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Abstract. In this article we describe an improved concept for second-
order differential-power analysis (DPA) attacks on masked smart card
implementations of block ciphers. Our concept allows to mount second-
order DPA attacks in a rather simple way: a second-order DPA attack
consists of a pre-processing step and a DPA step. Therefore, our way of
performing second-order DPA attacks allows to easily assess the number
of traces that are needed for a successful attack. We give evidence on
the effectiveness of our methodology by showing practical attacks on
a masked AES smart card implementation. In these attacks we target
inputs and outputs of the SubBytes operation in the first encryption
round.

1 Introduction

Higher-order DPA attacks were already mentioned in Kocher et al.’s pioneering
article [KJJ99]: “Of particular importance are high-order DPA functions that
combine multiple samples from within a trace.” Subsequently, several researchers
have tried to implement attacks based on this very brief sketch. Messerges
was the first researcher to successfully report on a second-order DPA attack
in [Mes00].

Since the publication of these two articles little progress has been made.
Only recently, the topic was picked up again, see [ABG04], [WW04], [PSDQ05],
[SPQ05] and [JPS05]. However, none of these articles have tackled the prac-
tical issues that arise when performing higher-order DPA attacks on software
implementations on smart cards.

In this article we present a way to formulate second-order DPA attacks that
are practical for smart card implementations. Our attacks are simple to mount, it
is easy to assess their complexity and they can be applied to any implementation
that uses additive masking as DPA countermeasure. Our results are compelling:
we can attack a masked AES implementation on an 8-bit micro controller with
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no more than 400 traces. The exact moments of time when intermediate values
are being manipulated do not need to be known.

This article is organized as follows. In Sect. 2 we review Messerges’ original
second-order DPA attack and survey related work. In Sect. 3, we explain our con-
cept of second-order attacks, assess the complexity and formulate various attack
scenarios that are relevant for masked implementations of block ciphers. In Sect. 4
we show the results of our new attacks on a masked AES implementation. We con-
clude this article in Sect. 5. There are two appendices to this paper. In App. A
we briefly discuss an alternative pre-processing method. In App. B we provide a
graphical description of the AES implementation that is targeted in Sect. 4.

2 Second-Order DPA Attacks

The attack described in [Mes00], targets the exclusive-or (short: XOR) operation
of a byte of the key and a byte of masked data. It is assumed that in the
implementation under attack, the mask is generated and subsequently exclusive-
ored with the data prior to the exclusive-or operation that involves the key byte:

t=1: m = rand() (generate mask-byte)
t=2: x = p ⊕ m (XOR mask with plaintext-byte)
t=3: y = x ⊕ k (XOR masked plaintext with key-byte)

Fig. 1. A code sample of a typical masked key addition

In the attack, the point in the power trace sj[t = 1] that corresponds to the
time when the mask is generated (line 1 in Fig. 1) is subtracted from the point
in the power trace sj [t = 3] that corresponds to the time when the masked data
is XORed with the key byte (line 3 in Fig. 1). The joint distribution of these
two power samples allows to derive the key-byte bit by bit. For every bit in
the plaintext byte the adversary calculates the mean values S0 =

∑
j |sj [t =

1] − sj [t = 3]| (if the plaintext bit is 0) and S1 =
∑

j |sj [t = 1] − sj[t = 3]| (if
the plaintext bit is 1). If S0 − S1 > 0 then the key bit is 1, otherwise it is zero.
A proof for the soundness of the attack is given in [Mes00].

In the attack, it is mandatory to use the absolute value of the differences,
because otherwise the difference of means is 0 in both cases. In addition, it
is necessary that the mean value of the power traces are roughly the same,
otherwise the difference of means also does not lead to conclusive results. This
property can be achieved by using the distance-of-mean (short: DOM) test as
described in statistic textbooks or by using the Pearson correlation coefficient.

Several questions arise when studying this methodology. An important one
for practical attacks is how to identify the interesting points in the power trace?
Other questions are how many traces are required for reliable statistics and
whether the approach can be improved by using different statistics. In his article,
Messerges tries to answer the last of these questions. He concludes that using
the absolute value of the difference is a sound approach.
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2.1 Related Work

Waddle et al. [WW04] were the next to investigate this topic in detail. They
investigated how higher-order attacks can be mounted in a way to minimize
the additional effort compared to standard DPA attacks. More precisely, their
goal was to formulate higher-order attacks as standard DPA attacks with a pre-
processing step. Our idea will follow this line of thought.

In their article, Waddle et al. suggest to multiply the appropriate points in
the power trace in order to produce a DPA peak (this approach was already
mentioned by Chari et al. in [CJRR99]). Waddle et al. also tackle some of the
questions that we raised at the end of the previous section. That is, they deal
with the issue of finding the interesting points in the power trace. They suggest
two methods to find the points of interest. Firstly, they propose the so-called
zero-offset 2DPA which works if the masked value and the mask are processed
at the same time. If this is the case, there is only one point of interest and
the power traces can simply be squared. Secondly, they propose the so-called
FFT 2DPA which essentially is a DPA on the FFT (fast fourier transform)
of the power traces. For both proposals they investigate how the number of
samples needs to be increased for reliable statistics. They conclude for both
cases that a significant increase is to be expected due to the pre-processing
step.

Peeters et al. [PSDQ05] have implemented an attack similar to the zero-offset
2DPA on an FPGA. They have concluded that the zero-offset 2DPA idea works
but requires significantly more traces than a standard DPA.

Joye et al. [JPS05] have analyzed how the height of the DPA peak is related
to the number of samples and the power consumption model under a certain
definition of a signal-to-noise ratio.

Summarizing the related work it turns out that so far the arising questions
have only been answered in part. Joye et al.’s article gives theoretical foundations
and allows to assess the efficiency of higher-order attacks in theory in a certain
model. Peeters et al. have confirmed that some of the ideas of Waddle et al. can
be applied to FPGA implementations. Messerges has shown that if the points
of interest can somehow be found, software implementations on smart cards can
be attacked.

We aim to develop an attack strategy for software implementations on smart
cards that is versatile, simple to implement, and easy to analyze.

3 Practical Second-Order DPA Attacks

In this section we outline our strategy for second-order DPA attacks. We first
explain the assumptions that we make, then we explain the idea of our strategy
and last we develop different attack scenarios.

In the following we assume that the instantaneous power consumption of the
device under attack depends linearly on the Hamming-weight (short: HW) of
the processed data.
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Assumption. Let a be a value ∈ {0, 1}n and C(a) denote the power consump-
tion of the value a. Then the power consumption C of the device at the time
when a is processed is proportional to the Hamming-weight of the value a :
C(a) ≈ HW (a).

In this paper, we focus on implementations where n = 8, i.e. we study 8-bit
micro controllers. We use the following simple observation to explain a large
class of second-order DPA attacks.

Observation. Let a and b be values ∈ {0, 1}, let ⊕ denote the exclusive-or
operation, and let HW (x) denote the Hamming-weight of x. Then the following
relation holds with probability one:

HW (a ⊕ b) = |HW (a) − HW (b)|. (1)

Consequently, we can correctly predict |C(a) − C(b)| with HW (a ⊕ b) if a, b ∈
{0, 1}.

We can use this observation to mount second-order DPA attacks: In the first
step, the adversary chooses a point in a power trace, subtracts it from the rest
of the trace and takes the absolute value of the result. In the second step, the
adversary tests for all keys whether the Hamming-weight of the exclusive-or of
the two intermediate values under attack correlates to the pre-processed power
traces. Only for the correct key and for the correct point, a peak will occur in
the power trace. If there is no peak for any key then the attacker chooses another
point. We can formalize our approach as follows.

Second-Order DPA Attack. Let T be the set of power traces that were ac-
quired during the execution of a known algorithm using a set of known texts
Pi, using a set of unknown masks Mi and using an unknown key K. We de-
fine a standard DPA attack to be a first-order DPA attack that is based on the
Pearson correlation coefficient. Let Fv(Pi) denote an intermediate value that is
computed by the algorithm with input Pi and with a part of the unknown key
K. We attack two intermediate values F1(Pi) ⊕ Mi and F2(Pi) ⊕ Mi.

1st Step: We fix an interval I of length l for all power traces T ∈ T . This
interval is determined by an educated guess for the time frame in which
F1(Pi) ⊕ Mi and F2(Pi) ⊕ Mi are processed. For each trace T we do the
following. We calculate a pre-processed trace that contains all values |Ia − Ib|
∀Ia, Ib ∈ I ⊆ T .

2nd Step: We make a standard DPA attack on the pre-processed power traces.
In this attack, we guess a part of the key K to predict the value HW (F1(Pi)⊕
F2(Pi)).

The value |C(F1(Pi) ⊕ Mi) − C(F2(Pi) ⊕ Mi)| occurs in the pre-processed
traces. This value is due to the two attacked intermediate results F1(Pi) ⊕ Mi

and F2(Pi) ⊕ Mi. In the DPA attack on the pre-processed traces there occur
peaks at these positions if the key guess is correct.

Remark. It is important to notice that we have given a description that is more
general than Messerges’ original approach. Whereas his predictions are always
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made for individual bits of one intermediate result, we allow to predict several
bits. When using several bits in the attack, then Observation 1 does not hold in
general; it only holds for some values.

Remark. The result of the pre-processing step are traces of length l(l−1)
2 . This

is because |Ia − Ib| = |Ib − Ia|.
In the following section we look at the complexity of a second-order DPA at-
tack and then, we formulate various second-order DPA attack scenarios that are
relevant for masked implementations of block ciphers.

3.1 Complexity of Our Second-Order DPA Attack

The complexity of a DPA attack is typically determined by the number of traces
that have to be acquired for a successful attack. Another factor that is relevant
for a practical application is the length of the traces. We discuss both complexity
aspects.

Number of traces. Our approach of performing second-order DPA attacks con-
sists of two steps. The first step consists of pre-processing the acquired power
traces. The second step consists of performing a standard DPA attack. Remem-
ber that we have pointed out that we perform this standard DPA attack by
predicting several bits of an intermediate value. These predictions do not always
coincide with what happens inside the device because Observation 1 does not
hold if a, b ∈ {0, 1}n, n > 1. We have to compensate these errors by increas-
ing the number of measurements. The pre-processing step potentially increases
the noise in the measurements. The effect of pre-processing has been studied
in [CCD00] and [Man04]. In these articles the effect of the increase of uncorre-
lated noise has been investigated. However, in many micro controllers the noise
that occurs in subsequent clock cycles is highly correlated. Thus, the increase of
the noise due to pre-processing is not necessarily severe.

We conclude that the complexity of the second-order DPA attack is mainly
determined by the number of predictions that do not match the internal value
that is being processed. The influence of the pre-processing step is small and
depends on the device under attack. In the attacks that we have performed in
practise it turned out that the pre-processing step has virtually no influence on
the number of samples.

Length of traces. In our approach we work with traces of length l(l−1)
2 . In com-

parison to a standard DPA attack on an interval of length l, the complexity is
squared.

3.2 Attacking One Masked Table Look-Up

One way to protect an implementation of a block cipher against (first-order) DPA
attacks is to mask the intermediate values that occur during the computation.
This is typically achieved by adding (exclusive-oring) a random value to the
plaintext. The description of the block cipher is modified such that it maintains
the masking.
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Assumptions. Assume that the table S of the original cipher is replaced by a
masked table S′ such that S′(X ⊕ M) = S(X) ⊕ M for a fixed mask M . There
are two possibilities to attack such a table look-up; either one attacks the first
or one attacks the last encryption round. Because both attacks follow the same
principle we explain the attack on the first round only.

Attack on the first round. We use the input of the table look-up P ⊕K ⊕M and
the output of the table look-up S′(P ⊕ K ⊕ M) = S(P ⊕ K) ⊕ M in the first
encryption round for our attack. We assume that we have recorded the power
trace of the first round of the algorithm.

In the first step of the attack, we locate the sequence of table look-up opera-
tions. We make an educated guess for the time frame when S(P ⊕ K) ⊕ M and
P ⊕K⊕M are computed and perform the pre-processing step. In the second step,
we predict |C(S(P ⊕K)⊕M)−C(P ⊕K ⊕M)| with HW (S(P ⊕K)⊕ (P ⊕K))
and perform a standard DPA attack. Therefore we need to know one byte of the
plaintext byte and guess one byte of the key.

Number of traces needed. In previous work we have shown that the number of
traces in a standard DPA is determined by the correlation ρ between the correct
predictions and the traces, see [Man04]. Based on this correlation coefficient, the
number of traces can be calculated as follows

N = 3 + 8

(
Zα

ln 1+ρ
1−ρ

)2

. (2)

In order to assess the correlation coefficient for this scenario in practice, we
study the correlation in the idealized model where C(a) = HW (a) and a has 8
bits. We use the AES S-box for the table S in our calculations. Then, we cal-
culate the correlation between |HW (S(P ⊕ K) ⊕ M) − HW (P ⊕ K ⊕ M)| and
HW (S(P ⊕ K) ⊕ (P ⊕ K)). This can be done easily with a computer. It turns
out that the correlation coefficient for a second-order DPA attack on one masked
8-bit table look-up is 0.2405.

Setting Z0.9999 = 3.7190 and ρ = 0.2405, and evaluating (2) shows that
N = 462 is an upper bound for the number of traces.

The immediate question that arises is whether we could do better by either
using less bits in our predictions or by applying a simple but non-linear function
(for instance raising to the power β) to our pre-processed data as suggested
by [JPS05]. The answer can be easily obtained by calculating the correlation
between |HW (S(P⊕K)⊕M)−HW (P⊕K⊕M)|β and HW (S(P⊕K)⊕(P⊕K)).
We have calculated this correlation for different values of β and for attacks on
different numbers of bits of S(P ⊕ K) ⊕ (P ⊕ K). It turns out that attacking
a full byte is the best choice1 and that varying β does not lead to a significant
improvement of the correlation coefficient (see Tab. 1).

1 In App. A we show that using multiplication for pre-processing, such as suggested
in [WW04] and [CJRR99], leads to smaller correlations.
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Table 1. Exact correlation values for the scenario described in Sect. 3.2. The correlation
increases when more bits are used in the prediction. The correlation increases slightly
for β = {2, 3} but decreases for higher values of β.

β 1 2 3 4 5 6
1 Bit 0.0861 0.0985 0.0950 0.0869 0.0775 0.0685
2 Bits 0.1119 0.1315 0.1283 0.1189 0.1080 0.0972
3 Bits 0.1415 0.1652 0.1604 0.1482 0.1341 0.1203
4 Bits 0.1723 0.1914 0.1834 0.1674 0.1496 0.1327
5 Bits 0.1936 0.2100 0.2003 0.1822 0.1623 0.1435
6 Bits 0.2092 0.2291 0.2186 0.1987 0.1767 0.1559
7 Bits 0.2278 0.2460 0.2341 0.2125 0.1887 0.1661
8 Bits 0.2405 0.2622 0.2501 0.2273 0.2021 0.1782

3.3 Attacking Two Masked Table Look-Ups

Assumptions. Assume that the table S of the original cipher is replaced by
another masked table S′ such that S′(X ⊕ M) = S(X) ⊕ M ′ for fixed masks M
and M ′. The outputs of two table look-ups are then S(X1) ⊕ M ′ and S(X2) ⊕
M ′. There are two possibilities to attack the table look-up outputs of such an
implementation. One possibility is to target two different table look-up outputs
in the first encryption round. The second option is to attack one table look-up
output in the first and one table-lookup output in the last encryption round.

Attack on the first round. Assume that we attack the outputs of two table
look-ups in the first encryption round. Hence we use S(P1 ⊕ K1) ⊕ M ′ and
S(P2 ⊕ K2) ⊕ M ′ in our attack. In the first step we locate the sequence of table
look-ups and make an educated guess for the time frame when S(P1 ⊕K1)⊕M ′

and S(P2⊕K2)⊕M ′ are computed and perform the pre-processing. In the second
step we predict |C(S(P1 ⊕ K1) ⊕ M ′) − C(S(P2 ⊕ K2) ⊕ M ′)| with HW (S(P1 ⊕
K1) ⊕ S(P2 ⊕ K2)) and perform a standard DPA attack. We need to know two
bytes of plaintext and guess two bytes of the key for this attack.

Attack on the first and the last round. Assume that we use the output of one
S-box in the first encryption round and the output of one S-box in the last
encryption round. Hence, we use S(P ⊕ K1) ⊕ M ′ and S(C ⊕ K2) ⊕ M ′ in our
attack. In the first step, we locate the first and the last encryption round and
perform the pre-processing step. In the second step, we predict |C(S(P ⊕ K1)⊕
M ′) − C(S(C ⊕ K2) ⊕ M ′)| with HW (S(P ⊕ K1) ⊕ S(C ⊕ K2)) and perform a
standard DPA attack. Therefore, we need to know one byte of the plaintext and
one byte of the ciphertext and we need to guess one byte of the key of the first
round and one byte of the key in the last round.

Number of traces needed. Because the key guess in this scenario is based on 16
bits, it gets impractical to calculate the correlation coefficient exactly. Therefore,
we have decided to estimate it based on 100000 plaintexts. The estimation of
the correlation between |HW (S(P ⊕ K1) ⊕ M ′) − HW (S(C ⊕ K2) ⊕ M ′)|β and
HW (S(P ⊕ K1) ⊕ S(C ⊕ K2)) leads to the values shown in Tab. 2.
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Table 2. Simulated correlation values for the scenario described in Sect. 3.3. The cor-
relation increases when more bits are used in the prediction. The correlation increases
slightly for β = {2, 3} but decreases for higher values of β.

β 1 2 3 4 5 6
1 Bit 0.0851 0.0894 0.0944 0.0788 0.0698 0.0587
8 Bits 0.2322 0.2563 0.2517 0.2265 0.2043 0.1755

Because we only want to illustrate that the correlation coefficients are ap-
proximately the same as in the previous attack, we only give the numbers for
attacking 1 bit and for attacking 8 bits.

3.4 Attacking a Masked Key Addition

This scenario is the same as the one described by Messerges in [Mes00].

Assumptions. The plaintext P is concealed with a random mask M : P ⊕ M .
During the key addition, the masked plaintext is exclusive-ored with the key:
P ⊕ M ⊕ K. The manipulation of M and the computation of P ⊕ M ⊕ K occur
somewhen during the (initial) phase of the algorithm. We assume for the attack
that we have recorded the power trace of the initial phase of the algorithm.

Attack on the key addition. We use the value of the mask M and and the value
P ⊕ M ⊕ K of the key addition in our attack. In the first step, we locate the
sequence of key addition operations. We make an educated guess for the time
frame when M and P ⊕ M ⊕ K are computed. In the second step, we predict
|C(M)−C(P ⊕M ⊕K)| with HW (P ⊕K) and perform a standard DPA attack.
For the prediction we need to know one bit of the plaintext and we need to guess
one bit of the key.

Number of traces. In this scenario we can only attack one bit of an intermediate
result at a time. We have calculated the correlation between HW (P ⊕ K) and
|HW (M)−HW (P ⊕M ⊕K)|β for different values of β. Tab. 3 shows the results
for different values of β.

Table 3. Exact correlation values for the scenario described in Sect. 3.4. The correlation
increases only slightly for β = {2, 3} but decreases for higher values of β.

β 1 2 3 4 5 6
1 Bit 0.0846 0.0912 0.0879 0.0806 0.0717 0.0626

4 Attacking a Masked AES Smart Card Implementation

In order to verify the theoretical discussions presented in Sect. 3, we have per-
formed these attacks in practice. The target of these attacks was a masked AES
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smart card implementation. This implementation is described in Sect. 4.1. For
the attacks, we have executed this implementation of AES on a micro controller
whose power consumption is proportional to the Hamming weight of the data it
processes. The results of two second-order DPA attacks on this implementation
are reported in Sect. 4.2 and 4.3.

4.1 Masking AES in Software for a Smart Card Implementation

In our masked software implementation of AES the inputs and outputs of each
operation are masked additively. In the following paragraphs we briefly sketch
how the masked versions of the four AES operations have been implemented. A
graphical description can be found in App. B.

Masked AddRoundKey: The AddRoundKey operation does not change the mask
and therefore it does not require special attention in our masked implementa-
tion. Essentially, we use the same AddRoundKey operation as in an unmasked
implementation.

Masked SubBytes: We mask the SubBytes operation S with values M and M ′

(the masks). Therefore, we have to derive a new masked S-box S′ with the
property that S′(X ⊕ M) = S(X) + M ′.

Masked ShiftRows: The ShiftRows operation is done in combination with the
SubBytes operation by reading and writing the state bytes in a specific order.
Therefore, no separate masking effort is required for ShiftRows.

Masked MixColumns: As MixColumns is a linear operation it is sufficient to
calculate the MixColumns operation with the used masks in addition to the
normal calculation with the masked AES state. In order to minimize the overhead
for calculation, we make sure that the state before MixColumns is always masked
with the same four values. Hence, the output of MixColumns is also masked with
the same four masks. The four output masks only need to be calculated once per
AES encryption or decryption. The reason for using four different masks for a
column is that the four bytes of the column are combined with each other during
the MixColumns operation. If the same mask would be used on each byte of the
column, then intermediate values of MixColumns could be processed unmasked
if the masks cancel each other out.

4.2 Attacking Two S-Box Outputs in the First Encryption Round

In the scenario described in Section 3.3, we predict the power consumption by
calculating the Hamming-weight of the exclusive-or of two outputs of the masked
SubBytes operation: HW (S(P1 ⊕ K1) ⊕ S(P2 ⊕ K2)). Using this technique, we
have targeted the first two key bytes of our masked AES implementation during
the first encryption round.

In order to reduce the computational effort that is needed for the attack, we
have first made an educated guess for the time frame when S(P1 ⊕K1)⊕M ′ and
S(P1 ⊕ K1) ⊕ M ′ are computed. For this purpose, we have measured the power
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Fig. 2. A part of the first encryption round. A sequence of 16 similar operations is
clearly visible in the power trace.

consumption during one execution of AES. We have inspected the power trace
and we have deduced when the first round takes place. Within the first round (see
Fig. 2), there is a distinct part where 16 similar operations take place. This part
corresponds to the operations AddRoundKey and SubBytes. These operations
are executed in combination for each byte of the AES state. Since we decided to
target the outputs of the first two SubBytes operations, we selected the interval
410 to 620 of the power trace (see Fig. 2) for our attack.

After having selected this interval, we have made 3000 measurements of the
power consumption of the micro controller while it was performing AES encryp-
tions of random plaintexts. Subsequently, we have performed the pre-processing
operation described in Section 3. This means that for each of the 3000 power
traces we have calculated the absolute value of the difference of all pairs of points
in the interval 410 to 620. We have done this computation by first subtracting
the points 411 to 620 from the point 410. We refer to the absolute value of these
differences as a segment. The segment that has been calculated based on point
410 consists of 210 values.

The next segment was calculated based on point 411. This segment contained
the absolute value of the difference between the points 412 to 620 and 411. It
consists of 209 values. Following this strategy, we have calculated corresponding
segments based on all remaining points in the interval from 412 to 620. This lead
to 210 segments in total, where the largest segment consisted of 210 values and
the smallest one consisted of just one value.

For the attack, we have concatenated the 210 segments of each power trace.
After the pre-processing step, we therefore had 3000 traces, where each trace
consisted of 210 segments. Based on these traces, a standard DPA attack making
hypotheses about the value of HW (S(P1⊕K1)⊕S(P2⊕K2)) has been performed.
Since the intermediate result HW (S(P1 ⊕ K1) ⊕ S(P2 ⊕ K2)) depends on two
key bytes, 65536 key guesses were necessary.

The result of this attack for the correct key guess is shown in Fig. 3. Several
peaks are clearly visible in this figure. There is more than one peak in the result
because the targeted micro controller manipulates the two attacked intermediate



202 E. Oswald et al.

1 10 20 30 40 50 60 70 80 90 100110 160 211
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Segments

C
or

re
la

tio
n

Fig. 3. Result of a second-order DPA attack on the interval 410 to 620 of the original
power traces
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Fig. 4. The result of all 65536 key guesses
in an attack on segment 61
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Fig. 5. Correlation coefficients for all
65536 keys depending on the number of
power traces that are used in the attack

results in more than two clock cycles. The highest peak that is shown in Fig. 3 is
located in segment 61 and has the value 0.21. This segment contains the result
of the second-order DPA attack mounted based on the absolute values of the
differences between the points 471 to 620 and 470 in the original traces. The
segment consists of 150 values.

In order to show that only the correct key produces a peak in this second-
order attack, we have attacked this segment based on all 65536 key hypotheses.
The results of this attack are shown in Fig. 4. The results for the 65535 in-
correct keys are plotted in gray. The result for the correct key is plotted in
black. It can be observed that indeed only the correct key leads to significant
peaks.
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We have also analyzed how many samples are needed to obtain a significant
peak in segment 61. Figure 5 shows how the correlation coefficients evolve de-
pending on the number of used power traces. The correlation coefficient for the
correct key guess is shown in black. The correlation coefficients for the incor-
rect key guesses are shown in gray. It can be observed in Fig. 5 that roughly
400 traces are needed to perform a second-order DPA attack on the output of
two S-box operations. This confirms our theoretical estimate for the correlation
coefficient and the number of samples given in Sect. 3.2.

For our attack we have used a standard PC with 2 GB of RAM and a
standard digital oscilloscope. It took us roughly one hour to make the 3000
measurements. We compressed the power traces by integrating the absolute
values of each clock cycle. The compression step required about 23 minutes.
The pre-processing step for the second-order DPA attack (i.e., the calcula-
tion and concatenation of the segments) took about 5 minutes. Attacking seg-
ment 61 based on 65536 key hypotheses took less than two minutes. An at-
tack on all 210 segments can be performed within a few hours. Hence, this
type of attack can be easily performed in practice. The time that is needed
for the attack is mainly determined by the transfer speed of the hard disk. On
a standard PC not all power traces and hypotheses can be kept in memory
simultaneously.

4.3 Attacking an S-Box in the First Encryption Round

In the scenario that is described in Sect. 3.2, the power consumption of the
attacked device is predicted based on the Hamming-weight of the exclusive-or of
the input and output of a masked SubBytes operation: (P1 ⊕ K1)⊕ S(P1 ⊕ K1).
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Fig. 6. Result of a second-order DPA attack on an interval of 111 points of the original
power traces
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Fig. 7. The result of all 256 key guesses
in an attack on segment 33
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Fig. 8. Correlation coefficients for all 256
key guesses depending on the number of
power traces that are used in the attack

We have targeted the first encryption round in our analysis and we have again
acquired 3000 power traces of the attacked device.

Based on visually inspecting the power traces, we have made an educated guess
for the time frame when the input and output of the attacked S-box is processed.
We have considered an interval of 111 points for the attack. Just like in the previous
section, we have performed a pre-processing step to calculate the absolute value of
the difference between all possible pairs of points in this interval.

Based on each power trace, 110 segments have been calculated and concate-
nated. The resulting traces have been used as input for a standard DPA attack
predicting the Hamming-weight of (P1 ⊕K1)⊕S(P1 ⊕K1). The result for the cor-
rect key guess is shown in Fig. 6. As expected, there are again several peaks visible
in this trace. The highest peak occurs in segment 33 and has the value 0.24.

We have performed an attack on this segment based on all 256 key guesses.
The result of this attack is shown in Fig. 7. The result for the correct key guess
is shown in black. The result for the other key guesses is shown in gray. Figure 8
shows how the correlation coefficients depend on the number of used power
traces. It can be observed that just like in the previous attack approximately
400 traces suffice to identify the correct key.

5 Conclusion

In this article, we have presented a way to formulate second-order DPA attacks
that are practical for smart card implementations. Our attacks are simple to
mount, it is easy to assess their complexity and they can be applied to any
implementation that uses additive masking as DPA countermeasure. Our results
are compelling: we can attack a masked AES implementation with no more than
400 traces without needing to know the exact moments when intermediate values
are being manipulated.

Our work clearly shows that second-order DPA attacks are a practical threat
for masked software implementations. Consequently, masking by itself is insuf-
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ficient to protect masked smart card implementation of block ciphers against
power-analysis attacks.
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A Using Multiplication as Pre-processing Method

Waddle et al. [WW04] and Chari et al. [CJRR99] have suggested to use multi-
plication as a pre-processing method. In order to illustrate that this is inferior to
using the absolute difference, we study this technique for the scenario described
in Sect. 3.2.

With multiplication as pre-processing method, we use HW (S(P ⊕K)⊕ (P ⊕
K)) to predict (HW (S(P ⊕K)⊕M) ∗HW (P ⊕K ⊕M))β . It is easy to exactly
calculate the correlation between HW (S(P ⊕ K) ⊕ (P ⊕ K)) and (HW (S(P ⊕
K)⊕ M) ∗ HW (P ⊕ K ⊕ M))β with a computer. We performed this calculation
for different values of β and for attacks on different numbers of bits of S(P ⊕
K) ⊕ (P ⊕ K). The results are given in Tab. 4. The correlation coefficients are
clearly much lower than the ones in Tab. 1 which means that this pre-processing
technique is less effective.

Table 4. Exact correlation values for the scenario described in Sect. 3.2 when multipli-
cation is used as pre-processing method. The correlation increases when more bits are
used in the prediction. The correlation increases slightly for β = {2, 3, 4} but decreases
for higher values of β.

β 1 2 3 4 5 6
1 Bit -0.0327 -0.0531 -0.0627 -0.0644 -0.0610 -0.0551
2 Bits -0.0437 -0.0706 -0.0830 -0.0846 -0.0797 -0.0717
3 Bits -0.0548 -0.0888 -0.1045 -0.1069 -0.1010 -0.0911
4 Bits -0.0636 -0.1032 -0.1223 -0.1261 -0.1202 -0.1096
5 Bits -0.0698 -0.1134 -0.1346 -0.1391 -0.1330 -0.1215
6 Bits -0.0761 -0.1236 -0.1468 -0.1517 -0.1449 -0.1323
7 Bits -0.0817 -0.1328 -0.1579 -0.1634 -0.1563 -0.1429
8 Bits -0.0871 -0.1415 -0.1681 -0.1737 -0.1660 -0.1515

B Graphical Description of the Masked AES
Implementation

Figure 9 shows, in correspondence with the notation used in Sect. 4, how our
masked AES implementation works.

We use six masks in total. The masks M and M’ are the input and output
masks for SubBytes, respectively. At the start of an AES encryption, the masked
S-box is calculated for M and M’. The masks M1, M2, M3, and M4 are the input
masks for MixColumns. The corresponding output masks M1’, M2’, M3’, and
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Fig. 9. Graphical description of the masked AES implementation

M4’ are determined by applying MixColumns to the input masks. Fig. 9 shows
how all AES operations are masked and how the masks are changed between the
operations.

We have verified that our masked AES implementation is secure against first-
order DPA attacks by attacking all intermediate values.
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