
Ranking Abstraction of Recursive Programs�

Ittai Balaban1, Ariel Cohen1, and Amir Pnueli1,2

1 Dept. of Computer Science, New York University
2 Dept. of Computer Science, Weizmann Institute of Science,

Rehovot 76100, Israel

Abstract. We present a method for model-checking of safety and liveness prop-
erties over procedural programs, by combining state and ranking abstractions
with procedure summarization. Our abstraction is an augmented finitary abstrac-
tion [KP00, BPZ05], meaning that a concrete procedural program is first aug-
mented with a well founded ranking function, and then abstracted by a finitary
state abstraction. This results in a procedural abstract program with strong fair-
ness requirements which is then reduced to a finite-state fair discrete system (FDS)
using procedure summarization. This FDS is then model checked for the property.

1 Introduction

Procedural programs with unbounded recursion present a challenge to symbolic model-
checkers since they ostensibly require the checker to model an unbounded call stack.
In this paper we propose the integration of ranking abstraction [KP00, BPZ05], finitary
state abstraction, procedure summarization [SP81], and model-checking into a com-
bined method for the automatic verification of LTL properties of infinite-state recursive
procedural programs. The inputs to this method are a sequential procedural program
together with state and ranking abstractions. The output is either “success”, or a coun-
terexample in the form of an abstract error trace. The method is sound, as well as com-
plete, in the sense that for any valid property, a sufficiently accurate joint (state and
ranking) abstraction exists that establishes its validity.

The method centers around a fixpoint computation of procedure summaries of a
finite-state program, followed by a subsequent construction of a behaviorally equiv-
alent nondeterministic procedure-free program. Since we begin with an infinite-state
program that cannot be summarized automatically, a number of steps involved in ab-
straction and LTL model-checking need to be performed over the procedural (unsum-
marized) program. These include augmentation with non-constraining observers and
fairness constraints required for LTL verification and ranking abstraction, as well as
computation of state abstraction. Augmentation with global observers and fairness is
modeled in such a way as to make the associated properties observable once procedures
are summarized. In computing the abstraction, the abstraction of a procedure call is han-
dled by abstracting “everything but” the call itself, i.e., local assignments and binding
of actual parameters to formals and of return values to variables.

� This research was supported in part by NSF grant CCR-0205571, ONR grant N00014-99-1-
0131, and SRC grant 2004-TJ-1256.

E.A. Emerson and K.S. Namjoshi (Eds.): VMCAI 2006, LNCS 3855, pp. 267–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

268 I. Balaban, A. Cohen, and A. Pnueli

The method relies on machinery for computing abstraction of first order formulas, but
is orthogonal as to how abstraction is actually computed. We have implemented a pro-
totype based on the TLV symbolic model-checker [Sha00] by extending it with a model
of procedural programs. Specifically, given a symbolic finite-state model of a program,
summaries are computed using BDD techniques in order to derive a fair discrete sys-
tem (FDS) free of procedures to which model-checking is applied. The tool is provided,
as input, with a concrete program and predicates and ranking components. It computes
predicate abstraction [GS97] automatically using the method proposed in [BPZ05]. We
have used this implementation to verify a number of canonical examples, such as Acker-
man’s function, the Factorial function and a procedural formulation of the 91 function.

While most components of the proposed method have been studied before, our ap-
proach is novel in that it reduces the verification problem to that of symbolic model-
checking. Furthermore, it allows for application of ranking and state abstractions while
still relegating all summarization computation to the model-checker. Another advantage
is that fairness is supported directly by the model and related algorithms, rather than it
being specified in a property.

1.1 Related Work

Recent work by Podelski et al. [PSW05] generalizes the concept of summaries to cap-
ture effects of computations between arbitrary program points. This is used to formulate
a proof rule for total correctness of recursive programs with nested loops, in which a
program summary is the auxiliary proof construct (analogous to an inductive invariant
in an invariance proof rule). The rule and accompanying formulation of summaries rep-
resent a framework in which abstract interpretation techniques and methods for ranking
function synthesis can be applied. In this manner both [PSW05] and our work aim at
similar objectives. The main difference from our work is that, while we strive to work
with abstraction of predicates, and use relations (and their abstraction) only for the
treatment of procedures, the general approach of [PSW05] is based on the abstraction
of relations even for the procedure-less case. A further difference is that, unlike our
work, [PSW05] does not provide an explicit algorithm for the verification of aribtrary
LTL properties. Instead it relies on a general reduction from proofs of termination to
LTL verification.

Recursive State Machines (RSMs) [AEY01, ABE+05] and Extended RSMs
[ACEM05] enhance the power of finite state machines by allowing for the recursive
invocation of state machines. They are used to model the control flow of programs con-
taining recursive procedure calls, and to analyze reachability and cycle detection. They
are, however, limited to programs with finite data. On the other hand, the method that
we present in this paper can be used to verify recursive programs with infinite data
domains by making use of ranking and finitary state abstractions.

In [BR00], an approach similar to ours for computing summary relations for pro-
cedures is implemented in the symbolic model checker Bebop. However, while Bebop
is able to determine whether a specific program statement is reachable, it cannot prove
termination of a recursive boolean program or of any other liveness property.

The paper is organized as follows: In Section 2 we present the formal model of
(procedure-free) fair discrete systems, and model-checking of LTL properties over them.

Ranking Abstraction of Recursive Programs 269

Section 3 formalizes recursive procedural programs presented as flow-graphs. In Sec-
tion 4 we present a method for verifying the termination of procedural programs using
ranking abstraction, state abstraction, summarization, construction of a procedure-free
FDS, and finally, model-checking. In Section 5 we present a method for LTL model-
checking of recursive procedural programs. Finally, Section 6 concludes and discusses
future work.

2 Background

2.1 Fair Discrete Systems

The computation model, fair discrete systems (FDS) D : 〈V, Θ, ρ, J , C〉, consists of the
following components:

• V : A finite set of variables. We define a state s to be an interpretation of the
variables in V . Denoted by Σ is the set of all states of V .

• Θ : The initial condition. It is an assertion characterizing all the initial states of the
FDS. A state is called initial if it satisfies Θ.

• ρ : A transition relation. This is an assertion ρ(V, V ′), relating a state s ∈ Σ to its
D-successor s′ ∈ Σ.

• J : A set of justice (weak fairness) requirements (assertions).
• C : A set of compassion (strong fairness) requirements (assertions). Each compas-

sion requirement is a pair 〈p, q〉 of state assertions.

A run of an FDS is a sequence of states σ : s0, s1, ..., satisfying the following:

• Initiality: s0 is initial, i.e., s0 |= Θ.
• Consecution: For every j ≥ 0, the state sj+1 is a D-successor of the state sj .

A computation of an FDS is an infinite run which also satisfies:

• Justice: For every J ∈ J , σ contains infinitely many states satisfying J .
• Compassion: For every 〈p, q〉 ∈ C, σ should include either only finitely many p-

states, or infinitely many q-states.

An FDS D is said to be feasible if it has at least one computation.
A synchronous parallel composition of systems D1 and D2, denoted by D1 |||D2, is

specified by the FDS D : 〈V, Θ, ρ, J , C〉, where

V = V1 ∪ V2, ρ = ρ1 ∧ ρ2, Θ = Θ1 ∧ Θ2,
J = J1 ∪ J2, C = C1 ∪ C2

Synchronous parallel composition is used for the construction of an observer system O,
which evaluates the behavior of another system D. That is, running D ||| O will allow
D to behave as usual while O evaluates it.

2.2 Linear Temporal Logic – LTL

LTL is an extension of propositional logic with two additional basic temporal operators,
� (Next) and U (Until), from which � (Eventually), � (Always), and W (Waiting-

270 I. Balaban, A. Cohen, and A. Pnueli

for) can be derived. An LTL formula is a combination of assertions using the boolean
operators ¬ and ∧ and the temporal operators:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | � ϕ | ϕUϕ

An LTL formula ϕ is satisfied by computation σ, denoted σ |= ϕ, if ϕ holds at the
initial state of σ. An LTL formula ϕ is D-valid, denoted D |= ϕ, if all the computations
of an FDS D satisfy ϕ.

Every LTL formula ϕ is associated with a temporal tester, an FDS denoted by T [ϕ].
A tester contains a distinguished boolean variable x such that for every computation σ
of T [ϕ], for every position j ≥ 0, x[sj] = 1 ⇐⇒ (σ, j) |= ϕ. This construction is
used for model-checking an FDS D in the following manner:

• Construct a temporal tester T [¬ϕ] which is initialized with x = 1, i.e. an FDS that
comprises just those computations that falsify ϕ.

• Form the synchronous parallel composition D ||| T [¬ϕ], i.e. an FDS for which all
of its computations are of D and which violate ϕ.

• Check feasibility of D ||| T [¬ϕ]. D |= ϕ if and only if D ||| T [¬ϕ] is infeasible.

3 Recursive Programs

A program P consists of m+1 modules: P0, P1, . . . , Pm, where P0 is the main module,
and P1, . . . , Pm are procedures that may be called from P0 or from other procedures.

P1(in �x; out �z) Pm(in �x; out �z)P0(in �x; out �z)

Each module Pi is presented as a flow-graph with its own set of locations Li =
{�i

0, �
i
1, . . . , �

i
t}. It must have �i

0 as its only entry point, �i
t as its only exit, and every

other location must be on a path from �i
0 to �i

t. It is required that the entry node has no
incoming edges and that the terminal node has no outgoing edges.

The variables of each module Pi are partitioned into �y = (�x; �u;�z). We refer to �x, �u,
and �z as the input, working (local), and output variables, respectively. A module cannot
modify its own input variables.

3.1 Edge Labels

Each edge in the graph is labeled by an instruction that has one of the following forms:

• A local change d(�y, �y ′), where d is an assertion over two copies of the module
variables.

e
�a �c

d(�y, �y ′)
(1)

It is required that d(�y, �y ′) implies �x ′ = �x.

Ranking Abstraction of Recursive Programs 271

• A procedure call din(�y, �x2); Pj(�x2, �z2); dout (�y, �z2, �y
′), where �x2 and �z2 are fresh

copies of the input and output parameters �x and �z, respectively.

�a �c

Pj(�x2, �z2) dout(�y, �z2, �y
′)din(�y, �x2)

This instruction represents a procedure call to procedure Pj where several elements
are non-deterministic. The assertion din(�y, �x2) determines the actual arguments
that are fed in the variables of �x2. It may also contain an enabling condition under
which this transition is possible. The assertion dout (�y, �z2, �y

′) updates the module
variables �y based on the values returned by the procedure Pj via the output parame-
ters �z2. It is required that dout (�y, �z2, �y

′) implies �x ′ = �x. Unless otherwise stated,
we shall use the following description as abbreviation for a procedure call.

e
�a �c

din(�y, �x2); Pj(�x2, �z2); dout (�y, �z2, �y
′)

(2)

Example 1 (The 91 Function). Consider the functional program specified by

F (x) = if x > 100 then x − 10 else F (F (x + 11)) (3)

We refer to this function as F91. Fig. 1 shows the procedural version of F91. In the
figure, as well as subsequent examples, the notation �v1 := f(�v2) denotes �v′1 = f(�v2) ∧
pres(�y − �v2), with pres(�v) defined as �v′ = �v, for some set of variables �v.

0

1

2
x > 100 ∧ (z := x − 10)

x2 = u;
P (x2, z2);
z := z2;

x ≤ 100 ∧ x2 = x + 11;
P (x2, z2);
u := z2;

Fig. 1. Procedural program F91

3.2 Computations

A computation of a program P is a maximal (possibly infinite) sequence of states and
their labeled transitions:

σ : 〈�0
0; (ξ, �⊥, �⊥)〉 λ1−→ 〈�1;�ν1〉

λ2−→ 〈�2;�ν2〉 · · ·

where each �νi = (ξi, ηi, ζi) is an interpretation of the variables (�x, �u, �z). The values �⊥
denote uninitialized values. Labels in the transitions are either names of edges in the

program or the special label return. Each transition 〈�;�ν〉 λ−→ 〈�′;�ν′〉 in a computation
must be justified by one of the following cases:

Assignment: There exists an assignment edge e of the form presented in Diagram (1),
such that � = �a, λ = e, �′ = �c and 〈�ν, �ν′〉 |= d(�y, �y′).

272 I. Balaban, A. Cohen, and A. Pnueli

Procedure Call: There exists a call edge e of the form presented in Diagram (2), such
that � = �a, λ = e, �′ = �j

0, and �ν′ = (ξ′, �⊥, �⊥), where 〈�ν, ξ′〉 |= din(�y, �x2).

Return: There exists a procedure Pj (the procedure from which we return), such that
� = �j

t (the terminal location of Pj). The run leading up to 〈�;�ν〉 has a suffix of the form

〈�1;�ν1〉
λ1−→ 〈�j

0; (ξ; �⊥; �⊥)〉 λ2−→ · · · λk−→ 〈�; (ξ; η; ζ)〉
︸ ︷︷ ︸

σ1

such that the segment σ1 is balanced (has an equal number of call and return labels),
λ1 = e is a call edge of the form presented in Diagram (2), where �′ = �c, λ = return,
and 〈�ν1, ζ, �ν′〉 |= dout (�y, �z2, �y

′).
This definition uses the computation itself in order to retrieve the context as it were
before the corresponding call to procedure Pj .

For a run σ1 : 〈�0
0; (ξ, �⊥, �⊥)〉 λ1−→ · · · λk−→ 〈�;�ν〉, we define the level of state 〈�;�ν〉,

denoted Lev(〈�;�ν〉), to be the number of “call” edges in σ1 minus the number of “re-
turn” edges.

4 Verifying Termination

This section presents a method for verifying termination of procedural programs. Ini-
tially, the system is augmented with well-founded ranking components. Then a finitary
state abstraction is applied, resulting in a finite-state procedural program. Procedure
summaries are computed over the abstract, finite-state program, and a procedure-free
FDS is constructed. Finally, infeasibility of the derived FDS is checked, showing that it
does not possess a fair divergent computation. This establishes the termination of the
original program.

4.1 A Proof Rule for Termination

The application of a ranking abstraction to procedures is based on a rule for proving ter-
mination of loop-free procedural programs. We choose a well founded domain (D, �),
such that for each procedure Pi with input parameters �x, we associate a ranking func-
tion δi that maps �x to D. For each edge e in Pi, labeled by a procedure call as shown in
Diagram (2), we generate the descent condition De(�y) : din(�y, �x2) → δi(�x) � δj(�x2).
The soundness of this proof rule is stated by the following claim:

Claim 1 (Termination). If the descent condition De(�y) is valid for every procedure call
edge e in a loop-free procedural program P , then P terminates.

Proof: (Sketch) A non-terminating computation of a loop-free program must contain a
subsequence of the form

〈�0
0; (ξ0, �⊥, �⊥)〉, . . . , 〈�0

i0 ; (ξ0, η0, ζ0)〉, 〈�j1
0 ; (ξ1, �⊥, �⊥)〉, . . . , 〈�j1

i1
; (ξ1, η1, ζ1)〉,

〈�j2
0 ; (ξ2, �⊥, �⊥)〉, . . . , 〈�j2

i2
; (ξ2, η2, ζ2)〉, 〈�j3

0 ; (ξ3, �⊥, �⊥)〉, . . .

where, for each k ≥ 0, Lev(〈�jk

0 ; (ξk, �⊥, �⊥)〉) = Lev(〈�jk

ik
; (ξk, ηk, ζk)〉) = k. If the

descent condition is valid for all call edges, this leads to the existence of the infinitely
descending sequence

Ranking Abstraction of Recursive Programs 273

δ0(ξ0) � δj1(ξ1) � δj2(ξ2) � δj3(ξ3) � · · ·
which contradicts the well-foundedness of the δi’s.

Space limitations disallow a proof of the following completeness result:

Claim 2 (Completeness). The method of proving termination is complete for loop-free
programs.

Validity of the condition De is to be interpreted semantically. Namely, De(�y) should
hold for every �ν, such that there exists a computation reaching location �a with �y = �ν.

4.2 Ranking Augmentation of Procedural Programs

Ranking augmentation was suggested in [KP00] and used in [BPZ05] in conjunction
with predicate abstraction to verify liveness properties of non-procedural programs. In
its application here we require that a ranking function be applied only over the input pa-
rameters. Each procedure is augmented with a ranking observer variable that is updated
at every procedure call edge e, in a manner corresponding to the descent condition De.
For example, if the observer variable is inc then a call edge

din (�y, �x2); Pj(�x2;�z2); dout (�y, �z2, �y
′)

is augmented to be

din(�y, �x2) ∧ inc′ = sign(δ(�x2) − δ(�x)); Pj(�x2;�z2); dout(�y, �z2, �y
′) ∧ inc′ = 0

All local assignments are augmented with the assignment inc := 0, as the ranking does
not change locally in a procedure. Well foundedness of the ranking function is captured
by the compassion requirement (inc < 0, inc > 0) which is being imposed only at a
later stage.

Unlike the termination proof rule, the ranking function need not decrease on every
call edge. Instead, a program can be augmented with multiple similar components, and
it is up to the feasibility analysis to sort out their interaction and relevance automatically.

Example 2 (Ranking Augmentation of Program F91). We now present an example of
ranking abstraction applied to program F91 of Fig. 1. As a ranking component, we take

δ(x) = if x > 100 then 0 else 101 − x

Fig. 2 presents the program augmented by the variable inc.

0

1

2
x > 100 ∧ ((z, inc) := (x − 10, 0))

(x2, inc′) = (u, ∆(x, x2));
P (x2, z2);
(z, inc) := (z2, 0)

x ≤ 100 ∧ ((x2, inc′) = (x + 11, ∆(x, x2)));
P (x2, z2);
(u, inc) := (z2, 0)

Fig. 2. Program F91 augmented by a Ranking Observer. The notation ∆(x1, x2) denotes the
expression sign(δ(x2) − δ(x1)).

274 I. Balaban, A. Cohen, and A. Pnueli

4.3 Predicate Abstraction of Augmented Procedural Programs

We consider the application of finitary abstraction to procedural programs, focusing
on predicate abstraction for clarity. We assume a predicate base that is partitioned into
�T = {�I(�x), �W (�y), �R(�x, �z)}, with corresponding abstract (boolean) variables �b

T
=

{�bI ,
�bW ,�bR}. For each procedure the input parameters, working variables, and output

parameters are�b
I
,�b

W
, and�b

R
, respectively.

An abstract procedure will have the same control-flow graph as its concrete counter-
part, where only labels along the edges are abstracted as follows:
• A local change relation d(�y, �y ′) is abstracted into the relation

D(�b
T
,�b′

T
) : ∃�y, �y ′.�b

T
= �T (�y) ∧�b′

T
= �T (�y ′) ∧ d(�y, �y ′)

• A procedure call din (�y, �x2); Pj(�x2, �z2); dout (�y, �z2, �y
′) is abstracted into the ab-

stract procedure call Din(�b
T
,�b2

I
); Pj(�b2

I
,�b2

R
); Dout(�bT

,�b2
R
,�b′

T
), where

Din (�bT ,�b2
I
) : ∃�y, �x2.�bT = �T (�y) ∧�b2

I
= �I(�x2) ∧ din (�y, �x2)

Dout(�bT ,�b2
R

,�b′
T
) : ∃�y, �x2, �z2, �y

′
�
���

�bT = �T (�y) ∧�b2
R

= �R(�x2, �z2) ∧�b′
T

= �T (�y ′)∧
din (�y, �x2) ∧ dout(�y, �z2, �y

′)

�
���

Example 3 (Abstraction of Program F91).
We apply predicate abstraction to program F91 of Fig. 1. As a predicate base, we take

�I : {x > 100}, �W : {u = g(x + 11)}, �R : {z = g(x)}

where

g(x) = if x > 100 then x − 10 else 91

The abstract domain consists of the corresponding boolean variables {BI , BW , BR}.
The abstraction yields the abstract procedural program P (BI , BR) which is presented
in Fig. 3.

0 2

1

BI ∧ (BR := 1)

¬BI ; P (B2
I , B2

R); BW := B2
R P (B2

I , B2
R); BR := ¬BW ∨ BI �= B2

R

Fig. 3. An abstract version of Program F91

Finally we demonstrate the joint (predicate and ranking) abstraction of program F91.

Example 4 (Abstraction of Ranking-Augmented Program F91).
We wish to abstract the augmented program from Example 2. When applying the ab-
straction based on the predicate set

�I : {x > 100}, �W : {u = g(x + 11)}, �R : {z = g(x)}

Ranking Abstraction of Recursive Programs 275

0

1

2
BI ∧ ((BR, inc) := (1, 0))

(B2
I , inc′) = (?, f(BI , BW , B2

I));
P (B2

I , B2
R);

(BR, inc) := (¬BW ∨ BI �= B2
R, 0)

¬BI ∧ (B2
I , inc′) = (?,−1);

P (B2
I , B2

R);
(BW , inc) := (B2

R, 0)

Fig. 4. An abstract version of Program F91 augmented by a Ranking Observer

we obtain the abstract program presented in Fig. 4, where

f(BI , BW , B2
I) = if ¬BI ∧ (B2

I ∨ ¬B2
I ∧ BW) then −1

else if BI ∧ B2
I then 0

else 1

Note that some (in fact, all) of the input arguments in the recursive calls are left
non-deterministically 0 or 1. In addition, on return from the second recursive call, it is
necessary to augment the transition with an adjusting assignment that correctly updates
the local abstract variables based on the returned result.

It is interesting to observe that all terminating calls to this abstract procedure return
BR = 1, thus providing an independent proof that program F91 is partially correct with
respect to the specification z = g(x).

The analysis of this abstract program yields that ¬BI ∧BW is an invariant at location
1. Therefore, the value of f(BI , BW , B2

I) on the transition departing from location 1
will always be −1. Thus, it so happens that even without feasibility analysis, from
Claim 1 we can conclude that the program terminates.

4.4 Summaries

A procedure summary is a relation between input and output parameters. A relation
q(�x, �z) is a summary if it holds for any �x and �z iff there exists a run in which the
procedure is called and returns, such that the input parameters are assigned �x and on
return the output parameters are assigned �z.

Since procedures may contain calls (recursive or not) to other procedures, deriving
summaries involves a fixpoint computation. An inductive assertion network is gener-
ated that defines, for each procedure Pj , a summary qj and an assertion ϕj

a associated
with each location �a. For each procedure we construct a set of constraints according to
the rules of Table 1. The constraint ϕj

t (�x, �u, �z) → qj(�x, �z) derives the summary from
the assertion associated with the terminating location of Pj . All assertions, beside ϕj

0,
are initialized false. ϕj

0, which refers to the entry location of Pj , is initialized true, i.e.
it allows the input variables to have any possible value at the entry location of proce-
dure Pj . Note that the matching constraint for an edge labeled with a call to procedure
Pi(�x2;�z2) encloses the summary of that procedure, i.e. the summary computation of
one procedure comprises summaries of procedures being called from it.

An iterative process is performed over the constraints contributed by all procedures
in the program, until a fixpoint is reached. Reaching a fixpoint is guaranteed since all
variables are of finite type.

276 I. Balaban, A. Cohen, and A. Pnueli

Table 1. Rules for Constraints contributed by Procedure Pj to the Inductive Assertion Network

Fact Constraint(s)
ϕj

0 = true
ϕj

t (�x, �u, �z) → qj(�x, �z)

�a �c
d(�y, �y ′)

ϕj
a(�y) ∧ d(�y, �y ′) → ϕj

c(�y ′)

�a �c
din(�y, �x2)

ϕj
a(�y) ∧ din(�y, �x2) → ϕj

c(�y, �x2)

�a �c
Pi(�x2;�z2)

ϕj
a(�y, �x2) ∧ qi(�x2, �z2) → ϕj

c(�y, �z2)

�a �c
dout(�y, �z2, �y

′)
ϕj

a(�y, �z2) ∧ dout(�y, �z2, �y
′) → ϕj

c(�y ′)

Claim 3 (Soundness). Given a minimal solution to the constraints of Table 1, qj is a
summary of Pj , for each procedure Pj .

Proof. In one direction, let σ : s0, . . . , st be a computation segment starting at location
�j
0 and ending at �j

t , such that �x[s0] = �v1 and �z[st] = �v2. It is easy to show by induc-
tion on the length of σ that st |= ϕj

t (�x, �u, �z). From Table 1 we obtain ϕj
t (�x, �u, �z) →

qj(�x, �z). Therefore st |= qj(�x, �z). Since all edges satisfy �x = �x ′, we obtain [�x �→
�v1, �y �→ �v2] |= qj(�x, �y).

In the other direction, assume [�x �→ �v1, �y �→ �v2] |= qj(�x, �y). From the constraints
in Table 1 and the minimality of their solution, there exists a state st with �x[st] = �v1
and �z[st] = �v2 such that st |= ϕj

t . Repeating this reasoning we can, by propagating
backward, construct a computation segment starting at �0 that initially assigns �v1 to �x.

4.5 Deriving a Procedure-Free FDS

Using summaries of an abstract procedural program PA, one can construct the derived
FDS of PA, labeled derive(PA). This is an FDS denoting the set of reduced compu-
tations of PA, a notion formalized in this section. The variables of derive(PA) are
partitioned into �x, �y, and �z, each of which consists of the input, working, and output
variables of all procedures, respectively. The FDS is constructed as follows:

– Edges labeled by local changes in PA are preserved in derive(PA)
– A procedure call in PA, denoted by a sequence of edges of the form

din(�y, �x2); Pj(�x2, �z2); dout (�y, �z2, �y
′) from a location �a to a location �c, is trans-

formed into the following edges:
• A summary edge, specified by

e
�a �c

∃�x2, �z2.din (�y, �x2) ∧ qj(�x2, �z2) ∧ dout(�y, �z2, �y
′)

• A call edge, specified by

e
�a �j

0
din (�y, �x′)

– All compassion requirements, which are contributed by the ranking augmentation
and described in Subsection 4.2, are imposed on derive(PA).

Ranking Abstraction of Recursive Programs 277

The reasoning leading to this construction is that summary edges represent proce-
dure calls that return, while call edges model non-returning procedure calls. Therefore,
a summary edge leads to the next location in the calling procedure while modifying its
variables according to the summary. On the other hand, a call edge connects a calling lo-
cation to the entry location of the procedure that is being called. Thus, a nonterminating
computation consists of infinitely many call edges, and a call stack is not necessary.

We now prove soundness of the construction. Recall the definition of a computation
of a procedural program given in Subsection 3.2. A computation can be terminating or
non-terminating. A terminating computation is finite, and has the property that every
computation segment can be extended to a balanced segment, which starts with a call-
ing step and ends with a matching return step. A computation segment is maximally
balanced if it is balanced and is not properly contained in any other balanced segment.

Definition 1. Let σ be a computation of PA. Then the reduction of σ, labeled reduce(σ),
is a sequence of states obtained from σ by replacing each maximal balanced segment by
a summary-edge traversal step.

Claim 4. For any sequence of states σ, σ is a computation of derive(PA) iff there exists
σ′, a computation of PA, such that reduce(σ′) = σ.

Proof of the claim follows from construction of derive(PA) in a straightforward man-
ner. It follows that if σ is a terminating computation of PA, then reduce(PA) consists
of a single summary step in the part of derive(PA) corresponding to P0. If σ is an in-
finite computation of PA, then reduce(σ) (which must also be infinite) consists of all
assignment steps and calls into procedures from which σ has not returned.

Claim 5 (Soundness – Termination). If derive(PA) is infeasible then PA is a terminat-
ing program.

Proof. Let us define the notion of abstraction of computations. Let σ = s0, s1, . . . be a
computation of P , the original procedural program from which PA was abstracted. The
abstraction of σ is a computation α(s0), α(s1), . . . where for all i ≥ 0, if si is a state in
σ, then α(si) = [�bI �→ �I(�x),�bW �→ �W (�y),�bR �→ �R(�x, �z)].

Assume that derive(PA) is infeasible. Namely, every infinite run of derive(PA) vio-
lates a compassion requirement. Suppose that P has an infinite computation σ. Consider
reduce(σ) which consists of all steps in non-terminating procedure invocations within
σ. Since the abstraction of reduce(σ) is a computation of derive(PA) it must be unfair
with respect to some compassion requirement. It follows that a ranking function keeps
decreasing over steps in reduce(σ) and never increases – a contradiction.

4.6 Analysis

The feasibility of derive(PA) can be checked by conventional symbolic model-checking
techniques. If it is feasible then there are two possibilities: (1) The original system truly
diverges, or (2) feasibility of the derived system is spurious, that is, state and ranking
abstractions have admitted behaviors that were not originally present. In the latter case,
the method presented here can be repeated with a refinement of either state or ranking
abstractions. The precise nature of such refinement is outside the scope of this paper.

278 I. Balaban, A. Cohen, and A. Pnueli

5 LTL Model Checking

In this section we generalize the method discussed so far to general LTL model-checking.
To this end we adapt to procedural programs the method discussed in Subsection 2.2
for model-checking LTL by composition with temporal testers [KPR98]. We prepend
the steps of the method in Section 4 with a tester composition step relative to an LTL

property. Once ranking augmentation, abstraction, summarization, and construction of
the derived FDS are computed, the resulting system is model-checked by conventional
means as to feasibility of initial states that do not satisfy the property.

The main issue is that synchronous composition of a procedural program with a
global tester, including justice requirements, needs to be expressed in terms of local
changes to procedure variables. In addition, since LTL is modeled over infinite se-
quences, the derived FDS needs to be extended with idling transitions.

5.1 Composition with Temporal Testers

A temporal tester is defined by a unique global variable, here labeled t, a transition rela-
tion ρ(�z, t, �z ′, t′)1 over primed and unprimed copies of the tester and program variables,
where t does not appear in �z, and a justice requirement. In order to simulate global com-
position with ρ, we augment every procedure with the input and output parameters ti
and to, respectively, as follows:

– An edge labeled by a local change is augmented with ρ(�z, to, �z
′, t′o)

– A procedure call of the form din(�y, �x2); Pj(�x2, �z2); dout (�y, �x2, �y
′) is augmented

to be din (�y, �x2) ∧ ρ(�z, to, �x2, t
2
i); Pj((�x2, t

2
i), (�z2, t

2
o)); dout ∧ ρ(�z2, t

2
o, �z

′, t′o)
– Any edge leaving the initial location of a procedure is augmented with to = ti

Example 5. Consider the program in Fig. 5. Since this program does not terminate,
we are interested in verifying the property ϕ : (� z) ∨ � � at−�2, specifying that
either eventually a state with z = 1 is reached, or infinitely often location 2 of P1 is vis-
ited. To verify ϕ we decompose its negation into its principally temporal subformulas,
� ¬z and � � ¬at−�2, and compose the system with their temporal testers. Here we
demonstrate the composition with T [� ¬z], given by the transition relation t = ¬z ∧ t′

and the trivial justice requirement true. The composition is shown in Fig. 6.

As a side remark, we note that our method can handle global variables in the same way
as applied for global variables of testers, i.e., represent every global variable by a set of
input and output parameters and augment every procedure with these parameters and
with the corresponding transition relations.

5.2 Observing Justice

In order to observe justice imposed by a temporal tester, each procedure is augmented
by a pair of observer variables that consists of a working and an output variables. Let
J be a justice requirement, Pi be a procedure, and the associated observer variables be
Ju and Jo. Pi is augmented as follows: On initialization, both Ju and Jo are assigned

1 We assume here that the property to be verified is defined over the output variable only.

Ranking Abstraction of Recursive Programs 279

2

10 3

0

1

x = 0 ∧ z := 1

init

init x2 = x − 1; P1(x2; z2); z := z2

x2 = x + 1; P1(x2; z2); z := z2

main

P0(x; z): P1(x; z):

Fig. 5. A Divergent Program. init represents x > 0 ∧ z := 0, and main represents x ≥
0 ∧ x2 := x;P1(x2; z2); z := z2.

2

10 3

0

1

x = 0 ∧ ti = to ∧ (z, to) := (1, 0)

init

init (x2 = x − 1) ∧ to = ti2; P1(x2, ti2; z2, to2); dout

(x2 = x + 1) ∧ to = ti2; P1(x2, ti2; z2, to2); dout

main

P0(x, ti; z, to): P1(x, ti; z, to):

Fig. 6. The Program of Fig. 5, Composed with T [� ¬z]. The assertion dout represents to2 =
(¬z2 ∧ t′o) ∧ z := z2, init represents x > 0 ∧ ti = to ∧ z := 0, and main represents
x ≥ 0 ∧ (x2 = x) ∧ (to = ¬z ∧ ti2); P1(x2, ti2; z2, to2); dout .

true if the property J holds at that state. Local changes are conjoined with Ju := J ′

and Jo := (Jo ∨ J ′). Procedure calls are conjoined with Ju := (J ′ ∨ J2
o) and

Jo := (Jo ∨ J ′ ∨ J2
o), where J2

o is the relevant output observer variable of the
procedure being called.

While Ju observes J at every location, once Jo becomes true it remains so up to the
terminal location. Since Jo participates in the procedure summary, it is used to denote
whether justice has been satisfied within the called procedure.

5.3 The Derived FDS

We use the basic construction here in deriving the FDS as in Section 4.5. In addition,
for every non-output observer variable Ju we impose the justice requirement that in any
fair computation, Ju must be true infinitely often. Since LTL is modeled over infinite
sequences, we must also ensure that terminating computations of the procedural pro-
gram are represented by infinite sequences. To this end we simply extend the terminal
location of procedure P0 with a self-looping edge. Thus, a terminating computation is
one that eventually reaches the terminal location of P0 and stays idle henceforth.

280 I. Balaban, A. Cohen, and A. Pnueli

In this section we use the notation derive(PA) to denote the FDS that is derived from
PA and thus extended. The following claim of soundness is presented without proof due
to space limitations.

Claim 6 (Soundness – LTL). Let P be a procedural program, ϕ be a formula whose
principal operator is temporal, and PA be the abstract program resulting from the com-
position of P with the temporal tester T [¬ϕ] and its abstraction relative to a state and
ranking abstraction. Let to be the tester variable of T [¬ϕ]. If to = true is an infeasible
initial state of derive(PA) then ϕ is valid over P .

6 Conclusion

We have described the integration of ranking abstraction, finitary state abstraction, pro-
cedure summarization, and model-checking into a combined method for the automatic
verification of LTL properties of infinite-state recursive procedural programs. Our ap-
proach is novel in that it reduces the verification problem of procedural programs with
unbounded recursion to that of symbolic model-checking. Furthermore, it allows for ap-
plication of ranking and state abstractions while still relegating all summarization com-
putation to the model-checker. Another advantage is that fairness is being supported
directly by the model, rather than being specified in a property.

We have implemented a prototype based on the TLV symbolic model-checker and
tested several examples such as Ackerman’s function, the Factorial function and a re-
cursive formulation of the 91 function. We verified that they all terminate and model
checked satisfiability of several LTL properties.

As further work it would be interesting to investigate concurrency with bounded
context switching as suggested in [RQ05]. Another direction is the exploration of dif-
ferent versions of LTL that can relate to nesting levels of procedure calls, similar to
the manner in which the CARET logic [AEM04] expresses properties of recursive state
machines concerning the call stack.

References

[ABE+05] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T.W. Reps, and M. Yannakakis.
Analysis of recursive state machines. ACM Trans. Program. Lang. Syst., 27(4):786–
818, 2005.

[AEM04] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In TACAS’04, pages 467–481.

[ACEM05] R. Alur, S. Chaudhuri, K. Etessami, and P. Madhusudan. On-the-fly reachability
and cycle detection for recursive state machines. In TACAS’05, pages 61–765.

[AEY01] R. Alur, K. Etessami, and M. Yannakakis. Analysis of recursive state machines. In
CAV’01, pages 207–220.

[BPZ05] I. Balaban, A. Pnueli, and L.D. Zuck. Shape analysis by predicate abstraction. In
VMCAI’05, pages 164–180.

[BR00] T. Ball and S.K. Rajamani. Bebop: A symbolic model checker for boolean pro-
grams. In SPIN’00, pages 113–130.

[GS97] S. Graf and H. Saı̈di. Construction of abstract state graphs with PVS. In CAV’97,
pages 72–83.

Ranking Abstraction of Recursive Programs 281

[KP00] Y. Kesten and A. Pnueli. Verification by augmented finitary abstraction. Informa-
tion and Computation, 163(1):203–243, 2000.

[KPR98] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal
logic specifications. In CAV’98, pages 1–16.

[PSW05] A. Podelski, I. Schaefer, and S. Wagner. Summaries for while programs with re-
cursion. In ESOP’05, pages 94–107.

[RQ05] J. Rehof and S. Qadeer. Context-bounded model checking of concurrent software.
In TACAS’05, pages 93–107.

[Sha00] E. Shahar. The TLV Manual, 2000. http://www.cs.nyu.edu/acsys/tlv.
[SP81] M. Sharir and A. Pnueli. Two approaches to inter-procedural data-flow analysis.

In Jones and Muchnik, editors, Program Flow Analysis: Theory and Applications.
Prentice-Hall, 1981.

	Introduction
	Related Work

	Background
	Fair Discrete Systems
	Linear Temporal Logic -- LTL

	Recursive Programs
	Edge Labels
	Computations

	Verifying Termination
	A Proof Rule for Termination
	Ranking Augmentation of Procedural Programs
	Predicate Abstraction of Augmented Procedural Programs
	Summaries
	Deriving a Procedure-Free fds
	Analysis

	LTL Model Checking
	Composition with Temporal Testers
	Observing Justice
	The Derived FDS

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

