
Combining Shape Analyses
by Intersecting Abstractions

Gilad Arnold1, Roman Manevich2,�, Mooly Sagiv2, and Ran Shaham

1 University of California, Berkeley
arnold@eecs.berkeley.edu

2 Tel Aviv University
{rumster, msagiv}@tau.ac.il

ran.shaham@gmail.com

Abstract. We consider the problem of computing the intersection
(meet) of heap abstractions.This problem is useful, among other appli-
cations, to relate abstract memory states computed by forward analysis
with abstract memory states computed by backward analysis. Since dy-
namically allocated heap objects have no static names, relating objects
computed by different analyses cannot be done directly. We show that
the problem of computing meet is computationally hard. We describe
a constructive formulation of meet based on certain relations between
abstract heap objects. The problem of enumerating those relations is re-
duced to finding constrained matchings in graphs. We implemented the
algorithm in the TVLA system and used it to prove temporal heap prop-
erties of several small Java programs, and obtained empirical evidence
showing the effectiveness of the meet algorithm.

1 Introduction

This research is motivated by the need to approximate temporal properties of
programs manipulating dynamically allocated data structures. For example, sta-
tically identifying a point in the program after which a list element will never
be accessed and thus can be deallocated. As it is undecidable, in general, to
prove interesting properties about programs with dynamic memory allocation
with pointers and destructive updates, the use of abstract interpretation [2] to
compute an over-approximation of a program’s operational semantics is a funda-
mental practice underlying this work. Thus, while proving some correct program
properties may fail, every proved property is assured to hold.

We are interested in inferring persistent [6] temporal properties of heaps.
These are properties that continuously hold from a given point in the trace.
Inferring persistent temporal properties is naturally done in two phases, where
the first phase over-approximates the shapes of the data structures using forward
analysis starting at the entry node, and the second phase computes heap liveness
using a backward analysis stating at the exit node. Notice that this generalizes

� This research was supported in part by the Clore Fellowship Programme.

E.A. Emerson and K.S. Namjoshi (Eds.): VMCAI 2006, LNCS 3855, pp. 33–48, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

34 G. Arnold et al.

the process of computing scalar liveness in compilers in which the first phase is
unnecessary in the absence of pointers and arrays. We call this approach Phased
Bidirectional Analysis.

The problem of integrating the forward phase with the backward phase is
challenging since the exact memory locations are lost by the abstraction. There-
fore, this paper addresses the problem of computing the intersection of heap
abstractions. When applied to a set of elements of some abstract domain (lat-
tice), this operator—commonly referred to as meet—yields the greatest lower
bound of the elements in the set. Specifically, for two heap abstractions, the
corresponding meet is the set of common stores that are represented by both of
its operands.

The main contributions of this paper are summarized as follows:

1. We prove that meet is computationally hard for the abstract domain of
bounded structures (Theorem 3), which is used by the TVLA system, by
showing a reduction from the problem of 3-colorability on graphs to decid-
ing whether the output of meet is empty. This result is a bit surprising since
structures in this domain have unique “canonical names”, which makes iso-
morphism checking and checking of embedding (subsumption) decidable in
polynomial time.

2. We present a new algorithm to compute the meet of 3-valued structures. We
define the concept of correspondence relations between abstract heap objects
and explain how to compute meet from these relations. We then develop a
strategy to find correspondence relations that manages to prune many of the
irrelevant relations thus making the algorithm efficient in practice.

3. We have implemented the meet algorithm in TVLA—a system for generating
program analysis from operational semantics [5]—and used it to implement
a new analysis for detecting program locations where heap objects and ref-
erence fields become unused in Java programs. The information discovered
by the analysis can be used to improve memory management. The analysis
combines forward and backward information and proves to be precise enough
for several small but interesting programs operating on list data structures.
The empirical results shows that our analysis is precise enough to reclaim
memory as soon as it becomes unneeded. Therefore, our algorithm can serve
as a reference algorithm for compile-time garbage collection. Our experi-
ments indicate that the heuristics used by the meet algorithm make it very
effective in combining shape analysis; the time and space performance of the
algorithm is typically related to the size of the input and output by a linear
factor. However, our current prototype implementation is slow and was only
applied to small programs.

Running Example. Fig. 1 shows a simple program in a Java-like language that
prints the elements of a singly-linked list. This program serves as the running
example in this paper. The goal of the analysis here is to discover the earliest
points where reference variables and reference fields are no longer used. Specifi-
cally, we would like to find that: (a) reference variable x is never used after line 7
(this is rather trivial, since x does not appear later), and (b) that the reference

Combining Shape Analyses by Intersecting Abstractions 35

[1] x = null;
[2] while (...) {
[3] y = new SLL();
[4] y.val = ...;
[5] y.n = x;
[6] x = y;

}
[7] y = x; // can insert "x = null;" here
[8] while (y != null) {
[9] System.out.print(y.val);

[10] t = y.n; // can insert "free y;" or "y.n = null;" here
[11] y = t;

}

Fig. 1. A program that creates a singly-linked list and traverses its elements

field n of the object pointed-to by y is never used after line 10. The second fact
is more challenging to prove, as the object pointed-to by y is different on every
iteration of the loop.

Outline. The rest of the paper is organized as follows. Section 2 gives an
overview of program analysis of heap-manipulating programs using 3-valued
logic. In Section 3 we explain how approximate temporal properties of heaps
with meet. In Section 4, we present our algorithm for meet. Section 5 describes
our experiments with an analyzer that infers compile-time garbage collection
information in Java programs by using meet. Section 6 discusses related work.

All proofs, as well as detailed examples, appear in [1].

2 3-Valued Shape Analysis Overview

In this section we explain the representation of concrete program states and their
abstractions, based on the parametric analysis framework of [7].

2.1 Concrete Program States

We represent concrete program states by 2-valued logical structures.

Definition 1. A 2-valued logical structure over a vocabulary (set of predicates)
P is a pair S = 〈U, ι〉 where U is the universe of the 2-valued structure, and
ι is the interpretation function mapping predicates to their truth-value in the
structure: for every predicate p ∈ P of arity k, ι(p) : Uk → {0, 1}.

In this paper, we assume that the set of predicates includes the binary predicate
eq, and insist that it is interpreted as equality between individuals. Table 1 shows
the predicates used to record properties of individuals for the shape analysis of
the running example (forward phase).

We denote the set of all 2-valued logical structures over a set of predicates P
by 2-STRUCT[P]. In the sequel, we assume that the vocabulary P is fixed, and
abbreviate 2-STRUCT[P] to 2-STRUCT.

Concrete states (2-valued logical structures) are depicted as directed graphs.
Each individual of the universe is drawn as a node. A unary predicate p(u),

36 G. Arnold et al.

Table 1. Predicates used for shape analysis of the running example, and their meaning.
The set PVar stands for the set of reference variables {x,y,t}.

Predicates Intended Meaning
eq(v1, v2) Is v1 equal to v2?
{x(v) : x ∈ PVar} Does reference variable x point to object v?
n(v1, v2) Does the n field of object v1 point to object v2?
{rx,n(v) : x ∈ PVar} Is v reachable from reference variable x along n fields?
is(v) Do two or more fields of heap elements point to v?
cn(v) Is v on a directed cycle of n fields?

which holds for an individual u, appears next to the corresponding node. If a
unary predicate represents a reference variable, it is shown by having an arrow
drawn from its name to the node referenced by the variable. The binary predicate
n(u1, u2), which holds for a pair of individuals u1 and u2, is drawn as a directed
edge from u1 to u2, and labeled n. The predicate eq is not drawn, since any two
nodes are different and every node is equal to itself.

(a)

y t

x

rx,n rx,n rx,n rx,n

ry,n

rx,n

ry,n rt,n

rx,n

ry,n rt,n

rx,n

ry,n rt,n

n n n n n n

(b)

y t

x

rx,n rx,n rx,n

ry,n

rx,n

ry,n rt,n

rx,n

ry,n rt,n

n

n

n n n

n

Fig. 2. (a) A concrete program state arising after the execution of the statement t =
y.n; (b) An abstract program state approximating the concrete state in (a)

Fig. 2(a) shows a concrete program state arising after the execution of the
statement t = y.n on line 10 of the running example in Fig. 1.

2.2 Abstract Program States

The abstract program states we use are based on 3-valued logic [7], which extends
boolean logic by introducing a third value 1/2, denoting values that may be
either 0 or 1. In particular, we utilize the partially ordered set {0, 1, 1/2} where
0 � 1/2 and 1 � 1/2, with the join operation �, defined by x � y = x if x = y,
and x � y = 1/2 otherwise.

Definition 2. A 3-valued logical structure over a set of predicates P is a pair
S = (U, ι) where U is the universe of the 3-valued structure, and ι is the inter-
pretation function mapping predicates to their truth-value in the structure: for
every predicate p ∈ P of arity k, ι(p) : Uk → {0, 1, 1/2}.

Combining Shape Analyses by Intersecting Abstractions 37

An abstract state may include summary nodes, i.e., an individual which corre-
sponds to one or more individuals in a concrete state represented by that abstract
state. A summary node u has eq(u, u) = 1/2, indicating that it may represent
more than a single individual.

Abstract states (3-valued logical structures) are also depicted as directed graphs,
where unary predicates denoting reference variables, as well as binary predicates,
with 1/2 values are shown as dotted edges. Summary individuals appear as
double-circled nodes. A unary predicate that evaluates to 1/2 for a node is
depicted by having = 1/2 next to the name of the predicate.

We denote the set of all 3-valued logical structures over a set of predicates P
by 3-STRUCT[P], and usually abbreviate it to 3-STRUCT.

We define a partial order on structures, denoted by �, based on the concept
of embedding.

Definition 3 (Embedding). Let S = (U, ι) and S′ = (U ′, ι′) be two structures
and let f : U → U ′ be a surjective function. We say that f embeds S in S′,
denoted S �f S′, if for every predicate p ∈ P(k) and k individuals u1, . . . , uk ∈ U ,

pS(u1, . . . , uk) � pS′
(f(u1), . . . , f(uk)) . (1)

We say that S is embedded in S′, denoted S � S′, if there exists a function f
such that S �f S′. We also say that S′ approximates S.

The embedding order is used to define a concretization function for a single
3-valued structure S by σ(S) = {S′ ∈ 2-STRUCT | S′ � S}. The concretization
of a set of 3-valued structures is defined by γ(XS) =

⋃
S∈XS σ(S).

The embedding order induces a Hoare preorder on sets of 3-valued structures.

Definition 4. For sets of structures XS1,XS2 ⊆ 3-STRUCT, XS1 � XS2 if and
only if ∀S1 ∈ XS1 : ∃S2 ∈ XS2 : S1 � S2.

In the following definition, we restrict sets of 3-valued structures by disallowing
non-maximal structures. This ensures that the Hoare ordering is a proper partial
ordering on the sets.

We are now ready to present the abstract domain which is considered for the
construction of the meet algorithm.

Definition 5 (Core Abstract Domain). The abstract domain D3-STRUCT

consists of all sets of 3-valued structures that do not contain non-maximal struc-
tures, {XS ⊂ 3-STRUCT | ∀S1, S2 ∈ XS : S1 � S2 =⇒ S1 = S2}, with the
same ordering as in Definition 4.

2.3 Bounded Program States

Note that the size of a 3-valued structure is potentially unbounded and that
3-STRUCT is infinite. The abstractions studied in [7], and also used for the
analysis in Section 5, rely on a fundamental abstraction function for converting

38 G. Arnold et al.

a potentially unbounded structure—either 2-valued or 3-valued—into a bounded
3-valued structure.

A 3-valued structure is said to be bounded if for every two distinct individuals
in its universe there exists a unary predicate p such that either pS1(u1) = 0
and pS2(u2) = 1 or pS1(u1) = 1 and pS2(u2) = 0.1 We denote the set of all
bounded 3-valued structures over a set of predicates P by B-STRUCT[P]. The
finite abstract domain DB-STRUCT is a sublattice of D3-STRUCT, containing all
sets of bounded structures that do not contain non-maximal structures.

The abstraction function βP
blur : 2-STRUCT[P] → B-STRUCT[P] converts

a (potentially unbounded) 2-valued structure into a bounded 3-valued struc-
ture, by merging all individuals with the same values for all unary predicates.
Namely, βP

blur((U, ι)) = (U ′, ι′), where U ′ is the set of equivalence classes in U
of nodes with same values for all unary predicates, and the interpretation ι′ of
each predicate p ∈ P(k) and k individuals c1, . . . , ck ∈ U ′ is given by

pS′
(c1, . . . , ck) =

⊔

ui∈ci

pS(u1, . . . , uk) .

Fig. 2(b) shows a bounded structure obtained from the structure in Fig. 2(a).
The abstraction function βblur, which is called canonical abstraction, serves as

the basis for abstract interpretation in TVLA [5]. In particular, it serves as the
basis for defining various different abstractions for the (potentially unbounded)
set of 2-valued logical structures that may arise at a program point, by defining
different sets of predicates. We also define the function α, which extends βblur

to sets of structures: α(XS) =
⊔

{βblur(S) | S ∈ XS}.2

3 Inferring Temporal Properties Via Staged Bidirectional
Analysis

Persistent temporal properties can be efficiently verified without explicitly rep-
resenting traces. An example of such a property is liveness of reference variables
and reference fields. A reference variable or reference field is said to be dead (i.e.,
not live) at a given program point if on every execution that goes through that
point it is not used before being redefined.

The (possibly infinite) set of temporal properties is defined as the least fixed
point of the following (not necessarily computable) system of equations:

−→CSentry = CSinit−→CSl2 =
{
Sout

∣
∣ (l1, l2) ∈ E, Sin ∈ −→CSl1 , (l1, Sin)−→�(l2, Sout)

}

←−CSexit = CSfinal ∩ −→CSexit←−CSl1 =
{
Sin

∣
∣ (l1, l2) ∈ E, Sout ∈ ←−CSl2 , (l1, Sout)←−�(l2, Sin)

}
∩ −→CSl1 .

1 The notion of a bounded structure can be generalized by considering any subset of
the set of unary predicates, as done in TVLA.

2 The operator
�

is the least upper bound operator in DB-STRUCT.

Combining Shape Analyses by Intersecting Abstractions 39

Here, it is assumed that the concrete 2-valued structures also record informa-
tion on temporal properties that hold on program executions. The program is
represented as a control flow graph, with entry and exit nodes entry and exit,
respectively, and a set of control flow edges E. CSinit is the initial set of concrete
stores at the entry location including all possible values associated with temporal
properties. CSfinal represents the set of states in which all temporal properties
are set to their final values (that is, their values upon termination of the exe-
cution). We write (l1, Sin)−→�(l2, Sout) to denote the transformation induced by
the forward execution of the statement or condition at edge (l1, l2). Program
conditions are interpreted according to the standard semantics. Note that the
forward semantics sets values non-deterministically to the temporal properties
predicates. We write (l1, Sout)←−�(l2, Sin) to denote the transformation induced
by the backward execution of the statement or condition at edge (l1, l2). This
semantics sets the values of the changed temporal properties. Variables whose
values are changed are updated non-deterministically.

The above system of equations does not necessarily terminate for programs
with loops. Therefore, an upper approximation to this system is conservatively
computed by representing sets of states using 3-valued structures. Extra predi-
cates store values of tracked temporal properties. Moreover, the ability to define
unary predicates allows tracking of an unbounded number of temporal properties.
Both forward and backward executions are conservatively executed on 3-valued
structures. However, as backward reasoning uses results obtained by the forward
counterpart, it is considered a secondary stage taking place after the forward rea-
soning is complete. Finally, intersection (∩) is over-approximated using meet (�).

3.1 Compile-Time GC Analysis

We now explain how compile-time garbage collection information can be com-
puted using a phased bidirectional verification.

In particular, we are interested in identifying the first point in the trace where
an object is not further used, and therefore may be safely deallocated by a
free statement. Thus, the backward execution of a statement tracks the use of
objects. Our analysis maintains the predicate use(v) to track object future usage
information.

An object v is denoted used in a statement or a condition at edge (l1, l2),
if a reference expression e, that evaluates to v, is used for dereference at
that statement. In such a case, the backward execution of the statement
(l1, Sout)←−�(l2, Sin) records in Sin the fact that v is used by setting use(v) to
1. As mentioned, the forward execution of a statement non-deterministically
sets values to use(v).

Fig. 3(a) shows one of the structures that arise before the statement t = y.n
at line 10 of Fig. 1, and Fig. 3(b) shows one of the structures that arise after
that statement. The object referenced by y is still used before the statement,
as use(v) holds for the individual referenced by y. Nonetheless, the object refer-
enced by y is not (further) used after that statement, as use(v) does not hold for
the individual referenced by y. Having verified that use(v) does not hold for any

40 G. Arnold et al.

(a)

y, t

x

rx,n rx,n rx,n ry,n

rt,n liven

use

rx,n ry,n

rt,n liven

use

n

n

n n

n

(b)

y t

x

rx,n rx,n rx,n ry,n rx,n ry,n

rt,n liven

use

rx,n ry,n

rt,n liven

use

n

n

n n n

n

Fig. 3. 3-valued structures representing sets of program configurations, including heap
object and reference field liveness, that arise (a) before the execution of the statement
t = y.n; and (b) after it is executed

individual v referenced by y, for all structures that may arise after the aforemen-
tioned statement, we conclude that free y may be inserted after the statement
t = y.n, to deallocate the object referenced by y, as it is no longer used in the
program. Moreover, since for all structures arising before that statement, the
object referenced by y is still used, placing a free y after that statement will
free the space referenced by y at the earliest possible time.

3.2 Assign-Null Analysis

Another application of phased bidirectional analysis is the computation of heap
reference liveness, providing for compile-time optimization of runtime garbage
collection effectiveness. For each object reference field, we identify whether it is
live at any point in the trace, meaning that it may be used, prior to being rede-
fined, after that point. We are interested in spotting points in the trace where
a reference field becomes dead, and therefore may be assigned a null value,
thus significantly reducing potential GC drag time [8]. Here, again, the back-
ward execution of the statement tracks the uses (dereference) and redefinitions
(assignment) of object fields. In particular, for each reference field f which is a
member of some object v, the predicate livef (v) is used to record future use and
re-definition information (in our example f is n).

A reference field f of an object v is denoted used in a statement or a condition
at edge (l1, l2) if an expression e—which is not an l-value—refers to the value of
f . In this case, the backward execution of the statement (l1, Sout)←−�(l2, Sin) sets
livef (v) to 1. Otherwise, f is denoted redefined if it is being assigned a new value,
namely, being referred to by an l-value expression e. In this case, the backward
execution of the statement sets livef (v) to 0. Here as well, forward execution
non-deterministically sets values to livef (v).

Section 5 includes experimental results for an implementation of both of the
analyses described in this section.

Combining Shape Analyses by Intersecting Abstractions 41

4 Computing the Meet of Heap Abstractions

In this section, we develop a meet algorithm for a family of abstract domains and
discuss the complexity of the algorithm for two cases: (i) for arbitrary 3-valued
structures, and (ii) for bounded structures.

4.1 The Problem Setting

Our aim is to provide an algorithm applicable for a family of abstract domains
based on 3-valued structures, including the abstract domain of bounded struc-
tures, DB-STRUCT.

We design a meet algorithm for the domain D3-STRUCT, which we consider as
a basis for other abstract (sub-) domains. Given a sub-domain D ⊆ D3-STRUCT
and a set of abstract elements X ∈ D, the result of the algorithm is pos-
sibly not an element of D. However, when D X is defined, the inequality
D X � D3-STRUCT

X holds. Therefore, a domain specific operator RefineD :
D3-STRUCT → D can be used to refine the result to yield an element of D,
RefineD(D3-STRUCT

X) = D X .
For certain abstract domains, including DB-STRUCT, no refinement is required.

We now explain this formally.

Definition 6. We say that an abstract domain D ⊆ D3-STRUCT, with the same
ordering between abstract elements as in D3-STRUCT (see Definition 4), is meet-
admissible when it satisfies the following conditions.

Sublattice of D3-STRUCT. D is a lattice, and D X = D3-STRUCT
X and⊔

D X =
⊔

D3-STRUCT
X for every finite subset X of D.

Closure of singletons. For every structure S ∈ 3-STRUCT, if S exists in
some set XS ∈ D then {S} ∈ D. This condition allows us to break the
problem of computing meet on sets of structures to a set of sub-problems
where meet is computed on pairs of structures.

Theorem 1. The (parametric) abstract domain of bounded structures,
DB-STRUCT, is meet-admissible.

The following proposition reduces the problem of computing the meet of two
sets of structures to the problem of computing the meet of two structures by
using the join operator, which we discuss at the end of this section.

Proposition 1. Let XS1,XS2 be two elements in a meet-admissible domain D.
Then,

XS1 � XS2 =
⊔

S1∈XS1
S2∈XS2

{S1} � {S2} . (2)

In the remainder of this section, we consider the following problem. Given two
structures S1, S2 ∈ 3-STRUCT, compute {S1} � {S2}.

42 G. Arnold et al.

4.2 Computing the Meet of Two Structures

Fig. 4 shows two structures and their meet. (For now, ignore the edges between
the structures in Fig. 4(a) and Fig. 4(b).) The structure in Fig. 4(a) arises during
forward shape analysis, after the statement t = y.n at line 10 of the running
example; this is the structure from Fig. 2(b) with non-deterministic assignments
to the values of the predicates puse(v) and liven(v). The structure in Fig. 4(b) is
obtained from the structure in Fig. 3(b) by backward execution of the statement
y = t at line 11 of the running example. The meet of these two structures results
in the structure shown in Fig. 4(c).

We now establish a connection between the structures that comprise the result
of meet and certain relations that hold between their individuals. We first define
the meet of two Kleene values t1 and t2. If t1 � t2 then t1 � t2 = t1, if t2 � t1
then t1 � t2 = t2, and otherwise the result is undefined and we denote it by the
special symbol ⊥.

Definition 7 (Meet Correspondence). Given two structures S1 = (U1, ι1)
and S2 = (U2, ι2), a relation M ⊆ U1 ×U2 is a meet correspondence between S1
and S2 when it is: (a) Full, i.e.,

∀u1 ∈ U1 : ∃v2 ∈ U2 : u1 M v2 and ∀v2 ∈ U2 : ∃u1 ∈ U1 : u1 M v2 ;

and (b) Consistent, i.e., for every predicate p of arity k, and a pair of k-
tuples u1, . . . , uk ∈ U1

k and v1, . . . , vk ∈ U2
k, such that ui M vi for i = 1 . . . k,

pS1(u1, . . . , uk) � pS2(v1, . . . , vk) �= ⊥ .

x

rx,n

use=1/2

liven=1/2

rx,n

use=1/2

liven=1/2

y
rx,n ry,n

use=1/2

liven=1/2

t

rx,n ry,n

rt,n

use=1/2

liven=1/2

rx,n ry,n

rt,n

use=1/2

liven=1/2

n

n

n

n

n

n

x

ry,n=1/2

rx,n

ry,n=1/2

rx,n
y

ry,n=1/2

rx,n

rt,n

use
liven

t

ry,n=1/2

rx,n

rt,n

use
liven

n

n

n

n

n

x

rx,n

rx,n

y rx,n ry,n

t

rx,n ry,n

rt,n

use
liven

rx,n ry,n

rt,n

use
liven

n

n

n

n

n

n

(a) (b) (c)

Fig. 4. An example for computing meet for the running example. (a) A structure
that arises during the forward shape analysis; (b) A structure that arises during the
backward (object liveness) analysis. (c) The meet of (a) and (b).

Combining Shape Analyses by Intersecting Abstractions 43

The structures in Fig. 4(a) and Fig. 4(b) have exactly one meet correspondence,
which is shown by the edges between their individuals.

We can use a meet correspondence to construct a common lower bound of
two structures in the following way.

Definition 8. Given a meet correspondence M between structures S1 = (U1, ι1)
and S2 = (U2, ι2), the operation S1 �M S2 yields the M -induced structure S =
(U, ι), where U = {〈u, v〉 ∈ M}, and the interpretation of every predicate p of
arity k and every k-tuple of nodes 〈u1, v1〉, . . . , 〈uk, vk〉 ∈ Uk is given by

pS(〈u1, v1〉, . . . , 〈uk, vk〉) = pS1(u1, . . . , uk) � pS2(v1, . . . , vk) .

We are now ready to characterize the result of the meet operator in terms of
meet correspondences.

Theorem 2. Let MS1,S2 ⊆ ℘(U1 × U2) denote the set of meet correspondences
between structures S1 and S2. Then,

{S1} � {S2} =
⊔

M∈MS1,S2

{S1 �M S2} .

Theorem 2 already gives us a naive way to compute meet by: (a) Enumerating all
relations M ∈ U1 × U2; (b) Checking each of them to see whether it constitutes
a meet correspondence; (c) For each meet correspondence, computing S1 �M S2,
and (d) Combining the results via join. Although the meet of two structures is a
set of structures containing 2|U1×U2| structures in the worst case, the size of the
set is usually small, in practice. Notice that the above approach is intractable
even when the number of structures is small, since the majority of the relations
are not meet correspondences.

An immediate consequence of [10] is that deciding whether the meet of two
arbitrary 3-valued structures is empty is NP-complete. The next theorem states
that meet is computationally hard even for two bounded structures.

Theorem 3. Given two bounded structures S1 and S2, the problem of deciding
whether {S1} � {S2} �= ∅ is NP-complete.

Since the problem of computing meet with polynomial worst-case complexity is
hard, we aim to achieve good efficiency in practice. We develop an algorithm
based on a strategy. The strategy exploits certain properties of the abstract
domain to prune the set of relations and find the meet correspondences. In
Section 5, we supply empirical evidence showing that the algorithm successfully
prunes most irrelevant relations when used in an abstract interpreter for inferring
temporal heap properties on several benchmark programs.

4.3 Enumerating Meet Correspondences

We now present a strategy for exploring the (exponential) space of relations
between two structures, searching for meet correspondences. The strategy, shown

44 G. Arnold et al.

in pseudo-code in [1], attempts to prune relations that do not constitute a meet
correspondence as much as possible, and relies on another procedure for solving
a graph-matching problem on graphs (explained below).

The strategy consists of 4 stages that are run consecutively:

1. Consistency of nullary predicates. If there exists a nullary predicate p
such that pS1() = 1 and pS2() = 0 or pS1() = 0 and pS2() = 1, then the
result of meet is the empty set.

2. Removing infeasible node pairs. We remove from the set U1 × U2 node
pairs 〈u, v〉 such that there exists a predicate p of arity k and pS1(uk) �
pS2(vk) = ⊥, where uk denotes a k-tuple containing the node u in all k
positions. By Definition 7 these pairs are not contained in any meet corre-
spondence.

3. Finding full relations. To satisfy the fullness requirement of Definition 7,
we solve the following graph matching problem. Given a graph G = 〈V, E〉
and a subset W of V , find all subsets M ⊆ E such that in the graph 〈V, M〉
the degree of every vertex is at least 1, and for vertices in W the degree is
at most 1. In our case, V = U1 ∪ U2, E is the set of pairs from the previous
stage, and W is the set of non-summary nodes. An (worst-case exponential
time) algorithm for this problem that uses several heuristics to solve this
problem efficiently is discussed in [1].

4. Consistency test. The full relations from the previous stage are tested for
consistency according to Definition 7 (in polynomial time). The relations that
pass the test are meet correspondences and are used to create M -induced
structures which are combined via join to yield the result.

The intuition behind the second stage is that two structures, possible produced
by different analyses, may share a common set of unary predicates that are
assigned only definite values, i.e., 0 or 1. Usually, these are the predicates that
represent reference variables. In such cases, these predicates help prune many
of the infeasible edges and determine a subset of edges with degree 1, which
must participate in every meet correspondence. Our algorithm uses these edges
to reduce the amount of searching that has to be done.

In Fig. 4, the first stage of the algorithm is degenerate, as there are no nullary
predicates. The second stage prunes the set of all node pairs, which consists of
20 pairs, to 5. This reduction occurs since the predicates x, t, rx,n, and rt,n have
definite values in both structures. In this example, there is only one full relation,
which is returned by the third stage of the algorithm. This relation is indeed
consistent, and thus the structure in the output is produced.

4.4 Computing Join

The join of sets of 3-valued structures is set union, followed by removal of non-
maximal structures. To remove non-maximal structures, we need an algorithm
to check for whether a structure S1 = (U1, ι1) is embedded in a structure S2 =
(U2, ι2).

We observe that an embedding relation (see Definition 3) is actually a meet
correspondence that satisfies a stricter version of the consistency condition. It

Combining Shape Analyses by Intersecting Abstractions 45

is: (i) Full; and (ii) for every predicate p of arity k, and a pair of k-tuples
u1, . . . , uk ∈ U1

k and v1, . . . , vk ∈ U2
k, such that ui M vi for i = 1 . . . k,

pS1(u1, . . . , uk) � pS2(v1, . . . , vk) .
Since checking the second condition for two structures can be done in poly-

nomial time, we can reuse the techniques for finding meet correspondences. In
the first stage we check that for every nullary predicate p, pS1() � pS2(). In
the second state we remove from the set U1 × U2 all node pairs 〈u, v〉 such that
there exists a predicate p of arity k and pS1(uk)

/
� pS2(vk). We then proceed by

enumerating full relations over the remaining node pairs to find one that fulfills
the second condition of the embedding relation.

For arbitrary 3-valued structures, checking embedding is NP-complete. How-
ever, for bounded structures our algorithm decides the problem in polynomial
time. This is because, for two bounded structures, an embedding relation, if one
exists, is unique and completely determined by the unary predicates.

5 Inferring Temporal Properties for Compile-Time
Memory Management

Compile-time GC is most desirable for lightweight Java-based platforms, such as
JavaCard, where the penalty induced by a runtime GC is sometimes intolerable
due to the limited space and processing power. Such platforms normally provide
a mechanism for explicit memory deallocation, e.g., through a free directive.

We have implemented the phased bidirectional analysis described in Section 3
in the TVLA system to infer compile-time GC information. Our analysis infers
information for producing a set of free statements that can be safely added to the
program to free unused objects. Moreover, our analysis ensures that an object
is deallocated at the earliest possible time, i.e., immediately after the object is
last used.

5.1 Experimental Results

Table 2 shows our benchmark programs, which were used in [9].3 The first four
programs involve manipulations of singly-linked lists. DLoop and DPairs involve
manipulations of doubly-linked lists. The small-javac example was used in [8],
where it has been shown that a significant potential for compile-time GC exists
by manually rewriting the code to include null assignments. Our assign-null
analysis is able to yield the manual rewriting automatically.

On all benchmark programs, both our compile-time GC and assign-null analy-
ses were able to detect all opportunities for object deallocation and safe assign-
ment of null to reference fields, respectively. This information allows the recla-
mation of unused space at the earliest possible time. For example, considering
the program in Fig. 1, the compile-time GC analysis was able to determine the
safe deallocation of the object pointed by y right after line 10, thus deallocating
list elements as soon as they are being traversed. Our assign-null analysis was
3 The programs are available from www.cs.tau.ac.il/∼rumster/ctgc benchmarks.zip.

46 G. Arnold et al.

Table 2. Benchmarks and analysis costs (in seconds and Mb.)

Program Description Forward Backward
Time Space Time Space

Loop Running example (Fig. 1) 0.9 1.0 1.6 1.8
CReverse Constructive list reversal 3.0 2.0 5.7 4.2
Delete Deletion of a list element 12.4 3.2 41.1 12.9
DLoop Doubly-linked list variant of Loop 1.4 1.3 2.3 2.5
DPairs Doubly-linked list traversal in pairs 3.0 2.0 5.5 4.0
small-javac Emulation of JavaC’s parser facility 528.9 32.1 334.4 77.6

able to verify that a y.n=null assignment could be inserted after line 10. The
analyses proved similar properties for the other benchmark programs.

Table 2 shows the costs of the analysis on the benchmark programs. As both
analyses have very similar costs, we only show the results of the compile-time
GC analysis.

The experiments were conducted on a 1.6 GHz laptop with 512 Mb. of mem-
ory, running Windows XP.

In addition to analysis time and space, we measured two redundancy factors
related to our meet algorithm. We evaluated the efficiency of the graph matching
algorithm in stage 3. The results show that for all benchmark programs, at
most 0.5% of the expanded search space did not lead to valid matchings. We
also measured the percentage of full relations computed during stage 3 of the
algorithm that did not constitute meet correspondences (eliminated in stage 4).
In all benchmarks the average number of relations that were eliminated did not
exceed 0.3%, and in most benchmarks no eliminations occurred.

We believe that our meet algorithm is efficient for the the following reason.
The forward shape analysis produces very precise information, which means
that the values of the unary shape predicates (in Table 1) are almost always
definite. When the backward phase computes the backward effect of a statement,
it accepts a structure where all unary predicates are definite and assigns non-
deterministic values to only a fixed number of unary predicates—y and rn,y in the
structure shown in Fig. 4(b). Then, the meet is applied to structures where most
unary shape predicates predicates have definite values. Our algorithm is geared
to exploit these situations by focusing the search for meet correspondences.

6 Related Work

Computing Meet of Heap Abstractions. In [3], a meet is used for inter-
procedural shape analysis. Two algorithms are presented for computing meet on
bounded structures. The first algorithm uses a “canonicalization”4 operation to
transform the structures to sets of structures in the image of canonical abstrac-
tion with the same concretization. Computing meet for the resulting structures
is then straightforward. However, canonicalization can unnecessarily increase the
number of structures by an exponential factor in the worst case. In our exam-
ples the worst case would indeed manifest itself, since we set the values of the
4 Canonicalization is a semantic reduction akin to substituting abstract elements by

their respective set of join-irreducibles.

Combining Shape Analyses by Intersecting Abstractions 47

temporal heap properties to non-deterministic values. Our algorithm avoids this
problem by operating directly on the given structures. The second algorithm
approximates meet by transforming one of the structures into a dynamic set
of constraints and using a constraint solver. While usually more efficient than
the first algorithm, it computes an over-approximation of meet. We believe that
our algorithm can be used to improve the running times of the interprocedural
analysis reported in [3].

In [4], it is shown how to compute meet for a class of formulas that precisely
characterize bounded structures. The computation is essentially achieved in the
same way as the first algorithm in [3].

In [11], a symbolic semi-algorithm for meet is presented. The algorithm con-
verts bounded structures to formulas, and then uses logical conjunction to com-
pute the result in the domain of formulas. Converting the resulting formula back
to bounded structures is done via a theorem prover. The algorithm operates
with respect to a finer concretization function than the one defined in Section 2.
Specifically, this concretization function is parameterized by a set of integrity
constraints C, and is defined by

γC(S) =
{
S′ ∈ 2-STRUCT | S′ � S, S′ |= C

}
.

The advantage of this algorithm is that it provides the most precise result with
respect to γC . However, its performance can be quite low, due to the use of
canonicalization and a potentially large number of calls to a theorem prover.

A distinct advantage of the algorithm presented in this paper is that it is not
restricted to bounded structures and works for any set of 3-valued structures.

Compile-Time Memory Management. Most of the work on compile-time
GC analysis has been done for functional languages. This paper demonstrates a
compile-time GC analysis that applies to an imperative language with destruc-
tive updates, and is capable of reclaiming an object that is still reachable, but
not used further in the run.

In [9], a user-specification-driven compile-time GC and assign-null analysis
are described. The user specifies a free query of the form (pt, x), where pt is a
program location and x is a program variable. A positive answer to the query
means that a free x statement may be issued after program point pt. In con-
trast, the algorithms in this paper do not require nor rely on a user-specified
queries, but rather perform an analysis on an exhaustive set of queries gener-
ated automatically using a simple heuristic. We believe our approach may be
significantly more efficient compared to the analysis of [9] with our exhaustive
set of queries.

References

1. G. Arnold, R. Manevich, M. Sagiv, and R. Shaham. Intersecting heap abstrac-
tions with applications to compile-time memory management. Technical Report
TR-2005-04-135520, Tel Aviv University, Apr 2005. Available at http://www.
cs.tau.ac.il/∼rumster/TR-2005-04-135520.pdf.

48 G. Arnold et al.

2. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction of approximation of fixed points. In Symp.
on Princ. of Prog. Lang., pages 238–252, New York, NY, 1977. ACM Press.

3. B. Jeannet, Alexey L., T. Reps, and M. Sagiv. A relational approach to interpro-
cedural shape analysis. In Proc. Static Analysis Symp. Springer, 2004.

4. V. Kuncak and M. Rinard. Boolean algebra of shape analysis constraints. In 5th
International Conference on Verification, Model Checking and Abstract Interpre-
tation (VMCAI’04), pages 59–72. Springer, January 2004.

5. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. In
Proc. Static Analysis Symp., pages 280–301, 2000.

6. Z. Manna and A. Pnueli. A hierarchy of temporal properties (invited paper).
In Proceedings of the ninth annual ACM symposium on Principles of distributed
computing, pages 377–410, 1989.

7. M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM Transactions on Programming Languages and Systems, 24(3):217–298, 2002.

8. R. Shaham, E. K. Kolodner, and M. Sagiv. Heap profiling for space-efficient Java.
In SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 104–113. ACM Press,
June 2001.

9. R. Shaham, E. Yahav, E. K. Kolodner, and M. Sagiv. Establishing local temporal
heap safety properties with applications to compile-time memory management. In
Proc. of Static Analysis Symposium (SAS’03), volume 2694 of LNCS, pages 483–
503. Springer, June 2003.

10. G. Yorsh. Logical characterizations of heap abstractions. Master’s thesis, Tel-Aviv
University, Tel-Aviv, Israel, 2003. http://www.cs.tau.ac.il/∼gretay/.

11. G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract
operations for shape analysis. In Tools and Algorithms for the Construction and
Analysis of Systems, 10th International Conference (TACAS 2004), pages 530–545.
Springer, March 2004.

	Introduction
	3-Valued Shape Analysis Overview
	Concrete Program States
	Abstract Program States
	Bounded Program States

	Inferring Temporal Properties Via Staged Bidirectional Analysis
	Compile-Time GC Analysis
	Assign-Null Analysis

	Computing the Meet of Heap Abstractions
	The Problem Setting
	Computing the Meet of Two Structures
	Enumerating Meet Correspondences
	Computing Join

	Inferring Temporal Properties for Compile-Time Memory Management
	Experimental Results

	Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

