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Abstract. Standard abstract model checking relies on abstract Kripke structures
which approximate the concrete model by gluing together indistinguishable states.
Strong preservation for a specification language L encodes the equivalence of
concrete and abstract model checking of formulas in L. Abstract interpretation
allows to design abstract models which are more general than abstract Kripke
structures. In this paper we show how abstract interpretation-based models can be
exploited in order to specify a general strongly preserving abstract model check-
ing framework. This is shown in particular for specification languages including
standard temporal operators which admit a characterization as least/greatest fix-
points, as e.g. standard “Finally”, “Globally”, “Until” and “Release” modalities.

1 Introduction

Abstract model checking is one successful and practical way to deal with the well-
known state explosion problem of model checking in system verification [1, 3]. Stan-
dard abstract model checking [2] relies on abstract models which are based on partitions
of the state space. Given a concrete model as a Kripke structure K = (Σ, →), a stan-
dard abstract model is specified by an abstract Kripke structure A = (A, →�) where the
set A of abstract states is defined by a surjective map h : Σ → A and →� is an abstract
transition relation on A. Thus, A determines a partition PA of Σ and vice versa. A
weak preservation result for some temporal language L guarantees that for any formula
ϕ ∈ L, if ϕ holds on the abstract model A then ϕ also holds on the concrete model
K. On the other hand, strong preservation means that any formula of L holds on A if
and only if it holds on K. Strong preservation is highly desirable since it allows to draw
consequences from negative answers on the abstract side [3]. Thus, in order to design a
standard abstract model we need both an appropriate partition of the space state and a
suitable abstract transition relation.

The relationship between abstract interpretation and abstract model checking has
been the subject of a number of works (see e.g. [2, 6, 7, 9, 10, 11, 15, 16, 19, 18]). We
introduced in [17] an abstract interpretation-based framework for specifying generic
strongly preserving abstract models, where a partition of the state space Σ is viewed
as a particular abstract domain of the powerset ℘(Σ), where ℘(Σ) plays the role of
concrete semantic domain. This generalized approach leads to a precise correspon-
dence between forward complete abstract interpretations and strongly preserving ab-
stract models. We deal with generic (temporal) languages L of state formulas which
are inductively generated by a setAP of atomic propositions p and a set Op of opera-
tors f , i.e. L � ϕ ::= p | f(ϕ1, ..., ϕn). A semantic interpretation p ⊆ Σ of atomic
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propositions and of operators f : ℘(Σ)n → ℘(Σ) determines a concrete semantic func-
tion [[·]] : L → ℘(Σ) where [[p]] = p and [[f(ϕ1, ..., ϕn)]] = f([[ϕ1]], ..., [[ϕn]]). Thus,
any abstract domain A of ℘(Σ) and corresponding abstract interpretation p� ∈ A and
f � : An → A for constants/operators, denoted by I�, induce an abstract semantic func-
tion [[·]]A : L → A where [[p]]A = p� and [[f(ϕ1, ..., ϕn)]]A = f �([[ϕ1]]A, ..., [[ϕn]]A).
In particular, the abstract interpretation of p and f can be given as their best correct
approximations on A, i.e. pA def= α(p) and fA def= α ◦ f ◦ γ where α and γ are the ab-
straction and concretization maps relating A to ℘(Σ). In this generalized setting, strong
preservation goes as follows: the abstract interpretation (A, I�) is strongly preserving
for L when for any S ⊆ Σ and ϕ ∈ L, S ⊆ [[ϕ]] ⇔ α(S) ≤ [[ϕ]]A. When A is an
abstract domain representing a partition of Σ, this boils down to standard strong preser-
vation for abstract Kripke structures, where different choices for the abstract transition
relation �

� correspond to different abstract interpretations of the operators f .
It turns out that forward completeness implies strong preservation, i.e. if the abstract

domain A is forward complete for the concrete constants/operators of L — this means
that no loss of precision occurs by approximating each p and f on the abstract domain
A — then A is strongly preserving for L. The converse is in general not true. How-
ever, we show that when A is L-covered — meaning that each abstract value a ∈ A
corresponds to some formula ϕ ∈ L, i.e. γ(a) = [[ϕ]] — forward completeness and
strong preservation are indeed equivalent notions and consequently the abstract inter-
pretation of constants/operators of L as best correct approximations on A is the only
possible choice in order to have strong preservation. One interesting point to remark is
that when the abstract domain is a state partition P , an abstract transition relation �

� on
P such that the abstract Kripke structure (P, ��) strongly preserves L might not exist,
while, in contrast, a strongly preserving abstract semantics on the partition P viewed as
an abstract domain always exists.

The abstract semantics is therefore defined by approximating the interpretation of
logical/temporal operators of L through their best correct approximations on the ab-
stract domain A. In principle, this can be done for any logical/temporal operator. How-
ever, when a temporal operator f can be expressed as a least/greatest fixpoint of an-
other temporal operator g, e.g. f = λX. lfp(λY.g(X, Y )), the best correct approx-
imation α ◦ f ◦ γ might not be characterizable as a least/greatest fixpoint. For ex-
ample, the existential “Finally” operator can be characterized as a least fixpoint by
EF(X) = lfp(λY.X ∪ EX(Y )), where EX = pre

�
is the standard predecessor

transformer on the concrete Kripke structure. The best correct approximation of EF
on an abstract domain A is therefore the abstract function α ◦ EF ◦ γ : A → A.
However, this definition gives us no clue for computing α ◦ EF ◦ γ as a least fix-
point. By contrast, in standard abstract model checking the abstract interpretation of
language operators is based on an abstract Kripke structure A = (P, ��), so that it
is enough to compute the least fixpoint lfp(λY �.X� ∪ EX�(Y �)) on the abstract state
space P , namely X� and Y � are sets of blocks in P , ∪ is union of sets of blocks and
EX� = pre

�
� is the predecessor transformer on A. For example, for the language

L � ϕ ::= p | ϕ1 ∧ ϕ2 | EFϕ if one can define a strongly preserving abstract Kripke
structure (P, ��), where P is some partition of Σ, then the abstract Kripke structure
(P, �∃∃) strongly preserves L as well, where B1�

∃∃B2 iff ∃s1 ∈ B1.∃s2 ∈ B2.s1�s2.
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In this case, while the concrete fixpoint is given by EF(X) = lfp(λY.X ∪ pre
�

(Y )),
the abstract fixpoint is EX�(X�) = lfp(λY �.X� ∪ pre

�
∃∃(Y �)). The key point here is

that the best correct approximation of the concrete function λ〈X, Y 〉. X ∪ pre
�

(Y ) on
the partition P viewed as an abstract domain is indeed λ〈X�, Y �〉. X� ∪ pre

�
∃∃(Y �).

In other terms, the best correct approximation of λX. lfp(λY.X ∪ pre
�

(Y )) can be
expressed as λX�. lfp(λY �.X� ∪ pre

�
∃∃(Y �)) and thus preserves the same “template”

of the concrete fixpoint function. We generalized this phenomenon to generic functions
and abstract domains and then applied to standard temporal operators which can be
expressed as fixpoints, that is, “Finally”, “Globally”, “Until” and “Release” modali-
ties. We applied our results both to partitions, namely standard abstract models, and
to disjunctive abstract domains, namely domains which are able to represent precisely
logical disjunction. As far as partitions are concerned, we obtained new results of strong
preservation on standard abstract Kripke structures. On the other hand, applications to
disjunctive abstract domains provide a new procedure to perform a strongly preserv-
ing abstract model checking. This latter approach seems especially interesting because
examples hint that efficient implementations are feasible.

2 Background

Notation. The standard pointwise ordering between functions will be denoted by 
. For
a set S ∈ ℘(℘(X)), we write the sets in S in a compact form like in {[1], [12], [123]} ∈
℘(℘({1, 2, 3})). We denote by � the complement operator w.r.t. some universe set.
Part(Σ) denotes the set of partitions of Σ. We consider transition systems (Σ, R)
where the relation R ⊆ Σ × Σ (also denoted by R−→) is total. A Kripke structure
K = (Σ, R,AP, �) consists of a transition system (Σ, R) together with a set AP
of atomic propositions and a labelling function � : Σ → ℘(AP). Paths in K are
defined by Path(K) def= {π : N → Σ | ∀i ∈ N. πi

R−→πi+1}. A transition relation
R ⊆ Σ × Σ defines the usual pre/post transformers on ℘(Σ): preR, postR, p̃reR,
˜postR. When clear from the context, subscripts R are sometimes omitted. The relations
R∃∃, R∀∃ ⊆ ℘(Σ) × ℘(Σ) are defined as follows: (S1, S2) ∈ R∃∃ (respectively, R∀∃)
iff ∃s1 ∈ S1. (respectively, ∀s1 ∈ S1.) ∃s2 ∈ S2. (s1, s2) ∈ R.

Abstract Interpretation and Completeness. As usual in standard abstract interpreta-
tion, abstract domains are specified by Galois connections/insertions (GCs/GIs) [4, 5].
A GC/GI of the abstract domain A into the concrete domain C through the abstrac-
tion and concretization maps α : C → A and γ : A → C will be denoted by
(C, α, γ, A). GIs of a common concrete domain C are pre-ordered w.r.t. precision as
usual: G1 = (C, α1, γ1, A1) 
 G2 = (C, α2, γ2, A2) (i.e., A1 is more precise than A2)
iff γ1 ◦ α1 
 γ2 ◦ α2. Moreover, G1 and G2 are equivalent when G1 
 G2 and G2 
 G1.
Let G = (C, α, γ, A) be a GI, f : C → C be some concrete semantic function — for
simplicity, we consider here 1-ary functions — and f � : A → A be a corresponding
abstract function. 〈A, f �〉 is a sound abstract interpretation when α ◦ f 
 f � ◦ α. The
abstract function fA def= α ◦ f ◦ γ : A → A is called the best correct approximation of
f in A. Completeness in abstract interpretation corresponds to require the following
strengthening of soundness: α ◦ f = f � ◦ α. This is called backward completeness be-
cause an orthogonal notion of forward completeness may be considered: in fact, the
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soundness condition α ◦ f 
 f � ◦ α is equivalent to f ◦ γ 
 γ ◦ f �, so that forward
completeness for f � corresponds to strengthen soundness by requiring: f ◦ γ = γ ◦ f �.
Giacobazzi et al. [12] observed that both backward and forward completeness uniquely
depend upon the abstraction map, namely they are abstract domain properties. In fact,
it turns out that there exists f � : A → A such that 〈A, f �〉 is backward (forward) com-
plete iff γ ◦ α ◦ f ◦ γ ◦ α = γ ◦ α ◦ f (γ ◦ α ◦ f ◦ γ ◦ α = f ◦ γ ◦ α). Thus, we say
that a GI G is backward (forward) complete for f when γ ◦ α ◦ f ◦ γ ◦ α = γ ◦ α ◦ f
(γ ◦α◦f ◦γ ◦α = f ◦γ ◦α). Note that G is forward complete for f iff f maps elements
in img(γ) to elements in img(γ).

If [[·]] : L → C and [[·]]� : L → A are, respectively, a concrete and an abstract se-
mantics of a generic language L, then soundness and completeness for the abstract se-
mantics [[·]]� are defined as follows: 〈A, [[·]]�〉 is sound (respectively, backward complete,
forward complete) if for any ϕ ∈ L, α([[ϕ]]) ≤A [[ϕ]]� (respectively, α([[ϕ]]) = [[ϕ]]�,
[[ϕ]] = γ([[ϕ]]�)).

Recall that a GI G = (C, α, γ, A) is disjunctive (or additive) when γ is additive,
i.e. when γ preserves arbitrary least upper bounds. It turns out that G is disjunctive iff
img(γ) ⊆ C is join-closed, i.e. closed under arbitrary lub’s. Disjunctive GIs can be
“inverted” as follows and such inversion preserves forward completeness.

Proposition 2.1. Let G = (C≤, α, γ, A≤) be a disjunctive GI and f : C → C.
(i) Let α�(c) def= ∨ {a ∈ A | γ(a) ≤ c}. Then, G� def= (C≥, α�, γ, A≥) is a GI.
(ii) G� is forward complete for f iff G is forward complete for f . In this case, the two
best correct approximations of f w.r.t. G� and G coincide.

3 Abstract Models

3.1 Abstract Semantics

We consider (temporal) specification languages L whose state formulas ϕ are induc-
tively defined by: L � ϕ ::= p | f(ϕ1, ..., ϕn), where p ∈ AP ranges over a set of
atomic propositions while f ranges over a finite set Op of operators. AP and Op are
also denoted, respectively, by APL and OpL. Each f ∈ Op has an arity ar(f) > 0.
The interpretation of formulas in L is determined by a semantic structure S = (Σ, I)
where Σ is a set of states and I is an interpretation function which maps p ∈ AP
to I(p) ∈ ℘(Σ) and f ∈ Op to I(f) : ℘(Σ)ar(f) → ℘(Σ). We also use p and
f to denote, respectively, I(p) and I(f). Also, AP def= {p ∈ ℘(Σ) | p ∈ AP} and
Op

def= {f : ℘(Σ)ar(f) → ℘(Σ) | f ∈ Op}. The concrete state semantic function
[[·]]S : L → ℘(Σ) evaluates a formula ϕ ∈ L to the set of states making ϕ true w.r.t. the
semantic structure S:

[[p]]S = p and [[f(ϕ1, ..., ϕn)]]S = f([[ϕ1]]S, ..., [[ϕn]]S).

Semantic structures generalize the role of Kripke structures. In fact, in standard model
checking [3], a semantic structure is usually defined through a Kripke structure K so
that the interpretation of operators in Op is defined in terms of paths in K and of stan-
dard logical operators. In the following, we will freely use standard logical and tem-
poral operators together with their corresponding usual interpretations: for example,
I(∧) = ∩, I(¬) = �, I(EX) = preR, etc.
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Following the abstract interpretation approach, an abstract semantic structure is
given by S� = (A, I�) where (C, α, γ, A) is a GI and for any p ∈ AP and f ∈ Op,
I(p) ∈ A and I�(f) : Aar(f) → A. Thus, an abstract semantic structure S� defines an
abstract semantics [[·]]S� : L → A for the language L.

Let S be a (concrete) semantic structure for L. A GI (C, α, γ, A) always induces an
abstract semantic structure SA = (A, IA) where IA provides the best correct approx-
imations on A of the concrete interpretation of constants/operators: IA(p) def= α(I(p))
for p ∈ AP and IA(f) def= (I(f))A for f ∈ Op. If the (concrete) interpretation OpL

consists of monotone functions then the abstract semantics [[·]]SA induced by SA is al-
ways automatically sound. This induced abstract semantics will be denoted by [[·]]AS .

Example 3.1. Let us consider the following Kripke structure K, where superscripts de-
note the labelling function.

Kripke
structure K

1p

��

3p

��

5q

��
2q

�������
4q

�������
6r

��

Abstract
domain A �

qr�

���

p�

���������
q�

��
r�

���

⊥

������
�������

Let L � ϕ ::= p | ϕ1 ∧ ϕ2 | EXϕ. Let S be the semantic structure for L induced by the
Kripke structure K so that EX = pre

�
. Let A be the lattice depicted above. We con-

sider the abstraction map α : ℘(Σ)⊆ → A where α({n}), i.e. on singletons, is defined
by α({1}) = α({3}) def= p�, α({2}) = α({4}) = α({5}) def= q� and α({6}) def= r�, while
for any S ∈ ℘(Σ), α(S) def= ∨s∈S α({s}). Hence, we have that:

[[EXr]]AS = EXA([[r]]AS ) = EXA(α(r)) = EXA(α({6})) = EXA(r�) =
α(EX(γ(r�))) = α(EX({6})) = α({5, 6}) = α({5}) ∨ α({6}) = q� ∨ r� = qr�.

Since γ(qr�) = {2, 4, 5, 6}, as expected, observe that the abstract semantics [[EXr]]AS is
a proper over-approximation in A of the concrete semantics [[EXr]]S = {5, 6}. ��

3.2 Partitioning Abstractions

As shown in [17], standard partition-based abstract model checking [2, 3] can be viewed
as a particular instance of abstract semantics as defined in Section 3.1, where: (i) given
some state partition P ∈ Part(Σ), the abstract domain is ℘(P )⊆, where the abstraction
map is the “covering” function αP : ℘(Σ)⊆ → ℘(P )⊆ such that αP (S) def= {B ∈
P | B ∩ S �= ∅}, while γP : ℘(P )⊆ → ℘(Σ)⊆ is given by γP (X) = ∪B∈XB; (ii) if
the concrete interpretation function I is based on a concrete Krike structure K, then the
abstract interpretation function I� is simply given by the evaluation of I on an abstract
Kripke structure A = (P, R�,AP, ��) which replaces K, where R� ⊆ P × P is the
abstract transition relation on the abstract state space P . Thus, in this sense, an abstract
Kripke structure always induces an abstract semantics for a language.

Any GI G=(℘(Σ)⊆, α, γ, A) which is equivalent to a GI (℘(Σ)⊆, αP , γP , ℘(P )⊆),
for some partition P ∈ Part(Σ), is called partitioning. It turns out (see [17]) that G
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is partitioning iff γ(A) is closed under complementation. Of course, not every abstrac-
tion of ℘(Σ)⊆ is partitioning. For instance, if s̄ ∈ Σ, A = {⊥, �}, γ(⊥) = {s̄} and
γ(�) = Σ then (℘(Σ)⊆, α, γ, A) is a disjunctive GI, where α denotes the left adjoint
to γ, which is not partitioning because γ(A) = {{s̄}, Σ} is not closed under comple-
mentation. This opens the question whether it is possible to minimally refine a given
abstract domain in order to make it partitioning. Given a GI G = (℘(Σ)⊆, α, γ, A), we
define an equivalence relation ∼G on Σ by identifying those states that are blurred by
the abstraction α: s ∼G t iff α({s}) = α({t}). This is an equivalence relation, namely
a partition in Part(Σ), and therefore it induces a partitioning abstraction that we denote
by P(G). As shown in [17], it turns out that P(G) is the least partitioning refinement of
G, that is: P(G) 
 G and for any partitioning G′ 
 G, G′ 
 P(G).

Example 3.2. Let us consider the abstraction G in Exam-
ple 3.1. From the definition of α, we have that α({s}) =
α({t}) iff s and t belong to the same block of the parti-
tion P = {[13], [245], [6]}, so that P(G) is given by the GI
(℘(Σ), αP , γP , ℘(P )). The abstract domain ℘(P )⊆ can be
therefore represented by the lattice depicted on the right. ��

�

pq�

����
pr� qr�

����

p�

				
q�





 				
r�







⊥

�����
�����

3.3 Strong Preservation

As recalled above, standard abstract model checking [2, 3] is based on state partitions
and abstract Kripke structures. Strong preservation for some language L encodes the
equivalence of abstract and concrete validity for formulas in L. Given a partition P ∈
Part(Σ), let [[·]]P : L → ℘(P ) denote an abstract semantics defined on ℘(P ). For
example, but not necessarily, this can be the abstract semantics induced by an abstract
Kripke structure (P, R�,AP , ��). A partition P ∈ Part(Σ) is strongly preserving (s.p.

for short) for L when for any s ∈ Σ and ϕ ∈ L, s ∈ [[ϕ]] iff αP ({s}) ∈ [[ϕ]]P . It
is known [8, 9, 17] that the coarsest s.p. partition PL for L is given by the following
state equivalence ∼L induced by L: s1 ∼L s2 iff ∀ϕ ∈ L. s1 ∈ [[ϕ]] ⇔ s2 ∈ [[ϕ]].
Obviously, the definition of an abstract Kripke structure which induces a s.p. abstract
semantics depends on the language L. Let us recall some well-known examples [2,
3, 13]. Let K = (Σ, R,AP , �) be a concrete Kripke structure and let Psim, Pbis ∈
Part(Σ) denote, respectively, simulation and bisimulation equivalence on K. Then, the
abstract semantics induced by the abstract Kripke structure (Psim, R∀∃,AP , ��) (where
��(B) = ∪s∈B�(s)) is s.p. for ACTL∗, while that induced by (Pbis, R

∃∃,AP , ��) is s.p.
for CTL∗.

Strong preservation was generalized in [17] to abstract domains as follows.

Definition 3.3. Let S = (Σ, I) and S� = (A, I�) be, respectively, concrete and abstract
semantic structures for L. Let [[·]]S� : L → A be the corresponding abstract semantics.
S� (or [[·]]S� ) is strongly preserving for L (w.r.t. S) when for any S ∈ ℘(Σ) and ϕ ∈ L,
S ⊆ [[ϕ]]S ⇔ α(S) ≤A [[ϕ]]S� . ��

The following simple but key result shows that strong preservation amounts to forward
completeness.

Theorem 3.4. S� is s.p. for L iff the abstract semantics 〈A, [[·]]S�〉 is forward complete.
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It turns out (cf. [17]) that if a s.p. abstract semantics on the abstract domain A exists
then the abstract semantics [[·]]AS induced by A is s.p. as well, so that strong preservation
is an abstract domain property. Hence, we say that the GI G = (℘(Σ)⊆, α, γ, A) (or
simply A when the GI is clear from the context) is s.p. for L if SA is s.p. for L (or,
equivalently, if a s.p. abstract semantics on A exists). In this case, by Theorem 3.4, we
also say that the abstract domain A is language forward complete for L.

Example 3.5. Let us consider again Example 3.1. It turns out that A is not s.p. pre-
serving for L because γ([[EXr]]AS ) = γ(qr�) = {2, 4, 5, 6}, while [[EXr]]S = {5, 6}.
Therefore, for instance, 2 ∈ γ([[EXp]]AS )� [[EXr]]S, or, equivalently, α({2}) ≤ [[EXr]]AS
whilst 2 �∈ [[EXr]]S. ��

4 Abstract Semantics

It is known (see e.g. [7]) that if an abstract domain A is forward complete for all the
constants/operators ofAP∪ Op (where atomic propositions are viewed as 0-ary op-
erators) — here also called operator-wise forward completeness — of some concrete
interpretation of some language L then A is language forward complete for L (i.e., for
all ϕ ∈ L, [[ϕ]]S = γ([[ϕ]]AS )). The converse in general is not true, as shown by the
following example.

Example 4.1. Let us consider the following Kripke structure K and the partitioning
abstract domain A induced by the partition P = {[12], [3]}, i.e. A = ℘(P )⊆.

1p �� 2p �� 3p
��

Let us consider the language L � ϕ ::= p | EXϕ. The Kripke structure K induces the
semantic structure S = ({1, 2, 3}, I) such that I(p) = {1, 2, 3} and I(EX) = pre

�
.

Hence, we have that [[p]]S = {1, 2, 3}, [[EXp]]S = {1, 2, 3} and, for k > 1, [[EXkp]]S =
{1, 2, 3}. On the abstract side we have that [[p]]AS = {[12], [3]}, [[EXp]]AS = {[12], [3]}
and, for k > 1, [[EXkp]]AS = {[12], [3]}. Thus, for any ϕ ∈ L, [[ϕ]]S = γP ([[ϕ]]AS ),
i.e. the abstract domain A is language forward complete for L. On the other hand,
pre

�
(γP (αP ({3}))) = pre

�
({3}) = {2, 3} while γP (αP (pre

�
(γP (αP ({3}))))) =

γP (αP ({2, 3})) = {1, 2, 3}, so that A is not forward complete for pre
�

. ��

Operator-wise forward completeness is easier to check than language forward com-
pleteness. Moreover, the problem of refining an abstract domain in order to make it for-
ward (or backward) complete for a given set of operators admits constructive fixpoint
solutions [12, 18]. It is thus interesting to determine conditions on abstract domains
which guarantee the equivalence of operator-wise and language forward completeness.

Definition 4.2. Let S = (Σ, I) be a semantic structure for L and (℘(Σ)⊆, α, γ, A) be
a GI. The abstract domain A is L-covered by the concrete semantics [[·]]S (or simply by
S) when for any a ∈ A there exists ϕ ∈ L such that γ(a) = [[ϕ]]S. ��

It turns out that this notion of covering ensures the equivalence of operator-wise and
language forward completeness.
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Theorem 4.3. Let A be L-covered by S. Then, A is language forward complete for L

iff A is forward complete for all the constants/operators inAPL ∪ OpL.

As recalled above, given an abstract domain A, if an abstract semantic structure
S� = (A, I�) is s.p. for L then the abstract structure SA = (A, IA) induced by A is
s.p. for L as well. However, the interpretation functions I� and IA may differ.

Example 4.4. Let us consider again Example 4.1. Let us first note that A is not L-
covered by S because {[[ϕ]]S | ϕ ∈ L} = {{1, 2, 3}}. Let us consider the abstract
semantic structure S� = (A, I�) induced by the following abstract Kripke structure:

[12]p �� [3]p
��

Hence, I�(EX) = preR� where preR�(∅) = ∅, preR�({[12]}) = ∅, preR�({[3]}) =
{[12], [3]}, preR�({[12], [3]}) = {[12], [3]}. It is easy to see that S� is s.p. for L. In fact,
we have that γP ([[p]]S�) = γP ({[12], [3]}) = {1, 2, 3} = [[p]]S and γP ([[EXp]]S�) =
γP (preR�({[12], [3]})) = γP ({[12], [3]}) = {1, 2, 3} = [[EXp]]S, so that by Theo-
rem 3.4, S� is s.p. for L. However, it turns out that I�(EX) �= IA(EX)=αP ◦ pre

�
◦γP .

In fact, preR�({[12]}) = ∅ while αP (pre
�

(γP ({[12]}))) = αP (pre
�

({1, 2})) =
αP ({1}) = {[12]}. Thus, S� and SA are two different abstract semantic structures
which are both s.p. for L. ��
Thus, in general, for a given abstract domain A, there may be different s.p. abstract se-
mantic structures defined over A. However, if A is L-covered by the concrete semantic
structure then a unique s.p. abstract semantic structure may exist.

Corollary 4.5. If A is L-covered by S and S� = (A, I�) is s.p. for L then I� = IA.

Thus, when A is L-covered by S, we have that a unique interpretation of constants/
functions on A which is s.p. for L may exist, namely their best correct approximations
on A.

Example 4.6. Let us consider the language L � ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EXϕ and the
following Kripke structure K with transition relation R.

Concrete
Kripke structure K 1p ��

�����
���

� 2q
��

3p

��������� �� 4r

		

[2]q
��

Abstract
Kripke structure A [13]p










�������

[4]r

		

This induces a concrete semantic structure S = ({1, 2, 3, 4}, I) where I(p) = {1, 3},
I(q) = {2}, I(r) = {4}, I(¬) = �, I(∧) = ∩ and I(EX) = preR. Let us consider
the state partition P = {13, 2, 4} and the corresponding abstract Kripke structure A

depicted above where the transition relation is given by R∃∃. Let us consider the abstract
semantic structure S� = (A, I�) induced by A, i.e. A = ℘(P )⊆ and I�(p) = {13},
I�(q) = {2}, I�(r) = {4}, I�(¬) = �, I�(∧) = ∩ and I�(EX) = preR∃∃ .

It is easy to check that I�(¬), I�(∧) and I�(EX) are indeed the best correct ap-
proximations on A of, respectively, the concrete operations of set complementation
� = I(¬), set interesection ∩ = I(∧) and preR = I(EX). Hence, I� = IA, namely
S� = SA.
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It turns out that A is L-covered by S. In fact, since the set of concrete semantics of
formulas in L is closed under set complementation we have that any union of blocks of
P belongs to {[[ϕ]]S | ϕ ∈ L}, so that img(γP ) ⊆ {[[ϕ]]S | ϕ ∈ L}.

We also have that SA is s.p. for L. This happens because A is forward complete
for the constants/operations of L. In fact, all the concrete operations �, ∩ and preR

map unions of blocks in ℘(P ) into unions of blocks in ℘(P ) and therefore the abstract
domain A = ℘(P ) is forward complete for them. For example, let us observe that this
holds for preR because preR({1, 3}) = ∅, preR({2}) = {1, 3, 4} and preR({4}) =
{1, 3}. Hence, since A is operator-wise forward complete we have that A is language
forward complete for L as well and therefore, by Theorem 3.4, SA is s.p. for L.

Consequently, by Corollary 4.5, SA is the unique abstract semantic structure on the
abstract domain A which is s.p. for L. ��

It may also happen that one can define a s.p. abstract semantics on some partition P
although this abstract semantics cannot be derived from an abstract Kripke structure on
P , as shown by the following example.

Example 4.7. Consider the following simple language L � ϕ ::= p | AXXϕ and the
following Kripke structure K where R is the transition relation.

��������r
stop �� ��������ry

stop �� ��������g
go �� ��������y

go
��

This models a four-state traffic light controller (like in the U.K. and in Germany). This
gives rise to a concrete semantic structure S = ({r, ry, g, y}, I) where I(stop) =
{r, ry}, I(go) = {g, y} and I(AXX) = p̃reR2 . Hence, according to the standard inter-
pretation I(AXX) = p̃reR2 , we have that s ∈ [[AXXϕ]]S iff for any path π0π1π2 . . . in
K starting from s = π0, we have that π2 ∈ [[ϕ]]S. Observe that [[AXXstop]]S = {g, y}
and [[AXXgo]]S = {r, ry}. Consider the partition P = {[r, ry], [g, y]} and the corre-
sponding partitioning abstract domain A = ℘(P )⊆. Hence, for the corresponding ab-
stract semantic structure SA = (A, IA) we have that IA(stop) = {[r, ry]}, IA(go) =
{[g, y]} and IA(AXX) = αP ◦ p̃reR2 ◦ γP , so that

IA(AXX)(∅) = ∅;
IA(AXX)({[r, ry]}) = {[g, y]}; IA(AXX)({[g, y]}) = {[r, ry]};
IA(AXX)({[r, ry], [g, y]}) = {[r, ry], [g, y]}.

By Theorem 3.4, it turns out that SA is s.p. for L because A is forward complete for
p̃reR2 . In fact, it turns out that p̃reR2 maps unions of blocks in P to unions of blocks
in P because: p̃reR2(∅) = ∅, p̃reR2({r, ry}) = {g, y}, p̃reR2({g, y}) = {r, ry} and
p̃reR2({r, ry, g, y}) = {r, ry, g, y}.

However, let us show that there exists no abstract transition relation R� ⊆ P × P
on the partition P such that the abstract Kripke structure A = (P, R�,AP, ��) induces
an abstract semantic structure which is s.p. for L. Assume by contradiction that such
an abstract Kripke structure A exists and let S� be the corresponding induced abstract
semantic structure. Let B1 = [r, ry] ∈ P and B2 = [g, y] ∈ P . Since r ∈ [[AXXgo]]S
and g ∈ [[AXXstop]]S, by strong preservation, it must be that B1 ∈ [[AXXgo]]S� and
B2 ∈ [[AXXstop]]S� . Thus, necessarily, (B1, B2), (B2, B1) ∈ R�. This leads to the
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contradiction B1 �∈ [[AXXgo]]S� . In fact, if R� = {(B1, B2), (B2, B1)} then we would
have that B1 �∈ [[AXXgo]]S� . Moreover, if, instead, (B1, B1) ∈ R� (the case (B2, B2)
is analogous), then we would still have that B1 �∈ [[AXXgo]]S� . Even more, along the
same lines it is not difficult to show that no proper abstract Kripke structure induces an
abstract semantic structure which strongly preserves L, because even if we split one of
the two blocks B1 or B2 we still cannot define an abstract transition relation ensuring
strong preservation for L. ��

5 Fixpoints in Abstract Semantics

The above abstract interpretation-based approach to abstract model checking systemat-
ically defines the abstract semantics by approximating the interpretation of logical/tem-
poral operators through their best correct approximations on the abstract domain. In
principle, this can be done for any logical/temporal operator. However, when a tempo-
ral operator f can be expressed as a least/greatest fixpoint of another temporal operator
g, e.g. f(S) = lfp(λX.g(X, S)), the best correct approximation α ◦ f ◦ γ might not
be characterizable as a least/greatest fixpoint. Ideally, we would aim at approximat-
ing g through some abstract operator g� in order to be able to characterize α ◦ f ◦ γ
as the abstract least fixpoint of g�. Let us illustrate this through the case of the “Fi-
nally” operator EF, whose standard interpretation can be characterized as a fixpoint:
EF(S) = lfp(λX.S ∪ EX(X)). The best correct approximation of EF w.r.t. a Ga-
lois insertion (℘(Σ)⊆, α, γ, A) is the abstract function α ◦ EF ◦ γ : A → A. How-
ever, this definition gives us no clue for computing α ◦ EF ◦ γ as a least fixpoint.
By contrast, in standard abstract model checking the abstract interpretation of the lan-
guage operators is based on an abstract transition relation defined on the abstract state
space, i.e. an abstract Kripke structure, so that it is enough to compute the least fix-
point lfp(λX.S ∪ EX(X)) on the abstract Kripke structure. For example, consider the
language L � ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EFϕ. Let K = (Σ, R,AP, �) be a concrete
Kripke structure. One can easily see that if P ∈ Part(Σ) is s.p. for L then the abstract
Kripke structure on P with abstract transition relation R∃∃ ⊆ P × P is s.p. for L. In
this case, while the concrete fixpoint is given by EF(S) = lfp(λX.S ∪ preR(X)), for
any S ⊆ Σ, the abstract fixpoint is lfp(λX�.S� ∪P preR∃∃(X�)), for any S� ⊆ P ,
where ∪P is union of blocks in P , namely the least upper bound of the abstract do-
main ℘(P )⊆. Recall that the abstract domain ℘(P )⊆ is related to the concrete domain
℘(Σ)⊆ by the GI GP = (℘(Σ)⊆, αP , γP , ℘(P )⊆). The key point to note here is that
λ〈X�, Y �〉. X� ∪A preA

R(Y �) is indeed the best correct approximation of the concrete
operation λ〈X, Y 〉. X ∪ preR(Y ) through the GI GP . These observations lead us to the
following generalization.

Theorem 5.1. Let C be a complete lattice, (C, α, γ, A) be a GI and f : Cn+1 → C be
monotone. Let F

def= λ	c ∈ Cn. lfp(λx.f(c1, ..., x, ..., cn)). If A is forward complete for
F then FA = λ	a ∈ An.lfp(λx.fA(a1, ..., x, ..., an)).

Let us remark that the above result can be also stated by duality for greatest fixpoints as
follows: if (C≥, α, γ, A≥) is a GI, F

def= λ	c ∈ Cn. gfp(λx.f(c1, ..., x, ..., cn)) and A is
forward complete for F then FA = λ	a ∈ An.gfp(λx.fA(a1, ..., x, ..., an)).
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By Theorems 3.4 and 4.3, given a language L and a semantic structure S for L, if
A is L-covered by S then A is forward complete for the constants/operators inAPL ∪
OpL iff SA is s.p. for L. Thus, in this case, by Theorem 5.1, if SA is s.p. for L and
OpL includes an operator f which can be expressed as a least/greatest fixpoint of
some operation g then the best correct approximation of f on A can be obtained as the
abstract least/greatest fixpoint of the best correct approximation of g on A.

Example 5.2. Let us consider L � ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | EFϕ and the follow-
ing Kripke structure K with transition relation R which induces a concrete semantic
structure S.

1p �� 2q �� 3p �� 4q �� 5q �� 6r
��

Let us consider the partition P = {[1], [2], [3], [45], [6]} and the corresponding abstract
Kripke structure A depicted below where the transition relation is given by R∃∃.

[1]p �� [2]q �� [3]p �� [45]q ��




[6]r




Let SA be the abstract semantic structure induced by the abstract domain A = ℘(P )⊆.
It turns out that SA is s.p. for L because A is forward complete for (AP L and) OpL =
{∩, �,EF}: in fact, it is easy to check that A is forward complete for EF because EF
maps unions of blocks in P to unions of blocks in P . Since A is forward complete for
EF and EF(S) = lfp(λX.f(S, X)), where f(S, X) def= S ∪preR(X), by Theorem 5.1
we have that EFA = λS�.lfp(λX�.fA(S�, X�)) : ℘(P ) → ℘(P ). Moreover, as dis-
cussed above, fA(S�, X�) = αP (f(γP (S�), γP (X�))) = S� ∪P preR∃∃(X�) so that
EFA = λS�. lfp(λX�.S� ∪ preR∃∃(X�)), namely the best correct approximation EFA

can be computed as the least fixpoint characterization of the “finally” operator on the
above abstract Kripke structure A. ��

6 Applications

We are mainly interested in applying Theorem 5.1 to standard fixpoint-based operators
of well known temporal languages (cf. [3]), as recalled in Table 1.

Table 1. Temporal operators in fixpoint form

“Finally” AF(S) = lfp(λX.S ∪ AX(X))
EF(S) = lfp(λX.S ∪ EX(X))

“Globally” AG(S) = gfp(λX.S ∩ AX(X))
EG(S) = gfp(λX.S ∩ EX(X))

“(Strong) Until” AU(S, T ) = lfp(λX.T ∪ (S ∩ AX(X)))
EU(S, T ) = lfp(λX.T ∪ (S ∩ EX(X)))

“Weak Until” AUw (S, T ) = gfp(λX.T ∪ (S ∩ AX(X)))
EUw (S, T ) = gfp(λX.T ∪ (S ∩ EX(X)))

“(Weak) Release” AR(S, T ) = gfp(λX.T ∩ (S ∪ AX(X)))
ER(S, T ) = gfp(λX.T ∩ (S ∪ EX(X)))

“Strong Release” ARs(S, T ) = lfp(λX.T ∩ (S ∪ AX(X)))
ERs(S, T ) = lfp(λX.T ∩ (S ∪ EX(X)))
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6.1 Partitioning Abstractions

Let P ∈ Part(Σ) be any partition and let G = (℘(Σ)⊆, αP , γP , ℘(P )⊆) be the corre-
sponding partitioning GI. By Proposition 2.1 (i), G� = (℘(Σ)⊇, α�

P , γP , ℘(P )⊇) is
a GI where α�

P (S) = {B ∈ P | B ⊆ S}. Hence, while G over-approximates a set
S by the set of blocks in P which have a nonempty intersection with S, G� under-
approximates S by the set of blocks in P which are contained in S. Thus, we can apply
Theorem 5.1 to G for least fixpoints and to G� for greatest fixpoints. Since G is disjunc-
tive, Let us note that by Proposition 2.1 (ii), G is forward complete for some function
F iff G� is forward complete for F . Hence, the hypotheses of Theorem 5.1 for least
and greatest fixpoints actually coincide. Furthermore, in this case, the best correct ap-
proximations of F w.r.t. G and G� coincide. In order to distinguish which GI has been
applied, we use fA to denote the best correct approximation of some concrete function
f w.r.t. G while f�A denotes the best correct approximation of f w.r.t. G�.

For the standard temporal fixpoint-based operators in Table 1, the following result
shows that their best correct approximations on a s.p. partitioning abstract domain pre-
serve their characterizations as least/greatest fixpoints.

Corollary 6.1. Let P ∈ Part(Σ) and G = (℘(Σ)⊆, αP , γP , A = ℘(P )⊆) be the
corresponding partitioning GI. Assume that G is forward complete for some fixpoint-
based operator F in Table 1. Then, the corresponding best correct approximations of
F w.r.t. G are as follows:

AFA(S�) = lfp(λX�.S� ∪P p̃reA
R(X�))

EFA(S�) = lfp(λX�.S� ∪P preA
R(X�))

AGA(S�) = gfp(λX�.S� ∩P p̃re�A
R (X�))

EGA(S�) = gfp(λX�.S� ∩P pre�A
R (X�))

AUA(S�, T �) = lfp(λX�.T � ∪P (S� ∩P p̃reA
R(X�)))

EUA(S�, T �) = lfp(λX�.T � ∪P (S� ∩P preA
R(X�)))

AUA
w(S�, T �) = gfp(λX�.T � ∪P (S� ∩P p̃re�A

R (X�)))
EUA

w(S�, T �) = gfp(λX�.T � ∪P (S� ∩P pre�A
R (X�)))

ARA(S�, T �) = gfp(λX�.T � ∩P (S� ∪P p̃re�A
R (X�)))

ERA(S�, T �) = gfp(λX�.T � ∩P (S� ∪P pre�A
R (X�)))

ARA
s (S�, T �) = lfp(λX�.T � ∩P (S� ∪P p̃reA

R(X�)))
ERA

s (S�, T �) = lfp(λX�.T � ∩P (S� ∪P preA
R(X�)))

It turns out that the best correct approximations preA
R and p̃re�A

R can be characterized
through the abstract transition relation R∃∃ ⊆ P × P as follows.

Lemma 6.2. preA
R = preR∃∃ and p̃re�A

R = p̃reR∃∃ .

Let Op ⊆ {EX, AX, EF, AG, EU, AUw, AR, ERs} be a set of temporal fixpoint-based
operators and let L � ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | f(ϕ1, . . . , ϕar(f)), where f ∈ Op, be
the corresponding language. Let K = (Σ, R,AP, �) be a concrete Kripke structure and
S be the concrete semantic structure for L induced by K. Consider now a partition
P ∈ Part(Σ) and the corresponding abstract semantic structure SP = (℘(P ), IP ).
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Assume that SP is s.p. for L. As a consequence of the above results, it turns out that
one can define an abstract Kripke structure on P whose abstract transition relation is
R∃∃ which induces precisely SP .

Corollary 6.3. If SP is s.p. for L then SP is induced by the abstract Kripke structure
AP = (P, R∃∃,AP, �P ), where �P

def= λB ∈ P.{p ∈AP | B ∈ IP (p)}.

Thus, a strongly preserving abstract model checking of the language L can be per-
formed on the abstract Kripke structure AP .

Example 6.4. Let us consider L � ϕ ::= p | ϕ1 ∧ ϕ2 | ¬ϕ | AGϕ and the following
Kripke structure K and let S be the concrete semantic structure for L induced by K.

Concrete
Kripke structure K 1p ��

�����
���

� 2q
��

3p �� 4r

		

[2]q
��

Abstract
Kripke structure AP

[13]p










�������

[4]r

		

Let us consider the partition P = {[13], [2], [4]} and the corresponding abstract seman-
tic structure SP = (℘(P ), IP ). It turns out that SP is s.p. for L. This is a consequence
of the fact that the abstract domain ℘(P ) is operator-wise forward complete for L hence
℘(P ) is language forward complete for L and in turn, by Theorem 3.4, SP is s.p. for L.
In fact, the following equalities show that ℘(P ) is forward complete for AG, because
AG maps unions of blocks in P to unions of blocks in P :

AG(∅) = AG({4}) = AG({1, 3}) = AG({1, 3, 4}) = ∅;
AG({2}) = AG({1, 2, 3}) = {2};
AG({2, 4}) = {2, 4};
AG({1, 2, 3, 4}) = {1, 2, 3, 4}.

Thus, by Corollary 6.3, it turns out that SP is induced by the abstract Kripke structure
AP = (P, R∃∃,APP , �P ) which is depicted above. Let us notice that P is not a bisim-
ulation on K because the states 1 and 3 belong to the same block [13] and 1�2 while
3 ��2. Thus, strong preservation of L on the abstract Kripke structure AP , with abstract
transition relation R∃∃, cannot be obtained as a consequence of standard strong preser-
vation results [2, 3, 13]. ��

Example 6.5. Let us consider L � ϕ ::= p | ϕ ∧ ϕ2 | ¬ϕ | EGϕ and the following
Kripke structure K and let S be the concrete semantic structure for L induced by K.

K : 1p �� 2p �� 3q
��

A∃∃ : [12]p ��
��

[3]q
��

A∀∃ : [12]p [3]q
��

In this case, EG is not included among the operators of Corollary 6.3. Let us consider
the partition P = {[13], [2], [4]}, the abstract domain A = ℘(P ) and the corresponding
abstract semantic structure SA = (A, IA). It turns out that SA is s.p. for L. As in
Example 6.4, by Theorem 3.4, this derives from the following equalities which show
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that A is forward complete for EG, because EG maps unions of blocks in P to unions
of blocks in P :

EG(∅) = EG({1, 2}) = ∅; EG({3}) = {3}; EG({1, 2, 3}) = {1, 2, 3}.

Let us point out here that both the abstract Kripke structures A∃∃ and A∀∃ on P depicted
above, whose abstract transition relations are, respectively, R∃∃ and R∀∃, are not s.p.
for L. This is shown by the following counterexamples:

[1, 2] |=A∃∃ EGp while 1 �|=K EGp; [1, 2] �|=A∀∃ EG(p ∨ q) while 1 |=K EG(p ∨ q).

On the other hand, we can exploit Corollary 6.1 so that EGA(S�) = gfp(λX�.S� ∩P

pre�A
R (X�)) , where pre�A

R = α�
P ◦ preR ◦γP . For instance, we have that

pre�A
R ({[3]}) = α�

P (preR(γP ({[3]}))) = α�
P (preR({3})) = α�

P ({2, 3}) = {[3]}.

Likewise, pre�A
R (∅) = pre�A

R ({[12]}) = ∅ and pre�A
R ({[12], [3]}) = {[12], [3]}. As

an example, we have that EGA({[3]}) = gfp(λX�.{[3]} ∩ pre�A
R (X�)) = {[3]}. ��

6.2 Disjunctive Abstractions

In model checking, disjunctive abstract domains have been implicitely used by Hen-
zinger et al.’s [14] algorithm for computing simulation equivalence: in fact, this algo-
rithm maintains, for any state s ∈ Σ, a set of states sim(s) ⊆ Σ which represents
exactly a disjunctive abstract domain. As observed in Section 3.2, any partitioning ab-
stract domain is disjunctive while the converse is not true.

Let G = (℘(Σ)⊆, α, γ, A) be a disjunctive GI. By Proposition 2.1 (i), G� =
(℘(Σ)⊇, α�, γ, A≥) is a GI where α�(S) = ∨{a ∈ A | γ(a) ⊆ S}. Thus, we can
apply Theorem 5.1 to G for least fixpoints and Theorem 5.1 to G� for greatest fixpoints.
Also, as already observed in Section 6.1, the hypotheses of Theorem 5.1 for least and
greatest fixpoints coincide and, in this case, the best correct approximations of some
concrete function w.r.t. G and G� coincide. We use fA to denote the best correct ap-
proximation of some concrete function f w.r.t. G while f�A denotes the best correct
approximation of f w.r.t. G�. Here, we can generalize Corollary 6.1 to disjunctive ab-
stract domains for the case of “finally” and “globally” operators.

Corollary 6.6. Let G = (℘(Σ)⊆, α, γ, A) be a disjunctive GI .Assume that G is forward
complete for some operator F ∈ {AF,EF,AG,EG}. Then, the corresponding best
correct approximations of F w.r.t. G are as follows:

AFA(S�) = lfp(λX�.S� ∪ p̃reA
R(X�)); EFA(S�) = lfp(λX�.S� ∪ preA

R(X�));

AGA(S�)=gfp(λX�.S� ∩ p̃re�A
R (X�)); EGA(S�) = gfp(λX�.S� ∩ pre�A

R (X�)).

Example 6.7. Let us consider the concrete Kripke structure K of Example 5.2 and the
language L � ϕ ::= p | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2 | EFϕ. Let Atoms def= {[1], [2], [3], [6], [245]}
and let A be the closure under arbitrary unions of Atoms. Let (℘(Σ)⊆, α, id, A⊆) be
the corresponding disjunctive GI where α on singletons in ℘(Σ) is as follows:

α({1}) = [1]; α({2}) = [2]; α({3}) = [3];
α({4}) = [245]; α({5}) = [245]; α({6}) = [6].
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It turns out that A is forward complete for EF because EF maps atoms to unions of
atoms and EF is additive:

EF({1}) = {1}; EF({2}) = {1, 2}; EF({3}) = {1, 2, 3};
EF({6}) = {1, 2, 3, 4, 5, 6}; EF({2, 4, 5}) = {1, 2, 3, 4, 5}.

Thus, we can apply Corollary 6.6 so that EFA(S�) = lfp(λX�.S� ∪preA
R(X�)), where

preA
R = α ◦ preR ◦id. For instance, preA

R on the atom [245] is as follows:

preA
R([245]) = α(preR({2, 4, 5})) = α({1, 3, 4}) = [12345].

Likewise, we have that preA
R on Atoms is as follows:

preA
R([1]) = ∅; preA

R([2]) = [1]; preA
R([3]) = [2]; preA

R([6]) = [2456].

As an example, EFA([6]) = lfp(λX�.[6] ∪ preA
R(X�)) is computed as follows:

X�
0 = ∅;

X�
1 = [6] ∪ preA

R(∅) = [6] ∪ ∅ = [6];

X�
2 = [6] ∪ preA

R([6]) = [6] ∪ [2456] = [2456];

X�
3 = [6] ∪ preA

R([2456]) = [6] ∪ [123456] = [123456] (fixpoint)

How to obtain an abstract Kripke structure which is s.p. for L? This can be obtained
from the coarsest s.p. partition PL for L (cf. Section 3.3). As a consequence of results
in [17], it turns out that PL = {[1], [2], [3], [6], [45]} because ℘(PL) is exactly the least
partitioning refinement of A (cf. Section 3.2). One can define a s.p. abstract Kripke
structure A on PL by considering R∃∃ as abstract transition relation:

[1]p �� [2]q �� [3]p �� [45]q ��




[6]r




For the abstract Kripke structure A, EF�([6]) = lfp(λX�.{[6]}∪preR∃∃(X�)) is com-
puted as follows:

X�
0 = ∅;

X�
1 = {[6]} ∪ preR∃∃(∅) = {[6]};

X�
2 = {[6]} ∪ preR∃∃({[6]}) = {[6]} ∪ {[6], [45]} = {[6], [45]};

X�
3 = {[6]} ∪ preR∃∃({[6], [45]}) = {[6]} ∪ {[6], [45], [3]} = {[6], [45], [3]};

X�
4 ={[6]} ∪ preR∃∃({[6], [45], [3]})={[6]} ∪ {[6], [45], [3], [2]}={[6], [45], [3], [2]};

X�
5 = {[6]} ∪ preR∃∃({[6], [45], [3], [2]}) = {[6]} ∪ {[6], [45], [3], [2], [1]}

= {[6], [45], [3], [2], [1]} (fixpoint)

The point to observe here is that this standard approach needs a greater number of
iterations than our abstract interpretation-based approach to reach the fixpoint. ��
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