opera-
tion pair exists in SC(∗) at any time t then the system will eventually execute
at least one of the operations of that matching pair.

The last part of Definition 9 is expressed cautiously in order to support alterna-
tive definitions of matching operations. For example, replace Definition 5 with
the definition which uses no time-stamps and consider the following scenario.
A pair of matching operations BS and BR exists in SC(∗) at time t. Before
either of these operations is executed, another send operation BS′ which also
matches BR, is stored into SC(∗). Then the “at least one” part of Definition 9
allows the system to execute either the pair BR, BS or the pair BR, BS′.
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3 Computational Power of Models

We will say that a program which uses primitive statements of a model A is
correct iff all possible executions of the program with the same input yield the
same output. We will say that a model B can simulate a model A iff an arbitrary
correct program which uses primitive statements of the model A can be written
as a functionally equivalent program which uses primitive statements of the
model B. The functional equivalence means that for any input, B computes the
same output as A; and B terminates iff A terminates (a program terminates
iff all its processes terminate). We will only consider imperative programs with
a single thread of control in every process and we will use the C-like notation to
write the programs. We will say that two models are of the same computational
power iff they can simulate each other within the bounds of the invariance thesis
from Section 1. If a model B can simulate a model A within these bounds but
not the other way around then we will say that B is computationally stronger
than A (or that A is computationally weaker than B).

3.1 Asynchronous Unbounded Channel Model

We will shortly describe the asynchronous unbounded channel model (a more
formal definition can be found e.g. in [7]). A channel is an unbounded FIFO
queue which stores messages. An application program consists of a constant
number of parallel processes which communicate exclusively via channels. The
number of channels can be arbitrary but the set of channels does not change in
run-time. The processes use only two communication primitives with the usual
semantics: PUT(ch,m) inserts the message m into the channel ch. GET(CH,m)
(where CH denotes a set of channels) atomically reads a message from a channel
ch ∈ CH , stores the message into the variable m and then it removes the message
from the channel ch. Each channel can be accessed by any number of processes
but only one process can access a channel at any time. PUT never blocks; GET
blocks until it has not read a message. It is guaranteed that if a channel ch
is non-empty at some time and some GET(CH,m) with ch ∈ CH is blocked
at that time then some (not necessarily the same) blocked GET(CH ′,m′) with
ch ∈ CH ′ will eventually read a message and unblock.

3.2 Our Restricted Model

We will make the following restrictions in our model from Section 2. All the
messages will be tuples [c,m], where c (context) belongs to some finite set C
and m is of an arbitrary data type. If M ≡ [c,m] then M [1] will denote c
and M [2] will denote m. The only filtering functions in basic message passing
operations will be fCH(M) = TRUE iff M [1] ∈ CH , CH⊂C (i.e. only testing a
context prefix of messages for a membership in CH , CH⊂C, will be allowed).
All processes will submit CREATE operations only in the following context
(i.e. only a blocking CREATE will be allowed): {new(s); semaphore init(s, 0);
[CREATE, x,NULL,M,NULL, s, t]; semaphore wait(s); delete(s);}. All the pro-
cesses will submit RECV operations only in the following context (i.e. only a
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blocking RECV will be allowed): {new(s); semaphore init(s, 0); [RECV, x, Y ,
M , f , s, t]; semaphore wait(s); delete(s);}. All irrelevant fields in the 7-tuples
representing basic message passing operations will be NULL.

3.3 The MPI Model

The MPI model [11] uses many primitives, but we will only describe those which
are relevant for the comparison with the two previous models. MPI does not use
the channel abstraction. It uses point-to-point message addressing which is simi-
lar to the one of our restricted model. MPI has a primitive MPI Recv which blocks
until it receives a message and it has a nonblocking send primitive, MPI Isend.
Unlike our model, MPI requires the process to free the memory occupied by the
message sent used in MPI Isend. However, the process must not free this memory
before the recipient has received the message—in MPI’s terminology, before the
MPI Isend completes. In order to detect this completion, each MPI Isend must be
paired either with MPI Wait which blocks until the MPI Isend completes, or with
nonblockingMPI Testwhich returns a value indicatingwhether theMPI Isendhas
completed. As we will show, this pairing requirementmakes the MPI model weaker
than the previous two models. Note that our model allows for this kind of synchro-
nisation (deferred synchronisation), as a process may include a semaphore s in a
send operation and perform semaphore wait(s) later. Nevertheless, our model does
not require the process to do this.

3.4 Mutual Simulations of Models

Theorem 1. Our restricted model can simulate the channel model and vice
versa with a constant overhead factor in both time and space.

Proof. We will show that our restricted model can simulate the channel model,
with a constant overhead factor in both time and space. Consider a program
PROG1 which uses the PUT and GET communication primitives of the chan-
nel model. We will construct a program PROG2 which is functionally equivalent
with PROG1 but only uses the basic message passing operations of our restricted
model. Messages in PROG2 will be tuples [ch,m], where ch is a channel identifier
in PROG1 and m is a message in PROG1. The program PROG2 will consist of
the same processes as PROG1. Let P∗ denote the union of all the processes. Re-
place in each process x in PROG2 each occurrence of PUT(ch,m); with {new(s);
semaphore init(s, 0); [CREATE, x,NULL,m′,NULL, s, t]; semaphore wait(s);
delete(s); m′ = [ch,m]; [SEND, x, P∗,m′,NULL,NULL, t];}. Replace in each
process x in PROG2 each occurrence of GET(CH,m); with {new(s);
semaphore init(s, 0); [RECV, x, P∗,m′, fCH , s, t]; semaphore wait(s); delete(s);
m = m′[2]; [DESTROY, x,NULL,m′,NULL,NULL, t];}. It follows directly from
the definitions of the models that the programs PROG1 and PROG2 are func-
tionally equivalent and that the replacements only incur a constant overhead in
both time and space.

We will now prove that the channel model can simulate our restricted model
within the bound. Consider a program PROG1 which uses the basic message
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passing operations of our restricted model. We will construct a program PROG2
which only uses the channel communication primitives PUT and GET. The pro-
gram PROG2 will consist of the same processes as PROG1. The channel iden-
tifiers in PROG2 will be tuples [c, Y ] where c ∈ C and Y is a set of processes
(this tuple can be encoded as an integer if the channel model requires it). Re-
place in each process x in PROG2 each occurrence of the sequence {new(s);
semaphore init(s, 0); [CREATE, x,NULL,m,NULL, s, t]; semaphore wait(s);
delete(s);} with new(m);. Replace in each process x in PROG2 each occur-
rence of [DESTROY, x, Y,m,NULL,NULL, t]; with delete(m);. Replace in each
process x in PROG2 each occurrence of [SEND, x, Y,m,NULL,NULL, t]; with
{PUT([m[1], Y ], m); delete(m);}. Replace in each process x in PROG2 each oc-
currence of the sequence {new(s); semaphore init(s, 0); [RECV, x, Y,m, f, s, t];
semaphore wait(s); delete(s);} with GET(CH,m);, where CH is the set of all
the channels ch = [c,m] for which f(ch) = TRUE. Note that the set CH can be
computed in constant time as the set of first message components c is known and
finite and f([c,m]) only depends on c. It follows directly from the definitions of
the models that the programs PROG1 and PROG2 are functionally equivalent
and that the replacements only incur a constant overhead in time and space. � 
Theorem 2. The MPI model cannot simulate our restricted model within the
bounds of the invariance thesis.

Proof. Consider the following program in our model which consists of processes
p0 and p1 (P0 will denote the set containing p0, P1 will denote the set containing
p1 and fTRUE will denote a function which always returns TRUE).

p0(FILE *inp0)
{

while (! feof(inp0))
{

new(s);
semaphore init(s, 0);
[CREATE, p0, NULL, m, NULL, s, t];
semaphore wait(s);
delete(s);
m=fgetc(inp0);
[SEND, p0, P1, m, NULL, NULL, t];
printf(”sent”);

}
}

p1(FILE *inp1)
{

while (! feof(inp1))
{

new(s);
semaphore init(s, 0);
[RECV, p1, P0, m, fTRUE, s, t];
semaphore wait(s);
delete(s);
printf(”received %c”, m);
[DESTROY, p1, NULL, m,NULL,
NULL, t];
fgetc(inp1);

}
}

It is easy to verify that this program is correct. We will now prove that it can-
not be simulated by a program which uses MPI primitives MPI Recv, MPI Isend,
MPI Wait and MPI Test without breaching the bounds of the invariance the-
sis. (The rest of MPI’s primitives apparently does not help in the simulation of
the program above.) The process p1 receives n1 messages from the process p0,
where n1 is the number of characters in the input stream inp1 (this number is
unknown until the entire stream inp1 has been read). This can only be accom-
plished by calling MPI Recv n1 times in the p1. In the process p0, MPI Isend
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must obviously be called n0 times, where n0 is the number of characters in the
input stream inp0. These n0 calls must be paired with n0 either MPI Wait or
MPI Test calls in p0, otherwise the memory overhead of the MPI program for
n0 = n1 would depend on n1 and would therefore exceed a constant factor. (We
recall that even if p0 submits SEND operations faster than p1 or vice versa, the
system is allowed to postpone the reading of these operations until the previous
operations of that process have been executed—therefore the program above can
be executed in constant memory for n0 = n1. Generally, the space complexity
of the program above is c + |n0− n1|, where the constant c depends on neither
n0 nor n1.) MPI Wait cannot be used in any of the n1 pairings because the
MPI program would not terminate for n0 > 0 and n1 = 0, whereas the program
above would. This implies that MPI Test must be used in all the n1 pairings.
In each of these pairings, the nonblocking MPI Test must be repeatedly called
until the corresponding MPI Isend completes, otherwise the memory overhead
would exceed a constant factor. However, in this case the MPI program would
not terminate for n0 > 0 and n1 = 0, whereas the program above would. � 

4 Conclusions

We presented a framework for message passing which defines an interface be-
tween message passing applications and message passing systems. We proved
that its restricted version is as powerful as the unbounded asynchronous chan-
nel model (our unrestricted model is apparently at least as powerful). We also
proved that the MPI model is less powerful than these models. The substantial
difference between the models is that the MPI standard only supports so-called
deferred synchronous communication [8]. Statements such as “MPI has full asyn-
chronous communication” [6] are false. This deviation of the MPI standard from
theoretical models has negative consequences for efficiency and portability of
parallel applications which build on the MPI standard.

Our framework can serve as a well-founded specification of message passing
systems. We stress that this specification only defines the semantics of the basic
message passing operations (which should be provided by any message passing
system), not the means of their implementation. For instance, the implemen-
tation of the operations for distributed architectures does not require a global
clock despite of the time-stamps in Definition 5. We implemented the framework
as a message passing library for several operating systems and network types.
Our implementation is thread-safe and polling-free (it uses no busy waiting).
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Appendix

Semantics of Semaphores

Throughout the paper, we assume the standard semaphore semantics as it is
defined in [ISO/IEC 9945-1: 1990 Information Technology. Portable Operating
System Interface (POSIX), Part 1: System Application Program Interface, C lan-
guage]. Although we are convinced that most readers are familiar with the notion
of semaphores, we provide this appendix in order to avoid misunderstandings
concerning the notation.

A semaphore object is an abstract synchronisation object which keeps an
internal variable count. (The formal definition of semaphores allows for an ar-
bitrary representation of count, provided that the semantics of the semaphore’s
operations remains unchanged.) The call new(s) creates a semaphore object re-
ferred to as s and semaphore init(s, c) sets the variable count belonging to s
to c. The call delete(s) destroys the semaphore s.

The call semaphore wait(s) acquires the semaphore. Its semantics corresponds
to the semantics of Dijkstra’s operation P (s): if the variable count of s is 0 then
the calling process blocks in the call, otherwise the variable count of s is decreased
by 1 and the calling process continues. The testing and decreasing of the variable
count is an atomic operation.

The call semaphore signal(s) signals the semaphore and its semantics corre-
sponds to the semantics of Dijkstra’s operation V (s): the count of s is increased
by 1. Moreover, if there is at least one process which is blocked on the semaphore
s then one of these blocked processes unblocks and attempts to acquire the
semaphore as if it has called that semaphore wait(s) once again.
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Abstract. In this article we present a strategy to formalize frequently occurring 
forms of refinement that take place in UML model construction. Such strategy 
consists in recognizing a set of well founded refinement structures in a formal 
language which are then immersed into a UML-based development, giving 
origin to a set of UML refinement patterns. Apart from providing semi-formal 
evidence on the presence of refinement structures in object-oriented designs, 
this strategy made it possible to reveal hidden refinements and to discover 
weaknesses of the UML language that hinder the specification of refinement. 
An automatic tool is provided to support model refinement activities. 

1   Introduction 

Model Driven Development (MDD) [8][16], which prescribes the use of UML [14] as 
the standard modeling language, aims at introducing techniques for raising the level 
of abstraction to describe both the problem and its solution, and by clearly 
establishing methodologies to define the problem and how to move to its solution. 
The idea promoted by MDD is to use models at different levels of abstraction. 
A series of transformations are performed starting from a platform independent model 
with the aim of making the system more platform-specific at each refinement step. 
However, model transformations are frequently only viewed as a technique for 
generating models; little is said about guaranteeing the correctness of the generated 
models. In fact, model transformations should do more than just generate models; in 
addition, they should generate evidence that the generated models are actually correct. 
In particular, some of these transformations can be cataloged as refinements in the 
sense of formal languages [6], thus being amenable to formal verification. 

Formal verification of model refinement can be fully exploited only if the language 
used to create the models is equipped with formal refinement machinery, making it 
possible to prove that a given model is a refinement of another one, or even to 
calculate possible refinements from a given model. This refinement machinery is 
present in most formal specification languages such as Object-Z [6], [21], B [10], and 
the refinement calculus [2]. Besides, some restricted forms of programming languages 
can also be formally refined [4]. But, in the standard specification language 
UML [14], the refinement machinery has not reach a mature state yet. Being UML 
a language widely used in software development, any effort made towards increasing 
the robustness of the UML refinement machinery becomes a valuable task which will 
also contribute to the improvement of MDD. To reach this goal, most researchers 
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have used an “informal-to-formal” approach consisting in translating the graphical 
notation into a formal language equipped with refinement machinery. For example, 
the works of Davies and Crichton [5] Engels et al.[7] Astesiano and Reggio [1], Lano 
and Biccaregui [11], Ledang and Souquieres [12] among others. In this way, UML 
refinements become formally defined in terms of refinements in the target language. 
This approach is valuable, and in most cases it allows us to verify and calculate 
refinements of UML models. However, this approach is insufficient because it does 
not address the following problems: - lack of notation to specify refinements (although 
the UML Abstraction artifact allows for the explicit documentation of the refinement 
relationship in UML models, the available features of the Abstraction artifact are 
frequently insufficient to formally define the relationship); - presence of hidden 
refinements: an important amount of variations of abstraction/refinement remains 
unspecified, usually hidden under other notations. Those hidden refinements should 
be discovered and accurately documented [17], [18]; - missing refinement 
methodology: the formalization of the language itself is only the starting point; we 
also need a stepwise refinement methodology, based on a formal theory, consisting of 
refinement patterns, rules and guidelines.  

We explored an alternative approach (i.e., a “formal-to-informal” approach) as 
a complement to the former. According to this approach a formally defined 
refinement methodology is immersed into a UML-based development. Concretely, 
well founded refinement structures in the Object-Z formal language provide 
inspiration to define refinement structures in the UML, which are (intuitively) 
equivalent to their respective inspiration sources.  

The structure of this document is as follows: first, in sections 2 and 3 we describe 
the results of applying a “formal-to-informal” approach towards the improvement of 
the UML refinement machinery; we present an extract of a catalog of well-founded 
Object-Z refinement patterns, each of them giving origin to a list of several UML 
refinement patterns (each single Object-Z refinement pattern can be analyzed from 
a number of perspectives, which give rise to a number of UML refinement structures, 
one for each perspective). Finally, sections 4 discusses related work and conclusions. 

2   Object Decomposition Pattern 

DDeessccrriippttiioonn:: Composition is a form of abstraction: things are composed of smaller 
things, and this recursively; the composite represents its components in sufficient 
detail in all contexts in which the fact of being composed is not relevant and 
conversely decomposition is a form of refinement: an abstract element is described in 
more detail by revealing its interacting internal components. 

EExxaammppllee:: in a flight booking system (figure 1), each flight is abstractly described by 
its overall capacity and the quantity of reserved seats in its cabin (i.e., class FlightC), 
then a refinement is produced (i.e.,class FlightD) by specifying in more detail the fact 
that a flight contains a collection of seats in its interior. In this case seats are described 
as individual entities whit their own attributes and behavior (a seat has an 
identification number and a Boolean attribute indicating whether it is reserved or not). 
In both specifications a Boolean attribute is used to represent the state of the  
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Fig. 1. Refinement induced by Decomposition in Object-Z Classes 

flight (open or canceled). The available operations are reserve to make a 
reservation of one seat and cancel to cancel the entire flight. The retrieve relation R 
establishes the connection between both specifications. The refined version of the 
operation reserve selects a seat, ready to be reserved, in a non-deterministic way. 

UUMMLL  RReeaalliizzaattiioonnss  ooff  tthhee  PPaatttteerrnn:: In this section we describe one UML instantiations 
of the Object Decomposition Pattern: Object Decomposition in Class Diagrams; other 
instantiations of the pattern are observed for example in Collaboration and Interaction 
Diagrams. The OCL language [15], [20] has been used to specify the operation’s pre 
and post conditions. The mapping attached to the abstraction relationship is expressed 
in an OCL-like language (a discussion on the mapping’s language issue is included 
bellow). Figure 2 shows a refinement of the class FlightC, which was obtained by 
specifying in detail the fact that a flight contains a collection of seats. The refinement 
mapping (expressed in pseudo-OCL) states the connection between abstract and 
refined attributes.  
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Flight_D
canceled : Boolean

reserve()
cancel()

Seat
number : Integer
reserved : Boolean

reserve()
**

Flight_C
capacity : Integer
reservedSeats : Integer
canceled : Boolean

reserve()
cancel()

<<refine>>

Fig. 2. Refinement induced by Decomposition in UML Class Diagram 

FFoorrmmaalliizzaattiioonn:: By applying the definition of downward simulation in Object-Z [6], it 
is possible to verify the refinement, in the following way:  

Initialization:   
AFlightD.State • FlightD.init fi(E FlightC.State • FlightC.init ¶ R) 

Applicability:   
AFlightC.State;FlightD.State • R fi (pre reserveC fi pre reserveD) 
AFlightC.State;FlightD.State • R fi (pre cancelC fi pre cancelD) 

Correctness 
AFlightC.State;FlightD.State;FlightD.State’•
                     R ¶  pre reserveC ¶ reserveD fi E.FlightC.State’•  R’ ¶ reserveC 
AFlightC.State;FlightD.State;FlightD.State’•
                     R ¶ pre cancelC  ¶ cancelD   fi E.FlightC.State’•  R’¶ cancelC 

DDiissccuussssiioonn::
Issues on hidden refinement: In UML, decomposition is not considered as a form of 
model refinement. This pattern reveals a particular case of hidden refinement: UML 
models with composite association implicitly specify refinement relationship. See  
[18] for a detailed discussion on this issue. 

Issues on the specification of delegation: The behavior of the class FlightC was 
specified in figure 2 as follows:

Context FlightC :: reserve()
pre: capacity-reservedSeats>0 and not canceled 
post: reservedSeats=reservedSeats@pre + 1 

a.capacity = c.seats ->size()and

a.canceled = c.canceled and

a.reservedSeats=c.seats->

                select(s|s.reserved)->size() 

Context FlightA ::

reserve() pre: freeSeats>0 and canceled.not 

          post: freeSeats=freeSeats@pre -1 

cancel() post: canceled=true
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In general, the structural decomposition of an object is accompanied by 
a behavioral decomposition realized through delegations. In the abstract specification 
it seems that the object carries out its tasks by itself, but in the refined version we can 
observe that the object delegates sub-tasks to its constituent objects. Let us present the 
OCL specification of the constituent class Seat: 

Context Seat :: reserve() 
pre: not reserved 
post: reserved

To specify the behavior of the refined class FlightD we need to write an OCL 
expression that is (intuitively) equivalent to the simple following Z expression, which 
makes a non-deterministic choice of a seat to be reserved: 

reserve Í � s e seats • s.reserve 
The most approximated OCL expression we obtain is: 
Context FlightD :: reserve() 
pre: seats -> select (s| not s.reserved) -> notEmpty()
post: let s=seats->any(s| not s.reserved) in s^reserve() 

In this pattern we face the OCL restriction that non query operations, such as the 
reserve() operation, are not allowed to be referred to within OCL expressions. 
Without this facility the specification of delegation in OCL is only possible through 
the use of OCL Message expressions, allowing us to express messages sent between 
objects through the hasSent operator ^ [17, pg.29-31]. These expressions are little 
appropriate for building specifications because they talk about explicit 
communication between objects instead of describing the effects of the 
communication in a declarative form. The expression s^reserve() in the 
specification of operation FlightD::reserve() evaluates true if 
a reserve() message was sent to s during the execution of the operation. 
Moreover, the fact that a method has been called during the execution of an operation, 
does not assure that its effects were accomplished. The only thing we can assure is 
that sometime during the execution of FlightD::reserve(), the operation 
reserve()has been called over the Seat instance s. Furthermore, to specify that 
the operation has already returned we should use the OCL operation 
hasReturned(), however this introduces annoying complication on the 
specification.   

Issues on the syntax to specify the retrieve relation: Graphically, the abstraction 
mapping describing the relation between the attributes in the abstract element and the 
attributes in the concrete element is attached to the refinement relationship; however, 
OCL expressions can only be written in the context of a Classifier, but not of 
a Relationship. Then, if we want to use the OCL to express the abstraction mapping 
we need to determine which the context of the expression is. On the Z side, the  
context of the abstraction mapping is the combination of the abstract and the concrete 
states; however, a combination of Classifiers is not an OCL legal context; 
consequently we might write the mapping in the context of the abstract (or the 
concrete) classifier only, in the following way: 
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Context a:FlightC
def: mapping(c : FlightD) : Boolean = 
  a.capacity = c.seats ->size() and a.canceled = c.canceled 
and a.reservedSeats=c.seats ->select(s|s.reserved)->size() 

The transformation from the pseudo-OCL expressions in figures 2 to their 
corresponding legal OCL expressions above can be generically defined in the 
following way: let d be a refine relationship with meta-attributes d.supplier (the 
abstract classifier), d.client (the concrete classifier) and d.mapping.body (the pseudo 
OCL expression specifying the mapping). We derive a Boolean operation definition 
in the context of the abstract classifier: 

Context a: anAbstractElement 
def:mapping(c:aConcreteElement):Boolean=aBoolOclExpression

Where anAbstractElement, aConcreteElement and aBoolOclExpression are replaced 
by d.supplier.name, d.client.name and d.mapping.body respectively. 

Issues on the verification process: Verification heuristics can be defined for this 
refinement pattern. On the one hand, to verify the refinement conditions we can 
translate the UML diagram back to Object-Z using already developed strategies such 
as the one proposed by Kim and Carrington in [9]. Then, verification is carried out on 
the formal specification. Alternatively, we might remain on the UML+OCL side by 
defining refinement conditions in OCL in a similar style to the Object-Z refinement 
conditions [6]. 

3   Non-atomic Operation Refinement Pattern 

DDeessccrriippttiioonn:: In the refinements we have analyzed so far the abstract and concrete 
classes have been conformal, i.e., here has been a 1-1 correspondence between the 
abstract and concrete operations. Conformity can be relaxed allowing the abstract and 
concrete specifications to have different sets of observable operations. This case takes 
place when the abstract operation is refined not by one, but by a combination of 
concrete operations, thus allowing a change of granularity in the specification.  

EExxaammppllee:: the flight booking system specified in the schema BookingSystemD in 
figure 3 records a sequence of flights which can be reserved through the system; then 
the schema BookingSystemE defines a refinement of operation reservation into 
checkPassenger ;checkFlight recordReservation. 

UUMMLL RReeaalliizzaattiioonnss ooff tthhee PPaatttteerrnn:: This section contains the description of one of the 
instantiation of the Non-Atomic operation Refinement Pattern - non-atomic operation 
refinement in class diagrams. This pattern can also be instantiated in Use Case, 
Interaction and Activity diagrams, among others. Figure 4 contains an example of non-
atomic operation refinement in a class diagram; the refinement relationship specifies 
that the abstract class BookingSystemD has been refined by the more concrete class 
BookingSystemE; in particular, the abstraction mapping states that operation 
reservation() has been refined by the combination of three concrete operations. 
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Fig. 3. Non-atomic Operation Refinement in Object_Z Classes 

DDiissccuussssiioonn::  
Issues on the syntax to specify the retrieve relation: It was already discussed in the 
definition of previous patterns, that although in the diagram the mapping specifying 
the relation between the abstract operation reservation () and its refinement is 
attached to the refinement relationship, the mapping should be  actually defined in the 
context of some of the involved classes, as follows: 

Context a: BookingSystemD   
def: mapping(c : BookingSystemE) : Boolean =  
     c^checkPassenger()and c^checkFlight()and  
     c^recordReservation() implies a^reservation()  

Issues on the syntax to specify composition of behaviors: It is possible to express 
that reservation() is realized as the combination of the three operations, however 
message expressions do not provide the way to specify execution order.  The fact that 
the reservation should be checked before being recorded cannot be expressed.  
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BookingSystem_D
flights : Flight[*]
passengers : Passenger[*]
reservations : Tuple[*]

reservation()

BookingSystem_E
flights : Flight[*]
passengers : Passenger[*]
reservations : Tuple[*]

checkFlight()
checkPassenger()
recordReservation()

<<refine>>

Fig. 4. Non-atomic Operation Refinement in UML Class Diagrams 

Although we agree that other UML artifacts (such as Interactions) can be used to 
specify this concern, we believe that OCL suffers from the lack of an operation 
calculus (like the one of Z) allowing us to specify sequential and parallel composition 
of operations. Besides, the operational semantics of the OCL hasSent operation (^) 
given in [15] does not fit the intended semantics of a refinement mapping which 
declares the equivalence of both behaviors without talking about the actual execution 
of them. 

4   Conclusion

The aim of this work is not to formalize UML refinements in Object-Z, but to 
substantiate a number of intuitions about the nature of possible refinement relations in 
UML, and even to discover particular refinement structures that designers do not 
perceive as refinements in UML.  Focusing on the refinement structures of Object-Z 
we obtained a compact catalog of refinement patterns that can be applied during the 
UML modeling process; each graphical refinement pattern being based on a formal 
refinement pattern.  

Similar proposal were presented in [3], where Boiten and Bujorianu explore 
refinement indirectly through unification; the formalization is used to discover and 
describe intuitive properties on the UML refinements. On the other hand, Liu, Jifeng, 
Li and Chen in [13] use a formal specification language to formalize and combine 
UML models. Then, they define a set of refinement laws of UML models to capture 
the essential nature, principles and patterns of object-oriented design, which are 
consistent with the refinement definition.  

The strategy we propose in this article apart from providing formal evidence on the 
presence of refinement structures in object-oriented designs made it possible to reveal 
hidden refinements and to discover weaknesses of the UML language that prevent 

reservation(p:Passenger, f:Flight) 
 pre: flights->includes(f) and
 passengers->includes(p) 
 post:reservations=reservations@pre->
 including(Tuple{first=f,second=p}) 

a^reservation() implies
c^checkPassenger()and c^checkFlight()and
c^recordReservation()
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designers from specifying frequently occurring forms of refinement. Besides, the 
understanding of refinement patterns is more precise, since each pattern is described 
from both an intuitive and a mathematical point of view.  

Finally, the overall contribution of this research is to clarify the 
abstraction/refinement relationship in UML models, providing basis for tools 
supporting the refinement driven modeling process. In this direction we are building 
ePLATERO [19] that is a plug-in to the Eclipse development environment, based on 
the heuristics that have been proposed in this article. ePlatero will assist a variety of 
activities related to refinement, such as explicit documentation, semi-automatic 
discovering of hidden refinements, refinement-step checking, constraint refinement 
and refinement patterns application. 
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Abstract. Highly regular data can be represented succinctly by various
kinds of implicit data structures. Many problems in P are known to be
hard if their input is given as circuit or Ordered Binary Decision Diagram
(OBDD). Nevertheless, in practical areas like CAD and Model Checking,
symbolic algorithms using functional operations on OBDD-represented
data are well-established. Their theoretical analysis has mostly been
restricted to the number of functional operations yet. We show that
P-complete problems have no symbolic algorithms using a polylogarith-
mic number of functional operations, unless P=NC. Moreover, we com-
plement PSPACE-hardness results for problems on OBDD-represented
inputs by fixed-parameter intractability results, where the OBDD width
serves as the fixed parameter.

1 Introduction

Algorithms on (weighted) graphs G with node set V and edge set E ⊆ V 2 typi-
cally work on adjacency lists of size Θ(|V |+ |E|) or on adjacency matrices of size
Θ(|V |2). But in many of today’s application areas, graphs occur which cannot
be represented explicitly on current computers, or on which even efficient algo-
rithms are not applicable. Ordered Binary Decision Diagrams (OBDDs) [2], [20]
are a data structure for Boolean functions which is proven as succinct represen-
tation for structured and regular data.

Having an OBDD representation of a graph, we are interested in solving prob-
lems on it without extracting too much explicit information from it. Algorithms
whose access to the input graph is mainly restricted to functional operations
are called implicit or symbolic algorithms. In this way, OBDD-based methods
are well-established heuristics for special problems in CAD and Model Check-
ing (see, e. g., [10], [20]). These algorithms are observed to be very efficient in
practical applications handling large inputs. However, their theoretical analysis
has mostly been restricted to the number of functional operations up to the
present.

Recent research tries to develop theoretical foundations on OBDD-based al-
gorithms. On the one hand, this includes the development of symbolic methods
� Extended version available at http://ls2-www.cs.uni-dortmund.de/˜sawitzki/.
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for fundamental graph problems like topological sorting [21] and the computa-
tion of connected components [7], [8], maximum flows [11], [16], and shortest
paths [15], [18]. On the other hand, we need more sophisticated analysis tech-
niques to explain the practical success of symbolic algorithms.

In order to represent a directed graph G = (V,E) by an OBDD, we consider its
characteristic Boolean function χG, which maps binary encodings of node pairs
to 1 if and only if they correctly reflect G. This representation is known to be not
larger than classical ones. Nevertheless, we hope that advantageous properties of
G lead to small, that is sublinear OBDD size. Nunkesser and Woelfel [13] show
that OBDD representations of various kinds of P4-sparse and interval graphs
can be essentially smaller than explicit representations.

Problems typically get harder when their input is represented implicitly. For
circuit representations, this is shown in [1], [6], [14]. Because OBDDs may be
exponentially larger than circuits, these results do not directly carry over to
problems on OBDD-represented inputs. Feigenbaum et al. [5] prove that the
Graph Accessibility Problem is PSPACE-complete on OBDD-represented graphs.
First efficient upper bounds on time and space of symbolic graph algorithms on
special inputs have been presented by Sawitzki [16], [18] and Woelfel [21]. These
results rely on restrictions on the complete-OBDD width of occurring OBDDs.
The representational power of complete OBDDs with bounded width is discussed
in [17].

The design of symbolic graph algorithms often pursues the aim of obtaining
polylogarithmic runtime w. r. t. |V | on special input instances. This requires two
conditions: A small number of executed OBDD operations and small size of all
occurring OBDDs. We contribute hardness results related to both conditions.

The paper is organized as follows: Section 2 formalizes symbolic algorithms
working on the characteristic Boolean function of an input string. This frame-
work enables us to describe a simulation of symbolic algorithms by parallel al-
gorithms in Section 3, which implies that P-complete problems have no sym-
bolic algorithms using a polylogarithmic number of functional operations, un-
less P=NC. For none of the existing OBDD-based symbolic algorithm analy-
ses so far, a restriction on the input OBDD width suffices to prove efficiency.
This would correspond to a fixed-parameter tractable algorithm with the in-
put’s OBDD width as parameter. For various fundamental graph problems,
such algorithms do not exist unless P=PSPACE, which is shown in the sec-
ond part of the paper. After foundations on OBDDs in Section 4, we discuss
the fixed-parameter tractability of critical operations on OBDDs in Section 5.
So we are able to prove implicit versions of several graph problems to be fixed-
parameter intractable in Section 6. Finally, Section 7 gives conclusions on the
work.

2 A Framework for Symbolic Algorithms

In order to formalize what typically makes a symbolic algorithm, we introduce
Symbolic Random Access Machines. A classical Random Access Machine (RAM)
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gets its input as a binary string I ∈ {0, 1}∗ on a read-only input tape and presents
its output O on a write-only output tape.

For B := {0, 1}, let us denote the ith character of a binary string x ∈ Bn by
xi and let |x| :=

∑n−1
i=0 xi2i identify its value. The class of Boolean functions

f : {0, 1}n → {0, 1} will be denoted by Bn. We define the characteristic Boolean
function χI ∈ Bn of some I ∈ BN by χI(x) := I|x| for n := %log2 N&, x ∈ Bn,
and IN , . . . , I2n−1 := 0.

Definition 1. A Symbolic Random Access Machine (SRAM) M corresponds
to a classical RAM without input and output tapes. In addition to its working
registers R = R0, R1, . . . (containing integers), it has symbolic registers S =
S0, S1, . . . which contain Boolean functions initialized to the zero function. The
input I is presented to M as characteristic Boolean function χI in S0. Finally,
M presents its output O as χO in S0.

Besides the usual RAM instructions, an SRAM M offers the following oper-
ations on registers (resp. functions) Si and Sj:

– Request the number n of Boolean variables all functions Si are defined on
(initially %log2 N&).

– Increase the variable count n by some amount Δn ∈ N.
– Set Si := Sj.
– Evaluate Si due to some variable assignment a ∈ Bn.
– Compute the negation Si.
– Compute Si ⊗ Sj for some binary infix operator ⊗ ∈ B2.
– Replace a variable xk for Si by a constant c ∈ B.
– Swap two variables xk, x� for Si, i. e., S′(x0, . . . , xk, . . . , x�, . . . , xn) :=

Si(x0, . . . , xk−1, x�, xk+1, . . . , x�−1, xk, x�+1, . . . , xn−1).
– Decide whether Si = Sj.
– Compute the number |S−1

i (1)| of satisfying variable assignments.
– Write all satisfying variable assignments S−1

i (1) into R.
– Compute the subset of {x0, . . . , xn−1} on which Si essentially depends on.
– Set S0 to some function f ∈ Bn represented in R due to some standard

encoding (e. g., as polynomial, circuit, or OBDD). The encoding must enable
to be evaluated in linear sequential time w. r. t. its length.

Each operation costs one unit of time.

(The last operation enables to create fundamental building block functions hav-
ing some short description. Quantifications and variable replacements by func-
tions can be implemented by a constant number of negations and binary opera-
tors.)

This model is independent of a concrete data structure for Boolean functions;
it is chosen with the aim of showing lower bounds on the number of functional
operations. It covers what is considered as a symbolic resp. implicit algorithm
in most of the literature. Depending on the type of input data (e. g., graphs) the
definition of χI may vary; due to its interchangeability in this context, this does
not affect our results.
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3 Parallel Simulation of Symbolic Algorithms

It is known from P-completeness theory that P-complete, FP-complete, resp.
quasi-P-complete problems cannot be solved by PRAMS in parallel time
O(logk N) using O(Nk) processors for problem size N and some constant k,
unless P=NC (see, e. g., [9]). Sieling and Wegener [19] present NC-algorithms
for all important OBDD operations. We use a simpler approach which suits
better for our purpose to prove the first main result of this paper.

Theorem 1. An SRAM M using time tM(N) and at most k logN Boolean
variables on implicitly represented inputs I ∈ BN can be simulated by a CREW-
PRAM M′ in parallel time O((tM(N))2 ·log2 N)) using O(Nk) processors work-
ing on the explicit representation of I.

Proof. Each assignment a ∈ Bn of the n ≤ k logN Boolean variables the func-
tions ofM can be defined on at any point in time is handled by its own processor
Pa which locally saves the value Si(a) for all symbolic registers Si used so far.
Hence, 2n = O(Nk) processors are used. At the beginning, Pa reads cell |a| on the
input tape and sets S0(a) accordingly. Common RAM instructions are executed
only on P0. Symbolic operations are simulated in parallel time O(tM(N)·log2 N)
each (proved in the paper’s extended version). Finally, S0 contains χO and each
processor Pa writes S0(a) into position |a| on the output tape. � 

Corollary 1. Unless P=NC, (strongly) P-complete, FP-complete, and quasi-P-
complete problems cannot be solved by SRAMs in (pseudo-)polylogarithmic time
O(logk(N)) (O(logk(N) · logk(M))) using at most k logN Boolean variables,
where N is the input size, M is the maximum magnitude of all numbers in the
input, and k is constant.

We briefly add an inapproximability result. Let A be a strongly quasi-P-
complete integer-valued combinatorial maximization problem whose optimal so-
lution value is polynomially bounded both in the input size N and the input’s
largest number M . Analog to Theorem 10.3.4 in [9] it follows:

Proposition 1. If A has a fully polynomial symbolic approximation scheme, it
can be solved by an SRAM in pseudopolylogarithmic time O(logk(N) · logk(M))
using O(logN) Boolean variables, k constant.

Corollary 2. A has no fully polynomial symbolic approximation scheme using
O(logN) Boolean variables, unless P=NC.

We have proved that none of the many P-complete problems can be solved by
symbolic algorithms using a polylogarithmic number of functional operations
and O(logN) variables, unless P=NC. All existing symbolic methods known to
the author use less than 10 log2 N variables, which is a usual restriction to keep
concrete data structures small. In particular, there is neither an NC algorithm
nor a P-completeness proof for the unit capacity maximum flow problem yet [9],
which gives a hint why not even the best known symbolic methods [16] for this
problem can guarantee polylogarithmic behavior on all the instances.
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In the remainder of the paper, we will consider the complexity of problems on
OBDD-represented inputs, which makes it necessary to give some foundations
on this well-established data structure. Hence, the terms “implicit”, “symbolic”,
and “OBDD-based” will be used interchangeable.

4 Ordered Binary Decision Diagrams

A Boolean function f ∈ Bn defined on variables x0, . . . , xn−1 can be represented
by an Ordered Binary Decision Diagram (OBDD) [2]. An OBDD G is a directed
acyclic graph consisting of internal nodes and sink nodes. Each internal node is
labeled with a Boolean variable xi, while each sink node is labeled with a Boolean
constant. Each internal node is left by two edges one labeled 0 and the other 1.
A function pointer p marks a special node that represents f . Moreover, a per-
mutation π ∈ Σn called variable order must be respected by the internal nodes’
labels on every path from p to a sink. For a given variable assignment a ∈ Bn,
we compute the function value f(a) by traversing G from p to a sink labeled
with f(a) while leaving each node labeled with xi via its ai-edge.

An OBDD with variable order π is called π-OBDD. The minimal-size π-OBDD
for a function f ∈ Bn is known to be canonical and will be denoted by
π-OBDD[f ]. Its size size(π-OBDD[f ]) is measured by the number of its nodes.
We adopt the usual assumption that all OBDDs occurring in symbolic algorithms
have minimal size, since all essential OBDD operations produce minimized di-
agrams. On the other hand, finding an optimal variable order leading to the
minimum size OBDD for a given function is known to be NP-hard. Independent
of π it is size(π-OBDD[f ]) ≤

(
2 + o(1)

)
2n/n for any f ∈ Bn.

Efficient Algorithms on OBDDs. OBDDs offer algorithms (called OBDD
operations in the following) for nearly all the symbolic operations of Definition 1,
which are efficient w. r. t. the size of involved OBDDs. The satisfiability of f
can be decided in time O(1). The negation f , the replacement of a variable
xi by some constant c (i. e., f|xi=c), and computing |f−1(1)| are possible in
time O

(
size(π-OBDD[f ])

)
. The set f−1(1) of f ’s minterms can be obtained

in time O
(
n · |f−1(1)|

)
. Whether two functions f and g are equivalent (i. e.,

f = g) can be decided in time O
(
size(π-OBDD[f ]) + size(π-OBDD[g])

)
.

The most important OBDD operation is the binary synthesis f ⊗ g for
f, g ∈ Bn, ⊗ ∈ B2 (e. g., ∧, ∨), which corresponds to the binary operator of
SRAMs; in general, it produces the result π-OBDD[f ⊗ g] in time and space
O
(
size(π-OBDD[f ]) · size(π-OBDD[g])

)
. The synthesis is also used to implement

quantifications (Qxi)f for Q ∈ {∃, ∀}. Hence, computing π-OBDD
[
(Qxi)f

]
takes time O

(
size2(π-OBDD[f ])

)
in general.

Nevertheless, a sequence of only n synthesis operations may cause an expo-
nential blow-up on OBDD sizes, in general. The book of Wegener [20] gives
a comprehensive survey on different types of Binary Decision Diagrams.

Representing Graphs by OBDDs. In Section 2, we defined characteristic
functions χI for inputs I of general problems. The next sections’ results will
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mostly be connected to decision problems on graphs G = (V,E) with N nodes
v0, . . . , vN−1. Hence, we adapt the definition of χI to χG(x, y) = 1 :⇔ (|x|, |y| <
N) ∧ (v|x|, v|y|) ∈ E, where x, y ∈ Bn and n := %log2 N&, which is common in
the literature. Undirected edges are represented by symmetric directed ones. It
can be easily seen that this is equivalent to the definition of χI in Section 2 if
I is the row-wise adjacency matrix.

Symbolic graph algorithms typically use intermediate functions defined on
a constant number k > 2 of variable vectors x(1), . . . , x(k) ∈ Bn mostly inter-
preted as node numbers or components of them. Therefore, reordering a func-
tion’s arguments becomes an important operation:

Definition 2. Let ρ ∈ Σk and f ∈ Bkn be defined on variable vectors
x(1), . . . , x(k) ∈ Bn. The argument reordering Rρ(f) ∈ Bkn w. r. t. ρ is defined
by Rρ(f)

(
x(1), . . . , x(k)

)
= f

(
x(ρ(1)), . . . , x(ρ(k))

)
.

In order to enable efficient argument reorderings (see Lemma 3), it is common
to use k-interleaved variable orders, denoted by πτ

k,n, which read bits of same
significance en bloc:

πτ
k,n :=

(
x

(1)
τ(0), . . . , x

(k)
τ(0), x

(1)
τ(1), . . . , x

(k)
τ(1), . . . . . . , x

(k)
τ(n−1)

)
,

where τ is the local order of every x(1), . . . , x(k). The order πid
k,n is called natural

in the following.

5 Fixed-Parameter Tractable OBDD Operations

Feigenbaum et al. have proved some fundamental graph problems to be hard if
the input is represented as OBDD. That is, there is no hope of beating classical
algorithms on explicit inputs in general. However, symbolic methods for maxi-
mum flows [16], shortest paths [18], and topological sortings [21] could be proved
to have polylogarithmic runtime when the input graphs are of special structure.
The analysis technique relies on the complete-OBDD width of Boolean functions:

Definition 3. An OBDD for f ∈ Bn is called complete if every path from its
function pointer to a sink has length n.

That is, complete OBDDs are not allowed to skip variable tests. The minimal-
size complete π-OBDD for f ∈ Bn is also known to be canonical [20] and will
be denoted by π-OBDDc[f ] in the following.

Definition 4. The complete-OBDD width of a function f ∈ Bn w. r. t. a vari-
able order π ∈ Σn is the maximum number of OBDD nodes labeled with the same
variable in π-OBDDc[f ].

Clearly, it is size(π-OBDD[f ]) ≤ size(π-OBDDc[f ]) = O(nw) for any f ∈ Bn

with complete-OBDD width w and variable order π. On the other hand, it is
size(π-OBDDc[f ]) ≤ n · size(π-OBDD[f ]) (see, e. g., [20]).
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We now briefly introduce the concept of fixed-parameter tractability. For
a comprehensive introduction, the reader is referred to the book of Downey
and Fellows [4].

Definition 5.

(1) Let Γ be a finite alphabet. A parameterized problem Π is a map Π : Γ ∗×N →
Γ ∗. The second component k of a problem instance (I, k) ∈ Γ ∗ ×N is called
the problem parameter.

(2) An algorithm for a parameterized problem Π is called fixed-parameter
tractable (FPT), if it solves Π in time O(Nα · β(k)) on any instance
(I, k) ∈ ΓN × N for a constant α and an arbitrary function β : N → N.

That is, Π can be solved in polynomial time for fixed k. Recent symbolic al-
gorithm analyses [16], [18], [21] use that critical OBDD operations which may
cause OBDDs to grow are fixed-parameter tractable, where the complete-OBDD
width serves as the fixed parameter.

Let f (1), f (2) ∈ Bn be defined on variables x0, . . . , xn−1; assume f (1) resp. f (2)

has complete-OBDD width w1 resp. w2 w. r. t. some variable order π ∈ Σn.

Lemma 1 (Binary synthesis). The binary synthesis result π-OBDD[f (1) ⊗
f (2)], ⊗ ∈ B2, is computed in time O

(
nw1w2 log(nw1w2)

)
and space O

(
nw1w2

)
and has a complete-OBDD width of at most w1w2.

Often, symbolic algorithms contain quantification sequences over Ω(n) variables
of some variable vector (e. g., a graph node encoding). While each single one is
efficient, a sequence of length Ω(n) may cause an exponential blow-up in general.
Hence, we consider the properties of quantifications over a subset of variables.

Lemma 2 (Quantification). Let X ⊆
{
x0, . . . , xn−1

}
. The quantifi-

cation result π-OBDD
[
(QX)f (1)

]
, Q ∈ {∃, ∀}, is computed in time

O
(
|X |n22w1 log(n22w1)

)
and space O

(
|X |n22w1

)
and has a complete-OBDD

width of at most 2w1 .

Let f (3) ∈ Bkn be defined on variable vectors x(1), . . . , x(k) ∈ Bn; assume f (3)

has complete-OBDD width w3 w. r. t. a variable order πτ
k,n, τ ∈ Σn. Let ρ ∈ Σk.

Lemma 3 (Argument reordering). The argument reordering result Rρ(f (3))
of f (3) w. r. t. ρ is computed in time O

(
nw3k3k

)
and space O

(
nw33k

)
and has

a complete-OBDD width of at most w33k.

(Proofs of Lemmas 1–3 can be found in the paper’s extended version.)
As a final building block we introduce multivariate threshold functions, which

are used to implement weighted comparisons.

Definition 6 ([21]). Let f ∈ Bkn be defined on variable vectors x(1), . . . , x(k) ∈
Bn. Function f is called k-variate threshold function iff there are W ∈ N, T ∈ Z,
and α1, . . . , αk ∈ {−W, . . . ,W} such that
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f
(
x(1), . . . , x(k)

)
=

(
k∑

i=1

αi ·
∣∣∣x(i)

∣∣∣ ≥ T

)
.

The corresponding class of functions is denoted by TW
k,n.

Clearly, each of the relations >, ≤, <, and = can be composed of O(1) multi-
variate threshold functions.

Lemma 4 ([21]). Functions f ∈ TW
k,n have complete OBDDs of width O(k2W )

using the natural variable order πid
k,n.

Having considered all critical OBDD operations which may enlarge their
operands, Lemmas 1–4 imply a general result on the fixed-parameter tractability
of bounded sequences of operations.

Theorem 2. Let f ∈ Bkn be defined on variable vectors x(1), . . . , x(k) ∈ Bn for
a constant k. Assume f has complete-OBDD width w w. r. t. the variable order
πid

k,n. Let S be a sequence of O(1)

– operations as introduced in Section 4 and
– quantifications over variable subsets X ∈ Bn

applied on f , functions from TO(1)
k,n , and intermediate results generated by the

current prefix of S.
Each function generated by S has a complete-OBDD width of at most β(w)

w. r. t. πid
k,n for some appropriate function β : N → N. So S can be imple-

mented as an FPT algorithm on πid
k,n-OBDD[f ] with parameter w, runtime

O(nγ(w) log(n)), and space O(nγ(w)) for some appropriate function γ : N → N.

Using this result it is possible to prove that some OBDD-based graph algo-
rithms have polylogarithmic runtime w. r. t. N on special instances [16], [18], [21].
Nevertheless, for none of these analyses it is sufficient to restrict only the in-
put’s complete-OBDD width; for example, the symbolic shortest paths algorithm
in [18] requires also the output to have constant complete-OBDD width. This
motivates the question if there are any FPT algorithms for fundamental graph
problems whose parameter is associated solely to the input OBDD.

Starting from a PSPACE-hardness result in [5–Theorem 16], we show in the
next section that such algorithms do not exist for some basic graph problems,
unless P=PSPACE. This will incorporate FPT reductions build upon Theorem 2
which assure that the fixed parameter grows independently of N .

6 Fixed-Parameter Intractability Results

The Graph Accessibility Problem (GAP) is defined as follows: Given a directed
graph G = (V,E), decide whether there is a directed path from some source
s ∈ V to some terminal t ∈ V . Due to Theorem 16 in [5], the GAP is
PSPACE-complete if G is represented by an OBDD for χG.
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The reduction generates an OBDD representing the configuration graph GM
of a polynomially space bounded Turing machine M with some input I ∈ B∗.
The OBDD for χGM checks for each local pair (X,Y, Z), (X ′, Y ′, Z ′) of three
consecutive tape positions of the configuration encodings if they are consistent
with a computation step. From the construction in [5] it directly follows that
the complete-OBDD width of χGM w. r. t. the natural 2-interleaved variable
order πid

2,p(|I|) is constant (i. e., independent of |I|), where p(|I|) is a polynomial
number of Boolean variables used to encode one configuration. Hence, an FPT
algorithm for GAP on OBDDs would be able to decide in polynomial time w. r. t.
|I| if there is a path between the start and accepting configuration – we have
our first fixed-parameter intractability result:

Corollary 3 (from Theorem 16 in [5]). The GAP on OBDD-represented
graphs has no FPT algorithm with the fixed parameter being the input’s complete-
OBDD width, unless P=PSPACE.

(In the following, we always assume that the fixed-parameter is the input’s
complete-OBDD width.)

In [18], the All-Pairs Shortest-Paths Problem (APSPP) on OBDD-represented
graphs is investigated assuming a canonical generalization to graphs with edge
weights c : E → N by χG(x, y, a) = 1 :⇔ c(v|x|, v|y|) = |a|. An FPT algorithm is
presented whose fixed parameter depends also on the output’s complete-OBDD
width. This additional condition is necessary (unless P=PSPACE) because the
GAP can be trivially reduced to a shortest path problem. Similarly easy, the
GAP can be reduced to the Maximum Flow Problem.

Proposition 2. Neither the APSPP nor the Maximum Flow Problem on
OBDD-represented graphs has an FPT algorithm, unless P=PSPACE.

Analog to Theorem 3.2(1) in [3], the result GM generated in the
PSPACE-hardness proof for GAP can be modified to three fundamental prob-
lems on undirected graphs: Acyclicity, Connectivity, and the GAP in undirected
planar graphs, UPGAP. In doing so, the OBDD width is not essentially enlarged
(proved in the paper’s extended version).

Theorem 3. Acyclicity, Connectivity, and the UPGAP have no FPT algo-
rithms on OBDD-represented graphs with 2-interleaved natural variable order,
unless P=PSPACE.

Last but not least, we transfer a selection of reductions from [1], [3], [12] to
symbolic OBDD-based reductions which satisfy the preconditions of Theorem 2
and, hence, are transitive FPT reductions (see, e. g., [4–Definition 9.3]). We write
A ≤S-FPT B if such a reduction exists for decision problems A and B.

Theorem 4.
(1) Connectivity ≤S-FPT Eulerian-Cycle,
(2) UPGAP ≤S-FPT Bipartiteness,
(3) UPGAP ≤S-FPT Planarity.
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Proof. We describe reductions from χG ∈ B2n to χG′ for G = (V,E), V =
{v0, . . . , vN−1}, N = 2n, and G′ = (V ′, E′).

Part (1): We set V ′ := V ∪ {uij | 0 ≤ i < j < N} ∪ {ai, bi | 0 ≤ i < N}.
E′ contains E, {vi, ai}, {ai, bi}, and {bi, vi} for all i, and {vi, uij}, {uij , vj} iff
{vi, vj} ∈ E. Note that all nodes in V ′ have even degree and G′ is connected iff
G is connected. Hence, G′ has an Eulerian cycle iff G is connected.

We define χG′ on 4(n + 1) variables with order πid
4,n+1. A node number x ∈

B2(n+1) consists of two concatenated variable vectors of length n + 1 each. Bits
xn−1 . . . x0 encode the index i, bits x2n . . . xn+1 encode the index j for nodes
ui,j , and the remaining bits xn and x2n+1 encode the node type (i. e., v, u, a,
or b). We denote these three components of a node number x by i(x), j(x), resp.
T (x) and define

χG′(x, y) :=
[
(T (x) = T (y) = v) ∧ χG(i(x), i(y))

]
∨
[
(T (x) = v) ∧ (T (y) = a) ∧ (i(x) = i(y))

]
∨
[
(T (x) = a) ∧ (T (y) = b) ∧ (i(x) = i(y))

]
∨
[
(T (x) = b) ∧ (T (y) = v) ∧ (i(x) = i(y))

]
∨
[
(T (x) = v) ∧ (T (y) = u) ∧ (i(x) = i(y)) ∧ χG(i(y), j(y))

]
∨
[
(T (x) = u) ∧ (T (y) = v) ∧ (j(x) = j(y)) ∧ χG(i(x), j(x))

]
,

where tests T (x) = v, u, a, b check xn and x2n+1 and ensure |j(x)| = 0 for
T (x) �= u.

Part (2): We set V ′ := (V ∪E)×{1, 2}∪{w}. E′ contains edges
{
(v, r), (e, �)

}
for e ∈ E, v ∈ V ∩e, and r = �. Moreover, E′ contains

{
(s, 1), (s, 2)

}
,
{
(t, 1), w

}
,

and
{
(t, 2), w

}
for source and terminal s, t ∈ V . G′ contains an odd cycle (i. e.,

is not bipartite) iff G contains a path between s and t.
We define χG′ on 4(n + 2) variables with order πid

4,n+2. A node number x ∈
B2(n+2) consists of two concatenated variable vectors of length n + 2 each. The
additional bits xn, xn+1, x2n+2, and x2n+3 are used to encode the node type
(i. e., v, e, or w) and the copy index (i. e., 1 or 2). We denote xn−1 . . . x0 by
i(x), x2n+1 . . . xn+2 by j(x), the type by T (x) ∈ {v, e, w}, and the copy index
by c(x) ∈ {1, 2}.

χG′(x, y) :=[
(T (x) = v) ∧ (T (y) = e) ∧ (i(x) = i(y)) ∧ (c(x) = c(y)) ∧ χG(i(y), j(y))

]
∨
[
(T (x) = e) ∧ (T (y) = v) ∧ (j(x) = j(y)) ∧ (c(x) = c(y)) ∧ χG(i(x), j(x))

]
∨
[
(T (x) = T (y) = v) ∧ (v|i(x)| = v|i(y)| = s) ∧ (c(x) �= c(y))

]
∨
[
(T (x) = v) ∧ (T (y) = w) ∧ (v|i(x)| = t)

]
,

where tests against T (x) and c(x) check the additional bits xn, xn+1, x2n+2,
and x2n+3 and ensure |j(x)| = 0 for T (x) = v as well as |i(x)|, |j(x)| = 0 for
T (x) = w.
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Part (3): We set V ′ := V ∪{w1, w2, w3} and define w4 := s and w5 := t. E′ is
obtained by adding the edges of the complete graph on w1, . . . , w5 to E except of
the edge {w4, w5}. Because G is planar, G′ is planar iff there is no path between
s = w4 and t = w5. Now the definition of χG′ in terms of binary operators and
comparisons is straightforward and left to the reader.

Final thoughts: In order to obtain an undirected graph G′, we set χG′(x, y) :=
χG′(x, y) ∨ χG′(y, x). Additional singletons appearing due to the node encoding
do not affect any of the three considered graph properties. We have seen that χG′

can be expressed in terms of a constant number of disjunctions, conjunctions,
negations, and argument reorderings applied to the original χG, multivariate
threshold functions from TO(1)

O(1),O(n), and intermediate results. Due to Theorem 2,
all three reductions can be implemented as an OBDD-based FPT algorithm on
the πid

2,n-OBDD for χG. � 

Because Theorem 3 satisfies the preconditions on the variable order of Theo-
rem 2, we conclude:

Corollary 4. None of the problems Bipartiteness, Eulerian-Cycle, and Pla-
narity on OBDD-represented graphs has an FPT algorithm, unless P=PSPACE.

In contrast to this paper’s exemplary applications of the symbolic FTP reduction
technique, more sophisticated reductions (e. g., to the Bipartite Perfect Matching
Problem [3]) require quantifications and more complex multivariate threshold
functions.

7 Conclusions

The complexity of problems on implicitly represented inputs has been consid-
ered from two different points of view: First, the number of Boolean operations
as a lower bound on the over-all runtime of typical symbolic algorithms. Un-
less P=NC, no P-complete problem can be solved by O(logk N) operations on
functions defined on O(logN) variables.

Then, we turned to lower bounds on the concrete over-all runtime of OBDD-
based graph algorithms. While the hardness of some basic problems in this
scenario was already known, we showed that even the restriction to inputs
with constant complete-OBDD width does not yield polylogarithmic algorithms
w. r. t. |V |, unless P=PSPACE. While applied to a selection of fundamental
problems yet, the technique of symbolic FPT reductions can be used for various
further problems on OBDD-represented inputs by substituting existing constant
depth reductions and projections used for circuit representations (which are more
powerful in general, see [20–Section 4.12]).

We conclude that symbolic resp. OBDD-based algorithms, though very suc-
cessful in practical applications, have quite limited capabilities on many polyno-
mially solvable problems, even for strongly restricted instances.

Acknowledgments. Thanks to Detlef Sieling and Ingo Wegener for proofread-
ing and discussions.
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Pavel Smrž1 and Vladimı́r Kadlec2

1 Faculty of Information Technology, Brno University of Technology,
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Abstract. This paper presents an improved form of head-driven chart
parser that is appropriate for large context-free grammars. The basic
method – HDddm (Head-Driven dependent dot move) – is introduced
first. Both variants that improve the basic approach are based on the
same idea – to reduce the number of chart edges by modifying the form
of items (dotted rules). The first one “unifies” the items that share the
analyzed part of the relevant rule (thus, only one dot is needed to mark
the position before and after the covered part). The second method ap-
plies the inverse strategy, it “eliminates” the parts that have not been
covered yet (no dot needed). All the discussed alternatives are described
in the form of parsing schemata. We also shortly mention a tricky tech-
nique (employing a special trie-like data structure developed originally
for Scrabble) that enables minimizing the extra information needed in
the algorithms. We demonstrate the advantages of the described meth-
ods by the significant decrease in the number of edges for charts. The
results are given for the standard set of testing grammars (and respective
inputs) as well as for a large and highly ambiguous Czech grammar.

1 Introduction

Parsing algorithms for context-free (CF) grammars play a crucial role in the
field of general parsing. Either their basic form is directly employed (usually for
parsing a context-free backbone for the grammars based on one of the modern
formalisms), or an extension of a standard parsing algorithm is proposed that
can deal with more complex features of the particular grammar form. Moreover,
the leading position of CF parsing is further strengthened by the interest it got
from (speech-recognition) language modeling community in last years [1].

Various methods have been designed for CF parsing and new variants and
enhancements emerge every year. To enable the efficient processing, modern
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parsing algorithms employ sophisticated structures to store intermediate parsing
results. The most popular data structure for this purpose is chart.

Chart is a table of all viable strings. The dotted rules (items) are used to
represent the state of the analysis. Dots stay on boundary between the analyzed
and non-analyzed parts of items. If the parsing procedure is unidirectional only,
(left to right or vice versa), only one dot is needed.

There are many advanced techniques aiming at refinement of basic chart pars-
ing algorithms. This paper deals with one of the head-driven approaches that
showed to be beneficial for parsing Czech as a free word order language [2].

In the experiments that are behind the effort discussed in this paper, a special
attention is paid to parser robustness. If no complete parse is found for an
input (e.g. from a speech recognizer in a dialogue system) a special technique
is employed to efficiently retrieve a set of the most probable maximal subtrees
(chunks) to provide a partial analysis of the input. Therefore, we are not able
to apply the most popular (and, in general case, efficient) approach to head-
driven parsing – head-corner chart parser [3], [4] that would prune chart edges
that could be needed in our later processing of incomplete parse. Moreover, the
head-driven bottom-up algorithm discussed in the paper is also more suitable
for our research on incremental parsing. Nevertheless, the refinements depicted
in the text are directly applicable to the head-corner case.

As the paper is rather technical (we take advantage of parsing schemata [5] –
an algebraic method appropriate for description of key ideas in parsing algo-
rithms) we will give a short overview of the content here.

The following section brings a basic version of the algorithm that presents
a slight improvement over a known chart parsing technique. Next sections dis-
cuss two modifications of the basic method aiming at reduction of edges in the
resulting chart. The first method eliminates those parts of the dotted rules that
were already analyzed, the second, in reverse, keeps only the analyzed part of
items. Though the approaches work in reverse, both mean a significant decrease
of the number of edges. The optimization technique has been previously used
for other variants of chart parsing, its application for head-driven approaches is
original.

A smaller number of chart edges does not need to entail a more efficient
parsing. We briefly mention a technique optimizing the search in grammar rules
(their right-hand sides) that exploits sophisticated data structures. A standard
trie structure is sufficient for the first refinement. The second case requires an effi-
cient procedure enabling bidirectional search for paths starting from any symbol
on the right-hand side of grammar rules. Such a procedure (designed originally
for generating possible moves in Scrabble) has been employed in the second case.

Optimization of parsing need not to have a dramatic effect on an overall per-
formance if one needs to parse grammars with a relatively small number of rules
only. However, we aim at applications where very large (and highly ambiguous)
grammars are a rule. The Czech grammar used in the described experiment
contains approximately 10,000 rules and, if only the feature agreement in noun
groups is expanded to the CF backbone [6], we work with more than 30,000 CF
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grammar rules. The enormous number of rules is also typical for the “treebank
grammars” automatically extracted from syntactically annotated corpora and
used for training stochastic parsers.

The results of the refinements discussed in the paper are demonstrated on
both, the mentioned Czech grammar as well as the PT grammar generated from
the Penn Treebank. The latter is a part of a standard set of testing grammars that
are available together with the respective inputs on the Internet. Thus, we were
able to test the designed methods on all the grammars from the standard set.

The last section summarizes the size of the resulting chart (in terms of the
number of edges) for parsing on the test set. The effect of both optimizations
can be significant in some cases (less than 50% edges in the chart). The paper
concludes with future directions of our research.

1.1 Terminology and Notation

The input grammar will be designated by G = 〈N,Σ, P, S〉, where N is a finite
set of nonterminals, Σ a finite set of terminals, P a set of rules and S the starting
symbol of the grammar.

The i-th word of the input sequence, designed by wi, represents one terminal
in the grammar G, wi ∈ Σ. (Note that wi ∈ Σ applies only for known words.
There is usually a special mechanism to handle “out of vocabulary words”.) The
number of input words is n.

Upper-case letters (A,B, etc.) will designate nonterminals, lower case letters
(i, j, k) will be used for natural numbers, Greek letters (α, β, . . . ) for (possibly
empty) strings of symbols. The empty string is denoted by ε.

We will underline the head symbol of each grammar rule, e. g. X is the head in
the rule A → BXC. It can be defined formally as a function assigning a natural
number (the position of the head on the right-hand side) to each grammar rule.
The head of ε-rules is defined as ε.

2 HDddm Parsing

This section describes the base version of the head-driven algorithm (HD). As in
other “head-oriented” approaches in parsing, the direction of the parsing process
is not unidirectional (e. g., from left to right). It starts at the head of the given
grammar rule and processes it bidirectionally to the first and to the last rule
symbols.

The HDddm parsing technique was described in [7]. Similarly to [4] and [8],
it improves the process of viable hypotheses confirmation. HDddm (head-driven
with dependent dot move) refers to the fact that the move of one “dot” in the
head-driven parsing step is dependent on the opposite move of the other one.

The algorithm can be described as parsing system [5]. A parsing system P is
a triple P = 〈I, H,D〉, in which:

– I is a set of items called domain or item set of P;
– H is a finite set of items (not necessarily a subset of I), the hypotheses of P;
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– D is a set of deduction steps of the form
η1, ..., ηk , ξ,
with ηi ∈ I ∪H for 0 ≤ i ≤ k and ξ ∈ I. The items η1, ..., ηk are called the
antecedents, ξ the consequent of the deduction step.

The parsing schemata for the HDddm parsing technique, PHD = 〈IHD , H,DHD〉
is defined as follows. The domain IHD is given as:

IHD(i) = {[A→ α•βXγ•δ, i, j] |
A→ αβXγδ ∈ P, 0 ≤ i ≤ j ≤ n},

IHD(ii) = {[A→ ••, i, i] |
A→ ε ∈ P, 0 ≤ i ≤ n},

IHD = IHD(i) ∪ IHD(ii).

The hypotheses set H encodes the input sequence. For input w1 . . . wn we take:

H = {[w, i− 1, i] | w ≡ wi, 0 ≤ i ≤ n}.

The set of deduction steps DHD is defined as follows:

DInit = {[w, i− 1, i] , [A → α•w•β, i− 1, i]} ∪
{, [A → ••, i, i]},

DPred = {[A→ •α•, i, j] ,
[B → β•A•γ, i, j]},

DScan(i) = {[A→ α•β•wδ, i, j], [w, j, j + 1] ,
[A→ α•βw•δ, i, j + 1]},

DScan(ii) = {[w, i− 1, i], [A→ αw•β•, i, j] ,
[A→ α•wβ•, i− 1, j]},

DComplete(i) = {[A→ α•β•Bδ, i, j], [B → •γ•, j, k] ,
[A→ α•βB•δ, i, k]},

DComplete(ii) = {[B → •γ•, i, j], [A→ αB•β•, j, k] ,
[A→ α•Bβ•, i, k]},

DHD = DInit ∪DPred ∪DScan(i) ∪DScan(ii) ∪
DComplete(i) ∪DComplete(ii).

String γ in Complete steps can be empty (ε).
Note that the left dot in the edge cannot move leftwards until the right dot

moves to the right. This is precisely the difference between HDddm and the
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technique described in [4]. The parser never creates edges like [A→ α•βXγ•δ, i, j]
for non empty β. This approach avoids a redundant work during the analysis.

For the sake of brevity, a simplified form of the algorithm is given here. Various
optimizations are possible. For example, the real implementation of the algorithm
benefits from an approach that would call for CKY items ([A, i, j]) in the above
definitions (see [8] for details).

3 Head-Driven Algorithm with One Dot in Items

The idea comes from [9] (for Earley’s algorithm), it has been applied to the
left-corner algorithm in [10]. In these cases, the optimization is based on the
observation that the nonterminals that are on the left of the dot in an Earley
“one dot” item play no role in the parsing algorithm. The approach can be
adapted for the HD algorithm so that nonterminals between the dots in a HD
item can be “forgotten”.

The algorithm with one dot in items (iHD) can be described as parsing system
PiHD = 〈IiHD , H,DiHD〉. The domain IiHD is given as:

IiHD(i) = {[A→ α•δ, i, j] |
A→ αβXγδ ∈ P, 0 ≤ i ≤ j ≤ n},

IiHD(ii) = {[A→ •, i, j] | A→ α ∈ P ,
possibly α ≡ ε, 0 ≤ i ≤ j ≤ n},

IiHD = IiHD(i) ∪ IiHD(ii).

We replace the HD item of the form [A → α•β•δ, i, j] with an iHD item
[A → α•δ, i, j]. This approach leads to a lower number of items in the result-
ing chart. The hypotheses set H is the same as for PHD. The set of deduction
steps DiHD is given as:

DInit(i) = {[w, i− 1, i] , [A→ α•β, i− 1, i] |
A→ αwβ ∈ P},

DInit(ii) = {, [A → •, i, i] | A→ ε ∈ P},

DPred = {[A→ •, i, j] , [B → α•β, i, j] |
B → αAβ ∈ P},

DScan(i) = {[A→ α•wδ, i, j], [w, j, j + 1] ,
[A→ α•δ, i, j + 1]},

DScan(ii) = {[w, i, i + 1], [A→ αw•, i + 1, j] ,
[A→ α•, i, j]},
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DComplete(i) = {[A→ α•Bδ, i, j], [B → •, j, k] ,
[A→ α•δ, i, k]},

DComplete(ii) = {[B → •, i, j], [A→ αB•, j, k] ,
[A→ α•, i, k]},

DiHD = DInit(i) ∪DInit(ii) ∪DPred ∪DScan(i) ∪
DScan(ii) ∪DComplete(i) ∪DComplete(ii).

The deduction steps are similar to the HD steps. Note that an item [A → •, i, j]
represents now the situation that an arbitrary rule with left-hand side A has been
recognized between positions i and j.

As in the previous case, we employ the refined version where the left dot
moves left only if the right one is already after the rightmost symbol. The same
is true for the replacement of [A → •, i, j] items by CKY item [A, i, j]. The
above definition would be more complex. We use the CKY items in the following
algorithm.

4 Simplified Items, No Dots Needed

The algorithm described in the previous section cuts out the already analyzed
part represented by β in HD items [A→ α•β•δ, i, j].

However, the opposite approach is possible as well. One can realize that the
remaining parts of the rule (left nonterminal A and the parts α and δ) are given
by the grammar. Thus, only the analyzed parts are stored in the chart. We apply
this general idea from [11] for the HDddm parsing.

Note that the dots in items occurring in the following definitions play no role
in the algorithm. We keep them for better readability only and for a comparison
with previous algorithms.

The head-driven algorithm with simplified items (sHD) can be described as
parsing system PsHD = 〈IsHD , H,DsHD〉. The domain IsHD is defined as:

IsHD(i) = {[•βXγ•, i, j] |
A→ αβXγδ ∈ P, 0 ≤ i ≤ j ≤ n},

ICKY = {[A, i, j] | A→ α ∈ P ,
possibly α ≡ ε, 0 ≤ i ≤ j ≤ n},

IsHD = IsHD(i) ∪ ICKY .

Item [•β•, i, j] denotes that:

– β covers the input sequence between i and j;
– there exists grammar rule A→ αβγ ∈ P with the head in β.

CKY item [A, i, j] represents complete (inactive) item as discussed in the
previous section. Notice the difference between [A, i, j] and [•A•, i, j].
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Table 1. A comparison of the three discussed variants of the HD algorithm on the
number of edges of the resulting chart

Grammar HD iHD % of HD sHD % of HD
ATIS 882,673 793,370 89.8% 390,860 44.2%

ATIS (H) 401,782 362,568 90.2% 139,935 34.8%
PT 1,227,500 510,175 41.5% 456,736 37.2%
CT 638,276 606,591 95.0% 381,115 59.7%

Czech 994,402 915,004 92.0% 496,129 49.8%

Deduction steps DsHD are given as:

DInit(i) = {[w, i− 1, i] , [•w•, i− 1, i] |
A→ αwβ ∈ P},

DInit(ii) = {, [A, i, i] | A→ ε ∈ P},

DPred = {[A, i, j] , [•A•, i, j] |
B → αAβ ∈ P},

DScan(i) = {[•β•, i, j], [w, j, j + 1] ,
[•βw•, i, j + 1] | A→ αβwγ ∈ P},

DScan(ii) = {[w, i, i + 1], [•β•, i + 1, j] ,
[•wβ•, i, j] | A→ αwβ ∈ P},

DComplete(i) = {[•β•, i, j], [B, j, k] ,
[•βB•, i, k] | A → αβBδ ∈ P},

DComplete(ii) = {[B, i, j], [•β•, j, k] ,
[•Bβ•, i, k] | A → αBβ ∈ P},

DComplete(iii) = {[•α•, i, j] , [A, i, j] | A → α ∈ P},

DsHD = DInit(i) ∪DInit(ii) ∪DPred ∪
DScan(i) ∪DScan(ii) ∪DComplete(i) ∪
DComplete(ii) ∪DComplete(iii).

5 Data Structures Employed in the Implementation

To implement an efficient parsing algorithm, we need appropriate data structures
to store the needed information. Especially the Complete steps in the discussed
algorithms ask for a special handling. The appropriate data structure has to effi-
ciently represent (parts of) the right-hand sides of grammar rules. For example,
the sHD algorithm needs to identify fully analyzed rules in step DComplete(iii)

above.
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The trie [12] structure showed to be the most suitable candidate for storing
the right-hand side of grammar rules. It is true especially for parsing with our
grammar of Czech where the average number of right-hand side symbols in the
rules is rather high.

Chappelier and Rajman [13] apply trie to store Earley-like simplified items.
The same approach works for the basic variant of our algorithm as well as for
iHD. We could take advantage of the free implementation of finite-state automa-
ton and the routines for their searching described in [14].

It is much more difficult to come up with an appropriate data structure to
efficiently search rules in the case of the last parsing method (sHD). The removal
of the non-analyzed parts from the sHD items requires a bidirectional search from
the inside of the right-hand side. A sophisticated data structure for this purpose
has been found in GADDAG [15]. Originally, it was designed for generating
possible moves in an implementation of the game Scrabble. It allows bidirectional
path starting from each letter (a symbol on the right-hand side in our case) of
each word (a grammar rule) in the lexicon (a grammar).

6 Grammars Used in Tests and Results of Experiments

The performed tests that are described in this section are based on the data (test-
ing grammars and respective inputs) provided at http://www.cogs.susx.ac.
uk/lab/nlp/carroll/cfg-resources/ (The web pages resulted from discus-
sions at the Efficiency in Large Scale Parsing Systems Workshop at COLING
2000, where one of the main conclusions was the need for a bank of data for
standardization of parser benchmarking.)

ATIS, PT and CT in the following results refer to the standard grammars from
the benchmarking site. As the original data do not provide information about
heads of the rules, a simple heuristics has been employed for setting the heads in
these cases. If a rule contains terminals, the left-most one is chosen as the head.
Otherwise, a distance measure from terminals is computed for all the right-
hand side nonterminals (how many derivations are needed to get a rule with a
terminal) and the left-most one with the smallest “terminal distance” is taken
as the head. Note, that the heuristics does not work too well for ATIS as the
grammar contains many rules with the same nonterminal on the left-hand side
and the right-hand side starting with the same terminal.

ATIS (H) is a variant of the ATIS grammar where the position of the heads
has been set to the best position according to the chart size (for the HDddm
algorithm). The optimization of the head positions has been described in [16].

The other grammar referred in the results is the Czech grammar that serves as a
base for our robust parser. It is the second form of the grammar generated directly
from the metagrammar form [17]. It contains 10,000 rules and is highly ambiguous.

The PACE (PArser Comparison and Evaluation) testing environment [18]
has been used to compute the reported result. It enables to evaluate just the
contribution of the changed parts of the parsing method and to “freeze” all
the rest.
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The benefits of the discussed HD refinements are demonstrated by the re-
duction of edges in the resulting charts. Table 1 summarizes the results. It is
obvious that the improved HD parsing methods significantly reduces the size
of the resulting chart. The average decrease of the number of chart edges is
about 50%.

A special attention should be also paid to the two variants of the ATIS gram-
mar. The optimal positions of heads bring a slight downgrade for the iHD algo-
rithm but a considerable improvement for sHD. Also note that the PT grammar
is the only one in our experiments where the iHD improvement proved a sub-
stantial effect.

7 Conclusions and Future Directions

The iHD and sHD algorithms process and store exactly inverse information, but
both approaches are functional. The degree of their help depends on the gram-
mar, positions of heads and the input. The sHD method made about 50 % re-
duction of the number of edges without any change in the algorithm. Just the
items took a different form.

A reduction of the chart size does not necessarily imply a more efficient parser.
As the complete incorporation of the discussed refinements into our system is not
finished yet we do not present a comparison of running times for the discussed
methods. However, the preliminary results that we are able to obtain clearly
demonstrate that the data structures discussed above really allow to work with
the more complex items efficiently enough to overcome the basic method with
the standard items.

The described improvements of the HD algorithm do not prevent all other
refinements designed for the original form of items (see, e. g., [5] and [8]). More-
over, the modified items can be directly taken for the head-corner algorithm.
Such combinations are the topic for our future research.
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7. Horák, A., Kadlec, V., Smrž, P.: Enhancing Best Analysis Selection and Parser
Comparison. In: Text, Speech and Dialogue: Proceedings of the 5th International
Workshop TSD 2002, Brno, Czech Republic, Springer Verlag, Lecture Notes in
Artificial Intelligence, 2448 (2002)

8. Sikkel, K., op den Akker, R.: Predictive Head-Corner Parsing. In: Proceedings of
IWPT’1993, Tilburg/Durbuy (1993) 267–276

9. Leermakers, R.: A Recursive Ascent Earley Parser. Information Processing Letters
41 2 (1992) 87–91

10. Moore, R.C.: Improved Left-Corner Chart Parsing for Large Context-Free Gram-
mars. In: Proceedings of the 6th IWPT, Trento, Italy (2000) 171–182

11. Nederhof, M.J., Satta, G.: An Extended Theory of Head-Driven Parsing. In:
Meeting of the Association for Computational Linguistics (1994) 210–217

12. Fredkin, E.: Trie Memory. CACM 3 9 (1960) 490–499
13. Chappelier, J.C., Rajman, M.: A Practical Bottom-up Algorithm for On-line Pars-

ing with Stochastic Context-Free Grammars. In: Technical Report No 98/284,
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Abstract. Ontologies are commonly considered as one of the essential
parts of the Semantic Web vision, providing a theoretical basis and imple-
mentation framework for conceptual integration and information sharing
among various domains. In this paper, we present the main principles of
a new ontology acquisition framework applied for semi-automatic gener-
ation of scientific portals. Extracted ontological relations play a crucial
role in the structuring of the information at the portal pages, automatic
classification of the presented documents as well as for personalisation
at the presentation level.

1 Introduction

Ontology acquisition framework described in this paper is a part of PortaGe –
an ongoing project aiming at semi-automatic generation of scientific web por-
tals. We would like to briefly introduce basic characteristics of the project that
influenced our decisions in the area of ontology learning.

The generator of scientific web portals is meant as an extension of the ex-
isting tools such as Google Scholar (http://scholar.google.com) or Cite-
Seer (http://citeseer.ist.psu.edu/). A typical user is a young researcher
or a PhD student that looks for relevant information (knowledge) in a subfield
(s)he needs to fathom. The interest in the subject is supposed to be long-term,
so the user would be notified about new publications, projects, events, calls, etc.
in the field.

The current search engines employ user-specified keywords and phrases as
the major means of their input. Digital libraries, such as ACM DL (http://
portal.acm.org/dl.cfm) or Springer DL (http://arxiv.org/), add a detailed
metainformation level and are able to find publications of a given author, from
a given journal, conference proceedings etc. However, these services are not able
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to relate the information to the context of the search. They cannot evaluate what
“relevant” means in a particular case.

PortaGe builds a web portal for a domain given by initial data. In addi-
tion to the standard keywords, known authors, journals, conferences or projects
characterizing the subject field, the user can provide seed documents and con-
ference/project web pages relevant for the current search and select apt nodes
in the current ontology (automatically extracted from the given and retrieved
documents). The tool combines responses from several information sources:

– search results from Google Scholar;
– articles and papers found in digital libraries (currently available ACM DL

and Springer Link);
– information from freely accessible web services (arxiv.gov and ResearchIn-

dex);
– metainformation about hard-copies (books, journals, proceedings) in the fac-

ulty library and other traditional repositories.

Besides the ontology acquisition by means of text mining which is tackled
in the next sections, the essential components of PortaGe include: efficient lo-
cal document classification and indexing, extraction of metainformation from
the documents, citation analysis (from ResearchIndex), metasearch in digital
libraries, analysis of “Publications” web pages, meta-data annotation of web re-
sources, merging of information, continuous search and source-change analysis.
The personalization of the portal driven by ontologies is discussed in the next
section.

The rest of the paper is organized as follows: The role ontologies play in
PortaGe and the consequences in the form of requirement specification for the au-
tomatic acquisition system are presented in the next section. Section 3 describes
fundamentals of OLE – a new ontology acquisition framework and OLITE – its
essential part designed primarily for the extraction of detailed semantic relations
from unstructured plain-text data. A brief comparative overview of other rele-
vant approaches and related works is given in Section 4. We conclude the paper
by proposing future directions for our research.

2 Ontologies in the Scope of PortaGe

Several components of PortaGe take advantage of domain-specific as well as
general ontologies. This impacts the way the automatic ontology acquisition
has been implemented. The particular needs have determined the methods and
techniques that could be applied for the extraction of semantic relations. The
following paragraphs briefly introduce the role of ontologies in PortaGe and
summarize the defined requirements.

Ontologies found their place in a couple of areas within PortaGe:

1. The basic role consists in the definition of portal structures. The core on-
tology contains concepts of publishers, books and book series, journals and
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their special issues, conferences, conference tracks workshops, projects, re-
search teams, authors, papers, web pages, etc. PortaGe supposes that the
most of this can be shared among various scientific fields (different disciplines
slightly yet differ in the conceptualisation of their research areas). For a par-
ticular domain, it needs to be extended by individual instances of journals,
conferences, etc. It is one of the tasks of an ontology extraction engine.

2. Ontologies also help to classify the content of documents in PortaGe. This is
important especially for very narrow subfields with a limited number of doc-
uments that can be applied for training of the standard classifiers. The auto-
matic classification process can base its decision on the knowledge extracted
from other documents in a previous run, such as the fact that a particular
method is used for machine learning in other fields.

3. As stated above, it is difficult to define a context of the search when using
the standard search engines. Ontologies provide mechanisms for a compre-
hensive context specification. In PortaGe, the user can restrict the search for
documents reflecting certain semantic relations based on the ontology, e.g.
limit the output to the documents discussing “context-free grammars” as
a “tool-for” “analysis of protein sequences”. The OLE framework interlinks
individual pieces of such knowledge with lexico-syntactic patterns able to
identify the relations in the retrieved documents.

4. The discussion of the PortaGe system has assumed a single individual user
of the generated portals so far. However, the multi-user environment is much
more realistic in many circumstances. For example, imagine a typical sce-
nario of a team leader that supervises several PhD students. He creates
a general web portal that covers various subfields of the area in focus. In-
dividual students work on their particular topics, interact with the system
and extend its coverage in the given subfield. The last role of the ontolo-
gies in PortaGe that will be mentioned here deals with the personalisation
of general portals. The system uses ontologies to evaluate what “relevant”
information means for a particular user. Based on user profiles PortaGe de-
fines rules to identify “the best” information for an individual user. A novice
(in the given research domain) can ask for introductory documents, others
prefer new information (the documents that appeared/were found in the
last month), need a general summary of used methods (usually the most
referenced documents), or focus on the relevance only. The user profiles and
the ontologies also cover the availability of the resources for a particular
user (e. g. a preference for a general introductory book from the local library
available for loan this weekend), user-specified amount of documents that
should be presented (e. g. two new documents every Friday) and processing
time requirements (the detailed analysis of a new bunch of documents will
not be available until tomorrow morning).

Taking into account the given functions of ontologies in PortaGe, the following
basic requirements on the ontology acquisition must be considered:

– Ideally, the process of ontology acquisition should run without any need of
human assistance. On the other hand, the user must be able to influence the
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learning, refine the extracted, select relevant information and modify the
stored data manually.

– In general, the amount of the processed resources can be very high (thou-
sands of documents). The implementation of the ontology learning must be
computationally efficient and robust.

– The produced ontologies must reflect the stepwise development of the Porta-
Ge system. If there is no current need for a particular kind of knowledge,
the extraction (which often needs detailed analysis and is therefore resource
demanding) should be postponed to later phases.

3 Architecture of the Ontology Extraction Framework

OLE – the ontology acquisition framework described in this section has been
developed in order to support the PortaGe project with instant ontological back-
ground. PortaGe ontologies are supposed to grow continuously when processing
new resources provided by external tools.

Table 1. A fragment of a miniontology extracted from bioinformatics texts

type of the relation subject object relevance
used for SCFG RNA secondary structure

prediction
0.66

described in CKY algorithm Cocke-Kasami-Younger 0.81
is a ribosomal frameshifting RNA function 0.73
abbr means HMM Hidden Markov Models 0.69
abbr means SCFG Stochastic Context-Free

Grammars
0.62

is a RNA molecule 0.45
is a protein molecule 0.45

The framework comprises several modules and related system components:

– OLITE module is responsible for processing the plain text resources (e. g. ar-
ticles and conference papers from a given domain) and creating very simple
ontologies from the extracted information. Presently, the relations are ex-
tracted according to specific patterns. However, any other method of infor-
mation extraction can be easily incorporated as an independent plug-in.

– PALEA is the module responsible for learning of new semantic relations’
patterns; the patterns are induced from the same resources as those used by
OLITE. This component employs the methods described in [10] and [18] for
learning new patterns.

– OLEMAN is intended to merge the outputs of the OLITE module – minion-
tologies – and update the PortaGe domain ontology with the resulting one.
The uncertain information representation techniques [23] are used in this
phase. Crisp ontology merging and alignment is based on the algorithms
described in [4], [8], [9], [11] or [22]. Moreover, fuzzy ontology representa-
tion and alignment framework is currently one of the main subjects of our
intensive research.
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The OLE parts are implemented as stand-alone modules. However, a server
version is supposed to be developed for the final integration within the PortaGe
project.

The OLITE module forms a crucial part of the entire system. The following
paragraphs characterize the main processing steps performed by this component.
The resources are first preprocessed by the subsystem. The main reasons for this
are:

– the amount of input data must be reduced to its relevant subset only in
order to increase the computational efficiency;

– at least some shallow syntactic structure must be imposed upon the reduced
data before trying to extract the semantic relations.

The preprocessing must be as fast as possible, so no sophisticated (and time
consuming) linguistic techniques, such as deep syntactic analysis, cannot be
used. The input data are preprocessed in the following steps: sentence split-
ting, reduction to the relevant sentences only, sentence tokenization, POS tag-
ging and lemmatization of the tokenized sentence, and chunking of the tagged
sentences. We use our own custom preprocessing tools developed with support
of NLTK toolkit (see [1]) instead of ready-made platforms (such as GATE, see
[7]). This approach allows us to port the system easily for different languages,
not only English. After the successful preprocessing, the extraction patterns are
applied.

The OLITE module structure is devised so that it is able to adopt any ex-
traction algorithm independently in the form of a specific plug-in. Such a plug-in
is responsible for the concept extraction then, precise (or fuzzy) annotation by
some class or property and passing of gained information further to the other
parts of the module in order to build an output miniontology.

A fragment of the miniontology resulting from a test run of the extraction
module is presented in Table 1. The semantic relations have been learned from
a testing set of documents from the bioinformatics field. The relevance measure
is computed by an algorithm inspired by C-value/NC-value method described
in [12].

The extracted information is stored in a universal internal format that can
be passed to the alignment module in order to be merged with the current
ontology (also loaded in this format). The format is extensively expressive and
universal with respect to efficient encoding of various relations and uncertainty
representation1. The updated ontology (or even the output miniontology) file can
be directly produced by applying translation rules. These rules are implemented
as an independent plug-in (likewise the extraction algorithm itself) responsible
for producing the output file in a desired format. Currently, the OWL DL format
is supported, but OLITE is able to produce any other format this way (such as
BayesOWL, see [23]).

1 The research behind proposal and implementation of this format will be presented
in another paper.



498 P. Smrž and V. Nováček

4 Related Work

The OLE project dissociates from the frameworks concentrated on facilita-
tion of the manual (or expert-guided) ontology engineering activities, such as
Protégé [15], WebODE [2] or OntoEdit [19]. The main reason is the infeasibility
of the development and management of many different domain-specific ontologies
needed for the full function of PortaGe.

Several automatic ontology acquisition systems have been developed in the
last decade. One of them is OntoLT [5] implemented as a plug-in for the Protégé
ontology editor. Its focus on the linguistic analysis for knowledge extraction is
shared by our tool. However, our approach is able to extract deep semantic
relations that seem to be out of scope of OntoLT. In this respect, PortaGe also
differs from another ontology learning system – the Mo’K Workbench [3] based
on clustering techniques for concept taxonomy building.

The OntoLearn [13, 21] and KnowItAll [10] systems incorporate the extrac-
tion of semantic relations, as well as we do. In KnowItAll, there is a notion of
uncertainty introduced in the form of so called web-scale probability assessment
to the extractions made, although it is not included in the ontology structure it-
self. On the contrary, the system proposed by T. T. Quan et al. in [20] deals with
uncertain information implicitly and on the well defined fuzzy-logic basis. Their
system is oriented to meta-information representation, which is supposed to be
helpful when building scholarly semantic web. Our system attempts to represent
the whole conceptual structure of a domain in an uncertain ontology. Such an
ontology can be used for improvement of full-text search in the PortaGe portal
documents, relevance measuring, resource categorization and even for domain
meta-information representation.

A different perspective of the uncertain information is present in Text2Onto [6]
– a successor of the former TextToOnto [17], [16] system. The learned knowledge
is represented at a meta-level within Probabilistic Ontology Model (POM). The
independence brought by the use of POM is not necessary in our case as the
output to other knowledge representation formalisms can be easily added in the
form of plug-ins.

The OLE tools are designed as an open platform, which is easy to be amended
by different extraction techniques or output modes of creation of ontologies. The
pattern-based extraction of semantic relations is described in [14], [10], or [18].
The concept clustering techniques are introduced in the terascale knowledge ac-
quisition efforts ([18]) and in [20] (fuzzy concept clustering). All these techniques
can be easily adopted by the OLITE module to supplement the dynamic pattern
learning and application (being under research within the PALEA module).

5 Conclusions and Future Directions

The ontology acquisition framework is presented in the context of automatic
creation of web portals by means of the PortaGe system. The paper discussed the
importance of ontologies for scientific portals. The preliminary results indicate
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that the ontologies automatically extracted by the OLE system provide valuable
resource of semantic data that are necessary for the function of PortaGe.

A lot of work still needs to be done on both the tools, the PortaGe system
and the OLE tool. Our future research will focus on the design and implementa-
tion of advanced mechanism covering uncertainty in the acquired ontologies. We
will also work on a qualitative evaluation of the scientific portals generated by
PortaGe. They would be employed for example for e-learning of PhD students
at our universities.
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Abstract. The ROCK algorithm can be applied to text clustering in
large databases. The effectiveness of ROCK, however, is limited, be-
cause of the high dimensionality of textual data and traditional proximity
measure of documents. In this paper, we propose an improved approach
to strengthen the discriminative feature of text documents, which uses
asymmetric proximity. Instead of the links count in ROCK, we propose
a novel concept of link weight overlaps to measure the proximity between
two clusters. The IROCK (Improved ROCK) algorithm performs cluster-
ing analysis based on the overlap information of asymmetric proximities
between text objects. We carry on the clustering process in an agglom-
erative hierarchical way. To demonstrate the effectiveness of IROCK, we
perform an experimental evaluation on real textual data. A comparison
with ROCK and classical algorithms indicates the superiority of our ap-
proach.

Keywords: Data Mining, Text Clustering.

1 Introduction

Clustering is a process of grouping a set of physical or abstract objects into
classes with high inner proximity. For text clustering, data objects are always
semi-structured or unstructured, like text and hypertext documents. Due to the
high dimensionality and polysemy of words, the nearest distance neighbors of
a document belong to different classes in some cases [9]. Methods, such as TFx-
IDF [8], ROCK (RObust Clustering using linKs) [2] and CHAMELEON [4], try
to strengthen the discriminative features of objects to improve the effectiveness
of clustering. Instead of traditional proximity measures like distance, ROCK
presents a concept of clustering that is based on links between data points. The
notion of links between text documents helps us overcome the problem that some
nearest neighbors belong to different classes.

However, ROCK ignores the information about the closeness of two clusters
while emphasizing their inter-connectivity [3]. Furthermore, traditional proxim-
ity measures are relied on when finding initial neighbors and links. In the specific
case of textual data, we should consider the discriminative feature of document
objects in clustering. Current existing approaches (including ROCK) can hardly
deal with the special textual correlation. For example, some specialized articles
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may be dedicated to one topic (i.e. basketball) in a single document, while some
summarized articles may include several topics (i.e. sports like basketball and
football) in one document. Traditional symmetry measures cannot tell the dif-
ference between summarized articles and specialized ones. On the other hand,
NIKE, known as a famous sports sponsor, is always mentioned together with
football and basketball. Although NIKE may not appear in a sports topic based
article, NIKE and sports are correlated. Also it is hard to find this correlation
with existing methods.

In this paper, we define the proximity of documents in a more natural way.
The discriminative features of text documents are described with an asymmet-
ric approach. For example, sports has a high similarity to basketball, because all
about basketball are also about sports. In contrast, basketball has a low similarity
to sports, because sports may include other subjects like football. We discuss this
example more specifically in Section 3. Based on this discriminative rule, we ob-
tain a natural asymmetric description of correlation between documents. In order
to use asymmetric proximity for text clustering, we propose an improved version
of ROCK, named IROCK. Instead of links count, IROCK considers the weight
of directed links. We define the proximity between a pair of text objects(clusters)
to be the overlaps of common link weights.

The basic outline of this paper is as follows. Section 2 briefly introduces the
general idea of the ROCK algorithm. In Section 3 we propose our definition
of asymmetric proximity and link weight overlap for IROCK. Section 4 gives
a description of the IROCK algorithm process for text clustering. Section 5
reports an experimental evaluation on real textual data and shows the quality
of IROCK. Finally, Section 6 is a summary of our study.

2 ROCK Approach

The clustering model of ROCK is based on the notion of neighbors and links.
To use ROCK for text clustering, we need to find initial neighbors and links
of documents. Simply speaking, a document’s neighbors are those documents
that are considerably similar to it. Euclidean Distance and Cosine Measure are
commonly used as proximity measures between documents.

In this paper, documents are represented by vector-space model. Each text
document d is represented by a vector of weights of p terms:

di = (wi1, . . . , wip) (1)

where di is the vector of document i, wik is the weight of term k in document i.
Then, the similarity between documents can be quantified by the correlation, φij ,
which is so-called the Cosine Measure:

φij =
∑p

k=1 wikwjk√∑p
k=1 w2

ik

∑p
k=1 w2

jk

(2)
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where φij is the cosine similarity value between documents i and j. Clearly,
a measure based on cosine similarity can be used when all terms are measured
on the same scale. For a critical review, see [1].

Clustering documents only based on the similarity between them is not strong
enough to distinguish two “not so well-separated” clusters because it is possible
for documents in different clusters to be neighbors. But it is very unlikely that
pairs of documents that have many common neighbors belong to different clus-
ters. ROCK defines link(di, dj) to be the number of common neighbors between
di and dj . The link-based ROCK can correctly identify overlapping clusters.

ROCK is an hierarchical clustering algorithm and uses a goodness function to
determine the best pair of clusters to merge at each step. The goodness measure
g(Ci, Cj) for merging clusters Ci, Cj is defined as

g(Ci, Cj) =
link(Ci, Cj)

(ni + nj)
f(θ) − n

f(θ)
i − n

f(θ)
j

(3)

where ni, nj are the sizes of clusters Ci and Cj , f(θ) = 1 + 2 1−θ
1+θ , θ is an input

parameter, link(Ci, Cj) stores the number of cross links between clusters Ci

and Cj , which is
∑

dq∈Ci,dr∈Cj
link(dq, dr). The pair of clusters for which the

above goodness measure is maximal is the best pair of clusters to be merged at
any given step.

For text clustering, ROCK is adept at dealing with text clusters that are not
so well-separated by using cross links. However, ROCK ignores the information
about the proximity of two clusters while emphasizing their inter-connectivity.
Our work is dedicated to propose a novel measure of similarity and links be-
tween text objects. We introduce our improved approach named IROCK in the
following sections.

3 IROCK Clustering Strategy

In IROCK, we use asymmetric proximity to strengthen the discriminative fea-
tures of text documents and we use link weight overlaps instead of links to
measure correlation of text objects.

3.1 Neighbors

Considering the case illustrated in the example in Section 1, IROCK uses an
asymmetric proximity measure to find neighbors. Assume that the common
terms of two documents di and dj are s. If the weight of s in dj is large, then
the asymmetric similarity from di to dj is high; and if the weight of s in di is
small, then the asymmetric similarity from dj to di is low. More precisely,

−→
φ (di, dj) =

∑p
k=1

∣∣wik − |wik − wjk|
∣∣∑p

k=1 wjk
(4)
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where −→φ (di, dj) is the direct similarity value from document di to dj , wik is the
weight value of term k in document di. Clearly, the similarity between documents
is asymmetric, i.e., −→φ (di, dj) �=

−→
φ (dj , di).

Now we can define the neighbors in IROCK clustering. Given a threshold η,
the neighbors of document di are those documents dj for which the following
formula holds:

−→
φ (di, dj) ≥ η (5)

All links from di to the others are considered in IROCK, if the weights of these
links are larger than the minimum proximity threshold η.

3.2 Overlaps

Instead of the common links count in ROCK, we consider the weights of these
links. IROCK defines φik to be the link weight from di to dk, i.e., −→φ (di, dk).
A directed graph with link weights is constructed to describe the correlation of
text objects. We define ϕ(di, dj) to be the overlap of common link weights

ϕ(di, dj) =
p∑

k=1

∣∣φik − |φik − φjk|
∣∣ (6)

where φik denotes a weighted link from di to dk that satisfies the minimum
weight threshold η, p is the total number of objects. If the ϕ(di, dj) is large,
both di and dj are similar to the same objects. It is more probable that di and
dj belong to the same cluster. From the definition of link weight overlaps, we can
overcome the shortcoming of ROCK, which ignores the proximity information.

3.3 Textual Correlation

Let us look at the example in Section 1 again. Fig. 1 shows an asymmetric prox-
imity description of the example case. Gray points denote articles, and directed
links are the asymmetric proximity between them. The words append the gray
points mean the topic of the text objects. The real numbers append to the di-
rected links are the weigh of them, which denote the asymmetric similarity value
between two text objects.

As mentioned in Section 1, the correlation between NIKE and sports is hard
to find. ROCK tries to solve this problem by counting the common neighbors, for
instance, football and basketball are the common neighbors of NIKE and sports.
Consequently, the value of link(dNIKE, dsports) is 2, whereas it ignores the link
weights to their neighbors. Our approach considers the overlaps of these link
weights as the correlation between text objects. The value of φik is the link
weight from di to dk, i.e., −→φ (dNIKE , dfootball) = 0.7 as shown in the figure.
Then the overlap of common link weights can be computed by formula (6), i.e.
ϕ(dNIKE , dsports) = 1.4.
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Fig. 1. Example of asymmetric proximity

4 Algorithm Description

In the preprocessing work, stop words are removed and documents are repre-
sented by a vector-space model using TFxIDF. After modeling the data, a sparse
matrix about document asymmetric proximity is constructed. We need to men-
tion that the matrix is not a triangular matrix, because of the asymmetry of
document proximity. All link weight overlaps can be computed from this matrix.

4.1 Goodness Measure

IROCK, as ROCK, belongs to the class of agglomerative hierarchical clustering
algorithms. It starts by placing each object in its own cluster and then merges
these atomic clusters into larger and larger clusters until a certain termina-
tion condition is satisfied. Their merge strategy is to choose the pair of objects
with highest goodness values. IROCK defines the goodness measure g(Ci, Cj)
for merging clusters Ci, Cj as follows.

g(Ci, Cj) =

∑
dq∈Ci,dr∈Cj

ϕ(dq , dr)

(ni + nj)
f(θ) − n

f(θ)
i − n

f(θ)
j

(7)

where ni, nj are the sizes of clusters Ci and Cj , f(θ) = 1 + 2 1−θ
1+θ , θ is an input

parameter. In contrast to ROCK, we use the link weight overlap instead of cross
link count to measure goodness.

∑
dq∈Ci,dr∈Cj

ϕ(dq , dr) is the link weight overlap
between clusters Ci and Cj . According to the principle of clustering with high
inner correlation and low exterior correlation, it seems intuitive that clusters
with high link weight overlaps are good candidates for merging.

4.2 Clustering Algorithm

The IROCK algorithm performs clustering based on the overlap information of
asymmetric proximities between text objects. The most significant work is to find
clusters with high overlap of common nearest neighbors. Due to the asymmetry
of text proximity, the “nearest” links of neighbors are directed.
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IROCK Algorithm

Input:
number of clusters k;
p document vectors.

Output:
k clusters.

Method:
begin

C := initial clusters;
M := proximity matrix of p docs;
O := all link weight overlaps;
G := all goodness values;
repeat

[u, v] := max(G);
w := merge(u, v);
C := update(C, w, u, v);
O := update(O, w, u, v);
G := update(G, w, u, v);

until size(C) <= k
end.

Fig. 2. Clustering algorithm

The IROCK algorithm is presented in Fig. 2. As an initialization, each docu-
ment is assigned to its own cluster in C. For the construction of the asymmetric
proximity matrix M of p documents, formula (4) is used. Those proximity values
that don’t satisfy the minimum threshold η are removed. Based on the sparse
proximity matrix, all link weight overlaps are computed in O by formula (6).
Then formula (7) computes all goodness values G between objects. In each it-
eration, the core step is finding a pair of clusters with maximum goodness to
merge. Clusters u and v, the best pair to merge, are removed from C, O and G.
The new cluster w, consisting of u and v, is inserted into C, O and G by the
update operation. The program stops when the number of clusters satisfies the
given size value k.

5 Experiments

In this section we report an experimental evaluation of IROCK on real textual
data. The experiments were performed on a Xeon server. The programs are
implemented in java 1.5.

5.1 Data Sets

Pre-classified documents are needed to test and compare clustering algorithms.
We used two different data sets: RCV1 and 20Newsgroups, which are widely used
in text categorization.
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RCV1. We work with the new version of Reuters corpus: Reuters Corpus Vol-
ume I (RCV1). It is an archive of over 800,000 manually categorized newswire
stories recently made available by Reuters Ltd. for research purposes. Topic
codes are assigned to capture the major subjects of a story. They are organized
in four hierarchical groups: CCAT(Corporate/Industrial), ECAT(Economics),
GCAT(Government/Social), and MCAT(Markets). Sizes of the four categories
are different (for further details see [7]).

20Newsgroups. The 20 Newsgroups1 (20Ng) data set, collected by Lang [6],
contains about 20,000 articles. Each newsgroup represents one class in the clas-
sification task. Each article is designated to one or more semantic categories and
the total number of categories is 20, all of them are about the same size. Most
of the articles have only one semantic tag, however, about 7% of them have two
or more. We chose 4 topic categories in our experiments.

5.2 Evaluation Criteria

We evaluate our approach by classification accuracy, which has also been used
in the works of [5] and [10]. Kohonen et al. define the classification error as
“all documents that represented a minority newsgroup at any grid point were
counted as classification errors.” Our classification accuracy is very similar to
Kohonen’s, but we count the correct documents instead of errors. The article
is correct, if one of the original labels assigned by data set matches the cluster
label. The accuracy is the proportion of the number of correct articles to the
number of all input news articles.

5.3 Evaluation

Comparison on Different Number of Clusters. Our first experiment was
focused on evaluating the quality of the clustering solutions produced by ROCK
and classical algorithms. IROCK as an improvement of ROCK was tested in
this experiment. For classical algorithms, we chose K-Means. Initial centroids
are selected by randomly choosing K documents, so we ran the program 10 times
and chose the best results. These algorithms were compared on both RCV1 and
20Newsgroups.

For the experiments on the Reuters data set, we used 2000 documents which
consist of 49% CCAT, 20% MCAT, 18% GCAT and 12% ECAT. The results
of IROCK with θ = 0.045, η = 0.05 and ROCK with θ = 0.02, η = 0.02 are
presented in Table 1. From the table we can learn that IROCK has a good ability
to deal with data sets with differently sized clusters such as RCV1, and K-Means
works poorer than ROCK on RCV1.

In 20 Newsgroups as a comparison, we used 2000 documents in 4 classes
with the same size, i.e. “comp.os.ms-windows.misc”, “comp.sys.mac.hardware”,

1 The 20 newsgroups data collection can be obtained from:
http://kdd.ics.uci.edu/.
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Table 1. Accuracy on RCV1 data

Number of Clusters IROCK ROCK K-Means

8 0.777 0.628 0.605
16 0.779 0.686 0.669
50 0.836 0.848 0.749
100 0.860 0.859 0.798

Table 2. Accuracy on 20 Newsgroups data

Number of Clusters IROCK ROCK K-Means

8 0.829 0.799 0.778
16 0.845 0.821 0.826
50 0.871 0.926 0.857
100 0.890 0.928 0.888
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Fig. 3. Accuracy comparison in different data scales

“sci.crypt” and “sci.electronics”. The results of IROCK with θ = 0.03, η = 0.03
and ROCK with θ = 0.03, η = 0.04 are given in Table 2. In the clustering,
7 single documents as outliers are generated by both ROCK and IROCK. For
the experiment with same cluster sizes on 20 Newsgroups, the performance of
ROCK and K-Means are quite similar, whereas IROCK performs better than
the other two approaches in the final results (i.e., 8 clusters), as on RCV1.
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Comparison on Different Data Scale. This experiment compared the scal-
ability of IROCK, ROCK and K-Means. All algorithms were performed on the
same data set RCV1 with different number of documents. The final number of
clusters is set to 8.

Fig. 3 shows the results with parameter settings: θ = 0.045, η = 0.05 in
IROCK and θ = 0.02, η = 0.02 in ROCK. In Fig. 3, we can see that ROCK has
quite similar final results with K-Means, whereas IROCK achieves better than
both ROCK and K-Means for different data sizes.

From the experiments above, we can see that IROCK has a notable effect in
text clustering. Our improved approach performs better than both ROCK and
classical K-Means, especially on data with different sizes of clusters like RCV1.
The superiority of ROCK is not so remarkable when compared with K-Means.

6 Conclusions

In this paper, we have presented two new concepts: asymmetric proximity and
link weight overlap to measure the correlation of text objects. Asymmetric prox-
imity improves text clustering by strengthening discriminative features, which
are difficult to describe in traditional proximity measures. Link weight overlap
overcomes the shortcoming of ROCK in which the information about the close-
ness of two clusters is ignored while emphasizing on their inter-connectivity.
Both of these techniques are adopted in the improved algorithm IROCK. The
clustering process is based on the overlap information of asymmetric proximities
between text objects.

Our experimental evaluation on real textual data sets demonstrates that the
IROCK approach yields a better clustering quality than the original ROCK
does. Furthermore, links based ROCK has a higher accuracy than classical K-
Means in our experiments for text clustering. However, some inherent defects
of agglomerative approaches still exist in IROCK, for instance, slow runtime
performance. We hope to improve them in the future by using more sophisticated
approaches.
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Abstract. We consider the problem of finding a compact labelling for
large, rooted web taxonomies that can be used to encode all local path in-
formation for each taxonomy element. This research is motivated by the
problem of developing standards for taxonomic data, and addresses the
data intensive problem of evaluating semantic similarities between taxo-
nomic elements. Evaluating such similarities often requires the processing
of large common ancestor sets between elements. We propose a new class
of compact labelling schemes, designed for directed acyclic graphs, and
tailored for applications to large web taxonomies. Our labelling schemes
significantly reduce the complexity of evaluating similarities among tax-
onomy elements by enabling the gleaning of inferences from the labels
alone, without searching the data structure. We provide an analysis of
the label lengths for the proposed schemes based on structural proper-
ties of the taxonomy. Finally, we provide supporting empirical evidence
for the quality of these schemes by evaluating the performance on the
WordNet taxonomy.

1 Introduction

New distributed-information applications are being built on datasets associ-
ated with large-scale, web-accessible taxonomies. These applications motivate
the study of compact representations of portions of this data that will enable
better communication, and more efficient inferencing and information sharing.
In this paper we propose a new class of compact representations which are ap-
plied to the problem of encoding all local path information in a large-scale,
hierarchical taxonomy. The information concerning all paths in a local region
of a taxonomy is important for many applications, including effectively deriving
inferences within the data, and for effectively computing various semantic sim-
ilarity measures between elements in the taxonomy. For example, the semantic
similarity measures studied in the literature [3] and [12] are based on identifying
common ancestor sets within a hierarchy, and identifying nearest common ances-
tors, in particular. Computing such similarity measures is complicated due to the
data intensive nature and complexity of deriving all local paths. The methods

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 511–520, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and models that we present in this paper significantly reduces the complexity
of evaluating similarities, since we compactly encode all the relevant local path
information in a single node label. Evaluating similarities can then be efficiently
computed directly from a pair of node labels, with no other information required.

In this paper we model hierarchical taxonomies using a rooted (single source)
directed acyclic graph (or dag), and we model all the localized paths by all the
directed paths from the root to a particular node in the dag. We show that there
are common structural properties of the dags underlying several well known web
taxonomies, and that we can exploit these properties when constructing our
encodings.

Formal Problem Statement: Given a rooted dag D = (V,E), the problem of all
local path encoding is defined as follows: 1) produce a labelling L of the nodes of
V , where each node v in V is represented by L(v), a unique identifier in binary.
2) for each node v in V , produce an encoded binary string E(v) so that all paths
from root to v can be reconstructed from E(v) only, where reconstruction means
that for each path r = v1, v2, . . . , vk = v from root r to node v we can present
the associated sequences of node labels L(v1), L(v2), . . . , L(vk) for each node on
that path.

Our Design Methodology for All Local Path Encoding: Our methodology is
divided into three stages. In the first stage we choose a spanning tree of the
dag and produce a binary labelling of the edges of the spanning tree in such
a way that the out edges associated with a node v are unique, and in addition
we use the fewest bits possible to do this. Next, for each node v we concatenate
the labels of the edges on the unique path from root to node v in the tree; let
L′(v) denote this string. This labelling does not necessarily satisfy the uniqueness
criteria needed for L, and thus can not be used as valid encoding. However, as
we will show, this is a quite compact labelling, requiring for each node v only
�logn�+σv bits, where n is the number of nodes in the dag and σv is the depth
of v in the spanning tree (see Theorem 1). In the next stage, we produce a valid
encoding of the nodes by solving the problem of delimiting each of the edges in
L′(v). There are several methods that can accomplish this, and we show that by
considering the structure of the dag improved solutions are possible. The final
stage of our methodology involves creating the final encoding E(v) by creating
a list of edges that do not lie on the spanning tree, yet are on some path from
root r to v. Again various schemes are possible for encoding such an edge list,
and we present and analyze several alternatives.

1.1 The Structure of Web Taxonomies

Through empirical evidence we have found four specific structural properties
that are found in well known web taxonomies and have bearing on the problem
of compact representations of the path information. These structural proper-
ties characterize a class of dags having the following four statistical properties:
i) large out-degree (Δ) range and variance, ii) small in-degree (δ) range and vari-
ance, iii) small depth (σ) range and variance, and iv) small range and variance
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Table 1. Statistics for the WordNet 2.1, ODP and Mathematics International
Taxonomies

Taxonomy Size Property Max Min Avg Var
WordNet 2.1 81426 Indegree 6 0 1.027 0.029

OutDegree 619 0 1.027 43.82
Depth 17 0 7.193 4.825
Paths 12 1 1.433 0.566

ODP [6] 253215 OutDegree 314 — 0.999 —
Depth 14 0 8.83 —

Math.International [9] 211 OutDegree 43 — 1.6 —
InDegree 9 — 1.6 —
Depth 11 0 7.9 —

in the number of paths (ρ) from the root. See Table 1 for these statistical values
for two large-scale taxonomies, Wordnet 2.1 and ODP taxonomy.

When considering encodings for the local path information in dags with such
statistical properties, we have found two key issues must be addressed. First is the
issue of very large variance in the out-degree, and the second is the delimitation
of lists of edge identifiers for representing paths. To wit, consider a dag that
has a maximum out-degree Δ∗ that is much larger than the average out-degree.
The naive representation for identifying each edge out of a node is to use a fixed
length %logΔ∗& bit string. However, the possibility exists that this fixed length
representation is quite wasteful as compared to the potential of a variable length
encoding. For example, from the Wordnet statistics (see Table 1), we have that
Δ∗ = 619. Therefore, at least 10 bits (or possibly 2 bytes) would be required for
each edge encoded. Whereas statistics, on the average out-degree of the (internal)
nodes, show that on average we should require only 7 bits (or 1 byte) for each
edge.

As an alternative we can consider variable length encodings for the edges.
However, variable length representations require a delimitation scheme that must
be carefully constructed if it is to outperform a fixed length representation. We
present several methods for the effective delimitation of edges. These various
methods offer alternatives for fine tuning an encoding of all-paths information
based upon structural parameter values of directed acyclic graphs.

We show a variable length encoding scheme so that when it is applied to
any n-node tree enables a representation of each root to node v path that uses
at most σv + �log(n)� bits, where σv is the depth of node v in the tree. This
result, however, is before delimitation which, in general, results in a constant
factor overhead increase in the length result above. We present a variety of
delimitation schemes that can be tailored to specific dags and thus can minimize
the constant factors involved. We have applied our methods to the Wordnet 2.1
taxonomy for nouns, and we have shown that for certain delimitation schemes,
the constant factors involved are less than 4

3 (see lines 1 and 3 of Table 2).
Our encoding methods are applied in experiments with the Wordnet 2.1

noun taxonomy [10]. For our experiments we restrict this taxonomy to the
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Entity

Physical Entity Abstract Entity Thing

Fig. 1. The first two levels of the WordNet ”is-a-hypernym-of” taxonomy

”is-a-hypernym-of” relation. A noun-concept a is said to be a hypernym of
a noun-concept b, if b is a kind of a (e.g. ’animal’ is a hypernym of ’dog’).
This WordNet 2.1 taxonomy is a rooted taxonomy that has multiple inheritance
in a limited extent, as seen from the indegree statistic in Table 1. The root of
the taxonomy is the generic noun concept ”entity”, see Figure 1 for the top level
of the hierarchy.

1.2 Related Work

Our focus in this paper is on encoding all local path information in rooted dags.
Our methods build upon and extend previous approaches to the problem of tree
labelling that support nearest common ancestor queries (NCA). An NCA u of
nodes v and w in a dag D is an ancestor of both v and w, where u does not have
descendants that are ancestors for both v and w. Labelling schemes for NCA
queries have been shown to belong to a larger, more general family of graph
labelling schemes that are called informative labelling schemes (see [11]). This
family includes all label-based graph representations that will allow retrieving
certain specific global properties using only local information. Properties that
have been studied include, subsumption check, descendants, ancestors or NCAs,
and graph distances [11].

In applications, labelling schemes for hierarchies such as Netscape Open Di-
rectory Portal have been considered in [6]. This approach is motivated by the
problem of optimizing navigation through the Portal topic hierarchy. The la-
belling schemes are modelled to support subsumption, NCA, ancestor and de-
scendant queries. Abiteboul et al. in [1] present two tree labelling schemes
for answering ancestor queries in trees, with labels of size 5

3 logn + O(1) and
3
2 logn + O(log logn) bits respectively. These labelling schemes are applied to
encoding XML trees, and they enable efficient execution of the ancestor queries
in XML search engines.

Several papers have considered encoding of multiple inheritance with applica-
tion to the design of compilers for handling subsumption (i.e., ancestor relations)
in object-oriented languages, see e.g., [4], [5], [8]. These methods have been used
to generate compact, fixed length codes by mapping types to subsets (of some
base set) and thereby reduces the problem of testing type inclusion to testing
subset inclusion. The effectiveness of these encoding methods for large, web-
based hierarchies remains open.

Our results in this paper extend tree-based labellings, so that they are tailored
to the case of the dag structure representing web taxonomies, such as WordNet.
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We achieve logarithmic (or nearly logarithmic) label sizes, which are particularly
effective for dags with limited depth and indegree. As we have noted above and
in Table 1, many web taxonomies have small (logarithmic) depth and small
(constant) indegree.

In Section 2, we describe the first phase of our encoding scheme which uses
a prefix based approach to labelling trees: all nodes are labelled in such a way
that for each node v there is a path to the root with each node on the path labeled
with a prefix of vs label. We call this approach a ’greedy Dewey labelling’ due to
its natural relation to Dewey decimal classification commonly used for libraries.
This first phase is called the ”greedy Dewey labelling for trees (or, TGDL for
short). In Section 3, we consider three potential delimiting schemes, applied
to the first phase labelling. We analyze bounds on the label lengths required
when applying each of these schemes. In section 4 we present the next phase
of labelling which we call the extended greedy Dewey labelling for dags (or,
EGDL for short). We show how the Dewey labelling and delimiting schemes can
be used to extended to solve the problem of compact encoding of subgraphs of
dags. Finally, in Section 5 we present empirical results of the application of our
labelling schemes to the WordNet 2.1 taxonomy.

2 Greedy Labelling for Trees (TGDL)

Our labelling of rooted dags, underlying hierarchical taxonomies, includes two
schemes: the first is called the Greedy Dewey Labelling for Trees (or TGDL)
and the second is called the Extended Greedy Dewey Labelling for DAGs (or
EGDL).

The TGDL labelling scheme is a prefix-based labelling scheme. The first phase
of the TGDL labeling algorithm includes finding and extracting a Breadth-First
(BF) tree T from a rooted dag D. After the BF tree is found, TGDL is performed
as follows. The root r of the taxonomy (and the BF tree T ) is labelled with the
label TGDL(r)=ε, where ε denotes an empty bit string. Each edge of the tree T
is then assigned a GDL label which are obtained as follows. All children-edges
ec1 , ., ecj of a parent node u are ordered in the non-decreasing order based on the
size of the subtree rooted at the associated child. For each child-edge eci of the
node u, the GDL label is assigned uniquely, where the ith edge in the previously
mentioned ordering is encoded with exactly �log2(i + 1)� bits.

Now using the GDL labellings of all the edges we recursively determine the
TGDL labeling of all the nodes. For each non-root node v in the tree T , we
set TGDL(v)=TGDL(u)· edel(ev)·GDL(ev), where u is the parent of v in T ,
ev is the edge from u to v, and edel(ev) is some edge delimiting label (as yet
unspecified). In the next section we consider delimiting schemes, which for now
can be considered as encoding the length of the string GDL(ev).

2.1 Analysis of the Length for the TGDL Labels

We perform an analysis of the TGDL labels length in two steps. In the first
step, we assume that the edge delimiting labels are empty. This step is purely
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Fig. 2. TGDL labelling of nodes of tree given by solid edges. Non-tree edges are dashed,
and dots in node labels denote edge delimiters.

theoretical and we use it primarily to estimate the lower bound of our labelling
approach. In Section 3 we analyze the length of the TGDL labels given different
schemes for creating the delimiting labels.

TGDL Labels Without Delimiters

Theorem 1. Let T be a tree with n nodes. The TGDL algorithm labels each node
v of T with at most σv + �logn� bits, where σv is the depth of v in T. Note this
result ignores length of edge delimiters.

Proof. Let nu denote the size of the subtree of T rooted at node u. Consider any
child-edge (u, v) in the tree T . The following expresses an upper bound number
of bits used to GDL encode this edge: the expression:⌊

log
nu

nv
+ 1
⌋

This upper bound follows from the fact that the GDL labelling uses exactly
�log(i + 1)� bits to encode the edge incident to the ith largest subtree. For each
i, the size of the ith largest subtree is less than the size of tree divided by i (i.e.,
nv < nu/i). Hence,

�log(i + 1)� ≤
⌊
log
(
nu

nv
+ 1
)⌋

≤
⌊
log

nu

nv
+ 1
⌋
.

Now consider any length-k tree path v0, v1, . . . , vk from the root v0 to the leaf
node vk. By definition, this path is of length σvk

. The total number of bits used
to encode all edges on this path is bounded above by the sum:⌊

log
nv0

nv1

⌋
+ 1 +

⌊
log

nv1

nv2

⌋
+ 1 + . . . +

⌊
log

nvk−1

nvk

⌋
+ 1 ≤
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σvk
+
⌊
log

nv0

nv1

+ log
nv1

nv2

+ . . . + log
nvk−1

nvk

⌋
=

σvk
+
⌊
log

nv0

nvk

⌋
= σvk

+ �logn�

The proof of the theorem follows.

3 Delimiting Schemes

In this paper we analyze three different labelling schemes for edge delimiters,
based on different methods for length encoding. The three delimiting schemes we
investigated are called unary length encoding, fixed binary, and variable binary
encoding.

3.1 Unary Length Encoding

In the unary length scheme, for a given edge e, the edge delimiting label for e
is a bit string of length |e| = |GDL(e)|, edel(e) = ”(0)|e|−11”, where ”(0)|e|−1”
denotes a |e| − 1 long zero bit string. The proof of the following corollary is
immediate.

Corollary 1. Let T be a tree with n nodes. If the unary length encoding scheme
is used for encoding the edge delimiters, then the TGDL algorithm labels each
node v of the tree with at most 2(σv + �log(n)�) bits, where σv is the depth of v
in T.

3.2 Fixed Binary Length Encoding

In the fixed binary labelling scheme, an edge delimiter for some edge e is the
binary representation of the length for GDL(e). All edge delimiters are encoded
with the fixed number of bits chosen to be of sufficiently large length, and at
most of length %log log(Δ∗ + 1)&, where Δ∗ is the maximum node out-degree
that is found in the given tree. We have the following corollary.

Corollary 2. Let T be a tree with n nodes. If the fixed binary length encoding
scheme is used for encoding the edge delimiters, then the TGDL algorithm labels
each node v of the tree with at most σv + �logn� + σv%log�log(Δ∗ + 1)�& bits,
where Δ∗ is the maximum node out-degree in T, and σv is the depth of v in T.

3.3 Variable Binary Length Encoding

In this labelling scheme, for a given node vp and a given path rv1 . . . vp from
the root to vp in a tree T, each edge delimiter in this path is encoded with at
most %log log(Δ∗

pathvp
+ 1)& bits. Δ∗

pathvp
is the maximum node out-degree for

the nodes on the given path. Additional bit string of length approximately of
%log log log(Δ∗ +1)& bits is preceding the edge encodings. This bit-string is used
to determine the maximum length of the edge encoding in the given path. We
have the following corollary.
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Corollary 3. Let T be a tree with n nodes. If the variable binary length encoding
scheme is used for encoding the edge delimiters, then the TGDL algorithm labels
each node v of the tree with at most σv + �logn� + σv%log�log(Δ∗

pathv + 1)�& +
%log%log�(Δ∗ + 1)�&& bits, where Δ∗ is the maximum node out-degree in T, σv

is the depth of v in T, and Δ∗
pathv is the maximum out-degree for nodes on the

path from the root to v in T.

4 Extended Greedy for DAGs(EGDL)

Our goal for extending the ’greedy Dewey’ labelling from the last section in order
to design a compact encoding for each node of a large taxonomy, represented
with a dag. All relevant path information should be effectively computable using
only the information in the encoding of the node. Since we are considering the
path structure of a dag D, we are interested in encoding for each node v of D
the path-induced subgraph of v in D, call this PS(v). This subgraph is defined
as the unique minimal subdigraph of D that contains all the paths in the dag
from the root to node v. Since our TGDL labelling implicitly encodes nodes
as breadth-first paths from the root, we see that to encode PS(v) we require
only information about the edges that do not appear in the breadth-first tree.
Focusing our representation on the non-tree edges can have great advantage
for web taxonomies, for as we have noted above it is apparent in a number of
web taxonomies that the number of paths ρv, that are present from the root
to a vertex v is typically bounded by a small number. It easily follows that the
number of non-tree edges of any the path-induced subgraph of D is smaller than
the number of paths i.e., if m′ is the number of non-tree edges in the subgraph
PS(v), then we have that m′ < ρv. To generate the EGDL label for the node v,
we simply concatenate together an edge list for all non-tree edges of the subgraph
PS(v).

Any edge of D can be represented by a pair of vertices. Therefore, in the
EGDL labelling for D, each node v is represented as

EGDL(v) = ndel(v)·TGDL(v)· edgeEGDL(e1)· . . . · edgeEGDL(eg),

where edgeEGDL(e) is the EGDL encoding for the non-tree edges in PS(v); and
for each e = (v1, v2).

edgeEGDL(e) = ndel(v1)·TGDL(v1)·ndel(v2)·TGDL(v2),

The label ndel(v) is a node delimiting label for v, and it can be implemented
using the previously mentioned unary or fixed binary labelling schemes discussed
in Section 3.

In the fixed binary labelling scheme, the node delimiter for v is encoded with
at most %log(σ∗)& bits, where σ∗ is the depth of the BF tree of D. The unary
labelling scheme will label each node delimiter for v with at most σv + 1 bits,
where σv is the depth of v in the BF tree. Note that node delimiters are non-
empty for each node, including the root. Using the previously established values
on the length labels, the following theorem is immediate.
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Theorem 2. Let m′ be the number of non-tree edges in the subgraph PS(v) of
the dag D, and let σ∗ be the depth of a BF tree of D. The Extended Greedy Dewey
Labelling (EGDL) for a dag D labels each node with at most O(m′(σ∗ + log(n))
bits.

5 Experimental Results

In our experiments, we labelled the Wordnet 2.1 ”hypernym of” taxonomy for
nouns, using described TGDL and EGDL labelling algorithms. For encoding
edge and node delimiters, we used two previously described delimiting schemes -
the Unary Length Encoding and the Fixed Binary Length Encoding. Note that
the TGDL labelling is applied to a breadth-first tree of the Wordnet taxonomy,
whereas the EGDL scheme is applied to the full ”hypernym-of” Dag.

We present statistics for the use of our encoding schemes applied to Word-
Net 2.1 label lengths(see Table 2 and Figure 3). Note that the Unary Length

Table 2. Results of our encoding schemes applied to WordNet 2.1 taxonomy

Type of Encoding Maximum Length Avg. Length
Theorem 1 Bound 33 -

TGDL with Fixed Bin. Length Enc. 88 45.05
TGDL with Unary Length Enc. 40 24.24

EGDL with Fixed Bin. Length Enc. 611 64.90
EGDL with Unary Length Enc. 417 43.04

EGDL Length Distribution for WordNet
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Encoding (for delimiters) almost matches the theoretical lower bound of our
scheme (i.e., on the length of the TGDL without delimiters). The Fixed Bi-
nary Length Encoding for delimiters requires higher overheads. EGDL requires
substantially more bits in the worst case, however, from Figure 3 we see that
a very small number are near the maximum. The majority of nodes have the size
of their EGDL labels significantly smaller, close to the average length (around
length 50 bits).
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Abstract. We study the computational complexity of relay placement
in energy-constrained wireless sensor networks. The goal is to optimise
balanced data gathering, where the utility function is a weighted sum
of the minimum and average amounts of data collected from each sen-
sor node. We define a number of classes of simplified relay placement
problems, including a planar problem with a simple cost model for radio
communication. We prove that all of these problem classes are NP-hard,
and that in some cases even finding approximate solutions is NP-hard.

1 Introduction

In this article, we study the problem of placing relay nodes in wireless sensor
networks. Sensor networks [1]-[4] consist of a large number of sensor nodes which
collect data. The collected data is routed via the network to a sink node. The
nodes are battery powered, and when considering battery lifetime, radio com-
munication is a key issue [5].

Falck et al. [6] formulate the problem of balanced data gathering in sensor
networks. In this formulation, the utility function is a weighted sum of the mini-
mum and average amounts of data gathered from the nodes before the batteries
are drained. The goal is to collect a large total amount of data, but not at the
cost of completely ignoring some parts of the monitored area. Falck et al. show
that the problem of finding an optimal routing can be presented as a linear
program.

If the optimum is not satisfactory, one solution could be to add a small number
of new relay nodes to the network. The obvious question is how to determine the
optimal locations of the relays. This is the relay placement problem. Falck et al. [6]
consider this problem briefly in the context of balanced data gathering. However,
the computational complexity of this problem has not yet been analysed.

We will formalise the relay placement problem in Section 2. We will define var-
ious special cases or simplified versions of the general relay placement problem.
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We will then show in Section 3 that even these simplified versions are NP-hard,
and we will show in Section 4 that in some cases even finding approximate solu-
tions is NP-hard. Section 5 concludes this article.

2 Definitions of the Relay Placement Problems

An instance of the balanced data gathering problem [6], [7] is a tuple B = (λ, S,
R, σ, E, s, τ, ρ). Here λ ∈ [0, 1] is a balance parameter, S is a finite set of sensor
nodes, R is a finite set of relay nodes, and σ is the sink node. The sets S, R and
{σ} are disjoint. Let V = S ∪ R ∪ {σ}. The function E : V → [0,∞) ∪ {+∞}
specifies the battery capacity of each node. The function s : S → [0,∞)∪{+∞}
specifies how much data is available at each sensor node. The parameter ρ ∈
[0,∞) is the cost of receiving one unit of data, and the function τ : V × V →
[0,∞)∪{+∞} maps a pair of nodes to the cost of sending one unit of data from
the first node to the second one. The solution to the problem is a flow f , where
fηκ is the amount of data transmitted from node η ∈ V to node κ ∈ V . The
value qη denotes the amount of data gathered from a node η ∈ S. The utility of
the flow is λminη∈S qη + (1− λ) avgη∈S qη.

An instance of the relay placement problem is a tuple P = (λ, S, R, σ, E,
s, τ, ρ); the set of all such tuples is P . Here R is the set of possible relays,
and the other parameters are as above. The sets S, R, and {σ} are disjoint.
Let V = S ∪ R ∪ {σ}. The battery capacity function E(η) must be defined
for all possible nodes η ∈ V , and the transmission cost function τ(η, κ) must
be defined for all pairs of possible nodes η, κ ∈ V . We will also assume that
the location of the node, l(η) ∈ R2, is defined for all η ∈ V . The solution is
a finite subset R of possible relays R. Given a relay placement instance P and
its solution R, we can define the corresponding balanced data gathering instance
B = (λ, S,R, σ,E|V , s, τ|V ×V , ρ), where V = S ∪ R ∪ {σ}. The utility of this
solution, U(P,R), is the maximum utility of B.

An instance of the decision problem is a tuple (P,N, u) where P ∈ P , N is the
number of relays, and u is the utility requirement. The answer to the decision
problem is yes if and only if there is a solution R to the relay placement problem
P such that |R| = N and U(P,R) ≥ u.

An instance of the relay-constrained problem is a pair (P,N) where P ∈ P
and N is the number of relays. The solution is any R ∈ R with |R| = N .
A solution R∗ is optimal if it maximises U(P,R∗). A solution R̃ is k-optimal if
U(P, R̃) ≥ 1

kU(P,R∗).
An instance of the utility-constrained problem is a pair (P, u) where P ∈ P and

u is the utility requirement. The solution is any R ∈ R with U(P,R) ≥ u. A so-
lution R∗ is optimal if it minimises |R∗|. A solution R̃ is k-optimal if |R̃| ≤ k|R∗|.

A problem instance P ∈ P is planar, denoted by P ∈ PP , if the set of possible
relays R is the plane R2, and l(η) = η for all η ∈ R. A problem instance P ∈ P
has a finite relay set, denoted by P ∈ PD, if R is finite. A problem instance
P ∈ P uses the sensor upgrade model, denoted by P ∈ PU , if R = l(S). Note
that PU ⊆ PD.
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A problem instance P ∈ P has location-dependent transmission costs, denoted
by P ∈ PL, if τ(η, κ) = τ ′(l(η), l(κ)) for some function τ ′. A problem instance
P ∈ PL uses the line-of-sight model, denoted by P ∈ PS , if transmission costs can
be defined by some parameters α, p, and O as follows: The finite set O consists of
disjoint obstacles; each obstacle is a simple (i.e., not self-intersecting) polygon in
the real plane. The transmission cost τ ′(l1, l2) is infinite if the line segment l1l2
intersects some obstacle o ∈ O. Otherwise, τ ′(l1, l2) = dp(l1, l2)α where dp(·, ·)
denotes the distance measured using the p-norm1. A problem instance P ∈ PS

uses the free space model, denoted by P ∈ PF , if O = ∅.
A problem instance P ∈ P has identical batteries, denoted by P ∈ PI , if there

is E such that E(η) = E for all possible relays η ∈ R.
We will denote Px ∩ Py by Pxy, etc. One can construct a total of 32 relay

placement problem classes: P ,PP ,PD, . . . ,PUFI . We will denote the set of these
classes by P∗ and we will use Px to refer an arbitrary member of P∗.

3 All Problem Classes Are NP-Hard

Partition is a well-known NP-complete problem [13], [14]. An instance of the
Partition problem consists of a list of positive integers, (a1, . . . , an). A set
X ⊆ {1, 2, . . . , n} is a feasible solution if

∑
i∈X ai =

∑
i/∈X ai. We will develop

a polynomial reduction from Partition to PUFI and PPFI .
Let a list of positive integers, (a1, . . . , an), be given. We will assume that

the sum of the integers is even; otherwise the answer to the problem would be
trivially no. Construct a relay placement problem instance P as follows. First,
define a∗ = max ai, and b = 1

2

∑
ai. Choose λ = 0, p = 1, α = 2, and ρ = 0.

Choose any values z ≥ (na∗)1/α, y ≥ z + 1, and x ≥ ny.
Construct the problem geometry as shown in Fig. 1. Firstly, there are 2 sen-

sors, η and η′, with E(η) = E(η′) = bxα, s(η) = s(η′) = b, l(η) = (z/2 + 1/2 +
x/2,−z/2− 1/2 − x/2), and l(η′) = −l(η). Then, there are n diagonal rows of
nodes, each row corresponding to one integer in the Partition problem. The
centre points of these rows are li = ((2i−n−1)y/2, (2i−n−1)y/2). On each row,
there are two sensors, κi and κ′

i, with E(κi) = E(κ′
i) = ai, s(κi) = s(κ′

i) = 0,
l(κi) = li +(z/2+1/2,−z/2−1/2), and l(κ′

i) = li−(z/2+1/2,−z/2−1/2). Fur-
thermore, on each row there are two sensors, μi and μ′

i, with E(μi) = E(μ′
i) = 0,

s(μi) = s(μ′
i) = 0, l(μi) = li + (z/2,−z/2), and l(μ′

i) = li − (z/2,−z/2). The
only purpose of these nodes is to act as possible relay locations in the sensor
upgrade model. Finally, on each row there is one sensor, νi, with E(νi) = zα,
s(νi) = 1, and l(νi) = li. The location of the sink is l(σ) = (x/2+y, x/2+y) and
the battery capacity of the sink is irrelevant as the reception cost is zero. For
the battery capacity of the relays, choose any value E ≥ (a∗ + 1) (2x + 2y)α.

The total number of sensor nodes is m = 5n + 2, and the total amount
of available data is 2b + n units. The utility of any solution is thus at most
1 This simple power law has both theoretical [8] and practical [9]-[11] foundations,

and non-Euclidean distance metrics may be a useful approximation in certain urban
environments [12].
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Fig. 1. Reduction from Partition to PUF I and PPFI . In this example, the corre-
sponding Partition problem instance consisted of four integers. The diagonal rows
labelled with numbers 1–4 correspond to the four integers.

U∗ = (2b + n) /m. We can now formulate the following decision problem in-
stance: P is the relay placement problem instance constructed above, the num-
ber of relays N is n, and the utility requirement u equals U∗. We will show that
this formulation is indeed a polynomial reduction from Partition to PUFI and
PPFI .

Lemma 1. Constructing the problem instance is possible in polynomial time.

Proof. We may choose z = na∗, y = z+1, x = ny, and E = (a∗ + 1) (2x + 2y)α.
The total number of nodes in the constructed problem is O(n). The parameters
of each node can be calculated in polynomial time: keeping in mind that α = 2,
all expressions above only involve integer or rational numbers, and the size of
each integer is polynomial in the size of the input.

Lemma 2. If the answer to the Partition problem instance is yes, the answer
to the relay placement problem instance constructed above is yes, both in the
PUFI and in the PPFI formulation.

Proof. Let X be a feasible solution to the Partition problem. Denote the set
{1, . . . , n} \X by X ′. For each i ∈ X , place a relay on μi, transmit ai units of
data from η to κi, forward ai units of data from κi to the relay at μi, transmit 1
unit of data from νi to the relay at μi, and forward ai +1 units of data from the
relay at μi to the sink. For each i ∈ X ′, place a relay on μ′

i, and construct flows
as above for η′ and κ′

i.

Lemma 3. If the answer to the Partition problem instance is no, the answer
to the relay placement problem instance constructed above is no, both in the
PUFI and in the PPFI formulation.
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Proof. Let us assume that the answer to the relay placement problem instance is
yes. This is possible only if all available data from all sensor nodes is forwarded
to the sink node.

Let us first study the node νi for some i. Due to its limited battery capacity,
the sensor has to send at least some of its data to a node whose distance is at
most z units. No sink or sensor node with a positive battery capacity is available
within the area of distance z from νi. Thus, at least one relay node has to be
located in this area. As there are n such areas, all non-overlapping, there must
be exactly one relay node in each area.

Let us denote by X the indexes of the areas where the relay is closer to η than
to η′. Denote {1, . . . , n}\X by X ′. As the answer to the Partition problem was
no,

∑
i∈X ai �=

∑
i∈X′ ai. Without loss of generality, we assume that

∑
i∈X ai <∑

i∈X′ ai. Clearly
∑

i∈X ai < b. As b and ai are integral,
∑

i∈X ai ≤ b− 1.
The sensor η has to send b units of data to other nodes. The node has

enough energy resources for transmitting b units of data to the distance of ex-
actly x units. If some part of the data was sent over a larger distance, another
part would have to be sent to a node whose distance is less than x units; however,
no sensor or sink node is available closer than this, and all relays are already
tied to the proximity of nodes νi. Thus, the only possibility is to send all data
to nodes κi, each exactly x units from the source node. Let the amount of data
transmitted from η to κi be ci. Clearly

∑
ci = b and ci ≥ 0.

Now,
∑

i∈X ai ≤ b − 1 =
∑

(ci − 1/n). At least one of the following holds:
there is i ∈ X such that ai ≤ ci − 1/n, or there is i ∈ X ′ such that ci ≥ 1/n. If
neither holds, then

∑
i∈X ai >

∑
i∈X (ci − 1/n) ≥

∑
(ci − 1/n), a contradiction.

Let us first assume that there is i such that i ∈ X and ai ≤ ci − 1/n. In
this case the node κi would have to transmit at least ai + 1/n units of data to
some other node. The distance to the closest node is at least 1 unit. Thus, the
transmission cost is at least ai+1/n, exceeding the available battery capacity ai,
a contradiction.

On the other hand, if there is i such that i ∈ X ′ and ci ≥ 1/n, the node κi

would have to transmit at least 1/n units of data to some other node. As i ∈ X ′,
the distance to the closest relay node is at least z + 1 units. The only node
less than z + 1 units from κi is νi, and it does not have any battery capac-
ity for forwarding data. Thus, we need to transmit at least 1/n units of data
to a distance of at least z + 1 units, requiring at least (1/n) (z + 1)α units
of energy. Here (1/n)(z + 1)α ≥ (1/n)((na∗)1/α + 1)

α
> (1/n)((na∗)1/α)

α
=

(1/n)(na∗) = a∗ ≥ ai = E(κi). Again, a contradiction. Thus the assumption
must be false.

Theorem 1. The decision versions of all relay placement problem classes in P∗

are NP-hard.

Proof. From the list of problem definitions in Section 2 we see that for any relay
problem class Px in P∗, either PUFI ⊆ Px or PPFI ⊆ Px. The theorem follows
from Lemmas 1, 2, and 3.
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Theorem 2. The decision version of the relay placement problem class PD is
NP-complete.

Proof. Use (R, f) as a certificate for a yes instance of the decision problem.

4 For Some Problem Classes, Approximation Is NP-Hard

Set Covering is another well-known NP-complete problem [13, 14]. An in-
stance of the Set Covering problem consists of a finite collection of finite sets,
A = {A1, . . . , An}, and a positive integer m. A subcollection X ⊆ A is a feasible
solution if |X | ≤ m and

⋃
X =

⋃
A. We will now develop a polynomial reduction

from Set Covering to PDSI and PPSI .
Let A = {A1, . . . , An} and m be given. Let a = |

⋃
A|. Without loss of

generality we will assume that
⋃
A = {1, . . . , a}. Construct a relay placement

problem instance P as follows. Choose λ = 1, p = 2, α = 2, and ρ = 0. Define
x = 4m and y = 2x(a+n). Construct the problem geometry as shown in Fig. 2.

On the left-hand side of part (a), we have a + 2n − 1 triangular nests. The
first n − 1 nests are empty. The next a nests, Λ1 to Λa, correspond to inte-
gers {1, . . . , a}, where the nest Λi contains the sensor node ηi, with E(ηi) = 1,
s(ηi) = 1. The next nest, Λσ, contains the sink node σ. The last n − 1 nests
are empty.

Slots, Υi

y/4 y/4
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x

y/2

(b) 44
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x xx
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Fig. 2. Reduction from Set Covering to PDSI and PPSI . This figure illustrates the
case of m = 2, n = 3, and a = 5. Some details are shown in a larger scale.



Computational Complexity of Relay Placement in Sensor Networks 527

On the right-hand side, we have n triangular slots, Υ1 to Υn. Each slot cor-
responds to one element of A. Let us now have a closer look at one of these
slots, let it be slot Υj . See Fig. 2 (b) for an illustration. On the leftmost side of
the slot, we have a + n − 1 diamond-shaped obstacles. Between the diamond-
shaped obstacles, we have a + n holes. The first n − j holes are unused. The
next a holes, Ξ1j to Ξaj, correspond to the sensors η1 to ηa, and the next hole,
Ξσj corresponds to the sink σ. Finally, there are j − 1 unused holes.

Let us now construct two diamond-shaped areas, Ψj and Ψ ′
j , as illustrated in

Fig. 2 (b). All points l ∈ Ψj satisfy the following conditions: for all i, there is
a line of sight from l to ηi through Ξij ; and there is a line of sight from l to σ
through Ξσj . All points l ∈ Ψ ′

j satisfy the following conditions: for all i, if there
is a line of sight from l to ηi, it necessarily passes through Ξij ; and if there is
a line of sight from l to σ, it necessarily passes through Ξσj .

Now, we will block the hole Ξij if and only if i /∈ Aj . Let us denote by Xl the
set of indexes j such that ηj is still visible from the location l. We can make two
observations: If l ∈ Ψj , then Xl = Aj . If l ∈ Ψ ′

j , then Xl ⊆ Aj .
We will also need m narrow, vertical tunnels, T1 to Tm, in the rightmost part

of the construction; see parts (c) and (d) for an illustration. Each tunnel consists
of a 1-unit-wide wall, a 2-unit-wide tunnel, and a 1-unit-wide wall, and we will
refer to the interior of this 4-unit-wide area as T ′

i . For each i, place a sensor
node μi at the bottom of tunnel Ti, with E(μi) = 1 and s(μi) = 1. Note that all
points in Ti are visible from μi, and no point outside T ′

i is visible from μi.
At the intersection of the tunnel Ti and the slot Υj there is a possible relay

location κij . Note that this location is inside area Ψj . Finally, the construction
is surrounded by four walls, shown in the figure in grey colour.

All relays have a battery capacity of 1 unit. We can now formulate the follow-
ing relay-constrained optimisation problem instance: P is the relay placement
problem instance constructed above, and the number of relays N is m.

Lemma 4. Constructing this relay placement problem instance is possible in
polynomial time.

Proof. The construction involves generating a problem instance with O(a + n)
sensors, O(nm) possible relays, and O((a+n)n) quadrilateral or triangular obsta-
cles. Calculating the parameters of each node and each obstacle can be performed
in a polynomial time. The calculations only involve integers.

Lemma 5. If the answer to the Set Covering problem instance is yes, the
optimal solution to the relay placement problem instance constructed above has
a positive utility, both in the PDSI and in the PPSI formulation.

Proof. Let X ′ = {Ac1 , . . . , Acm′} be a solution to the Set Covering prob-
lem, with m′ ≤ m. Choose, for example, ci = 1 for all i > m′. Now X =
{Ac1 , . . . , Acm} is still a feasible solution. For each i ∈ {1, . . . ,m}, place a relay
at κici . This way all sensors can forward some data through relays.

Lemma 6. If the answer to the Set Covering problem instance is no, there
is no solution with a positive utility, either in PDSI or in PPSI .
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Proof. If the utility is positive, we have to gather some data from all sensors.
For each i, there has to be at least one relay on T ′

i , let us call it νi. Thus, all m
relays are bound to tunnels. Let Yi = Xl(νi), and Y = {Y1, . . . , Ym}. To gather
data from each ηj , we must have

⋃
Y =

⋃
A. If the relay νi is located in some

Ψ ′
j , we choose ci = j; otherwise the relay must be inside a tunnel, Yi is ∅, and

we can choose ci = 1. For each i there is now a ci such that Yi ⊆ Aci . Define
Y ′ = {Ac1 , . . . , Acm}. Now we have

⋃
A =

⋃
Y ⊆

⋃
Y ′ ⊆

⋃
A. Thus, Y ′ is

a feasible solution to the Set Covering problem instance.

Theorem 3. Finding k-optimal solutions to the relay-constrained optimisation
versions of problem classes Px satisfying PDSI ⊆ Px or PPSI ⊆ Px is NP-hard.

Proof. Let us assume that for some k, we have an oracle for solving the relay-
constrained optimisation problems of class PDSI or PPSI k-optimally in constant
time. We may then use the construction presented above to solve Set Covering
in polynomial time.

By Lemma 4, we may construct the relay placement problem instance in
polynomial time. By Lemmas 5 and 6, the oracle will return a solution with
a positive utility if and only if the answer to the Set Covering problem is yes.

5 Conclusions

In this article, we have specified and studied a number of classes of relay place-
ment problems. All classes have been proved NP-hard. For some important prob-
lem classes, approximation has been proved NP-hard as well. It is an open ques-
tion whether it is possible to formulate a relay placement problem which is com-
putationally tractable but still meaningful in practise. We may need to consider
other utility functions in addition to the balanced data gathering formulation.

However, these results do not prevent us from optimising relay placement. One
possibility is to use a heuristic approach [6], which is computationally effective.
While it does not guarantee optimality, it may still be useful in practical prob-
lems. There are also algorithms for finding k-optimal solutions [15]. The time
complexity of these algorithms may be high, but they have been successfully
used for solving problem instances of moderate size.

Acknowledgements. Thanks to Patrik Floréen, Jyrki Kivinen, Tanja Säily,
Jukka Kohonen, and Petteri Nurmi for discussions and comments.
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7. Floréen, P., Kaski, P., Kohonen, J., and Orponen, P.: Exact and Approximate
Balanced Data Gathering in Energy-Constrained Sensor Networks. Theoretical
Computer Science (2005) To appear.

8. Rappaport, T.S.: Wireless Communications, Principles and Practice. Prentice
Hall, Inc., Upper Saddle River (1999)

9. Andersen, J.B., Rappaport, T.S., and Yoshida, S.: Propagation Measurements and
Models for Wireless Communications Channels. IEEE Communications Magazine
33 (1995) 42–49

10. Seidel, S.Y., and Rappaport, T.S.: 914 MHz Path Loss Prediction Models for
Indoor Wireless Communications in Multifloored Buildings. IEEE Transactions
on Antennas and Propagation 40 (1992) 207–217

11. Sohrabi, K., Manriquez, B., and Pottie, G.J.: Near Ground Wideband Channel
Measurement in 800–1000 MHz. In: Proceedings of the 49th Vehicular Technology
Conference (1999) 571–574

12. Goldsmith, A.J., and Greenstein, L.J.: A Measurement-Based Model for Predicting
Coverage Areas of Urban Microcells. IEEE Journal on Selected Areas in Commu-
nications 11 (1993) 1013–1023

13. Karp, R.M.: Reducibility among Combinatorial Problems. In Miller, R.E.,
Thatcher, J.W., eds.: Complexity of Computer Computations, Plenum Press, New
York (1972) 85–103

14. Garey, M.R., and Johnson, D.S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York (2003)

15. Suomela, J.: Algorithms for k-Optimal Relay Placement in Sensor Networks (2005)
Submitted for publication.



On the NP-Completeness of Some Graph
Cluster Measures
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Abstract. Graph clustering is the problem of identifying sparsely con-
nected dense subgraphs (clusters) in a given graph. Identifying clusters
can be achieved by optimizing a fitness function that measures the qual-
ity of a cluster within the graph. Examples of such cluster measures
include the conductance, the local and relative densities, and single clus-
ter editing. We prove that the decision problems associated with the
optimization tasks of finding clusters that are optimal with respect to
these fitness measures are NP-complete.

1 Introduction

Clustering is an important issue in the analysis and exploration of data. There is
a wide area of applications in data mining, VLSI design, parallel computing, web
searching, relevance queries, software engineering, computer graphics, pattern
recognition, gene analysis, etc. See also [13] for an overview. Intuitively clustering
consists in discovering natural groups (clusters) of similar elements in a data
set. The input data sets of current interesting application areas are very large,
which motivates research on the complexity of finding and evaluating complete
clusterings or single clusters, as such results will help to determine whether
certain methods will be scalable for processing large data sets.

An important variant of data clustering is graph clustering where the similar-
ity relation is expressed by a graph. The graph may either be a weighted graph
with the similarity values captured by the edge weights, or an unweighted one,
where the similarities have been thresholded or otherwise coded such that an
edge is only placed between two vertices if the vertices are considered similar;
the absence of an edge implies dissimilarity. In this paper, we restrict ourselves
to unweighted, undirected graphs with no self-loops.
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We first recall some basic definitions from graph theory. Let G = (V,E)
be an undirected graph and denote by E(S) = {{u, v} ∈ E | u, v ∈ S} the
set of edges in a subgraph G(S) = (S,E(S)) induced by a subset of vertices
S ⊆ V . We say that S ⊆ V creates a clique of size |S| if edges in E(S) =
{{u, v} | u, v ∈ S, u �= v} join every pair of different vertices in S. Further
denote by dG(v) = |{u ∈ V | {u, v} ∈ E}| the degree of vertex v ∈ V in G. We
say that graph G is a cubic graph if dG(v) = 3 for every v ∈ V . Moreover, any
subset of vertices S ⊆ V creates a cut of G, that is a partition of V into disjoint
sets S and V \ S. The size of cut S is defined as

cG(S) = |{{u, v} ∈ E | u ∈ S , v ∈ V \ S}| , (1)

and
dG(S) =

∑
v∈S

dG(v) (2)

denotes the sum of degrees in cut S ⊆ V .
A canonical definition of a graph cluster does not exist, but it is commonly

agreed that a cluster should be a connected subgraph induced by a vertex set S
with many internal edges E(S) and few edges to outside vertices in V \S [5], [15].
In this paper we consider several locally computable fitness functions that are
used for measuring the quality of a cluster within the graph. The prominent
position among graph cluster measures is occupied by the conductance [4], [8],
[9], [11], [15] which is defined for any cut ∅ �= S ⊂ V in graph G as follows

ΦG(S) =
cG(S)

min(dG(S), dG(V \ S))
. (3)

Furthermore, the local density δG(S) [23] (cf. the average degree [12]) of a subset
∅ �= S ⊆ V in graph G is the ratio of the number of edges in subgraph G(S)
induced by S over the number of edges in a clique of size |S| vertices, that is

δG(S) =
|E(S)|(|S|

2

) =
2 · |E(S)|

|S| · (|S| − 1)
(4)

for S containing at least two vertices whereas we define δG(S) = 0 for |S| = 1.
Similarly, we define the relative density [19] of cut ∅ �= S ⊆ V as follows

&G(S) =
|E(S)|

|E(S)|+ cG(S)
. (5)

Yet another graph cluster measure which we call single cluster editing (cf. [21])
of a subset S ⊆ V counts the number of edge operations (both additions and
deletions) needed to transform S into an isolated clique:

εG(S) =
(
|S|
2

)
− |E(S)|+ cG(S) . (6)
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Proposed clustering algorithms [4], [13], [19], [20] usually search for clusters
that are optimal with respect to the above-mentioned fitness measures. There-
fore the underlying optimization problems of finding the clusters that minimize
the conductance or maximize the densities or that need a small single cluster
editing are of special interest. In this paper we will formally prove that the
associated decision problems for the conductance (Sect. 2), local and relative
densities (Sect. 3), and single cluster editing (Sect. 4) are NP-complete. These
complexity results appear to be well-known or at least intuitively credible, but
not properly documented in the literature. However, such results are useful in
choosing a fitness measure in the design or application of a clustering algorithm,
and especially to justify the use of approximate methods as the amount of com-
putation needed to identify the global optima cannot be expected to scale well
for large problem instances.

2 Conductance

Finding a subset of vertices that has the minimum conductance in a given graph
has been often stated to be an NP-complete problem in the literature [2], [4], [7],
[9], [15], [17], [18]. However, we could not find an explicit proof anywhere. For
example, the NP-completeness proof due to Papadimitrou [22] for the problem
of finding the minimum normalized cut which is in fact the conductance of
a weighted graph does not imply the hardness in the unweighted case. Thus
we provide the proof in this section. The decision version for the conductance
problem is formulated as follows:

Minimum Conductance (Conductance)
Instance: An undirected graph G = (V,E) and a rational number 0 ≤ φ ≤ 1.
Question: Is there a cut S ⊂ V such that ΦG(S) ≤ φ ?

Theorem 1. Conductance is NP-complete.

Proof. Clearly, Conductance belongs to NP since a nondeterministic algo-
rithm can guess a cut S ⊂ V and verify ΦG(S) ≤ φ in polynomial time. For the
NP-hardness proof the following maximum cut problem on cubic graphs will be
reduced to Conductance in polynomial time.

Maximum Cut for Cubic Graphs (Max Cut–3)
Instance: A cubic graph G = (V,E) and a positive integer a.
Question: Is there a cut A ⊆ V such that cG(A) ≥ a ?

The Max Cut–3 problem was first stated to be NP-complete in [24] which be-
came a widely used reference [10] although an explicit proof cannot be found
there and we were unable to reconstruct the argument from the sketch. Never-
theless, the NP-completeness of Max Cut–3 follows from its APX-completeness
presented in [1]. The following reduction to Conductance is adapted from that
used for the minimum edge expansion problem [14].

Given a Max Cut–3 instance, i.e. a cubic graph G = (V,E) with n = |V |
vertices, and a positive integer a, a corresponding undirected graph G′ = (V ′, E′)
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for Conductance is composed of two fully connected copies of the complement
of G, that is V ′ = V1 ∪ V2 where Vi = {vi | v ∈ V } for i = 1, 2, and E′ =
E1 ∪E2 ∪E3 where Ei = {{ui, vi} | u, v ∈ V, u �= v, {u, v} �∈ E} for i = 1, 2, and
E3 = {{u1, v2} | u, v ∈ V }. In addition, define the required conductance bound

φ =
1

2n− 4

(
n− 2a

n

)
. (7)

The number of vertices in G′ is |V ′| = 2n and the number of edges |E′| =
(2n− 4)n since

dG′(v) = 2n− 4 for every v ∈ V ′ (8)

due to G being a cubic graph. It follows that G′ can be constructed in polynomial
time.

For a cut ∅ �= S ⊂ V ′ in G′ with k = |S| < 2n vertices, denote by

Si = {v ∈ V | vi ∈ S} for i = 1, 2 (9)

the cuts in G that are projections of S to V1 and V2, respectively. Since cG′(S) =
cG′(V ′ \ S) it holds that ΦG′(S) = ΦG′(V ′ \ S) according to definition (3).
Hence, k ≤ n can be assumed without loss of generality when computing the
conductance in G′. Thus,

ΦG′(S) =
|S| · |V ′ \ S| − cG(S1)− cG(S2)

(2n− 4) · |S| (10)

follows from condition (8) and the fact that G′ is composed of two fully connected
complements of G, which can be rewritten as

ΦG′(S) =
1

2n− 4

(
2n− k − cG(S1) + cG(S2)

k

)
. (11)

Now we verify the correctness of the reduction by proving that the Max
Cut–3 instance has a solution if and only if the corresponding Conductance
instance is solvable. First assume that a cut A ⊆ V exists in G whose size satisfies

cG(A) ≥ a . (12)

Denote by

SA = {v1 ∈ V1 | v ∈ A} ∪ {v2 ∈ V2 | v ∈ V \A} ⊆ V ′ (13)

the cut in G′ whose projections (9) to V1 and V2 are SA
1 = A and SA

2 = V \A,
respectively. Since |SA| = n and cG(A) = cG(V \A) the conductance of SA can
be upper bounded as

ΦG′
(
SA
)

=
1

2n− 4

(
n− 2cG(A)

n

)
≤ 1

2n− 4

(
n− 2a

n

)
= φ (14)

according to equations (11), (12), and (7), which shows that SA is a solution of
the Conductance instance.
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For the converse, assume that the conductance of cut ∅ �= S ⊂ V ′ in G′ meets

ΦG′(S) ≤ φ . (15)

Let A ⊆ V be a maximum cut in G. For cut SA defined according to (13) we
prove that

ΦG′
(
SA
)
≤ ΦG′(S) (16)

which is rewritten to

1
2n− 4

(
n− 2cG(A)

n

)
≤ 1

2n− 4

(
2n− k − cG(S1) + cG(S2)

k

)
(17)

according to (14) and (11) where k = |S| ≤ n and S1, S2 are defined in (9). Since
2cG(A) ≥ cG(S1) + cG(S2) due to A being a maximum cut in G, it suffices to
show

n− k +
(

1
n
− 1

k

)
(cG(S1) + cG(S2)) ≥ 0 (18)

which follows from 1
n −

1
k ≤ 0 and cG(S1) + cG(S2) ≤ |S1| · n + |S2| · n = kn.

Thus,

1
2n− 4

(
n− 2cG(A)

n

)
= ΦG′

(
SA
)
≤ ΦG′(S) ≤ φ =

1
2n− 4

(
n− 2a

n

)
(19)

holds according to (14), (16), (15), and (7), which implies cG(A) ≥ a. Hence,
A solves the MAX CUT–3 instance. � 

3 Local and Relative Density

The decision version of the maximum density problem is formulated as follows:
Maximum Density (Density)
Instance: An undirected graph G = (V,E), a positive integer k ≤ |V |, and
a rational number 0 ≤ r ≤ 1.
Question: Is there a subset S ⊆ V such that |S| = k and the density of S in G
is at least r ?
We distinguish between Local Density and Relative Density problems ac-
cording to the particular density measure used which is the local density (4) and
the relative density (5), respectively. Clearly, Local Density is NP-complete
since this problem for r = 1 coincides with the NP-complete Clique problem [16].
Also the NP-completeness of Relative Density can easily be achieved:

Theorem 2. Relative Density is NP-complete.

Proof. Obviously, Relative Density belongs to NP since a nondeterministic
algorithm can guess a cut S ⊆ V of cardinality |S| = k and verify &G(S) ≥ r
in polynomial time. For the NP-hardness proof the following minimum bisection



On the NP-Completeness of Some Graph Cluster Measures 535

problem on cubic graphs which is known to be NP-complete [6] will be reduced
to Relative Density in polynomial time.
Minimum Bisection for Cubic Graphs (Min Bisection–3)
Instance: A cubic graph G = (V,E) with n = |V | vertices and a positive
integer a.
Question: Is there a cut S ⊆ V such that |S| = n

2 and cG(S) ≤ a ?

Given a Min Bisection–3 instance, i.e. a cubic graph G = (V,E) with n = |V |
vertices, and a positive integer a, a corresponding Relative Density instance
consists of the same graph G, parameters k = n

2 and

r =
3n− 2a
3n + 2a

. (20)

Now for any subset S ⊆ V such that |S| = k = n
2 it holds that

|E(S)| = 3|S| − cG(S)
2

=
3n− 2cG(S)

4
(21)

due to G being a cubic graph, which gives

&G(S) =
3n− 2cG(S)
3n + 2cG(S)

(22)

according to (5). It follows from (20) and (22) that &G(S) ≥ r iff cG(S) ≤ a. � 

4 Single Cluster Editing

The problem of deciding whether a given graph can be transformed into a collec-
tion of cliques using at most m edge operations (both additions and deletions)
which is called Cluster Editing is known to be NP-complete [3], [21]. When
the desired solution must contain exactly p cliques, the so called p–Cluster
Editing problem remains NP-complete for every p ≥ 2. Here we study the issue
of whether a given graph contains a subset S of exactly k vertices such that at
most m edge additions and deletions suffice altogether to turn S into an isolated
clique:

Minimum Single Cluster Editing (1–Cluster Editing)
Instance: An undirected graph G = (V,E), positive integers k ≤ |V | and m.
Question: Is there a subset S ⊆ V such that |S| = k and εG(S) ≤ m ?

Theorem 3. 1–Cluster Editing is NP-complete.

Proof. Obviously, 1–Cluster Editing belongs to NP since a nondeterministic
algorithm can guess a subset S ⊆ V of cardinality |S| = k and verify εG(S) ≤ m
in polynomial time. For the NP-hardness proof the Min Bisection–3 problem
is used again (cf. the proof of Theorem 2) which will be reduced to 1–Cluster
Editing in polynomial time.
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Given a Min Bisection–3 instance, i.e. a cubic graph G = (V,E) with
n = |V | vertices, and a positive integer a, a corresponding 1–Cluster Editing
instance consists of the same graph G, parameters k = n

2 and

m =
12a + n(n− 8)

8
. (23)

Now for any subset S ⊆ V such that |S| = k = n
2 it holds that

εG(S) =
|S| · (|S| − 1)

2
− 3|S| − cG(S)

2
+ cG(S) =

12cG(S) + n(n− 8)
8

(24)

according to (6) and (21). It follows from (23) and (24) that εG(S) ≤ m iff
cG(S) ≤ a. � 

5 Conclusion

In this paper we have presented the explicit NP-completeness proofs for the de-
cision problems associated with the optimization of four possible graph cluster
measures; namely the conductance, the local and relative densities, and single
cluster editing. In addition, the results for relative density and single cluster edit-
ing are also valid for cubic graphs (by construction). In clustering algorithms,
combinations of fitness measures are often preferred as only optimizing one may
result in anomalies such as selecting small cliques or connected components as
clusters. An open problem is the complexity of minimizing the product of the
local and relative densities [20] (e.g. their sum is closely related to the edge op-
eration count for the single cluster editing problem). Another important area for
further research is the complexity of finding related approximation solutions [2].
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Abstract. Recent advances in distributed computing has lead software
agents to be mobile and/or composed of distributed resources. In order
to perform certain tasks, mobile agents may require access to resources
available on remote systems. Although appealing in terms of system de-
sign and extensibility, mobile agents are a security risk and require strong
access control. Further, the mobile code environment is fluid where re-
sources located on a host may change rapidly, necessitating an extensible
security model. This makes difficult to dynamically change agent ability
and host security strategies in order to adapt to evolving conditions of
the execution environment. In this paper, we present the design and im-
plementation of a policy-based secure mobile agent platform (SECMAP).
The platform makes use of agent and host policies for security and flexi-
bility concerns. Its main strength is that it allows security policies to be
specified or modified dynamically at runtime, resulting in high adapt-
ability of agents and hosts to varying system state and requirements.

1 Introduction

Intelligent agents and multi-agent systems bring in a new approach to the de-
sign and implementation of complex distributed systems. Several multi-agent
systems have been implemented either as commercial products or in various
research projects, with varying success [1]-[7]. Reasons for the growing recog-
nition of agent technology are the innovative solutions it provides to problems
of more traditionally designed distributed systems through mobility of code,
machine based intelligence, and improved network and data-management possi-
bilities. Using mobile agent technologies provides potential benefits to applica-
tions, however, an agent’s ability to move introduces significant security risks.
Both mobile agents during their life times and hosts executing mobile agents are
under security threats [8], [9].

Mobile code environments, however, have two important characteristics. They
are dynamic - mobile programs come and go rapidly, and the resources present
on a host may change. They are also unpredictable - administrators might not
know ahead of time the source, behavior, or requirements of the programs that
migrate to their host. There is no fixed set of resources that a host administers.
Further, because the different components of resources and mobile programs may
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require different levels of protection, security models must support fine-grained
access control. This paper describes a new mobile agent platform, Secure Mo-
bile Agent Platform (SECMAP) and its policy architecture. Unlike other agent
systems, SECMAP proposes a new agent model, the shielded agent model, for
security purposes. A shielded agent is a highly encapsulated software compo-
nent that ensures complete isolation against unauthorized access of any type.
SECMAP presents a policy-driven framework to support adaptive and dynamic
behavior of agents, providing a secure environment through host and agent poli-
cies. SECMAP allows dynamic manipulation of policy content, which results in
an adaptive and flexible framework that eliminates the reprogramming of the
agents on changing conditions.

2 SECMAP Architecture

A brief overview of SECMAP architecture[8] is necessary before the description
of the policy architecture. We have used Java for the implementation of the exe-
cution environment because it offers several features that ease the development
process. The main component of the architecture is a Secure Mobile Agent Server
(SMAS) that is responsible of all agent related tasks such as creation, activa-
tion, communication, migration and execution of policies. The system comprises
of several SMAS executing on each node which acts as a host for agents. A SMAS
may operate in three modes according to the functionality it exhibits. It can be
configured to execute in any of the three modes on a host through a user inter-
face. A SMAS on a node can also operate in all three modes at the same time.

Standard Mode(S-SMAS): S-SMAS provides standard agent services such
as agent creation, activation, inactivation, destruction, communication, and
migration. It also includes a policy engine that checks agent activity and
resource utilization according to the rules that are present in host and agent
policy file. In addition, S-SMAS maintains a list of all active agents resident
on the host and notifies the Master Browser SMAS anytime an agent changes
state. Keeping logs of all agent activities is another important task S-SMAS
carries out.

Master Browser Mode (MB-SMAS): When agents are mobile, location
mappings change over time, therefore agent communication first requires
a reference to the recipient agent to be obtained. In addition to supporting
all functionalities of S-SMAS, MB-SMAS also maintains a name-location
directory of all currently active agents in the system. This list consists of
information that identifies the host where an agent runs and is kept up to
date as information on the identities and status (active/inactive) of agents
from other SMAS is received.

Security Manager Mode (SM-SMAS): In addition to supporting all func-
tionalities of S-SMAS, SM-SMAS performs authentication of all SMAS en-
gines and maintains security information such as DES keys and certificates.
Any SMAS engine in the system has to be authenticated before it can start
up as a trusted server. SM-SMAS holds an IP address and key pair for each
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of SMAS engine that wants to be authenticated. If the supplied key and the
IP address of the requesting SMAS engine is correct then it is authenticated.
The authenticated SMAS engine gets a ticket from the SM-SMAS and uses
this ticket when communicating with other SMAS engines. A SMAS that re-
ceives a request from another SMAS refers to SM-SMAS to verify the validity
of its ticket before proceeding with the necessary actions to fulfill the request.

SECMAP provides a secure communication framework for mobile agents [9].
Agent communication is secured by transferring encrypted message content by
SSL protocol and is managed in a location transparent way. SECMAP also sup-
ports weak migration of agents between remote hosts.

2.1 SECMAP Agents

SECMAP requires agents to conform to a software architectural style, which
is identified by a basic agent template given below. The agent programmer is
provided a flexible development environment with an interface for writing mo-
bile agent applications. He determines agent behavior according to the agent
template given and is expected to write code that reflects the agent’s behavior
for each of the public methods. For example, code for the OnCreate() method
should specify initial actions to be carried out while the agent is being created, or
code for the OnMessageArrive() method should define agent reaction to message
arrival.

public class Main extends Agent{
public void OnMessageArrive(){...}
public void OnCreate(){ ... }
public void OnActivate(){...}
public void OnInactivate(){... }
public void OnTransfer(){... }
public void OnEnd(){... }}

An instance of class AgentIdentity is defined for the agent on an initial creation.
All agents in the system are referenced through their unique identities, which
consist of three parts. The first part, a random string of 128 bytes length, is
the unique identification number and, once assigned, never changes throughout
the life time of the agent. The second part is the name which the agent has
announced for itself and wishes to be recognized with. While the first two parts
are static, the third part of the identity has a dynamic nature: it carries location
information, that is, the address of the SMAS on which the agent is currently
resident, and varies as the agent moves among different nodes. This dynamic
approach to agent identity facilitates efficient message passing.

3 Security Policies

SECMAP provides a highly configurable security environment by supporting
policy-driven integration of mobile agent activity with system level services and
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resources. Policies define how allocation of resources is to be carried out and
how security should be ensured. A policy is represented by a number of rules,
where each rule is triggered by an event and consists of an action if a condition
is evaluated to true. Thus, a security policy specifies the conditions under which
a request is to be granted. If a request does not violate a policy rule, it is allowed
to proceed; if it does violate a policy rule, it is blocked. The system-wide security
policies are defined by agent developers as well as by system administrators.

A mobile agent is expected to adapt itself to environmental changes immedi-
ately. Such dynamic behavior in mobile agent systems requires mechanism where
agent reprogramming is not needed. Hosts also need to easily reconfigure their
resources in order to provide more flexible environments for the mobile agents.
SECMAP’s approach to achieve such flexibility is by means of dynamic policies
that allow the agent programmer to change his agent’s abilities without repro-
gramming the agent and the system administrator to reconfigure the execution
environment on changing conditions. Thus, SECMAP employs policies mainly
for two reasons: security and dynamism. The platform supports the specification
of two kinds of security policies.

Host Policy: Host policies are concerned with the security of the host and
its execution environment. They ensure that the local resources of the host
are protected from unauthorized actions by the agent, by either granting or
denying agent requests according to local policies.

Agent Policy: Agent policies are specified by the creator of the agent and
define the capabilities of the agent to carry out requests on remote hosts.
Those access privileges may be dynamically updated on changes in policy
content. Agent policies also serve to protect the agent against malicious hosts
or other agents through restrictions on communication, migration, etc.

Java has a default Security Manager which is initially disabled for applica-
tions. The Security Manager is a single Java object that performs runtime checks
on potentially unsafe method calls. Code in the Java library consults the Security
Manager whenever an operation of this nature is attempted. Decisions made by
the Security Manager take into account the origin of the requesting class. The
Security Manager makes the final decision as to whether a particular opera-
tion is to be permitted or rejected. In case of a reject decision, the operation is
prevented to proceed by generating a Security Exception.

SECMAP agent servers utilize a strong custom policy engine that is derived
from Java’s default security manager. It replaces Java’s default policy manager
with an infrastructure that presents a flexible configuration interface for poli-
cies to be defined and assigned to agents and hosts. Opposite to Java’s static
policy definitions, the infrastructure allows policy rules to be inspected and man-
ually modified at runtime so that policies can be dynamically adjusted to new,
changing requirements and circumstances.

A SECMAP agent can issue two kinds of calls; SMAS calls or JAVA API calls,
as shown in Figure 1. Through SMAS calls, the agent announces its requests to
migrate, to communicate (send or receive messages), or to publish itself through
the agent interface. Both kinds of calls are intercepted by the Policy Engine to
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Fig. 1. The operation of the Policy Engine

check policy violations, and they are either allowed to proceed, or are blocked,
according to agent and host policy definitions. Even though we are not able to
catch every Java API call, we do intercept every call that Java’s default security
manager supports. These are;

– File system functions (read, write, delete)
– Networking functions (socket creation for listening and opening connection)
– Class loader functions
– Functions accessing system resources (print queues, clipboards, event queues,

system properties, and windows)

The operation of the Policy Engine is as follows:

– An agent or the SECMAP platform itself makes a call to a potentially unsafe
operation in the Java API, or an agent makes a communication or migration
call.

– The call is intercepted by the Policy Engine to be checked for any policy
violations.

– The Policy Engine determines the source of the call, if the call is issued
by SECMAP, the operation is permitted to proceed, if the call is issued by
an agent, the Policy Engine finds out its agent identity in order to refer
to its specific policy definitions. In case the operation is permitted by the
agent policy, the Policy Engine next refers to the host policy. If host policy
permits the operation as well, then the Policy Engine allows the call to
continue with a no-error return. On the other hand, if either agent policy
or host policy, or both, do not permit the operation, Policy Engine returns
a SecurityException, thus blocking the call.

3.1 Agent Policies

Each SECMAP agent is assigned an agent policy which includes ”creator granted
capabilities”, when the agent is first deployed into the system by the agent
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programmer. The agent policy simply defines the types of actions that the agent
can perform in its execution environment (Migration, messaging, writing to disk,
reading from disk, etc.) Agent policies are maintained as encrypted XML files
and carried with the agent itself as it moves between nodes. SECMAP keeps
all of agent class files in a single zipped encrypted file and stores it together
with the agent policy and data file in a secure place in the host disk. When an
agent is to be activated, SMAS first loads the agent’s classes and its final state
information from its code and state files. Next, it creates an ”Agent Policy”
object for the agent. The AgentShield object that isolates the agent from its
environment associates this policy object with the agent and updates the policy
values from the agent’s policy file before activating the agent. If agent policy is
modified at runtime by the agent programmer, SMAS updates the agent policy
file on host disk as well.

The platform presents a flexible graphical interface window for the agent
owner to monitor his agents on the network and to manually change their policies
if necessary to adapt to changing conditions at any time during execution. An
agent policy can only be changed by the agent owner.

3.2 Host Policies

Host policies mainly serve security reasons by denying unauthorized agent access
to host resources. Security and flexibility generally are not tolerant to each other;
however, SECMAP policy architecture presents a flexible environment for mobile
agents while it can still protect the host from intrusted agents that come from
unknown sources. Host policy rules are defined considering two criteria: the agent
owner and the agent source.

Agent Owner: Agent owner is the location where the agent is created and
deployed into the system. It simply consists of the IP address of the host
where the agent was created. The agent owner information is carried with
the agent and does not change throughout its life time.

Agent Source: Agent source is the location from where the agent has migrated.
It consists of the IP address of the host where the agent was running previ-
ously. This information is not carried with the agent since, on a migration
request; the target agent server is provided with the information where agent
is coming from and where it wants to move. The host administrator can de-
fine different host policy rules for different agent owners and agent sources.

As can be seen in the Figure 2, the administrator can assign different policies
for different agent owners so that some agents whose owners are trusted will
possess more rights than others whose owners are not trusted as much. It is pos-
sible to restrict all or particular actions of agents whose owners are not trusted.
It is also possible to define rules that will enable the host to reject migration
requests of agents from a specific agent owner or source. Sending to and receiving
messages from intrusted agent sources can also be similarly restricted.



544 S. Ugurlu and N. Erdogan

Fig. 2. A snap shot of agents and host policy rules at runtime

The platform provides the host administrator a flexible graphical window
interface to specify host policies. Rules for both agent owners and for agent
sources are checked for inconsistencies. For example if there is a rule stating
that agents can not send messages to Agent Server B, then a new rule stating
agents can send messages to Agent Server B will not be allowed to be defined.

Since there may be a large number of agent owners and agent sources in a net-
work, it is not convenient for the administrator or agent programmer to define
policy rules for each one of them separately. For example, the administrator may
wish to grant certain rights to particular agent owners or sources while deny-
ing the rest, or he may wish to deny particular agent owners or sources while
permitting the others. To ease rule specification in such conditions, there is a
default policy rule at the end of the host policy that determines the course of
action in case there is not a matching rule for a specific owner or source. This
default rule is represented by the symbol ”*” in Figure 2.

3.3 Performance Evaluation

While policies provide both security and execution time flexibility, one drawback
may be a performance overhead being introduced. We have carried out tests in
order to analyze the performance affect of policy usage in SECMAP. We’ve
chosen ”disk write” action of an agent as a sample operation. In terms of policy
execution, the type of operation has no influence on the results obtained as the
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agent server’s policy engine proceeds in exactly the same way for each type
of operation. The tests are carried out on a PC with celeron 2.4 GHz CPU,
512 MB RAM.

We first carried out the test with all policy features disabled and computed the
time required when access requests are not checked against policy rules. Next,
we enabled the policy features and repeated the test with different numbers of
policy rules, to see the influence of varying numbers of policy rules in the host
policy on performance. Table 1 shows the result, the elapsed time measured for
each test. The agent code executed for the tests is also given below.

1- byte[] text = "Hello I am the helloworld agent".getBytes();
2- FileOutputStream fo = null;
3- for (int j = 1; j <= 10; j++) {
4- long startTime = System.currentTimeMillis();
5- for (int i = 1; i <= 50000; i++) {
6- File a = new File("agentdata.txt");
7- a.createNewFile(); //Policy engine interruption
8- fo = new FileOutputStream(a);
9- fo.write(text);

10- fo.close(); }
11- long endTime = System.currentTimeMillis();
12- System.out.println("Elapsed Time = ");
13- System.out.println(endTime - startTime);}
14- }

When we analyze the results, we see that the use of policies brings a performance
overhead of about %13 ((35823-31691)/31691) for operations which require a se-
curity check. This decrease in performance may be overlooked when the benefits
of policy usage is considered. We also see that the number of rules in host pol-
icy has no effect on the performance attained. This is because policy rules are
kept in a hash table in the memory and are searched for in a very time-effective
manner.

Table 1. The elapsed time measured for each test

Test Policy Disabled Policy Enabled Policy Enabled Policy Enabled
Number of Rules:1 #Rules:10 #Rules:30

1 31875ms 35562ms 35828ms 35032ms
2 30735ms 35735ms 33906ms 35500ms
3 29891ms 35781ms 36219ms 37171ms
4 34579ms 35469ms 37640ms 35110ms
5 29985ms 35813ms 34485ms 35937ms
6 28750ms 36531ms 36578ms 36500ms
7 36421ms 35281ms 35203ms 33625ms
8 32829ms 35250ms 37500ms 37906ms
9 31047ms 36672ms 35687ms 35016ms
10 30797ms 36140ms 35969ms 36781ms

Avg 31691ms 35823ms 35902ms 35858ms
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4 Related Work

Several mobile agent systems have been proposed and developed up to now. They
all have their software agent specific features. Although most of them have enough
features for mobile agents to communicate with each other and migrate to remote
hosts, a flexible policy-based management is not available in any. Because mobile
agents require a dynamic environment where conditions and requirements may
change rapidly, necessary changes should be done without reprogramming agents.
SECMAP’s policy architecture gives this opportunity to agent programmers and
administrators.Gallery [10] introduces a framework to authorizemobile agents and
determines whether or not a mobile agent should be executed on a particular plat-
form. SECMAP includes both authentication and authorization mechanism while
it is possible to give an agent detailed access rights. The work in[11] implements a
policy-based solution to control only mobile agent mobility. In [12], the researchers
have developed an authorization platform that supports definition and enforce-
ment of history-based security policies, allowing hosts to decide on the authoriza-
tion of an agent’s action upon its past behaviour. As a whole, we see that work has
focused onpolicy-based solutions for theproblems inmobile environmentswithdif-
ferent approaches. A contribution of SECMAP is that, it not only supports mobile
agent services in a secure way, but it also presents a policy-based management.

5 Conclusions and Future Work

This paper describes the policy architecure of a secure mobile agent platform.
SECMAP provides an isolated, secure execution environment for mobile agents.
It also presents a policy based management framework to protect system-level re-
sources and agents against unauthorized access, as well. The policy architecture
allows for dynamic manipulation of policy content, which results in an adap-
tive and flexible framework that eliminates the reprogramming of the agents on
changing conditions.

Future work will concentrate on definition of policy rules that specify further
details on rights granted, possibly narrowing the scope of rules. For example,
it will be possible to restrict disk access rights to specific files. The only unsafe
action for the host that an agent may perform and which we do not control
with security policies is memory and CPU utilization functions. An agent may
consume host memory and CPU time, running in an endless loop, and currently
SECMAP doesn’t have the capability to realize and stop this kind of action. We
have already worked on some methods to measure the amount of memory that
an agent is using and have obtained some good results. However, this kind of low
level checks ended with different results in different JVM. After completing our
work successfully, we plan to restrict the memory usage of agents using policies.
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Abstract. In 2005, Chang et al. proposed a digital signature scheme
with message recovery using self-certified public keys without trustwor-
thy system authority. The current paper demonstrates that Chang et
al.’s authenticated encryption scheme (CCH-AEDSMR) is vulnerable to
the known plaintext-ciphertext attack in that the attacker can easily re-
cover all messages from the signature that sent between the signer and
the specified receiver. We propose an improvement to the scheme in or-
der to overcome this weakness.

Keywords: Cryptography, Self-certified public key, Message recovery,
Digital signature, Known plaintext-ciphertext attack.

1 Introduction

A digital signature is very important in modern electronic data processing sys-
tems. A digital signature is analogous to an ordinary hand-written signature and
it establishes both sender authenticity and data authenticity. The signer uses his
private key to generate a signature for the given message, and the verifier uses
the signer’s public key to verify the signature. In order to provide integrity, au-
thentication, and non-repudiation services, the digital signature schemes play
an important role [1], [2], [3]. Confidentiality means that it is computationally
infeasible for an adaptive adversary to obtain any secret information from a ci-
phertext. Authenticity (unforgeability) means that it is computationally infeasi-
ble for an adaptive adversary to masquerade as the sender in sending a message.
Non-repudiation means that it is computationally feasible for a third party to
settle a dispute between the sender and the receiver in the event the sender
denies the fact that he is the originator of the message.

The digital signature schemes can be classified into two general classes: Digital
signature schemes with an appendix; and digital signature schemes with mes-
sage recovery [4]. In the signature schemes with message recovery, the message
can be recovered from the signature but the message cannot be obtained from
the signature in the signature schemes with an appendix. Due to message recov-
ery properties, an authenticated encryption scheme is proposed by integrating
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the public key cryptosystem and the digital signature scheme. With the excep-
tion of integrity, authentication, and non-repudiation services, the authenticated
encryption scheme can provide confidentiality services for messages [5].

In 1991, Girault [6] introduced the notion of a self-certified public key. Recently,
Tseng et al. [7] proposed a digital signature scheme with message recovery (TJC-
DSMR) that is an extension of the self-certified public key system. Also, Tseng et
al. presented two variations of the proposed digital signature scheme; one authen-
ticated encryption scheme (TJC-AEDSMR) allows only the specified receiver to
verify and recover messages while the other is an extension of the authenticated
encryption scheme with message linkages (TJC-AEDSMRML). This is used to
prevent message blocks from being reordered while larger messages are transmit-
ted. Tseng et al. supposed that there exists a trusted system authority (SA).

In 2005, however, Chang et al. [8] pointed out that Tseng et al.’s schemes
were vulnerable to SA’s forgery attacks because the SA is not guaranteed to
be honest in practice. Hence, Cange et al. proposed improved digital signature
schemes (CCH-DSMR, CCH-AEDSMR, CCH-AEDSMRML) that provide the
same properties as Tseng et al.’s method, without the assumption that the SA
is trustworthy.

Nevertheless, the current paper demonstrates that Chang et al.’s authenticated
encryption scheme (CCH-AEDSMR) is vulnerable to the known plaintext-
ciphertext attack. That is, an attacker can easily recover all messages from the
signature that are sent between the signer and the specified receiver. Furthermore,
we propose improvements to the scheme in order to overcome this weakness.

The remainder of our paper is organized as follows: In Section 2, we re-
view Chang et al.’s CCH-AEDSMR scheme. An outline of the known plaintext-
ciphertext attack on Chang et al.’s CCH-AEDSMR scheme is proposed in Sec-
tion 3. The improved scheme is presented in Section 4, while Section 5 discusses
the security of the proposed scheme. Our conclusions are presented in Section 6.

2 Review of Chang et al.’s CCH-AEDSMR Scheme

In this section, we briefly review Chang et al.’s CCH-AEDSMR scheme [8], which
allows only the specified receiver to verify and recover messages. Chang et al.’s
CCH-AEDSMR scheme is divided into three phases: system initialization phase,
signature generation phase, and message recovery phase.

2.1 System Initialization Phase

In the system initialization phase, the SA generates system parameters. First,
the SA chooses two large primes p and q such that p = 2p′ + 1 and q = 2q′ + 1,
where p′ and q′ are also primes. The SA computes n = p · q and selects a base
element g of order p′ · q′. The SA makes p, q, p′ and q′ secret and publishes
g, n, and a one-way hash function h(·) to all users. h(·) accepts a variable-
length input string of bits to produce a fixed-length output string of bits and
h(m) < min(p′, q′), where m denotes the input string and min(p′, q′) denotes the
minimal values of p′ and q′.
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When a user Ui, whose identity is di, wants to join the system, Ui randomly
chooses a secret key xi and computes

yi = gxi mod n.

Then, Ui sends di and yi to the SA. The SA computes and publishes

pi = (yi − di)h(di)−1
mod n

as Ui’s public key. Finally, Ui checks whether

p
h(di)
i + di = gxi mod n

so as to determine whether pi is a valid public key.

2.2 Signature Generation Phase

When Ui wants to sign message M to a specified receiver Uj , the generation
procedure of the signature is performed as follows:

Ui chooses a random number k and computes r1, r2 and s as follows:

r1 = M · (ph(dj)
j + dj)−k mod n,

r2 = M · (ph(dj)
j + dj)−k·r1 mod n,

s = r1 · k − xi · h(r2).

Then, Ui sends the signature (r1, r2, s) to the verifier Uj .

2.3 Message Recovery Phase

After receiving the signature (r1, r2, s), the verifier Uj uses di, pi and xj to
recover the signed message M by computing

M = r2 · (gs · (ph(di)
i + di)h(r2))xj mod n.

Finally, in order to verify the recovered message M , the verifier Uj checks whether

(r1 ·M−1)r1 mod n = r2 ·M−1 mod n

holds.

3 Known Plaintext-Ciphertext Attack on Chang et al.’s
CCH-AEDSMR Scheme

In this section, we will show that Chang et al.’s CCH-AEDSMR scheme cannot
withstand the known plaintext-ciphertext attack. That is, an attacker E can
recover all messages from the signature that are sent between the signer and the
specified receiver. Suppose that E obtains two signature messages, (r1, r2, s,M)
and (r′1, r′2, s′,M ′), such that h(r2) and h(r′2) are relatively prime. Then, E can
perform the known plaintext-ciphertext attack as follows:
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Shared information: n. g. h(·). pi. di. pj . dj .
Information held by Signer: secret key xi.
Information held by Verifier: secret key xj .

Signer Ui Verifier Uj

Signature generation phase:
Choose k ∈ GF (q)
r1 = M · (ph(dj)

j + dj)−k mod n

r2 = M · (ph(dj)
j + dj)−k·r1 mod n

s = r1 · k − xi · h(r2)
(r1, r2, s)−−−−−−−−→

Message recovery phase:
Recover M = r2 · (gs · (ph(di)

i + di)h(r2))xj mod n
Verify (r1 · M−1)r1 mod n = r2 · M−1 mod n

Fig. 1. Chang et al.’s CCH-AEDSMR Scheme

(1*) Since the two signature messages (r1, r2, s) and (r′1, r
′
2, s

′) satisfy equations
(1) and (2);

M = r2 · (gs · (ph(di)
i + di)h(r2))xj

= r2 · (gs·xj · (pxj

i )h(r2)

= r2 · ps
j · (p

xj

i )h(r2) mod n

(1)

M ′ = r′2 · (gs′
· (ph(di)

i + di)h(r′
2))xj

= r′2 · (gs′·xj · (pxj

i )h(r′
2)

= r′2 · ps′
j · (pxj

i )h(r′
2) mod n

(2)

if E acquires the unknown secret common key

p
xj

i = gxi·xj mod n,

then, E can easily recover any messages by signed Ui or Uj .
(2*) Since h(r2) and h(r′2) are relatively prime, it is easy to find coefficients a

and b, such that a · h(r2) + b · h(r′2) = 1, by using the Extended Euclidean
algorithm [4], [9].

(3*) From Equations (1) and (2), it can be seen that

M · (r2 · ps
j)

−1 = (pxj

i )h(r2) mod n (3)

M ′ · (r′2 · ps′
j )−1 = (pxj

i )h(r′
2) mod n (4)



552 E.-J. Yoon and K.-Y. Yoo

By using coefficients a and b, E can obtain the secret common key

p
xj

i = gxi·xj mod n

between the users Ui and Uj with the following computation:

(M · (r2 · ps
j)

−1)a · (M ′ · (r′2 · ps′
j )−1)b

≡ ((pxj

i )h(r2))a · ((pxj

i )h(r′
2))b

≡ (pxj

i )h(r2)·a · (pxj

i )h(r′
2)·b

≡ (pxj

i )h(r2)·a+h(r′
2)·b

≡ p
xj

i mod n

(4*) By using this secret common key p
xj

i , E can easily recover any message M ′′

from the signature (r′′1 , r
′′
2 , s

′′), that is sent between Ui and Uj due to

M ′′ = r′′2 · ps′′
j · (pxj

i )h(r′′
2) mod n.

Therefore, Chang et al.’s CCH-AEDSMR scheme cannot satisfy their claim
regarding security requirements nor dose it provide confidentiality.

4 Proposed Scheme

In this section, we present an improvement of Chang et al.’s CCH-AEDSMR
scheme. In order to remove the above-mentioned attack, the secret common
item p

xj

i mod n should be protected. The system initialization phase is the same
as the one presented in Section 2. In the following, we only describe the other
two phases.

4.1 Signature Generation Phase

When Ui wants to sign a message M to a specified receiver Uj , the generation
procedure of the signature is performed as follows:

Ui chooses a random number k and computes r1, r2 and s:

r1 = M · (ph(dj)
j + dj)k mod n,

r2 = M · h((ph(dj)
j + dj)k·r1 mod n),

s = r1 · k − xi · h(r2).

then, Ui sends the signature (r1, r2, s) to the verifier Uj .

4.2 Message Recovery Phase

After receiving the signature (r1, r2, s), the verifier Uj uses di, pi and xj to
recover the signed message M by computing

M = r2 · h(gs · (ph(di)
i + di)h(r2))xj mod n)−1.
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Shared information: n. g. h(·). pi. di. pj . dj .
Information held by Signer: secret key xi.
Information held by Verifier: secret key xj .

Signer Ui Verifier Uj

Signature generation phase:
Choose k ∈ GF (q)
r1 = M · (ph(dj)

j + dj)k mod n

r2 = M · h((ph(dj)
j + dj)k·r1 mod n)

s = r1 · k − xi · h(r2)
(r1, r2, s)−−−−−−−−→

Message recovery phase:
Recover M =r2 · h(gs · (ph(di)

i + di)h(r2))xj mod n)−1

Verify h((r1 · M−1)r1 mod n)=r2 · M−1 mod n

Fig. 2. Proposed Scheme

Finally, to verify the recovered message M , the verifier Uj checks whether

h((r1 ·M−1)r1 mod n) = r2 ·M−1 mod n

holds.

5 Security Analysis

In this section, we shall only discuss the enhanced security features. The rest
are the same as Chang et al.’s CCH-AEDSMR scheme, previously described in
literature [8]. Readers are referred to [8] for complete references. First, we define
the security terms [4] needed in order to provide the security for the proposed
scheme:

Definition 1. A secure one-way hash function y = f(x) is one in which given
x to compute y is easy and given y to compute x is hard.

Definition 2. The discrete logarithm problem (DLP) is the following: Given
a number n = p ·q, a generator g of Z∗

n, and an element α ∈ Z∗
n, find the integer

α, o ≤ α ≤ n− 2, such that gα ≡ β mod n.

In light of the above definitions, we analyze the security of the proposed
scheme as follows:

Theorem 1. In the proposed scheme, only the specified verifier can recover the
signed message M and verify the signer’s public key pi.
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Proof: Since s = r1 · k− xi · h(r2), the verifier can use the signer’s public key pi

to compute
gr1·k = gs · (ph(di)

i + di)h(r2) mod n.

Due to the fact that only the specified verifier Uj knows the corresponding
secret key xj , only Uj can compute

gr1·k·xj = (gs · (ph(di)
i + di)h(r2))xj mod n.

Since r2 = M · h((ph(dj)
j + dj)k·r1 mod n), Uj can retrieve the signed mes-

sage M by computing M = r2 · h(gr1·k·xj )−1. Uj can easily check whether
the message M retrieved from the signature is correct by determining whether
h((r1 ·M−1)r1 mod n) = r2 ·M−1 mod n.

Moreover, gxi mod n = p
h(di)
i +di mod n = yi is implied in the first step while

the verifier recovers the signed message. It is known that only the SA knows the
order of g, hence only SA has the ability to calculate pi = (yi− di)h(di)−1

. If the
verifier can retrieve the correct yi, according to the public pi, to complete the
message recovery procedure, the signer’s public key pi is verified indirectly. As
mentioned above, only Uj knows the corresponding secret key xj , hence only Uj

can recover and verify the message. As a result, Theorem 1 is confirmed.

Theorem 2. The proposed scheme can resist the above-mentioned known plain-
text-ciphertext attack.

Proof: Due to Definitions 1 and 2, now the common item p
xj

i mod n is pro-
tected, not only by the one-way hash function but also by the discrete logarithm
problem over GF (n). As a result, an attacker E cannot recover any message
M ′′ from the signature (r′′1 , r′′2 , s′′) because he or she cannot get the secret com-
mon key p

xj

i mod n that is sent between Ui and Uj from Step (3*) in Section 3.
Therefore, the proposed scheme can resist the above-mentioned known plaintext-
ciphertext attack. Also, it can reduce computational costs by using the one-way
hash function h(·) on h((ph(dj)

j + dj)k·r1 mod n).

6 Conclusion

The current paper demonstrated the vulnerability of Chang et al.’s CCH-
AEDSMR scheme whereby an attacker can perform the known plaintext-cipher-
text attack and can recover all messages from the signature that are sent between
the signer and the specified receiver. Also, we proposed improvements to the
scheme in order to overcome such weaknesses.
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Abstract. In this paper we consider the problem of finding minimum
independent edge dominating sets in graphs of maximum degree three.
The problem is NP-hard. We present an algorithm which finds the domi-
nating set of size at most 4n/9+1/3. Using this bound we achieve an
approximation ratio of 40/27 for the minimum independent edge domi-
nation set problem in cubic graphs.

1 Introduction

Given a connected undirected graph G = (V, E), the minimum independent
edge dominating set problem is to find a minimum set of edges E

′
which fulfils

the following conditions: (a) for every edge (u, w) ∈ E(G) either (u, w) ∈ E
′

or one of (x, u), (w, y) ∈ E(G) belongs to E
′

(b) no two edges of E
′

share
a common endpoint. The problem is also referred as minimum maximal match-
ing and it has applications in telephone switching networking. Yannakakis and
Gavril [5] showed that this problem is NP-hard, even when restricted to planar
or bipartite graphs of maximum degree 3. In their paper they also gave a poly-
nomial time algorithm for trees. Later Horton and Kilakos [3] showed that the
problem remains NP-hard for planar bipartite graphs, line graphs, total graphs,
perfect claw-free graphs and planar cubic graphs. Chleb́ık and Chleb́ıková [1]
proved that it is NP-hard to approximate the minimum edge dominating set
problem within any factor smaller than 7/6 in general graphs and smaller than
1+1/487 in cubic graphs. It is easy to obtain approximation ratio of 2 for the
problem: constructing any maximal matching is sufficient, because no matching
in graph G can be more than twice larger than any maximal matching.

Duckworth and Wormald [2] concentrated on cubic graphs. They showed that
the size of the minimum independent edge dominating set of an n-vertex cubic
graph is at most 9n/20+O(1). It is the first non-trivial result for cubic graphs.
Their proof uses a linear programming technique to analyse the performance of
some greedy algorithm. In their paper they also showed that there are families
of cubic graphs for which the size of the minimum independent edge dominating
set is at least 3n/8. The lower bound for any cubic graph equals 3n/10.

In our paper we concentrate on graphs of maximum degree three. This more
general class of graphs seems to be more useful in practical applications than the
class of cubic graphs. We present an algorithm which finds EDS(G) – indepen-
dent edge dominating set of a graph G of size at most 4n/9 + 1/3. Note that if

J. Wiedermann et al. (Eds.): SOFSEM 2006, LNCS 3831, pp. 556–564, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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we apply the algorithm to cubic graphs and use the known lower bound for this
class of graphs then we will achieve an approximation ratio of 40/27 for the mini-
mum independent edge domination set problem in cubic graphs. The approach
to the problem is quite novel. We observed that using the structure of the forest
with large number of leaves enables to construct small EDS(G). Hence, in the
first step our algorithm constructs the appropriate forest F , then it processes
small subtrees of the trees T ∈ F and adds some edges to EDS(G). Since finding
the minimum independent edge dominating set in the graph of maximum degree
two is trivial we assume that G has at least one vertex of degree three.

The paper is organized as follows. In Section 2 we introduce some notation. In
Section 3 we show how to construct the forest F and give some of its properties.
In Section 4 we present the second part of the algorithm – adding edges to
EDS(G). The proofs of the facts and the theorem can be found in the full
version of the paper.

2 Preliminaries

Let G be a connected undirected graph. We use V (G) to denote the set of vertices
in G and E(G) to denote the set of edges in G. For a vertex v ∈ V (G) let ΓG(v)
denote the set of vertices {w : (v, w) ∈ E(G)}. The degree of v in G, degG(v),
is the number of edges incident to v in G. If T is a rooted tree, then we use
LCAT (u, w) to denote the lowest common ancestor of vertices u, w in T , and
h(T ) to denote the height of the tree T . By L̄(T ) we denote the set of leaves
of T .

3 Construction of the Forest F

Let G be a connected undirected graph of maximum degree three, where at least
one vertex has degree three.

In the first step our algorithm builds successive trees T0, . . . , Tk of a forest F
for G by using three rules (see Fig. 1). Two of them are applied to the leaves
of the current tree Ti. Rule 1 puts to the tree Ti two vertices u, w �∈ V (F )
adjacent to a leaf v ∈ L̄(Ti). Rule 2 puts to Ti a vertex u �∈ V (F ) adjacent
to a leaf v ∈ L̄(Ti) together with both further neighbours w1, w2 of u, where
w1, w2 �∈ V (F ). We name the two leaves added by Rules 1 and 2 the left and
the right son of their father.

Rule 3 initiates a new tree Tj, j > i. Let P be a path which starts at v ∈ L̄(Ti),
goes through vertices u1, . . . , us �∈ V (F ), s ≥ 1 and ends at the first vertex
w �∈ V (F ), where degG(w) = 3, ΓG(w) = {us, x, y} and x, y �∈ V (F ). The
vertex us proceeds w on P . Rule 3 starts to build Tj rooted at us and adds
us, w, x, y to V (Tj) and (us, w), (w, x), (w, y) to E(Tj). We refer to Ti as the
father of Tj . This relation determines a partial order in F , so we use some other
related terms as e.g. ancestor of the tree.

Let F = {T0, . . . , Tk}. In our algorithm and analysis we use the following
notions:
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(a) (b) (c) (d) (e) (f)

TiTiTiTiTi Ti

vvvvvv

u
u

w

w

ww

w

w1 w2

x

x

xx

y

y

yy

u1u1
u1u1

u2

us

us

Fig. 1. (a) Rule 1. (b) Rule 2. (c)-(f) Rule 3.

Definition 1. A vertex v ∈ V (G) is an exterior vertex if v �∈ V (F ). Let EX
denote the set of all exterior vertices in G.

Definition 2. Let r0 be a root of T0. Let R be the set of roots of the trees
T1, . . . , Tk.

Construction of the forest F.

1. F ← ∅
2. V (T0) ← {r0, v1, v2, v3}, where r0 is any degree three vertex of G and

v1, v2, v3 ∈ ΓG(r0);
E(T0) ← {(r0, v1), (r0, v2), (r0, v3)}; let r0 be a root of T0; i ← 0

3. if it is possible: find the leftmost leaf in Ti that can be expanded by the Rule 1
and expand it; go to the step 3;
else: go to the step 4;

4. if it is possible: find the leftmost leaf in Ti that can be expanded by the Rule 2
and expand it; go to the step 3
else: F ← F ∪ Ti and go to the step 5

5. if it is possible: find the leftmost leaf v in Ti such that Rule 3 can be applied
to v and apply this rule to v; i ← i + 1;
let Ti be a new tree created in this step; go to the step 3 with Ti

else: go to the step 5 with the father of Ti.

The properties of the forest F are described by Fact 1. The possibilities for
edges e ∈ E(G)\E(F ) are presented in Fig. 1(c)-(f) and 2.

Fact 1. Let v ∈ V (Ti), Ti ∈ F .

1. If degTi(v) = 2 and w ∈ ΓTi(v) then degTi(w) = 3.
2. If degTi(v) = 2 and w ∈ ΓG(v) then w ∈ V (Ti).
3. If v is adjacent to the vertex w ∈ EX ∪ R, u ∈ ΓG(v) and u �= w then

u ∈ V (Ti).

The following facts let us dominate the edges E(F ) in some order described
precisely in the next section.

Fact 2. Let degT (u) = degT (w) = 2, where T ∈ F , (u, w) ∈ E(G)\E(F ),
a = LCAT (u, w), and let u be on the left of w in T . Then w is the right son of
a, and there are no vertices of degree 2 on the path from u to a in T .



Small Independent Edge Dominating Sets in Graphs 559

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)
TiTiTiTi

TiTiTiTiTi Ti Ti Ti

TjTjTjTj

TjTjTj

TjTjTjTj

Tj

Tj Tj TjTj

Fig. 2. The edges (x, y) ∈ E(G)\E(F ), x, y ∈ EX ∪ L̄(F ) (dashed lines). Either
Ti = Tj or Ti is an ancestor of Tj . Dotted lines denote the paths where all vertices
have degree two in G.

Fact 3. Let r be a root of a tree T ∈ F . Let u ∈ L̄(T ) and let w be the first
vertex of degree 2 on the path from u to r in T . If there is v ∈ V (T ) such that
degF (v) = 2 and (u, v) ∈ E(G)\E(T ) then w is an ancestor of v in T .

4 Finding Independent Edge Dominating Set

Let G
′

denote a current graph, F
′

a current forest and EX
′

= V (G
′
)\V (F

′
).

At the beginning G
′

= G, F
′

= F and EX
′

= EX . In our algorithm G
′

is
always a connected graph. Let S

′
x denote the subtree of T

′ ∈ F
′

rooted at
some vertex x ∈ V (T

′
). In successive steps of our algorithm we consider small

subtrees S
′
x, add some edges to EDS(G) and remove these added edges with all

edges incident to their endpoints from E(G
′
). We say that removed edges are

dominated. A vertex u is removed from V (G
′
) when the last edge incident to u

is removed from E(G
′
).

The process of adding edges to EDS(G) is realized by the procedures domi-
natei(), i ∈ {1, 2, 3}. dominate1(S

′
x ∪S

′
y) dominates the edges of the subtrees

S
′
x, S

′
y, where degT ′ (x) = 2 and (x, y) ∈ E(G

′
)\E(F

′
), together with edges

e ∈ E(G
′
)\E(F

′
) incident to V (S

′
x) ∪ V (S

′
y). dominate2(S

′
x) dominates the

edges of some paths which end at the leaves of S
′
x and go through the edges

e ∈ E(G
′
)\E(F

′
). dominate3(S

′
x) dominates E(S

′
x) and all the edges incident

to V (S
′
x). These procedures are constructed in such a way that the following

property holds:

Property 1. The procedure dominatei(), i ∈ {1, 2, 3} adds m̄ edges toEDS(G)
and removes n̄ vertices from V (G

′
), where m̄ ≤ 4

9 n̄. The only exception may be the
case when dominate3() is applied to the tree rooted at r0 or at the son of r0; then
m̄ ≤ 4

9 n̄ + 1
3 .

Now we briefly describe the main idea of our algorithm. We consider in post-
order small subtrees S

′
x of the trees T

′ ∈ F
′
, where the edges e ∈ E(G

′
)\E(F

′
)
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are not incident to the interior vertices of S
′
x. Our goal is to dominate E(S

′
x)

and all the edges incident to the leaves and the root of S
′
x. If x is the end-

point of the edge (x, y) ∈ E(G
′
)\E(F

′
), we try to apply the procedure domi-

nate3(S
′
x). Then we recursively process the subtree S

′
y. If after these steps

degG′ (x)=3 or degG′ (y)=3 we apply the procedure dominate1(S
′
x ∪S

′
y). In the

case when x is not the endpoint of any edge (x, y) ∈ E(G
′
)\E(F

′
), we try to

apply dominate3(S
′
x), and if it is not possible, S

′
x is processed as the subtree

of the tree rooted at the father of x.
When we process S

′
x, some of the edges e ∈ E(G

′
)\E(F

′
) incident to the

leaves of S
′
x are marked as required and added to the set REQUIRED(S

′
x). If

we added them to EDS(G) then all the edges incident to the leaves of S
′
x would

be dominated. In most of cases it is possible to add all required edges with
some edges of S

′
x to EDS(G) and keep Property 1. To avoid the situation that

after the procedure dominate3(S
′
x) some paths P which go through the edges

e ∈ E(G
′
)\E(F

′
) are not connected to F

′
and it is not possible to dominate

their edges keeping Property 1, we earlier check if there are such paths and
apply dominate2(S

′
x) to dominate their edges.

The algorithm starts with the procedure eds T(T0).

eds T(T
′
)

1. apply procedure eds T() to the sons T
′
i ∈ F

′
of T

′
(successively from the

leftmost to the rightmost);
2. eds(T

′
).

eds(S
′
x)

Let W = {u ∈ V (S
′
x) : degF

′ (u) = 2 and degG
′ (u) = 3}.

1. while W �= ∅
(a) apply in-order search and find the first vertex u ∈ W ;

let w be such a vertex that (u, w) ∈ E(G
′
)\E(F

′
);

(b) eds(S
′
u);

(c) if w ∈ V (F
′
): eds(S

′
w);

(d) if degG
′ (u) = 3 or degG

′ (w) = 3: mark required(S
′
u ∪ S

′
w);

dominate paths(S
′
u ∪ S

′
w); dominate1 (S

′
u ∪ S

′
w);

2. mark(S
′
x).

Let W = {w ∈ V (T ) : degT (w) = 2 and degG(w) = 3}. We make use of
the fact that every tree T ∈ F is a union of the trees Cu rooted at u, where
u ∈ {r0}∪R∪W , all leaves of Cu are in the set W ∪L̄(T ) and all interior vertices
v ∈ {w ∈ V (T ) : degT (w) = degG(w) ≥ 2}. Let C

′
u = Cu ∩G

′
.

The trees T
′ ∈ F

′
are processed by the procedure eds(). This procedure finds

in post-order the trees C
′
u and applies the procedure mark() which processes
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small subtrees S
′
x ⊆ C

′
u and adds appropriate edges to EDS(G). If u is the end-

point of an edge (u, v) ∈ E(G
′
)\E(F

′
) then after processing C

′
u we recursively

dominate the edges of descendants of C
′
v (if they exist) and E(C

′
v). At the end if

degG′ (x) = 3 or degG′ (y) = 3 then required edges are marked, the edges of some
paths which end at the leaves of C

′
u, C

′
v are dominated and dominate1(C

′
u∪C

′
v)

is applied. Otherwise the remaining parts of C
′
u, C

′
v are processed with the fa-

ther C
′
z of C

′
u and C

′
v. Subtrees C

′
u are processed in post-order, and it follows

from the Facts 2 and 3 that processing C
′
v just after C

′
u does not disconnect T

′
.

The parameter S
′
x of eds() is the subtree of T

′ ∈ F
′

rooted at x. In fact the
procedure mark() is not applied to C

′
x, but to S

′
x = C

′
x∪C

′
w1
∪ . . .∪C

′
wk

, where
C

′
wi

, i ∈ {1, . . . , k} are the children of C
′
x which have not been completely re-

moved yet, and the edges e ∈ E(G
′
)\E(F

′
) are incident solely to x or to the

leaves of S
′
x.

mark required(S
′
x)

Let W = {(u, w) ∈ E(G
′
)\E(F

′
) : u ∈ L̄(S

′
x)}.

1. REQUIRED(S
′
x) := ∅

2. while there is a vertex u ∈ L̄(S
′
x) and the edges (u, v), (u, w) ∈ W ,

v ∈ L̄(S
′
x), w �∈ L̄(S

′
x):

(a) apply in-order search and find the first vertex u described above;
(b) add (u, w) to REQUIRED(S

′
x);

(c) remove the edges incident to u, w from W .
3. while there is a vertex u ∈ L̄(S

′
x) and the edge (u, w) ∈ W , w ∈ EX ∪R:

(a) apply in-order search and find the first vertex u described above;
(b) add (u, w) to REQUIRED(S

′
x);

(c) remove the edges incident to u, w from W .
4. while there is a vertex u ∈ L̄(S

′
x) and the edge (u, w) ∈ W :

(a) apply in-order search and find the first vertex u described above;
(b) add (u, w) to REQUIRED(S

′
x);

(c) remove the edges incident to u, w from W .

dominate paths(S
′
x)

1. if TAILS1(S
′
x) �= ∅ or EARS1(S

′
x) �= ∅ : dominate2(S

′
x);

2. mark required(S
′
x);

3. if TAILS2(S
′
x) �= ∅ or EARS2(S

′
x) �= ∅ or EARS3(S

′
x) �= ∅ :

dominate2(S
′
x); goto 2.

The procedure mark required(S
′
x), constructs the set REQUIRED(S

′
x).

To reduce the number of possible cases we introduced some order of adding the
edges to the set REQUIRED(S

′
x). The procedure works also for the sum of the

trees.
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The procedure dominate paths(S
′
x) applies the procedure dominate2(S

′
x)

to the paths P which end at some leaves of S
′
x. The edges e ∈ P incident to

L̄(S
′
x) are in the set REQUIRED(S

′
x) and if (u, v) ∈ P is not incident to e

then u, v ∈ EX
′
. There are five types of paths P which we keep in the sets

TAILSi(S
′
x), EARSj(S

′
x), i = 1, 2, j = 1, 2, 3. Since some of required edges

can be dominated, the new set REQUIRED(S
′
x) is constructed, and the new

paths are checked. The procedure works also for the sum of the trees.
The procedure mark(S

′
x) is applied to a subtree S

′
x of T

′ ∈ F
′
, where the

edges e ∈ E(G
′
)\E(F

′
) are incident solely to the root x or leaves of S

′
x. If

h(S
′
x) > 2 then the procedure is recursively applied to the trees rooted at the sons

of x. Then required edges are marked and the edges of some paths which end at
some leaves of S

′
x are dominated. After these steps h(S

′
x) could decrease by one,

if some of the edges incident to L̄(S
′
x) were added to EDS(G). Then we try to

apply the procedure dominate3(S
′
x). The function domination possible3(S

′
x)

returns false if h(S
′
x) = 0 and V (F

′
) > 1, or h(S

′
x) = 1 and x �∈ {r0} ∪ R, or

h(S
′
x) = 2 and S

′
x looks like in Fig. 3; otherwise it returns true. If mark(S

′
x)

returns without dominating E(S
′
x) then S

′
x will be processed as the subtree of

the tree rooted at the father of x, or dominated by the procedure dominate1()
in eds() (if x is the endpoint of the edge (x, y) ∈ E(G

′
)\E(F

′
)).

If x = r0, degF ′ (r0) = 3 and h(S
′
r0

) > 1 then we split S
′
r0

into trees S̄
′
r0

and S
′
u3

as follows. Let E(S̄
′
r0

) = E(S
′
u1

) ∪ E(S
′
u2

) ∪ (r0, u1) ∪ (r0, u2), where
u1, u2 are the sons of r0, h(S̄

′
r0

) = h(S
′
r0

) and if it is possible S̄
′
r0

with required
edges does not look like in Fig. 3(f). Let S

′
u3

be the subtree of S
′
r0

rooted at the
third son u3 of r0.

When we dominate successively subtrees S
′
u, S

′
v of S

′
x we set REQUIRED(S

′
u)

as {(z1, z2) : (z1, z2) ∈ REQUIRED(S
′
x) and (z1 ∈ L̄(S

′
u) or z2 ∈ L̄(S

′
u)}.

REQUIRED(S
′
v) = REQUIRED(S

′
v)\REQUIRED(S

′
u), or is constructed

for S
′
v if x = r0 and v = u3.

mark(S
′
x)

1. if h(S
′
x) > 2: apply procedure mark() to the trees rooted at the sons of x

(successively from the leftmost to the rightmost);
2. mark required(S

′
x);

3. dominate paths(S
′
x);

4. if x has at most two sons ui, 1 ≤ i ≤ 2:
(a) while domination possible(S

′
ui

): dominate3(S
′
ui

);
(b) if domination possible(S

′
x): dominate3(S

′
x); else: return;

5. if x has three sons ui, 1 ≤ i ≤ 3 (in this case x = r0):

(a) while domination possible(S
′
ui

): dominate3(S
′
ui

);
(b) if h(S

′
r0) > 1 and degG

′ (r0) = 3: let u3 �∈ S̄
′
r0 ;

i. dominate3(S̄
′
r0);

ii. if u3 ∈ V (G
′
): mark required(S

′
u3); dominate3(S

′
u3);

(c) else if r0 ∈ V (G
′
): dominate3(S

′
r0).
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(a) (b) (c) (d) (e) (f)
x xx x xx

y y y yyyz zz

Fig. 3. The trees S
′
x, where h(S

′
x) = 2 which may be returned by the procedure

mark(S
′
x). The edges e ∈ REQUIRED(S

′
x) are dashed and bold. In the case (e)

also some other edges from the set E(G
′
)\E(F

′
) are presented (dashed and thin).

dominate1(S
′
u ∪ S

′
w) adds to EDS(G) the edge (u, w) ∈ E(G

′
)\E(F

′
),

degF (u) = 2 and the edges from the set REQUIRED(S
′
u ∪ S

′
w), which are not

incident to (u, w).
dominate3(S

′
x) is applied to the subtree S

′
x of T

′ ∈ F
′
. Let S∗

x be S
′
x without

the edges incident to e ∈ REQUIRED(S
′
x). Let BASIC(S∗

x) = {(x, y)} if
h(S∗

x) = 1 and y is a son of x or if h(S∗
x) = 2 and x has only one son y;

{(x, y1), (y2, z)} if h(S∗
x) = 2 and x has two sons y1, y2, where y1 has at least

as many sons as y2 and z is a son of y2.
If domination possible3(S

′
x) returns true then the edges REQUIRED(S

′
x)

∪BASIC(S∗
x) are added to EDS(G) in the following cases:

1. if h(S
′
x) = 2, |REQUIRED(S

′
x)| < 4 and |E(S∗

x)| > 1;
2. if h(S

′
x) ≤ 2, S

′
x is the last processed tree and it is not the case 2 described

below;
3. if h(S

′
x) = 3 and |REQUIRED(S

′
x)| < 3 or V (S∗

x) �= {x, y1, y2, z1, z2},
where y1, y2 are sons of x, z1 is a son of y1 and z2 is a son of y2.

If the conditions given above are not true:

1. if h(S
′
x) ∈ {1, 2} and x ∈ R then the edges REQUIRED(S

′
x) ∪ (x, w) are

added to EDS(G), where (x, w) ∈ E(G
′
)\E(F

′
) (if there are two edges

(x, w) we choose the leftmost one);
2. if h(S

′
x) = 2:

(a) if y1, y2 are sons of x, z1 is a son of y1 and REQUIRED(S
′
x) = {(z1, w1),

(y2, w2)}, w2 �∈ V (S
′
x) then the edges (x, y2), (z1, w1) are added to

EDS(G);
(b) else if x has two sons y1, y2 and y1 has two sons z1, z2:

i. if |REQUIRED(S
′
x)| = 3, (y2, w) ∈ REQUIRED(S

′
x) then the

edges (x, y2) ∪ (REQUIRED(S
′
x)\(y2, w)) are added to EDS(G);

ii. if REQUIRED(S
′
x) = {(y2, z2), (z1, w)}, w �∈ V (S

′
x), degG′ (y2) =

2 or degG′ (z2) = 2, then the edges (x, y2), (y1, z1) are added to
EDS(G);

3. if h(S
′
x) = 3:

(a) if there is an edge (z, w) ∈ REQUIRED(S
′
x), where z is a son of y2,

w �∈ V (S
′
x) then the edges (REQUIRED(S

′
x)\(z, w)) ∪ (y2, z)∪ (x, y1)

are added to EDS(G);
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(b) otherwise the edges (REQUIRED(S
′
x)\(u, v)) ∪ (z1, u) ∪ (x, y2)) are

added to EDS(G), where (u, v) ∈ REQUIRED(S
′
x), v �∈ V (S

′
x), u is a

son of z1 and a grandson of y1.

The main contribution of this paper is the following theorem.

Theorem 1. Let G be a graph of maximum degree three, where |V (G)| = n.
Our algorithm constructs for G an independent edge dominating set EDS(G) of
size at most 4n/9 +1/3 in linear time.
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Abstract. An application featuring virtual humans is a program that simulates 
an artificial world inhabited by virtual people. Recently, only either small 
artificial worlds inhabited by a few complex virtual humans, or larger worlds 
with tens of humans, but performing only walking and crowding, are simulated. 
This is not surprising: a large world inhabited by complex virtual humans 
requires unreasonable amount of computational and memory resources. In this 
paper, we report on the project IVE, a common simulation framework for huge 
artificial worlds, pointing out the level-of-detail technique used at the 
behavioural level. The technique addresses the issue on reducing simulation 
demands by gradually decreasing simulation quality on unimportant places, 
while keeping the simulation plausible, with minimum scenic inconsistencies. 

1   Introduction 

Virtual humans are becoming increasingly popular both in the academic and industrial 
domains. Applications featuring virtual humans include computer games, virtual 
storytelling, movie industry, entertainment, military simulations, and behavioural 
modelling. An overview of domains of virtual humans is given for example in [11]. 

From the technical point of view, typically, each virtual human is viewed as an 
autonomous intelligent agent in the sense of Wooldridge [12]; such an agent that 
carries out a diverse set of goals in a highly dynamic, unpredictable environment with 
the objective to simulate behaviour of a human.  

The research on virtual humans (v-humans in the following) is mostly focused 
around graphical embodiment and action selection mechanism. Generally, the former 
means a graphical visualization of a v-human’s body, and the latter means deciding of 
what action to perform next in the virtual world. The main problem with the 
visualization is that v-humans must look believably. For example, it has been shown 
(e.g., [9]) that emotional modelling plays a significant role in a posture and face 
visualization. The main problem with the action selection is that the environment is 
dynamic and unpredictable. A v-human must respond in a timely fashion to 
environmental changes that are beyond the v-human’s control.  

In this paper, we address a different issue. During our previous work on a toolkit 
ENTs for prototyping v-humans [1], we discovered that it was not a problem to 
                                                           
∗ This work was partially supported by the Czech Academy of Sciences project 1ET400300504. 
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develop a single v-human with meaningful and believable behaviour. The problem 
was to populate a large artificial world with tens of v-humans running on a single PC, 
because  of the limited  computational  and memory resources.  Most of the  current 
v-humans either “live” in a small artificial world (e.g., in a room, not in a village), or 
do exhibit only a small portion of human-like behaviour (e.g., only object-grasping, 
walking, or a few tasks, not weekly human activities). An application or a technique 
that would challenge large simulations is missing. Such a technique would be 
extremely useful in the fields of computer games, and virtual storytelling. 

At the time, we are working on a project IVE (an intelligent virtual 
environment) [2], [7], which is focused on v-humans in large and extensible 
simulations. One of the goals of the project is to explore and implement the level-of-
detail technique (LOD). This technique is widely used in computer graphics for 
reducing computational cost. Our aim is to use it at the behavioural level; it means to 
transfer it to the domain of artificial intelligence. 

The LOD technique for behaviour of v-humans is based on the simple idea: there 
often exist only few places in the artificial world important at a given simulation time 
and the unimportant places do not need to be simulated precisely. If the artificial 
world is simulated only partially, the demands of the simulation can be reduced 
significantly. However, there are three problems coming out with the implementation: 
1) how to identify the important places, 2) how to simplify the simulation in the 
unimportant places, 3) how to gradually simplify the simulation between an important 
and an unimportant place? 

In this paper, we present our approach to LOD technique at the behavioural level. 
We are motivated by the growing need of large simulations with v-humans in the 
domains of computer games, and virtual storytelling. The goal is to address the three 
aforementioned problems. The algorithms presented here are already implemented in 
the on-going project IVE. 

The rest of the paper proceeds as follows: First, we describe related work on the 
LOD technique in artificial simulations. Second, we briefly present our framework 
and its view of the artificial world. Then, in Section 4, we present main concepts of 
the simulation LOD followed by a brief description of our implementation, in 
Section 5. Finally, we conclude in Section 6. 

2   Related Work 

The LOD technique is widely used in computer graphics, but not often in behavioural 
simulations. The idea behind is simple: compute only such details that are important 
at a given simulation time. At the behavioural level, that means places observed by 
the user, and other places important for the overall course of the simulation.  

Sometimes, this idea is exploited in computer games, but only to a limited degree. 
Behaviour of the creatures out of the sight of the user is not simulated at all typically. 
This often causes a storyline inconsistency - the simulation is not believable. Instead 
of “non-simulation”, there is a need for a gradual simulation simplifying. 

More robust idea how to use the LOD at the behavioural level using hierarchical 
finite state machines is presented in [3], but it is only a sketch not further explored.  
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Sullivan et al. utilised the LOD for conversational behaviour by means of rules and 
roles filtering [10]. In a simplified fashion, the rules and roles can be viewed as pieces 
of a code layered upon a basic v-human. If the v-human is not seen, the role is not 
passed to it, and consequently only the basic behaviour is performed. Contrary to our 
approach, they simplify only the behaviour of v-humans, not the overall simulation. 

A robust approach to (non-pre-emptive) scheduling of processor time to individual 
v-humans is presented in [13]. However, as the not-scheduled behavioural scripts are 
not run, this approach seems to fit into the realm of “yes/no simulation”. 

3   Project IVE 

Let us first describe our framework and our view of the artificial world. In our 
framework we distinguish between objects, actors and processes. All physical objects 
in the artificial world are objects. Special objects that can manipulate with other 
objects are called actors. The only way how to affect objects is to perform a process. 

In our framework, the world consists of locations on which objects can be located. 
Locations are organised in a hierarchical structure related to the LOD technique. The 
structure is always a tree and levels of the tree correspond to the LOD levels. LOD 
value of an object is defined as a corresponding LOD level of the location on which 
the object is situated. 

Objects presented in our framework are smart (in the sense of [8]), which helps 
with world's extensibility. They contain necessary graphical information and 
description of low-level actions (e.g., grasping the object). However, they do not 
contain the artificial intelligence itself. Our objects also provide affordances [5] - each 
object is able to give a list of processes it is designed to participate on.  

In our framework, processes can be also labelled as smart. Each process has 
a number of sources on which it operates. When executing a process, objects are 
substituted as these sources. Some of the sources have a special actor position. From 
the view of the process, the position of actors differs from the other sources especially 
in the connection to the LOD, as we shall see later. Our processes have also an ability 
of suitabilities - they can say how much are the given objects suitable for being 
substituted to the process. In other words, each process can say, if it is a “good idea” 
to be executed with some particular objects as sources or not. 

Processes in our framework are organised in a hierarchical structure tightly 
connected with the LOD technique, as well. Each process can be performed 
atomically, or expanded to subprocesses. The structure is not as strict as in the case of 
the locations—process can be atomic at more LOD levels. Each executed process can 
stay in one of these states: 

− Not-existing – the LOD value is too low, a super process is running. This process 
does really not exist in the world. If the process is running and the LOD value goes 
too low, it is stopped, partially evaluated and discarded. 

− Atomic – the process is running atomically. It waits till its finish time and then 
changes the world’s state. 

− Expanded – the process is expanded to subprocesses. Such process performs no 
action, it only waits for it’s subprocesses to do all the work. However, it can 
become atomic as a consequence of the LOD changes. 
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To define the process’ state, we need for each process two border LOD levels -
minimum level (border between not-existing and atomic process) and maximum 
level (border between the atomic and the expanded process). The state of the 
particular process is then determined by the LOD values of its actors in relation to 
the border levels. That means, the process is atomic (the only process’ state in 
which the world’s state is influenced) if the actor’s LOD is between the process’ 
minimum and maximum levels, similarly for the other states. The process can 
have any number of actors, but their LOD values must not require different states 
of the process (they all must have the LOD value at the same side of the border 
levels). It is up to the framework to adjust LOD values in the corresponding 
locations. 

Hierarchical if-then rules are used to describe the processes. However, the 
subprocesses of an expanding process are not hardwired. The action selection is 
driven by a goal concept [4, 12]. The actor has a goal (an intention to reach some 
objective) and can try various processes to satisfy the goal. Processes also do not 
expand directly to subprocesses, but rather to the subgoals (see Fig. 1). In this 
concept, the actor obtains the list of goals needed to satisfy the parent process and its 
task is to find and perform appropriate processes. 

 

Fig. 1. Left – process hierarchy without goals. Right – goal-process hierarchy, where the 
process acts as an implementation of a goal. 

The actual artificial intelligence is not encapsulated in the actor’s object. This is 
the purpose of a presence of entities called geniuses. Genius is the one who chooses 
the processes, looks for the suitable sources and asks the framework to perform the 
chosen processes. An actor can have its own genius, which is actually his brain. But 
in addition to that, dedicated geniuses are present in our framework. These geniuses 
are specialized to particular activities and are able to control actors passed by 
another geniuses. This concept allows for example creation of dummy actors, which 
are driven by geniuses of locations as they travel within the world, or geniuses with 
ability to perform some non-trivial interaction among more actors. For example 
playing cards in a pub could be easily driven by a single specialized genius,  
while controlling such an action from more individual geniuses would be a 
tremendous task. 
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4   Simulation LOD 

In the previous section we have introduced our view of the artificial world and both 
the location and process hierarchy. Now let us take a closer look at the simulation 
LOD. In this section, we shall introduce few rules that control location hierarchy 
expansion and then, in the next section, we shall describe implementation of the 
component that enforces their abidance.  

 
Fig. 2. The simulation LOD can be viewed as an elastic membrane cutting thought the location 
hierarchy. If no other force exists, the membrane presses LOD to low values (fewer details). 

The best way to imagine the simulation LOD is an elastic membrane cutting 
through the location hierarchy (see Fig. 2). Only the locations above this membrane 
do currently exist and so only these locations are simulated. Objects are located only 
in leaves of the clipped hierarchy tree and their LOD values are equal to the LOD 
value of these leaf locations, as described in the previous section. 

The base framework aims to keep details low (the membrane presses upward) in 
order to simplify (and thus speed-up) the simulation. On the contrary, simulated objects 
press the membrane down to ensure enough details necessary for their own simulation. 

Each object has two values: the existence level and the view level. The existence 
level marks the border LOD value below which the object is not simulated. The view 
level is a LOD value which is enforced by the object if current LOD value is greater 
or equal to existence level (see Fig. 3). Situation, in which the actual LOD would be 
between the view and existence level, is considered invalid and our framework either 
expands or shrinks all such locations to adjust LOD value out of this interval. 

All objects in given location and their existence and view levels define possible 
LOD values that would not result in the invalid state (invalid states forms invalid 
areas on the Fig. 3). This is the basic rule that our framework must obey and that can 
be violated whenever an object changes its location. 

Typical use for an important object (such as the user’s avatar) is low existence level and 
high view level which enforces high LOD values in the location where the object stays. On 
the other hand, unimportant objects would have the existence level close to the view level 
and both quite high. This does not enforce nearly any changes in LOD (corresponding 
invalid area is small) but rather only specifies whether such an object exists or not. 
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Fig. 3. Valid and invalid LOD values based on the existence and view levels of more objects 

Unfortunately, this is not enough to ensure fluent simulation. Problem occurs when 
an important object frequently moves between two locations from different branches 
of the location hierarchy. This could cause many expansions and shrinks constantly 
which is definitely not acceptable. We would prefer a LOD membrane to create 
a ‘crater’ rather than a narrow ‘hole’ around the important objects. This would make 
neighbouring locations to prepare for a visit of the VIP object before it reaches their 
borders by gradually increasing their LOD value (expanding to sublocations).  

This idea is handled by adding LOD influence between locations. It is a relation 
which marks nearby locations by a certain number. This number defines how much 
can the LOD values differ between these two locations. 

These rules, when enforced, answer the three basic questions from Section 1. 
Important places are identified as places containing objects with low existence level 
and high view level. Even more, these levels can also say how much important the 
objects are. Answer to the second and the third question is inherent in the fact that the 
whole world is hierarchical with each hierarchy to some extend corresponding to the 
LOD levels. So we can easily simulate on different levels. Gradual LOD changes are 
assured by the use of LOD influence between neighbouring locations. 

5   Implementation 

In this section, we describe a component called LOD Manager which enforces 
abidance of the rules mentioned in the previous section. 

LOD Manager aims to expand and shrink locations to achieve valid LOD values 
with regard to objects’ view and existence levels and LOD influence. On the other 
hand, it keeps LOD value as low as possible to assure a fast simulation. 

Another requirement, that LOD manager must comply, is to avoid ineffective 
expands and shrinks when an object constantly moves around the border between two 
locations. Such situation would happen with a naïve solution that would shrink 
locations as soon as their existence was not strictly enforced. Such an object could 
cause unnecessary load on the system. We could solve this requirement by defining 
a second LOD crater with the same centre and greater radius. The inner crater would 
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affect expansions and the outer one shrinking. This approach would need additional 
information describing outer crater in the world description, so we decided to 
implement another solution. It resembles the garbage collection technique known 
from programming environments. 

LOD manager is gathering information about objects’ position and movement from 
the framework by a simple interface containing methods addObject(object, location), 
removeObject(object, location) and moveObject(object, oldlocation, newlocation). 
Beside these methods, LOD Manager can be asked to remove locations that are not 
needed—to push the LOD membrane upwards. It is up to the framework to decide 
when to invoke cleanup()—time by time or when the simulation goes too slow. 

LOD manager changes the state of the location tree by invoking expand() and 
shrink() methods on particular locations. During execution of expand() method, the 
location generates a net of its sublocations and objects specific for this location (e.g., 
flowers in the garden). All objects fall down to the new sublocations. Also an option 
of object’s expansion to subobjects is plausible but we have not implemented it yet. 
Method shrink() makes the target location atomic. Its location subtree is forgotten. 
Objects form the subtree are either placed on the shrunk location (if their existence 
level is lower than its LOD value) or cease to exist (these are typically specific for the 
given location and can be generated again during the expand() call). 

We say that the location holds the basic condition if there is no object placed in its 
subtree such that LOD value of the location would be between the object’s existence 
(included) and view (excluded) level. Such a location could easily be atomic without 
causing an invalid state (see Section 3) and so the shrink() method can be called on it. 
However, we could still violate influences between locations and lose the ‘crater’ 
optimalization. Fig. 3 shows 11 locations that hold the basic condition as squares and 
4 that do not as circles. 

During the simulation, LOD Manager is accepting notifications about objects’ 
movement (via methods mentioned above). It keeps notion about locations that hold 
the basic condition and also controls LOD influence. Thus it can dynamically detect 
an invalid state or violated influence. In both cases, it reacts by calling expand() on 
offending locations. 

This way, locations can get only expanded. The shrink() method is not called 
dynamically but only during the cleanup() method execution. In this method, LOD 
Manager finds a cut through the location hierarchy that is closest to the root while still 
acceptable with respect to the basic condition and LOD influence. 

For this purpose, we use the depth first search (DFS) algorithm. If a location is 
intended to be shrunk it is marked. In the instant moment, if the location is marked, no 
of its descendants or ancestors can be marked. We can see three types of edges in the 
graph of currently existing locations: 

− Disabled – heads from the location that holds the basic condition to each its child. 
This edge cannot be used during the traversal (unless shortcut by an influence 
edge). 

− Enabled – other edges that head from the parent to its child. These can be freely 
used during the traversal. 

− Influence edge – edges that correspond to the LOD influence. These are used too, 
but it could happen that an ancestor of influence target is already marked. In such 
a case the ancestor is unmarked and all its children are traversed.  
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Fig. 4. On the picture a, DFS algorithm have visited location 1 and have found no enabled edge 
to continue. So location 1 is marked and DFS continues by traversing the second child of the 
root location. This is shown on the picture b. On this picture DFS have found the influence 
edge 3 at location 2. Because there is no enabled edge going from location 2, it is marked. DFS 
then continues by traversing the influence edge to location 4. In this case there is a marked 
ancestor of influence target. So we must remove its mark 6 and traverse all its children 
(location 4 and 5). In this case the influence value is zero - general case is slightly different. 

 

Fig. 5. a, DFS have finished traversal caused by the influence edge. Locations in the subtree of 
location 1 are marked properly. Picture b, shows state of the location tree after whole DFS 
traversal. All marked locations will become atomic. 

Location is marked if there is no usable edge heading to any of its children. After 
completion of the DFS traversal, method shrink() is called on every marked location. 
This makes all marked locations atomic. See Algorithm 1, 2 and Fig 4, 5 for further 
details. 
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Algorithm 1:  Cleanup 

markRecursive(rootLocation); 
foreach (loc : marked locations) 
   loc.shrink(); 

Algorithm 2:  MarkRecursive(loc) 

if (location loc was already traversed) 
   return; 
if (no enabled edge from the location loc) 
   mark(loc); 
else 
   foreach (target : targets of enabled edges) 
      markRecursive(target); 
foreach (edge : influence edges from location loc) { 
   target = edge.target; 
   while (loc.LODvalue - target.LODvalue < edge.value) 
      target = target.parent; 
   while (there is a marked ancestor of target) { 
      ancestor = the marked ancestor of target; 
      unmark(ancestor); 
      foreach (child : children of ancestor) 
         markRecursive(child); 
   } 
} 

6   Conclusion 

Simulation of large artificial worlds with tens of v-humans with complex behaviour is 
a task requiring a special technique that can cope with limited computational and 
memory resources. In this paper, we have presented our approach to this issue. The 
approach is based on level-of-detail technique (LOD) that decreases simulation 
quality at unimportant places. Contrary to the common use of LOD in computer 
graphics, we have used it in the domain of artificial intelligence. Contrary to a few 
exploitations of LOD in the domain of computer games [3], [10], [13], our approach 
is robust. That means it simplifies the quality of simulation gradually, and it simplifies 
not only behaviour of v-humans, but also an underlying topology of the artificial 
world. The contribution is obvious: owing to the smoothness, we achieve better 
believability while preserving reasonable computational and memory demands. 

The technique is used in project IVE [2], [7]. The project itself is still in progress. 
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Šerý, Ondřej, 565
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Bae, Hae-Young, 254
Baril, Xavier, 148
Bellahsène, Zohra, 148
Belovs, Aleksandrs, 158
Benkert, Marc, 166
Bereg, Sergey, 177
Berman, Kenneth A., 511
Borchert, Bernd, 187
Brandenburg, Franz J., 197
Brom, Cyril, 565

Chatalic, P., 84
Chen, Donghuo, 207
Christodoulakis, Manolis, 218
Cooper, S. Barry, 1
Culus, Jean-François, 226

Dehne, Frank, 237
Demange, Marc, 226
Dorn, Britta, 137
Dzelme, Ilze, 246

Eo, Sang Hun, 254
Erdogan, Nadia, 538

Fellows, Michael, 237
Fernau, Henning, 237, 262
Flouris, Giorgos, 14
Fomichev, Andrey, 272

G ↪asieniec, L., 282
Goasdoué, F., 84
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Smrž, Pavel, 483, 493

Song, Shaoxu, 501
Steinberger, Ralf, 430
Stencel, Krzysztof, 399
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