

Lecture Notes in Computer Science 3860
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

David Pointcheval (Ed.)

Topics in Cryptology –
CT-RSA 2006

The Cryptographers’ Track at the RSA Conference 2006
San Jose, CA, USA, February 13-17, 2006
Proceedings

13

Volume Editor

David Pointcheval
CNRS
ENS/DI
45, rue d’Ulm, 75005 Paris, France
E-mail: David.Pointcheval@ens.fr

Library of Congress Control Number: 2005937532

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, K.4.4, F.2.1-2, C.2, J.1

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-31033-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31033-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11605805 06/3142 5 4 3 2 1 0

Preface

The RSA R© Conference, with over 15,000 attendees, as well as over 225 sponsors
and exhibitors, is the largest computer security event of the year. The Cryp-
tographers’ Track is one of the many parallel tracks. These proceedings contain
the papers presented during the sixth edition. The tradition indeed started in
2001, and is by now well established: the Cryptographers’ Track at the RSA
Conference is among the major events in cryptography.

There were 72 submitted contributions, of which 22 were selected for pre-
sentation. They cover all aspects of cryptography (symmetric and asymmetric
cryptography, constructions and attacks, new trends). In addition, the program
includes two invited talks, by Xiaoyun Wang on “Cryptanalysis of Hash func-
tions and Potential Dangers,” and Philip MacKenzie on “Passwords Will Not
Die: How Cryptography Can Help Deal with Them.”

All the submissions were reviewed by at least three members of the Program
Committee. I am very grateful to the 24 members for their hard and conscientious
work. Many thanks to the 89 external reviewers:

Masayuki Abe
Kazumaro Aoki
Giuseppe Ateniese
Roberto Avanzi
Zuzana Beerliová
Olivier Billet
Alex Biryukov
Ian Blake
Colin Boyd
Eric Brier
Aniello Castiglione
Juyoung Cha
Aldar Chan
Liqun Chen
Kookrae Cho
Scott Contini
Paolo D’Arco
Jintai Ding
Christophe Doche
Orr Dunkelman
Matthias Fitzi
Pierre-Alain Fouque
Jacques J.A. Fournier
Kouichi Fujisaki

Eiichiro Fujisaki
Jun Furukawa
David Galindo
Shai Halevi
Helena Handschuh
Chris Heneghan
Thomas Holenstein
Fumitaka Hoshino
Yong Ho Hwang
Toshiyuki Isshiki
Ellen Jochemsz
Antoine Joux
Ari Juels
Charanjit Jutla
Aggelos Kiayias
Hiroaki Kikuchi
Tetsutarou Kobayashi
Tadayoshi Kohno
Hugo Krawczyk
Sandeep Kumar
Tanja Lange
Jung Wook Lee
Barbara Masucci
Alexander May

Miodrag Mihaljevic
Kazuhiko Minematsu
Fabian Monrose
Paul Montague
Steve Myers
David Naccache
Antonio Nicolosi
Satoshi Obana
Satomi Okazaki
Katsuyuki Okeya
Francis Olivier
Roger Oyono
Dan Page
Jung Hyung Park
Kun Peng
Krzysztof Pietrzak
Dominik Raub
Yasuyuki Sakai
Kouichi Sakurai
Werner Schindler
Jae Woo Seo
Jong Hoon Shin
Igor Shparlinski
Ron Steinfeld

VI preface

Mike Szydlo
Yael Tauman Kalai
Isamu Teranishi
Toshio Tokita
Michael Tunstall
Frederik Vercauteren

Karine Villegas
Shabsi Walfish
Huaxiong Wang
Xiaofeng Wang
Bogdan Warinschi
Benne de Weger

Christopher Wolf
Alex Yampolskiy
Yeon Hyeong Yang
Yiqun Lisa Yin
Jeong Il Yoon

Note that these proceedings contain the revised versions of the selected pa-
pers. Since the revisions were not checked again before publication, the authors
(and not the committee) bear full responsibility of the contents of their papers.

I also would like to thank Jacques Beigbeder for maintaining the submission
and webreview servers, and Duong Hieu Phan for the fast set up of the review
phase. The submission software was written by Chanathip Namprempre, and
the webreview system by Wim Moreau and Joris Claessens. Many thanks to
Burt Kaliski for interfacing with the RSA conference organizers, and to Alfred
Hofmann at Springer for the production of this volume.

Finally, I wish to thank all the authors who submitted papers, and the authors
of accepted papers for sending their final versions on time.

November 2005 David Pointcheval
Program Chair
CT-RSA 2006

Organization

RSA Conference 2006 was organized by RSA Security Inc. and its partner orga-
nizations around the world. The Cryptogaphers’ Track at RSA Conference 2006
was organized by RSA Laboratories (http://www.rsasecurity.com).

Program Chair

David Pointcheval CNRS/ENS, France

Program Committee

Eli Biham Technion, Israel
Xavier Boyen Voltage, USA
Benôıt Chevallier-Mames Gemplus, France
Anand Desai NTT MCL, USA
Yvo Desmedt University College London, UK
Yevgeniy Dodis New York Univ., USA
Steven Galbraith Royal Holloway University of London, UK
Rosario Gennaro IBM T.J. Watson Research Center, USA
Henri Gilbert France Telecom R&D, France
Martin Hirt ETH Zurich, Switzerland
Nick Howgrave-Graham NTRU Cryptosystems, USA
Markus Jakobsson Indiana Univ., USA
Jonathan Katz Univ. of Maryland, USA
Kwangjo Kim ICU, Korea
Pil Joong Lee POSTECH, Korea
Arjen Lenstra Lucent Technologies, USA & TU Eindhoven,

The Netherlands
Javier Lopez Univ. of Malaga, Spain
Tatsuaki Okamoto NTT, Japan
Josef Pieprzyk Macquarie Univ., Australia
Guillaume Poupard DCSSI Crypto Lab, France
Bart Preneel K.U. Leuven, Belgium
Kazue Sako NEC, Japan
Ivan Visconti Univ. di Salerno, Italy
Moti Yung RSA Labs & Columbia Univ., USA

Table of Contents

Attacks on AES

Cache Attacks and Countermeasures: The Case of AES
Dag Arne Osvik, Adi Shamir, Eran Tromer . 1

Related-Key Impossible Differential Attacks on 8-Round AES-192
Eli Biham, Orr Dunkelman, Nathan Keller . 21

Identification

Session Corruption Attack and Improvements on Encryption Based
MT-Authenticators

Xiaojian Tian, Duncan S. Wong . 34

Fair Identification
Omkant Pandey, Julien Cathalo, Jean-Jacques Quisquater 52

Algebra

Efficient Doubling on Genus 3 Curves over Binary Fields
Xinxin Fan, Thomas Wollinger, Yumin Wang . 64

Another Look at Small RSA Exponents
M. Jason Hinek . 82

Integrity

Collision-Resistant Usage of MD5 and SHA-1 Via Message Preprocessing
Michael Szydlo, Yiqun Lisa Yin . 99

RFID-Tags for Anti-counterfeiting
Pim Tuyls, Lejla Batina . 115

Public Key Encryption

A “Medium-Field” Multivariate Public-Key Encryption Scheme
Lih-Chung Wang, Bo-Yin Yang, Yuh-Hua Hu, Feipei Lai 132

A New Security Proof for Damg̊ard’s ElGamal
Kristian Gjøsteen . 150

X Table of Contents

Signatures

Stand-Alone and Setup-Free Verifiably Committed Signatures
Huafei Zhu, Feng Bao . 159

Toward the Fair Anonymous Signatures: Deniable Ring
Signatures

Yuichi Komano, Kazuo Ohta, Atsushi Shimbo,
Shinichi Kawamura . 174

Side-Channel Attacks

Practical Second-Order DPA Attacks for Masked Smart Card
Implementations of Block Ciphers

Elisabeth Oswald, Stefan Mangard, Christoph Herbst,
Stefan Tillich . 192

Higher Order Masking of the AES
Kai Schramm, Christof Paar . 208

CCA Encryption

Chosen Ciphertext Secure Public Key Threshold Encryption Without
Random Oracles

Dan Boneh, Xavier Boyen, Shai Halevi . 226

How to Construct Multicast Cryptosystems Provably Secure Against
Adaptive Chosen Ciphertext Attack

Yitao Duan, John Canny . 244

Message Authentication

On the (Im)possibility of Blind Message Authentication Codes
Michel Abdalla, Chanathip Namprempre,
Gregory Neven . 262

An Optimal Non-interactive Message Authentication Protocol
Sylvain Pasini, Serge Vaudenay . 280

Block Ciphers

A New Criterion for Nonlinearity of Block Ciphers
Orr Dunkelman, Nathan Keller . 295

Table of Contents XI

Block Ciphers Sensitive to Gröbner Basis Attacks
Johannes Buchmann, Andrei Pyshkin, Ralf-Philipp Weinmann 313

Multi-party Computation

Universally Composable Oblivious Transfer in the Multi-party Setting
Marc Fischlin . 332

A Round and Communication Efficient Secure Ranking Protocol
Shaoquan Jiang, Guang Gong . 350

Author Index . 365

Cache Attacks and Countermeasures:
The Case of AES

Dag Arne Osvik1, Adi Shamir2, and Eran Tromer2

1 dag.arne@osvik.no
2 Department of Computer Science and Applied Mathematics,

Weizmann Institute of Science, Rehovot 76100, Israel
{adi.shamir, eran.tromer}@weizmann.ac.il

Abstract. We describe several software side-channel attacks based on
inter-process leakage through the state of the CPU’s memory cache.
This leakage reveals memory access patterns, which can be used for
cryptanalysis of cryptographic primitives that employ data-dependent
table lookups. The attacks allow an unprivileged process to attack other
processes running in parallel on the same processor, despite partition-
ing methods such as memory protection, sandboxing and virtualization.
Some of our methods require only the ability to trigger services that
perform encryption or MAC using the unknown key, such as encrypted
disk partitions or secure network links. Moreover, we demonstrate an
extremely strong type of attack, which requires knowledge of neither
the specific plaintexts nor ciphertexts, and works by merely monitoring
the effect of the cryptographic process on the cache. We discuss in de-
tail several such attacks on AES, and experimentally demonstrate their
applicability to real systems, such as OpenSSL and Linux’s dm-crypt
encrypted partitions (in the latter case, the full key can be recovered
after just 800 writes to the partition, taking 65 milliseconds). Finally, we
describe several countermeasures for mitigating such attacks.

Keywords: side-channel attack, cache, memory access, cryptanalysis,
AES.

1 Introduction

1.1 Overview

Many computer systems concurrently execute programs with different privileges,
employing various partitioning methods to facilitate the desired access control
semantics. These methods include kernel vs. userspace separation, process mem-
ory protection, filesystem permissions and chroot, and various approaches to
virtual machines and sandboxes. All of these rely on a model of the underlying
machine to obtain the desired access control semantics. However, this model is
often idealized and does not reflect many intricacies of actual implementation.

In this paper we show how a low-level implementation detail of modern CPUs,
namely the structure of memory caches, causes subtle indirect interaction be-
tween processes running on the same processor. This leads to cross-process infor-
mation leakage. In essence, the cache forms a shared resource which all processes

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 1–20, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 D.A. Osvik, A. Shamir, and E. Tromer

compete for, and it thus affects and is affected by every process. While the
data stored in the cache is protected by virtual memory mechanisms, the meta-
data about the contents of the cache, and hence the memory access patterns of
processes using that cache, is not fully protected.

We describe several methods an attacker can use to learn about the memory
access patterns of another process. These are classified into methods that affect
the state of the cache and then measure the effect on the running time of the
encryption, and methods that investigate the state of the cache after or during
encryption. The latter are found to be particularly effective and noise-resistant.

We demonstrate the cryptanalytic applicability of these methods to the Ad-
vanced Encryption Standard (AES, [11]) by showing a known-plaintext (or
known-ciphertext) attack that performs efficient full key extraction. For example,
an implementation of one variant of the attack performs full AES key extraction
from the dm-crypt system of Linux using only 800 accesses to an encrypted file,
65ms of measurements and 3 seconds of analysis; attacking simpler systems, such
as “black-box” OpenSSL library calls, is even faster at 13ms and 300 encryptions.

One variant of our attack has the unusual property of performing key ex-
traction without knowledge of either the plaintext or the ciphertext. This is an
unusually strong form of attack in which an unprivileged process can, just by
accessing its own memory space, obtain bits from a secret AES key used by
another process, without any (explicit) communication between the two. This
too is demonstrated experimentally.

Implementing AES in a way that is impervious to this attack, let alone de-
veloping an efficient generic countermeasure, appears non-trivial; in Section 5,
various countermeasures are described and analyzed.

Many details and variants have been omitted due to space constraints; see
http://www.wisdom.weizmann.ac.il/~tromer/cache for an extended version.

1.2 Related Works

The possibility of cross-process leakage via cache state has been mentioned in
several previous works. It was considered in 1992 by Hu [7] in the context of
intentional transmission via covert channels. In 1998, Kelsey et al. [8] mentioned
the prospect of “attacks based on cache hit ratio in large S-box ciphers”. In 2002,
Page [9] described theoretical attacks using cache misses, but assumed the ability
to identify cache misses with very high temporal resolution; its applicability in
realistic scenarios is unclear. In 2003, Tsunoo et al. [15] described attacks using
timing effects due to collisions in the memory lookups inside the cipher, as
opposed to the cipher-attacker collisions we investigate.

Concurrently with but independently of our work, Bernstein [2] describes
attacks on AES that exploit timing variability due to cache effects; his attack can
be seen as a variant of our Evict+Time measurement method (see Section 3.4).
The main difference is that [2] does not use an explicit model of the cache and
active manipulation, but rather relies only on the existence of some consistent
statistical timing pattern due to various uncontrolled memory access effects. The
resulting attack is simpler and more portable, but have several shortcomings.

Cache Attacks and Countermeasures: The Case of AES 3

First, it requires reference measurements of encryption under known key in an
identical configuration, and these are often not readily available (e.g., a user
may be able to write data to an encrypted filesystem, but creating a reference
filesystem with a known key is a privileged operation). Second, the attack of [2]
relies on timing the encryption and thus, similarly to our Evict+Time method,
seems impractical on many real systems due to excessively low signal-to-noise
ratio; our alternative methods (Sections 3.5 and 4) address this. Third, even
when the attack of [2] works, it requires a much higher number of analyzed
encryptions.1

Also concurrently with but independently of our work, Percival [14] describes
a cache-based attack on RSA for processors with simultaneous multithreading.
The measurement method is similar to one variant of our asynchronous attack
(Section 4), but the cryptanalytic aspect is very different since the algorithms
and time scales involved in RSA encryption are very different from those of AES.
Both [2] and [14] contain discussions of countermeasures against the respective
attacks, and some of these are also relevant to our attacks (see Section 5).

Koeune and Quisquater [6] described a timing attack on a “bad implementa-
tion” of AES which uses its algebraic description in a “careless way” (namely,
using a conditional branch in the MixColumn operation). That attack is not ap-
plicable to common software implementations, but should be taken into account
in regard to certain countermeasures against our attack (see Section 5.2).

Leakage of memory access information has also been considered in other con-
texts, yielding theoretical [5] and practical [16][17] mitigation methods; these are
discussed in Section 5.3.

2 Preliminaries

2.1 Memory and Cache Structure

Modern processors use one or more levels of set-associative memory cache. Such
a cache consists of storage cells called cache lines, each consisting of B bytes.
The cache is organized into S cache sets, each containing W cache lines2, so
overall the cache contains S · W · B bytes. The mapping of memory addresses
into the cache is limited as follows. First, the cache holds copies of aligned blocks
of B bytes in main memory, which we will term memory blocks; when a cache
miss occurs, a full memory block is copied into one of the cache lines. Second,
each memory block may be cached only in a specific cache set; specifically, the
memory block starting at address a can be cached only in the W cache lines
belonging to cache set �a/B� mod S. See Figure 1(a). Thus, the memory blocks
are partitioned into S classes, where the blocks in each class contend for the
cache lines in a single cache set.
1 In our experiments the attack code of [2] failed to get a signal from dm-crypt even

after a 10 hours run, whereas in an identical setup our Prime+Probe performed full
key recovery using 65ms of measurements.

2 In common terminology, W is called the associativity and the cache is called W -way
associative.

4 D.A. Osvik, A. Shamir, and E. Tromer

S

W WT0

Cache Main memory

(e)

(f)

(b)

(c)

(d)

(a)

Fig. 1. (a) Schematic of a set-associative cache. The light gray blocks represent a cached
AES lookup table. The dark gray blocks represent the attacker’s memory. States (b)-(d)
depict Evict+Time and (e)-(f) depict Prime+Probe (see Section 3).

2.2 Memory Access in AES Implementations

This paper focuses on AES (see Section 6.1 for a discussion of other ciphers).
Performance-oriented implementations on 32-bit (or higher) processors typically
use the following formulation, as prescribed in the Rijndael AES submission [4].3

Several lookup tables are precomputed once by the programmer or during
system initialization. There are 8 such tables, T0, . . . , T3 and T

(10)
0 , . . . , T

(10)
3 ,

each containing 256 4-byte words. The contents of the tables, defined in [4], are
inconsequential for most of our attacks.

During key setup, a given 16-byte secret key k = (k0, . . . , k15) is expanded
into 10 round keys4, K(r) for r = 1, . . . , 10. Each round key is divided into 4
words of 4 bytes each: K(r) = (K(r)

0 , K
(r)
1 , K

(r)
2 , K

(r)
3). The 0-th round key is

just the raw key: K
(0)
j = (k4j , k4j+1, k4j+2, k4j+3) for j = 0, 1, 2, 3. The details

of the rest of the expansion are mostly inconsequential.
Given a 16-byte plaintext p = (p0, . . . , p15), encryption proceeds by com-

puting a 16-byte intermediate state x(r) = (x(r)
0 , . . . , x

(r)
15) at each round r.

The initial state x(0) is computed by x
(0)
i = pi ⊕ ki (i = 0, . . . , 15). Then,

the first 9 rounds are computed by updating the intermediate state as follows,
for r = 0, . . . , 8:

(x(r+1)
0 , x

(r+1)
1 , x

(r+1)
2 , x

(r+1)
3) ← T0[x

(r)
0] ⊕ T1[x

(r)
5] ⊕ T2[x

(r)
10] ⊕ T3[x

(r)
15] ⊕ K

(r+1)
0

(x(r+1)
4 , x

(r+1)
5 , x

(r+1)
6 , x

(r+1)
7) ← T0[x

(r)
4] ⊕ T1[x

(r)
9] ⊕ T2[x

(r)
14] ⊕ T3[x

(r)
3] ⊕ K

(r+1)
1

(x(r+1)
8 , x

(r+1)
9 , x

(r+1)
10 , x

(r+1)
11) ← T0[x

(r)
8] ⊕ T1[x

(r)
13] ⊕ T2[x

(r)
2] ⊕ T3[x

(r)
7] ⊕ K

(r+1)
2

(x(r+1)
12 , x

(r+1)
13 , x

(r+1)
14 , x

(r+1)
15) ← T0[x

(r)
12] ⊕ T1[x

(r)
1] ⊕ T2[x

(r)
6] ⊕ T3[x

(r)
11] ⊕ K

(r+1)
3

(1)

Finally, to compute the last round (1) is repeated with r = 9, except that
T0, . . . , T3 is replaced by T

(10)
0 , . . . , T

(10)
3 . The resulting x(10) is the ciphertext.

Compared to the algebraic formulation of AES, here the lookup tables account
for the combination of ShiftRows, MixColumns and SubBytes operations;
the change of lookup tables for the last is due to the absence of MixColumns.

3 Some implementations use variant with a different table layouts; see Section 5.2.
4 We consider AES with 128-bit keys. The attacks can be adapted to longer keys.

Cache Attacks and Countermeasures: The Case of AES 5

2.3 Notation

We treat bytes interchangeably as integers in {0, . . . , 255} and as elements of
{0, 1}8 that can be XORed. Let δ denote the cache line size B divided by the
size of each table entry (usually 4 bytes); on most platforms of interest we have
δ = 16. For a byte y and table T�, we will denote 〈y〉 = �y/δ� and call this
the memory block of y in T�. The significance of this notation is as follows:
two bytes y, z fulfill 〈y〉 = 〈z〉 iff, when used as lookup indices into the same
table T�, they would cause access to the same memory block5; they would there-
fore be impossible to distinguish based only on a single memory access. For a
byte y and table T�, we say that an AES encryption with given inputs accesses
the memory block of y in T� if, according to the above description of AES, at
some point in the encryption there will be some table lookup to T�[z] where
〈z〉 = 〈y〉.

In Section 3 we will show methods for discovering (and taking advantage of the
discovery) whether the encryption code, invoked as a black box, accesses a given
memory block. To this end we define the following predicate: Qk(p, �, y) = 1 iff
the AES encryption of the plaintext p under the encryption key k accesses the
memory block of index y in T� at least once throughout the 10 rounds.

Also in Section 3, our measurement procedures will sample measurement score
from a distribution Mk(p, �, y) over R. The exact definition of Mk(p, �, y) will
vary, but it will approximate Qk(p, �, y) in the following rough sense: for a large
fraction of the keys k, all tables � and a large fraction of the indices x, for random
plaintexts and measurement noise, the expectation of Mk(p, �, y) is larger when
Qk(p, �, y) = 1 than when Qk(p, �, y) = 0.

3 Synchronous Known-Data Attacks

3.1 Overview

The first family of attacks, termed synchronous attacks, is applicable in scenarios
where the plaintext or ciphertext is known and the attacker can operate synchro-
nously with the encryption on the same processor, by using (or eavesdropping
upon) some interface that triggers encryption under an unknown key. For ex-
ample, a Virtual Private Network may allow an unprivileged user to send data
packets through a secure channel. This lets the user trigger encryption of plain-
texts that are mostly known (up to some uncertainties in the packet headers),
and our attack would thus, under some circumstances, enable any such user to
discover the key used by the VPN to protect all users’ packets. As another ex-
ample, consider the Linux dm-crypt and cryptoloop services. These allow the
administrator to create a virtual device which provides encrypted storage into an
5 We assume that the tables are aligned on memory block boundaries, which is usually

the case. Non-aligned tables would benefit our attacks by leaking an extra bit per
key byte in the first round. We also assume for simplicity that all tables are mapped
into distinct cache sets; this holds with high probability on many systems (and our
practical attacks also handle some exceptions).

6 D.A. Osvik, A. Shamir, and E. Tromer

underlying physical device, and typically a normal filesystem is mounted on top
of the virtual device. If a user has write permissions to any file on that filesys-
tem, he can use it to trigger encryptions of known chosen plaintext, and using
our attack he is subsequently able to discover the encryption key used for the
underlying device. We have experimentally demonstrated the latter attack, and
showed it to reliably extract the full AES key using about 65ms of measurements
(involving just 800 write operations) followed by 3 seconds of analysis.

The full attack obtains a set of random samples, and then performs off-line
cryptanalysis. The latter proceeds by hypothesis testing: we guess small parts of
the key, use the guess to predict memory accesses, and check whether the pre-
dictions are consistent with the collected data. In the following we first describe
the cryptanalysis in an idealized form using the predicate Q, and adapt it to
the noisy measurements of M . We then show two different methods for obtain-
ing these measurements, detail some experimental results and outline possible
variants and extensions.

3.2 One-Round Attack

The simplest known-plaintext synchronous attack exploits the fact that in the
first round, the accessed table indices are simply x

(0)
i = pi ⊕ ki for all i =

0, . . . , 15. Thus, given knowledge of the plaintext byte pi, any information on
the accessed index x

(0)
i directly translates to information on key byte ki. The

basic attack, in idealized form, is as follows.
Suppose that we obtain samples of the ideal predicate Qk(p, �, y) for some

table �, arbitrary table indices y and known but random plaintexts p. Let ki be
a key byte such that the first encryption round performs the access “T�[x

(0)
i]”,

i.e., such that i ≡ � (mod 4). Then we can discover the partial information 〈ki〉
about ki, by testing candidate values k̃i and checking them as follows. Consider
the samples that fulfill 〈y〉 = 〈pi⊕ k̃i〉. These samples will be said to be useful for
k̃i, and we can reason about them as follows. If indeed 〈ki〉 = 〈k̃i〉 then we will
always have Qk(p, �, y) = 1 for useful samples, since the table lookup “T�[x

(0)
i]”

will indeed access the memory block of y in T�. Conversely, if 〈ki〉 	= 〈k̃i〉 then we
are assured that “T�[x

(0)
i]” will not access the memory block of y; however, during

the full encryption process there will be 4×9−1 = 35 more accesses to T�. Those
35 accesses are affected by other plaintext bytes, so (for sufficiently random
plaintexts) the probability that the encryption will not access that memory block
in any round is (1 − δ/256)35. By definition, that is also the probability of
Qk(p, �, y) = 0, and in the common case δ = 16 it is approximately 0.104.
Thus, after receiving a few dozen useful samples we can identify a correct 〈k̃i〉 —
namely, the one for which Qk(p, �, y) = 1 whenever 〈y〉 = 〈pi⊕ k̃i〉. Applying this
test to each key byte ki separately, we can thus determine the top log2(256/δ) = 4
bits of every key byte ki (when δ = 16), i.e., half of the key. Note that this is the
maximal amount of information that can be extracted from the memory lookups
of the first round, since they are independent and each can be distinguished only
up to the size of a memory block.

Cache Attacks and Countermeasures: The Case of AES 7

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10 12 14 16

Fig. 2. Candidate scores for a synchronous attack using Prime+Probe measurements,
analyzing a dm-crypt encrypted filesystem on Linux 2.6.11 running on an Athlon 64,
after analysis of 30,000 (left) or 800 (right) triggered encryptions. The horizontal axis
is k̃5 = p5 ⊕ y (left) or 〈k̃5〉 (right) and the vertical axis is the average measurement
score over the samples fulfilling y = p5 ⊕ k̃5 (in units of clock cycles). The high nibble
of k5 = 0x50 is easily gleaned.

In reality, we do not have the luxury of the ideal predicate, and have to deal
with measurement score distributions Mk(p, �, y) that are correlated with the
ideal predicate but contain a lot of (possibly structured) noise. For example, we
will see that Mk(p, �, y) is often correlated with the ideal Qk(p, �, y) for some �
but is uncorrelated for others (see Figure 4). We thus proceed by averaging over
many samples. As above, we concentrate on a specific key xi and a corresponding
table �. Our measurement will yield samples of the form (p, y, m) consisting of
arbitrary table indices y, random plaintexts p, and measurement scores m drawn
from Mk(p, �, y). For a candidate key value k̃i we define the candidate score of
k̃i as the expected value of m over the samples useful to k̃i (i.e., conditioned on
y = pi⊕k̃i). We estimate the candidate score by taking the average of m over the
samples useful for k̃i. Since Mk(p, �, y) approximates Qk(p, �, y), the candidate
score should be noticeably higher when 〈k̃i〉 = 〈ki〉 than otherwise, allowing us
to identify the value of ki up to a memory block.

Indeed, on a variety of systems we have seen this attack reliably obtaining
the top nibble of every key byte. Figure 2 shows the candidate scores in one
of these experiments (see Sections 3.5 and 3.6 for details); the δ = 16 key byte
candidates k̃i fulfilling 〈k̃i〉 = 〈ki〉 are easily distinguished.

3.3 Two-Rounds Attack

The above attack narrows each key byte down to one of δ possibilities, but the
table lookups in the first AES round can not reveal further information. For the
common case δ = 16, the key still has 64 unknown bits. We thus proceed to ana-
lyze the 2nd AES round, exploiting the non-linear mixing in the cipher to reveal
additional information. Specifically, we employ four specific6 equations, derived
from the Rijndael specification [4], which express the indices x

(1)
2 , x

(1)
5 , x

(1)
8 and

x
(1)
15 used in four of the table lookups in the 2nd round. For example, we have

x
(1)
2 = s(p0⊕k0)⊕s(p5⊕k5)⊕2•s(p10⊕k10)⊕3•s(p15⊕k15)⊕s(k15)⊕k2 (2)

where s(·) denotes the S-box function and • denotes multiplication over GF(256).
6 These are special in that they involve just 4 unknown quantities (see below).

8 D.A. Osvik, A. Shamir, and E. Tromer

Consider equation (2) above, and suppose that we obtain samples of the
ideal predicate Qk(p, �, y) for table � = 2, arbitrary table indices y and known
but random plaintexts p. We already know 〈k0〉, 〈k5〉, 〈k10〉, 〈k15〉 and 〈k2〉 from
attacking the first round, and we also know the plaintext. The unknown low
bits of k2 (i.e., k2 mod δ), affect only the low bits of x

(1)
2 , (i.e., x

(1)
2 mod δ), and

these do not affect which memory block is accessed by “T2[x
(1)
2]”. Thus, the only

unknown bits affecting the memory block accessed by “T2[x
(1)
2]” are the lower

log2 δ bits of k0, k5, k10 and k15. This gives a total of δ4 (i.e., 216 for δ = 24)
possibilities for candidate values k̃0, k̃5, k̃10, k̃15, which are easily enumerated. We
can identify the correct candidate as follows, thereby completing the recovery of
these four key bytes.

Identification of a correct guess is done by a generalization of the hypothesis-
testing method used for the one-round attack. For each candidate guess, and
each sample, Qk(p, �, y) we evaluate (2) using the candidates k̃0, k̃5, k̃10, k̃15 while
fixing the unknown low bits of k2 to an arbitrary value. We obtain a predicted
index x̃

(1)
2 . If 〈y〉 = 〈x̃(1)

2 〉 then we say that this sample is useful for this candidate,
and reason as follows. If the guess was correct then 〈y〉 = 〈x̃(1)

2 〉 = 〈x(1)
2 〉 and thus

“T2[x
(1)
2]” causes an access to the memory block of y in T2, whence Qk(p, �, y) = 1

by definition. Otherwise we have ki 	= k̃i for some i ∈ {0, 5, 10, 15} and thus

x
(1)
2 ⊕ x̃

(1)
2 = c • s(pi ⊕ ki) ⊕ c • s(pi ⊕ k̃i) ⊕ · · ·

for some c ∈ {1, 2, 3}. Since p is random the remaining terms are independent
of the first two. By a differential property of the AES S-box, it follows that the
probability that “T2[x

(1)
2]” does not cause an access to the memory block of y

in T2 is at least (1 − δ/256)3. Each of the other 35 accesses to T2 performed
during the encryption will access the memory block of y in T2 with probability
δ/256. Hence, Qk(p, �, y) = 0 with probability greater than (1−δ/256)3+35, so to
eliminate all the wrong candidates out of the δ4 we need about log δ−4/ log(1−
δ/256·(1−δ/256)38) samples. This amounts to about 2056 samples7 when δ = 16.

Similarly, each of the other three equations above lets us guess the low bits
of four distinct key bytes, so taken together they reveal the full key. While we
cannot reuse samples between equations since they refer to different tables �,
we can reuse samples between the analysis of the first and second round. Thus,
if we had access to the ideal predicate Q we would need a total of about 8220
samples and a run-time complexity of 4 · 216 · 2056 ≈ 229 simple tests to extract
the full AES key.

In reality we get only measurement scores from the distributions Mk(p, �, y)
that approximate the ideal predicate Qk(p, �, y). Similarly to the one-round at-
tack, we proceed by computing, for each candidate k̃i, a candidate score obtained
by averaging the measurement scores of all samples useful to k̃i. We then pick
the k̃i having the largest measurement score. The number of samples required to

7 With some of our measurement methods the attack requires only a few hundred
encryptions, since each encryption provides samples for multiple y.

Cache Attacks and Countermeasures: The Case of AES 9

reliably obtain all key bytes by this method is, in some experimentally verified
settings, only about 7 times larger than the ideal (see Section 3.6).

3.4 Measurement Via Evict+Time

One method for extracting measurement scores is to manipulate the state of the
cache before each encryption, and observe the execution time of the subsequent
encryption. Recall that we assume the ability to trigger an encryption and know
when it has begun and ended. We also assume knowledge of the memory address
of each table T�, and hence of the cache sets to which it is mapped.8 We denote
these (virtual) memory addresses by V (T�). In a chosen-plaintext setting, the
measurement routine proceeds as follows given a table �, index y into � and
plaintext p:

(a) Trigger an encryption of p.
(b) (evict) Access some W memory addresses, at least B bytes apart, that are

congruent to V (T�) + y · B/δ modulo S ·B.
(c) (time) Trigger a second encryption of p and time it. This is the measurement

score.

The rationale for this procedure is as follows. Step (a) ensures that all table
memory blocks accessed during the encryption of p are cached9; this is illustrated
in Figure 1(b). Step (b) then accesses memory blocks, in the attacker’s own
memory space, that happen to be mapped to the same cache set as the memory
block of y in T�. Since it is accessing W such blocks in a cache with associativity
W , we expect these blocks to completely replace the prior contents of the cache.
Specifically, the memory block of index y in the encryption table T� is now not in
cache; see Figure 1(c). When we time the duration of the encryption in (c), there
are two possibilities. If Qk(p, �, y) = 1, that is if the encryption of the plaintext p
under the unknown encryption key k accesses the memory block of index y in T�,
then this memory block will have to be re-fetched from memory into the cache,
leading to Figure 1(d). This fetching will slow down the encryption. Conversely,
if Qk(p, �, y) = 0 then this memory fetch will not occur. Thus, all other things
being equal, the expected encryption time is larger when Qk(p, �, y) = 1. The
gap is on the order of the timing difference between a cache hit and a cache miss.

Figure 3 demonstrates experimental results. The bright diagonal corresponds
to samples where 〈y〉 ⊕ 〈p0〉 = 〈k0〉 = 0, for which the encryption in step (c)
always suffers a cache miss.

This measurement method is easily extended to a case where the attacker
can trigger encryption with plaintexts that are known but not chosen (e.g.,
by sending network packets to which an uncontrolled but guessable header is
added). This is done by replacing step (a) above with one that simply triggers
encryptions of arbitrary plaintexts in order to cause all table elements to be
loaded into cache.
8 Also, as before, the cache sets of all tables are assumed to be distinct.
9 Unless the triggered encryption code has excessive internal cache contention.

10 D.A. Osvik, A. Shamir, and E. Tromer

(a)

 0

 16

 32

 48

 64

 80

 96

112

128

144

160

176

192

208

224

240

256
 0 16 32 48 64 (b)

 0

 16

 32

 48

 64

 80

 96

 112

 128

 144

 160

 176

 192

 208

 224

 240

 256
 0 16 32 48 64

Fig. 3. Timings (lighter is slower) in Evict+Time measurements on a 2GHz Athlon 64,
after 10,000 samples, attacking a procedure that executes an encryption using OpenSSL
0.9.8. The horizontal axis is the evicted cache set (i.e., 〈y〉 plus an offset due to the
table’s location) and the vertical axis is p0 (left) or p5 (right). The patterns of bright
areas reveal high nibble values of 0 and 5 for the corresponding key byte values.

The weakness of this measurement method is that, since it relies on timing
the triggered encryption operation, it is very sensitive to variations in the op-
eration. In particular, triggering the encryption (e.g., through a kernel system
call) typically executes additional code, and thus the timing may include consid-
erable noise due to sources such as instruction scheduling, conditional branches
and cache contention. Indeed, using this measurement method we were able to
extract full AES keys from an artificial service doing AES encryptions using
OpenSSL library calls, but not from more typical “heavyweight” services. For
the latter, we invoked the alternative measurement method described in the next
section.

3.5 Measurement Via Prime+Probe

This measurement method tries to discover the set of memory blocks read by
the encryption a posteriori, by examining the state of the cache after encryption.
This method proceeds as follows. The attacker allocates a contiguous byte array
A[0, . . . , S ·W ·B−1], with start address congruent mod S ·B to the start address
of T0.10 Then, given a plaintext p, it obtains measurement scores for all tables
� and all indices y and does so using a single encryption:

(a) (prime) Read a value from every memory block in A.
(b) Trigger an encryption of p.
(c) (probe) For every table l = 0, . . . 3 and index y = 0, δ, 2δ, . . . , 256− δ:

- Read the W memory addresses A[1024�+4y+ tSB] for t = 0, . . . , W −1.
The total time it takes to perform these reads is the measurement score,
i.e., our sample of Mk(p, �, y).

Step (a) completely fills the cache with the attacker’s data; see Figure 1(e). The
encryption in step (b) causes partial eviction; see Figure 1(f). Step (c) checks, for
each cache set, whether the attacker’s data is still present after the encryption:
10 For simplicity, here we assume this address is known, and that T0, T1, T2, T3 are

contiguous.

Cache Attacks and Countermeasures: The Case of AES 11

 0

 16

 32

 48

 64

 80

 96

 112

 128

 144

 160

 176

 192

 208

 224

 240

 256
 231 247 263 279 295 311

 0

 16

 32

 48

 64

 80

 96

 112

 128

 144

 160

 176

 192

 208

 224

 240

 256
 231 247 263 279 295 311

Fig. 4. Prime+Probe attack using 30,000 encryption calls on a 2GHz Athlon 64, at-
tacking Linux 2.6.11 dm-crypt. The horizontal axis is the evicted cache set (i.e., 〈y〉
plus an offset due to the table’s location) and the vertical axis is p0. Left: raw timings
(lighter is slower). Right: after subtraction of the average timing of the cache set. The
bright diagonal reveals the high nibble of p0 = 0x00.

cache sets that were accessed by the encryption in step (b) will incur cache misses
in step (c), but cache sets that were untouched by the encryption will not, and
thus induces a timing difference.

Crucially, the attacker is timing a simple operation performed by itself, as
opposed to a complex encryption service with various overheads executed by
someone else (as in the Evict+Time approach); this is considerably less sensitive
to timing variance, and oblivious to time randomization or canonization (which
are frequently proposed countermeasures against timing attacks; see Section 5).
Another benefit lies in inspecting all cache sets simultaneously after each encryp-
tion, so that each encryption effectively yields 4 · 256/δ samples of measurement
score, rather than a single sample.

An example of the measurement scores obtained by this method, for a real
cryptographic system, are shown in Figure 4. Note that to obtain a visible signal
it is necessary to normalize the measurement scores by subtracting, from each
sample, the average timing of its cache set; this is because different cache sets are
affected differently by auxiliary memory accesses (e.g., stack and I/O buffers)
during the system call.

3.6 Experimental Results

We have tested the synchronous attacks against AES in various settings. To have
an initial “clean” testing environment for our attack code, we started out using
OpenSSL library calls as black-box functions, pretending we have no access to the
key. In this setting, and with full knowledge of the relevant virtual and physical
address mappings, using Prime+Probe measurements we recover the full 128-bit
AES key after only 300 encryptions on Athlon 64, and after 16,000 encryptions
on Pentium 4E. In the same setting, but without any knowledge about address
mappings (and without any attempt to discover it systematically) we still recover
the full key on Athlon 64 after 8,000 encryptions.

We then set out to test the attacks on a real-life encrypted filesystem. We
set up a Linux dm-crypt device, which is a virtual device which uses underlying
storage (here, a loopback device connected to a regular file) and encrypts all data
at the sector level (here, using 128-bit AES encryptions in ECB mode). On top

12 D.A. Osvik, A. Shamir, and E. Tromer

of this we create and mount an ordinary ext2 filesystem. We trigger encryptions
by performing writes to an ordinary file inside that file system, after opening
it in O DIRECT mode; each write consisted of a random 16-byte string repeated
32 times. Running this with knowledge about address mappings, we succeed in
extracting the full key after just 800 write operations done in 65ms (including
the analysis of the cache state after each write), followed by 3 seconds of off-
line analysis. Data from two analysis stages for this kind of attack are shown in
Figure 4 (for visual clarity, the figures depict a larger number of samples).

The Evict+Time measurements (Figure 3) let us recover the secret key using
about 500,000 samples when attacking OpenSSL on Athlon 64. Gathering the
data takes about half a minute of continuous measurement, more than three
orders of magnitude slower than the attacks based on Prime+Probe.

These results required handling several practical complications, whose details
are omitted for brevity. For example, the memory addresses of the encryption
tables are in general not known to the attacker and need to be identified. Most
processors employ a multi-level cache hierarchy involving several parameter sets
and timing gaps, which can be exploited. The distinction between virtual and
physical memory addresses affects the mapping of memory blocks to cache sets
and the way the latter are accessed. Various machine-specific tricks are needed
to obtain high-resolution, low-latency time measurements.

3.7 Variants and Extensions

There are many possible extensions to the basic techniques described above.
For example, variants of the above techniques can also be applied in known-
ciphertext (as opposed to known-plaintext) setting, by analyzing the last rounds
instead of the first ones. The two-rounds attack can be made more efficient and
noise-resilient by analyzing further equations. On some processors, timing vari-
ability leaks information on memory accesses with resolution better than δ (e.g.,
due to cache bank collisions), hence analysis of the first round via Evict+Time
can yield additional key bits.

We believe this attack can be converted into a remote attack on a network-
triggerable cryptographic network process (e.g., IP/Sec or OpenVPN). The cache
manipulation can be done remotely, for example by triggering accesses to the
network stack’s TCP connection table, but its efficiency remains to be evaluated.

4 Asynchronous Attacks

4.1 Overview

While the synchronous attack presented in the previous section leads to very
efficient key recovery, it is limited to scenarios where the attacker has some in-
teraction with the encryption code which allows him to obtain known plaintexts
and execute code synchronously before and after encryption. We now proceed to
describe a class of attacks that eliminate these prerequisites. The attacker will
execute his own program on the same processor as the encryption program, but

Cache Attacks and Countermeasures: The Case of AES 13

without any explicit interaction such as inter-process communication or I/O,
and the only knowledge assumed is about a non-uniform distribution of the
plaintexts or ciphertexts (rather than their specific values). Essentially, the at-
tacker will ascertain patterns of memory access performed by other processes
just by performing and measuring accesses to its own memory. This attack is
more constrained in the hardware and software platforms to which it applies,
but it is very effective on certain platforms, such as processors with simultaneous
multithreading.

4.2 One-Round Attack

The basic form of this attack works by obtaining a statistical profile of the
frequency of cache set accesses. The means of obtaining this will be discussed in
the next section, but for now we assume that for each table T� and each memory
block n = 0, . . . , 256/δ − 1 we have a frequency score value F�(n) ∈ R, that is
strongly correlated with the relative frequencies. For a simple but common case,
suppose the attacker process is performing AES encryption of English text, in
which most bytes have their high nibble set to 6 (i.e., lowercase letters a through
p). Since the actual table lookups performed in round 1 of AES are of the form
“T�[x

(0)
i]” where x

(0)
i = pi ⊕ ki, the corresponding frequency scores F�(n) will

have particularly large values when n = 6 ⊕ 〈ki〉 (assuming δ = 16). Thus, just
by finding the n for which F�(n) is large and XORing them with the constant 6,
we get the high nibbles 〈ki〉.

Note, however, that we cannot distinguish the order of different memory ac-
cesses to the same table, and thus cannot distinguish between key bytes ki in-
volved in the first-round lookup to the same table �. There are four such key bytes
per table (for example, k0, k5, k10, k15 affect T0; see Section 2.2). Thus, when the
four high key nibbles 〈ki〉 affecting each table are distinct (which happens with
probability ((16!/12!)/164)4 ≈ 0.2), the above reveals the top nibbles of all key
bytes but only up to four disjoint permutations of 4 elements. Overall this gives
64/ log2(4!4) ≈ 45.66 bits of key information, somewhat less than the one-round
synchronous attack. When the high key nibbles are not necessarily disjoint we
get more information, but the analysis of the signal is somewhat more complex.

More generally, suppose the attacker knows the first-order statistics of the
plaintext; these can usually be determined just from the type of data being
encrypted (e.g., English text, numerical data in decimal notation, machine code
or database records). Specifically, suppose that for n = 0, . . . , 256/δ − 1 the
attacker knows R(n) = Pr[〈pi〉 = n], i.e., the histogram of the plaintext bytes
truncated into blocks of size δ (the probability is over all plaintext blocks and
all bytes i inside each block). Then the partial key values 〈ki〉 can be identified
by finding those that yield maximal correlation between F�(n) and R(n⊕ 〈ki〉).

4.3 Measurements

One measurement method exploits the simultaneous multithreading feature
available in some high-performance processors (e.g., Pentium and Xeon proces-
sors with HyperThreading). This feature allows concurrent execution of multiple

14 D.A. Osvik, A. Shamir, and E. Tromer

processes on the same physical processor, with instruction-level interleaving and
parallelism. When the attacker process runs concurrently with its victim, it can
analyze the latter’s memory accesses in real time; in particular, it can gather
statistics such as the frequency scores F�(n) ∈ R. This can be done via a variant
of the Prime+Probe measurements of Section 3.5, as follows.

For each cache set, the attacker thread runs a loop which closely monitors
the time it takes to repeatedly load a set of memory blocks that exactly fills
that cache set, i.e., W memory blocks mapped to that cache set (similarly to
step (c) of the Prime+Probe measurements).11 As long as the attacker is alone
in using the cache set, all accesses hit the cache and are very fast. However,
when the victim thread accesses a memory location which maps to the set being
monitored, that causes one of the attacker’s cache lines to be evicted from cache
and replaced by a cache line from the victim’s memory. This leads to one or
(most likely) more cache misses for the attacker in subsequent loads, and slows
him down until his memory once more occupies all the entries in the set. The
attacker thus measures the time over an appropriate number of accesses and
computes their average, giving us the frequency score F�(n).

4.4 Experimental Results

Attacking a series of processes encrypting English text with the same key using
OpenSSL, we effectively retrieve 45.7 bits of information12 about the key after
gathering timing data for about 1 minute. Timing data from one of the runs is
shown in Figure 5.

 0

 20

 40

 60

 80

 100

 120

 140

-512 -384 -256 -128 0 128 256 384 512 640 768 896 1024 1152 1280 1408 1536
 60

 70

 80

 90

 100

 110

 120

 130

 140

-16 0 16 32 48 64 80 96

Fig. 5. Frequency scores for OpenSSL AES encryption of English text. Horizontal axis:
cache set. Timings performed on 3GHz Pentium 4E with HyperThreading. To the right
we zoom in on the AES lookup tables; the pattern corresponds to the top nibbles of
the secret key 0x004080C0105090D02060A0E03070B0F0.

4.5 Variants and Extensions

This attack vector is quite powerful, and has numerous possible extensions, such
as the following.

The second round can be analyzed using higher-order statistics on the plain-
text, yielding enough key bits for exhaustive search.

11 Due to the time-sensitivity and effects such as prefetching and instruction reorder-
ing, getting a significant signal requires a carefully crafted architecture-specific im-
plementation of the measurement code.

12 For keys with distinct high nibbles in each group of 4; see Section 4.1.

Cache Attacks and Countermeasures: The Case of AES 15

If measurements can be made to detect order of accesses (which we believe is
possible with appropriately crafted code), the attacker can analyze more rounds
as well as extract the unknown permutations from the first round. Moreover,
if the temporal resolution suffices to observe adjacent rounds, then it becomes
possible to recover the key without even known plaintext distribution.

We have demonstrated the attack on a Pentium 4E with HyperThreading,
but it can also be performed on other platforms without relying on simultaneous
multithreading. The key is for the attacker to execute its own code midway
through an encryption, and this can be achieved by exploiting the interrupt
mechanism. For example, the attacker can predict RTC or timer interrupts and
yield the CPU to the encrypting process a few cycles before such an interrupt; the
OS scheduler is invoked during the interrupt, and if dynamic priorities are set up
appropriately in advance then the attacker process will regain the CPU and can
analyze the state of the cache to see what the encrypting process accessed during
those few cycles. On multi-core processors, shared caches can lead to inter-core
attacks; in SMP systems, cache coherency mechanisms may be exploitable.

As in the synchronous case, one can envision remote attack variants that
take advantage of data structures to which accesses can be triggered and timed
through a network (e.g., the TCP state table).

5 Countermeasures

In the following we list several potential methods for mitigating the information
leakage, focusing on those that can be implemented in software. As these methods
have different trade-offs and are architecture- and application-dependent, we
cannot recommend a single recipe for all implementors. Many of these methods
are also applicable to primitives other than AES. See the extended version of
this paper for further discussion.

5.1 Avoiding Memory Accesses

Our attacks exploit the effect of memory access on the cache, and would thus
be completely mitigated by an implementation that does not perform any table
lookups. For AES, the lookup tables have concise algebraic descriptions, but per-
formance is degraded by over an order of magnitude13. Another approach is that
of bitslice implementations [3], which employ a description of the cipher in terms
of bitwise logical operations, and vectorize these operations across wide regis-
ters. For AES, we expect (but have not yet verified) that amortized performance
would be comparable to that of a lookup-based implementation.

5.2 Alternative Lookup Tables

There are alternative formulations of AES, using a smaller set of tables. We have
considered the most common implementation, employing four 1024-byte tables
13 This kind of implementation has also been attacked through the timing variability

in some implementations [6].

16 D.A. Osvik, A. Shamir, and E. Tromer

for the main rounds. Variants have been suggested with one or two 256-byte
table, one 1024-byte table, or one 2048-byte table. Generally, the smaller the
tables the slower the encryption.

In regard to the synchronous attacks considered in Section 3, smaller tables
necessitate more measurements by the attacker, but the synchronous attacks
remain feasible for all but the (slow) 256-byte table variant. In regard to the
asynchronous of Section 4, if the attacker can sample at intervals on the order
of single table lookups (which is architecture-specific) then these alternative
representations provide no appreciable security benefit.

5.3 Data-Oblivious Memory Access Pattern

Instead of avoiding table lookup, one could employ them but ensure that the
pattern of accesses to the memory is completely oblivious to the data passing
through the algorithm. Most naively, to implement a memory access one can
read all entries of the relevant table, in fixed order, and use just the one needed.
This induces significant slowdown, even after some possible relaxations.

Goldreich and Ostrovsky [5] gave a generic program transformation for hiding
memory accesses, which is quite satisfactory from an (asymptotic) theoretical
perspective. However, its concrete overheads in time and memory size appear too
high for most applications. Xhuang, Zhang, Lee and Pande [16][17] addressed
this from a practical perspective and proposed several techniques which are more
efficient, but require non-trivial hardware support in the processor or memory
system and do not provide perfect security in the general case.

5.4 Application-Specific Algorithmic Masking

There is extensive literature about side-channel attack countermeasures for hard-
ware ASIC and FPGA implementations. Some of them are algorithmic masking
techniques which may be adapted to software (for AES, see e.g. [13] and the ref-
erences within). However, these are designed to protect only against first-order
analysis, i.e., against attacks that measure some aspect of the state only at one
point in the computation, and our asynchronous attacks do not fall into this
category. Moreover, the security proofs consider leakage only of specific inter-
mediate values, which do not correspond to the ones leaking through accessed
memory addresses. Lastly, every AES masking method we are aware of has ei-
ther been shown to be insecure even for its original setting (let alone ours), or
is significantly slower in software than a bitsliced implementation.

5.5 Cache State Normalization and Process Blocking

Against the synchronous attacks of Section 3, it suffices to simply normalize the
state of the cache just before encryption (to prevent the initial cache state from
affecting the encryption, as in Evict+Time) and just after the encryption (to
prevent the encryption from affecting the final cache state, as in Prime+Probe).
Normalization can be achieved, for example, by loading all lookup tables into the

Cache Attacks and Countermeasures: The Case of AES 17

cache (the attack of [2] may remain applicable). However, this method provides
little protection against the asynchronous attacks of Section 4. To fully protect
against those, during the encryption one would have to disable interrupts and
stop simultaneous threads (and possibly, other SMP processors). This would
degrade performance and reliability.

5.6 Disabling Cache Sharing

To protect against software-based attacks, it would suffice to prevent cache state
effects from spanning process boundaries. Alas, practically this is very expensive
to achieve. On a single-threaded processor, it would require flushing all caches
during every context switch. On a processor with simultaneous multithreading, it
would also require the logical processors to use separate logical caches, statically
allocated within the physical cache; some modern processors do not support
such a mode. One would also need to consider the effect of cache coherency
mechanisms in SMP configurations. A relaxed version would activate the above
means only for specific processes, or specific code sections, marked as sensitive.

5.7 Static or Disabled Cache

One brutal countermeasure against the cache-based attacks is to completely
disable the CPU’s caching mechanism; the effect on performance would be dev-
astating. An alternative is to activate a “no-fill” mode where the cache is used
but not updated (i.e., eviction is disabled). We are not aware of any processor
that provides the necessary facilities with reasonable overhead. In some cases it
may be possible to delegate the encryption to a co-processor with the necessary
properties. For example, the SPE cores in IBM’s Cell processor can be used as
a cryptographic co-processor14.

5.8 Dynamic Table Storage

The cache-based attacks observe memory access patterns to learn about the ta-
ble lookups. Instead of eliminating these, we may try to decorrelate them. For
example, one can use many copies of each table, placed at various offsets in
memory, and have each table lookup (or small group of lookups) use a pseudo-
randomly chosen table. Somewhat more compactly, one can use a single table,
but pseudorandomly move it around memory several times during each encryp-
tion. Another variant is to mix the order of the table elements several times
during each encryption.

5.9 Hiding the Timing

The attacks rely on timing information, and thus could be foiled by its absence.
One may try to add noise to the observed timings by adding random delays
14 The Cell’s parallelism and abundance of wide registers (which can be utilized for

bitslicing) appears attractive for cryptographic and cryptanalytic applications.

18 D.A. Osvik, A. Shamir, and E. Tromer

to measured operations, by normalizing all operations to a fixed time, or by
limiting the system clock resolution or accuracy. Effective elimination of the
timing information has a high cost in performance or in system capabilities.

5.10 Selective Round Protection

The attacks we described detect and analyse memory accesses in the first two
rounds (for known input) or last two rounds (for known output). To protect
against these specific attacks it suffices to protect those four rounds by the
means given above while using the faster, unprotected implementation for the
internal rounds.15 Other cryptanalytic attacks (e.g., using differential crypt-
analysis) can still be applied to the internal rounds, but their complexity is
higher.

5.11 Operating System Support

Several of the above suggestions require privileged system operation. In some
scenarios and platforms, these countermeasures may be superior (in efficiency or
safety) to any method that can be achieved by user processes. Operating systems
may thus provide cryptographic primitives to user programs, as part of their
functionality. A more flexible approach is to provide a “sensitive section” service,
which executes user code under a specific promise (e.g., no context switching or
simultaneous multithreading) and, in case the promise must be violated, provides
graceful recovery (e.g., by flushing the caches) and reports the failure to the
user.

6 Conclusions and Implications

6.1 Vulnerable Cryptographic Primitives

We have demonstrated efficient side-channel attacks on the AES cipher, in soft-
ware. Some variants of our attack do not even require known plaintext or ci-
phertext, and have no direct interaction with the analyzed process other than
running on the same CPU.

Beyond AES, such attacks are potentially applicable to any implementa-
tion of a cryptographic primitive that performs data-dependent memory ac-
cesses. The efficiency of the attack depends heavily on the structure of the ci-
pher and chosen implementation, but heuristically, large lookup tables increase
the effectiveness of all attacks, as do large lookup entries; having few accesses
to each table helps the synchronous attacks, whereas the related property of
having temporally infrequent accesses to each table helps the asynchronous
attack.

For example, DES is vulnerable when implemented using large lookup ta-
bles. Cryptosystems based on large-integer modular arithmetic, such as RSA, is

15 This was suggested to us by Intel Corp.

Cache Attacks and Countermeasures: The Case of AES 19

vulnerable in some implementations (see [14]). The same potentially applies to
ECC-based cryptosystems.

Primitives that are normally implemented without lookup tables, such as
bitsliced Serpent [1] and the SHA family [12], are impervious to the attacks
described here. However, to protect against timing attacks one should scrutinize
implementations for use of instructions whose timing is data-dependent (e.g., bit
shifts and multiplications on some platforms) and for data-dependent execution
branches (which may be analyzed through data cache access, instruction/trace
cache access or timing). Note that timing variability could be measured by an
unrelated process running on the same machine, by a variant of the asynchronous
attack, through the effect on the scheduling of memory accesses.

6.2 Vulnerable Systems

At the system level, cache state analysis is of concern in essentially any case
where process separation is employed in the presence of malicious code. Beyond
the demonstrated case of encrypted filesystems, this includes many multi-user
systems, as well as web browsing and DRM applications. Disturbingly, virtual
machines and sandboxes offer little protection, since for the asynchronous attack
the attacker needs only the ability to access his own memory and measure time.
Thus, the attack may cross the boundaries supposedly enforced by FreeBSD
jail(), VMware16, Xen, NGSCB, the Java Virtual Machine and plausibly even
scripting language interpreters. Remote attacks are in principle possible, and if
proven efficient could pose serious threats to secure network connections such
as IP/Sec and OpenVPN. Finally, while we have focused our attention on cryp-
tographic systems (in which even small amount of leakage can be devastating),
the leakage also occurs in non-cryptographic systems and may thus leak sensitive
information directly.

6.3 Mitigation

We have described a variety of countermeasures against cache state analysis
attacks. However, none of these unconditionally mitigates the attacks while of-
fering performance close to current implementations. Thus, finding an efficient
solution that is application- and architecture-independent remains an open prob-
lem. In evaluating countermeasures, one should pay particular attention to the
asynchronous attacks, which on some platforms allow the attacker to obtain
(a fair approximation of) the full transcript of memory accesses done by the
cryptographic code.

Acknowledgements. We are indebted to Ernie Brickell, Jean-Pierre Seifert
and Michael Neve of Intel Corp. for insightful discussions and proposal of sev-
eral countermeasures, to Daniel J. Bernstein for suggesting the investigation of
remote attacks, and to Eli Biham for directing us to reference [7].

16 This compromises the system described in a recent NSA patent [10].

20 D.A. Osvik, A. Shamir, and E. Tromer

References

1. R. J. Anderson, E. Biham, L. R. Knudsen, Serpent: A proposal for the Advanced
Encryption Standard, AES submission, 1998, http://www.cl.cam.ac.uk/∼rja14/
serpent.html

2. D. Bernstein, Cache-timing attacks on AES, preprint, 2005, http://cr.yp.to/
papers.html#cachetiming

3. E. Biham, A fast new DES implementation in software, proc. FSE 1997, LNCS
1267, 260–272, Springer, 1997

4. J. Daemen, V. Rijmen, AES Proposal: Rijndael, version 2, AES submission, 1999,
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael-ammended.pdf

5. O. Goldreich, R. Ostrovsky, Software protection and simulation on oblivious RAMs,
Journal of the ACM, vol. 43 no. 3, 431–473, 1996

6. F. Koeune, J. Quisquater, A timing attack against Rijndael, technical re-
port CG-1999/1, Université catholique de Louvain, http://www.dice.ucl.ac.be/
crypto/tech_reports/CG1999_1.ps.gz

7. Wei-Ming Hu, Lattice scheduling and covert channels, IEEE Symposium on Secu-
rity and Privacy, 52–61, IEEE, 1992

8. J. Kelsey, B. Schneier, D. Wagner, C. Hall, Side channel cryptanalysis of product
ciphers, proc. 5th European Symposium on Research in Computer Security, LNCS
1485, 97–110, Springer-Verlag, 1998

9. D. Page, Theoretical use of cache memory as a cryptanalytic side-channel, technical
report CSTR-02-003, Department of Computer Science, University of Bristol, 2002,
http://www.cs.bris.ac.uk/Publications/pub_info.jsp?id=1000625

10. Robert V. Meushaw, Mark S. Schneider, Donald N. Simard, Grant M. Wagner,
Device for and method of secure computing using virtual machines, US patent
6,922,774, 2005

11. National Institute of Standards and Technology, Advanced Encryption Standard
(AES) (FIPS PUB 197), 2001

12. National Institute of Standards and Technology, Secure Hash Standard (SHS)
(FIPS PUB 180-2), 2002

13. E. Oswald, S. Mangard, N. Pramstaller, V. Rijmen, A side-channel analysis resis-
tant description of the AES S-box, proc. FSE 2005, Springer-Verlag, to appear

14. C. Percival, Cache missing for fun and profit, BSDCan 2005, Ottawa, 2005; see
http://www.daemonology.net/hyperthreading-considered-harmful/

15. Y. Tsunoo, T. Saito, T. Suzaki, M. Shigeri, H. Miyauchi, Cryptanalysis of DES
implemented on computers with cache, proc. CHES 2003, LNCS 2779, 62-76, 2003

16. X. Zhuang, T. Zhang, H. S. Lee, S. Pande, Hardware assisted control flow obfus-
cation for embedded processors, proc. Intl. Conference on Compilers, Architectures
and Synthesis for Embedded Systems, 292-302, ACM, 2004

17. X. Zhuang, T. Zhang, S. Pande, HIDE: An Infrastructure for Efficiently protecting
information leakage on the address bus, proc. Architectural Support for Program-
ming Languages and Operating Systems, 82–84, ACM, 2004

Related-Key Impossible Differential Attacks
on 8-Round AES-192

Eli Biham1, Orr Dunkelman1,�, and Nathan Keller2

1 Computer Science Department, Technion, Haifa 32000, Israel
{biham, orrd}@cs.technion.ac.il

2 Einstein Institute of Mathematics, Hebrew University,
Jerusalem 91904, Israel

nkeller@math.huji.ac.il

Abstract. In this paper we examine the strength of AES against the
related-key impossible differential attack, following the work of Jakimoski
and Desmedt [12]. We use several additional observations to substantially
improve the data and time complexities of their attacks. Amongst our
results, we present a related-key attack on 7-round AES-192 with data
complexity of 256 chosen plaintexts (instead of 2111). Our attack on 8-
round AES-192 has data complexity of 268.5 chosen plaintexts (instead
of 288). The time complexities of our attacks is also substantially lower
than the time complexities of previous attacks.

Keywords: AES, related-key differentials, impossible differentials.

1 Introduction

The Advanced Encryption Standard [9] is a 128-bit block cipher with variable key
length (128, 192, and 256-bit keys are allowed). Since its selection, AES gradu-
ally became one of the most worldwide used block ciphers. Therefore, a constant
evaluation of its security with respect to various cryptanalytic techniques is
required. AES was already analyzed in many papers, each using different at-
tacks [5, 6, 8, 10, 11, 12].

Related-key attacks [1] consider the information that can be extracted from
two encryptions using related (but unknown) keys. In the attack, the attacker
uses weaknesses of the encryption function and of the key schedule algorithm
to derive information on the unknown keys. Related-key differential attacks [13]
study the development of differences in two encryptions under two related keys
and use them to derive the actual values of the keys. Usually the attacker exploits
differential relations that hold with a relatively high probability, like in ordinary
differential attacks [4]. However, differential relations holding with a very low
(or zero) probability can also be used [2, 3, 12]. In this case, the attack is called
related-key impossible differential attack.

� The research presented in this paper was supported by the Clore scholarship
programme.

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 21–33, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

22 E. Biham, O. Dunkelman, and N. Keller

In this paper we examine the security of AES against related-key impossible
differential attacks. We concentrate on the 192-bit key version of AES (AES-192)
since in this variant the diffusion of the key schedule is slower than in the other
versions and thus the potential vulnerability to related-key attacks is bigger.

The relatively weak key schedule of AES-192 has inspired much research:
In [12] Jakimoski and Desmedt presented a related-key differential attack appli-
cable up to a 6-round AES-192 (out of the 12 rounds). An improved version of
the attack (also presented in [12]) uses truncated differentials and is applicable
up to a 7-round version. In addition, Jakimoski and Desmedt [12] devised several
related-key impossible differential attacks that are applicable up to an 8-round
AES-192. In [11] Hong et al. presented a related-key rectangle attack applicable
up to an 8-round AES-192. The best known related-key attack on AES-192 was
devised by Biham et al. [5] and it is applicable to a 9-round variant of the cipher.

For comparison, the best attack on AES-192 not under the related-key model
is a SQUARE attack presented in [10]. It can attack up to 8 rounds of AES-192,
using almost the entire code book. The time complexity of this attack is 2188

encryptions.
In this paper we present several new related-key impossible differential at-

tacks. The attacks use the 5.5-round impossible differential suggested by Jaki-
moski and Desmedt [12]. However, by making additional observations on the
behavior of the key schedule, we can reduce the data complexity of our attacks
by a factor of 255 for the 7-round attack, and by a factor of 219.5 for the 8-round
attack. The time complexity is also reduced significantly. We summarize our
results along with previously known results in Table 1.

This paper is organized as follows: In Section 2 we give a brief description
of AES. In Section 3 we describe the new related-key attack on 7-round AES-
192. In Section 4 we extend the 7-round attack to attacks on 8-round AES-192.
Finally, Section 5 summarizes this paper.

Table 1. Summary of the Previous Attacks and of Our New Attacks

Cipher Number of Complexity Number of Attack Type
Rounds Data Time Keys & Source

AES-192 7 292 CP 2186 1 Imp.Diff. [8]
(12 rounds) 7 19 · 232 CP 2155 1 SQUARE [10]

8 2128 − 2119 CP 2188 1 SQUARE [10]
7 2111 RK-CP 2116 2 RK Imp.Diff. [12]
8 288 RK-CP 2183 2 RK Imp.Diff. [12]
8 286.5 RK-CP 286.5 4 RK Rectangle [11]
9 286 RK-CP 2125 256 RK Rectangle [5]
7 256 RK-CP 294 32 RK Imp.Diff.;Sect. 3
8 2116 RK-CP 2134 32 RK Imp.Diff.;Sect. 4
8 292 RK-CP 2159 32 RK Imp.Diff.;Sect. 4
8 268.5 RK-CP 2184 32 RK Imp.Diff.;Sect. 4

RK – Related-key, CP – Chosen plaintext,
Time complexity is measured in encryption units

Related-Key Impossible Differential Attacks on 8-Round AES-192 23

2 Description of AES

The advanced encryption standard [9] is an SP-network that supports key sizes
of 128, 192, and 256 bits. The 128-bit plaintexts are treated as byte matrices of
size 4x4, where each byte represents a value in GF (28). An AES round applies
four operations to the state matrix:

– SubBytes (SB) – applying the same 8x8 S-box 16 times in parallel on each
byte of the state,

– ShiftRows (SR) – cyclic shift of each row (the i’th row is shifted by i bytes
to the left),

– MixColumns (MC) – multiplication of each column by a constant 4x4 matrix
over the field GF (28), and

– AddRoundKey (ARK) – XORing the state and a 128-bit subkey.

The MixColumns operation is omitted in the last round, and an additional Ad-
dRoundKey operation is performed before the first round (using a whitening
key). As all other works on AES, we shall assume that reduced-round variants
also have the MixColumns operation omitted from the last round.

The number of rounds depends on the key length: 10 rounds for 128-bit keys,
12 rounds for 192-bit keys, and 14 rounds for 256-bit keys. The rounds are
numbered 0, . . . , Nr− 1, where Nr is the number of rounds (Nr ∈ {10, 12, 14}).
For sake of simplicity we shall denote AES with n-bit keys by AES-n, i.e., AES
with 192-bit keys (and thus with 12 rounds) is denoted by AES-192.

The key schedule of AES-192 takes a 192-bit key and transforms it into 13
subkeys of 128 bits each. The subkey array is denoted by W [0, . . . , 51], where
each word of W [·] consists of 32 bits. The first six words of W [·] are loaded with
the user supplied key. The remaining words of W [·] are updated according to
the following rule:

– For i = 6, . . . , 51 do
• If i ≡ 0 mod 6 then W [i] = W [i−6]⊕SB(W [i−1] �� 8)⊕RCON [i/6],
• else W [i] = W [i− 1]⊕W [i− 6].

where RCON [·] is an array of predetermined constants, and�� denotes rotation
of the word by 8 bits to the left.

The best known attack on AES-192 is a SQUARE attack on 8 rounds [10].
The attack requires almost the entire code book (2128 − 2119 chosen plaintexts)
and has a time complexity equivalent to 2188 encryptions. The SQUARE attack
applied to 7-round AES-192 requires 19 · 232 chosen plaintexts and has a time
complexity of 2155 encryptions.

The best impossible differential attack on AES-192 is on 7-round AES-192 [8].
Its data complexity is 292 chosen plaintexts and its time complexity is 2186

encryptions.
There are several related-key attacks on AES-192. A related-key impossible

differential attack on an 8-round variant is presented in [12]. This attack requires
288 related-key chosen plaintexts and has a running time of 2183 encryptions. The
attack uses two related keys.

24 E. Biham, O. Dunkelman, and N. Keller

A related-key rectangle attack on 8-round AES-192 using four related keys is
presented in [11]. It requires 286.5 chosen plaintexts (encrypted under four keys)
and has a time complexity equivalent to 286.5 encryptions.

Another related-key rectangle attack on AES-192 is presented in [5]. This
attack can be applied up to nine rounds using 286 related-key chosen plaintexts
encrypted under 256 keys. Its time complexity is 2125 encryptions.

The related-key attacks exploit a weakness in the key schedule algorithm
of AES-192. Unlike AES-128 and AES-256, the key schedule algorithm of AES-
192 applies a nonlinear component (SubBytes) once every six key words (or once
every round and a half), instead of once every four key words (once every round).
This leads to the introduction of better and longer related-key differentials.

2.1 Notations Used in the Paper

In our attacks we use the following notations: xI
i denotes the input of round i,

while xS
i , xSh

i , xM
i , and xO

i denote the intermediate values after the application
of SubBytes, ShiftRows, MixColumns, and AddRoundKey operations of round
i, respectively. Of course, the relation xO

i−1 = xI
i holds.

We denote the subkey of round i by subscript ki, and the first (whitening) key
is k−1, i.e., the subkey of the first round is k0. In some cases, we are interested in
interchanging the order of the MixColumns operation and the subkey addition.
As these operations are linear they can be interchanged, by first XORing the data
with an equivalent key and only then applying the MixColumns operation. We
denote the equivalent subkey for the changed version by wi, i.e., wi = MC−1(ki).

We denote the z’th column of xi by xi,Col(z), i.e., w0,Col(0) = MC−1(k0,Col(0)).
We also denote the byte in the y’th row and the z’th column of the state matrix
x (of round i) by byte xi,y,z where y, z ∈ {0, 1, 2, 3}. For example, xM

2,0,3 denotes
the fourth byte in the first row of the intermediate value after the application of
the MixColumns transformation in round 2. Another notation for bytes of some
intermediate state xi is an enumeration {0, 1, 2, . . . , 15} where the byte xi,y,z

corresponds to byte 4z + y of xi.
In the paper we also use the notation xi= ((xi,Col(0)), (xi,Col(1)),(xi,Col(2)),

(xi,Col(3))). The column j of xi is represented as (xi,0,j , xi,1,j ,xi,2,j ,xi,3,j).

3 Related-Key Impossible Differential Attacks on
7-Round AES-192

3.1 A 5.5-Round Related-Key Impossible Differential of AES-192

First we recall the related-key impossible differential presented in [12] that we
use in our attacks. The impossible differential starts at the middle of round 2 and
ends just after round 7. Note that in [12] the differential was used in rounds 0–4
(including the whitening key).

Consider rounds 2–7 of AES-192. Throughout the attack we assume that
the subkey differences in these six rounds and the surrounding rounds are as

Related-Key Impossible Differential Attacks on 8-Round AES-192 25

Table 2. Subkey Differences Required for the 5.5-Round Impossible Differential

Round (i) Δki,Col(0) Δki,Col(1) Δki,Col(2) Δki,Col(3)

-1 (0, 0, 0, f) (0, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
0 (a, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
1 (a, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, 0)
2 (0, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
3 (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
4 (a, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
5 (0, 0, 0, 0) (0, 0, 0, 0) (a, 0, 0, 0) (a, 0, 0, 0)
6 (a, 0, 0, 0) (a, 0, 0, 0) (0, 0, 0, b) (0, 0, 0, b)
7 (a, 0, 0, b) (0, 0, 0, b) (a, 0, 0, b) (0, 0, 0, b)
8 (0, 0, c, b) (0, 0, c, 0) (a, 0, c, b) (a, 0, c, 0)
9 (0, 0, c, b) (0, 0, c, 0) (0, d, c, b) (0, d, 0, b)

a,b,c,d, and f are non-zero byte differences.

presented in Table 2. We shall address the conditions on the difference between
the keys to achieve these subkey differences later.

The related-key impossible differential is of 5.5 rounds, and is built in a miss-
in-the-middle manner [2]. A 4.5-round related-key differential with probability 1
is “concatenated” to a 1-round related-key differential with probability 1, in the
inverse direction, where the intermediate differences contradict one another. The
5.5-round related-key impossible differential is

ΔxM
2 = ((0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0)) 	→

ΔxO
7 = ((?, ?, ?, ?), (0, 0, 0, b), (?, ?, ?, ?), (?, ?, ?, ?)),

where ? denotes any value.
The first 4.5-round differential is obtained as follows: The input difference

ΔxM
2 = ((0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0)) is canceled by the subkey

difference at the end of round 2. The zero difference ΔxI
3 = 0, is preserved

through all the operations until the AddRoundKey operation of round 4, and
hence ΔxM

4 = 0. The subkey difference in k4 becomes the data difference, i.e.,
ΔxI

5 = ((a, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0, 0, 0)). This difference is in a single
byte, and thus, the difference after the first three operations of round 5 is in all
the four bytes of a column, i.e., ΔxM

5 = ((y, z, w, v), (0, 0, 0, 0), (0, 0, 0, 0), (0, 0,
0, 0)) where y, z, w, v are unknown non-zero byte values. After the subkey addi-
tion this difference becomes ΔxO

5 = ((y, z, w, v), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0).
This difference evolves after the SubBytes and ShiftRows of round 5 into

ΔxSh
6 = ((y′, 0, 0, 0), (0, 0, 0, v′), (a′, 0, w′, 0), (a′′, z′, 0, 0)), where y′, z′, w′, a′,

and a′′ are unknown non-zero values. Hence, ΔxM
6 =((N, N, N, N), (N, N,

N, N), (?, ?, ?, ?), (?, ?, ?, ?)) where N denotes non-zero differences (possibly dis-
tinct). Finally, after the key addition this difference evolves to ΔxO

6 = ((?, N, N,
N), (?, N, N, N), (?, ?, ?, ?), (?, ?, ?, ?)).

Hence, the input difference ΔxM
2 = ((0, 0, 0, 0), (0, 0, 0, 0), (a, 0, 0, 0),(a, 0,

0, 0)) evolves with probability one into a non-zero difference in bytes 1,2,3,5,6,
and 7 of xO

6 . The propagation of the differences is shown in Figure 1.

26 E. Biham, O. Dunkelman, and N. Keller

� � � �

� � � �

� �= � �

�

ARK SB

SR
MC

ARK SB

SR
MC

ARK SB

SR
MC

ARK SB

SR
MC

ARK SB

SR
MC

ARK

Δk2

�

Δk3

�

Δk4

�

Δk5

�

Δk6

�

Δk7

�

a a

a a a

b

— zero difference

— non-zero difference — any difference

a, b — known byte differences

Fig. 1. The 5.5-Round Impossible Differential Used in the Attack

The second differential ends after round 7 with output difference ΔxO
7 =

((?, ?, ?, ?),(0, 0, 0, b),(?, ?, ?, ?),(?, ?, ?, ?)). When rolling back this difference
through the AddRoundKey operation, we get the difference ΔxM

7 = ((?, ?, ?, ?),
(0, 0, 0, 0), (?, ?, ?, ?),(?, ?, ?, ?)), which leads to a zero output difference of the
MixColumns operation in the second column. Hence, the input difference to
round 7 is ΔxI

7 = ((?, ?, ?, 0),(0, ?, ?, ?),(?, 0, ?, ?),(?, ?, 0, ?)). This difference con-
tradicts the first differential as with probability one xO

6,3,0 = xI
7,3,0 has a non-zero

difference while the second differential predicts that this byte has a zero differ-
ence with probability 1. This contradiction is emphasized in Figure 1.

3.2 A 7-Round Related-Key Impossible Differential Attack

Using the above impossible differential we can attack a 7-round variant of AES-
192. We attack rounds 2–8 of the cipher, using a pair of related keys that has
the subkey differences described earlier. Our attack is based on the following two
observations:

1. If the input difference of the differential holds, then the plaintext difference
in eight of the 16 bytes is known, while in the other eight bytes almost any

Related-Key Impossible Differential Attacks on 8-Round AES-192 27

difference can be used. Thus, our attack can use structures in order to bypass
round 2.

2. It is sufficient to guess only one subkey byte of the last round (k8,3,2) in
order to check out whether the output difference of the impossible differential
holds.

We note that due to the special structure of the key schedule, the best round to
start the attack with is round 2 of the original AES.

For sake of simplicity, we currently assume that the values of a, b, c and f
are known, i.e., we have two related keys K1 and K2 with the required subkey
differences. This does not hold, but we shall deal with this issue later.

In order to make the attack faster we first perform a precomputation: For all
the 264 possible pairs of values of the two last columns of xM

2 , i.e., xM
2,Col(2) and

xM
2,Col(3) with difference ((a, 0, 0, 0), (a, 0, 0, 0)), compute the values of the eight

bytes 1, 2, 6, 7, 8, 11, 12, and 13 of xI
2. Store the pairs of 8-byte values in a hash

table Hp indexed by the XOR difference in these bytes.
The algorithm of the attack is as follows:

1. Generate two pools S1 and S2 of m plaintexts each, such that for each
plaintext pair P1 ∈ S1 and P2 ∈ S2, P1⊕P2 = (?, 0, 0, ?),(?, ?, 0, 0),(a, ?, ?, 0),
(0, 0, ?, ?), where “?” denotes any byte value.

2. Ask for the encryption of the pool S1 under K1, and of the pool S2 under K2.
Denote the ciphertexts of the pool S1 by T1, and the encrypted ciphertexts
of the pool S2 by T2.

3. For all ciphertexts C2 ∈ T2 compute C∗
2 = C2 ⊕ ((0, 0, 0, 0), (0, 0, 0, 0),

(0, 0, 0, b) , (0, 0, c, 0)).
4. Insert all the ciphertexts C1 ∈ T1 and the values {C∗

2 |C2 ∈ T2} into a hash
table indexed by bytes 1,4, and 14.

5. Guess the value of the subkey byte k8,3,2 and perform the followings:
(a) Initialize a list A of the 264 possible values of the bytes 1, 2, 6, 7, 8, 11, 12,

and 13 of k1.
(b) Decrypt the byte x8,3,2 in all the ciphertexts to get the intermediate

values before the subkey addition at the end of round 7.
(c) For every pair C1, C

∗
2 in the same bin of the hash table, check whether

the corresponding intermediate values are equal. If no, discard the pair.
(d) For every remaining pair C1, C

∗
2 consider the corresponding plaintext

pair and compute P1 ⊕ P2 in the eight bytes 1, 2, 6, 7, 8, 11, 12, and 13.
Denote the resulting value by P ′.

(e) Access the bin P ′ in Hp, and for each pair (x, y) in that bin remove from
the list A the values P1 ⊕ x and P1 ⊕ y, where P1 is restricted to eight
bytes (plaintext bytes 1, 2, 6, 7, 8, 11, 12, and 13).1

(f) If A is not empty, output the values in A along with the guess of k8,3,2

1 Not all entries contain values. It is expected that only 36% of these entries suggest
values to discard. However, once an entry of Hp is non-empty, it suggests at least
two values to discard.

28 E. Biham, O. Dunkelman, and N. Keller

The total amount of possible pairs C1, C
∗
2 is m2. The filtering in Step 4 is done

using a 24-bit condition, thus, we expect about 2−24m2 pairs in every bin of the
hash table. In Step 5 we have an additional 8-bit filtering (for every possible
value of k8,3,2 separately) and therefore about 2−32m2 pairs remain for a given
subkey guess of k8,3,2. Each pair deletes 1 subkey candidate on average out of
the 264 candidates. Hence, after m′ = 2−32m2 pairs the expected number of
remaining subkeys is 264(1 − 1/264)m′

. For m′ = 270 the expected number is
about e−20 and we can expect that only the right subkey remains. Moreover, for
wrong guesses of k8,3,2 no subkey is expected to remain. Hence, we get the value
of 72 subkey bits. In order to get m′ = 270 we need m = 251 chosen plaintexts
in each of the two pools.

The time complexity of the attack is dominated by Step 5(e). In this step
m′ pairs are analyzed, leading to one memory access on average to Hp, and one
memory access to A. This step is repeated 28 times (once for any guess of k8,3,2).
Therefore, the time complexity is 279 memory accesses, which are equivalent to
about 273 encryptions. The precomputation requires about 262 encryptions and
the required memory is about 269 bytes. The data complexity of the attack is
252 chosen plaintexts.

Note that in the attack we assumed that the values of a, b, c, and f are known.
We deal with these values and add the required corrections in the attack in the
next subsection.

3.3 Overcoming the Nonlinearity of the Key Schedule Algorithm

Our attack uses a pair of related keys such that the subkey differences between
them are presented in Table 2. However, due to the nonlinearity of the key
schedule there is no key difference that can assure these subkey differences. In
particular, while the value a can be chosen by the attacker, the values b and c
that are results of application of SubBytes transformation are unknown given
the initial key difference. This problem was already dealt in [12]. The solution
we present in Section 4 is similar to the one presented in [12].

In our attack we have an additional problem: Since we have a round before
the differential (instead of adding the round after the differential, as was done
in [12]), we cannot choose Δk2 = ((0, 0, 0, 0),(0, 0, 0, 0),(a, 0, 0, 0),(a, 0, 0, 0)) to
be the first four columns of the key difference.

The key difference is Δk = ((0, 0, 0, f),(0, 0, 0, 0),(a, 0, 0, 0),(a, 0, 0, 0),
(a, 0, 0, 0), (a, 0, 0, 0)), and as noted before, the value f is unknown. In com-
parison, in [12] there are no unknown bytes in the key difference since the at-
tack starts in round 0 of AES. Due to the differential properties of the Sub-
Bytes transformation, f can assume 127 values with approximately the same
probability.

The values of b and c are unknown but since the both of them are results
of application of the SubBytes transformation, we know that given a, there are
only 127 possible values of b, and given b there are only 127 possible values of c.
Hence, we can repeat the attack for all the values of b and for every value of b,
for all the values of c. The expected number of remaining wrong suggestions in

Related-Key Impossible Differential Attacks on 8-Round AES-192 29

the original attack (about e−20) assures that for wrong guesses of b and c, with
high probability no subkey will be suggested.

Therefore, the total time complexity of the attack is multiplied by 221 since
we repeat the attack for all the possible values of f, b, c. The data and memory
requirements remain unchanged.

However, if we just try all the possible values of f , we need to encrypt the
plaintexts under 128 related keys since changing the value of f changes the
key difference. We can partially solve this problem by using structures of keys.
We take two structures of 16 keys each such that the difference between two
keys in different structures is Δk = ((0, 0, 0, ?), (0, 0, 0, 0), (a, 0, 0, 0), (a, 0, 0, 0),
(a, 0, 0, 0), (a, 0, 0, 0)), for a random value ?. Such structures are achieved by
fixing all the bytes except for one in all the keys and choosing the value of this
byte randomly. The structures induce 256 pairs of keys, and for each pair of keys,
we perform the attack described above. Since the differences in the byte marked
by ? are random, the probability that after the SubBytes transformation the
difference will be a for at least one pair is approximately 1 − (1 − 1/256)256 =
1 − 1/e = 0.63. Hence, with probability 0.63 we will get the required subkey
differences for at least one pair of keys and for this pair the attack succeeds.

We can improve the time complexity by a factor of 2 by performing the attack
only for those pairs of keys for which the difference in the marked byte can be
transformed to the difference a by the SubBytes transformation. There are 127
such differences and thus the attack is expected to be performed only 127 times.

The total complexity of the attack is therefore the following: The data com-
plexity is 252 plaintexts encrypted under 16 keys each, or a total of 256 chosen
plaintexts, the time complexity is 294 encryptions and the required memory is
269 bytes.

4 Three 8-Round Impossible Differential Attacks

In this section we present three attacks on 8-round AES-192. All the three attacks
are based on the 7-round attack and the main difference between them is a time-
data trade-off.

Consider an 8-round version of AES-192 starting with round 2. In all the
8-round attacks we guess part of the last round subkey (k9), peel off the last
round and apply the 7-round attack. For the description of the attacks it is
more convenient to change the order of the MixColumns and the AddRoundKey
operations at the end of round 8. As mentioned earlier this is done by replacing
the subkey k8 with an equivalent subkey w8. Note that since the subkey difference
Δk8 is known, the difference between the corresponding equivalent subkeys Δw8
is also known.

In the 7-round attack we have to check whether the difference in three bytes
in the beginning of round 8 is zero and whether the difference in one specific byte
is b. A zero difference at the beginning of round 8 remains such a difference until
the end of the round (up to the MixColumns operation), and thus we have to
check whether the difference in the corresponding three bytes in the beginning

30 E. Biham, O. Dunkelman, and N. Keller

of the last round is zero. For the fourth byte, we compute its difference of the
pair at the beginning of round 8.

4.1 The 8-Round Attacks

The attack can be performed in one out of three possible ways:

1. Guess 12 bytes of the last round subkey (k9) and partially decrypt these bytes
in the last round. The difference in the remaining four bytes is unknown. To
know this difference without guessing more subkey material, we treat only
ciphertext pairs that have zero difference in these bytes. This condition allows
us to use only 2−32 of the possible ciphertext pairs, but this price is well
worth it. As the difference ΔxO

8 is known, we check whether the difference
in bytes 1,4, and 14 is zero. Then, we guess one subkey byte (w8,3,2) and
continue partial decryption to find out whether the difference b holds. If all
the required differences hold then this ciphertext pair can be used to discard
wrong subkey guesses like in the 7-round attack.

In this variant of the attack, we guess a total of 168 subkey bits. This leads
to a very high time complexity, but to a relatively low data complexity.

2. Guess eight bytes of k9 and use only the pairs for which the difference in the
eight ciphertext bytes which are XORed with an unguessed subkey is zero.
Again, after partially decrypting the ciphertexts, we guess the byte w8,3,2
and then we are able to check the differences in the four required bytes.

In this variant, we guess 136 subkey bits, but only a portion of 2−64 of
the pairs can be used in the attack and thus the data complexity is higher.

3. Guess only four bytes of k9 and use only the pairs for which the difference in
the 12 ciphertext bytes that are XORed with an unguessed subkey is zero.
After the partial decryption, we guess the key byte w8,3,2 in order to check
whether the impossible differential can be “satisfied”.

In this variant of the attack, we guess only 104 subkey bits, leading to a
substantially lower time and memory requirements. On the other hand, we
use a portion of only 2−96 of the possible pairs, which increases the data
complexity.

Since the attacks are similar, we present in detail only the first attack. The
complexities of all the three attacks are summarized in Table 1.

Just like before, we assume that the values a, b, c, d and f are known. We shall
address this issue after the attack.

In the first version of the attack we guess the values of bytes 0,2,3,5,6,7,8,9,10,
12,13, and 15 of k9 and byte w8,3,2. The values of these subkey bytes allow us to
partially decrypt the last round in Columns 0, 2, and 3 where byte xO

8,3,2 is also
partially decrypted through round 8.2 Then, we can perform the 7-round attack
for every guess. Note that we can also choose other three columns to guess as
long as Column 2 is included. Our choice is optimal when the values of b, c, d are
not known.
2 Since we analyze only pairs for which the difference in bytes 1,4,11, and 14 of the

ciphertexts is zero, we know also the difference in xO
8,Col(1).

Related-Key Impossible Differential Attacks on 8-Round AES-192 31

The attack algorithm is as follows:

1. Generate two pools S1 and S2 of m plaintexts each, such that for each plain-
text pair P1 ∈ S1 and P2 ∈ S2, P1 ⊕ P2 = (?, 0, 0, ?), (?, ?, 0, 0), (a, ?, ?, 0),
(0, 0, ?, ?).

2. Ask for the encryption of the pool S1 under K1, and of the pool S2 under K2.
Denote the ciphertexts of the pool S1 by T1, and similarly the ciphertexts
of the pool S2 by T2.

3. For all ciphertexts C2 ∈ T2 compute C∗
2 = C2 ⊕ ((0, 0, 0, 0), (0, 0, 0, 0),

(0, 0, 0, b), (0, 0, 0, 0)).
4. Insert all the ciphertexts C1 ∈ T1 and the values {C∗

2 |C2 ∈ T2} into a hash
table indexed by bytes 1,4, and 14.

5. For every guess of the 12 bytes 0,2,3,5,6,7,8,9,10,12,13, and 15 of k9 and
w8,3,2 do:
(a) Initialize a list A of the 264 possible values of the bytes 1, 2, 6, 7, 8, 11, 12,

and 13 of the subkey k1.
(b) Partially decrypt the last two rounds in all of the ciphertexts to obtain

xI
9,1,0, x

I
9,2,3 and xI

8,3,1. For all the ciphertexts of T2, XOR the value of
the byte xI

8,3,1 with b.
(c) For all the pairs C1 ∈ T1, C2 ∈ T2, such that C1 and C∗

2 collide in the
hash table check whether the difference in the three computed bytes
equals zero. Otherwise, discard the pair.

(d) For every remaining pair, consider the corresponding pair of plaintexts
and compute P1 ⊕P2 restricted to the eight bytes 1, 2, 6, 7, 8, 11, 12, and
13.

(e) Access Hp in the entry P1 ⊕ P2 (restricted to the eight bytes) and for
every pair (x, y) in the same bin compute the values P1 ⊕ x and P1 ⊕ y.
Delete these values from the list A.

(f) If A is not empty, output the guess for the 13 bytes and the list A.

4.2 Analysis of the Attack

The analysis of the attack is similar to the analysis of the 7-round attack. We
start with m = 263.5 plaintexts in each pool. The plaintexts compose 2127 possi-
ble pairs. After the initial filtering 295 pairs remain. For every guess of the 104
bits in the last rounds, about 271 pairs remain after the second filtering. Each pair
discards one possible value for the subkey of round 1 on average. Therefore, the
probability that some wrong subkey guess remains is at most 264e−128 = 2−120.
Therefore, the expected number of subkey suggestions (for the 168 subkey bits)
is approximately 2−1202104 = 2−16. Hence, with a high probability only the
right value remains. The remaining subkey bits can be found using auxiliary
techniques.

The time complexity of the attack is dominated by the time complexity of
Steps 5(d) and 5(e). For every guess of the 104 bits, we try the 271 possible
pairs and for each of these pairs we perform two memory accesses on average.
Thus, the time complexity of this stage is about 2176 memory accesses, which
are equivalent to about 2170 encryptions.

32 E. Biham, O. Dunkelman, and N. Keller

Hence, the data complexity of the attack (if b, c, d, and f are known) is 264.5

chosen plaintexts, the time complexity is about 2170 encryptions and the required
memory is about 269 bytes.

However, the values of b, c, d and f are unknown and if we repeat the attack
for all the possible guesses, the complexity will be more than the complexity of
exhaustive key search.

Here we can use again the differential properties of the key schedule algorithm.
We observe that the value of d is determined by the value k9,2,1 and the value
c is determined by k7,3,3 = k9,3,0 ⊕ k9,3,1. All of these subkey bytes are guessed
in the beginning of the attack. Hence, for every guess of the 104 bits we have to
repeat the attack only for all the possible values of b and f . As in the 7-round
attack, the values of f are obtained by using structures of keys. Note that due to
the low expected number of remaining subkey candidates for a single application
of the attack (2−16), we expect that when the attack is applied 214 times, only
a few subkey candidates remain.

Hence, the total complexity of the attack is as follows: The data complexity is
263.5 chosen plaintexts encrypted under 32 keys each (or a total of 268.5 chosen
plaintexts), the time complexity is 2184 encryptions and the memory complexity
is about 269 bytes.

As mentioned before, we can perform the attack when discarding more pairs in
exchange for guessing less subkey material in round 9. By considering only the ci-
phertext pairs with zero difference in two columns (instead of only one), we reduce
the time complexity of the attack to 2159. On the other hand the data complexity
is increased to 292 chosen plaintexts. Another possible trade-off is to consider only
ciphertext pairs with zero difference in three columns. This leads to an attack that
requires a total of 2116 chosen plaintexts and has a running time equivalent to 2134

encryptions. The complexity of the attacks can be found in Table 1.

5 Summary and Conclusions

In this paper we have presented several new related-key impossible differential
attacks on 7-round and 8-round AES-192. The data and time complexities are
summarized in Table 1. Our attacks significantly improve the attacks presented
in [12], but use different properties of the key schedule of AES-192. Hence, if
one could combine the attacks together, then an attack on 9-round AES-192
faster than exhaustive search may be found. However, we could not find such
combination at this stage.

In our attack we perform the key recovery in the round before the differential,
whereas in [12] only the rounds after the differential are attacked. As a result,
our attack has to overcome the nonlinearity of the key schedule. This is achieved
by using 32 keys from two structures of keys based on the differential properties
of the key schedule algorithm.

We conclude that our paper joins a series of papers identifying problems in the
key schedule algorithm of AES, and more precisely, in the key schedule algorithm
of AES-192. This may be of a concern for the long term security of AES, even

Related-Key Impossible Differential Attacks on 8-Round AES-192 33

though at the moment none of the attacks succeeds in retrieving the key of the
full AES-192 better than exhaustive key search.

References

1. Eli Biham, New Types of Cryptanalytic Attacks Using Related Keys, Journal of
Cryptology, vol. 7, number 4, pp. 229–246, Springer-Verlag, 1994.

2. Eli Biham, Alex Biryukov, Adi Shamir, Miss in the Middle Attacks on IDEA and
Khufu, proceedings of Fast Software Encryption 6, Lecture Notes in Computer
Science 1636, pp. 124–138, Springer-Verlag, 1999.

3. Eli Biham, Alex Biryukov, Adi Shamir, Cryptanalysis of Skipjack Reduced to 31
Rounds, Advances in Cryptology, proceedings of EUROCRYPT ’99, Lecture Notes
in Computer Science 1592, pp. 12–23, Springer-Verlag, 1999.

4. Eli Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Stan-
dard, Springer-Verlag, 1993.

5. Eli Biham, Orr Dunkelman, Nathan Keller, Related-Key Boomerang and Rectan-
gle Attacks, Advances in Cryptology, proceedings of EUROCRYPT 2005, Lecture
Notes in Computer Science 3557, pp. 507–525, Springer-Verlag, 2005.

6. Alex Biryukov, The Boomerang Attack on 5 and 6-round AES, proceedings of
Advanced Encryption Standard 4, Lecture Notes in Computer Science 3373, pp. 11–
16, Springer-Verlag, 2005.

7. Alex Biryukov, David Wagner, Slide Attacks, proceedings of Fast Software Encryp-
tion 6, Lecture Notes in Computer Science 1636, pp. 245–259, Springer-Verlag,
1999.

8. Raphael Chung-Wei Phan, Impossible Differential Cryptanalysis of 7-round Ad-
vanced Encryption Standard (AES), Information Processing Letters, Vol. 91, Num-
ber 1, pp. 33-38, Elsevier, 2004.

9. Joan Daemen, Vincent Rijmen The design of Rijndael: AES — the Advanced En-
cryption Standard, Springer-Verlag, 2002.

10. Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Mike Stay, David Wag-
ner, Doug Whiting, Improved Cryptanalysis of Rijndael, proceedings of Fast Soft-
ware Encryption 8, Lecture Notes in Computer Science 1978, pp. 213–230, Springer-
Verlag, 2001.

11. Seokhie Hong, Jongsung Kim, Guil Kim, Sangjin Lee, Bart Preneel, Related-Key
Rectangle Attacks on Reduced Versions of SHACAL-1 and AES-192, proceedings
of Fast Software Encryption 12, Lecture Notes in Computer Science 3557, pp. 368–
383, Springer-Verlag 2005.

12. Goce Jakimoski, Yvo Desmedt, Related-Key Differential Cryptanalysis of 192-bit
Key AES Variants, proceedings of Selected Areas in Cryptography 2003, Lecture
Notes in Computer Science 3006, pp. 208–221, Springer-Verlag, 2004.

13. John Kelsey, Bruce Schneier, David Wagner, Related-Key Cryptanalysis of 3-WAY,
Biham-DES, CAST, DES-X, NewDES, RC2, and TEA, proceedings of Informa-
tion and Communication Security 1997, Lecture Notes in Computer Science 1334,
pp. 233–246, Springer-Verlag, 1997.

Session Corruption Attack and Improvements on
Encryption Based MT-Authenticators�

Xiaojian Tian and Duncan S. Wong

Department of Computer Science,
City University of Hong Kong, Hong Kong

{xjtian, duncan}@cityu.edu.hk

Abstract. Bellare, Canetti and Krawczyk proposed a security model
(BCK-model) for authentication and key exchange protocols in 1998.
The model not only reasonably captures the power of practical attack-
ers but also provides a modular approach to the design of secure key
exchange protocols. One important element in this approach is the MT-
authenticator. An MT-authenticator transforms a message transmission
protocol for an ideally authenticated network to an equivalent protocol
for a real, unauthenticated network such that all attacks that can be
launched in the unauthenticated network can also be launched in the
authenticated network. In this paper, we show that the proof of the
encryption-based MT-authenticator proposed in their paper is flawed,
which leads to their encryption-based MT-authenticator insecure. An at-
tack called session corruption attack can be launched successfully against
the MT-authenticator in the unauthenticated network but not against
the corresponding message transmission protocol in the authenticated
network. To thwart this attack, we propose several improved techniques
and two new encryption-based MT-authenticators.

Keywords: MT-authenticator, BCK-model, CK-model, Verifiable
Encryption.

1 Introduction

Key Exchange (KE, for short) and Authentication protocols are among the most
important cryptographic primitives for securing distributed computing. Despite
the fact that a vast number of protocols have been proposed (see [8] for a detailed
survey), many of them have subsequently been found to be vulnerable to various
kinds of attacks. To provide greater assurance for the security of such protocols,
one approach, which seems to be quite promising and is receiving great attention
from protocol designers and analysts, is to rigorously define a security model
and then show that a secure protocol meets all the claims specified in the model.

� The work was supported by a grant from the Research Grants Council of the Hong
Kong Special Administrative Region, China (Project No. 9040904 (RGC Ref. No.
CityU 1161/04E)).

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 34–51, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Session Corruption Attack and Improvements 35

A good security model can appropriately capture a large collection of practical
attacks that could be launched in the real world by defining the exact capabilities
of adversaries in a modeled communication network.

Bellare and Rogaway [4] proposed a security model (BR-model) for
symmetric-key based KE protocols in 1993. Their work was later extended to
the three-party case and the asymmetric key setting [5, 7, 6]. When compared
with another approach described below, BR-model is more difficult to use since
even a small change in the protocol may need a new proof and there is no sys-
tematic way to identify or reuse building blocks for simplifying the construction
and security analysis of new protocols.

In 1998, Bellare, Canetti and Krawczyk [3] (BCK-model) proposed a differ-
ent approach which treats authentication and key exchange separately. Later,
Canetti and Krawczyk [12] (CK-model) extended their work and changed the
definition of secure KE from simulation-based to indistinguishability-based. One
of the major advantages of using these models is that some building blocks in
these models can be reused when constructing new protocols. In [3, 12], a building
block called MT-authenticator is proposed. An MT-authenticator transmits a sin-
gle message from one party to another party. By applying an MT-authenticator
to each message flow of a secure protocol for authenticated network, an equivalent
protocol for unauthenticated network can be built. The MT-authenticator can
also be reused for constructing some other protocols. Since MT-authenticators
are the essential modules used to transmit messages for a protocol in the unau-
thenticated network, their security decides the final security of the protocol.

1.1 Contributions

In the BCK-model, an adversary can corrupt parties as well as individual sessions
of a party. If a session is corrupted, the adversary will learn the internal state
associated with that particular session only while cannot obtain the internal state
of other sessions of the party. This attack is called session corruption attack. The
significance of such attack depends on what an adversary can obtain from such an
attack, so it is important to define explicitly what parameters are included in the
session state of a party. Unfortunately, the encryption-based MT-authenticator
proposed in [3] is ambiguous in this aspect. We find that this MT-authenticator
could only be made secure and its security proof could only be valid after making
a number of assumptions about the session states of a party. But unfortunately
these assumptions are not mentioned in the original paper, so an incautious
implementation of the protocol may very likely neglect these assumptions and
cause the protocol insecure in practice. Based on the plain description of the
encryption-based MT-authenticator in [3], we show that this MT-authenticator
suffers from the session corruption attack. The corresponding proof of this MT-
authenticator given under the BCK-model also fails to consider this attack.

As defined in the BCK-model, a secure MT-authenticator should emulate a
single message transmission (MT) protocol in unauthenticated networks and any
attacks that can be launched in an unauthenticated network can already be done
in an authenticated network. However, we find that the session corruption attack

36 X. Tian and D.S. Wong

can be launched successfully against the encryption-based MT-authenticator in
the unauthenticated network but not in the authenticated network. From the
corresponding security analysis given in [3], we find the problem and explain
how the session corruption attack has been overlooked in their security proof.

The session corruption attack in the BCK-model is further categorized into two
attacks in the CK-model [12]: session-state reveal and session-output query. In the
context of CK-model, we can see that the encryption-based MT-authenticators
mentioned above are vulnerable to the attack of session-state reveal.

To solve the problem, we propose several improved techniques and design
two new encryption-based MT-authenticators. The first one uses an application-
specific decryptor to thwart the session corruption attack. The second one uses
a more standard decryptor but it requires an additional proof system. This
authenticator can also be viewed as the first verifiable encryption based MT-
authenticator.

As informed by one of the anonymous reviewers, Canetti and Krawczyk [12–
Sec. 5.3] discussed a similar problem in the context of the encryption-based key
exchange protocol and made explicit specification on the session state to ensure
the security of that protocol. They also remarked that the encryption-based
key exchange protocol is an adaption of the encryption-based MT-authenticator
proposed in [3], so their discussion also applies to the latter. However, they
did not point out the flaws in the security proof of the encryption-based MT-
authenticator in [3]. Their assumption on the session state may also be too
restrictive in practice. Comparing with their remark, in this paper, we give more
details on the session corruption attack and point out the problem in the corre-
sponding security proof for the encryption-based MT-authenticator in [3]. We
also propose two new MT-authenticators that rely on more natural assumptions
that we will explain later in this paper.

Organization. We review the BCK-model in Sec. 2 and describe the session
corruption attack against the encryption-based MT-authenticator proposed in
[3] in Sec. 3. In Sec. 4, we propose several improved techniques and two new
encryption-based MT-authenticators.

2 BCK-Model

In the BCK-model [3], a message-driven protocol is an interactive process residing
in a party. The protocol (or the code of the protocol) consists of one or more
subroutines (or sub-protocols). Several subroutines are first invoked by the party
with some initial state that includes the protocol input, random coins and the
party’s identity. Some of these invocations may be classified as sessions. Each
invoked subroutine can then wait for activations. An activation can be caused
by two types of events: external requests that model information coming from
other processes run by the party, or messages coming from the network. Upon
activation, the subroutine processes the incoming data with its current state,
generates new internal state, and prepares outgoing messages to the network
and external requests to other processes run by the party. In addition, an output

Session Corruption Attack and Improvements 37

value is generated. Once the activation is complete, the subroutine waits for the
next activation. Notice that the output value is appended to the one generated
during the previous activation.

Each party has its local state and each subroutine of a party also has its
distinct local state which is independent of local states of other subroutines.
Thus each session is independent of other sessions and sessions can be identified
by distinct session IDs.

In a system of n parties, P1, · · · , Pn, each of the parties is assumed to be
running a copy of a message-driven protocol π which consists of one or more
subroutines (which can be invoked for one or more sessions). The protocol π
has an initialization function I that models the initial phase of authenticated
information exchange among parties.

The BCK-model defines two games/models with two different types of ad-
versaries running in them. The two games are authenticated-links model (AM)
and unauthenticated-links model (UM). Activations of subroutines of π in each
party are controlled and scheduled by an adversary. In AM , an adversary A
is restricted to deliver messages faithfully, and each message can only be deliv-
ered once. A cannot inject or modify messages, but can choose not to deliver
messages. A can also issue external requests. Furthermore, A can issue a party
corruption query to any party in the system and learn the entire current state
of that party. The entire current state also includes the local states of all the
subroutines. To allow the adversary to compromise the security of only some of
the sessions within some party, A is allowed to issue a session corruption query
which lets A learn only the local/internal state associated with a particular ses-
sion. Once A corrupts a session, A is free to forge any messages with the session
ID of the corrupted session specified as the origin of the messages. Note that the
long-term private keys of a party are not part of its session state. As remarked
in [12], this is a fundamental requirement in a model that differentiates session
corruptions from total corruptions. For each of these two corruption queries, a
special value is added to the party’s output specifying that the party or the
particular session identified by its session ID has been corrupted. In this paper,
we focus on discussing issues related the session corruption query.

In UM , an adversary U has all the capabilities of the AM -adversary A. In
addition to that, U is not limited to delivering messages faithfully as A does in
AM . Instead, U can also activate subroutines of π in any parties with arbitrary
incoming messages, even with fake messages that have never been sent. U can
make the same set of queries in UM as A does in AM . Throughout this paper,
we assume that all parties including the adversaries are probabilistic polynomial
time Turing machines.

The global output of running a protocol is the concatenation of the cumu-
lative outputs of all the parties and the adversary in each of the models. Let
AUTHπ,A be the global output of running a message-driven protocol π in AM
and UNAUTHπ,U be that in UM .

Definition 1 ([3], Def. 1). Let π and π′ be n-party message-driven protocols
in AM and UM , respectively. We say that π′ emulates π in unauthenticated

38 X. Tian and D.S. Wong

networks if for any UM -adversary U there exists an AM -adversary A such that
AUTHπ,A and UNAUTHπ′,U are computationally indistinguishable.

Since the authentication in AM is explicitly ensured, if π′ emulates π in unau-
thenticated networks, the authentication in UM is also ensured.

Definition 2 (Authenticator, [3], Def. 2). A compiler C is an algorithm that
takes for input descriptions of protocols and outputs descriptions of protocols. An
authenticator C is a compiler that for any protocol π, the protocol C(π) emulates
π in unauthenticated networks.

In [3], a general technique for designing an authenticator C is proposed: First,
a message transmission protocol (MT) designed to work in AM is given. Upon
activation within a party Pi on external request (Pj , s, m), Pi sends the message
(Pi, Pj , s, m) to party Pj , and outputs “Pi sent m to Pj in session s”. Upon
receipt of a message (Pi, Pj , s, m), Pj outputs “Pj received m from Pi in session
s”. Second, an MT-authenticator λ is designed that emulates protocol MT in
unauthenticated networks. Finally, given a protocol π, for each message that π
sends, λ is invoked and activated with external request for sending that message
to the specified recipient. When λ outputs, for example, “Pj received m from Pi

in session s”, π is activated with incoming message m from Pi.
We assume that each message transmitted in the network contains the iden-

tities of the sender and the receiver, as well as the session IDs of the sender’s
session and the receiver’s session. Throughout this paper, we also assume that
the sender and the receiver share the same session ID and each message con-
tains only one copy of it. When the identities of the sender and the receiver
are implicitly specified in the context, we omit them in our description. In the
original paper of Bellare et al. [3], the authors use m to denote a message which
comprises both the actual message content and a session ID. This causes certain
inconvenience in presentation, as an attacker may choose to modify only the
session ID or only the actual message content. In this paper, we adopt a more
explicit approach. We use m (m′, m∗, etc) to denote only the actual content of
a message. It does not include sender or receiver identity, or the session ID.

3 MT-Authenticator and Session Corruption Attack

In addition to the BCK-model, Bellare et al. proposed several MT-authentica-
tors in [3]. One of them is based on public key encryption operation. In short,
we call it the BCK encryption-based MT-authenticator and denote it as λENC .

A → B : s, m
A ← B : s, m, ENCeA(NB)
A → B : s, m, MACNB (s, m, B)

ENCeA denotes the encryption algorithm of the public key encryption scheme
under the public key of A and MACNB denotes the message authentication

Session Corruption Attack and Improvements 39

under an authentication key NB. It is assumed that MAC is secure against
chosen message attack.

When party A is activated by an external request to send a message m to party
B in session s, a two-party protocol λ̂ENC is invoked that proceeds as follows.
First, A sends “message: s, m” to B and outputs “A sent m to B in session
s”. B then chooses a random challenge NB ∈R {0, 1}k, and sends “challenge:
s, m, ENCeA(NB)” to A. Upon receipt of “challenge: s, m, c” from B, A decrypts
c to get NB and sends “mac: s, m, MACNB (s, m, B)” to B. Upon receipt of “mac:
s, m, v” from A, B first checks whether v = MACNB (s, m, B). If yes, it accepts
m and outputs “B received m from A in session s”; otherwise, it rejects this
message and terminates this invocation of λ̂ENC (i.e. terminates the session s
within B).

Remark: In any part of λ̂ENC , if anyone of A and B is activated with an invalid
or unexpected external request or incoming message that is not specified above,
the activation will be ignored. For example, in the second message flow, upon
receipt of “challenge: s, m, c” from B, A actually checks whether it has sent m
to B in session s before sending out the mac response. If not, A should ignore
the challenge. In [3], this is not explicitly mentioned although we believe that
the authors may have assumed to handle this case in some similar method. This
handling method is important and should be mentioned. For instance, suppose
A does not check whether it has sent m to B before decrypting c and sending out
the mac response, then A will answer all types of challenges and an adversary
can make use of A as a MAC oracle for any encrypted authentication key. In
the rest of this paper, we therefore assume that this handling method is always
included in each of the protocols to be discussed.

3.1 Session Corruption Attack Against λENC

In [3], λENC is claimed to be secure in the sense that λENC emulates protocol MT
in unauthenticated networks. However, we find that this authenticator is subject
to the session corruption attack. Using this attack, we can construct a UM -
adversary U and show that there is no AM -adversary A such that AUTHMT,A
and UNAUTHλENC,U are computationally indistinguishable. We illustrate this
attack in Fig. 1.

In this attack, U activates A to establish a session s with B, U also imperson-
ates as A to establish another session s∗ with B. We use ‘s.i’ (‘s∗.i’) to denote
the i-th message in the session s (s∗). The message flow marked with a ‘�’ de-
notes the message forged by the adversary U . Detailed description of the attack
is as follows:

1. U activates party A with an external request to send a message m to party
B in session s.

2. A sends m to B, and outputs “A sent m to B in session s”.
3. B chooses NB ∈R {0, 1}k, and sends “challenge: s, m, ENCeA(NB)” to A.

However, this message is intercepted and blocked by U .

40 X. Tian and D.S. Wong

s.1) A → B : s, m
s.2) A ← B : s, m, ENCeA(NB)

U intercepts and blocks this message.
� s∗.1) A → B : s∗, m∗

s∗.2) A ← B : s∗, m∗, ENCeA(N∗
B)

U intercepts and blocks this message.
� s.2) A ← B : s, m, ENCeA(N∗

B)
U issues session corruption query for session s in A and gets N∗

B .
� s∗.3) A → B : s∗, m∗, MACN∗

B
(m∗, B)

Fig. 1. Session corruption attack on BCK Encryption-based MT-authenticator

4. U activates party B with “message: s∗, m∗” in another session s∗, alleging
that it comes from A.

5. B chooses N∗
B ∈R {0, 1}k, and sends “challenge: s∗, m∗, ENCeA(N∗

B)” to A.
6. U intercepts this message and replaces s∗ with s and m∗ with m. U then

sends “challenge: s, m, ENCeA(N∗
B)” to A in session s, alleging that it comes

from B.
7. A decrypts ENCeA(N∗

B) to get N∗
B. Now N∗

B is in the local internal state of
session s in party A.

8. U issues a session corruption query for session s in party A and gets N∗
B.

9. U calculates v∗ = MACN∗
B
(s∗, m∗, B) and sends “mac: s∗, m∗, v∗” to B,

alleging that it comes from A.
10. B verifies that v∗ = MACN∗

B
(s∗, m∗, B). He then accepts m∗ and outputs

“B received m∗ from A in session s∗”.

The attack (or the UM -adversary U) makes the output of the authenticator,
UNAUTHλENC,U , contain “B received m∗ from A in session s∗”, but without
the corresponding “A sent m∗ to B in session s∗” in it.

To see that there is no AM -adversary A which can make a computation-
ally indistinguishable output AUTHMT,A for protocol MT, first we note that
U does not corrupt party A in UM . Hence A cannot corrupt A in AM either,
otherwise these events will be recorded in A’s output and make AUTHMT,A
and UNAUTHλENC,U distinguishable. Second, if A does not corrupt A while B
outputs “B received m∗ from A in session s∗” in AM , there are only two possible
cases:

1. A has sent m∗ to B in session s∗, or
2. A does not send m∗ to B in session s∗. By definition of AM , this can only

happen if A has issued a session corruption query for session s∗ in A and
added a ‘fake’ message m∗ into the authenticated network (this requires
that the origin of m∗ must be the corrupted session s∗).

However, no matter in which case, AUTHMT,A and UNAUTHλENC,U are al-
ways distinguishable. Therefore, λENC cannot emulate protocol MT in unau-
thenticated networks.

Session Corruption Attack and Improvements 41

Difference Between Simulated Interaction and Real Interaction. In [3–
Proposition 5], a proof is given for the security of λENC . One essential step in
the proof is to use an UM -adversary U to construct an encryption-aided MAC
forger F :

Let e∗, d∗ be the encryption and decryption keys of the underlying public
key encryption scheme, respectively. The inputs to F are e∗ and f =
ENCe∗(N∗) where N∗ ∈R {0, 1}k. F has access to two oracles: DO
and MO. DO is a decryption oracle that decrypts messages (that are
different from f) under the decryption key d∗; and MO is a MAC oracle
that computes a MAC tag MACN∗(m) on message m under N∗. The
goal of F is to output a pair (m̂, MACN∗(m̂)) where MO was not
queried on m̂.

In the construction, F runs U on a simulated interaction with a set of parties
running λENC . First, F chooses and distributes keys for the imitated parties
according to the initialization function I, with the exception that the public
encryption key associated with some party P ∗, chosen at random among all
the imitated parties, is replaced with e∗. Next, F randomly chooses a message
m∗ out of all messages such that some party P̃ was activated with “message:
s∗, m∗” from P ∗. F then has P̃ respond with “challenge: s∗, m∗, f” (that is,
P̃ ’s encrypted challenge is N∗). Finally, if U activates P̃ with incoming message
“mac: s∗, m∗, c” from P ∗, then F outputs ((s∗, m∗, P̃), c) and halts, hoping
that c = MACN∗(s∗, m∗, P̃). During the simulation, the following cases will be
handled specially:

1. If party P ∗ is corrupted, then the simulation is aborted and F is failed.
2. If P ∗ receives a challenge c different from f , F asks DO for the decryption.
3. If P ∗ is activated with incoming challenge “challenge: s, m, f” from some

party Q such that
(a) Q 	= P̃ or s 	= s∗ or m 	= m∗, then F asks MO for MACN∗(s, m, Q);
(b) otherwise, that is, if Q = P̃ , s = s∗ and m = m∗, the simulation is

aborted and F is failed.

For other queries made by U , F answers them accordingly.
The proof claims that U ’s view of the interaction with F (conditioned on the

event that F doesn’t abort the simulation) is distributed identically to U ’s view
of a real interaction with an unauthenticated network. However, this is not true.

Consider the following situation. Suppose that firstly P ∗ is activated to send
a message m to P̃ in session s, then U impersonates P ∗ and sends m∗ to P̃
in another session s∗. According to the construction of F described above, F
has P̃ respond with “challenge: s∗, m∗, f”. Suppose U intercepts this message,
changes s∗ to s, m∗ to m, and sends “challenge: s, m, f” to P ∗. This is the case
3a mentioned above. If U now issues a session corruption query for session s of
P ∗, U would not find N∗ in the internal state of session s as F cannot ask DO
for the decryption of f .

In a real interaction with an unauthenticated network, U would find N∗ in the
internal state of session s. Hence F cannot provide U with an ideal simulation.
This case is overlooked in the proof of [3–Proposition 5].

42 X. Tian and D.S. Wong

4 Improvements

Before proposing our approaches for improving the BCK encryption-based MT-
authenticator, we first describe an unsuccessful attempt to improve it. Its main
idea is to use double encryption. In this attempt, the second flow of λENC is
modified below.

A ← B : s, m, ENCeA(ENCeA(NB), s, m, B).

Upon receipt of this message from B, A first calls the decryption oracle to get
ω = ENCeA(NB), s, m, B, then checks the triple (s, m, B), and proceeds only
when they all fit. A then calls the decryption oracle again on ω and gets NB.
This approach seems to work, but it is actually still vulnerable to the session
corruption attack. An adversary may compromise this approach in two steps.
First, it uses the method as illustrated in Sec. 3.1 to get ω = ENCeA(NB).
Second, it uses the very same method again to get NB. In this attack, it issues
two session corruption queries to two different sessions. This example shows again
the powerfulness of the session corruption attack. Furthermore, it is easy to see
that, this approach does not work no matter how many times NB is encrypted.1

Another approach to improve the BCK encryption-based MT-authenticator is
to explicitly require that NB is not part of the state information of the involved
session of party A. Instead, NB should be handled in some secure part of A which
cannot be revealed by any types of allowable queries. Under this assumption, the
proof of [3–Proposition 5] will become valid. Actually a similar approach was also
used by Canetti and Krawczyk in [12–Sec. 5.3] and by Yang et al. in [17] to ensure
the security of an encryption-based key exchange protocol. While this approach
solves the problem, it uses a somewhat unnatural assumption. In the following,
we suggest two other methods that also thwart the session corruption attack and
use more natural assumptions.

4.1 λENC1

λENC1 is illustrated in the following diagram and described as follows.

A → B : s, m
A ← B : s, m, ENCeA(NB, s, h(m), B)
A → B : s, m, NB

Let k be a security parameter. Besides, there is an additional hash function
denoted by h : {0, 1}∗ → {0, 1}k but no MAC scheme is needed. For simplicity,
1 The BCK encryption-based authenticator could be proven secure in a variant of the

BCK-model in which events are ’atomic’, which is in the sense that session corruption
attack is not allowed to occur once after a session received an activation and before
the session completes its process triggered by the activation and sends out a message
or has its output value ready. Also the value of NB is also assumed to be destroyed
before the end of the event. However, we believe that it is hard to convince that
events must be atomic as we cannot be sure that attackers will not or would not
break into a session while a party or a session is in the middle of something.

Session Corruption Attack and Improvements 43

we assume that the length of session ID and that of a party’s identity are all
k bits long. Since the encryption algorithm ENC will be used in λENC1 to
encrypt a message which is composed of a k-bit random challenge, a session ID,
a hash value and a party’s identity, we require that the message space of the
encryption algorithm ENC defined by the public key of any party in the system
should contain {0, 1}4k. In practice, the requirement could be different due to
the variations of the domains of session IDs and party identities.

1. When party A is activated by an external request to send a message m to
party B in session s, A sends “message: s, m” to B and outputs “A sent m
to B in session s”.

2. Upon receipt of “message: s, m” from A, B randomly chooses NB ∈R {0, 1}k,
computes c = ENCeA(NB, s, h(m), B), and sends “challenge: s, m, c” to A.

3. Upon receipt of “challenge: s, m, c” from B, A checks whether it has sent m
to B in session s. If not, the challenge is ignored; otherwise, it activates a
process DA to decrypt c. DA is called an application-specific decryption box:

DA is a special routine/process in party A. When given a ciphertext
ĉ, DA decrypts it to get a k-bit value N̂B, a session ID ŝ, a hash value
ĥ and a party identity B̂. If the decrypted values are invalid (that
is, anyone of them is not in the corresponding domain), DA simply
informs the calling session of A that ĉ is invalid. Otherwise, these
values are stored in the internal state of DA which is independent
to any of the sessions in A. In other words, a session corruption
query cannot reveal the internal state of DA. However, it will be
revealed if A is corrupted. When these values are stored in the
internal state of DA, the calling session of A that activates DA for
decrypting ĉ can then ask DA for each of these four values separately.

4. If DA informs that c is invalid, A will stop handling the challenge anymore.
Otherwise, assume that the four values that DA gets by decrypting c are N ′

B,
s′, h′, and B′. A first asks DA for s′, h′ and B′, and checks whether s′ = s,
h′ = h(m) and B′ = B. If any of the checks does not pass, A rejects this
challenge by stop handling it anymore. Note that in this stage, A’s session
state includes s′, h′ and B′ but not N ′

B.
5. If all checks are passed, A then asks DA for the value of N ′

B, and sends
“response: s, m, N ′

B” to B. Note that A’s session state contains N ′
B in this

stage.
6. Upon receipt of “response: s, m, N ′

B” from A, B checks whether N ′
B = NB.

If yes, B accepts this message and outputs “B received m from A in session
s”, otherwise it rejects this message.

Theorem 1. Assume the encryption scheme in use is IND-CCA2 secure. Then
protocol λENC1 emulates protocol MT in unauthenticated networks.

Proof is given in Appendix A.

λENC1 requires the initiator of a message transmission to equip a special im-
plementation of the decryption algorithm, called application-specific decryption

44 X. Tian and D.S. Wong

box. In practice, the application-specific decryption box can be imagined as a a
hardware ‘blackbox’ which carries out the decryption requests made by the initia-
tor. Examples of such a blackbox include a smartcard, a personal cryptographic
token or even a special hardware cryptographic accelerator. In the following, we
propose another encryption-based MT-authenticator which does not need the
application-specific decryption box. Instead, the standard/conventional imple-
mentation of the decryption algorithm on the initiator will be fine. We denote
this MT-authenticator by λENC2. The protocol needs a verifiable encryption
scheme such as [10] which is constructed from a public key encryption scheme
and a zero-knowledge proof system. In other words, we can consider λENC2 as
a Verifiable Encryption (VE) Based MT-authenticator.

4.2 λENC2

Before describing our VE-based MT-authenticator λENC2, we first briefly review
some concepts and notations of a special honest-verifier zero-knowledge proof
system and a VE scheme.

A Special Honest-Verifier Zero-Knowledge (Special HVZK) proof system is
an interactive process between two parties, a prover P and a verifier V . P proves
to V that he knows some knowledge while V obtains nothing except the fact
that P really knows that knowledge. The protocol is restricted to three moves.
The common input of P and V is y and an additional secret input of P is
x. In the first move, P sends a ‘commitment’ α to V . In the second move, V
sends a ‘challenge’ β back to P . In the third move, P sends a ‘response’ ξ to
V . There must exist a simulator Sim that on input y and any ‘challenge’ β̃,
outputs a ‘commitment’ and a ‘response’ α̃ and ξ̃ such that the distribution of
the triple (α̃, β̃, ξ̃) is indistinguishable from the triple (α, β, ξ) obtained from a
real interaction of P and V for which β = β̃. By using the notations introduced
by Camenisch and Stadler [11], a proof system can be conveniently represented.
For example,

PK[x, z : A = gxhz]

denotes the proof of knowledge of integers x and z such that A = gxhz. The
convention is that, the elements listed before the colon are P ’s secrets to be
proven, while all other parameters are known to V . The Special HVZK proof
system can be converted into a signature of knowledge using the Fiat-shamir
heuristic [13].

A verifiable encryption (VE) scheme [16, 1, 9, 2, 10] for a relation R is a proto-
col that allows a prover to convince a verifier that a ciphertext is an encryption
of a value w under a given public key such that (w, δ) ∈ R for a given δ, while
no more information about w is leaked. We use a VE scheme which is composed
modularly of an encryption scheme and a proof system. The encryption scheme
should be IND-CCA2 secure [15] and the proof system should be sound and
Special HVZK [1, 10]. The VE scheme proposed by Camenisch and Shoup [10]
is in this type.

In our construction, we need a one-way function family (or a collection of one-
way functions) [14] F = {fγ : W → Δ}γ∈Γ where Γ is the set of keys/indices

Session Corruption Attack and Improvements 45

of fγ . Assume that fi 	= fj for any i 	= j. F also induces a family of relations
{Rγ ∈ W ×Δ}γ∈Γ indexed by γ ∈ Γ . A relation Rγ is defined by

(w, δ) ∈ Rγ if δ = fγ(w)

where w is called a witness of δ. We assume that there exists a VE scheme for
such a family of relations {Rγ}γ∈Γ .

We are now ready to describe our VE-based MT-authenticator λENC2. In
the following, We describe a general construction of λENC2 . Due to the page
limitation, we skip describing a concrete example. But readers can readily build
one using Camenisch and Shoup’s VE scheme [10].

The Generic Construction of λENC2. Suppose a VE scheme for a relation
family R with respect to a one-way function family F described above is spec-
ified. Similar to λENC and λENC1, the encryption algorithm of the VE scheme
is denoted by ENC. Suppose there are n parties in the unauthenticated net-
work. The initialization function I of λENC2 first invokes, once for each party,
the key generation function of the VE scheme with security parameter k. Let ei

and di be the public encryption key and the private decryption key of party Pi,
respectively. The public information I0 is all the encryption keys. The private
information Ii of Pi is di. Assume that the message space defined by any public
key contains {0, 1}k.

As in λENC1, we assume that all messages sent by a sender to a receiver in a
particular session are different. λENC2 proceeds as follows.

1. When some party A is activated by an external request to send a message m
to party B in session s, A sends “message: s, m” to B and outputs “A sent
m to B in session s”.

2. Upon receipt of “message: s, m” from A, B then randomly chooses a challenge
NB ∈R {0, 1}k, computes c = ENCeA(NB) and δ = fh(A,B,s,m)(NB) where
h : {0, 1}∗ → Γ is a collision-resistant hash function, and sends “challenge:
s, m, c, δ” to A. As noted before, we assume that the message space defined
by any public key corresponding to the VE scheme contains {0, 1}k. Also
note that this is equivalent to saying that (NB, δ) ∈ Rh(A,B,s,m).

3. Upon receipt of this message from B, A first checks whether it has sent m to
B in session s. If not, it stops handling this challenge; otherwise it requests
B to initiate the proof system of the VE scheme for proving that the message
encrypted in c under the public key eA is a witness of δ with respect to the
relation Rh(A,B,s,m). Note that A does not use its private key in this sub-
protocol nor decrypt c to get NB. The proof can be started when B sends
the challenge to A.

4. If A accepts B’s proof, it then decrypts c to get NB and sends “response:
s, m, NB” to B.

5. Upon receipt of “response: s, m, NB” from A, B first checks whether NB is
the challenge it has sent in response to the message m from A in session s. If
not, B rejects this message; otherwise B accepts this message and outputs
“B received m from A in session s”.

46 X. Tian and D.S. Wong

λENC2 is illustrated as follows.

A → B : s, m
A ← B : s, m, c = ENCeA(NB), δ = fh(A,B,s,m)(NB),

PK[NB : c = ENCeA(NB) ∧ (NB , δ) ∈ Rh(A,B,s,m)]
A → B : s, m, NB

Theorem 2. Assume that the verifiable encryption scheme in use is secure such
that the underlying encryption scheme is IND-CCA2 and the proof system is
sound and Special HVZK in the sense of [10], and that F in use is a one-way
function family described as above. Then protocol λENC2 emulates protocol MT
in unauthenticated networks.

The proof is given in Appendix B.

Remark 1: The four elements in the hash function are crucial to the security
of λENC2. If some of them are missing, attacks could be launched by a UM -
adversary U . For example, if ‘B’ and ‘s’ are missing in the hash function, U can
launch the following attack. U first impersonates A and sends a message m to
B in session s. After intercepting B’s challenge, U then has A send the same
message m to another party C in a session s′, and forwards B’s challenge to
A, alleging that it is the challenge of C. A will accept the challenge, decrypt
the ciphertext in the challenge, and send the plaintext to C. U intercepts the
plaintext and forwards to B.

Acknowledgements. We would like to thank the anonymous reviewers and
David Pointcheval for their helpful comments and suggestions.

References

1. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. In Proc. EUROCRYPT 98, pages 591–606. Springer-Verlag, 1998. LNCS
Vol. 1403.

2. F. Bao. An efficient verifiable encryption scheme for encryption of discrete loga-
rithms. In Proc. Smart Card Research and Applications (CARDIS) 1998, pages
213–220. Springer-Verlag, 2000. LNCS Vol. 1820.

3. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and
analysis of authentication and key exchange protocols. In Proc. 30th ACM Symp.
on Theory of Computing, pages 419–428. ACM, May 1998.

4. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Proc.
CRYPTO 93, pages 232–249. Springer-Verlag, 1994. LNCS Vol. 773.

5. M. Bellare and P. Rogaway. Provably secure session key distribution – the three
party case. In Proc. 27th ACM Symp. on Theory of Computing, pages 57–66, Las
Vegas, 1995. ACM.

6. S. Blake-Wilson, D. Johnson, and A. Menezes. Key agreement protocols and their
security analysis. In Sixth IMA International Conference on Cryptography and
Coding, pages 30–45. Springer-Verlag, 1997. LNCS Vol. 1355.

Session Corruption Attack and Improvements 47

7. S. Blake-Wilson and A. Menezes. Entity authentication and authenticated key
transport protocols employing asymmetric techniques. In Security Protocols Work-
shop, pages 137–158. Springer-Verlag, 1997. LNCS Vol. 1361.

8. C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment.
Springer-Verlag, 2003.

9. J. Camenisch and I. Damg̊ard. Verifiable encryption, group encryption, and their
applications to separable group signatures and signature sharing schemes. In Proc.
ASIACRYPT 2000, pages 331–345. Springer-Verlag, 2000. LNCS Vol. 1976.

10. J. Camenisch and V. Shoup. Practical verifiable encryption and decryption of
discrete logarithms. In Proc. CRYPTO 2003, pages 126–144. Springer-Verlag, 2003.
LNCS Vol. 2729.

11. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In Proc. CRYPTO 97, pages 410–424. Springer-Verlag, 1997. LNCS Vol. 1294.

12. R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Proc. EUROCRYPT 2001, pages 453–474. Springer-
Verlag, 2001. LNCS Vol. 2045. http://eprint.iacr.org/2001/040/.

13. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Proc. CRYPTO 86, pages 186–199. Springer-Verlag,
1987. LNCS Vol. 263.

14. O. Goldreich. Foundations of Cryptography Basic Tools. Cambridge University
Press, 2001.

15. C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge
and chosen ciphertext attack. In Proc. CRYPTO 91, pages 433–444. Springer,
1992. LNCS Vol. 576.

16. M. Stadler. Publicly verifiable secret sharing. In Proc. EUROCRYPT 96, pages
191–199. Springer-Verlag, 1996. LNCS Vol. 1070.

17. G. Yang, D. Wong, and X. Deng. Efficient anonymous roaming and its security
analysis. In Third International Conference on Applied Cryptography and Network
Security (ACNS 2005), pages 334–349. Springer-Verlag, 2005. LNCS Vol. 3531.

A Proof of Theorem 1

Proof. For any UM -adversary U , we show that there exists an AM -adversary
A such that AUTHMT,A and UNAUTHλENC1,U are computationally indistin-
guishable.
A proceeds as follows.A runs U on a simulated interaction with a set of parties

running λENC1. First A chooses and distributes encryption and decryption keys
of the public key encryption scheme. Then A proceeds the simulation as follows:

1. When U activates an imitated party A′ with an external request to send a
message m to another party B′ in session s′, A activates party A with an
external request to send m to party B in a corresponding session s in an
authenticated network. As a consequence, the message (A, B, s, m) is added
to a set M of undelivered messages [3]. As assumed, no message will appear
twice in M .

2. When an imitated party B′ outputs “B′ received m from A′ in session s′”, A
activates session s of B on incoming message m provided (A, B, s, m) is in
the set M . Furthermore, (A, B, s, m) is now deleted from M .

48 X. Tian and D.S. Wong

3. When U corrupts an imitated party A′, A also corrupts the corresponding
party A in the authenticated network. A then hands all the internal states
of A′ to U . Specifically, A hands the decryption key of A′ to U .

4. When U corrupts a session s′ within an imitated party A′, A also corrupts
the corresponding session s within A in the authenticated network. A hands
the current session state of s′ within A′ to U . If there is no corresponding
session within A in the authenticated network, then A first issues an external
request to A to establish a session s, then corrupts that session.

5. A outputs whatever U outputs.

Let E denote the event that an imitated party B′ outputs “B′ received m from
A′ in session s′” while A′ and its session s′ were not corrupted, but there is no
(A, B, s, m) currently in the set M of undelivered messages in the authenticated
network. When E happens, either A was not activated for sending m to B in
the corresponding session s or B has already had the same output before. In
the first case, it implies that A′ was not activated (by an external request) for
sending m to B′ in session s′ (according to step 1 of the simulation above). In
the second case, if the simulation does not fail, it implies that B′ has already
had the same output before (according to step 2 of the simulation above). Note
that A′ does not send m to B′ in session s′ for more than once. In this event,
we say that U broke party A′ in session s′.

We note that, only when E happens, A cannot proceed with the simulation
shown above (step 2). Our purpose is to show that, E only happens with negligi-
ble probability. We show it by contradiction. If E happens with a non-negligible
probability, then we can construct a distinguisher D that breaks the indistin-
guishability (IND-CCA2) of the public key encryption scheme.

Let e, d be the public encryption and private decryption keys of the public key
encryption scheme generated with security parameter k. D plays the following
game with a simulator S. D is given the encryption key e and a decryption oracle
DO under decryption key d.D picks two messages m0, m1 from the message space
defined by ENC under e and gives these messages to S. S then chooses b ∈R

{0, 1} and returns c∗ = ENCe(mb) to D. After receiving c∗, D can adaptively
query DO with any ciphertext except c∗. Finally D outputs a bit b′ as his guess
of b. Below is the construction of D.

Construction of D. D runs U in a simulated interaction with n parties
P1, · · · , Pn running λENC1 and answers all U ’s queries according to the protocol
specification. First, D randomly chooses a party denoted by P ∗, and chooses
and distributes the encryption and decryption keys to all parties according to
function I, with the exception that the encryption key of P ∗ is set to be e. Next,
D randomly chooses a message m∗ out of all messages such that some party P̃
was activated by an incoming message “message: s∗, m∗” from P ∗. If there is
no such m∗, D fails the simulation and outputs a random bit b′ as his guess
of b. Otherwise, when U delivers m∗ to P̃ in session s∗, D chooses two values
N0, N1 ∈R {0, 1}k, constructs two messages:

Session Corruption Attack and Improvements 49

m0 = N0||s∗||h(m∗)||P̃
m1 = N1||s∗||h(m∗)||P̃

and gives them to the simulator S. After S returns the challenging ciphertext
c∗, D has P̃ respond with “challenge: s∗, m∗, c∗”. Finally, if U activates P̃ with
incoming message “response: s∗, m∗, N”, D checks whether N ∈ {N0, N1}. If
yes, D outputs b′ such that N = Nb′ , otherwise, D simply picks a random value
b′ ∈R {0, 1}, outputs it and halts. During the simulation, the following cases will
be handled specially:

1. When party P ∗ receives a challenge c other than c∗, D simulates the be-
havior of the application-specific decryption box according to the protocol
specification. The decryption of c is done by querying DO.

2. If party P ∗ is activated with incoming challenge “challenge: s, m, c∗” from
some party Q such that
(a) Q 	= P̃ or s 	= s∗ or m 	= m∗, then D has P ∗ stop handling the challenge

and ignore it. In this state, if session s of P ∗ is corrupted, D has to return
(s∗, h(m∗), P̃) and all other internal state information of session s of P ∗

to U , but not Nb. Nb is not in the internal state of session s of P ∗ as in
step 4 of λENC1 (page 43), this incoming challenge will not pass all the
checks. P ∗ will therefore not proceed to step 5 of λENC1.

(b) otherwise, that is, if Q = P̃ , s = s∗ and m = m∗, D fails the simulation
and randomly picks a bit b′ as its output.

3. If P ∗ or session s∗ of P ∗ is corrupted by U , D fails and outputs a random
bit b′.

For other queries made by U , D answers them accordingly.
First note that all capabilities of U , namely party corruption, session corrup-

tion and sub-routine (session) activations, are simulated correctly by D. More
importantly, no matter at which point, conditioned on the event that D does
not fail in the simulation, the internal states of all sessions of all imitated parties
are identical to that of a real interaction of U with an unauthenticated network.
In addition, since P ∗ is randomly chosen, U ’s view of the interaction with D,
conditioned on the event that D does not fail in the simulation, is identically
distributed to U ’s view of a real interaction with an unauthenticated network.

Let E∗ be the event that E occurs and that U broke P ∗ in session s∗ (with m∗).
Since P ∗ is randomly chosen by D and the event E∗ and the failure of D (that
is, when P ∗ is corrupted, session s∗ of P ∗ is corrupted, there is no activation of
incoming message from P ∗, or P ∗ is activated with incoming challenge “challenge:
s∗, m∗, c∗”.) never occur at the same simulation, we have the event E∗ occurs
with probability at least ε/� where ε is the probability of event E and � is the
number of activations with incoming messages in the simulation.

When E∗ happens, U must have activated P̃ with incoming message “response:
s∗, m∗, Nb”, so D gets the right Nb with probability at least ε/�. In this case,
D outputs the right b′. Furthermore, since N0 and N1 are randomly picked
from {0, 1}k, U activates P̃ with incoming message “response: s∗, m∗, N1−b” with

50 X. Tian and D.S. Wong

probability at most 2−k due to random guessing. In this case, D outputs the
wrong b′. In other cases, i.e, if N /∈ {N0, N1}, D outputs the right b′ with
probability 1/2. So the overall probability that D outputs the right b′ is at least
ε/� + 1/2(1− ε/�− 2−k) = 1/2 + 1/2(ε/�− 2−k). In addition, D has never asked
DO for decrypting c∗. Consequently, D has successfully broken the encryption
scheme with probability at least 1/2+1/2(ε/�−2−k) which means the advantage
of D over random guessing is at least 1/2(ε/�− 2−k). ��

B Proof of Theorem 2

Proof. Since the verifiable encryption (VE) scheme in use is assumed to be secure
such that the underlying encryption scheme is IND-CCA2 and the underlying
proof system is sound as well as Special HVZK, the VE scheme must also be
secure against adaptive ciphertext-only attack. That is, given a ciphertext as-
sociated with the transcript of zero-knowledge proof, it should be infeasible for
an adversary to obtain the message encrypted in the ciphertext even a decryp-
tion oracle DO is given that can be queried in any adaptive way provided the
targeting ciphertext is not queried.

Up to the definition of event E, the proof is identical to that of Theorem 1.
Suppose E happens with non-negligible probability, then we can construct a
verifier V that breaks the ciphertext-only security of the VE scheme.

Construction of V. V runs U in a simulated interaction with n parties
P1, · · · , Pn running λENC2 and answers all U ’s queries according to the protocol
specification. First, V randomly chooses a party P ∗, and chooses and distributes
the encryption and decryption keys to all parties according to function I, with
the exception that the encryption key of P ∗ is set to e, which is the public key
of the targeting VE scheme. The decryption key of P ∗ is unknown to V . Next,
V randomly chooses a message m∗ out of all messages such that some party P̃
was activated by an incoming message “message: s∗, m∗” from P ∗. If there is
no such m∗, V fails the simulation and halts. Otherwise, when U delivers m∗

to P̃ in session s∗, V launches a run of the VE scheme with a prover P as
follows:

V computes t = h(P ∗, P̃ , s∗, m∗) and interacts with P for one run of the
VE scheme for relation Rt. P randomly chooses a value N∗ ∈R {0, 1}k,
calculates c∗ = ENCe(N∗) and δ∗ = ft(N∗), and sends (c∗, δ∗) to V .
V then has P̃ respond with “challenge: s∗, m∗, c∗, δ∗” to P ∗. P then
launches the proof system of the VE scheme with V for

PK[N∗ : c∗ = ENCe(N∗) ∧ (N∗, δ∗) ∈ Rt].

V also has P̃ launch the proof system with P ∗. In the proofing inter-
action, V has P̃ send the ‘commitment’ that P sends to V to P ∗, and
forwards the ‘challenge’ that P̃ receives from P ∗ to P , and has P̃ respond
with the same ‘response’ that V receives from P to P ∗.

Session Corruption Attack and Improvements 51

Finally, if U activates P̃ with incoming message “response: s∗, m∗, N” from P ∗,
V checks if (N, δ∗) ∈ Rt. If yes, V outputs N and halts. Otherwise, V fails the
simulation and halts. During the simulation, the following cases will be handled
specially:

1. If P ∗ receives a challenge c other than c∗ and the corresponding session of
P ∗ is expecting the receipt of a challenge, V simulates the behavior of P ∗

according to the protocol specification by checking if the associated message
has been sent before in the session and then launching the proof system of
the VE scheme (step 3 on page 45). If the proof is passed, c is decrypted by
querying DO and the simulation proceeds.

2. If P ∗ is activated with incoming message “challenge: s, m, c∗, δ∗” from some
party Q such that
(a) Q 	= P̃ or s 	= s∗ or m 	= m∗, then V has P ∗ stop handling the chal-

lenge and ignore it. This is because it is negligible to have the incom-
ing message being a valid ciphertext of the VE scheme due to the as-
sumption that F is a one-way function family and that h is collision-
resistant;

(b) otherwise, V proceeds to simulate session s∗ of P ∗ in the run of the
VE proof system (step 3 on page 45). If the proof is not passed, V has
P ∗ stop handling the challenge. Otherwise, V fails the simulation and
halts.

3. If P ∗ or session s∗ of P ∗ is corrupted by U , V fails the simulation and
halts.

For other queries made by U , V answers them accordingly.
Note that all capabilities of U , namely party corruption, session corruption

and sub-routine (session) activations, are simulated correctly by V . Also, no mat-
ter at which point, conditioned on the event that V does not fail in simulation,
the internal states of all sessions of all imitated parties are identical to that of a
real interaction of U with an unauthenticated network. In addition, since P ∗ is
randomly chosen, U ’s view of the interaction with V , conditioned on the event
that V does not fail in the simulation, is identically distributed to U ’s view of a
real interaction with an unauthenticated network.

Let E∗ be the event that E occurs and that U broke P ∗ in session s∗. Since
P ∗ is randomly chosen by V and the event E∗ and the failure of V (that is, when
P ∗ is corrupted, session s∗ of P ∗ is corrupted, there is no activation of incom-
ing message from P ∗, or P ∗ is activated with incoming challenge “challenge: s∗,
m∗, c∗, δ∗” with the proof initiated by P̃ is passed.) never occur at the same
simulation, we have the event E∗ occurs with probability at least ε/� where ε
is the probability of event E and � is the number of activations with incoming
messages in the simulation.

When E∗ happens, U must have activated P̃ with incoming message “response:
s∗, m∗, N∗”. So V gets the decryption of c∗ with probability at least ε/�. In addi-
tion, V has never asked DO for decrypting c∗. Consequently, V has successfully
broken the VE scheme with probability at least ε/�.

��

Fair Identification

Omkant Pandey1, Julien Cathalo2,�, and Jean-Jacques Quisquater2

1 Department of Computer Science, UCLA
omkant@cs.ucla.edu

2 UCL Crypto Group, Belgium
{cathalo, quisquater}@dice.ucl.ac.be

Abstract. This paper studies a new problem called fair identification:
given two parties, how should they identify each other in a fair manner.
More precisely, if both parties are honest then they learn each other’s
identity, and if anyone is cheating then either both of them learn each
other’s identity or no one learns no information about the identity of the
other. We propose a security model and a provably secure optimistic fair
identification protocol.

1 Introduction

Suppose that Alice and Bob are interested in knowing each other but each of
them is hesitating in revealing his/her identity first. How should they identify
each other so that fairness is guaranteed for both parties i.e. if both of them are
honest, they learn each other’s identity; if any one of them cheats then either
both of them learn each other’s identity or no one learns no information about
the identity of the other. This problem is termed as fair identification.

We will be interested in a protocol which ensures the following:

– If A and B are honest, both of them learn each other’s identity.
– If anyone is cheating, either no one learns anything about the identity

of the other or both of them learn each other’s identity.
– Identities of A and B remain secret to an outsider against active

attacks.
– A third party is needed only in case of disputes i.e. when cheating

occurs (in other words, the protocol should be optimistic).

Harder variants of this problem are also possible: for example, one could
consider concurrent attacks instead of active attacks, but in this paper we will
focus on active attacks only.

Several problems similar to fair identification have been studied in the liter-
ature. It is thus a natural approach to examine a few kinds of cryptographic
primitives used to solve such problems to see if they can trivially achieve fair
identification.

� Supported by Walloon Region / WIST-MAIS project.

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 52–63, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fair Identification 53

– In a mutual authentication scheme [10, 6, 23], two parties authenticate each
other, but fairness is not ensured.

– In a fair exchange of signatures protocol [1, 20, 16, 2], each party obtains
the other’s signature in a fair manner. There is a fundamental difference
between exchanging a signature and exchanging one’s identity. Fair exchange
of signatures is based upon the concept of verifiability of signatures without
actually completely revealing them [13, 3, 20]. But a successful verification
always confirms the identity of the other party. Thus, fair exchange of digital
signatures does not seem to provide any trivial solution to fair identification.

– Identity escrow schemes [25] allow an entity A to send some information to
B that commits to A’s identity, meaning that this information would allow
an authorized third party to recover A’s identity. A and B could run a fair
identification protocol as follows:
1. A runs the identity escrow protocol with B.
2. B confirms his true identity to A.
3. A confirms her true identity to B in similar way.

If A is cheating, B can go to the escrow agent with transcripts of identity es-
crow protocol in step 1 to obtain A’s identity. In this protocol, eavesdroppers
can learn the identities of A and B. Simply encrypting the communication
does not thwart active attacks. Thus this protocol does not satisfy the re-
quirements for fair identification.

Since there seems to be no trivial way to achieve fair identification, we propose
a new scheme. Rather than build a scheme from scratch, we use existing cryp-
tographic primitives and combine them to design a fair identification scheme.

This paper is organized as follows. Section 2 lists the cryptographic primitives
that we use as building blocks for our protocol. Section 3 defines a security
model for fair identification. Section 4 describes our fair identification protocol.
Section 5 discusses a few variants of the initial problem.

2 Building Blocks

In this section, we introduce the cryptographic primitives that we use as building
blocks for our fair identification protocol. These building blocks are a signature
scheme with a special feature, a public key encryption scheme, and a group
signature scheme. This section is not necessary for understanding the security
model of section 3 and hence can be skipped. However, it is necessary for the
protocol (section 4).

2.1 Signatures with Key-Independent Coupons

Some signature schemes have the interesting feature that a part of the signature
can be computed prior to the knowledge of the message to sign. They are some-
times called on-line/off-line signatures [28] or coupon-based signatures, and the
pre-computed part is called the coupon.

54 O. Pandey, J. Cathalo, and J.-J. Quisquater

In this paper, we additionally require that the coupon can be computed with-
out knowing the signing key. We call such a scheme a signature scheme with
key-independent coupons.

Many known signature schemes satisfy this requirement; in fact, any signature
scheme obtained by applying the Fiat-Shamir heuristic [21] does (the coupon is
the commitment of the corresponding identification scheme), like the Schnorr
signature scheme [27] for example.

More formally, a signature scheme with key-independent coupons is a tuple of
algorithms SS = (KS ,S,V) satisfying the usual properties of a signature scheme
where: KS , S, and V are key-generation, signing and verification algorithms
respectively. Additionally, S internally works as follows (s = signing key and
ŝt = some state information, m = message to be signed): Algorithm S(m, s) :
{(x, ŝt) ← Sx(); y ← Sy(x, ŝt, m, s); Return(x, y); }.

Here, Sx is the algorithm that generates the coupon and Sy is the algorithm
that generates the remaining part of the signature.

Notation: Let cert denote the certificate for the public key of a signature
scheme with key-independent coupons. We assume two algorithms Extract and
Valid such that: Extract(cert) extracts the public key from cert and Valid(cert)
verifies if cert is valid (output 1) or not (output 0). Furthermore, we assume
that all certificates are of the same size and that all signatures are also equal in
size (if not, add leading 0s to make them equal to the maximum possible size).

2.2 Public Key Encryption in Multi-user Setting

By PE we denote an IND-CCA secure public-key encryption scheme secure in a
multi-user setting (Bellare et al [5]).

Recall that a public-key encryption scheme PE = (K, E ,D) consists of three
algorithms. The key generation algorithm K is a randomized algorithm that
takes nothing as input and returns a pair (pk, sk) of matching public and secret
keys; we write (pk, sk) R← K(). The encryption algorithm E is a randomized
algorithm that takes the public key pk and a plaintext M (from the message space
MsgSp(pk)) to return a ciphertext C′; we write C′ R← Epk(M). The decryption
algorithm D is a deterministic algorithm that takes the secret key sk and a
ciphertext C′ to return the corresponding plaintext M (or a special symbol ⊥ if
C′ is invalid); we write M ← Dsk(C′).

Two ideal examples of PE are: Cramer-Shoup [19, 5] and RSA-OAEP
[9, 7, 29, 22].

2.3 Group Signatures as Verifiable Commitments to Identity

Group signatures allow a group member to sign anonymously on behalf of the
group. If needed, the signature can be opened by a trusted third party, called
group manager, to reveal the identity of the signer. For an in-depth discussion
on group signatures see [14, 12, 4, 8, 11].

Fair Identification 55

Informally, a group signature scheme G = (Setup, Join, Sign, Verify, Open) is a
5-tuple of algorithms, where:

–Setup is the algorithm which takes no input. It initializes the system and
outputs the group public key GPK, secret data for the group manager, and any
other parameters needed.

–Join is an interactive protocol executed between the group manager and
a user (say A). As a result, A learns his secret data gA for generating group
signatures and the group manager might also learn some data to aid him later
in opening the signatures if required.

–Sign is the signing algorithm. It takes as input the message m to be signed
and the secret data gA of any user A to produce a group signature σA.

–Verify is the algorithm to verify the correctness of a group signature on a given
message. It takes as input the message m, the signature σ and the group public
key GPK; it outputs 1 if σ is a valid group signature on m, and 0 otherwise.

–Open is the algorithm that only the group manager can use to identify the
signer of a particular group signature. It takes as input the signature σ, man-
ager’s secret data for opening group signatures and perhaps some other infor-
mation; its output is a proof identifying the signer of the signature.

For notation, σA(m) will denote the group signature of A on message m.
When only σA is written, it means that it is a group signature of A on whatever
message and that opening it would identify A as its signer.

The following properties are desirable for group signatures: Correctness -
group signatures produced using Sign are always accepted by Verify. Unforge-
ability - only group members can sign efficiently; Anonymity - given a group
signature, it is computationally hard to identify its signer for everyone but the
group manager; Unlinkability - deciding whether two valid group signatures were
computed by the same group member, is computationally hard; Exculpability -
Neither a group member nor the group manager can produce a group signature
on behalf of any other member. Openability - The group manager is always able
to open and identify the actual signer of a valid group signature; and Coalition-
Resistance - A colluding subset of group members (even if comprised of the entire
group) cannot generate a group signature that the group manager cannot open.

Let us explain why and how we use group signatures in our scheme. Our ap-
proach to design a fair identification scheme is inspired by the way fair exchange of
signature schemes are built. In order to fairly exchange signatures, users needs a
way to commit to their signatures such that a third party can reveal the signature
if needed (this was formalized by Dodis and Reyzin [20] and called a verifiably
committed signature scheme). Similarly, in order to fairly exchange identities,
users need a way to commit to their identities. Group signatures solve this prob-
lem; they can be seen as “verifiable commitments to identity”, or vci for short.

3 A Security Model for Fair Identification

In this section we introduce the security notions that we require for a fair iden-
tification scheme.

56 O. Pandey, J. Cathalo, and J.-J. Quisquater

3.1 Setting

Parties A and B are willing to fairly identify each other. The trusted third
party is T . In order to simplify the description of the protocol, T will have two
functions: certificate generation and dispute resolution. We restrict ourselves to
the case of active attacks meaning that each player communicates with only one
player at a time.

We need to consider coalition attacks, where the adversary is allowed to form
coalitions with any number of users. We shall treat each coalition of adversaries
as a single adversary who will be considered as identified if any one in the
coalition is identified with overwhelming probability. This approach of identifying
at least one adversary has been widely used in traitor tracing [15, 17, 18, 24] and
also in group signatures (see the coalition resistance property).

Because now each coalition can be replaced by a single adversary, we can
assume that users form no coalitions at all.

3.2 Canonical Protocol

We now present a canonical protocol for identification. For the sake of simplicity,
we omit exchanges that happen before B commits to his identity. The sketch of
this protocol is the following: in the first step, B commits to his identity. In the
second step, A reveals and proves her identity. In the third step, B reveals and
proves his identity.

A (initiator) B(non-initiator)

�� Commitment to IB

Proof of IA
��

�� Proof of IB

Fig. 1. Canonical fair identification protocol

3.3 Definitions

In a real world scenario, the adversary might interact with any of the users at
will, eavesdrop, modify/stop the data, etc. To simulate all these actions, we use
oracles.

An identity oracle Oi for identity Ii essentially simulates the behavior of a
honest user whose identity is Ii and hence knows the required secret si to prove
its identity and any other secret data necessary for generating its own vci. Each
oracle is capable of executing a fair identification protocol with any other oracle
or user.

Definition 1 (Identity Oracles). An identity oracle Oi, is the simulation of a
honest user with identity Ii equipped with all necessary secrets required to execute
the fair identification protocol. Besides the messages of the fair identification
protocol, the oracle understands the following instructions – here, O is either an
identity oracle Oj 	= Oi or the player who issues these instructions:

Fair Identification 57

– START(O): when this instruction is issued to Oi, it starts executing a fair
identification protocol with O.

– TRANSCRIPT(O): when this instruction is issued to Oi, it provides the is-
suer with the transcripts of a fair identification protocol run between Oi

and O.

In both cases, Oi will be the initiator. During any live session, the oracle ei-
ther sends an appropriate message or waits for an appropriate message. It stops
whenever an invalid message arrives or if the protocol completes successfully.

The START instruction allows simulating live sessions whereas TRANSCRIPT in-
struction simulates access to the old transcripts. The time for START operation
will be one unit. When an adversary eavesdrops and gathers transcripts, gather-
ing one transcript in real world lasts as long as one fair identification run between
two parties. Once the adversary has all the transcripts it needs, it can access
them in constant time. But for this, he must still gather and store transcripts,
and the time taken for that should actually be counted. Thus, the time for ob-
taining an answer for a TRANSCRIPT instruction is essentially the run-time for
one protocol run.

By qi, denote the total number of all those instructions (START,
TRANSCRIPT), in which the identity oracle Oi appears (either initiator or non-
initiator). Let qs denote the maximum value of qi over all i, i.e. qi ≤ qs, ∀i, 0 ≤
i ≤ u− 1. We will expect the protocol to be secure for large values of qs.

Now we are ready to present a game for the adversary and formally define
the notion of fairness. For the rest of the paper, C denotes the adversary and
his identity is IC . By ε we denote an empty string. We assume that there are
u + 1 users in the system including the adversary. Excluding C, there are u
users with identities denoted by I0, I1, . . . Iu−1. To simulate them, we assume u
identity oracles: O0,O1, . . .Ou−1. By S we represent the set {O0,O1, . . .Ou−1}
and access to S means access to each of its element oracles.

Definition 2 (Fairness-game). Let O0,O1, . . .Ou−1 be the identity oracles
corresponding to the identities I0, I1, . . . Iu−1 and S = {O0,O1, . . .Ou−1}. Ad-
versary C is asked to choose any two identities, say I0 and I1 of his choice from
the set {I0, I1, . . . Iu−1}. Now one of these two identities is selected at random,
and represented by Ib where b

R← {0, 1}. An identity oracle Ch with identity Ib

is generated as a challenge oracle for the adversary. The adversary is given ac-
cess to Ch and S. Adversary knows the identities of all the oracles in S but not
of Ch. The adversary can instruct these oracles and ask for transcripts of any
communication and/or for opening new sessions with anyone. It is mandatory
that each oracle executes only one session at a time, and that it can be involved
in no more than qs instructions during the entire game.

Oracle Ch differs from other identity oracles in one manner: it keeps a state
bit ID, initialized to 0 at the start of the game, which changes automatically
along the game progress, as follows:

– Initiator case: when Ch is initiator in a session, a fresh session-specific state
St = (ã, b̃) is created at the start of the session, where ã is a bit-string with

58 O. Pandey, J. Cathalo, and J.-J. Quisquater

initial value ε and b̃ is a single bit with initial value 0. If V is the vci received
by Ch in the first step and V is valid, then ã is set to V . Value of b̃ becomes
1 if an invalid message arrives in the third step or if this step never occurs.
If the third step succeeds, then let I ′ be the identity whose proof was accepted
by Ch in this step. Then,

ID = 1 if

⎧⎨⎩
I ′ = IC

or
St = (vciC , 1) i.e. ã = vciC and b̃ = 1

– Non-initiator case: if Ch is the non-initiator, consider the second step
of canonical fip. This step succeeds if the initiator provides appropriate
data. If the initiator does not provide appropriate data, then at a later point
in time, oracle might receive this data from T during the dispute resolution
when initiator approaches T . Be it through any of these cases, let I ′ represent
the identity whose proof is accepted by the oracle. Then,

ID = 1 if I ′ = IC

Adversary wins the game if at the end of the game it outputs a bit b′ such that:
(b′ = b) ∧ (ID = 0).

Definition 3 (Fairness). Let W denote the event that adversary C wins the
fairness-game. An fip is said to ensure fairness if any polynomial time adver-
sary has only negligible advantage in fairness-game, where the advantage of the
adversary is defined as,

AdvCh,S
C = 2 · Pr[W]− 1 = 2 · Pr[(b′ = b) ∧ (ID = 0)]− 1

Informally, the idea behind the fairness-game is that adversary is allowed to
pick up any two oracles he would like to attack. One of these oracles is picked at
random as challenge oracle for the adversary and the adversary is asked to guess
the identity of the challenge oracle with probability acceptably larger than 1

2 .
In this process, the adversary is not allowed to give away his own identity. This

is formalized by ID. In the initiator case, b̃ = 1 means that the oracle detects
cheating and hence will approach the third party. Adversary will be identified
only if V is his own vci. Hence, St = (vciC , 1) means that C is identified through
the third party. In both cases, I ′ = IC simply means that adversary himself gave
out his identity. Thus ID is just like a flag which when set, represents that C’s
identity is disclosed to the challenge oracle.

4 A Fair Identification Protocol

In this section, we describe a fair identification protocol. We start by giving a
sketch of our protocol. First, A generates and sends the coupon of his signature.
Now, B, in the second step, generates a group signature on A’s coupon and
sends it to A. A now has the vci of B and hence it now sends his identity and

Fair Identification 59

the remaining part of the signature. B verifies the signature and then sends his
identity and signature to A. To remain anonymous to outsiders, they encrypt
the communication using temporary keys (using PE). To avoid active attacks,
these keys are signed under the group signature of B.

Whenever not mentioned, the security parameter and other system parame-
ters should be assumed implicitly available. Initial-Setup is needed for each
user to learn his corresponding secrets and to designate the trusted third party.
More users can join at any time. Exchange is the main protocol for exchanging
identities. Resolve is the last component of our fip, required only in case of
dispute. Let T denote the trusted third party which will also take the role of
group manager in the group signature scheme.

Initial-Setup:
System specific parameters:

1. T declares: (a) A secure signature scheme with key-independent coupons
SS = (KS ,S,V), and (b) An IND-CCA secure public-key encryption
scheme PE = (K, E ,D) to be used by each player, whenever needed.

2. Decide a secure group signature scheme to be used, G =
(Setup, Join, Sign, Verify, Open) with T being the group manager. T cre-
ates an instance of G by running the procedure Setup. T learns the secrets
corresponding to the group manager and let GPK be the group public
key.

User specific parameters:

1. Each user U first decides his public and private keys, IU and sU respec-
tively, for the signature scheme SS by running KS . U proves to T that
IU is his public key.

2. Now U runs the Join protocol of G, with T , to learn his group specific
secret gU needed to produce the group signatures.

3. T generates a certificate certU mentioning that person with public key
IU is registered with T .

Exchange:
Parties A (initiator) and B (non-initiator) execute the following steps to
identify each other:

1. A: (xA, ŝt) ← Sx(), (pkA, skA) ← K(). A sends xA, pkA to B.
2. B: (pkB, skB) ← K(), σB ← Sign(xA‖pkA‖pkB, gB). Send pkB, σB to A.
3. A: If Verify(xA‖pkA‖pkB, σB, GPK) = 1 then

yA ← Sy(xA, ŝt, σB, sA), ψA ← EpkB (yA, certA), Send ψA to B.
else Stop.

4. B: (yA, certA) ← DskB (ψA), XYA ← (xA, yA), Verify certA and if valid,
extract IA.

If V(σB , XYA, IA) = 1 then
XYB ← S(σB , sB), ψB ← EpkA(XYB, certB), Send ψB to A.

else Stop.

60 O. Pandey, J. Cathalo, and J.-J. Quisquater

Final test, A: (XYB , certB) ← DskA(ψB), Verify certB and if valid, extract IB

and check that V(σB , XYB, IB) = 1. If tests do not succeed, A goes to T to
execute Resolve.

Resolve:

Party A claiming to be cheated, presents σB to T and the corresponding
message components xA, pkA, pkB, full signature XYA on σB and identifies
herself as A to T . T sends a proof identifying the signer (B) of σB to A and
sends the full signature XYA to B.

For a security proof of this protocol, please see the full version of this pa-
per [26].

5 Extensions and Future Work

In this section, we discuss a few variants to the problem of fair identification.
While not all of these variations might find a practical application, they consti-
tute an interesting challenge.

5.1 Transferable Proofs of Identity

One could imagine a scenario where users want to fairly exchange transferable
proofs of identity. In this case, the precise statement of the problem will be:
how should two parties identify each other so that either each party learns a
transferable proof of the other’s identity or none of them learns nothing about
the identity of the other.

In our fair identification protocol, the proofs of identity that users get if
the protocol ends normally are indeed transferable (because those proofs are
signatures), but it does not necessarily mean that our protocol is a fair exchange
of identity proofs. This property can be ensured if group signatures can be opened
in a transferable manner, i.e. when the third party opens the group signature,
it outputs a transferable proof that identifies its signer. Though it might not
be possible for every group signature scheme, it is indeed the case in modern
schemes. For example, in ACJT scheme [4], this proof is actually an interactive
zero-knowledge proof of equality of two discrete logarithms, between the group
manager and the party interested in identifying the signer. This can be made
transferable by applying the Fiat-Shamir heuristic. Thus, if cheating occurs in
our protocol, the cheated party can also get the transferable proof which will be
nothing but the group signature together with a transferable proof identifying
its signer (obtained from T).

Now let us consider a stronger requirement: the proofs obtained with the help
of the third party should be at least computationally indistinguishable from the
proofs obtained directly from the concerned player. This requirement has an
interesting link with the fair exchange of signatures where signatures opened by
the third party should be indistinguishable from signatures computed by the
signer.

Fair Identification 61

Such indistinguishability cannot be achieved using our protocol. It would be
interesting to see whether existing protocols for fair exchange of signatures can
be modified to provide fair identification too.

5.2 Nontransferable Proofs of Identity

If the fair identification protocol between A and B ended successfully, A revealed
her identity to B, so B can claim to another user that he performed an exchange
with A. But A might want to be sure that B cannot prove that they indeed met.
A protocol that would ensure this for A and B would be a fair exchange of
nontransferable proofs of identities.

More precisely, if A and B execute the fair identification protocol and iden-
tify each other, then after the protocol completes, transcripts of the run prove
nothing to anyone – transcripts could have very well been simulated by A (or
B) himself.

Our protocol cannot be used to guarantee nontransferable proofs of identity.
One might think of using interactive proof protocols instead of signatures to
achieve this goal. Although this could work, neither this construction nor its
security proof are trivial.

5.3 Conditional Fair Identification

Assume a situation where the parties know in advance whom they want to
identify fairly. More precisely, A is willing to achieve fair identification only with
B, and B is willing to achieve fair identification only with A. With very little
tweaking, our protocol should work for this kind of problem. However a more
general situation is the following one: A is willing to achieve fair identification
with B if and only if B satisfies some condition, say CB. Similarly, B is willing
to do fair identification with A if and only if A satisfies some condition, say CA.
We term it as conditional fair identification. Our protocol may work for this,
depending upon what these conditions are.

5.4 Perfect Fairness

In this paper, the coalition of adversaries was considered to be one single ad-
versary. Following an approach used in traitor tracing schemes, we aimed at
identifying at least one user in the coalition. However, a stronger notion of fair-
ness is possible where one could aim at identifying each player in the coalition.
Precisely, perfect fairness for A would mean that if A is identified by any player
B in a particular run of the protocol, A will also identify exactly B. With this
perfect fairness notion, it should not matter whether B is in a coalition or not.
In order to achieve perfect fairness, it is necessary to use non-transferable proofs;
otherwise, just one person could interact with A and obtain a transferable proof
of identifying A and then show it to everyone in the coalition. Perfect fairness
seems to be the most challenging property to ensure.

62 O. Pandey, J. Cathalo, and J.-J. Quisquater

Acknowledgements

The authors wish to thank Benôıt Libert and Judyta Stachniak for their sug-
gestions and ideas and Sylvie Baudine for her permanent English support.

References

1. N. Asokan, V. Shoup, and M. Waidner. Optimistic Fair Exchange of Digital Signa-
tures. In K. Nyberg, editor, Advances in Cryptology - Eurocrypt 98, volume 1403
of Lecture Notes in Computer Science, pages 591–606. Springer-Verlag, 1998.

2. N. Asokan, V. Shoup, and M. Waidner. Optimistic Fair Exchange of Digital Sig-
natures. IEEE Journal on Selected Areas in Communication, 18(4):593–610, 2000.

3. G. Ateniese. Efficient Verifiable Encryption (and Fair Exchange) of Digital Signa-
tures. In G. Tsudik, editor, Sixth ACM Conference on Computer and Communi-
cation Security and Privacy, pages 138–146. ACM, November 1999.

4. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A Practical and Provably
Secure Coalition-Resistant Group Signature Scheme. In M. Bellare, editor, Ad-
vances in Cryptology - CRYPTO 2000, volume 1880 of Lecture Notes in Computer
Science, pages 255–270. Springer, 2000.

5. M. Bellare, A. Boldyreva, and S. Micali. Public-key Encryption in a Multi-User
Setting: Security Proofs and Improvements. In B. Preneel, editor, Advances in
Cryptology - Eurocrypt’00, volume 1807 of Lecture Notes in Computer Science.
Springer, 2000.

6. M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and
analysis of authentication and key-exchange protocols. In Procceedings of the 30th
annual Symposium on the Theory of Computing – STOC, pages 419–428. ACM
Press, 1998.

7. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of
security for public-key encryption schemes. In Advances in Cryptology - Crypto’98,
volume 1462 of Lecture Notes in Computer Science. Springer, 1998.

8. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simpliefied requirements, and a construction based on general
assumptions. In E. Biham, editor, Advances in Cryptology - EUROCRYPT 2003,
volume 2656 of Lecture Notes in Computer Science, pages 614–629. Springer, 2003.

9. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt
with RSA. In Advances in Cryptology - Eurocrypt’94, Lecture Notes in Computer
Science. Springer, 1995.

10. M. Bellare and P. Rogaway. Provably secure session key distribution: the three
party case. In Procceedings of the 27th annual Symposium on the Theory of Com-
puting – STOC, pages 57–66. ACM Press, 1995.

11. D. Boneh, X. Boyen, and H. Shacham. Short Group Signatures. In Advances in
Cryptology - CRYPTO 2004, Lecture Notes in Computer Science. Springer, 2004.

12. J. Camenisch and M. Michels. A Group Signature Scheme with Improved Effi-
ciency. In K. Ohta and D. Pei, editors, Advances in Cryptology - ASIACRYPT
’98, volume 1514 of Lecture Notes in Computer Science, pages 160–174. Springer,
1998.

13. J. Camenisch and V. Shoup. Practical Verifiable Encryption and Decryption of
Discrete Logarithms. In Advances in Cryptology – CRYPTO, LNCS. Springer,
2003.

Fair Identification 63

14. J. Camenisch and M. Stadler. Efficient Group Signature Schemes for Large Groups.
In B.S. Kaliski Jr., editor, Advances in Cryptology - CRYPTO ’97, volume 1294 of
Lecture Notes in Computer Science, pages 410–424. Springer, 1997.

15. H. Chabbane, D.H. Phan, and D. Pointcheval. Public Traceability in Traitor Trac-
ing Schemes. In R. Cramer, editor, Advances in Cryptology – Eurocrypt’05, volume
3494 of LNCS. Springer, 2005.

16. L. Chen, C. Kudla, and K.G. Paterson. Concurrent Signatures. In C. Cachin and
J. Camenisch, editors, Advances in Cryptology - EUROCRYPT 2004, volume 3027
of Lecture Notes in Computer Science, pages 287–305. Springer, 2004.

17. B. Chor, A. Fiat, and M. Naor. Tracing traitor. In Y. Desmedt, editor, Advances
in Cryptology – Crypto’94, volume 839 of LNCS, pages 257–270. Springer, 1994.

18. B. Chor, A. Fiat, M. Naor, and B. Pinkas. Tracing traitor. IEEE Transaction on
Information Theory, 46(3):893–910, 2000.

19. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Advances in Cryptology - Crypto’98,
Lecture Notes in Computer Science. Springer, 1998.

20. Y. Dodis and L. Reyzin. Breaking and Repairing Optimistic Fair Exchange from
PODC 2003. In M. Yung, editor, ACM Workshop on Digital Rights Management
(DRM), pages 47–74, 2003.

21. A. Fiat and A. Shamir. How to prove yourself : practical solutions of identification
and signature problems. In G. Brassard, editor, Advances in Cryptology - Proceed-
ings of CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages
186–194. Springer-Verlag, 1987.

22. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is Secure under
the RSA Assumption. Available on eprint archive – http://eprint.iacr.org/
2000/061.

23. M. Jakobsson and D. Pointcheval. Mutual authentication and key-exchange pro-
tocols for low power devices. In Financial Cryptography, pages 178–195. Springer,
2001.

24. A. Kiayias and M. Yung. Traitor tracing with constant transmission rate. In
Advances in Cryptology – Eurocrypt’02, volume 2332 of LNCS, pages 450–465.
Springer, 2002.

25. J. Kilian and E. Petrank. Identity Escrow. In Advances in Cryptology - CRYPTO
’98, volume 1642 of Lecture Notes in Computer Science, pages 169–185. Springer,
1998.

26. O. Pandey, J. Cathalo, and J.-J. Quisquater. Fair Identification, 2005. Full version
available at http://www.cs.ucla.edu/∼omkant.

27. C. P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryp-
tology, 4(3):161–174, 1991.

28. A. Shamir and Y. Tauman. Improved Online/Offline Signature Schemes. In Ad-
vances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in Computer
Science, pages 355–367. Springer, 2001.

29. V. Shoup. OAEP Reconsidered. Available on eprint archive – http://eprint.
iacr.org/2000/060.

Efficient Doubling on Genus 3 Curves over
Binary Fields�

Xinxin Fan1, Thomas Wollinger2, and Yumin Wang1

1 State Key Lab of Integrated Service Networks,
Xidian University, Xi’an, P.R. China

xxfan@mail.xidian.edu.cn
ymwang@xidian.edu.cn

2 Communication Security Group (COSY),
Ruhr-Universitäet Bochum, Germany

wollinger@crypto.rub.de

Dedicated to my supervisor Prof. Yumin Wang on occasion of his 70th birthday.

Abstract. The most important and expensive operation in a hyperellip-
tic curve cryptosystem (HECC) is the scalar multiplication by an integer
k, i.e., computing an integer k times a divisor D on the Jacobian. Using
some recoding algorithms for the scalar, we can reduce the number of
divisor class additions during the process of computing the scalar multi-
plication. On the other side, the divisor doublings will stay the same for
all kinds of scalar multiplication algorithms. In this paper we accelerate
the divisor doublings for genus 3 HECC over binary fields by using spe-
cial types of curves. Depending on the degree of h, our explicit formulae
only require 1I + 11M + 11S, 1I + 13M + 13S, 1I + 20M + 12S and
1I +26M +11S for divisor doublings in the best case, respectively. Espe-
cially, for the case of deg h = 1, our explicit formula improve the recent
result in [GKP04] significantly by saving 31M at the cost of extra 7S.
In addition, we discuss some cases which are not included in [GKP04].

By constructing birational transformation of variables, we derive ex-
plicit doubling formulae for special types of equations of the curve. For
each type of curve, we analyze how many field operations are needed. So
far no attack on any of the all curves suggested in this paper is known,
even though some cases are very special. Our results allow to choose
curves from a large variety which have extremely fast doubling needing
only one third the time of an addition in the best case. Furthermore, an
actual implementation of the new formulae on a Pentium-M processor
shows their practical relevance.

Keywords: Genus 3 Hyperelliptic Curve, Explicit Doubling Formulae,
Fast Arithmetic, Binary Fields.

1 Introduction

In 1988, Neal Koblitz suggested for the first time the generalization of ellip-
tic curves to curves of higher genus for cryptographic use, namely hyperelliptic
� Supported by the National NKBRSF ’973’ Program of China (Grant No.G19990

35803).

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 64–81, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Efficient Doubling on Genus 3 Curves over Binary Fields 65

curves [Kob88, Kob89]. Because of their short operand size compared to other
public-key schemes, HECC seem well suitable for small processor architectures,
where memory and speed are constrained. During the last decade, elliptic curve
cryptosystems (ECC) [Kob87, Mil86] have been extensively studied from both a
pure and applied perspective. However, HECC did not obtain a lot of attention
until recent years. There has been a major effort in improving the group opera-
tions and in implementing HECC on different processors. Using explicit formulae
instead of Cantor algorithm has reduced sharply the complexity of arithmetic in
the ideal class group of hyperelliptic curves and obtained fast implementation
in software [PWGP03,WPW+03, Lan03, GMA+04, Ava04, Wol04, FWW05] and
hardware platform [BCLW02, Cla02, EMY04, KWC+04].

For all kinds of cryptographic protocols based on ECC or HECC, the com-
putation of scalar multiplication is the main operation. Scalar multiplication
algorithms include usually divisor class additions, doublings and perhaps some
precomputations. By some recoding methods for the scalar, we can reduce the
number of divisor class additions. However, we cannot decrease the number of
divisor class doublings in the general case (for some special curves, it is pos-
sible). Therefore, divisor class doublings will become the crucial step for the
performance of the entire cryptosystem. Improving the arithmetic of doubling
has a direct impact on the efficiency of the whole system.

In [LS04, BD04], the authors discussed different isogeny classes for genus 2
curves over GF (2n), n is the degree of the extension field. They gave a complete
study of all cases of defining equation of the curve and made a trade-off between
speed-up and special parameters. Although we can use Koblitz curves to accel-
erate the computation of scalar multiplication [GLS00, Lan04], there are only 6
and 24 different isogenie classes for genus 2 and 3 binary curves, respectively.
Hence the choice of curves is rather limited. In order to enlarge the range of
selecting curves, we will address some special kinds of genus 3 curves defined
over the extension field in this paper.

For genus 3 curves over GF (2n), Pelzl et al. [PWGP03] discussed a very special
type of curves with h(x) = 1 and gave efficient doubling explicit formulae. In
[GKP04], the authors proposed efficient algorithms to compute the resultant
of two polynomials and of the inverse of one polynomial modulo another, and
improved the overall complexity of the addition and doubling algorithms for both
even and odd characteristics. Their explicit formulae are applicable to almost
all hyperelliptic curves of genus 3. By using a birational transformation of the
form (x, y) �→ (λx + μ, νy), they discuss five possible types of curves for even
characteristic case.

In this article, we generalize the ideas proposed in [LS04] to the genus 3
case and improve the results in [GKP04] further. We construct the isomorphic
transformations first to achieve as many zero coefficients as possible, and then
make strong use of the defining equation of the curve to derive explicit doubling
formulae. We discuss some special curves which can lead to fast computation of
doubling a divisor class. Finally, we combine the new doubling explicit formulae

66 X. Fan, T. Wollinger, and Y. Wang

with the NAF method to compute the scalar multiplication, and give detailed
experiment results.

The remainder of the paper is organized as follows: Section 2 states a brief
mathematical background related to genus 3 hyperelliptic curves over binary
fields. Section 3 describes the Harley’s algorithm for doubling a divisor class.
In section 4, 5, 6, and 7 we derive the new explicit doubling formulae for the
genus 3 curves according to the different degree of h(x). Section 8 summarizes
our contributions. Finally, we present our experimental results in Section 9 and
conclude with a discussion of our results in Section 10.

2 Genus 3 Hyperellitpic Curves

In this section we present the representation of the divisor class group elements
for genus 3 hyperelliptic curves over characteristic two finite fields. More math-
ematical background and more details about hyperelliptic curves can be found
in the literature [Can87, Kob89, MWZ96, CFA+05].

Let GF (2n) be a binary finite field with 2n elements. A hyperelliptic curve C
of genus 3 over GF (2n) with one point at infinity is defined by an equation of
the form

(∗) C : Y 2 + h(X)Y = f(X),

where h(X) = h3X
3 +h2X

2 +h1X + h0 ∈ GF (2n)[X] is a polynomial of degree
≤ 3, f(X) = X7 +f6X

6 +f5X
5 +f4X

4 +f3X
3 +f2X

2 +f1X +f0 ∈ GF (2n)[X]
is a monic polynomial of degree 7, and the curve C has no sigular point.

The equation (∗) defining a hyperelliptic curves C of genus 3 is unique up to
a change of coordinates of the form

(x, y) −→ (α2x + β, α7y + t(x)),

Where α, β ∈ GF (2n) with α 	= 0 and t(x) ∈ GF (2n)[x] with deg t ≤ 3 [Loc94].
Let Pi = (xi, yi) ∈ GF (2n) × GF (2n) be a point on the curve C and P∞ be a
point at infinity, where GF (2n) is the algebraic closure of GF (2n). The inverse
of Pi = (xi, yi) is the point −Pi = (xi, yi + h(xi)). P is called a ramification
point if P = −P holds. A divisor is a formal sum of points: D = ΣmiPi, mi ∈ Z.
A semi-reduced divisor is given by D = ΣmiPi − (Σmi)P∞, where mi ≥ 0 and
Pi 	= −Pj for i 	= j, and semi-reduced divisor D is called reduced if Σmi ≤ 3
holds for genus 3 hyperelliptic curves. The divisor class group JC(GF (2n)) of C
forms a finite abelian group and therefore we can construct cryptosystems based
on discrete logarithm problems on the Jacobian of C. Any equivalent class D in
JC(GF (2n)) can be represented by a pair of polynomials (u, v), which satisfies
the following conditions [Mum84]:

u(x) =
∏

(x + xi)mi , v(xi) = yi, deg v < deg u, u | v2 + hv + f.

Efficient Doubling on Genus 3 Curves over Binary Fields 67

3 Harley’s Algorithm for Divisor Class Doublings

In [GH00], the authors noticed that one can reduce the number of operations
by distinguishing between possible cases according to the properties of the in-
put divisors. They proposed an efficient algorithm (Using many computational
algebra tricks such as Karatsuba Multiplication, Chinese Remainder Theorem
and Newton Iteration) to compute in the Jacobian of hyperelliptic curves. For
a complete description about explicit formulae for group operations we refer to
[Wol04].

In this paper we concentrate on the doublings for the genus 3 curves in the
most significant case where the input divisor [u(x), v(x)] has full degree and u
and h do not have a common factor. Therefore, we assume from now on

D = [u(x), v(x)], deg u(x) = 3, resultant [u(x), h(x)] 	= 0.

Let u(x) = x3 + u2x
2 + u1x + u0, v(x) = v2x

2 + v1x + v0. Using the following
Harley’s algorithm, we can double a divisor class on a Jacobian:

– Step 1. Compute the resultant r of u and h;
– Step 2. Compute the almost inverse inv = r/h mod u = inv2x

2+inv1x+inv0;
– Step 3. Compute z = ((f − hv − v2)/u) mod u = z2x

2 + z1x + z0;
– Step 4. Compute s

′
= z · inv mod u = s

′
2x

2 + s
′
1x + s

′
0;

– Step 5. Compute s = (s
′
/r) and make s monic: s = x2 + s1x + s0;

– Step 6. Compute G = s · u = x5 + g4x
4 + g3x

3 + g2x
2 + g1x + g0;

– Step 7. Compute u
′
= u−2{[G + (r/s

′
2)v]2 + (r/s

′
2)hG + (r/s

′
2)

2(hv − f)} =
x4 + u

′
3x

3 + u
′
2x

2 + u
′
1x + u

′
0;

– Step 8. Compute v
′
= −[G(s

′
2/r) + h + v] mod u

′
= v

′
3x

3 + v
′
2x

2 + v
′
1x + v

′
0;

– Step 9. Reduce u
′
: u” = (f − v

′
h− v

′2)/u
′
= x3 + u”

2x
2 + u”

1x + u”
0;

– Step 10. Compute v” = −(v
′
+ h) mod u” = v”

2x
2 + v”

1x + v”
0 .

We now study the different cases of the equations depending on the degree
of h because the actual execution of the Harley’s algorithm depends on the
coefficients of the curve. We will present the explicit formulae for four different
cases: deg h = 0, deg h = 1, deg h = 2 and deg h = 3. In the two latter
cases, we try to find special curves which can lead to a significant speedup. The
major speedup is obtained by simplifying and canceling r in the expressions.
For hyperelliptic curves of genus 3 and defined over fields of characteristic two
there exist no supersingular cases [Gal01, RS02], i.e. for genus 3 HECC we can
take special curves with h constant. Using these special curves, we can obtain
the explicit formulae with low complexity and better performance regarding the
number of required field operations for the execution of the group operations.

4 Case deg h = 0

In this section we assume deg h = 0. One can obtain an isomorphic curve where
f6 = f5 = f4 = f2 = 0 and h0 is divided by any α7. To improve the efficiency of

68 X. Fan, T. Wollinger, and Y. Wang

HECC, we hope that the coefficient h0 is ’small’ in an isomorphic curve, which
allows the multiplication with it to be performed via additions. Hence we will
choose α7 such that h0

α7 is ’small’ in the practical use. If we choose finite fields
GF (2n) with n ≡ 1(mod 3) or n ≡ 2(mod 3) there are no elements α ∈ GF (2n)
such that α7 = 1 (the unit element of GF (2n)). Therefore, there is always an
α such that α7 = h0. For n ≡ 0(mod 3) this happens with probability 1/7. We
obtain the isomorphic curve by using the following birational transformation of
variables and dividing the equation by α14:

Y ← α7Ỹ + aX̃3 + bX̃2 + cX̃, X ← α2X̃ + d

where d =
√

f5, a = α6√f6 + d, b = α4
√

f4 + f5 · d + f6 · d2 + d3 and c =
α2
√

f2 + f3 · d + f6 · d4 + d5 + h0 · b. Therefore we obtain a curve of the form
Y 2 + h0Y = X7 + f3X

3 + f1X + f0, usually with h0 = 1. Adding a constant
term to the substitution of Ỹ one can achieve f0 = 0 with probability 1/2.
Hence, there are only two parameters f3, f1 as opposed to five in the general
case showing that the type is indeed special.

With the new curve coefficients the expression r and s will simplify to:

r = h3
0, s

′
2 = h2

0z2, s
′
1 = h2

0z1, s
′
0 = h2

0z0.

We note that
u

′
3 = 0, u

′
2 = s2

1 = (s
′
1/s

′
2)

2 = (z1/z2)2,

u
′
1 = (r/s

′
2)

2 = h2
0(z

−1
2)2, u

′
0 = s2

0 = (s
′
0/s

′
2)

2 = (z0/z2)2,

and
v

′
3 = (u

′
2 + g3)(s

′
2/r) = h−1

0 (u
′
2z2 + z0 + u2z1 + u1z2),

v
′
2 = (g4u

′
2+u

′
1+g2)(s

′
2/r)+v2 = h−1

0 [(u2z2+z1)u
′
2+u

′
1z2+u2z0+u1z1+u0z2]+v2,

v
′
1 = (g4u

′
1 + u

′
0 + g1)(s

′
2/r) + v1 = h−1

0 [(u2z2 + z1)u
′
1 + u

′
0z2 + u1z0 +u0z1] + v1,

v
′
0 = (g4u

′
0 + g0)(s

′
2/r) + h0 + v0 = h−1

0 [(u2z2 + z1)u
′
0 + u0z0] + h0 + v0.

Since f + hv + v2 = uz + u2x we also have that

f0 + h0v0 + v2
0 = u0z0,

f1 + h0v1 = u1z0 + u0z1 + u2
0,

h0v2 + v2
1 = u2z0 + u1z1 + u0z2,

f3 = z0 + u2z1 + u1z2 + u2
1,

v2
2 = z1 + u2z2,

0 = u2
2 + z2.

Using the equations above, we can calculate cheaply u
′
2, u

′
0 and v

′
3, v

′
2, v

′
1, v

′
0 as

follows:
u

′
2 = (z1/z2)2 = [(v2

2 + u2z2)/z2]2 = (v2
2z−1

2)2 + u2
2,

Efficient Doubling on Genus 3 Curves over Binary Fields 69

u
′
0 = (z0/z2)2 = [(f3 + u2

1 + u2z1 + u1z2)/z2]2 = [(f3 + u2
1)z

−1
2]2 + u2

1 + u2
2u

′
2,

v
′
3 = h−1

0 (u
′
2z2 + f3 + u2

1),

v
′
2 = h−1

0 (v2
2u

′
2 + v2

1) + h0z
−1
2 ,

v
′
1 = h−1

0 [(v2
2 + z2)(u

′
1 + u

′
0) + v2

2u
′
0 + f1 + u2

0] + h0z
−1
2 ,

v
′
0 = h−1

0 (v2
2u

′
0 + f0 + v2

0) + h0.

We give the doubling formulae for this case in Table 1. The operations are
counted for the case h0 = 1, h−1

0 is ’small’ (multiplication with h−1
0 are not

counted), and arbitrary h0. Both h2
0 and h−1

0 are precomputed.

Table 1. Doubling deg h = 0, deg u = 3

Input [u, v], u = x3 + u2x2 + u1x + u0, v = v2x2 + v1x + v0; h2
0, h−1

0

Output [u”, v”] = 2[u, v]

Step Expression h0 = 1 h−1
0 small h0 arbitrary

1 Compute ũ = u2 and ṽ = v2: 6S 6S 6S

If u2 = 0 then call the Cantor algorithm

ũ2 = u2
2, ũ1 = u2

1, ũ0 = u2
0, ṽ2 = v2

2 , ṽ1 = v2
1 , ṽ0 = v2

0 ;

2 Compute u
′

= x4 + u
′
3x3 + u

′
2x2 + u

′
1x + u

′
0: 1I, 3M, 3S 1I, 4M, 3S 1I, 4M, 3S

t1 = f3 + ũ1, t2 = f1 + ũ0, t3 = f0 + ṽ0;

invz2 = ũ−1
2 , u

′
3 = 0, u

′
2 = (ṽ2invz2)2 + ũ2;

u
′
1 = h2

0(invz2)2, u
′
0 = (t1invz2)2 + ũ1 + ũ2u

′
2;

3 Compute v
′

= v
′
3x3 + v

′
2x2 + v

′
1x + v

′
0: 4M 5M 9M

v
′
3 = h−1

0 (u
′
2ũ2 + t1), v

′
2 = h−1

0 (ṽ2u
′
2 + ṽ1) + h0invz2;

v
′
1 = h−1

0 [(ṽ2 + ũ2)(u
′
1 + u

′
0) + ṽ2u

′
0 + t2] + h0invz2;

v
′
0 = h−1

0 (ṽ2u
′
0 + t3);

4 Reduce u
′
, i.e. u” = x3 + u”

2x2 + u”
1x + u”

0: 1M, 2S 1M, 2S 1M, 2S

u”
2 = v

′2
3 , u”

1 = u
′
2, u”

0 = u”
2u

′
2 + v

′2
2 + u

′
1;

5 Compute v” = v”
2x2 + v”

1x + v”
0 : 3M 3M 3M

v”
2 = v

′
2 + v

′
3u”

2, v”
1 = v

′
1 + v

′
3u”

1, v”
0 = v

′
0 + v

′
3u”

0;

Sum 1I, 11M, 11S 1I, 13M, 11S 1I, 17M, 11S

Remark 1. For the case of h0 = 1, we obtain the same explicit formula as in
[GKP04] (only save several field additions).

5 Case deg h = 1

In this section we discuss the case of deg h = 1. One can obtain an isomorphic
curve where f6 = f4 = h0 = 0 and h1 is divided by any α5. We will choose
α5 such that h1

α5 is ’small’ in the practical use. If we choose finite fields GF (2n)
with n not being divided by 4 there are no elements α ∈ GF (2n) such that
α5 = 1. Therefore, there is always an α such that α5 = h0. For n ≡ 0(mod 4)

70 X. Fan, T. Wollinger, and Y. Wang

this happens with probability 1/5. We obtain the isomorphic curve by using
the following birational transformation of variables and dividing the equation
by α14:

Y ← α7Ỹ + sX̃3 + tX̃2, X ← α2X̃ + β

where β = h0
h1

, s = α6√f6 + β and t = α4
√

f4 + f5β + f6β2 + β3 + h1
√

f6 + β.
Hence, we obtain a curve of the form Y 2 +h1XY = X7 +f5X

5 +f3X
3 +f2X

2 +
f1X + f0, usually with h1 = 1. Adding a linear factor to the substitution of Ỹ
one can achieve f2 = 0 with probability 1/2. A constant term leads to f1 = 0.
Therefore, there are only three free parameters f5, f3, f0.

With the new curve coefficients the expression r and s will simplify to:

r = u0h
3
1, s

′
2 = z0h

2
1, s

′
1 = (u2z0 + u0z2)h2

1, s
′
0 = (u1z0 + u0z1)h2

1,

rs
′
2 = u0z0h

5
1, s2 =

s
′
2

r
=

z0

u0h1
.

In this case, we have that

u
′
3 = 0, u

′
2 = s2

1 = (s
′
1/s

′
2)

2 = (u2 + u0 ·
z2

z0
)2,

u
′
1 = (r/s

′
2)

2 = h2
0u

2
0(z

−1
0)2, u

′
0 = s2

0 = (s
′
0/s

′
2)

2 = (u1 + u0 ·
z1

z0
)2,

and
v

′
3 = (u

′
2 + g3)(s

′
2/r) = h−1

1 [z2 · (u0 ·
z2

z0
) + z1 + u2z2],

v
′
2 = (g4u

′
2 + u

′
1 + g2)(s

′
2/r) + v2 = h−1

1 [z2u
′
2 +

h1

s2
+ u2z1 + u1z2 + z0] + v2,

v
′
1 =(g4u

′
1+u

′
0+g1)(s

′
2/r)+h1+v1 =h−1

1 [
1

h1s2
(
z2h1

s2
+z2

1)+u2z0+u1z1+u0z2]+v1,

v
′
0 = (g4u

′
0 + g0)(s

′
2/r) + v0 = h−1

1 (z2u
′
0 + u1z0 + u0z1) + v0.

Since f + hv + v2 = uz + u2x we also obtain that

f0 + v2
0 = u0z0 (= rs

′
2/h5

1),

f1 + h1v0 = u1z0 + u0z1 + u2
0,

f2 + h1v1 + v2
1 = u2z0 + u1z1 + u0z2,

f3 + h1v2 = z0 + u2z1 + u1z2 + u2
1,

v2
2 = z1 + u2z2,

f5 = u2
2 + z2.

Using the equations above, we can calculate cheaply u
′
2, u

′
0 and v

′
3, v

′
2, v

′
1, v

′
0 as

follows:
u

′
2 = (u2 + u0 ·

z2

z0
)2 = (u2 + u0 ·

z2

u0h1s2
)2 = (u2 +

z2

h1s2
)2,

Efficient Doubling on Genus 3 Curves over Binary Fields 71

u
′
0 = (u1 + u0 ·

z1

z0
)2 = (u1 + u0 ·

z1

u0h1s2
)2 = (u1 +

z1

h1s2
)2,

v
′
3 = h−1

1 (
z2
2

h1s2
+ v2

2),

v
′
2 = h−1

1 (z2u
′
2 +

h1

s2
+ f3 + u2

1),

v
′
1 = h−1

1 [
1

h1s2
(z2 ·

h1

s2
+ z2

1) + f2 + v2
1],

v
′
0 = h−1

1 (z2u
′
0 + f1 + u2

0).

We note that f0 + v2
0 = u0 · z0 = r · s′

2/h5
1, so it is very cheap to calculate

r · s′
2 as the exact coefficients of z are not necessary. In Table 2, we present

the doubling formula for this case. The operations are counted for the case
h1 = 1, h−1

1 is ’small’ (multiplication with h−1
1 are not counted), and arbitrary

h1. Both h2
1 and h−1

1 are precomputed. In Step 2 the inversion and multiplica-
tion with k0 can also be replaced by a division as the inverse is not used later
on.

Table 2. Doubling deg h = 1, deg u = 3

Input [u, v], u = x3 + u2x2 + u1x + u0, v = v2x2 + v1x + v0; h2
1, h−1

1

Output [u”, v”] = 2[u, v]

Step Expression h1 = 1 h−1
1 small h1 arbitrary

1 Compute rs
′
2: 1M, 4S 1M, 4S 1M, 4S

k0 = u2
0, z2 = f5 + u2

2, t1 = v2
2 ;

z1 = t1 + u2z2, w0 = f0 + v2
0 (= rs

′
2/h5

1);

If w0 = 0 then call the Cantor algorithm

2 Compute 1/h1s2 and s1, s0: 1I, 3M 1I, 3M 1I, 3M

w1 = (1/w0) · k0 (= 1/h1s2), k1 = z2w1;

k2 = z1w1, s1 = u2 + k1, s0 = u1 + k2;

3 Compute u
′

= x4 + u
′
3x3 + u

′
2x2 + u

′
1x + u

′
0: 3S 2M, 2S 2M, 2S

w2 = h2
1w1 (= h1/s2), u

′
3 = 0;

u
′
2 = s2

1, u
′
1 = w2w1, u

′
0 = w2 + s2

0;

4 Compute v
′

= v
′
3x3 + v

′
2x2 + v

′
1x + v

′
0: 5M, 4S 5M, 4S 9M, 4S

v
′
3 = h−1

1 (z2k1 + t1), v
′
2 = h−1

1 (z2u
′
2 + w2 + f3 + u2

1);

v
′
1 = h−1

1 [w1(z2w2 + z2
1) + f2 + v2

1];

v
′
0 = h−1

1 (z2u
′
0 + f1 + u2

0);

5 Reduce u
′
, i.e. u” = x3 + u”

2x2 + u”
1x + u”

0: 1M, 2S 2M, 2S 2M, 2S

u”
2 = v

′2
3 , u”

1 = f5 + u
′
2;

u”
0 = f4 + u”

2u
′
2 + v

′2
2 + u

′
1 + h1v

′
3;

6 Compute v” = v”
2x2 + v”

1x + v”
0 : 3M 3M 3M

v”
2 = v

′
2 + v

′
3u”

2, v”
1 = v

′
1 + v

′
3u”

1 + h1, v”
0 = v

′
0 + v

′
3u”

0;

Sum 1I, 13M, 13S 1I, 16M, 12S 1I, 20M, 12S

72 X. Fan, T. Wollinger, and Y. Wang

Remark 2. The algorithm in [GKP04] needs 1I, 44M, 6S to compute the divisor
class doubling. However, our explicit formula requires only 1I, 13M, 13S in this
case. Compared with the explicit formula in [GKP04], our formula saves 31M at
the cost of extra 7S (a squaring is usually more efficient than a multiplication
in binary fields).

6 Case deg h = 2

If h is of degree two then we cannot make any of its coefficients zero in general. In
this section we will discuss special curves with h1 = 0, that is, the curves having
the form Y 2+(h2X

2+h0)Y = X7+f6X
6+f5X

5+f4X
4+f3X

3+f2X
2+f1X+f0,

which allows for a significant speedup. By making a change of coordinates we can
obtain f5 = f3 = f2 = h0 = 0 and h2 is divided by any α3. We will choose α3 such
that h2

α3 is ’small’ in the practical use. If, as usual, one choose finite GF (2n) with
n odd there are no non-trivial cubic roots of the unity. Hence, there is always
an α such that α3 = h2. For even n this happens with probability 1/3. The
isomorphic curve is obtained by using the following birational transformation of
variables and dividing the equation by α14:

Y ← α7Ỹ + mX̃3 + sX̃ + t, X ← α2X̃ + β

where β =
√

h0
h2

, m = α6· f5+β2

h2
, s = α2· f3+β4

h2
and t = h2

2(f2+f3β+f6β4+β5)+f2
3 +β8

h3
2

.

Hence, we obtain a curve of the form Y 2+h2X
2Y = X7+f6X

6+f4X
4+f1X+f0,

usually with h2 = 1. Adding a quadratic factor to the substitution of Ỹ one
can achieve f4 = 0 with probability 1/2. Accordingly, there are only three free
parameters f6, f1, f0.

Then the expressions for r and s will simplify to:

r = u2
0h

3
2, s

′
2 = (u1z0 + u0z1)h2

2, s
′
1 = [u2(u1z0 + u0z1) + u0z0]h2

2,

s
′
0 = [u1(u1z0 + u0z1) + u0(u2z0 + u0z2)]h2

2,

s1 =
s

′
1

s
′
2

= u2 + k1, s0 =
s

′
0

s
′
2

= u1 + k2,

where k1 = u0z0
u1z0+u0z1

and k2 = u0(u2z0+u0z2)
u1z0+u0z1

. In this case, we have that

u
′
3 = 0, u

′
2 = s2

1, u
′
1 =

r

s
′
2
(h2 +

r

s
′
2
) = h2

2w1(1 + w1),

u
′
0 =

r

s
′
2
[h2(u2 + s1) +

rf6

s
′
2

] + s2
0 = h2

2w1(k1 + f6w1) + s2
0,

where w1 = u2
0

u1z0+u0z1
and

v
′
3 = (u

′
2 + g3)(s

′
2/r) = h−1

2 [z2 +
(u0z0)2

u2
0(u1z0 + u0z1)

],

Efficient Doubling on Genus 3 Curves over Binary Fields 73

v
′
2 = (g4u

′
2 + u

′
1 + g2)(s

′
2/r) + h2 + v2

= h−1
2 [z1 + u2z2 +

(u0z0)k2
1

u2
0

] + h2w1 + v2,

v
′
1 = (g4u

′
1 + u

′
0 + g1)(s

′
2/r) + v1

= h−1
2 [z0 + u1z2 + u2z1 +

(u2z0 + u0z2)2

u1z0 + u0z1
] + (h2w1)(f6 + k1) + v1,

v
′
0 = (g4u

′
0 + g0)(s

′
2/r) + v0

= h−1
2 [u2z0 + u1z1 + u0z2 +

(u0z0)k2
2

u2
0

] + (h2k1)(k1 + f6w1) + v0.

And since f + hv + v2 = uz + u2(x + f6) we also have that

f0 + v2
0 = u0z0 + f6u

2
0,

f1 = u1z0 + u0z1 + u2
0,

h2v0 = u2z0 + u1z1 + u0z2 + f6u
2
1,

h2v1 = z0 + u2z1 + u1z2 + u2
1,

f4 + h2v2 + v2
2 = z1 + u2z2 + f6u

2
2,

0 = u2
2 + z2.

We use the equations above to calculate k1, k2, w1 and v
′
3, v

′
2, v

′
1, v

′
0 cheaper:

k1 =
f0 + v2

0 + f6u
2
0

f1 + u2
0

, k2 =
u0(h2v0 + u1z1 + f6u

2
1)

f1 + u2
0

, w1 =
u2

0

f1 + u2
0
,

v
′
3 = h−1

2 [z2 +
(f0 + v2

0 + f6u
2
0)

2

u2
0(f1 + u2

0)
],

v
′
2 = h−1

2 [f4 + v2
2 + f6u

2
2 +

(f0 + v2
0 + f6u

2
0)k2

1

u2
0

] +
h2u

2
0

f1 + u2
0
,

v
′
1 = h−1

2 [u2
1 +

(u1z1 + f6u
2
1 + h2v0)2

f1 + u2
0

] +
h2u

2
0(f6 + k1)
f1 + u2

0
,

v
′
0 = h−1

2 [f6u
2
1 +

(f0 + v2
0 + f6u

2
0)k

2
2

u2
0

] + (h2k1)(k1 +
u2

0f6

f1 + u2
0
).

We note that r · s′
2 = u2

0 · (u1z0 + u0z1) · h5
2 = u2

0 · (f1 + u2
0) · h5

2, so it is very
cheap to calculate r · s′

2 since we do not need to know the exact coefficients of
z. We describe the doubling formula for this case in Table 3. The operations
are counted for the case h2 = 1, h−1

2 is ’small’ (multiplication with h−1
2 are not

counted), and arbitrary h2. Both h2
2 and h−1

2 are precomputed.

74 X. Fan, T. Wollinger, and Y. Wang

Table 3. Doubling deg h = 2, h1 = 0, deg u = 3

Input [u, v], u = x3 + u2x2 + u1x + u0, v = v2x2 + v1x + v0; h2
2, h−1

2

Output [u”, v”] = 2[u, v]

Step Expression h2 = 1 h−1
2 small h2 arbitrary

1 Precomputation: 5M, 5S 7M, 5S 7M, 5S

ũ2 = u2
2, ũ1 = u2

1, ũ0 = u2
0, z2 = f4 + v2

2 + f6ũ2;

z1 = z2 + h2v2 + ũ2u2, t1 = f0 + v2
0 + f6ũ0;

t2 = f6ũ1, t3 = t2 + h2v0 + u1z1, t4 = f1 + ũ0;

If t4 = 0 then call the Cantor algorithm

2 Compute s1, s0: 1I, 7M 1I, 7M 1I, 7M

t5 = (t4ũ0)−1, t6 = t4t5, t7 = ũ0t5;

t8 = t1t6, k1 = t1t7, k̃2 = t3t7;

k2 = u0k̃2, s1 = u2 + k1, s0 = u1 + k2;

3 Compute u
′

= x4 + u
′
3x3 + u

′
2x2 + u

′
1x + u

′
0: 1M, 2S 3M, 1S 3M, 1S

w1 = ũ0t7, w2 = h2
2w1, u

′
2 = s2

1, u
′
1 = w2(1 + w1);

4 Compute v
′

= v
′
3x3 + v

′
2x2 + v

′
1x + v

′
0: 7M, 3S 9M, 3S 13M, 3S

v
′
3 = h−1

2 (ũ2 + t21t5), v
′
2 = h−1

2 (z2 + t8k2
1) + h2w1;

v
′
1 = h−1

2 (ũ1 + k̃2t3) + (h2w1)(f6 + k1);

v
′
0 = h−1

2 (t2 + t8k2
2) + (h2k1)(k1 + f6w1);

5 Reduce u
′
, i.e. u” = x3 + u”

2x2 + u”
1x + u”

0: 1M, 2S 3M, 1S 3M, 1S

u”
2 = f6 + v

′2
3 , u”

1 = u
′
2 + h2v

′
3;

u”
0 = f4 + u”

2u
′
2 + u

′
1 + v

′2
2 + h2v

′
2;

6 Compute v” = v”
2x2 + v”

1x + v”
0 : 3M 3M 3M

v”
2 = v

′
2 + v

′
3u”

2 + h2, v”
1 = v

′
1 + v

′
3u”

1;

v”
0 = v

′
0 + v

′
3u”

0;

Sum 1I, 24M, 12S 1I, 32M, 10S 1I, 36M, 10S

Remark 3. For the general case with h(x) = h2x
2 + h1x + h0, the authors

in [GKP04] use a birational transformation to make the curve’s coefficient f6
zero. Their algorithm needs 1I, 52M, 8S to compute the divisor class doubling.
Using special curves with h(x) = h2x

2 + h0, our explicit formula requires only
1I, 24M, 12S for h2 = 1. In the formulae presented in Table 3 there are four
counted multiplications with f6 which are cheaper when f6 is ’small’.

7 Case deg h = 3

When h is of degree three, we cannot also make any of its coefficients zero in
general. We will show that special curves with h2 = h1 = h0 = 0 can obtain
excellent performance in this section. We can construct a change of coordinates
to make f5 = f4 = f3 = 0 and h3 = 1. The isomorphic curve is obtained
by using the following birational transformation of variables and dividing the
equation by h14

3 :

Y ← h7
3Ỹ + h3

3f5X̃
2 +

f4h
2
3 + f2

5

h3
X̃ +

f3

h3
, X ← h2

3X̃

Efficient Doubling on Genus 3 Curves over Binary Fields 75

Hence we obtain a curve of the form Y 2 +X3Y = X7 +f6X
6 +f2X

2 +f1X +f0.
Adding a cubic factor to the substitution of Ỹ one can achieve f6 = 0 with
probability 1/2. Thereby, there are only three free parameters f2, f1, f0.

Then the expressions for r and s will simplify to:

r = u3
0, s

′
2 = u0(u2z0 + u1z1 + u0z2) + u2

1z0,

s
′
1 = u2[u0(u2z0 + u1z1 + u0z2)] + u0(u1z0 + u0z1),

s
′
0 = u1[u0(u2z0 + u1z1 + u0z2)] + u0[u2(u1z0 + u0z1) + u0z0],

s1 =
s

′
1

s
′
2

= u2 + k1, s0 =
s

′
0

s
′
2

= u1 + k2,

where k1 = u0(u1z0+u0z1)
u0(u2z0+u1z1+u0z2)+u2

1z0
and k2 = u0[u2(u1z0+u0z1)+u0z0]

u0(u2z0+u1z1+u0z2)+u2
1z0

. In this
case, we have that

u
′
3 = 0, u

′
2 = s2

1 +
r

s
′
2
, u

′
1 =

r

s
′
2
(k1 +

r

s
′
2
), u

′
0 =

r

s
′
2
(k2 + u2k1 +

rf6

s
′
2

) + s2
0,

v
′
3 = (u

′
2 + g3)(s

′
2/r) + 1 =

u0z0

u2
0

+
(u1z0 + u0z1)2

u2
0(u2z0 + u1z1 + u0z2) + u2

1(u0z0)
,

v
′
2 = (g4u

′
2 + u

′
1 + g2)(s

′
2/r) + v2 =

(u1z0 + u0z1)(u
′
2 + u2

2)
u2

0
+ z2 + k1 +

r

s
′
2

+ v2,

v
′
1 = (g4u

′
1 + u

′
0 + g1)(s

′
2/r) + v1 =

k2[u2(u1z0 + u0z1) + u0z0] + u2
2(u0z0)

u2
0

+

k1(k1 + r
s

′
2
) + (k2 + u2k1 + rf6

s
′
2

) + (z1 + u2z2) + v1,

v
′
0 = (g4u

′
0 + g0)(s

′
2/r) + v0 =

(u1z0 + u0z1)(u
′
0 + u2

1)
u2

0
+ (z0 + u2z1 + u1z2) + v0.

And since f + hv + v2 = uz + u2(x + f6) we also have that

f0 + v2
0 = u0z0 + f6u

2
0,

f1 = u1z0 + u0z1 + u2
0,

f2 + v2
1 = u2z0 + u1z1 + u0z2 + f6u

2
1,

v0 = z0 + u2z1 + u1z2 + u2
1,

v1 + v2
2 = z1 + u2z2 + f6u

2
2,

v2 = u2
2 + z2.

Using the equations above, we can calculate k1, k2,
r
s

′
2

and v
′
3, v

′
2, v

′
1, v

′
0 cheaper:

k1 =
u2

0(f1 + u2
0)

u2
0(f2 + v2

1 + f6u2
1) + u2

1(f0 + v2
0 + f6u2

0)
,

76 X. Fan, T. Wollinger, and Y. Wang

k2 =
u2

0[u2(f1 + u2
0) + (f0 + v2

0 + f6u
2
0)]

u2
0(f2 + v2

1 + f6u2
1) + u2

1(f0 + v2
0 + f6u2

0)
,

r

s
′
2

=
u4

0

u2
0(f2 + v2

1 + f6u2
1) + u2

1(f0 + v2
0 + f6u2

0)
,

v
′
3 =

f0 + v2
0 + f6u

2
0

u2
0

+
(f1 + u2

0)
2

u2
0(f2 + v2

1 + f6u2
1) + u2

1(f0 + v2
0 + f6u2

0)
,

v
′
2 =

(f1 + u2
0)(u

′
2 + u2

2)
u2

0
+ k1 +

r

s
′
2

+ u2
2,

v
′
1 =

k2[u2(f1 + u2
0) + (f0 + v2

0 + f6u
2
0)] + u2

2(f0 + v2
0 + f6u

2
0)

u2
0

+

k1(k1 + r

s
′
2
) + (k2 + u2k1 + rf6

s
′
2

) + (v2
2 + f6u

2
2),

v
′
0 =

(f1 + u2
0)(u

′
0 + u2

1)
u2

0
+ u2

1.

We note that r · s′
2 = u2

0 · [u2
0 · (u2z0 + u1z1 + u0z2) + u2

1 · (u0z0)] = u2
0 · [u2

0 ·
(f2 + v2

1 + f6u
2
1)+u2

1 · (f0 + v2
0 + f6u

2
0)]. Therefore, we can calculate r · s′

2 cheaply
without knowing the exact coefficients of z. We present the explicit formula for
this case in Table 4.

Table 4. Doubling deg h = 3, h2 = h1 = h0 = 0, deg u = 3

Input [u, v], u = x3 + u2x2 + u1x + u0, v = v2x2 + v1x + v0;

Output [u”, v”] = 2[u, v]

Step Expression Cost

1 Precomputation: 5M, 6S

ũ2 = u2
2, ũ1 = u2

1, ũ0 = u2
0, ṽ2 = v2

2, ṽ1 = v2
1 , ṽ0 = v2

0 , t1 = f0 + ṽ0 + f6ũ0;

t2 = f2 + ṽ1 + f6ũ1, t3 = ũ0t2 + ũ1t1, t4 = f1 + ũ0, t5 = u2t4 + t1;

If t3 = 0 then call the Cantor algorithm

2 Compute s1, s0: 1I, 6M

t6 = (t3ũ0)−1, t7 = t3t6, t8 = ũ0t6, t9 = ũ0t8;

k1 = t4t9, k2 = t5t9, s1 = u2 + k1, s0 = u1 + k2;

3 Compute u
′

= x4 + u
′
3x3 + u

′
2x2 + u

′
1x + u

′
0: 5M, 2S

w4 = ũ0t9, u
′
2 = s2

1 + w4, t10 = k1 + w4, u
′
1 = w4t10;

t11 = k2 + u2k1 + f6w4, u
′
0 = s2

0 + w4t11;

4 Compute v
′

= v
′
3x3 + v

′
2x2 + v

′
1x + v

′
0: 10M, 1S

v
′
3 = t1t7 + t24t8, t12 = t4t7, v

′
2 = t12(u

′
2 + ũ2) + k1 + w4 + ũ2;

v
′
1 = k1t10 + t11 + (k2t5 + ũ2t1)t7 + ṽ2 + f6ũ2, v

′
0 = t12(u

′
0 + ũ1) + ũ1;

5 Reduce u
′
, i.e. u” = x3 + u”

2x2 + u”
1x + u”

0: 1M, 2S

u”
2 = f6 + v

′
3 + v

′2
3 , u”

1 = u
′
2 + v

′
2, u”

0 = u”
2u

′
2 + u

′
1 + v

′2
2 + v

′
1;

6 Compute v” = v”
2x2 + v”

1x + v”
0 : 3M

v”
2 = v

′
2 + (v

′
3 + 1)u”

2, v”
1 = v

′
1 + (v

′
3 + 1)u”

1, v”
0 = v

′
0 + (v

′
3 + 1)u”

0;

Sum 1I, 30M, 11S

Efficient Doubling on Genus 3 Curves over Binary Fields 77

Remark 4. In [GKP04], the authors discuss two types of curves with h2 = 0 and
f6 = 0, respectively. Their doubling formulae cost 1I, 63M, 9S and 1I, 64M, 5S
for these two different cases. We note that using special curves with h(x) = h3x

3

can lead to fast computation of a divisor class doubling. We derive the new
explicit doubling formula which needs only 1I, 30M, 11S. In addition, there are
four counted multiplications with f6 which can be computed cheaply when f6 is
‘small’ in the formulae.

8 Summary

Depending on the degree of h, we derived the corresponding explicit formulae
which can compute the doublings fast in the previous sections. For h of degree 0
and 1 the case f6 not small does not apply since we make it zero by isomorphic
transformations. We also find the fast doubling formulae for the special curves
when the degree of h is 2 and 3. All results are summarized in Table 5.

Table 5. Overview

h(x) h(x) = h0

hi h0 = 1 h−1
0 small h0 arb.

cost 1I , 11M, 11S 1I , 13M, 11S 1I , 17M, 11S

h(x) h(x) = h1x

hi h1 = 1 h−1
1 small h1 arb.

cost 1I , 13M, 13S1I , 16M, 12S1I , 20M, 12S

h(x) h(x) = h2x
2

hi h2 = 1 h−1
2 small h2 arb.

f6 small 1I , 20M, 12S 1I , 28M, 10S 1I , 32M, 10S

f6 arb. 1I , 24M, 12S 1I , 32M, 10S 1I , 36M, 10S

h(x) h(x) = x3

f6 small 1I , 26M, 11S

f6 arb. 1I , 30M, 11S

9 Experimental Results

In order to test the performance of our new doubling formulae, we implemented
genus 3 HECC over three binary fields. Due to the attack proposed by Thériault
[Thé03], we should select at least 56-bit finite fields in order to obtain the
same security as a 160-bit elliptic curve cryptosystem. We used the binary fields
GF (259), GF (261) and GF (263). For GF (259) and GF (261), we used the minimal
weight irreducible pentanomial x59 +x7 +x4 +x2 +1 and x61 +x5 +x2 +x+1 to
construct finite fields, respectively. However, for GF (263), we used the minimal
weight irreducible trinomial x63 + x + 1 as field extension. Efficient algorithms
summarized in [Pel02] were used to perform the field arithmetic. In addition, We

78 X. Fan, T. Wollinger, and Y. Wang

used the NAF method to perform the scalar multiplication. All tests are imple-
mented on a Pentium-M @1.5 GHz processor and with C programming language.
The experimental results were depicted in the following three bar graphs.

In the graphs above we include the following ten cases respectively:

• deg 3 mon arb f6: The case where deg h = 3, h2 = h1 = h0 = 0, f6 	= 0 and
h3 = 1;
• deg 3 mon: The case where deg h = 3, h2 = h1 = h0 = 0, f6 = 0 and
h3 = 1;
• deg 2 arb f6: The case where deg h = 2, h1 = h0 = 0, f6 	= 0;
• deg 2 arb: The case where deg h = 2, h1 = h0 = 0, f6 = 0;
• deg 2 mon arb f6: The case where deg h = 2, h1 = h0 = 0, f6 	= 0 and h2 = 1;
• deg 2 mon: The case where deg h = 2, h1 = h0 = 0, f6 = 0 and h2 = 1;
• deg 1 arb: The case where deg h = 1, h0 = 0;
• deg 1 mon: The case where deg h = 1, h0 = 0 and h1 = 1;
• deg 0 arb: The case where deg h = 0;
• deg 0 mon: The case where deg h = 0 and h0 = 1;

Efficient Doubling on Genus 3 Curves over Binary Fields 79

10 Conclusion and Outlook

We have discussed how to accelerate the computation of divisor class doublings
for genus 3 hyperelliptic curves defined over binary fields and given explicit
formulae for four special types of curves. Compared with the results in [PWGP03,
GKP04], our explicit formulae have reduced some field operations further and
shown excellent performance on a Pentium-M processor. The divisor addition
formulae depend far less on the coefficients of h. In [GKP04], the authors have
improved the corresponding addition explicit formulae according to the degree
of h.

In this paper we restricted our attentions to affine coordinate system. How-
ever, the authors of this paper have obtained inversion-free explicit formulae for
genus 3 hyperelliptic curves [FWW05]. For genus 3 HECC defined over binary
fields, the authors gave only inversion-free explicit formulae for special curves
with h(x) = 1. Hence, how to extended the idea of this paper to projective co-
ordinate system and improve the formulae in [FWW05] will be the next logical
step to accelerate the implementation for genus 3 HECC.

Acknowledgements. First of all I express my deepest gratitude to my super-
visor Prof. Yumin Wang for everything he did. Furthermore, thanks go to Dr.
Kiumars Kaveh for offering me their research paper [GKP04]. I would also like to
thank anonymous referees for their very useful suggestions and comments that
improved the presentation of this paper.

References

[Ava04] R. M. Avanzi. Aspects of Hyperelliptic Curves over Large Prime Fields
in Software Implementations. In M. Joye and J.-J. Quisquater, editors,
Workshop on Cryptographic Hardware and Embedded Systems - CHES
2004, volume LNCS 3156, pp. 148-162, Springer-Verlag, 2004.

[BCLW02] N. Boston, T. Clancy, Y. Liow, and J. Webster. Genus Two Hyperellip-
tic Curve Coprocessor. In B. S. Kaliski, Ç. K. Koç, and C. Paar, editors,
Cryptographic Hardware and Embedded Systems - CHES 2002, volume
LNCS 2523, pp. 529 - 539. Springer-Verlag, 2002. Updated version avail-
able at http://www.cs. umd.edu/ clancy/docs/hec-ches2002.pdf.

[BD04] B. Byramjee and S. Duqesne. Classification of genus 2 curves over F2n

and optimazation of their arithmetic. Cryptology ePrint Archieve, Report
2004/107, 2004. http://eprint.iacr.org/.

[Can87] D.G.Cantor. Computing In The Jacobian Of A Hyperelliptic Curve.
Math. Comp. 48:95-101, 1987.

[CFA+05] H.Cohen, G.Frey, R.Avanzi, C.Doche, T.Lange, K. Nguyen and
F.vercauteren. Handbook of Elliptic and Hyperelliptic Curve Cryptogra-
phy, Chapman Hall/CRC, 2005.

[Cla02] T. Clancy. Analysis of FPGA-based Hyperelliptic Curve Cryptosystems.
Master’s thesis, University of Illinois Urbana-Champaign, December
2002.

80 X. Fan, T. Wollinger, and Y. Wang

[EMY04] G. Elias, A. Miri and T.H. Yeap. High-Performance, FPGA-Based Hy-
perelliptic Curve Cryptosystems. In The Proceeding of the 22nd Bi-
ennial Symposium on Communications, May 2004, Queen’s University,
Kingston, Ontario, Canada.

[FWW05] X. Fan, T. Wollinger, and Y. Wang. Inversion-Free Arithmetic on Genus 3
Hyperelliptic Curves and Its Implementations. International Conference
on Information Technology: Coding and Computing - ITCC, pp. 642-647,
IEEE Computer Society, 2005.

[Gal01] S. D. Galbraith. Supersingular Curves in Cryptography. In Advance in
Cryptograpy - Asiacrypt 2001, LNCS 2248, Springer-Verlag, pp. 495-513,
2001.

[GH00] P. Gaudry and R. Harley. Counting Points on Hyperelliptic Curves
over Finite Fields. In ANTS-IV, ser. LNCS 1838, W.Bosma, Ed. Berlin:
Springer-Verlag, pp. 297-312, 2000.

[GKP04] C. Guyot, K. Kaveh, V.M. Patankar. Explicit Algorithm for The Arith-
metic on The Hyperelliptic Jacobians of Genus 3. Journal of Ramanujan
Mathematical Society, 19 (2004), No.2, 119-159.

[GLS00] C. Günther, T. Lange, and A. Stein. Speeding up the Arithmetic on
Koblitz Curves of Genus Two. In Selected Areas in Cryptography - SAC
2000, Volume 2012, Lecture Notes in Computer Science, pp. 106-117,
Springer-Verlag, 2000.

[GMA+04] M. Gonda, K. Matsuo, K. Aoki, J. Chao and S. Tsujii. Improvements Of
Addition Algorithm On Genus 3 Hyperelliptic Curves And Their Imple-
mentations. In Proc. of SCIS 2004, Japan, 2004.

[Kob87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48:203-209, 1987.

[Kob88] N. Koblitz. A Family of Jacobians Suitable for Discrete Log Cryptosys-
tems. In Shafi Goldwasser, editor, Advances in Cryptology - Crypto ’88,
LNCS 403, pp. 94-99, Berlin, 1988. Springer-Verlag.

[Kob89] N. Koblitz. Hyperelliptic Cryptosystems. In Ernest F.Brickell, editor,
Journal of Cryptology, pp. 139-150, 1989.

[KWC+04] H. Kim, T. Wollinger, Y. Choi, K. Chung and C. Paar. Hyperelliptic
Curve Coprocessors on a FPGA, In Workshop on Information Security
Applications - WISA, volume LNCS 3325, pp. 360-374, Springer-Verlag,
2004.

[Lan03] T. Lange. Formulae for Arithmetic on Genus 2 Hyperelliptic Curves.
Jounal of AAECC, Septemper 2003.

[Lan04] T. Lange. Koblitz Curve Cryptosystems. Finite Fields and Their Appli-
cations, 2004. to appear.

[Loc94] P. Lockhart. On the discriminant of a hyperelliptic curve. In Tran. Amer.
Math. Soc. 342, 2, pp. 729-752, 1994.

[LS04] T. Lange and M. Stevens. Efficient Doubling on Genus Two Curves over
Binary Fields. In H.Handschuh and A.Hasan, editors, Eleventh Annual
Workshop on Selected Areas in Cryptography - SAC 2004, volume LNCS
3357, pp. 170-181, Springer-Verlag, 2005.

[Mil86] V. Miller. Uses of Elliptic Curves in Cryptography. In H. C. Williams,
editor, Advances in Cryptology - CRYPTO ’85, LNCS 218, pp. 417-426,
Berlin, Germany, Springer-Verlag, 1986.

[MWZ96] A. Menezes, Y. Wu and R. Zuccherato. An Elementary Introduction to
Hyperelliptic Curve. Technical Report CORR 96-19, University of Wa-
terloo, 1996, Canada. Available at http://www.cacr.math.uwaterloo.ca

Efficient Doubling on Genus 3 Curves over Binary Fields 81

[Mum84] D. Mumford. Tata Lectures on Theta II, Progress in Mathematics 43,
Birkhäuser, 1984.

[Pel02] J. Pelzl. Hyperelliptic Cryptosystems on Embedded Microprocessor. Mas-
ter’s thesis, Department of Electronical Engineering and Information Sci-
ences, Ruhr-Universitaet Bochum, Bochum, Germany, September 2002.

[PWGP03] J. Pelzl, T. Wollinger, J. Guajardo and C. Paar. Hyperellip-
tic Curve Cryptosystems: Closing The Performance Gap To ellip-
tic Curve (Update), Cryptology ePrint Archieve, Report 2003/026,
http://eprint.iacr.org/, 2003

[PWP03] J. Pelzl, T. Wollinger, and C. Paar. Low Cost Security: Explicit Formulae
for Genus-4 Hyperelliptic Curves. In M. Matsui and R. Zuccherato, edi-
tors, Tenth Annual Workshop on Selected Areas in Cryptography - SAC
2003, volume LNCS 3006, pp. 1-16, Springer-Verlag, 2003.

[RS02] K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology.
In Advance in cryptology - Crypto’2002, volume 2442 of Lecture Notes
in Computer Science, pp. 336-353, Springer-Verlag, 2002.

[Thé03] N.Thériault. Index calculus attack for hyperelliptic curves of small genus.
Advances in Cryptology - ASIACRYPT’03, G.Goos, J.Hartmanis, and
J.van Leeuwen, Eds. Berlin: Springer Verlag, 2003, pp. 79 - 92, LNCS
2894.

[Wol04] T. Wollinger. Software and Hardware Implementation of Hyperelliptic
Curve Cryptosystems. Europäischer Universitätsverlag, 3-86515-025-X,
2004.

[WPW+03] T. Wollinger, J. Pelzl, V. Wittelsberger, C. Paar, G. Saldamli, and Ç.
K. Koç. Elliptic & hyperelliptic curves on embedded μp. ACM Transac-
tions in Embedded Computing Systems (TECS), 2003. Special Issue on
Embedded Systems and Security.

Another Look at Small RSA Exponents

M. Jason Hinek

School of Computer Science, University of Waterloo,
Waterloo, Ontario, N2L-3G1, Canada

mjhinek@alumni.uwaterloo.ca

Abstract. In this work we consider a variant of RSA whose public and
private exponents can be chosen significantly smaller than in typical
RSA. In particular, we show that it is possible to have private exponents
smaller than N1/4 which are resistant to all known small private exponent
attacks. This allows for instances of RSA with short CRT-exponents and
short public exponents. In addition, the number of bits required to store
the private key information can be significantly reduced in this variant.

1 Introduction

The RSA cryptosystem [20] is currently the most widely known and widely used
public key cryptosystem. One of the main drawbacks of using RSA, however, is
the large computational costs for encryption and decryption. Since these costs
are linear in the bitsize of the encrypting and decrypting exponents, respectively,
the costs can be reduced by using smaller exponents. Of course, there are some
security risks if the exponents are chosen poorly so care must be taken.

There has been a significant amount of research on the security of RSA when
the encrypting or decrypting exponent is small. In 1990, Wiener [26] showed
that private exponents smaller than N1/4 are insecure as they can efficiently be
recovered. In 1998, Boneh, Durfee & Frankel [5, 6] showed that instances of RSA
with extremely small public exponents are vulnerable to a partial key-exposure
attack in which the entire private exponent can be computed with knowledge
of only 1/4 of its least significant bits. In addition, there are many other small
private exponent [3, 1] and partial key-exposure attacks [2, 11] on RSA as well.

In this work we consider a variant of RSA whose public and private exponents
can be chosen significantly smaller than what is normally allowed with typical
RSA. This variant, which we call common prime RSA, consists of choosing the
RSA primes p and q so that g = gcd(p − 1, q − 1) has a large prime factor
and defining the RSA public and private exponents as inverses modulo lcm(p−
1, q − 1) instead of φ(N) = (p − 1)(q − 1). In this scenario, it is possible to
have private exponents much smaller than N1/4 which are resistant to Wiener’s
small private exponent attack and the other known lattice based attacks. And,
using a modification of Sun & Yang’s method for constructing balanced RSA
exponents [24], it is also possible to have public and private exponents which are
simultaneously both less than N0.4.

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 82–98, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Another Look at Small RSA Exponents 83

The idea of using RSA primes with lcm(p − 1, q − 1) having a large prime
factor is not new. In 1990 it was suggested by Wiener [26] as a defence to his
continued fraction attack on small private exponent RSA and also by Girault [13]
in an identity-based identification scheme (in which the common prime factor is
made public). It was also suggested by Lim & Lee [16] in 1995 to improve server-
aided RSA computations but this was later shown to be insecure by McKee &
Pinch [19].

The rest of this work proceeds as follows. In Section 2, we give motivation
for our work and define our variant of RSA. Section 3 gives an overview of the
methods and tools that will be used in Section 4 to attack our variant. We briefly
conclude the paper in Section 5.

2 Common Prime RSA

2.1 Motivation

Consider an instance of RSA with public key (e, N) and private key (d, N)
where the RSA modulus N = pq is the product of balanced primes and the
encryption/decryption exponents are chosen to satisfy ed ≡ 1 (mod lcm(p −
1, q−1)). This equivalence corresponds to the equation ed = 1+k(p−1)(q−1)/g,
where k is some integer, g = gcd(p− 1, q− 1) and gcd(k, g) = 11. In 1990, it was
shown by Wiener [26–equation 29] that if

kdg <
pq

3
2 (p + q)

, (1)

then k/(dg) is one of the convergents in the continued fraction expansion of e/N .
With the assumption that g is small, Wiener proceeded to show that N can be
factored using this information. When the RSA primes are chosen randomly
the value of g will most likely be 2 or some other very small number and this
is the scenario in which his work is mainly focused. When g is larger, Wiener
acknowledges that his attack is less effective and concludes the discussion of
this case with “However, choosing gcd(p− 1, q − 1) to be large may cause other
problems.” It is this quote that is the original motivation of this work. We are
interested in identifying what these other problems might be and if there are
instances of RSA with private exponent d < N1/4 that are safe to use. To this
end, we introduce a variant of RSA called common prime RSA.

2.2 Common Prime RSA

In the original presentation of RSA [20], the public and private exponents are
chosen to be inverses of each other modulo φ(N) = (p − 1)(q − 1). It is now
common to define these exponents modulo lcm(p− 1, q− 1) where it is assumed
that g = gcd(p−1, q−1) is quite small (usually 2). We will call instances of RSA

1 We assume k and g are relatively prime so that they correspond to the same values
of k and g in [26]. They do not necessarily possess this property in general.

84 M.J. Hinek

in which the exponents are defined in this way typical RSA. We also assume that
the primes are balanced (i.e., p and q have the same bit-length).

In this work we consider a variant of RSA in which the primes have a special
structure. In particular, for some large prime g let p = 2ga + 1 and q = 2gb + 1
be balanced primes with the restrictions that gcd(a, b) = 1 and h = 2gab+ a + b
is also prime. The first restriction ensures that gcd(p− 1, q − 1) = 2g while the
second ensures that (pq − 1)/2 = gh is a semiprime roughly the same size as
pg. We will call primes p and q satisfying the above properties common primes,
since p − 1 and q − 1 share a large common prime factor. We define common
prime RSA to be any instance of RSA that uses balanced common primes and
defines the public/private exponents modulo lcm(p − 1, q − 1) = 2gab with the
added condition that the integer k in the equation ed = 1 + k2gab is relatively
prime to 2g.

For notational convenience, we define γ ∈ R so that g = Nγ . Since we only
consider instances of RSA with balanced primes we have that 0 < γ < 1/2 (i.e.,
g < N1/2). In Appendix A, we present an algorithm that, given n and γ, can be
used to generate balanced common primes p and q such that gcd(p−1, q−1)/2 is
a �γn�-bit prime. One drawback of using common prime RSA, however, is that
the cost of generating the primes is significantly larger than with typical RSA,
as can be seen in the following table:

γ 0.3 0.325 0.35 0.375 0.4 0.425 0.45 0.475
average time (sec) 155 317 213 251 268 301 127 236
standard deviation 204 320 140 138 178 328 98 196

Here the average time needed to generate common primes for various values of
γ are shown for a 1024-bit modulus. The computations were done on a Sun Fire
V440 server with four UltraSPARC IIIi processors with 8 GB of memory each
running at 1.062 GHz. We should be able to significantly reduce the time for
common prime generation using sieving techniques when finding a and b. This
will be addressed in the full version of the paper.

2.3 Small Exponents and Other Fast Variants of RSA

The cost of encryption and decryption are linear in the bit-length of the public
and private exponents, respectively. When a random public or private exponent
is chosen in typical RSA, both exponents will be with very high probability
roughly the same size of φ(N) ≈ N . This follows since the exponents are defined
as inverses of each other modulo φ(N) and the vast majority of possible values for
the exponents will be close in size to φ(N). Since common prime RSA exponents
are defined modulo lcm(p− 1, q − 1) = 2gab, the size of e and d will each be no
larger than lcm(p − 1, q − 1) ≈ N1−γ and so when a random public or private
exponent is chosen it is expected that each will be roughly N1−γ . Thus, for
random exponents we expect that computations for common prime RSA will be
decreased by a factor of 1/(1− γ) when compared to typical RSA.

Another Look at Small RSA Exponents 85

To reduce encryption costs for typical RSA, the public exponent can be chosen
to be very small (typically 216 + 1). This results in a random looking private
exponent roughly the size of φ(N). Using common prime RSA with such a short
public exponent will result in a private exponent roughly the size of N1−γ , thus
reducing the cost for decryption by a factor of 1/(1− γ). To reduce decryption
costs for typical RSA, the private exponent can be chosen to be much smaller
than φ(N). This results in a random looking public exponent roughly the size
of φ(N). For typical RSA, the private exponent must be larger than N0.292,
however, to avoid the small private exponent attack of Boneh & Durfee [3, 4]. As
will be shown later, this restriction on the small private exponent is weakened
in common prime RSA. Thus, using a small private exponent with common
prime RSA allows for a reduction in encryption costs by factor of 1/(1− γ) and
also allows for a reduction in decryption costs by allowing smaller (safe) private
exponents.

Using a modified version of the key generation method outlined by Sun &
Yang [24], it is also possible to construct public/private exponent pairs such that
ed ≈ N1−γ+2ω for some security parameter ω (e.g., Nω = 256). In this scenario it
possible to generate public and private exponents which are simultaneously both
smaller than N0.4. Due to page length restrictions, we leave further discussion
of this topic to the full version of the paper.

Each of the above scenarios use the original decryption method for RSA (i.e.,
exponentiation modulo N). In practice, however, the Chinese Remainder Theo-
rem (CRT) is often used to speed up decryption. For a given ciphertext c, the
plaintext is recovered by first computing mp = cdp mod p and mq = cdq mod q,
where dp = d mod p− 1 and dq = d mod q − 1 are called the CRT-exponents,
and then combining mp and mq together using CRT. Without parallel computa-
tions, this will decrease the time for decryption by a factor of 4 (since the size of
both the exponents and the modulus are reduced by a factor of 2). Using com-
mon prime RSA with CRT for decryption for random exponents thus allows for
a decrease in decryption time by a factor of 4 and also a decrease in encryption
time by a factor of 1/(1− γ).

In order to further decrease the costs of typical RSA (using CRT), it is com-
mon to use a very small public exponent such as e = 216 + 1. In this case
the private exponent is essentially random and will be roughly the same size
as φ(N). This significantly reduces the encryption costs while keeping the de-
cryption costs the same as for random exponents. We will call this small public
exponent RSA. In some situations, however, it is crucial to minimize the decryp-
tion costs. To achieve this, Wiener [26] suggested using small CRT-exponents
with a large public exponent. Here e and d appear to be random exponents but
the CRT-exponents are chosen small (typically 160 bits). This variant is called
rebalanced RSA-CRT (see Boneh & Shacham [7] for details). Combining common
prime RSA with rebalanced RSA then allows for a decrease in encryption costs
by a factor of 1/(1− γ), while keeping the decryption costs the same.

The transfer of costs from decryption to encryption in rebalanced RSA-CRT
(from small public exponent RSA) is fairly drastic. In 2005, key generation algo-

86 M.J. Hinek

rithms that allow for more intermediate results were independently proposed by
Galbraith, Heneghan & McKee [12] and Sun & Wu [23]. Here, public exponents
significantly smaller than φ(N) can be used with small CRT-exponents. There
is a trade-off between encryption and decryption costs here though. Decreasing
the size of one (public exponent or CRT-exponents) comes at the expense of in-
creasing the other. Following Sun, Hinek & Wu [22], we will refer to all of these
as generalized rebalanced RSA-CRT. In common prime RSA, when the private
exponent is smaller than N1/2 both of the CRT-exponents are equal to the pri-
vate exponent (i.e., dp = dq = d). Thus, we can view common prime RSA with
small private exponent (d < N1/2) as another instance of generalized rebalanced
RSA when CRT is used for decryption.

There are other fast variants of RSA which we do not consider in this work.
In particular, we do not consider mutli-factor RSA (which includes multi-prime
RSA and the Takagi family schemes) or variants with with unbalanced primes.
For descriptions of some of these see Boneh & Shacham [7] (for multi-factor
RSA) or May [17] (for unbalanced RSA with small CRT-exponents).

2.4 Wiener’s Attack

Since the motivation for common prime RSA originates from Wiener’s continued
fraction attack we revisit his attack in the scenario of common prime RSA. The
main result of his attack can be written in the following form.

Theorem 1. Let N be a RSA modulus with balanced common primes. Given
any valid common prime RSA public key (N, e) with private exponent d <

1
2
√

6
N1/4−γ/2, we can factor N in polynomial time.

This result is essentially given by Wiener [26], except for the details of factoring
N when g is large. Wiener’s analysis relies on the inequality k > g to recover
φ(N) = (p − 1)(q − 1) which can then be used to factor N . In common prime
RSA, however, this inequality is not necessarily satisfied. We outline a method
for arbitrary g here.

We begin with the key equation ed = 1 + k2gab. Since lcm(p − 1, q − 1) =
φ(N)/ gcd(p−1, q−1) we can write this equation as ed = 1+kφ(N)/(2g). And,
introducing Λ so that φ(N) = N − Λ we can finally write the key equation as
ed = 1 + (k/2g)(N − Λ). Since the primes are balanced, we have Λ < 3N1/2.
Notice that ∣∣∣∣ e

N
− k

2gd

∣∣∣∣ ≤ ∣∣∣∣ 1
dN

− kΛ

2gdN

∣∣∣∣ ≤ kΛ

gdN
≤ 3

gN1/2 ,

since kΛ/(2g) > 1 and k < d. Using a well known result from continued fractions,
if |e/N − k/(2gd)| < 1/(2(2gd)2) then k/(2gd) is one of the convergents in the
continued fraction expansion of e/N . Notice that d < 1

2
√

6
N1/4−γ/2 is a sufficient

condition so that ∣∣∣∣ e

N
− k

2gd

∣∣∣∣ ≤ 3
gN1/2 <

1
2(2gd)2

.

Another Look at Small RSA Exponents 87

So, when d < 1
2
√

6
N1/4−γ/2 we know that k/(2gd) is one of the convergents

in the continued fraction expansion of e/N . To find this convergent, we simply
compute and test each convergent k′/D′ of e/N . Since k, g and d are all relatively
prime to each other we know that one of the convergents will satisfy k′ = k and
D′ = gd. Each convergent is tested by computing gcd(D′, (N − 1)/2 = gh). The
correct convergent will yield g since D′ = gd, d < h and h is prime. We now
know e, d, k and g. Substituting these values into N − 1 = 2g(2gab + a + b)
and the key equation ed = 1 + k2gab yields two equations in two unknowns (a
and b) which we can easily solve. Once a and b are known, we have factored N
since p = ga + 1 and q = gb + 1. Since there are O(log N) convergents of e/N
and each operation discussed above can be done in time polynomial in logN , we
have proven Wiener’s result for common prime RSA.

If somehow the value of g is known, Wiener’s attack can be slightly modified
to factor N for any private exponent less than cN1/4 for some small constant c.
Thus, the advantage of having a large g is effectively removed. The modification,
described in [26], simply consists of computing the convergents of (ge)/N instead
of e/N to find k/d.

It was also mentioned by Wiener [26], that the attack might work for private
exponents that do not satisfy (1). That is, the attack might succeed when d <
N1/4+ρ for some ρ > 0. In 2005 however, it was shown by Steinfeld et al. [21]
that the bound is essentially tight. Thus, the probability of the attack succeeding
when the private exponent does not satisfy (1) is negligible. This also holds for
the common prime RSA case. Therefore, Wiener’s continued fraction attack can
be thwarted in common prime RSA provided that it is infeasible to obtain g and
that the private exponent is chosen greater than 1

2
√

6
N1/4−γ/2.

As with typical RSA, Wiener’s continued fraction is only the starting point
when considering the security with respect to small private exponent attacks. In
particular, lattice-based attacks must be considered. In addition, other security
issues must also be considered. These include factoring attacks that exploit the
special structure of the primes and all security issues associated with generalized
rebalanced RSA-CRT. In Section 4, we consider various attacks on common
prime RSA that either factor the modulus or simply recover the private exponent.

3 Toolbox

In this section we collect some methods (tools) that we will use to attack common
primes RSA. All of the methods will be used as a black-box.

3.1 Factoring

The best generic factoring method is the general number field sieve (NFS). Fol-
lowing Lenstra [15], we will use

L[n] = e1.923(log n)1/3(log log n)2/3
,

88 M.J. Hinek

as the heuristic expected runtime of the NFS to factor a composite number n.
The largest integer factored using the NFS, as of May 2005 [27], is RSA200, a
200-digit number (665 bits).

The elliptic curve method (ECM) for factoring can be substantially faster
than the NFS if one of the prime factors of n is significantly smaller than

√
n.

Again, following Lenstra [15], we use

E[n, p] = (log2 n)2e
√

2(log p)1/2(log log p)1/2
, (2)

as the heuristic expected runtime of the ECM to find a factor p of n. The largest
factor found with the ECM, as of April 2005 [27], is 66 digits (220 bits).

3.2 Continued Fractions

When Wiener’s continued fraction attacks fails there is no information gained
except that the private exponent is too large for the method to work. In 1997,
Verheul & van Tilborg showed that each of the convergents of e/N will yield
some information about k and d regardless of the size of the private exponent.
In particular, for balanced prime RSA it was shown [25–equation 16] that

k

gd
=

pj+1U + (UΔ + V)pj

qj+1U + (UΔ + V)qj
, (3)

where pj/qj is the j-th convergent of continued fraction expansion of e/N and
U , V and Δ are unknowns. Their attack consists of computing the correct con-
vergent (i.e., the correct j value) and then performing an exhaustive search on
U , V and Δ. The (correct) convergent they choose is such that the sizes of U ,
V and Δ are minimized. As with Wiener’s attack, it is assumed that g is small
in their attack. Allowing for arbitrary g, their result given below becomes one
of our tools.

Theorem 2. Let N be a RSA modulus with balanced common primes. Given
any valid common prime RSA public key (N, e) with private exponent d, one can
factor N in time polynomial in log N and linear in gd2/

√
N (= N2(δ−(1/4−γ/2))).

Since the proof of this theorem follows the work in [25] very closely we refer the
reader to the original work for more details.

In 2004, Dujella [10] improved Verheul & van Tilborg’s result by formulating
new relations between the convergents which reduces the estimate on the search
space for (U, V, Δ). The improvement does not change the asymptotic size of the
search space though.

3.3 Lattice Basis Reduction

We use the following results that are based on Coppersmith’s method for finding
small solution to modular univariate polynomials and bivariate integer polyno-
mials [8], as simplified by Howgrave-Graham [14] and Coron [9], respectively.

The first is a generalization of Coppersmith’s result for univariate modular
polynomials by May [18].

Another Look at Small RSA Exponents 89

Theorem 3. Let N be an integer of unknown factorization, which has a divisor
b ≥ Nβ. Let fb(x) be a monic univariate polynomial of degree d with integer
coefficients. In the limiting case of large N , all solutions x0 of the modular
equation fb(x) ≡ 0 (mod b) satisfying |x0| ≤ Nβ2/d, can be found using lattice
basis reduction techniques.

The next result is a generalization of the bivariate integer polynomial case to
multivariate integer polynomials by Ernst et al. [11].

Theorem 4. Consider the polynomial F (x, y, z) = ax+by+cyz+d with integer
coefficients. Given positive integers X, Y and Z let W = ‖F (xX, yY, zZ)‖∞. In
the limiting case of large X, Y , and Z, if

X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ ,

for some real τ ≥ 0, then three linearly independent polynomials with common
root (x0, y0, z0) satisfying |x0| ≤ X, |y0| ≤ Y , |z0| ≤ Z and F (x0, y0, z0) = 0
can be found using lattice basis reduction techniques (if such a root exists). If
the three polynomials are also algebraically independent then x0, y0 and z0 can
be computed.

The final result that we consider is a straightforward generalization of Copper-
smith’s methods to linear polynomials (both modular and integer). The general
result does not seem to be published, but is simple to prove for each value of m.
We leave this proof for the full version of the paper.

Heuristic 1. For some positive integer m consider a linear polynomial
f(x1, . . . , xm) ∈ Z[x1, . . . , xm]. Given m bounds (X1, . . . , Xm) define W =
‖f(x1X1, . . . , xmXm)‖∞ and let N be an integer of unknown factorization. In
the limiting case of large Xi, N and W we have

1. All small roots (y1, . . . , ym) of f(x1, . . . , xm) modulo N can be found provided
that

∏m
i=1 Xi < N and |yi| < Xi for i = 1, . . . , m.

2. All small roots (y1, . . . , ym) of f(x1, . . . , xm) over Z can be found provided
that

∏m
i=1 xi < W and |yi| < Xi for i = 1, . . . , m.

The previous result is only a heuristic since there is no guarantee that the roots
can be found. The lattice-based methods implicit in the result will generate
m linearly independent polynomials all with the desired root over the integers
(as in Theorem 4). Is it commonly assumed that these polynomials are also
algebraically independent which would allow for the roots to be computed.

4 Attacking Common Prime RSA

In this section we present all the attacks on common prime RSA that we have
considered. For each attack, if applicable, we will present parameters so that the
expected complexity to mount the attack is roughly 2	 operations for some � > 0.
To obtain a desired complexity estimate, we might perform an exhaustive search

90 M.J. Hinek

to guess some bits of a certain unknown quantity and repeat an attack for each
guess. Taking � = 80 approximates the expected complexity of factoring a 1024-
bit RSA modulus. We take this complexity to be the base in which security is
measured. For example, parameters for common prime RSA in which all attacks
have (expected) complexity of at least 280 will be considered safe. Generally,
we omit the 80 and simply leave � so that a higher level of security for future
reference can easily be considered.

4.1 Factoring N with g

We consider the three cases in which g can be related to a + b separately. That
is, we consider g > a + b, g = a + b and g < a + b individually.

First we consider the case that g > a+b. Given N and g let m = (N−1)/(2g)
and c = a + b so that N = 2g(2gab + a + b) + 1 can be written m = 2gab + c.
Since c = a + b < g, reducing this equation modulo g gives c = (m mod g).
Substituting b = c − a back into N = 2g(2gab + a + b) + 1 yields the following
quadratic equation in the unknown variable a :2ga2−2gca+(N−1)/(2g)−c = 0.

Thus, a is one of the solutions given by
(
gc±

√
2g2c2 + 2gc−N + 1

)
/(2g). The

correct a recovers p = ga + 1 which then gives q = N/p. There is no choice of
g > a + b that will avoid this attack if g is known.

In the unlikely event that g and a+ b are equal, we can compute a and b from
a + b = g and ab = (N − 1)/(4g2)− 1/2 (obtained by rearranging the equation
for N and replacing a+b with g). The system of two equations in two unknowns
is easily solved for a and b. The factorization of N follows since a, b and g are
all known.

Lastly, we consider the case g < a + b. This scenario has already been consid-
ered by McKee & Pinch [19]. In particular, they present an attack which uses
Shanks’ baby-step giant-step method with an expected runtime O(N1/4−γ). To
obtain an expected complexity of at least 2	, it follows that g should be chosen
so that γ < 1/4− �/n.

4.2 Factoring N with g When d Is Small

We have already seen, in Section 2.4, that Wiener’s continued fraction attack
is easily modified to factor N when g is known and d < N1/4/(2

√
6). We now

show that N can be factored when g is known with significantly larger private
exponents using lattice basis reduction techniques.

Consider g such that 1/4 − �/n ≤ γ < 1/4, for say � = 80, so that the
factoring attacks of the previous subsection are no longer feasible. First notice
that M = �(N − 1)/(4g2)� is a good (over) approximation of ab. To see this, we
rearrange N = 2g(2gab + a + b) + 1 to obtain (N − 1)/(4g2) = ab + (a + b)(2g).
Hence, ∣∣∣∣N − 1

4g2 − ab

∣∣∣∣ = a + b

2g
≤ N1/2−2γ .

Rounding (N − 1)/(4g2) up to the nearest integer will not change this. Next
we define α to be the difference between ab and M . Thus, α = ab − M and

Another Look at Small RSA Exponents 91

|α| ≤ N1/2−2γ . Substituting ab = M + α into the key equation ed = 1 + k(2gab)
we obtain ed = 1 + 2gk(M + α), which leads to the polynomial

f(x, y, z) = ex− 2gMy − 2gyz − 1.

Notice that this polynomial has the root (x0, y0, z0) = (d, k, α) over Z. Defin-
ing the bounds X = N δ, Y = N δ and Z = N1/2−2γ , we see that W =
‖f(xX, yY, zZ)‖∞ = N1+δ−γ . So, applying the result of Theorem 4, we find
that for large N the inequality X1+3τY 2+3τZ1+3τ+3τ2 ≤ W 1+3τ is satisfied
whenever

δ <
(12 τ2 + 6 τ + 2)γ + (−3 τ2 + 3 τ + 1)

2(2 + 3 τ)
,

which becomes our sufficient condition for recovering (x0, y0, z0). We are, of
course, assuming that the polynomials found will be algebraically independent.
Notice that bound on δ is linear in γ so that choosing γmin = 1/4 − �/n gives
bound on δ that is sufficient for all values of 1/4−�/n < γ < 1/4. Some values of
this bound (δmin) and the corresponding value of τ used to obtain it (τmin) are
given in the following table using � = 80 and various common modulus sizes (n).

n δmin τmin

1024 0.452 0.7037
2048 0.524 1.1982
4096 0.581 1.9175
8192 0.618 2

4.3 Obtaining g (Factoring N − 1)

The last two subsections show that common prime RSA is insecure for many
parameters if g is known. In this subsection, we show that obtaining g from N
(and e) is difficult if g is chosen properly. The key to obtaining g is factoring the
semiprime (N − 1)/2 = gh. Since (N − 1)/2 is essentially the same size as N ,
finding g using the NFS will be no easier than factoring N itself. Finding g with
the ECM might be more fruitful, however, depending on how unbalanced g and
h are. As a rough estimate, we will equate the heuristic runtime of the ECM,
equation (2), with that of factoring a 1024-bit typical RSA modulus. That is,
we require the expected runtime of the ECM to be at least 2	 with � = 80. For
a given modulus size, let γecm be the bound for γ such that for any γ < γecm,
the expected runtime of the ECM is less than 2	 = 280. Some values for γecm for
some common modulus sizes (n) are given in the following table.

n γecm γ+
ecm

1024 0.256 0.293
2048 0.128 0.146
4096 0.064 0.073
8192 0.032 0.037

92 M.J. Hinek

All of the values of γecm correspond a 263-bit g. Keeping in mind that the largest
factor obtained by the ECM to date (as of April 2005) is a 220-bit number, this
value of γecm does not seem to offer much forward security. To try to account
for this, we have also listed values of γ+

ecm which correspond to values of g with
300 bits.

4.4 Factoring N with a and b

Notice that N = 2g(2gab+ a + b)+ 1 can also be written as 4abg2 + 2(a + b)g−
N +1 = 0. When a and b are known, we can simply solve this quadratic equation
for g. In particular, g is given by the positive solution

g =
(
−(a + b) +

√
a2 − 2 ab + b2 + 4 abN

)
/(2ab).

It is unclear how a and b might be obtained from N (and e) other than by simply
guessing. For an exhaustive search on a and b to have expected complexity at
least 2	, it follows that g should be chosen so that γ < 1/2− �/(2n).

4.5 Factoring N

It has been shown by McKee & Pinch [19], that the special structure of the
common prime RSA primes p and q lead to an efficient factoring method for N
is g is large enough. Their method is a modification of Pollard’s rho method.
In particular, the usual random map x �→ x2 + 1 mod N is replaced with x �→
xN−1+3 mod N . Since N−1 = 2gh and p−1 = ga there can be at most a values
of xN−1 mod p. Thus the expected number of steps is O(

√
a) = O(N1/4−γ/2). To

obtain an expected complexity of at least 2	, it follows that g should be chosen
so that γ < 1/2− 2�/n.

4.6 Factoring N When d Is Small

In this section we consider methods that exploit the key equation when the
private exponent is small. Both continued fraction and lattice-based attacks will
be considered. As we shall see, the best method varies with the size of g: when
g is small the continued fraction attacks work best, while lattice-based attacks
work better for larger g.

Extended Continued Fraction Attack. Using the result of Theorem 2 (Ver-
heul & van Tilborg’s extension of Wiener’s attack) we can estimate bounds on d
so that the expected work required to factor N is 2	 for � ≥ 80. Since the com-
plexity of the attack is linear in N2(δ−(1/4−γ/2)), it follows that if δ > 1

4 + 	
n −

γ
2 ,

then the complexity is at least 2	.

Lattice-Based Attack. In this section we present some attacks based on Cop-
persmith’s method for finding small solutions to univariate modular equations. In
particular, we make use of Theorem 3 and Heuristic 1. As with most lattice-based
attacks on RSA, we begin with the key equation. In this case it is ed = 1+k2gab.

Another Look at Small RSA Exponents 93

Following the ideas of May, we consider ê = e−1 mod gh. If the inverse does
not exist we have found a factor of gh (i.e., we know g) and we can apply the
results of Sections 4.1 and 4.2. So, without loss of generality, we assume that
the inverse exists. Also, since ê = e−1 mod gh, there must exist an integer α̂
such that êe = 1+ α̂gh. Multiplying the key equation by ê and simplifying yields
d − ê = (2 êkab− α̂dh)g, which motivates the following univariate monic linear
polynomial fg(x) = x− ê. Notice that x0 = d satisfies fg(x0) ≡ 0 (mod g). Since
g obviously divides (N − 1)/2 = gh we can apply the results of Theorem 3, with
modulus (N −1)/2, β = γ (as g = Nγ > (N −1)γ) and d = 1, to the polynomial
fg(x). Thus, for large N , we can compute d provided d < Nγ2

.
Once d is recovered we can compute g since gcd(ed − 1 = k2gab, N − 1 =

2gh) = 2g. This follows since none of a, b or k which are all smaller than h can
divide h as it is prime. With d and g known, we then use lattice basis reduction
techniques, again, to find k. As in Section 4.2, we write ab = M + α where M =
�(N − 1)/(4g2)� and |α| < N1/2−2γ is unknown. Substituting this into the key
equation and rearranging, we obtain (ed− 1)/(2g) = kM +kα, where only k and
α are unknown. This equation motivates the following linear bivariate polynomial
g(x, y) = Mx+y− (N − 1)/(2g), which has the root (x0, y0) = (k, kα). Defining
the bounds X = N δ and Y = N δ+1/2−2γ , we obtain W = ‖g(xX, yY)‖∞ =
N1+δ−2γ . Applying the results of Theorem 1, we find that a sufficient condition
to recover x0 = k and y0 = kα is given by δ < 1/2 which is always true at this
stage since we already knew that δ < γ2 < 1/4 when computing d. Substituting
the known values of e, d, g and k into N − 1 = 2g(2gab + a + b) and the key
equation ed = 1 + k2gab leads to two equations in two unknowns which we can
easily solve. Once a and b are known, we have factored N since p = ga + 1 and
q = gb + 1.

A simple partial key-exposure attack follows from the above result as well. If
we write the private key as d = d22	2 + d12	1 + d0 where everything but d1 is
known, then multiplying the equation

e(d22	2 + d12	1 + d0) = 1 + k2gab,

with (e2	1)−1 mod gh will result in a monic univariate linear polynomial that
will yield d1 provided d1 < Nγ2

(for large N). Of course, letting d2 = 0, �1 = 0
and d0 = 0 recovers the small exponent case. In this partial key-exposure attack,
it might not be possible to factor the modulus once the entire private exponent
is recovered. When the private exponent d is smaller than N1/2, the method
described above will allow us to compute k and hence factor N . If d > N1/2

the method is not guaranteed to work. Of course, once d has been recovered we
have already broken the particular instance of RSA. We have now arrived at the
following result.

Theorem 5. Let N be a RSA modulus with common balanced primes. For any
valid public key (N, e) with private exponent d, in the limit of large N , if all but
γ2 log2 N contiguous bits of d are known then the rest of d can be found in time
polynomial in log N . If the private exponent also satisfies d < N1/2 then N can
also be factored in time polynomial in log N .

94 M.J. Hinek

Let 2TC be the time it takes to mount the attack in Theorem 5 (essentially, the
time to perform Coppersmith’s method). In order to ensure that the expected
runtime complexity of attack is 2	 for � ≥ 80 when performing an exhaustive
search on the most significant bits of d (guessing d2), it is sufficient that δ >
γ2 + (� − TC)/n. Here an exhaustive search on the most significant bits of d
involves mounting the lattice-attack for each guess of d2. As a rough estimate,
we will use TC = 20 which corresponds to about a million operations. This will
underestimate the actual complexity of performing the lattice basis reduction
for all lattice dimensions except very small ones, but this is acceptable since we
are erring on the side of caution.

The second lattice-based attack we consider involves finding small solutions
of the linear 4-variable polynomial f(x, y, z, u) = e2x + ey − (N − 1)z + u. This
polynomial is obtained by considering the following two equations (both derived
from the key equation)

ed = 1 + k(p− 1)q̂ where q̂ = (q − 1)/(2g), and
ed = 1 + k(q − 1)p̂ where p̂ = (p− 1)/(2g).

There are many ways of multiplying these equations together, but the optimal
form seems to be multiplying (ed−1+kq̂ = kpq̂) with (ed−1+kp̂ = kqp̂). After
some rearrangement, we obtain

e2d2 + e(k(q̂ + p̂)− 2)d− k2p̂q̂(N − 1)− k(p̂ + q̂)− 1 = 0.

The polynomial f is obtained from this equation by letting each group of un-
knowns be a single variable. It is clear that the polynomial f has the root
(x0, y0, z0, u0) = (d2, (k(q̂ + p̂) − 2)d, k2p̂q̂,−k(p̂ + q̂) + 1). Defining the bounds
(X, Y, Z, U) = (N2δ, N2δ+1/2−γ , N2δ+1−2γ , N δ+1/2−γ), we see that

W = ‖f(xX, yY, zZ, uU)‖∞ = N2+2δ−2γ .

So, applying the result of Heuristic 1, we see that a sufficient condition to recover
the roots, assuming that the polynomials obtained are also algebraically indepen-
dent, is given by δ < 2γ/5. We can extend this to a partial key-exposure attack
by guessing the � high bits of u0 = −k(p̂+ q̂)+1. Letting û be the high bits of u0,
we define the new polynomial f(x, y, z, u) = e2x+ey−(N−1)z−u+û. The value
of W remains unchanged, but the bound for u now becomes U = N δ+1/2−γ−	/n.
Thus, the new sufficient condition for success becomes δ < 2γ/5 + �/(5n).

Many other polynomials were candidates for lattice-based attacks, but none
resulted in a stronger attack. In the full version of the paper, we will list all the
potential polynomials along with the sufficient conditions for each.

4.7 Attacks on Generalized Rebalanced RSA-CRT

When common prime RSA is used with a private exponent smaller then N1/2,
it can be viewed as an instance of generalized rebalanced RSA-CRT in which
both CRT-exponents are equal to the private exponent. Therefore, we must also

Another Look at Small RSA Exponents 95

consider the security of generalized rebalanced RSA-CRT. Following the analysis
of Sun, Hinek & Wu [22], we must ensure that each of the following inequalities
is satisfied to ensure a secure instance of RSA:

5δ + 2α > 2 + �/n,
3δ + 2α > 3/2 + �/n or α < 1/4− �/n,
6δ + 3α > 5/2 + �/n,
6δ + 3α > 7/3− �/n−

√
(2�/n)2 − (4�/n)− (12α�)/n + 6α/2 , and

δ > 2�/n.

Here α is the size of the public exponent (e = Nα). When each of the inequalities
is satisfied, any of the known attacks has expected complexity of at least 2	. For
more details, see [22].

4.8 Summary

Here we summarize all of the conditions on δ and γ to ensure a secure instance of
common prime RSA. If all of the inequalities given below are satisfied then the
expected complexity for each of the attacks described in the previous subsections
is at least 2	.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.1 0.2 0.3 0.4 0.5

δ
=

 lo
g N

 d

γ = logN g

102420484096
8192

Fig. 1. Instances of common prime RSA which are safe to the attacks in this work.
For each modulus size shown, instances (values of γ and δ) above the plot lines have
expected attack complexities of 280. Any instances below the lines can be considered
unsafe.

96 M.J. Hinek

δ > 1/4 +−γ/2 + �/n (Extended Continued Fraction)
δ > γ2 + (�− TC)/n (First Lattice Attack)
δ > 2γ/5 + �/(5n) (Second Lattice Attack)
γ < 1/2− 2�/n (Factoring N)
γ > γ+

ecm (Factoring N − 1)

When a small private exponent is used in common prime RSA along with a
random looking public exponent, parameters of δ and γ satisfying each of the
above inequalities will also satisfy all of the inequalities in the previous subsection
for generalized rebalanced RSA-CRT. We leave the discussion of more general
choices of exponents for the full version of the paper.

In Figure 1, we illustrate these inequalities using � = 80 and TC = 20 for
various modulus sizes. As can be seen in the figure, the region of safe parameter
choices increases with increasing modulus size. This is expected of course, since the
security parameter (� = 80) is fixed and corresponds to the work needed to factor
a 1024-bit RSA modulus. Even though the region of safe instances for a 1024-bit
modulus seems quite small, there are many actual instances, as the plot is using a
logarithmic scale.

5 Conclusion

The use of common prime RSA seems promising. Public and private exponents
that are significantly smaller than ones normally possible in typical RSA can be
constructed which seem to be safe. Of course, more research must be done to
scrutinize the security of this variant.

In the scenario in which using CRT for decryption is not available, common
prime RSA reduces the cost for encryption or decryption by a factor of 1/(1−γ)
compared to typical RSA for random exponents. In addition, private exponents
as small as N0.165 can be used which seem to offer the same security as factoring
a 1024-bit RSA modulus. This scenario might occur in a constrained system in
which the physical constraints outweigh the need for faster decryption. For exam-
ple, using the same procedure for encryption and decryption might be necessary
if memory constraints are severe.

In the scenario in which using CRT for decryption is available, common prime
RSA with private exponents smaller than N1/2 can be considered as an instance
of generalized rebalanced RSA-CRT. For a 1024-bit modulus, it is possible to
have CRT-exponents that are 169 bits (N0.165) with a public exponent roughly
N0.674. This is very comparable to what is achievable with the other key gener-
ation algorithms for generalized rebalanced RSA-CRT (see [12, 22]).

In addition to the reduction in encryption and decryption costs, it is also
possible to decrease the number of bits needed to store the private key. When
the private exponent is smaller than N1/2, the CRT-exponents are both equal to
the private exponent and so only d needs to be stored. And, since p and q (and N)
are easily computed from g, a and b, we can use (d, g, a, b) as a reduced private
key. This reduced key contains all the necessary information for decryption, with
or without using CRT, and requires (γ +δ)n fewer bits than storing (dp, dq, p, q).

Another Look at Small RSA Exponents 97

Acknowledgements

The author would like thank Mark Giesbrecht, Ellen Jochemsz, Doug Stinson,
Hung-Min Sun and the anonymous referees for their useful comments and sug-
gestions, pointing out some relevant references and suggesting attacks.

References

1. J. Blömer and A. May. Low secret exponent RSA revisited. In Cryptography and
Lattices – Proceedings of CALC ’01, volume 2146 of Lecture Notes in Computer
Science, pages 4–19. Springer-Verlag, 2001.

2. J. Blömer and A. May. New partial key exposure attacks on RSA. In Advances
in Cryptology – Proceedings of CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 27–43. Springer-Verlag, 2003.

3. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than
N0.292 . In Advances in Cryptology – Proceedings of EUROCRYPT ’99, volume
1592 of Lecture Notes in Computer Science, pages 1–11. Springer-Verlag, 1999.

4. D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than N0.292.
IEEE Transactions on Information Theory, 46(4):1339–1349, July 2000.

5. D. Boneh, G. Durfee, and Y. Frankel. An attack on RSA given a small fraction of
the private key bits. In Advances in Cryptology – Proceedings of ASIACRYPT ’98,
volume 1514 of Lecture Notes in Computer Science, pages 25–34. Springer-Verlag,
1998.

6. D. Boneh, G. Durfee, and Y. Frankel. Exposing an RSA private key given a small
fraction of its bits. Revised and extended version of proceedings of ASIACRYPT
’98 [5]. Available at http://crypto.stanford.edu/~dabo/abstracts, 2001.

7. D. Boneh and H. Shacham. Fast variants of RSA. Cryptobytes, 5(1):1–9, 2002.
8. D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA

vulnerabilities. Journal of Cryptology, 10(4):233–260, 1997.
9. J.-S. Coron. Finding small roots of bivariate integer polynomial equations revisited.

In Advances in Cryptology – Proceedings of EUROCRYPT 2004, volume 3027 of
Lecture Notes in Computer Science, pages 492–505. Springer-Verlag, 2004.

10. A. Dujella. Continued fractions and RSA with small secret exponent. Tatra Mt.
Math. Publ., 29:101–112, 2004.

11. M. Ernst, E. Jochemsz, A. May, and B. de Weger. Partial key exposure attacks
on RSA up to full size exponents. In Advances in Cryptology – Proceedings of
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages
371–387. Springer-Verlag, 2005.

12. S. D. Galbraith, C. Heneghan, and J. F. McKee. Tunable balancing of RSA.
In Information Security and Privacy, 10th Australasian Conference, ACISP 2005,
volume 3574 of Lecture Notes in Computer Science, pages 280–292. Springer, 2005.

13. M. Girault. An identity-based identification scheme based on discrete logorithms
modulo a composite number. In Advances in Cryptology – Proceedings of EURO-
CRYPT ’90, volume 473 of Lecture Notes in Computer Science, pages 481–486.
Springer-Verlag, 1991.

14. N. A. Howgrave-Graham. Finding small roots of univariate modular equations re-
visited. In Cryptography and Coding, 6th IMA International Conference, Cirences-
ter, UK, December 17-19, 1997, Proceedings, volume 1355 of Lecture Notes in Com-
puter Science, pages 131–142. Springer-Verlag, 1997.

98 M.J. Hinek

15. A. K. Lenstra. Unbelievable security : Matching AES security using public key
systems. In Advances in Cryptology – Proceedings of ASIACRYPT 2001, volume
2248 of Lecture Notes in Computer Science, pages 67–86. Springer-Verlag, 2001.

16. C. H. Lim and P. J. Lee. Security and performance of server-aided RSA computa-
tion protocols. In Advances in Cryptology – Proceedings of CRYPTO ’95, volume
963 of Lecture Notes in Computer Science, pages 70–83. Springer-Verlag, 1995.

17. A. May. Cryptanalysis of unbalanced RSA with small CRT-exponent. In Advances
in Cryptology – Proceedings of CRYPTO 2002, volume 2442 of Lecture Notes in
Computer Science, pages 242–256. Springer-Verlag, 2002.

18. A. May. Secret exponent attacks on RSA-type schemes with moduli N = prq. In
Public Key Cryptograph - PKC 2004, volume 2947 of Lecture Notes in Computer
Science, pages 218–230. Springer-Verlag, 2004.

19. J. McKee and R. G. E. Pinch. Further attacks on server-aided RSA cryptosystems.
Available at http://citeseer.ist.psu.edu/388295.html, 1998.

20. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public key cryptosystems. Commun. of the ACM, 21:120–126, 1978.

21. R. Steinfeld, S. Contini, H. Wang, and J. Pieprzyk. Converse results to the Wiener
attack on RSA. In Public Key Cryptography - PKC 2005, volume 3386 of Lecture
Notes in Computer Science, pages 184–198. Springer-Verlag, 2005.

22. H.-M. Sun, M. J. Hinek, and M.-E. Wu. On the design of rebalanced RSA-CRT.
Technical Report CACR 2005-35, Centre for Applied Cryptographic Research, Uni-
versity of Waterloo, 2005. http://www.cacr.math.uwaterloo.ca/.

23. H.-M. Sun and M.-E. Wu. An approach towards rebalanced RSA-CRT with
short public exponent. Cryptology ePrint Archive, Report 2005/053, 2005.
http://eprint.iacr.org/.

24. H.-M. Sun and C.-T. Yang. RSA with balanced short exponents and its application
to entity authentication. In Public Key Cryptography - PKC 2005, volume 3386 of
Lecture Notes in Computer Science, pages 199–215. Springer-Verlag, 2005.

25. E. R. Verheul and H. C. A. van Tilborg. Cryptanalysis of ‘less short’ RSA secret
exponents. Appl. Algebra Eng. Commun. Comput., 8(5):425–435, 1997.

26. M. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory, 36(3):553–558, 1990.

27. P. Zimmerman. Integer factoring records. http://www.loria.fr/~zimmerma/
records/factor.html, May 2005.

A Algorithms

The following algorithm can be used to generate common primes.

Algorithm A.1: PrimeGeneration(n, γ)

g ← 2× (a random �γn�-bit prime)
repeat
a, b ← random �(1

2 − γ)n− 1�-bit positive integers
p ← ga + 1, q ← gb + 1, h ← gab + a + b

until p, q, h are primes and gcd(a, b) = 1
return p, q

Collision-Resistant Usage of MD5 and SHA-1
Via Message Preprocessing

Michael Szydlo1 and Yiqun Lisa Yin2

1 RSA Laboratories, Bedford, MA 01730
mszydlo@rsasecurity.com

2 Independent Security Consultant
yiqun@alum.mit.edu

Abstract. A series of recent papers have demonstrated collision at-
tacks on popularly used hash functions, including the widely deployed
MD5 and SHA-1 algorithm. To assess this threat, the natural response
has been to evaluate the extent to which various protocols actually de-
pend on collision resistance for their security, and potentially schedule an
upgrade to a stronger hash function. Other options involve altering the
protocol in some way. This work suggests a different option. We present
several simple message pre-processing techniques and show how the tech-
niques can be combined with MD5 or SHA-1 so that applications are no
longer vulnerable to the known collision attacks. For some applications,
this may a viable alternative to upgrading the hash function.

Keywords: SHA-1, MD5, padding, hash collision, signature.

1 Introduction

The recent advances in cryptanalysis of hash functions have been spectacular,
and the collision attacks on MD5 and SHA-1 are of particular practical impor-
tance since these algorithms are so widely deployed. To assess the threat, the
first step is to re-examine which protocols actually depend on collision resistance
for their security. The most common type of vulnerable application is the use of
standard signatures to provide non-repudiation or certification services.

Applications which do not require collision resistance are unlikely to require
changes in the near future as a result of these recent collision results. For those
that do, changing the hash function is the simplest response, and the standard-
ized SHA-2[21] family (which includes SHA-256) is the leading candidate for
an upgrade. Although it has not received the same amount of analysis as earlier
hash functions, SHA-256 is expected to be significantly stronger. There has been
some progress analyzing SHA-256, for example [10] and [8]. These papers show
that SHA-256 also has “local collisions” (defined in [5]) with probability between
2−9 and 2−39. This implies that the security of SHA-256 is mainly hinged on its
message pre-processing.

A second alternative is to re-design the protocols themselves, so they no longer
rely on collision resistance of the hash function. This can be done on a case by

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 99–114, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

100 M. Szydlo and Y.L. Yin

case basis or in a more uniform fashion. For example, a recent Internet Draft [9]
proposes to change signature scheme protocols by use of a primitive called “ran-
domized hashing”. There are some architectural advantages to changing the
signature scheme in such a modular way, replacing each hash invocation with a
random member of the hash family. Any protocol employing this solution will re-
quire a good source of randomness, and will also need to specify and manage the
random hash family member. This kind of solution can certainly be considered
viable when the additional resource of randomness is readily available.

This paper points out a third option: There are simple, alternate modes of
using MD5 or SHA-1, in a manner which renders them no longer susceptible
to the known collision attacks. These approaches essentially involve some light
message pre-processing code to effectively derive a new hash function from an old
one. Although the exact same standardized hash function is used, this technique
can be viewed as an indirect but convenient way of effectively upgrading the hash
function. Advantages include the fact that no additional resource of randomness
is needed and no change to the output length or truncation is required. In the
short term, some implementations might find this to be a compelling alternative
which will serve to extend the useful life of MD5 or SHA-1.

Organization
In Sections 2 we present some background material on the hash functions un-
der consideration, and in and Section 3 review the nature of the recent collision
attacks. In Section 4 we further motivate and present the basic message pre-
processing technique. In Section 5 we present the details of the construction.
Focusing primarily on SHA-1, we analyze the security in light of the known col-
lision attacks in Section 6. An alternate approach to message preprocessing is
described in Section 8. In Section 9, we provide analysis specific to MD5. Final
conclusions and recommendations are made in Section 10.

2 Background

2.1 The MDx Family of Hash Functions

The MDx family of hash functions includes MD4 (1990) and MD5 (1991), which
were designed by Ron Rivest to be one-way and collision resistant. SHA-0 (1993),
SHA-1, (1995) and SHA-2 (2001) were produced by the NSA and standardized
by NIST and follow similar design principles as Rivest’s algorithms. SHA-1 is
currently the FIPS Secure hash standard [20], and is the most widely deployed
hash function. An earlier version of this algorithm was SHA-0 [19], while the
SHA-2 family is intended for higher security levels. Until recently, SHA-1 was
considered to be as secure as its 160 bit output would allow, and MD5 also still
enjoys significant deployment.

The general approach behind the design of these hash function involves the
Merkle-Damg̊ard iterative structure, (see [6, 15]), to allow arbitrary length mes-
sages. The algorithms divide the input into fixed length blocks and process the
blocks sequentially by updating an initial state variable. Each block is combined

Collision-Resistant Usage of MD5 and SHA-1 Via Message Preprocessing 101

with the previous state in a compression function to calculate an updated state,
or chaining variable. When the entire message has been processed, the output is
the final state. The state vectors for MD5 and SHA-1 are 128 bits and 160 bits,
respectively.

Coron, et. al. [4] suggest a modification of the Merkle-Damg̊ard chaining
method. However, their work is orthogonal to ours since we focus on the com-
pression function, except in the IV message dependent approach of Section 8.

The compression functions consist of two basic components, message expan-
sion and round operations. The compression function of SHA-1 operates on 512-
bit message blocks, and utilizes a 160 bit state variable, represented by five 32-bit
words, denoted A, B, C, D, E. The block of 512 bits is expanded to 2560 bits,
represented by 80 words of 32 bits. Each of these words is used to update the
internal state in a round update function. MD5 follows a similar structure, but
uses a 128 bit state variable, and has 64 rounds instead of 80.

2.2 Collision Attacks on MD5 and SHA-1

Successful cryptanalysis of these hash functions has generally focused on finding
collisions, rather than on inverting the hash functions. Wang, et. al. announced
real collisions for MD4, MD5, RIPEMD HAVAL-128 in 2004 and 2005 in [22,
23, 25], and also introduced message modification techniques. These results have
been improved by Klima [13], and Naito et. al. [17], and as of writing, the
complexity of locating a collision in MD4 and MD5 are approximately 22 and 230.

Regarding SHA-0 and SHA-1, early analysis in 1998 by Chabaud and Joux
used differential methods (local collisions and disturbance vectors) to find a
collision attack on SHA-0 of complexity 261 [5]. Biham and Chen found near
collisions on SHA-0 in complexity 240 [1]. The work of Biham, Joux, and Chen
included the first real collision of SHA-0 in [11, 3]. Additional work on reduced
round versions of SHA-1 appeared in [2, 18, 16]. Recently Wang, Yin, and Yu
described an improved attack on SHA-0 in [26], and finally, in [24] presented the
first attack on the full SHA-1, where they show that finding collisions is at most
of complexity 269. Improvements to these attacks were announced in [27] where
the attack complexity has been reduced to 263.

2.3 From Random Collisions to Meaningful Collisions

An early critique had been the initial collisions found by researchers results have
involved just a few message blocks or short binary strings, without enough struc-
ture to be considered “meaningful” collisions. However, meaningful collisions can
be found for these hash functions, and regardless, general collision resistance is
a real design goal of hash function construction. For example, Lenstra et. al.
[14] have found collisions between two distinct X.509 certificates, and collisions
between two properly formatted postscript documents has been exhibited in [7].
Each of these examples involved the MD5 hash function. Examining these two
examples, we see that they exploit the relative freedom in the form of certifi-
cates and postscript documents, and one may still argue that collisions are likely
difficult to produce among messages of a suitably restricted form.

102 M. Szydlo and Y.L. Yin

3 Analyzing the Recent Collision Attacks

In this section, we analyze the nature of the recent collision attacks on the MDx
family of the hash functions and motivate techniques that would be useful to
thwart such attacks. Throughout this paper, we will use M to denote a message
to be hashed. Both MD5 and SHA-1 break the message to be hashed into 512 bit
blocks. When we need to refer to a single block we denote it m, and m is often
partitioned into sixteen 32-bit message words denoted by m0, m1, ..., m15. When
referring to the expansion function internal to the compression function, we
denote the expanded message block by w. In the case of SHA-1, w is partitioned
into eighty 32-bit message words, denoted by w0, . . . w79. In the case of MD5, w
is expanded into 64 32-bit message words. We use C to denote the compression
function, and H to denote the complete hash function.

3.1 Basic Ideas in the Collision Attacks

We first briefly review some of the basic ideas behind these attacks. Focusing on a
single block, the general common strategy behind these collision attacks involves
finding a message difference Δ(w) = w−w′ between two expanded messages such
that the probability that C(m) equals C(m′) is higher than expected. This is
possible when it can be arranged such that during the round computations of
the blocks m and m′ the state vectors never deviate significantly, and can be
“corrected” with high enough probability.

The basic tool is the local collision, a series of a few rounds in which certain
small differences in the expanded message words will be absorbed with reason-
able probability. Due to the message expansion there will be many differing
words of m and m′, so these local collisions must be strung together. Distur-
bance vectors describe how the local collisions are joined. The entire sequence of
differences in the state vectors is called a differential path. The overall success
probability depends on the simultaneous satisfaction of a set of conditions for
each local collision.

The structure of the various attacks consist of analysis of the local collisions,
search for a low Hamming weight disturbance vector, a brute force search on
input messages, and a variety of methods are used to boost the success proba-
bility, including specifying concrete conditions for the differential path, message
modification so that some conditions always hold, and usage of two blocks to
construct collisions from near collisions. We remark that the above summary
most accurately describes the approaches for SHA-1, and the analysis of MD5
differs slightly.

3.2 Thwarting the Collision Attacks

From the summary of the attacks above we can see that there are several strate-
gies which one might employ to attempt to prevent the success of these ap-
proaches. The most obvious approach is to attempt to prevent the existence of
any “good” differential – a differential path that leads to (near) collisions and
holds with probability greater than 2−n/2 . An additional precaution would be to

Collision-Resistant Usage of MD5 and SHA-1 Via Message Preprocessing 103

restrain the power of the message modification techniques, thereby significantly
reducing the success probability of the attack. A third possibility is to consider
situations in which the Merkle-Damg̊ard iterative structure can not be exploited;
for example if single message bits were to affect multiple blocks.

4 Message Pre-processing Techniques

In this section we describe the general message preprocessing framework, and
discuss the streaming requirement that some applications may have.

4.1 Message Pre-processing Framework

The working assumption behind the general techniques we suggest for improving
the collision resistance is that the underlying hash function itself will not be
changed. Let M be a message string to be hashed, and let H be a standard
hash function, such as MD5, or SHA-1. Our objective is to define a derived hash
function H∗ which calls H as a subroutine. Our proposal is simply to preprocess
the message before it is hashed in a standard way. Formally, let φ : M �→ M∗

be a preprocessing function mapping strings to strings. For each such function,
a derived hash function H∗ may be defined by

H∗(M) = H(φ(M)).

Of course, we are interested in cases where φ is a relatively simple function, and
the derived hash function H∗ is collision resistant with respect to known attacks,
even if H is not. The function φ must be chosen appropriately for a particular
H to ensure that H∗ is secure.

4.2 Streaming Data Requirement

Many applications are set up architecturally to incrementally digest a large mes-
sage as it becomes available. For example, with SHA-1, applications can repeat-
edly make a SHA-1Update function call as portions of the message stream in.
This requirement can be satisfied when the message pre-processing can also be
performed in a streaming fashion, for example, by dividing the message into
blocks and expanding each one. Formally, we call a φ a local expansion if φ
can be defined by φ(m0, m1, . . .mk) = m∗

0, m
∗
1, . . .m

∗
k where each mi is of fixed

length and m∗
i = f(mi) for some expansion function f : {0, 1}l → {0, 1}l∗, where

l∗ > l. It is clear that when φ is a local expansion, the state of the preprocessing
function can be stored in the message digest context, so that a derived update
function could also call SHA-1Update as a subroutine.

5 Local Expansion Approaches

We now discuss two local expansion approaches to message preprocessing: mes-
sage whitening and message interleaving.

104 M. Szydlo and Y.L. Yin

5.1 Message Whitening

In this approach, the basic idea is to alter the message by inserting fixed char-
acters at regular intervals. The motivation here is to decrease the flexibility
in finding good message differentials. These fixed characters can be taken to be
words filled with all zero bits, so we call the approach whitening. For a hash func-
tion with at 512-bit block size, sequential chunks of fewer than 512 bits can be
expanded into a full 512 bits. For example each sequence of (16− t) 32-bit words
m = (m0, m1, . . . m15−t) could be expanded to m = (m0, m1, . . . m15−t, 0, . . . , 0),
where the last t words would be fixed as zeros. Each execution of the compression
function effectively only process (16− t) message words rather than 16 message
words, so it is easy to calculate the performance slowdown. This approach is also
easy to implement, since such a preprocessing function φ is a local expansion, the
streaming requirement would be met. From a security standpoint, the intuition
is that processing fewer bits of message should allow the message to be better
mixed within the calculation.

A variant of this approach may select specific words to whiten to further
increase the difficulty of known attacks. Below, we discuss how whitening the
middle two words of SHA-1 significantly reduces the effect of message modifica-
tion techniques.

5.2 Message Self Interleaving

In this approach, the basic idea is to duplicate each message word so that
each bit appears twice after the preprocessing. Assuming the entire message
M is broken up into some number of 32-bit words: M = (m0, m1, . . . mk),
then the preprocessed message would be φ(m) = (m0, m0, m1, m1, . . . mk, mk)
where each word appears twice. As with the message whitening approach, mes-
sage interleaving causes fewer message bits to be fed into each message block,
causing better mixing. As φ is a local expansion, the streaming requirement is
also met.

5.3 Generalized Local Expansion

The whitening and interleaving approaches discussed above have obvious mi-
nor variations, such as choice of which bits to whiten. The frequency of mes-
sage interleaving could also be chosen word by word, rather than character
by character. Both of these approaches, as well as the minor variants have
the property that the local expansion is a linear function. Thus, one way to
generalize is to consider an arbitrary linear function. Although we prefer sim-
pler pre-processing functions, one could certainly consider non-linear functions
as well, effectively using an arbitrary local expansion. Regardless of the spe-
cific function, these approaches all attempt to increase security by increas-
ing the structure of each message block. This can make finding good differ-
entials more difficult for the attacker, as well as disrupt message modification
techniques.

Collision-Resistant Usage of MD5 and SHA-1 Via Message Preprocessing 105

6 Security Analysis of Local Expansion Approaches

In this section, we further discuss why the message pre-processing techniques
described in the preceding section help prevent existing attacks. We focus our
discussions on SHA-1.

6.1 Intuition

The message whitening and message interleaving both operate by increasing the
structure within each block. For these approaches and their variants, we can
simply view the derived hash function as a modification of the original hash
function, except with a different message expansion rule.

Concretely, in the case of SHA-1, the message interleaving approach effectively
takes as input 256 bits of data instead of 512, and expands them to the 80 words
required by the SHA-1 round operations. The amount of data required by the
whitening approach would depend on its calibration, i.e., how many bits or words
were whitened. Intuitively, this means that fewer data bits are processed for each
execution of the compression function, and hence the derived hash function can
offer a better mixing of the data bits.

In the following, we provide more quantitative analysis of the two message
pre-processing approaches by considering how they affect constructing good dif-
ferentials and performing message modification, both of which are critical in
existing collision attacks.

6.2 Insights from Coding Theory

One way to understand the effect of message whitening or message interleaving
is to study the code of expanded message words. For hash functions which employ
a linear message expansion rule the space of expanded messages is a linear code,
so we have a tool to reason about the existence of low Hamming weight vectors.
For example, for SHA-1 each block expands 16 × 32 bits into 80 × 32 bits.
The expansion function E{0, 1}512 → {0, 1}2560 is defined word-wise by the
recurrence relation

wt = (wt−3 ⊕ wt−8 ⊕ wt−14 ⊕ wt−16) <<< 1. (1)

For MD5, the original message is simply repeated 3 times, so the expanded mes-
sage words of both MD5 and SHA1 can be viewed as linear codes of dimension
512. In either case, the code is generated by the 512 basis vectors E(1, 0, . . . , 0),
E(0, 1, . . . , 0), . . ., E(0, . . . , 0, 1).

Both the interleaving and whitening approaches work by restricting the form
of the 512-bit input message block, thus restricting full code of expanded message
words. The form of the whitened message is m∗ = (m0, m1, . . .m15−t, 0, . . . 0) so
the restricted code is 512 − 32t dimensional, generated by basis vectors cor-
responding to the non-whitened bits. The form of an interleaved message is
m∗ = (m0, m0, m1, m1, ..., m7, m7), so this code is only 256 dimensional, gener-
ated by vectors of the form (1, 0, . . . ; 1, 0, . . . ; 0; . . .), where each generator con-
sists of zeros except for two matching 1 bits. When we view the collision attacks

106 M. Szydlo and Y.L. Yin

as attempts to piece together local collisions in a manner consistent with this
linear code, it becomes clear that reducing the dimension of the code will make
these attacks less feasible.

Reducing Solutions to Linearized Hash Function: Another way to under-
stand the whitening and message interleaving is in terms of the set of solutions
to a linearized version of the hash function. This is the approach followed by
Oswald and Rijmen in [18]. Rather than focus on local collisions, they analyze
the difference between the linearized and actual SHA-1, so that each difference
in the expanded message word yields one or more conditions which will be only
probabilistically satisfied in the actual SHA-1. They search for low Hamming
weight code words Δ(w) which are also solutions to the linearized SHA-1 equa-
tion. The solutions yielding an output of 160 zeros are defined by an additional
160 linear constraints (see [18] for details), so it is natural to consider the code of
linear solutions, consisting of expanded message words which also satisfy these
160 constraints. This restricted code has dimension 512-160=352, and the colli-
sion attack first seeks a low Hamming weight code words, then a message pair
such that the conditions will be satisfied.

In this framework, our message interleaving approach corresponds to the ad-
dition of 256 additional constraints, and the whitening approach corresponds to
the addition of 32t additional constraints. Although there is no simple way to
locate low Hamming weight codewords in an arbitrary code, the existence and
number of lower weight words decreases as the minimum relative distance goes
up. This ratio is simply the ratio of the code length to the code dimension, and
equals 352/2560 = 7.27 for the original code. This code, restricted with whiten-
ing parameter t, has dimension 352−32t, so in case t = 4, the minimum relative
distance is increase to 8.88. If, instead, the code is restricted by the interleaving
approach, the dimension is reduced to 352 − 256 = 96, so the minimum rela-
tive distance increases to 26.66. This heuristic does not preclude the existence
of good differentials, but it does provide a useful metric for how restricting the
form of messages will increase the difficulty of the known collision attacks.

6.3 Preventing Good Differentials

We now address more concretely the best known attacks on SHA-1. As discussed
earlier, a major step for constructing a good differential path for SHA-1 is to
find a disturbance vector with low Hamming weight. In this section, we consider
how message pre-processing affects constructing good differentials.

First, we review some basic facts of the SHA-1 disturbance vectors. A dis-
turbance vector dv is a set of 80 32-bit words dvi (i = 0, ..., 79), and dvi,j = 1
iff a local collision starts in step i bit j. Each local collision consists of 5 ad-
ditional changes in the expanded message word, called correction vectors (See
[5]). The correction vectors wc1, wc2, wc3, wc4, wc5 are automatically linearly
determined from dv, and the difference in the expanded messages is simply the
sum Δ(w) = dv + Σwci (mod 2). Although, only Δ(w) must be a code word
(i.e. satisfy the recurrence relation), in practical attacks dv itself is taken to be a
code word, so that the five {wci} and Δ(w) are automatically code words. The

Collision-Resistant Usage of MD5 and SHA-1 Via Message Preprocessing 107

Hamming weight of dv, denoted by HW (dv) is the central important factor in
determining the success of the collision attacks, an estimate of the complexity
of an attack on SHA-1 is about 23HW (dv).1

In the attacks on SHA-1 [24, 27], disturbance vectors of low Hamming weight
were found by a heuristic search algorithm, and it is based on the following
intuition: If we view dv as an 80-by-32 0-1 matrix, then the non-zero entries
in a low Hamming dv are likely to be concentrated in one column. The search
algorithm proceeds by first choosing a 16-bit column in the matrix and expand-
ing backwards and forwards with message expansion. The best vector is then
chosen among all possible choices for the column. Using this heuristic search,
the lowest Hamming weight is reached when the 16-bit column takes the value
L = (100...000).

Now we are ready to analyze how the two pre-processing techniques affect
finding low Hamming weight disturbance vectors. For the message whitening
technique, each whitened message word m∗

i would yield an extra condition on
the differential path, namely

Δm∗
i = 0. (2)

For the interleaving techniques, the extra conditions on Δm∗ are

Δm∗
2i = Δm∗

2i+1, for i = 0, 1, ..., 7. (3)

Experiments: We used the same heuristic search algorithm to find disturbance
vectors for “SHA-1 with message pre-processing”. Our assumption is that a good
disturbance vector follows similar patterns as the ones for the original SHA-1.
Starting with L, we computed 150 words of dv by expanding L forwards and
backwards with the recurrence relation E and compute many words of Δw from
dv. The words of this extended dv may be found in the rows of Table 5 in
reference [24]. The next step is to pick 80 words from the computed Δw such
as the above conditions due to whitening (or interleaving) are satisfied while
keeping the Hamming weight as small as possible. Using the numbering of [24],
and focusing on whitening with t = 2, we examined the values of Δw, and see
that there are no two consecutive zero words before step 55, and there are no
two consecutive words that are the same before step 53. This means that we
have to shift down by 40 words when choosing a good disturbance vector, in
order for Δw to satisfy the message pre-processing conditions. This would cause
a significant increase in the Hamming weight of the vector, so these experimental
results suggest that the Hamming weight of the disturbance vector (restricted to
steps 21-80) would go from 25 (for SHA-1) to over 80. Even if advanced message
modification such as that announced in [27] progresses to 32 steps, the hamming
weight for the remaining 48 steps would be sufficient.

We remark that the conditions on Δm∗
i given in the above two equations are

necessary conditions for the differential path to be constructed, since they are

1 It was the introduction of message modification techniques in [24] that allowed the
initial conditions in steps 1-20 to be automatically satisfied so that the limiting factor
was actually the Hamming weight in the final 60 words of dv.

108 M. Szydlo and Y.L. Yin

derived from the pair of input message words mi and m′
i. This is in contrast

to the three conditions on the disturbance vectors in the original attack on
SHA-0 [5] as well several works on SHA-1 [3, 24]. Those conditions are for easier
construction of a valid path from the disturbance vector, and so they are not
necessary conditions. That’s why these conditions can be removed as in the
attack on the full SHA-1 [24]. However, the above conditions, due to message pre-
processing, cannot be removed. Finally, the techniques of Jutla and Patthak [12]
could be adapted to provide rigorous bounds on the hamming weights of the
codes associated to whitened or interleaved message blocks.

6.4 Weakening Message Modification

In addition to preventing good differentials, the whitening and interleaving ap-
proaches also render the message modification techniques less effective, thereby
increasing the complexity of existing collision attacks.

First, we briefly review the basics of the message modification techniques [25,
23]. For the MD4-family of hash functions, including MD5 and SHA-1, the round
function has the following general form:

ai = G(input chaining variables) + mi−1,

where ai is the output chaining variable and mi−1 is the message word used in
step i. Once the differential path has been constructed, it is easy to derive a
set of sufficient conditions on ai that ensure that all conditions on path hold.
The conditions are of the form ai,j = v, where v is 0 or 1. The main idea of the
message modification techniques is simply to set ai,j to the correct bit v and then
recompute mi−1 = ai − G(). In other words, we can modify the message word
in step i to make the condition on ai to hold. This basic technique can be used
for the first 16 steps since the message words are all independent of each other
up this point. A simple variation of the basic technique is to modify the message
words used in the two steps before step i (i.e., mi−2 or mi−3) to achieve the
same goal. This is particular useful when mi−1 cannot be modified due to other
constraints. In addition, more advanced techniques, called multi-step message
modification techniques, were introduced for dealing with computation beyond
the first 16 steps. The improvements announced in [27] are achieved with such
advanced message modification techniques.

Next, we analyze how message interleaving affects the effectiveness of message
modification. Since m∗

2i = m∗
2i+1 (for i = 0, 1, ..., 7), the two consecutive message

words have to be modified simultaneously, making it almost impossible to change
any single bit. Now suppose a differential path P has already been chosen, and
conditions on ai have been determined. Since most of these conditions can no
longer be made to hold through message modification, the complexity of the
attack using path P would go up significantly.

In the case of whitening, the t whitened message words m∗
i , m

∗
i+1, ...m

∗
i+t−1

cannot be modified, since these message words are simply zero and independent
of the input message. It is possible to modify a couple of message words imme-
diately before the whitening step so that some of the conditions on ai and ai+1
can still hold, but the effect can be weakened if we choose t ≥ 4.

Collision-Resistant Usage of MD5 and SHA-1 Via Message Preprocessing 109

Targeted Whitening: For a given path P , it is good to choose the t consecutive
message words that maximize the total number of conditions s in those steps.
In the attack on SHA-1 [24], the conditions on ai are given in Table 12. From
the table, it is easy to see that if t = 4, and we whiten words 7 to 10, the total
number of conditions is s = 83.

It is possible that the attacker could select a new differential path P ′ other
than what was used in existing attacks on SHA-1 and MD5, and he could try to
minimize the number of conditions associated with P ′ in the specified whitening
steps. However, such an approach would likely not be very effective for the
following reason: One special feature of the differential paths in existing attacks
is that they are “front-loading” (with a lot of conditions in the first 20 steps)
in order to minimize the number of conditions after step 20, which is directly
related to the complexity of the attack. Hence, if the attacker selects P ′ that
has fewer conditions in the first 20 steps, then it is very likely that P ′ would
have more conditions later. This observation applies even more strongly when
considering the improved attacks of [27] which extend message modification to
additional steps.

7 Implementation Consideration

In this section, we consider practical implementation issues related to the mes-
sage pre-processing proposal. For ease of discussion, we refer to the derived new
hash function as SHApp, where “pp” stands for pre-processing2. We will con-
sider issues related to programming implementation of SHApp as well as upper
layer protocols that call SHApp as subroutines.

7.1 Programming Implementation

We propose two possible implementation options for SHApp. They vary only
in terms of where pre-processing occurs in the code, and they are suitable for
different applications.

Option 1: Pre-processing within SHA-1 Function. For most existing im-
plementation of SHA-1, the hash computation on a given input is generally
carried out by three functional calls as described below.3

SHAInit(context)
SHAUpdate(context, input, inputLen)
SHAFinal(digest, context)

2 A more accurate name would be SHA1pp, but we omit the “1” so that it can be
pronounced as “shap.”

3 The naming for the functions may vary slightly among implementations. For exam-
ple, SHAUpdate may be called SHAadd etc. Despite this name variation, the functions
accomplish essentially the same thing: the first one initializes the IV; the second one
does proper padding and the main loop; the third one finalizes the computation and
writes output.

110 M. Szydlo and Y.L. Yin

We can implement the new hash function SHApp with the same sequence of
functional calls as follows:

SHAppInit(context)
// same as SHAInit

SHAppUpdate(context, input, inputLen)
{

newInput = SHAppPreProcess (input)
newInputLen = Length (newInput)
SHAUpdate(context, newInput, newInputLen)

}
SHAppFinal(digest, context)
// same as SHAFinal

Note that SHAppUpdate has exactly the same i/o interface as the original
SHAUpdate in existing implementation. The pre-processing step is done as a
private function that is invisible to upper layer protocols using SHApp. Due
to the simplicity of whitening and interleaving, only a small amount of code is
needed for implementing the SHAppPreProcess function.

Option 2: Pre-processing outside SHA-1 Function. For some applications,
implementation of SHA-1 may be hard-coded, and hence it can be difficult to
make internal changes to the code as described in option 1. In this case, pre-
processing can be done entirely prior to calling the function SHA-1 as below.

SHApp(message)
{

newMessage = SHAppPreProcess (message)
SHA-1(newMessage)

}

Note that the original implementation of SHA-1 is used as a “black box”
without changing anything inside. Again, there is no impact on the interface.

Interoperability. We remark that for both options, the result of the hash
computation is the same for the same message. There is no interoperability issue
between the two options. Hence implementers can simply choose the option that
best suits their applications.

7.2 Protocols

From the discussions on programming implementation, we can see that SHApp
have exactly the same input and output interface as the original SHA-1. Hence,
replacing SHA-1 with SHApp in a protocol would not cause any upper layer
changes other than replacing the Algorithm Identifier.

Newer digital signature schemes (e.g., RSA-PSS) have a “hierarchical” iden-
tifier, where the hash function is a parameter. For those schemes, the algorithm
identifier for SHApp is sufficient.

Collision-Resistant Usage of MD5 and SHA-1 Via Message Preprocessing 111

For various older digital signature schemes, a new algorithm identifier is
needed for both SHApp itself as well as the combination of SHApp with the
specific signature scheme. The relevant standards organizations need to take
care of the assignment for combinations of DSA, ECDSA, etc. For example,
RSA Security can assign identifiers for SHApp and its combination with PKCS
#1 v1.5. Depending on the standards, it may take little time or some amount
of time for such assignments.

8 IV Message Dependence Approaches

In this section we describe a completely different approach does not involve a
local expansion, but instead works by effectively ensuring that the initialization
vector (IV) is message dependent.

8.1 Message Duplication

One way to cause the IV to be message dependent is to concatenate the mes-
sage with itself before hashing. To simplify the explanation, we suggest first
padding M so that it is a whole number of blocks. With this assumption, the
pre-processing is simply φ(M) = M ||M , where || denotes string concatenation.
Let us examine the calculation halfway through, just after all the blocks of the
first M have been processed. Notice that the full original message M is left to be
processed, except that the intermediate IV chaining variable is a function of the
message itself. This illustrates that an equivalent way to view this construction
is as a regular hash of M where the starting IV chaining variable is a function
of the message itself rather than constant.

8.2 Security Analysis

The IV message dependence approach increases security in a way completely
different than the local expansion approach. Instead of affecting the blockwise
compression function, they rely on the fact that the entire message must be pro-
cessed twice within the framework of the Merkle-Damg̊ard iterative chaining.
Since each message bit is input to separate blocks, the previous attack strate-
gies simply can not be applied. Instead, attacks on this variant would have to
be of a completely different sort, and would not be able to focus on a single
compression function, or on a few adjacent message blocks. This, or any other
variant of the IV message dependent approach would also present an additional
obstacle to automatically constructing collisions on long messages from single
block collisions.

This approach is interesting because it is an extremely simple way of thwarting
the known collision attacks for MD5 and SHA-1. However, a disadvantage with
this approach is that the preprocessing function φ is not a local expansion, so it
can not be effectively used with streaming data.

One might also consider alternate methods of achieving IV message depen-
dence, for example by setting the initial starting IV value to be the first 160

112 M. Szydlo and Y.L. Yin

bits of H(M). However, this would not be not a “pure” preprocessing technique,
and would require accessing the internals of the hash function itself, to set the
IV value.

9 Analysis for MD5

SHA-1 was designed based on MD4 and MD5, and hence MD5 and SHA-1 are
quite similar in terms of their structure and choices of mathematical operations.
Consequently, the latest collision attacks on MD5 [25] and SHA-1 [24] also share
some similarities. Therefore, most of the security analysis in preceding section
also directly applies to MD5, including the general insight from coding theory,
effects on message modification, and the IV-message dependency.

Here we point out some differences between the two hash functions and how
they would affect the analysis. The main difference lies in the message expansion.
For MD5, each message block expands 16×32 bits into 64×32 bits. The expansion
function E operates by repeating and re-ordering the 16 message words 3 times.
So the MD5 message expansion is much simpler than SHA-1, and hence offers
less mixing.

The differential path P used in the latest attack on MD5 is also different from
SHA-1, other than they are both “front-loading”, and the MD5 analysis does
not make use of an explicit disturbance vector. In the recent attack on MD5,
the path was constructed by first finding a near collision that only involves the
MSB in the second half and then deriving a more complicated collision path in
the first half. For the chosen path, Δmi is non-zero in steps 5, 12, and 15.

Message interleaving would result in 6 of the Δmi to be non-zero, which would
make the particular path P invalid. More importantly, interleaving would make
message modification almost impossible. Note that there are over 200 conditions
associated with P in the first 16 steps, and all these conditions need to be set
true through message modification in order to reduce the complexity of the
attack to about 230+. Therefore, message interleaving can significantly increase
the complexity of existing attacks.

A similar argument can be carried out for message whitening, although a
higher parameter of t would be required to rule out the availability of low Ham-
ming weight Δmi vectors. In this case, it seems more difficult to have a rigorous
argument that the attacker cannot find a completely new path that would effec-
tively target the particular whitening techniques.

10 Conclusions

In this paper we have considered several techniques to use SHA-1 and MD5 in
a more collision resistant manner. The simplest approach which we have dis-
cussed in this paper is the message whitening approach. The word-wise message
interleaving is also quite simple, and has very similar security properties. These
approaches are both easy to implement, support streaming message digesting,
and are amenable to analysis with respect to the known differential attacks.

Collision-Resistant Usage of MD5 and SHA-1 Via Message Preprocessing 113

The IV message dependent approaches are appealing due to their immunity to
single-block collision attack approaches, but have the drawback that they are
not convenient for message streaming.

For practical applications wishing to improve SHA-1 use, we suggest the use of
message whitening pre-processing with parameter t ≥ 4, so that 12 words of the
message are expanded into 16. This results in a performance slowdown of 25 per-
cent. An even more secure alternative would be the message interleaving, although
it results in a slowdown of 50 percent. For MD5, our recommendation is to use the
message interleaving approach, or in case the application does deal with small data
items (such as certificates), the IV message dependence approach.

Our solutions can be viewed as a general purpose, safer, collision resistant
way of using MD5, and SHA-1. Due to their simplicity, we contend that such an
approach can be appealing for practitioners who wish to increase security in the
short term, without changing the underlying hash function at all.

Relationship to Hash Function Design: The solution in this paper is not
intended to be a complete replacement for an appropriate, timely hash function
update nor for improved hash function design. On the other hand, our proposal has
something in common with proposals for enhancing the security of SHA-like hash
designs such as [12] in that we also focus on the code of expanded message words.

Future Improvements on Collision Attacks: With respect to the attacks
of [24, 27], both whitenening with parameter t ≥ 4 and message interleaving
techniques still yield a derived hash function for which collisions can not be found
with effort below 280. Although it is impossible to predict the improvements in
collision attacks we make a few comments on the robustness of our techniques. In
general, the message pre-processing we propose makes will apply to other attacks
of the same genre, because: (1) message modification in general is much harder,
(2) multi-step message modification techniques are almost impossible, and (3)
the constraints on Δm are targeted at preventing effective “front-loading” of
differential paths.

Acknowledgments

The authors would like to thank Scott Contini, Russ Housley, Burt Kaliski, Jim
Randall, Ron Rivest, Moti Yung, and the anonymous reviewers for helpful com-
ments. Special thank to Paul Hoffman for discussions on implementation issues.

References

1. E. Biham and R. Chen. Near Collisions of SHA-0. In Advances in Cryptology –
Crypto’04 , Springer-Verlag, August 2004.

2. E. Biham and R. Chen. New Results on SHA-0 and SHA-1. In Crypto’04 Rump
Session, August 2004.

3. E. Biham, R. Chen, A. Joux, P. Carribault, W. Jalby and C. Lemuet. Collisions in
SHA-0 and Reduced SHA-1. In Advances in Cryptology – Eurocrypt’05 , Springer-
Verlag, May 2005.

114 M. Szydlo and Y.L. Yin

4. J. Coron, Y. Dodis, C. Malinaud, and P Puniya Merkle-Damgrd Revisited : How
to Construct a Hash Function In Advances in Cryptology – Crypto’05, Springer-
Verlag, 2005.

5. F. Chabaud and A. Joux. Differential Collisions in SHA-0. In Advances in Cryp-
tology – Crypto’98, Springer-Verlag, August 1998.

6. I. Damg̊ard. A Design Principle for Hash Functions, In Advances in Cryptology –
Crypto’89, Springer-Verlag, 1990.

7. M. Daum and S. Lucks. The Story of Alice and her Boss In Rump session of
Eurocrypt’05. http://www.cits.rub.de/MD5Collisions/.

8. H. Handschuh and H. Gilbert Security Analysis of SHA-256 and Sisters. Proceed-
ings of the Workshop on Selected Areas in Cryptography - SAC’03, Springer-Verlag,
2003.

9. S. Halevi and H. Krawczyk Strengthening Digital Signatures via Randomized Hash-
ing, Internet-Draft, May 12, 2005. http://www.ietf.org/internet-drafts/draft-irtf-
cfrg-rhash-00.txt.

10. P. Hawkes and M. Paddon and G. Rose. On Corrective Patterns for the SHA-2
Family. http://eprint.iacr.org/2004/207

11. A. Joux. Collisions for SHA-0. In Rump session of Crypto’04, August 2004.
12. C. Jutla and A. Patthak A Simple and Provably Good Code for SHA Message Ex-

pansion, IACR Eprint archive, Report 2005/247, http://eprint.iacr.org/2005/247.
13. V. Klima: Finding MD5 Collisions on a Notebook PC Using Multi-message Modi-

fications, IACR Eprint archive, Report 2005/102, http://eprint.iacr.org/2005/102.
14. A. Lenstra and X. Wang and B. de Weger. Colliding X.509 Certificates, IACR

Eprint archive, Report 2005/067. http://eprint.iacr.org/.
15. R. Merkle. One Way hash Functions and DES, In Advances in Cryptology –

Crypto’89, Springer-Verlag, 1990.
16. K. Matusiewicz and J. Pieprzyk. Finding Good Differential Patterns for Attacks

on SHA-1. IACR Eprint archive, December 2004.
17. Y. Naito and Y. Sasaki and N. Kunihiro and K. Ohta. Improved Collision Attack

on MD4 IACR Eprint archive, Report 2005/151.
18. V. Rijmen and E. Oswald. Update on SHA-1. In Topics in Cryptology – CT-RSA

2005, Springer-Verlag, 2005.
19. NIST. Secure hash standard. Federal Information Processing Standard, FIPS 180,

May 1993.
20. NIST. Secure hash standard. Federal Information Processing Standard, FIPS 180-1,

April 1995.
21. NIST. Secure hash standard. Federal Information Processing Standard, FIPS 180-2,

August 2002.
22. X. Wang, F. Guo, X. Lai, and H. Yu. Collisions for Hash Functions MD4, MD5,

HAVAL-128 and RIPEMD. In Rump session of Crypto’04 and IACR Eprint
archive, August 2004.

23. X. Wang, X. Lai, F. Guo, H. Chen, X. Yu. Cryptanalysis for Hash Functions MD4 and
RIPEMD. In Advances in Cryptology – Eurocrypt’05, Springer-Verlag, May 2005.

24. X. Wang and Y.L. Yin and H. Yu. Finding Collisions in the full SHA-1. In Advances
in Cryptology – Crypto’05, Springer-Verlag, 2005.

25. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In Advances
in Cryptology – Eurocrypt’05, Springer-Verlag, May 2005.

26. X. Wang and H. Yu and Y.L. Yin. Efficient Collision Search Attacks on SHA-0.
In Advances in Cryptology – Crypto’05, Springer-Verlag, 2005.

27. X. Wang, A. Yao, and F. Yao, New Collision search for SHA-1, Rump Session
Crypto’05.

RFID-Tags for Anti-counterfeiting�

Pim Tuyls1 and Lejla Batina2

1 Philips Research Laboratories,
Prof. Holstlaan 4, 5656 AA, Eindhoven, The Netherlands

2 Katholieke Universiteit Leuven, ESAT/COSIC,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{Pim.Tuyls, Lejla.Batina}@esat.kuleuven.ac.be,
Pim.Tuyls@philips.com

Abstract. RFID-tags are becoming very popular tools for identification
of products. As they have a small microchip on board, they offer func-
tionality that can be used for security purposes. This chip functionality
makes it possible to verify the authenticity of a product and hence to
detect and prevent counterfeiting. In order to be successful for these secu-
rity purposes too, RFID-tags have to be resistant against many attacks,
in particular against cloning of the tag. In this paper, we investigate
how an RFID-tag can be made unclonable by linking it inseparably to a
Physical Unclonable Function (PUF). We present the security protocols
that are needed for the detection of the authenticity of a product when
it is equipped with such a system. We focus on off-line authentication
because it is very attractive from a practical point of view. We show that
a PUF based solution for RFID-tags is feasible in the off-line case.

Keywords: RFID, counterfeiting, authentication, ECC, Physical Un-
clonable Function (PUF).

1 Introduction

RFID-tags are low-cost pervasive devices that target to provide identification of
goods. They consist of an antenna connected to a microchip. Because of the pres-
ence of this microchip, they can be considered as a next generation of bar codes
with added functionality. In supply chain management they allow for tracking of
a product in several stages and locations. Several applications are being devel-
oped that can process the data obtained from the tags for their own purposes,
such as automated inventory management, automated quality control, access
control, payment systems and general security applications. Clearly, one of the
main success factors for a large deployment of RFID-tag based systems is the
price of the tags. Currently the prices range from a few cents up to 1$. Very cheap
tags do not carry a battery but obtain their power from the electromagnetic field
generated by the reader querying the tag.
� Lejla Batina is funded by a research grant of the Katholieke Universiteit Leuven,

Belgium. This work was supported by Concerted Research Actions GOA-Mefisto
2000/06 and GOA-Ambiorix 2005/11 of the Flemish Government and by the FWO
projects (G.0141.03) and (G.0450.04).

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 115–131, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

116 P. Tuyls and L. Batina

An emerging application that goes beyond identification, is the use of RFID-
tags for anti-counterfeiting purposes [1]. By locating an RFID-tag with specific
product and reference information on a product, one aims to verify the authentic-
ity of the product. Loosely speaking the verification is performed as follows. When
a product passes a reader, the reader checks whether the necessary and authentic
product and reference information is present on the tag. For this purpose it runs
a protocol with the tag. If the necessary information is there and verified to be
authentic, the product is declared to be genuine and otherwise not. However, by
capturing the necessary authentication information (obtained e.g. by eavesdrop-
ping the protocol between the tag and the reader), and by storing it in a new chip,
the attacker has effectively made a clone of the original tag that cannot be distin-
guished from an original tag by a reader. In order to make this cloning of the tag
infeasible, it should not be possible to derive the tag secrets by active or passive
attacks. Recently a lightweight version of such a protocol was developed in [1].

We stress however that it is rather easy to physically clone a tag. This means
that an attacker can capture the RFID-tag, investigate it, read out its memory
(with reasonable effort) and in particular its security related data (identification
number, reference information, keys, etc). Then she produces a new tag with
exactly the same data in its memory. When this tag is embedded into a product,
it is impossible for a reader to distinguish an authentic product from a fake one.
In order to protect an RFID-tag against this type of cloning attack, one can
of course attempt to prevent read out its memory by using several protective
measures [23, 18]. However these measures will increase the price of the tag so
much that it will become unacceptably high for its main application. In order
to thwart the physical cloning attacks we propose to use Physical Unclonable
structures (so-called PUFs) for storing secret key material in the tag. PUFs have
been proposed as a cost-effective mean to produce unclonable tokens for identi-
fication [20, 21]. They are realized as a physical system such that the function is
easy to evaluate but hard to clone.

The contributions of this paper are:

1. We identify the technological components of anti-counterfeiting technology
and give a general protocol for verifying the authenticity of an item.

2. We propose a solution for anti-counterfeiting based on RFID-tags and PUFs
[25, 22, 19, 20]. Our solution withstands physical cloning attacks as well as
active and passive attacks on the verification protocols. In particular, we
present a solution based on PUFs that are inseparably bound to an IC.

3. We present protocols for the off-line situation (as far as we are aware this is
the first time that the off-line case has been considered). Our construction
for the off-line case is designed in such a way that it inherits its security from
the underlying cryptographic algorithms (signature and secure identification
scheme) used.

4. We show that the construction that we propose is feasible on a constrained
device such as an RFID-tag. In order to minimize the area constraints of
a tag, we sacrifice slightly the efficiency of the involved cryptographic algo-
rithms. The obtained performance is still sufficient for our application.

RFID-Tags for Anti-counterfeiting 117

The paper is organized as follows. In Sect. 2 we identify the required tech-
nological components for anti-counterfeiting technology. Additionally, a general
protocol for the verification of the authenticity of a product is given. Section 3
mentions related work. An overview of PUFs and associated key-extraction al-
gorithms is given in Sect. 4. In Sect. 5 we introduce unclonable RFID-tags with
an Integrated PUF on board. Furthermore, we present verification protocols for
off-line authentication. Finally, in Sect. 6 we investigate the efficiency of the
off-line verification protocol in detail.

2 Model

In order to protect a product against cloning (counterfeiting) a detection mark
is embedded into the product or its packaging. This detection mark consists of
a physical and a digital part. The mark is put there by a legitimate authority.
The attacker (counterfeiter) has access to all components of this detection mark;
i.e. she can read it, remove it from the product and investigate it. Based on the
information that she obtained from investigating the legal detection mark, she
produces a fake detection mark. The goal of the attacker is to produce a fake
detection mark that can only with small probability be distinguished from an
authentic one.

2.1 Components of Anti-counterfeiting Technology

In order to protect a product against counterfeiting, technological means are
needed to verify whether the product is authentic or not. In order to make an
item unclonable, the following two components are needed.

1. Physical protection. This is obtained by using unclonable physical structures
embedded in the package (removal of the structure leads to its destruction).
One or more unique fingerprints derived from the physical structure will be
printed on the product for the verification of the authenticity of the product.

2. Cryptographic protection serving two goals. Firstly, cryptography provides
techniques (digital signatures) to detect and prevent tampering with data
(fingerprints) derived from a physical object. Secondly, it provides secure
identification protocols to identify a product. Those protocols do not leak any
necessary identification information to an eavesdropper attacking (actively
or passively) the communication channel.

Good candidates for unclonable physical structures, that can be used for physi-
cal protection purposes, are so-called Physical Unclonable Functions (PUFs) [25].

2.2 A General Anti-counterfeiting Protocol

We give intuition for protocols that can be used to check the authenticity of a
product based on embedding a PUF in the product in combination with the use
of cryptographic techniques.

First there is an enrollment phase, which is performed by some trusted au-
thority. During this phase the following steps are performed.

118 P. Tuyls and L. Batina

1. Several fingerprints are derived from the PUF by challenging it with multiple
challenges and recording the responses. These responses are then turned into
binary fingerprints (and some auxiliary data are derived for use during the
verification phase).

2. These challenges, fingerprints and auxiliary data are then signed with the
secret key sk of the issuer of the product (the issuer is assumed to be trust-
worthy).

3. The signatures, the challenges (corresponding to the fingerprints) and maybe
some auxiliary data (needed to perform processing during the authentication
phase) are also printed on the product (and/or stored in a database).

During the verification phase, the authenticity is checked by running the follow-
ing protocol.

1. The verification device reads the challenges and auxiliary data.
2. The verification device challenges the physical structure with one of the

challenges printed on the product. After having measured the responses, it
derives the fingerprint from the response based on the auxiliary data.

3. Then, using the fingerprint derived in step 2., the verification device checks
the signature to verify that the fingerprint, challenges and auxiliary data
were printed on the product by a legitimate authority. If the signature is not
correct, the product is not authentic.

We briefly analyze the security of this protocol. An attacker who wants to
counterfeit the product has to embed a fake physical structure on the product
that produces correct fingerprints to the challenges (with correct signatures). Un-
der the assumption that the physical structure is unclonable, she cannot produce
a clone of the originally embedded physical structure. More precisely, we assume
that given some challenges c1, . . . , cn and corresponding fingerprints s1, . . . , sn

she cannot produce a (fake) physical structure that produces the same finger-
prints s1, . . . , sn given the original challenges c1, . . . , cn. On the other hand she
can produce another structure and create challenges, auxiliary data and finger-
prints s′1, . . . , s

′
n according to the procedures used during enrollment. However,

since she does not know the secret key sk and the responses of her fake structure
will be different with very high probability, she will not be able to put the correct
signatures on these data. The verification device will detect that the signatures
are not correct and reject this as a fake product.

We note that the number of fingerprints that can be verified during a veri-
fication session is very limited by time and space constraints. Furthermore, the
attacker can easily capture the required fingerprints (by measuring the responses
according to the challenges printed on the product). Therefore the production
of a clone only requires the fabrication of a physical structure (PUF) producing
the same fingerprints for a limited number of challenges.

2.3 RFID Systems

The PUF based solution for preventing counterfeiting of goods that was pre-
sented above can be improved with active components, that are inseparably

RFID-Tags for Anti-counterfeiting 119

linked with a PUF. An example consists of an RFID-tag equipped with a mi-
crochip that is inseparably bound to a PUF. The precise construction is explained
in Sect. 4. Because of the presence of a microchip a secure identification proto-
col can be run without revealing any information on the fingerprint of the PUF.
Additionally, by inseparably linking the chip and the PUF, it becomes possible
to prevent leakage of the PUF measurement to the outside world.

Typical RFID systems consist of the following two components: the RFID-tag
and a reader. The reader will perform the verification to detect whether a tag is
authentic or not. The RFID-tag consists of an antenna connected to a microchip
that can store and read data and has possibly some dedicated hardware to
perform a small amount of computations. Typically, the power for performing
operations is obtained from the RF-field (by inductive coupling). A reader can
read and write data from/on a tag. The reader is often linked with some system
that can perform computations on the data that it receives from tags.

In order to use RFID-tags for anti-counterfeiting purposes, we proceed as
follows. An RFID-tag containing reference information is embedded in a product.
The (identification) data stored in the memory of the tag is signed with the
secret key sk of the legitimate issuer. The tag communicates with a reader for
verification purposes over a public channel. The ROM memory of the tag is
accessible to the attacker. The reader has a certified public key pk corresponding
the issuer’s secret key for verification of the digital signatures.

3 Related Work

The two most related papers to ours are [1] and [12]. Both deal with the cloning
problem of RFID-tags and hence with the problem of using RFID-tags for anti-
counterfeiting purposes. The focus of these papers is on efficient protocols for au-
thenticating these tags. In these papers, one focuses on authentication of RFID-
tags in the on-line situation; i.e. the reader shares a secret with the RFID-tag
that is being authenticated. Clearly, when RFID-tags will become widely used,
this is not a reasonable assumption.

4 Physical Unclonable Functions

For the sake of clarity we start with a definition of a PUF [9].

Definition 1. A Physical Unclonable Function is a function that maps chal-
lenges to responses and that is embodied in a physical object. It satisfies the
following properties:

1. Easy to evaluate: the physical object can be evaluated in a short amount of time.
2. Hard to characterize: from a number of measurements performed in polynomial

time, an attacker who no longer has the device and who only has a limited (poly-
nomial) amount of resources can only obtain a negligible amount of knowledge
about the response to a challenge that is chosen uniformly at random.

120 P. Tuyls and L. Batina

More formally the PUF model is as follows. We denote the PUF response to a
challenge C during the enrollment phase by X ∈ Rn and during the verification
phase by Y ∈ Rn (the pair (C, X) is called a Challenge-Response pair or CRP).
The PUF response according to a fake PUF is denoted by Z. The responses
X, Y, Z are modeled as random variables with probability distribution PX,Y,Z .

Definition 2. Let δ, εa, εe ≥ 0. A joint distribution PX,Y,Z on (Rn)3 is called
(δ, εa, εe)-reliable if it satisfies i) Prob(d(Y, X) > δ) ≤ εa and ii) Prob(d(Z, X)
≤ δ) ≤ εe; here the probabilities are over the joint distribution PX,Y,Z.

This definition implies that if the enrollment and authentication measurements
(according to the same challenge C) are performed on the same PUF, then these
responses are with high probability very close to each other. When on the other
hand the measurements are performed on different PUFs (modeling the fact that
the PUF used during authentication might be fake), the responses are with high
probability far apart.

We propose to equip the microchip on an RFID-tag with a PUF that is
inseparably linked to the chip. More precisely we define this as follows.

Definition 3. An Integrated Physical Unclonable Function (I-PUF) is a PUF
that additionally satisfies the following properties.

1. The I-PUF is inseparably bound to a chip which means that any attempt to
remove the PUF from the chip leads to the destruction of the PUF and the
chip.

2. It is impossible to tamper with the communication (measurement data) be-
tween the chip and the PUF.

3. The output of the PUF is inaccessible to an attacker.

In the remainder of the paper we will only use I-PUFs, while we will often use
just the abbreviation PUF.

The two best known examples of such I-PUFs are silicon PUFs [8] and coating
PUFs [19]. For coating PUFs it is expected that the additional measurement
circuit requires less than 1000 gates.

4.1 Key Extraction

In this paper, the term key extraction always refers to key extraction from noisy
data. Generally speaking a key extraction algorithm is built on a Secret Extrac-
tion Code [24]1. For the sake of simplicity we describe the algorithm in terms
of a shielding function [14] or (G, W)-pair [26], which generates a special set of
Secret Extraction Codes, while having all the necessary properties.

A function G(., .) : Rn×W → {0, 1}k is called δ-contracting if for all X there
exists helper data W ∈ W such that for all X ′ that lie within a sphere of radius
1 This construction can be applied to discrete and continuous data. An equivalent

construction for the discrete case, called Fuzzy Extractors, was developed by Dodis
et al. in [7].

RFID-Tags for Anti-counterfeiting 121

δ of X (||X ′ −X || ≤ δ) G(X ′, W) = G(X, W) (W denotes the space of helper
data. At this point it has to be considered as some abstract space.). We use
δ-contracting functions to extract keys S = G(X, W) from noisy data X using
helper data W . A function G(., .) is called ε-revealing if the helper data W leaks
less than ε bits on S (in the information theoretic sense), i.e. I(W ; S) ≤ ε. An
(ε, δ)-shielding function G : Rn×W → {0, 1}k is a function that is δ-contracting
and ε-revealing. It is used to extract a secret of length k from the PUF response
as follows.

– Enrollment Phase: The PUF is subjected to a challenge C and the re-
sponse X is measured. Then a random key S is chosen from {0, 1}k and
helper data W is computed by solving G(X, W) = S for W . The quadruplet
(IDPUF, C, W, S) is then stored in a CRP database.

– Verification Phase: When the PUF is inserted into the reader the PUF’s
identity is sent to the verifier. The verifier chooses a random challenge C from
his database and sends it to the PUF together with the corresponding helper
data W . Then the PUF is subjected to the challenge C and its response X ′

is measured. A key S′ is then computed as S′ = G(X ′, W).

Notice that if G(., .) is δ-robust and if PX,Y,Z is (δ, εa, εe)-reliable, then we obtain
Prob(G(Y, W) = S) ≥ 1−εa and Prob(G(Z, W) =⊥) ≥ 1−εe, which expresses

that FRR (False Rejection Rate) and FAR (False Acceptance Rate) are at most
εa and εe respectively. In the case of a passive attacker, the extracted key S
can then be used securely since I(W ; S) ≤ ε. Note that by adding a privacy
amplification this can be guaranteed (if the Réniy entropy is sufficiently large).
Also note that this procedure can be used to set up a shared secret key between
an I-PUF and a verifier (reader).

Since the PUF responses are often analog data2, the helper data typically
consists of three parts. The first part W1 allows to quantise the signal into a
binary representation while the second part W2 implements the error correction
and the random key choice on the binary data. The third part is used for privacy
amplification. For a detailed example, we refer the reader to [22] for the case of
optical PUFs.

4.2 Example

We present a brief example of key extraction from noisy (binary) data. It shows
that the required processing at the side of the RFID-tag is low. Assume for the sake
of simplicity that the responses X are uniformly random binary strings of length
k, i.e. X ∈ {0, 1}k. Furthermore, we assume that the authentication measurement
performed during the verificationphase can be modeled as a noisy observation over
a binary symmetric channel with cross-over probability p. Let C be an error cor-
recting code, with l codewords. Then, for a key s ∈R {0, . . . , l − 1} the helper

2 In the case of an optical PUF the PUF response is a speckle pattern which can be
seen as an analog picture. In the case of a coating PUF the responses are given by
capacitance values which are analog signals.

122 P. Tuyls and L. Batina

data w(x, s) = x ⊕ cs is generated during the enrollment phase (where cs ∈ C).
During the verification phase, the tag measures y and computes G(y, w(x; s)) =
Dec(y⊕w(x; s)) (Dec denotes the decoding algorithm of the error-correcting code
C). Clearly, if y corresponds to the same challenge (and the same PUF), s is ob-
tained after decoding while otherwise a random code-word is obtained or a decod-
ing error. Hence, the tag has to perform an XOR operation and a decoding opera-
tion. On a tag with some S-RAM (Static RAM) available (which most tags have),
the decoding costs less than 1000 gates3.

5 Unclonable RFID-Tags

5.1 Set-Up

In order to make unclonable RFID-tags, we introduce RFID-tags whose mi-
crochips are equipped with an I-PUF.

In our construction, the PUF is used as a secure memory for storing secret
keys. The secret key s which is usually stored in (protected) ROM or EEPROM
is derived from the PUF, when needed. In order to enable the generation of the
secret key s during authentication, helper data w is stored in (publicly accessible)
ROM (EEPROM). The key s is derived from the response X of the PUF by
means of a key extraction algorithm (Fuzzy Extractor and the helper data w are
used here). It was mentioned in Sect. 4.1 that the public helper data w reveals
only a negligible amount of information on the key s. Given our assumption on
I-PUFs in Def. 3, it follows that the key s is securely stored in the PUF.

5.2 Off-Line Authentication

We introduce our PUF-Certificate-Identity-based Identification scheme (PUF-
Cert-IBI) by following the definition of Certificate-based IBI in [3]. Let SI =
(Kg, P, V) denote a standard identification scheme (SI-scheme) where Kg de-
notes the key generation algorithm, and P, V denote the interactive protocols
run by the prover and verifier respectively. Let SS = (SKg, Sign, Vf) be a stan-
dard signature scheme (SS-scheme) [6] with SKg denoting the key generation
algorithm, Sign denoting the signing algorithm and Vf the verification algorithm
run by a verifier. We assign to each tag an identity I (this might be the serial
number or EPC-code of the tag or the serial number of the product in which it
has been embedded). To the PUF, the SI, the SS scheme and the identity I an
Identity-Based Identification scheme (MKg, UKg, P̂ , V̂) is associated as follows.

During enrollment the issuer uses SKg as the master-key generation algo-
rithm MKg. This means that the master key msk is used for generating signa-
tures and the corresponding public key mpk for verification of the signatures.
The user key generation algorithm UKg consists of the following steps. For each
RFID-tag, having identity I, the issuer then creates a public-secret key pair
3 In the case of coating PUFs the codewords are relatively short (200 bits) and the

information rate is high. In that case BCH codes are efficient in use.

RFID-Tags for Anti-counterfeiting 123

(pk, sk) using the algorithm Kg on input 1k. The couple (pk, sk) is the public-
secret key pair for the SI-scheme. The issuer runs the following protocol with
the tag.

– It requests the tag to challenge its PUF with a challenge c and to measure
the response x(c).

– The tag sends x(c) to the issuer.
– Based on the knowledge of x(c) and sk, the issuer determines the helper

data w such that sk = G(x, w).
– The helper data w are written into the ROM (EEPROM) memory of the

tag.

Finally, the issuer creates the following certificate that is also stored in the
ROM of the tag Cert ← (pk, Sign(msk, pk||I)). The usk is then put to usk ←
(PUF, Cert).

During authentication, the tag (in the role of the prover) runs the following
steps with a verifier.

– The tag runs the protocol P̂ which consists of the following steps.
• It challenges the PUF with c, measures the response y(c) and computes

sk ← G(y(c), w).
• Initialisation of the prover protocol P of the SI scheme with sk.
• It includes the certificate Cert in the first step of the algorithm P .

– The verifier uses (mpk, I) as input for the verification algorithm V̂ .
– When the verifier receives Cert from the tag, it first verifies Cert by running

Vf (mpk, pk||I, Sign(msk, pk||I)).
– If the certificate Cert is invalid the protocol is aborted.
– If Cert is valid, the verifier initializes V with pk and runs it.
– If V accepts, then the verifier accepts.

The security of our PUF-Certificate-Identity-based identification scheme follows
from the following theorem. This theorem is very similar to theorem 4.2 in [3].
The proof of the theorem presented there, can be applied here with minor mod-
ifications and is therefore omitted.

Theorem 1. Let SI be an SI-scheme and SS a uf-cma 4 secure SS-scheme. Let
PUF-Cert-IBI be the corresponding PUF-Certificate-Identity based Identification
scheme presented above. If the scheme SI is impersonation-atk secure then PUF-
Cert-IBI is impersonation-atk secure for atk ∈ {pa, aa, ca} (pa: passive attack,
aa: active attack, ca: concurrent attack).

It follows from this theorem, that by choosing an appropriate SI-scheme (with-
standing a pa, aa or ca) the PUF-Cert-IBI inherits the same property. If only
resistance against passive attacks is needed, the Schnorr Identification scheme
can be used. It is known that this scheme is secure against passive attacks under
the discrete logarithm assumption. It is also secure against active attacks under
the one-more-discrete-logarithm assumption. An alternative is to use Okamoto’s
identification scheme [16], which is secure against passive, active and concurrent
attacks under the discrete logarithm assumption.
4 uf-cma: existential unforgeability under chosen message attack.

124 P. Tuyls and L. Batina

5.3 Storage Requirements

In order to minimize the size of the ROM memory of the tag as small as pos-
sible, we propose to use Elliptic Curve Discrete Log based secure identification
schemes. This makes an implementation on an Elliptic Curve (EC) possible. For
the signature algorithm SS we take then the ECDSA approach. This makes
the size of the signatures no larger than 326 bits. The identification protocol
investigated in detail is the Schnorr identification protocol. For the sake of com-
pleteness the ECC version of the protocol is given in Appendix. The total storage
requirement for the public information (sP, Cert) is in total at most 500 bits.

6 Implementation

In this section, we discuss implementation issues, i.e. efficiency and size of the
hardware if the off-line RFID identification protocol is implemented on an RFID-
tag. As an example we take the Schnorr identification protocol, which allows a
user to prove knowledge of x given the public information gx in a group where
the discrete log problem is difficult. For the sake of efficiency, we investigate the
efficiency of this protocol on an elliptic curve over GF(2163).

6.1 Elliptic Curves over GF(2n)

Elliptic Curve Cryptography (ECC) relies on a group structure induced on an
elliptic curve. The set of points on an elliptic curve (with one special point
added, the so-called point at infinity O) together with point addition as a binary
operation has the structure of an abelian group. Here we consider a finite field of
characteristic 2, i.e. GF(2n). A non-supersingular elliptic curve E over GF(2n)
is defined as the set of solutions (x, y) ∈ GF(2n)×GF(2n) of the equation:

y2 + xy = x3 + ax2 + b , (1)

where a, b ∈ GF(2n), b 	= 0, together with O.
The point or scalar multiplication is the basic operation for cryptographic pro-

tocols based on ECDLP; it is easily performed via repeated group operations.
One can visualize these operations in a hierarchical structure. Point multiplica-
tion is at the top level. At the next (lower) level are the point operations, which
are closely related to the coordinates used to represent the points. The lowest
level consists of finite field operations such as addition, subtraction, multiplica-
tion and inversion required to perform the group operations.

The easiest way to calculate the point or scalar multiplication is by means of
the basic double-and-add algorithm [16].

The point addition in affine coordinates is performed according to the formu-
lae in [5]. In either case, the computation requires one field inversion (I), two
field multiplications (M) and one squaring (S), or 1I + 2M + 1S. As we are
interested in hardware implementations, we count squarings and multiplications
together as they are both executed on the same multiplier.

RFID-Tags for Anti-counterfeiting 125

The inversion operation is very costly in hardware and can be avoided by
choosing one of many options for projective coordinates. However, the number
of multiplications is increased in this case, which makes the choice of a multiplier
even more crucial for an efficient implementation. To summarize, we consider
squaring as a special case of multiplication and inversion is ignored. The addition
of two field elements requires the modulo 2 addition of the coefficients of the
elements. In hardware, a bit-parallel adder requires n XOR gates and the sum
can be computed in one clock cycle.

Another option for scalar or point multiplication is to use the so-called “Mont-
gomery ladder”[11]. According to López and Dahab [15], the Montgomery repre-
sentation requires less memory and offers a better protection against side-channel
attacks. These both facts are very useful in this case as memory i.e. registers are
very “expensive” in hardware implementations. Also, side-channel attacks are
an issue on RFID tags and also some cheap protection i.e. by means of balanced
implementations is desirable.

The idea of Montgomery dealt with speeding up the calculation of only the x-
coordinate of the result. More precisely, to add two points their difference is used
as an input parameter while the y-coordinate is not used in the algorithm. This
fact is justified by cryptographic applications that rarely use the y-coordinate.
The algorithm for scalar multiplication is a variant of the binary method and
was considered by López and Dahab [15]. They have also introduced an option
for recovering the y-coordinate.

We introduce the following notation: P4 = (x4, y4) = P2−P1, P5 = (x5, y5) =
2P1 and P3 = P1 + P2. The point P4 is included because the method for point
multiplication, as introduced by Montgomery, is defined by the fact that to
add two points their difference should be known (while y-coordinate is not
needed).

For point operations (addition and doubling) we consider the formulae of
López and Dahab in GF(2n). The operation count is A : D = 5M : 6M (2).
Here, A and D are the point operations and M is a field multiplication. We
remind the reader that field addition in hardware for GF(2n) is just a sim-
ple bit-wise XOR operation and therefore is not taken into account. We use
the formulae for point operations in the case of simple projective coordinates
i.e. xi = (Xi/Zi), i = 1, 2. The results of point doubling and point addition,
i.e. X5 = X(P5) and X3 = X(P3) = X(P1 + P2) respectively, are calculated as:

X5 = X1
4 + b · Z1

4

Z5 = X1
2 · Z1

2 .
(2)

X3 = x4 · Z3 + (X1 · Z2) · (Z1 ·X2),
Z3 = (X1 · Z2 + X2 · Z1)

2
.

6.2 ECC Operations

In this section we describe ECC operations at each level by following the top-
down approach.

126 P. Tuyls and L. Batina

Point Multiplication: For the point multiplication we chose the method of
Montgomery that maintains the relationship P2 − P1 as invariant [17]. It uses a
representation where computations are performed on the x-coordinate only.

Point Addition and Doubling: We start from Eqs. (2), but the goal is to
save some registers, as it is known that this part is usually the largest portion of
the total area. As the previous formulae require 3 intermediate registers (2 for
addition and 1 for doubling) [15], we eliminate 2 intermediate registers by intro-
ducing a few additional steps (cf. Algorithm 1). Therefore, we get the sequences
of operations that require only one intermediate variable (T). Moreover, this
value is manipulated only twice for addition and it could be even stored in some
RAM. In this way we made a trade-off between speed and area as point opera-
tions require now 7 and 8 multiplications for addition and doubling (instead of 5
and 6 M respectively). Furthermore, point operation can be also easily balanced
to achieve some simple side-channel protection such as in [2].

Algorithm 1. EC point addition and doubling

Require: X1, Z1, X2, Z2, x4 = x(P2 −P1)
Ensure: X(P1 + P2) = X(P3) = X3, Z3

1. Z3 ← X2 · Z1

2. X3 ← X1 · Z2

3. Z3 ← X3 + Z3

4. Z3 ← Z3
2

5. X3 ← X1 · Z2

6. X3 ← X3 · X2

7. X3 ← X3 · Z1

8. T ← x4 · Z3

9. X3 ← X3 + T

Require: b ∈ GF(2n), X1, Z1

Ensure: X(2P1) = X(P5) = X5, Z5

1. Z5 ← Z1
2

2. Z5 ← Z5
2

3. Z5 ← b · Z5

4. X5 ← X1
2

5. X5 ← X5
2

6. X5 ← X5 + Z5

7. Z5 ← X1
2

8. Z5 ← Z5 · Z1

9. Z5 ← Z5 · Z1

An Algorithm for Field Multiplication: The standard way to compute the
product c(x) = a(x) · b(x)modf(x) is the one that uses convolution and to which
we refer to as the classical algorithm [4].

The most compact architecture for this multiplication is the classical bit-serial
multiplier (the MSB or the LSB multiplier) [4].

6.3 A Prototype Elliptic Curve Processor

The Elliptic Curve Processor (ECP) is shown in Fig. 1. The operation blocks
are as follows:

– Control Unit(CU)
– Arithmetic Unit (ALU)
– Registers
– Memory: RAM

RFID-Tags for Anti-counterfeiting 127

RAM

Control Unit

Reg Reg

ALU

Reg

Fig. 1. Architecture of the elliptic curve processor

The Control Unit takes care of scalar multiplication, point operations and
all conversions to suitable representation. It also commands the ALU which
performs field multiplication, addition and inversion.

The largest part of the ALU is finite field multiplier, which is the MSB bit-
serial multiplier [4]. The inversion operation is also performed by the multiplier
using Fermat’s theorem.

6.4 Estimated Results

Here we estimate the performance of the ECC processor for the field GF(2163).
The irreducible polynomial is the pentanomial f(x) = x163 + x7 + x6 + x3 + 1.
One point multiplication takes 163 · 15M = 2445M . Conversion of coordinates
A → P and P → A takes respectively 2M and I +2M . Assuming that inversion
is done by means of Fermat the total for conversion is around 300M . This all
together results in approximately 3000M . One field multiplication (M) takes
163 cycles, which results in 489000 cycles for point multiplication. With a clock
frequency of even 1MHz one point multiplication would take less than half a
second, which is reasonably fast.

The estimated area complexity for the bit-serial multiplier is around 16n,
so for n = 163 we get around 2.6 kgates. Modular addition takes 163 XOR
gates, so it sums up to around 3 kgates. The complexity of the FSMs used
is hard to estimate, but as those are only some control logic it should not be
too large. However, the registers that are required might take quite large area
as 1FF is at least 6 NANDs. This is the most crucial aspect of the design.
However, as 3 registers are absolutely necessary for ALU, we believe that this
hardware component can be of the order of 5 kgates, depending on technology.
We assume that EC parameters as well as other pre-calculated input values can
be stored in memory blocks. It may further slow-down the performance but there

128 P. Tuyls and L. Batina

is certainly enough margin for that according to the RFID specifications [1]. This
also follows from the fact that the operating frequency for RFID tags is actually
13.56MHz according to the ISO 18000-3 standard while our estimates were
made assuming the operating frequency of 1MHz. Another option to minimize
hardware complexity would be to decrease the field size. Namely, 163 bit long
key sizes correspond to RSA keys that are much longer than 1024 bits [13].
More precisely, one could achieve that level of security with around 130 bits
long ECC keys. Consequently, scaling down ECC parameters would result in a
roughly linear decrease of hardware complexity. The fact that ECC is a suitable
technology for RFIDs was also concluded in the work of Wolkerstorfer [27]. That
work is the first complete ECC low-power and compact implementation that
meets the constraints imposed by the EPC standard. Yet, our solution can be
even smaller as our off-line authentication do not require full ECDSA algorithm
to be executed on a single tag. That allows for further optimization with respect
to area.

7 Concluding Remarks

In this paper we have shown that by equipping RFID-tags with I-PUFs, the tags
become unclonable and hence suitable for anti-counterfeiting purposes. Using our
protocols, both the physical cloning attack as well as the cloning attack based
on (actively or passively) attacking the protocol between the tag and the reader
can be prevented. It has been shown that the required protocols are feasible on
an RFID-tag in the off-line situation.

Acknowledgement. The authors thank Gregory Neven for his comments on an
earlier version on this manuscript and for the nice and constructive discussions
on this topic.

References

1. S. A. Weis A. Juels. Authenticating pervasive devices with human protocols. In
V. Shoup, editor, Advances in Cryptology: Proceedings of CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science, pages 293–308. Springer-Verlag, 2005.

2. L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede. Side-channel aware de-
sign: Algorithms and architectures for elliptic curve cryptography over GF(2n). In
Proceedings of the IEEE International Conference on Application-Specific Systems,
Architectures, and Processors (ASAP’05), Samos, Greece, July 23-15 2005. IEEE
Computer Society Press.

3. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security proofs for
identity-based identification and signature schemes. In C. Cachin and J. Ca-
menisch, editors, Proceedings of Eurocrypt 2004, volume 3027 of Lecture Notes
in Computer Science, pages 268–286. Springer-Verlag, 2004.

4. T. Beth and D. Gollmann. Algorithm engineering for public key algorithm. IEEE
Journal on Selected Areas in Communications, 7(4):458–465, May 1989.

RFID-Tags for Anti-counterfeiting 129

5. I. Blake, G. Seroussi, and N. P. Smart. Elliptic Curves in Cryptography. London
Mathematical Society Lecture Note Series. Cambridge University Press, 1999.

6. Y. Dodis, J. Katz, S. Xu, and M. Yung. Strong Key-Insulated Signature Schemes.
In Y. Desmedt, editor, Proceedings of 6th International Workshop on Practice and
Theory in Public Key Cryptosystems (PKC 2003), number 2567 in LNCS, pages
130–144. Springer-Verlag, 2003.

7. Y. Dodis, M. Reyzin, and A. Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In C. Cachin and J. Camenisch, editors,
Proceedings of Eurocrypt 2004, volume 3027 of Lecture Notes in Computer Science,
pages 523–540. Springer-Verlag, 2004.

8. B. Gassend et al. Silicon physical unknown functions. Proc. 9th ACM Conference
on Computer and Communications Security, November 2002.

9. B. Gassend, D. Clarke, M. van Dijk, and Srinivas Devadas. Controlled physical ran-
dom functions. In Proceedings of the 18th Annual Computer Security Conference,
December 2002.

10. D. Johnson and A. Menezes. The elliptic curve digital signature algo-
rithm (ECDSA). Technical Report CORR 99-34, Department of Combina-
torics & Optimization, University of Waterloo, Canada, February 24 2000.
http://www.cacr.math.uwaterloo.ca.

11. M. Joye and S.-M. Yen. The montgomery powering ladder. In B. S. Kaliski Jr.,
Ç. K. Koç, and C. Paar, editors, Proceedings of 4th International Workshop on
Cryptographic Hardware and Embedded Systems (CHES), number 2523 in Lecture
Notes in Computer Science, pages 291–302. Springer-Verlag, 2002.

12. A. Juels. Strengthening EPC Tags against Cloning. March 2005. manuscript.
13. A. Lenstra and E. Verheul. Selecting cryptographic key sizes. In H. Imai and

Y. Zheng, editors, Proceedings of Third International Workshop on Practice and
Theory in Public Key Cryptography (PKC 2000), number 1751 in Lecture Notes
in Computer Science, pages 446–465. Springer-Verlag, 2000.

14. J.P. Linnartz and P. Tuyls. New shielding functions to enhance privacy and prevent
misuse of biometric templates. In J. Kittler and M. Nixon, editors, Proc. of the
3rd Conference on Audio and Video Based Person Authentication, volume 2688 of
Lecture Notes in Computer Science, pages 238–250. Springer-Verlag, 2003.

15. J. López and R. Dahab. Fast multiplication on elliptic curves over GF(2m). In
Ç. K. Koç and C. Paar, editors, Proceedings of 1st International Workshop on
Cryptographic Hardware and Embedded Systems (CHES), volume 1717 of Lecture
Notes in Computer Science, pages 316–327. Springer-Verlag, 1999.

16. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

17. P. Montgomery. Speeding the pollard and elliptic curve methods of factorization.
Mathematics of Computation, Vol. 48:243–264, 1987.

18. Michael Neve, Eric Peeters, David Samyde, and Jean-Jacques Quisquater. Memories:
a Survey of their Secure Uses in Smart Cards. In 2nd International IEEE Security In
Storage Workshop (IEEE SISW 2003), pages 62–72, Washington DC, USA, 2003.

19. B. Skoric P. Tuyls. Secret key generation from classical physics. Philips Research
Book Series, September 2005.

20. R. Pappu. Physical one-way functions. Science, 297(6):2026, 2002.
21. G. J. Simmons. Identification of data, devices, documents and individuals. In Proc.

25th Ann. Intern. Carnahan Conference on Security Technology, pages 197–218,
Taipei, Taiwan, ROC, October 1–3, 1991. IEEE.

130 P. Tuyls and L. Batina

22. B. Skoric, P. Tuyls, and W. Ophey. Robust key extraction from physical unclonable
functions. In J. Ionnidis, A.D. Keromytis, and M. Yung, editors, Proceedings of
the Applied Cryptography and Network Security Conference 2005, volume 3531 of
Lecture Notes in Computer Science, pages 407–422. Springer-Verlag, 2005.

23. S. P. Skorobogatov and R. J. Anderson. Optical fault induction attacks. In B. S.
Kaliski Jr., Ç. K. Koç, and C. Paar, editors, Proceedings of the 4th International
Workshop on Cryptographic Hardware and Embedded Systems (CHES), volume
2523 of Lecture Notes in Computer Science, pages 2–12. Springer-Verlag, 2002.

24. P. Tuyls and J. Goseling. Capacity and examples of template protecting biomet-
ric authentication systems. In D. Maltoni and A.K. Jain, editors, Proceedings of
Biometric Authentication Workshop, volume 3087 of Lecture Notes in Computer
Science, pages 158–170. Springer-Verlag, 2004.

25. P. Tuyls, B. Skoric, S. Stallinga, A.H.M. Akkermans, and W. Ophey. Information
theoretical security analysis of physical unclonable functions. In A.S. Patrick and
M. Yung, editors, Proceedings of 9th Financial Cryptography and Data Security
Conference, volume 3570 of Lecture Notes in Computer Science, pages 141–155.
Springer-Verlag, 2005.

26. M van Dijk and P. Tuyls. Robustness, reliability and security of biometric key
distillation in the information theoretic setting. In N. Cerf and J. Cardinal, editors,
Proceedings of the 26th Benelux Symposium on Information Theory, volume 26 of
Proceedings of the WIC, 2005.

27. J. Wolkerstorfer. Scaling ECC Hardware to a Minimum. In ECRYPT workshop -
Cryptographic Advances in Secure Hardware - CRASH 2005, September 6-7 2005.
invited talk.

Appendix

Schnorr Identification Protocol Based on ECDLP

Here we specify the Schnorr identification protocol based on ECDLP that could
be performed in the case of off-line authentication. In this case a tag proves its
identity to a reader in a 3-pass protocol.

1. Common Input: The set of system parameters in this case consists of: (q,
FR, a, b, P, n, h). Here, q specifies the finite field, FR is a field representation,
a, b, define an elliptic curve, P is a point on the curve of order n and h is the
cofactor [10]. In this case of a tag authentication, most of these parameters
are assumed to be fixed.

2. Prover-Tag Input: The prover’s secret a such that Z = −aP .
3. Protocol: The protocol involves exchange of the following messages:

Prover P Verifier V
r ∈R Zn

X ← rP X �
e� e ∈R Z2t

y = ae + r y �
If yP + eZ = x
then accept else reject

RFID-Tags for Anti-counterfeiting 131

More precisely, steps of the protocol are:

– Commitment by a Prover-Tag: The tag picks r ∈R {0, . . . , n− 1}, and sends
x = rP to the reader.

– Challenge from a Verifier-Reader: The reader picks a number e ∈ [1, 2t] and
sends it to the tag.

– Response from a Tag: The tag computes y = ae + r and sends it to the
reader.

– The verifier checks that yP +eZ equals x. Check: yP +eZ = (ae+r)P +eZ =
aeP + rP + (−eaP) = rP = x

A “Medium-Field” Multivariate Public-Key
Encryption Scheme

Lih-Chung Wang1,
, Bo-Yin Yang2,3,

, Yuh-Hua Hu4,
, and Feipei Lai4

1 Department of Applied Mathematics, National Donghua University,
Hualien, Taiwan

lcwang@math.ndhu.edu.tw
2 Department of Mathematics, Tamkang University,

Tamsui, Taiwan
3 Taiwan Information Security Center, Taipei

by@moscito.org
4 Department of Computer Science and Engineering,

National Taiwan University,
Taipei, Taiwan

{d92015, flai}@csie.ntu.edu.tw

Abstract. Electronic commerce fundamentally requires two different
public-key cryptographical primitives, for key agreement and authen-
tication. We present the new encryption scheme MFE, and provide a
performance and security review. MFE belongs to the MQ class, an al-
ternative class of PKCs also termed Polynomial-Based, or multivariate.
They depend on multivariate quadratic systems being unsolvable.

The classical trapdoors central to PKC’s are modular exponentiation
for RSA and discrete logarithms for ElGamal/DSA/ECC. But they are
relatively slow and will be obsoleted by the arrival of QC (Quantum
Computers). The argument for MQ-schemes is that they are usually
faster, and there are no known QC-assisted attacks on them.

There are several MQ digital signature schemes being investigated
today. But encryption (or key exchange schemes) are another story —
in fact, only two other MQ-encryption schemes remain unbroken. They
are both built along “big-field” lines. In contrast MFE uses medium-
sized field extensions, which makes it faster. For security and efficiency,
MFE employs an iteratively triangular decryption process which involves
rational functions (called by some “tractable rational maps”) and taking
square roots. We discuss how MFE avoids previously known pitfalls of
this genre while addressing its security concerns.

Keywords: multivariate (MQ) public key cryptosystem, Galois field,
extended triangular form, tame-like map, tractable rational map, MFE.

� Sponsored in part by National Science Council under Grant NSC-94-2115-M-259-002.
�� Correspondence should be addressed to this author, who is partially sponsored by

the Taiwan Information Security Center (TWISC) project as well as the National
Science Council under Grant NSC-94-2115-M-032-010. A version of this paper is
available as a TWISC tech report and will be placed on the IACR ePrint archive.

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 132–149, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A “Medium-Field” Multivariate Public-Key Encryption Scheme 133

1 Introduction

Electronic commerce requires at least the following fundamental cryptological
primitives: one digital signature scheme, one public-key encryption or key ex-
change scheme, one hash function, and one symmetric cipher. The first two
involve public-key cryptosystems which are based on computationally difficult
problems. Currently deployed PKCs most often involve the integer factoring
problem (RSA, ESign, Rabin) or the discrete log problem (ECC, ElGamal/DSA).

We aim to introduce a new public-key encryption scheme that may be used
for key exchange. This is one of many schemes based on the difficulty of solving
a system of polynomial equations. PKCs of this class are usually described as
MQ, multivariate, or polynomial-based schemes.

Before we proceed, let us first answer the inevitable question of why research-
ing alternative schemes at all when RSA does just fine. One reason is for diversity.
When quantum computers that can handle 4000 quantum bits becomes reality,
Shor’s Algorithm [Sho94] can break all the abovementioned classical cryptosys-
tems very quickly. MQ-schemes are among the alternative PKCs that are weak-
ened by quantum computers (via Grover’s Algorithm [Gro96]), but not fatally
wounded. Another is for better efficiency in resource (time, power or chip area)
usage. This can let us do public-key cryptography in low-resource environments,
or make do with cheaper components where we already use PKI.

We will introduce MQ-schemes (Sec. 2), and discuss their state of the art in
Sec. 3. We construct the central map of our schemes in Sec. 4, and explain our
idea based on an overlay of two stepwise triangular systems. Further details are
given in Sec. 5 and the Appendices. Aspects of security are sketched in Sec. 6–8,
and we conclude with a discussion of performance and future possibilities.

2 About Multivariate or MQ-Schemes

An MQ-scheme is a cryptosystem whose security depend on this problem:

Solve the system p1 = p2 = · · · = pm = 0, where each pi is a quadratic
polynomial in x1, . . . , xn. All coefficients and variables are in K = GF(q).

This problem is called MQ (for multivariate quadratics). The complexity
clearly depend on q, the size of the finite field K (usually called the base field).
[GJ79] proved MQ to be generically NP-hard even over the smallest field, i.e.,
when q = 2. Of course, that does not necessarily imply MQ to be difficult on
average, but prevailing expert opinion does expect it to be exponential-time.

The public map P is the set of quadratics (p1, . . . , pm). Of course, we need
a trapdoor to build a public-key cryptosystem. In every practical MQ-schemes,
this is accomplished by having a P that is composed of three maps as in P =
T ◦ Q ◦ S. Q is the central map and it is quadratic. S and T are linear (affine)
maps. We can write them as S : x �→ x′ = MS x+ cS , T : y′ �→ y = MT y′ + cT .
Some authors also represent this as P : x ∈ Kn S�→ x′ Q�→ y′ T�→ y ∈ Km. We may
set P(0) = 0. The public key is then the mn(n+3)/2 nonconstant coefficients of

134 L.-C. Wang et al.

P (we assume q > 2). The secret key comprise the n(n + 1) + m(m + 1) entries
of (M−1

S ,M−1
T , cS , cT), plus parameters in Q needed for taking its inverse.

If Q is a random quadratic, then P would be equally random and infeasible
to decompose. But that is impossible, since we need to invert Q efficiently. Thus
the security of an MQ-scheme depends on the infeasibility of decomposing maps
in addition to that of solving large systems.

3 Current MQ-Schemes and Taxonomy

[WP05] is a good reference on the nomenclature and state-of-the-art on MQ-
schemes today. According to its classification, known MQ-schemes (extant and
broken) are a handful of modifiers applied to four different basic trapdoors (all
must be modified in practice) and two combinations:

C∗ or MIA: C∗ (and HFE below) can be used both for digital signatures
and for encryption. Proposed by Matsumoto-Imai [MI88], broken and re-
vamped by Patarin into the signature scheme C∗− or MIA− [Pat95, PGC98].
NESSIE-recommended SFLASH [Nessie, PCG01a] is an instance. Ding pro-
posed PMI+ (MIAi+) for encryption [DG05] (a modification from its pre-
cursor MIAi [Din04] after the cryptanalysis of Fouque et al [FGS05]).

HFE: The basic scheme of Patarin’s Hidden Field Equations [Pat96] is broken
([CDF03, FJ03]), but HFE− or HFEv− (or QUARTZ, [PCG01]) for signa-
tures and HFEi (or IPHFE, [DS05]) for encryption are not. This genre of
schemes are burdened by its slow private map.

UOV: Unbalanced-Oil-and-Vinegar by Kipnis et al [KPG99], a modification of
the earlier and broken [KS98] Oil-and-Vinegar. Useful for signing only and
secure only for some awkward choices of parameters [BWP05], hence usually
appears in combination with STS.

STS: Stepwise Triangular System. Variables are solved one by one in domino
fashion. This basic trapdoor and its ± modifications is broken by techniques
of [GC00] (also [CSV93, WBP04, YC05]). Two useful combinations follow:

STS-UOV: A better name might be LuOV (Layered unbalanced Oil-and-
Vinegar). In segments, vinegar variables are added and linear systems are
solved a la UOV. All extant examples are very new signature schemes.
The first is enTTS (Enhanced Tame Transformation Signature, [YC05]),
which is a sparse variant just like TRMS (Tractable Rational Map Signa-
ture, [WHL+05]). In the slightly later Rainbow [DS05a], Ding et al decide
to omit the sparsity.

STS-R: Stepwise Triangular System Repeated. Iteration of triangular runs are
made to cover inevitable rank vulnerabilities in a triangular system.

[WP05] calls MIA/HFE mixed-field ([YC05] terms them big-field). These are run
mostly over one single large field even though the public map is over a smaller
field. STS/UOV is in contrast called single-field or true [WP05, YC05] because
we actually work with the field units. Note that in TRMS several field extensions
are used at once. But if we expand all products, we see that they only serve to
create an efficiently-invertible sparse central map.

A “Medium-Field” Multivariate Public-Key Encryption Scheme 135

4 A Central Map for an MQ-Scheme, on Medium Fields

We now describe our idea, a central map Q with a very different flavor:

1. We use throughout the private map one particular field extension L above the
base field K. But this field extension does not cover (nearly) all the variables.
Hence, we are not dealing with a big-field MQ-scheme like in MIA or HFE.
Hence the title “Medium Field” and the name MFE.

2. We are solving for the variables in stepwise fashion, without using vine-
gar variables. Indeed, our scheme might be said to descend spiritually from
TTM [Moh99], which pioneered the STS-R approach, to combine two tri-
angular maps to cover the critical small end of the triangle. However, all
implementations of TTM had fatal flaws, and our techniques and ideas are
radically different, involving what have been called “tractable rational maps”
[WC04].

3. Our intended as practical example will have a base field of K = GF(216).
While it is not unknown for multivariates to have such a base field, it is
usually the result of scaling up for security reasons. Here we are designing
from the ground up to use such a big field.

4. Our currently favored example scheme is also tame-like [YC05]. This makes
the key generation process more efficient.

4.1 The Central Map

We define Q : L12 → L15 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1 = X1 + X5X8 + X6X7 + Q1;
Y2 = X2 + X9X12 + X10X11 + Q2;
Y3 = X3 + X1X4 + X2X3 + Q3;
Y4 = X1X5 + X2X7; Y5 = X1X6 + X2X8;
Y6 = X3X5 + X4X7; Y7 = X3X6 + X4X8;
Y8 = X1X9 + X2X11; Y9 = X1X10 + X2X12;
Y10 = X3X9 + X4X11; Y11 = X3X10 + X4X12;
Y12 = X5X7 + X2X11; Y13 = X5X10 + X7X12;
Y14 = X6X9 + X8X11; Y15 = X6X10 + X8X12.

(1)

Here each Xi and Yi is in L = Kk. Since L = Kk. We split X1, X2, X3, Q1, Q2, Q3
into components in Kk, such that q1 = 0, q2 = (x′

1)
2 and for i = 3 · · · 3k, qi is a

more or less a random quadratic in variables (x′
1, . . . , x

′
i−1).

X1 =

⎡⎢⎢⎢⎣
x′
1

x′
2
...

x′
k

⎤⎥⎥⎥⎦ , X2 =

⎡⎢⎢⎢⎣
x′

k+1
x′

k+2
...

x′
2k

⎤⎥⎥⎥⎦ , X3 =

⎡⎢⎢⎢⎣
x′
2k+1

x′
2k+2
...

x′
3k

⎤⎥⎥⎥⎦ ; Q1 =

⎡⎢⎢⎢⎣
q1
q2
...

qk

⎤⎥⎥⎥⎦ , Q2 =

⎡⎢⎢⎢⎣
qk+1
qk+2

...
q2k

⎤⎥⎥⎥⎦ , Q3 =

⎡⎢⎢⎢⎣
q2k+1
q2k+2

...
q3k

⎤⎥⎥⎥⎦.

136 L.-C. Wang et al.

4.2 An Inverse to the Central Map

Idea: We may arrange X1, X2, . . . , X12, Y4, Y5, . . . , Y15 ∈ L, into 2×2 matrices:

M1 =
[

X1 X2
X3 X4

]
, M2 =

[
X5 X6
X7 X8

]
, M3 =

[
X9 X10
X11 X12

]
;

M1M2 =
[

Y4 Y5
Y6 Y7

]
, M1M3 =

[
Y8 Y9
Y10 Y11

]
, MT

2 M3 =
[

Y12 Y13
Y14 Y15

]
.

(2)

Q is inverted in three triangular steps, simple linear algebra gives that

Y4Y7 − Y5Y6 = det(M1M2) = detM1 det M2,

and similarly,

Y8Y11 − Y9Y10 = det M1 det M3, Y12Y15 − Y13Y14 = det M2 det M3.

Thus, knowing Y4, . . . , Y15, we can find det M1, det M2, and det M3, provided
that none of them is zero (we will need a square-root taking operation, which is
one-to-one and onto, and not very hard – as we shall show – in a char = 2 field,
and for appropriately chosen k). Further

Y1 = X1 + det M2 + Q1, Y2 = X2 + det M1 + Q2, Y3 = X3 + det M3 + Q3.

Therefore, having found det M1,det M2,det M3, we reduce the components of
Y1, Y2, Y3 to a triangular form in the xi:

X1 + Q1 = Y1 +
√

(Y4 × Y7 + Y5 × Y6)(Y8 × Y11 + Y9 × Y10)(Y12 × Y15 + Y13 × Y14)−1

X2 + Q2 = Y2 +
√

(Y4 × Y7 + Y5 × Y6)(Y8 × Y11 + Y9 × Y10)−1(Y12 × Y15 + Y13 × Y14)

X3 + Q3 = Y3 +
√

(Y4 × Y7 + Y5 × Y6)−1(Y8 × Y11 + Y9 × Y10)(Y12 × Y15 + Y13 × Y14)

then we apply a second triangular step to compute X1, X2, and X3 component
by component. If X1 	= 0, from det M1 we can also find X4. We can now obtain
the rest of the variables. However, it is not necessary to have X1 	= 0. This
will make a difference in the security analysis — we omit the details, please see
Appendix B.

It remains to flesh out our skeletal description, explain our design decisions,
and try to show how our approach avoids the mistakes made in earlier designs.

5 Sample Implementations Using a “Tower” Approach

We start by taking L = K4. We will use (for simplicity) qi = cixi−1xi−2 for
i = 3 · · · 11. S and T are respectively affine maps of L12 and L15, selected
according to Eq. 5 such that the resultant public map P = T ◦ Q ◦ S does not
have a constant term.

A “Medium-Field” Multivariate Public-Key Encryption Scheme 137

5.1 The Sample Scheme MFE-1

We will take K = GF(216). K is implemented as a degree-two extension of
GF(28), and L as a degree four extension of K that is a composition of two
degree-two extensions. We multiply in GF(28) via a 256× 256 (64kB) table. We
may alternatively use log-and-exp tables, which are somewhat slower.

From GF(28) to L we need to do three degree-two extensions. This can be
aided by the following observation: Let F ′ = F [x]/(x2 + x + α) be a valid deg-
2 extension of the char-2 finite field F , then so is F ′′ = F ′[y]/(y2 + y + αx) a
valid extension of F ′. The arithmetic of the “tower” extensions may then be done
efficiently using Karatsuba multiplication/inversion ([KO63]):

(ax + b)(cx + d) = [(a + b)(c + d) + bd] + [αac + bd] , (3)

similarly, (ax + b)−1 =
[
b(a + b) + αa2]−1

[ax + (a + b)] ; (4)

where we are operating in a field extension from F to F [x]/(x2 + x + α). Mul-
tiplication by α is a lot easier than a regular multiplication because it is fixed.
Squaring is also easier than a regular multiplication. Indeed, we find a normal
basis of GF(28), i.e., an x such that (x, x2, x4, x8, x16, x32, x64, x128) forms a basis
of GF(28), and represent by a byte

∑7
i=0 bi2i the element

∑7
i=0 bix

2i ∈ GF(28).
Build a multiplication (or log-exp) table accordingly. Squaring then become no
more than a byte rotation. It is consistent with our own implementations that
with every extra stage in the tower, a multiplication or division takes a little
more than 3× time. A squaring always cost less than 1/10 of a multiplication.

Keys and Generation: The private key is the coefficients in S, T and the ci’s
for a total of 5,904 elements of K or about 12kB. The public key comprise the
60× 48× 51/2 = 73, 440 coefficients of P or about 147kB.

While MQ-schemes typically use interpolation or a similar technique (cf.
[Wol04]) to generate the key, a faster method [YC05, YCCh04] applies
here because our scheme is tame-like [YC05]. Let P be given by the
quadratics

yk =
∑

i

Pikxi +
∑

i

Qikx2
i +
∑
i>j

Rijkxixj , k = 1 · · ·m.

Expand each central equation in Yi into its 4 y′
i components. Each central equa-

tion in y′
γ has less than 20 cross-terms παβx′

αx′
β , where παβ ’s are constants of

the system or one of the ci’s (we keep these metadata in a precomputed table).

Pik =
m∑

γ=1

⎡⎢⎣(MT)k,γ

⎛⎜⎝[γ ≤ 12](MS)γi +
∑

παβ x′
αx′

β
in y′

γ

παβ ((MS)αi(cS)β + (cS)α(MS)βi)

⎞⎟⎠
⎤⎥⎦

Qik =
m∑

γ=1

⎡⎢⎣(MT)k,γ

⎛⎜⎝ ∑
παβ x′

αx′
β

in y′
γ

παβ (MS)αi(MS)βi

⎞⎟⎠
⎤⎥⎦

138 L.-C. Wang et al.

Rijk =
m∑

γ=1

⎡⎢⎣(MT)k,γ

⎛⎜⎝ ∑
παβ x′

αx′
β

in y′
γ

παβ ((MS)αi(MS)βj + (MS)αj(MS)βi)

⎞⎟⎠
⎤⎥⎦

In the formula for Pik, the notation [γ ≤ 12] means a term that is only present
if γ ≤ 12. For every pair i < j, we first find

Rijk =
∑

πxαxβ is a term of yk

[π ((MS)αi(MS)βj + (MS)αj(MS)βi)]

for every k, then multiply the vector by the matrix MT to find all Rijk at once
([YC05, YCCh04]). We are then able to compute the entire key in less than 5
million K-multiplications, Finally, the constant part cT of T is computed thus:

(cT)k =
n∑

p=1

⎡⎣(MT)k,	

⎛⎝(cS)	 +
∑

π xαxβ in y�

π (cS)α(cS)β

⎞⎠⎤⎦ . (5)

Details of encryption and decryption operations may be filled in as above.

5.2 Other Sample Schemes

Aside from the “regular” scheme with K = GF(216) and k = 4. We will also
present contrasting data for other instances of MFE.

MFE-1′: Here we use k = 5 (L = GF(280)) instead of 4. The computations are
significantly more complex and time-consuming.

MFE-0: In what we shall call the “mini”-implementation, we use K = GF(28)
and L = GF(232). Everything else is as in the above section.

MFE-0+: Run like MFE-0, but we use redundancy to make failure to decrypt
less likely. When encrypting, always treat two blocks (B,B′) by sending
P(B),P(B′),P(B′ �B−1), where B−1 means to take the patched inverse in
K of every component, and � means addition modulo |K|.

GF(28) multiplications are three times faster than GF(216) multiplications.
Therefore, running the encryption function of MFE-0 three times is still faster
than one run of the encryption function of MFE-1, and let us have the smaller
key sizes of MFE-0. Other implications are given below.

6 Security: A Basic Overview

Security analysis for MQ-schemes are hampered by the lack of “provable secu-
rity”. As far as we know, the only attempt in this area is due to [Cou03], which is
not followed up actively. As a result, while it is easy to show that an MQ-scheme
is insecure by presenting a cryptanalysis. So far a cryptologist can only show that
current attacks don’t work and are not likely to work. We try to do the best
we can under the circumstances. Currently known attacks on polynomial-based
PKCs can be roughly classified into four kinds:

A “Medium-Field” Multivariate Public-Key Encryption Scheme 139

Correlation/Statistical Attacks: A common systemic attacks agains sym-
metric ciphers, but usually not applied against PKCs. We will describe how
known attacks do not apply.

Linear Algebra-Based (Rank) Attacks: There are several attacks that are
quite generic against when the target scheme is not of the big-field type. We
just give numbers below, please refer to Appendix.

Algebraic Attacks: Today this means any attack whose functionality comes
down to solving a system of equations, usually distilled out of the structure
of the system. We will summarize what is out there.

Very Specialized Attacks: Obviously, an attacks has to focus on some aspect
or structural element of the cryptosystem. Some do have wide applicability to
a whole class of schemes. Others do not. While this does not detract from the
sheer intellectual worth or ingenuity of such cryptanalytic work, many ideas
(e.g., the Gilbert-Minier attack [GM02] on the original SFLASH) simply do
not work on other schemes.

We repeat that showing our scheme to resist known attacks does not guarantee
security. It is an “original sin” for MQ-schemes today. We only do what we can.

6.1 Cryptanalysis Using Rank Attacks

“Rank Attacks” encompasses the High Rank, Low Rank, and Separation of Oil-
and-Vinegar attacks. These are basic attacks against the STS or UOV based
trapdoors in MQ-schemes. Summary: Rank Attacks do not work on any of our
sample encryption schemes.
Separation of Oil and Vinegar (UOV) Attacks: Security level for the

“mini” version (MFE-0) is about 2100; the “full” version (MFE-1) is
about 2140.

High Rank (Dual Rank) Attack: Security level is about 2128 for the “mini”
version (MFE-0) and 2181 for the full-version (MFE-1).

Low Rank (Rank or MinRank) Attack: Security level is about 2128 for the
“mini” version (MFE-0) and 2172 for the full-version (MFE-1).

See Appendix A and references, particularly [GC00, YC05] for more details.

6.2 Cryptanalysis Under Specialized Attacks

We tested our scheme not to succumb to any earlier known special attacks, and
will henceforth ignore specialized attacks without wider applicability.

One specialized attack that is specifically designed around is the Patarin
Relations, which can also be considered an algebraic attack or a linear-algebra
attack. It can defeat many systems that can be described as of intrinsic rank 2.

Eq. 2 specifically had its matrix products arranged M1M2, M1M3 and MT
2 M3.

This take full advantage of the incommutativity of matrix multiplication. Other
arrangements will create lots of Patarin relations. For example, if we have N =
M1M2 and N ′ = M2M3 as matrices with components linear in the Yi’s, then we
will have the relations corresponding to NM3 = M1N

′. As the central equations
Eq. 2 are written, no such Patarin relations can be found. We should only need
to test this over GF(2); we actually tested it over GF(4).

140 L.-C. Wang et al.

7 Algebraic Cryptanalysis

Basically, an algebraic attack refers to any technique that ends with a system-
solving exercise. There may be guessing, or there may not be. The system
may be linear, as in Patarin relations vs. C∗ [Pat95], or non-linear, as in the
Courtois/Faugère-Joux attack on HFE [CDF03, FJ03].

As characterized above, eventually an algebraic attack comes down to solving
a system. At the moment, the state of the art is represented by the F5 Gröbner
Bases algorithm of J.-C. Faugère [Fau02] while the best in commercially available
software is a version of its predecessor F4 [Fau99]. Few know how to program
F5 correctly, and certainly the only known implementation of F5 is the one used
by Dr. Faugère to break HFE challenge 1.

The alternative methods of XL/FXL by Courtois et al [CKP+00] has been
analyzed in some depth [Die04, YC04]. Today XL is usually considered to be
a poor relative of F4-F5 [AFS+04]. The asymptotic behavior of the Gröbner
Bases-XL family is described by [BFS04, BFS+05, YCCo04].

7.1 On Extraction of More Tractable Systems

An important remark is that the attack against HFE challenge 1 involves an
algebraic extraction of the actual system to be solved, one that is significantly
more overdetermined than the original.

Such an extraction method does not yet exist in general. At the moment, we
have no way of distinguishing our encryption scheme from random quadratics.
This conclusion is supported by some experiments that we ran, trying to solve
systems directly very miniaturized version of MFE, using GF(4) as the base field,
and the tool is MAGMA and the version of F4 built therein.

Finally, we cannot rule out the possibility that a method of extracting some
solvable system exists, as for example in [JKM+05]. However, we have checked
for it and as far as we can tell, no known method of such extraction works.

Let us describe the [JKM+05] attack briefly. This is an attack on the encryp-
tion scheme TRMCv2 of Wang and Chang [WC04]. The scheme in question has
many variables and equations, but there is a subsystem of 7 variables and 11
equations. This was part of the trapdoor in TRMCv2. The weakness is that by
running a simplified version of XL, the attacker can essentially isolate this cen-
tral subsystem. It transpires that the algorithm terminates at the degree that is
required to solve the central subsystem, instead of the much higher degree that
would be required of a generic system with as many equations and variables.

In addition to trying to execute the attack of [JKM+05] and determining that
it does not work at a sufficiently low degree, we ran a clique-finding algorithm
on our central polynomials and found no such central subsystem.

7.2 On the Speed of Equation-Solving

It seems that the most effective XL-derived method is FXL [YCCo04], and the
same idea applies to F5 at least in the generic case. There are also cases [YC04]
where XL will not and F5 may not work.

A “Medium-Field” Multivariate Public-Key Encryption Scheme 141

Indeed, our formulation satisfies a lemma from [YC04] which says that XL
will not work and FXL will take longer. F5 is also expected to take longer.
However, in the following we still assume that FXL and F5 will function as if
the polynomials are generic.

Assuming generic equations, F4-F5 works at the smallest degree D where
the coefficient of tD in (1− t)m−n(1 + t)m is negative ([BFS+05, Die04, YC04]).
The dominant term of the time complexity is given by E

((
n+D−1

D

))
, where

E(N) is the cost of elimination on a N ×N matrix equation. Here we have 48
variables and 60 equations. Assuming a field size of q = 256 (our “mini” version
MFE-0), and E(N) = N2(4 + lg N/4) in cycles (a very optimistic assumption
that dense-matrix elimination can work asymptotically like sparse-matrix system
solving that we take from [YCCo04]), we get about 297 cycles or about a 293

multiplications security level.
The conclusion is, then, that even discounting the possibility that such meth-

ods don’t function at all, Gröbner Bases and related methods should be more
effective than Rank Attacks against our schemes, but does not reduce them down
below 280, with a lot of safety margin.

8 Correlation or Statistical Cryptanalysis and Defenses

A correlation or statistical attack works by finding imbalances of some kind in
the ciphertext. Not many attacks on public-key cryptosystems use correlation or
statistical artifacts. We comment on only two particular items specifically.

One is the attack [FGS05] on the scheme PMI. Fouque et al used differential
cryptanalysis with a one-sided statistical distinguisher. While ingenious, this
does not apply to our scheme and this is confirmed by some empirical tests.

The other is much more relevant. Our system requires X1X4−X2X3, X5X8−
X6X7, and X9X12 − X10X11 all to be non-zero to get a successful decryption.
Thus a single block will fail to decrypt with the probability 3/|L|.

For the “mini” sample scheme MFE-0, this chance of failure is about 2−30

and for the “regular” sample scheme MFE-1, it is about 2−62. This results in a
possible attack by guessing at decryption failures. However, there are no ways
an attacker can easily check that two decryption faults correspond to a zero
in the same determinant. Nor can we generate easily from two samples where
X1X4 = X2X3 another such point to make use of the algebraic variety. We can
not guarantee that this takes care of all correlation attacks based on decryption
faults. However, we can expect any such attack to be significantly more difficult
than just finding one such inscrutable ciphertext. Therefore, we can presume
that our “regular” schemes are quite secure enough under such attacks.

8.1 Possible Cryptanalysis Via Correlation and Timings

Note that X1 = 0 is much more useful to an attacker than any of the determi-
nants being zero, since it is an affine formula. An adversary that can distinguish
whether X1 = 0 can execute the following attack:

142 L.-C. Wang et al.

Cryptanalysis: encrypt random blocks (vectors) and send to a decryption de-
vice (or oracle) for decryption continuously; register the blocks Bi whose corre-
sponding ciphertext result in decryption failures (or timing “tells”). Every time
a block Bi is registered, send aBi + (1 − a)Bj for decryption for a few random
a’s and for each j < i to find out if it correspond to a vector where X1 = 0
(because such vectors form an affine subspace). Collect 12 such blocks in an
expected 12|L| attempts. With high probability we have found the affine sub-
space X1 = 0. Restrict the polynomials to this affine subspace, and we can
perform a MinRank attack on the reduced equations corresponding to Y3. Since
each evaluation takes about mn(n + 3)/2 multiplications, total time used is
12|L| · [mn(n + 3)/2K-multiplications + decryption time].

This idea of using decryption failures seems to have been proposed by Proos
et al [HNP+03]. The elegant cryptanalysis proposed in that paper resulted in
a revision in the current version of NTRU Encryption. The idea of using Min-
Rank after some other reduction may have been invented by J. Ding against the
predecessor version to enTTS [DY04].

The analysis above shows that the “mini” scheme MFE-0 cannot be used if a
Proos-like attack can execute. However, all is not lost. According to Appendix B
we can decrypt even when X1 = 0 without an appreciable speed difference,
and the same straightforward attack cannot function with X1X4 − X2X3 = 0,
say, because it is not an affine relation. Therefore, the method in Appendix B
guarantees that such a cryptanalysis will not operate.

Further, for MFE-1, we have |L| = 264, n = 48, m = 60, we find the com-
plexity of the cryptanalysis to be about 285 multiplications in L, which is just
about barely enough even if a good distinguisher exists for a Proos-like attack.
For MFE-1′, where L = K5 rather than L = K4, the system runs quite a bit
slower but the Proos-style attack will still have a cryptanalytic complexity above
290 even if it works. Finally, Even if we can find an alternative way to execute
the Proos attack on MFE-0, we can still use MFE-0+.

9 Performance Data

Having shown that our schemes safe under known attacks, it then becomes
meaningful to test performances. We compare our first implementations with
the Crypto++ library (benchmarks at www.eskimo.com/∼weidai/benchmarks.
html).

We wrote our programs in plain C. The Crypto++ libraries are of course
highly optimized binaries. We think that the data above shows that the schemes
we propose are competitive with RSA and ECC. Of course, Crypto++ is not
nearly as well optimized for ECC as for RSA.

For comparison’s sake, we recompiled our programs in C51 and tested for
performance on a 8051. One block decryption of MFE-1 (K = GF(216), L = K4)
can run on the following smart card development platform (24kB EEPROM,
including private key and code; 256 byte idata, 10 MHz basic Intel 8052, no
extra RAM) in 0.28s. MFE-0 or MFE-0+, if applicable, will be even faster.

A “Medium-Field” Multivariate Public-Key Encryption Scheme 143

Table 1. Our Schemes on a 1.6GHz Opteron compared with Crypto++ library

Scheme BlockLen PublKey SecrKey Genkey SecrMap PublMap
RSA-1024 1024 bits 128 B 320 B 0.86 sec 4.75 ms 0.18 ms
RSA-2048 2048 bits 256 B 640 B 2.71 sec 28.13 ms 0.45 ms
ECIES-155 310 bits 40 B 20 B 0.02 ms 7.91 ms 12.09 ms

MFE-1 512 bits 12 kB 147 kB 9.90 ms 32 μs 0.86 ms
MFE-1′ 640 bits 18 kB 283 kB 23.40 ms 48 μs 1.79 ms
MFE-0 256 bits 6 kB 73 kB 2.21 ms 2.3 μs 0.12 ms
MFE-0+ 512 bits 6 kB 73 kB 2.21 ms 7.0 μs 0.39 ms

Given that RSA-1024 on an Infineon SLE-66X64-2P (a costly card with 208
kB ROM, 5052 bytes RAM, 64 kB EEPROM, and 1100-bit Advanced Crypto
Engine) takes 0.4s at the same clock, this shows that the idea is of particu-
lar interest for situations where resources are scarce. This continues the trend
of [ACD+03, YCCh04], that is, multivariates are worth investigating for low-
resource and pervasive cryptography even without the interest of diversity.

We also note that usually decrypting is centralized at the servers while en-
crypting is done by those the masses sending data to the servers. So decrypting
is more likely to be resource-intensive. Conversely, someone who uses a smart
card to verify his or her identity is more likely to want to receive sensitive data,
so a smart card (a low resource item) is more likely to want to do decryption.

A lot of optimizations remains to be done for a new scheme, of course, in
particular the degree-five extension may be implemented better. We will of course
pursue this direction in the future.

10 Discussions and Summary

We make a few comments about history and speculate on the future.

10.1 A Little History

This is the triangular (or tame, or de Jonquiere) map of algebraic geometry:

y1 = x1, y2 = x2 +f2(x1), y3 = x3 +f3(x1, x2), . . . , yn = xn +fn(x1, . . . , xn−1).

A PKC based on a triangular central map is known to be weak early on. The idea
of using a composition of triangular maps to cover the vulnerability (Segmentwise
Triangular System Repeated, STS-R) is pioneered by TTM [Moh99]. However,
the execution was faulty and no rank-safe instances are available [GC00, YC05].

10.2 An Issue of Terminology

The seminal idea for our scheme is invented by L.-C. Wang [WC05]. The basic
approach is not limited to that of the original TTM. It is more versatile, e.g., in
a char = 2 field Eq. 2 may start like this without being really different:

y′
1 := [Y1]1 = (x′

1)
2 + [detM2]1 .

144 L.-C. Wang et al.

This type of map is called the “Tractable Rational Map” according to Wang et
al [WC04, WC05], who term PKCs that uses compositions of “tractable rational
maps” as “tractable rational map cryptosystems” (TRMC) [WC04, WC05]. Of
course, there is a fine line between being nicely general and overly broad. For
example, the central maps of HFE and C∗ are both “tractable rational” maps
(just as they are “tame transformation” maps, which themselves are a subsets
of “tractable rational” maps; it must be added that the authors of TRMC do
not claim HFE as a TRMC). How to demarcate clearly between various cryp-
tosystems has not been agreed by all scholars of the MQ genre. An interested
reader can look up what is claimed as “Tractable Rational Map Cryptosystem”
in [WC04, WC05] as well as the eponymous pending patent application.

11 Conclusion

No other current instances of multivariates with the STS-R structure, such as
TTM (Tame Transformation Method), are being employed today. We think we
have shown that while the devil is in the details, there is some merit to the
idea of STS-R, in particularly. However, to make it useful, we have to generalize
by using more general operations than TTM. In particular, we need introduce
rational operations and square roots. Therefore it is not TTM any more.

The introduction of new tricks naturally may introduce vulnerabilities. We
showed how the failure of decryption may be enough of a discrepancy for crypt-
analysis as Proos et al did for the previous version of NTRU. We also show our
attempts at avoiding a similar fate. We leave to future historians to judge what
and how our scheme will be considered.

As is lamented in many discussions (e.g., [WP05]) about MQ-schemes, some
measure of provable security seems to be hard to come by. Many scholars are
studying this topic. But even so, we hope to have shown that there is some life
in MQ-schemes, in particular non-big-field types.

References

[ACD+03] M. Akkar, N. Courtois, R. Duteuil, and L. Goubin, A Fast and Secure
Implementation of SFLASH, PKC 2003, LNCS v. 2567, p. 267–278.

[AFS+04] G. Ars, J.-C. Faugère, M. Sugita, M. Kawazoe, and H. Imai, Comparison
of XL and Gröbner Bases Algorithms over Finite Fields. Asiacrypt 2004,
LNCS v. 3329, p. 323–337.

[BFS04] M. Bardet, J.-C. Faugère, and B. Salvy, Complexity of Gröbner Basis
Computations for Regular Overdetermined Systems, INRIA report RR-
5049, and presentation at the ICSPP conference honoring Daniel Lazard.

[BFS+05] M. Bardet, J.-C. Faugère, B. Salvy, and B.-Y. Yang, Asymptotic Be-
haviour of the Degree of Regularity of Semi-Regular Polynomial Systems,
presentation at the MEGA 2005 conference and a chapter of Ph.D. thesis
by M. Bardet, 2004.

[BWP05] A. Braeken, C. Wolf, and B. Preneel, A Study of the Security of Unbal-
anced Oil and Vinegar Signature Schemes, CT-RSA 2005, LNCS v. 3376,
p. 29-43.

A “Medium-Field” Multivariate Public-Key Encryption Scheme 145

[CSV93] D. Coppersmith, J. Stern, and S. Vaudenay, Attacks on the Birational
Permutation Signature Schemes, Crypto 1993, LNCS v. 773, p. 435–443.

[Cou03] N. Courtois, Generic Attacks and the Security of Quartz, PKC 2003,
LNCS v. 2567, p. 351–364. Also see E-Print Archive 2004/143.

[CDF03] N. Courtois, M. Daum, and P. Felke, On the Security of HFE, HFEv-,
and Quartz, PKC 2003, LNCS v. 2567, p. 337–350.

[CKP+00] N. Courtois, A. Klimov, J. Patarin, and A. Shamir, Efficient Algorithms
for Solving Overdefined Systems of Multivariate Polynomial Equations,
Eurocrypt 2000, LNCS v. 1807, p. 392–407.

[Die04] C. Diem, The XL-algorithm and a conjecture from commutative algebra,
Asiacrypt 2004, LNCS v. 3329, p. 338–353.

[Din04] J. Ding, A New Variant of the Matsumoto-Imai Cryptosystem through
Perturbation, PKC 2004, LNCS v. 2947, p. 305–318.

[DG05] J. Ding and J. Gower. Inoculating Multivariate Schemes Against Differ-
ential Attacks, private communication and manuscript, E-Print Archive,
2005/255.

[DS05] J. Ding and D. Schmidt, Cryptanalysis of HFEv and Internal Perturbation
of HFE, PKC 2005, LNCS v. 3386, p. 288–301.

[DS05a] J. Ding and D. Schmidt, Rainbow, a new Digitial Multivariate Signature
Scheme, ACNS 2005, LNCS v. 3531, p. 164–175.

[DY04] J. Ding and Y. Yin, Cryptanalysis of a TTS Implementation, presentation
at the IWAP 2004 conference.

[Fau99] J.-C. Faugère, A New Efficient Algorithm for Computing Gröbner Bases
(F4), Journal of Pure and Applied Algebra, 139 (1999), p. 61–88.

[Fau02] J.-C. Faugère, A New Efficient Algorithm for Computing Gröbner Bases
without Reduction to Zero (F5), Proc. ISSAC, ACM Press, 2002.

[FJ03] J.-C. Faugère and A. Joux, Algebraic Cryptanalysis of Hidden Field Equa-
tions (HFE) Cryptosystems Using Gröbner Bases, Crypto 2003, LNCS v.
2729, p. 44-60.

[FGS05] P.-A. Fouque, L. Granboulan, and J. Stern, Differential Cryptanalysis for
Multivariate Schemes, Eurocrypt 2005, LNCS v. 3494, p. 341–353.

[GJ79] M. Garey and D. Johnson, Computers and Intractability, A Guide to the
Theory of NP-completeness, Freeman and Co., 1979, p. 251.

[GM02] H. Gilbert and M. Minier, Cryptanalysis of SFLASH, Eurocrypt 2002,
LNCS v. 2332, pp. 288–298.

[GC00] L. Goubin and N. Courtois, Cryptanalysis of the TTM Cryptosystem,
Asiacrypt 2000, LNCS v. 1976, p. 44–57.

[Gro96] L. K. Grover, A fast quantum mechanical algorithm for database search,
Proc. 28th Annual ACM Symposium on Theory of Computing (1996),
p. 212–220.

[HNP+03] N. Howgrave-Graham, P. Nguyen, D. Pointcheval, J. Proos, J. Silverman,
A. Singer, and W. Whyte, The Impact of Decryption Failures on the Se-
curity of NTRU decryption, Crypto 2003, LNCS v. 2729, p. 226–246.

[JKM+05] A. Joux, S. Kunz-Jacques, F. Muller, P.-M. Ricordel, Cryptanalysis of the
Tractable Rational Map Cryptosystem, PKC 2005, LNCS v. 3386, pp. 258–
274.

[KO63] A. Karatsuba and Yu. Ofman, Multiplication of Many-Digital Numbers by
Automatic Computers, Doklady Akad. Nauk SSSR 145(1962), p. 293-294.
Translation in Physics-Doklady 7(1963), p. 595-596.

146 L.-C. Wang et al.

[KPG99] A. Kipnis, J. Patarin, and L. Goubin, Unbalanced Oil and Vinegar Signa-
ture Schemes, Crypto 1999, LNCS v. 1592, p. 206–222.

[KS98] A. Kipnis and A. Shamir, Cryptanalysis of the Oil and Vinegar Signature
Scheme, Crypto 1998, LNCS v. 1462, p. 257–266.

[MI88] T. Matsumoto and H. Imai, Public Quadratic Polynomial-Tuples for Ef-
ficient Signature-Verification and Message-Encryption, Eurocrypt 1988,
LNCS v. 330, p. 419–453.

[Moh99] T. Moh, A Public Key System with Signature and Master Key Functions,
Communications in Algebra, 27 (1999), pp. 2207–2222.

[Nessie] NESSIE project homepage: http://www.cryptonessie.org.
[Pat95] J. Patarin, Cryptanalysis of the Matsumoto and Imai Public Key Scheme

of Eurocrypt’88, Crypto 1995, LNCS v. 963, p. 248–261.
[Pat96] J. Patarin, Hidden Fields Equations (HFE) and Isomorphisms of Poly-

nomials (IP): Two New Families of Asymmetric Algorithms, Eurocrypt
1996, LNCS v. 1070, p. 33–48.

[PGC98] J. Patarin, L. Goubin, and N. Courtois, C∗
−+ and HM: Variations Around

Two Schemes of T. Matsumoto and H. Imai, Asiacrypt 1998, LNCS v.
1514, p. 35–49.

[PCG01] J. Patarin, N. Courtois, and L. Goubin, QUARTZ, 128-Bit Long Digital
Signatures, CT-RSA’01, LNCS v. 2020, p. 282–297. Update available at
[Nessie].

[PCG01a] J. Patarin, N. Courtois, and L. Goubin, FLASH, a Fast Multivariate Sig-
nature Algorithm, CT-RSA 2001, LNCS v. 2020, p. 298–307. Update avail-
able at [Nessie].

[Sho94] P. W. Shor, Algorithms for quantum computation: Discrete logarithms and
factoring, Proc. 35th Annual Symposium on Foundations of Computer Sci-
ence (S. Goldwasser, ed.), IEEE Computer Society Press (1994), p. 124-134.

[WC04] L.-C. Wang, and F.-H. Chang, Tractable Rational Map Cryptosystem,
manuscript, E-Print Archive 2004/046.

[WC05] L.-C. Wang, and F.-H. Chang, Revision of Tractable Rational Map Cryp-
tosystem, manuscript, on the E-Print Archive.

[WHL+05] L.-C. Wang, Y.-H. Hu, F.-P. Lai, C.-Y. Chou, and B.-Y. Yang, Tractable
Rational Map Signature, PKC 2005, LNCS v. 3386, p. 244–257.

[Wol04] C. Wolf, Efficient Public Key Generation for Multivariate Cryptosystems,
Proc. ERACOM Conference and Workshop on Cryptographic Algorithms
and their Uses, July 5-6, 2004, also see E-Print Archive 2003/089.

[WBP04] C. Wolf, A. Braeken, and B. Preneel, Efficient Cryptanalysis of
RSE(2)PKC and RSSE(2)PKC, SCN ’04, LNCS v. 3352, p. 294–309.

[WP05] C. Wolf and B. Preneel, Taxonomy of Public-Key Schemes based on
the Problem of Multivariate Quadratic Equations, manuscript, E-Print
Archive 2005/077.

[WP05a] C. Wolf and B. Preneel, Superfluous keys in Multivariate Quadratic asym-
metric systems, PKC 2005, LNCS v. 3386, p. 275–287. Extended version
at E-Print Archive 2004/361.

[YC04] B.-Y. Yang and J.-M. Chen, All in the XL Family: Theory and Practice,
ICISC 2004, LNCS v. 3506, p. 67–86.

[YC05] B.-Y. Yang and J.-M. Chen, Rank Attacks and Defence in Tame-Like Mul-
tivariate PKC’s, ACISP 2005, LNCS v. 3574, p. 518–531. Older version
at E-Print Archive 2004/061.

A “Medium-Field” Multivariate Public-Key Encryption Scheme 147

[YCCh04] B.-Y. Yang, J.-M. Chen, and Y.-H. Chen, TTS: High-Speed Signatures
from Low-End Smartcards,, CHES 2004, LNCS v. 3156, p. 371-385.

[YCCo04] B.-Y. Yang, J.-M. Chen, and N. Courtois, On Asymptotic Security Esti-
mates in XL and Gröbner Bases-Related Algebraic Cryptanalysis, ICICS
2004, LNCS v. 3269, p. 401-413.

A A Brief Description of Rank Attacks

We describe the linear algebra based attacks briefly.

Separation of Oil-and-Vinegar: Consider a set of polynomials pi(x1, . . . ,
xn) where the set of variables {x1, . . . , xn} can be partitioned into disjoint
portions V � O, such that no quadratic term has both factors in the oil set
O. If we specify each variable in the vinegar set V, we can solve for variables
in O as a linear system. This is called a UOV structure.

Kipnis et al attacked UOV structures by distilling the oil subspace
[KPG99, KS98]. If the size of the minimal vinegar set in the central equa-
tions is v, then we can find the subspace spanned by the oil variables in
q2v−n−1(n− v)4 field multiplications.

We may have to manuever further, but such a distillation usually leads
to a cryptanalysis of the scheme. A program to find maximal cliques can
verify that if we ignore the qi terms and work with L, then m = 15, n = 12,
v = 9. So even for L = GF(232) of the “mini” version (cf. Sec. 5), the security
level way above 2100, high enough. This seems reasonable because the Kipnis
attack seems more inclined toward signature schemes.

High Rank Attack: We can associate with every quadratic polynomial a sym-
metric matrix. To be exact p =

∑
i≤j aijxixj +

∑
i bixi corresponds (for

char = 2) to Mp := [Aij], where Aij = aij if i < j, aji if i > j, and 0 if i = j.
Usually r = rank Mp, if and only if we may write

∑
i≤j aijxixj =

∑
lalb for

a minimum independent set of linear forms l1, . . . , lr.
Equations in the public key tend to be full rank as are most of their linear

combinations. However, when a variable xi does not appear in a polyno-
mial p, the associated matrix will be singular, i.e., rank Mp < n. Thus, if
some variable appears in only one central equation, for most pairs of public
polynomials (pi, pj), we can find a linear combination pi + λijpj that is less
than full rank. The same goes for linear combinations of (u + 1)-tuples of
public polynomials if a variable appears only in u central equation. A simple
and a more algebraic (and complete) implementation of this idea is given by
[GC00] and [CSV93] respectively.

All told, this attack costs around
(
un2 + n3

6

)
qu multiplications if all

goes correctly. Here, each Xi appears at least in 4 equations, so even for
L = GF(232) in MFE-0 (our “mini” scheme) in Sec. 5, we have a security
level above 2128. It is quite a bit higher for the “regular” scheme MFE-1.

Low Rank Attack: This is approximately dual to the previous attack.
If p has rank r, then a random vector x satisfy Mpx = 0 with probabil-

ity q−r. We guess at x and try to solve for the linear combination that

148 L.-C. Wang et al.

is Mp. For encryption schemes m > n, so there are too many matrices
spanned by those corresponding to the public polynomials. In this case we
must guess at x1, . . . ,xk, where k = �m/n�. This makes the linear system∑

λiMpi
xj = 0, j = 1 · · · k in the λi overdetermined. If there is a unique

linear combination with the minimum rank r, we expect to find it within qkr

tries.
This is also known as the MinRank kernel attack. When there are more

than one kernel of the same minimal rank that are mostly disjoint, we can do
better [YC05]. If there are c such kernels, then we expect to find one within
qkrkmn(m + n)/c field multiplications.

Here, Y3 = X3 + detM3 + X1X2 + [
...], or rather its first component, cor-

responds to a single equation with the smallest rank where k = 2, r = 2,
q = 232 (for the “mini” version MFE-0). Thus the formulas of [GC00, YC05]
both gives more than 2128 as the security level.

Please refer to [GC00] for details on High and Low Rank attacks, [KPG99,
BWP05] on the unbalanced Oil and Vinegar scheme, and [YC05] for a recent
summary.

B Inverting Q and Circumventing X1 = 0

Here is the last complete algorithm we implemented.

1. First find X1, X2, X3 in a triangular manner from

X1 + Q1 = Y1 +
√

(Y4 × Y7 + Y5 × Y6)(Y8 × Y11 + Y9 × Y10)(Y12 × Y15 + Y13 × Y14)−1

X2 + Q2 = Y2 +
√

(Y4 × Y7 + Y5 × Y6)(Y8 × Y11 + Y9 × Y10)−1(Y12 × Y15 + Y13 × Y14)

X3 + Q3 = Y3 +
√

(Y4 × Y7 + Y5 × Y6)−1(Y8 × Y11 + Y9 × Y10)(Y12 × Y15 + Y13 × Y14)

The actual pre-computations are:
(a) Calculate det(M1M2) = Y4 × Y7 + Y5 × Y6.
(b) Calculate det(M1M3) = Y8 × Y11 + Y9 × Y10.
(c) Calculate det(MT

2 M3) = Y12 × Y15 + Y13 × Y14.
(d) Calculate det M1 =

√
det(M1M2) det(M1M3)/det(MT

2 M3).
(e) Calculate det M2 = det(M1M2)/det M1, detM3 = det(M1M3)/det M1.
(f) Calculate Y1 + Q1, Y2 + Q2, Y3 + Q3 and the triangular substitutions.

2. if X1 	= 0 compute M−1
1 and thereby M2 and M3, and we are done.

3. if X1 = 0, we let B = (det(MT
2 M3))−1 and compute A = X−1

2 , then

X7 = Y4A

X8 = Y6A

X11 = Y8A

X12 = Y9A

A “Medium-Field” Multivariate Public-Key Encryption Scheme 149

X9 = det(M3)B (Y12X8 + Y14X7)
X10 = det(M3)B (Y13X8 + Y15X7)
X5 = det(M2)B (Y12X12 + Y13X11)
X6 = det(M2)B (Y14X12 + Y15X11)
X4 = det(M3)B (Y6X6 + Y7X5)

Note that this avoids trouble if any other variable vanishes! We can also
see that this case takes 1 fewer multiplication and 4 fewer additions after a
careful count, and should pad the time upwards with some delaying action.

A New Security Proof for Damg̊ard’s ElGamal

Kristian Gjøsteen

Department of Telematics,
Norwegian University of Science and Technology, 7491 Trondheim, Norway

kristian.gjosteen@item.ntnu.no

Abstract. We provide a new security proof for a variant of ElGamal
proposed by Damg̊ard, showing that it is secure against non-adaptive
chosen ciphertext attack. Unlike previous security proofs for this cryp-
tosystem, which rely on somewhat problematic assumptions, our under-
lying problem is similar to accepted problems such the Gap and Decision
Diffie-Hellman problems.

1 Introduction

Damg̊ard [7] defined a variant of the ElGamal public key cryptosystem, and pro-
posed a proof of security against non-adaptive chosen ciphertext (CCA1) attacks
based on an assumption now commonly known as the knowledge-of-exponent
assumption [10, 2, 3]. Unfortunately, the knowledge-of-exponent assumption is
a somewhat strange and impractical assumption, and it would be better if we
could do without it.

In [3], one security proof is given for Damg̊ard’s cryptosystem and one for
the so-called CS-lite scheme [6], the latter modeled on the former. We propose a
security proof for Damg̊ard’s cryptosystem modeled upon the real security proof
for CS-lite.

CS-lite essentially consists of two parts, an ε-smooth and an ε-universal hash
proof system (HPS). The ε-smooth HPS is used to hide the message, and the
ε-universal HPS ensures that an adversary cannot create valid ciphertexts with
a certain property.

Damg̊ard’s cryptosystem does not include the ε-universal HPS, but instead
verifies the property for each ciphertext directly, discarding discarding such ci-
phertexts. Except for this, the two systems are essentially identical. This suggest
that the ε-universal hash proof system in CS-lite points out exactly what we need
in order to prove Damg̊ard’s scheme secure without the knowledge-of-exponent
assumption.

We therefore propose a new problem similar to conventional problems such
as the Gap Diffie-Hellman problem. If the new problem is hard, we are able to
show that Damg̊ard’s cryptosystem is semantically secure against a non-adaptive
chosen ciphertext attack.

Our new assumption is defined in Sect. 2 and the new security proof is in
Sect. 3. But first we need to recall the definition of hash proof systems in Sect. 1.1.
� Supported by the Norwegian Research Council.

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 150–158, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A New Security Proof for Damg̊ard’s ElGamal 151

We actually define a family of cryptosystems. Note that for the instantia-
tion based on Paillier’s Composite Residuosity, the knowledge of exponent as-
sumption does not hold for the relevant subgroup, so the approach of [3] would
not work.

While all of the instantiations described are homomorphic, the scheme based
on the Decision Composite Residuosity problem is additively homomorphic (mul-
tiplying ciphertexts corresponds to adding messages), which is a very useful
property.

1.1 Oracle Smooth Projective Hash Proof Systems

We refer the reader to [5] for more information about projective hash families
and hash proof systems.

Let G be a set and let H be a subset of G. We say that a set W is a witness
set for H if there is an easily computable bijection ρ : W → H . This bijection
allows one to prove that an element x ∈ G really is in H by presenting an element
w ∈ W such that ρ(w) = x. This obviously assumes that it is easy to recognize
elements of W .

For two sets S, S′, denote by Map(S, S′) the set of maps from S to S′. Let
L be a finite, abelian group. We are interested in looking at maps from G to
L. There is a natural map Map(G, L) → Map(H, L) given by restriction. From
ρ we get a bijection ρ∗ : Map(H, L) → Map(W, L). We also denote the natural
map Map(G, L) → Map(W, L) by ρ∗.

A projective hash family is a tuple (G, H, L, L′, W, ρ, M), where G is a set, H
is a subset of G, L is a group, L′ is a subgroup of L, W is a witness set for H
with isomorphism ρ, M is a subset of Map(G, L).

Let x be sampled randomly from G\H , let f be sampled uniformly at random
from M , and let y be sampled uniformly at random from L′. We say that the
projective hash family is (t, ε)-oracle-smooth if for any algorithm A with run-
time less than t that accepts as input triples from (G \H)×Map(W, L)×L and
outputs a bit b, we have that

AdvSHF (G,H,L,L′,W,ρ,M)
A =

|Pr[A(x, ρ∗(f), f(x)) = 1]− Pr[A(x, ρ∗(f), f(x)y) = 1]| < ε.

The algorithm A is given access to an oracle that evaluates f at any point in H ,
but refuses to evaluate f on points in G \H .

We note that the definitions given in [5] are statistical, but our definition is
computational. For statistical results, we omit the time bound t.

As usual, a hash proof system P for (G, H) is a projective hash family (G, H, L,
L′, W, ρ, M) along with efficient algorithms for sampling M and W , and evalu-
ating the functions f ∈ M and ρ∗(f) ∈ Map(W, L) (given descriptions of the
functions). The algorithm for evaluating f is called the private evaluation al-
gorithm, and the algorithm for evaluation ρ∗(f) is called the public evaluation
algorithm.

152 K. Gjøsteen

The sampling algorithms sample from some distribution that is δ-close to the
uniform distribution (that is, the statistical distance between the distributions
is at most δ). We say that δ is the hash proof system’s approximation error.

We shall provide constructions for smooth hash proof systems in the next
section.

2 Oracle Subgroup Membership Problems

Let G be a finite, abelian group. Let H be a non-trivial, proper subgroup of
G, and suppose that there is a subgroup J of G such that H ∩ J is trivial and
HJ = G. Then H × J ! G.

There is an isomorphism H×J → G given by (x, y) �→ xy. Let σ : G → H×J
be the inverse of this isomorphism. The splitting problem for (G, H, J) is to
compute this map for a given random z ∈ G.

The subgroup membership problem for (G, H, J) is to decide if a challenge
element x ∈ G is sampled uniformly from H or from G \ H . (A stronger as-
sumption [9] samples the challenge element (x, y) uniformly either from H × J
or from (G×G) \ (H × J).)

The gap splitting problem for (G, H, J) is the same as the splitting problem,
but any solver is given access to an oracle that for any element x ∈ G returns 1
if x ∈ H , and 0 otherwise. This oracle is called the gap oracle.

We propose the following new problem.

Definition 1. The oracle subgroup membership problem for (G, H, J) is the
following problem. The adversary receives (G, H, J) and has free access to a gap
oracle for (G, H, J). After some computation, he requests the challenge element
x ∈ G. He must then decide if x ∈ H or if x ∈ G \ H, but he may no longer
query the gap oracle.

The adversary must be prevented from using the gap oracle after he has received
the challenge element to keep the problem from being trivial.

A decision function for (G, H, J) is a function d : G → {0, 1} such that
d(x) = 1 if and only if x ∈ H . We say that (G, H, J) is a trapdoor (oracle)
subgroup membership problem if there exists an efficiently computable decision
function.

We let AdvOSM(G,H,J)
A denote the advantage of the adversary A against the

(trapdoor) oracle subgroup membership problem. If E is the event that the
adversary A decides correctly,

AdvOSM(G,H,J)
A = 2|Pr[E]− 1/2|.

Note that the gap splitting problem and the oracle subgroup membership
problem are interactive problems. Given the splitting and subgroup member-
ship problems, the gap and oracle problems follow immediately by adding the
appropriate oracles.

A New Security Proof for Damg̊ard’s ElGamal 153

2.1 Diffie-Hellman Problems

Let L be a cyclic group of order p generated by g. We write the group multi-
plicatively.

The discrete logarithm to base g is the group isomorphism logg : L → Zp

given by logg g = 1.
The Computational Diffie-Hellman (CDH) problem [8] in L is, for random

x, y ∈ L, find z such that logg z = logg x logg y.
The Decision Diffie-Hellman (DDH) problem [4] in L is, for random x, y ∈ L

and z, decide if z is random or if logg z = logg x logg y.
The Strong Diffie-Hellman (SDH) problem [1] in L is the same as the CDH

problem, except that the problem solver is given access to a DDH oracle (on
input of (y′, z′) ∈ L× L, it decides if logg z′ = logg x logg y′).

Let G = L × L, let H be the subgroup generated by (g, x) (where x is a
random, non-trivial element), and let J be the subgroup generated by (1, g).
Then CDH is the splitting problem (G, H, J), DDH is the subgroup membership
problem (G, H, J), and SDH is the gap splitting problem (G, H, J).

If a = logg x, then (y, z) ∈ H if and only if z = ya. This means that a decision
function exists.

Remark 1. To get a proper equivalence of problems, we need to consider the
group H as sampled from some distribution.

Remark 2. There is a stronger version of SDH known as the Gap Diffie-Hellman
problem [11], where the gap oracle answers queries for arbitrary x.

Hash Proof System. We describe a projective hash family (G, H, L, L′, W, ρ, M).
Let L′ = L. Let (g1, g2) be a generator for H . Let W = Zp, and ρ(w) =

(g1, g2)w. Finally, let M be the set homomorphisms G → L of the form (x, y) �→
xk1yk2 , where (k1, k2) ∈ Zp × Zp.

We note that for any f(x, y) = xk1yk2 in M , the element f(g1, g2) ∈ L is suf-
ficient to allow efficient computation of ρ∗(f), since ρ∗(f)(w) = (gw

1)k1(gw
2)k2 =

(gk1
1 gk2

2)w = f(g1, g2)w.
This family is statistically 0-smooth [5]. Any sampling can be done uniformly

at random by sampling uniformly from {0, . . . , p−1}, so the approximation error
is 0.

2.2 Composite Residuosity Problems

Let n = pq be an RSA modulus where p and q are safe primes and gcd(n, φ(n)) =
1. Let G be the subgroup of quadratic residues in Z∗

n2 , let H be the subgroup
isomorphic to the subgroup of quadratic residues in Z∗

n, and let J be the subgroup
generated by residue class containing 1 + n.

We get a splitting problem (G, H, J) called the Computational Composite
Residuosity (CCR) problem, a subgroup membership problem (G, H, J) called
the Decision Composite Residuosity (DCR) problem. These were first proposed
by Paillier [12].

A decision function exists, since z ∈ H if and only if z|H| = 1.

154 K. Gjøsteen

Remark 3. The knowledge-of-exponent assumption does not hold for the sub-
group H , since we have the map x �→ xn taking elements of G to elements of H .

Hash Proof System. We describe a projective hash family (G, H, L, L′, W, ρ, M).
Let g be a generator for H . Let L = G, L′ = J , M = Hom(G, G), and

W = Zφ(n). Let [w] ∈ Zn be the residue class represented by w ∈ Z. Then
ρ([w]) = gw.

Any f ∈ Hom(G, G) is of the form x �→ xk. Therefore, the elements in the set
{0, . . . , nφ(n)/4− 1} are useful descriptions of the homomorphisms. Again, f(g)
is a useful description of ρ∗(f), since ρ∗(f)([w]) = f(gw) = (gk)w = f(g)w.

Assume p < q. As was shown in [5], this hash-family is 1/p-smooth.
Without p and q, we cannot sample elements uniformly from Hom(G, G) !

Zφ(n), but we can sample 4/(p − 1)-close to uniformly by sampling uniformly
from the set {0, . . . , �n/4� − 1}.

Given only n, we cannot sample uniformly from W , but by sampling uniformly
from {0, . . . , �n/4� − 1}, we get a sample distribution on W that is 4/p-close to
uniform. Therefore, the approximation error is 4/p.

2.3 Symmetric Subgroup Membership Problems

Let n = pq be an RSA modulus such that p′ = 2n + 1 is a prime. Let G be the
subgroup of quadratic residues in F∗

p′ , let H be the subgroup of order p and J
be the subgroup of order q.

Alternatively, let a, b, c, d be primes such that p = 2ab + 1 and q = 2cd + 1
are prime. Set n = pq. Let G be the subgroup of Z∗

n with Jacobi symbol 1, let
H be the subgroup of order 2ac and J be the subgroup of order bd.

A decision function exists, since z ∈ H if and only if z|H| = 1.
These problems are further discussed in [9].

Hash Proof System. We describe a projective hash family (G, H, L, L′, W, ρ, M).
Let g be a generator for H . Let L = G = L′, W = Z|H|, ρ([w]) = gw, where

[w] is the residue class represented by w ∈ Z, and M = Hom(G, G).
Any f ∈ Hom(G, G) is of the form x �→ xk. Therefore, the elements in the set

{0, . . . , |G| − 1} are useful descriptions of the homomorphisms. Again, f(g) is a
useful description of ρ∗(f), since ρ∗(f)(w) = f(gw) = (gk)w = f(g)w.

Let � be the smallest prime dividing |J |. As was shown in [9], this hash-family
is (t, 1/� + ε′)-smooth, where ε′ is the advantage of any algorithm with run-time
at most t against the oracle subgroup membership problem (G, J, H).

In the finite field case we know |G| and can sample elements uniformly from
Hom(G, G) ! Z|G|. In the ring case n/4 is a usable approximation of |G|. If we
know that |H | < 2t, we can sample 2−t0-close to uniform from W by sampling
from {0, . . . , 2t+t0 − 1}.

3 The Cryptosystem

First we describe the cryptosystem based on a trapdoor oracle subgroup mem-
bership problem (G, H, J) with a decision function d, and a hash proof system
P with projective hash family (G, H, L, L′, W, ρ, M).

A New Security Proof for Damg̊ard’s ElGamal 155

Key generation. The input is the hash proof system. A function f from M
is sampled using the sampling algorithms of P . The public key is pk =
(G, L, L′, W, ρ, ρ∗(f)), the private key is sk = (G, H, L, L′, f, d).

Encryption. The input is the public key and a message m ∈ L′. An element w
is sampled uniformly at random from W and ρ ∗ (f)(w) is computed using
the public evaluation algorithm. The ciphertext is (ρ(w), ρ∗(f)(w)m).

Decryption. The input is the secret key and a ciphertext (x, y) ∈ G× L. The
algorithm first verifies that x ∈ H by computing d(x). If x 	∈ H , failure is
reported and the ciphertext is discarded. Otherwise, the message yf(x)−1 ∈
L′ is returned.

Before we give the new security proof, we show that Damg̊ard’s cryptosystem
is really the same as our cryptosystem instantiated with the Diffie-Hellman group
structure.

In this case, the key generation algorithm does as follows. It selects a group
L of order p with a generator g1, samples a uniformly from {0, . . . , p − 1} and
sets g2 = ga

1 . The subgroup H is generated by (g1, g2). Then the key generation
algorithm samples k1 and k2 uniformly from {0, . . . , p − 1} and computes s =
gk1
1 gk2

2 . The public key is then (L, g1, g2, s), the private key is (L, a, k1, k2).
The encryption algorithm samples w uniformly from {0, . . . , p−1}, computes

the ciphertext as (x1, x2, y) = (gw
1 , gw

2 , swm).
The decryption algorithm checks that (x1, x2) ∈ H by checking that xa

1 = x2.
If it is, it returns the message yx−k1

1 x−k2
2 .

In Damg̊ard’s original scheme, the public key also consists of (L, g1, g2, s),
but s is computed as gb

1 for a random b. Our key generation algorithm yields
the exact same key distribution as Damg̊ard’s scheme. Indeed, if b ≡ k1 + ak2
(mod p) the public keys would be equal.

Theorem 1. Let (G, H, J) be a trapdoor oracle subgroup membership problem
and let P be a hash proof system with projective hash family (G, H, L, L′, W, ρ, M)
and approximation error δ. Let A be a non-adaptive chosen ciphertext adversary
against the semantic security of the cryptosystem based on P . Then

AdvA ≤ AdvOSM(G,H,J)
A′ + AdvSHF (G,H,L,L′,W,ρ,M)

A′′ + 2δ,

where the algorithms A′ and A′′ have essentially the same run-time as A.

Proof. We use the standard techniques of game-hopping.

Game 0. The initial game is the usual non-adaptive chosen ciphertext attack
against semantic security, which proceeds as follows: A simulator runs the key
generation algorithm with the hash proof system as input and receives a public
and a private key. It gives the public key to the adversary, and responds to the
adversary’s decryption queries by running the decryption algorithm with the
secret key.

When the adversary outputs his chosen messages, the simulator runs the
encryption algorithm on one message chosen at random and gives the resulting

156 K. Gjøsteen

challenge ciphertext to the adversary. The adversary then tries to guess which
message was encrypted.

If the adversary guesses correctly, we say that he wins the game.

Game 1. The first modification we make is to sample the element of W used
for creating the challenge ciphertext from the uniform distribution, not via P ’s
sampling algorithm. The difference in game behaviour is bounded by the ap-
proximation error δ.

Game 2. Next, instead of applying ρ∗(f) to an element of W in the encryption,
we sample from the uniform distribution on H and apply f . This is a purely
conceptual change, and the game behaviour does not change.

Game 3. Now we sample not from H , but from G\H when creating the challenge
ciphertext. We claim that there is a adversary A′ against the trapdoor oracle
subgroup membership problem (G, H, J) whose advantage is equal to the change
in behaviour.

The algorithm A′ takes (G, H, J) as input. To simulate the key generation,
the hash proof system’s sampling algorithms are used to construct the public
and private keys. Obviously, A′ does not know d. Therefore, the private key will
be deficient and the decryption algorithm must be changed.

When the adversary requests decryptions, the gap oracle is used to check that
the group element really is in H . If it is, f is used to decrypt the message.

When the adversary submits its messages, the algorithm requests its challenge
element x and computes the challenge ciphertext as (x, f(x)m). If the adversary
guesses correctly, we output 1, otherwise 0.

If x ∈ H , everything proceeds as in Game 2. If x ∈ G\H , everything proceeds
as in Game 3.

Game 4. To prepare for the adversary against the hash proof system, we sample
the function f from the uniform distribution on M . The difference in behaviour
is bounded by the approximation error δ.

Game 5. In this game we compute the ciphertext as f(x)ym, where y is sampled
uniformly from L′. We claim that there is an adversary A′′ against the hash proof
system whose advantage is equal to the change in behaviour.

The algorithm takes (G, H, L, L′, W, ρ, M), x ∈ G \ H , ρ∗(f) and z ∈ G as
input. It constructs the public key from its input. To answer decryption queries
(x′, y′), it passes x′ onto its evaluation oracle. If the oracle refuses to answer,
then x′ 	∈ H and the ciphertext does not decrypt. If the oracle replies with z,
the decryption y′z−1 is returned.

When the adversary submits its messages, the challenge ciphertext is (x, zm).
If the adversary guesses correctly, we output 1, otherwise 0.

If z = f(x), then everything proceeds as in Game 4. If z = f(x)y, where y is
a random element of L′, then everything proceeds as in Game 5.

To conclude the proof, we simply note that in Game 5, the distribution of
the ciphertext is independent of the message, the adversary gets no information
about the message, and therefore he has no advantage. ��

A New Security Proof for Damg̊ard’s ElGamal 157

It is worthwhile to note that all of the instantiations of this scheme are homomor-
phic, so they are not secure against adaptive chosen ciphertext attacks. When
instantiated with the Decision Composite Residuosity problem, the scheme can
easily be made additively homomorphic, a property that is very useful.

4 Concluding Remarks

We have given a security proof for a generalized variant of Damg̊ard’s ElGamal.
The underlying assumption is a new problem called (trapdoor) oracle subgroup
membership problem. The new problem seems much more credible than the
knowledge of exponent assumption that has previously been used to prove the
security. The security proof also highlights the relationship between Damg̊ard’s
ElGamal and CS-lite nicely, where the subgroup membership check in the former
performs the same function as the verification of ε-universal hash in the latter.

While the new problem is similar to established problems such as the gap
splitting problems, it is in certain respects very different. The gap splitting prob-
lems is hard if the splitting problem does not reduce to the subgroup membership
problem. This means that studying the gap problem is studying whether efficient
reductions between to related problems exists. There is no similar way to look at
the oracle subgroup membership problem. It still remains to be seen if the oracle
subgroup membership problem can find other applications in cryptography.

Acknowledgments

The author would like to thank Alex Dent for very useful discussions, and the
anonymous referees for helpful comments.

References

1. Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The Oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, Proceedings of
CT-RSA 2001, volume 2020 of LNCS, pages 143–158. Springer-Verlag, 2001.

2. Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and
3-round zero-knowledge protocols. In Matthew K. Franklin, editor, Proceedings of
CRYPTO 2003, volume 3152 of LNCS, pages 273–289. Springer-Verlag, 2004.

3. Mihir Bellare and Adriana Palacio. Towards plaintext-aware public-key encryption
without random oracles. In Pil Joong Lee, editor, Proceedings of ASIACRYPT
2004, volume 3329 of LNCS, pages 48–62. Springer-Verlag, 2004.

4. D. Boneh. The Decision Diffie-Hellman problem. In Proceedings of the Third Algo-
rithmic Number Theory Symposium, volume 1423 of LNCS, pages 48–63. Springer-
Verlag, 1998.

5. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption. In Lars R. Knudsen,
editor, Proceedings of EUROCRYPT 2002, volume 2332 of LNCS, pages 45–64.
Springer-Verlag, 2002.

158 K. Gjøsteen

6. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key en-
cryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal
on Computing, 33(1):167–226, 2003.

7. Ivan Damg̊ard. Towards practical public key systems secure against chosen cipher-
text attacks. In Joan Feigenbaum, editor, Proceedings of CRYPTO ’91, volume
576 of LNCS, pages 445–456. Springer-Verlag, 1992.

8. W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22:644–654, 1976.

9. Kristian Gjøsteen. Symmetric subgroup membership problems. In Serge Vaudenay,
editor, Proceedings of Public Key Cryptography 2005, volume 3386 of LNCS, pages
104–119. Springer-Verlag, 2005.

10. Satoshi Hada and Toshiaki Tanaka. On the existence of 3-Round zero-knowledge
protocols. In Hugo Krawczyk, editor, Proceedings of CRYPTO ’98, volume 1462
of LNCS, pages 408–423. Springer-Verlag, 1998.

11. Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of
problems for the security of cryptographic schemes. In Kwangjo Kim, editor,
Proceedings of Public Key Cryptography 2001, volume 1992 of LNCS, pages 104–
118. Springer-Verlag, 2001.

12. P. Paillier. Public-key cryptosystems based on composite degree residue classes.
In Jacques Stern, editor, Proceedings of EUROCRYPT ’99, volume 1592 of LNCS,
pages 223–238. Springer-Verlag, 1999.

Stand-Alone and Setup-Free Verifiably
Committed Signatures

Huafei Zhu and Feng Bao

Department of Information Security, I2R, A-Star, Singapore 119613
{huafei, baofeng}@i2r.a-star.edu.sg

Abstract. In this paper, a novel construction of stand-alone and setup-
free verifiably committed signatures from RSA − an open problem
advertised by Dodis and Reyzin in their speech [16] is presented. The
methodology used in this paper is reminiscent of the concept of verifi-
ably encrypted signatures introduced by Asokan et al [1, 2]. We suggest to
encrypt only a random salt used to generate a virtual commitment that
will be embedded into Cramer-Shoup’s signature scheme and to prove
the validity of the signature with respect to this encrypted value. Our
construction is provably secure assuming that the underlying Cramer-
Shoup’s signature scheme is secure against adaptive chosen-message at-
tack, and Paillier’s encryption is one-way. We thus provide an efficient
solution to Dodis-Reyzin’s open problem.

Keywords: Off-line fair-exchange, Setup-free, Stand-alone property,
Verifiably committed signature.

1 Introduction

The research of fair exchange protocols has a rich history due to its fundamental
importance. In the following, we only briefly mention the body of research most
relevant to our results, and refer the reader to [1, 2, 3, 4, 8, 11, 13, 17, 23, 24, 26]
for general references.

A fair-exchange protocol typically consists of three participants: a client (a
primary signer), a merchant (a verifier) and a trusted third party (TTP). TTP
can be on-line at the expense of the TTP becoming a potential bottleneck, or off-
line, meaning that it only gets involved when something goes wrong. Off-line fair-
exchange protocols can be classified into two categories: with or without initial-
key-setup procedures. An off-line fair-exchange protocol is called setup-free if no
initial-key-setup procedure between a primary signer and its TTP is involved
except for one requirement that the primary signer can obtain and verify TTP’s
certificate and vice versa. An off-line fair-exchange protocol is called setup-driven
if an initial-key-setup protocol between a primary signer and its TTP must be
involved such that at the end of the key setup protocol, the primary signer and
its TTP share prior auxiliary information. This shared auxiliary information
enables TTP to convert any valid partial signature into the corresponding full
signature if a confliction occurs between the primary signer and its verifier (and
thus the fairness of protocols can be achieved inherently).

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 159–173, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

160 H. Zhu and F. Bao

Dodis and Reyzin [16] have already formalized a unified model for off-line fair-
exchange protocols as a new cryptographic primitive called verifiably committed
signatures. Verifiably committed signatures are the following things: a primary
signer Alice can produce a partial signature to her verifier Bob; upon receiving
what she needs from Bob, she can convert it to a full signature. If she refuses, a
trusted third party Charlie (arbitrator) can do it for her upon the receipt of a
partial signature and proper verification that Bob fulfilled his obligation to Alice.

A sibling notion of off-line fair-exchange protocols is verifiably encrypted sig-
natures which was introduced by Asokan et al [1, 2] in 1988. Verifiably encrypted
signatures are the following things: a primary signer Alice wants to show her ver-
ifier Bob that she has signed a message, but does not want to Bob to possess her
signature of that message, and Alice will give her signature to Bob only when
she gets what she needs from Bob. Alice can achieve this by encrypting her
signature using the public key of a TTP, and sending this to Bob along with a
proof that she has given him a valid encryption of her signature. Bob can verify
that Alice has signed the message, but cannot deduced any information about
her signature. Later, in the protocol, if Alice is unable to or unwilling to reveal
her signature, Bob can ask the trusted third party Charlie (arbitrator/TTP) to
reveal Alice’s signature.

1.1 Previous Works Within Setup-Driven Model

Notice that the existence of off-line fair-exchange protocol within setup-driven
model is obvious in the standard complexity model assuming that two underlying
signatures are secure in the sense of [21] in the standard complexity model. That
is, suppose a primary signer has public/secret key (pk1, sk1) for the first signa-
ture scheme, and at the same time the prime signer and its TTP share another
public/secret key (pk2, sk2) of the second signature scheme. By PK = (pk1, pk2)
we denote the public key of the entire signature scheme, and by SK = (sk1, sk2),
we denote the correspondent secret keys. Now given a message m, the primary
signer produces its partial signature σ1 on the message m. A full signature of the
message m is defined as σ =(σ1, σ2), where σ2 is the signature of m correspon-
dent the public/secret key pair (pk2, sk2). It is easy to verify that the resulted
signature is a verifiably committed signature scheme.

The main criticism of the above two-signature based construction is its loose
of the stand-alone property. We say a fair-exchange protocol (equivalently, a
verifiably committed signature scheme) is stand-alone if any final signature (or
any full signature) produced according to the corresponding off-line fair exchange
protocol is the same as it were produced by an ordinary signature scheme only,
i.e., given a valid partial signature scheme σ′, the primary signer de-randomizes
the mask of the random salt. The output is an ordinary signature of message m.
There are a collection of efficient constructions of fair-exchange protocols with
stand-alone property within setup-driven model which are sketched below:

The off-line fair-exchange protocol proposed by Boyd and Foo is setup-driven
[10] which is constructed from convertible signatures − a cryptographic primitive
first introduced by Boyar, Chaum, Damg̊ard and Pedersen [6]. The general idea of

Stand-Alone and Setup-Free Verifiably Committed Signatures 161

Boyd and Foo’s work is that − a primary signer first registers its public key in its
own certificate authority (CA). Then the primary signer and its TTP run a key
setup algorithm together for generating public/secret key pair for their specified
resolution algorithm. Finally, a partial signature of the transaction information
is generated in such a way that the correctness of this partial signature can be
verified only by a designated verifier Bob, and at the same time the designed
verifier is convinced that the trust third party is able to convert it into a normal
signature which anyone could verify.

Alternative attractive work is due to Park, Chong and Siegel [26]. In PODC
2003, Park, Chong and Siegel proposed a light-weight fair-exchange protocol
by distributing the computation of RSA signature [26]. The proposed scheme
requires an initial-key-setup procedure. Although Park, Chong and Siegel’s idea
for constructing off-line fair-exchange protocol is very interesting, this protocol
is totally breakable in its registration phase. A remedy scheme constructed from
the Gap Diffie-Hellman problem has been proposed by Dodis and Reyzin within
the setup-driven model [16].

1.2 Previous Works Within Setup-Free Model

The first construction of off-line fair exchange protocols within this category
seems Stadler[28]. Since then a collection of nice works are presented (e.g.,
[1, 2, 3, 4, 11, 24] and so on...). The ideas behind these works are that: a pri-
mary signer Alice encrypts her signature using the public key of a TTP, and
sends this to her verifier Bob along with a proof that she has given him a valid
encryption of her signature. We remark that an encrypted signature together
with the validity proof in essence is a partial signature scheme. The revealed
Alice’s signature is the full signature. Thus, the existence of verifiably encrypted
signatures implies the existence of verifiably committed signatures. As a result,
the concept of verifiably committed signatures is a general notion of verifiably
encrypted signatures [1, 2].

Very recently, Boneh, Gentry, Lynn and Shacham (BGLS) [9] proposed an at-
tractive construction of verifiably encrypted signatures from bilinear aggregate
signature schemes. This is a novel construction without any initial-key-setup pro-
cedure involved since a primary signer Alice simply needs to register her public
key with TTP rather than perform a complex initial key setup protocol. The
significant features of the BGLS protocol are its efficiency and its low communi-
cation overhead. Since the BGLS scheme is two-signature based, the stand-alone
property of the BGLS protocol is completely NOT satisfied (e(ω, g2)= e(h, υ)
e(μ, υ′)).

1.3 Problem Statement

We have discussed a collection of off-line fair exchange protocols and showed
that each protocol mentioned above has one of shortcomings below:

– an initial key setup procedure is involved (e.g, [10] and [16]);
– stand-alone property is violated (e.g., [29] and [9]).

162 H. Zhu and F. Bao

This leaves an interesting research problem: how to construct stand-alone and
setup-free verifiably committed signature with low communication and compu-
tation complexity? In fact, Dodis and Reyzin have already advertised a open
problem in their speech − constructing stand-alone and setup-free verifiably
committed signatures from the RSA problem [16].

1.4 Our Contribution

We propose an efficient construction of stand-alone and setup-free verifiably
committed signatures from RSA − an open problem advertised by Dodis and
Reyzin in their speech [16]. The methodology used in this paper is reminiscent of
the concept of verifiably encrypted signatures introduced by Asokan et al [1, 2].
We here allow a primary signer Alice to encrypt only the random salt used for
generating of a probabilistic signatures and to prove the validity of the signature
with respect to this encrypted value rather than to encrypt a signature using
the public key of a TTP, and to send this to her verifier Bob along with a proof
that she has given him a valid encryption of her signature. Our approach is
exemplified by virtual commitment-based signatures1 and Paillier’s encryption
scheme. In essence, we propose an efficient construction of stand-alone and setup-
free verifiably committed signature scheme from Cramer-Shoup’s trapdoor hash
signature scheme [12] since Cramer-Shoup’s trapdoor hash signature scheme
provides us an ad hoc approach to construct setup-free verifiably committed
signature schemes where a group G can be chosen independently with RSA
modulus. We are able to show that our construction is provably secure within our
model assuming that the strong RSA problem is hard, and Paillier’s encryption
is one-way.

2 Virtual Commitment-Based Signatures

2.1 Statistically Hiding and Computationally Binding
Commitments

A commitment scheme has a probabilistic polynomial time key generation KG,
which on input k, where k stands for security parameter of the commitment
scheme, outputs a public key PK, the common reference string. Associated with
this public key are a message space mPK , a commitment space cPK and two
polynomial time algorithms cPK and dPK . To commit to a message m ∈ mPK ,
we choose a string r uniformly at random. We then given m, r as input to
cPK . The resulting outputs is (c, d), where c ∈ cPK , while d is the auxiliary
information needed to open the commitment. Typically d = (m, r). To open a
1 A virtual commitment not a real commitment since the value H(m) is a publicly

known datum. Nevertheless, it has the same structure of commonly used commit-
ment schemes such as Pedersen’s commitment scheme [27] and Fujisaki-Okamoto
commitment scheme [19]. Virtual commitment-based signatures are those derived
from virtual commitments, e.g., Cramer-Shoup’s signature scheme [12] and Zhu’s
signature scheme [29], we refer the reader to Section 2 for more details.

Stand-Alone and Setup-Free Verifiably Committed Signatures 163

message the sender sends d to the receiver. The receiver computes dPK(c, d).
When the commitment is constructed as above the output of this computation
is m. If something is wrong, e.g, c /∈ cPK or d is not a valid opening of the com-
mitment, the output of the decommitment algorithm is ⊥. There are two kinds
of commitments extensively used in security community: 1) Pedersen’s commit-
ment scheme and 2) Fujisaki-Okamoto commitment scheme (both commitment
schemes are statistically hiding and computationally binding):

1) Pedersen’s commitment scheme [27]: Let p=2q + 1 and G ∈ Z∗
p be a cyclic

group. Let g1 and g2 be two generators of G of order q such that both discrete
logarithm of g1 in base g2 and the discrete logarithm of g2 in base g1 are unknown
by P and V . We denote C(x, r) = gx

1gr
2 mod p a commitment to x in base (g1, g2),

where r ∈ Zq is randomly selected.
2) Fujisaki-Okamoto commitment scheme (this commitment scheme first ap-

peared in [19] and reconsidered by Damg̊ard and Fujisaki [15]): Let s be a security
parameter. The public key is a k2-bit RSA modulus, where P , Q are two large
safe primes. We assume that neither P nor V knows factorization N . Let g1 be a
generator of QRN and g2 be an element of large order of the group generated by
g1 such that both discrete logarithm of g1 in base g2 and the discrete logarithm
of g2 in base g1 are unknown by P and V . We denote C(x, r) = gx

1 gr
2 mod N a

commitment to x in base (g1, g2), where r is randomly selected over {0, 2sN}.

2.2 Derived Signatures

Given an instance of Pedersen’s commitment scheme, a secure signature scheme
can be derived with minor modification (specifying the security parameters so
that the security of the derived signature can be rigorously proved) based on the
technique of Cramer and Shoup as follows:

– Key generation algorithm: Let p, q be two large safe primes such that p−1 =
2p′ and q−1 = 2q′, where p′, q′ are two l′-bit primes. Let n = pq and QRn be
the quadratic residue of Z∗

n. Let x, h be two generators of QRn. Also chosen
are a group G of order s, where s is (l + 1)-bit prime, and two random
generators g1, g2 of G. The public key is (n, h, x, g1, g2, H) along with an
appropriate description of G including s. The private key is (p, q).

– Signature algorithm: To sign a message m, a (l + 1)-bit prime e and a string
t ∈ Zs is chosen at random. The equation ye = xhH(gt

1g
H(m)
2)modn is solved

for y. The corresponding signature of the message m is (e, t, y), where the
variable gt

1g
H(m)
2 is a virtual commitment.

– Verification algorithm: given a putative triple (e, t, y), the verifier first checks
that e is an odd (l + 1)-bit number. Second it checks the validation that
x = yeh−H(gt

1g
H(m)
2)modn. If the equation is valid, then the verifier accepts,

otherwise, it rejects.

Notice that a virtual commitment embedded into Cramer-Shoup’s trapdoor
hash signature can be Pedersen’s commitment scheme [27] and Fujisaki-Okamoto
commitment scheme [19]. The resulting Cramer-Shoup’s trapdoor hash signature

164 H. Zhu and F. Bao

is immune to adaptive chosen-message attack under joint assumptions of the
strong RSA problem as well as the existence of collision free hash function.

We remark the Cramer-Shoup’s trapdoor hash signature can be simplified if
Fujisaki-Okamoto commitment scheme [19] is defined over G which is described
as follows [29].

– Key generation algorithm: Let p, q be two large safe primes (i.e., p − 1 =
2p′ and q − 1 = 2q′, where p′, q′ are two primes with length (l′ + 1)). Let
n = pq and QRn be the quadratic residue of Z∗

n. Let X, g, h ∈ QRn be three
generators chosen uniformly at random. The public key is (n, g, h, X, H),
where H is a collision free hash function with output length l. The private
key is (p, q).

– Signature algorithm: To sign a message m, a (l + 1)-bit prime e and a string
t ∈ {0, 1}l are chosen at random. The equation ye = XgthH(m)modn is
solved for y. The corresponding signature of the message m is (e, t, y).

– Verification algorithm: Given a putative triple (e, t, y), the verifier checks
that e is an (l + 1)-bit odd number. Then it checks the validity of X =
yeg−th−H(m)modn. If the equation is valid, then the signature is valid. Oth-
erwise, it is rejected.

Since the group G defined in Cramer-Shoup’s trapdoor hash signature scheme,
can be chosen arbitrarily. Thus, to construct stand-alone and setup-free verifi-
ably committed signature scheme, it is enough for us to consider an instance of
Cramer-Shoup’s trapdoor hash signatures only.

3 Syntax and Security Definitions

3.1 Syntax

Definition: A setup-free verifiably committed signature scheme involves a pri-
mary signer Alice, a verifier Bob and an arbitrator (or TTP) Charlie, and is
given by the following efficient procedures:

– Key generator KG: On input k1, a primary signer Alice generates (PK, SK),
and proves to her CA that these values are correctly generated and then
obtains a valid certificate CertA from her CA. On input k2, an arbitrator
(co-signer) generates (APK, ASK) and proves to his CA that these values
are correctly generated and then obtains a valid certificate CertC from his
CA. For simplicity, we also assume that Alice and Charlie both obtain a pair
of valid certificates (CertA, CertC) from public bulletin boards.

– Fully signing algorithm Sig and its correspondent verification algorithm V er:
These are conventional signing and verification algorithms. Sig(m, SK) run
by the primary signer, outputs a full signature σ on m, while V er(m, σ, PK)
run by any verifier, outputs 1 (accept) or 0 (reject);

– Partially signing algorithm PSig and the correspondent verification algo-
rithm PV er: These are partial signing and verification algorithms, which
are similar to ordinary signing and verification algorithms, except they can

Stand-Alone and Setup-Free Verifiably Committed Signatures 165

depend on the public arbitration key APK. PSig(m, SK, PK, APK), run
by the primary signer, outputs a partial signature σ′, while PV er(m, σ′,
PK, APK), run by any verifier, outputs 1 (accept) or 0 (reject);

– Resolution algorithm Res: This is a resolution algorithm run by the arbitra-
tor in case the primary signer refuses to open her signature σ to the verifier,
who in turn possesses a valid partial signature σ′ on m and a proof that he
fulfilled his obligation to the primary signer. In this case, Res (m, σ′, ASK,
PK) should output a valid full signature of m.

Correctness of verifiably committed signatures states that:

– V er(m, Sig(m, SK), PK) = 1;
– PV er(m, PSig(m, SK, PK, APK), PK, APK) = 1;
– V er(m, Res(PSig(m, SK, PK, APK), ASK, APK, PK), PK) = 1.

Stand-alone property of verifiably committed signatures states that: given a
valid partial signature scheme σ′(m), the primary signer de-randomizes the mask
of the random salt. The output is an ordinary signature of message m respect
to the public key PK.

3.2 The Definition of Security

Recall that the concept of verifiably committed signatures is formalized the same
thing as off-line fair-exchange protocols. Thus the security definition of verifiably
committed signatures should consist of ensuring three aspects: security against a
primary signer Alice, security against a verifier Bob, and security against a arbi-
trator/TTP Charlie. The security definitions of verifiably committed signatures
follows from Dodis and Reyzin [16] and we thus refer the reader to Appendix A
for more details.

4 Building Blocks

In this section, we briefly describe cryptographic primitives that are used to
construct our stand-alone and setup-free verifiably committed signatures.

4.1 Paillier’s Public Key Encryption Scheme

Paillier investigated a novel computational problem, called Composite Residuos-
ity Class Problem, and its applications to public key cryptography in [25]. Our
construction will heavily rely on this probabilistic encryption scheme which is
sketched below.

The public key is a k1-bit RSA modulus n = pq, where p, q are two large safe
primes. The plain-text space is Zn and the cipher-text space is Z∗

n2 . To encrypt
α ∈ Zn, one chooses r ∈ Z∗

n uniformly at random and computes the cipher-text
as EPK(a, r) = garn mod n2, where g = (1+n) has order n in Z∗

n2 . The private
key is (p, q).

166 H. Zhu and F. Bao

The encryption function is homomorphic, i.e., EPK(a1, r1) × EPK(a2, r2)
mod n2 = EPK(a1 + a2 mod n, r1 × r2 mod n).

Another interesting result of Paillier’s public key encryption scheme is that
it can be viewed as a commitment scheme as well since given a cipher-text
c:=garn mod n2, we first compute a ∈ Zn from the following equation

L(cλmodn2)
L((1+n)λmodn2)modn and then compute r from the equation r ∈ Z∗

n=c′
n−1modλ

mod n, where λ = lcm(p− 1, q − 1), n = pq.

4.2 Proof of Knowledge of Encryptions

Given a u =gx defined over a cyclic group G, and also given a cipher-text
c=Enc(x) computed from Paillier’s encryption scheme, the prover should pro-
vide a proof that she knows u contains the same value of the encryption, and it
lies in a given interval I specified in the protocol. An efficient protocol presented
by Damg̊ard and Jurik [14] can be tailored for our purpose.

– Let T be the maximum bit length of x. The prover chooses at random w, an
integer of length T +2l, where l is a security parameter. He sends a=Enc(w)
and b =gw to the verifier. Here we assume that the security parameter k1 of
Paillier’s scheme is larger than T + 2l;

– The verifier chooses a l-bit challenge e;
– The prover opens the encryption a(Enc(x)e) mod N2 and the commitment

bue, to reveal in both cases the number z = w + ex defined over integer Z.
The verifier checks the opening were correct.

– The prover then uses Boudot’s protocol [5] to prove that the hiding value
lies in I.

The protocol can be made non-interactive in the standard way using a hash
function RO and the Fiat-Shamir paradigm. It is also statistically zero-
knowledge in the random oracle model. Our construction will also heavily rely
on this non-interactive proof of knowledge protocol.

5 Construction and Proof of Security

In this section, we will propose our construction and prove its security in the
sense of the security definition in the Appendix A. Basically we propose a secure
verifiably committed signature scheme from Cramer-Shoup’s (CS) trapdoor hash
signature scheme [12].

5.1 Our Construction

We now transfer the CS signature scheme into a stand-alone, setup-free verifiably
committed signature scheme below.

– Primary signer’s key generation algorithm: on input k1, a PPT primary
signer Alice generates two large safe primes p and q such that p − 1 = 2p′

and q − 1 = 2q′, where p′, q′ are two l′-bit primes. Alice also outputs x, h,

Stand-Alone and Setup-Free Verifiably Committed Signatures 167

two random elements of QRn, where n = pq and QRn the quadratic residue
of Z∗

n. Finally, Alice outputs a description of a group G of order s, where s is
(l+1)-bit prime, and two random elements g1 and g2 of G. The public key of
a primary signer is (n, h, x, g1, g2, H), along with an appropriate description
of G including s. The private key is (p, q). Alice also proves to her CA that
all values are correctly generated and then obtains her certificate CertA from
her CA;

– Arbitrator/TTP’s key generation algorithm: on input k′, a PPT arbitra-
tor/TTP Charlie generates a k′-bit RSA modulus N = pcqc, where pc, qc

are two large safe primes. It outputs g =(1 + N) that has order N in Z∗
N2 .

The public key is APK=(g, N). The private key is ASK=(pc, qc). Charlie
also proves to his CA that all values are correctly generated and then obtains
his certificate CertB from his CA;

– Fully signing algorithm Sig and its correspondent verification algorithm V er:
To sign a message m, a (l + 1)-bit prime e and a string t ∈ Zs is chosen
at random. The equation ye = xhH(gt

1g
H(m)
2) mod n is solved for y. The

corresponding signature of the message m is (e, t, y). Given a putative triple
(e, t, y), the verifier first checks that e is an odd (l + 1)-bit number. Second
it checks the validation of the equation x = yeh−H(gt

1g
H(m)
2) mod n. If the

equation is valid, then the verifier accepts, otherwise, it rejects.
– Partially signing algorithm PSig: On input a message m, (l +1)-bit prime e

and a string t ∈ Zs is chosen at random. The equation ye = xhH(gt
1g

H(m)
2) mod

n is solved for y. Then Alice hides t by computing u=gt
1 and Enc(APK, t)

together with a proof pr that she knows that u contains the same num-
ber as the encryption, and then uses Boudot’s protocol to prove that the
encrypted value t ∈ I in a non-interactive way by using a hash function
RO and the Fiat-Shamir’s paradigm. The partial signature is defined by
σ′=(e, y, u, c, pr).

– The correspondent partial signature verification algorithm PV er: Given a
putative signature σ′=(e, y, u, c, pr), the verifier first checks that e is an
odd (l + 1)-bit number. Second it checks the validity of the equation x =
yeh−H(ug

H(m)
2) mod n. If the equation is valid, then the verifier further check

the validity of proof pr that u contains the same number as the encryption,
and then uses Boudot’s protocol to verify that the encrypted value t ∈ I. If
it is valid then the verifier accepts, otherwise, it rejects.

– Resolution algorithm Res: Given σ′=(e, y, u, c, pr) and a proof that Bob
fulfilled his obligation to the primary signer. If the verification is passed,
then Charlie outputs a valid full signature of (e, y, t) using his decryption
key, otherwise, it rejects.

5.2 The Proof of Security

In this section, we will show that the stand-alone, setup-free verifiably commit-
ted signature scheme constructed above is secure assuming that the underlying
the Cramer-Shoup’s signature scheme is secure against adaptive chosen-message
attack, and Paillier’s encryption is semantically secure.

168 H. Zhu and F. Bao

Lemma 1: Our construction is secure against malicious primary signer Alice.

Proof: Suppose Alice is able to provide a valid partial signature σ′ = (e, y, u, c,
pr) correspondent to a message m, where pr means that she knows that u con-
tains the same number as the encryption and the encrypted value t ∈ I. Since
σ′ is valid from the viewpoints of its verifier and TTP, by rewinding Alice, both
verifier and cosigner can extract t ∈ I such that u=gt

1, c=Enc(APK, t) and
ye=xhH(gt

1g
H(m)
2). It follows that the designated TTP can always transform any

valid partial signature scheme into the correspondent valid signature σ=(e, y, t).

Lemma 2: Our construction is secure against malicious verifier Bob assuming
that the underlying Paillier’s encryption scheme is one-way.

Proof: We convert any attacker B that attacks our verifiably committed signature
scheme into an inverter B′ of the underlying encryption scheme. That is, given a
random cipher-text c, B′ will obtain the correspondent plain-text mc with non-
negligible probability with the help of the attacker B (if this event happens with
at least non-negligible probability in the following simulation, we then arrive at
the contradiction of the security assumption that Paillier’s encryption scheme is
one-way). B′ now describe our simulation of the environment for attacker B as
follows:

– B′ runs Alice to generate the primary signer’s public/secret key (PK, SK)
as that in the real verifiably committed signature scheme described above.
B′ then obtains PK and SK from Alice.

– B′ then runs Charlie to generate the arbitrator’s public/secret key (APK,
ASK) as that in the real verifiably committed signature scheme described
above. B′ then obtains APK from Charlie.

Given the target cipher-text c, we first describe a simulator for the oracle P
as follows: let qPsig be the total number of P queries made by B, and let λ be a
random number chosen from {1, qPsig} by B′. We further consider the following
two cases of queries to the oracle P :

– If i ∈ {1, qPsig} and i 	= λ, then B′ runs the partial signing oracle as the real
partial signature scheme;

– If i ∈ {1, qPsig} and i = λ, for the given target cipher-text c, B′ chooses a
random string f , z and u in the correct interval specified in the real protocol
and computes the encryption Enc(APK, z) of z. Then it computes c′ from
the equation Enc(APK, z) = c′ cf . At the same time, it computes u′ from
the equation gz mod s=u′ uf .

– Given u, B′ computes (e, y) from the equation ye = xhH(ug
H(mλ)
2), this is

possible since B′ knows SK;
– Finally B′ assigns f be the hash value of the random oracle RO specified in

the non-interactive proof system. Similarly, for a given u, one can simulate
view for the proof of knowledge logg1

(u) that lies in the correct interval using
Boudot’s technique [5].

Stand-Alone and Setup-Free Verifiably Committed Signatures 169

B′ simulates R oracle queries as follows:

– If (mj , σ
′
j) that is in the partial signature query list and if j 	= λ, then R

outputs ti;
– If (mj , σ

′
j) that is in the partial signature query list and if j = λ, then R

outputs ⊥;
– If (mj , σ

′
j) that is NOT in the partial signature query list, then R outputs ⊥.

Notice that the probability that the simulator outputs ⊥ is 1 − 1/qPsig for the
queries whose partial signatures are listed in the P oracle query. Thus when the
adversary outputs a valid full signature (m∗, σ∗) whose partial signature is the
list of P oracle query, the probability that B′ can invert the target cipher-text c
with probability at least ε/qPsig, where ε stands for the probability that B can
break our verifiably committed signature scheme.

Lemma 3: Our construction is secure against malicious arbitrator Charlie assum-
ing that the underlying CS scheme is secure against adaptive chosen-message
attack. In other words, our construction is secure against malicious arbitrator
under joint assumptions that the hardness of the strong-RSA problem and the
existence of collision free hash functions.

Proof: Suppose Charlie is able to forgery partial signature σ′ with non-
negligible probability, then by rewinding Charlie, we can extract t from the valid
proof pr. It follows that Charlie is able to output a valid forgery signature from
the Cramer-Shoup’s signature scheme with non-negligible probability. Since the
underlying Cramer-Shoup’s trapdoor hash signature has already proved to be
secure against adaptive chosen-message attack under joint assumptions of the
strong RSA problem as well as the existence of collision free hash function. It
follows that our construction is secure against malicious arbitrator under joint
assumptions that the hardness of the strong-RSA problem and the existence of
collision free hash functions.

In summary, we have proved the main result below:

Theorem: The stand-alone, setup-free verifiably committed signature scheme
constructed above is provably secure assuming that the underlying CS signature
scheme is secure against adaptive chosen-message attack, and Paillier’s encryp-
tion is one-way.

6 Conclusion

In this paper, we have proposed an efficient construction of stand-alone and
setup-free verifiably committed signature scheme. We have shown that our con-
struction is provably secure assuming that the underlying the Cramer-Shoup’s
signature scheme is secure against adaptive chosen-message attack, and Paillier’s
encryption is one-way.

170 H. Zhu and F. Bao

Acknowledgment

The first author thanks Professor Yevgeniy Dodis and Professor Leonid Reyzin
for their continuous encouragement.

References

1. N. Asokan, M. Schunter, M. Waidner: Optimistic Protocols for Fair Exchange.
ACM Conference on Computer and Communications Security 1997: 7 - 17.

2. N. Asokan, V. Shoup, M. Waidner: Optimistic Fair Exchange of Digital Signatures
(Extended Abstract). EUROCRYPT 1998: 591 - 606.

3. Feng Bao: An Efficient Verifiable Encryption Scheme for Encryption of Discrete
Logarithms. CARDIS 1998: 213 - 220.

4. F. Bao, R. Deng, and W. Mao, Efficient and practical fair exchange protocols with
off-line TTP, IEEE Symposium on Security and Privacy, IEEE Computer Society
Press, 1998, page 77- 85.

5. Fabrice Boudot: Efficient Proofs that a Committed Number Lies in an Interval.
Proc. of EUROCRYPT 2000: 431 - 444, Springer Verlag.

6. Joan Boyar, David Chaum, Ivan Damg̊ard, Torben P. Pedersen: Convertible Un-
deniable Signatures. CRYPTO 1990: 189 - 205

7. A. Boldyreva. Efficient threshold signatures, multisignatures and blind signatures
based on the Gap Diffie Helman group signature scheme. PKC 2003, LNCS 2567.

8. Michael Ben-Or, Oded Goldreich, Silvio Micali, Ronald L. Rivest: A Fair Protocol
for Signing Contracts (Extended Abstract). ICALP 1985: 43 - 52.

9. Dan Boneh, Craig Gentry, Ben Lynn, Hovav Shacham: Aggregate and Verifiably
Encrypted Signatures from Bilinear Maps. EUROCRYPT 2003: 416 - 432

10. C. Boyd, E. Foo: Off-Line Fair Payment Protocols Using Convertible Signatures.
ASIACRYPT 1998: 271 - 285

11. Jan Camenisch, Victor Shoup: Practical Verifiable Encryption and Decryption of
Discrete Logarithms. CRYPTO 2003: 126 - 144

12. R. Cramer and V. Shoup. Signature scheme based on the Strong RAS assumption.
6th ACM Conference on Computer and Communication Security, Singapore, ACM
Press, November 1999.

13. Ivan Damg̊ard: Practical and Provably Secure Release of a Secret and Exchange
of Signatures. EUROCRYPT 1993: 200 - 217

14. Ivan Damg̊ard, Mads Jurik: Client/Server Tradeoffs for Online Elections. Proc. of
Public Key Cryptography 2002: 125 - 140. Springer Verlag.

15. Ivan Damg̊ard, Eiichiro Fujisaki: A Statistically-Hiding Integer Commitment
Scheme Based on Groups with Hidden Order. Proc. of ASIACRYPT 2002: 125
- 142, Springer Verlag.

16. Y.Dodis, L. Reyzin. Breaking and Repairing Optimistic Fair Exchange from PODC
2003, ACM Workshop on Digital Rights Management (DRM), October 2003.

17. Juan A. Garay, Markus Jakobsson, Philip D. MacKenzie: Abuse-Free Optimistic
Contract Signing. CRYPTO 1999: 449 - 466

18. Shafi Goldwasser, Silvio Micali, Ronald L. Rivest: A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2): 281 -
308 (1988).

Stand-Alone and Setup-Free Verifiably Committed Signatures 171

19. E. Fujisaki, T. Okamoto. Statistically zero knowledge protocols to prove modular
polynomial relations. Crypto’97. 16 - 30, 1997.

20. E. Fujisaki, T. Okamoto. Statistical zero-knowledge protocols to prove modular
polynomial relations. Crypto’97, LNCS 1294, Springer-verlag, 1997.

21. S. Goldwasser, S. Micali, R. Rivest: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2): 281 - 308, 1988.

22. L. Guillou, J. Quisquater. A practical zero-knowledge protocol fitted to security
microprocessors minimizing both transmission and memory. Eurocrypt’88, 123 -
128, 1988.

23. Wenbo Mao: Verifiable Escrowed Signature. ACISP 1997: 240 - 248
24. S. Micali: Simple and fast optimistic protocols for fair electronic exchange. PODC

2003: 12 - 19.
25. Pascal Paillier: Public-Key Cryptosystems Based on Composite Degree Residuosity

Classes. Proc. of EUROCRYPT 1999: 223 - 238, Springer Verlag.
26. J. Park, P.Chong, H. Siegel: Constructing fair-exchange protocols for E-commerce

via distributed computation of RSA signatures. PODC 2003: 172 - 181
27. T. Pedersen. Non-interactive and information-theoretic secure verifiable secret

sharing. Proc of CRYPTO91, Springer LNCS 576, page 129-140.
28. Markus Stadler: Publicly Verifiable Secret Sharing. EUROCRYPT 1996: 190 - 199
29. Huafei Zhu: Constructing Committed Signatures from Strong-RSA Assumption in

the Standard Complexity Model. Public Key Cryptography 2004: 101 - 114

Appendix A: The Definition of Security Due to Dodis and
Reyzin [16]

Security against malicious primary signer Alice: Intuitively, a primary
signer Alice should not provide a partial signature which is valid both from the
viewpoints of a verifier and an arbitrator but which will not be opened into the
primary signer’s full signature by the honest arbitrator2. More formally, Let P
be an oracle simulating the partial signing procedure PSig, and R be an oracle
simulating the resolution procedure Res. Let k be system security parameter.
We require that any probabilistic polynomial time Adv succeeds with at most
negligible probability in the following experiment.

Experiment 1 (security against malicious primary signer Alice):

– Key generation: (SK∗, PK, ASK, APK) ← KG∗(1k), where KG∗ denotes
the run of key generator KG with the dishonest primary signer by the ad-
versary, and SK∗ denotes the adversary’s states.

– Res oracle query: In this phase, for each adaptively chosen message mj , the
adversary computes its partial signature σj

′ for mj . Finally the adversary
forward σj

′ to the oracle R to obtain the full signature σj of message mj ,
where 1 ≤ j ≤ p(k), and p(·) is a polynomial. At the end of R oracle query,
the adversary produces a message and its full signature pair (m, σ), i.e.,

2 The security preventing a malicious third party from forging valid partial signatures
is stated as security against an malicious arbitrator below as a malicious arbitrator
is the most powerful adversary in the security model.

172 H. Zhu and F. Bao

(m, σ′) ← AdvR(SK∗, PK, APK), σ ← Adv(m, σ′, SK∗, APK, PK), where
m 	= mj, 1 ≤ j ≤ p(k).

– Success of Adv : = [PV er(m, σ′, APK, PK) = 1 ∧ V er(m, σ, PK) = 0].

Definition 1. A verifiably committed signature is secure against malicious pri-
mary signer Alice, if any probabilistic polynomial time adversary Adv associated
with Resolution oracle, succeeds with at most negligible probability, where the
probability takes over coin tosses in KG(·), PSig(·) and R(·).
Security against malicious verifier Bob. We consider the following scenario:
suppose a primary signer Alice and a verifier Bob are trying to exchange signa-
ture in a fair way. Alice wants to commit to the transaction by providing her
partial signature. Of course, it should be computationally infeasible for Bob to
compute the correspondent full signature from any partial signature. More for-
mally, we require that any probabilistic polynomial time adversary Adv succeeds
with at most negligible probability in the following experiment:

Experiment 2 (security against malicious verifier Bob):

– Key generation: (SK, PK, ASK, APK) ← KG(1k), where KG is run by the
honest primary signer and honest arbitrator/TTP Charlie. Adversary Adv
are admitted to make queries to the two orales P and R.

– P and R oracle query: For each adaptively chosen message mj , the adver-
sary obtains the partial signature σj

′ of message mj by querying the partial
signing oracle P . Then the adversary forward σj

′ to the resolution oracle R
to obtain the full signature σj of message mj , where 1 ≤ j ≤ p(k), and p(·)
is a polynomial. At the end of oracle both P and R queries, the adversary
produces a message-full signature pair (m, σ) ← AdvP,R(PK, APK).

– Success of adversary Adv : = [V er(m, σ, PK) = 1 ∧ m /∈ Query(Adv, R)],
where Query(Adv, R) is the set of valid queries the adversary Adv asked to
the resolution oracle R, i.e., (m, σ′) such that PV er(m, σ′) = 1.

Definition 2. A verifiably committed signature is secure against any malicious
verifier Bob, if any probabilistic polynomial time adversary Adv associated with
partial signing oracle P and the resolution oracle R, succeeds with at most
negligible probability, where the probability takes over coin tosses in KG(·),
P (·) and R(·).
Security against malicious arbitrator Charlie. Even though the arbitrator
is semi-trusted, the primary signer does not want this arbitrator to produce
a valid signature which the primary signer did not intend on producing. To
achieve this goal, we require that any probabilistic polynomial time adversary
Adv associated with partial signing oracle P , succeeds with at most negligible
probability in the following experiment:

Experiment 3 (security against malicious arbitrator Charlie):

– Key generation: (SK, PK, ASK∗, APK) ← KG∗(1k), where KG∗(1k) is run
by the dishonest cosigner or arbitrator. Adversary Adv are admitted to make
queries to the partial signing oracle P .

Stand-Alone and Setup-Free Verifiably Committed Signatures 173

– P oracle query: For each adaptively chosen message mj , the adversary ob-
tains the partial signature σj

′ for mj from the oracle P , where 1 ≤ j ≤ p(k),
and p(·) is a polynomial. At the end of the partial partial signing ora-
cle query, the adversary produces a message-full signature pair (m, σ), i.e.,
(m, σ) ← AdvP (ASK∗, PK, APK).

– Success of adversary Adv : = [V er(m, σ, PK) = 1 ∧ m /∈ Query(Adv, P)],
where Query(Adv, P) is the set of valid queries Adv asked to the partial
oracle P , i.e., (m, σ′) such that PV er(m, σ′) = 1.

Definition 3. A verifiably committed signature is secure against malicious ar-
bitrator Charlie, if any probabilistic polynomial time adversary Adv associated
with partial signing oracle P , succeeds with at most negligible probability, where
the probability takes over coin tosses in KG(·), P (·).
Definition 4. A verifiably committed signature is secure if it is secure against
malicious primary signer Alice, malicious verifier Bob and malicious arbitrator
Charlie.

Toward the Fair Anonymous Signatures:
Deniable Ring Signatures

Yuichi Komano1, Kazuo Ohta2, Atsushi Shimbo1, and Shinichi Kawamura1

1 Toshiba Corporation,
1, Komukai Toshiba-cho, Saiwai-ku,

Kawasaki 212-8582, Japan
{yuichi1.komano, atsushi.shimbo, shinichi2.kawamura}@toshiba.co.jp

2 The University of Electro-Communications,
Chofugaoka 1-5-1, Chofu-shi, Tokyo 182-8585, Japan

ota@ice.uec.ac.jp

Abstract. Ring signature scheme, proposed by Rivest et al., allows a
signer to sign a message anonymously. In the ring signature scheme, the
signer who wants to sign a document anonymously first chooses some
public keys of entities (signers) and then generates a signature which
ensures that one of the signer or entities signs the document. In some
situations, however, this scheme allows the signer to shift the blame to
victims because of the anonymity. The group signature scheme may be a
solution for the problem; however, it needs a group manager (electronic
big brother) who can violate the signer anonymity without notification,
and a complicated key setting.

This paper introduces a new concept of a signature scheme with signer
anonymity, a deniable ring signature scheme (DRS), in which no group
manager exists, and the signer should be involved in opening the signer
anonymity. We also propose a concrete scheme proven to be secure un-
der the assumption of the DDH (decision Diffie Hellman) problem in the
random oracle model.

Keywords: Group signatures, Ring signatures, DLP, CDH, DDH, Ran-
dom oracle model.

1 Introduction

1.1 Background

Rivest et al. [17] proposed a ring signature scheme to give a solution for leaking a
secret (classified information). In the ring signature scheme, no group manager
exists and signer’s anonymity is perfectly ensured. The basic and promising
methodology was invented by Abe et al. [2]. In some situations, however, the
ring signature scheme allows the signer to shift the blame to entities1 (victims)
because of its anonymity.
1 Hereafter, we call a signer whose public key is utilized in generating a signature an

entity.

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 174–191, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Toward the Fair Anonymous Signatures: Deniable Ring Signatures 175

In these situations, a group signature scheme may solve the problem. Group
signature scheme, proposed by Chaum and van Heyst [11], also allows a signer
to sign a document anonymously. The group signature scheme consists of three
entities: a group manager GM, signers S’s, and a verifier V . In the group signature
scheme, each signer joins the group and generates a signing key (secret key) by
interacting with GM. The signature signed with the secret key is checked by
the group public key published by GM for the group. Note that V only ensures
that the signature is signed by one of the signers in the group or not; on the
other hand, GM can easily identify the signer with the group secret key which
corresponds to the group public key without the interaction with the signer.
Much research have been done to obtain a secure and practical scheme [3, 4, 6].

In some situations, however, the following problems arise concerning the group
signature scheme: (G1) the cost of interaction in join and key generation phases
is very high, (G2) GM should be well-protected because the secret information
(a group secret key, user privacy, etc.) should be concentrated in GM, and (G3)
signers are anxious that their anonymity will be or has been violated by GM
without notification. Namely, if we utilize the group signature scheme in order to
solve the problem in which the signer can shift the blame, another problems arise.

1.2 Prime Causes of Problems from (G1) to (G3)

Before we discuss the DRS , we first discern the truth of the problems from (G1)
to (G3) in the group signature scheme.

Let us review the functionalities of GM in the group signature scheme. There
are three functionalities; (F1) of issuing a credential to each signer which ensures
that the corresponding signer belongs to the group, (F2) of interacting with
each signer so that the signer generates her secret key (signing key), and (F3) of
opening a signer anonymity (i.e., of canceling the signer anonymity) when some
problem arises2.

Let us consider the relation between the problems from (G1) to (G3) and the
functionalities from (F1) to (F3). In this setting, the functionalities (F2) and
(F3) seem to cause the problems from (G1) to (G3). Indeed, (F2) leads to (G1)
and (G2), and (F3) raises (G3). Therefore, the goal of this paper is to construct
a scheme in which no electronic big brother who realizes (F2) and (F3) exists;
namely, each signer generates her key pair by herself, and the signer must be
involved in opening the signer anonymity. This involution alerts the signer to
the violation of her anonymity, except in the case in which all entities who have
not signed disavow the signature.

Now, let us return to the group signature scheme of Chaum and van Heyst
[11]. The reference [11] proposes four group signature schemes. We found that,
surprisingly, GM in the fourth scheme of [11] is only required to have the func-
tionality of (F1). This means that the fourth scheme seems to be our goal; to
our regret, however, the scheme is not publicly verifiable. Namely, the verifica-
tion of a signature is performed by an interaction between the signer and the
2 Bellare et al. [6] divides the group manager into two entities; an issuer who realizes

(F1) and (F2), and an opener who realizes (F3).

176 Y. Komano et al.

verifier anonymously. Note that this interaction not only decreases the perfor-
mance but also requires an anonymous channel in order to ensure the signer
anonymity.

In 2002, Naor [13] proposed a deniable ring authentication, in which a prover
can confirms a verifier that the prover does or does not authenticate a message
anonymously. The deniable ring authentication needs only the third party (PKI);
however, its verification is not publicly verifiable, too. Namely, the deniable ring
authentication requires an iteration between the prover and the verifier over an
anonymous channel.

1.3 Our Contribution

This paper first proposes a new concept of a deniable ring signature scheme
(DRS). The DRS consists of two entities in the PKI setting (no group manager3

GM): signers S’s and a verifier V . S publishes her public key to the PKI with
a (setup free) key generation algorithm, and to sign a document anonymously,
she chooses some public keys of respective entities and generates the signature
with the message, public keys, and her public and secret keys. V can verify the
signature with public keys of the signer and entities, like the verification of the
ring signature scheme. The difference from the ring signature is that the DRS
allows V to interact with the signer and entities in order to confirm that the
signer/entity generates the signature or not with a zero knowledge interactive
proof (ZKIP).

The DRS solves the problem in which the signer can shift the blame to enti-
ties, i.e., the DRS allows entities to claim the false charge by interacting with
the verifier, even if the signer tries to shift the blame to her. Moreover, since
the DRS has no GM and its key generation algorithm is setup free, it solves
the problems from (G1) to (G3) concerned with the group signature scheme.
Furthermore, since the deniable ring signature is publicly verifiable, no anony-
mous interaction (no anonymous channel) is required between the signer and the
verifier in the verification.

Second, this paper discusses a security model of the DRS by comparing it
with the models of the group signature scheme [11, 4, 6] and the ring signature
scheme4 [17, 2]. We show that it is enough for us to take care of the anonymity,
traceability, and non-frameability, as well as the case of the dynamic group signa-
ture scheme. Note that the definition of these security requirements for the DRS
slightly differ from those for the dynamic group signature scheme [6]. Since the
DRS has no the group manager, we do not need to take some oracles discussed
in [6] into consideration (SendToI(·, ·), SendToU(·, ·), RReg(·), and WReg(·, ·)).
As for the definition of anonymity, we follow the definition described in [8] in
which an attacker is restricted so as not to corrupt signers (entities) who are in
the group of signers corresponding to the target signature.
3 In the DRS , a signer selects a group of signers dynamically in the same manner

as that of the ring signature scheme. Note that we can construct the scheme by
assuming a GM who has a functionality of only (F1).

4 Cramer et al. [12] introduced a concept of one-out-of-n signature scheme.

Toward the Fair Anonymous Signatures: Deniable Ring Signatures 177

This paper also constructs a concrete instantiation of the DRS based on
the undeniable signature scheme [9, 15, 14] which is proven to be secure in the
random oracle model [5]. The anonymity is proven under the assumption of the
decision Diffie-Hellman (DDH) problem; on the other hand, the non-frameability
is ensured under the assumption of the computational Diffie-Hellman (CDH)
problem. Since the DDH problem is reduced to the CDH problem, the proposed
scheme is proven to be secure under the assumption of the DDH problem.

Note that the DRS can be regarded as a group signature scheme without
a group manager. The DRS does not realize an original purpose of the ring
signature scheme, e.g., leaking a secret (classified information) to a third party;
because the third party can identify (search for) the signer who cannot deny the
signature with (sometimes terrible) endeavors.

2 Assumptions

Referring to [7], we first review the computational Diffie-Hellman (CDH) and
decision Diffie-Hellman (DDH) problems. Our concrete instantiation is proven
to be anonymous, and non-frameable under the assumption of the CDH problem
and the DDH problem, respectively.

Definition 1. Let p and q be primes such that q|p− 1. G denotes sub-group of
Z∗

p generated by an element g whose order is q. We write I for an algorithm to
solve the following problems.

CDH) We define that I (τ, ε)-solves the CDH problem if I whose running
time is bounded by τ , given g, ga, and gb (a and b are randomly chosen from
Zq), outputs gab mod p with success probability more than ε.
DDH) We define that I (τ, ε)-solves the DDH problem if I whose running
time is bounded by τ , given g, h, z1, and z2, decides whether logg z1 = logh z2
or not with advantage more than ε. Here, the advantage of I is defined as
Pr[I(g, h, z1, z2) = 1|(g, h, z1, z2) ∈ D] − Pr[I(g, h, z1, z2) = 1|(g, h, z1, z2) ∈
R], where D and R denote the sets {(g, h, z1, z2)| logg z1 = logh z2} and

{(g, h, z1, z2)|g, h, z1, z2
R← G}, respectively.

We define that the CDH problem (the DDH problem, respectively) is (τ, ε)-hard
if there is no algorithm I which can (τ, ε)-solve the CDH problem (the DDH
problems, respectively).

3 Deniable Ring Signature Scheme

This section introduces a new concept of a deniable ring signature scheme (DRS)
in which an entity (victim) whose public key is utilized in signing can claim the
false charge. The DRS can be regarded as a group signature scheme without a
group manager. We denote the number of signers published in the system by L.
In the following definition, we assume that a signer Pik

dynamically selects the

178 Y. Komano et al.

L′−1 entities Pi1 , · · · , Pik−1 , Pik+1 , · · · , PiL′ from the list of signers List published
by the PKI and runs the signing algorithm with her own secret key and public
keys of the entities.

Definition 2 (Deniable Ring Signature Scheme (DRS)). The deniable
ring signature scheme DRS consists of the following algorithms.

1) A probabilistic key generation algorithm K, given a security parameter k,
outputs a pair of public and secret keys, (pkij

, skij), for each signer Pij .
2) A probabilistic signing algorithm S, given a message M , a secret key skik

of
signer Pik

, and the public keys (pki1 , · · · , pkiL′) as an input, outputs a pair of
message, signature, and public keys (or signers’ ID), (M, σ, pki1 , · · · , pkiL′).

3) A deterministic verification algorithm V, given (M, σ, pki1 , · · · , pkiL′) as an
input, determines whether σ is valid for M and pki1 , · · · , pkiL′ or not.

4) Probabilistic confirmation and disavowal algorithms C/D, performed by the
interaction between a signer Pij and a verifier V with input (M, σ, pki1 , · · · ,
pkiL′), convinces V that Pij does or does not generate σ.

4 Correctness and Security Requirements

Intuitively, the security notions required for the group signature are also required
for the DRS. Namely, the unforgeability, anonymity, un-linkability, traceability,
exculpability, coalition resistance, and framing should be convincing. For the
group signature scheme with dynamic group setting, Bellare et al. [6] introduced
three security requirements; anonymity, traceability, and non-frameability.

Taking their discussion into consideration, we fix the security requirements
of the DRS. As in the group signature scheme, we can see that the anonymity,
traceability, and non-frameability are sufficient requirements for the DRS in-
stead of the above seven requirements. Note that the definition of three secu-
rity requirements for the DRS differ from those for the dynamic group signa-
ture scheme [6]. Since the DRS has no the group manager, we do not need to
take some oracles discussed in [6] into consideration (SendToI(·, ·), SendToU(·, ·),
RReg(·), and WReg(·, ·)).

4.1 Oracles

In this subsection, let us review the oracles utilized in the security considerations
(following subsections). Let List be a list issued by PKI. MList is a list of mali-
cious signers who are corrupted or registered by an attacker. We call a signer who
does not belong to MList an honest signer. GSet is a list of message-signature
pairs which is generated through a challenge oracle query Chb(·, ·, ·): Note that
an attacker cannot query the pair included in GSet to a confirmation/disavowal
oracle C/D(·, ·, ·).
Add(i) : An add user oracle is invoked to add an honest signer with identity i to
List. If a signer with identity i already exists, then the oracle returns ε. Other-
wise, the oracle runs the key generation algorithm and adds the signer (and her
public key) to List. Finally, the oracle returns pki.

Toward the Fair Anonymous Signatures: Deniable Ring Signatures 179

Add(i) : DRSig(ik; M, i1, · · · , ik−1, ik+1, · · · , iL′) :
If Pi ∈ List then return ε If Pi1 , · · · , PiL′ �∈ List\MList then return ⊥
(pki, ski) ← K(1k) return S(skik , M, pki1

, · · · , pkiL′)
Pi → List C/D(i, M, σ) :
return pki If Pi �∈ List\MList then return ⊥

Reg(i, pki) : If (M, σ) ∈ GSet then return ⊥
If Pi ∈ List then return ε run the confirmation/disavowal protocol
Pi → MList Chb(i0, i1, M) :
return 1 If Pi0 , Pi1 /∈ List\MList then return ⊥

Crpt(i) : σ ← S(skib , M, pki0
, pki1

)
If Pi �∈ List\MList then return ε (M, σ, i0, i1) → GSet
Pi → MList return σ
return ski

Fig. 1. Description of Oracles

Reg(i, pki) : With a signer register oracle, an attacker can register a new signer
with public key pki in List. The oracle also adds the signer to MList.
Crpt(i) : A corrupt oracle is utilized to corrupt the signer whose identity is i. An
attacker can draw the secret key ski of signer Pi from the oracle.
DRSig(ik; M, i1, · · · , ik−1, ik+1, · · · , iL′) : A signing oracle is given the identity of
an honest signer Pik

, message M , and identities of entities Pi1 , · · · , Pik−1 , Pik+1 ,
· · · , PiL′ to output a signature σ of the honest signer and entities.
Chb(i0, i1, M) : A challenge oracle is utilized in the definition of the anonymity.
For a challenge bit b ∈ {0, 1}, the oracle, given the identities (i0, i1) and message
M , returns a target signature S(skib

, M, pki0 , pki1) of Pi0 and Pi1 for M . Note
that an attacker cannot only corrupt signers Pi0 and Pi1 (see [8]); moreover, the
attacker cannot run the confirmation/disavowal protocol for the target signature
with Pi0 and Pi1 . In the case of the confirmation/disavowal oracle query for the
target signature, the challenge oracle adds the target signature to GSet.
C/D(i, M, σ) : A confirmation/disavowal oracle, given the identity i and message-
signature pair (M, σ), runs the confirmation/disavowal protocol (interacts with
an attacker) if Pi is an honest signer. This oracle does not run the confirma-
tion/disavowal algorithm if the attacker inputs the target signature output by
the challenge oracle.

4.2 Correctness

We call that the DRS is correct if; the signature generated from the signing
algorithm properly is accepted by the verification algorithm, the signer of the
signature is identified by confirmation/disavowal algorithm. We formalize the
correctness with an experiment Expcorr

DRS,A(k) for the DRS , an adversary A,
and security parameter k, described in Figure 2. An advantage Advcorr

DRS,A(k) is
defined as follows:

Advcorr
DRS,A(k) = Pr[Expcorr

DRS,A(k) = 1]

180 Y. Komano et al.

Experiment Expcorr
DRS,A(k)

List ← φ;MList ← φ;GSet ← φ
(ik; M, i1, · · · , iL′) ← A(1k, Add(·), Reg(·, ·), Crpt(·), C/D(·, ·, ·), DRSig(·; ·, ·))
If Pi1 , · · · , PiL′ �∈ List\MList then return 0
σ ← S(skik , M, pki1

, · · · , pkiL′); If V(M, σ, pki1
, · · · , pkiL′) = 0 return 1

If C/D(ik, M, σ) succeeds in disavowal protocol then return 1
If C/D(ij �= ik, M, σ) succeeds protocol in confirmation then return 1
return 0

Experiment Expanon−b
DRS,A(k)

List ← φ;MList ← φ;GSet ← φ

d ← A(1k, Chb(·, ·, ·), Add(·), Reg(·, ·), Crpt(·), C/D(·, ·, ·), DRSig(·; ·, ·))
If Pi in GSet is in MList then return 0
return d

Experiment Exptrace
DRS,A(k)

List ← φ;MList ← φ;GSet ← φ

(M, σ, pki1
, · · · , pkiL′) ← A(1k, Add(·), Reg(·, ·), Crpt(·), C/D(·, ·, ·), DRSig(·; ·, ·))

If V(M, σ, pki1
, · · · , pkiL′) = 0 then return 0

If Pi1 , · · · , PiL′ can disavow (M, σ) then return 1 else return 0
Experiment Expnf

DRS,A(k)
List ← φ;MList ← φ;GSet ← φ
(M, σ, pki1

, · · · , pkiL′) ← A(1k, Add(·), Reg(·, ·), Crpt(·), C/D(·, ·, ·), DRSig(·; ·, ·))
If V(M, σ, pki1

, · · · , pkiL′) = 0 then return 0
If the followings are satisfied then return 1 else return 0:

- For some t ∈ [1, L′], Pit cannot disavow (M, σ)
- A did not query Crpt(it) or DRSig(it; M, i1, · · · , it−1, it+1, · · · , iL′)

Fig. 2. Experiment of Correctness, Anonymity, traceability, and non-frameability

We say that the DRS is correct if Advcorr
DRS,A(k) is negligible for any probabilistic

polynomial-time adversary A and security parameter k.

4.3 Anonymity

Formal Definition: For the DRS, any adversary A, a bit b ∈ {0, 1}, and
security parameter k, we define the experiment Expanon−b

DRS,A(k) described in Figure
2. An advantage Advanon

DRS,A(k) is defined as follows:

Advanon
DRS,A(k) = |Pr[Expanon−1

DRS,A(k) = 1]− Pr[Expanon−0
DRS,A(k) = 1]|

= |2 Pr[Expanon−b
DRS,A(k) = b]− 1|

We say that the DRS is anonymous in (τ, qCh, qH , qS , qC , ε) if the advantage is
less than ε for any adversary A, with time bound τ , who is allowed to access
the challenge oracle, hash oracle, signing oracle, confirmation/disavowal oracles
qCh, qH , qS , qC times, respectively. Note that if the system includes L signers,
A can query the signer register oracle and corrupt oracle at most L − 2 times
in total.
Discussion: The definition of anonymity for the DRS is based on the indistin-
guishability, which is similar to that of the group signature scheme [6, 1, 8]. The

Toward the Fair Anonymous Signatures: Deniable Ring Signatures 181

difference between them is: in the DRS, since an entity who wants to open the
signer anonymity adaptively selects a signer and runs the confirmation/disavowal
protocols with the signer, we replace the open oracle Open(gmsk , ·, ·) of [6, 8]
with the confirmation/disavowal oracle C/D(·, ·, ·). Note that our definition of
the anonymity is restricted compared to that of [6]: in restricting an attacker so
as not to corrupt the signers whom the attacker queries to the challenge oracle,
the similar discussion is done in the group signature scheme [8]. This restric-
tion causes that the number of entities A can corrupt is bounded by (at most)
L − 2. Note that the attacker can adaptively output queries Add(·), Reg(·, ·),
Crpt(·), and DRSig(·; ·, ·) to each oracle, respectively. The anonymity suggests
the unlinkability in addition to the anonymity.

4.4 Traceability

Formal Definition: For the DRS , any adversary A and security parameter
k, we define the experiment Exptrace

DRS,A(k) described in Figure 2. An advantage
Advtrace

DRS,A(k) is defined as follows:

Advtrace
DRS,A(k) = Pr[Exptrace

DRS,A(k) = 1]

We say that the DRS is traceable in (τ, qH , qS , qC , ε) if the advantage is less than
ε for any adversary A, with time bound τ , who is allowed to access the hash
oracle, signing oracle, and confirmation/disavowal oracles qH , qS , and qC times,
respectively. Note that if the system includes L signers, A can query the signer
register oracle and corrupt oracle at most L− 1 times in total.
Discussion: Traceability is a property such that no attacker can produce a
forgery from which an entity is detected as the signer by the confirmation/dis-
avowal protocol. With regard to the traceability of the DRS, we should take
the case into consideration where the group of malicious signers generate an un-
traceable signature. Namely, we allow the attacker A to register/corrupt all L
signers (entities) by himself. Moreover, A can adaptively output queries Add(·)
and DRSig(·; ·, ·) to each oracle, respectively. The traceability suggests the un-
forgeability, exculpability, coalition resistance, in addition to the traceability.

4.5 Non-frameability

Formal Definition: For the DRS , any adversary A and security parameter
k, we define the experiment Expnf

DRS,A(k) described in Figure 2. An advantage
Advnf

DRS,A(k) is defined as follows:

Advnf
DRS,A(k) = Pr[Expnf

DRS,A(k) = 1]

We say that the DRS is non-frameable in (τ, qH , qS , qC , ε) if the advantage is
less than ε for any adversary A, with time bound τ , who is allowed to access the
hash oracle, signing oracle, and confirmation/disavowal oracles qH , qS , and qC

times, respectively. Note that if the system includes L signers, A can query the
signer register oracle and corrupt oracle at most L− 1 times in total.

182 Y. Komano et al.

Discussion: Non-frameability is a property such that no attacker can produce
a forgery from which an honest entity is detected as the signer by the confirma-
tion/disavowal protocol. The definition of non-frameability of the DRS is almost
the same as that of the dynamic group signature scheme. We allow the attacker
A to output queries Add(·), Reg(·, ·), Crpt(·), DRSig(·; ·, ·), and C/D(·, ·, ·) to each
oracle, respectively; however, A is restricted not to corrupt the entity (victim) Pt

who cannot disavow the forgery and not to query the message M∗ (correspond-
ing to the forgery) to DRSig(t; M∗, ·). This restriction causes that the number
of signers (entities) A can corrupt is bounded by (at most) L − 1. The non-
frameability suggests the unforgeability, exculpability, and coalition resistance,
in addition to the framing.

5 Concrete Scheme

In this section, we propose a concrete deniable ring signature scheme5 and give
the security considerations.

5.1 Protocol

The concrete scheme is based on the zero-knowledge undeniable signature scheme
[9]. More precisely, in order to ensure the provable security, we utilize the zero-
knowledge undeniable signature scheme with the probabilistic full domain hash
function.

Protocol 1 (Deniable Ring Signature Scheme). Let p be an l bit prime,
and q an l1 bit prime such that q|p− 1. G denotes sub-group of Z∗

p generated by
an element g whose order is q. We write H : {0, 1}∗ → Zq, G: {0, 1}∗ → G, and
F : {0, 1}∗ → {0, 1}l2 for the one-way and collision-resistant hash functions.

Key Generation: A signer Pij chooses sij

R← Zq as a secret key, and then Pij

computes her public key kij = gsij mod p and sends it to PKI. PKI authorizes
the signer Pij , adds Pij to List, and returns the credential for the registration
to List.
Signing: For a message m, the signer decides the number of the group, L′, and
selects k

R← [1, L′]. Hereafter, we denote the signer as Pik
. Next, Pik

randomly
chooses L′ − 1 entities (signers) from List, Pi1 , · · · , Pik−1 , Pik+1 , · · · , PiL′ whose
keys are denoted as ki1 , · · · , kik−1 , kik+1 , · · · , kiL′ , respectively. Pik

then chooses

R
R← {0, 1}l3, and computes w = G(M, R) and S = wsik mod p which is also

utilized by the confirmation and disavowal protocols. For j = 1, · · · , i − 1, i +
1, · · · , L′; Pik

chooses cij , dij

R← Zq, and computes aij = gcij k
dij

ij
mod p, bij =

wcij Sdij mod p, respectively. Pik
then chooses ẽ

R← Zq, and calculates aik
=

ge mod p, bik
= we mod p. Pik

computes d = H(M, R, w, S, ki1 , · · · , kiL′ , ai1 , bi1 ,

5 Chaum and Pedersen [10] utilized a similar technique to construct blind signature
schemes for wallet databeses.

Toward the Fair Anonymous Signatures: Deniable Ring Signatures 183

Confirmation: logg kik = logw S Disavowal: logg kij �= logw S

Pik V Pij V

c=wagb

←−−−−−−−−− a, b ← Zq

c1=wagb

c2=Sakb
ij←−−−−−−− a ← [1, max]

b ← Zq

r ← Zq

t=wagb+r

s=(wagb+r)
sik−−−−−−−−−−→ Find a s.t.

a,b←−−−−−−−−− (c
sij
1
c2

) = (w
sij

S
)a

Check c
r−−−−−−−−−→ r ← Zq

t=F (a,r)−−−−−−−→
Check t, s

a,b←−−−−−−−
(iterate K times) Check c1, c2

r−−−−−−−→
Check t

(iterate K times)

Fig. 3. Confirmation and Disavowal Protocols [9, 15]

· · · , aiL′ , biL′), sets dik
= d− (di1 + · · ·+ dik−1 + dik+1 + · · ·+ diL′) mod q, cik

=
ẽ− dik

sik
mod q, and outputs (M, R, S, ci1 , di1 , · · · , ciL′ , diL′ , ki1 , · · · , kiL′) as a

message-signature pair.

Verification: For the message-signature pair (M, R, S, ci1 , di1 , · · · , ciL′ , diL′ , ki1 ,
· · · , kiL′), a verifier V first computes w = G(M, R). For j = 1, · · · , L′; V

computes aij = gcij k
dij

ij
mod p, bij = wcij Sdij mod p, respectively. V computes

d = H(M, R, w, S, y, ki1 , · · · , kiL′ , ai1 , bi1 , · · · , aiL′ , biL′). V checks if d
?= di1 +

· · ·+diL′ mod q. If the equality holds, V accepts the signature; otherwise rejects.

Confirmation and Disavowal [9, 15]: (Figure 3) The confirmation and dis-
avowal protocols are executed by the interaction between a verifier V and a
signer Pij .

Note 1. The concrete deniable ring signature scheme is not compact [4] since
its signature length increases in proportion to the number of entities (signers)
the signer adaptively selects in the first step of signing algorithm. In order to
elude the tracing, the signer should select plenty of signers. There is a trade-off
between the anonymity, and both the computation cost and the signature length.

5.2 Security Considerations

Let us consider the correctness and the security of the concrete scheme. It is easy
to see that the scheme is correct; we omit the proof. With regard to security
requirements, as we will claim, the non-frameability is guaranteed by the CDH
assumption; however, since the anonymity is ensured by the DDH assumption,
the security of the concrete scheme is based on the DDH assumption.

Theorem 1 (Anonymity). If the DDH problem is (τ ′, ε′)-hard, then the con-
crete scheme containing L signers is anonymous in (τ, qCh, qH , qG, qS , qC , ε).
Here,

184 Y. Komano et al.{
τ ′ ≤ τ + (qG + qH + qS + qC)TH + qSTS + 2qCTC

ε′ ≥ 1
LqCh

(
1− (qH+qS+1)(qS+1)

2l3

)(
1− qC

q

)(
1− 1

q

)
ε

hold. In the above inequalities, TH, TS, and TC denote the time needed in sim-
ulation of a query to the random oracles, signing oracles, and confirmation and
disavowal oracles.

Proof of Theorem 1: Let P = (g, h, z1, z2) be an instance of the DDH problem.
We construct an inverter I which utilizes an attacker A against the anonymity
of the concrete scheme to decide whether logg z1 = logh z2 or not. I selects
t ∈ [1, L] and set the public key kt = z1 (it reduces the success probability into
1
Lε). Note that A can adaptively corrupt or register at most L − 2 signers: If
Pt ∈ MList then I aborts. Especially, if A outputs a corrupt query for t then I
cannot answer skt = logg z1. This is because we adopt a restricted definition [8]
for the anonymity. See Appendix A for detail. �
Theorem 2 (Traceability). There exists no attacker A against the concrete
scheme who can output an untraceable forgery with non-negligible probability.

Proof of Theorem 2: Theorem 2 is proven by the contradiction (not the
reduction between the hardness of breaking the traceability and the hardness of
mathematical problem, e.g., the discrete logarithm problem). See Appendix B
for detail. �
Theorem 3 (Non-Frameability). If the CDH problem is (τ ′, ε′)-hard, then
the concrete scheme containing L signers is traceable in (τ, qH , qG, qS , qC , ε).
Here, ⎧⎨⎩

τ ′ ≤ τ + (qG + qH + qS + qC)TH + qSTS + 2qCTC

ε′ ≥ 1
L

(
ε− (qH+qG+2qS+qC)qS

2l3
− qC+1

q

)
ε

hold. (Notations are the same as those in Theorem 1)

Proof of Theorem 3: Due to space limitation, we omit the proof. The strategy
of the proof is similar to that for the undeniable signature scheme given in [14].
We will give it in the full paper. �

Note that, under the assumption of the GDH problem (gap Diffie Hellman prob-
lem, [15]), we can easily prove Theorem 3; however, it is not meaningful to do so.
This is because, under the assumption of the GDH problem, we assume that there
is an oracle which answers the DDH problem. Namely the non-frameability under
the assumption of GDH problem makes sense when the anonymity is breakable.
Therefore, we give a somewhat complicated proof under the assumption of the
CDH problem.

6 Discussion

In this section, we compare the deniable ring signature scheme with the group
and ring signature schemes.

Toward the Fair Anonymous Signatures: Deniable Ring Signatures 185

We first discuss the group setting. Group signature requests each signer to
interact with GM in joining the group and generating her secret key (signing
key). Both the static and dynamic group signature schemes, only GM decides
(adds and revokes) the member of the group. On the other hand, the ring and
deniable ring signature schemes allow each signer dynamically to select the group
of signers for the message being signed.

Next, let us consider the opening of the signer anonymity. In the group signa-
ture scheme, GM can open the signer anonymity by himself with the group secret
key held by GM. As for the ring signature scheme, no one can detect the signer
at all. With regard to the deniable ring signature scheme, anyone cannot detect
the signer by himself: If one can cooperate with the signer who wants to confirm
or disavow the signature, he can detect the signer or winnow the candidates by
one. On the contrary, for the signer who generates the deniable ring signature,
the signer can notice the violation of the anonymity, except for the case where all
entities who do not generate the signature disavow it. Therefore, the confidence
of anonymity is improved by selecting plenty of entities for the signature.

Finally, we compare the computation cost. As for the group signature, gener-
ally speaking, the cost in signing and verification is independent of the number
of signers of the group. With the ring and deniable ring signature schemes (the
concrete scheme), however, the cost increases in proportion to the number of
signers of the group.

7 Conclusion and Future Works

This paper first introduced a new notion of the deniable ring signature scheme
(≈ the group signature scheme without a group manager). We then discuss the
security requirements for the deniable ring signature scheme. Moreover, we pro-
posed the concrete scheme proven to be secure under the assumption of the
DDH in the random oracle model. The proposed scheme, based on the undeni-
able signature scheme [9], solves the problems concerned with the ring signature
(problem that the signer can shift the blame to other entities) and the group
signature scheme (problems from (G1) to (G3)); however, the signing and veri-
fication require higher computation cost than the group signature. Construction
of a more efficient deniable ring signature scheme remains an open problem.

References

1. M. Abdalla and B. Warinschi. On the minimal assumptions of group signature
schemes. In L. Lopez, S. Qing, and E. Okamoto, editors, The 2004 International
Conference on Information and Communications Security – ICICS 2004, volume
3269 of Lecture Notes in Computer Science, pages 1–13, Berlin, Heidelberg, New
York, 2004. Springer-Verlag.

2. M. Abe, M. Ohkubo, and K. Suzuki. 1-out-of-n signatures from a variety of keys.
IEICE Transactions Fundamentals of Electronics, Communications and Computer
Sciences, E87–A(1):131–140, 2004.

186 Y. Komano et al.

3. G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A practical and provably se-
cure coalition-resistant group signature scheme. In M. Bellare, editor, Advances in
Cryptology — CRYPTO 2000, volume 1880 of Lecture Notes in Computer Science,
pages 255–270, Berlin, Heidelberg, New York, 2000. Springer-Verlag.

4. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures:
Formal definitions, simplified requirements, and a construction based on general
assumptions. In E. Biham, editor, Advances in Cryptology — EUROCRYPT 2003,
volume 2656 of Lecture Notes in Computer Science, pages 614–629, Berlin, Heidel-
berg, New York, 2003. Springer-Verlag.

5. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for design-
ing efficient protocols,. In Proc. of the First ACM Conference on Computer and
Communications Security, pages 62–73. ACM Press, 1993.

6. M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case
of dynamic groups. In A. Menezes, editor, Topics in Cryptography – CT-RSA
2005, volume 3376 of Lecture Notes in Computer Science, pages 136–153, Berlin,
Heidelberg, New York, 2005. Springer-Verlag.

7. D. Boneh. The decision diffie-hellman problem. In J. Buhler, editor, Algorithmic
Number Theory, Third International Symposium — ANTS-III,, volume 1423 of
Lecture Notes in Computer Science, pages 48–63, Berlin, Heidelberg, New York,
1998. Springer-Verlag.

8. J. Camenisch and J. Groth. Group signatures: Better efficiency and new theoretical
aspect. In C. Blundo and S. Cimato, editors, SCN ’04, volume 3352 of Lecture
Notes in Computer Science, pages 120–133, Berlin, Heidelberg, New York, 2005.
Springer-Verlag.

9. D. Chaum. Zero-knowledge undeniable signatures. In I. Damg̊ard, editor, Advances
in Cryptology — EUROCRYPT’90, volume 473 of Lecture Notes in Computer
Science, pages 458–464, Berlin, Heidelberg, New York, 1991. Springer-Verlag.

10. D. Chaum and P. Pedersen. Wallet databeses with observers. In E. F. Brickell, editor,
Advances in Cryptology — CRYPTO ’92, volume 740 of Lecture Notes in Computer
Science, pages 89–105, Berlin, Heidelberg, New York, 1993. Springer-Verlag.

11. D. Chaum and E. van Heyst. Group signatures. In D. W. Davies, editor, Advances
in Cryptology - EuroCrypt ’91, pages 257–265, Berlin, 1991. Springer-Verlag. Lec-
ture Notes in Computer Science Volume 547.

12. R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and
simplified design of witness hiding protocols. In Y. Desmedt, editor, Advances in
Cryptology — CRYPTO ’94, volume 893 of Lecture Notes in Computer Science,
pages 174–187, Berlin, Heidelberg, New York, 1995. Springer-Verlag.

13. M. Naor. Deniable ring authentication. In M. Yung, editor, Advances in Cryptol-
ogy — CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages
481–498, Berlin, Heidelberg, New York, 2002. Springer-Verlag.

14. W. Ogata, K. Kurosawa, and S.-H. Heng. The security of the fdh variant of chaum’s
undeniable signature scheme. In S. Vaudenay, editor, Public Key Cryptography –
PKC 2005, volume 3386 of Lecture Notes in Computer Science, pages 328–345,
Berlin, Heidelberg, New York, 2005. Springer-Verlag.

15. T. Okamoto and D. Pointcheval. The gap-problems: A new class of prob-
lems for the security of cryptographic schemes. In K. Kim, editor, Public Key
Cryptography — PKC 2001, volume 1992 of Lecture Notes in Computer Science,
pages 104–118, Berlin, Heidelberg, New York, 2001. Springer-Verlag.

16. D. Pointcheval and J. Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, 2000.

Toward the Fair Anonymous Signatures: Deniable Ring Signatures 187

17. R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In C. Boyd, editor,
Advances in Cryptology - ASIACRYPT 2001, volume 2248 of Lecture Notes in
Computer Science, pages 526–565, Berlin, Heidelberg, New York, 2001. Springer-
Verlag.

A Proof of Theorem 1 (Anonymity)

We give the of proof of Theorem 1. In order to prove the theorem, we construct an
inverter I which utilizes an adversaryA against the anonymity of the democratic
group signature as an oracle to solve a DDH instance P = (g, h, z1, z2).

We first claim the following lemma with regard to the number of challenge
oracle queries. The proof is similar to that of [6].

Lemma 1. If there exists an adversary A who breaks the anonymity of the de-
mocratic group signature in (τ, qCh, qH , qG, qS , qC , ε), then there exits an adver-
sary B who breaks the anonymity of the democratic group signature in (τ, 1,
qH , qG, qS , qC , εB). Here, εB = ε

qCh
holds.

Hereafter, let us construct I which utilizes B as an oracle to solve P =
(g, h, z1, z2).

Strategy: I first selects t
R← [1, L]. I runs B by simulating answers for the

queries which B outputs to each oracle. For the add user oracle query for t,
especially, I sets (simulates) kt = z1. As for the challenge oracle query for
(i0, i1, M∗), I first chooses b

R← {0, 1}. If ib = t then I simulates the answer as
follows. I chooses R∗ R← {0, 1}l3, and sets w∗ = G(M∗, R∗) := h and S∗ = z2.

For j ∈ {0, 1}, I selects c∗ij
, d∗ij

R← Zq, and computes a∗
j = gc∗

j k
d∗

j

j mod p and

b∗j = w∗c∗
j S∗d∗

j mod p . I calculates d∗ = d∗i0 + d∗i1 mod q, sets (simulates) d∗ :=
H(M∗, R∗, w∗, S∗, ki0 , ki1 , a

∗
i0 , b

∗
i0 , a

∗
i1 , b

∗
i1), and returns (M∗, R∗, S∗, c∗i0 , d

∗
i0 , c

∗
i1 ,

d∗i1 , ki0 , ki1). Finally, I receives b′ output by B and returns 1 if b = b′; otherwise I
returns 0. In this strategy, the following inequality holds between the advantage
of B (εB) and that of I (ε′).

ε′ = | Pr[I(P) = 1|P ∈ D] − Pr[I(P) = 1|P ∈ R]|

= εB +
1
2

− Pr[I(P) = 1 ∧ P ∈ R]
Pr[P ∈ R]

= εB +
1
2
− Pr[I(P) = 1 ∧ P ∈ D] + Pr[I(P) = 1 ∧ P ∈ R\D]

= εB +
1
2
− Pr[I(P) = 1|P ∈ D]

q
+ Pr[I(P) = 1|P ∈ R\D] Pr[P ∈ R\D]

≥ εB +
1
2
− 1

q
εB +

1
2

+
1
2

1 − 1
q

= 1 − 1
q

εB

188 Y. Komano et al.

If we denote the probability for the case where I fails to simulate the answers
for the queries which B outputs by Pr[Fail], we finally have that ε′ ≥ Pr[¬Fail]

(
1−

1
q)εB = Pr[¬Fail]

(
1− 1

q) ε
qCh

(by Lemma 1).
The followings describe the way for simulating the answers for the queries

output by B. For simplicity, we assume that the identities of signers are i =
1, 2, · · · , L.
Answer to the add user oracle query for i: If Pi ∈ List then I return ε.
If i = t then I sets kt = z1, adds Pt into List, and returns kt. Otherwise, I sets
ki = gsi mod p for si

R← Zq, adds Pi into List, and returns ki.
Answer to the register oracle query for (i, ki): If Pi ∈ List then I return
ε. If i = t then I aborts. Otherwise, I sets ki as a public key of Pi, adds Pi into
both List and MList, respectively, and returns 1.
Answer to the corrupt oracle query for i: If Pi 	∈ List\MList then I return
ε. If i = t then I aborts. Otherwise, I adds Pi into MList and returns si.
Answer to G-oracle query for (M, R): If (M, R, r, w, S) ∈ G-List then I
returns w. Otherwise, I chooses r

R← Zq, and calculates w = gr mod p and
S = zr

1 mod p. I then sets (simulates) G(M, R) = w, adds (M, R, r, w, S) into
G-List, and returns w.
Answer to H-oracle query for (M, R,w,S,ki1 ,· · · , kiL′ , ai1 , bi1 , · · · , aiL′ , biL′):
If (M, R, w, S, ki1 ,· · · ,kiL′ , ai1 , bi1 ,· · · ,aiL′ , biL′ , d)∈H-List then I returns d. Oth-

erwise, I chooses d
R← Zq, sets (simulates) H(M, R, w, S, ki1 , · · · , kiL′ , ai1 , bi1 ,

· · · , aiL′ , biL′) = d, adds (M, R, w, S, ki1 , · · · , kiL′ , ai1 , bi1 , · · · , aiL′ , biL′ , d) into
H-List, and returns d.
Answer to the signing oracle query for (ik 	= t; M, i1, · · · , iL′): For j ∈
{1, · · · , L′}, if Pij 	∈ List or Pij ∈ MList then I returns ⊥. Otherwise, I simulates
G and H in the same manner as we have described, generates a signature with
the signing key sik

and randomness R ∈ {0, 1}l3, and returns the signature.
Answer to the signing oracle query for (ik = t; M, i1, · · · , iL′): I chooses
R

R← {0, 1}l3, simulates G(M, R) = w = gr mod p, and sets S = kr
t mod p.

For j ∈ {1, · · · , L′}, I chooses cij , dij

R← Zq, calculates aij = gcij k
dij

ij
mod p

and bij = wcij Sdij mod p, and sets (simulates) d = di1 + · · · + diL′ mod q. If
(M, R, w, S, ki1 , · · · , kiL′ , ai1 , bi1 , · · · , aiL′ , biL′ , ∗) ∈ H-List then I aborts (with
probability at most qH+qS+1

2l3). Otherwise, I adds (M, R, w, S, ki1 , · · · , kiL′ , ai1 ,
bi1 , · · · , aiL′ , biL′ , d) into H-List, and returns (M, R, S, ci1 , di1 , · · · , ciL′ , diL′ , ki1 ,
· · · , kiL′).
Answer to the confirmation/disavowal query for (i 	= t, M, R, S): If
Pi 	∈ List\MList then I returns ⊥. Otherwise, I gets w = G(M, R) (by simulating
G if necessary), and tests if S = wsi mod p holds or not. If it holds then I runs
the confirmation protocol (interacts with B) with the secret key si. Otherwise,
I runs the disavowal protocol (interacts with B) with si.
Answer to the confirmation/disavowal oracle query for (i = t, M, R, S):
I first checks if (M, R, ∗, S, ∗) ∈ G-List holds or not. If it holds then I runs the

Toward the Fair Anonymous Signatures: Deniable Ring Signatures 189

confirmation protocol by rewinding B (at most twice). Otherwise, from the fact
that w is equal to S1/st mod p by accident without querying M, R to G, I runs
the disavowal protocol by rewinding B (at most twice). Here, if w = S1/st mod p
holds by accident, I fails to simulate B’s view (with probability 1

q).

Answer to the challenge oracle query for (i0, i1, M∗): I first chooses
b

R← {0, 1}. If ib 	= t then I aborts. Otherwise, I simulates the answer as
follows. I chooses R∗ R← {0, 1}l3, and sets w∗ = G(M∗, R∗) := h and S∗ =
z2. In this setting, if (M∗, R∗, ∗, ∗, ∗) ∈ G-List then I aborts (with probabil-
ity at most qG+qS+qC+1

2l3). For j ∈ {0, 1}, I then selects c∗ij
, d∗ij

R← Zq and

computes a∗
j = gc∗

j k
d∗

j

j mod p, b∗j = w∗c∗
j S∗d∗

j mod p. I calculates d∗ = d∗i0 +
d∗i1 mod q and sets (simulates) d∗ := H(M∗, R∗, w∗, S∗, ki0 , ki1 , a

∗
i0

, b∗i0 , a∗
i1

, b∗i1).
If (M∗, R∗, ∗, ∗, ∗, ∗, ∗) has already been in H-List then I aborts (with probability
at most qH+qS+1

2l3). Otherwise I returns M∗, R∗, S∗, c∗i0 , d
∗
i0

, c∗i1 , d∗i1 , ki0 , and ki1 .

Analysis: Let us estimate the probability Pr[¬Fail]. As for the challenge oracle
query, I succeeds in guessing t ∈ [1, L] successfully with probability 1

L , and the
probability for the case where I succeeds in simulating the challenge signature is
estimated as (1− qH+qS+1

2l3)(1− qG+qS+qC+1
2l3). The probability for the case where

I succeeds in answering the DRSig(t; ·, ·) queries is evaluated by (1− qH+qS+1
2l3)qS .

On the other hand, the probability for the case where I succeeds in answering
the C/D(t, ·) queries is estimated by (1 − 1

q)qC ≥ 1 − qC

q . Therefore, we have

Pr[¬Fail] ≥ 1
L

(
1− (qH+qS+1)

2l3

)qS+1(
1− qC

q

)
≥ 1

L

(
1− (qH+qS+1)(qS+1)

2l3

)(
1− qC

q

)
:

this inequality and ε′ ≥ Pr[¬Fail]
(
1− 1

q

)
ε

qCh
give Theorem 1. �

B Proof of Theorem 2 (Traceability)

In this section, we show that there exists no attacker A who outputs an untrace-
able forgery (M∗, R∗, S∗, ci∗

1
, di∗

1
, · · · , ci∗

L′ , di∗
L′ , ki∗

1
, · · · , ki∗

L′) where logg kij 	=
logw∗ S∗ for all j ∈ {1, · · · , L′} with non-negligible probability. Let us review
the splitting lemma [16].

Lemma 2 (Splitting Lemma). Assume that X and Y be sets. For A ⊆ X×Y ,
if Pr

(x,y)∈X×Y
[A(x, y)] ≥ ε holds, then there exists Z ⊆ X (heavy row) such that;

1. Pr
x∈X

[x ∈ Z] ≥ ε

2
,

2. if a ∈ Z then Pr
y∈Y

[A(a, y)] ≥ ε

2
, and

3. Pr
x∈X

[x ∈ Z|∃y s .t ., A(x, y)] ≥ 1
2
.

Assume that A can output an untraceable forgery (M∗, R∗, S∗, ci∗
1
, di∗

1
,

· · · , ci∗
L′ , di∗

L′ , ki∗
1
, · · · , ki∗

L′) where logg kij 	= logw∗ S∗ for all j ∈ {1, · · · , L′}
with non-negligible probability. From Lemma 2, by rewinding A, we can get two

190 Y. Komano et al.

untraceable forgeries (M∗(1), R∗(1), S∗(1), c
i
∗(1)
1

, d
i
∗(1)
1

, · · · , c
i
∗(1)
L′

, d
i
∗(1)
L′

, k
i
∗(1)
1

, · · · ,

k
i
∗(1)
L′

) and (M∗(2), R∗(1), S∗(2), c
i
∗(2)
1

, d
i
∗(2)
1

, · · · , c
i
∗(2)
L′′

, d
i
∗(2)
L′′

, k
i
∗(2)
1

, · · · , k
i
∗(2)
L′′

),

where M∗(1) = M∗(2), R∗(1) = R∗(2), w∗(1) = w∗(2) = w∗, S∗(1) = S∗(2) = S∗,
L′ = L′′, ki∗

j (1) = ki∗
j (2), d

i
∗(1)
j

	= d
i
∗(2)
j

, ai∗
j (1) = ai∗

j (2), and bi∗
j (1) = bi∗

j (2) for some

ij (see the simulation below).
In this case, since ai∗

j (1) = ai∗
j (2) and d

i
∗(1)
j

	= d
i
∗(2)
j

hold, we have c
i
∗(1)
j

+

d
i
∗(1)
j

logg kij = c
i
∗(2)
j

+d
i
∗(2)
j

logg kij ; hence we can calculate logg kij =
c

i
∗(2)
j

−c
i
∗(1)
j

d
i
∗(1)
j

−d
i
∗(2)
j

modq.
On the other hand, since bi∗

j (1) = bi∗
j (2) and d

i
∗(1)
j

	= d
i
∗(2)
j

hold, we have
c
i
∗(1)
j

+d
i
∗(1)
j

logw∗ S∗ = c
i
∗(2)
j

+d
i
∗(2)
j

logw∗ S∗; hence we can calculate logw∗ S∗ =
c

i
∗(2)
j

−c
i
∗(1)
j

d
i
∗(1)
j

−d
i
∗(2)
j

mod q.

The above two equalities give logw∗ S∗ = logg kij for some ij; however, it
contradicts the assumption, logg kij 	= logw∗ S∗ for all j ∈ {1, · · · , L′}. Therefore,
we can conclude that there exists no attacker A who can output an untraceable
forgery with non-negligible probability.

First Run: I runs repeatedly A with random tape Ω to get a forgery. If A
fails to output a forgery 1/ε1 times then I aborts. Here, ε1 denotes the success
probability ofA for the first run (in the simulation) and is estimated by ε1 ≥ ε− 1

q .
If A outputs a forgery then I runs A with the same tape for the second run.
Simulating the Answers H(·), DRSig(·; ·, ·), C/D(·, ·): Almost the same as
those described in Appendix A, respectively. Note that the format of the elements
in G-List is slightly modified, and we only deal with the case where i 	= t for the
signing and confirmation/disavowal oracle queries (·; ·, ·) and (·, ·), respectively.
Answer to the add user oracle query for i: If Pi ∈ List then I return ε.
Otherwise, I sets ki = gsi mod p for si

R← Zq, adds Pi into List, and returns ki.
Answer to the register oracle query for (i, ki): If Pi ∈ List then I return
ε. Otherwise, I sets ki as a public key of Pi, adds Pi into both List and MList,
respectively, and returns 1.
Answer to the corrupt oracle query for i: If Pi 	∈ List\MList then I return
ε. Otherwise, I adds Pi into MList and returns si.
Answer to G-oracle query for (M, R): If (M, R, r, w) ∈ G-List then I returns
w. Otherwise, I chooses r

R← Zq, and calculates w = gr mod p. I then sets
(simulates) G(M, R) = w, adds (M, R, r, w) into G-List, and returns w.
End of the First Run: I receives a forgery (M∗(1),R∗(1),S∗(1),c

i
∗(1)
1

, d
i
∗(1)
1

, · · · ,

c
i
∗(1)
L′

, d
i
∗(1)
L′

, k
i
∗(1)
1

, · · · , k
i
∗(1)
L′

) output by A. I then searches (M∗(1), R∗(1), r∗(1),

w∗(1)) for G-List. If it is not in G-List then I aborts before the n-the query for
H-oracle (see below, with probability 1

q). I then searches (M∗(1), R∗(1), w∗(1),

S∗(1), k
i
∗(1)
1

, · · · , k
i
∗(1)
L′

, a
i
∗(1)
1

, b
i
∗(1)
1

, · · · , a
i
∗(1)
L′

, b
i
∗(1)
L′

, d∗(1)) for H-List. If it is not

Toward the Fair Anonymous Signatures: Deniable Ring Signatures 191

in H-List, then I aborts (with probability 1
q). Assume that it is n-th query to

H-oracle.

Second Run: I repeatedly runs A with the tape Ω with which A outputs
a forgery at the first run. If A fails to output a forgery 1/ε2 times then I
aborts. Here, ε2 denotes the success probability of A for the second run (in the
simulation) and is estimated by ε2 ≥ 1

qH
(ε
2 −

1
q). I runs A with the same input

as that utilized in the first run until the n-th query to H-oracle. If n-th query
to H-oracle happens then I answers d∗(2) 	= d∗(1); then simulates the answers to
the queries output by A to each oracle in the same manner.
End of the Second Run: I receives a forgery (M∗(2), R∗(2), S∗(2), c

i
∗(2)
1

, d
i
∗(2)
1

,

· · · , c
i
∗(2)
L′′

, d
i
∗(2)
L′′

, k
i
∗(2)
1

, · · · , k
i
∗(2)
L′′

) output by A. I then searches (M∗(2), R∗(2),

w∗(2), S∗(2), k
i
∗(2)
1

, · · · , k
i
∗(2)
L′′

, a
i
∗(2)
1

, b
i
∗(2)
1

, · · · , a
i
∗(2)
L′′

, b
i
∗(2)
L′′

, d∗(2)) for H-List. If it is

not in H-List, then I aborts (with probability 1
q). Assume that it is n′-th query

to H-oracle. Moreover, in n 	= n′ then I aborts. Note that n = n′ holds with
probability 1

qH
. Since d∗(2) 	= d∗(1), for some j ∈ {1, · · · , L′}, d

i
∗(1)
j

= d
i
∗(2)
j

holds.
�

Practical Second-Order DPA Attacks for Masked
Smart Card Implementations of Block Ciphers�

Elisabeth Oswald, Stefan Mangard, Christoph Herbst, and Stefan Tillich

Institute for Applied Information Processing and Communciations (IAIK),
Graz University of Technology, Inffeldgasse 16a, A–8010 Graz, Austria

{elisabeth.oswald, stefan.mangard, christoph.herbst,
stefan.tillich}@iaik.tugraz.at

Abstract. In this article we describe an improved concept for second-
order differential-power analysis (DPA) attacks on masked smart card
implementations of block ciphers. Our concept allows to mount second-
order DPA attacks in a rather simple way: a second-order DPA attack
consists of a pre-processing step and a DPA step. Therefore, our way of
performing second-order DPA attacks allows to easily assess the number
of traces that are needed for a successful attack. We give evidence on
the effectiveness of our methodology by showing practical attacks on
a masked AES smart card implementation. In these attacks we target
inputs and outputs of the SubBytes operation in the first encryption
round.

1 Introduction

Higher-order DPA attacks were already mentioned in Kocher et al.’s pioneering
article [KJJ99]: “Of particular importance are high-order DPA functions that
combine multiple samples from within a trace.” Subsequently, several researchers
have tried to implement attacks based on this very brief sketch. Messerges
was the first researcher to successfully report on a second-order DPA attack
in [Mes00].

Since the publication of these two articles little progress has been made.
Only recently, the topic was picked up again, see [ABG04], [WW04], [PSDQ05],
[SPQ05] and [JPS05]. However, none of these articles have tackled the prac-
tical issues that arise when performing higher-order DPA attacks on software
implementations on smart cards.

In this article we present a way to formulate second-order DPA attacks that
are practical for smart card implementations. Our attacks are simple to mount, it
is easy to assess their complexity and they can be applied to any implementation
that uses additive masking as DPA countermeasure. Our results are compelling:
we can attack a masked AES implementation on an 8-bit micro controller with

� The work described in this paper has been supported in part by the European
Commission through the IST Programme under Contract IST-2002-507270 SCARD
and through the Austrian Science Fund (FWF) under grant number P16952.

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 192–207, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Practical Second-Order DPA Attacks 193

no more than 400 traces. The exact moments of time when intermediate values
are being manipulated do not need to be known.

This article is organized as follows. In Sect. 2 we review Messerges’ original
second-order DPA attack and survey related work. In Sect. 3, we explain our con-
cept of second-order attacks, assess the complexity and formulate various attack
scenarios that are relevant for masked implementations of block ciphers. In Sect. 4
we show the results of our new attacks on a masked AES implementation. We con-
clude this article in Sect. 5. There are two appendices to this paper. In App. A
we briefly discuss an alternative pre-processing method. In App. B we provide a
graphical description of the AES implementation that is targeted in Sect. 4.

2 Second-Order DPA Attacks

The attack described in [Mes00], targets the exclusive-or (short: XOR) operation
of a byte of the key and a byte of masked data. It is assumed that in the
implementation under attack, the mask is generated and subsequently exclusive-
ored with the data prior to the exclusive-or operation that involves the key byte:

t=1: m = rand() (generate mask-byte)
t=2: x = p ⊕ m (XOR mask with plaintext-byte)
t=3: y = x ⊕ k (XOR masked plaintext with key-byte)

Fig. 1. A code sample of a typical masked key addition

In the attack, the point in the power trace sj[t = 1] that corresponds to the
time when the mask is generated (line 1 in Fig. 1) is subtracted from the point
in the power trace sj [t = 3] that corresponds to the time when the masked data
is XORed with the key byte (line 3 in Fig. 1). The joint distribution of these
two power samples allows to derive the key-byte bit by bit. For every bit in
the plaintext byte the adversary calculates the mean values S0 =

∑
j |sj [t =

1] − sj [t = 3]| (if the plaintext bit is 0) and S1 =
∑

j |sj [t = 1] − sj[t = 3]| (if
the plaintext bit is 1). If S0 − S1 > 0 then the key bit is 1, otherwise it is zero.
A proof for the soundness of the attack is given in [Mes00].

In the attack, it is mandatory to use the absolute value of the differences,
because otherwise the difference of means is 0 in both cases. In addition, it
is necessary that the mean value of the power traces are roughly the same,
otherwise the difference of means also does not lead to conclusive results. This
property can be achieved by using the distance-of-mean (short: DOM) test as
described in statistic textbooks or by using the Pearson correlation coefficient.

Several questions arise when studying this methodology. An important one
for practical attacks is how to identify the interesting points in the power trace?
Other questions are how many traces are required for reliable statistics and
whether the approach can be improved by using different statistics. In his article,
Messerges tries to answer the last of these questions. He concludes that using
the absolute value of the difference is a sound approach.

194 E. Oswald et al.

2.1 Related Work

Waddle et al. [WW04] were the next to investigate this topic in detail. They
investigated how higher-order attacks can be mounted in a way to minimize
the additional effort compared to standard DPA attacks. More precisely, their
goal was to formulate higher-order attacks as standard DPA attacks with a pre-
processing step. Our idea will follow this line of thought.

In their article, Waddle et al. suggest to multiply the appropriate points in
the power trace in order to produce a DPA peak (this approach was already
mentioned by Chari et al. in [CJRR99]). Waddle et al. also tackle some of the
questions that we raised at the end of the previous section. That is, they deal
with the issue of finding the interesting points in the power trace. They suggest
two methods to find the points of interest. Firstly, they propose the so-called
zero-offset 2DPA which works if the masked value and the mask are processed
at the same time. If this is the case, there is only one point of interest and
the power traces can simply be squared. Secondly, they propose the so-called
FFT 2DPA which essentially is a DPA on the FFT (fast fourier transform)
of the power traces. For both proposals they investigate how the number of
samples needs to be increased for reliable statistics. They conclude for both
cases that a significant increase is to be expected due to the pre-processing
step.

Peeters et al. [PSDQ05] have implemented an attack similar to the zero-offset
2DPA on an FPGA. They have concluded that the zero-offset 2DPA idea works
but requires significantly more traces than a standard DPA.

Joye et al. [JPS05] have analyzed how the height of the DPA peak is related
to the number of samples and the power consumption model under a certain
definition of a signal-to-noise ratio.

Summarizing the related work it turns out that so far the arising questions
have only been answered in part. Joye et al.’s article gives theoretical foundations
and allows to assess the efficiency of higher-order attacks in theory in a certain
model. Peeters et al. have confirmed that some of the ideas of Waddle et al. can
be applied to FPGA implementations. Messerges has shown that if the points
of interest can somehow be found, software implementations on smart cards can
be attacked.

We aim to develop an attack strategy for software implementations on smart
cards that is versatile, simple to implement, and easy to analyze.

3 Practical Second-Order DPA Attacks

In this section we outline our strategy for second-order DPA attacks. We first
explain the assumptions that we make, then we explain the idea of our strategy
and last we develop different attack scenarios.

In the following we assume that the instantaneous power consumption of the
device under attack depends linearly on the Hamming-weight (short: HW) of
the processed data.

Practical Second-Order DPA Attacks 195

Assumption. Let a be a value ∈ {0, 1}n and C(a) denote the power consump-
tion of the value a. Then the power consumption C of the device at the time
when a is processed is proportional to the Hamming-weight of the value a :
C(a) ≈ HW (a).

In this paper, we focus on implementations where n = 8, i.e. we study 8-bit
micro controllers. We use the following simple observation to explain a large
class of second-order DPA attacks.

Observation. Let a and b be values ∈ {0, 1}, let ⊕ denote the exclusive-or
operation, and let HW (x) denote the Hamming-weight of x. Then the following
relation holds with probability one:

HW (a⊕ b) = |HW (a)−HW (b)|. (1)

Consequently, we can correctly predict |C(a) − C(b)| with HW (a ⊕ b) if a, b ∈
{0, 1}.

We can use this observation to mount second-order DPA attacks: In the first
step, the adversary chooses a point in a power trace, subtracts it from the rest
of the trace and takes the absolute value of the result. In the second step, the
adversary tests for all keys whether the Hamming-weight of the exclusive-or of
the two intermediate values under attack correlates to the pre-processed power
traces. Only for the correct key and for the correct point, a peak will occur in
the power trace. If there is no peak for any key then the attacker chooses another
point. We can formalize our approach as follows.

Second-Order DPA Attack. Let T be the set of power traces that were ac-
quired during the execution of a known algorithm using a set of known texts
Pi, using a set of unknown masks Mi and using an unknown key K. We de-
fine a standard DPA attack to be a first-order DPA attack that is based on the
Pearson correlation coefficient. Let Fv(Pi) denote an intermediate value that is
computed by the algorithm with input Pi and with a part of the unknown key
K. We attack two intermediate values F1(Pi)⊕Mi and F2(Pi)⊕Mi.

1st Step: We fix an interval I of length l for all power traces T ∈ T . This
interval is determined by an educated guess for the time frame in which
F1(Pi) ⊕ Mi and F2(Pi) ⊕ Mi are processed. For each trace T we do the
following. We calculate a pre-processed trace that contains all values |Ia − Ib|
∀Ia, Ib ∈ I ⊆ T .

2nd Step: We make a standard DPA attack on the pre-processed power traces.
In this attack, we guess a part of the key K to predict the value HW (F1(Pi)⊕
F2(Pi)).

The value |C(F1(Pi)⊕Mi)− C(F2(Pi)⊕Mi)| occurs in the pre-processed
traces. This value is due to the two attacked intermediate results F1(Pi) ⊕ Mi

and F2(Pi) ⊕ Mi. In the DPA attack on the pre-processed traces there occur
peaks at these positions if the key guess is correct.

Remark. It is important to notice that we have given a description that is more
general than Messerges’ original approach. Whereas his predictions are always

196 E. Oswald et al.

made for individual bits of one intermediate result, we allow to predict several
bits. When using several bits in the attack, then Observation 1 does not hold in
general; it only holds for some values.

Remark. The result of the pre-processing step are traces of length l(l−1)
2 . This

is because |Ia − Ib| = |Ib − Ia|.
In the following section we look at the complexity of a second-order DPA at-
tack and then, we formulate various second-order DPA attack scenarios that are
relevant for masked implementations of block ciphers.

3.1 Complexity of Our Second-Order DPA Attack

The complexity of a DPA attack is typically determined by the number of traces
that have to be acquired for a successful attack. Another factor that is relevant
for a practical application is the length of the traces. We discuss both complexity
aspects.

Number of traces. Our approach of performing second-order DPA attacks con-
sists of two steps. The first step consists of pre-processing the acquired power
traces. The second step consists of performing a standard DPA attack. Remem-
ber that we have pointed out that we perform this standard DPA attack by
predicting several bits of an intermediate value. These predictions do not always
coincide with what happens inside the device because Observation 1 does not
hold if a, b ∈ {0, 1}n, n > 1. We have to compensate these errors by increas-
ing the number of measurements. The pre-processing step potentially increases
the noise in the measurements. The effect of pre-processing has been studied
in [CCD00] and [Man04]. In these articles the effect of the increase of uncorre-
lated noise has been investigated. However, in many micro controllers the noise
that occurs in subsequent clock cycles is highly correlated. Thus, the increase of
the noise due to pre-processing is not necessarily severe.

We conclude that the complexity of the second-order DPA attack is mainly
determined by the number of predictions that do not match the internal value
that is being processed. The influence of the pre-processing step is small and
depends on the device under attack. In the attacks that we have performed in
practise it turned out that the pre-processing step has virtually no influence on
the number of samples.

Length of traces. In our approach we work with traces of length l(l−1)
2 . In com-

parison to a standard DPA attack on an interval of length l, the complexity is
squared.

3.2 Attacking One Masked Table Look-Up

One way to protect an implementation of a block cipher against (first-order) DPA
attacks is to mask the intermediate values that occur during the computation.
This is typically achieved by adding (exclusive-oring) a random value to the
plaintext. The description of the block cipher is modified such that it maintains
the masking.

Practical Second-Order DPA Attacks 197

Assumptions. Assume that the table S of the original cipher is replaced by a
masked table S′ such that S′(X ⊕M) = S(X)⊕M for a fixed mask M . There
are two possibilities to attack such a table look-up; either one attacks the first
or one attacks the last encryption round. Because both attacks follow the same
principle we explain the attack on the first round only.

Attack on the first round. We use the input of the table look-up P ⊕K⊕M and
the output of the table look-up S′(P ⊕ K ⊕ M) = S(P ⊕ K) ⊕M in the first
encryption round for our attack. We assume that we have recorded the power
trace of the first round of the algorithm.

In the first step of the attack, we locate the sequence of table look-up opera-
tions. We make an educated guess for the time frame when S(P ⊕K)⊕M and
P⊕K⊕M are computed and perform the pre-processing step. In the second step,
we predict |C(S(P ⊕K)⊕M)−C(P ⊕K⊕M)| with HW (S(P ⊕K)⊕ (P ⊕K))
and perform a standard DPA attack. Therefore we need to know one byte of the
plaintext byte and guess one byte of the key.

Number of traces needed. In previous work we have shown that the number of
traces in a standard DPA is determined by the correlation ρ between the correct
predictions and the traces, see [Man04]. Based on this correlation coefficient, the
number of traces can be calculated as follows

N = 3 + 8

(
Zα

ln 1+ρ
1−ρ

)2

. (2)

In order to assess the correlation coefficient for this scenario in practice, we
study the correlation in the idealized model where C(a) = HW (a) and a has 8
bits. We use the AES S-box for the table S in our calculations. Then, we cal-
culate the correlation between |HW (S(P ⊕K)⊕M)−HW (P ⊕K ⊕M)| and
HW (S(P ⊕K)⊕ (P ⊕K)). This can be done easily with a computer. It turns
out that the correlation coefficient for a second-order DPA attack on one masked
8-bit table look-up is 0.2405.

Setting Z0.9999 = 3.7190 and ρ = 0.2405, and evaluating (2) shows that
N = 462 is an upper bound for the number of traces.

The immediate question that arises is whether we could do better by either
using less bits in our predictions or by applying a simple but non-linear function
(for instance raising to the power β) to our pre-processed data as suggested
by [JPS05]. The answer can be easily obtained by calculating the correlation
between |HW (S(P⊕K)⊕M)−HW (P⊕K⊕M)|β and HW (S(P⊕K)⊕(P⊕K)).
We have calculated this correlation for different values of β and for attacks on
different numbers of bits of S(P ⊕ K) ⊕ (P ⊕ K). It turns out that attacking
a full byte is the best choice1 and that varying β does not lead to a significant
improvement of the correlation coefficient (see Tab. 1).

1 In App. A we show that using multiplication for pre-processing, such as suggested
in [WW04] and [CJRR99], leads to smaller correlations.

198 E. Oswald et al.

Table 1. Exact correlation values for the scenario described in Sect. 3.2. The correlation
increases when more bits are used in the prediction. The correlation increases slightly
for β = {2, 3} but decreases for higher values of β.

β 1 2 3 4 5 6
1 Bit 0.0861 0.0985 0.0950 0.0869 0.0775 0.0685
2 Bits 0.1119 0.1315 0.1283 0.1189 0.1080 0.0972
3 Bits 0.1415 0.1652 0.1604 0.1482 0.1341 0.1203
4 Bits 0.1723 0.1914 0.1834 0.1674 0.1496 0.1327
5 Bits 0.1936 0.2100 0.2003 0.1822 0.1623 0.1435
6 Bits 0.2092 0.2291 0.2186 0.1987 0.1767 0.1559
7 Bits 0.2278 0.2460 0.2341 0.2125 0.1887 0.1661
8 Bits 0.2405 0.2622 0.2501 0.2273 0.2021 0.1782

3.3 Attacking Two Masked Table Look-Ups

Assumptions. Assume that the table S of the original cipher is replaced by
another masked table S′ such that S′(X ⊕M) = S(X)⊕M ′ for fixed masks M
and M ′. The outputs of two table look-ups are then S(X1) ⊕M ′ and S(X2) ⊕
M ′. There are two possibilities to attack the table look-up outputs of such an
implementation. One possibility is to target two different table look-up outputs
in the first encryption round. The second option is to attack one table look-up
output in the first and one table-lookup output in the last encryption round.

Attack on the first round. Assume that we attack the outputs of two table
look-ups in the first encryption round. Hence we use S(P1 ⊕ K1) ⊕ M ′ and
S(P2 ⊕K2)⊕M ′ in our attack. In the first step we locate the sequence of table
look-ups and make an educated guess for the time frame when S(P1⊕K1)⊕M ′

and S(P2⊕K2)⊕M ′ are computed and perform the pre-processing. In the second
step we predict |C(S(P1 ⊕K1)⊕M ′)−C(S(P2 ⊕K2)⊕M ′)| with HW (S(P1⊕
K1)⊕ S(P2 ⊕K2)) and perform a standard DPA attack. We need to know two
bytes of plaintext and guess two bytes of the key for this attack.

Attack on the first and the last round. Assume that we use the output of one
S-box in the first encryption round and the output of one S-box in the last
encryption round. Hence, we use S(P ⊕K1)⊕M ′ and S(C ⊕K2) ⊕M ′ in our
attack. In the first step, we locate the first and the last encryption round and
perform the pre-processing step. In the second step, we predict |C(S(P ⊕K1)⊕
M ′)−C(S(C ⊕K2)⊕M ′)| with HW (S(P ⊕K1)⊕ S(C ⊕K2)) and perform a
standard DPA attack. Therefore, we need to know one byte of the plaintext and
one byte of the ciphertext and we need to guess one byte of the key of the first
round and one byte of the key in the last round.

Number of traces needed. Because the key guess in this scenario is based on 16
bits, it gets impractical to calculate the correlation coefficient exactly. Therefore,
we have decided to estimate it based on 100000 plaintexts. The estimation of
the correlation between |HW (S(P ⊕K1)⊕M ′)−HW (S(C ⊕K2)⊕M ′)|β and
HW (S(P ⊕K1)⊕ S(C ⊕K2)) leads to the values shown in Tab. 2.

Practical Second-Order DPA Attacks 199

Table 2. Simulated correlation values for the scenario described in Sect. 3.3. The cor-
relation increases when more bits are used in the prediction. The correlation increases
slightly for β = {2, 3} but decreases for higher values of β.

β 1 2 3 4 5 6
1 Bit 0.0851 0.0894 0.0944 0.0788 0.0698 0.0587
8 Bits 0.2322 0.2563 0.2517 0.2265 0.2043 0.1755

Because we only want to illustrate that the correlation coefficients are ap-
proximately the same as in the previous attack, we only give the numbers for
attacking 1 bit and for attacking 8 bits.

3.4 Attacking a Masked Key Addition

This scenario is the same as the one described by Messerges in [Mes00].

Assumptions. The plaintext P is concealed with a random mask M : P ⊕ M .
During the key addition, the masked plaintext is exclusive-ored with the key:
P ⊕M ⊕K. The manipulation of M and the computation of P ⊕M ⊕K occur
somewhen during the (initial) phase of the algorithm. We assume for the attack
that we have recorded the power trace of the initial phase of the algorithm.

Attack on the key addition. We use the value of the mask M and and the value
P ⊕ M ⊕ K of the key addition in our attack. In the first step, we locate the
sequence of key addition operations. We make an educated guess for the time
frame when M and P ⊕ M ⊕ K are computed. In the second step, we predict
|C(M)−C(P ⊕M⊕K)| with HW (P ⊕K) and perform a standard DPA attack.
For the prediction we need to know one bit of the plaintext and we need to guess
one bit of the key.

Number of traces. In this scenario we can only attack one bit of an intermediate
result at a time. We have calculated the correlation between HW (P ⊕K) and
|HW (M)−HW (P ⊕M ⊕K)|β for different values of β. Tab. 3 shows the results
for different values of β.

Table 3. Exact correlation values for the scenario described in Sect. 3.4. The correlation
increases only slightly for β = {2, 3} but decreases for higher values of β.

β 1 2 3 4 5 6
1 Bit 0.0846 0.0912 0.0879 0.0806 0.0717 0.0626

4 Attacking a Masked AES Smart Card Implementation

In order to verify the theoretical discussions presented in Sect. 3, we have per-
formed these attacks in practice. The target of these attacks was a masked AES

200 E. Oswald et al.

smart card implementation. This implementation is described in Sect. 4.1. For
the attacks, we have executed this implementation of AES on a micro controller
whose power consumption is proportional to the Hamming weight of the data it
processes. The results of two second-order DPA attacks on this implementation
are reported in Sect. 4.2 and 4.3.

4.1 Masking AES in Software for a Smart Card Implementation

In our masked software implementation of AES the inputs and outputs of each
operation are masked additively. In the following paragraphs we briefly sketch
how the masked versions of the four AES operations have been implemented. A
graphical description can be found in App. B.

Masked AddRoundKey: The AddRoundKey operation does not change the mask
and therefore it does not require special attention in our masked implementa-
tion. Essentially, we use the same AddRoundKey operation as in an unmasked
implementation.

Masked SubBytes: We mask the SubBytes operation S with values M and M ′

(the masks). Therefore, we have to derive a new masked S-box S′ with the
property that S′(X ⊕M) = S(X) + M ′.

Masked ShiftRows: The ShiftRows operation is done in combination with the
SubBytes operation by reading and writing the state bytes in a specific order.
Therefore, no separate masking effort is required for ShiftRows.

Masked MixColumns: As MixColumns is a linear operation it is sufficient to
calculate the MixColumns operation with the used masks in addition to the
normal calculation with the masked AES state. In order to minimize the overhead
for calculation, we make sure that the state before MixColumns is always masked
with the same four values. Hence, the output of MixColumns is also masked with
the same four masks. The four output masks only need to be calculated once per
AES encryption or decryption. The reason for using four different masks for a
column is that the four bytes of the column are combined with each other during
the MixColumns operation. If the same mask would be used on each byte of the
column, then intermediate values of MixColumns could be processed unmasked
if the masks cancel each other out.

4.2 Attacking Two S-Box Outputs in the First Encryption Round

In the scenario described in Section 3.3, we predict the power consumption by
calculating the Hamming-weight of the exclusive-or of two outputs of the masked
SubBytes operation: HW (S(P1 ⊕K1) ⊕ S(P2 ⊕K2)). Using this technique, we
have targeted the first two key bytes of our masked AES implementation during
the first encryption round.

In order to reduce the computational effort that is needed for the attack, we
have first made an educated guess for the time frame when S(P1⊕K1)⊕M ′ and
S(P1 ⊕K1)⊕M ′ are computed. For this purpose, we have measured the power

Practical Second-Order DPA Attacks 201

Fig. 2. A part of the first encryption round. A sequence of 16 similar operations is
clearly visible in the power trace.

consumption during one execution of AES. We have inspected the power trace
and we have deduced when the first round takes place. Within the first round (see
Fig. 2), there is a distinct part where 16 similar operations take place. This part
corresponds to the operations AddRoundKey and SubBytes. These operations
are executed in combination for each byte of the AES state. Since we decided to
target the outputs of the first two SubBytes operations, we selected the interval
410 to 620 of the power trace (see Fig. 2) for our attack.

After having selected this interval, we have made 3000 measurements of the
power consumption of the micro controller while it was performing AES encryp-
tions of random plaintexts. Subsequently, we have performed the pre-processing
operation described in Section 3. This means that for each of the 3000 power
traces we have calculated the absolute value of the difference of all pairs of points
in the interval 410 to 620. We have done this computation by first subtracting
the points 411 to 620 from the point 410. We refer to the absolute value of these
differences as a segment. The segment that has been calculated based on point
410 consists of 210 values.

The next segment was calculated based on point 411. This segment contained
the absolute value of the difference between the points 412 to 620 and 411. It
consists of 209 values. Following this strategy, we have calculated corresponding
segments based on all remaining points in the interval from 412 to 620. This lead
to 210 segments in total, where the largest segment consisted of 210 values and
the smallest one consisted of just one value.

For the attack, we have concatenated the 210 segments of each power trace.
After the pre-processing step, we therefore had 3000 traces, where each trace
consisted of 210 segments. Based on these traces, a standard DPA attack making
hypotheses about the value of HW (S(P1⊕K1)⊕S(P2⊕K2)) has been performed.
Since the intermediate result HW (S(P1 ⊕K1) ⊕ S(P2 ⊕K2)) depends on two
key bytes, 65536 key guesses were necessary.

The result of this attack for the correct key guess is shown in Fig. 3. Several
peaks are clearly visible in this figure. There is more than one peak in the result
because the targeted micro controller manipulates the two attacked intermediate

202 E. Oswald et al.

1 10 20 30 40 50 60 70 80 90 100110 160 211
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Segments

C
or

re
la

tio
n

Fig. 3. Result of a second-order DPA attack on the interval 410 to 620 of the original
power traces

0 50 100 150
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Points

C
or

re
la

tio
n

Fig. 4. The result of all 65536 key guesses
in an attack on segment 61

0 500 1000 1500 2000 2500 3000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Traces

C
or

re
la

tio
n

Fig. 5. Correlation coefficients for all
65536 keys depending on the number of
power traces that are used in the attack

results in more than two clock cycles. The highest peak that is shown in Fig. 3 is
located in segment 61 and has the value 0.21. This segment contains the result
of the second-order DPA attack mounted based on the absolute values of the
differences between the points 471 to 620 and 470 in the original traces. The
segment consists of 150 values.

In order to show that only the correct key produces a peak in this second-
order attack, we have attacked this segment based on all 65536 key hypotheses.
The results of this attack are shown in Fig. 4. The results for the 65535 in-
correct keys are plotted in gray. The result for the correct key is plotted in
black. It can be observed that indeed only the correct key leads to significant
peaks.

Practical Second-Order DPA Attacks 203

We have also analyzed how many samples are needed to obtain a significant
peak in segment 61. Figure 5 shows how the correlation coefficients evolve de-
pending on the number of used power traces. The correlation coefficient for the
correct key guess is shown in black. The correlation coefficients for the incor-
rect key guesses are shown in gray. It can be observed in Fig. 5 that roughly
400 traces are needed to perform a second-order DPA attack on the output of
two S-box operations. This confirms our theoretical estimate for the correlation
coefficient and the number of samples given in Sect. 3.2.

For our attack we have used a standard PC with 2 GB of RAM and a
standard digital oscilloscope. It took us roughly one hour to make the 3000
measurements. We compressed the power traces by integrating the absolute
values of each clock cycle. The compression step required about 23 minutes.
The pre-processing step for the second-order DPA attack (i.e., the calcula-
tion and concatenation of the segments) took about 5 minutes. Attacking seg-
ment 61 based on 65536 key hypotheses took less than two minutes. An at-
tack on all 210 segments can be performed within a few hours. Hence, this
type of attack can be easily performed in practice. The time that is needed
for the attack is mainly determined by the transfer speed of the hard disk. On
a standard PC not all power traces and hypotheses can be kept in memory
simultaneously.

4.3 Attacking an S-Box in the First Encryption Round

In the scenario that is described in Sect. 3.2, the power consumption of the
attacked device is predicted based on the Hamming-weight of the exclusive-or of
the input and output of a masked SubBytes operation: (P1⊕K1)⊕S(P1⊕K1).

0 10 20 30 40 50 60 70 90111
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Segments

C
or

re
la

tio
n

Fig. 6. Result of a second-order DPA attack on an interval of 111 points of the original
power traces

204 E. Oswald et al.

0 10 20 30 40 50 60 70 80
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Points

C
or

re
la

tio
n

Fig. 7. The result of all 256 key guesses
in an attack on segment 33

0 500 1000 1500 2000 2500 3000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Traces

C
or

re
la

tio
n

Fig. 8. Correlation coefficients for all 256
key guesses depending on the number of
power traces that are used in the attack

We have targeted the first encryption round in our analysis and we have again
acquired 3000 power traces of the attacked device.

Based on visually inspecting the power traces, we have made an educated guess
for the time frame when the input and output of the attacked S-box is processed.
We have considered an interval of 111 points for the attack. Just like in the previous
section, we have performed a pre-processing step to calculate the absolute value of
the difference between all possible pairs of points in this interval.

Based on each power trace, 110 segments have been calculated and concate-
nated. The resulting traces have been used as input for a standard DPA attack
predicting the Hamming-weight of (P1⊕K1)⊕S(P1⊕K1). The result for the cor-
rect key guess is shown in Fig. 6. As expected, there are again several peaks visible
in this trace. The highest peak occurs in segment 33 and has the value 0.24.

We have performed an attack on this segment based on all 256 key guesses.
The result of this attack is shown in Fig. 7. The result for the correct key guess
is shown in black. The result for the other key guesses is shown in gray. Figure 8
shows how the correlation coefficients depend on the number of used power
traces. It can be observed that just like in the previous attack approximately
400 traces suffice to identify the correct key.

5 Conclusion

In this article, we have presented a way to formulate second-order DPA attacks
that are practical for smart card implementations. Our attacks are simple to
mount, it is easy to assess their complexity and they can be applied to any
implementation that uses additive masking as DPA countermeasure. Our results
are compelling: we can attack a masked AES implementation with no more than
400 traces without needing to know the exact moments when intermediate values
are being manipulated.

Our work clearly shows that second-order DPA attacks are a practical threat
for masked software implementations. Consequently, masking by itself is insuf-

Practical Second-Order DPA Attacks 205

ficient to protect masked smart card implementation of block ciphers against
power-analysis attacks.

References

[ABG04] Mehdi-Laurent Akkar, Régis Bevan, and Louis Goubin. Two Power Analy-
sis Attacks against One-Mask Methods. In Bimal K. Roy and Willi
Meier, editors, Fast Software Encryption, 11th International Workshop,
FSE 2004, Delhi, India, February 5-7, 2004, Revised Papers, volume 3017
of Lecture Notes in Computer Science, pages 332–347. Springer, 2004.

[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential
Power Analysis in the Presence of Hardware Countermeasures. In Çetin
Kaya Koç and Christof Paar, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2000, Second International Workshop, Worcester,
MA, USA, August 17-18, 2000, Proceedings, volume 1965 of Lecture Notes
in Computer Science, pages 252–263. Springer, 2000.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards Sound Approaches to Counteract Power-Analysis Attacks. In
Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in
Computer Science, pages 398–412. Springer, 1999.

[JPS05] Marc Joye, Pascal Paillier, and Berry Schoenmakers. On Second-Order
Differential Power Analysis. In Cryptographic Hardware and Embedded
Systems - Proceedings of CHES 2005. Springer, 2005.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analy-
sis. In Michael Wiener, editor, Advances in Cryptology - CRYPTO ’99,
19th Annual International Cryptology Conference, Santa Barbara, Califor-
nia, USA, August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes
in Computer Science, pages 388–397. Springer, 1999.

[Man04] Stefan Mangard. Hardware Countermeasures against DPA – A Statistical
Analysis of Their Effectiveness. In Tatsuaki Okamoto, editor, Topics in
Cryptology - CT-RSA 2004, The Cryptographers’ Track at the RSA Con-
ference 2004, San Francisco, CA, USA, February 23-27, 2004, Proceed-
ings, volume 2964 of Lecture Notes in Computer Science, pages 222–235.
Springer, 2004.

[Mes00] Thomas S. Messerges. Using Second-Order Power Analysis to Attack DPA
Resistant Software. In Çetin Kaya Koç and Christof Paar, editors, Cryp-
tographic Hardware and Embedded Systems – CHES 2000, Second Inter-
national Workshop, Worcester, MA, USA, August 17-18, 2000, Proceed-
ings, volume 1965 of Lecture Notes in Computer Science, pages 238–251.
Springer, 2000.

[PSDQ05] Eric Peeters, Francois-Xavier Standaert, Nicolas Donckers, and Jean-
Jacques Quisquater. Improved Higher Order Side-Channel Attacks with
FPGA experiments. In Cryptographic Hardware and Embedded Systems -
Proceedings of CHES 2005. Springer, 2005.

[SPQ05] Francois-Xavier Standaert, Eric Peeters, and Jean-Jacques Quisquater. On
the Masking Countermeasure and Higher-Order Power Analysis Attacks.
In ITCC 2005, 2005.

206 E. Oswald et al.

[WW04] Jason Waddle and David Wagner. Towards Efficient Second-Order Power
Analysis. In Marc Joye and Jean-Jacques Quisquater, editors, Crypto-
graphic Hardware and Embedded Systems – CHES 2004, 6th International
Workshop, Cambridge, MA, USA, August 11-13, 2004, Proceedings, vol-
ume 3156 of Lecture Notes in Computer Science, pages 1–15. Springer,
2004.

A Using Multiplication as Pre-processing Method

Waddle et al. [WW04] and Chari et al. [CJRR99] have suggested to use multi-
plication as a pre-processing method. In order to illustrate that this is inferior to
using the absolute difference, we study this technique for the scenario described
in Sect. 3.2.

With multiplication as pre-processing method, we use HW (S(P ⊕K)⊕ (P ⊕
K)) to predict (HW (S(P ⊕K)⊕M) ∗HW (P ⊕K⊕M))β . It is easy to exactly
calculate the correlation between HW (S(P ⊕K)⊕ (P ⊕K)) and (HW (S(P ⊕
K)⊕M) ∗HW (P ⊕K ⊕M))β with a computer. We performed this calculation
for different values of β and for attacks on different numbers of bits of S(P ⊕
K)⊕ (P ⊕K). The results are given in Tab. 4. The correlation coefficients are
clearly much lower than the ones in Tab. 1 which means that this pre-processing
technique is less effective.

Table 4. Exact correlation values for the scenario described in Sect. 3.2 when multipli-
cation is used as pre-processing method. The correlation increases when more bits are
used in the prediction. The correlation increases slightly for β = {2, 3, 4} but decreases
for higher values of β.

β 1 2 3 4 5 6
1 Bit -0.0327 -0.0531 -0.0627 -0.0644 -0.0610 -0.0551
2 Bits -0.0437 -0.0706 -0.0830 -0.0846 -0.0797 -0.0717
3 Bits -0.0548 -0.0888 -0.1045 -0.1069 -0.1010 -0.0911
4 Bits -0.0636 -0.1032 -0.1223 -0.1261 -0.1202 -0.1096
5 Bits -0.0698 -0.1134 -0.1346 -0.1391 -0.1330 -0.1215
6 Bits -0.0761 -0.1236 -0.1468 -0.1517 -0.1449 -0.1323
7 Bits -0.0817 -0.1328 -0.1579 -0.1634 -0.1563 -0.1429
8 Bits -0.0871 -0.1415 -0.1681 -0.1737 -0.1660 -0.1515

B Graphical Description of the Masked AES
Implementation

Figure 9 shows, in correspondence with the notation used in Sect. 4, how our
masked AES implementation works.

We use six masks in total. The masks M and M’ are the input and output
masks for SubBytes, respectively. At the start of an AES encryption, the masked
S-box is calculated for M and M’. The masks M1, M2, M3, and M4 are the input
masks for MixColumns. The corresponding output masks M1’, M2’, M3’, and

Practical Second-Order DPA Attacks 207

AddRoundKey

SubBytes +

ShiftRows
MixColumns

Plaintext

State XOR M

Row i XOR Mi

Row i XOR Mi

State XOR M’

Row i XOR Mi’

Row i XOR Mi

Row i XOR Mi

if (j < Nr)

M

M’

M1

M2

M3

M4

M1'

M2'

M3'

M4'

AddRoundKey

State XOR M’

Ciphertext

j = 1 j = j+1

YES

N
O

Fig. 9. Graphical description of the masked AES implementation

M4’ are determined by applying MixColumns to the input masks. Fig. 9 shows
how all AES operations are masked and how the masks are changed between the
operations.

We have verified that our masked AES implementation is secure against first-
order DPA attacks by attacking all intermediate values.

Higher Order Masking of the AES

Kai Schramm and Christof Paar

Horst Görtz Institute for IT Security (HGI),
Universitätsstr. 150, Ruhr University Bochum, Germany, 44780 Bochum, Germany

{schramm, cpaar}@crypto.ruhr-uni-bochum.de

Abstract. The development of masking schemes to secure AES implementa-
tions against side channel attacks is a topic of ongoing research. Many different
approaches focus on the AES S-box and have been discussed in the previous
years. Unfortunately, to our knowledge most of these countermeasures only ad-
dress first-order DPA. In this article, we discuss the theoretical background of
higher order DPA. We give the expected measurement costs an adversary has to
deal with for different hardware models. Moreover, we present a masking scheme
which protects an AES implementation against higher order DPA. We have im-
plemented this masking scheme for various orders and present the corresponding
performance details implementors will have to expect.

Keywords: AES, Higher Order DPA, Masking Countermeasure.

1 Introduction

The Advanced Encryption Standard (AES) is the worldwide de-facto standard for sym-
metric encryption [10]. Therefore, it is very likely that it will be used for many different
purposes ranging from high-performance applications such as video stream encryption
to low-cost (low memory, low power consumption) implementations on smart cards.
Especially in the case of software implementations for smart cards limited memory
(ROM, RAM, XRAM) poses a challenging constraint for implementors. Even worse,
side channel attacks based on differential power analysis (DPA) [13, 17] and its vari-
ous branches such as higher order differential power analysis (HODPA) [16, 2] require
considerable effort to come up with efficient yet secure implementations which do not
succumb to these attacks.

A lot of effort has been devoted in the past years to the development of efficient
countermeasures for AES implementations against first-order DPA [7]. Especially the
so-called random masking technique has been suggested many times [15, 8, 1, 11] but
also algebraic techniques to protect AES implementations against side channel attacks
have been proposed in various publications [4, 18, 9, 19]. Unfortunately, HODPA at-
tacks which have been discussed in several articles [16, 21, 12] are often capable to
break these first-order countermeasures.

In this article, we would like to present a masking scheme which protects AES imple-
mentations against HODPA attacks. In Section 2, we start with a theoretical discussion
of HODPA attacks and derive the correlation coefficients of HODPA attacks for various
orders and hardware architectures. In Section 3, we propose an AES masking scheme
which uses multiple masks and is secure against HODPA attacks. In Section 4, we

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 208–225, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Higher Order Masking of the AES 209

present performance-related details of various HODPA-resistant AES implementations
which we have programmed on a test device. We conclude this article in Section 5.

2 HODPA: Theoretical Issues

We assume an adversary encrypts N plaintexts Xj and measures the corresponding
power traces Pj(t). As discussed in [7, 16, 2, 21], we define a DPA of order d as the
correlation of the product of d power signals Pj(t1), ..., Pj(td) with a selected function
f of the known plaintext Xj and a key hypothesis Kh.

ρ(
d∏

i=1

P (ti), f(Xj , Kh)) =
COV [

∏d
i=1 P (ti), f(Xj , Kh))]√

V [
∏d

i=1 P (ti)]
√

V [f(Xj , Kh))]
(1)

Since the adversary is generally only able to measure a finite number N of power traces
Pj(t), the estimated correlation coefficient ρ̂(N) is computed using the approximated
covariance and variances.

COV [
d∏

i=1

P (ti), f(Xj , Kh))] =
1
N

N−1∑
j=0

d∏
i=1

Pj(ti)f(Xj , Kh)

−
(1

N

N−1∑
j=0

d∏
i=1

Pj(ti)
)(1

N

N−1∑
j=0

f(Xj , Kh)
)

(2)

V [
d∏

i=1

P (ti)] =
1
N

N−1∑
j=0

(d∏
i=1

Pj(ti)−
1
N

N−1∑
j=0

d∏
i=1

Pj(ti)
)2

(3)

V [f(X, Kh))] =
1
N

N−1∑
j=0

(
f(Xj , Kh)− 1

N

N−1∑
j=0

f(Xj , Kh)
)2

. (4)

2.1 Second Order DPA Against the AES S-Box Input (HW-Model)

We suppose an adversary performs a second-order DPA based on an l-bit key hypoth-
esis Kh against the masked input of an AES S-box in round one with 1 ≤ l ≤ n = 8.
Furthermore, we assume that a random mask M leaks at time t1, the masked S-box
input X ⊕K ⊕M leaks at time t2 and that the adversary is able to measure the corre-
sponding power signals P (t1) and P (t2). If the power contribution ε of all bits is equal1

and coupling effects among the bits are neglected, the power signals P (t1) and P (t2)
can be modelled as

P (t1) = ε
n−1∑
i=0

M [i] + N1 and P (t2) = ε
n−1∑
i=0

(X ⊕K ⊕M)[i] + N2

1 Hamming weight model.

210 K. Schramm and C. Paar

where the additive noise terms N1 and N2 are assumed to be independent Gaussian
random variables with (0,σ2). As shown in Appendix A, the correlation coefficient is

ρ(P (t1)P (t2), W (X ⊕Kh)) =
ε2 1

4 (l
2 − u)√

(ε4 n2

16 (3 + 2(n− 1)) + ε2 n
2 (σ2 + σ2n) + σ4)

√
l
4

(5)

where W (X ⊕ Kh) ≤ l denotes the Hamming weight of the guessed lower l bits of
the unmasked S-box input and u denotes the number of correctly guessed key bits,
0 ≤ u ≤ l. The expression can be simplified, if we assume that the power signals only
depend on the Hamming weights (ε =1) and that the uncorrelated noise terms N1 and
N2 are neglected (σ = 0).

ρ(P (t1)P (t2), W (X ⊕Kh)) =
1
4 (l

2 − u)√
(n2

16 (3 + 2(n− 1))
√

l
4

(6)

The AES S-box input in the first round is a linear function of a plaintext byte X
and a key byte K . As a result, the resulting correlation coefficient shows a linear char-
acteristic. It is proportional to the number of correctly guessed key bits and reaches
its minimum (maximum)2, if all key bits are guessed correctly (incorrectly). Moreover,
wrong key guesses which are ”close” to the correct key guess (e.g. l−1 bits are guessed
correctly and only one bit incorrectly) will result in a correlation coefficient which is
”close” to its minimum. Therefore, DPA attacks usually focus on the output of non-
linear functions, such as the AES S-boxes, because wrong key guesses will result in
correlation coefficients which are clearly distinguishable from the correct key guess.
Please note, however, that in [5] it was shown that S-boxes which are not perfectly
non-linear (e.g. the DES S-boxes) may result in ”ghost peaks”.

2.2 Multi-bit HODPA Against the AES S-Box Output (HW-Model)

We suppose an adversary performs a DPA of order d against the S-box output, i.e.,
the adversary correlates the product of d power signals with a selected function of the
unmasked S-box output based on the key hypothesis Kh. Moreover, we presume that
the leakage of a variable is equal to its Hamming weight (i.e. ε = 1 and σ = 0) and that
the adversary knows that the Hamming weights of d−1 random masks M1, ..., M(d−1)
leak at times t1, ..., t(d−1) and that the masked S-box output S(X ⊕K)⊕M1 ⊕ ... ⊕
M(d−1) leaks at time td. As shown in the Appendix B, the correlation coefficient ρ

of the product
∏d

i=1 P (ti) and the Hamming weight of the correctly predicted S-box
output W (S(X ⊕Kh)) for Kh = K is

ρ
d

i=1

P (ti), W (S(X ⊕Kh)) =
2−(d+1)(n(d+1) − n) + n2−d(d mod 2)−(n

2)(d+1)

(n
4 + n2

4)d−(n
2)(2d) n

4

if Kh=K

(7)

2 The minimum and maximum have an equal magnitude, i.e. the correlation coefficient is a
symmetric function.

Higher Order Masking of the AES 211

0 1000 2000 3000 4000 5000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

number of measurements

c
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
ts

Fig. 1. Correlation plot of a simulated second-
order DPA against the AES S-box output ac-
cording to the HW-model with no noise

0 100000 200000 300000 400000 500000
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

number of measurements
c
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
ts

Fig. 2. Correlation plot of a simulated third-
order DPA against the AES S-box output ac-
cording to the HW-model with no noise

where n denotes the bit length of all intermediate variables. In the case of AES, n = 8,
i.e. 8 bits of Kh must be guessed to predict the S-box output. Thus, the correlation
coefficient reduces to

ρ
(d∏

i=1

P (ti), W (S(X ⊕K))
)

=
2(3−d)(d mod 2)− 2(−d+2)√

(18d − 2(4d))
√

2
if Kh = K (8)

while wrong key hypotheses, i.e. Kh 	= K , result in correlation coefficients which
converge to zero for an increasing number of measurements N due to the non-linear
characteristics of the AES S-box. In Figures 1 and 2, the results of a simulated second-
order and third-order DPA based on the Hamming weight model are shown. In both
cases the correlation coefficients corresponding to the correct key hypotheses are clearly
visible, however, significantly more measurements (≈ a factor of 102) are required to
successfully perform the third-order DPA3.

In Table 1, the correlation coefficients of correct key hypotheses for DPA attacks of
orders d = 1, ..., 7 are listed. Please note that the correlation coefficients approximately
decrease by a factor of 10 with order d and, moreover, feature alternating signs. In order

Table 1. Correlation coefficients of a successful HODPA for a given order

DPA Order d 1 2 3 4 5 6 7

Corr. Coeff. ρ 1 −0.0857 0.0085 −8.901 · 10−4 9.638 · 10−5 −1.064 · 10−5 1.191 · 10−6

3 Also note that the magnitude of the correlation coefficients in the third-order plot has approx.
decreased by a factor of 10.

212 K. Schramm and C. Paar

Table 2. Number of measurements N required to achieve an |SNR| of ≥ 5 in simulated HODPA
attacks (averaged over 100 simulated DPA attacks for each order d)

DPA Order d 1 2 3 4

N 31.14 3941.67 415513.67 44383112.11
≈ 3.13 · 101 ≈ 3.94 · 103 ≈ 4.16 · 105 ≈ 4.44 · 107

to define some kind of quality rating regarding a HODPA attack, we need to define a
signal-to-noise ratio (SNR) which expresses how much the estimated correlation coef-
ficient of the correct key hypothesis deviates from the estimated correlation coefficients
of the wrong key hypotheses for a certain number of measurements N .

SNR(N) =
ρ̂
(∏d

i=1 P (ti), W (S(X ⊕Kh))|Kh = K
)

√
V [ρ̂
(∏d

i=1 P (ti), W (S(X ⊕Kh))
)
|Kh 	= K]

(9)

Experimental results showed that an |SNR| of ≥ 5 is a reasonable threshold, i.e. it
results in satisfactory HODPA attacks for which the correct key guess is clearly distin-
guishable from wrong key guesses. Table 2 lists the average number of measurements
N required to achieve an |SNR| of ≥ 5. These numbers were derived from statistical
simulations, i.e. for a given order d 100 simulated HODPA attacks were performed. The
numbers given in Table 2 clearly show that the measurement costs grow exponentially
with DPA order d (see [7]). However, it must be pointed out that practical HODPA at-
tacks will most certainly require more measurements. For example, the assumption that
only 31 measurements are required to perform a first-order DPA is extremely optimistic
and usually not achieveable in a noisy measurement environment. In order to give a bet-
ter estimation regarding the measurement costs we analyzed an 8051-based microcon-
troller whose power consumption behaviour matches surprisingly well the Hamming
weight model. For this architecture the power leakage of some 8-bit variable X at time
tX can be modelled as

P (tX) = offset + ε ·W (X) + σ ·N.

In an experiment we analyzed 256 · 1000 = 256000 power traces and determined
an average offset = 10 mA, current gain ε = 3.72 mA, and Gaussian noise with
a standard deviation σ = 1.9636 mA and N ∼ N(0, 1). Using these parameters we
simulated4 100 DPA attacks for each order d = 1, ..., 4 in order to determine the average
measurement costs required to achieve an |SNR| ≥ 5. The results are listed in Table 3.

As a result of the additive Gaussian noise σ ·N , the measurement costs roughly in-
crease by a factor of≈ 10. Hence, the use of a noise generator as an add-on countermea-
sure is certainly reasonable to make HODPA attacks more difficult. In Figures 3 and 4

4 Real-world HODPA attacks against the 8051 microcontroller would have been possible, but
with regard to the high measurement costs for orders d > 2 we decided to simulate these
attacks.

Higher Order Masking of the AES 213

Table 3. Number of measurements N required to achieve an |SNR| of ≥ 5 in simulated HODPA
based on the HW-model (parameters: Offset = 10 mA, ε = 3.72 mA, σ = 1.9636 mA) attacks
(averaged over 100 simulated DPA attacks for each order d)

DPA Order d 1 2 3

N 225.85 12539.1 3527564
≈ 2.26 · 102 ≈ 1.25 · 104 3.52 ≈ ·106

0 10000 20000 30000 40000 50000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

number of measurements

c
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
ts

Fig. 3. Correlation plot of a simulated second-
order DPA against the AES S-box out-
put according to the HW-model (parameters:
Offset = 10 mA, ε = 3.72 mA, σ =
1.9636 mA)

0 1e6 2e6 3e6 4e6 5e6
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

number of measurements

c
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
ts

Fig. 4. Correlation plot of a simulated third-
order DPA against the AES S-box out-
put according to the HW-model (parameters:
Offset = 10 mA, ε = 3.72 mA, σ =
1.9636 mA)

two correlation plots of a simulated second and third-order DPA are shown for the
aforementioned parameters.

2.3 Single-Bit HODPA Against the AES S-Box Output (General Model)

In the previous sections, we proposed theoretical results of HODPA attacks against
hardware architectures with regard to the Hamming weight model. However, as dis-
cussed in [6, 3, 14], this model is of limited use in real-world attacks. In [16], a more
general model was presented which focuses on a single bit and comprehends all remain-
ing noise sources5 as a Gaussian distributed random variable. According to this model
the two possible probability distributions of a power signal P (ti) are defined as

f(P (ti)|b = 0) ∼ N(−ε, σ2) and f(P (ti)|b = 1) ∼ N(ε, σ2) (10)

depending on the state of some bit b, e.g. an S-box output bit, which leaks at time ti. As
derived in Appendix C, if the key K is guessed correctly, the correlation coefficient of
the product

∏d
i=1 P (ti) and an S-box output bit b = S(X ⊕Kh)[j] with 0 ≤ j ≤ 7 is

5 i.e. both arithmetic noise and measurement noise.

214 K. Schramm and C. Paar

Table 4. Correlation coefficients of a successful single-bit HODPA for various orders d with
parameters ε = 3.1838 mA and σ = 16.9143 mA according to the general model

DPA Order d 1 2 3 4 5 6 7

Corr. Coeff. ρ 0.185 −0.0342 6.30 · 10−3 −1.20 · 10−3 2.17 · 10−4 −4.01 · 10−5 7.41 · 10−6

Table 5. Number of measurements N required to achieve an |SNR| of ≥ 5 in simulated single-
bit HODPA attacks with parameters ε = 3.1838 mA and σ = 16.9143 mA (averaged over 100
simulated DPA attacks for each order d)

DPA Order o 1 2 3 4

N 801.8 22614.37 1291118.02 17705001.01
≈ 8.02 · 102 ≈ 2.26 · 104 ≈ 1.29 · 106 ≈ 1.77 · 107

ρ
(d∏

i=1

P (ti), S(X ⊕Kh)[j]
)

=
(−1)(d+1)εd√

(ε2 + σ2)d
if Kh = K (11)

In order to estimate the correlation coefficient for various orders d we measured
1000 power traces from a test device6. Using this set of measurements we analyzed the
power consumption caused by S-box 0 output bit 0 in round one and determined a mean
ε = 3.1838 mA and a standard deviation σ = 16.9143 mA. Using these parameters,
we were able to estimate the correlation coefficients of DPA attacks for various orders
d. These numbers are listed in Table 4. As in the previous section, we also performed
simulated DPA attacks for various orders d in order to determine the average number
of measurements required to extract the correct key, i.e. to achieve an |SNR| ≥ 5.
These numbers are given in Table 5 and again show an exponential increase. Finally,
in Figures 5 and 6 two correlation plots of a simulated second and third-order DPA are
shown.

3 Secure HODPA AES Masking Scheme

In this section, we propose an AES masking scheme which is secure against HODPA
attacks. We assume that the adversary knows the exact points in time when any occuring
intermediate variable leaks in the side channel trace and that she/he is able to measure
the corrsponding power signal.

Definition. A masking scheme which applies (d − 1) independent, random masks to
blind a subkey-dependent intermediate variable is considered secure, if an adversary
must perform an DPA attack of order d, i.e. she/he must correlate at least d power sig-
nals with a selected function of the subkey-hypothesis, in order to successfully determine
the secret subkey.

6 A smart card which is based on the AVR architecture and runs a software implementation of
AES. From our measurements we derived that this architecture does not agree very well with
the Hamming weight model.

Higher Order Masking of the AES 215

0 10000 20000 30000 40000 50000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

number of measurements

c
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
ts

Fig. 5. Correlation plot of a simulated single-
bit second-order DPA against the AES S-box
output according to the general model (para-
meters: ε = 3.1838 mA and σ = 16.9143
mA)

0 1e6 2e6 3e6 4e6 5e6
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

number of measurements
c
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
ts

Fig. 6. Correlation plot of a simulated single-
bit third-order DPA against the AES S-box
output according to the HW-model (parame-
ters: ε = 3.1838 mA and σ = 16.9143 mA)

Let us consider a very simple and naive masking scheme based on a modified S-box
S∗ which is shown in Figure 7. We assume that the same set of d− 1 input and output
masks M1, ..., Md−1 are used to thwart DPA attacks up to order d − 1. Unfortunately,
this scheme has several vulnerabilities. First, note that the d − 1 masks at the S-box
output can be regarded as a single x-or mask M = M1 ⊕ ... ⊕ Md−1. While the x-or
sum M may never leak by itself as an intermediate variable in the side channel trace,
the variables K ⊕ M , X ⊕ K ⊕ M and S(X ⊕ K) ⊕ M do occur and thus cause a
leakage. We observed that this gives rise to the following two counterintuitive second-
order attacks even if d− 1 > 1 masks Mi are used. The two correlation coefficients

ρ
(
W (S(X ⊕K)⊕M) ·W (K ⊕M), W (S(X ⊕Kh)⊕Kh)

)
and

ρ
(
W (S(X ⊕K)⊕M) ·W (X ⊕K ⊕M), W (S(X ⊕Kh)⊕X ⊕Kh)

)
will result in distinct peaks, if the correct key hypothesis is guessed. A simple way to
thwart both attacks is to use a different set of input and output masks for an S-box.
Furthermore, let us assume that different input and output masks are used for an S-box,
however, the same two sets of d− 1 input masks Mi and output masks Ni are used for
all S-boxes. As suggested in [11], this leads to the following second-order attack

ρ
(
W (S(X⊕KX)⊕N)W (S(Y ⊕KY)⊕N), W (S(X⊕KHX))W (S(Y ⊕KHY))

)
where N = N1 ⊕ ... ⊕ Nd−1 denotes the x-or sum of the output masks, X ,Y denote
two arbitrary plaintext bytes, KX ,KY the two corresponding key bytes in the first round

216 K. Schramm and C. Paar

X M

K

S*

1 M
d-1

S(X xor K) xor M1 xor ... xor Md-1

Fig. 7. Insecure AES masking scheme using the same d − 1 input and output masks to thwart
DPA attacks of order d

and KHX ,KHY the two corresponding key hypotheses guessed by the adversary. Thus,
the hypothesis space is increased to 16 key bits which is still feasible. An insufficient
measure to counteract this second-order attack would be the random permutation7 of
the 16 S-boxes in each round, since this would merely increase the measurement costs
by a factor of 16 · 15 · 1

2 = 120. A better countermeasure is the usage of different input
and output masks for each S-box.

Design Rule. Every AES S-box S∗
j with 1 ≤ j ≤ 16 should use a different set of d− 1

input masks M(j,1), ..., M(j,d−1) and output masks N(j,1), ..., N(j,d−1) for each round
to thwart DPA attacks of orders < d.

X
1 M

K
1

S1*

(1,1) M
(1,d-1)

S(X1 xor K1) xor N(1,1) xor ... xor N(1,d-1)

X
16 M

K
16

S16*

(16,1) M
(16,d-1)

S(X 16 xor K16) xor N(16,1) xor ... xor N(16,d-1)

…...

Fig. 8. Secure AES masking scheme which uses d − 1 different input and output masks for each
S-box to thwart DPA attacks of order d

3.1 S-Box Recomputation

In the case of AES, 8-bit x-or masks are used to blind elements in GF (28). As stated
in [16, 1, 11], the only transformation in AES which requires special attention with
regard to masking is the non-linear S-box, which performs an inversion in GF (28)
followed by an affine bitwise transformation. For this reason, an x-or mask M will not
propagate unchanged through the S-box.

7 i.e. a temporal desynchronisation of the power traces.

Higher Order Masking of the AES 217

s((X ⊕K)⊕M) = s(X ⊕K)⊕R 	= s(X ⊕K)⊕M for any X ⊕K, M 	= {0}

The S-box must be modified in such a way that s((X⊕K)⊕M) = s(X⊕K)⊕M
for ∀ X ⊕K . This can be achieved twofold: either by simple recomputation of the S-
box [15] or by algebraic methods [4, 18, 9, 19]. The disadvantage of algebraic methods
is that they are usually not very efficient when implemented in software and generally
do not address higher order masking. In [15], a very simple recomputation algorithm
was proposed which blinds the index of a table S with mask M , the output with mask
N and stores it as a new table S′.

For (i=0; i <= 255; i = i + 1)
A = S(i)
S’(i x-or M) = A x-or N

End

This algorithm requires 256 read and write instructions and 512 bytes RAM8 for
tables S and S′. In [20], the following ”split and swap” algorithm was suggested.

For (i=0; i <= 255; i = i + 1)
S(i) = S(i) x-or N //Apply the output mask N

End
For (j=0; j <= 7; j = j + 1)

If (M[j] = 1) Then
(1) Split S into succeeding blocks of 2ˆj elements
(2) Swap pairwise the (2n)th and (2n+1)th,... block

End
End

where M [j] denotes bit j of input mask M . The initial step which applies the output
mask N requires 256 read and write instructions. If bit M [j] is set, 28−(j+1)2j+1 = 256
read and write instructions are required for each split-and-swap operation. This results
in an average total of 256+4 ·256 = 1280 read and write instructions. As an advantage,
only 256 bytes of RAM are required to recompute the S-box. We propose the following
S-box recomputation algorithm which requires 256 read and write instructions and only
256 bytes of RAM.

Determine the most significant bit for which M[j]=1, j=7,...,0
//For example, if M=0x1C, then j=4

For (i=0; i <= 255; i = i + 2ˆ(j+1))
For (l=0; l < 2ˆj; l = l + 1)

A = S(i x-or l)
B = S(i x-or l x-or M)
S(i x-or l) = B x-or N
S(i x-or l x-or M) = A x-or N

End
End

8 We will see later that in the case of higher order masking it is inefficient to store table S
in ROM and only S′ in RAM even though it makes sense to do so in the case of first-order
masking.

218 K. Schramm and C. Paar

Let us assume we would want to apply d − 1 input masks M1, ..., Md−1 and d − 1
output masks N1, ..., Nd−1 to the original S-box S which has been copied from ROM
into RAM. Since the x-or sums M = M1⊕ ...⊕Md−1 and N = N1⊕ ...⊕Nd−1 shall
never leak during the execution of the cipher, one possibility is to recompute the S-box
d− 1 times:

recompute(S, M1, N1) → ... → recompute(S, Md−1, Nd−1)

The order of the recomputation steps is arbitrary. Fortunately, it is only necessary
to perform these d − 1 recomputations for the very first S-box in round one. Once the
first S-box is masked with M and N , it is easy to derive a new S-box with input masks
U1, ..., Ud−1 and output masks V1, ..., Vd−1 by using the chain of masks U ′ and V ′.

U ′ = U1 ⊕M1 ⊕ ...⊕ Ud−1 ⊕Md−1

V ′ = V1 ⊕N1 ⊕ ...⊕ Vd−1 ⊕Nd−1

Thus, the x-or sum U ′ removes the previous input masks Mi and adds the new in-
put masks Ui, while the x-or sum V ′ removes the previous output masks Ni and adds
the new output masks Vi in one step. It is important that the previous and new masks
are stacked up in the alternating order given above to avoid any possible side channel
vulnerabilities. As a result, only a single recomputation step recompute(S, U ′, V ′) is
required to derive the new S-box independent of the number of masks d− 1.

3.2 Mask Propagation and the MixColumn Transformation

For AES implementations which must be secure against first-order DPA, only, it is suf-
ficient to use a single 8-bit mask M for the entire algorithm. As a matter of fact, the
mask M will simply propagate through the MixColumn transformation and no atten-
tion must be paid to correct the mask after it has propagated through the MixColumn
transformation9.

MixCol

⎛⎜⎜⎝
S(X1 ⊕K1)⊕M
S(X2 ⊕K2)⊕M
S(X3 ⊕K3)⊕M
S(X4 ⊕K4)⊕M

⎞⎟⎟⎠ = MixCol

⎛⎜⎜⎝
S(X1 ⊕K1)
S(X2 ⊕K2)
S(X3 ⊕K3)
S(X4 ⊕K4)

⎞⎟⎟⎠⊕

⎛⎜⎜⎝
M
M
M
M

⎞⎟⎟⎠
With regard to an AES implementation resistant against a DPA attack of order d let
us assume that d − 1 different input masks M(j,1), ..., M(j,d−1) and d − 1 different
output masks N(j,1), ..., N(j,d−1) are used for each S-box j in the first round with Mj =
M(j,1)⊕...⊕M(j,d−1) and Nj = N(j,1)⊕...⊕N(j,d−1) and 1 ≤ j ≤ 16. In this case, the
masks do change after they have propagated through the MixColumn transformation.

MixCol

S(X1 ⊕ K1) ⊕ N1

S(X2 ⊕ K2) ⊕ N2

S(X3 ⊕ K3) ⊕ N3

S(X4 ⊕ K4) ⊕ N4

=MixCol

S(X1 ⊕ K1)
S(X2 ⊕ K2)
S(X3 ⊕ K3)
S(X4 ⊕ K4)

⊕
N ′

1

N ′
2

N ′
3

N ′
4

,

N ′
1

N ′
2

N ′
3

N ′
4

�=
N1

N2

N3

N4

9 Please note that special care has to be taken when a single mask M is used in connection with
the MixColumn transformation. The computation of the MixColumn transformation must be
performed in a carefully chosen order so that the mask M is never cancelled out at any time.

Higher Order Masking of the AES 219

In order to follow the propagation of the output masks N(j,1), ..., N(j,d−1), the Mix-
Colum transformation must be executed an additional d− 1 times for each column.⎛⎜⎜⎜⎝

N ′
(1,1)

N ′
(2,1)

N ′
(3,1)

N ′
(4,1)

⎞⎟⎟⎟⎠ = MixCol

⎛⎜⎜⎝
N(1,1)
N(2,1)
N(3,1)
N(4,1)

⎞⎟⎟⎠ , ...,

⎛⎜⎜⎜⎝
N ′

(13,d−1)
N ′

(14,d−1)
N ′

(15,d−1)
N ′

(16,d−1)

⎞⎟⎟⎟⎠ = MixCol

⎛⎜⎜⎝
N(13,d−1)
N(14,d−1)
N(15,d−1)
N(16,d−1)

⎞⎟⎟⎠
For example, in an implemenation secure against second-order DPA attacks, the

MixColumn transformation must be executed an additional 4 · 2 = 8 times.

4 HODPA-Resistant AES Implementations

We implemented the following AES implementations on an AVR-based smard card in
assembly: an unmasked AES implementation, a first-order DPA-resistant AES imple-
mentation using a single mask for the entire AES and, finally, implementations resistant
to second, third and fourth-order DPA using different input and output masks for all S-
boxes. The details such as code sizes and data sizes of these implementations are given
in Table 6. Moreover, the number of cycles required for an encryption and the corre-
sponding execution times10 are given, as well.

Table 6. Details of various HODPA resistant AES implementations

DPA resistance S-box algo. code size [bytes/ROM] data size [bytes/RAM] cycles time [ms]

unprotected - 1078 16 4625 0.925
1st order resistant [15] 2422 264 8701 1.74
2nd order resistant [15] 2798 592 193199 38.6
3rd order resistant [15] 3350 624 197263 39.5
4th order resistant [15] 3962 656 201255 40.2
2nd order resistant see 3.1 2614 336 243581 48.7
3rd order resistant see 3.1 3164 368 247573 49.5
4th order resistant see 3.1 4174 400 260229 52.0

Due to the diffusion characteristics of the MixColumn transformation [10], an S-
box output in round two depends on 32 key bits and in round three already on 128
key bits. Because of performance issues, we only masked the first three and the last
three rounds in our AES implementations. Furthermore, we developed two sets of AES
implementations resistant to HODPA. The first set listed in Table 6 uses the simple
S-box recomputation alogrithm suggested in [15] which requires 512 bytes of RAM
but is quick. The second set listed in Table 6 uses our proposed S-box recomputation
alogrithm which requires only 256 bytes of RAM but could not be implemented as
efficiently in assembly as the simple S-box recomputation algorithm due to pointer
arithmetic issues.
10 Under the assumption that the device is clocked at 5 MHz.

220 K. Schramm and C. Paar

5 Conclusion

In this article we investigated the theoretical background of HODPA attacks and pro-
posed several ideas how to protect an AES software implementation against such at-
tacks. From our simulated experiments based on different hardware architectures it be-
came clear that HODPA requires a huge number of measurements which exponentially
increases with the order of the attack. Hence, a very simple way to protect a device
against HODPA would be the use of a protocol which bounds the number of possible
encryptions for a secret key. Moreover, we showed that the use of a noise generator as
an add-on countermeasure does also increase the measurement costs considerably. We
have presented details of various HODPA-resistant AES implementations which were
programmed in assembly. In our benchmark tests it became clear that the permanent S-
box recomputation is the major bottleneck and slows down the HODPA-resistant imple-
mentations, however this should not be an issue, if AES is used in challenge response-
based protocols. In theory it would be possible to store all S-boxes in ROM, however,
this would require 256 · 256 · 256 = 16 MB , which is not feasible with currently
available smart card microcontrollers.

Acknowledgements

We would like to thank Kerstin Lemke and Ahmad Sadeghi for the helpful discussions.
Furthermore, we would like to thank Robert Szerwinski for implementing the various
HODPA-resistant AES versions in assembly.

References

1. M.-L. Akkar and C. Giraud. An Implementation of DES and AES Secure against Some
Attacks. In Ç. K. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hardware and
Embedded Systems — CHES 2001, volume LNCS 2162, pages 309–318. Springer-Verlag,
2001.

2. M.-L. Akkar and L. Goubin. A Generic Protection against High-Order Differential Power
Analysis. In T. Johansson, editor, Fast Software Encryption — FSE 2003, volume 2887,
pages 192–205. Springer-Verlag, 2003.

3. Mehdi-Laurent Akkar, Régis Bevan, Paul Dischamp, and Didier Moyart. Power Analysis,
What Is Now Possible... In Tatsuaki Okamoto, editor, Advances in Cryptology - ASIACRYPT
2000, volume LNCS 1976, pages 489–502. Springer, 2000.

4. J. Blömer, J. Guajardo, and V. Krummel. Provably Secure Masking of AES. In H. Handschuh
and M. Anwar Hasan, editors, Selected Areas in Cryptography — SAC 2004, volume 3357,
pages 69–83. Springer-Verlag, August 2004.

5. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage Model. In
M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Systems —
CHES 2004, volume 3156, pages 16–29. Springer-Verlag, 2004.

6. S. Chari, C. S. Jutla, J. R. Rao, , and P. Rohatgi. A Cautionary Note Regarding the Evaluation
of AES Candidates on Smart Cards. In Proceedings: Second AES Candidate Conference
(AES2), Rome, Italy, March 1999.

Higher Order Masking of the AES 221

7. S. Chari, C. S. Jutla, J. R. Rao, , and P. Rohatgi. Towards Sound Approaches to Counteract
Power-Analysis Attacks. In Advances in Cryptology — CRYPTO ’99, volume LNCS 1666,
pages 398 – 412. Springer-Verlag, August 1999.

8. C. Clavier and J.-S. Coron. On Boolean and Arithmetic Masking against Differential Power
Analysis. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and Embedded Sys-
tems — CHES 2000, volume LNCS 1965, pages 231 – 237. Springer-Verlag, 2000.

9. N. T. Courtois and L. Goubin. An Algebraic Masking Method to Protect AES Against
Power Attacks. http://eprint.iacr.org/2005/204.pdf, 2005. Cryptology ePrint Archive: Re-
port 2005/204.

10. J. Daemen and V. Rijmen. The Design of Rijndael. Springer Verlag, Berlin, 2002.
11. J. D. Golic and C. Tymen. Multiplicative Masking and Power Analysis of AES. In B.S.

Kaliski, Ç. K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems —
CHES 2002, volume 2523, pages 198–212. Springer-Verlag, 2002.

12. M. Joye, P. Paillier, and B. Schoenmakers. On Second-Order Differential Power Analysis.
In accepted to Cryptographic Hardware and Embedded Systems — CHES 2005. Springer-
Verlag, 2005.

13. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis: Leaking Secrets. In Advances
in Cryptology — CRYPTO ’99, volume LNCS 1666, pages 388–397. Springer-Verlag, 1999.

14. K. Lemke, K. Schramm, and C. Paar. DPA on n-Bit Sized Boolean and Arithmetic Op-
erations and Its Application to IDEA, RC6 and the HMAC-Construction. In M. Joye and
J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Systems — CHES 2004,
volume 3156, pages 205–219. Springer-Verlag, August 2004.

15. T. S. Messerges. Securing the AES Finalists Against Power Analysis Attacks. In B. Schneier,
editor, Fast Software Encryption — FSE 2000, volume LNCS 1978, pages 150 – 164.
Springer-Verlag, 2000.

16. T. S. Messerges. Using Second-Order Power Analysis to Attack DPA Resistant Software. In
Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and Embedded Systems — CHES
2000, volume LNCS 1965, pages 238 – 251. Springer-Verlag, 2000.

17. T. S. Messerges, E. A. Dabbish, and R. H. Sloan. Investigations of Power Analysis Attacks
on Smartcards. In USENIX Workshop on Smartcard Technology, pages 151–162, 1999.

18. E. Oswald and K. Schramm. An Efficient Masking Scheme for AES Software Implemen-
tations. In Workshop on Information Security Applications — WISA 2005. Springer-Verlag,
2005.

19. A. G. Rostovtsev and O.V. Shemyakina. AES Side Channel Attack Protection Using Random
Isomorphisms. http://eprint.iacr.org/2005/087.pdf, 2005. Cryptology ePrint Archive: Report
2005/087.

20. E. Trichina, D.S. Seta, and L. Germani. Simplified Adaptive Multiplicative Masking for AES.
In B.S. Kaliski, Ç. K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded
Systems — CHES 2002, volume 2523, pages 187–197. Springer-Verlag, 2002.

21. J. Waddle and D. Wagner. Towards Efficient Second-Order Power Analysis. In M. Joye and
J.-J. Quisquater, editors, Cryptographic Hardware and Embedded Systems — CHES 2004,
volume 3156, pages 1–15. Springer-Verlag, 2004.

A Second Order DPA Against the AES S-Box Input (HW Model)

Given are two power signals P (t1) and P (t2) according to the HW-model

P (t1) = ε

n−1

i=0

M [i] + N1 and P (t2) = ε

n−1

i=0

(X ⊕ K ⊕ M)[i] + N2

222 K. Schramm and C. Paar

with N1, N2 ∼ N(0, σ2) and with n equal to the bit length of all intermediate variables,
i.e. in the case of AES n = 8. Then, the covariance of the product P (t1) ·P (t2) and the
Hamming weight of the hypothesized S-box input W (X ⊕Kh) is

COV [P (t1) · P (t2), W (X ⊕ Kh)] = COV [P (t1) · P (t2), W (X ⊕ Kh) − l

2
]

= E[P (t1)P (t2) · (W (X ⊕ Kh) − l

2
)] − E[P (t1)P (t2)] · E[(W (X ⊕ Kh) − l

2
)]

=0

= E[ε2
n−1

i=0

n−1

h=0,h�=i

l−1

j=0

M [i](M ⊕ X ⊕ K)[h](X ⊕ Kh)[j]

ε2·n·(n−1)·l· 18

]

− l

2
E[ε2

n−1

i=0

n−1

h=0,h�=i

M [i](M ⊕ X ⊕ K)[h]]

l
2 ·ε2·n·(n−1)· 14

+ E[ε2
n−1

i=l

l−1

j=0

M [i](M ⊕ X ⊕ K)[i](X ⊕ Kh)[j])]

ε2·(n−l)· 14 ·l· 12

− l

2
E[ε2

n−1

i=l

M [i](M ⊕ X ⊕ K)[i]]

l
2 ·ε2·(n−l)· 14

+ E[ε2
l−1

i=0

l−1

j=0

M [i](M ⊕ X ⊕ K)[i](X ⊕ Kh)[j])]

ε2·(l−u)· 14+ε2·l·(l−1)· 14 · 12

− l

2
E[ε2

l−1

i=0

M [i](M ⊕ X ⊕ K)[i]]

l2
2 ·ε2· 14

+ E[N2 · ε ·
n−1

i=0

M [i] · (
l−1

i=0

X ⊕ Kh[i] − l

2
)]

=0

+ E[N1 · ε ·
n−1

i=0

(M ⊕ X ⊕ K)[i] · (
l−1

i=0

X ⊕ Kh[i] − l

2
)]

=0

+ E[N1 · N2 · (
l−1

i=0

X ⊕ Kh[i] − l

2
)]

=0

=
1
4

· ε2 · (l

2
− u)

where u denotes the number of correctly guessed key bits, 0 ≤ u ≤ l. The variance of
the Hamming weight of the hypothesized S-box input is

V [W (X ⊕ Kh)] = V [W (X ⊕ Kh) − l

2
] =

l

4

Higher Order Masking of the AES 223

The variance of the product P (t1) · P (t2) can be expressed as

V [P (t1) · P (t2)] = V [ε2
n−1

i=0

n−1

j=0

M [i](M ⊕ X ⊕ K)[j]]

ε4·n2· 1
16 ·(3+2(n−1))

+ V [N2 · ε ·
n−1

i=0

M [i]]

σ2·ε2·n
4 +σ2·ε2· n2

4

+ V [N1 · ε ·
n−1

i=0

M ⊕ X ⊕ K[i]]

σ2·ε2· n
4 +σ2·ε2· n2

4

+ V [N1 · N2]

σ4

= ε4 · n2 · 1
16

· (3 + 2(n − 1)) + ε2
n

2
[(1 + n)σ2] + σ4

This results in the correlation coefficient

ρ(P (t1) · P (t2), W (X ⊕ Kh)) =
COV [P (t1) · P (t2), W (X ⊕ Kh)]
V [P (t1) · P (t2)] · V [W (X ⊕ Kh)]

=
COV [P (t1) · P (t2), W (X ⊕ Kh) − l

2]

V [P (t1) · P (t2)] · V [W (X ⊕ Kh) − l
2]

=
1
4 ε2(l

2 − u)

(ε4 n2

16 (3 + 2(n − 1)) + ε2 n
2 (σ2 + σ2n) + σ4) l

4

B Multi-bit HODPA Against the AES S-Box Output (HW Model)

Given are d power signals P (ti) according to the noise-free Hamming weight model

P (t1) = W (M1)

... ...

P (t(d−1) = W (M(d−1))

P (td) = W (S(X ⊕ K) ⊕ M)

with M = M1 ⊕ ... ⊕ M(d−1). Let n be the bit length of all intermediate variables,

i.e. in the case of AES n = 8. Then, the covariance of the product
∏d

i=1 P (ti) and the
Hamming weight of the hypothesized S-box output W (S(X ⊕Kh)) is

COV [
d

i=1

P (ti), W (S(X ⊕ Kh))] = COV [
d

i=1

P (ti), W (S(X ⊕ Kh)) − n

2
]

= E[
d

i=1

P (ti) · (W (S(X ⊕ Kh)) − n

2
)] − E[

d

i=1

P (ti)] · E[(W (S(X ⊕ Kh)) − n

2
)]

=0

224 K. Schramm and C. Paar

= E[
d

i=1

P (ti) · (W (S(X ⊕ Kh))] − n

2
· E[

d

i=1

P (ti)]

=(n
2)d

= E[
d

i=1

P (ti) · (W (S(X ⊕ Kh))]

=(n
2)(d+1),ifKh �=K and 2−(d+1)(n(d+1)−n)+n2−d(d mod 2),ifKh=K

−(
n

2
)(d+1)

The variance of the Hamming weight of the hypothesized S-box output is

V [W (S(X ⊕ Kh))] = V [W (S(X ⊕ Kh)) − n

2
] =

n

4

The variance of the product
∏d

i=1 P (ti) is

V [
d

i=1

P (ti)] = E[
d

i=1

P 2(ti)] − E[
d

i=1

P (ti)]2

= E[W 2(M1) · ... · W 2(M(d−1)) · W 2(S(X ⊕ Kh))]

(n
4 + n2

4)d

− E[W (M1) · ... · W (M(d−1)) · W (S(X ⊕ Kh))]2

(n
2)(2d)

= (
n

4
+

n2

4
)d − (

n

2
)(2d)

This results in a correlation coefficient

ρ(
d

i=1

P (ti), W (X ⊕ Kh)) =
COV [d

i=1 P (ti), W (X ⊕ Kh)]

V [d
i=1 P (ti)] · V [W (X ⊕ Kh)]

=
COV [d

i=1 P (ti), W (X ⊕ Kh) − n
2]

V [d
i=1 P (ti)] · V [W (X ⊕ Kh) − n

2]

=
2−(d+1)(n(d+1) − n) + n2−d(d mod 2) − (n

2)(d+1)

(n
4 + n2

4)d − (n
2)(2d) n

4

C Single-Bit HODPA Against the AES S-Box Output (General
Model)

Given are d power signals P (ti) according to the general model

P (t1) = 2 S(X ⊕ K) ⊕ M [j] − 1 ε + σN1

P (t2) = 2M1[j] − 1 ε + σN2

... ...

P (td) = 2M(d−1)[j] − 1 ε + σNd with

Higher Order Masking of the AES 225

with M = M1⊕...⊕M(d−1) and N1, ..., Nd ∼ N(0, 1) and 0 ≤ j ≤ 7. The correlation
coefficient is defined as

ρ
d

i=1

P (ti), S(X ⊕ Kh)[j]

=
E[d

i=1 P (ti)S(X ⊕ Kh)[j]] − E[d
i=1 P (ti)]E[S(X ⊕ Kh)[j]]

V [d
i=1 P (ti)]V [S(X ⊕ Kh)[j]]

where S(X ⊕Kh)[j] denotes the state of bit j of a hypothesized S-box output S(X ⊕
Kh). The expectation values in the numerator are

E[
d

i=1

P (ti)S(X ⊕ Kh)[j]]

= E[
1

S(X⊕K)⊕M=0

P (t1)
1

M1=0

P (t2) ...

1

Md−1=0

P (td)
1

S(X⊕Kh)[j]=0

S(X ⊕ Kh)[j]]

= 2−(d+1) ((−ε) + ε)((−ε) + ε)...((−ε) + ε)(0 + 1) = 0 if Kh �= K

= 2−(d) 2d

2
εd(−1)d+1 =

1
2
εd(−1)d+1 if Kh = K

E[
d

i=1

P (ti)] =
d

i=1

E[P (ti)] =
d

i=1

(0.5(−ε) + 0.5ε) = 0

E[S(X ⊕ Kh)[j]] = 0.5

The variances in the denominator are

V [S(X ⊕ Kh)[j]] = 0.25

V [
d

i=1

P (ti)] = E[
d

i=1

P 2(ti)] − E[
d

i=1

P (ti)]2

=0

=
d

i=1

E[P 2(ti)] =
d

i=1

E[(ε + σN)2] =
d

i=1

E[ε2 + 2εσN + σ2N2]

= (ε2 + σ2)d with N ∼ N(0, 1) and χ2 = N2 ∼ χ2(1, 2)

This results in

ρ

d

i=1

P (ti), S(X ⊕ Kh)[j] =
(−1)(d+1)εd

(ε2 + σ2)d
if Kh = K

= 0 if Kh �= K

Chosen Ciphertext Secure Public Key
Threshold Encryption Without Random Oracles

Dan Boneh1,
, Xavier Boyen2, and Shai Halevi3

1 Stanford University, Stanford, CA
dabo@cs.stanford.edu

2 Voltage Security, Palo Alto, CA
xb@boyen.org

3 IBM, T.J. Watson, NY
shaih@alum.mit.edu

Abstract. We present a non-interactive chosen ciphertext secure
threshold encryption system. The proof of security is set in the stan-
dard model and does not use random oracles. Our construction uses the
recent identity based encryption system of Boneh and Boyen and the
chosen ciphertext secure construction of Canetti, Halevi, and Katz.

1 Introduction

A threshold public key encryption system [14, 16, 13, 19] is a public key system
where the private key is distributed among n decryption servers so that at least
k servers are needed for decryption. In a threshold encryption system an entity,
called the combiner, has a ciphertext C that it wishes to decrypt. The combiner
sends C to the decryption servers, and receives partial decryption shares from
at least k out of the n decryption servers. It then combines these k partial de-
cryptions into a complete decryption of C. Ideally, there is no other interaction
in the system, namely the servers need not talk to each other during decryp-
tion. Such threshold systems are called non-interactive. Often one requires that
threshold decryption be robust [22, 18], namely if threshold decryption of a valid
ciphertext fails, the combiner can identify the decryption servers that supplied
invalid partial decryptions.

In this paper we study threshold encryption systems secure against chosen
ciphertext attacks (CCA). The first such system, using random oracles, was
given by Shoup and Gennaro [34]. Without random random oracles, this problem
is much harder and was left as an open problem in [34]. Further work on this
problem is discussed later in the introduction.

We present a very efficient non-interactive CCA threshold encryption system
without random oracles. Our construction proceeds in two steps. First, we extend
the CCA construction of Canetti et al. [10] to threshold systems. Second, we give
a robust threshold version of a recent Identity Based Encryption (IBE) due to
Boneh and Boyen [3]. We achieve robustness by adding a number of internal
checks to the system. Our main construction is obtained by composing these
� Supported by NSF and the Packard Foundation.

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 226–243, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Chosen Ciphertext Secure Public Key Threshold Encryption 227

two results. This approach was outlined in the full versions of [3] and [10] and
here we flesh out the full details. In Section 6 we briefly discuss several extensions
such as proactive refresh [30, 24, 17] and distributed key generation [31, 21].

Related Work. Recall that the Cramer-Shoup system [11] and its variants [33,
28] provide efficient chosen ciphertext secure encryption without random oracles.
All these systems require that the private key be used to test ciphertext validity
during decryption. In a threshold environment none of the decryption servers
possess the private key needed to perform this validity test. Consequently, con-
structing a threshold version of the Cramer-Shoup system is non-trivial. The first
such construction is due to Canetti and Goldwasser [8]; other threshold versions
of Cramer-Shoup are given in [1, 25].

These systems, however, are more complicated than the system in this paper:
they require either a large degree of interaction between the decryption servers,
or storage of a large number of pre-shared secrets. More recent constructions [29,
15, 12] are non-interactive, but are far less efficient than the construction in this
paper. We refer to [34] for a comprehensive survey of the related work as well as
the many applications of threshold encryption.

Our Contribution. This paper shows that CCA-secure threshold public key
systems (in the standard model) are easier to derive from semantically secure
Identity Based Encryption than from the Cramer-Shoup paradigm. In the non-
threshold setting, the latest variant of either approach give public key sys-
tems that have similar encryption performance, whether IBE-based [6] or CS-
based [28]. On the the other hand, in the threshold setting, the IBE approach
appears to offer substantial benefits in terms of efficiency. The main reason is
that in the IBE-to-CCA transformation from [10], the validity test performed
during decryption requires only the public key. Consequently, each decryption
server can test ciphertext validity on its own and only release a partial decryption
of valid ciphertexts. (The more efficient transformation of Boneh and Katz [6]
does not have this property, and is thus less suitable for threshold encryption.)

We extend [10] to give a generic transformation from threshold IBE to thresh-
old public key encryption, and present a concrete construction based on a thresh-
old version of the Boneh-Boyen IBE [3]. We add a number of internal checks to
provide robustness against misbehaving decryption servers. The basic idea of
this paper was originally suggested in the expanded versions of [3] and [10],
but without any detail. This work gives an explicit account of the construction
including all the additional checks that one has to perform.

We note that Boyen, Mei, and Waters [7] very recently gave a particularly
simple and efficient CCA2-secure key encapsulation mechanism based on the
Boneh-Boyen IBE framework. It is self-contained, by contrast to the generic
CHK and BK transformations, which require additional ingredients. As with
CHK, the BMW method supports public ciphertext verification, and is thus suit-
able for non-interactive threshold decryption. Likewise, they adapt our present
construction to realize an efficient CCA2-secure non-interactive threshold KEM
that eschews the need for signatures.

228 D. Boneh, X. Boyen, and S. Halevi

2 Definitions

As a preamble to our results, we recall the definitions of threshold PKE and
IBE, and secure signatures.

As usual, we say that a function f : Z → R is negligible if for all c > 0 there
exists N ∈ Z such that |f(x)| < 1/xc for all x > N .

2.1 Threshold Public Key Encryption

We define chosen ciphertext secure (CCA2) threshold public key encryption for
a static adversary. We mostly follow the notation from Shoup and Genarro [34].
A Threshold Public Key Encryption (TPKE) system consists of five algorithms.

Setup(n, k, Λ): Takes as input the number of decryption servers n, a threshold
k where 1 ≤ k ≤ n, and a security parameter Λ ∈ Z. It outputs a triple
(PK, VK,SK) where PK is called the public key, VK is called the verification
key, and SK = (SK1, . . . ,SKn) is a vector of n private key shares. Decryp-
tion server i is given the private key share (i, SKi) and uses it to derive a
decryption share for a given ciphertext. The verification key VK is used to
check validity of responses from decryption servers.

Encrypt(PK, M): Takes as input a public key PK and a message M . It outputs
a ciphertext.

ShareDecrypt(PK, i,SKi, C): Takes as input the public key PK, a ciphertext
C, and one of the n private key shares in SK. It outputs a decryption share
μ = (i, μ̂) of the enciphered message, or a special symbol (i,⊥).

ShareVerify(PK, VK, C, μ): Takes as input PK, the verification key VK, a ci-
phertext C, and a decryption share μ. It outputs valid or invalid. When
the output is valid we say that μ is a valid decryption share of C.

Combine
(
PK, VK, C, {μ1, . . . , μk}

)
: Takes as input PK, VK, a ciphertext C, and

k decryption shares {μ1, . . . , μk}. It outputs a cleartext M or ⊥.

Consistency Requirements. Let (PK, VK,SK) be the output of Setup(n, k, Λ).
We require the following two consistency properties:

1. For any ciphertext C, if μ = ShareDecrypt(PK, i,SKi, C) where SKi is the
i-th private key share in SK, then ShareVerify(PK, VK, C, μ) = valid.

2. If C is the output of Encrypt(PK, M) and S = {μ1, . . . , μk} is a set of
decryption shares μi = ShareDecrypt(PK, i,SKi, C) for k distinct private
keys in SK, then we require that Combine(PK, VK, C, S) = M .

Security. Security of TPKE is defined using two properties: security against
chosen ciphertext attacks, and consistency of decryptions.

Chosen Ciphertext Security. Security against chosen ciphertext attacks is defined
using the following game between a challenger and a static adversary A. Both
are given n, k, and a security parameter Λ ∈ Z+ as input.

Init. The adversary outputs a set S ⊂ {1, . . . , n} of k−1 decryption servers
to corrupt.

Chosen Ciphertext Secure Public Key Threshold Encryption 229

Setup. The challenger runs Setup(n, k, Λ) to obtain a random instance
(PK, VK,SK) where SK = (SK1, . . . ,SKn). It gives the adversary PK,
VK, and all (j, SKj) for j ∈ S.

Query phase 1. The adversary adaptively issues decryption queries (C, i)
where C ∈ {0, 1}∗ and i ∈ {1, . . . , n}. The challenger responds with
ShareDecrypt(PK, i,SKi, C).

Challenge. The adversary outputs two messages M0, M1 of equal length.
The challenger picks a random b ∈ {0, 1} and lets C∗ = Encrypt(PK, Mb).
It gives C∗ to the adversary.

Query phase 2. The adversary issues further decryption queries (C, i), un-
der the constraint that C 	= C∗. The challenger responds as in phase 1.

Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game
if b = b′.

We define the advantage of A as AdvCCAA,n,k(Λ) = |Pr[b = b′]− 1
2 |.

Decryption Consistency. Consistency of decryption is defined using the following
game. The game starts with the Init, Setup, and Query phase 1 steps as in
the game above. The adversary then outputs a ciphertext C and two sets of
decryption shares S = {μ1, . . . , μk} and S′ = {μ′

1, . . . , μ
′
k} each of size k. Let

VK be the verification key generated in the Setup step. The adversary wins if:

1. The shares in S and S′ are valid decryption shares for C under VK;
2. S and S′ each contain decryption shares from k distinct servers; and
3. Combine

(
PK, VK, C, S) 	= Combine

(
PK, VK, C, S′).

We let AdvCDA,n,k(Λ) denote the adversary’s advantage in winning this game.

Definition 1. We say that a TPKE system is secure if for any n and k where
0 < k ≤ n, and any polynomial time algorithm A, the functions AdvCCAA,n,k(Λ)
and AdvCDA,n,k(Λ) are negligible.

2.2 IBE with Threshold Key Generation

Next, we define IBE with threshold key generation. Here we are only concerned
with semantic security and ignore chosen ciphertext attacks. A Threshold Iden-
tity Based Encryption (TIBE) system consists of seven algorithms.

Setup(n, k, Λ): Takes as input the number of decryption servers n, a thresh-
old k where 1 ≤ k ≤ n, and a security parameter Λ ∈ Z. It outputs a
triple (PK, VK,SK) where PK is called the system parameters, VK is called
a verification key, and SK = (SK1, . . . ,SKn) is a vector of master key shares
analogous to the private key shares in the definition of TPKE. Decryption
server i is given the master key share (i, SKi).

ShareKeyGen(PK, i,SKi, ID): Takes as input the system parameters PK, an
identity ID, and a master key share (i, SKi). It outputs a private key share
θ = (i, θ̂) for ID.

230 D. Boneh, X. Boyen, and S. Halevi

ShareVerify(PK, VK, ID, θ): Takes as input the system parameters PK, the ver-
ification key VK, an identity ID, and a private key share θ. It outputs valid
or invalid.

Combine
(
PK, VK, ID, {θ1, . . . , θk}

)
: Takes as input PK, VK, an identity ID, and

k private key shares {θ1, . . . , θk}. It outputs a private key dID or ⊥.
Encrypt(PK, ID, M): Takes PK, an identity ID, and a message M , and outputs

a ciphertext C.
ValidateCT(PK, ID, C): Takes as input PK, an identity ID, and a ciphertext C.

It outputs valid or invalid. If valid we say that C is a valid encryption
under ID.

Decrypt(PK, ID, dID, C): Takes as input PK, ID, a private key dID, and a cipher-
text C. It outputs a message M or ⊥.

Note that, unlike the previous section, decryption is not distributed. Only key
generation is distributed.

Consistency Requirements. Let (PK, VK,SK) be the output of Setup(n, k, Λ).
We require consistency properties as for TPKE systems:

1. For any identity ID, if θ = ShareKeyGen(PK, i,SKi, C) where SKi is one of
the private key shares in SK, then ShareVerify(PK, VK, ID, θ) = valid.

2. For any ID, if S = {θ1, . . . , θk} where θi = ShareKeyGen(PK, i,SKi, ID) for k
distinct private keys in SK, and dID is the output of Combine(PK, VK, ID, S),
then we require that for any M and C = Encrypt(PK, ID, M) we have
ValidateCT(PK, ID, C) = valid and Decrypt(PK, dID, C) = M .

Security. Security of a TIBE is defined using two properties: security against
chosen identity attacks and consistency of key generation. There are two ways to
define chosen identity attacks against IBE schemes, depending on whether the
adversary chooses the target identity adaptively (an adaptive-ID attack [5]) or
selects it in advance (a selective-ID attack [9]); we only need the latter for our
purposes.

Selective-ID Security. Semantic security against a selective identity attack is
defined using the following game:

Init. The adversary outputs an identity ID∗ that it wishes to attack and a
set of k − 1 decryption servers S ⊂ {1, . . . , n} that it wishes to corrupt.

Setup. The challenger runs Setup(n, k, Λ) to obtain a random instance
(PK, VK,SK) where SK = (SK1, . . . ,SKn). It gives the adversary PK,
VK, and all (j, SKj) for j ∈ S.

Query phase 1. The adversary adaptively issues chosen identity queries
(ID, i) where ID ∈ {0, 1}∗ and i ∈ {1, . . . , n}. The only constraint is that
ID 	= ID∗. The challenger responds with ShareKeyGen(PK, i,SKi, ID).

Challenge. The adversary outputs two messages M0, M1 of equal length.
The challenger picks a random b ∈ {0, 1} and sets the challenge cipher-
text to C∗ = Encrypt(PK, ID∗, M). It gives C∗ to the adversary.

Chosen Ciphertext Secure Public Key Threshold Encryption 231

Query phase 2. The adversary and the challenger interact as in phase 1.
Guess. Algorithm A outputs its guess b′ ∈ {0, 1} for b and wins the game

if b = b′.

We define the advantage of A as AdvIND-IDA,n,k(Λ) = |Pr[b = b′]− 1
2 |.

Key Generation Consistency. Consistency of key generation (and decryption)
is defined using the following game. The game starts with the Init, Setup, and
Query phase 1 steps as in the game above. The adversary then outputs an
identity ID, a ciphertext C, and two sets of private key shares S = {θ1, . . . , θk}
and S′ = {θ′1, . . . , θ′k} each of size k. Let PK and VK be the system parameters
and the verification key generated in the Setup step. The adversary wins if:

1. the shares in S and S′ are valid private key shares for ID under VK;
2. S and S′ each contain private key shares from k distinct servers;
3. C is valid for the given ID, i.e., ValidateCT(PK, ID, C) = valid;
4. the keys dID = Combine

(
PK, VK, ID, S) and d′ID = Combine

(
PK, VK, ID, S′)

are such that ⊥ 	= dID 	= d′ID 	= ⊥;
5. Decrypt(PK, ID, dID, C) 	= Decrypt(PK, ID, d′ID, C).

Let AdvCD-IDA,n,k(Λ) be the adversary’s advantage in winning the game.

Definition 2. We say that a TIBE system is selective-ID secure if for any n, k
(where 0 < k ≤ n), and any polynomial time A, the functions AdvIND-IDA,n,k(Λ)
and AdvCD-IDA,n,k(Λ) are negligible.

2.3 Strong Existentially Unforgeable Signatures

A signature scheme is made up of three algorithms, SigKeyGen, Sign, and
SigVerify, for generating a key pair, signing a message, and verifying a signature,
respectively.

The standard notion of security for a signature scheme is called existential
unforgeability under a chosen message attack [23]. We need a slightly stronger
notion of security, called strong existential unforgeability [2]. We define strong
existential unforgeability under a “one chosen message” attack using the follow-
ing game between a challenger and an adversary A:

Setup. The challenger runs algorithm SigKeyGen(Λ) to obtain a public
key VerK and a private key SigK. The adversary A is given VerK.

Query. The adversary A requests a signature on a single messages of its
choice, M ∈ {0, 1}∗, under VerK. The challenger responds with a signa-
ture σ = Sign(SigK, M).

Output. The adversary A outputs a pair (M ′, σ′) and wins the game if
(M ′, σ′) 	= (M, σ) and SigVerify(VerK, M ′, σ′) = valid.

We define AdvSigA(Λ) to be the probability that A wins in the above game.

Definition 3. A signature scheme is existentially unforgeable under a one cho-
sen message attack if for any probabilistic polynomial time algorithm A the func-
tion AdvSigA(Λ) is negligible.

232 D. Boneh, X. Boyen, and S. Halevi

Efficient constructions for such signatures schemes, without random oracles, are
known using the Strong-RSA assumption [20] and the 2-Strong-Diffie-Hellman
(2-SDH) assumption [4].

2.4 Bilinear Maps

We briefly review the necessary facts about bilinear groups and bilinear maps,
also called pairings, using the following notation:

1. G and G1 are two (multiplicative) cyclic groups of prime order p;
2. g is a generator of G;
3. e is a bilinear map e : G×G → G1;
4. GG(Λ) is a bilinear Group Generator as described below.

A pairing is a map e : G×G → G1 with the following properties [26, 27, 5]:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Z, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) 	= 1.

Algorithm GG(Λ) is a bilinear Group Generator that takes a security parameter
Λ ∈ Z as input and outputs the description of groups G and G1 and a bilinear
map e : G × G → G1 where the group operation in G and G1 as well as the
map e can be computed in polynomial time in Λ. To simplify the notation we
use G

R← GG(Λ) to denote the output of a random execution of GG on input Λ,
and posit that the output GG(Λ) contains a description of p, G, G1, and e.

2.5 Bilinear Diffie-Hellman Assumption

We say that an algorithm B that outputs b ∈ {0, 1} has advantage ε(Λ) in solving
the decision BDH problem [26, 32, 5] for the bilinear group generator GG if∣∣Pr

[
B(G, g, ga, gb, gc, e(g, g)abc) = 0

]
− Pr

[
B(G, g, ga, gb, gc, T) = 0

]∣∣ ≥ ε(Λ)

where the probability is over the random choice of group G
R← GG(Λ), the random

choice of generator g in G, the random choice of a, b, c in Zp, the random choice
of T ∈ G1, and the random bits consumed by B. We refer to the distribution on
the left as PBDH , and on the right as RBDH .

Definition 4. We say that the Decision-BDH assumption holds for GG if any
polynomial time algorithm has negligible advantage in solving the Decision BDH
problem for GG.

3 A Threshold Identity Based Encryption System

We start with a description of a concrete Threshold IBE (TIBE) system and
prove its semantic security against selective identity attacks without random or-
acles. For robustness against misbehaving servers we need to add several internal
checks to the scheme from [3]. In a later section we show how this construction
leads to a non-interactive threshold PKE with chosen ciphertext security. The
TIBE system works as follows:

Chosen Ciphertext Secure Public Key Threshold Encryption 233

Setup(n, k, Λ). Run the group generator GG(Λ) to obtain a bilinear group G of
prime order p > n. Select random generators g, g2, h1 in G, and a random
degree k − 1 polynomial f ∈ Zp[X]. Set α = f(0) ∈ Zp and g1 = gα.

The system parameters PK consist of PK = (G, g, g1, g2, h1). For i =
1, . . . , n the master key share (i, SKi) of server i is defined as SKi = g

f(i)
2 .

The public verification key VK consists of the n-tuple (gf(1), . . . , gf(n)).
ShareKeyGen(PK, i,SKi, ID). Let PK = (G, g, g1, g2, h1) and pick a random

r ∈ Zp. Output the private key share θi = (i, (wi,0, wi,1)) calculated as

wi,0 = SKi · (gID
1 h1)r , wi,1 = gr .

ShareVerify(PK, VK, ID, θi). To verify that θi is a valid private key share for
identity ID, let VK = (u1, . . . , un) where ui = gf(i), and θi = (i, (wi,0, wi,1)).
Output valid or invalid according to the truth of the following condition:

e(ui, g2) · e(gID
1 h1, wi,1) = e(g, wi,0)

Combine(PK, VK, ID, (θ1, . . . , θk)). If one of θ1, . . . , θk is invalid, or if two shares
θi and θj bear the same server index, then output ⊥ and exit. Otherwise,
let θi = (i, (wi,0, wi,1). Without loss of generality we assume that decryption
servers i = 1, . . . , k were used to generate θ1, . . . , θk. To derive the private
key for ID let λ1, . . . , λk ∈ Zp be the Lagrange coefficients so that α = f(0) =∑k

i=1 λif(i). Output the reconstituted private key dID = (w0, w1) given by

w0 =
k∏

i=1

wλi

i,0 , w1 =
k∏

i=1

wλi

i,1

Encrypt(PK, ID, M). To encrypt M ∈ G1 for identity ID, pick a random s ∈ Zp

and output

C =
(

e(g1, g2)s ·M, gs, gs·ID
1 hs

1

)
ValidateCT(PK, ID, C). To validate a ciphertext C = (A, B, C1) with respect

to an identity ID, output valid or invalid depending on whether

e(B, gID
1 h1) = e(C1, g)

Decrypt(PK, ID, dID, C). To decrypt C = (A, B, C1) using a private key dID =
(w0, w1), first check that ValidateCT(PK, ID, C) = valid and that e(g1, g2) ·
e(gID

1 h1, w1) = e(g, w0). If either check fails, output ⊥ and exit. Otherwise,
output the plaintext

A · e(C1, w1)/e(B, w0)

The two checks during decryption ensure that C is a valid ciphertext under ID
and that dID is a valid private key for ID. These checks are needed to ensure
consistency of key generation in case some server misbehave. If these conditions
are fullfilled, then the decryption is correct, because (w0, w1) = (gα

2 (gID
1 h1)r̄, gr̄)

for some r̄ ∈ Zp, and

A · e(C1, w1)
e(B, w0)

= M · e(g1, g2)s · e(gID
1 , g)sr̄ · e(h1, g)sr̄

e(g, gα
2)s · e(g, gID

1)sr̄ · e(g, h1)sr̄
= M.

234 D. Boneh, X. Boyen, and S. Halevi

3.1 Security

We now prove the semantic security of this threshold IBE against selective iden-
tity attacks. The proof is based on the proof in [3] and gives a tight reduction.

As in [3], the key to the simulation is the construction of a public key (..., h1, ...)
that allows the simulator to calculate private key shares for any identity except
ID∗. A difference from the proof in [3] is that the simulator must be able to extract
private key shares (i.e., elements of the vector SK). In addition, the simulator must
produce a valid verification key VK, which only exists in the threshold setting. In
order to construct the components of VK that correspond to the corrupted servers,
the simulator does interpolation in the exponent. The Lagrange interpolation co-
efficients are blinded and yet carry over unaffected through the bilinear map in
the verification equation. The details follow.

Theorem 1. Suppose the Decision BDH assumption holds for GG. Then the
TIBE system above is semantically secure against selective identity, chosen plain-
text attacks.

Proof. First, suppose A has advantage AdvIND-IDA,n,k > ε in attacking the
threshold IBE system for a given value of the security parameter Λ. We build
an algorithm B that solves the Decision BDH problem in a random instance
G

R← GG(Λ) with advantage ε.
Let there thus be a random bilinear group G

R← GG(Λ) and a random genera-
tor g ∈ G∗ of G. Algorithm B is given as input a random tuple (G, g, ga, gb, gc, T)
that is either sampled from PBDH (where T = e(g, g)abc) or from RBDH (where
T is uniform and independent in G1). Algorithm B’s goal is to output 1 if
T = e(g, g)abc and 0 otherwise. Set g1 = ga, g2 = gb, g3 = gc. Algorithm B
works by interacting with A in a threshold selective-ID game as follows:

Initialization. The adversaryA chooses a set S of k−1 decryption servers that
it wants to corrupt. Let S = {s1, . . . , sk−1} ⊂ {1, . . . , n}. The adversary A
also announces the identity ID∗ it wants to attack.

Setup. B does the following:
1. First, B picks a random integer γ ∈ Zp and defines h1 = g−ID∗

1 gγ ∈ G.
Algorithm B gives A the public key PK = (G, g, g1, g2, h1). Note that the
corresponding master key, which is unknown to B, is ga

2 = gab ∈ G.
2. Next, B generates the master key shares for the k − 1 corrupt servers in

S. To do so, B first picks k − 1 random integers α1, . . . , αk−1 ∈ Zp. Let
f ∈ Zp[X] be the degree k − 1 polynomial implicitly defined to satisfy
f(0) = a and f(si) = αi for i = 1, . . . , k − 1; note that B does not
know f since it does not know a. Algorithm B gives A the k − 1 master
key shares SKsi = gαi

2 . These keys are consistent with this polynomial f

since SKsi = g
f(si)
2 for i = 1, . . . , k − 1.

3. Finally, B constructs the verification key, which is a n-vector (u1, . . . , un)
such that ui = gf(i) for the polynomial f defined above, as follows.

– For i ∈ S, computing ui is easy since f(i) is equal to one of the
α1, . . . , αk−1, which are known to B. Thus, us1 , . . . , usk

∈ G are easy
for B to compute.

Chosen Ciphertext Secure Public Key Threshold Encryption 235

– For i 	∈ S, algorithm B needs to compute the Lagrange coefficients
λ0, λ1, . . . , λk−1 ∈ Zp such that f(i) = λ0f(0)+

∑k−1
j=1 λjf(sj); these

Lagrange coefficients are easily calculated since they do not depend
on f . Algorithm B then sets ui = gλ0

1 uλ1
s1
· · ·uλk−1

sk−1 , which entails that
ui = gf(i) as required.

Once it has computed all the ui’s, B gives to A the verification key
VK = (u1, . . . , un).

Phase 1. A issues up to qS private key share generation queries to the uncorrupt
servers. Consider a key generation query to server i 	∈ S for the identity
ID 	= ID∗.
Algorithm B needs to return (i, (wi,0, wi,1)) where wi,0 = SKi(gID

1 h1)r and
wi,1 = gr for some random r ∈ Zp. To do so, B first computes the Lagrange
coefficients λ0, λ1, . . . , λk−1 ∈ Zp such that f(i) = λ0f(0) +

∑k−1
j=1 λjf(sj).

Next, B picks a random r ∈ Zp and sets

wi,0 = g
−γλ0
ID−ID∗
2 (gID

1 h1)r ·
k−1∏
j=1

g
λjαj

2 , wi,1 = g
−λ0

ID−ID∗
2 gr

We claim that (wi,0, wi,1) are a valid response to this decryption query. To
see this, let r̃ = r − bλ0

ID−ID∗ . Then we have that

g
−γλ0

(ID−ID∗)
2 (gID

1 h1)r = g
−γλ0

(ID−ID∗)
2 (gID−ID∗

1 gγ)r

= gλ0a
2 (gID−ID∗

1 gγ)r− bλ0
ID−ID∗ = gλ0a

2 (gID
1 h1)r̃

It follows that the private key share (i, (wi,0, wi,1)) defined above satisfies

wi,0 = g
f(i)
2 · (gID

1 h1)r̃ , wi,1 = gr̃

and r̃ is uniform in Zp as required. Hence, (i, (wi,0, wi,1)) is a valid response
to A.

Challenge. A outputs two same-length messages M0 and M1 on which it wishes
to be challenged. B flips a fair coin b ∈ {0, 1}, and responds with the challenge
ciphertext

C = (T ·Mb, g3, gγ
3)

Since C = (T ·Mb, gc, gc·ID∗
1 hc

1), the challenge ciphertext is a valid encryption
of Mb with the correct distribution whenever T = e(g, g)abc = e(g1, g2)c (as is
the case when the input 5-tuple is sampled from PBDH). On the other hand,
when T is uniform and independent in G1 (which occurs when the input
5-tuple is sampled from RBDH) the challenge ciphertext C is independent
of b in the adversary’s view.

Phase 2. A issues additional queries as in Phase 1, to which algorithm B re-
sponds as before.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. Algorithm B concludes its own
game by outputting a guess as follows. If b = b′ then B outputs 1 meaning
T = e(g, g)abc. Otherwise, it outputs 0 meaning T 	= e(g, g)abc.

236 D. Boneh, X. Boyen, and S. Halevi

When the input 5-tuple is sampled from PBDH (where T = e(g, g)abc) then
A’s view is identical to its view in a real attack game and thereforeAmust satisfy
|Pr[b = b′] − 1/2| > ε. On the other hand, when the input 5-tuple is sampled
from RBDH (where T is uniform in G1) then Pr[b = b′] = 1/2. Therefore, with
uniformly chosen g in G∗, uniformly chosen a, b, c in Zp, and uniformly chosen
T in G1, we have, as required, that∣∣∣∣∣ Pr

[
B(G, g, ga, gb, gc, e(g, g)abc) = 0

]
− Pr

[
B(G, g, ga, gb, gc, T) = 0

] ∣∣∣∣∣ ≥
∣∣∣∣(1

2
± ε

)
− 1

2

∣∣∣∣ = ε

To complete the proof of Theorem 1 it remains to prove consistency of key
generation. We argue that for any algorithm A we have AdvCD-IDA,n,k(Λ) = 0.
To see this, observe that the two tests performed during decryption ensure that
Decrypt(PK, ID, dID, C) outputs the same value for all reconstituted keys dID that
pass the tests. Furthermore, conditions (1)–(4) needed for the adversary to win
the consistency of key generation game ensure that both tests succeed. Hence,
Decrypt will output the same value no matter which key dID is given as input,
and thus AdvCD-IDA,n,k(Λ) = 0.

4 Threshold Public Key Encryption from Threshold IBE

In this section, we use the techniques of Canetti et al. [10] to show that any
semantically secure TIBE gives a chosen ciphertext secure TPKE. Later, we
apply this transformation on our TIBE to obtain an efficient chosen ciphertext
secure TPKE in the standard model.

Let ETIBE = (SetupTIBE, ShareKeyGenTIBE, ShareVerifyTIBE, CombineTIBE, . . .) be a
TIBE system. Let S = (SigKeyGen, Sign, SigVerify) be a signature system. We
construct a TPKE as follows:

SetupTPKE(n, k, Λ). To generate a TPKE key set, execute SetupTIBE(n, k, Λ) from
the TIBE system and output the resulting tuple (PK, VK,SK).

EncryptTPKE(PK, M). To encrypt a message M under the public key PK, first
run SigKeyGen(Λ) to obtain a signing/verification key pair (SigK,VerK).
Next, run EncryptTIBE(PK,VerK, M) to obtain a ciphertext C0, i.e., using
VerK as the identity to encrypt to. Then, run Sign(SigK, C0) to obtain a
signature σ. Output the triple C = (C0,VerK, σ) as the complete ciphertext.

ShareDecryptTPKE(PK, i,SKi, C). To obtain a partial decryption of a ciphertext
C = (C0,VerK, σ) under private key share SKi, do the following:
1. Run SigVerify(VerK, C0, σ). If the verification fails, output (i,⊥) and

exit.
2. Run ValidateCTTIBE(PK,VerK, C0). If the validation fails, output (i,⊥)

and exit.
3. Run ShareKeyGenTIBE(PK, i,SKi,VerK) to obtain a TIBE private key

share μ for the identity VerK. Output μ as the decryption share.
ShareVerifyTPKE(PK, VK, C, μ). To verify a decryption share μ with respect to

a ciphertext C = (C0,VerK, σ) under verification key VK, do the following:

Chosen Ciphertext Secure Public Key Threshold Encryption 237

1. Run SigVerify(VerK, C0, σ) and ValidateCTTIBE(PK,VerK, C0). If either
test fails do: if μ = (i,⊥) then output valid and exit and if not then
output invalid and exit.

2. Otherwise, both tests succeeded. Run ShareVerifyTIBE(PK, VK,VerK, μ)
and output the result.

CombineTPKE

(
PK, VK, C, {μ1, . . . , μk}

)
. To obtain a full decryption of a cipher-

text C = (C0,VerK, σ) given k partial decryption shares μ1, . . . , μk, first
check that all shares are valid and none are of the form (i,⊥). Output ⊥ and
exit if not. Next, run CombineTIBE(PK, VK,VerK, {μ1, . . . , μk}) to obtain a
private key d for identity VerK. If d = ⊥, output ⊥ and exit. Otherwise, run
DecryptTIBE(PK,VerK, d, C0) and output the result.

4.1 Security

The following theorem proves security of this system. The proof is based on the
proof in [10].

Theorem 2. Suppose ETIBE is a selective-ID secure TIBE and S is existentially
unforgeable under a one chosen message attack. Then the TPKE system above
is chosen ciphertext secure.

Proof. Suppose A has non-negligible advantage in attacking the TPKE above.
First, suppose AdvCCAA,n,k(Λ) > 1/Λc for some c > 0, and sufficiently large
Λ. We build an algorithm that either breaks the TIBE or breaks the signature
scheme. We start with an algorithm B that breaks the TIBE. Algorithm B uses
A to interact with a TIBE challenger as follows:

Initialization. Algorithm B runs A to obtain a list S ⊂ {1, . . . , n} of the k− 1
servers that A wishes to corrupt. Next, B runs SigKeyGen(Λ) to obtain a
signing key SigK∗ and a verification key VerK∗. It outputs the set S and the
identity ID∗ = VerK∗ to the TIBE challenger.

Setup. The TIBE challenger runs Setup(n, k, Λ) to obtain (PK, VK,SK). It gives
B the values PK, VK, and all (j, SKj) for j ∈ S. Algorithm B forwards these
values to A.

Query phase 1. A adaptively issues decryption queries of the form (C, i) where
C = (C0,VerK, σ) and i ∈ {1, . . . , n}. For each such query:
1. B runs SigVerify(VerK, C0, σ) and ValidateCTTIBE(PK,VerK, C0). If ei-

ther output is invalid, algorithm B responds to A’s query with μ =
(i,⊥).

2. Otherwise, in the unlikely event that VerK = VerK∗, algorithm B moves
to the challenge phase, picks a random b′ ∈ {0, 1} as its guess for b,
outputs b′, and aborts the simulation.

3. Otherwise, B issues an identity query (ID = VerK, i) to the TIBE chal-
lenger and obtains a private key share θ in return. It gives the decryption
share μ = θ to A.

238 D. Boneh, X. Boyen, and S. Halevi

Challenge. A outputs two equal length messages M0 and M1. Algorithm B
forwards M0 and M1 to the TIBE challenger. Recall that the challenge iden-
tity ID∗ was set during initialization to ID∗ = VerK∗. The TIBE challenger
responds with the encryption C∗

0 of Mb under ID∗ for some b ∈ {0, 1}. Algo-
rithm B then runs Sign(SigK∗, C∗

0) to obtain a signature σ∗. It gives A the
challenge ciphertext C∗ = (C∗

0 ,VerK∗, σ∗).
Query phase 2. AlgorithmA continues to issue decryption queries (C, i) where

C = (C0,VerK, σ) and C 	= C∗. Algorithm B responds as in the query phase
1; in particular if VerK = VerK∗ then B picks a random b′ ∈ {0, 1} as its
guess for b, outputs b′ and aborts the simulation.

Guess. Eventually, A outputs its guess b′ ∈ {0, 1} for b. Algorithm B forwards
b′ to the TIBE challenger and wins the game if b = b′.

This completes the description of algorithm B. Let AdvIND-IDB,n,k(Λ) be B’s
advantage in winning the TIBE game above. Let AdvCCAA,n,k(Λ) be A’s advan-
tage in winning the TPKE game. Let abort be the event that B aborted during
the simulation in query phase 1 or 2.

As long as event abort does not happen, B’s simulation of a TPKE challenger
is perfect. Therefore,

|AdvIND-IDB,n,k(Λ)− AdvCCAA,n,k(Λ)| < Pr[abort] (1)

Now, observe that when event abort happens, then B obtains an existential
forgery for the signature public key VerK∗. If abort happens in query phase 1
then the forgery is obtained with no chosen message queries. If abort happens
in query phase 2 then the forgery is obtained after one chosen message query.
Either way, we obtain an algorithm, C, that produces an existential forgery on
the signature scheme S with probability Pr[abort] using at most one chosen
message query. Hence, AdvSigC = Pr[abort]. It now follows from (1) that

AdvIND-IDB,n,k(Λ) + AdvSigC(Λ) > AdvCCAA,n,k(Λ)

Therefore, if AdvCCAA,n,k(Λ) is a non-negligible function then at least one of
AdvIND-IDB,n,k(Λ) or AdvSigC(Λ) must also be non-negligible, as required.

To complete the proof of Theorem 2 we need to argue that AdvCDA,n,k(Λ)
is a negligible function. Suppose, AdvCDA,n,k(Λ) is non-negligible. Then we im-
mediately obtain an algorithm B for which AdvCD-IDB,n,k(Λ) is non-negligible
contradicting the fact that ETIBE is a secure TIBE. To see this, suppose A
outputs (C, S, S′) that lets A win the TPKE decryption consistency game.
Let C = (C0,VerK, σ). Then ValidateCTTIBE(PK,VerK, C0) = valid, since
otherwise all shares in S and S′ must be of the form (j,⊥). Furthermore,
ShareVerifyTIBE(PK, VK,VerK, μ) = valid for all shares μ ∈ S, S′. Therefore,
the decryption shares in S and S′ are valid private key shares for ID = VerK. It
now follows that (VerK, C0, S, S′) is a tuple that wins the TIBE key generation
consistency game as required. This completes the proof of Theorem 2.

Chosen Ciphertext Secure Public Key Threshold Encryption 239

5 A Concrete Threshold Public Key System

Our full non-interactive, CCA2-secure, threshold PKE system is immediately
obtained by applying the generic transformation of Sections 4 to the threshold
IBE system of Section 3. The construction in described in Appendix A. We
outline the properties of the system.

Recall that the TIBE of Section 3 worked for identities in Z∗
p where p was

the order of the bilinear groups G. To apply the conversion method we need
identities that are public keys of a signature system. Such identities may not
be elements of Z∗

p. Therefore, the threshold system described in the appendix
uses a collision resistant hash H to hash arbitrary identities into Z∗

p. Security, of
course, depends on the BDH assumption, security of the signature system, and
the collision resistance of H .

The security of the TPKE scheme follows immediately from that of the un-
derlying TIBE of Section 3 and the generic conversion from TIBE to TPKE from
Section 4. We thus have the following corollary.

Corollary 3. The system in Appendix A is chosen ciphertext secure assuming
the BDH assumption holds for GG, the signature scheme is existentially unforge-
able under a one chosen message attack, and the hash function H is collision
resistant.

Thus, we are able to construct a CCA2-secure threshold public key system,
without random oracles, in which there is no interaction needed between the
decryption parties. The reason we are able to avoid interaction is that using the
method of [10] anyone can check that a ciphertext is valid. In the Cramer-Shoup
framework only parties possessing the private key can check ciphertext validity,
which makes threshold decryption non-trivial.

The system includes additional tests during ShareDecrypt and Decrypt to
provide robustness against misbehaving servers. These tests are possible with no
additional information due to the fact that the DDH problem is easy in bilinear
groups. In particular, we are able to test that a given IBE private key is valid
for a given identity and that a given IBE ciphertext is a valid encryption under
a given identity.

We note that a more efficient transformation from IBE to CCA2-secure public-
key encryption was presented by Boneh and Katz [6]. Because that transforma-
tion uses MACs and commitments instead of signatures, only parties possessing
the private key can check ciphertext validity. As a result, the method of [6] does
not lend itself to the construction of non-interactive CCA2-secure threshold sys-
tems. This is the primary reason why, in the above construction, we had to use
the original transformation of [10] based on signatures (or one-time signatures).
An elegant alternative was recently proposed in [7].

6 Extensions

Distributed key generation. In the TPKE system of Section 5 one need not rely
on a trusted dealer to issue shares to the decryption servers. One can generate a

240 D. Boneh, X. Boyen, and S. Halevi

public key and shares of a private key using standard distributed key generation
techniques used for ElGamal encryption [31, 21].

Proactive refresh. Proactive refresh enables the decryption servers to refresh
their shares of the secret decryption key, without changing the key. Periodic
proactive refresh make it harder for an adversary to recover k shares of the secret
key, since he must recover all k shares within one time period. The standard
proactive refresh techniques of [30, 24, 17] used for ElGamal encryption also apply
to our Threshold PKE.

7 Conclusions

We presented a simple non-interactive threshold encryption system that is cho-
sen ciphertext secure without random oracles. The construction illustrates the
benefits of building chosen ciphertext security from identity based encryption.

References

1. M. Abe. Robust distributed multiplication without interaction. In Proceedings of
Crypto 1999, pages 130–47, 1999.

2. J. H. An, Y. Dodis, and T. Rabin. On the security of joint signature and encryption.
In Proceedings of Eurocrypt 2002, volume 2332 of LNCS. Springer-Verlag, 2002.

3. D. Boneh and X. Boyen. Efficient selective-ID identity based encryption without
random oracles. In Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages
223–38. Springer-Verlag, 2004.

4. D. Boneh and X. Boyen. Short signatures without random oracles. In Proceedings
of Eurocrypt 2004, volume 3027 of LNCS, pages 56–73. Springer-Verlag, 2004.

5. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
J. Kilian, editor, Proceedings of Crypto 2001, volume 2139 of LNCS, pages 213–29.
Springer-Verlag, 2001.

6. D. Boneh and J. Katz. Improved efficiency for CCA-secure cryptosystems built
using identity based encryption. In Proceedings of RSA 2005, LNCS. Springer-
Verlag, 2005.

7. X. Boyen, Q. Mei, and B. Waters. Direct chosen ciphertext security from
identity-based techniques. In ACM Conference on Computer and Communica-
tions Security—CCS 2005. ACM Press, 2005. Full version available at http://
eprint.iacr.org/2005/288.

8. R. Canetti and S. Goldwasser. An efficient threshold public key cryptosystem
secure against adaptive chosen ciphertext attack. In Proceedings of Eurocrypt 1999,
pages 90–106, 1999.

9. R. Canetti, S. Halevi, and J. Katz. A forward-secure public-key encryption scheme.
In Proceedings of Eurocrypt 2003, volume 2656 of LNCS. Springer-Verlag, 2003.

10. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based
encryption. In Proceedings of Eurocrypt 2004, volume 3027 of LNCS, pages 207–22.
Springer-Verlag, 2004.

11. R. Cramer and V. Shoup. Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM Journal of
Computing, 33:167–226, 2003. Extended abstract in Crypto 1998.

Chosen Ciphertext Secure Public Key Threshold Encryption 241

12. I. Damgard, N. Fazio, and A. Nicolosi. Secret-key zero-knowledge protocols for NP
and applications to threshold cryptography. manuscript, 2004.

13. A. DeSantis, Y. Desmedt, Y. Frankel, and M. Yung. How to share a function
securely. In Proceedings of STOC 1994, pages 522–33, 1994.

14. Y. Desmedt and Y. Frankel. Threshold cryptosystems. In Proceedings of Crypto
1989, pages 307–15, 1989.

15. Y. Dodis and J. Katz. Chosen-ciphertext security of multiple encryption. In
Proceedings of TCC 2005, LNCS. Springer-Verlag, 2005.

16. Y. Frankel. A practical protocol for large group oriented networks. In Proceedings
of Eurocrypt 1989, pages 56–61, 1989.

17. Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung. Optimal resilience proactive
public key cryptosystems. In Proceedings of FOCS 1997, pages 384–93, 1997.

18. Y. Frankel, P. Gemmell, and M. Yung. Witness-based cryptographic program
checking. In Proceedings of STOC 1996, pages 499–08, 1996.

19. P. Gemmel. An introduction to threshold cryptography. RSA CryptoBytes, 2(3):7–
12, 1997.

20. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures without the
random oracle. In Proceedings of Eurocrypt 1999, LNCS, pages 123–39. Springer-
Verlag, 1999.

21. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure distributed key gen-
eration for discrete-log based cryptosystems. In J. Stern, editor, Proceedings of
Eurocrypt 1999, volume 1592 of LNCS, pages 295–310. Springer-Verlag, 1999.

22. R. Gennaro, T. Rabin, S. Jarecki, and H. Krawczyk. Robust and efficient sharing
of RSA functions. J. Cryptology, 13(2):273–300, 2000.

23. S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Computing, 17(2):281–308, 1988.

24. A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proactive secret sharing, or
how to cope with perpetual leakage. In Proceedings of Crypto 1995, 1995.

25. S. Jarecki and A. Lysyanskaya. Adaptively secure threshold cryptography: intro-
ducing concurrency, removing erasures. In Proceedings of Eurocrypt 2000, pages
221–42, 2000.

26. A. Joux. A one round protocol for tripartite Diffie-Hellman. In W. Bosma, editor,
Proceedings of ANTS IV, volume 1838 of LNCS, pages 385–94. Springer-Verlag, 2000.

27. A. Joux and K. Nguyen. Separating decision Diffie-Hellman from Diffie-Hellman
in cryptographic groups. Journal of Cryptology, 16(4):239–47, 2003.

28. K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. In Pro-
ceedings of Crypto 2004, volume 3152 of LNCS, pages 426–42. Springer-Verlag, 2004.

29. P. MacKenzie. An efficient two-party public key cryptosystem secure against adap-
tive chosen ciphertext attack. In Proceedings of PKC 2003, 2003.

30. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proceedings
of PODC 1991, pages 51–61, 1991.

31. T. Pederson. A threshold cryptosystem without a trusted party. In Proceedings of
Eurocrypt 1991, volume 547 of LNCS, pages 522–26, 1991.

32. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairings. In
Proceedings of the Symposium on Cryptography and Information Security—SCIS
2000, Japan, 2000.

33. V. Shoup and R. Cramer. Universal hash proofs and a paradigm for chosen cipher-
text secure public key encryption. In Proceedings of Eurocrypt 2002, 2002.

34. V. Shoup and R. Gennaro. Securing threshold cryptosystems against chosen ci-
phertext attack. Journal of Cryptology, 15(2):75–96, 2002. extended abstract in
Eurocrypt 1998.

242 D. Boneh, X. Boyen, and S. Halevi

A Description of the Full TPKE System

We give an explicit description of the full non-interactive CCA2-secure threshold
PKE system from Section 5. It is obtained by directly composing the construc-
tions given in Sections 3 and 4. The system works as follows:

Setup(n, k, Λ). Run the group generator GG(Λ) to obtain a bilinear group G of
prime order p > n. Select random generators g, g2, h1 in G, and a random
degree k − 1 polynomial f ∈ Zp[X]. Set α = f(0) ∈ Zp and g1 = gα.

The public key PK consist of PK = (G, g, g1, g2, h1). For i = 1, . . . , n the
secret key SKi of server i is defined as SKi = g

f(i)
2 . The public verification

key VK consists of PK along with the n-tuple (gf(1), . . . , gf(n)).
We will also need a collision resistant hash function H that outputs digests

in Zp, and a signature scheme (SigKeyGen, Sign, SigVerify) that is strongly
existentially unforgeable against one chosen message attacks. Both H and
the signature scheme are part of PK, but we leave them as implicit members
to simplify the presentation.

Encrypt(PK, M). To encrypt a message M ∈ G1 under the public key PK =
(g, g1, g2, h1), first run SigKeyGen to obtain a signing key SigK and a signa-
ture verification key VerK. Let ID = H(VerK). Next, pick a random s ∈ Zp

and compute

C0 =
(

e(g1, g2)s ·M, gs, gs·ID
1 hs

1

)
Let σ = Sign(SigK, C0) be a signature on C0 using the signing key SigK.
Output the ciphertext C = (C0,VerK, σ).

ShareDecrypt(PK, SKi, C). Decryption server i uses its private key share SKi

to partially decrypt a ciphertext C = (C0,VerK, σ) as follows. First, run
algorithm SigVerify(VerK, C0, σ) to check that σ is a valid signature of C
under VerK. Also let ID = H(VerK) and test whether e(B, gID

1 h1) = e(C1, g).
If either condition fails, output μ = (i,⊥) and exit.

Otherwise, C is well-formed, and the decryption server i needs to output
a share of the private key needed to decrypt C0. To do so, it picks a random
r in Zp, and outputs the decryption share μi = (i, (w0, w1)), where

w0 = SKi · (gID
1 h1)r and w1 = gr

Notice that (w0, w1) is an IBE private key share corresponding to the identity
ID = H(VerK).

ShareVerify(PK, VK, C, μi). To verify that μi is a correct partial decryption of
the ciphertext C = (C0,VerK, σ) = ((A, B, C1),VerK, σ), first run algorithm
SigVerify(VerK, C0, σ) to check that σ is a valid signature of C0 under VerK.
Also let ID = H(VerK) and test whether e(B, gID

1 h1) = e(C1, g). We say that
C is well-formed if both tests succeed.
1. If C is not well-formed: if μi is of the form (i,⊥) then output valid and

exit, otherwise output invalid and exit.
2. If C is well-formed and μi is of the form (i,⊥), then output invalid

and exit.

Chosen Ciphertext Secure Public Key Threshold Encryption 243

3. Otherwise, C is well-formed and μi = (i, (w0, w1)). In this case, let VK =
(u1, . . . , un) where ui = gf(i), and output valid or invalid according
to whether the following equation holds or not:

e(ui, g2) · e(gID
1 h1, w1) = e(g, w0)

Combine(PK, VK, C, {μ1, . . . , μk}). To decrypt a ciphertext C = (C0,VerK, σ)
using the partial decryptions μ1, . . . , μk, first check that all shares μi =
(i, μ̂i) bear distinct server indices i, and that they are all valid, i.e., that all
ShareVerify(PK, VK, C0, μi) = valid; otherwise output ⊥ and exit.

Without loss of generality, assume that the shares μ1, . . . , μk were gen-
erated by the decryption servers i = 1, . . . , k, respectively. The combiner
proceeds as follows:
1. If any partial decryption μi is of the form (i,⊥), then output ⊥ and exit.
2. Otherwise, all shares μ1, . . . , μk are of the form μi = (i, (wi,0, wi,1)) with

distinct i, and SigVerify(VerK, C0, σ) and ValidateCT(PK, H(VerK), C0)
must both succeed. Determine the Lagrange coefficients λ1, . . . , λk ∈ Zp

so that α = f(0) =
∑k

i=1 λif(i), and set

w0 =
∏k

i=1 wλi

i,0 and w1 =
∏k

i=1 wλi

i,1

3. Use (w0, w1) to decrypt C0 = (A, B, C1), as

M = A · e(B, w0)/e(C1, w1)

Observe that the above decryption goes through since as we observed earlier
w0 = gα

2 · (gID
1 h1)r̄ and w1 = gr̄ for some r̄ ∈ Zp, hence (w0, w1) is an IBE

private key corresponding to ID = H(VerK).

How to Construct Multicast Cryptosystems
Provably Secure Against Adaptive Chosen

Ciphertext Attack�

Yitao Duan and John Canny

Computer Science Division, University of California, Berkeley,
Berkeley, CA 94720, USA

{duan, jfc}@cs.berkeley.edu

Abstract. In this paper we present a general framework for construct-
ing efficient multicast cryptosystems with provable security and show
that a line of previous work on multicast encryption are all special cases
of this general approach. We provide new methods for building such cryp-
tosystems with various levels of security (e.g., IND-CPA, IND-CCA2).
The results we obtained enable the construction of a whole class of
new multicast schemes with guaranteed security using a broader range
of common primitives such as OAEP. Moreover, we show that multi-
cast cryptosystems with high level of security (e.g. IND-CCA2) can be
based upon public key cryptosystems with weaker (e.g. CPA) security
as long as the decryption can be securely and efficiently “shared”. Our
constructions feature truly constant-size decryption keys whereas the
lengths of both the encryption key and ciphertext are independent of
group size.

1 Introduction

Multicast offers an efficient way to deliver the same message to a group of re-
ceivers and has become the basis of many applications. The Internet today sup-
ports a basic form of multicast service. On the Internet, a multicast group is
identified by a Class D IP address and any receivers can join or leave a multicast
group by sending IGMP (Internet Group Management Protocol) [1] messages
to their local router. Any sender can send message to a multicast group by
addressing the message to the group address.

The current IP Multicast service does not provide mechanisms to restrict mes-
sage delivery to a specified set of receivers therefore other means have to be used
to secure the communication. A multicast encryption system provides confiden-
tiality for multicast data – ensuring that any parties other than the intended
recipients should not be able to access the message. To this end, most of the
existing work use one of two approaches. The first is represented by the work in
� This work was supported by National Science Foundation award #EIA-0122599

(Title: “ITR/SI: Societal Scale Information Systems: Technologies, Design, and Ap-
plications”).

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 244–261, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

How to Construct Multicast Cryptosystems Provably Secure 245

network research that is concerned with multicast security. In this approach sym-
metric key encryption is used and the data is encrypted with a traffic encryption
key (TEK) that is known only to the multicast group members. The difficulty
here is key management: The TEK may have to be changed when members
join or leave the group. This is known as re-keying. Early schemes (e.g., Group
Key Management Protocol (GKMP) [2]) let the group controller or the sender
share a pairwise key with each group member and distribute keys to them on a
one-to-one basis. For obvious reasons this cannot scale to large groups.

Some work has been done to improve the scalability of such schemes. Among
the efficient solutions, the Logical Key Hierarchy (LKH) (or Key Graph) was
independently discovered in [3] and [4] and has been an inspiration for many
subsequent works [5, 6, 7, 8, 9, 10]. In these schemes, individual and auxiliary keys
are organized into a hierarchy and each group member is assigned to a leaf and
holds all the keys from its leaf to the root. The root key is shared by all group
members and used as the TEK. New TEK is distributed by encrypting it with
keys that deleted members do not have. So far O(log n) seems to be the best
storage (for both center and members) and communication complexity the LKH-
based schemes achieved, where n is the size of the multicast group.

The problem with this approach is that revoking a single user involves chang-
ing the keys for all others and the receivers must be stateful and always online
in order to receive the latest TEK.

The second approach uses asymmetric key cryptosystem and allows the re-
ceivers to be stateless. This includes the work in cryptography such as traitor
tracing, a concept introduced by Chor, Fiat and Naor [11], and broadcast en-
cryption, initiated by Fiat and Naor [12]. Both are based on encryption schemes
where a ciphertext can be decrypted by multiple parties with different keys.
The scheme in [12] requires O(t log t log n) keys per user and the transmission
of O(t2 log2 t logn) messages where t is the number of revoked users. Subse-
quent work proposed a number of other schemes including [13, 14, 15, 16, 17],
and [18, 19] which achieved O(t) message complexity and O(log1+ε n) keys per
user. Boneh and Franklin’s scheme proposed in [13] is based on Reed-Solomon
codes and the representation problem for discrete logs. They also presented a
modification, using techniques by Cramer and Shoup [20], that was provably
secure against adaptive chosen ciphertext attack.

Recently Boneh et al. presented a broadcast encryption scheme based on bi-
linear map with constant-size ciphertexts and private keys (and O(n)-size public
key) [21]. However, in this system, the decryption requires the public key and
the knowledge of the set of legitimate recipients. Therefore the “effective” de-
cryption key and/or ciphertext in a real application actually become linear in
the total number of receivers.

There is a line of work in the second approach that we classify as Asymmetric
Threshold Decryption-based (ATD-based) multicast encryption. This includes
[14, 17, 22, 23, 24], although none of them explicitly formalized their schemes this
way. In these schemes a private key is shared using a (t + 1, n + t)-threshold
scheme and the shares are distributed asymmetrically. Namely the center is

246 Y. Duan and J. Canny

given t shares and each user is given 1 share. The center broadcasts a ciphertext
together with t partial decryptions. Any member with a valid share of the private
key can produce another decryption share and recover the message. With such
schemes, user only needs to store a key of constant length. And both the message
complexity and sender storage are O(t), independent of the group size.

1.1 Our Results

We focus on the ATD-based multicast encryption cryptosystems and introduce
a general framework for constructing such systems with guaranteed security.
As we will show later, all existing ones are special cases of our constructions.
In particular, they are all based on specific ElGamal encryption that relies on
specific assumptions (e.g. DDH). The results we obtained in this paper, on the
other hand, are more general. The main contributions are: (1) We show that any
threshold encryption scheme can be used to construct a multicast cryptosystem
that retains the same level of security (e.g. IND-CPA, IND-CCA2) as the under-
lying threshold encryption. (2) We obtain new results that improve over existing
ATD-based schemes in both security and efficiency. Specifically, the resulting
scheme from our construction can be made CCA-secure even if the underlying
threshold scheme is not. (3) Furthermore, we show that an IND-CCA2 secure
multicast scheme can be constructed from a public key cryptosystem that does
not have a secure threshold implementation (such as OAEP) or has only weaker
security (e.g. only IND-CPA), provided the decryption can be securely and ef-
ficiently shared (to be elaborated in Sect. 4.4). All of our security proofs are in
the same (standard or random oracle) model as the underlying threshold scheme
or public key cryptosystem.

These general security results can be used to analyze existing systems in a
more unified framework and provide guidelines for constructing future schemes
with guaranteed security. This frees the system designer from the burden of
security consideration and allows them to focus on other aspects of their schemes.

2 Preliminaries

We consider the scenario where a single party, called the center, sends messages,
over insecure channels, to a group U of n parties who are denoted members of
the group. In such a setting, the center often has a special role. Since it is often
distributing information of its own choice, it is assumed to have control over the
group membership, i.e., the center is allowed to make decisions about who can
join the group and whose membership should be revoked. This is in line with
almost all multicast schemes such as [25, 4, 26, 27, 22, 23, 24].

We assume a computationally bounded adversary who is allowed to attack the
system from both outside and inside the group. The insider’s attack is modelled
by allowing the adversary to corrupt and gain total control of up to t group mem-
bers where t is a predefined threshold. We only consider non-adaptive adversary
who chooses what members to corrupt before the key generation.

How to Construct Multicast Cryptosystems Provably Secure 247

The multicast communication we are considering in this paper is assumed to
be “closed”, i.e., we only provide the center with the ability to encrypt messages
(and of course only the intended recipients can decrypt them). This is different
from the public key systems such as [17, 22, 23, 24] where the information to
encrypt a message is public. The openness is unnecessary for some applications
and unacceptable for some others (e.g. military communication). By “closing”
the communication, we can provide more flexible constructions that can make
use of a broader range of primitives. The price for this flexibility is the loss of
the public key feature, which should not be a problem for many applications.
However we observe that in many instantiations of our constructions, it is easy
to “publicize” the encryption key, without affecting the security of the scheme,
as demonstrated by works such as [22, 23, 24]. This effectively turns the scheme
into a public key system and all the openness features are reinstalled.

3 Multicast Cryptosystem

Definition 1. An n-way multicast encryption scheme ME=(KeyGen, Reg, E, D)
consists of the following set of algorithms:

1. Key Generation KeyGen: a probabilistic polynomial-time (in k) algorithm
which takes as inputs a security parameter 1k, a threshold t, the number of
(initial) group members n, and generates global information I, the encryption
key Σ and the master secret key Γ .

2. Registration algorithm Reg: a probabilistic algorithm to compute the secret
initialization data for a new user subscribing to the system. Reg receives as
input the master key Γ and a new index i associated with the user; it returns
the user’s secret key Γi.

3. Encryption E: a probabilistic polynomial-time algorithm that, on inputs Σ,
the encryption key, and a string m ∈ {0, 1}k, and a set R of revoked users
(with |R| ≤ t) and their keys, produces as output ψ ∈ {0, 1}∗ called the
ciphertext1.

4. Decryption D: a deterministic polynomial-time algorithm such that ∀m ∈
{0, 1}k, ∀ i ∈ U \ R, D(Γi, E(Σ, {(j, Γj)|j ∈ R}, m)) = m. On all other
inputs it outputs a special symbol ⊥.

KeyGen and Reg should be run by the center and the two can also be executed
together with an initial set of n members as input. Admitting new members is
relatively trivial, at least for all the construction we will be presenting, so in the
following we simply omit Reg and use (I, Σ, Γ, Γ) ← KeyGen(1k, t, n) to denote
this process, where Γ = (Γ1, . . . , Γn) is a vector of secret keys for the n members.

3.1 Notion of Security

The communication paradigm we are considering shares similarities with both
symmetric key and public key cryptosystems. On one hand the communication
1 Note that member revocation is implicitly embedded in the encryption algorithm.

248 Y. Duan and J. Canny

is “closed” in that we only allow the center to send messages to the group. On
the other hand the keys are “asymmetric” since now there are multiple recipients
and our definition includes member revocation which means the encryption key
and the decryption keys must be different.

Dodis and Fazio [23] first precisely formalized the notion of adaptive security
for public key multicast encryption schemes, which allow anyone having access
to the public key to send messages to the group, at both CPA and CCA2 lev-
els. Since our setting is different from the “public key” paradigm, we adopt a
slightly modified definition. The major difference is that, we do not explicitly
allow the adversary to see the sender’s keys since ours is not a public key cryp-
tosystem. Instead the adversary can obtain encryptions of arbitrary messages
by querying an encryption oracle who also encrypts the target message later.
This is similar to the security definition based on indistinguishability for sym-
metric key cryptosystems. The ability to handle member revocation is modelled
by allowing the adversary to corrupt members and obtain their secret keys. This
formalization is general and captures the security notions of many multicast
schemes such as those LKH schemes [3, 4] which are based on symmetric key
cryptography. However we note that in all the construction we introduce later,
the secret keys of the revoked members constitute the actual encryption key.
In essence in our constructions the exposure of encryption key can be modelled
as corrupting members. This effectively turns our scheme into a “public key”
paradigm from the adversary’s point of view and the security definitions from
[23] are appropriate.

Formal Model. Given a multicast encryption scheme ME = (KeyGen, E, D), a
polynomial time adversary A’s attack is modelled by the following game:

Game ME:

M1. The adversary A chooses to corrupt a fixed set R of t members.
M2. (I, Σ, Γ, Γ) ← KeyGen(1k, t, n) is run and A is given the public information

I and the secret keys of corrupted members. User i receives Γi. The center
is given R and their keys.

M3. The adversary interacts with the center, who acts as the encryption oracle,
in an arbitrary fashion. On any query m from A, the center returns its
encryption.

M4. A chooses two plaintexts m0 and m1 of the same length and gives them
to the center who chooses b ∈ {0, 1} at random, and gives the “target”
ciphertext ψ′ = E(Σ, {(j, Γj)|j ∈ R}, mb) to A.

M5. A continues to interact with the center.
M6. At the end of the game, A outputs b′ ∈ {0, 1}.

The advantage of A is defined as

AdvCPA
ME,A(k) = |Pr(b′ = b)− 1/2|

How to Construct Multicast Cryptosystems Provably Secure 249

In addition, in the case of a adaptive chosen ciphertext attack (CCA2)2, in
both stages M3 and M5, A is also allowed to interact in an arbitrary manner
with the group members who act as the decryption oracles. On a query ψ from
A, member i returns D(Γi, ψ). The only restriction on the interaction is that the
target ciphertext ψ′ cannot be one of the queries made to any of the decryption
oracles. As before, A’s advantage in the CCA2 case is defined as

AdvCCA2
ME,A(k) = |Pr(b′ = b)− 1/2|

Definition 2 (t-Resilient Multicast Encryption Scheme). Let μ∈{CPA,
CCA2}. A multicast encryption scheme ME is t-resilient against a μ-type attack
if the advantage, Advμ

ME,A(k), of any probabilistic polynomial time adversary A
is a negligible function of k.

4 ATD-Based Multicast Encryption

In this section we define two constructions and show that a line of previous work
on multicast or broadcast encryption can actually be characterized as special
cases of these constructions.

4.1 Threshold Decryption Scheme

A (t+1, n)-threshold cryptosystem T D = (KeyGenTD, DTD, VTD, η,ETD) consists
of the following algorithms:

– Key generation algorithm (PK, V K, SK) ← KeyGenT(1k, t, n): a probabilis-
tic algorithm that, given a security parameter 1k, a threshold t, and the
number of players n, generates a public key, PK, a verification key V K, and
n private keys SK = (SK1, . . . , SKn). PK and V K are made public while
SKi is known only to player i, i = 1, 2, . . . , n.

– Share computation DTD: a probabilistic algorithm that, given a private key
SKi and the ciphertext c, DTD computes ρ = DTD(SKi, c), called a decryp-
tion share.

– Share verification V: a deterministic algorithm that takes as input the public
verification key V K, the ciphertext c, and a share ρ, and outputs V(V K, c, ρ)
∈ {0, 1}.

– Share combination algorithm η: given the verification key V K, the ciphertext
c, and a set Λ of t + 1 shares, η either outputs the corresponding result
r = η(V K, c, Λ) or a special symbol ⊥ that is different from all possible
correct results.

– Encryption algorithm ETD: the “opposite” of DTD. This function is carried
out in the normal manner by a single party and should follow the same
definition as the encryption algorithm in a standard public key cryptosystem.

2 We do not explicitly consider non-adaptive chosen ciphertext attack (CCA1). It
should be easy to see that all the discussions and proofs still hold in the case of
CCA1, by simply restricting the adversary from interacting with the decryption
oracles after the target ciphertext is generated in both Game ME and TD (Sect. 4.1).

250 Y. Duan and J. Canny

The operation of a threshold decryption scheme can be modelled as follows.
There is a trusted dealer (e.g. the center) and a set of n decryption servers
indexed 1, . . . , n. In an initialization phase, the dealer runs the key generation
algorithm and creates PK, V K and SK. SKi is given to server i. To decrypt a
ciphertext ψ, a client gives ψ to the servers, requesting a decryption share from
each of them. It can verify the validity of the shares using the given verification
key. Once the client collects valid shares from at least t+1 servers, she can apply
η to obtain the decryption.

Threshold cryptosystems are part of a general approach known as thresh-
old cryptography, introduced by Boyd [28], Desmedt [29], and Desmedt and
Frankel [30]. There are schemes based on both Diffie-Hellman problem [30] and
RSA [31]. All these schemes can be shown to be secure against chosen plaintext
attack, but they are not known to withstand chosen ciphertext attack. After
Cramer and Shoup discovered the first truly practical public key cryptosystem
that is provably secure against chosen ciphertext attack without using random
oracles [20], several of its threshold implementations have been proposed and
proved CCA2 secure (also without using the random oracle model) [32, 33, 34].
Shoup and Gennaro presented a more efficient threshold scheme in [35] that is
proven CCA2 secure in the random oracle model.

We adopt Shoup and Gennaro’s definition of security for threshold decryption
schemes from [35], which is a natural extension of security for a public key
cryptosystem, and define the security of a (t+1, n)-threshold decryption scheme
T D = (KeyGenTD, DTD, VTD, η,ETD) with respect to the following game:

Game TD:

TD1. The adversary A chooses to corrupt a fixed set of t servers.
TD2. The key generation algorithm is run. The public key, verification key and

the private keys of the corrupted servers are given to A. Other private
keys are given to the uncorrupted servers.

TD3. A chooses two plaintexts m0 and m1 of the same length and gives them
to an “encryption oracle” that chooses b ∈ {0, 1} at random, and gives
the “target” ciphertext ψ′ = ETD(PK, mb) to A.

TD4. At the end of the game, the adversary outputs b′ ∈ {0, 1}.

This game defines the attack scenario for CPA security. The adversary’s advan-
tage is defined to be the absolute difference between 1/2 and the probability
that b′ = b:

AdvCPA
T D,A(k) = |Pr(b′ = b)− 1/2|

For CCA2 attacks, A is allowed to interact with uncorrupted decryption
servers, who act as the decryption oracles, in an arbitrary fashion, feeding them
ciphertexts ψ 	= ψ′, and obtaining decryption shares. The calls to the decryption
oracles can happen at any point during the execution of the game, both before
and after stage TD3, and be arbitrarily interleaved with other oracle calls. A’s
advantage is defined as

AdvCCA2
T D,A (k) = |Pr(b′ = b)− 1/2|

How to Construct Multicast Cryptosystems Provably Secure 251

Definition 3 (t-Resilient Threshold Decryption Scheme). Let μ∈{CPA,
CCA2}. A threshold decryption scheme T D is t-resilient against μ-type attacks
if the advantage, Advμ

T D,A(k), of any probabilistic polynomial time adversary A
is a negligible function of k.

4.2 Basic Construction

Construction 1 (ME1). Given a threshold decryption T D=(KeyGenTD, DTD,
VTD, η,ETD), a security parameter 1k, a threshold t and the number of (initial)
members n, a multicast encryption scheme MET D

C1 = (KeyGen, E, D) can be con-
structed as follows:

1. Key Generation KeyGen: Run (PK, V K, SK) ← KeyGenTD(1k, t, n + t). Set
I = (PK, V K) and the encryption key Σ = {(j, SKj) : j = n+1, . . . , n+ t}.
Σ is given to the center. Member i receives secret key Γi = (i, SKi). The
master secret key is Γ = (Γ1, . . . , Γn+t).

2. Encryption E: Given a set R of revoked members, and their secret keys,
with |R| ≤ t, a message m, the encryption proceeds as follows. Let T =
{n + 1, . . . , n + t}. The encryptor randomly selects a subset of T with t− |R|
elements, denoted T ′, and computes the ciphertext ψ = (c, {(j, cj) : j ∈
T ′ ∪R}) where c = ETD(PK, m) and cj = DTD(SKj, c).

3. Decryption D: Given a secret key Γi and a ciphertext ψ, the ciphertext is
first parsed into ψ = (c, Λ′) where Λ′ = {(j, cj) : j ∈ T ′ ∪ R} with cj =
DTD(SKj, c). For all j ∈ T ′∪R, the decryption first test vj = VTD(V K, c, cj).
If any vj = 0, D returns ⊥. Otherwise it returns

m = η(V K, c, Λ′ ∪ {(i, DTD(SKi, c))}) (1)

With this construction, the multicast ciphertext essentially consists of the ci-
phertext of the underlying threshold scheme, together with t partial decryptions
produced using the keys of revoked members. To decrypt, a legitimate mem-
ber combines the partial decryptions embedded in the ciphertext with another
one computed using her own share of the private key. As we will show, this
construction preserves the security of the underlying threshold scheme.

Theorem 1 (Security Inheritance). Let μ ∈ {CPA, CCA2}. Given a thresh-
old decryption scheme T D = (KeyGenTD, DTD, VTD, η,ETD) that is t-resilient
against μ-type attacks, the multicast encryption scheme MET D

C1 constructed us-
ing Construction 1 with threshold t and (initial) group size n is t-resilient against
μ-type attacks.

The proof of this theorem is similar to that of Theorem 2, which is more inter-
esting and is presented later, and is omitted from this paper.

Many existing multicast schemes can be shown to be special cases of our
Construction 1 and their security can be readily predicted by Theorem 1. The
Revocation method 1 in [17] and the group key distribution scheme in [14] are

252 Y. Duan and J. Canny

just Construction 1 instantiated with a special use of threshold ElGamal3. The
basic scheme in [22], the “public key (multicast) encryption” from [17] and the
CPA secure scheme from [23] can all be shown to be Construction 1 with a stan-
dard threshold ElGamal cryptosystem. These schemes are shown to be secure
against chosen plaintext attacks in their individual papers. The same conclusion
can be reached immediately through Theorem 1.

Theorem 1 also provides guidelines for constructing new multicast encryp-
tion schemes with guaranteed security. For example, some threshold schemes
are known to be CCA2 secure (e.g. [35, 32, 33, 34] and the IND-CCA2 thresh-
old ElGamal in [36]) and a multicast encryption constructed via Construction 1
using one of these schemes is therefore guaranteed to be CCA2 secure too. In
addition, all existing ATD-based multicast encryption schemes [17, 14, 22, 23, 24]
are based on discrete logarithm. Theorem 1 provides security guarantee for con-
structing multicast encryption using any other assumptions. For example, [31]
provides a threshold RSA scheme with CPA security. Such scheme can be used
to construct a RSA-based CPA secure multicast cryptosystem. Another example
of factorization-based scheme is the threshold version of Paillier cryptosystem
[37] presented in [36]. [36] provides techniques to make this scheme IND-CCA2.
A multicast cryptosystem with the same level of security based on Paillier cryp-
tosystem can thus be constructed using Construction 1. All the above examples
have never been proposed before. They are the natural products of Construc-
tion 1 and their security is guaranteed by Theorem 1.

4.3 Extension to Construction 1

Construction 1 provides a simple way to utilize a threshold scheme to construct
multicast encryption and we have shown that the resulting scheme is as secure
as the underlying threshold scheme. It is basically an “encrypt-then-decrypt-t-
times” scheme. It can be improved both in efficiency and security with simple
extension.

In Construction 1, the encryptor has access to what are equivalent to t de-
cryption shares in T D which are not available to an encryptor in the underlying
threshold scheme. This gives her a chance to “protect” these shares and, as a
result, the resulting multicast encryption can be made more secure than T D.
This can be seen as an extension of Construction 1:

Construction 1e (ME1e). Same as Construction 1 except for the following:

– The encryption E produces ciphertext as ψ = (c, {(j, DTD(SKj , c)) : j ∈
T ′ ∪ R}, υ) where c = ETD(PK, m) and υ = Tag(c, Σ, I) is a “tag” for the
ciphertext.

3 Their scheme uses this construction not to encrypt any useful messages. Instead, it is
basically a distributed Diffie-Hellman key exchange which is equivalent to producing
an ElGamal encryption of an arbitrary message (which is ignored) and allowing any
member with proper keys to derive from the ciphertext, and partial decryptions, a
secret key that can be used to encrypt actual data.

How to Construct Multicast Cryptosystems Provably Secure 253

– The decryption D first computes Valid(Γi, ψ, I) where Valid is a checking
function outputting 0, or 1. If Valid outputs 0, D returns ⊥. Otherwise it
proceeds the same as Construction 1.

This construction can be used to build a multicast scheme with higher security
than the underlying threshold scheme. This is essentially what was done in [23]
and [24]. The protection mechanism (i.e. Tag and Valid) depends on the thresh-
old scheme and the security goal. In [23], the standard techniques of [20] (which
attaches tags to the ciphertext so that the recipients with proper keys can ver-
ify its validity) was applied to protect the decryption shares and the security
achieved is what [23] called gCCA2 (Generalized CCA) which is a variant, and
weaker version, of CCA2. To achieve real CCA2 security, [23] used secure mes-
sage authentication code (MAC) to make the verification tags non-malleable.
And [24] essentially used a threshold version of M-CS [32].

4.4 Sharable Trapdoor Permutation-Based Construction

A whole class of public key cryptosystems are based on trapdoor permutations.
Let fPK : {0, 1}k → {0, 1}k be a k-bit to k-bit trapdoor (one-way) permu-
tation with inverse f−1

SK , defined by the public-private key pair (PK, SK). A
public key cryptosystem Ef,g,h encrypts a message m as E(m) = h(fPK(g(m)))
where g and h are probabilistic, invertible functions that specify pre- and post-
encoding operations, respectively. Given a ciphertext c, the decryption algorithm
D computes u = h−1(c), v = f−1

SK(u) and m = g−1(c, u, v)4. Depending on the
security, the decryption may involve computing Valid(c, u, v) ∈ {0, 1} which is
the verification of the encoding. The decryption returns ⊥ if Valid(c, u, v) = 0.
We denote such cryptosystem as Ef,g,h = (KeyGen, E, D, Valid) where KeyGen
generates (PK, SK) on given security parameter 1k. In the following, the keys
will be dropped from the notations when there is no need to make them explicit.

Such cryptosystems are prevalent in practice. One example is the RSA Public
Key Cryptography Standard # 1 [38], where g(m) is essentially m padded with
a string of random non-zero bytes in the high-order bit positions and post-
encoding is simply omitted. Other schemes make use of hash functions. Let
G : {0, 1}∗ → {0, 1}∞ be a random number generator and H : {0, 1}∗ → {0, 1}k0

be a hash function where l = k− k0 is the length of the message. In [39] Bellare
and Rogaway proposed the scheme EG

BR where E(m) = f(r) ‖ G(r) ⊕ m with
r ←R {0, 1}k. [39] showed that it is semantically secure in the random oracle
model. [39] also presented another scheme, denoted EG,H

BR , that is shown to be
CCA2 secure, also in the random oracle model. In EG,H

BR , message m is encrypted
as E(m) = (f(r), m ⊕ G(r), H(r, m)) where r ←R {0, 1}k. Given a ciphertext
(s, c, v), the decryption algorithm computes r = f−1(s), m = G(r) ⊕ c, and
v′ = H(r, m). If v′ = v, it outputs m, and ⊥ otherwise.
4 Note that g and h are easily invertible and do not require trapdoors. Also note

that both g and h are probabilistic and g(m) maybe independent of m. In this
case simply inverting v does not reveal m. However, these decryptions all have the
following property: once the pre-image of the trapdoor permutation is recovered, it
is easy to compute m. We simply use g−1(·) to denote this process.

254 Y. Duan and J. Canny

Another popular scheme is the OAEP scheme introduced in [40]. In this
scheme, to encrypt a message m of length l bits, one selects a random value
r ←R {0, 1}k0 and computes s = (m ‖ 0k1) ⊕ G(r) and t = r ⊕ H(s) where
k1 = k − l − k0. The ciphertext is c = f(s, t). To decrypt a ciphertext c, the
decryptor extracts (s, t) using the private key (s, t) = f−1(c) and computes
r = t ⊕ H(s) and M = s ⊕ G(r). If [M]k1 = 0k1 , it returns [M]l. Otherwise
it returns ⊥. In the above, [M]l (resp. [M]l) denotes the l least (resp. most)
significant bits of M .

In [40], Bellare and Rogaway proved that OAEP construction together with
any trapdoor one-way permutation is IND-CCA1. OAEP was widely believed to
achieve stronger security (i.e. IND-CCA2). But Shoup showed in [41] that it is
unlikely such security proof exists, for any trapdoor permutation. However, he
proved that, when instantiated with low-exponent RSA, OAEP was IND-CCA2.
This result was extended to arbitrary exponent RSA in [42].

All these schemes provide practical public key cryptosystems with various
security and efficiency. (The OAEP scheme provides optimal bit complexity in
that the ciphertext size is only slightly greater than that of plaintext.) However,
they do not have threshold implementations that retain the same security, es-
pecially at CCA2 level. As Shoup and Gennaro noted in [35], the difficulty in
transforming a non-threshold CCA secure public key encryption scheme, E , into
a CCA secure threshold scheme is that E ’s security proof can rely in a critical
way on the fact that the decryption algorithm makes the “validity test” before
generating an output. In a distributed setting, this means the test can only be
performed after the individual decryption shares are combined. A single decryp-
tion server is unable to carry out such test. Both EG,H

BR [39] and OAEP can be
easily shown to have this difficulty.

One way to address this difficulty is to introduce a validity test that is publicly
checkable so that a decryptor can perform the check before carrying out the
decryption. This was suggested in [43] and followed by systems such as [35]
which used non-interactive zero-knowledge proofs of membership to construct
such check which is costly.

An ATD-based multicast encryption scheme, on the other hand, does not
suffer from this difficulty at all. This is because in such a scheme, the decryptor
is presented with what are equivalent to t decryption shares in the underlying
sharing scheme. She can proceed to combine these shares with the one produced
using her private key and perform the simple validity test as in the original public
key cryptosystem (not the expensive publicly checkable threshold version) before
emitting any output. As we show in Theorem 2, this construction preserves
the CCA security of the public key cryptosystem even though its threshold
implementation does not.

Our new construction is based on sharable trapdoor functions.

Definition 4 ((t + 1, n)-Secure Sharing Scheme). Let f be a trapdoor func-
tion with inverse f−1 defined by the public-private key pair (PK, SK). A sharing
scheme SSf = (S, η) for f consists of two polynomial time algorithms:

How to Construct Multicast Cryptosystems Provably Secure 255

– S: Given (PK, SK), a threshold t and an integer n > t, S generates SK1, . . . ,
SKn (in the same space as SK), called shares of SK.

– η: Given the public key PK, a set Λ of t + 1 evaluations f−1
SKi

(u), for any u

in the domain of fPK , η computes f−1
SK(u).

And SSf is (t + 1, n)-secure if for all {i1, . . . , ij} ⊂ U where 0 ≤ j ≤ t < n, for
all probabilistic polynomial time algorithm A, for all polynomial poly(·), for all
k large enough

Pr[fPK(u) = w : (SK1, . . . , SKn) ← S(PK, SK, t, n);
w ∈R {0, 1}k; u ← A(1k, w, H, SKi1 , . . . SKij)] < 1/poly(k)

where H is the history tape of length polynomial in k containing all the partial
evaluations the players generated so far.

And f is (t + 1, n)-sharable if it has one (t + 1, n)-secure sharing scheme.

This is essentially the same definition as (t + 1, n)-secure function sharing prim-
itive in [31]. [31] also showed how to implement such sharing with trapdoor
permutations such as RSA. We show that using this primitive we can construct
efficient multicast encryption schemes with high security.

Construction 2 (ME2). Let Ef,g,h = (KeyGenE, EE, DE, Valid) be a public key
cryptosystem based on (t + 1, n)-sharable trapdoor permutation f with shar-
ing scheme SSf = (S, η). Given a security parameter 1k, a threshold t and
the number of (initial) members n, a multicast encryption scheme MEEf

C2 =
(KeyGen, E, D) can be constructed as follows:

1. Key Generation KeyGen: The center runs KeyGenE with parameter 1k, and
obtains (PK, SK) ← KeyGenE(1k). It sets I = PK and shares SK us-
ing the sharing algorithm S with parameter (t + 1, n + t) to obtain SK =
S(PK, SK, t, n + t). The encryption key is Σ = {(j, SKj) : j ∈ T } where
T = {n + 1, . . . , n + t}. Σ is given to the center. Member i receives secret
key Γi = (i, SKi). The master secret key is Γ = (Γ1, . . . , Γn+t).

2. Encryption E: Given a set R of revoked members, and their secret keys, with
|R| ≤ t, a message m, the encryptor randomly selects a subset of T with
t− |R| elements, denoted T ′, and computes the ciphertext

ψ = (c, {(j, f−1
SKj

(u)) : j ∈ T ′ ∪R}) (2)

where c = EE(PK, m) and u = h−1(c).
3. Decryption D: Given a secret key Γi and a ciphertext ψ, the ciphertext is

first parsed into ψ = (c, Λ′) where Λ′ = {(j, f−1
SKj

(u)) : j ∈ T ′ ∪ R}. The
decryptor computes u = h−1(c) and v = η(u, Λ′∪{(i, f−1

SKi
(u))}). If all these

steps are successful, it computes w = Valid(c, u, v). If w = 0, it returns ⊥.
Otherwise it returns m = g−1(c, u, v).

Theorem 2. Let μ ∈ {CPA, CCA2}. If a public key cryptosystem Ef,g,h =
(KeyGenE, EE, DE, Valid) based on (t+1, n)-sharable trapdoor permutation f with

256 Y. Duan and J. Canny

sharing scheme SSf = (S, η) is secure against μ type attacks, then a multicast
encryption scheme MEE

C2 = (KeyGen, E, D) constructed using Construction 2
with threshold t and (initial) group size n is t-resilient against μ-type attacks.

Proof. First note that it is trivial to verify that the scheme is correct – i.e.,
the decryption produces the correct plaintext given a valid ciphertext. We prove
its security by showing that if MEE

C2 is not t-resilient against μ-type attacks,
neither is Ef,g,h. Let AME be a polynomial time adversary that wins the game
ME with non-negligible advantage. We can construct another polynomial time
adversary AE that breaks Ef,g,h with at least the same advantage. AE achieves
this by simulating a game ME and running AME to win.

(PK, SK) ← KeyGenE(1k) is run and PK is given to AE while SK is kept
secret from it. AE selects randomly t numbers SK1, . . . , SKt from the space of
SK. AE starts Game ME and lets AME select t members to corrupt. Without
loss of generality, let T = {1, 2, . . . , t} be the indexes of the members AME

chooses to corrupt. AE simulates the key generation process in game ME and
gives Σ = ((1, SK1), . . . , (t, SKt)) as the corrupted keys and I = PK as the
public information to AME .
AE lets AME run and simulates the rest of game ME as follows:

– Whenever AME queries the encryption oracle with message m, AE returns
ψ computed using Equation 2 with T ′ ∪R replaced by T .

– AE chooses whatever AME choose as the two test plaintexts m0 and m1.
Whenever AME makes a query to the encryption oracle with m0 and m1,
AT D passes them to its own encryption oracle in its game attacking Ef,g,h

(denoted game E). Let c′ be the result returned by the encryption oracle in
game E. AE computes and returns the following to AME :

ψ′ = (c′, {(j, f−1
SKj

(u)) : j ∈ T }) (3)

where c = EE(PK, m) and u = h−1(c′). This corresponds to the target
ciphertext in game ME.

– In the case of μ = CCA2, whenever AME makes a query to one of the de-
cryption oracles with ciphertext ψ, AE first parses ψ into a form as specified
by Equation 2. Let {(j, uj) : j ∈ T } be the shares embedded in ψ. AE then
verifies these shares by checking whether uj = f−1

SKj
(u), where u = h−1(c),

holds. If any of the tests fails it returns ⊥ to AME . Otherwise it forwards
c to its own decryption oracle and passes whatever the decryption oracle
returns to AME .

AE stops when AME stops and outputs whatever the latter does.
We need to show that AME simulated by AE has all the information it would

have in a real game ME and that its interaction with the simulated oracles is
indistinguishable from that in a real game. First note that here, although the
encryption key for AME , SK1, . . . , SKt, are not actually generated by running
S (AE does not have access to SK), they are just as good: the encryption key
given to AME is not distinguishable from that in a real game ME and does not
affect its ability to win the game. This follows Lemma 1 from [31].

How to Construct Multicast Cryptosystems Provably Secure 257

Second, AME will receive ⊥ on ciphertext ψ in the simulated game ME in one
of the following two cases: (1) AE ’s decryption oracle returns ⊥ on c; and (2) one
of the tests on uj = f−1

SKj
(u) fails. In the first case, AME will receive ⊥ in a real

game ME, as specified by the decryption in Construction 2. In the second case
f−1

SKj
(u), together with any partial evaluation of one of the decryption oracles in

a real game ME, will combine to a u′ that is not consistent with c and will fail
Valid (otherwise it can be shown that either f is not (t + 1, n)-sharable or Ef,g,h

is not IND-CCA2). Again AME will receive ⊥ in a real game ME.
And in all other cases AME will receive the correct decryption in both real

and the simulated game ME. So if AME can win a real game, it can win the
simulated one.

It is easy to verify that if AME wins the simulated game ME, AE distinguishes
the two target ciphertexts with at least the same advantage. This is because, by
definition of Construction 2, if ψ′ in Equation 3 is the encryption of mb′ in ME ,
c′ must be the encryption of mb′ in E .

Finally AE ’s running time is polynomial in that of AME which itself is a
polynomial in k. So AE ’s running time is also polynomial in k.

This is very powerful result because securing threshold scheme is hard so it is
not always possible to use Construction 1 to construct multicast cryptosystems
with high security. Construction 2 and Theorem 2 offer a simple method to
construct multicast schemes with guaranteed security using a whole class of
existing primitives. For instance, both RSA-OAEP [42] and EG,H

BR [39], which
have been shown to be difficult to obtain threshold implementations with the
same level of security, can be used to build multicast scheme with CCA2 security.
This has never been achieved before.

Besides security, Construction 2 also enjoys higher efficiency than Construc-
tion 1, which directly uses a threshold scheme. Note that in a sharing scheme
used by Construction 2, there is neither decryption share verification nor publicly
checkable validity test on ciphertext, both of which are essential for a threshold
scheme or a real function sharing application to achieve robustness (as in e.g.
[44]) and CCA security. With Construction 2, both can be omitted and the en-
coding verification that is part of the public key cryptosystem used can achieve
both goals.

4.5 From IND-CPA to IND-CCA: Generic Conversion

In Construction 2, the security of MEE
C2 relies on that of Ef,g,h. Combined with

results from previous work, we show that MEE
C2 can be IND-CCA even if Ef,g,h

is only IND-CPA.
In [45] Naor and Yung presented a generic conversion from an IND-CPA public

key cryptosystem to one secure against “lunch-time” attack (a.k.a. non-adaptive
chosen ciphertext attack, CCA1). The conversion used a twin-encryption
paradigm and non-interactive zero-knowledge proof (NIZKP) of language mem-
bership in the common random string setting to show the consistency of the
ciphertext. Rackoff and Simon later [46] improved this construction to be se-
cure against adaptive chosen ciphertext attack (CCA2). Their solution involves

258 Y. Duan and J. Canny

replacing one of the twin encryption keys with the sender ’s public key and
providing a NIZKP of knowledge of the plaintext. [36] also provided similar con-
version, in the random oracle model, that also works directly with threshold
cryptosystems. The NIZKPs used in [45, 46, 36] are all publicly verifiable thus
can be readily used in a threshold setting.

Putting all these together, we have the following whose proof immediately
follows the results of [36, 46, 45] and ours.

Corollary 1. If a public key cryptosystem Ef,g,h based on (t + 1, n)-sharable
trapdoor permutation f with sharing scheme SSf is secure against chosen plain-
text attacks, then there exists a multicast encryption scheme ME by Construc-
tion 2 with threshold t and (initial) group size n that is t-resilient against chosen
ciphertext attacks.

SUMMARY. Figure 1 summarizes the possible conversions covered in this paper
between various primitives, including public key cryptosystem (PKC), threshold
decryption scheme (TD) and multicast encryption (ME), at different security
levels such as IND-CPA, IND-CCA (1 and 2). A solid arrow from A to B indi-
cates “generic conversion”, meaning that, under some reasonable assumptions,
any A can be transformed into B. A dashed arrow, on the other hand, denotes
“existential conversion”, meaning that some A can be transformed into B. The
conditions under which such conversions can succeed were stated in the litera-
ture. Some of the relevant ones covered in this paper are labelled on the arrows.

PKC
IND−CPA IND−CPAConstruction 1

TD MEPKC

ME
IND−CCAIND−CCAIND−CCA

PKC TD

Construction 1

Construction 2

Construction 2

Construction 1e

IND−CPA

[36, 45, 46] [36]

Fig. 1. Conversions

5 Conclusion

In this paper we have presented a general framework for constructing efficient
multicast cryptosystems with provable security. Our constructions are based on
asymmetric use of threshold schemes and we showed that a line of previous
work on multicast encryption are all special cases of this general approach. We

How to Construct Multicast Cryptosystems Provably Secure 259

provided new methods for constructing multicast cryptosystems that achieve
various levels of security (e.g., IND-CPA, IND-CCA2) from primitives with even
weaker security. Using our scheme, each member only needs to store a key of
constant length while both the encryption key size and the ciphertext length are
O(t) which is independent of the group size.

Acknowledgements. The first author would like to thank David Wagner for his
encouragement and suggestions during the inception of this work. The authors
thank the anonymous reviewers for their valuable comments.

References

1. Fenner, W.: Internet group management protocol, version 2. RFC-2236 (1997)
2. Harney, H., Muckenhirn, C.: Group key management protocol (gkmp) architecture.

IETF Request for Comments, RFC 2094 (1997)
3. Wallner, D., Harder, E., Agee, R.: Key management for multicast: Issues and

architectures. IETF Request For Comments, RFC 2627 (1999)
4. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.

IEEE/ACM Trans. Netw. 8 (2000) 16–30
5. Canetti, R., Garay, J., Itkis, G., Micciancio, D., Naor, M., Pinkas, B.: Multicast

security: A taxonomy and some efficient constructions. In: INFOCOMM’99. (1999)
6. Chang, I., Engel, R., Kandlur, D., Pendarakis, D., Saha, D.: Key management

for secure internet multicast using boolean function minimization techniques. In:
Proceedings IEEE Infocomm’99. Volume 2. (1999) 689–698

7. Wong, C.K., Lam, S.S.: Keystone: A group key management service. In: Interna-
tional Conference on Telecommunications, ICT 2000. (2000)

8. Li, X.S., Yang, Y.R., Gouda, M.G., Lam, S.S.: Batch rekeying for secure group
communications. In: Proceedings of the tenth international World Wide Web con-
ference on World Wide Web, Orlando, FL USA (2001) 525–534

9. Setia, S., Koussih, S., Jajodia, S., Harder, E.: Kronos: A scalable group re-keying
approach for secure multicast. In: IEEE Symposium on Security and Privacy.
(2000) 215–228

10. Yang, Y.R., Li, X.S., Zhang, X.B., Lam, S.S.: Reliable group rekeying: a perfor-
mance analysis. In: Proceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, ACM Press (2001)
27–38

11. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: CRYPTO 1994. Volume 839 of
Lecture Notes in Computer Science., Springer-Verlag (1994) 257–270

12. Fiat, A., Naor, M.: Broadcast encryption. In: CRYPTO 1993. Volume 773 of
Lecture Notes in Computer Science., Springer-Verlag (1994) 480–491

13. Boneh, D., Franklin, M.: An efficient public key traitor tracing scheme. In:
CRYPTO 1999. Volume 1666 of Lecture Notes in Computer Science., Springer-
Verlag (1999) 338–353

14. Anzai, J., Matsuzaki, N., Matsumoto, T.: A quick group key distribution scheme
with “entity revocation”. In: ASIACRYPT 1999. Volume 1716 of Lecture Notes in
Computer Science., Singapore, Springer (1999) 333–347

15. Luby, M., Staddon, J.: Combinatorial bounds for broadcast encryption. In: EURO-
CRYPT 1998. Volume 1403 of Lecture Notes in Computer Science., Springer-Verlag
(1998) 512–526

260 Y. Duan and J. Canny

16. Garay, J.A., Staddon, J., Wool, A.: Long-lived broadcast encryption. In: CRYPTO
2000. Volume 1880 of Lecture Notes in Computer Science., Springer-Verlag (2000)
333–352

17. Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Proceedings of
Financial Crypto 2000. (2000)

18. Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: CRYPTO
2002. Volume 2442 of Lecture Notes in Computer Science., Springer-Verlag (2002)
47–60

19. Naor, D., Naor, M., Lotspiech, J.B.: Revocation and tracing schemes for stateless
receivers. In: CRYPTO 2001. Volume 2139 of Lecture Notes in Computer Science.,
Springer-Verlag (2001) 41–62

20. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against
adaptive chosen ciphertext attack. In: CRYPTO 1998. Volume 1462 of Lecture
Notes in Computer Science., Springer-Verlag (1998) 13–25

21. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: CRYPTO 2005. Volume 3621 of Lecture
Notes in Computer Science., Springer-Verlag (2005) 258–275

22. Tzeng, W.G., Tzeng, Z.J.: A public-key traitor tracing scheme with revocation us-
ing dynamic shares. In: Proceedings of the 4th International Workshop on Practice
and Theory in Public Key Cryptography, Springer-Verlag (2001) 207–224

23. Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In: Workshop on Public Key Cryptography – PKC ’03.
Volume 2567 of Lecture Notes in Computer Science. (2003) 100–115

24. Kim, C.H., Hwang, Y.H., Lee, P.J.: An efficient public key trace and revoke scheme
secure against adaptive chosen ciphertext attack. In: ASIACRYPT 2003. Volume
2894 of Lecture Notes in Computer Science., Springer-Verlag (2003) 359–373

25. Liu, D., Ning, P., Sun, K.: Efficient self-healing group key distribution with revo-
cation capability. In: Proceedings of the 10th ACM conference on Computer and
communication security, ACM Press (2003) 231–240

26. Staddon, J., Miner, S., Franklin, M., Balfanz, D., Malkin, M., Dean, D.: Self-healing
key distribution with revocation. In: Proceedings of the 2002 IEEE Symposium on
Security and Privacy, IEEE Computer Society (2002) 241

27. Wang, H.: Resilient lkh: Secure multicast key distribution schemes. In: Proceedings
of the 2003 International Workshop on Advanced Developments in Software and
Systems Security (WADIS). (2003)

28. Boyd, C.: Digital multisignatures. Cryptography and Coding (1986) 241–246
29. Desmedt, Y.: Society and group oriented cryptography: A new concept. In:

CRYPTO 1987. Volume 293 of Lecture Notes in Computer Science., Springer-
Verlag (1987) 120–127

30. Desmedt, Y.G., Frankel, Y.: Threshold cryptosystems. In: CRYPTO 1989. Volume
435 of Lecture Notes in Computer Science., Springer-Verlag (1989) 307–315

31. De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function
securely. In: Proceedings of the twenty-sixth annual ACM symposium on Theory
of computing, ACM Press (1994) 522–533

32. Canetti, R., Goldwasser, S.: An efficient threshold public key cryptosystem secure
against adaptive chosen ciphertext attack. In: EUROCRYPT 1999. Volume 1592
of Lecture Notes in Computer Science., Springer-Verlag (1999) 90–106

33. Abe, M.: Robust distributed multiplication without interaction. In: CRYPTO
1999. Volume 1666 of Lecture Notes in Computer Science., Springer-Verlag (1999)
130–147

How to Construct Multicast Cryptosystems Provably Secure 261

34. Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: Introduc-
ing concurrency, removing erasures (extended abstract). In: Proceedings of Euro-
crypt 2000. Volume 1807 of Lecture Notes in Computer Science., Springer-Verlag
(2000) 221–242

35. Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen cipher-
text attack. J. Cryptology 15 (2002) 75–96

36. Fouque, P.A., Pointcheval, D.: Threshold cryptosystems secure against chosen-
ciphertext attacks. In: ASIACRYPT 2001. Volume 2248 of Lecture Notes in Com-
puter Science., Springer-Verlag (2001) 351–368

37. Paillier, P.: Public-key cryptosystems based on discrete logarithms residues.
In: EUROCRYPT 1999. Volume 1592 of Lecture Notes in Computer Science.,
Springer-Verlag (1999) 223–238

38. RSA Labs: PKCS#1 v2.1: RSA cryptography standard (2002)
39. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing

efficient protocols. In: Proceedings of the 1st ACM conference on Computer and
communications security, ACM Press (1993) 62–73

40. Bellare, M., Rogaway, P.: Optimal asymmetric encryption – how to encrypt with
RSA. In: EUROCRYPT 1994. Volume 950 of Lecture Notes in Computer Science.,
Springer-Verlag (1994) 92–111

41. Shoup, V.: OAEP reconsidered. In: CRYPTO 2001. Volume 2139 of Lecture Notes
in Computer Science., Springer-Verlag (2001) 239–259

42. Fujisaki, E., Okamoto, T., Pointcheval, D., Stern, J.: RSA-OAEP is secure under
the rsa assumption. In: CRYPTO 2001. Volume 2139 of Lecture Notes in Computer
Science., Springer-Verlag (2001) 260–274

43. Lim, C.H., Lee, P.J.: Another method for attaining security against adaptively
chosen ciphertext attacks. In: CRYPTO 1993. Volume 773 of Lecture Notes in
Computer Science., Springer-Verlag (1993) 420–434

44. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of
RSA functions. In: CRYPTO 1996. Volume 1109 of Lecture Notes in Computer
Science., Springer-Verlag (1996) 157–172

45. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Proceedings of the twenty-second annual ACM symposium
on Theory of computing, ACM Press (1990) 427–437

46. Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In: CRYPTO 1991. Volume 576 of Lecture Notes in
Computer Science., Springer-Verlag (1992) 433–444

On the (Im)possibility of Blind Message
Authentication Codes

Michel Abdalla1, Chanathip Namprempre2, and Gregory Neven1,3

1 Departement d’Informatique,
École normale supérieure,

45 Rue d’Ulm, 75230 Paris Cedex 05, France
Michel.Abdalla@ens.fr

http://www.di.ens.fr/~mabdalla
2 Electrical Engineering Department,

Thammasat University,
Klong Luang, Patumtani 12121, Thailand

cnamprem@engr.tu.ac.th
http://www.engr.tu.ac.th/~cnamprem
3 Department of Electrical Engineering,

Katholieke Universiteit Leuven,
Kasteelpark Arenberg 10, B-3001 Heverlee-Leuven, Belgium

Gregory.Neven@esat.kuleuven.ac.be
http://www.neven.org

Abstract. Blind signatures allow a signer to digitally sign a document
without being able to glean any information about the document. In this
paper, we investigate the symmetric analog of blind signatures, namely
blind message authentication codes (blind MACs). One may hope to get
the same efficiency gain from blind MAC constructions as is usually ob-
tained when moving from asymmetric to symmetric cryptosystems. Our
main result is a negative one however: we show that the natural sym-
metric analogs of the unforgeability and blindness requirements cannot
be simultaneously satisfied. Faced with this impossibility, we show that
blind MACs do exist (under the one-more RSA assumption in the ran-
dom oracle model) in a more restrictive setting where users can share
common state information. Our construction, however, is only meant to
demonstrate the existence; it uses an underlying blind signature scheme,
and hence does not achieve the desired performance benefits. The con-
struction of an efficient blind MAC scheme in this restrictive setting is
left as an open problem.

Keywords: provable security, blind signatures, blind MACs.

1 Introduction

The concept. Blind signatures [7, 8] allow a signer to digitally sign a docu-
ment while preventing the signer from seeing the content of the document, or
even from recognizing the signature when faced with it later on. Blind signatures

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 262–279, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the (Im)possibility of Blind Message Authentication Codes 263

form a crucial anonymity-providing ingredient in digital cash protocols [7, 9], and
have also been applied in a number of electronic voting schemes [7, 10, 13] to pro-
tect voters’ privacy. Since their first introduction in 1982, blind signatures have
become a well-studied primitive with formal security notions [12, 15], practical
schemes realizing these notions under various assumptions [8, 15, 2, 5, 6], and a
theoretical construction based on the existence of trapdoor one-way permuta-
tions [12].

In the same way that message authentication codes (MACs) can be seen as
the symmetric-key equivalent of digital signatures, Pinkas [14] suggested blind
MACs as the symmetric analog of blind signatures – leaving the construction
of such schemes as an open problem however. In a blind MAC scheme, a user
interacts with a tagger that knows a secret key K to obtain a valid tag τ for a
message M , but without leaking any information about M to the tagger in the
process. At a later point in time, the tagger can use K to check the validity of
a given message-tag pair (M, τ), but cannot link it back to the session during
which the tag was created.

Motivation. The main motivation for blind MACs is efficiency. As is the case
for standard MACs, one could hope to construct blind MACs from purely sym-
metric primitives, so that they can provide a more efficient alternative in appli-
cations where not all of the properties provided by digital signatures are needed.
Good candidate applications are those where signatures are verified by the same
entity that created them. In particular, we are interested in applications in which
a “signer” does not need to convince others that it has generated (or has ap-
proved) the data in question, but only needs to convince itself at some later time
that the data have not been modified. In other words, only the integrity of the
data, not the non-repudiation of the data source, is of interest.

The first mention in public literature (to the best of our knowledge) of blind
MACs was made by Pinkas [14] in the context of a fairness-providing transfor-
mation of Yao’s secure two-party computation protocol [17]. The evaluator of
the circuit commits to a number of 0 and 1-bits, and has these commitments
blindly signed by the circuit constructor. The constructor then puts the blinded
signatures in the output tables of the garbled circuit. At the end of the pro-
tocol, the constructor and evaluator gradually open their commitments. The
constructor can verify that he indeed signed the commitments being opened by
the evaluator, which prevents the latter from opening a commitment to some
random value instead of the real output. Pinkas noted that, since the signatures
are generated and verified by the same party, blind MACs could be used instead
of blind signatures. He did not provide any formal definitions of the concept
however, and left an actual construction as an open problem.

Blind MACs could also be used in Chaum’s original online digital cash pro-
tocol [7]. A coin in this protocol is essentially a unique identifying string that
is blindly signed by the bank. When the coin is spent, the merchant verifies the
bank’s signature and forwards the coin to the bank. The bank checks the valid-
ity of the signature again, and looks up in a database whether the coin is being
double-spent. If not, it transfers the correct amount to the merchant’s account,

264 M. Abdalla, C. Namprempre, and G. Neven

and adds the coin’s identifying string to the database. Since the bank has to be
online at the time the coin is spent anyway, the merchant may just as well leave
the verification entirely up to the bank, so that the latter can use blind MACs
instead of blind signatures (assuming that the clients’ bank is the same as the
merchants’ bank). The gain in efficiency will reduce the infrastructural require-
ments brought about by online payment processing, and may actually make the
protocol feasible in practice. In fact, we recently learned that blind MACs were
already considered in this particular context by the Digicash research team [16].
They did not further pursue this idea because they suspected blind MACs to be
impossible, without proving this fact however.

A third instance where blind MACs could take the place of blind signatures
is in certain electronic voting schemes. The protocol of Fujioka et al. [10] for ex-
ample works as follows. Voters commit to their votes, and have the commitment
blindly signed by an administrator who checks their right to vote. All voters
then send the signed commitment through an anonymous channel to a second
authority called the counter. The counter verifies the administrator’s signature
and publishes all commitments on a bulletin board. At the end of the voting
stage, each voter checks that his/her vote is posted on the bulletin board, and
publicly complains if it is not. Finally, voters anonymously send the opening
information for their commitments to the counter, who publishes everything on
the bulletin board and announces the result of the election.

Note that in this protocol, the signer and verifier are not the same entity.
Nevertheless, the administrator could use a blind MAC scheme to tag the vot-
ers’ commitments, and reveal the tagging key after the end of the voting stage.
MAC values are more efficiently verified than signatures, thus lowering the com-
putational threshold for citizens to perform an independent audit of the elec-
tion. A disadvantage is that the counter cannot verify the validity of commit-
ments before posting them on the bulletin board, possibly resulting in more
“junk” votes being published there. This problem however is also present in
the original scheme, since voters can publish false complaints, of which the va-
lidity has to be checked as well. Moreover, if the counter can be trusted not
to create fake registrations, then the administrator could give him the secret
key at the start of the election already, allowing him to “weed out” junk votes
earlier on.

Our results. We first give proper definitions for the syntax and security of
blind MACs, modeled after those of blind signatures. Our main result is a neg-
ative one: in Theorem 4, we show that the natural symmetric analogs of the
one-more unforgeability [15] and blindness [12] requirements are contradictory,
meaning that blind MACs satisfying both properties simultaneously cannot ex-
ist. Intuitively, the problem is that, because of the absence of a public key, the
user has no way to check whether the tagger is using the same key through-
out different tagging sessions. We present a universal adversary that breaks the
blindness of any blind MAC scheme by using different keys in different tagging
sessions, and we show that this attacker always succeeds, unless the scheme is
forgeable.

On the (Im)possibility of Blind Message Authentication Codes 265

Faced with the impossibility of blind MACs in their most general definition,
we investigate whether they can exist under a more restrictive, yet still somewhat
useful definition. In Section 5, we give a provably secure blind MAC construction
in a setting where users share common state information. Whether this setting
is realistic depends on the application. For Pinkas’ two-party computation pro-
tocol [14], this is a perfectly reasonable assumption since there is only one user,
the circuit evaluator, who can easily maintain state throughout different signing
sessions. For digital cash and voting schemes however, it may be less realistic to
assume the availability of common state information.

The sole purpose of our construction is to demonstrate the existence of blind
MACs in this restrictive setting. It is based on an underlying blind signature
scheme, and therefore does not achieve the performance benefits one would hope
to get from a blind MAC scheme. We argue however that, before trying to come
up with efficient constructions, it is important to understand what it exactly
is that we are trying to construct, and whether it can be constructed at all.
The fact that blind MACs can be constructed from blind signatures may sound
rather unsurprising at first, but is not trivial: firstly, our impossibility result
shows that not even such a “trivial” construction exists in the most natural
definition of blind MACs, and secondly, our construction needs a special form of
blindness from the underlying blind signature scheme, which we had to prove to
be satisfied by a slight variant of Chaum’s scheme [8].

Organization. Section 2 recalls the definition of blind signatures and the se-
curity notions. Section 3 presents the definition and security notions for blind
MACs. Section 4 states and proves the impossibility result. Section 5 describes
the weaker model with state-sharing users, and shows that a secure blind MAC
scheme exists in this model. Section 6 considers extensions to concurrent attack
scenarios. Section 7 lists a few open problems.

2 Blind Signatures

Notation. We let N = {1, 2, 3, . . .} denote the set of natural numbers. If k ∈ N,
then 1k is the string of k ones. The empty string is denoted ε. If x, y are strings,
then |x| is the length of x and x‖y is the concatenation of x and y. If S is a set,
then |S| is its cardinality. If A is a randomized algorithm, then A(x1, x2, . . . :
O1,O2, . . .) means that A has inputs x1, x2, . . . and access to oracles O1,O2,
Also y

$← A(x1, x2, . . . : O1,O2, . . .) means that we run the randomized algorithm
A on inputs x1, x2, . . . and with access to oracles O1,O2, . . ., and let y denote
the output obtained.

An interactive algorithm is a stateful algorithm that on input an incoming
message Min (this is ε if the party is initiating the protocol) and state information
St outputs an outgoing message Mout and updated state St ′. For an interactive
algorithm A having access to oracles O1,O2, . . ., this is written as (Mout,St ′) $←
A(Min,St : O1,O2, . . .). Two interactive algorithms A and B are said to interact
when the outgoing messages of A are passed as incoming messages to B, and
vice versa, until both algorithms enter either the halt or the fail state. We

266 M. Abdalla, C. Namprempre, and G. Neven

write (MA,StA, MB,StB) $← [[[A(StA) ↔ B(StB)]]] to denote the final outgoing
messages and states after an interaction between A and B when run on initial
states StA and StB, respectively. More formally, it is the outcome of the following
experiment:

MB ← ε
Repeat

(MA,StA) $← A(MB,StA) ; (MB,StB) $← B(MA,StB)
Until {StA,StB} ⊆ {halt, fail}
Return (MA,StA, MB,StB)

Syntax of blind signatures. We repeat the definition of blind signatures as
proposed by Juels et al. [12]. A blind signature scheme BS is a tuple of four
polynomial-time algorithms (Kg, User, Sign, Vf) where

– the randomized key generation algorithm Kg, on input a security parameter
1k with k ∈ N, outputs a public key pk and a corresponding secret key sk .

– User and Sign are possibly randomized interactive algorithms called the user
and signer algorithm, respectively. The user runs the User algorithm on an
initial state consisting of a public key pk and a message M ∈ {0, 1}∗, and
lets it interact with the Sign algorithm that is run by the signer on initial
state a secret key sk . At the end of the protocol, the User algorithm either
enters the halt state and outputs a signature σ as its last outgoing message,
or enters the fail state to indicate failure. The Sign algorithm simply enters
the halt state at the end of the protocol, without generating any output.

– the deterministic verification algorithm Vf takes a public key pk , a message
M ∈ {0, 1}∗ and a signature σ as input, and outputs acc or rej to indicate
acceptance or rejection of the signature, respectively.

Correctness of a blind signature scheme requires that for all k ∈ N and for
all M ∈ {0, 1}∗, it holds that StUser = halt and Vf(pk , M, σ) = acc when
(pk , sk) $← Kg(1k) and (MSign,StSign, σ,StUser)

$← [[[Sign(sk) ↔ User((pk , M))]]]
with probability 1.

Unforgeability of blind signatures. The security of a blind signature
scheme is twofold: on the one hand, a user should not be able to forge sig-
natures (unforgeability), and on the other hand, the signer should not be able to
see the message that is being signed, or even be able to relate signed messages
to previous protocol sessions (blindness).

The standard definition of existential unforgeability under chosen-message at-
tack [11] does not apply to blind signatures: the signer doesn’t see the messages
he signs, and hence the experiment has no way of telling whether the forgery is
on a new message or on a message that was signed before. Therefore, we use the
notion of one-more unforgeability as introduced by Pointcheval and Stern [15].
Let BS = (Kg, User, Sign, Vf) be a blind signature scheme, let k ∈ N be the secu-
rity parameter, and let A be a forging algorithm. The experiment first generates
a fresh key pair (pk , sk) $← Kg(1k), and runs A on input (1k, pk). The adversary

On the (Im)possibility of Blind Message Authentication Codes 267

has access to a signing oracle that runs the Sign(sk , ·) algorithm and maintains
state across invocations. (In a sequential attack, only one signing session can
be active at the same time, while a parallel attack allows arbitrarily interleaved
sessions. For simplicity, we concentrate on sequential attacks first, and postpone
the discussion of parallel attacks to Section 6.) At the end of its execution, the
adversary outputs a set of message-signature pairs {(M1, σ1), . . . , (Mm, σm)}.
Let n be the number of completed signing sessions during A’s attack. Then A
is said to win the game if Vf(pk , Mi, σi) = acc for all 1 ≤ i ≤ m, all Mi are
different and m > n.

The advantage function Advomu-sa
BS , A (k) is defined as A’s probability of winning

the above game, and BS is said to be one-more unforgeable under sequential
attacks (omu-sa-secure) if this is a negligible function for all polynomial-time
adversaries A. We note here that, in the definition above and in the rest of
the paper, the “time complexity” is the worst case total execution time of the
experiment plus the code size of the adversary in some fixed RAM model of
computation.

Blindness of blind signatures. We present a sequential variant of the blind-
ness notion as introduced by Juels et al. [12]. The adversary now plays the role
of a cheating signer, who is trying to distinguish between two signatures created
in different signing sessions. The experiment chooses a random bit b, generates
a fresh key pair (pk , sk) and runs the adversary A on input (1k, pk , sk). The ad-
versary outputs two challenge messages M0 and M1. Then, the adversary plays
the role of the signer in two sequential interactions with a User algorithm. If
b = 0, then the first interaction is with User(pk , M0) and the second is with
User(pk , M1); if b = 1, then A first interacts with User(pk , M1) and then with
User(pk , M0). If in both sessions the User algorithms accept, then A is addition-
ally given the resulting signatures σ0, σ1 for messages M0, M1. The adversary
outputs its guess d and wins the game if b = d. The advantage Advblind-sa

BS , A (k)
is defined as 2p − 1, where p is the probability that A wins this game. The
scheme BS is said to be blind under sequential attacks (blind-sa-secure) if this is
a negligible function for all polynomial-time adversaries A. We refer to the full
version [1] for formal descriptions of the experiments defining security for blind
signatures.

3 Blind MACs

Syntax of blind MACs. We define the syntax and security of blind MAC
schemes in analogy to those of blind signatures.

Definition 1 [Syntax of a blind MAC scheme]. A blind MAC scheme
BMAC is a tuple of four polynomial-time algorithms (Kg, User, Tag, Vf) where

– the randomized key generation algorithm Kg, on input a security parameter
1k with k ∈ N, outputs a key K .

– User and Tag are possibly randomized interactive algorithms called the user
and tagging algorithm, respectively. The user runs the User algorithm on an

268 M. Abdalla, C. Namprempre, and G. Neven

initial state containing the security parameter 1k and a message M ∈ {0, 1}∗,
and lets it interact with the Tag algorithm that is run by the tagger on initial
state the key K . 1 At the end of the protocol, the User algorithm either enters
the halt state and outputs a MAC value τ as its outgoing message, or enters
the fail state to indicate failure. The Tag algorithm simply enters the halt
state at the end of the protocol, without generating any output.

– the deterministic verification algorithm Vf takes a key K , a message M ∈
{0, 1}∗ and a MAC value τ as input, and outputs acc or rej to indicate
acceptance or rejection of the MAC value, respectively.

Correctness of a blind MAC scheme requires that for all k ∈ N and for all M ∈
{0, 1}∗, with probability 1 it holds that StUser = halt and Vf(K , M, τ) = acc

whenever K $← Kg(1k) and (MTag,StTag, τ,StUser)
$← [[[Tag(K) ↔ User((1k, M)]]].

Security of blind MACs. Analogously to the security of blind signatures, the
security of a blind MAC scheme consists of an unforgeability and a blindness
requirement. The game defining unforgeability works as follows. The experiment
generates a fresh key K $← Kg(1k), and runs the adversary A on input 1k. The
adversary can interact in sequential sessions with a tagging oracle that runs the
Tag algorithm initialized with key K . At the end of its execution, A outputs m
message-tag pairs. The adversary wins the game if all messages are different, all
tags are valid under key K , and m > n, where n is the number of completed
tagging sessions during the attack. We give a more formal description of the
definition below.

Definition 2 [Unforgeability of a blind MAC scheme]. Let BMAC =
(Kg, User, Tag, Vf) be a blind message authentication scheme. Let k ∈ N, and
let A be a forger with access to the tagging oracle. Consider the following exper-
iment.

Experiment Expomu-sa
BMAC , A(k):

K $← Kg(1k) ; n ← 0
{(M1, τ1), . . . , (Mm, τm)} $← A(1k : Tag(·))
If Vf(K , Mi, τi) = acc for all 1 ≤ i ≤ m
and m > n and Mi 	= Mj for all 1 ≤ i < j ≤ m
then return 1 else return 0,

where A’s queries to the tagging oracle are answered as follows:

Oracle Tag(Min):
If Min = ⊥ then StTag ← K ; Mout ← ⊥
else (Mout,StTag)

$← Tag(Min,StTag[s])
If StTag = halt then n ← n + 1
Return Mout

1 We need to pass 1k as a parameter to the User algorithm, because otherwise it would
no longer be a polynomial-time algorithm if the message is of logarithmic length.
Moreover, since the user does not know the key itself, it is reasonable to give it 1k

so that at least it can check whether the tagger is using a key of the correct size.

On the (Im)possibility of Blind Message Authentication Codes 269

The omu-sa advantage of A in breaking BMAC is defined as the probability that
the above experiment returns 1:

Advomu-sa
BMAC , A(k) = Pr

[
Expomu-sa

BMAC , A(k) = 1
]

,

and BMAC is said to be one-more unforgeable under sequential attacks (omu-sa-
secure) if the advantage Advomu-sa

BMAC , A(k) is a negligible function in the security
parameter k for all adversaries A with time complexity polynomial in k.

In the blindness game, the experiment chooses a random bit b and generates a
fresh key K $← Kg(1k). On input (1k,K), the adversary A first outputs two mes-
sages M0, M1. The adversary then sequentially interacts with two User sessions,
playing the role of the tagger. If b = 0, then the first user session is initialized
with message M0, and the second with M1; if b = 1, then the first session is
initialized with message M1, and the second with M0. If both User algorithms
accept, the adversary gets to see both resulting tags τ0, τ1 for messages M0, M1.
The adversary has to guess the value of b.

We stress that the experiment does not enforce the resulting tags to be valid
under key K . While we could include such restriction in the formal security
notion, it would be out of touch with reality: the secret key K is not known to
the users, so there is nobody to enforce this restriction in the real world. In fact,
as we will see in the next section, it is exactly this lack of verifiability of tags
that plays a central role in the proof of impossibility of blind MACs. We give a
formal blindness definition below.

Definition 3 [Blindness of a blind MAC scheme]. Let BMAC = (Kg, User,
Tag, Vf) be a blind message authentication scheme. Let k ∈ N, and let A be an
adversary. Consider the following experiment.

Experiment Expblind-sa
BMAC , A (k):

b
$← {0, 1} ; K $← Kg(1k)

((M0, M1),StA) $← A(ε, (1k,K))
(MA,StA, τb,Stb)

$← [[[A(StA) ↔ User((1k, Mb))]]]
(MA,StA, τ1−b,St1−b)

$← [[[A(StA) ↔ User((1k, M1−b))]]]
If St0 = fail or St1 = fail then τ ← fail else τ ← (τ0, τ1)
d

$← A(τ,StA)
If b = d then return 1 else return 0

The blind-sa advantage of A in breaking BMAC is defined as

Advblind-sa
BMAC , A (k) = 2 · Pr

[
Expblind-sa

BMAC , A (k) = 1
]
− 1

and BMAC is said to be blind under sequential attacks (blind-sa-secure) if the
advantage Advblind-sa

BMAC , A (k) is a negligible function in the security parameter k for
all adversaries A with time complexity polynomial in k.

270 M. Abdalla, C. Namprempre, and G. Neven

4 Impossibility of Blind MACs

In this section, we show that blind MAC schemes simultaneously satisfying the
one-more unforgeability and blindness requirements cannot exist. We do so by
demonstrating a universal blindness adversary A and a universal forger F so
that for any candidate scheme, one of them always has a non-negligible chance
of success.

Theorem 4. [Secure blind MAC schemes do not exist]. Let BMAC be a
blind MAC scheme. Either BMAC is one-more forgeable under sequential attacks,
or it is not blind under sequential attacks.

Proof (Theorem 4). We define an adversary A breaking the blindness of BMAC
and an adversary F breaking the one-more unforgeability of BMAC , both under
sequential attacks, so that

Advblind-sa
BMAC , A (k) + Advomu-sa

BMAC , F(k) = 1 ,

from which the theorem follows.
The key idea in constructing A is from the observation that, in a blind MAC

scheme, the user has no way of telling under which key a tag is computed. Our
adversary exploits this fact by using two different keys to generate the tags for
the two user sessions. Then, it only needs validate one of the final message-
tag pairs to determine during which user session the tag was computed. The
possibility that a tag computed with the second key is also valid under the first
key, or that both keys happen to be identical, is ruled out by the existence of a
forger F that is successful in exactly these cases.

We now present both adversaries in more detail. Algorithm A, on initial state
(1k,K), generates a second key K ′ $← Kg(1k) and outputs challenge messages
M0 = 0 and M1 = 1. (In fact, any two distinct challenge messages would do.) It
interacts with the first User algorithm by honestly running Tag(K), and with the
second by running Tag(K ′). Since both K and K ′ are keys generated by the Kg
algorithm, the correctness requirement for BMAC implies that neither of the user
sessions fails, and hence that A gets back tags (τ0, τ1). If Vf(K , M0, τ0) = acc,
the adversary returns d = 0, else it returns d = 1.

The forger F works as follows: on input 1k, it generates a fresh random key
K ′ $← Kg(1k). It simulates an interaction (M,StTag, τ,StUser)

$← [[[Tag(K ′) ↔
User((1k, M0))]]] in which a tagger uses key K ′ to tag message M0 = 0 (or
whichever message M0 algorithm A used above). It then outputs {(M0, τ)} as
its single forgery without making any tagging oracle call.

Now, we analyze the success probability of A and F. From Definition 3,

Advblind-sa
BMAC , A (k) = 2 · Pr

[
Expblind-sa

BMAC , A (k) = 1
]
− 1

= Pr
[
Expblind-sa

BMAC , A (k) = 1 | b = 1
]

+ Pr
[
Expblind-sa

BMAC , A (k) = 1 | b = 0
]
− 1

= Pr
[
Expblind-sa

BMAC , A (k) = 1 | b = 1
]

= 1−Advomu-sa
BMAC , F(k)

On the (Im)possibility of Blind Message Authentication Codes 271

The second equality follows easily from simple algebra and the fact that b is a
randomly chosen bit. The third equality follows from the correctness requirement
of BMAC : if b = 0, then during the first user session, A tags message M0 with
key K . Hence, verification of the resulting tag with key K must always succeed,
making A output the correct guess d = 0 with probability 1. Looking closely at
the probability on the third line, we see that it is one minus the probability that
a tag τ0 obtained from an interaction [[[Tag(K ′) ↔ User((1k, M0))]]] also verifies
correctly under an independently generated key K . This however is exactly the
success probability of our forger F, leading to the last equation, which concludes
the proof.

5 Blind MACs for State-Sharing Users

The attack in Section 4 is due to the fact that, unlike in the case of blind
signatures, the user has no public key based on which it can check whether the
tagger is behaving honestly, and in particular, whether he’s using the correct
key to tag the message. The attack only holds however for user sessions that are
completely isolated from each other, and does not exclude the existence of blind
MACs when user sessions can communicate with one another. Depending on the
application, it may be unrealistic to assume that all users are connected through
secure communication channels (or even know of each other’s existence), but it
may be more reasonable to assume that small groups of user sessions can share
some common state information. We ask ourselves whether a weaker form of
blindness is achievable, where anonymity is guaranteed among messages tagged
in state-sharing user sessions. For applications like electronic cash and voting,
this would provide a rather limited form of anonymity. In Pinkas’ two-party
computation protocol however [14], there is only one user (the circuit evaluator),
so it is perfectly safe to assume that the different user sessions share common
state information.

In the following, we describe a provably secure construction of a blind MAC
scheme in the state-sharing users setting. The main purpose of the construction,
however, is to prove the existence of blind MACs in this restrictive setting: it
is based on an underlying blind signature scheme, and hence does not achieve
the performance benefits that were the original motivation for blind MACs.
The secret key of the blind MAC scheme contains both the public and the
private key of the underlying blind signature scheme. In the first move of the
tagging protocol, the tagger sends the public key to the user. If the common
state information is empty, then the user stores this public key in the common
state information; otherwise, the user compares the public key to the one that
is stored in the common state, and rejects if the keys are different. The rest
of the protocol is identical to that of the blind signature scheme. To prove the
security of the construction, we introduce a new (and actually, more natural)
blindness notion for blind signatures that we call dishonest-key blindness, where
the public key can be maliciously constructed by the adversary, rather than
being honestly generated through the key generation algorithm. Then, we show

272 M. Abdalla, C. Namprempre, and G. Neven

that Chaum’s blind signature scheme with a prime encryption exponent whose
value is larger than the RSA modulus is (unconditionally) dishonest-key blind.
Together with the known fact that this scheme is one-more unforgeable in the
random oracle model under the one-more RSA assumption [4], this implies that
a blind MAC scheme with state-sharing users exists in the random oracle model
if the one-more RSA-inversion problem [4] is hard.

Syntax and security of blind MACs with state-sharing users. We
model the common state information as a third input string CSt that is given
to the User algorithm, and that the user can update through a third output
string CSt ′. We add this common state as an input to the user in the blindness
experiment in Definition 1. The common state is initialized to ε and maintained
between both user sessions. The rest of the experiment remains the same. The
unforgeability notion as stated in Definition 2 remains unchanged.

A construction based on blind signatures. The main idea for our blind
MAC construction is to store the public key for the base blind signature scheme
in the users’ common state information. Then, we use the algorithms of the blind
signature scheme in a natural way.

Construction 5 [A blind MAC scheme for state-sharing users]. Let
BS = (Kgs, Users, Sign, Vfs) be a blind signature scheme. We associate to it
a blind MAC scheme BMAC = (Kgm, Userm, Tag, Vfm) as follows:

– On input 1k, the key generation algorithm Kgm runs Kgs(1k) to obtain a
key pair (pk , sk), sets K ← (pk , sk) and returns K .

– On input K , the tagging algorithm Tag starts the interaction with Userm
by parsing K as (pk , sk), sends pk to Userm, runs Sign on initial state sk
interacting with Userm to completion. It sets its state to whatever Sign does.

– On inputs an initial state 1k, a message M , and an initial shared-state CSt ,
the algorithm Userm first receives pk from Tag. If CSt = ε, then Userm sets
CSt ← pk . Otherwise, it sets pk ← CSt and runs Users on the initial state
(pk , M) interacting with Tag until the interaction completes. It sets its state
and output to those of Users.

– On input a key K , a message M , and a MAC value τ , the algorithm Vfm

parses K as (pk , sk), and returns Vfs(pk , M, τ).

Dishonest-key blindness for blind signatures. Before stating the security
of our blind MAC construction, we briefly describe here the concept of dishonest-
key blindness, which is needed to prove its security. Recall that the standard
blindness notion for blind signatures assumes that the adversary is given a key
pair generated properly through the key generation algorithm. This however does
not cover attacks where the signer creates a public key in a special, malicious
way that allows him to break the blindness of the scheme. The dishonest-key
blindness notion that we propose gives the adversary more power by letting
it dictate the public key to be used. This public key need not be generated
by the Kgs algorithm, nor does the adversary need to know the corresponding
secret key. The adversary gets as only input 1k, and outputs challenge messages

On the (Im)possibility of Blind Message Authentication Codes 273

M0, M1 along with the public key pk . The rest of the experiment is unchanged:
the adversary engages in two sequential User sessions that are initialized with
(1k, pk , M0) and (1k, pk , M1), the order depending on the experiment’s choice
for bit b.

It is based on this stronger security requirement of the underlying blind sig-
nature scheme that we construct a secure blind MAC in the state-sharing model.
Let Advdk-blind-sa

BS , A (k) be the advantage of an adversary A in winning the above
game against BS in a sequential attack. We say that BS is dk-blind-sa-secure if
this advantage is a negligible function in k for all polynomial-time algorithms A.
We refer to Appendix A for a formal definition of dishonest-key blindness.

Security. The following theorem states that, if the underlying blind signature
scheme is one-more unforgeable and dishonest-key blind, then the resulting blind
MAC scheme is secure.

Theorem 6. If a blind signature scheme BS is one-more unforgeable and dis-
honest-key blind under sequential attacks, then the blind MAC scheme with
state-sharing users BMAC associated to BS as per Construction 5 is one-more
unforgeable and blind under sequential attacks.

Theorem 6 follows directly from the following two lemmas.

Lemma 7. If a blind signature scheme BS is omu-sa secure, then the blind MAC
scheme with state-sharing users BMAC associated to BS as per Construction 5
is also omu-sa secure.

Lemma 8. If a blind signature scheme BS is dk-blind-sa secure, then the blind
MAC scheme with state-sharing users BMAC associated to BS as per Construc-
tion 5 is blind-sa-secure.

Proof (Lemma 7). We prove the lemma via a standard reduction, namely, we
assume the existence of a forger Fm mounting an attack against BMAC , and
construct a forger Fs mounting an attack against BS so that, if the success
probability of the former is non-negligible, then so is that of the latter. The
idea is for Fs to run Fm using its signing oracle to simulate Fm’s tagging oracle
Tag(·). Since the only difference between a tagger-user interaction in BMAC and
a signer-user interaction in BS is in the public key that the tagger sends to the
user as the first message, this simulation can be done perfectly. Thus, if Fm is
able to produce one more valid message-tag pair than the number of finished
interactive sessions with its tagging oracle, then so can Fs with respect to its
signing oracle.

Now we provide more details of how Fs works. Let BS = (Kgs, Users, Sign, Vfs)
and let BMAC = (Kgm, Userm, Tag, Vfm). On input (1k, pk), it runs Fm(1k). For
each tagging session that Fm runs, Fs starts the interaction by sending pk to
Fm as the first message, then simply relays messages between Fm and its own
signing oracle. When Fm eventually halts, Fs outputs whatever Fm does.

Forger Fs perfectly simulates the environment for Fm. To see this, let pk be
Fs’s input public key, and let sk be the matching secret key used by its signing

274 M. Abdalla, C. Namprempre, and G. Neven

oracle. Notice that from the definition of BMAC in Construction 5, each inter-
action in the transcript of messages between the tagger Tag(pk , sk) and a user
Userm(1k, M) is composed of pk followed by other messages generated through
the interaction between the signer Sign(sk) and Users(pk , M) for any message
M . Since all Fs does is to first send pk and then to relay messages between the
signing oracle and Fm (who is acting in the role of Userm), Fs simulates Fm in
the exact same environment as that of the experiment in Definition 2.

Furthermore, let (M1, σ1), . . . , (Mm, σm) be the outputs of Fs. By definition
of Vfm, it is the case that, for all 1 ≤ i ≤ m, Vfm((pk , sk), Mi, σi) = acc if and
only if Vfs(pk , Mi, σi) = acc. Thus, if Fm’s outputs are valid message-tag pairs
under K = (pk , sk), then Fs’s outputs are also valid message-signature pairs
under pk . Since Fs interacts with its oracle the same number of sessions as Fm

does, if Fm uses strictly fewer sessions than the number of output pairs, then so
does Fs. Thus, if Fm succeeds, then so does Fs, or

Advomu-sa
BMAC , Fm

(k) ≤ Advomu-sa
BS , Fs

(k) ,

which proves the lemma.

Proof (Lemma 8). We prove the lemma via a standard reduction, namely, we
assume the existence of an adversary Am attacking the blindness of BMAC , and
then construct an adversary As attacking the dishonest-key blindness of BS so
that, if the success probability of the former is non-negligible, then so is that
of the latter. The idea is for As to first run Am, and to output the public key
contained in the first message of Am’s first user interaction as the public key
with which both Users sessions should be run. The rest of the messages are then
relayed faithfully between Am and the Users sessions. In Am’s second Userm
interaction, the first outgoing message from Am is simply dropped.

Now we provide more details of how As works. We emphasize that As oper-
ates in the dishonest-key model. On input 1k, the adversary As generates a key
pair (pk , sk) via Kg(1k), runs Am(1k, (pk , sk)), obtains Am’s challenge messages
M0, M1, and waits until Am outputs its first outgoing message pk ′ as part of a
Userm session. Then, As outputs pk ′ as the public key for the users along with
the same challenge messages M0, M1. Adversary As relays messages faithfully
between Users and Am (who is acting in the role of the tagger) for the rest of the
interaction. The interaction with the second user is similar: As drops the first
message from Am and simply relays following messages to and from its second
Users session. Finally, when given σ = (σ0, σ1) or fail, As forwards σ to Am

and outputs Am’s guess d as its own.
We first argue that As simulates Am in the same environment as that in

Definition 3. Consider the three phases in Am’s attack: starting, interacting with
users, and guessing. In the first phase, As starts Am with a legitimate key pair
which is indeed what Am expects. Since, by definition of BMAC , Users outputs
whatever Userm outputs, the tags that As gives to Am in the last phase are
also correctly distributed. For the second phase, recall that As drops the first
message received from Am and relays messages between Users and Am. Thus, the

On the (Im)possibility of Blind Message Authentication Codes 275

messages relayed to Am are exactly what Am would see in its role as a tagger.
Therefore, this phase also follows the correct distribution.

Now suppose that Am succeeds. We argue that As does too. Let pk ′ be the first
outgoing message that Am outputs to start the session with the “first” user. Let
b ∈ {0, 1} such that interaction [[[As ↔ Users(pk ′, Mb)]]] starts first. Recall that
As simulates Userm(1k, ·) using Users(pk ′, ·). This means that the interaction
[[[Am ↔ Userm(pk ′, Mb)]]] also starts first. Since As outputs the same answer as
Am, As guess correctly whenever Am does. So we have

Advblind-sa
BMAC , Am

(k) ≤ Advdk-blind-sa
BS , As

(k) ,

which concludes the proof.

Existence of dishonest-key blind signature schemes. We describe a
variant of Chaum’s blind signature scheme here. Theorem 9 below states that
this scheme is one-more unforgeable and dishonest-key blind. Recall that in
Chaum’s RSA-based blind signature scheme, the public key is (N, e) and the
private key is (N, d) where N is an RSA modulus, e is an RSA encryption
exponent, and d is the corresponding RSA decryption exponent. On inputs a
public key (N, e) and a message M , the user computes M ← re ·H(M) mod N ,
where r is a random value in Z∗

N and H : {0, 1}∗ → Z∗
N is a public hash function,

then submits M to the signer. The signer then responds with σ ← M
d

mod N .
Finally, the user computes and outputs σ ← r−1 ·σ mod N . A message-signature
pair (M, σ) is valid if and only if σe ≡ H(M) mod N . The variant that we are
interested in is Chaum’s scheme with the additional requirements that e is prime
and that e > N . The user checks that these requirements hold before starting
the protocol, and checks that σ ∈ Z∗

N and σe ≡ H(M) mod N at the end of
the protocol. If any of these checks fail, the User algorithm terminates in a fail
state. We note that this check can be done in deterministic polynomial time [3].

Theorem 9. [Security of modified Chaum scheme]. Let H : {0, 1}∗ → Z∗
N

be a random oracle, and let BS be Chaum’s blind signature scheme with prime
encryption exponent e > N . Then, BS is one-more unforgeable under sequential
attacks in the random oracle model assuming that the one-more-RSA-inversion
problem is hard. Furthermore, BS is unconditionally dishonest-key blind under
sequential attacks.

Proof (Theorem 9). Bellare et al. proved in [4] that Chaum’s scheme is one-
more unforgeable in the random oracle model assuming that the one-more-RSA-
inversion problem is hard. Their proof does not make additional assumptions
about the encryption exponent e. Thus, the same security result holds for our
variant of Chaum’s scheme.

Now we prove the blindness result. Let A be a dishonest-key blindness adver-
sary. Over the course of the experiment, A’s inputs are the incoming messages
from the two users and the two resulting signatures. Consider the two worlds
dictated by which message is signed first (i.e. b = 0 or b = 1) and regard each

276 M. Abdalla, C. Namprempre, and G. Neven

input of A as a random variable. We argue that each of these random variables
has the same distribution in both worlds. We consider them one by one. First,
we consider an incoming message M , which is computed as re · H(M) mod N
where r is a random value in Z∗

N . Since e is prime and e > N , we have that
gcd(e, φ(N)) = 1 where φ(N) is the Euler’s totient function. Thus, the map
f : Z∗

N → Z∗
N defined as f(x) = xe mod N is a permutation on Z∗

N . Conse-
quently, given that r is a random value in Z∗

N , we have that re is also a random
value in Z∗

N . Thus, so is M . This is true regardless of the value of b. Therefore,
the random variable M follows the same distribution in both worlds, namely a
uniform distribution over Z∗

N .
Second, we consider a signature σ resulting from A’s interaction with a user.

At the end of the protocol, the user verified that σ is an element of Z∗
N such

that σe ≡ H(M) mod N . Since f(x) is a permutation over Z∗
N , there is only

one such element σ. Therefore, σ is uniquely determined by (N, e, M), and in
particular does not contain any information about during which session it was
created. Thus, BS is dishonest-key blind.

As a corollary, it follows that blind MAC schemes with state-sharing users that
are at the same time one-more unforgeable (omu-sa secure) and blind (blind-sa
secure) exist in the random oracle model if the one-more RSA-inversion problem
is hard.

6 Parallel Attacks

We note that all our results can be extended to parallel attacks, i.e. attacks
where the adversary can interact with signers, taggers or users in an arbitrarily
interleaved way. We refer to the full version [1] for notation and security notions
under parallel attacks, and simply summarize the results here.

Since any blind MAC scheme that is secure under parallel attacks is also
secure under sequential attacks, our impossibility result of Theorem 4 directly
implies that secure blind MACs under parallel attacks do not exist either.

In the state-sharing users setting, the result of Theorem 6 easily extends to
parallel attacks: if the underlying blind signature scheme is one-more unforgeable
and dishonest-key blind under parallel attacks, then the blind MAC scheme of
Construction 5 is one-more unforgeable and blind under parallel attacks. More-
over, since the signing protocol in Chaum’s scheme only has two moves, security
under sequential and parallel attacks are equivalent, and the result of Theorem 9
holds for parallel attacks as well.

7 Future Work

In forthcoming work, we will further explore the notion of dishonest-key blind-
ness for other schemes than the modified Chaum scheme presented in Section 5.
The latter relies on random oracles and the one-more RSA-inversion assumption;
we will investigate which other schemes satisfy the stronger notion, and whether

On the (Im)possibility of Blind Message Authentication Codes 277

a general transformation exists that converts any honest-key blind signature
scheme into a dishonest-key blind signature scheme.

As previously stated, the sole purpose of the construction in Section 5 is to
demonstrate the existence of blind MAC schemes in the setting in which the
users share a common state information. Finding efficient constructions in this
setting is left as an open problem. Also, one could investigate the existence of
blind MACs in other models, such as a model in which users can collude with a
cheating signer, or one in which all users have access to a verification oracle.

Acknowledgements

We would like to thank Mihir Bellare and the anonymous reviewers for their
valuable suggestions. The first and third author were supported in part by the
French RNRT Project Crypto++ and by the European Commission through the
IST Program under Contract IST-2002-507932 ECRYPT. The third author is a
Postdoctoral Fellow of the Research Foundation – Flanders (FWO-Vlaanderen),
and was supported in part by the Flemish Government under GOA Mefisto
2006/06 and Ambiorix 2005/11, and by the European Commission through the
IST Project PRIME.

References

1. Michel Abdalla, Chanathip Namprempre, and Gregory Neven. On the
(im)possibility of blind message authentication codes. Full version of current paper.
Available from authors’ web pages.

2. Masayuki Abe. A secure three-move blind signature scheme for polynomially
many signatures. In Birgit Pfitzmann, editor, Advances in Cryptology – EURO-
CRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 136–151,
Innsbruck, Austria, May 6–10, 2001. Springer-Verlag, Berlin, Germany.

3. Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P.
http://www.cse.iitk.ac.in/users/manindra/primality.ps, August 2002.

4. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko.
The one-more-RSA-inversion problems and the security of Chaum’s blind signature
scheme. Journal of Cryptology, 16(3):185–215, 2003.

5. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures
based on the gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor,
PKC 2003: 6th International Workshop on Theory and Practice in Public Key
Cryptography, volume 2567 of Lecture Notes in Computer Science, pages 31–46,
Miami, USA, January 6–8, 2003. Springer-Verlag, Berlin, Germany.

6. Jan Camenisch, Maciej Koprowski, and Bogdan Warinschi. Efficient blind signa-
tures without random oracles. In Carlo Blundo and Stelvio Cimato, editors, SCN
04: 4th International Conference on Security in Communication Networks, Lecture
Notes in Computer Science, pages 134–148, Amalfi, Italy, September 8–10, 2005.
Springer-Verlag, Berlin, Germany.

7. David Chaum. Blind signatures for untraceable payments. In David Chaum,
Ronald L. Rivest, and Alan T. Sherman, editors, Advances in Cryptology –
CRYPTO’82, pages 199–203, Santa Barbara, CA, USA, 1983. Plenum Press, New
York, USA.

278 M. Abdalla, C. Namprempre, and G. Neven

8. David Chaum. Blind signature system. In David Chaum, editor, Advances in
Cryptology – CRYPTO’83, page 153, Santa Barbara, CA, USA, 1984. Plenum
Press, New York, USA.

9. David Chaum, Amos Fiat, and Moni Naor. Untraceable electronic cash. In Shafi
Goldwasser, editor, Advances in Cryptology – CRYPTO’88, volume 403 of Lecture
Notes in Computer Science, pages 319–327, Santa Barbara, CA, USA, August 21–
25, 1990. Springer-Verlag, Berlin, Germany.

10. Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In Jennifer Seberry and Josef Pieprzyk, editors,
Advances in Cryptology – AUSCRYPT ’ 92, volume 718 of Lecture Notes in Com-
puter Science, pages 244–251. Springer-Verlag, Berlin, Germany, 1993.

11. Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, April 1988.

12. Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures
(Extended abstract). In Burton S. Kaliski Jr., editor, Advances in Cryptology –
CRYPTO’97, volume 1294 of Lecture Notes in Computer Science, pages 150–164,
Santa Barbara, CA, USA, August 17–21, 1997. Springer-Verlag, Berlin, Germany.

13. Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections.
In Bruce Christianson, Bruno Crispo, T. Mark A. Lomas, and Michael Roe, ed-
itors, Security Protocols, 5th International Workshop, Paris, France, April 7-9,
1997, Proceedings, volume 1361 of Lecture Notes in Computer Science, pages 25–
35. Springer-Verlag, Berlin, Germany, 1998.

14. Benny Pinkas. Fair secure two-party computation. In Eli Biham, editor, Advances
in Cryptology – EUROCRYPT 2003, volume 2656 of Lecture Notes in Computer
Science, pages 87–105, Warsaw, Poland, May 4–8, 2003. Springer-Verlag, Berlin,
Germany.

15. David Pointcheval and Jacques Stern. Security arguments for digital signatures
and blind signatures. Journal of Cryptology, 13(3):361–396, 2000.

16. Berry Schoenmakers. Personal Communication, August 2005.
17. Andrew C. Yao. Protocols for secure computations. In 23rd Annual Symposium on

Foundations of Computer Science, pages 160–164, Chicago, Illinois, November 3–5,
1982. IEEE Computer Society Press.

A Formal Definition of Dishonest-Key Blindness

The concept of dishonest-key blindness for blind signature schemes is an ex-
tension of the classical notion of blindness in which the adversary is allowed to
choose the public key used by the user algorithm when trying to break the blind-
ness of the scheme. In particular, in the experiment defining this new notion, no
key generation is performed and no key pair is given to the adversary as input to
its first phase. Instead, the adversary outputs the public key of its choice along
with the challenge messages at the end of its first stage. It is this public key that
is given as input to the users during the second phase of the experiment defining
dishonest-key blindness.

Definition 10 [Dishonest-key blindness of a blind signature scheme].
Let BS = (Kg, User, Sign, Vf) be a blind signature scheme. Let k ∈ N, and let A
be an adversary. Consider the following experiment.

On the (Im)possibility of Blind Message Authentication Codes 279

Experiment Expdk-blind-sa
BS , A (k):

b
$← {0, 1}

((M0, M1, pk),StA) $← A(ε, 1k) // A outputs pk of its choice
// both users use pk output by A during the attack

(MA,StA, τb,Stb)
$← [[[A(StA) ↔ User((pk , Mb))]]]

(MA,StA, τ1−b,St1−b)
$← [[[A(StA) ↔ User((pk , M1−b))]]]

If St0 = fail or St1 = fail then τ ← fail else τ ← (τ0, τ1)
d

$← A(τ,StA)
If b = d then return 1 else return 0

The dk-blind-sa-advantage of A in breaking BS is defined as

Advdk-blind-sa
BS , A (k) = 2 · Pr

[
Expdk-blind-sa

BS , A (k) = 1
]
− 1 ,

and BS is said to be dishonest-key blind under sequential attacks or dk-blind-sa-
secure if Advdk-blind-sa

BS , A (k) is a negligible function in the security parameter k
for all adversaries A with time complexity polynomial in k.

An Optimal Non-interactive Message Authentication
Protocol

Sylvain Pasini and Serge Vaudenay

EPFL, CH-1015 Lausanne, Switzerland
http://lasecwww.epfl.ch

Abstract. Vaudenay recently proposed a message authentication protocol which
is interactive and based on short authenticated strings (SAS). We study here SAS-
based non-interactive message authentication protocols (NIMAP). We start by the
analysis of two popular non-interactive message authentication protocols. The
first one is based on a collision-resistant hash function and was presented by Bal-
fanz et al. The second protocol is based on a universal hash function family and
was proposed by Gehrmann, Mitchell, and Nyberg. It uses much less authenti-
cated bits but requires a stronger authenticated channel.

We propose a protocol which can achieve the same security as the first proto-
col but using less authenticated bits, without any stronger communication model,
and without requiring a hash function to be collision-resistant. Finally, we demon-
strate the optimality of our protocol.

1 Introduction

Message authentication protocols are typically used to exchange public keys so that
secure communications can be set up. For a better usability, a non-interactive protocol
is preferred. It should be noted that the protocol uses two separate channels. The first
one is a broadband insecure channel (e.g. an email or a wireless channel) and the second
one is a narrowband authenticated channel (e.g. authentication by a human voice or a
manual authentication by a human operator).

In SSH and in GPG, the simple folklore protocol used to exchange public keys is
presented in Balfanz et al. [BSSW02]. It is non-interactive and based on a collision-
resistant hash function. The authenticated string is the k-bit hashed value of the input
message m. We recall that this protocol is typically weak against offline attacks, such as
birthday attacks, which have a complexity of 2k/2 and that hash functions which resist
to collision attacks are threatened species these days [BCJ+05, WLF+05, WYY05b,
WYY05a, WY05]. For instance, it is possible to forge two different RSA keys with the
same MD5 hash as shown in [LWdW05, LdW05].

Another protocol is MANA I which was proposed by Gehrmann-Mitchell-Nyberg
[GMN04]. It is based on an universal hash function family. This protocol is more re-
sistant against offline attacks since it uses an authenticated value which has a random
part K. The second part is the hashed value (using K as key) of the input message m.
The protocol requires to send the hashed value “at once”. Hence, even if an adversary
has an infinite complexity, his probability of success is at most 2−k where k is the size

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 280–294, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Optimal Non-interactive Message Authentication Protocol 281

of K and the size of the hash. However, the requirement renders the protocol “less non-
interactive” by imposing a strong assumption on the communication model.

We propose a protocol which has the same security than the one presented by Balfanz
et al. [BSSW02] but using less authenticated bits and without requiring the hash func-
tion to be collision-resistant. Our protocol is based on a trapdoor commitment scheme
in the Common Reference String (CRS) model or in the Random Oracle model.

Finally, we propose a definition of the optimality of a message authentication proto-
col and we analyze the three above protocols.

2 Preliminaries

The considered model is a communication network made up of devices which use in-
secure broadband communication channels between them. In addition, they can use a
narrowband channel which can be used to authenticate short messages, i.e. short au-
thenticated strings (SAS).

BobAlice

AUTHENTICATED

INSECURE

Fig. 1. NIMAP Channels

Communication devices are located on nodes n of given identity IDn and can run
several instances which are formally denoted by a unique instance tag πi

n. We concen-
trate on non-interactive message authentication protocols (NIMAP).

2.1 Adversarial Model Against NIMAP

A message authentication protocol has an input m on the side of the claimant Alice
of identity ID and an output ÎD||m̂ on the side of the verifier Bob. Authentication is
successful if the output is ÎD = ID and m̂ = m. The protocol is non-interactive if it only
uses messages send by Alice to Bob.

We assume that adversaries have full control on the broadband communication chan-
nel. Indeed, an attacker can read messages from the channel, he can prevent a message
from being delivered, he can delay it, replay it, modify it, and change its recipient
address. Here, we adopt the security model from Vaudenay [Vau05] based on Bellare-
Rogaway [BR93]. The adversary has full control on which node launches a new instance
of a protocol, on the input of the protocol, and on which protocol instance runs a new
step of the protocol. Namely, we assume that the adversary has access to a launch(n,r,x)
oracle where n is a node, r is a character, Alice or Bob, and x is the input. This oracle re-
turns a unique instance tag πi

n. Since a node can a priori run concurrent protocols, there
may be several instances related to the same node n. The adversary also has access to
the oracle receive(πi

A) which returns a message m which is meant to be sent to Bob and
to the oracle send(πi

B,m) which sends a message m to a given instance of Bob.
Typically, a NIMAP between nodes A and B with input m on the side of Alice and

using two messages runs as follows.

282 S. Pasini and S. Vaudenay

1. πA ← launch(A,Alice,m)
2. p1 ← receive(πA)
3. p2 ← receive(πA)
4. πB ← launch(B,Bob, /0)
5. send(πB, p1)
6. ÎD||m̂← send(πB, p2)

By convention, we describe protocols by putting a hat on the notation for Bob’s
received messages (i.e. inputs of the send oracle) which are not authenticated since
they can differ from Alice’s sent messages (i.e. outputs of the receive oracle) in the case
of an active attack.

On a global perspective, several launch(Ak,Alice,mk) and launch(B�,Bob, /0) can
be queried. These queries create several πik

Ak
instances of Alice (authentication claims)

and several π j�
B�

instances of Bob (authentication verifications). We may have a perfect
matching between the k’s and �’s such that related instances have matching conver-
sations which fully follow the protocol specifications, and the π j�

B�
ends with output

IDAk ||mk for the matching k. In any other case, we say that an attack occurred. We say

that an attack is successful if there exists at least an instance π j�
B�

which terminated and

output ÎD||m̂ such that there is no k for which ÎD = IDAk and m̂ = mk. Note that many
protocol instances can endlessly stay in an unterminated state or turn in an abort state.
We call one-shot attacks the attacks which launch a single instance of Alice and Bob.
The attack cost is measured by

– the number Q of launched instances of Alice, i.e. the online complexity.
– the additional complexity C, i.e. the offline complexity.
– the probability of success p.

Here is a useful lemma taken from [Vau05].

Lemma 1. We consider a message authentication protocol with claimant Alice and
verifier Bob in which a single SAS is sent. We denote by μA (resp. μB) the complexity of
Alice’s (resp. Bob’s) part. We consider adversaries such that the number of instances of
Alice (resp. Bob) is at most QA (resp. QB). We further denote T0 and p0 their time
complexity and probability of success, respectively. There is generic transformation
which, for any QA, QB, and any adversary, transforms it into a one-shot adversary
with complexity T ≤ T0 + μAQA + μBQB and probability of success p≥ p0/QAQB.

Assuming that no adversary running a one-shot attack has a probability of success larger
than p, using Lemma 1, we can upper bound the probability of success of an attack
which uses QA, resp. QB, instances of Alice, resp. Bob, by QAQB p.

2.2 Authenticated Channels

When referring to “channel”, we refer by default to an insecure broadband channel
without any assumption. As mentioned before, the devices can use an authenticated
channel. An authenticated channel is related to a node identity ID. Formally, an authen-
ticated channel from a node n has an identifier IDn. It allows the recipient of a message
to know the identity of the node from which the message has been sent as is. Note that

An Optimal Non-interactive Message Authentication Protocol 283

an adversary cannot modify it (i.e. integrity is implicitly protected), but she can delay it,
remove it, or replay it, and of course, read it. Precisely, an authenticated channel does
not provide confidentiality. By convention, we denote authenticateIDn(x) a message x
which has been sent from node n through the authenticated channel.

The receive oracle maintains unordered sets of authenticated messages in every chan-
nel IDn from node n. Only receive oracles with a πi

n instance can insert a new message
in this set. When a send oracle is queried with any message authenticateIDn(x), it is
accepted by the oracle only if x is in the set related to channel IDn. Note that concurrent
or successive instances related to the same node write in the same channel, i.e. in the
same set. Thus, when an instance of Alice sends a message, Bob can only authenticate
the node from which it has been sent, i.e. n, but not the connection to the right instance.

Weak Authenticated Channels. By default, authenticated channels without any other
assumption are called weak. This means that an adversary can delay a message, remove
it, or replay it. In particular, the owner of the message has not the insurance that the
message has been delivered to the recipient.

Stronger Authenticated Channels. In some cases we need special assumptions on
the authenticated channel. We can consider stronger authentication channels, namely
channels in which additional properties are achieved as proposed by Vaudenay [Vau05].
In the following, we use one possible property that can be assumed on a stronger au-
thentication channel. A stall-free transmission assumes that when a message is released
by a receive oracle either it is used as input in the immediately following send oracle
query or it is never used. Namely, we cannot wait for a new message from Alice before
delivering the authenticated message to Bob.

For instance, a face to face conversation and a telephone call are clearly authenti-
cated channels. When one talks to the other one, the recipient further knows that the
message has not been recorded since interactivity implies coherent conversations (stall-
free). Mail, e-mail, and voice mail can be stalled and released in a different order. Note
that an e-mail without any cryptographic appendix such as a GPG signature is in fact
not an authenticated channel since it can easily be forged.

2.3 Hash Functions

Collision-Resistant Hash Functions (CRHF). A collision-resistant hash function is a
hash function in which it should be hard to find two inputs x and y such that H(x)= H(y)
and x 	= y. Due to the birthday attacks, the hash length must be at least of 160 bits.

Weakly Collision-Resistant Hash Functions (WCRHF). Weak collision resistance
means that the game of Fig. 2 is hard. Assume a (T,ε)-weakly collision-resistant hash
function H defined on a finite set X . Any adversary A bounded by a complexity T wins
the WCR game on Fig. 2 with probability at most ε.

Universal Hash Functions Families (UHFF). An ε-universal hash function family is
a collection of functions HK from a message space to a finite set {0,1}k which depends
on a random parameter K such that for any x 	= y we have

Pr[HK(x) = HK(y)]≤ ε

where the probability is over the random selection of K.

284 S. Pasini and S. Vaudenay

A C
x←−−−−−−−−−−−−−−−− pick x ∈U X
y−−−−−−−−−−−−−−−−→

winning condition: H(y) = H(x) and y 	= x

Fig. 2. WCR game

2.4 Commitment Schemes

We can formalize a commitment scheme by two algorithms commit and open. For any
message m we have (c,d)← commit(m). The c value is called the commit value and the
d value the decommit value. Knowing both c and d, the message can be recovered using
the open oracle, i.e. m ← open(c,d). Intuitively, a commitment scheme should be hid-
ing, meaning that for any c, it is hard to deduce any information about the corresponding
message m, and binding, meaning that one cannot find c,d,d′ such that (c,d) and (c,d′)
open to two different messages. We also introduce keyed commitment schemes which
have in addition a setup oracle to initialize a pair of keys, i.e. (Kp,Ks)← setup(). The
public key Kp is used in commit and open oracles. Keyed commitment schemes should
be understood as working in the Common Reference String (CRS) model. Namely, Kp

is a common reference string set up once for all and Ks is unknown to anyone.

Binding Property. The semantic binding (SB) game of Fig. 3 must be hard, i.e. for any
message m and any commit value c one cannot find two decommit values d and d′ such
that m ← open(Kp,c,d) and m′ ← open(Kp,c,d′) with m 	= m′. The scheme is (T,ε)-
semantically binding if any adversaries A bounded by a complexity T has a probability
to find two decommit values d and d′ which is at most ε.

A C
Kp←−−−−−−−−−−−−−−−− (Kp,Ks)← setup()

m||c||d||d′−−−−−−−−−−−−−−−−→ m← open(Kp,c,d)
m′ ← open(Kp,c,d′)

Winning condition: m,m′ 	=⊥ and m′ 	= m

Fig. 3. SB Game

Trapdoor Commitment Model. The notion of trapdoor commitment was introduced
by Brassard, Chaum, and Crepeau [BCC88]. We define (T,ε)-trapdoor commitment
schemes by four algorithms setup, commit, open, and equivocate. The first three work
as before. The algorithm equivocate defeats the binding property by using the secret
key Ks. More precisely, for any (Kp,Ks)← setup() we have

– for any m and any (c,d)← commit(Kp,m) we have m ← open(Kp,c,d),
– for any m, by running (c,d)← commit(Kp,m), c is uniformly distributed,
– for any m, any ĉ, and any d̂ ← equivocate(Ks,m, ĉ), the open(Kp, ĉ, d̂) algorithm

yields m.
– for any adversary bounded by a complexity T in the SB game, the winning proba-

bility is smaller than ε.

An Optimal Non-interactive Message Authentication Protocol 285

Note that this primitive is a particular case of strongly equivocable commitment as de-
scribed by Damgård-Groth [DG03].

Trapdoor commitment schemes are perfectly hiding and computationnaly binding
commitment schemes. Note that for any (Kp,Ks) and any m, the distribution of (c,d),
which has been yield using the commit algorithm, is equal to the distribution of (ĉ, d̂),
which have been yield choosing a ĉ with uniform distribution and using the equivocate
algorithm.

For instance, a trapdoor commitment based on the discrete logarithm problem was
proposed by Boyar and Kurtz [BK90]. Another trapdoor commitment scheme was
proposed by Catalano et al. [CGHGN01] based on the Paillier’s trapdoor permuta-
tion [Pai99]. The proposed scheme uses an RSA modulus N = pq and a value h ∈ ZN2

such that its order is a multiple of N. The public key is Kp = (N,h) and the private key is
Ks = (p,q). The commit algorithm of a message m picks uniformly two random values
r,s and outputs c← (1+mN)rNhs mod N2 and d = (r,s). Note that the commit value c
is uniformly distributed for any m since r and s are uniformly distributed and (r,s) �→
rNhs mod N2 is the Paillier trapdoor permutation (see [Pai99]). We denote Fh(r,s)
this permutation. The decommit algorithm simply checks that c = commit(Kp,m) with
d = (r,s). The trapdoor is the collision-finding function: given a commit ĉ and a mes-
sage m, one can find d̂ = (r̂, ŝ) such that ĉ = (1 + mN)Fh(r̂, ŝ) mod N2 by using the
trapdoor on the Paillier permutation and knowing p,q, i.e. (r̂, ŝ)← F −1

h (ĉ(1+mN)−1).
Thus, given a ĉ, an adversary can find d̂ for any message m and thus defeats the binding
property.

Oracle Trapdoor Commitment. Finally, we consider trapdoor commitment schemes
in which commit, open, and equivocate are given as oracles (and not as algorithms).
In such cases, access to equivocate with an input ĉ equal to any c which was output by
commit is prohibited.

There is a very simple oracle trapdoor commitment scheme in the random oracle
model:

– The setup() algorithm is unused.
– The commit(m) oracle with input message m in {0,1}k picks a random value e in
{0,1}�, builds d ← (m,e), and calls the random oracle c← H(m,e).

– The open(c,d) oracle simply extracts m from d and checks that c = H(m,e).
– The equivocate(m,c) oracle yields a decommit value d = (m,e) such that c =

H(m,e) by modifying the table of H. This is possible without modifying the fi-
nal distribution of H, except with probability less than (Q+C)(2−� + 2−k) since c
is independent from previous oracle calls.

3 Previous Non-interactive Authentication Protocols

3.1 A NIMAP Based on a Collision-Resistant Hash Functions

We first present a protocol taken from Balfanz et al. [BSSW02] based on a collision
resistant hash function.

Note that the authenticated string is constant for all instances of the protocol which
use the same input m, i.e. the authenticated string is H(m). This characteristic allows

286 S. Pasini and S. Vaudenay

Alice Bob
input: m

m−−−−−−−−−−−−−−−−→
h← H(m)

authenticateAlice(h)−−−−−−−−−−−−−−−−→ check h = H(m̂)
output: Alice, m̂

Fig. 4. Non-Interactive Message Authentication using a CRHF

adversaries to run completely offline attacks. An attacker has simply to find a collision
on the hash function between two messages m1 and m2 and then succeeds with proba-
bility 1.

Theorem 2 ([Vau05]). Let μ be the overall time complexity of the message authentica-
tion protocol in Fig. 4 using weak authentication. We denote by T , Q, and p the time
complexity, number of oracle queries launch, and probability of success of adversaries,
respectively. There is a generic transformation which transforms any adversary into a
collision finder on H whose complexity is T + μQ and probability of success is p.

In short, the best known offline attack against this protocol is the collision attack. An
adversary has a probability of success of 1−e−

1
2 T 22−k

by using T hashes computations.
It clearly succeeds for T = O(2k/2). Collision resistance requires the number of au-
thenticated bits to be at least 160 and cannot be reduced considering offline attacks and
using only weak authentication.

3.2 A NIMAP with Strong Authentication

The Gehrmann-Mitchell-Nyberg MANA I [GMN04] protocol is depicted in Fig. 5.1

MANA I uses a universal hash function family H. Proposed constructions lead to
16–20 bit long SAS values but require strong authentication. Indeed, using weak au-
thentication, an adversary who gets authenticate(K||μ) has enough time to find a mes-
sage m̂ such that μ = HK(m̂) and to substitute m with m̂. We can also achieve security
with a stronger authenticated channel which achieves stall-free transmissions.

Alice Bob
input: m

m−−−−−−−−−−−−−−−−→
pick K ∈U {0,1}k

μ← HK(m)
authenticateAlice(K||μ)−−−−−−−−−−−−−−−−→ check μ = HK(m̂)

output: Alice, m̂

Fig. 5. The MANA I Protocol

1 Note that the original MANA I protocol is followed by an authenticated acknowledgment from
Bob to Alice in [GMN04].

An Optimal Non-interactive Message Authentication Protocol 287

Theorem 3. Given an ε-universal hash function family H, any adversary which is
bounded by a complexity T and by QA (resp. QB) instances of Alice (resp. Bob) against
the protocol of Fig. 5 using stall-free authentication has a probability of success at most
QAQBε.

Proof. A one-shot adversary has no advantage to send m̂ before it has received m and
he cannot send m̂ after K||μ is released. Indeed, he would not be able to send m̂ after
receiving K||μ due to the stall-free assumption. Thus, the attacker must select m and m̂
and hope that HK(m̂) = HK(m). Clearly, the assumption on H limits the probability of
success to ε.

Now, consider powerful adversaries. Using Lemma 1, we can deduce that the prob-
ability of success of an adversary is at most QAQBε. ��

4 A Proposed NIMAP with Weak Authentication

Consider the protocol depicted on Fig. 6 in which the message m is transmitted by
sending (c,d)← commit(Kp,m). This message can be recovered by anyone using the
open function. To authenticate this message, the hashed value of c is sent using an
authenticated channel. We prove that this protocol is secure with authenticated strings
which can be shorter than in the protocol of Fig. 4. Non-deterministic commitment
scheme is the heart of the protocol since an attacker cannot predict the c value and thus
cannot predict the H(c) value which is the authenticated one.

Alice Bob
input: m

(c,d)← commit(Kp,m)
c||d−−−−−−−−−−−−−−−−→ m̂← open(Kp, ĉ, d̂)

h← H(c)
authenticateAlice(h)−−−−−−−−−−−−−−−−→ check h = H(ĉ)

output: Alice, m̂

Fig. 6. Non-Interactive Message Authentication Based on a WCRHF

Lemma 4. Consider the message authentication protocol depicted in Fig. 6. We assume
that the function H is a (T + μ,εh)-weakly collision resistant hash function and the
commitment scheme is a (T + μ,εc)-trapdoor commitment scheme in the CRS model
(resp. oracle commitment scheme). There exists a (small) constant μ such that for any
T , any one-shot adversary against this message authentication protocol with complexity
bounded by T has a probability of success p smaller than εh + εc.

Recall that the c value is sent through the insecure broadband channel and thus has
not to be minimized. Thus, we can use an εc as small as desired since we can use any
commitment scheme as secure as desired.

Assuming that H is optimally WCR, the best WCR attack using T hash computations
has a probability of success εh ≈ 1− e−T2−k

. So, we need T = Ω(2k) to succeed with
a one-shot attack. Thus, using the same amount of authenticated bits as the protocol

288 S. Pasini and S. Vaudenay

of Fig. 4, our protocol has a better resistance against offline attacks. Equivalently, we
can achieve the same security as the protocol of Fig. 4, but using only half amount of
authenticated bits, e.g. 80 bits.

Proof. A one-shot adversary A against the protocol in Fig. 6 follows the game depicted
on Fig. 7(a) in which it runs a man-in-the middle attack. Clearly, it can be reduced to
an adversary A who plays the game described in Fig. 7(b).

Kp

↓
Kp

↓
Kp

↓
Alice A Bob

m←−−−−

(c,d)← commit(Kp,m)
c||d−−−−→ ĉ||d̂−−−−→ m̂← open(Kp, ĉ, d̂)

h← H(c) h−−−−−−−−−−−−−→
Winning condition: H(ĉ) = h and m̂ 	= m

(a)
A C

Kp←−−−−−−− (Kp,Ks)← setup()
m−−−−−−−→

c||d←−−−−−−− (c,d)← commit(Kp,m)
ĉ||d̂−−−−−−−→ m̂← open(Kp, ĉ, d̂)

Winning condition: H(ĉ) = H(c) and m 	= m̂

(b)

Fig. 7. Game Against the Proposed Protocol (a) and Reduced Game (b)

Assume a one-shot adversary A bounded by a complexity T . Given c, the adversary
A has to find a ĉ such that H(ĉ) = H(c). In addition, it must find a d̂ which opens to m̂
(using ĉ) which is different from the input m. He can of course choose a ĉ either equal
or either different to c. We study the two cases.

Case 1. (ĉ = c) The adversary A chooses ĉ equal to c and obviously fulfills the con-
dition H(ĉ) = H(c). As depicted on Fig. 8, we can reduce the adversary A to an
adversary against the binding game of Fig. 6. We use an algorithm B bounded by
complexity μ which plays the binding game with a challenger C on one side and
simulates a challenger for A on the other side at the same time. Using adversary
A and algorithm B , we construct an adversary AB which plays the binding game.
Note that adversary AB has a complexity bounded by T + μ.

First, the challenger C generates the pair of keys (Kp,KS) and sends Kp to B .
B sends it to A and receives a message m from A . He computes (c,d) using the
commit function with Kp and sends c||d to A . As assumed, A chooses a ĉ equal
to c and also sends ĉ||d̂ to B . B can now deduce m̂ using the open function with
inputs c and d̂. Finally, B sends all required values to the challenger C .

An Optimal Non-interactive Message Authentication Protocol 289

A B C
Kp←−−−−−−− Kp←−−−−−−− (Kp,Ks)← setup()
m−−−−−−−→

c||d←−−−−−−− (c,d)← commit(Kp,m)

(ĉ = c)
ĉ||d̂−−−−−−−→ m̂← open(Kp,c, d̂)

m||m̂||c||d||d̂−−−−−−−→ m = open(Kp,c,d)
m̂ = open(Kp,c, d̂)

Winning condition: m̂,m 	=⊥ and m̂ 	= m

Fig. 8. Reduction to the SB game (ĉ = c)

A B C
Kp←−−−−−−− (Kp,Ks)← setup()
m−−−−−−−→

c←−−−−−−− pick c ∈U C
c||d←−−−−−−− d ← equivocateKs

(m,c)
ĉ||d̂−−−−−−−→ m̂← openKp

(ĉ, d̂)
ĉ−−−−−−−→

Winning condition: H(ĉ) = H(c) and m 	= m̂

Fig. 9. Reduction to the WCR Game with Trapdoor Commitment (ĉ 	= c)

Note that B simulates perfectly a challenger for A . Hence, A and AB win their
respective game at the same time. Consequently, both win with the same probability
of success. Recall that the probability of success of an adversary bounded by a
complexity T + μ against the binding game of Fig. 6 is smaller than εc when the
commitment scheme is a (T + μ,εc)-trapdoor commitment. Hence, the probability
that A succeeds and c = ĉ is at most εc. Note that this case equally applies to
trapdoor commitment schemes.

Case 2. (ĉ 	= c) The adversary A searches a ĉ different from c. As depicted on Fig. 9,
we can reduce the adversary A to an adversary against a second preimage search
game. We use an algorithm B bounded by a complexity μ with the help of one query
to the equivocate oracle. B plays the second preimage game with a challenger C on
one side and simulate a challenger for A on the other side at the same time. Using
adversary A and algorithm B , we construct an adversary AB which plays the second
preimage game with the challenger C . Note that adversary AB has a complexity
bounded by T + μ.

First, B generates the keys and sends Kp to A . B receives a message m from
A and receives a challenge c from C . B can deduce the decommit value d by
calling the oracle equivocate(m,c). Note that c has been picked uniformly and
consequently the distribution of (c,d) is the same as if they have been yield by
the commit algorithm. Then, B can send c||d to A . A sends a ĉ||d̂ to B . Finally, B
sends it to the challenger C .

Note that B simulates perfectly a challenger for A . Hence, A and AB win their
respective game at the same time and consequently with the same probability of

290 S. Pasini and S. Vaudenay

success. Recall that the probability of success of an adversary against a second
preimage game bounded by a complexity T + μ is smaller than εh when H is a
(T + μ,εh)-weakly collision-resistant hash function. Hence, the probability that A
succeeds and c 	= ĉ is at most εh. Note that the proof equally applies to oracle com-
mitment schemes since it is unlikely that the challenge c was output by a commit
oracle.

We conclude that any one-shot adversary bounded by a complexity T against the
protocol of Fig. 6 has a probability of success smaller than εc + εh when the protocol
uses a (T + μ,εh)-weakly collision resistant hash function H and a (T + μ,εc)-trapdoor
commitment scheme. ��

We consider now powerful adversaries.

Theorem 5. Consider the message authentication protocol of Fig. 6. We assume that
the function H is a (T + μ,εh)-weakly collision resistant hash function and the com-
mitment scheme is a (T + μ,εc)-trapdoor commitment scheme in the CRS model (resp.
oracle commitment scheme). There exists a (small) constant μ such that for any T , any
adversary against this message authentication protocol with complexity bounded by T
and with number of Alice’s (resp. Bob’s) instances bounded by QA (resp. QB) has a
probability of success p at most QA(εh + εc).

Assuming that WCR hash functions and trapdoor commitments such that εc � εh =
O(T2−k) exist, we have p = O(T ·QA2−k). As an example, assuming that an adversary
is limited to QA ≤ 210, T ≤ 270, and that the security level requires p≤ 2−20, the proto-
col of Fig. 4 requires k ≥ 160 and our protocol requires k ≥ 100. Using MD5 [Riv92],
our protocol still achieves a quite luxurious security even though collisions have been
found on MD5 [WY05].

Proof. Consider an adversary who launches QA instances of Alice and QB instances
of Bob. Clearly, we can simulate all instances of Bob, pick one who will make the
attack succeed, and launch only this one. Hence, we reduce to QB = 1. Recall from
Lemma 4 that any one-shot adversary has a probability of success smaller than εh + εc.
Using Lemma 1, we conclude that any adversary has a probability of success at most
QA(εh + εc). ��

5 On the Required Entropy of Authenticated Communications

Using a weak authenticated channel, adversaries can delay or replay authenticated mes-
sages. With non-interactive protocols an adversary can run the catalog attack: i.e. he
launches several instances of Alice and recover many authenticated SAS. He launches
one Bob and use one SAS of the catalog.

We would like to upper bound the security of an arbitrary message authentication
protocol given the amount of authenticated strings it uses. Assume that the protocol
is used between Alice and Bob. We suppose that the protocol can use any sequence
of authenticated messages in a given set S during the protocol. We call it a transcript.
Note that authenticated strings are interleaved with regular messages which are not

An Optimal Non-interactive Message Authentication Protocol 291

represented in the transcript. For any input message m, the used transcript during a
protocol instance is picked in the set S of all possible transcripts with a distribution Dm.

Theorem 6. We consider an arbitrary message authentication protocol between Alice
and Bob which uses an authenticated channel. Let S be the set of all possible protocol
transcripts through the authentication channel for any input message. Let s be its cardi-
nality. There exists a generic one-shot attack with probability of success at least 1

s −2−t

which runs in polynomial time in terms of t.

Proof. We consider a general man-in-the-middle attack in which the adversary first
picks m ∈U {0,1}t and m̂ ∈U {0,1}t and launches Alice with input m. The attack runs
synchronized protocols between Alice and a simulator for Bob, and a simulator for
Alice with input m̂ and Bob. Following the attack, every authenticated message which
must be sent by the simulator is replaced by an authenticated message which has just
been received by the simulator.

Let SASm be the (random) sequence of all authenticated strings (the transcript) which
would be exchanged in the protocol between Alice and the simulator if the simula-
tor where honest, and SASm̂ be the similar sequence between the simulator and Bob.
Clearly, if SASm̂ = SASm, the attack succeeds. Note that an attack makes sense only if
m̂ is different of m.

We have

Pr[success] = Pr[SASm = SASm̂ and m 	= m̂]
≥ Pr[SASm = SASm̂]−Pr[m = m̂].

Note that SASm and SASm̂ are two identically distributed independent random vari-
ables whose support are included in S. Due to Lemma 8 (see Appendix) we can write
Pr[SASm = SASm̂] ≥ 1

s . Since m and m̂ are uniformly distributed in {0,1}t , we have
Pr[m = m̂] = 2−t . Finally, we obtain

Pr[success]≥ 1
s
−2−t

with equality if and only if the SAS distribution is uniform among the set S. ��

We finally provide a generic attack in the general case.

Theorem 7. We consider an arbitrary NIMAP between Alice and Bob which uses a
weak authenticated channel. Let S be the set of all possible protocol transcripts through
the authentication channel for any input message. Let s be its cardinality. There exists
a generic attack which uses QA instances of Alice and an offline complexity O(T) with

probability of success approximately 1− e−
T·QA

s .

Proof (Sketch). We consider the generic attack in which the adversary starts by simu-
lating T Alice instances launched with random inputs m̂i and obtains a list of possible
SAS, i.e. ŜASi. Then, he launches QA real instances of Alice with random inputs m j

and consequently obtains QA authenticated SAS, i.e. SAS j. The attack succeeds when
at least one authenticated SAS released by Alice corresponds to a computed one, i.e.

292 S. Pasini and S. Vaudenay

there exists k, � such that SASk = ŜAS�. The adversary can launch a single Bob with
input m̂� by simulating Alice and can use SASk for the authentication when needed.

If the distribution of all SAS is uniform, we have a birthday effect and thus the prob-

ability of success is approximately 1− e−
T ·QA

s . When the distribution is not uniform,
the probability is even larger (see Appendix B of [Pas05]). ��

Theorem 6 says that there exists a one-shot attack against any message authentication
protocol which succeeds with probability essentially 1

s where s is the size of S. The-
orem 7 says that there exists a generic attack against any NIMAP which uses a weak

authenticated channel which succeeds with probability essentially 1−e−
T ·QA

s where QA

is the number of instances of Alice used. Hence, they cannot be secure unless T ·QA is
negligible against s. Thus, any NIMAP which is secure for T ·QA � s is optimal.

Consequently, our proposed protocol is optimal due to Theorem 5 provided that WCR
hash functions and trapdoor commitment schemes such that εc � εh = O(T2−k) exist.
By comparison with our protocol, we can note that the protocol of Fig. 4 is not optimal.

6 Applications

One key issue in cryptography is to setup secure communications over insecure chan-
nels, such as Internet. We know that using public key cryptography it is possible by ex-
changing public keys in an authenticated way. The proposed protocol is used in this case
for public key authentications, e.g. GPG public keys. Typical applications where public
key cryptography is used, and consequently public key authentication is required, are

– distant hosts authentication, e.g. SSH
– e-mail authentication, e.g. GPG signature
– secure e-mail, e.g. GPG encryption
– secure voice over IP, e.g. PGPfone

Another possible application can be authentication of legal documents. For instance,
if two persons would exchange a document without complex appendix, such as GPG
signature, they can simply send the corresponding commit and decommit values and
then authenticate the hashed commit value. The recipient can check whether or not it is
correct. Note that integrity is protected.

7 Conclusion

In this paper, we have proposed a new non-interactive message authentication protocol
based on a commitment scheme. It has the same security as the currently used in SSH
against one-shot attacks but using only half authenticated bits, e.g. 80 bits. 100 bits only
are required against more general attacks. Indeed, due to the commitment scheme, the
authenticated value is not foreseeable and the protocol is resistant to collision attacks.
The latter theorem proposes that our protocol is optimal. We can in addition conclude
on the non-optimality of the protocol used today, but the question about MANA I is
still opened. Finally, we stress that the security of our protocol relies essentially on the
hardness of the SB game of the commitment scheme and on the hardness on the WCR
game of the hash function.

An Optimal Non-interactive Message Authentication Protocol 293

References

[BCC88] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure proofs
of knowledge. Journal of Computer and System Sciences, 37(2):156–189, 1988.

[BCJ+05] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe Lemuet, and
William Jalby. Collisions of SHA-0 and reduced SHA-1. In Advances in Cryp-
tology – EUROCRYPT ’05: 24th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Lecture Notes in Computer Sci-
ence, pages 36–57, Aarhus, Denmark, 2005. Springer-Verlag.

[BK90] Joan F. Boyar and Stuart A. Kurtz. A discrete logarithm implementation of per-
fect zero-knowledge blobs. Journal of Cryptology, 2(2):63–76, 1990.

[BR93] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.
In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO ’93: 13th An-
nual International Cryptology Conference, volume 773 of Lecture Notes in Com-
puter Science, pages 232–249, Santa Barbara, California, U.S.A., 1993. Springer-
Verlag.

[BSSW02] Dirk Balfanz, Diana K. Smetters, Paul Stewart, and H. Chi Wong. Talking to
strangers: Authentication in ad-hoc wireless networks. In Proceedings of Net-
work and Distributed System Security Symposium 2002 (NDSS’02), San Diego,
California, U.S.A, February 2002.

[CGHGN01] Dario Catalano, Rosario Gennaro, Nick Howgrave-Graham, and Phong Q.
Nguyen. Paillier’s cryptosystem revisited. In CCS ’01: Proceedings of the 8th
ACM conference on Computer and Communications Security, pages 206–214,
Philadelphia, Pennsylvania, U.S.A., 2001. ACM Press.

[DG03] Ivan Damgård and Jens Groth. Non-interactive and reusable non-malleable com-
mitment schemes. In STOC ’03: Proceedings of the thirty-fifth annual ACM sym-
posium on Theory of computing, pages 426–437, San Diego, California, U.S.A.,
2003. ACM Press.

[GMN04] Christian Gehrmann, Chris J. Mitchell, and Kaisa Nyberg. Manual authentication
for wireless devices. RSA Cryptobytes, 7(1):29–37, January 2004.

[LdW05] Arjen K. Lenstra and Benne de Weger. On the possibility of constructing mean-
ingful hash collisions for public keys. In Colin Boyd and Juan Manuel González
Nieto, editors, ACISP ’05: The 10th Australasian Conference on Information Se-
curity and Privacy, volume 3574 of Lecture Notes in Computer Science, pages
267–279, Brisbane, Australia, 2005. Springer-Verlag.

[LWdW05] Arjen Lenstra, Xiaoyun Wang, and Benne de Weger. Colliding
X.509 certificates. Cryptology ePrint Archive, Report 2005/067, 2005.
http://eprint.iacr.org/.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuos-
ity classes. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT
’99: International Conference on the Theory and Application of Cryptographic
Techniques, volume 1592 of Lecture Notes in Computer Science, pages 223–238,
Prague, Czech Republic, May 1999. Springer.

[Pas05] Sylvain Pasini. Secure communications over insecure channels using an authen-
ticated channel. Master’s thesis, Swiss Federal Institute of Technology (EPFL),
2005. http://lasecwww.epfl.ch/php code/publications/search.
php?ref=Pas05.

[Riv92] Ronald L. Rivest. The MD5 message digest algorithm. Technical Report Internet
RFC-1321,IETF, 1992.

294 S. Pasini and S. Vaudenay

[Vau05] Serge Vaudenay. Secure communications over insecure channels based on short
authenticated strings. In Victor Shoup, editor, Advances in Cryptology – CRYPTO
’05: The 25th Annual International Cryptology Conference, volume 3621 of
Lecture Notes in Computer Science, pages 309–326, Santa Barbara, California,
U.S.A., August 2005. Springer-Verlag.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu. Crypt-
analysis of the hash functions MD4 and RIPEMD. In Ronald Cramer, editor,
Advances in Cryptology – EUROCRYPT ’05: 24th Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, Lecture Notes
in Computer Science, pages 1–18, Aarhus, Denmark, 2005. Springer-Verlag.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions.
In Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT ’05: 24th An-
nual International Conference on the Theory and Applications of Cryptographic
Techniques, Lecture Notes in Computer Science, pages 19–35, Aarhus, Denmark,
2005. Springer-Verlag.

[WYY05a] Xiaoyun Wang, Yiqun Yin, and Hongbo Yu. Finding collisions in the full SHA1.
In Victor Shoup, editor, Advances in Cryptology – CRYPTO ’05: The 25th Annual
International Cryptology Conference, volume 3621 of Lecture Notes in Computer
Science, pages 17–36, Santa Barbara, California, U.S.A., 2005. Springer-Verlag.

[WYY05b] XiaoyunWang,XiuyuanYu,andL.Y.Yin.EfficientcollisionsearchattacksonSHA-
0. InVictorShoup, editor,Advances inCryptology–CRYPTO’05:The25thAnnual
International Cryptology Conference, volume 3621 of Lecture Notes in Computer
Science, pages 1–16, Santa Barbara, California, U.S.A., 2005. Springer-Verlag.

Appendix

Lemma 8. Let X and Y be two identically distributed independent random variables
with distribution D over a support set S. We have

Pr[X = Y]≥ 1
#S

(1)

with equality if and only if D is the uniform distribution.

Proof. Let s be the size of the set S. We have

Pr[X = Y] = ∑
Si∈S

Pr[X = Si] ·Pr[Y = Si] = ∑
Si∈S

p2
i

where pi is Pr[X = Si].
Let us write pi = 1

s + ρi. Thus, we obtains

∑
Si∈S

p2
i = (

1
s
)2 ∑

Si∈S

1 + 2
1
s ∑

Si∈S

ρi + ∑
Si∈S

ρ2
i .

Knowing that the sum of pi equals to 1, we can easily deduce that the sum of ρi equals
0. Thus, ∑Si∈S p2

i equals 1
s + ∑Si∈S ρ2

i . The sum of ρ2
i is greater or equal to 0. Note that

it is equal to 0 if and only if all ρi are null, i.e. D is uniform. ��

A New Criterion for Nonlinearity of Block
Ciphers

Orr Dunkelman1,
 and Nathan Keller2

1 Computer Science Department, Technion,
Haifa 32000, Israel

orrd@cs.technion.ac.il
2 Einstein Institute of Mathematics, Hebrew University,

Jerusalem 91940, Israel
nkeller@math.huji.ac.il

Abstract. For years, the cryptographic community has searched for
good nonlinear functions. Bent functions, almost perfect nonlinear func-
tions, and similar constructions have been suggested as a good base for
cryptographic applications due to their highly nonlinear nature. In the
first part of this paper we study these functions as block ciphers, and
present several distinguishers between almost perfect nonlinear permu-
tations and random permutations. The data complexity of the best dis-
tinguisher is O(2n/3) and its time complexity is O(22n/3) for an n-bit
block size, independent of the key size.

In the second part of the paper we suggest a criterion to measure the
effective linearity of a given block cipher. We devise a distinguisher for
general block ciphers based on their effective linearity. Finally, we show
that for several constructions, our distinguishing attack is better than
previously known techniques.

Keywords: Almost perfect nonlinear permutations, highly nonlinear
functions, effective linearity, differential cryptanalysis.

1 Introduction

For years, highly nonlinear functions were extensively used in various crypto-
graphic applications. Highly nonlinear functions were promoted since algorithms
that are close to linear are susceptible to various approximation attacks. Dif-
ferential cryptanalysis [5] and linear cryptanalysis [11] show that even partial
approximations of the encryption algorithm by a linear function are sufficient to
mount powerful distinguishing and key-recovery attacks.

In [12] the authors suggested to use (almost) perfect nonlinear functions (func-
tions with a maximal distance from all linear structures) in block ciphers. The
nonlinear functions can be used either as a building block in the structure of
the block cipher (such as an S-box [15, 16, 17]) or as the entire block cipher (as
discussed in [1]). Such (almost) perfect nonlinear constructions can be used to
prove security against differential and linear cryptanalysis [18].
� The research presented in this paper was partially supported by the Clore scholarship

programme.

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 295–312, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

296 O. Dunkelman and N. Keller

In [15] the following construction, later named in [18], was suggested: An al-
most perfect nonlinear permutation (APNP) is a permutation f : GF (2n) →
GF (2n) such that for any a 	= 0, the function g(x, a) = f(x)⊕ f(x⊕ a) assumes
exactly 2n−1 different values. It means that for any two pairs of distinct input
values with the same difference, the corresponding output pairs do not have
the same difference. Due to this property, APNPs are considered secure against
differential cryptanalysis [5] as well as against linear cryptanalysis [11].1 A per-
mutation that is very close to be an APNP is the S-box SubBytes of AES [7]. In
the SubBytes permutation, for a non-zero input difference α, there are two pairs
of inputs with difference α and the same output difference, while the other 126
pairs with input difference α have different output differences.

In the first part of this paper we analyze the concept of using highly non-
linear functions (such as APNPs) as the entire block cipher. We devise several
distinguishers between an APNP and a random permutation based on the “too
good” differential properties of APNPs. The data and memory complexities of
the best distinguisher are O(2n/3) with time complexity of O(22n/3) where n is
the block size, independent of the key size. The distinguishers are then extended
to ciphers with close to uniform difference distribution tables (that is, ciphers
that are close to APNPs). This result leads to the conclusion that despite their
favorable properties, highly nonlinear ciphers might possess inherent weakness.

In a way, the concept of this part of the paper is similar to the concept behind
impossible differential cryptanalysis [4]. Usually, differential cryptanalysis uses
differentials with high probability. The idea of impossible differential attacks is to
exploit differentials with zero probability. The attacker utilizes the fact that the
differential properties are “too strong”. In the same way, our attacks recognize
APNPs due to their “too high” level of nonlinearity.

In the second part of this paper we analyze the following encryption scheme:
Let f be a permutation, f−1 be its inverse, and K be a randomly chosen non-zero
key. We define g(x) = f−1(f(x) ⊕K), and show that g has several predictable
differential properties. Those properties are related to the level of nonlinearity
of the function f . We use those properties to define the effective linearity of the
function f , and show that the effective linearity of almost perfect nonlinear per-
mutations is 1, for random permutations it is 2, and is 2n for linear permutations
(where n is the block size). We note that the effective linearity of a block cipher
can be approximately computed with complexity O(2n/2). We present various
scenarios in which this value can be used in distinguishing and key recovery at-
tacks. For example, we show that a 2-round Feistel structure surrounded by two
key dependent decorrelation modules can be easily distinguished from random
permutations, regardless of the Feistel round function.

This paper is organized as follows: In Section 2 we give the definition and
theoretical background of highly nonlinear functions. In Section 3 we present
two distinguishing attacks on ciphers with uniform difference distribution tables.

1 Note that there are two colliding definitions to the term nonlinearity — nonlinearity
as distance from linear functions, and nonlinearity in the sense of almost perfect
nonlinear permutations. In this paper we use the latter definition.

A New Criterion for Nonlinearity of Block Ciphers 297

Section 4 examines differential properties of the construction g = f−1(f(x)⊕K),
and defines the effective linearity of a function. In Section 5 we use the effective
linearity to mount distinguishing and key recovery attacks. In the appendices we
bring various computations and proofs. We summarize the paper in Section 6,
and discuss the implications of our findings.

2 Definitions and Theoretical Background

There are several possible notions of high nonlinearity of a boolean function. In
this paper we use the following definition, presented in [15]:

Definition 1. A function f : GF (2n) → GF (2m) is perfectly nonlinear if for
any non-zero w ∈ GF (2n) the difference f(x + w) − f(x) obtains all the values
y ∈ GF (2m) exactly 2n−m times each.

In [15] the properties of such functions were studied, and it was shown that
perfectly nonlinear functions f : GF (2n) → GF (2m) exist if and only if n ≥ 2m.
However, in real life designs many designers prefer to use functions in which
the size of the input is equal to the size of the output. Thus, perfectly nonlinear
functions cannot be used. This led to the introduction of almost perfect nonlinear
functions, defined as following:

Definition 2. A function f : GF (2n) → GF (2n) is almost perfectly nonlinear
if for any a 	= 0, the function g(x, a) = f(x) ⊕ f(x ⊕ a) assumes exactly 2n−1

different values.
If such f is also a permutation, f is called “almost perfectly nonlinear per-

mutation” (in the sequel we abbreviate this notation to “APNP”).

Note, that since the characteristic of the field GF (2n) is 2, it follows that for
any function f : GF (2n) → GF (2n), every value of g(x, a) is assumed an even
number of times. Therefore, 2n−1 is the maximal possible output size of g for a
non-zero α.

A permutation that is close to be an APNP is the S-box SubBytes of AES [7].
This S-box is a permutation f : GF (28) → GF (28) and for every a 	= 0, the
function g(x, a) = f(x)⊕ f(x⊕ a) assumes 28−1 − 1 = 127 values.

As stated before, this notion of nonlinearity is closely related to differential
properties of the function f and the definition of an APNP can be restated
in terms of the difference distribution table of the function used in differential
cryptanalysis [5]. First we recall the definition of the difference distribution table
of a function:

Definition 3. Let f : GF (2n) → GF (2m) be a general function. The difference
distribution table (DDT) of f is an (2n) × (2m) matrix whose (i, j) entry is
defined as #{x ∈ GF (2n)|f(x)⊕ f(x⊕ i) = j}.
A function f is considered optimally secure against differential cryptanalysis if
the entries in the DDT of f are the lowest possible ones. This is the case when
f is an almost perfect nonlinear function. We can now rephrase the definition of
an almost perfect nonlinear function in terms of the DDT:

298 O. Dunkelman and N. Keller

Definition 4. A function f : GF (2n) → GF (2n) is almost perfectly nonlinear
if the highest entry in the DDT of f (except for the entry (0 → 0) that equals
2n) is 2.

This definition is closely related to the following definition of δ-uniformity:

Definition 5. For an n × s bits S-box S(·) (where n ≥ s), we denote by δ the
highest entry in the difference distribution table (except for (0,0) entry which is
always 2n), namely

δ = max
α∈{0,1}n,α	=0,β∈{0,1}s

#{x|S(x)⊕ S(x⊕ α) = β}

S is called differentially δ-uniform.

Hence, almost perfect nonlinear permutations are differentially 2-uniform.
We recall that differential cryptanalysis is mostly interested in differentials

with high probability (or zero probability). This led various papers [17, 18, 21]
to suggest using functions that are as differentially uniform as possible. If such
functions are used, the cipher is expected to have fewer differentials with high
probability, as well as less zero probability differentials.

We stress that usually APNPs are not used in real life ciphers. However,
this is mostly due to implementation issues, as the common belief is that these
functions are better than other constructions. For example, many ciphers use
APNPs as building blocks, like the S-box used in the AES.

3 Distinguishing Highly Nonlinear Functions from
Random Permutations

In this section we present two distinguishing attacks on highly nonlinear func-
tions. Each is based on a different assumption and performs in a different model
(known plaintext or chosen plaintext). These attacks are capable of identifying
whether a given black box is a random permutation or an highly nonlinear func-
tion. Hence, if an APNP is used as the cipher, it can be distinguished from a
random permutation. We discuss the possible applications of such an attack in
Section 5.

We note that the Even-Mansour construction EK1,K2(P) = F (P ⊕K1)⊕K2
assumes that the underlying F is a pseudo random permutation [8]. Our attacks
can distinguish the case where F is an APNP from the case that F is a random
permutation, despite the commonly believed good security properties of APNPs.

3.1 A Chosen Plaintext Distinguisher

The first attack is a chosen plaintext attack based on the birthday paradox.
Let f : GF (2n) → GF (2n) be a black box permutation for which we have to
determine whether it is an APNP or a random permutation.

We perform the following algorithm with a parameter m (to be determined
later):

A New Criterion for Nonlinearity of Block Ciphers 299

1. Encrypt m distinct pairs of plaintexts (P1, P2), such that P1 ⊕ P2 = α and
P1 < P2 for some fixed non-zero value α by f to get the ciphertext pairs of
the form (C1, C2) = (f(P1), f(P2)).

2. Store the XOR values of the ciphertexts, i.e., C1 ⊕ C2 in a hash table.
3. If we obtain a collision in the hash table (two pairs with the same ciphertext

difference), halt and conclude that f is not an APNP.
4. If no collisions are encountered, conclude that f is an APNP.

A collision is formed of two distinct pairs (P1, P2 = P1⊕α) and (P3, P4 = P3⊕
α), whose corresponding ciphertexts (C1, C2) and (C3, C4), respectively, satisfy
C1 ⊕C2 = C3 ⊕C4. Such a collision means that the equation f(x)⊕ f(x⊕α) =
C1 ⊕ C2 = C3 ⊕ C4 has (at least) four solutions.

Recall that an APNP is a permutation for which the equation f(x)⊕ f(x⊕ α)
= β for non-zero α and β has at most two solutions (x0 and x0⊕α for some x0).
Thus, for any value of m (even for m = 2n−1), no such collision is expected.

For a random permutation, however, the algorithm is expected to find such
an instance. And thus, once such an instance is found, the algorithm concludes
that f is not an APNP.

3.2 Analysis of the Chosen Plaintext Attack

Recall, that the attack is based on encrypting pairs of plaintexts (P1, P2) that
satisfy P1⊕P2 = α for some fixed arbitrary non-zero α. If there are two distinct
plaintext pairs (P1, P2) and (P3, P4) whose corresponding ciphertexts (C1, C2)
and (C3, C4), respectively, satisfy C1 ⊕ C2 = C3 ⊕ C4, then the black box per-
mutation f is not an APNP for sure.

Let us examine the number of expected quartets for f . Consider the row
corresponding to α in DDT f , the difference distribution table of f . For every
fixed output difference β, the value that corresponds to β in this row represents
the number of pairs with input difference α and output difference β (recall that
x and x ⊕ α appear as two pairs (x, x ⊕ α) and (x ⊕ α, x)). In other words,
DDT f(α, β) (entry (α, β) of DDT f) is

DDT f(α, β) = |{x ∈ GF (2n) : f(x)⊕ f(x⊕ α) = β}|.

Note that a permutation is considered APNP if and only if its difference distri-
bution table does not contain values greater than 2.

For a random permutation f , we may assume that values in any single row
of the difference distribution table behave almost as Poisson random variables.
That is, the values in the difference distribution table are distributed according
to 2 · Poi(1/2).2 Thus, the value 2k is expected to appear in a given row about
2n · e−1/2 · 2−k/k! times.

Collisions in Step 3 can occur only for values of β whose corresponding entry
of the difference distribution table is more than 2. Let us examine only values of
β in the difference distribution table with 4 or more. Out of the 2n possible β

2 Recall that in an XOR difference distribution table all values are even.

300 O. Dunkelman and N. Keller

entries, 0.0902·2n such entries exist. Due to the birthday paradox, when we want
to have success rate of p, we require p > 1 − e−m·(m−1)/(2·0.0902·2n). Therefore,
to ensure success probability of 0.8 we need m > 0.1618 · 2n/2 pairs of this kind.

However, the algorithm encrypts also pairs whose output difference β has 2
in the difference distribution table. Hence, the real number of pairs we need
to examine is about 4 times larger, as only one out of 4 pairs (more precisely,
about 23%) has an output difference meeting our requirement. Therefore, the
data complexity of the algorithm is N = 2m = 1.4070·2n/2 plaintexts (or queries
to the black box).

The time complexity of the algorithm is N = 1.4070 · 2n/2 encryptions and
m = 0.7035 · 2n/2 memory accesses in the worst case. The memory requirements
are m = 0.7035 · 2n/2 memory cells in the worst case.

Changing the attack scenario into a known plaintext attack does not change
the attack significantly. The data complexity is m = 1.3459 · 2n/2 queries, and
the time complexity is O(22n/3) using Wagner’s algorithm for the generalized
birthday paradox problem [24].

3.3 An Improvement to the Chosen Plaintext Attack

An improvement to the algorithm uses the fact that the above is true for any
non-zero α. The attack requires m distinct plaintexts, such that the XOR value
of any two of them is among a list of m values (for example, setting some of
the bits of all plaintexts to be zero). In this case for each pair of plaintexts
(P1, P2) we compute (P1 ⊕ P2, f(P1) ⊕ f(P2)), and insert it into a hash table.
A collision in the hash table suggests a quartet of values (P1, P2) and (P3, P4)
such that P1 ⊕ P2 = P3 ⊕ P4 and f(P1) ⊕ f(P2) = f(P3) ⊕ f(P4). This cannot
be achieved for an almost perfect nonlinear permutation, and thus, can be also
used for distinguishing.

For m plaintexts chosen in this way, we have m2/2 pairs, each producing a
string of 2n bits. Not all 22n possible 2n-bit strings are produced in this process.
More precisely, the number of possible values for this string is m·2n. If we choose
m such that (m2/2)2 > 1.17m2n, we have a chance of 50% to find a collision (in
case of a random permutation) according to the birthday paradox.

Setting m = 1.794 ·2n/3 we expect to find such a collision with probability 0.8.
Thus, the data complexity of this attack is m = 1.794 · 2n/3 chosen plaintexts,
and the time complexity of the attack is m2/2 = 1.609 · 22n/3 memory accesses.

3.4 Other Kinds of Permutations

Permutations that are very close to APNPs are widely used in block ciphers. For
this kind of permutations, the above attacks still succeed with almost the same
success rate.

Another question which arises, is what happens when the permutation we
wish to distinguish is not so close to be differentially 2-uniform. That is, what if
there are many entries with value of 4 in the difference distribution table of the
permutation. Formally, out of the 2n−1 pairs, assume that at most a ratio p of

A New Criterion for Nonlinearity of Block Ciphers 301

the pairs are in entries with value of 4 in the difference distribution table, while
the other non-zero entries are 2 (up to the 0 → 0 entry).

For these functions, the above algorithms fail, as the probability to have two
pairs whose output difference is the same, is no longer negligible. This can be
solved when p is far from 0.23,3 e.g., p < 0.2 or p > 0.3 (in case p > 0.3, we
require that at least p of the pairs are in entries with value of 4).

The transformation of the above algorithms to deal with such permutations
is changing the identification from “find such an instance, halt and output . . . ”
to “count how many instances there are, and compare this number to how many
should be”. The analysis of the exact number of plaintexts m needed is quite
straightforward given p and the requested success rate.

4 Differential Properties of f−1(f(x) ⊕ K) and Their
Applications

In this section we consider the differential properties of some special structure
derived from a permutation f and show how to utilize these properties in order
to study the structure of f itself. Let g(x) = f−1(f(x) ⊕K) be a permutation
where K is some fixed key. First, we show that using the properties of g we can
determine whether f is an APNP or a random permutation. Then we show how
to generalize this result in order to classify functions according to their level of
nonlinearity. We formalize this classification by defining the effective linearity
coefficient (EL) of a permutation which corresponds to the level of linearity
determined by our method.

4.1 Theoretical Background

Let f : GF (2n) → GF (2n) be a black box permutation for which we have to
determine whether it is an APNP or a random permutation. Choose an arbitrary
non-zero K ∈ GF (2n), and define the permutation g(x) = f−1(f(x) ⊕K).

Let A, B be a pair of plaintexts with a non-zero input difference α (e.g.,
A ⊕ B = α) and consider γ = g(A) ⊕ g(B). We shall compute the probability
of the event γ = α, and show that this probability can be used to distinguish
APNPs from random permutations.

Let β = f(A) ⊕ f(B). If f is an APNP, (A, B) is the only pair of plaintexts
with input difference α and output difference β. Now, consider the pair (f(A)⊕
K, f(B)⊕K). There are two cases:

1. f(A) ⊕K = f(B). In this case, we have g(A) = B and g(B) = A and thus
γ = g(A)⊕g(B) = B⊕A = α. This case occurs when β = f(A)⊕f(B) = K
which happens with probability of 2−n.

3 The expected ratio of 4 or more in the difference distribution table of a random
permutation is about 0.09 of the entries. However, entries with 6,8, or even more,
contribute more quartets. The total number of quartets counted by the above algo-
rithms for a random permutation is equal to the case where 0.23 of the entries of
the table that are 4 (while the remaining are 2’s and 0’s).

302 O. Dunkelman and N. Keller

2. f(A)⊕K 	= f(B). In this case, the pairs (f(A), f(B)) and (f(A)⊕K, f(B)⊕
K) differ, but still have the same XOR difference β. Thus, if f is an APNP,
the difference γ = g(A)⊕g(B) = (f−1(f(A)⊕K))⊕(f−1(f(B)⊕K)) cannot
be equal to α. Therefore, in this case γ 	= α always.

Combining the two cases together we obtain

Pr
A,B,K∈GF (2n),A 	=B,K 	=0

[γ = α] = 2−n. (1)

The analysis presented in Appendix A shows that for a random permutation
this probability (Pr[γ = α]) equals to 2 · 2−n. The difference between the prob-
abilities can be used in order to distinguish between an APNP and a random
permutation.

We have experimentally verified that the value 2 · 2−n is the correct value for
a random permutation and that 2−n is the correct value for an APNP. This was
done by generating sets of random permutations of 8,10,12,14 and 16 bits, and
counting all possible quartets (A, B, g(A), g(B)) (for a large set of K values, for
all α values).

4.2 An Adaptive Chosen Plaintext and Ciphertext Distinguisher

The algorithm of the distinguisher is as follows: Let f : GF (2n) → GF (2n) be a
black box permutation for which we have to determine whether it is an APNP
or a random permutation and m, threshold be integers specified later.

1. Encrypt m distinct plaintexts Pi, for i = 1, . . . , m.
2. Choose an arbitrary K ∈ GF (2n).
3. Decrypt the values f(Pi)⊕K to get g(Pi) = f−1(f(Pi)⊕K).
4. Store the m values of the form Pi ⊕ g(Pi) into a hash table.
5. Count the number of collisions in the hash table. If the number of collisions

is greater than threshold output “random permutation”. Otherwise, output
“APNP”.

We note that if P1 ⊕ g(P1) = P2 ⊕ g(P2) then we have a right quartet
((P1, P2), (g(P1), g(P2))). Starting with m plaintexts, we get m values of P ⊕
g(P). Once there is a collision in the hash table, the colliding values suggest a
quartet. If there are three values in the same entry of the hash table, then we
get three quartets, or generally, if there are k values in the same entry, we get
k(k − 1)/2 quartets.

For an APNP, about 2−n of the all possible quartets satisfy our conditions,
while for a random permutation, about 2 · 2−n satisfy our conditions. For m =
4 · 2n/2 and threshold = 10 the success rate is 0.816. For m = 2n/2 the success
rate of this attack is 0.594.

This attack may seem less desirable, given the attacks of the previous section,
as it has a similar data complexity but a more stern attack model. However, this
attack can be easily extended to other cases, as we present in Section 4.3.

A New Criterion for Nonlinearity of Block Ciphers 303

We remark that one can make a slight change in the attack such that only
quartets of the form (A, B, g(A), g(B)) where A 	= B 	= g(A) 	= g(B) are counted.
Using this variant of the attack the number of expected collisions is 0 for APNP,
and if we get even one collision the permutation is certainly not an APNP. The
number of expected collisions for a random permutation is 1

4 · 2−n of the total
number of possible quartets.

This can be used to increase the success probability of the attack by setting
threshold = 1. More accurately, for the same data complexity as before, the
success rate of the attack is about 0.98. We can also reduce the data complexity
by a factor of

√
2 and still have a success rate of 0.86.

4.3 The Effective Linearity of a Permutation

Following the previous attack, we define the effective linearity of a permutation.

Definition 6. Let f : GF (2n) → GF (2n) be a permutation. The effective lin-
earity of f is:

EL(f) = 2n

(
1

2n − 1

)2

·
∑

K∈GF (2n)\{0}

∑
α∈GF (2n)\{0}

Pr

[
α

g(x)=f−1(f(x)⊕K)
−−−−−−−−−−−−−→ α

]

Actually, EL(f) is the average of the probabilities Pr[α = γ] over all non-zero
K’s and α’s multiplied by 2n.

For a random permutation this value is expected to be close to 2 (as shown
in Appendix B). If this value is not close to 2, then our attacks can be applied
to the permutation and distinguish it from a random permutation.

We can either calculate EL(f) analytically when the difference distribution
table of f is known (like in the analysis for a random permutation), or by ex-
perimentally measuring it. Taking several sets of O(2n/2) messages and using
several K values, we can use statistical methods to evaluate EL(f). Note that
the O(2n/2) complexity is achieved by using many (if not all) values of α simul-
taneously.

The effective linearity of f is not lower than 1 (as when K = f(A)⊕ f(B) we
get that g(A) = B and g(B) = A) and cannot be higher than 2n (which is the
value for linear permutations). As the value for a random permutation is 2, we
suggest designing ciphers with effective linearity close to 2.

It is possible to show (see Appendix B) that for a two round Feistel construc-
tion whose round functions are both APNP, the effective linearity is 3, while if
the used functions are random permutations it is expected to be at least 8. An
interesting observation regarding the effective linearity of Feistel constructions,
is that after three Feistel rounds using random permutations as round functions,
the effective linearity is 2. This might be viewed as another realization of the
Luby-Rackoff result about Feistel constructions [10].

Another interesting remark about Feistel constructions, is that if the permu-
tation of the first round p1 has effective linearity EL(p1), and the second round’s
permutation p2 has effective linearity EL(p2), then the effective linearity EL(f)

304 O. Dunkelman and N. Keller

of the two round Feistel satisfies EL(f) ≥ EL(p1) · EL(p2). The exact proof is
given in Appendix B.

When the round functions are not bijective, the difference distribution table
of the 2-round Feistel construction is expected to have more zero entries than
usual. As the sum of every line in the difference distribution table is constant,
it follows that the remaining entries are expected to be higher, leading to an
higher effective linearity. Thus, the more entries having a zero value in the dif-
ference distribution table, the higher the effective linearity is expected to be. For
example, we show in Appendix B that the effective linearity of 2-round DES is
at least 220 (independent of the key).

5 Various Attacks Based on the Effective Linearity of
Permutations

In this section we present several possible scenarios in which measuring the
effective linearity of various permutations can be used in order to mount distin-
guishing and key recovery attacks.

5.1 Treating Decorrelation Modules

Let us consider a cipher of the form E = DM2 ◦ F2 ◦ F1 ◦DM1, where DMi is
a decorrelation module (with some key) [22], and Fi is a Feistel round with a
random permutation as the round function (along with some key).

We recall that once the key is set the decorrelation module is linear, but when
the key is random, the probability of any non-trivial differential going through
the decorrelation module equals 1/(2n − 1) on average. A similar condition can
be proved with respect to linear cryptanalysis as well.

Due to the nature of the decorrelation module, any differential (even a trun-
cated one) cannot have probability higher than the trivial one through the first
decorrelation module. The same is true for linear approximations as well. More-
over, it is impossible to devise a SQUARE-like property for this cipher as the
decorrelation module prevents the attacker from setting a good input set.

While all these methods fail, we can efficiently distinguish the above E from
a random permutation. As the decorrelation modules are linear, and as we have
two rounds of a Feistel structure, we can easily determine that the effective
linearity of E is 8, while the effective linearity of random permutations is only 2.

We note that the minimal value of the effective linearity of 2-round Feistel
construction is 3 (achieved by applying APNPs as the round function in the two
Feistel rounds). Thus, even if the Feistel round functions are replaced, our attack
still works.

Our technique is able to pass the decorrelation module as if it does not exist.
This is due to the fact that we count on many possible differentials, and we
do not restrict ourselves to differentials of some structure, or even to sets of
plaintexts of a given structure.

A New Criterion for Nonlinearity of Block Ciphers 305

5.2 Distinguishing Known Ciphers and Identifying Black Box
Permutations

It is possible to precompute the effective linearity of ciphers in advance (also for
reduced round variants). Then, given a black box the attacker computes its EL
and if the black box is one of the previously known encryption schemes, he can
detect it.

However, we still do not know whether this attack is applicable against en-
cryption schemes that are actually used today. It may occur that the measured
effective linearity values are too close to 2 and the distinguishing will become
infeasible. Moreover, as we noted in Section 4.1, the number of detected quartets
in the distinguisher slightly depends on K and thus in some cases the difference
between two encryption schemes can be less than the difference between appli-
cations of the same scheme with different values of K. In this case the attack
might fail.

The effective linearity of a permutation depends on its difference distribution
table. When computing the difference distribution table of a permutation one
usually computes the average probabilities over all the possible keys and assumes
that the probability for any single key is close to the average (see [5]). However,
in some ciphers there are classes of keys for that some differential properties of
the cipher differ from the average case, like for IDEA [6]. Such classes are called
“differentially weak key classes”. Usually such classes can be detected only if
some explicit differential characteristic is known for the whole cipher.

We can use our distinguisher in order to detect such classes when the entire
differential structure differs for different keys, even if any concrete characteristic
is unknown. For example, there is a differential weak key class of IDEA. In that
weak key class there exists some differential with probability 1 of the form α → β.
For this weak key class, the effective linearity is higher by 1 than the effective
linearity of IDEA with key not in the weak key class. We note that using the
differential is easier for the purpose of distinguishing whether the key is in the
weak key class. However, if decorrelation modules are added before IDEA and
after it, then the differential distinguisher is not applicable anymore, while our
distinguisher still succeeds.

Our technique can be used also for key recovery attacks, by measuring the
effective linearity of reduced round versions of the cipher. Then, for a given n-
round construction, we can try all possible subkeys of the last round, and try to
peel it off. If the peeling succeeds, the effective linearity of the obtained cipher
equals to the one of (n− 1) rounds of the cipher (instead of the expected (n+1)
rounds in case of a wrong guess).

5.3 Attacks Against Encryption Schemes of the Form f−1(f(x)⊕K)

The distinguisher can be applied directly against encryption schemes of the
form h(x) = f−1(f(x)⊕K) for an arbitrary permutation f , when K is a secret
key. In this scenario, the data requirements are even less than in the original
distinguisher: the attacker can use known plaintexts instead of adaptively chosen
plaintexts.

306 O. Dunkelman and N. Keller

The attack is performed essentially in the same way as the original distin-
guisher. The difference is that we already have the values of h(x) which cor-
respond to g(x) in the original distinguisher. The number of found quartets
supplies the attacker with the probability Pr[h(x)⊕ h(y) = α|x⊕ y = α]. Thus,
we know the average of the probability of the differential α → α through h(·),
even without constructing the difference distribution table of h itself.

If f is a random permutation, the expected result for h is 2 · 2−n. This,
in contrast to a random permutation h′(·) with the respective probability of
2−n. Therefore, even if f is a perfectly random permutation, the attacker can
distinguish between h and a random permutation.

We remark that constructions of the form h(x) are not so rare. For example,
two rounds of any involution cipher are of the form h(x). KHAZAD [2] is one
example of such a cipher.

Note that there is an adaptive chosen plaintext attack that requires only 2
plaintexts that distinguishes h(·) from a random permutation. Its transforma-
tion into a known plaintext attack requires O(2n/2) known plaintexts which is
equivalent to the data complexity of our attack. However, in the chosen plaintext
model our attack has a lower data complexity of O(2n/3) (instead of the O(2n/2)
required for the transformation of the basic attack into a chosen plaintext at-
tack). This last statement is true whenever f is not an APNP.

We also note that this construction covers all block ciphers with cycle 2.
This follows from the fact that all ciphers with cycle 2 can be described as
h(x) = f−1(f(x)⊕K) for some permutation f and a non-zero constant K.

6 Summary

In the first part of this paper we presented several distinguishers for highly
nonlinear permutations and random permutations. We conclude that while using
APNPs as part of the encryption scheme seems desirable, using APNPs as the
entire cipher can possess inherent weakness.

In the second part of the paper we have examined the structure f−1(f(x)⊕K)
for various permutations f . We have shown how to use the differential proper-
ties of this construction in order to study the differential structure of f . We also
proved that this construction can be used to effectively determine the average

Table 1. Various Constructions and their Effective Linearity

Construction Round Function Effective Linearty
APNP APNP 1
Random Permutation Random Permutation 2
Affine Permutation Affine Permutation 2n

2-round Feistel APNP 3
Random Permutation ≥ 8
DES ≥ 220

3-round Feistel Random Permutation 2

A New Criterion for Nonlinearity of Block Ciphers 307

probability of a differential of f . Finally, we have defined the effective linear-
ity of a permutation that measures this probability. Table 1 contains various
constructions and their effective linearity.

The effective linearity can be used to distinguish between an f that is an
almost perfect nonlinear permutation and an f that is a random permutation.
On the other hand, it can be used to distinguish ciphers with a relatively close
to linear structure from random permutations, even if no concrete differential
is known. Our attacks have better performance compared to previously known
attacks for several structures. For example, we can distinguish between a random
permutation and a permutation formed by two Feistel rounds surrounded by two
key-dependent decorrelation modules, regardless of the round functions of the
2-round Feistel construction.

Acknowledgments

The authors would like to thank Osnat Ordan and Dana Cohen for their help
in conducting the experiments, which verified our claims. It is also a pleasure
to acknowledge the references and ideas expressed by Serge Vaudenay, Jennifer
Seberry, and Eli Biham. We would also like to thank the anonymous referees for
their valuable comments and insightful suggestions.

References

1. Kazumaro Aoki, Serge Vaudenay, On the Use of GF-Inversion as a Cryptographic
Primitive, proceedings of Selected Areas in Cryptography 2003, Lecture Notes in
Computer Science 3006, pp. 234–247, Springer-Verlag, 2004.

2. Paulo S.L.M. Baretto, Vincent Rijmen, The KHAZAD Block Cipher, Submitted to
NESSIE, available online at http://www.nessie.eu.org.

3. Thomas Beth, Cunsheng Ding, On Almost Perfect Nonlinear Permutations, Ad-
vances in Cryptography, proceedings of EUROCRYPT ’93, Lecture Notes in Com-
puter Science 765, pp. 65–76, Springer-Verlag, 1994.

4. Eli Biham, Alex Biryukov, Adi Shamir, Cryptanalysis of Skipjack reduced to 31
rounds, Advances in Cryptology, proceedings of EUROCRYPT ’99, Lecture Notes
in Computer Science 1592, pp. 12–23, Springer-Verlag, 1999.

5. Eli Biham, Adi Shamir, Differential Cryptanalysis of the Data Encryption Stan-
dard, Springer-Verlag, 1993.

6. Joan Daemen, Rene Govaerts, Joos Vandewalle, Weak Keys for IDEA, Advances in
Cryptology, proceedings of CRYPTO ’93, Lecture Notes in Computer Science 773,
pp. 224–231, Springer-Verlag, 1994.

7. Joan Daemen, Vincent Rijmen The design of Rijndael: AES — the Advanced En-
cryption Standard, Springer-Verlag, 2002.

8. Shimon Even, Yishay Mansour, A Construction of a Cipher from a Single Pseudo-
random Permutation, Journal of Cryptology, Vol. 10, Number 4, pp. 151–162,
Springer-Verlag, 1997.

9. Philip Hawkes, Gregory G. Rose, Primitive Specification for SOBER-t16 Sub-
mission to NESSIE and Primitive Specification for SOBER-t32 Submission to
NESSIE, Submitted to NESSIE, available online at http://www.nessie.eu.org.

308 O. Dunkelman and N. Keller

10. Michael Luby, Charles Rackoff, How to Construct Pseudorandom Permutations
from Pseudorandom Functions, SIAM journal of Computing, Volume 17. No. 2,
pp. 373–386, 1988.

11. Mitsuru Matsui, Linear Cryptanalysis Method for DES Cipher, Advances in Cryp-
tology, proceedings of EUROCRYPT ’93, Lecture Notes in Computer Science 765,
pp. 386–397, Springer-Verlag, 1994.

12. Willi Meier, Othmar Staffelbach, Nonlinearity Criteria for Cryptographic Func-
tions, Advances in Cryptology, proceedings of EUROCRYPT ’89, Lecture Notes
in Computer Science 434, pp. 549–562, Springer-Verlag, 1990.

13. Willi Meier, Othmar Staffelbach, Fast Correlation Attacks on Stream Ciphers (Ex-
tended Abstract), Advances in Cryptology, proceedings of EUROCRYPT ’88, Lec-
ture Notes in Computer Science 330, pp. 300–315, Springer-Verlag, 1988.

14. US National Bureau of Standards, Data Encryption Standard, Federal Information
Processing Standards Publications No. 46, 1977.

15. Kaisa Nyberg, Perfect nonlinear S-boxes, Advances in Cryptology, proceedings of
EUROCRYPT ’91, Lecture Notes in Computer Science 547, pp. 378–386, Springer-
Verlag, 1991.

16. Kaisa Nyberg, On the construction of highly nonlinear permutations, Advances in
Cryptology, proceedings of EUROCRYPT ’92, Lecture Notes in Computer Sci-
ence 658, pp. 92–98, Springer-Verlag, 1993.

17. Kaisa Nyberg, Differentially uniform mappings for cryptography, Advances in
Cryptology, proceedings of EUROCRYPT ’93, Lecture Notes in Computer Sci-
ence 765, pp. 55–64, Springer-Verlag, 1994.

18. Kaisa Nyberg, Lars R. Knudsen, Provable Security Against Differential Cryptanaly-
sis, Advances in Cryptology, proceedings of CRYPTO ’92, Lecture Notes in Com-
puter Science 740, pp. 566–578, Springer-Verlag, 1993.

19. Oscar S. Rothaus, On Bent Functions, Journal of Combinatorial Theory, Series A,
Vol. 20 (1976), pp. 305–310, 1976.

20. Jennifer Seberry,Xian-Mo Zhang, YuliangZheng, Relationships Among Nonlinearity
Criteria (ExtendedAbstract), Advances inCryptology, proceedings of EUROCRYPT
’94, Lecture Notes in Computer Science 950, pp. 376–388, Springer-Verlag, 1995.

21. Jennifer Seberry, Xian-Mo Zhang, Yuliang Zheng, Pitfalls in Designing Substitution
Boxes (Extended Abstract), Advances in Cryptology, proceedings of CRYPTO ’94,
Lecture Notes in Computer Science 839, pp. 383–396, Springer-Verlag, 1995.

22. Serge Vaudenay, Provable Security for Block Ciphers by Decorrelation, Journal of
Cryptology, Vol. 16, Number 4, pp. 249–286, Springer-Verlag, 2003.

23. David Wagner, The Boomerang Attack, proceedings of Fast Software Encryption
6, Lecture Notes in Computer Science 1636, pp. 156–170, Springer-Verlag, 1999.

24. David Wagner, A Generalized Birthday Problem (Extended Abstract), Advances
in Cryptology, proceedings of CRYPTO ’02, Lecture Notes in Computer Science
2442, pp. 288–304, Springer-Verlag, 2002.

A Theoretical Analysis of the Effective Linearity of a
Random Permutation

In this section we analyze the probability of a pair A, B and their respective
g(A), g(B) to satisfy A ⊕ B = g(A) ⊕ g(B) for a permutation f where g(x) =
f−1(f(x)⊕K). Examine the amount of quartets of the form (A, B, g(A), g(B))

A New Criterion for Nonlinearity of Block Ciphers 309

such that γ = g(A)⊕ g(B) = A⊕B = α. As in the analysis for APNP, we also
have two cases:

When g(A) = B the expression γ = α holds if and only if g(B) = A. As in
the analysis of APNPs, this event occurs with probability 2−n. Note, that this
case also contains the case where g(B) = A.

When g(A) 	= B all the elements of the quartet (A, B, g(A), g(B)) are distinct.
We observe that any quartet of this kind (which we denote by a right quartet)
can be uniquely represented by the two ciphertext pairs (f(A), f(B)), (f(A) ⊕
K, f(B)⊕K). These two pairs satisfy the following system of equations:{

C ⊕D = β
f−1(C) ⊕ f−1(D) = α

(2)

for some fixed β.
On the other hand, for any fixed value β, consider pairs of inputs to the

function f−1 that solve System 2. Every pair of such pairs (C, D), (C1, D1) can
be used if and only if one of the following holds:{

C ⊕ C1 = D ⊕D1 = K
C ⊕D1 = D ⊕ C1 = K

(3)

The probability of this event is 2 · 2−n.
For sake of simplicity we assume that this probability is independent of K.

Actually there is a measure of dependence of this value on K. Moreover, the
same computation can be rewritten in another way such that the dependence on
α is neglected and the dependence on K is computed explicitly. The resulting
formulae is similar to Equation 5 below when K is substituted instead of α.
Actually, this is the case in our distinguisher since we look for the average of
the results for different α values, that allows us to reduce the dependence on α.
Since the expected result considers the average for all possible keys, changing
the formulae to be dependent on K does not affect the expected result.

Denote by t the number of pairs of solutions of System 2 for a specific value
of β, summed over all possible β. Then the expected number of right quartets is
2 · 2−n · t.

In order to compute the value of t, we have to consider the function f−1. We
consider some fixed value β0 and the element of the difference distribution table
of f−1, DDT f−1

, corresponding to the pair (β0, α). If DDT f−1
(β0, α) = 2k,

there are k solutions of the system (2) and thus there are k(k − 1)/2 pairs of
solutions. Summing over all the possible values of β, we get the equation

t =
∑

β∈GF (2)n

DDT f−1
(β, α)/2 · (DDT f−1

(β, α)/2− 1)
2

, (4)

where DDT f−1
is the difference distribution table of f−1.

Recall that the difference distribution table of the function f−1 is actually
the transpose of the difference distribution table of f . Denoting the difference

310 O. Dunkelman and N. Keller

distribution table of f by DDT f , we have (DDT f)T = DDT f−1
. Thus, we are

able to rewrite Equation 4 in terms of the difference distribution table of f as:

t =
∑

β∈GF (2)n

DDT f(α, β)/2 · (DDT f (α, β)/2− 1)
2

(5)

Note that the analysis which was performed for the case where f is an APNP
is a partial case of the analysis of the general case presented here. Indeed, if f
is an APNP then the elements of DDT f are all equal to 0, 2 and then we get
t = 0 since all the elements in the sum equal to zero.

Now, assume that f is a random permutation. As was stated earlier, the
elements of DDT f are distributed according to 2 · Poi(1/2). Thus, the value 2k
is expected to appear in a given row (and in particular, in the row corresponding
to α) about 2n · e−1/2 · 2−k/k! times. Substituting these figures to Equation 5,
we get

t =
2n−1∑
k=1

(2n · e−1/2 · 2−k/k!) · (k · (k − 1)/2)

= 1/2 · 2n

⎡⎢⎢⎢⎢⎣
2n−1∑
k=1

k2e−1/22−k/k!︸ ︷︷ ︸
A

−
2n−1∑
k=1

ke−1/22−k/k!︸ ︷︷ ︸
B

⎤⎥⎥⎥⎥⎦ (6)

Let X be a random variable distributed according to Poisson(1
2), then we have

A = E[X2] and B = E[X]. For such X it is known that E[X] = 1
2 and V ar[X] =

E[X2]− E[X]2 = 1
2 . Thus, E[X2] = 1

2 + 1
4 = 3

4 . Hence we get

t = 1/2·2n

⎡⎣2n−1∑
k=1

k2e−1/22−k/k!−
2n−1∑
k=1

ke−1/22−k/k!

⎤⎦=1/2·2n

[
3
4
− 1

2

]
=1/8·2n

(7)
Therefore, the expected value of t is 1

8 · 2n, and the expected number of
quartets for a fixed value of α is 1

8 · 2n · 2 · 2−n = 1
4 . To compute the probability

of a quartet to be a right one, we have to compute the total amount of quartets.
Each quartet is constructed by a pair (A, B) such that A ⊕ B = α. The total
number of such pairs is 2n−1. However, each quartet is suggested by the two
pairs (A, B) and (g(A), g(B)) and thus the ratio should be doubled.

Taking this into consideration, we get that the probability of a quartet to be
right is (1

4/2n−1) · 2 = 2−n. Summing this result with the result of the first case,
we get

Pr[γ = α] = 2 · 2−n (8)

Summarizing this result, the probability Pr[g(A)⊕ g(B) = A⊕B] equals 2−n

for APNPs and 2 · 2−n for random permutations. This fact can be used in order
to distinguish between an APNP and a random permutation.

A New Criterion for Nonlinearity of Block Ciphers 311

B Effective Linearity of Feistel Constructions

Let us examine a 2-round Feistel construction f : {0, 1}2n → {0, 1}2n with a
permutation p1 as the first round function, and a permutation p2 as the second
round function. Both permutations are defined over the space {0, 1}n.

An input difference (αL, αR) that enters this encryption scheme becomes after
the first round (without the swap, which has no effect on our results) into (αL⊕
β1, αR), where αR

p1→ β1. After the second round the output difference is (αL ⊕
β1, αR ⊕ β2) where αL ⊕ β1

p2→ β2.
If the two permutations p1 and p2 are independent then the probability of the

event (αL, αR) → (αL⊕β1, αR⊕β2) is Pr[αR
p1→ β1] ·Pr[αL⊕β1

p2→ β2]. Thus, the
difference distribution table of the 2-round Feistel construction contains in any
entry the multiplication of the two related entries from p1’s and p2’s difference
distribution tables.

The first observation, is that if p1 and p2 are both APNPs, we get that all
entries in the difference distribution table of the construction are either zero, 4, or
2n+1 (in 2n+1 out of the 22n entries in each row/column), up to the 0 → 0 entry.
Thus, we can compute the effective linearity of two round Feistel construction
with independent APNP round functions is 3.

Our second observation is a more general one in nature. When we inspect
the difference distribution table of the 2-round construction (from 2n bits to 2n
bits) in order to compute the effective linearity of the construction, we find that:

tf =
∑

β∈{0,1}2n

(
DDT f(α, β)/2

2

)
=

=
∑∑
β1,β2∈{0,1}n

(
DDT p1(αR, β1)DDT p2(αL ⊕ β1, β2)

2

)
≥

≥ 2 ·
∑

β1∈{0,1}n

(
DDT p1(αR, β1)

2

)
·
∑

β2∈{0,1}n

(
DDT p2(αL, β2)

2

)
=

= 2 · tp1 · tp2

We note that this is done under the assumption that the probability Pr[γ = α]
is quite independent with α (this is required in order to omit the β1 difference
from the sum).

Thus, the value of tf of the construction is at least twice the multiplied values
tp1 , tp2 of the permutations p1 and p2. As the effective linearity is related to twice
the value of t, then the effective linearity of the construction is the multiplication
of the two effective linearities. Or formally:

EL(f) ≥ EL(p1) · EL(p2)

Our third observation is that not only EL(f) ≥ EL(p1) · EL(p2), in many
cases EL(f) ≥ EL(p1) · EL(p2) + EL(p2). The proof will be given in the final
version of this paper. The definition of the effective linearity requires that the

312 O. Dunkelman and N. Keller

entire value K is non-zero. In the Feistel construction, it is possible that the last
round will be canceled even if the constant is non-zero (if the left half is 0 and
the right half is non-zero). In that case, the left half remains constant during
the computation of g (i.e., the left half of g(x) is the same as the left half of x).
This case occurs with probability 2−n.

The last observation is valid only if the second permutation is not a linear
permutation. If it is a linear permutation, then the second round has no effect
on the linearity of the construction.

The same reasoning can be used when the round functions are non-bijective.
In that case, as the round functions are not bijective, the number of zero entries
in the difference distribution table is greater, and there is a possibility that
p1(x) = p1(y) even if x 	= y. Obviously, this implies that the average probability
of α = γ is higher.

For example, when considering 2-round DES, we get from [5] that the differ-
ence distribution table of a DES round contains about 80% zero entries. This
means, that given that an entry is non-zero, its expected value is 6. As the dif-
ference distribution table of 2-round DES is related to the multiplication of two
1-round difference distribution tables, the expected entry in non-zero entries is
36. After considering the number of non-zero entries, we get that the effective
linearity of such a permutation is about 220. This is done under the assumption
that the difference distribution table is uniform (all non-zero entries but the
0 → 0 one are 36). In case it is not uniform (which is more likely) the effective
linearity is higher (as the effective linearity is proportional to the sum of squares
of the entries, and by Jensen’s inequalities is expected to be higher).

Our last result regarding Feistel constructions refers to a 3-round Feistel con-
struction. If the round functions are random permutations, then the left half of
the output difference is expected to behave randomly and uniformly. Thus, the
difference distribution table, which is a multiplication of the difference distrib-
ution table of the left half and the right half, should have the same behavior
as of the right side — of a random permutation. Thus, its effective linearity is
predicted to be 2.

Block Ciphers Sensitive to Gröbner
Basis Attacks

Johannes Buchmann, Andrei Pyshkin
, and Ralf-Philipp Weinmann

Technische Universität Darmstadt, Fachbereich Informatik,
Hochschulstr. 10, D-64289 Darmstadt, Germany

{buchmann, pyshkin, weinmann}@cdc.informatik.tu-darmstadt.de

Abstract. We construct and analyze Feistel and SPN ciphers that have
a sound design strategy against linear and differential attacks but for
which the encryption process can be described by very simple polyno-
mial equations. For a block and key size of 128 bits, we present ciphers
for which practical Gröbner basis attacks can recover the full cipher key
requiring only a minimal number of plaintext/ciphertext pairs. We show
how Gröbner bases for a subset of these ciphers can be constructed with
neglegible computational effort. This reduces the key–recovery problem
to a Gröbner basis conversion problem. By bounding the running time
of a Gröbner basis conversion algorithm, FGLM, we demonstrate the
existence of block ciphers resistant against differential and linear crypt-
analysis but vulnerable against Gröbner basis attacks.

1 Introduction

Since the publication of Courtois’ and Pieprzyk’s XSL method [9] and Murphy
and Robshaw’s embedding of the AES [21], a considerable interest in algebraic
attacks on block ciphers has been provoked. While linearization based attacks on
stream ciphers have been shown to be very successful, the claimed attacks on the
AES and Serpent have thus far been highly controversial, if not outright refuted
[5]. Gröbner bases however are a proven tool for solving polynomial systems. Cid,
Murphy and Robshaw [6] recently did a first step of investigating the viability
of an algebraic attack using Gröbner bases on scaled-down versions of the AES.

The goal of this paper is to show that non-trivial iterated block ciphers with
a reasonable block and key length – in our case 128 bits – can be constructed
that are resistant against linear and differential cryptanalysis but which can be
broken by computing an appropriate Gröbner basis.

The paper is organized as follows. In Section 2 we present two families of
ciphers, Flurry, a Feistel network and Curry, a SPN construction, together
with suitable parameters. We explain how to obtain polynomial equations de-
scribing the key recovery problem. Section 3 then introduces the methodology
to obtain estimates on the complexity of attacks using linear and differential
cryptanalysis. Section 4 details how Gröbner bases can be used break the ci-
phers and gives experimental results for selected examples. Finally we show how
� Supported by a stipend of the Marga und Kurt Möllgaard-Stiftung.

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 313–331, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

314 J. Buchmann, A. Pyshkin, and R.-P. Weinmann

the key recovery problem for a subset of these ciphers is related to the problem
of Gröbner basis conversion.

1.1 Notation

We define the notation that we will be used throughout the rest of this paper.
All operations of the block ciphers described in this paper are carried out over

a finite field F := GF (2n) with n ∈ {8, 16, 32, 64}. We fix θ to be a generating
element of F over GF (2), i.e. F := GF (2)(θ).

The internal state of our cipher consists of multiple elements of F . To re-
fer to individual elements of the state after the execution of a complete round
transformation we use the following conventions:

– For Feistel ciphers, the internal state is represented by a vector. We use
variables x

(e)
i to denote elements of the internal state of the cipher after the

eth application of the round function and variables k
(e)
i to denote elements

of the expanded key used in round e.
– For SPN ciphers, the internal state is represented by a square matrix. We

denote the internal state variables after the eth application of the round
function by x

(e)
i,j and the expanded key variables by k

(e)
i,j .

We define the state of round 0 to be the initial state and call the variables
of the initial state plaintext variables. Correspondingly the variables referring to
the state after the execution of the last round are called ciphertext variables.
The set of state variables of a cipher is denoted by X , the set of expanded key
variables by K. All polynomials considered are then elements of the polynomial
ring R = F [X ∪ K].

A power product of variables of (X ∪ K) shall be called a term, whilst the
product of a term and a coefficient c ∈ F shall be called a monomial.

2 Description of the Cipher Families

In this section we give blueprints for Feistel and SPN ciphers that allow for
simple algebraic representations. For these we select parameters sets offering a
high resistance against differential and linear cryptanalysis and describe how to
construct systems of polynomial equations for them.

2.1 The Feistel Case: Flurry

We construct the family Flurry(n, m, r, f, D) of Feistel ciphers. The parameters
used are:

– m ∈ N: the plaintext space, the ciphertext space and the cipher key space
are F 2m.

– r ∈ N: the number of rounds
– f : F → F : a non-linear mapping giving the S-Box of the round function
– D = (di,j) ∈ Fm×m: a matrix describing the linear diffusion mapping of the

round function.

Block Ciphers Sensitive to Gröbner Basis Attacks 315

We set R = (r1, . . . , rm) ∈ Fm, L = (l1, . . . , lm) ∈ Fm and K = (k1, . . . , km) ∈
Fm. The round function ρ : Fm × Fm × Fm → Fm × Fm of a Flurry cipher
is then defined as:

ρ(L, R, K) = (R, G(R, K) + L)

with G : Fm × Fm → Fm being the parallel application of m S-Boxes followed
by a linear transform:

G(r1, . . . , rm, k1, . . . , km) = D ×

⎛⎜⎜⎜⎝
f(r1 + k1)
f(r2 + k2)

...
f(rm + km)

⎞⎟⎟⎟⎠ .

A plaintext (L0, R0) is encrypted into a ciphertext (Lr, Rr) by iterating the
round function ρ over r rounds:

(Li, Ri) = ρ(Li−1, Ri−1, Ki−1) i = 1, 2, . . . , r − 1
(Lr, Rr) = ρ(Lr−1, Rr−1, Kr−1) + (Kr, Kr+1)

After the last round transformation, an additional key addition is performed on
both halves of the state. Analogously, using the inverse round function ρ−1

ρ−1(L, R, K) = (G(L, K) + R, L)

we can decrypt a ciphertext with the following sequence of steps:

(Lr−1, Rr−1) = ρ−1(Lr + Kr, Rr + Kr+1, Kr−1)
(Li−1, Ri−1) = ρ−1(Li, Ri, Ki−1) i = r − 1, r − 2, . . . , 1

The number of F -components of a cipher key, plaintext or ciphertext is denoted
by t = 2m.

The key schedule. The key schedule is affine over F . We write the cipher
key as a tuple of vectors (K0, K1) ∈ Fm × Fm. Let the round keys for the
first two rounds be K0, K1 and recursively compute subsequent round keys for
2 ≤ i ≤ r + 1 as follows:

Ki = D ·KT
i−1 + Ki−2 + vi

where D is the same matrix used in the round function of the cipher and the vi

are round constants:

vi = ((θ + 1)i, (θ + 1)i+1, . . . , (θ + 1)i+m−1)

2.2 The SPN Case: Curry

In this section we construct a family Curry(n, m, r, f, D) of ciphers similar to
Square [11]. We explain the parameters used:

316 J. Buchmann, A. Pyshkin, and R.-P. Weinmann

– m ∈ N: the plaintext space, the ciphertext space and the cipher key space
are Fm×m.

– r ∈ N: the number of rounds
– f : F → F : a bijective non-linear mapping giving the S-Box of the round

function
– D = (di,j) ∈ Fm×m: an invertible matrix used for diffusion

The round function ρ : Fm×m × Fm×m → Fm×m of a Curry cipher is defined
as:

ρ(S, K) = D ·G(S + K)T

with G : Fm×m → Fm×m being the parallel application of m2 S-Boxes:

G((si,j)) = (f(si,j))

A plaintext S0 is encrypted into a ciphertext Sr by iterating the round function
ρ exactly r times followed by an additional key addition after the last round:

Si = ρ(Si−1, Ki−1) i = 1, 2, . . . , r − 1
Sr = ρ(Sr−1, Kr−1) + Kr

Analogously, using the inverse round function ρ−1

ρ−1(S, K) = G−1((D−1 · S)T) + K

we can decrypt a ciphertext with the following sequence of steps:

Sr−1 = ρ−1(Sr + Kr, Kr−1)
Si−1 = ρ−1(Si, Ki) i = r − 1, r − 2, . . . , 1

Just as for Flurry, let the number of F -components of a key, plaintext or
ciphertext be denoted by t, this time t = m2.

The key schedule. For Curry the first round key is equivalent to the ci-
pher key K0 ∈ Fm×m. Just as for Flurry the key schedule is affine over F .
Subsequent round keys Ki, i ≥ 1 are recursively computed as follows:

Ki = D ·Ki−1 + Mi

where D is the same matrix used in the round function and Mi = ((aj,l)) with
aj,l = θi+(j−1)m+l. The matrices Mi are round constants.

2.3 Selected Parameters

We will now specify suitable parameters for the S-Box function and the linear
transformation. These will be used to more thoroughly investigate instances of
our cipher constructions throughout this paper. The number of rounds shall be
left unspecified for now.

Block Ciphers Sensitive to Gröbner Basis Attacks 317

The S-Box functions. The only non-linear components of Flurry and Curry
are the S-Boxes. In order to achieve good resistance against differential and linear
cryptanalysis even for low number of rounds these must be chosen very carefully.
Two important characteristics of a S-Box are its differential uniformity and its
nonlinearity. These are defined as follows:

Definition 1. Let f : F → F be a mapping and

δ = max
a,b∈F

a	=0

#{x ∈ F : f(x + a) = f(x) + b}.

Then f is called differentially δ-uniform.

In the following definition we use the bijective map

F → GF (2)n, a =
n−1∑
i=0

(
aiθ

i
)
�→ (a0, . . . , an−1)

to identify F with GF (2)n. For a = (a0, . . . , an−1), b = (b0, . . . , bn−1) we set

〈a, b〉 =
n−1∑
i=0

aibi

Definition 2. The nonlinearity of a function f : F → F is defined as

N (f) = min
a,b∈F

b	=0

#{x ∈ F | 〈x, a〉 	= 〈f(x), b〉}

For monomial functions as well as the multiplicative inverse over finite fields of
characteristic two the δ-uniformity and the nonlinearity have been well studied
in the literature [22, 2, 13]. We want to keep the degree of our S-Box functions
low in order to make Gröbner basis attacks feasible. Table 1 shows the S-Box
functions that we have picked.

Table 1. S-Box mappings over GF (2n) with n ∈ {8, 16, 32, 64}

function mapping bijective over GF (2n) δ-uniformity N (f)

f−1 x �→ x−1 iff x �= 0
0 iff x = 0 yes 4 2n−1 − 2

n
2

f3 x �→ x3 no 2 ≥ 2n−1 − 2
n
2

f5 x �→ x5 no 4 ≥ 2n−1 − 2
n
2 +1

f7 x �→ x7 yes ≤ 6 ≥ 2n−1 − 3 · 2
n
2

We call f3, f5 and f7 monomial S-Boxes and f−1 the inversion S-box.

Lemma 1. 1. f3 is a 2-uniform mapping
2. f−1 and f5 are 4-uniform mappings.
3. f7 has δ-uniformity of 6 or less.

318 J. Buchmann, A. Pyshkin, and R.-P. Weinmann

Proof. Obviously for all a, b ∈ F with a 	= 0 the equation x7 + (x + a)7 = b has
at most 6 roots. For claims 1 and 2, see [22].

Lemma 2. 1. The nonlinearity of f−1 is 2n−2 − 2
n
2 .

2. For a polynomial function f : F → F of degree d the following holds true:
N (f) ≥ 2n−1 − �d−1

2 �2 n
2

Proof. For claim 1, see [13], for claim 2 see [4].

The linear transformations. We use matrices of Maximum Distance Sepa-
rable codes – MDS matrices for short – for the matrix D in the linear layer and
the key schedule. We chose these types of linear transformations since they have
optimal diffusion properties. This strategy is widely used in modern block cipher
design; all ciphers following the wide-trail design use diffusion optimal matrices.
The matrix D4 below actually is the matrix used in the MixColumns step of
Rijndael, D2 is equivalent to a Pseudo-Hadamard Transform over F .

D2 =
(

θ 1
1 1

)
D4 =

⎛⎜⎜⎝
θ θ + 1 1 1
1 θ θ + 1 1
1 1 θ θ + 1

θ + 1 1 1 θ

⎞⎟⎟⎠
Rijmen and Daemen introduced the notion of the branch number of a linear
transformation to measure the quality of the diffusion provided. For a F -vector
X := (x1, . . . , xm) we define w(X) to be the hamming weight of X , i.e. the count
of all non-zero coordinates of this vector. The following definition is according
to [12]:

Definition 3. Let M ∈ Fm×m be a matrix describing a be a linear map. The
differential branch number Bd(M) of M is then defined as

Bd(M) = min
X∈F m

X 	=0

(w(X) + w(MX))

while the linear branch number Bl(M) is defined as Bl(M) = Bd(MT).

For a symmetric matrix such as D2, the linear and the differential branch number
clearly coincide. For the circulant matrix D4 the linear and differential branch
number coincide as well [12]. Thus in our case it suffices to speak of the branch
number B(M) of a matrix M . For MDS matrices the branch number is maximal
[12], i.e. B(M) = m+1 with m being the size of the matrix M . For block ciphers
with m = 1 we use the identity matrix of size one, I1, trivially resulting in
B(I1) = 2.

2.4 Polynomial Representation of the Ciphers

In the following we will detail how to obtain a system of polynomial equations
that describes the transformation of a plaintext into a ciphertext block round

Block Ciphers Sensitive to Gröbner Basis Attacks 319

by round using intermediate state variables. Please note that our description
is slightly simplified. For the sake of legibility we have omitted the round key
addition after the final round; for our experiments the final key addition has of
course been retained.

– Flurry
For Feistel ciphers the left half of the state in round e is identical to the right
half of the state in round e− 1, giving rise to the following mr trivial linear
equations:

x
(e)
j + x

(e−1)
j+m = 0

Each monomial S-Box of the cipher induces a polynomial equation of degree
deg(f). Thus we get a total of mr non-linear equations of form:

x
(e)
m+j + x

(e−1)
j +

m∑
l=1

dj,l · f
(
x

(e−1)
m+l + k

(e−1)
l

)
= 0

with 1 ≤ e ≤ r, 1 ≤ j ≤ m. When using the inversion S-Box the polynomial
system is correct only with probability

(2n−1
2n

)mr
. The equations in this case

are of a different form:(
x

(e−1)
j + x

(e)
m+j

) m∏
i=1

(
x

(e−1)
m+i + k

(e−1)
i

)
+

m∑
l=1

dj,l

m∏
i=1
i	=l

(
x

(e−1)
m+i + k

(e−1)
i

)
= 0

The linear equations for the key schedule of Flurry can be written as:

k
(e)
j + k

(e−2)
j + (θ + 1)et+j +

m∑
l=1

dj,lk
(e−1)
l = 0

with 2 ≤ e ≤ r, 1 ≤ j ≤ m.
– Curry

No trivial linear equations hold between intermediate state variables.
Denote by x

(e)
(i,j) the variable in row i, column j of the state in round e,

analogously for k
(e)
(i,j). Then for all rounds e > 0 the following equations hold

with 1 ≤ i, j ≤ m:

x
(e)
i,j +

m∑
l=1

di,l · f
(
x

(e−1)
j,l + k

(e−1)
j,l

)
= 0

Again for f−1 the non-linear equations look different:

x
(e)
i,j

m∏
u=1

(
x

(e−1)
j,u + k

(e−1)
j,u

)
+

m∑
l=1

di,l

m∏
u=1
u	=l

(
x

(e−1)
j,u + k

(e−1)
j,u

)
= 0

320 J. Buchmann, A. Pyshkin, and R.-P. Weinmann

Using the above equations, the polynomial system also does not hold with

probability one but with probability
(2n−1

2n

)m2r
.

The linear equations for the key schedule can be expressed as follows:

k
(e)
i,j + (θ)e+(i−1)m+j +

m∑
l=1

di,lk
(e−1)
l,j = 0

with 1 ≤ e ≤ r, 1 ≤ i, j ≤ m.

Additionally, for each variable v ∈ (X ∪K) the relation v2n

+ v = 0 holds. These
relations are called field equations; they will not be included in our polynomial
system however.

3 Resistance Against Classical Attacks

In this section we determine the strength of our cipher constructions against dif-
ferential and linear cryptanalysis. Differential cryptanalysis is a chosen-
ciphertext attack due to Biham and Shamir and was the first successful attack
on the DES [3]. This type of attack exploits biases in the first order derivative of
the cipher. For carefully chosen plaintexts with specific differences a cryptana-
lyst makes assumption about their propagation through the cipher and predicts
output differences in ciphertext pairs. If these predictions are correct with suffi-
ciently high probability they allow an attacker to determine round key bits.

Linear cryptanalysis is a known plaintext attack that was devised by Matsui
[20] to attack the DES. For this attack to succeed, the cryptanalyst has to
construct a probable key-independent linear approximation for individual output
bits of the cipher. By counting the number of time this linear approximation
agrees with the actual output of the cipher she can establish which value for the
key bit is more likely.

The notion of practical security of block ciphers against differential and linear
cryptanalysis was introduced by Knudsen [19]. The exact definition of this no-
tion is postponed to the end of Section 3.2. We will derive the number of rounds
that will make our cipher practically secure against differential and linear crypt-
analysis.

Note that our objective was not to evaluate the strength of our ciphers against
all known attacks. Our ciphers may very well be vulnerable against one or several
advanced attacks even if they resist standard linear and differential cryptanalysis.
Indeed, as an example we argue that the choices we have made for the S-Boxes
are very weak against interpolation attacks.

3.1 Estimating the Resistance Against Differential and Linear
Cryptanalysis

A fundamental parameter that influences the complexity of differential and linear
attacks is the minimum number of active S-Boxes N over consecutive rounds of
the cipher. Kanda [18] gives useful results on both SPN ciphers and Feistel
ciphers with a SP round function; from these we derive the following lemma:

Block Ciphers Sensitive to Gröbner Basis Attacks 321

Lemma 3. The minimum number of active S-boxes in 4, 6, 8 consecutive rounds
of a Feistel cipher with SP round function is lower bounded by B(D), B(D) + 2
and 2B(D) + 1 respectively. For an SPN cipher the minimum number of active
S-Boxes for 2r consecutive rounds is lower bounded by rB(D).

In the following X denotes a uniformly distributed random variable in GF (2)n

and ρ : GF (2)n → GF (2)n a function for which we wish to compute the linear
and differential probability.

Definition 4. The linear probability for a pair (a, b) ∈ GF (2)n ×GF (2)n with
a 	= 0 is defined as

LP(a, b) = (2 · PrX {〈a, X〉 = 〈b, ρ(X)〉} − 1)2

In the above definition, a is called input mask and b is called output mask of a
round. A vector of masks A = (a1, . . . , ar+1) with ai 	= 0 for all 1 ≤ i ≤ r is
called linear characteristic of a cipher.

Definition 5. The differential probability for a pair (Δx, Δy) ∈ GF (2)n ×
GF (2)n with Δx 	= 0 is defined as

DP(Δx, Δy) = PrX {ρ(X) + ρ(X + Δx) = Δy}

The value Δx is called input difference of a round, while Δy is called output
difference. A vector of differences A = (a1, . . . , ar+1) with ai 	= 0 for all 1 ≤ i ≤ r
is called differential characteristic of a cipher.

Definition 6. Let ΩL be the set of all linear characteristics and ΩD the set of
all differential characteristics of a cipher C. The maximum linear characteristic
probability (MLCP) of C is

MLCP(C) = max
A∈ΩL

r∏
i=1

LP(ai, ai+1)

Analogously the maximum differential characteristic probability (MDCP) of C is

MDCP(C) = max
A∈ΩD

r∏
i=1

DP(ai, ai+1).

3.2 Differential and Linear Cryptanalysis of Flurry and Curry

In this section we show how to compute upper bounds of MLCP and the MDCP
of ciphers of the Flurry and Curry family. From these bounds we can deduce
the number of rounds required to make an instance practically secure against
differential and linear cryptanalysis.

The maximum differential probability of a function f : F → F can be calcu-
lated from δ as p(f) = δ

#F where δ is according to Definition 1. The maximum
linear probability of a mapping f : F → F can be computed as

q(f) =
(

1− 2N (f)
#F

)2

322 J. Buchmann, A. Pyshkin, and R.-P. Weinmann

where N (f) is defined as in Section 2.3. For SPN ciphers and Feistel ciphers
with a SP round function the MDCP is bounded by p(f)N while the MLCP is
bounded by q(f)N [18], where N is the miminum number of active S-Boxes.

According to Knudsen [19], a block cipher with dependent round keys is prac-
tically secure against differential and linear cryptanalysis if the MLCP and the
MDCP is too low for an attack to work under the assumption of independent
round keys. Note however that for both r-round Feistel and r-round SPN ci-
phers, we need to consider the MLCP and MDCP of r − 2 rounds because of
attacks that guess bits of the first and the last round key, so-called 2R attacks.

3.3 Interpolation Attacks

Jakobsen and Knudsen presented interpolation attacks in [16] as a counterpoint
to the growing trend of using algebraic S-Boxes such as those proposed by Nyberg
[22]. In fact, interpolation attacks can be seen as the first algebraic attacks on
block ciphers. The underlying intuition of this attack is that the relationship
between plaintext and ciphertext can be expressed as a tuple of polynomial
expressions. If the degree of these polynomials is low enough, the coefficients of
the polynomials can be interpolated from a number of plaintext/ciphertext pairs.
A key–dependent equivalent of the encryption or the decryption algorithm has
then been determined. In [16] upper bounds on the number of required pairs for
known-plaintext interpolation attacks for selected examples are given. In general
this number increases exponentially with the degree of the polynomial function
describing the S-Box, the number of rounds and the number of elements in the
internal state, while for the attacks we present in the next section it remains a
constant quantity.

Courtois later improved on the work of Jakobsen and Knudsen and introduced
an attack called General Linear Cryptanalysis [8]. In the same paper he also
gives several examples of insecure ciphers based on inversion based S-Boxes that
resist differential and linear cryptanalysis. His approach and his goals are quite
different from ours however.

Flurry and Curry quite naturally are susceptible to interpolation attacks –
their clean structure and the monomial S-boxes make them textbook examples.
As a matter of fact, the cipher PURE presented in the original article is identical
to the 64-bit cipher Flurry(32, 1, r, f3, I1) sans key scheduling.

4 Attacks Using Gröbner Bases

Gröbner bases are standard bases of polynomial ideals that can be used for
solving systems of polynomial equations. What Gaussian elimination does for
systems of linear equations, Gröbner basis algorithms try to emulate for poly-
nomial systems. Unfortunately the computational complexity of Gröbner basis
algorithms for nonlinear systems is no longer polynomial. In this paper we re-
strict ourselves to known-plaintext Gröbner Basis attacks that recover a secret
key of a block cipher from a minimum number of plaintext/ciphertext pairs faster

Block Ciphers Sensitive to Gröbner Basis Attacks 323

than a sequential exhaustive search of the key space – by computing Gröbner
Bases.

We will briefly introduce the concepts necessary to explain our results. For a
more thorough introduction to Gröbner bases we refer the reader to [1] and [10].
In the following we adopt the conventions of [1].

Definition 7 (Term order). A term order ≤ is a linear order on the set of
terms T (R) such that

1. 1 ≤ t for all terms t ∈ T (R)
2. for all terms s, t1, t2 ∈ T (R) whenever t1 ≤ t2 then st1 ≤ st2

If a term order has been fixed, we define HT(f) to be the greatest term occuring
in the polynomial f ∈ R according to this order; this term is called the head
term. Correspondingly HM(f) is the head monomial, i.e. the head term of f
multiplied with the matching coefficient.

We will now introduce two useful and widely used term orders. To accomplish
this we first need to define some technicalities: For a term t = ve1

1 ve2
2 · · · vek

k ∈
T (R) we define the exponent vector of t to be ε(t) = (e1, e2, . . . , ek) ∈ Nk

0 . The
total degree of the term t then is deg(t) =

∑k
i=1 ei.

Example 1 (Lexicographic term order). For terms s, t we define s <lex t iff there
exists an i with 1 ≤ i ≤ k such that the first i− 1 components of ε(s) and ε(t)
are equal but the ith component of ε(s) is smaller than the ith component of
ε(t).

Example 2 (Degree reverse lexicographic term order). For terms s, t we define
s <DRL t iff either deg(s) < deg(t) or if deg(s) = deg(t) and s <lex t.

Definition 8 (Syzygy polynomial). The syzygy polynomial of two polynomi-
als f, g is defined as

spol(f, g) =
lcm(HM(f),HM(g))

HM(f)
f − lcm(HM(f),HM(g))

HM(g)
g

For a set of polynomials G ⊂ R we can define the reduction of a polynomial
f ∈ R to a remainder r which we will denote by f →G r. The result of this
operation may not be uniquely defined unless G is a Gröbner basis. In the fol-
lowing we will only be interested in polynomial divisions that leave no remainder.

Definition 9 (Reduction to zero). A polynomial f ∈ R reduces to zero
modulo a set G = {g1, . . . , gk} ⊂ R, if there exists a vector of polynomials
(m1, . . . , mk) such that f −

∑k
i=1 migi = 0 with HT(migi) ≤ HT(f) for all

1 ≤ i ≤ k.

Definition 10 (Gröbner basis). Let I be an ideal of R. A finite set of poly-
nomials G ⊂ I is a Gröbner basis of I if f →G 0 holds for every f ∈ I.

324 J. Buchmann, A. Pyshkin, and R.-P. Weinmann

Let P be a set of multivariate polynomial equations pi = 0. For the ideal I
generated by the set P = {pi} computing the Gröbner basis relative to an ap-
propriate term order, e.g the lexicographical term order enables us to solve the
system P .

Computing a Gröbner basis relative to a total-degree order however usually
is faster than computing a lexicographical Gröbner basis of the same ideal. This
was the reason for the development of algorithms that change the term order
of a Gröbner basis. The two most prominent are the FGLM algorithm [15] and
the Gröbner Walk [7]. While the FGLM algorithm as originally described only
works for zero-dimensional ideals, i.e. when the number of solutions of P in the
closure of F is finite, the Gröbner Walk does not have this restriction.

4.1 Key Recovery Using Gröbner Bases

Estimating the time and space complexity of Gröbner basis algorithms is no
easy feat. For polynomial systems induced by block ciphers, no theoretical works
estimating the performance of Gröbner basis algorithms are currently known. We
therefore carried out experiments to study the resistance of our ciphers against
Gröbner Basis attacks. Results of these experiments are presented and analysed
in section 4.2.

The Gröbner basis attack we have successfully used on instances of Flurry
and Curry to determine the secret key from a small number of plaintext/cipher-
text pairs entailed the following steps:

1. Set up a polynomial system P = {pi = 0} for the cipher in question with
pi ∈ R as described in Section 2.4. The system P consists of both cipher and
key schedule equations.

2. Request a plaintext/ciphertext pair ((P1, . . . Pt), (C1, . . . , Ct)). This gives
rise to the following additional system of linear equations G = {gi = 0}:

x
(0)
1 + P1 = 0

...
x

(0)
t + Pt = 0

x
(r)
1 + C1 = 0

...
x

(r)
t + Ct = 0

Let I be the ideal generated by the set of polynomials L = (
⋃

i{pi}) ∪
(
⋃

i{gi}). We call this ideal the key recovery ideal.
3. Compute a degree-reverse lexicographic Gröbner basis GDRL of I. For ci-

phers using a multiplicative inverse as S-Box function, the system may be
inconsistent, resulting in GDRL = 1.

4. If GDRL = 1 go to Step 2, otherwise proceed.
5. Use a Gröbner basis conversion algorithm to obtain a lexicographical

Gröbner basis Glex from GDRL. The variable ordering should be such that
the key variables of the first round are the least elements.

6. Compute the variety Z of I using the Gröbner basis Glex.
7. Request another plaintext/ciphertext pair (P ′, C′).

Block Ciphers Sensitive to Gröbner Basis Attacks 325

8. Try all elements k ∈ Z as key candidates to encrypt P ′. If k does not encrypt
P ′ to C′, remove k from Z, otherwise retain.

9. If Z contains more than one element, go to step 7.
10. Terminate

Considerable complexity is hidden in step 6. To compute the variety of an ideal
using a lexicographical Gröbner basis, we need to successively eliminate variables
by computing zeroes of univariate polynomials and back-substituting results.
The complexity of this depends on the number of solutions of the polynomial
system (zeroes of the ideal) and the complexity of the algorithm for finding roots
of univariate polynomials. The best algorithm for factoring polynomials is due
to Kaltofen and Shoup [17] and has a complexity of O(d1.815n) field operations,
where d is the degree of the polynomial. This degree if bounded by 2n − 1.
The number zeroes is equivalent to the number of distinct keys encrypting the
plaintext to a ciphertext. In general we can expect this number to be small.

4.2 Experimental Results

We have performed experiments to analyze the resistance of Flurry and Curry
using the computer algebra system Magma [23], version 2.11-8, on an AMD
Athlon 64 3200+ equipped with 1024 Megabytes of RAM running Linux.
Magma implements Faugére’s F4 algorithm [14] and is widely considered the
best publicly available tool for computing Gröbner bases. We have chosen n and
m such that the ciphers evaluated are 128-bit block ciphers.

Table 2 lists a number of instantiations of Flurry and Curry ciphers for
which we were able to successfully recover the secret key; the 6, 8 and 10 round
Flurry ciphers are resistant to linear and differential cryptanalysis. We see that
ciphers with inversion-based S-boxes are easier to break than ciphers which use a
monomial S-box, even if the monomial is of very low degree. Furthermore we were
unable to determine an a priori indicator for selecting the most efficient Gröbner
basis conversion algorithm – in some cases FGLM was faster, in other cases the
Gröbner walk; the same holds for the memory consumption. As mentioned in
Section 2.4 we did not add the field equations to our polynomial systems.

4.3 Gröbner Bases Without Polynomial Reductions

Sometimes one can determine whether a set of polynomials forms a Gröbner
basis without computing normal forms. In the following let be G ⊂ R be a finite
set of polynomials with 0 	= G.

Proposition 1 (First Buchberger criterion). Suppose that we have f, g ∈ G
such that

lcm(HT(f),HT(g)) = HT(f) ·HT (g)

i.e the head terms of f and g are pairwise prime. Then spol(f, g) →G 0.

Proposition 1 is the first Buchberger criterion. Together with the following theo-
rem given in [10], we can decide whether a sequence of polynomials is a Gröbner
basis from looking at the head terms alone.

326 J. Buchmann, A. Pyshkin, and R.-P. Weinmann

Table 2. Experimental results obtained with Magma

cipher conversion CPU time memory used
Flurry(64, 1, 4, f−1, I1) Walk 0.011 s 3.48 MBytes
Flurry(64, 1, 4, f−1, I1) FGLM 0.011 s 3.48 MBytes
Flurry(64, 1, 4, f3, I1) Walk 0.04 s 3.48 MBytes
Flurry(64, 1, 4, f3, I1) FGLM 0.029 s 3.58 MBytes
Flurry(64, 1, 4, f5, I1) Walk 1.28 s 3.97 MBytes
Flurry(64, 1, 4, f5, I1) FGLM 2.3 s 6.36 MBytes
Flurry(64, 1, 4, f7, I1) Walk 13.61 s 6.22 MBytes
Flurry(64, 1, 4, f7, I1) FGLM 82.62 s 33.4 MBytes
Flurry(64, 1, 6, f−1, I1) Walk 0.15 s 3.58 MBytes
Flurry(64, 1, 6, f−1, I1) FGLM 0.059 s 3.58 MBytes
Flurry(64, 1, 6, f3, I1) Walk 59.91 s 10.63 MBytes
Flurry(64, 1, 6, f3, I1) FGLM 145.08 s 193.24 MBytes
Flurry(64, 1, 8, f−1, I1) Walk 3.43 s 4.51 MBytes
Flurry(64, 1, 8, f−1, I1) FGLM 1.46 s 4.46 MBytes
Flurry(64, 1, 10, f−1, I1) Walk 115.44 s 14.74 MBytes
Flurry(64, 1, 10, f−1, I1) FGLM 60.61 s 12.39 MBytes
Flurry(64, 1, 12, f−1, I1) Walk 4194.28 s 99.97 MBytes
Flurry(64, 1, 12, f−1, I1) FGLM 2064 s 142.90 MBytes
Flurry(32, 2, 4, f−1, D2) Walk 216.53 s 25.58 MBytes
Flurry(32, 2, 4, f−1, D2) FGLM 65.78 s 41.62 MBytes
Flurry(16, 4, 2, f−1, D4) Walk 264 s 37.13 MBytes
Flurry(16, 4, 2, f−1, D4) FGLM 26.119 s 18.56 MBytes
Curry(32, 2, 3, f−1, D2) Walk 1750.87 sec 138.77 MBytes
Curry(32, 2, 3, f−1, D2) FGLM 3676.26 sec 107.54 MBytes

Theorem 1. The set G is a Gröbner basis iff spol(f, g) →G 0 for all f, g ∈ G
with f 	= g.

When using polynomial S-boxes, this enables us to compute a degree-reverse
lexicographic Gröbner bases of the key-recovery ideals of Flurry and Curry
without performing polynomial reductions; the head terms of all polynomials
of I are univariate. For each polynomial of round e, either a power of a state
variable of the preceeding round or a power of a key variable of the current round
occur as head term. Some head terms however occur more than once.

By using an appropriate variable order we can force the set of head terms of
each round to be disjunct from the set of head terms of all other rounds:

– Curry
For better legibility, we identify x

(e)
i,j with xet+im+j and k

(e)
i,j with ket+im+j .

We then fix the following variable order:

x0 <. . .< xt−1

plaintext variables

< xtr <. . .< xt(r+1)−1

ciphertext variables

< k0 <. . .< kt(r+1)−1

key variables

< xt <. . .< xtr−1

internal state

variables

Block Ciphers Sensitive to Gröbner Basis Attacks 327

– Flurry
Again we decrease the number of indexes: we identify x

(e)
i with xet+i and

k
(e)
i with ket+i. We then fix the following variable order:

x0 < . . . < xt−1

plaintext variables

< xtr < . . . < x(t+1)r−1

ciphertext variables

< xt(r−1)+m < . . . < xtr−1

state variables of the right

half of the second last round

<

k0 < . . . < km−1

key variables of

the first round

< km(r−1) < . . . < kmr−1

key variables of round r

<

km < . . . < km(r−1)−1 < kmr < . . . < km(r+2)−1

remaining key variables

< xt < . . . < xt(r−1)+m−1

remaining state variables

To make the following linear transformation easier to describe we use a vec-
torial representation for Flurry and a matrix representation for Curry. The
entries in the vector and matrix of each round are the left-hand side polynomials
of the nonlinear cipher equations.

We can multiply the vectors respectively matrices of all rounds by D−1 to
obtain pairwise prime head terms within each and across rounds. For Curry
this is sufficient. For Flurry we also need to adjust the key schedule equations.
The nonlinear polynomials of the first and the last round have powers of key
variables as head terms. These key variables are of the first and the last round
respectively. For the first round this poses no problem. However for the last
round the key schedule polynomials that produce the last round key have the
same head terms. Thus we rewrite the key schedule equations. We express all
round keys except for the last round key as a linear combination of the first two
round keys. Then we write the second round key as a linear combination of the
first and the last round key. This results in all head terms being pairwise prime.
In order for this to work for Flurry, the order of the matrix used in the key
schedule needs to be greater than the number of rounds.

We have shown how to make the head terms of all polynomials pairwise prime.
Hence by Theorem 1, we have obtained a Gröbner basis. This strategy however
does not work Flurry and Curry instances with inversion S-Boxes, as the head
terms in these cases are never univariate.

4.4 Complexity of Gröbner Basis Conversions Using FGLM

The complexity of the FGLM algorithm hinges on two parameters of the input G:
the number of variables of the polynomial ring R and the vector space dimension
of the residue class ring R/I, where I is the ideal generated by the Gröbner basis
G ⊂ R. The following theorem [1] shows how this invariant of an ideal can be
computed.

Theorem 2. Let G be a Gröbner basis of the ideal I. Then

dim(R/I) = # {t ∈ T (R) : HT (f) � t for all f ∈ G}

328 J. Buchmann, A. Pyshkin, and R.-P. Weinmann

Corollary 1. Let G = {g1, . . . , gk} be a Gröbner basis for the ideal I ⊂ F [x1,. . . ,

xk] with head terms xd1
1 , . . . , xdk

k . Then dim(R/I) =
∏k

i=1 di.

Corollary 2. Let I be an ideal of an instantiation of either a Flurry or a
Curry cipher as described in Section 2.4 and f a polynomial function. Then
the following holds:

1. dim(R/I) = deg(f)mr for Flurry(n, m, r, f, D).
2. dim(R/I) = deg(f)m2r for Curry(n, m, r, f, D).

We restate Theorem 5.1 of [15].

Theorem 3. Let K be a finite field and R = K[x1, . . . , xk]. Furthermore G1 ⊂
R is the Gröebner basis relative to a term order <1 of an ideal I, and d =
dim(R/I). We can then convert G1 into a Gröbner basis G2 relative to a term
order <2 in O(kd3) field operations.

We conjecture the constant factor in the above estimate to be approximately
one cipher operation. For the space complexity of the algorithm, no bound is
given in the original paper. We note that the dominant memory requirement of
the FGLM algorithm is a d× kd matrix over F . Thus the memory usage of the
algorithm is upper bounded by �(kd2n)/8�+ o(1) bytes.

This allows us to estimate the maximum resistance of Flurry and Curry
ciphers with polynomial S-Boxes against Gröbner basis attacks (see Table 3).
Note that for the Curry cipher we need to use a bijective S-Box in the round
function; the lowest degree S-Box function that is bijective is f7.

Table 3. Upper bounds on the complexity of breaking 128-bit Flurry and Curry
ciphers with FGLM

cipher n dim(R/I) # of operations memory required (bytes)
Flurry(32, 2, 4, f3, D2) 8 38 ≈ 212.68 O(241.0) 230.4

Flurry(32, 2, 4, f5, D2) 8 58 ≈ 218.58 O(258.7) 242.2

Flurry(32, 2, 4, f7, D2) 8 78 ≈ 222.46 O(270.4) 249.9

Flurry(32, 2, 6, f3, D2) 12 312 ≈ 219.02 O(260.6) 243.2

Flurry(32, 2, 6, f5, D2) 12 512 ≈ 227.86 O(287.2) 261.3

Flurry(32, 2, 6, f7, D2) 12 712 ≈ 233.69 O(2104.7) 273.0

Flurry(32, 2, 8, f3, D2) 16 316 ≈ 225.36 O(280.0) 256.7

Flurry(32, 2, 8, f5, D2) 16 516 ≈ 237.15 O(2115.5) 280.3

Flurry(32, 2, 8, f7, D2) 16 716 ≈ 244.92 O(2138.8) 295.8

Flurry(16, 4, 4, f3, D2) 16 316 ≈ 225.36 O(280.0) 255.7

Flurry(16, 4, 4, f5, D2) 16 516 ≈ 237.15 O(2115.5) 279.3

Flurry(16, 4, 4, f7, D2) 16 716 ≈ 244.92 O(2138.8) 294.8

Curry(32, 2, 3, f7, D2) 12 712 ≈ 233.69 O(2104.6) 273.0

Block Ciphers Sensitive to Gröbner Basis Attacks 329

5 Conclusions

We have demonstrated that Gröbner basis algorithms can be used to successfully
mount key-recovery attacks on algebraically simple block ciphers with a large
block and key size; even when these ciphers are practically secure against differ-
ential and linear cryptanalysis. Key recovery can be accomplished with a mini-
mal number of known plaintext/ciphertext pairs. Degree-reverse lexicographical
Gröbner bases for our ciphers can be calculated by hand. These however do
not give the solution to the polynomial system directly. Our contribution shows
that the problem of recovering a key for these block ciphers can be reduced to a
Gröbner basis conversion. By giving a formula for the vector space dimension of
the polynomial ring modulo the key recovery ideal for all inversion-free ciphers
considered we were able to estimate the complexity of a Gröbner basis conversion
using the FGLM algorithm.

Acknowledgments. The authors would like to thank the anonymous referees
for their comments. The third author acknowledges several fruitful discussions
with Frederik Armknecht and Stefan Lucks.

References

1. Thomas Becker and Volker Weispfenning. Gröbner Bases – A Computational Ap-
proach to Commutative Algebra. Springer–Verlag, 1991.

2. Thomas Beth and Cunsheng Ding. On Almost Perfect Nonlinear Permutations. In
Tor Helleseth, editor, Advances in Cryptology – EUROCRYPT ’93, volume 765 of
Lecture Notes in Computer Science, pages 65–76. Springer–Verlag, 1994.

3. Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosys-
tems. In Alfred Menezes and Scott A. Vanstone, editors, Advances in Cryptology
– CRYPTO ’90, volume 537 of Lecture Notes in Computer Science, pages 2–21.
Springer–Verlag, 1991.

4. Jung Hee Cheon, Seongtaek Chee, and Choonsik Park. S-boxes with Controllable
Nonlinearity. In Jacques Stern, editor, Advances in Cryptology – EUROCRYPT
’99, volume 1592 of Lecture Notes in Computer Science, pages 286–294. Springer–
Verlag, 1999.

5. Carlos Cid and Gaëtan Laurent. An Analysis of the XSL Algorithm. In C. Pandu
Rangan, editor, Advances in Cryptology – ASIACRYPT 2005, volume 3788 of Lec-
ture Notes in Computer Science, pages 333–353. Springer–Verlag, 2005.

6. Carlos Cid, Sean Murphy, and Matt Robshaw. Small Scale Variants of the AES.
In Helena Handschuh and Henri Gilbert, editors, Fast Software Encryption – FSE
2005, Lecture Notes in Computer Science, pages 145–162. Springer–Verlag, 2005.

7. Stéphane Collart, Michael Kalkbrener, and Daniel Mall. Converting Bases with
the Gröbner Walk. Journal of Symbolic Computation, 24(3/4):465–469, 1997.

8. Nicolas Courtois. The Inverse S-box, Non-linear Polynomial Relations and Crypt-
analysis of Block Ciphers. In Hans Dobbertin, Vincent Rijmen, and Aleksandra
Sowa, editors, AES 4 Conference, volume 3373 of Lecture Notes in Computer Sci-
ence, pages 170–188. Springer–Verlag, 2005.

330 J. Buchmann, A. Pyshkin, and R.-P. Weinmann

9. Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with Overde-
fined Systems of Equations. In Yuliang Zheng, editor, Advances in Cryptology
– ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer Science, pages
267–287. Springer–Verlag, 2002.

10. David A. Cox, John B. Little, and Don O’Shea. Ideals, Varieties, and Algorithms.
Springer–Verlag, NY, 2nd edition, 1996. 536 pages.

11. Joan Daemen, Lars Knudsen, and Vincent Rijmen. The block cipher Square. In
Eli Biham, editor, Fast Software Encryption – FSE 1997, volume 1267 of Lecture
Notes in Computer Science, pages 149–165. Springer–Verlag, 1997.

12. Joan Daemen and Vincent Rijmen. The Design of Rijndael: The Wide Trail Strat-
egy. Springer–Verlag, 2001.

13. Hans Dobbertin. One-to-One Highly Nonlinear Power Functions on GF (2n). Appli-
cable Algebra in Engineering, Communication and Computing, 9(2):139–152, 1998.

14. Jean-Charles Faugère. A New Efficient Algorithm for Computing Gröbner bases
(F4). Journal of Pure and Applied Algebra, 139(1-3):61–88, June 1999.

15. Jean-Charles Faugère, P. Gianni, Daniel Lazard, and Teo Mora. Efficient Com-
putation of Zero-Dimensional Gröbner Bases by Change of Ordering. Journal of
Symbolic Computation, 16(4):329–344, 1993.

16. Thomas Jakobsen and Lars Knudsen. The Interpolation Attack on Block Ciphers.
In Eli Biham, editor, Fast Software Encryption – FSE 1997, volume 1267 of Lecture
Notes in Computer Science, pages 28–40. Springer–Verlag, 1997.

17. Erich Kaltofen and Victor Shoup. Subquadratic-time Factoring of Polynomials
over Finite FIelds. Mathematics of Computation, 67(223):1179–1197, 1998.

18. Masayuki Kanda. Practical Security Evaluation against Differential and Linear
Cryptanalyses for Feistel Ciphers with SPN Round Function. In Douglas R. Stinson
and Stafford E. Tavares, editors, Selected Areas in Cryptography – SAC 2000, vol-
ume 2012 of Lecture Notes in Computer Science, pages 324–338. Springer–Verlag,
2001.

19. Lars R. Knudsen. Practically Secure Feistel Ciphers. In Ross J. Anderson, editor,
Fast Software Encryption – FSE 1993, volume 809 of Lecture Notes in Computer
Science, pages 211–221. Springer–Verlag, 1994.

20. M. Matsui. Linear Cryptanalysis Method for DES Cipher. In Douglas R. Stinson,
editor, Advances in Cryptology – CRYPTO ’93, volume 773 of Lecture Notes in
Computer Science, pages 386–387. Springer–Verlag, 1994.

21. Sean Murphy and Matthew J.B. Robshaw. Essential Algebraic Structure within
the AES. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume
2442 of Lecture Notes in Computer Science, pages 1–16. Springer–Verlag, 2002.

22. Kaisa Nyberg. Differentially Uniform Mappings for Cryptography. In Tor Helle-
seth, editor, Advances in Cryptology – EUROCRYPT ’93, volume 765 of Lecture
Notes in Computer Science, pages 55–64. Springer–Verlag, 1994.

23. University of Sydney Computational Algebra Group. The Magma Computational
Algebra System, 2004. http://magma.maths.usyd.edu.au/magma/.

Block Ciphers Sensitive to Gröbner Basis Attacks 331

A A DRL Gröbner Basis for Flurry(32, 2, 4, f3, D2)

The following sequence of polynomials G is a degree-reverse lexicographic
Gröbner basis for a Flurry(32, 2, 4, f3, D2) for the following variable ordering:
x0 < x1 < x2 < x3 < x16 < x17 < x18 < x19 < x14 < x15 < k0 < k1 < k6 < k7 < k2 <

k3 < k4 < k5 < k8 < k9 < k10 < k11 < x4 < x5 < x6 < x7 < x8 < x9 < x10 < x11 <

x12 < x13

G = {
plaintext:
x0 + θ31 + θ29 + θ27 + θ24 + θ22 + θ21 + θ19 + θ13 + θ11 + θ8 + θ7 + θ6 + θ4 + 1
x1 + θ31 + θ30 + θ29 + θ22 + θ21 + θ15 + θ14 + θ11 + θ10 + θ7 + θ6 + θ5 + θ3 + θ
x2 + θ26 + θ25 + θ24 + θ21 + θ19 + θ18 + θ16 + θ14 + θ8 + θ7 + θ6 + θ4 + θ + 1
x3 + θ27 + θ26 + θ24 + θ21 + θ17 + θ15 + θ13 + θ11 + θ9 + θ6 + θ4 + θ
ciphertext:
x16 + θ31 + θ29 + θ21 + θ19 + θ18 + θ16 + θ15 + θ14 + θ12 + θ4 + 1
x17 + θ24 + θ21 + θ20 + θ18 + θ16 + θ13 + θ10 + θ9 + θ8 + θ6 + θ5 + θ3 + θ + 1
x18 + θ29 + θ25 + θ21 + θ20 + θ19 + θ13 + θ10 + θ9 + θ8 + θ7 + θ6 + θ5 + θ3

x19 + θ29 + θ27 + θ26 + θ20 + θ13 + θ10 + θ8 + θ5 + θ2

round 1:
x4 + x2

x5 + x3

k3
0 + k2

0x2 + k0x
2
2 + x3

2 + C1x7 + C1x6 + C1x1 + C1x0

k3
1 + k2

1x3 + k1x
2
3 + x3

3 + C2x7 + C1x6 + C2x1 + C1x0

round 2:
x8 + x6

x9 + x7

x3
6 + x2

6k2 + x6k
2
2 + k3

2 + C1x11 + C1x10 + C1x5 + C1x4

x3
7 + x2

7k3 + x7k
2
3 + k3

3 + C2x11 + C1x10 + C2x5 + C1x4

round 3:
x12 + x10

x13 + x11

x3
10 + x2

10k4 + x10k
2
4 + k3

4 + C1x9 + C1x8 + C1k9 + C1k8 + C1x15 + C1x14

x3
11 + x2

11k5 + x11k
2
5 + k3

5 + C2x9 + C1x8 + C2k9 + C1k8 + C2x15 + C1x14

round 4:
x14 + x16

x15 + x17

k3
6 + k2

6x14 + k6x
2
14 + x3

14 + C1x13 + C1x12 + C1k11 + C1k10 + C1x19 + C1x18

k3
7 + k2

7x15 + k7x
2
15 + x3

15 + C2x13 + C1x12 + C2k11 + C1k10 + C2x19 + C1x18

key expansion:
k11 + θ2k7 + (θ2 + θ + 1)k1 + θk0 + θ4 + θ2

k10 + θ2k6 + θk1 + k0 + θ3 + θ
k9 + (θ2 + θ)k7 + (θ + 1)k6 + θ2k1 + (θ + 1)k0 + θ6 + θ5 + θ3 + 1
k8 + (θ + 1)k7 + (θ + 1)k6 + (θ + 1)k1 + k0 + θ5 + θ3

k5 + (θ2 + θ + 1)k7 + θk6 + θ2k1 + (θ + 1)k0 + θ6 + θ4 + θ3 + θ
k4 + θk7 + k6 + (θ + 1)k1 + k0 + θ5 + θ4 + θ3 + 1
k3 + θ2k7 + (θ + 1)k6 + (θ2 + θ + 1)k1 + θk0 + θ6 + θ5 + θ4 + θ
k2 + (θ + 1)k7 + k6 + θk1 + k0 + θ5 + θ2 + θ + 1

}
with C1 = (θ + 1)−1 and C2 = 1 + (θ + 1)−1.

Universally Composable Oblivious Transfer
in the Multi-party Setting

Marc Fischlin

Institute for Theoretical Computer Science, ETH Zurich, Switzerland
marc.fischlin@inf.ethz.ch
http://www.fischlin.de/

Abstract. We construct efficient universally composable oblivious
transfer protocols in the multi-party setting for honest majorities. Unlike
previous proposals our protocols are designed in the plain model (i.e.,
without a common reference string), are secure against malicious adver-
saries from scratch (i.e., without requiring an expensive compiler), and
are based on weaker cryptographic assumptions than comparable two-
party protocols. Hence, the active participation of auxiliary parties pays
off in terms of complexity. This is particularly true for the construction
of one of our building blocks, an efficient universally composable homo-
morphic commitment scheme. Efficient solutions for this problem in the
two-party setting are not known, not even in the common reference string
model.

1 Introduction

Oblivious transfer (OT), originally defined by Rabin [23], is a two-party protocol
between a sender and a receiver. In this protocol the receiver either obtains a
message initially held by the sender, or gets the undefined symbol ⊥ instead.
Each event occurs with probability 1/2, yet the sender remains unaware of the
success of the transfer.

Oblivious transfer is a very important cryptographic primitive, for secure
multi-party computations [18, 16] as well as a tool for more practical applications
like anonymous buying over the Internet [2, 21, 1]. Often, these cases rely on a
variant called chosen one-out-of-two oblivious transfer [13]. There, the sender
holds two messages and the receiver gets to choose one (and only one), but the
choice is hidden from the sender. Both versions of OT have been shown to be
equally powerful [11].

Previous proposals for secure OT [13, 2, 4, 20] have often been investigated
in an isolated setting where issues like concurrency of executions or side effects
caused by other cryptographic protocols are not considered. As a noteworthy
exception, Garay and MacKenzie [15] gave the first oblivious transfer protocol
which is provably secure if run concurrently. Yet, even this protocol is not known
to remain secure under more advanced attack models. For example, the adversary
� This work was supported by the Emmy Noether Programme Fi 940/1-1 of the Ger-

man Research Foundation (DFG).

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 332–349, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Universally Composable Oblivious Transfer in the Multi-party Setting 333

could have some auxiliary information about the sender’s messages (e.g., if the
messages are used in other subprotocols), or the protocol may be executed in
parallel with other cryptographic protocols.

Ideally, one would like to have an OT protocol which can be safely used as
a building block within larger protocols, independently how the execution is
interleaved with other steps. Such a security guarantee is provided by Canetti’s
universal composition (UC) framework [5]. In this framework one defines an
idealized version of the primitive in question, capturing the desired security
properties in an abstract way and ensuring that the functionality is secure in
interdependent settings. For example, an idealized functionality for oblivious
transfer is a trustworthy interface which waits to receive the two messages from
the sender as well as the receiver’s choice and then delivers the corresponding
message to the receiver; no further information about one party’s input is given
to the other party.

Given an appropriate formalization of some functionality in the UC frame-
work, one next shows that this functionality can be securely realized by an
interactive protocol between the parties (without the trusted interface). Here,
securely realizing means that, in any environment in which the protocol may be
run, for this environment executions of the interactive protocol are indistinguish-
able from executions in the ideal model with the trustworthy functionality. The
UC framework, notably the composition theorem, then guarantees that the pro-
tocol can indeed be securely deployed as a subroutine in more complex protocols
and environments.

1.1 Previous Results

While some important stand-alone primitives like encryption and signatures ba-
sically preserve security in the UC framework [5, 6], other functionalities for
commitment and oblivious transfer cannot be implemented by any protocol be-
tween two parties of which one can be dishonest [5, 8]. In particular, previously
proposed OT protocols in a stand-alone setting (even if geared to be secure for
concurrent executions like [15]) demonstrably fail to realize the aforementioned
ideal OT functionality. In fact, Lindell [19], using a weaker security notion than
universal composition called concurrent self-composition, shows that oblivious
transfer (and other functionalities) cannot even be accomplished in this setting.

We stress that the impossibility results of [5, 8] refer to protocols between two
parties in the plain model, i.e., without any auxiliary parties or setup assump-
tions. Indeed, Canetti [5] shows that any functionality can be realized in the UC
framework by two or more parties if a majority of the players is honest (which for
two parties implies that both parties cannot be corrupted). Although based on
general cryptographic assumptions, this feasibility construction is computation-
ally expensive. It requires to evaluate the circuit computing the functionality in
a gate-wise manner, and also involves a general compiler lifting security in the
presence of honest-but-curios adversaries to the case of malicious adversaries.
This compiler usually relies on complex zero-knowledge proofs for general NP
statements.

334 M. Fischlin

Another workaround for the impossibility results is to let the two parties have
access to a common reference string (CRS) drawn according to some fixed distrib-
ution before the execution starts. This has been successfully applied to the case of
commitments [8], as well to oblivious transfer [10]. The OT protocol in [10] is used
as a building block to extend the aforementioned feasibility result of [5] to dishon-
est majorities. It consists of a two-level design which can be implemented by any
trapdoor permutation. The first part is basically the OT protocol of Goldreich
et al. [16] in the plain model but which is only secure against honest-but-curious
adversaries. In the second step one patches the protocol to thwart malicious ad-
versaries, using once more compiler techniques and zero-knowledge proofs. These
zero-knowledge proofs then also use the common reference string model.

Recently, Garay et al. [17] utilized the CRS model, too, and proposed an
extended committed oblivious transfer (ECOT) protocol which is universally
composable. In such an ECOT protocol the parties run an oblivious transfer
but they are also committed to their data; additionally, the sender can prove in
zero-knowledge some relation about his committed values. The core of the ECOT
protocol is of course a regular oblivious transfer and therefore the protocol in
[17] realizes the OT functionality securely in the CRS model.

The solution in [17] does not rely on compiler techniques but is secure against
malicious adversaries from scratch, under the decisional Diffie-Hellman assump-
tion and the decisional composite residuosity assumption, and the strong RSA
assumption or presuming chosen-message security of DSA. Yet, if implemented
with the suggested efficient primitives the protocol is only known to be secure
against adaptive corruptions if parties can erase internal data. Also, the proto-
col is geared towards evaluation of bit gates and therefore allows to transfer bit
messages only; we are not aware if it can be extended easily to handle longer
messages.

Another solution to bypass the two-party impossibility result, suggested in
[22], is to lend super-polynomial power to the adversary in the real-life execu-
tion as well as in the idealized world, and to the environment trying to distinguish
the two settings. This somewhat non-standard assumption about the computa-
tional power is done in a controlled way via so-called imaginary angels and it
allows to overcome the need for a CRS in the general construction in [10]. The
underlying oblivious transfer protocol in [22] is essentially identical to the one
by Canetti et al. [10] and again needs a compiler and zero-knowledge proofs to
handle malicious adversaries. Only the compiler is implemented differently by
virtue of the imaginary angels, and can forgo the CRS.

1.2 Our Results

To overcome the two-party results of [5, 8] we work in the setting of honest
majorities. As explained before, for two parties this trivially boils down to a
protocol between honest users. We are therefore interested in the case of three
or more parties.

Assuming an honest majority one could try to reduce the design of a multi-
party OT protocol in the plain model to known two-party solutions in the CRS

Universally Composable Oblivious Transfer in the Multi-party Setting 335

model. For example, in the three-party case (in which the adversary can corrupt
only one party) the third party could pick the CRS and the sender and receiver
then run the two-party protocol on this CRS over a secure channel.1 We do
not pursue this approach, though, because it would not improve over existing
solutions. Instead, we try to make better use of the additional parties.

Moreover, for more than three parties the straightforward approach for letting
the other parties generate the CRS would require a more advanced protocol than
in the three-party case. Otherwise the adversary could corrupt the sender or the
receiver in addition to some of the other players, possibly allowing the malicious
sender or receiver to cheat for an adversarial chosen CRS. But easy protocols
for jointly generating unbiased common reference strings are not known, espe-
cially since the CRS often contains non-trivial values like an RSA modulus with
unknown factorization.

We present several protocols implementing UC oblivious transfer in the multi-
party scenario, depending on the number of helper parties and, especially, on
the maximum of dishonest players among them. For the case of n = 3 par-
ties, among which there is an honest majority and thus at most t ≤ 1 corrupt
users, we present a basic protocol to realize universally composable OT very
efficiently, requiring the parties to essentially perform only one or two encryp-
tions/decryptions. In case of static adversaries or if we alternatively presume
reliable data erasure, our protocol can be implemented with any CCA-secure
public-key encryption (assuming authenticated channels between the parties).2

As usual in multi-party computations, adaptive corruptions are dealt with using
the more expensive but presumably inevitable non-committing encryption [9, 12].
Advantageously, in our protocol the number of bits which have to be encrypted
in a non-committing way is limited by the length of the sender’s messages and
the receiver’s choice, minimizing the usage of this encryption method.

We can extend our basic three-party protocol to more general n’s and a limited
number t of corrupt players. Although preserving the underlying cryptographic
assumptions, the workload of the extended protocol increases exponentially with
the number of corrupt players as we run many copies of our three-party protocol
(yet, it remains within reasonable bounds for small t’s). Hence, our protocol can
tolerate up to t = O(log k) dishonest players for security parameter k, where the
exact bound on t depends on the relationship of the number n of honest users
and t. For example, if we simply have an honest majority n ≥ 2t + 1, then our
protocol tolerates up to t ≈ log log k bad parties; if n ≥ t2 + 2 then we achieve
the bound t = O(log k). The description of this second protocol is omitted from
this version and will appear in the full version.

In our third protocol, which is based on ideas developed by Bellare and Mi-
cali [4], we overcome the limitation t = O(log k) by moving from secure encryp-

1 The confidential transmission guarantees that no information is revealed to the ad-
versary, even if the third party is corrupt and chooses the CRS in a malicious way.

2 Observe that stand-alone oblivious transfer in the two-party setting cannot be con-
structed from black-box public-key encryption, even for static, honest-but-curious
adversaries [14].

336 M. Fischlin

tion in general to the decisional Diffie-Hellman assumption. Our protocol utilizes
UC homomorphic commitments which we show how to realize efficiently with
Shamir’s secret sharing and secure signatures in case of static corruptions and
honest majorities. These homomorphic properties of commitments enable us to
transfer well-known discrete-log based proof systems easily to the UC setting,
resulting in an efficient OT protocol in connection with the DDH assumption.
Since many practical RSA- or discrete-log-based proof systems in the stand-alone
setting rely on similar homomorphic properties, our commitment protocol may
be useful for the design of other efficient UC protocols in the multi-party setting.

The limitations of our commitment scheme, static corruptions and honest
majorities, of course carry over to our OT protocol if implemented with this
commitment protocol. However, given a UC homomorphic commitment scheme
with stronger security properties, our OT protocol could tolerate any number of
corrupt parties in principle. Yet, even then, our solution would only be secure
against static corruptions —unless we allow reliable erasure in which case it
would withstand adaptive adversaries as well.

2 Preliminaries

We work in the universal composition framework of [5]. In this section we give
an overview over this framework, and refer the reader to [5] for a comprehensive
introduction. Then we recall some useful basic functionalities.

2.1 UC Framework

As explained in the introduction, executions of a protocol which securely realizes
some ideal functionality should be indistinguishable from executions with that
functionality. This is formalized by considering two experiments as described
below.

In the first experiment, the real-life execution, a probabilistic polynomial-
time adversary A participates in a run of the interactive protocol π with a set
of parties P1, . . . , Pn. All parties are connected through point-to-point commu-
nication channels. The channels are public, i.e., the adversary can read all data
transmitted between parties. The adversary is also responsible for delivery of
messages.

Each party is initially honest and follows the predetermined program of π.
The adversary may corrupt parties, either at the outset only (non-adaptive or
static adversaries) or at any point during the execution (adaptive adversaries).
An adversary corrupting at most t parties during any possible execution is called
t-limited. Once a party is corrupted by A the party hands over all internal data
including its input, previous incoming and outgoing communication and the
content of the random tape to the adversary. If we allow reliable erasure then
the party may delete some of these data during the execution which then remains
hidden from the adversary in case of a corruption. If a party gets corrupted by
the adversary then the party follows the adversary’s instructions from then on.

Universally Composable Oblivious Transfer in the Multi-party Setting 337

In particular, for so-called malicious adversaries the party may now deviate from
its program.

In the second experiment, the ideal-model execution, a probabilistic poly-
nomial-time adversary S (also called simulator) participates in an execution of
(dummy) parties P1, . . . , Pn with some ideal and trustworthy functionality F .
All parties are only connected to the functionality by secure channels and the
simulator cannot read the content of transmissions. Once an honest dummy party
gets some input it immediately forwards this input to the functionality which,
at some point, may reply with output for some parties (including the simulator
S). If a party P1, . . . , Pn receives such a message from the functionality it copies
it to its output tape. We note that the simulator is responsible for delivery of
these replies. Corruptions are dealt with as in the real-life setting.

In both settings an interactive distinguisher, the probabilistic polynomial-time
environment Z, is present. This environment can interact with honest parties by
determining the inputs and by reading the output of these parties. Additionally,
Z can communicate with the adversary A or S, respectively. This interaction
with the adversary may range from passing orders about corruptions to having
the adversary report communications between parties. For both worlds the way
the environment interacts with the adversary and the parties are identical. That
is, Z only sees the input/output behavior of honest parties and the interactions
with the adversary. In particular, if adversary A is t-limited and (non-)adaptive
then so is the simulator S.

At the end of an execution the environment should output a bit b indicating
whether it thinks it observes an execution in the real-life world with protocol
π and adversary A (b = 0), or in the ideal model with functionality F and
adversary S (b = 1). The random variables describing the output distributions
are denoted by realπ,A,Z and idealF ,S,Z , respectively. Informally, A should
not have much more power attacking the interactive protocol π than S has in
attacking the ideal functionality. Consequently,

Definition 1. A protocol π securely realizes a functionality F if for every ad-
versary A there exists a simulator S such that for every environment Z the
random variables realπ,A,Z and idealF ,S,Z are computationally indistinguish-
able. If the random variables are identically distributed then π securely realizes
F in a perfect way.

An important setting, which captures the intuition that a universally compos-
able protocol can be used securely as a subprotocol, is the so-called hybrid
model. There, an interactive protocol π is executed in presence of some ideal
functionality G, meaning that parties P1, . . . , Pn and the adversary also have
access to ideal functionality G. Definition 1 straightforwardly carries over to
this setting saying that realGπ,A,Z and idealF ,S,Z should be indistinguish-
able.

The importance of the hybrid model becomes clear in light of the composition
theorem [5]. If a protocol π securely realizes a functionality F in the G-hybrid
setting, and some protocol ρ securely realizes G, then the protocol πρ (in which
each call to G is replaced by running ρ) securely realizes F . This can be extended

338 M. Fischlin

to several functionalities G1,G2, . . . and protocols ρ1, ρ2, . . . realizing these func-
tionalities. Additionally, nesting of functionalities (e.g., realizing G through ρ in
some H-hybrid setting and further realizing H by a protocol σ etc.) can be done
up to constant depth.

On a technical note, protocol executions in the real-life and the ideal setting
are always accompanied by session IDs. These IDs are provided and maintained
by the system and enable the parties to distinguish between messages from dif-
ferent executions. Specifically, each invocation of a copy of some protocol or some
functionality, respectively, is assigned a unique ID sid. For sake of readability
we often omit mentioning these IDs for interactive protocols and note that any
transmission in an interactive protocol is implicitly tagged by such a value sid
as well as the identities of the sender and the receiver of the message.

2.2 Useful Functionalities

We usually show our OT protocols to be secure in the hybrid setting assuming
some important functionalities as building blocks.

One important functionality for message transmissions is Fauth. This function-
ality provides integrity for transmissions in the sense that the adversary cannot
tamper messages undetected, nor can the adversary inject additional messages.
Yet, the adversary still gets to read the content of transmission between par-
ties. This functionality is often assumed implicitly by presuming authenticated
channels between parties.

Another important functionality adding confidentiality to authenticated
transmissions is Fsmt. This functionality can be securely realized (in the Fauth-
hybrid model) by CPA- or CCA-secure public-key encryption for static adver-
saries, and by non-committing encryption for adaptive adversaries [5] (or by
assuming reliable erasure for semantically secure encryption). In both cases the
functionality merely reveals the length of the transmission to the adversary.

Our protocols use two other basic functionalities, Fpke and Fsig, for secure
public-key encryption and secure signatures. Namely, Fpke allows to generate a
public key enabling everyone to create ciphertexts which only the key generating
party can decrypt. With Fsig a signer party can generate a verification key allow-
ing to publicly verify signatures only the signer can create. In [5, 6] it has been
shown that Fpke can be realized with (non-committing) CCA-secure encryption
schemes, and Fsig can be implemented through chosen-message secure signature
schemes.

3 Universally Composable OT for Three Parties

We first discuss the case of three parties. Since we presume honest majorities
the adversary can corrupt at most one of these three parties. The ideal function-
ality for oblivious transfer which our protocol should realize securely is given in
Figure 1. We note that this protocol will then also provide the building block
for larger n’s and limited t = O(log k).

Universally Composable Oblivious Transfer in the Multi-party Setting 339

Functionality FOT

FOT proceeds as follows, running with two parties Pi, Pj and an adversary S , and
parameterized by a value κ:

– If receiving a message (ot-transfer, sid, Pi, Pj , m0, m1) with m0, m1 ∈ {0, 1}κ

from some party Pi store this message and ignore all further ot-transfer
messages.

– If receiving a message (ot-choose, sid, Pi, Pj , b) from some party Pj check if a
message (ot-transfer, sid, Pi, Pj , m0, m1) has been stored. If not, ignore this
message. If so, send (ot-received, sid, Pi, Pj , mb) to Pj and ignore all future
ot-choose messages.

Fig. 1. 2
1 -Oblivious Transfer Functionality FOT (adapted from [5])

3.1 The Protocol

The oblivious transfer protocol takes place between three parties: the sender S,
holding two messages m0, m1, the receiver R with selection bit b, and a helper
H with no input. If there are more than three parties then the helper position is
filled in by the first party different from S and R (where we assume some order
of the parties).

From a bird’s eye view, the receiver and the helper each pick a random key
and transfer the pair of keys to the sender. This is done such that, on the one
hand, the receiver only knows one of the keys (where the order is determined by
the receiver’s choice) and, on the other hand, the sender remains oblivious about
the owner of each key. The sender then encrypts each message with one of the
keys and returns the ciphertext pair to the receiver. The receiver can decrypt
message mb with his secret key while the other message is protected by the third
party’s secret key.

We describe our protocol formally in Figure 2. We assume that the sender has
already published a public key of an encryption scheme. Initially, the receiver
and the helper both locally pick secret random string k0 and k1, respectively.
Then they encrypt their string with the public key of S, confidentially exchange
the ciphertexts and R also determines a random order of the ciphertexts which
is only revealed to H. Both parties then transmit the re-ordered ciphertexts to
the sender S.

In addition, R secretly sends a bit to S indicating another re-ordering of the
ciphertexts. This bit, together with the first ciphertext re-arrangement between R
and H, ensures that the receiver’s string k0 is encapsulated in the right ciphertext
and that R later gets the message mb. Viewed differently, the receiver’s choice
b is randomly split between the helper and the sender such that neither of the
two parties alone can deduce b.

The sender waits to receive a ciphertext pair from each other party (and stops
if it receives pairs that do not match). Then it sorts the ciphertexts according

340 M. Fischlin

Protocol OT3 in the (Fpke, Fsmt, Fauth)-hybrid model

– Setup:
• Upon receiving (ot-transfer, sid, S, R, m0, m1), the sender S generates a key

pk by calling Fpke. S sends pk to the receiver R and the helper party H, each
time via Fauth.

• H echos the key received by S via Fauth to R, and R aborts if the keys do
not match.

– Key Exchange Step:
• Receiver R gets as input (ot-choose, sid, S, R, b). It picks a string k0 ←

{0, 1}κ and a bit α ← {0, 1}, computes a ciphertext c0 of k0 under public
key pk via Fpke, and sends (c0, α) to the helper H over the Fsmt channel.

• Having obtained (c0, α) helper H chooses a string k1 ← {0, 1}κ and generates
an Fpke-ciphertext c1 of k1 under pk. It returns c1 to R by Fsmt.

• R and H then locally sort (c0, c1) according to α to (cα, cα⊕1) and send this
ciphertext pair (cα, cα⊕1) to S via Fauth.

• The receiver also computes β ← α ⊕ b and transmits β to S over Fsmt.

– Transfer Step:
• The sender waits to receive the same pair (cα, cα⊕1) from R and H; if it

receives distinct pairs, then the sender aborts. The sender also expects to
get a bit β from R.

• The sender S re-orders (cα, cα⊕1) to (cα⊕β , cα⊕β⊕1) and decrypts the pair
to strings (K0, K1) = (kα⊕β , kα⊕β⊕1) by Fpke. If any of the decryptions fails
or does not yield a κ-bit string, then the sender aborts.

• The sender masks the messages by C0 ← K0 ⊕ m0 and C1 ← K1 ⊕ m1, and
sends (C0, C1) to receiver R over Fsmt.

• Receiver R, upon getting (C0, C1), unmasks Cb with Kb = kα⊕β⊕b = k0 to
obtain message mb. The receiver outputs (ot-received, sid, S, R, mb).

Fig. 2. 2
1 -Oblivious Transfer Protocol for Three Parties

to R’s request and decrypts them to obtain the strings (K0, K1) = (kb, kb⊕1)
where b remains hidden from S. It masks the messages by m0⊕K0 and m1⊕K1
and confidentially returns them to R. The receiver unmasks the message mb via
k0 = Kb, yet mb⊕1 remains scrambled by H’s secret string k1.

3.2 Security

We prove security of our scheme in the (Fpke,Fsmt,Fauth)-hybrid model. We note
that no further cryptographic assumption is required given these ideal interfaces,
and executions of our protocol in this setting are even perfectly indistinguishable
from ideal-model executions with functionality FOT. Of course, in order to realize
functionality Fpke for example, cryptographic primitives are usually needed and
the realization “only” guarantees computational indistinguishability.

Universally Composable Oblivious Transfer in the Multi-party Setting 341

Theorem 1. Protocol OT3 securely realizes functionality FOT in the (Fpke,
Fsmt, Fauth)-hybrid model in a perfect way. This holds for n ≥ 3 parties and
t-limited malicious, adaptive adversaries, t ≤ 1.

Proof. (Sketch) We construct an ideal-model simulator S as follows. S runs a
black-box simulation of the hybrid adversary A which is supposed to interact
with ideal functionalities Fpke,Fsmt,Fauth and the parties running the protocol.
At the same time, S runs an execution with functionality FOT in the ideal model.
Recall that in this ideal setting none of the other functionalities is present.

In the hybrid setting the adversary and the honest parties communicate with
the functionalities Fpke,Fsmt,Fauth over which the simulator has full control
in the black-box simulation. In particular, the only information available to the
adversaryA about the execution are data sent over Fauth between honest parties,
the (length of) encryption requests forwarded by Fpke to A, and internal data
of corrupted parties. The latter may include information previously transmitted
securely over Fsmt.

We next describe how the simulator emulates the adversary in the black-box
simulation. For this we define the simulator’s steps for each honest party and for
corruptions of these parties:

Simulation of Sender. S simulates an honest S by simply following the pre-
scribed program, i.e., if the dummy sender in the ideal model passes a message
to the ideal functionality then S generates a key pair via Fpke, waits to receive
ciphertext pairs, decrypts them and masks the messages. The only exception lies
in the final step if S is supposed to transmit (C0, C1) to the already corrupted
receiver. Recall that this is the only case where A immediately learns these infor-
mation sent over Fsmt at this point. If both parties are honest then the simulator
does not have to pass any information to A about this communication (as it is
virtually invisible to A in the hybrid model).

To simulate the transmission of (C0, C1) to a corrupted receiver first note that
S knows both α and β, from the communication between R and the simulated
H, and the communication between R and S. Furthermore, it knows the strings
K0, K1 from decrypting the ciphertexts. The simulator sets b ← α⊕β and sends
(ot-choose, sid, S, R, b) to the functionality FOT in the ideal model to receive
message mb. The simulator sets Cb ← Kb ⊕mb and Cb⊕1 ← {0, 1}κ and sends
(C0, C1) in the name of S to R over Fsmt.

If the adversary requests to corrupt the sender, then S first corrupts S in
the ideal model and learns the sender’s input (ot-transfer, sid, S, R, m0, m1).
The simulator then reveals the input and all the internal random coins to A; no
adaption is necessary for these genuine values. In addition, if (C0, C1) has already
been sent then R must still be honest and the simulator can simply claim that
the transmission over the adaptively secure channel was (K0 ⊕m0, K1 ⊕m1).

Simulation of Receiver. In order to simulate an honest receiver the simulator
runs a copy of R’s program, with the only difference that S initially substitutes
R’s unknown input b by b̃ = 0. This possibly causes the simulated receiver to
later send β̃ = α instead of β = α⊕ b (unless R is corrupted before).

342 M. Fischlin

If the adversary asks to corrupt R then S corrupts the party in the ideal model
and learns the input (ot-choose, sid, S, R, b). If this corruption happens before
the receiver is supposed to send β then handing over the internal coin tosses
and b to the adversary complies with the transmitted data. Assume that the
receiver has already sent the substituted β̃ to S. Since the sender is still honest
the simulator is able to claim that β = α ⊕ b has been transmitted over Fsmt
instead of β̃.

Finally, suppose the corruption of R takes place after S has supposedly sent the
masked messages, in which case the adversary has not seen these values transmit-
ted over Fsmt (yet). Due to the corruption of the receiver in the ideal model the
simulator learns the functionality’s message (ot-received, sid, S, R, mb). The
other values including β are faked as before and this time the simulator also sets
Cb ← Kb ⊕mb and Cb⊕1 ← {0, 1}κ and claims that R has received (C0, C1).

Simulation of Helper. The simulator simply runs a copy of H and reveals all
internal data to A if H is corrupted; no external input is provided to H.

It is not hard to see that the black-box simulation above is perfectly indistin-
guishable from an actual attack in the hybrid setting, as long as the adversary
can corrupt at most one of the parties. This proves the claim. ��

Several variations for the protocol apply. For instance, it is straightforward to ex-
tend the basic protocol into a chosen 1-out-of-N oblivious transfer. Analogously,
to derive Rabin’s OT functionality where the receiver either gets the sender’s
message m or receives ⊥, let the sender use m0 = m and m1 = ⊥ in the protocol
and let the sender choose the bit β at random instead.

4 DDH-Based UC Oblivious Transfer

As mentioned in the introduction the description of our extended three-party
protocol to tolerate up to t = O(log k) corrupt players is omitted. Instead, we
present a UC oblivious transfer protocol which tolerates more than logarith-
mically many dishonest parties. While our protocol in principle withstands any
number of corruptions given appropriate building blocks, our solution merely tol-
erates non-adaptive adversaries. Adaptive security can be achieved if we allow
reliable data erasure.

Like the scheme in [17] the resulting protocol here is a derivation of the
protocol by Bellare and Micali [4]. As in the Bellare-Micali protocol we have
the sender first generate and send an element X = gx of a group 〈g〉, such
that the discrete logarithm x is only know to the sender. The receiver, holding
bit b, next generates a pair W0 = gvX−b and W1 = W0X such that it knows
only one of the disrete logarithms, namely, log Wb = v. The receiver returns
the pair W0, W1 to the sender who thus remains oblivious about the bit b in
an information-theoretical sense. The sender encrypts the messages m0, m1 with
the ElGamal scheme, using W0 and W1, respectively, as the public keys. The
receiver can then decrypt mb from the encryption under key Wb.

Universally Composable Oblivious Transfer in the Multi-party Setting 343

In order to ensure universal composition of the basic protocol the transmis-
sions of the value X and of the pair W0, W1 are each accompanied by proofs of
knowledge. In the first case this is a Schnorr-type proof of knowledge of a dis-
crete logarithm [24]; in the second case this corresponds to a proof of knowledge
of one out of two discrete logarithms [7]. Both protocols follow the well-known
commitment-challenge-response structure, and to implement them in the UC
framework efficiently, we present a homomorphic UC commitment scheme that
is used for the initial commitment.

Below, we start by presenting our homomorphic UC commitment protocol.
Given such a functionality we explain how to efficiently prove statements about
discrete logarithms in the UC framework, and then use these proofs to construct
our oblivious transfer protocol. We note that helper parties are only required
in the implementation of the homomorphic commitment funtionality, while the
discrete-log based protocol can be realized between the sender and the receiver
only (in presence of an ideal homomorphic commitment functionality).

Since the suggested implementation of the efficient UC homomorphic commit-
ment scheme merely tolerates non-adaptive adversaries and dishonest minorities.
Hence, if implemented with this commitment protocol, we require n ≥ 2t + 1
players and the assembled protocol achieves security only against static corrup-
tions, even if we presume reliable deletion of data.

4.1 UC Homomorphic Commitments in the Multi-party Case

In the multi-party setting with honest majority, a universally composable com-
mitment scheme can be constructed along the lines of [3]. Namely, start with
Shamir’s (t, 2t)-threshold secret sharing scheme [25] where one can reconstruct
a shared secret x from t + 1 shares, yet any t or less shares are independent
of x. In this scheme the dealer chooses a random polynomial f of degree t
over a sufficiently large field such that f(0) = x. The dealer then distributes
xi ← f(Pi) to party Pi (for some unique identity Pi 	= 0). To reconstruct the
secret one interpolates the polynomial from t + 1 shares and then evaluates it
at 0.

Shamir’s scheme has an additional feature useful in our context. Namely, the
reconstruction algorithm is able to detect efficiently if, given more than t + 1
shares, any two subsets would reconstruct to distinct secrets (in which case the
algorithm returns ⊥). This can be checked by reconstructing the polynomial
from t + 1 shares and then verifying that the polynomial evaluates to the right
values for the other shares. We remark that this requires that identities of the
parties are unchangeably associated to the shares.

For our homomorphic commitment scheme we also need a universally com-
posable signature scheme Fsig. According to [6] such a signature scheme can
be derived from chosen-message secure signature schemes which, in turn, ex-
ist if one-way functions exist. We presume that the public verification key of
the committer has already been reliably transmitted to each party, i.e., either
by broadcast, or by sending it to each auxiliary party and to the receiver and
letting the helpers forward a copy to the receiver for verification.

344 M. Fischlin

Basic UC Commitment Protocol. The basic version of a universally composable
commitment protocol for n ≥ 2t + 1 goes as follows. To commit to a value x
to some party Pj , the committer Pi first computes shares x1, x2, . . . , x2t of x
and, for each share xi, also derives a signature σi by Fsig. The committer sends,
over secure channels Fsmt, share xi and signature σi to the i-th of the first 2t
parties other than the sender (but possibly including the receiver Pj). Each share
holder informs Pj when it has received a share with a valid signature but keeps
the actual value and the signature secret. The receiver outputs a receipt about
a commitment taking place if it has obtained 2t of such confirmations.

To open the commitment, party Pi requests the other parties to reveal their
shares. All auxiliary parties then forward their previously obtained share to-
gether with the signature to Pj via Fsmt. If all 2t of these shares carry valid
signatures then party Pj runs the reconstruction to derive some value x; it ac-
cepts x if and only if x 	= ⊥.

We do not prove formally that the protocol above is a universally composable
commitment scheme against non-adaptive adversaries. The basic properties for
such a protocol [8], extraction and equivocability, can be easily seen. We note
that the proof relies on static corruptions as we need to be able to derive the
value x from shares sent by a malicious sender to honest parties in the commit-
ment phase. Adaptive adversaries, however, may be able to send out inconsistent
shares at first and adapt those values later after corrupting some parties.

Homomorphic UC Protocol. Shamir’s polynomial-based scheme also allows to
perform additions on shares, i.e., having shared x1, . . . , xn via x	,1, . . . , x	,2t

among the same parties computing, say, x	,1+ · · ·+x	,n locally generates a share
of x1 + · · ·+xn. This homomorphic property carries over to the universally com-
posable commitment, allowing the committer to open any linear combination∑

a	x	 of committed values x1, . . . , xn for known a1, . . . , an.
When applying the homomorphic properties of the sharing scheme some care

with regard to the signatures is necessary, though. For example, in the opening
step the commitment scheme reveals only sums of the secrets but possibly not
the individual values. We solve this by having the committer in the opening
phase sign the sums

∑
a	x	,k of Pk’s shares and send this signature to Pk. Then

Pk can open the sum of the shares and prove correctness to the receiver by the
additional signature. Party Pk will, however, disclose the individual shares with
the initial signature if the sender’s signature for the sum is invalid. The full
protocol HCom is given in Figure 7 in Appendix A. The proof of the following
proposition is omitted.

Proposition 1. Protocol HCom securely realizes functionality Fhcom in the
(Fsig, Fsmt, Fauth)-hybrid model in a perfect way. This holds for n ≥ 2t + 1
parties and t-limited malicious, non-adaptive adversaries.

4.2 Efficient Proofs for Discrete Logarithms

Given a universally composable homomorphic commitment scheme we show how
to build efficient proof systems for discrete-logarithm statements. In the sequel

Universally Composable Oblivious Transfer in the Multi-party Setting 345

Functionality Fhcom

Fhcom proceeds as follows, running with parties P1, . . . , Pn and adversary S , and
parameterized by an Abelian group (A, +).

– Upon receiving a message (hcom-commit, sid, Pi, Pj , x1, . . . , xn) for
x1, . . . , xn ∈ A from some party Pi, send (hcom-receipt, sid, Pi, Pj , n)
to Pj and S . Ignore all further hcom-commit messages.

– If receiving a message (hcom-open, sid, Pi, Pj , a1, . . . , an) for a1, . . . , an ∈ N0

from party Pi, check that some message (hcom-commit, sid, Pi, Pj , x1, . . . , xn)
has been received from Pi before. If not, then ignore. Else compute y ←

n
i=1 aixi in A, and send (hcom-open, sid, Pi, Pj , a1, . . . , an, y) to Pj and S .

Fig. 3. Homomorphic Commitment Functionality Fhcom

we presume that q is a prime and that g is a generator of a group of order q
in which the decisional Diffie-Hellman problem (given gx, gy, gz decide if z =
xy mod q) is intractable. Moreover, let the additive group of the homomorphic
commitment scheme be (A, +) = (Zq, +).

Functionality Fdlzk

Fdlzk proceeds as follows, running with two parties Pi, Pj and an adversary S , and
parameterized by a group 〈g〉 of order q generated by g:

– If receiving a message (dlzk-verify, sid, Pi, Pj , X) from a party Pj store this
message and forward it to S . Ignore all subsequent dlzk-verify messages.

– If receiving a message (dlzk-prove, sid, Pi, Pj , X, x) from some party Pi check
that a message (dlzk-verify, sid, Pi, Pj , X) has been recorded. If not ignore,
else verify that gx = X. If so, deliver (dlzk-verified, sid, Pi, Pj , X) to S and
Pj and halt. Else ignore the message.

Fig. 4. Proving Knowledge of Discrete Logarithms Through Functionality Fdlzk

The two functionalities we are trying to realize are given in Figures 4 and 5.
The protocols to implement the functionalities are basically the Schnorr protocol
[24] and the the Or-protocol of [7] which deploys the Schnorr protocol to prove
knowledge of one out of two discrete logarithms. In this version of the paper we
merely sketch the solutions; the formal protocols with the security proofs can be
found in the full version.

To realize functionality Fdlzk we run the well-known Schnorr protocol consist-
ing of an initial commitment of the prover, a random challenge of the verifier and

346 M. Fischlin

Functionality Fdlor

Fdlor proceeds as follows, running with two parties Pi, Pj and an adversary S , and
parameterized by a group 〈g〉 of order q generated by g:

– If receiving a message (dlor-verify, sid, Pi, Pj , X, W0, W1) from some
party Pj check that W1 = W0X. If not ignore, else store this
message and ignore all further dlor-verify messages. Also, send
(dlor-verify, sid, Pi, Pj , X, W0, W1) to S .

– If receiving a message (dlor-prove, sid, Pi, Pj , X, W0, W1, w, b) from some
party Pi check that a message (dlor-verify, sid, Pi, Pj , X, W0, W1) has
been stored. If so and W0 = gwX−b, then deliver (dlor-verified, sid,
Pi, Pj , X, W0, W1) to Pj and S and halt. Else ignore the message.

Fig. 5. Proving Knowledge of One of Two Logarithms Through Functionality Fdlor

a final response of the prover. Only this time we use our homomorphic commit-
ment functionality (in the Fhcom-hybrid model) to let the prover commit to the
initial value. Furthermore, all transmissions are authenticated via Fauth. Then
the protocol realizes functionality Fdlzk in the UC framework. The same trick
works for the Or-case, too, and we thus obtain:

Proposition 2. There are protocols realizing functionalities Fdlzk and Fdlor,
respectively, in the (Fhcom,Fauth)-hybrid model for any t ≤ n and t-limited ma-
licious, adaptive adversary.

Note that, in the proposition, we presume that we are given a commitment func-
tionality Fhcom secure against adaptive corruptions. While such protocols can
be designed in principle [5] our efficient solution in the previous section merely
withstand non-adaptive adversaries. Hence, if implemented with this scheme our
protocol here is also bound to static corruptions.

4.3 Oblivious Transfer Under the DDH Assumption

We show how to realize functionality FOT in the (Fdlor,Fdlzk,Fauth)-hybrid
model. Our protocol —as is— only withstands non-adaptive adversary; extend-
ing this to adaptive adversaries is possible if we allow reliable erasure, as dis-
cussed afterwards.

The full protocol is given in Figure 6. We have the sender create X with
secret logarithm x = logg X and the receiver chooses W0, W1 = W0X such
that it knows logg Wb (but not logg Wb⊕1) for the selection bit b. We also let
both parties prove knowledge via our ideal discrete-log functionalities. Then, the
sender encrypts both messages such that one can decrypt ma if and only if one
knows logg Wa for a = 0, 1. By this, it follows that the receiver can only retrieve
one of the messages. In the protocol we assume for simplicity that the κ-bit
messages have already been encoded in the group generated by g.

Universally Composable Oblivious Transfer in the Multi-party Setting 347

Protocol OTDDH in the (Fdlor, Fdlzk, Fauth)-hybrid model

– Upon receiving (ot-transfer, sid, S, R, m0, m1) the sender picks x, y ← Zq at
random and computes X = gx, Y = gy. It sends X to R over Fauth and both
parties engage in a proof for X via Fdlzk.

– The receiver gets (ot-choose, sid, S, R, b) as input and chooses w ← Zq and
computes W0 = gwX−b and W1 = W0X. It sends (W0, W1) to S via Fauth.

– The sender and receiver call functionality Fdlor with inputs (dlor-verify, sid,
R, S, X, W0, W1) and (dlor-prove, sid, R, S, X, W0, W1, w, b), respectively.

– The sender computes C0 ← m0W
y
0 and C1 ← m1W

y
1 and transmits (Y, C0, C1)

over Fauth to R.
– The receiver computes mb ← CbY

−w and outputs (ot-received, sid, S, R, mb).

Fig. 6. Oblivious Transfer based on DDH

Theorem 2. Protocol OTDDH securely realizes functionality FOT in the (Fdlor,
Fdlzk, Fauth)-hybrid model under the decisional Diffie-Hellman assumption. This
holds for n parties and t-limited malicious, non-adaptive adversaries, t ≤ n.

The proof can be found in the full version. The protocol above remains secure
against adaptive adversaries if we add another step where the sender erases
x, y ∈ Zq immediately after (Y, C0, C1) has been computed. We call this protocol
OTerase

DDH. The additional step guarantees that the simulated sender can deny to
know the secrets to unmask mb⊕1. Otherwise, the values X, Y pin down x, y and
therefore Cb⊕1 and mb⊕1.

Proposition 3. Protocol OTerase
DDH securely realizes functionality FOT in the

(Fdlor, Fdlzk, Fauth)-hybrid model under the decisional Diffie-Hellman assump-
tion. This holds for n parties and t-limited malicious, adaptive adversaries,
t ≤ n, assuming reliable erasure.

Acknowledgments

We thank the anonymous reviewers for valuable comments.

References

1. William Aiello, Yuval Ishai, and Omer Reingold. Priced Oblivious Transfer: How
to Sell Digital Goods. Eurocrypt 2001, Volume 2045 of LNCS, pages 119–135.
Springer-Verlag, 2001.

2. Gilles Brassard, Claude Crpeau, and Jean-Marc Robert. All-or-Nothing Disclosure
of Secrets. Crypto’86, Volume 263 of LNCS, pages 234–238. Springer-Verlag, 1987.

3. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness Theorems
for Non-Cryptographic Fault-Tolerant Distributed Computation. STOC 1988, pages
1–10. ACM Press, 1988.

348 M. Fischlin

4. Mihir Bellare and Silvio Micali. Non-Interactive Oblivious Transfer and Applica-
tions. Crypto’89, Volume 435 of LNCS, pages 547–557. Springer-Verlag, 1990.

5. Ran Canetti. Universally Composable Security: A new Paradigm for Cryptographic
Protocols. FOCS 2001. IEEE Computer Society Press, 2001.

6. Ran Canetti. On Universally Composable Notions of Security for Signature, Cer-
tification and Authentication. CSFW 2004. IEEE Computer Society Press, 2004.

7. Ronald Cramer, Ivan Damgȧrd, and Berry Schoenmakers. Proofs of Partial Knowl-
edge and Simplified Desing of Witness Hiding Protocols. Crypto’94, Volume 839 of
LNCS, pages 174–187. Springer-Verlag, 1995.

8. Ran Canetti and Marc Fischlin. Universally Composable Commitments. Crypto
2001, Volume 2139 of LNCS, pages 19–40. Springer-Verlag, 2001.

9. Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively Secure Multi-
Party Computation. STOC 1996, pages 639–648. ACM Press, 1996.

10. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally Com-
posable Two-Party and Multi-Party Secure Computation. STOC 2002, pages 494–
503. ACM Press, 2002.

11. Claude Crepeau. Equivalence Between Two Flavors of Oblivious Transfer.
Crypto’87, LNCS, pages 350–354. Springer-Verlag, 1987.

12. Ivan Damgȧrd and Jesper Nielsen. Improved Non-Committing Encryption Schemes
Based on a General Complexity Assumption. Crypto 2000, Volume 1880 of LNCS,
pages 432–450. Springer-Verlag, 2000.

13. Shimon Even, Oded Goldreich, and Abraham Lempel. A Randomized Protocol for
Signing Contracts. Comm. ACM, 28(6):637–647, 1985.

14. Yael Gertner, Sampath Kannan, Tal Malkin, Omer Reingold, and Mahesh
Viswanathan. The Relationship between Public Key Encryption and Oblivious
Transfer. FOCS 2000. IEEE Computer Society Press, 2000.

15. Juan Garay and Philip MacKenzie. Concurrent Oblivious Transfer. FOCS 2000,
pages 314–324. IEEE Computer Society Press, 2000.

16. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental Game.
STOC 1987, pages 218–229. ACM Press, 1987.

17. Juan Garay, Philip MacKenzie, and Ke Yang. Efficient and Universally Composable
Committed Oblivious Transfer and Applications. TCC 2004, Volume 2951 of LNCS,
pages 297–316. Springer-Verlag, 2004.

18. Joe Kilian. Founding Crytpography on Oblivious Transfer. STOC 1988, pages
20–31. ACM Press, 1988.

19. Yehuda Lindell. Lower Bounds for Concurrent Self Composition. TCC 2004, Vol-
ume 2951 of LNCS, pages 203–222. Springer-Verlag, 2004.

20. Moni Naor and Benny Pinkas. Efficient Oblivious Transfer Protocols. SODA 2001,
pages 448–457. ACM Press, 2001.

21. Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy Preserving Auctions and
Mechanism Design. Proceedings of the 1st Conference on Electronic Commerce,
pages 129–139. ACM Press, 1999.

22. Manoj Prabhakaran and Amit Sahai. New Notions of Security: Achieving Universal
Composability without Trusted Setup. STOC 2004, pages 242–251. ACM Press,
2004.

23. Michael Rabin. How to Exchange Secrets by Oblivious Transfer. Technical Report
TR-81, Aiken Computation Laboratory, 1981.

24. C.P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryptol-
ogy, 4:161–174, 1991.

25. Adi Shamir. How to Share a Secret. Comm. ACM, 22:612–613, 1979.

Universally Composable Oblivious Transfer in the Multi-party Setting 349

A Homomorphic Commitment Protocol

In this section we present our UC homomorphic commitment protocol.

Protocol HCom for Abelian group (A, +) in the (Fsig, Fsmt, Fauth)-hybrid model

– Commitment:
• Upon receiving (hcom-commit, sid, Pi, Pj , x1, . . . , xn) the committer first generates a ver-

ification key vk of Fsig and sends it to the receiver Pi and to all 2t helper parties via
Fauth. The helper parties echo the key to the receiver over Fauth and the receiver stops
if any of the keys do not match.

• The committer then computes shares x�,1, x�,2, . . . , x�,2t of all values � = 1, 2, . . . , n
as well as signatures σk of (x1,k, . . . , xn,k) via Fsig for k = 1, 2, . . . , 2t. It sends
(commit, x1,k, . . . , xn,k, σk) to party Pk over Fsmt (where Pk is the k-th party different
from the committer).

• Receiving (commit, x1,k, . . . , xn,k, σk) from Pi party Pk first checks the signature σk

by Fsig. If the signature is invalid then Pk sends out (commit-error, n) to the receiver
over Fauth. Otherwise, if the signature is valid, then party Pk sends (commit-ok, n) to
Pj over Fauth.

• Only if the receiver gets 2t messages (commit-ok, n) from P1, . . . , P2t then it outputs
(hcom-receipt, sid, Pi, Pj , n).

– Opening:
• When getting (hcom-open, sid, Pi, Pj , a1, . . . , an) as input, the committer Pi computes

y ←
Pn

�=1 a�x� and yk ←
P

a�x�,k for k = 1, 2, . . . , 2t. Additionally, it computes
signatures τk of (a1, . . . , an, yk). Send (open, a1, . . . , an, yk, τk) over Fsmt to each Pk.

• Party Pk, when receiving (open, a1, . . . , an, yk, τk), verifies that yk =
P

a�x�,k for
the previously received values and also checks the signature τk for (a1, . . . , an, yk).
If all tests succeed then it sends (open-ok, a1, . . . , an, yk, τk) to Pj over Fsmt; else it
sends (open-error, a1, . . . , an, x1,k, . . . , xn,k, σk), i.e., reveals all shares including the
signature.

• The receiver waits to receive 2t messages including values (a1, . . . , an), either of type
open-ok or of type open-error. Having received such values the receiver checks the sig-
nature in each message with the help of Fsig and vk, i.e., the receiver verifies that
τk is valid or that σk is valid. If so, for each open-error message the receiver recon-
structs yk ←

P
a�x�,k and checks with these parts and the ones in open-ok that the

reconstruction algorithms yields y 	= ⊥. If all tests succeed then the receiver outputs
(hcom-open, sid, Pi, Pj , a1, . . . , an, y).

Fig. 7. Universally Composable Homomorphic Commitment Scheme

A Round and Communication Efficient Secure
Ranking Protocol

Shaoquan Jiang1,2 and Guang Gong2

1 Department of Computer Science,
University of Electronic Science and Technology of China, Chengdu, China

2 Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON, N2L 3G1, Canada

{jiangshq, ggong}@calliope.uwaterloo.ca

Abstract. In this work, we initiate the study of realizing a ranking
functionality (m1, · · · , mn) �→ (r1, · · · , rn) in the non-adaptive malicious
model, where ri = 1 + �{mj : mj < mi}. Generically, it has been solved
by a general multi-party computation technique (via a circuit formula-
tion). However, such a solution is inefficient in either round complexity
or communication complexity. In this work, we propose an efficient con-
struction without a circuit. Our protocol is constant round and efficient
in communication complexity as well. Furthermore, we show it is directly
secure in the non-adaptive malicious model (i.e., without a compiler, as
is used in many general constructions).

1 Introduction

A general multi-party computation paradigm was initially studied by Yao [15].
In this paradigm, any cryptographic functionality can be solved as a special
case. Such a functionality can be first formulated into some circuit. Then, a
semi-honestly secure protocol for this circuit is constructed. In the semi-honest
model, all the parties (including corrupted parties) strictly follow the protocol
specification. This, of course, does not suffice for real applications. To obtain a
realistically secure protocol, a compiler is proposed which, given a semi-honestly
secure protocol, outputs a maliciously secure protocol. This approach is gener-
ally very powerful, as one need not take care of the problem’s specific features
(except the circuit itself). However, since a generic solution does not exploit
the problem’s special properties, it is not efficient in general. Therefore, it is
very interesting and valuable to solve the specific problem without the generic
approach. With this motivation in mind, we study a multi-party millionaire
problem below. There are n parties, P1, · · · , Pn. Each Pi has mi dollars for
1 ≤ mi ≤ N . The problem is how to admit Pi to get the rank of mi but nothing
beyond this. Formally, we are interested in realizing the ranking functionality
(m1, · · · , mn) �→ (r1, · · · , rn), where ri = 1 + �{mj : mj < mi}, i = 1, · · · , n.

1.1 Related Work

Since Yao [15], many authors [6, 9, 8, 5, 12] worked in the circuit paradigm. How-
ever, prior to the work by Cramer et al. [3] and by Jakobsson et al. [13], none

D. Pointcheval (Ed.): CT-RSA 2006, LNCS 3860, pp. 350–364, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Round and Communication Efficient Secure Ranking Protocol 351

of them have achieved both the non-adaptive malicious security and the com-
munication complexity O(kn|C|), where communication complexity is the total
number of bits sent by all parties, |C| is the circuit size, n is the number of
parties, and k is the security parameter. Applying to a ranking functionality,
one can achieve communication complexity Õ(kn3). However, [3] has a round
complexity O(d) and [13] has a round complexity O(d+n), where d is the depth
of circuit size and in case of ranking functionality d = Ω(log n)3. All these results
are evaluated in the broadcast channel. The currently most communication effi-
cient and maliciously secure multi-party computation protocol is due to Hirt and
Maurer [11], whose communication complexity is O((mn2 + nIn

4 + non + n4)k)
(in the pairwise channel), where m is the number of multiplication gates in the
circuit, nI and no are the number of inputs and outputs respectively. Applying
to the ranking functionality, it implies a solution of communication complexity
O(kn5). However, their protocol has a very high round complexity O(n2). Note a
broadcast channel with communication complexity O(n2) and round complexity
O(n) can be constructed [10]. Therefore, no maliciously secure protocol for the
ranking problem has previously achieved a result equivalent to a constant round
with communication complexity O(kn3) in the broadcast channel.

1.2 Contribution

In this work, we construct an efficient n-party ranking protocol. Our protocol
has a constant round complexity. Assume k is the security parameter and each
party Pi has an input mi ∈ {1, · · · , N}. Then our protocol has a communication
complexity O(kn2(n + N)). Therefore, if N = O(n) which is the typical case,
the communication complexity is O(kn3). Thus, our protocol is efficient in both
communication complexity and round complexity. In addition, we prove that our
construction is secure in the non-adaptive malicious model.

This work is organized as follows. Section 2 introduces the security model.
Section 3 introduces a building block: a zero sharing protocol. Section 4 in-
troduces our ranking protocol containing some sub ideal functionalities and its
security analysis. Section 5 considers how to realize the sub ideal functionalities
and obtain a full functional ranking protocol.

2 Security Model

In this section, we introduce the security model for non-adaptive malicious adver-
sary. In this model, we first have an ideal process in the non-adaptive malicious
model, where the computation is achieved via a trusted third party. Then, we
turn to the maliciously real process, which is a model for the execution of the
real protocol. Finally, a protocol is said to be secure if the real process and ideal
process essentially have an identical performance.

3 This easily follows from two facts: (1) the circuit is acyclic and each node has at
most two inputs; (2) the circuit size for ranking is trivially lower bounded by Ω(n).

352 S. Jiang and G. Gong

Ideal Process. We consider the ideal process w.r.t. a non-adaptive malicious
adversary S. Let f be an ideal functionality and F be a trusted third party. Let
P1, · · · , Pn be n parties involved in the execution. S has an arbitrary auxiliary
input z and Pi has an input xi ∈ D. Before the protocol starts, S can select a
set of parties Φ ⊂ {P1, · · · , Pn} for corruption. As a result, all the inputs of these
parties are provided to S. In addition, their future actions are fully taken by S.
After the protocol starts, the execution is described as follows.

• Upon input xi, an uncorrupted Pi forwards it to F . Upon receiving an output
from F , Pi outputs it directly.

• S can change the input xi of a corrupted party Pi to x′
i ∈ D ∪ {⊥}, and

sends x′
i to F .

• Upon receiving x′
1, x

′
2, · · · , x′

n from all parties (x′
i = xi for an uncorrupted

Pi), F may ask S for a message. Then, he follows f to compute output
(o1, o2, · · · , on) from (x′

1, · · · , x′
n) and the response from S (if any). By de-

fault, if some x′
i =⊥, then o1 = · · · = on =⊥ . Finally, F asks S to deliver

oi to Pi.
• S can deliver oi or ⊥ for an uncorrupted Pi. In any case, the secret part of

oi will be kept invisible from S. Finally, S can output whatever he wishes.

Let r0 and rS be the random input of F and S, respectively. The joint execution
in the ideal process, denoted by IDEALF ,S(z)(x; r0, rS), is a concatenation of
the outputs for uncorrupted parties as well as the adversary S. Later we will use
random variable IDEALF ,S(z)(x) to denote IDEALF ,S(z)(x; r0, rS) with ran-
dom input r0 and rS .

Real Process. Let Γ be a protocol to realize a functionality f . Let P1, · · · , Pn be
n parties involved in the execution. Let A is a PPT adversary with an auxiliary
input z. Before the protocol starts, A specifies a set of parties Φ ⊂ {P1, · · · , Pn}
for corruption. As in the ideal process, once a party is corrupted, his secret input
is provided to A. In addition, his future action is fully taken by A. After the
protocol starts, the real process is described as follows.

• Upon input xi, an uncorrupted Pi exactly follows the protocol Γ to answer
the incoming message and generates its output oi.

• The action for each corrupted Pi is fully taken by A.

In addition, we assume the channel is authenticated with a guaranteed delivery.
That is, for any message M from an uncorrupted Pi, A must deliver M to the
specified receiver without any change. Let rA, ri, (Pi 	∈ Φ) are the random input
for A and Pi, respectively. oA, oi, (Pi 	∈ Φ) are the outputs for A, Pi, respec-
tively. Similar to the ideal process, we can define the joint execution, denoted
by REALΓ,A(z)(x; rA, {ri : Pi 	∈ Φ}), to be a concatenation of outputs for un-
corrupted parties and the output of A. We use REALΓ,A(z)(x) to denote the
variable of the joint execution with uniform random input.

Definition 1. Let Γ be an n-party protocol to implement a functionality f . Γ
is said to be secure in a malicious but non-adaptive model if for any probabilistic

A Round and Communication Efficient Secure Ranking Protocol 353

polynomial-time adversary A in this model there exists an expected polynomial-
time ideal adversary S such that{

IDEALf,S(z)(x)
}

z,x
c≡
{

REALΓ,A(z)(x)
}

z,x
,

where
c≡ means computational indistinguishability, z is auxiliary input and x =

(x1, · · · , xn) is the input vector for parties.

3 A Zero-Sharing Protocol

In our ranking protocol (Section 4), rank rj is computed by pair-wise com-
paring mj with other mi and then summarizing the results. In order not to
leak the comparison bit (mi < mj), we employ a blinding technique such
that all blinding values (for a fixed i) collectively constitute a random shar-
ing of zero. The zero-sharing protocol is constructed in this section, which
will be introduced now. Formally, we propose a protocol for functionality F0 :
(1κ, · · · , 1κ) �→ 〈f1(x), · · · , fn(x)〉, where fi(x) is uniformly at random from Zq[x]
of degree at most n−1 such that

∑n
i=1 fi(x) = 0. In the ideal process, the adver-

sary is allowed to choose fi(x) for corrupted parties. Our zero-sharing protocol
is presented in Table 1, where p, q are primes with p = 2q+1, and g, h ∈ Z∗

p have
an order of q. Let R2dl = {(gy1hy2 , (y1, y2)) : y1, y2 ∈ Zq}. The protocol employs
a multi-party functionality Fm2dl for each party to prove the knowledge of his
commitment. Fm2dl is defined as follows.

Definition 2. (Multi-party Functionality: Fm2dl) Fm2dl does the following with
parties P1, · · · , Pn and adversary S, and is parameterized by relation R2dl.

• Upon (Fjt, (fjt, f
′
jt))

n
t=1 from each Pj, Fm2dl checks if (Fjt, (fjt, f

′
jt)) ∈ R2dl.

If it holds for all j and t, Fm2dl sends message ok to P1, · · · , Pn and S;
otherwise, it does nothing.

After the protocol execution, Pi can compute uij = fi(j), for each j =
1, · · · , n. All parties can compute Uij = guij hu′

ij , where u′
ij = f ′

i(j). Note the
sharing scheme has a property that for each j,

∑
i uij = 0. That is why we call

it a zero-sharing protocol. In our ranking protocol (Section 4), uij will be used
to blind the bit (mi < mj). The completeness of ranking will be guaranteed by
the fact

∑
i uij = 0.

Lemma 1. Our zero-sharing protocol securely realizes F0. Specifically, if Φ is
the set of corrupted parties with |Φ| ≤ n − 1, then fi(x) for uncorrupted Pi is
uniformly at random in F [x] with degree at most n − 1 such that the only con-
straint is

∑
Pi 	∈Φ fi(x) = −

∑
Pi∈Φ fi(x). In addition, {uij}i	∈Φ,1≤j≤n is uniform

at random in Z
n×(n−|Φ|)
q with only constraint

∑
i∈Φ uij = −

∑
i	∈Φ uij , for each

j = 1, · · · , n.

354 S. Jiang and G. Gong

Table 1. An Efficient Zero Sharing Protocol Zero-Sharing(n)

Params: p = 2q + 1, g, h;
Output: fi(x) ∈ Zq [x] for each Pi, i = 1, · · · , n.

1. For each j = 1, · · · , n, Pi takes fij(x) = n−1
t=0 fijtx

t, f ′
ij(x) = n−1

t=0 f ′
ijtx

t ∈
Zq [x] randomly such that j fij(x) = 0 and j f ′

ij(x) = 0. Then he computes

Fijt = gfijthf ′
ijt . He privately sends (fij(x), f ′

ij(x)) to Pj , and makes Fijt public.
2. Pj verifies if n

l=1 Filt = 1 and if Fijt = gfijthf ′
ijt for all i, t. If the verification

fails, Pj broadcasts a complaint toward unsuccessful Pi. Pi tries to resolve it
by making (fij(x), f ′

ij(x)) public. If the complaint still remains unresolved, by
default set (fij(x), f ′

ij(x)) = (0, 0) for all j. Pj computes fj(x) = n
i=1 fij(x),

f ′
j(x) = n

i=1 f ′
ij(x).

3. Fm2dl is invoked such that Pj proves (Fjt, (fjt, f
′
jt)) ∈ R2dl for all t, where

Fjt = n
i=1 Fijt, fj(x) := n−1

t=0 fitx
t, f ′

j(x) := n−1
t=0 f ′

itx
t. If ok is received, Pi

accepts and outputs (fi(x), f ′
i(x)); otherwise, he outputs ⊥.

Proof. We now show that for any PPT real process adversaryA, there exists an
expected polynomial-time ideal process adversary S such that the two executions
are indistinguishable. S first prepares p = 2q + 1, g, and computes h = ga,
for a ← Zq. Then he runs A with p, g, h. In turn, he will receive a set Φ for
corruption. Then he corrupts Φ in the ideal process. For simplicity, we use Pi

to represent a party in the internal simulation and P̃i the party in the external
ideal process. S follows the real protocol execution to interact with A for Step
one and Step two, at the end of which he will obtain fj(x) for each uncorrupted
Pj . In Step three, upon (Fjt, (fjt, f

′
jt)) from each corrupted Pj (controlled by A),

S verifies if (Fjt, (fjt, f
′
jt)) ∈ R2dl. If yes, S sends message ok back to A4 and

in the ideal process he sends fjt for corrupted P̃j to F0. When F0 asks him to
deliver the messages, he does it faithfully. On the other hand, if the verification
fails, S sends ⊥ for corrupted party P̃j to F0 (note if no party is corrupted,
ok must occur). Finally, S outputs whatever A does. The difference between
this simulated execution and real execution is that the outputs for uncorrupted
parties might be different. In order to be consistent with the ideal process, the
output for an uncorrupted Pi in the internal simulation is supposed to output
f̃j(x), where f̃j(x) is the polynomial sent to P̃j from the ideal functionality
(but invisible to S). However, in the simulated execution, the output fj(x) of
Pj might be different from f̃j(x). However, this is not a problem as given the
adversary view in the simulated system, we can consistently reformulate the
output of Pj to f̃j(x). Indeed, take a fixed party Pr 	∈ Φ, reformulate frj(x) to
f̃rj(x) = frj(x)+f̃j(x)−fj(x) and f ′

rj(x) to f̃ ′
rj(x) = f ′

rj(x)−a−1(f̃j(x)−fj(x)),
for each other Pj 	∈ Φ. After the reformulation, adversary view does not change.

4 Note in this case we must have j fjt = j f ′
jt = 0; otherwise, the adversary can

be transformed to break Discrete Log problem as 1 = j Fjt = g j fjth j f ′
jt .

A Round and Communication Efficient Secure Ranking Protocol 355

However, the distribution of the reformulated simulation is exactly according to
the real protocol since for each j = 1, · · · , n

f̃rj(x) +
∑

i	=r fij(x) = f̃j(x)− fj(x) +
∑n

i=1 fij(x) = f̃j(x),
f̃ ′

rj(x) +
∑

i	=r f ′
ij(x) = f̃ ′

j(x)− f ′
j(x) +

∑n
i=1 f ′

ij(x) = f̃ ′
j(x).

Thus, our protocol realizes the functionality F0. The second statement is imme-
diate from the first statement. �

4 Our Hybrid Ranking Protocol

In this section, we introduce our cryptographic ranking protocol in the hybrid
model, see Table 2. Let p, q be large primes with p = 2q + 1. Let g, h, σ, z1 be
random elements in z∗p of order q. These parameters are setup by a trusted third
party. Before the ranking protocol, we assume that all parties have jointly run a
zero sharing protocol. Consequently, each Pi has the secret output fi(x), f ′

i(x)
and public output Fjt for all j and t. Let Uij =

∏n−1
t=0 F jt

it (publicly computable),
uij = fi(j), u′

ij = f ′
i(j) (known to Pi). Then, Uij = guij hu′

ij . As mentioned
before, uij will be used in the ranking protocol to blind the bit (mj < mi).
Our ranking protocol is divided into two phases: input commitment and rank
computation.

In the input commitment phase, we first encode mi ∈ {1, · · · , N} as a N -tuple
(0, · · · , 0, 1, 1, · · · , 1), where ′1′ starts at the (mi + 1)th component. Next, each
Pi commits to the encoded N -tuple of mi: Bi1 = hxi1 , · · · , Bi(mi) = hxi(mi) ,
Bi(mi+1) = σhxi(mi+1) , · · · , BiN = σhxiN . Then, we ask each Pj to prove the
knowledge of the commitment. Let B′

it = Bi(t+1)B
−1
it , 1 ≤ t ≤ N , where

Bi(N+1) = σ by default. Then, it suffices to prove: Bi1 is commitment of bit
0, B′

it is a commitment of either 0 or 1, for each t. Indeed, once this is done,
the digital committed in Bit is no more than that in Bi(t+1). Since Bi1 is a
commitment of 0 and Bi(N+1) is a commitment of 1, the tuple committed in
{Bit}N+1

t=1 must start with a sequence of ′0′, followed by a sequence of ′1′. Thus,
the proof task can be formalized as an ideal functionality Fmor+ below, where
relations Rdl = {(hx, x) : x ∈ Zq} and Ror = Rdl ∪ {(σhx, x) : x ∈ Zq}. In the
protocol, Fmor+ is invoked in which each Pi proves (B′

it, x
′
it) ∈ Ror for all t and

(Bi1, xi1) ∈ Rdl.

Definition 3. (Multi-party Functionality: Fmor+) Fmor+ does the following, run-
ning P1, · · · , Pn and S, and parameterized by relations Ror and Rdl.

• Upon receiving (Bi1, xi1) and {(B′
it, x

′
it)}

N
t=1 from each Pi, Fmor+ verifies if

(B′
it, x

′
it) ∈ Ror and (Bi1, xi1) ∈ Rdl. It holds for all i and t, Fmor+ sends

message ok to P1, · · · , Pn and S; otherwise, it does nothing.

If Fmor+ does not send ok, each Pi aborts; otherwise, he is ready for phase two.
In the rank computation stage, each Pi essentially uses an oblivious transfer

to send a blinded comparison bit (mi < mj) to Pj . To do this, he does a fresh

356 S. Jiang and G. Gong

commitment to mi using {Bijt}N
t=1, and then computes Dijt = (Bjσ

−t)xijtz
uij

1 =
hyjxijtz

uij

1 ×σ(mj−t)xijt . Then Pi sends {Bijt|Dijt}N
t=1 to Pj . If Pj computed this

message honestly, then Dij(mj) = hxijtyj z
uij

1 . Thus, Pj can compute ξi = Bij(mj)·
D

−1/yj

ij(mj) = σδij z
−uij/yj

1 , where δij is the bit (mi < mj). Note
∑

i δij = rj − 1
and

∑
i uij = 0. We have

∏n
i=1 ξi = σrj−1. Finally, Pj can obtain rj by trial. So

what is left is for Pi to prove that {Bijt|Dijt}N
t=1 is computed appropriately. To

do this, define

Rrc =
{(
{At||Ãt||Dt}N

1 ||U ||Δ, {xt||x̃t}N
1 ||u||u′

)
: ÃtA

−1
t = hx̃t−xt ,

(At, xt) ∈ Ror, Dt = (Δ · σ−t)x̃tzu
1 , U = guhu′

,
Δ ∈ Gq, xt, x̃t, u, u′ ∈ Zq}.

This relation is motivated by(
{Bit||Bijt||Dijt}N

1 ||Uij ||Bj , {xt||xijt}N
1 ||uij ||u′

ij

)
∈ Rrc,

which implies {Bijt|Dijt}N
t=1 is computed appropriately. In the protocol, an ideal

functionality Fmrc below is invoked for this purpose. This completes the descrip-
tion of our protocol.

Definition 4. (Multi-party Functionality: Fmrc) Fmrc does the following, run-
ning P1, · · · , Pn and S, and parameterized by Rrc, σ and z1.

• Upon input (
{Bit||Bijt||Dijt}N

1 ||Uij ||Bj , {xit||xijt}N
1 ||uij |u′

ij

)
from Pi, Fmrc checks it is consistent w.r.t. Rrc. If it holds, then Fmrc sends
message ok(Pi, Pj) to Pj and S; otherwise, it ignores the verification for
(Pi, Pj).

Now we formally prove the security of our ranking protocol.

Theorem 1. Under the Decisional Diffie-Hellman (DDH) assumption, our hy-
brid ranking protocol is secure in the non-adaptive malicious model.

Proof. We show that for any PPT real process adversary A, there exists an
expected polynomial-time ideal process adversary S such that the joint execu-
tions in the two processes are indistinguishable. S internally runs the simulated
real process with A, playing the uncorrupted parties. At the same time, he is
externally involved in the ideal process execution, on behalf of corrupted party
P̃i ∈ Φ. The code of S is described as below.

• S first gets the input mi for each P̃i ∈ Φ, and provides to A as the input for
Pi. He prepares p, g, h, σ = ha for a ← Zq and runs A with it.

• S plays the role of uncorrupted Pi to compute Bit = hx∗
it , where x∗

it ← Zq,
1 ≤ t ≤ N. Note that S does not know the real input mi. Thus, he is unable
to do a real commitment to mi.Then, S simulates the ideal functionality

A Round and Communication Efficient Secure Ranking Protocol 357

Table 2. Our Hybrid Ranking Protocol

Params: p, g, σ, h, z1; Input: mi for Pi, i = 1, · · · , n.

PHASE ONE: Input Commitment.

1. Each Pi takes xit ← Zq, computes Bit =
hxit if 1 ≤ t ≤ mi,
σhxit if mi < t ≤ N

. Then Pi

broadcasts 〈Bi1, · · · , BiN 〉.
2. Let B′

it = Bi(t+1)B
−1
it for 1 ≤ t ≤ N , where by default Bi(N+1) = σ. Let

x′
it = xi(t+1) − xit and xi(N+1) = 0. Fmor+ is invoked in which each Pi proves

(Bi1, xi1) ∈ Rdl and (B′
it, x

′
it) ∈ Ror for all t. If a message ok is not received

from Fmor+ , Pi aborts; otherwise, he is ready for Phase Two.
Let Bi = σN · N

t=1 B−1
it = σmihyi , for yi = − N

t=1 xit. Pi keeps yi secret.

PHASE TWO: Rank Computation.

1. Pi prepares the outgoing message to Pj as follows.

- Pi takes xijt ← Zq , set Bijt =
hxijt if 1 ≤ t ≤ mi,
σhxijt if mi < t ≤ N

. In other words, Pi

commits to mi again.
- Pi computes Dijt = (Bj · σ−t)xijt · z

uij

1 , sends {Dijt}N
t=1 to Pj .

2. Fmrc is invoked in which each Pi proves
{Bit||Bijt||Dijt}N

t=1 ||Uij ||Bj , {xit||xijt}N
t=1 ||uij ||u′

ij ∈ Rrc to Pj .

3. Receiving ok(Pi, Pj) for all i, Pj computes ξi = Bij(mj) · D
−1/yj

ij(mj). Finally, he

derives ξ = N
i=1 ξi = σrj−1 and obtains rj by trial.

Fmor+ . If all the inputs from corrupted parties (controlled by A) have been
successfully verified, S (simulating Fmor+) sends ok to A; otherwise, he does
nothing.

• S calculates m̃i from the input to Fmor+ for corrupted Pi. He then externally
sends m̃i for P̃i to F0. And in turn, he obtains the corresponding ri. He then
chooses arbitrary m̃j for uncorrupted Pj such that each m̃i for corrupted
Pi has a rank ri among (m̃1, · · · , m̃n). Then for uncorrupted Pj , he defines
xjt = x∗

jt if t ≤ m̃j ; xjt = x∗
jt − a if m̃j < t ≤ N. Under this formulation,

{Bit}N
1 is an encoding of m̃i as computed in Step 1 of Phase One.

• In Phase Two, S faithfully interacts with A by simulating Fmrc and all
uncorrupted Pi with {xit}N

1 . In the external execution (ideal process), S
delivers rj to uncorrupted P̃j if and only if ok(Pi, Pj) for all i has been
computed in the internal execution for all corrupted Pi. Finally, S outputs
whatever A does.

The view of A is different from the real process: for uncorrupted Pi, (1) In-
put commitment is dummy instead of a commitment of mi; (2) m̃i is not equal to

358 S. Jiang and G. Gong

mi for uncorrupted Pi. In the remaining part, we show this modification does
change the distribution of A’s view.

Let the simulated game be Γ . Consider the mental game Γ1 of Γ , where
the only difference is that for uncorrupted Pi, the input commitment is for m̃i

instead of first being dummy and reformulating later. The view of A under this
change is identically distributed in Γ , as x∗

it in Γ is uniformly at random (thus
xit obtained in the reformation is random) in Zq.

Now we will show that the adversary view in Γ1 and the variant of Γ1, where
m̃i for uncorrupted Pi is replaced by mi, is indistinguishable. We achieve this
via a sequence of game techniques.

First we modify Γ1 to Γ2 such that in Phase Two, for each uncorrupted
Pi, Dijt = hyjxijt · βm̃j−t

ijt · zuij

1 , where βijt ← Gq. Note if βijt = σxijt , then
Γ2 becomes Γ1. We show that the execution in these two games are indistin-
guishable. If this were not true, we construct an adversary B2 to break DDH
assumption. Given (h, σ, α, β) (either DH tuple or random tuple), B2 takes
(σ, αljt, βljt) ← Rud0(h, σ, α, β), 1 ≤ t ≤ N, 1 ≤ j ≤ n, for each uncor-
rupted Pl (algorithm Rud is presented in Appendix A). He then follows Γ1
(and Γ2) for input commitment stage. In the second phase, he follows the simu-
lator S in Γ2, except that for uncorrupted Pi, hxijt in defining Bijt is taken
as αijt and that Dijt = α

yj

ijt · β
m̃j−t
ijt · z

uij

1 . Finally, B2 feeds the execution
output to the distinguisher and outputs whatever he does. Note if (h, σ, α, β)
is DH tuple, then the simulated game by B2 is distributed as in Γ1; other-
wise, it is distributed according to Γ2. Thus, the distinguishability between
Γ1 and Γ2 implies the non-negligible advantage of B2, a contradiction to DDH
assumption.

We modify Γ2 to Γ3 such that in Phase Two, for any uncorrupted pair Pi

and Pj , Dijt = γijt · β
m̃j−t
ijt · z

uij

1 for γijt ← Gq (instead of γijt = hyjxijt).
We show the execution in Γ2 and Γ3 is indistinguishable; otherwise, consider a
DDH breaker B3. Upon receiving input (h, μ, ν, γ), B3 first takes (μj , νj , γj) ←
Rud1(h, μ, ν, γ) (See Appendix A for details) for each uncorrupted Pj and then
further takes (μj , νijt, γijt) ← Rud0(h, μj , νj , γj) for 1 ≤ t ≤ N and each un-
corrupted Pi. He follows the simulation in Γ2 for input commitment except
that hxjN is computed as μj ·

∏N−1
t=1 h−xjt . Note this simulation is distributed

identically as in Γ2 (and Γ3) as μj is uniform in Gq. In Phase Two, B3 fol-
lows the simulation in Γ3, except that for any uncorrupted pair Pi, Pj , (1)
hxijt in computing Bijt is defined to be νijt; (2) Dijt = γijt · β

m̃j−t
ijt · z

uij

1 ,
where βijt ← Gq as in Γ2 and γijt is the value just derived from Rud. By
the property of Rud algorithm, if (h, μ, ν, γ) is a DH tuple, then the simulated
game is identically distributed as Γ2; otherwise, it is according to Γ3. Thus,
the distinguishablity between Γ2 and Γ3 implies the distinguishability of DDH,
contradiction.

Consider the mental game Γ4, a variant of Γ3 while m̃i is replaced by mi

(registered by P̃i to the ideal functionality). We show that the views ofA between
Γ3 and Γ4 are identically distributed. Otherwise, commitments for {m̃i}Pi 	∈Φ

and {mi}Pi 	∈Φ using the method in Step 1 can be distinguished. However, this

A Round and Communication Efficient Secure Ranking Protocol 359

is impossible since the two set of commitments have identical distribution. Here
is details. Upon input {Bit}N

1 for each uncorrupted Pi (either commit of mi or
commitment of m̃i), a distinguisher B4 simulates Step 2 normally (as in Γ3).
Phase Two is simulated as follows.

- For each uncorrupted Pi, Bijt = Bit · hΔijt for each j, t, where Δijt ← Zq.

- For each uncorrupted Pi and corrupted Pj , take Dijt ← Gq for t 	= m̃j. Fix
Pi0 	∈ Φ. Take Di0j(m̃j) = B

yj

i0j(m̃j)
· σ−Rjyj · zuij

1 , where Rj = �{i : Pi 	∈
Φ, mi ≥ m̃j}. For i 	= i0, take Dij(m̃j) = B

yj

ij(m̃j) · z
uij

1 . Note yj = −
∑N

t=1 xjt

and xjt is obtained from the input to functionality Fmor+ by A in Phase
One.

- For uncorrupted Pi and Pj , take Dijt ← Gq.

Now we claim that no matter the input to the simulator is commitment of
{m̃i} or {mi}, the above simulation is consistent with Γ4. It suffices to show
that Dij(m̃j) for uncorrupted Pi and corrupted Pj is according to Γ4. Notice for
corrupted Pj , m̃j is ranked rj for both cases {mi}Pi 	∈Φ and {m̃i}Pi 	∈Φ, it follows
that �{i : Pi 	∈ Φ, mi ≥ m̃j} = �{i : Pi 	∈ Φ, m̃i ≥ m̃j}. Thus, we only need
to consider the case, where for uncorrupted Pi, {Bit}N

1 is a commitment of m̃i.
Our key point is that for any j, {uij : Pi 	∈ Φ} are uniform in Zq with only
constraint

∑
Pi 	∈Φ uij = −

∑
Pi∈Φ uij (by Lemma 1). Note that Bijt = σδithxijt ,

where δit is the bit (m̃i < t). Thus, in the simulation, Di0jm̃j = hyjxi0jm̃j ×
σyjδi0m̃j · σ−yjRj · zui0j

1 ; for other uncorrupted Pi, Dijm̃j = hyjxijm̃j × σyjδim̃j ·
z

uij

1 . Note that σ−Rj
∏

Pi 	∈Φ σδim̃j · zuij

1 =
∏

Pi 	∈Φ z
uij

1 . Let ũi0j = ui0j − (Rj −
δi0m̃j)yj logz1

σ, and ũij = uij + δim̃j logz1
σ for other uncorrupted Pi. Note that∑

Pi 	∈Φ ũij =
∑

Pi 	∈Φ uij , we have that {ũij}Pi 	∈Φ can be regarded as another
feasible assignment for {uij}Pi 	∈Φ. Furthermore, {ũij}Pi 	∈Φ is according to the
real distribution since {uij}Pi 	∈Φ is uniform at random with the only constraint
on their additive sum. Therefore, the simulation is actually distributed as in Γ4.
Our claim follows.

Furthermore, notice adversary view in Γ1, · · · , Γ4 when m̃i = mi for all un-
corrupted Pi is still indistinguishable. On the other hand adversary view in Γ1
with m̃i = mi for all uncorrupted Pi is according to the real execution. Thus,
the execution of ideal process by S is indistinguishable from the execution of the
real process by A. �

5 Full Ranking Protocol

Cramer et al. [3] demonstrates a transformation which, given any
∑

-protocol,
outputs a secure 3-round multi-party (parallel)

∑
-protocol. In this section, we

realize our building functionalities Fm2dl,Fmor+ ,Fmrc using their transforma-
tion. Then a full ranking protocol can be obtained by (sequentially) composing
these realizations with the hybrid protocol in the last section. We start with the
notion of

∑
-protocol.

360 S. Jiang and G. Gong

5.1
∑

-Protocol

Let R be a binary relation consisting of pair (x, w), where x is a public string
and w is a witness of polynomial length. Consider a 3-round proof of knowledge
protocol for (x, w) ∈ R, where x is the common input and w is the private input
for the prover. The prover starts with a message a. The verifier responds with
a challenge e. Finally, the prover responds with a finishing message z. Then
the verifier accepts if and only if ver(a, e, z, x) = 1 for a public algorithm ver.
Such an interactive proof system is said to be a

∑
-protocol if it satisfies the

following.

• Completeness. If the prover is given a private input w such that (x, w) ∈ R,
then the verifier always accepts.

• Special Honest Verifier Zero-knowledge. For any e, one can efficiently
compute (a, e, z) such that (a, e, z) is according to the real distribution with
a fixed e.

• Witness Extraction. For a fixed x, one can efficiently extract witness w
from any two accepting transcripts (a, e, z) and (a, e′, z′) with e′ 	= e.

Useful Examples. The protocols in Appendix B are
∑

-protocols πdl, π2dl, πor,
and πrc for relations Rdl, R2dl, Ror and Rrc respectively. These examples will
soon be applied to realize our building functionalities.

5.2 Secure Multi-party
∑

-Protocol

Let R1, · · · , Rv be v binary relations. Assume n parties P1, · · · , Pn. Let Λ =
(Λ1, · · · , Λn), where Λi is a collection of numbers from {1, · · · , v} with replace-
ment (i.e., taking two identical numbers is allowed). Let xi,j , for j ∈ Λi and
1 ≤ i ≤ n, be the common input for all parties. Suppose FΛ be an n-party func-
tionality in which each Pi proves the knowledge of witness wij s.t. (xij , wij) ∈
Rj , for each j ∈ Λi. The following has been established by Cramer et al. [3]
(Section 6.3 in their paper).

Lemma 2. Let R1, · · · , Rv be v binary relations. Let πi be a
∑

-protocol for re-
lation Ri for 1 ≤ i ≤ v. Then there exists a 3-round multi-party protocol πΛ

realizing FΛ. In addition, if πi (1 ≤ i ≤ v) has a communication complexity up-
per bounded by O(K), then the communication complexity of πΛ is upper bounded
by O(K

∑n
i=1 |Λi|).

Now we are ready to realize Fm2dl,Fmor+ ,Fmrc. From Lemma 2, we we can
easily conclude the following result.

Corollary 1. There exists a 3-round multi-party protocol πm2dl (resp. πmor+ ,
πmrc) realizing the ideal functionality Fm2dl (resp. Fmor+ ,Fmrc). Furthermore,
the communication complexity of πm2dl (resp. πmor+ , πmrc) is O(n2k) (resp.
O(nNk), O(nNk)), where k is the security parameter (i.e., the length of p).

A Round and Communication Efficient Secure Ranking Protocol 361

Proof. In Fm2dl, each Pi proves the knowledge of witness for n instances w.r.t
R2dl. In Fmor+, each Pi proves the knowledge of witness of N instances w.r.t. Ror

and one instance w.r.t. Rdl. In Fmrc, each Pi proves the knowledge of witness of
one instance w.r.t. Rrc. On the other hand, πdl, π2dl, πor and πrc are

∑
-protocols

for Rdl, R2dl, Ror and Rrc respectively. Thus, the first part follows from Lemma
2. The second part follows since πdl, π2dl, πor and πrc have communication
complexity O(k), O(k), O(k), O(Nk), respectively. �

5.3 Full Ranking Protocol

Now we are ready to state our full ranking protocol. Let FulRank be the ranking
protocol in the last section but functionalities Fm2dl, Fmor+ ,Fmrc are replaced
by πm2dl, πmor+ , πmrc respectively.

Theorem 2. Protocol FulRank realizes the ranking functionality in the non-
adaptive but malicious model. In addition, FulRank has a constant round com-
plexity and a communication complexity O(n2k(N + n)).

Proof. Since FulRank is obtained from the hybrid protocol via sequential com-
positions, the security follows. It has a constant round complexity since the
hybrid protocol, and πm2dl, πmor+ , πmrc all are constant round. Since the zero-
sharing protocol has the communication complexity O(n3k) and the main rank-
ing part has O(n2Nk), it follows that the whole protocol has O(n2k(N + n)).

�

References

1. M. Bellare, A. Boldyreva, S. Micali, Public-Key Encryption in a Multi-user Setting:
Security Proofs and Improvements, EUROCRYPT’00, pp. 259-274, 2000.

2. M. Bellare and S. Goldwasser, Verifiable Partial Key Escrow, ACM CCS’97, pp.
78-91, 1997.

3. R. Cramer, I. Damgrd, J. Nielsen, Multiparty Computation from Threshold Ho-
momorphic Encryption, EUROCRYPT’01, pp. 280-299, 2001.

4. R. Cramer, I. Damgard, and B. Schoenmakers, Proofs of partial knowledge and
simplified design of witness hiding protocols, CRYPTO’94, LNCS 839, Y. Desmedt
(ed.), SpringerVerlag, 1994.

5. R. Cramer, I. Damgard, and U. Maurer, Gemeral secure multi-party computation
from any linear secret sharing scheme, Advances in Cryptology-EUROCRYPT’00,
B. Preneel (Ed.), LNCS 1807, Springer-Verlag, pp 316-334, 2000.

6. M. Franklin, Comlexity and Security of Distributed Protocols, Ph. D thesis,
Columbia University, 1993.

7. M. Franklin and Haber, Joint encryption and message-efficient computation, Jour-
nal of Cryptology, 9(4): 217-234, 1996.

8. Z. Galil, S. Haber, and M. Yung. Cryptographic computation: secure fault-tolerant
protocol and the public-key model. In Advances in Cryptology-CRYPTO’87, C.
Pomerance (Ed.), LNCS 293, Spriner-Verlag, New York, 1988.

362 S. Jiang and G. Gong

9. O. Goldreich, S. Micali, and A. Wigderson, How to play any mental game or a
completeness theorem for protocols with honest majority, STOC’87, pp. 218-229,
New York City, 25-27 May, 1987.

10. V. Hadzilacos, J. Halpern, Message-Optimal Protocols for Byzantine Agreement
(Extended Abstract), PODC 1991, pp. 309-323, 1991.

11. M. Hirt and U. Maurer, Robustness for Free in Uncondidtional Multi-party Compu-
tation, Advances in Cryptology-CRYPTO’01, J. Killian(Ed.), LNCS 2139, Springer-
Verlag, pp. 101-118, 2001.

12. Y. Ishai and E. Kushilevitz, Randomizing polynomials: a new representation with
application to random efficient secure computation, FOCS ’00, pp. 294-304, 2000.

13. M. Jakobsson and A. Juels, Mix and match: secure function evaluation via cipher-
texts, Advances in Cryptology-ASIACRYPT’00, T. Okamoto (Ed.), LNCS 1976,
Springer-Verlag, pp. 162-177, 2000.

14. V. Shoup, On Formal Models for Secure Key Exchange, Available at
http://philby.ucsd.edu/cryptolib/1999.html.

15. A. C. Yao, Protocols for secure computations (extended abstract), FOCS’82, pp.
160-164, 1982.

Appendix

Appendix A (Diffie-Hellman Self-reduction)

Now we introduce a self-reduction technique [1, 14]. Let p, q be two large primes
with p = 2q + 1; Gq be the subgroup of order q in Z∗

p . And g ∈ Gq \{1}. Thus,
〈g〉 = Gq. Given a bit x and a tuple (g, ga, gb, gc), a self-reduction algorithm Rudx

in [1, 14] can efficiently compute a new triple (ga′
, gb′

, gc′
) with the properties in

Table 3.

Table 3. Properties of Output from Self-reduction Rudx

x = 0 x = 1
c = ab a′ = a & b′ random in Zq & c′ = a′b′ a′, b′ random in Zq & c′ = a′b′

c �= ab a′ = a &b′, c′ random in Zq a′, b′, c′ random in Zq

For example, if the input is x = 0 and a tuple (g, ga, gb, gab), then the output
will be (ga, gb′

, gab′
), where b′ is uniformly random in Zq. For simplicity, we use

(ga′
, gb′

, gc′
) ← Rudx(g, ga, gb, gc) to denote a random output of Rud with input

x and (g, ga, gb, gc).

Appendix B

In our protocol,
∑

-protocols for Rdl, R2dl, Ror and Rrc are presented in Tables
4, 5, 6, 7. All these protocols are not new. For example, Tables 6 [2] and Table
7 both are examples of the general OR protocol in [4].

A Round and Communication Efficient Secure Ranking Protocol 363

Table 4. The -Protocol πdl for relation Rdl

Common Input: p = 2q + 1, h, X = hx.
Auxiliary Input: x for Prover.

1. Prover takes x′ ← Zq , computes X ′ = hx′
. Then he sends X ′ to Verifier.

2. Verifier takes e ← Zq and sends to Prover.
3. Prover computes r = ex + x′ and sends r to Verifier.
4. Verifier checks if hr = XeX ′. He accepts if the check is successful.

Table 5. The -Protocol π2dl for relation R2dl

Common Input: p = 2q + 1, g,h, and S = gxhy.
Auxiliary Input: (x, y) for Prover.

1. Prover takes x′, y′ ← Zq , computes S′ = gx′
hy′

and sends it to Verifier.
2. Verifier takes e ← Zq and sends back to Prover.
3. Prover computes r1 = ex + x′, r2 = ey + y′ and sends (r1, r2) to Verifier.
4. Verifier checks if SeS′ = gr1hr2 . The proof is accepted if the verification is

successful.

Table 6. The -Protocol πor for relation Ror

Common Input: p = 2q + 1, h, σ, X = hx or σhx.
Auxiliary Input: x for Prover.

1. If X = hx, Prover takes w1, r2, c2 ← Zq , computes R1 = hw1 , R2 =
hr2(X/σ)−c2 .
If X = σhx, Prover takes w2, r1, c1 ← Zq , computes R1 = hr1X−c1 , R2 = hw2 .
Then he sends (R1, R2) to Verifier.

2. Verifier takes c ← Zq and sends back to Prover.
3. If X = hx, Prover computes c1 = c − c2, r1 = w1 + c1x.

If X = σhx, Prover computes c2 = c − c1, r2 = w2 + c2x.
Then he sends r1, r2, c1, c2 to Verifier.

4. Verifier checks if c1 + c2 = c, hr1 = R1 · Xc1 , hr2 = R2 · (X/σ)c2 . He accepts
if the verification is successful.

364 S. Jiang and G. Gong

Table 7. The -protocol πrc for relation Rrc

Common Input: p = 2q + 1, g,h, σ, z1, {Bt||B̃t||Dt}N
t=1||U ||B

Auxiliary Input: {xt||x̃t}N
t=1||u||u′ for Prover.

1. If Bt = hxt , Prover takes x∗
t1, u

∗
t1, u

′∗
t1, rt2, r̃t2, st2, s

′
t2, et2 ← Zq , computes

B∗
t1 = hx∗

t1 , B∗
t2 = hrt2(Bt/σ)−et2 ,

B̃∗
t1 = hx̃∗

t1 , B̃∗
t2 = hr̃t2(B̃t/σ)−et2 ,

D∗
t1 = (Bσ−t)x̃∗

t1z
u∗

t1
1 , D∗

t2 = (Bσ−t)r̃t2zst2
1 D−et2

t ,

U∗
t1 = gu∗

t1hu′∗
t1 , U∗

t2 = gst2hs′
t2U−et2 .

If Bt = σhxt , Prover takes x∗
t2, u

∗
t2, u

′∗
t2, rt1, r̃t1, st1, s

′
t1, et1 ← Zq, computes

B∗
t1 = hrt1B−et1

t , B∗
t2 = hx∗

t2 ,

B̃∗
t1 = hr̃t1 B̃−et1

t , B̃∗
t2 = hx̃∗

t2 ,

D∗
t1 = (Bσ−t)r̃t1zst1

1 D−et1
t , D∗

t2 = (Bσ−t)x̃∗
t2z

u∗
t2

1 ,

U∗
t1 = gst1hs′

t1U−et1 , U∗
t2 = gu∗

t2hu′∗
t2 .

Then he sends {B∗
t1||B∗

t2, B̃∗
t1||B̃∗

t2, D∗
t1||D∗

t2, U∗
t1||U∗

t2}N
1 to Verifier.

2. Verifier takes e ← Zq and sends back to Prover.
3. If Bt = hxt , Prover computes et1 = e − et2, rt1 = x∗

t1 + et1xt, r̃t1 = x̃∗
t1 + et1x̃t,

st1 = u∗
t1 + et1u, s′t1 = u′∗

t1 + et1u
′.

If Bt = σhxt , Prover computes et2 = e− et1, rt2 = x∗
t2 + et2xt, r̃t2 = x̃∗

t2 + et2x̃t,
st2 = u∗

t2 + et2u, s′t2 = u′∗
t2 + et2u

′.
Then he sends {rt1||rt2, r̃t1||r̃t2, st1||st2, s

′
t1||s′t2, et1, et2}N

1 to Verifier.
4. Verifier checks if et1 + et2 = e, and if the following for all t:

hrt1 = B∗
t1B

et1
t , hrt2 = B∗

t2(Bt/σ)et2 ,

hr̃t1 = B̃∗
t1B̃

et1
t , hr̃t2 = B̃∗

t2(B̃t/σ)et2 ,
(Bσ−t)r̃t1zst1

1 = D∗
t1D

et1
t , (Bσ−t)r̃t2zst2

1 = D∗
t2D

et2
t ,

gst1hs′
t1 = U∗

t1U
et1 , gst2hs′

t2 = U∗
t2U

et2 .

He accepts if the verification is successful.

Notation: Bt = hxt and B̃t = hx̃t , or, Bt = σhxt and B̃t = σhx̃t ; U = guhu′
;

Dt = (Bσ−t)x̃tzu
1 .

Author Index

Abdalla, Michel 262

Bao, Feng 159
Batina, Lejla 115
Biham, Eli 21
Boneh, Dan 226
Boyen, Xavier 226
Buchmann, Johannes 313

Canny, John 244
Cathalo, Julien 52

Duan, Yitao 244
Dunkelman, Orr 21, 295

Fan, Xinxin 64
Fischlin, Marc 332

Gjøsteen, Kristian 150
Gong, Guang 350

Halevi, Shai 226
Herbst, Christoph 192
Hinek, M. Jason 82
Hu, Yuh-Hua 132

Jiang, Shaoquan 350

Kawamura, Shinichi 174
Keller, Nathan 21, 295
Komano, Yuichi 174

Lai, Feipei 132

Mangard, Stefan 192

Namprempre, Chanathip 262
Neven, Gregory 262

Ohta, Kazuo 174
Osvik, Dag Arne 1
Oswald, Elisabeth 192

Paar, Christof 208
Pandey, Omkant 52
Pasini, Sylvain 280
Pyshkin, Andrei 313

Quisquater, Jean-Jacques 52

Schramm, Kai 208
Shamir, Adi 1
Shimbo, Atsushi 174
Szydlo, Michael 99

Tian, Xiaojian 34
Tillich, Stefan 192
Tromer, Eran 1
Tuyls, Pim 115

Vaudenay, Serge 280

Wang, Lih-Chung 132
Wang, Yumin 64
Weinmann, Ralf-Philipp 313
Wollinger, Thomas 64
Wong, Duncan S. 34

Yang, Bo-Yin 132
Yin, Yiqun Lisa 99

Zhu, Huafei 159

	Frontmatter
	Attacks on AES
	Cache Attacks and Countermeasures: The Case of AES
	Related-Key Impossible Differential Attacks on 8-Round AES-192

	Identification
	Session Corruption Attack and Improvements on Encryption Based MT-Authenticators
	Fair Identification

	Algebra
	Efficient Doubling on Genus 3 Curves over Binary Fields
	Another Look at Small RSA Exponents

	Integrity
	Collision-Resistant Usage of MD5 and SHA-1 Via Message Preprocessing
	RFID-Tags for Anti-counterfeiting

	Public Key Encryption
	A ``Medium-Field'' Multivariate Public-Key Encryption Scheme
	A New Security Proof for Damg{\aa}rd's ElGamal

	Signatures
	Stand-Alone and Setup-Free Verifiably Committed Signatures
	Toward the Fair Anonymous Signatures: Deniable Ring Signatures

	Side-Channel Attacks
	Practical Second-Order DPA Attacks for Masked Smart Card Implementations of Block Ciphers
	Higher Order Masking of the AES

	CCA Encryption
	Chosen Ciphertext Secure Public Key Threshold Encryption Without Random Oracles
	How to Construct Multicast Cryptosystems Provably Secure Against Adaptive Chosen Ciphertext Attack

	Message Authentication
	On the (Im)possibility of Blind Message Authentication Codes
	An Optimal Non-interactive Message Authentication Protocol

	Block Ciphers
	A New Criterion for Nonlinearity of Block Ciphers
	Block Ciphers Sensitive to Gr\"{o}bner Basis Attacks

	Multi-party Computation
	Universally Composable Oblivious Transfer in the Multi-party Setting
	A Round and Communication Efficient Secure Ranking Protocol

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

