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Abstract. We investigate how the acoustic properties of the pinna – i.e. the 
outer flap of the ear- and the ear canal can be used as a biometric. The acoustic 
properties can be measured relatively easy with an inexpensive sensor and fea-
ture vectors can be derived with little effort. Classification results for three plat-
forms are given (headphone, earphone, mobile phone) using noise as an input 
signal. Furthermore, preliminary results are given for the mobile phone plat-
form where we use music as an input signal. We achieve equal error rates in the 
order of 1%-5%, depending on the platform that is used to do the measurement. 

1   Introduction 

Well-known biometric methods for identity verification are based on modalities such 
as fingerprints, irises, faces, or speech to distinguish individuals. In some situations, 
however, these well-known modalities cannot be used due to the price and/or form 
factor of the required sensor or the required effort to derive feature vectors from 
measurements. Therefore we investigated if the acoustic properties of the pinna  - i.e., 
the outer flap of the ear - and the ear canal can be used as a biometric. The acoustic 
properties can be measured relatively simple and economically and we found that the 
acoustic properties differ substantially between individuals. Therefore ear recognition 
is a possible candidate to replace pin codes in devices such as mobile phones or to 
automatically personalize headphones or other audio equipment. An additional advan-
tage of ear recognition is that, unlike real fingerprints that are left behind on glasses or 
desks,  “ear-fingerprints” are not left behind and can also not be captured as easily as 
an image of a face. In this respect acoustic ear recognition may lead to a more secure 
biometric. 

The shape of the outer ear, such as the folds of the pinna, the length and shape of 
the ear canal are very different between humans as can be observed when visually 
comparing the ears of two individuals. These differences are even more pronounced 
for acoustic measurements of the transfer function of the pinna and ear canal using a 
loudspeaker close to the ear and a microphone close to, or in, the ear canal as shown 
in Figure 1.  Such transfer functions can be seen as a kind of  “fingerprint” of the ear 
canal and/or pinna. The spectrum of an acoustic transfer function can be used almost 
directly as the feature vector for a given individual. Using the acoustic properties of 
the ear as a biometric has first been published in [1] but there has been no public data 
on performance and application of the technology. 
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2   Acoustic Properties of the Ear Canal 

It is well known that the optical properties of human ears can be used in biometric 
identification [2,3,4]. In [5], the authors investigate the relationship between optical 
and acoustic properties of the ear. In [6], acoustic ear biometrics have been used to 
develop and evaluate a recently developed biometric template protection system 
[7,8,9]. In [1], the Sandia Corporation US claimed the first US patent on acoustic ear 
recognition. In the current paper we focus mainly on the acoustic properties of the ear 
and its potential to be used as biometric modality. 

The ear canal is a resonant system, which together with the pinna provides rich fea-
tures. In a coarse approximation it is a one-dimensional system that resonates at one 
quarter of the acoustic wavelength. The resonance will typically be around 2500Hz 
but it will vary from person to person. Typical resonance frequencies are correspond-
ing to typical lengths and shapes of pinna and ear canal. 

The length of the ear canal and the curvatures of the pinna have dimensions that 
vary from millimeters to a few centimeters. To be able to detect these shapes and cur-
vatures the acoustic probing waves should have proper wavelengths. Restricting our-
selves to low cost loudspeakers and microphones we can easily generate and measure 
sound waves from 100Hz up to 15 kHz. Assuming that we can resolve structures in 
the order of 1/10 of the wavelength, the minimum resolving power becomes about 
2mm, which seems appropriate to capture most distinguishing features. 

3   Set-Up 

The principle of the measurement set-up is shown in Figure 1. A loudspeaker close to 
the ear canal generates an excitation signal while a microphone measures the reflected 
echo responses. In general the excitation can be any acoustic signal like noise or mu-
sic that has a fairly flat frequency spectrum. Alternatively the excitation signal may be 
preprocessed in such a way that those frequencies are emphasized that allow for a 
good discrimination between individuals. 

In our current set-up we measure the transfer function of the ear by sending a noise 
signal into the pinna and outer ear. Figure 2 shows a possible method for determining  
 

 

Fig. 1. An acoustic probe wave is send into the ear canal while a microphone receives the  
response 
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Fig. 2. Measuring the transfer function 

this transfer function. The excitation signal is fed into the transfer function H(ω) that 
should be identified. The finite impulse response filter W(ω) is adaptively optimized 
using a steepest descent adaptive filter that minimizes the error signal which is the 
difference between the microphone signal and the output of the adaptive filter W(ω). 
Both the system H(ω) to be identified and its estimate W(ω) consist of the cascade of 
the transfer functions of the loudspeaker, pinna and ear-canal, and microphone. An al-
ternative approach for determining the transfer function is to directly divide, in the 
frequency domain, the response signal coming from the microphone by the input sig-
nal [10]. Although both approaches gives similar results for noisy signals, the ap-
proach depicted in Figure 2 is more flexible when non-stationary input signals such as 
music are used as a probe signal (see also section 6.4).   

4   Acquiring a Feature Vector 

The estimate of the transfer function is a complex entity. Although it is expected that 
delays and phase shifts still contain significant discriminating information about an 
individual, they may also lead to larger intra-class variations, i.e. variations amongst 
various measured transfer functions for the same subject due to unwanted phase shift 
introduced by the measurement system. In order to eliminate these phase shifts we ex-
tracted the amplitude of the ear transfer function frequency spectrum as the biometric 
feature vector. As an example, Figure 3 shows transfer functions for three individuals. 

 

Fig. 3. Amplitude of the frequency response of the ear transfer function 
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Obviously, information of the biometric modality is lost by choosing the feature 
extraction method mentioned above. Therefore in Section 6.4 we give some results 
for the mobile phone platform where the response signal in the time domain is used. 

5   Test Platforms 

Often the performance of recognition systems relies strongly on the way the feature 
extraction method is implemented in the specific application. Therefore we investi-
gated the robustness of the acoustic ear recognition system based on different  
platforms. The pictures show these platforms and the position of their microphones 
marked by the arrow. 

 

Fig. 4. The three platforms: headphones, earphones and mobile phone all with extra micro-
phones indicated by arrows 

The headphones in Figure 4 (Philips SBC HP 890) have 1 microphone per side that 
is mounted underneath the cloth that covers the loudspeaker. A tube is mounted onto 
each microphone that allows for measuring the sound pressure at the entrance of the 
ear canal. The earphones in Figure 4 have 1 microphone per ear-piece which is 
mounted underneath the original factory fit rubber cover. 

The mobile phone of Figure 4 has 1 microphone next to the speaker whereas the 
other two platforms of Figure 4 each have 2 sensing microphones (1 microphone per 
ear) resulting in feature vector lengths of 256 and 512 components, respectively. 

6   Results 

In order to derive results, we collected the following measurements. For both the 
headphone and earphones based platform, 8 ear transfer functions were measured for 
each of 31 subjects and collected in two separate databases. For the mobile phone 
platform we enrolled 17 persons with 8 measurements per person that were stored in a 
third database. In the remainder of this section we will show some results obtained us-
ing these databases. 

6.1   Correlation Between Ears 

In order to determine the similarity between the two ears of an individual we deter-
mined the average correlation between the measurements of the two ears. We define 
the correlation as 
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where x and y are two feature vectors taken relative to the mean of the whole popula-
tion. The average correlation Cj between the left and right ear of an individual j is 
taken as the average over the correlations between every possible combination of a 
measurement in the headphone database of the left and the right ear of this individual. 
The overall correlation between the left and right ear of the whole population is then 
defined as the average over the Cj’s of all individuals. The reason for using the head-
phone database was that it shows the lowest intra-class variability per ear and is there-
fore most suitable to determine the biometric difference between left and right ear. In 
order to minimize the loss of information, the time responses rather than frequency 
responses were used and they were manually compensated for undesirable time de-
lays. It turns out that the correlation between measurements of one ear of one individ-
ual is on average 90%. Comparing left and right ear gives an average correlation of 
roughly 80%. In conclusion we can say that using both ears only gives marginally bet-
ter discrimination capabilities since the acoustic left and right ear responses are quite 
similar and differs 10% in terms of correlation. 

6.2   Recognition Performance 

To test the performance of the acoustic ear recognition system the FAR (False Accep-
tance Rate) and FRR (False Rejection Rate) have been investigated using the impos-
tor and genuine distributions using the correlation measure (1). The probing noise 
signal contained frequencies in the range 1.5kHz-22kHz. Figure 5 shows the Receiver 
Operating Characteristics (ROC) of the unprocessed frequency response data. We ob-
serve that the headphones and earphones give roughly the same performance resulting 
in an equal error rate of respectively 7% and 6 %.  

As a second experiment, Fischer Linear Discriminant Analysis (LDA) was applied 
to the three ear databases to selects the most discriminating components among the 
subjects. In order to determine the eigenvalues and eigenvectors, the generalized ei-
genvalue problem 

qSqS wb λ=  (2) 

was solved for q and λ where Sb and Sw are the estimated between-class and within-
class covariance matrices, respectively. We used a regulation parameter to avoid sin-
gularity problems in Sw. 

Figure 6 again shows the ROC performance but now a Fisher LDA transformation 
is applied to the frequency impulse responses. It can be seen from Figure 6 that the 
performance improves significantly, especially for the headphones and earphones 
platform. Furthermore a slight increase in FRR will significantly reduce the FAR 
leading to a high security level. The mobile phone performance is worse due to two 
reasons. Firstly, the between-class variation of mobile phones is much larger due to 
uncontrolled position and pressing of the mobile phone against the pinna. This is also 
observed when we consider the ‘signal-to-noise ratio’ of the feature vector  
 



702 T.H.M. Akkermans, T.A.M. Kevenaar, and D.W.E. Schobben 

 

Fig. 5. Receiver operating curves without Fisher LDA transformation 
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Fig. 6. Receiver Operating Curves using Fisher LDA a transformation 

components after LDA. The average over all users and all components for the head-
phone and earphone database is in the order of 40 while for the mobile phone is it in 
the order of 16. A second reason is that, although the correlation between the two ears 
of one individual is very high, measuring two ears rather than one still gives slightly 
better discrimination between individuals. 

6.3   Relevant Frequency Ranges 

We also investigated how the applied frequency range used in the excitation signal in-
fluences the classification performance. Table 1 gives an overview of the Equal Error 
probability as function of the applied frequency range of the acoustic probe signal us-
ing the Fisher LDA transformation. 

Table 1. Ear recognition performance (EER) as a function of the frequency range of the 
excitation signal 

Freq.Range 
(Hz) 

Headphones Earphones Mobile 
Phone 

1.5k-22k 0.8 1 5.5 
1.5k-10k 0.8 1.4 6.5 
10k-22k 2.5 2.5 10 
16k-22k 8 6 18 
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Although these figures depend quite heavily on the individual loudspeaker and mi-
crophone performances (especially in mobile phones the loudspeaker transfer at fre-
quencies above 10 kHz deteriorate significantly), it can be seen that a wider frequency 
range gives better classification results. It is further interesting to notice that the fre-
quency range 16kHz-22kHz still leads to reasonable classification results indicating 
that ultrasonic characterisation might be an option. 

6.4   Experiments with Music and Time Domain Signals 

In order to enhance user convenience we performed experiments where the excitation 
signal is a music signal rather than a noise signal. In our case we used a music signal 
in MP3 format which has the advantage that it has inaudible noise components in its 
spectrum due to the underlying Human Auditory System model used to compress mu-
sic signals. These noise components improve the estimate of the transfer function. 
The initial experiments used a database of 12 persons with 10 measurements per per-
son. The output signal from the microphone in the frequency domain rather than the 
transfer function H(ω) was used directly as a feature vector. Consequently, a user 
should always be probed with the same piece of music. 

In Figure 7 two ROCs are given, one for a noise input and one for a music input 
where the curve referring to a noise input signal is copied from Figure 6. It can be 
seen that both systems give similar classification results. 

 

Fig. 7. The Receiver Operating Curves for a noise and music input signal for a mobile phone 

 

Fig. 8. The Receiver Operating Curves for a mobile phone based on time signals 
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As mentioned above, discarding the phase information in the feature vectors 
might deteriorate classification results but is practically necessary to handle random 
phase shifts in the measurement system. In order to estimate the influence of dis-
carding the phase, we used the time-domain signal coming from the microphone as 
a feature vector where we manually compensated for the system delay. The results 
are given in Figure 8 where, compared to Figure 6, we see an improvement in clas-
sification results. In practical systems a pilot tone can be inserted to handle random 
system delays. 

7   Conclusions 

This paper describes a novel biometric system based on the acoustic properties of the 
human ear. Three practical platforms were developed including a mobile phone, 
headphones and earphones where using noise as a probing signal. The amplitude of 
the frequency spectrum of the ear transfer function has been found to provide stable 
and rich features. False acceptance and rejection rates have been derived from meas-
urements taken from various subjects. Applying a Fisher LDA transform greatly im-
prove the performance. In order to enhance user convenience we also used music as a 
probing signal which resulted in comparable ROCs. Finally we used a time signal 
rather than the amplitude of the transfer function as a feature vector resulting in im-
proved classification results. Further research consists of deriving the transfer func-
tion for an arbitrary piece of music and retaining the phase information in the meas-
urement signal. 
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