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Abstract. User estimates of job runtimes have emerged as an important
component of the workload on parallel machines, and can have a signifi-
cant impact on how a scheduler treats different jobs, and thus on overall
performance. It is therefore highly desirable to have a good model of
the relationship between parallel jobs and their associated estimates. We
construct such a model based on a detailed analysis of several workload
traces. The model incorporates those features that are consistent in all
of the logs, most notably the inherently modal nature of estimates (e.g.
only 20 different values are used as estimates for about 90% of the jobs).
We find that the behavior of users, as manifested through the estimate
distributions, is remarkably similar across the different workload traces.
Indeed, providing our model with only the maximal allowed estimate
value, along with the percentage of jobs that have used it, yields results
that are very similar to the original. The remaining difference (if any)
is largely eliminated by providing information on one or two additional
popular estimates. Consequently, in comparison to previous models, sim-
ulations that utilize our model are better in reproducing scheduling be-
havior similar to that observed when using real estimates.

1 Introduction

EASY Backfilling [T9L21] is probably the most commonly used method for
scheduling parallel jobs at the present time [7]. The idea is simple: Whenever
the system status changes (a new job arrives or a running job terminates), the
scheduler scans the queue of waiting jobs in order of arrival. Upon reaching the
first queued job that can not be started immediately (not enough free proces-
sors), the scheduler makes a reservation on the job’s behalf. This is the earliest
time in which enough free processors would accumulate and allow the job to run.
The scheduler then continues to scan the queue looking for smaller jobs (require
less processors) that have been waiting less, but can be started immediately
without interfering with the reservation. The action of selecting smaller jobs for
execution before their time is called backfilling.

To use backfilling, the scheduler must know in advance the length of each
job, that is, how long jobs will runf] This information is used when comput-
ing the reservation time (requires knowing when processors of currently running

! This is true for any backfilling scheduler, not just EASY.
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jobs will become available) and when determining if a waiting job is eligible for
backfilling (must be short enough so as not to interfere with the reservation).
As this information is not generally available, users are required to provide run-
time estimates for submitted jobs. Obviously, jobs that violate their estimates
are killed. This is essential to insure that reservations are respected. Indeed,
backfilling is largely based on the assumption that users would be motivated to
provide accurate estimates, because jobs would have a better chance to backfill
if the estimates are tight, but would be killed if the estimates are too short.

However, empirical investigations of this issue found that user runtime esti-
mates are actually rather inaccurate [2I]. Results from four different installations
are shown in Fig. [] (Section M discusses the four presented workloads in detail).
These graphs are histograms of the estimation accuracy: what percentage of the
requested time was actually used. The promising peak at 100% actually reflects
jobs that reached their allocated time and were then killed by the system ac-
cording to the backfilling rules. The hump near zero was conjectured to reflect
jobs that failed on startup, based on the fact that all of them are very short
(less than 90 seconds). The rest of the jobs, that actually ran successfully, have
a rather flat uniform-like histogram.
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Fig. 1. Accuracy histogram of user runtime estimates: accuracy = 100 x Tvntime
estimate

The issue of user runtime estimates has since become the focus of intensive
research. A number of studies have suggested that inaccurate runtime estimates
are actually good, as they provide the scheduler with more flexibility and even-
tually lead to better performance; as a result, it was even proposed to simply
double the user runtime estimates before using them [29,21], or further, ran-
domizing them [22]. In contrast, other studies contend that accurate runtime
estimates are actually better, as they can lead to even better performance if
used correctly, e.g. by scheduling in some SJF (shortest job first) based order
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142311, 25]. Still other studies have shown that the accuracy of user estimates
can have non-trivial effects on the results of performance evaluations [g].

1.1 Motivation

All this activity spurred a search for ways to model user runtime estimates.
Such a model is needed for three reasons. First, it is useful as part of a general
workload model that can be used to study different job scheduling schemes, e.g.
by means of simulation. Second, it is often the case that existing log files from
production systems (used to drive simulations) are missing this information; a
model can help in artificially manufacturing it. Third, a model may provide
insights that will be useful in the study of whether and how the inaccuracy of
estimates may be exploited by the scheduler.

We would like to make it clear that this paper targets the first two reasons
mentioned above, that is, we aim to model and reflect reality, not to make it bet-
ter. Indeed, in a different study, we show how backfilling schedulers can produce
and utilize better runtime predictions that dramatically improve performance
[25]. But even this novel technique often relies on user estimates under various
conditions. Additionally, recall that user estimates have a role that is different
than just serving as approximated runtimes, as they are also part of the user
contract: the system guarantees a job will never be killed before its user estimate
is reached. Consequently, system generated predictions (or other conceivable fu-
ture mechanisms that are similar) can’t “just” replace estimates.

At the same time, estimates ensure that jobs will indeed be killed at some
point. Systems with no user estimates at all (that is, no runtime upper bound)
are also undesirable, as these will allow jobs to run indefinitely, potentially over-
whelming the system. At the very least we would expect users to choose some
runtime upper-bound from a predefined set of values. However, this scenario is
rather similar to reality, in which most users are already limiting themselves to
very few canonical “round” estimates (as will be shown below), and jobs that
exceed their estimates are immediately killed. It turns out there is actually no
fundamental difference between allowing users to choose “any value”, or from
within a limited set.

Therefore, regardless of any possible scheduling improvements or changes, it
seems a parallel workload model will not be complete if realistic user estimates
are not included. Importantly, we will show that systems perform better if real
user estimates are replaced with artificial ones, generated by existing models.
This uncaptured “badness” quality of real user estimates constitutes a serious
deficiency of existing models, as the purpose of these is to reflect reality, not to
paint a brighter (false) picture. While counter intuitive, our goal in this paper
is to produce estimates such that performance is worsened, not improved. Only
when such a model is available, we can take the next step and consider ways to
improve performance, based on a truly representative workload.

In the reminder of this section we survey the estimate models that have been
proposed, and point out their shortcomings. This motivates the quest for a better
model, which we propose in this paper.
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1.2 Existing Models

The simplest possible model is to assume that user estimates are accurate. For
example, such a model was used by Feitelson in [§]. This approach has two
advantages: it is extremely simple, and it avoids the murky issue of how to
model user estimates correctly. However, as witnessed by the data in Fig. [Tl it
is far from the truth.

A generalization of this model is to assume that a job’s estimate is uniformly
distributed within [R, (f+ 1)R], where R is the job’s runtime, and f is some non
negative factor (f can’t be negative because jobs are killed once their estimates
are reached). If f = 0, this means that the estimates are identical to runtimes; if
f =4, they are distributed between R and 5R, with an average of 3R. Arguably,
higher f values model increasingly inaccurate users. This model, which we call
the “f-model”, was proposed by Mu’alem and Feitelson [I1] and several variants
of it were used to investigate the effects of inaccuracy [29,2I11]. Tt was also
used by several researchers in simulations using workloads that did not contain
estimates data [I3[]. The main problem with this model is that the estimates
it creates are overly correlated with the real runtimes, so it actually gives the
scheduler considerable amount of valuable information that is unavailable when
real user estimates are used. In particular, it enables the scheduler to effectively
identify shorter jobs and select them for backfilling, leading to SJF-like behavior.
For example, under this model, a one-hour job will always appear longer than
a one-minute job (in reality, this is often not the case). This leads to better
performance results than those observed when using real user estimates.

A third model, also proposed by Mu’alem and Feitelson, attempts to repro-
duce the histograms of Fig.[Il These flat histograms imply that R/E = u, i.e.
that the ratio of the actual runtime R to the estimate E can be modeled as a
uniformly distributed random variable (u € [0,1]). By changing sides we find
that given a runtime R divided by wu results in an artificial estimate F. While
unrelated to the actual user estimate for this particular job, this is expected
to lead to the same general statistics of all the estimates taken together. The
model also created the peak at 100% and the hump at low values. Finally, if E
came out outrageous (because u happened to be very small), it was truncated
to 24 hours. This was called the “¢-model” by Zhang et al. [27] (¢ denoted the
fraction of jobs in the 100% peak), who used it in various simulations.

The problem with this model is that it is missing a “hidden” factor which is
often overlooked: that all production installations have a limit on the maximal
allowed runtime. For example, on the SDSC SP2 machine this limit is 18 hours.
Naturally, the limit also applies to estimates, as it is meaningless to estimate
that a job will run for say 37 hours if all jobs are limited to 18 hours.

Consider Fig. 2l which displays the average accuracy of jobs grouped to 100
equally sized bins according to their runtime, for four different production traces.
It has previously been conjectured that the apparent connection between longer
runtimes and increased accuracy, is because the more a job progresses in its com-
putation, the grater its chances become to reach successful completion [3]. How-
ever, this false hypothesis ignores the existence of a maximal allowed runtime,
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Fig. 2. Average accuracy as a function of jobs’ (binned) average runtime

which suggests long jobs are guaranteed to have high accuracy. For example, if a
job runs for 17 hours, its estimate must be in the range of 17 to 18 hours, so it’s
using at least 94.4% of its estimate. In other words, in contrast to the underlying
assumption of the ¢-model, the distribution of jobs in the accuracy histogram
(Fig. ) is not uniform. Rather, long jobs must be on the right, where accuracy
is high, while short jobs tend to be on the left, at lower accuracies.

A fourth rather similar model was proposed by Cirne and Berman [3], which
took the opposite direction in comparison to the previous model and chose to pro-
duce runtimes as multiples of estimates and accuracies, while generating direct
models to the latter two. This decision was based on the argument that accu-
racies correlate with estimates less than they do with runtimes. In their model,
accuracies were claimed to be well-modeled by a gamma distribution (this seems
to be the result of trying to model the uniform part of the histogram along with
the hump at low accuracies, by using one function for both). Estimates were suc-
cessfully modeled by a log-uniform distribution. This methodology suffers from
the same problem as the previous model, because accuracy is again independent
of runtime. In addition, this model is not useful when attempting to add esti-
mates to existing logs that lack them, or to workloads that are generated by
other models which usually include runtimes and lack estimates [1016][15L20].

In addition to the per-model shortcomings mentioned above, there are two
drawbacks from which all of them collectively suffer: The first is lack of repeti-
tiveness: The work of users of parallel machines usually takes the form of bursts
of very similar jobs, characterized as “sessions” [8,[28]. In the SDSC-SP2 log
for example, the median value of the number of different estimates used by a
user is only 3, which means most of the associated jobs look identical to the
scheduler. It has been recently shown that such repetitiveness can have decisive
effect on performance [26]. The second shortcoming is a direct result of the first:
estimates form a modal distribution composed of very few values, a fact that is
not reflected in any existing model. This is further discussed in the next section.

The conclusion from the above discussion is that all currently available models
for generating user estimates are lacking in some respect. Consequently, using
them in simulations leads to performance results that are generally unrealistically
better than those obtained when real user estimates are used. Our goal in this
paper is to capture the “badness” of real user estimates by finding a model that
matches all known information about them: their distribution, their connection
with each job’s runtime, and their effect on scheduler performance.
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2 Modality

We require a model capable of generating realistic user estimates. The usual
manner in which such problems are tackled is by fitting observed data to well
known distributions, later to be used for producing artificial data. To some ex-
tent, this methodology is applicable when modeling estimates, which appear to
be well captured using the log-uniform distribution [3] as shown in Fig.
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Fig. 3. Runtime and estimate CDFs (cumulative distribution functions) of the four
workload traces. Runtime-curves are much higher than estimate-curves because run-
times are much shorter than estimates. For example, in CTC, 40% of the estimates are
shorter than one hour (60% are longer), while for runtimes the situation is reversed
(only 40% are longer than one hour).

The difficulty lies in that user estimates embody another important charac-
teristic: unlike runtimes, they are inherently modal [21L[2L[17], because users tend
to repeatedly use the same “round” values (e.g. five minutes, one hour, and so
on). This is reflected in the staircase-like estimate curves of Fig.[3l in which each
mode corresponds to a popular estimate value.

In particular, note the significant modes located at the maximal estimate of
each trace, where the runtime and estimate curves finally meet (in Section [l we
will see that 4h and 2h effectively serve as the maximal estimate values of KTH-
SP2 and SDSC-BLUE, respectively). Evidently, the maximal estimate is always
a popular value. For example, this value is used by a remarkable 24% of CTC
jobs. This phenomenon probably reflects users’ lack of knowledge or inability to
predict how long their jobs will run, along with their tendency to “play it safe”
in the face of strict system policy to kill underestimated jobs.

In the context of job scheduling, this observation is quite significant, as
maximal-estimate jobs are the “worst kind” of jobs in the eyes of a scheduler as
they are too long to be backfilled. In fact, if all jobs chose their estimates to be
the maximal value, all backfilling activity would stop completelyE

The observation about the maximal estimate mode may also be applied, to
some extent, on other (shorter) modes: Consider the scenario in which an SJF

2 Except for when using the “extra” nodes, see [21] for details.
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scheduler must work with estimates that are highly inaccurate. If these esti-
mates nevertheless result in a relatively correct ordering of waiting jobs, per-
formance can be dramatically improved (up to an order of magnitude accord-
ing to [1]). However, if estimates are modal, many jobs look the same in the
eyes of the scheduler, which consequently fails to prioritize them correctly, and
performance deteriorates. In general, if the estimate distribution is dominated
by only a few large monolithic modes, performance is negatively effected, as
less variance among jobs means less opportunities for the scheduler to perform
backfilling.

Modality is absent from existing estimate models. An immediate heuristic
that therefore comes to mind when trying to incorporate modality, is to “round”
artificially generated estimates (e.g. by one of the models described above) to
the nearest “canonical” value: values smaller than 1 hour are rounded to (say)
the nearest multiple of 5 minutes, values smaller than 5 hours are rounded to
the nearest hour, and so on. Experiments have shown that this heuristic fails
in capturing the badness of user estimates, and performance results are similar
to those obtained before this artificial modality was introduced. Additionally,
arbitrary “rounding” fails to reproduce the various properties of the estimate
distribution, as reported in the following sections.

The fact of the matter is that modes have a different (worse) nature than pro-
duced by the above. For example, when examining the number of jobs associated
with the most popular estimates, we learn that these decay in an exponential
manner e.g. half of the jobs use only 5 estimate values, 90% of the jobs use 20
estimates values etc. In contrast, the decay of less popular modes obeys a power
law. In fact, almost every estimates-related aspect exhibit clear “model-able”
(that can be modeled) characteristics.

3 Methodology

The modal nature of estimates motivates the following methodology. When ex-
amining a trace, we view its estimate distribution as a series of K modes given by
{(ti,pi)}fil. Each pair (¢;, p;) represents one mode, such that ¢; is the estimate-
value in seconds (¢ for time), and p; is the percentage of jobs that use t; as
their estimate (p for percent or popularity). For example, the CTC mode series
includes the pair (18h,23.8%) because 23.8% of the jobs have used 18 hours
as their estimate. Occasionally, we refer to modes as bins within the estimate
histogram. Note that Zfil p; = 100% (we are considering all the jobs in the
trace). The remainder of this section serves as a roadmap of this paper, describ-

ing step-by-step how the {(;, pi)}fil mode-series is constructed.

3.1 Roadmap of This Paper

Each of the following paragraphs correspond to a section or two in this paper,
and may contain some associated definitions to be used later on.
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Trace Files. We build our model carefully, one component at a time, in order to
achieve the desired effect. Each step is based on analyzing user estimates in traces
from various production machines, in an attempt to find invariants that are not
unique to a single installation. The trace files we used and the manipulations we
applied on them are discussed in Section [l

Mass Disparity. Our first step is showing that the modes composing the mode-
series naturally divide into two groups: About 20 “head” estimate values are
used throughout the entire trace by about 90% of the jobs. The rest of the
estimates are considered “tail” values. This subject is titled “mass disparity” and
is discussed in Section Bl We will see that the two mode groups have distinctive
characteristics and actually require a separate model. Naturally, the efforts we
invest in modeling the two are proportional to the mass they entail.

Number of Estimates. We start the modeling in Section [0 by finding out how
many different estimates there are, that is, modeling the value of K. Note that
this mostly effects the tail as we already know the head size (~20).

Time Ranks. The next step is modeling the values themselves, that is, what
exactly are the K time-values {t,-}fil. The indexing of this ascendingly sorted
series is according to the values, with ¢; being the shortest and tx being the
maximal value allowed within the trace (also denoted T},4.). The index i denotes
the time rank of estimate t;. This concept proved to be very helpful in our
modeling efforts. We also define the normalized time of an estimate t; to be
ti/Tmax (a value between 0 and 1). Section [7] defines the function Fi;, that gets
i as input (time rank), and returns ¢; (seconds).

Popularity Ranks. Likewise, we need to model the mode sizes / popularities /
percentages: {p; };il This series is sorted in order of decreasing popularity, so p;
is the percentage of jobs associated with the most popular estimate. The index
J denotes the popularity rank of the mode to which p; belongs. For example,
the popularity rank of 18h within CTC is 1 (p1 = 23.8%), as this is the most
popular estimate. We also define the normalized popularity rank to be j/K (a
value between 0 and 1). Section [§] defines the function F,,, that gets j as input
(popularity rank), and returns p;, the associated mode size.

Mapping. Given the above two series, we need to generate a mapping between
them, namely, to determine the popularity p; of any given estimate ¢;, which are
paired to form a mode. Section [0 defines the function F),,;, that gets i as input
(time rank) and returns j as output (popularity rank). Using the two functions
defined above, we can now associate each ¢; with the appropriate p;. This yields
a complete description of the estimates distribution. The model is then briefly
surveyed in Section [T0l

Validation. Finally, the last part of this paper is validating that the resulting
distribution resembles the reality. Additionally, we also verify through simulation
that the “badness” of user estimates is successfully captured, by replacing the
original estimates with those generated by our model. The replacement activity
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mandates developing a method according to which estimates are assigned to jobs
(recall that an estimate of a job must be bigger than or equal to its runtime).
This is done in Section [[Il The paper is concluded in Section 2

3.2 Input, Output, and Availability

As we go along, the number of model parameters accumulates to around a dozen.
Most are optional and are supplied with reasonable default values. The only
mandatory parameters are the number of jobs N (the number of estimates to
produce), and the maximal allowed estimate value Tj,4,. Another important
parameter is the percentage of jobs associated with T},4., as this popular mode
exhibits great variance and has decisive effect on performance. The output of the
model is the series of the modes: how many jobs use which estimate.

The model we develop is somewhat sophisticated and involves several techni-
cal issues with subtle nature. As it is our purpose to allow simulations that are
more realistic, the C++ source code of the model is made available for down-
load from the parallel workload archive [9]. Its interface is composed of two
function: The first gets a structure containing all the model parameters (all but
two are assigned default values), and returns an array of K modes. The sec-
ond function gets the mode array and another array composed of job structures
(which includes ID and runtime). It than associates each job with a suitable
estimate.

4 The Trace Files

The analysis and simulations reported in this paper are based on four accounting
logs from large-scale parallel machines that are listed in Table [l These are all
the logs from the parallel workload archive [9] that contain information about
user estimates and were available at the time we began this research (the DAS2
log, which also contains this data, was added since). Since traces span the past
decade, were generated at different sites, by machines with different sizes, and
reflect different load conditions, we have reason to believe consistent results
obtained in this paper are truly representative.

The data in Table [0 relates to the original traces, their recommended
“cleaned” version (excludes various non-representative anomalies [9,26]), and
a “sane” version. The latter applies a filter on “cleaned” logs to remove jobs
that cannot be used in simulations (unknown size, runtime, or submission time).
As our goal is providing a model for the sake of performance analysis through
simulation, our modeling activity targets only sane jobs. In particular, the K
column in Table [ is related to the sane versions, as is all the data presented in
this paper.

During the study we found that two of the sane logs need to be further
manipulated to be useful in this context. The first is the SDSC log: We say an
estimate mode is “owned” by a user if this estimate was exclusively used by
only that user within the log. It turns out that user 106 is uniquely creative in
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Table 1. The trace files. The variables M, U, X, and K are months duration, number
of users, maximal estimate value, and number of estimate bins, respectively. SC stands
for “supercomputer”. BLUE relates to San-Diego’s Blue-Horizon machine. The others
are SP2 machines. See [9] for more details.

Abbrev. Site Start End CPUs Number of jobs (N) M U X K

original cleaned sane mon usr max est

SDSC-106 San-Diego SC Ctr.  Apr 98 Apr 00 128 73,103 59,332 53,673 24428 18h 339
CTC Cornell Theory Ctr. Jun 96 May 97 512 79,302 77,222 77,222 11679 18h 265
KTH4H Swedish Royal Instit. Sep 96 Aug 97 100 23,070 23,070 23,070 11209 4h 106
BLUE San-Diego SC Ctr.  Apr 00 Jun 03 1,152 250,440 243,314 223,407 32468 36h 525
SDSC San-Diego SC Ctr.  Apr 98 Apr 00 128 73,496 59,725 54,053 24428 18h 543

KTH Swedish Royal Instit. Sep 96 Aug 97 100 28,490 28,490 28,490 11214 60h 271
B 200 T T ]
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Fig. 4. Assume there are n users in a log. Users are associated with the number of
modes they own m; (i = 1,...,n) such that m, is the smallest and m, is the biggest.
The i index is defined to be the user-rank and serves as an X-value; m; serves as the
associated Y-value. Only positive m;-s are displayed (users that own no modes are not
shown). The SDSC outlier is associated with user 106 which is order of magnitude
more “industrious” than other users, exclusively owning 38% of SDSC’s modes.

comparison to others, owning 204 estimates of the 543 found in SDSC (38%).
This is highly irregularﬁ as shown in Fig. @ which displays the number of modes
owned by each user (only owners are shown). We therefore remove this unique
activity from the log for the remainder of the discussion (regular activity of user
106, using estimates that are also used by others, is allowed to remain). The
resulting log is called SDSC-106. This version is beneficial when modeling K in
Section [0 (number of estimate modes) and Fy;,, in Section [0 (actual estimate
time values). Other aspects of the model are not affected.

The other problematic workload was KTH: This log is actually a combination
of three different modes of activity: running jobs of up to 4 hours on weekdays,
running jobs of up to 15 hours on weeknights, and running jobs of up to 60 hours
on weekends. We have found that in the context of user estimates modeling,
considering these three domains in an aggregated manner is similar to, say,
aggregating CTC and BLUE to be a single log. We therefore focused on only
one of them — the daytime workload with the 4-hour limit, which is the largest
component of the log. This will be denoted by KTH4H.

3 In fact, as this activity is concentrated within about 2 months of the log, it actually
constitutes a workload flurry [26].
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Recall our claim that maximal estimate values are always popular (Fig. [3).
We have argued that 4h and 2h are the effective maxima of KTH and BLUE,
respectively. Obviously, this is the case for KTH (most of the time 4h is the max-
imum). As for BLUE, this machine had an “express” and “interactive” priority
queues defined, with a limit of 2 hours on submitted jobs [9]. Indeed, the vast
majority of 2-hours estimate jobs are from within these queues, which means
here too users provided the maximal value available to them (while still allowing
their jobs to be accepted to the higher priority queues).

5 Mass Disparity of Estimates

Examining the histogram of estimates immediately reveals that the distribution
is highly modal (Fig. B): A small number of values are used very many times,
while many other values are only used a small number of times. In this section,
we establish the mass disparity among estimate bins.

Human beings tend to estimate runtime with “round” or “canonical” num-
bers: 15 minutes, one hour etc. [21[1L[I7]. This has two consequences. One is that
the number of bins in the histogram (K) is very small relative to the number of
jobs in the trace (V). According to Table[Il N may be in the order of tens to
hundreds of thousands, while K is invariably in the order of only a few hundreds.

The other consequence is that a small set of canonical bins dominates the set of
values. Similar phenomena have been observed in many other types of workloads.
They are called a “mass disparity”, because the mass of the distribution is not
spread out equally; rather, a small set of values gets a disproportionally large
part of the mass [5].

The mass disparity of user runtime estimates is illustrated in Fig. [Al These
are CDF's related to the bin size (the number of jobs composing a bin). In each
graph, the top line is simply the distribution of bin sizes. This line grows sharply
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Fig. 5. Distributions of bins and of jobs, showing that a small fraction of the bins
account for a large fraction of the jobs and vice versa. The actual fractions are indicated
by the joint ratio, which is a generalization of the proverbial 10/90 rule.
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Table 2. Mass disparity: per-log minimal number of estimate bins needed to cover the
specified percent of the jobs

jobs 10% 50% 75% 90% 95% 98% 99% 100%
SDSC-106 1 6 12 22 39 77 116 339

CTC 1 4 10 22 36 62 89 265
KTH4H 1 6 12 21 28 36 43 106
BLUE 1 3 8 23 42 76 116 563
SDSC 1 6 12 23 43 91 156 543
KTH 1 8 21 41 60 89 122 270
SDSC-106 CTC KTH4H BLUE
o 1000 1000 1000 1000
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Fig. 6. Weeks in which an estimate appears, as a function of its popularity-rank. Recall
that using popularity-ranks implies estimates are sorted on the X-axis from the most
popular to the least. The top-20 most popular estimates appear throughout the logs.

at the beginning, indicating that there are very many small bins (i.e. values that
are used by only a small number of jobs). The other line is the distribution of
jobs, showing the fraction of jobs with estimates that fall into bins of the different
sizes. This line starts out flat and only grows sharply at the end, indicating that
most jobs belong to large bins (i.e. most estimate values are the popular values
that are repeatedly used very many times).

The figure also shows the joint ratio for each case. This is a generalization
of the well-know 10/90 rule. For example, the joint ratio of 9/91 for the CTC
log means that 9% of the bins account for 91% of the jobs, and vice versa: the
other 91% of the bins contain only 9% of the jobs. Further details about the
shape of the distributions are given in Table 2l This shows the absolute number
of bins involved, rather than their fraction; for example, the CTC row shows
that a mere 4 bins cover 50% of the jobs, 10 bins cover 75% of the jobs, and 22
bins contain 90%. Indeed, a bit more than 20 head bins are enough to account
for 90% of the jobs in all four logs.

“Head” bins dramatically vary in size: While the most popular is used by
10 — 25% of the jobs, only ~ 1% use the 20-th most popular. Regardless, all
head bins, whether large or small, have a common temporal quality: their use
is not confined to a limited period of time. Rather, they are uniformly used
throughout the entire log. This is shown in Fig. [6] that plots the number of
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weeks in which estimates are used, as a function of their popularity ranks. The
horizontal dot sequence associated with head bins indicates they are spread
out evenly throughout the log. Further, the point of intersection between this
sequence and the Y-axis is always the duration of the trace, e.g. for SDSC this
is 2 years (a bit more than 100 weeks).

6 Number of Estimates

We have established that about 20 popular “head” bins represent about 90% of
the jobs’ estimate distribution mass. We are left with the question of modeling
the number of the other “tail” bins used by the remaining 10%.

Examining the four traces of choice in Table[Il we see that K tends to grow
with the size of the trace, where this “size” can be measured in various ways: as
the number of jobs executed (IV), as the duration of time spanned (M), as the
maximal estimate (X), or as the number of different active users (U). Note that
the U metric also measures size, as new users continue to appear throughout
each log. This is relevant because after all, users are the ones generating the
estimates. In fact, in each of the four traces of choice, about 40% of the estimate
modes are exclusively owned (as defined above) by various users

We have experimented in modeling K as a function of the aspects mentioned
above (individually or combined), and most attempts revealed some insightful
observations. In fact, we are convinced K is the product of a combination of

K] linear model --- 1
o power model - -- -
7} SDSC — a
3 _SDSC-106 —
[72]
= 0 50,000 100,000 150,000 200,000 250,000
(2]
-_% 10 3 30 45 ¥ 120 350 5 600 3
] & A L R )
o) 8 - 25 40 100 & 300 / & )
5] 6 & 20 Es 35 F..;Jf S 80 s 250 500 ,Jf
£ Tol 15 b 30 r".-l'?";‘_ =4 200 | 1 400 (g
B AT 10 T 25 By o’ 1 150 1 500 &
2 1 s r‘ 20 &= 40 1 100 .
0 0 15 20 50 200
° Q& & 8 8 8 8 & g8 8 8 8
N N o o o o o o o
~— — o o o o o
- - ~ ~ 0
the four traces — N
linear model === . i
power model jobs submitted so far

Fig. 7. Modeling K using a power model K = aN® (o = 1.1, 3 = 0.5) and a liner
model which is defined by the points as specified in Table Bl In the top figure, curves
associated with SDSC share the same texture (color), the higher is of SDSC-106.

4 A surprising anecdote is that the actual number of bin-owners is also (exactly) 40,
in three of the four traces.
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Table 3. Points defining the linear model of K using N. The slope indicates the arrival
rate of new estimates.

N (jobs) 0 20 200 1,000 10,0000 70,000 250,000
K (ests) 0 10 20 35 90 340 565
K/N (slope)  1/2 1/18 1/53 1/164 1/240  1/800

all factors, and that they all effect it to some degree. However, in the interest
of being short while avoiding unwarranted complications (considering this only
affects the tail of the distribution), we have chosen to model K as a function of
N alone, which obtains tolerable results.

Fig. [l plots K as a function of the number of jobs submitted so far (if n is
an X value, its associated Y is the number of estimate bins in use, before the
n-th job was submitted). Note how the vanilla version of KTH and SDSC stands
out: the former due to the three estimate domains it contains, and the latter
due to user 106. All curves can be rather successfully fitted with a power model
on individual bases (we present one such power model that was simultaneously
fitted against all four traces of choice). Accordingly, we allow the user of our
model to supply the appropriate coefficients (as optional parameters). However,
as this only effects tail bins, we set an ad-hoc linear model (defined by Table B])
as the default configuration. This provides a tolerable approximation of K for
any given job number N.

7 Time Values of Estimates

Having computed a K approximation (order of a few hundreds), we know how
many estimate bins should be produced by our model. Let us continue to gener-
ate these K values, namely manufacture the {t,-}fil series. It has already been
noted that users tend to give “round” estimates [2IL[2L[I7], but this loose spec-
ification is not enough. In this section we develop a simple method to generate
K such appropriate values. We are currently not considering the most popular
(20) estimates in a separate manner. These will be addressed in detail later on
(Section [@), complementing the model we develop in this section.

Recall that the time-ranks of estimates are their associated indexes, when
ascendingly numbered from shortest to longest. Evidently, this concept can be
very helpful for our purposes. We define a function Fi;,, that upon a time-rank
input 4, return the associated time value t; (seconds), such that Fi;n, (i) = t;.

The top-left of Fig. [{ plots normalized estimate time (¢;/Tinaz, where Thaq
is the maximal estimate) as a function of its associated normalized time-rank
(i/K), for all four traces. According to the top-right and bottom of Fig. § it
turns out the resulting curves can be modeled with great success when using the
fractional function f(z) = (aafggr for some @ > 1 (z is normalized time-rank).
Further, the actual values of a (Table H]) are correlated with K, in that bigger
K implies smaller a.
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Fig. 8. Modeling estimate times using f(z)

Table 4. The a parameter of the fractional fit presented in Fig. [{] is correlated with
the number of different estimates (K)

trace KTH4H CTC SDSC-106 BLUE
a 191 > 157 > 1.50 > 1.24
K 106 < 266 < 339 < 525

An obvious property of f(x) in the relevant domain (x € [0, 1]) is that when
a gets closer to 1, its numerator goes to zero and therefore the curve gets closer
to the bottom and right axes. On the other hand, as a gets further from 1 (goes
to infinity), its numerator and denominator get more and more similar, which
means the function converges to f(x) = x (the main diagonal). The practical
meaning of this is that less estimate values (smaller K, bigger a) means estimates’
temporal spread is more uniform. In contrast, more estimate values (bigger K,
smaller a) means a tendency of estimates to concentrate at the beginning of the
Y-axis, namely, be shorter.

In order to reduce the number of user-supplied parameters of our model, we
can approximate a as a function of K (which we already know how to reasonably
deduce from the number of jobs). The problem is that we only have four samples
(Table M), too few to produce a fit. One heuristic to overcome this problem is
splitting the traces in two and computing K and a for each half. This enlarges
our sample space by eight (two additional samples per trace) to a total of twelve.
The results of fitting this data to the best model we could find are shown in Fig.
and indicate a moderate success.

We can now define the required Fy;,, to be

(a—l)li(

K

an(l) = Tmaa: . f (Z/K) = Tmaa: :

Generating the {ti}ilil series of time values is done by simply assigning 1,2, ..., K
to the time-rank 7 in an iterative manner. Finally, as almost 100% of the estimates
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Fig. 9. Modeling a as a function of K using 1 + aK” (with o = 12.1, 8 = —0.6). A
bigger K results in an a-parameter that is closer (but never equal) to 1, as required.

are given in a minute resolution, the generated values are rounded to the nearest
multiple of 60 (if not colliding with previously generated estimates).

8 Popularity of Estimates

In the previous section we have modeled the time values of estimates. Here we
raise the question of how popular is each estimate, that is, how many jobs are
actually using each estimate value? Answering this question implies modeling
the {pi}fil percentage series. Once again, like in the previous section, ranking
the estimates (this time based on popularity) proves to be highly beneficial.
Recall that {pi}fil is descendingly sorted such that p; is the percentage of jobs
using the most popular estimate value, p; is the percentage of jobs using the
i-most popular estimate value, and i serves as the associated popularity rank.
We seek a function Fj,, such that Fpop(i) = p;. Note that the constraint of
Zfil Fp (i) = 100 must hold.

Fig. plots the size (percent) of each estimate bin, as a function of its
popularity-rank. There’s a clear distinction between the top-20 most popu-
lar estimates (distribution’s head) and the others (tail), in that the sizes of
head-bins decay exponentially, whereas the decay of the tail obeys some power
law.

The suggested fits are indeed very successful (R? > 0.95 in both cases). How-
ever, when concentrating on the head (left or middle of Fig. [IT), it is evident
the exponential model is less successful for the first few estimates. For example,
in CTC the most popular estimate is used by about 24% of the jobs, while in
SDSC this is true for only 11%. In BLUE the situation is worse as the three
top ranking estimates “break” the exponential curve. (Indeed, the exponential
fit was produced after excluding these “abnormal” points.) Obviously, no model
is perfect. But this seemingly minor deficiency (at the “head of the head”) is
actually quite significant, as a large part of the distribution mass lies within this
part (differences in less popular estimates are far less important).
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Fig. 10. Modeling percent of jobs associated with estimate bins, as a function of pop-
ularity rank. The head (middle) is modeled by the exponential function ae®® +~ (with
a = 14.05, 8 = —0.18, and v = 0.46). The tail (right) is modeled by the wz” power
law (with w = 795.6 and p = —2.27). Note that the middle figure has linear axes, while
the other two are log scaled. The left figure concatenates the head and tail models.

We note that the observed differences among the traces at the “head of the
head” expose an inherent weakness in any estimate model one might suggest,
because the effect of the variance among these 1-3 estimates is decisive. Conse-
quently, our model will allow (though not mandate) the user to provide informa-
tion regarding top-ranking estimates as model parameters (this will be further
addressed in the next section). As for the default, recall that a job estimating
to run for the maximal allowed value (T),q.) is the worst kind of job in the
eyes of a backfilling scheduler (Section [2)). For this reason, we prefer the default
model to follow the CTC example by making the (single) top ranking estimate
“break” the exponential contiguity. This significant job percentage will later be
associated with T}, to serve as a realistic worst case scenario. We therefore
define F,,, as follows

89— 31, (ae7 +7) i =1
Fpop(i) = § a4+~ i=2,3,..,20
R i=21,22,.. K

Starting with the (simplest) middle branch, Fj., is determined by the expo-
nential model for all head popularity ranks but the first (the default values
for the coefficients are specified in the caption of Fig. [[0l). The first branch is
defined so as to preserve the invariant shown in Table [2] that the twenty top
ranking estimates are enough to cover almost 90% of the jobs. Finally, the third
branch determine sizes of tail estimates according to a power law (again, co-
efficient values are specified in Fig. [[0). But to preserve the constraint that
Zfil Fpop(i) = 100, tail sizes are scaled by a factor of %%, where A is the

sum of the tail: Zfim w - iP. The resulting default curve is almost identical to
the one associated with the model as presented in Fig. [, with a top rank of a
bit more than 20% (to be associated with Ty,4z).
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9 Mapping Time to Popularity

The next step after separately generating the estimates’ time {ti}fil and pop-
ularity {p; }szl is figuring out how two construct a bipartite matching between
the two. We seek a function Fj,qp such that Fq,(i) = j, that is, we want to
map each time-rank to a popularity-rank in a manner that yields an estimate
distributions similar to those found in the original traces (Fig. B]).

9.1 Mapping of Tail Estimates

As a first step towards constructing F,qp, let us examine this mapping as it
appears in the four traces. Fig. [[dl scatter plots normalized popularity-ranks vs.
normalized time-ranks: one point per estimate[] The points appear to be more
or less uniformly distributed, which means there is no apparent mapping rule.
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Fig.11. Scatter plots of relative popularity-ranks vs. relative time-ranks appear to
reveal a uniform distribution across all traces
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Fig. 12. Aggregating the data shown in Fig. [[1l into a grid-based heat-map reveals
no further insight, other than a consistent tendency of popular estimates to be short
(bottom-left black cells)

In an effort to expose some trend possibly hidden within the “disorder” of the
scatter plots, we counted the number of points in each grid-cell within Fig. [Tl

5 A scatter plot of actual values turns out to be meaningless.
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We then generated an associated heat-map for each sub-figure by assigning a
color based on the point-count of each cell: cells that are populated by 80-100%
of the maximal (cell) point-count found within the sub-figure (denoted C'), are
assigned with black; cells populated by 0-20% of C' are assigned with white; the
remaining cells are assigned with a gray intensity that is linearly proportional
to their point-count, batched in multiples of 20% of C.

The result, displayed in Fig. [2 appears to strengthen our initial hypothe-
sis that the mapping between popularity-ranks and time-ranks is more or less
uniformally random, as other than the bottom-left cell being consistently black
(top-20 popular estimates show tendency of being shorter), there is no consistent
pattern that emerges when comparing the different traces.

Our next step was therefore to randomly map between time and popularity
ranks. Regrettably, this resulted in failure, as the generated CDFs were signifi-
cantly different than those displayed in Fig.[Bl because “big modes” fell in wrong
places. The fact of the matter is that when (uniformly) randomly mapping be-
tween time and popularity ranks, there is a nonnegligible probability that the
4-5 most popular estimates are assigned to (say) times in the proximity of the
maximal value, which means that the majority of the distribution mass is much
too long. Alternatively, there is also a nonnegligible probability that the opposite
will occur, namely, that none of the more popular estimates will be assigned to
a time in the proximity of T}, contrary to our previous findings.

We conclude that it is tail estimates (in terms of popularity) that are roughly
randomly mapped to times in a uniform manner, forming the relatively balanced
scatter plot observed in Fig. [[Il This appearance is created due to the fact
there are much more tail estimates (few hundreds) than head’s (20). The head
estimates minority, which nevertheless constitute 90% of the mass, distributes
differently and requires a greater modeling effort.

9.2 Determining Head Times

We have reached the point where the effort to model user estimates is reduced
to simply determining 20 actual time-values and mapping them correctly to the
appropriate (head) sizes. In other words, our task is as simple as producing 20
(ti, pi) pairs. These are good news, as the number of samples is small enough to
allow a thorough examination of the entire sample-space. The bad news is that
unlike previous parts of the model that are actually relatively trivial, and in
spite of considerable efforts we’ve made, we failed to produce a simple method
to accomplish the task. In the interest of practicality and space, we do not
describe our various unsuccessful attempts to produce a simple straightforward
solution. Instead, we concentrate on describing the sophisticated algorithm we’ve
developed that has finally managed to deliver satisfactory results.

Let us examine the relevant sample space. Table [l lists the 20 most popular
estimates in each trace, and their associated sizes (percent of jobs). Of the 36
values displayed, a remarkable 15 are joint times across all traces (we ignore
KTH4H when deciding which values, bigger than 4h, are joint). The joint times
are highlighted in bold font, and have values one would expect from humans
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Table 5. The top-20 most popular modes in the four traces. Each column contains
exactly 20 job percent values. Note that 15 of the top-20 estimates are joint across
all traces (excluding KTH4H for estimates bigger than 4 hours). Joint estimates are
highlighted in bold font. The parenthesized subscripts denote the associated popularity-
ranks (e.g. in BLUE, 2h is the most popular value used by 21.3% of the jobs). Notice
that the sum of each column is invariantly in the neighborhood of 89%, the value we
used in Section B to define Fpop.

# estimate SDSC-106 CTC KTH4H BLUE

hh:mm

1 00:01 6.6

2 00:02 4.0 (10)

3 00:03 2.2 (1)

4 00:04 1.2 (20,

5 00:05 11.3, 88 1154 2.7

6 00:10 7.9 6.4 96 433

700012 124

8 00:15 304 1060 534 160,

9 00:20 4.8, 2002 31az 25
10 00:30 4.7 350 BB 17.7@
11 00:40 1300 0.5 a0
120045 1.1y
13 00:50 0.5 (20)
14 01:00 10.5 42 58 494
15 01:30 0.84s 1.3as 1.509
16 01:40 1.4 16
17 01:59 6-0(4)
18 02:00 5.3 546 450 2130
19 02:10 1.3 am
20 02:30 1.2 1.4 (15
21 03:00 3840  49n  2504s 1.8 .o
22 03:20 5.1 (s)
23 03:50 3.3 11
24 04:00 5.7, 2241 1254 1.6
25 04:50 0.6 (20)
26 05:00 1.4 1.1 16 0.9 (15)
27 06:00 2.0 6.1 s 1.0 (14
28 07:00 0.9 1
29 08:00 3.4, 1.5 (14 0.8 17y
30 10:00 334  1.70s 0.9 (16)
31 12:00 4.0 2.2 (10) 0.6 1s)
32 15:00 0.9 1.5 s
33 16:00 1.0 oo
34 17:00 0.6 (109
35 18:00 9.8  23.8, 2.1 (o)
36 36:00 1.1 s
sum (all)  86.4 88.9 89.3 88.7

sum (joint) 81.2 84.4 60.4 79.1
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to ordinarily use. Note that this is regardless of the different per-trace maximal
estimate limits. We conclude that joint times should be hard-coded in our model,
as it is fairly reasonable to conjecture humans will always extensively use values
like 15 minutes, 1 hour, etc. We therefore define the first head-mapping step —
determining the 20 time values that are the most popular — as follows:

1. Choose Tyqz, the maximal estimate (which is a mandatory parameter of our
model). As previously mentioned, this is always a top ranking value.

2. Choose all hard-coded joint times that are smaller than T}, -

3. Choose in descending order multiples of T oyna (smaller than T),,.), where
Tround is 200h, then 100h, 50h, 10h, 5h, 2h, 1h, 20m, 10m, and 5m. We stop
when the number of (different) chosen values reaches 20.

The role of the third item above is to add a relative aspect to the process of
choosing popular estimates, which is largely hard-coded. As will later be shown,
this manages to successfully capture KTH4H’s condensed nature. At the other
end, workloads with larger estimate domains, of jobs that span hundreds of
hours, do in fact exist [2]. Regrettably, their owners refuse to share them with
the community. Nevertheless, our algorithm generates longer times based on the
modes they report (400h, 200h, 100h, and 50h in the NCSA O2K traces).

Finally, recall we have already generated K time values using Fy;,, defined in
Section [ Head times generated here, replace the 20 values generated by Fyp,
that are the closest to them (and so the structure reported in Fig.[8lis preserved).

9.3 Mapping of Head Estimates

Having both head times (seconds) and sizes (job percentages), we go on to map
between them. As usual, mapping is made possible by using the associated ranks,
rather than the actual values. For this purpose we need two new definitions:

First, we define a new type of time-rank, the top-20 time rank (or ttr for
short), which is rather similar to the ordinary time-rank: All top-20 times, ex-
cluding T}z, are ascendingly sorted. The first is assigned a ttr=1, the second a
ttr=2, and the last a ttr=19. For example, according to Table[d in CTC, 00:05
has ttr=1, 00:10 has ttr=2, 01:30 has a ttr=7, and 17:00 has a ttr=19. T}, is
always associated with ttr=0.

Second, for each trace-file log, we define a function Fj,, that maps ttr-s
to the associated popularity ranks, within that log. For example, Fii.(0)=1
as Tar=18h (associated with ttr=0) is its most popular estimate. Likewise,
F,i(1)=3, as bmin is the smallest top-20 estimate (ttr=1) and is the third most
popular estimate within CTC. Table[@lists Fj,q of the four traces. Recall that 2h
is the effective T},4, of BLUE and therefore this is the estimate we choose to as-
sociate with ttr=0. Additionally, note the BLUE 01:59 mode near its T},4,=2h
(Table Bl). This is probably due to users trying to enjoy both worlds: use the
maximal value, while “tricking” the system to assign their jobs a higher priority
as a result of being shorter. We are not interested (nor able) to model such phe-
nomena. Therefore, in the generation of Table [6] and throughout the reminder
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Table 6. The Fj,4 functions of the four traces. The four most popular ranks in each
trace are highlighted in bold font.

tr Fsgsc—106 Fete Frenan Foiue

0 3 1 1 1
1 1 3 4 6
2 4 4 10 5
3 17 2 14 3
4 13 12 20 7
5 7 9 2 2
6 8 8 3 18
7 18 18 7 19
8 2 6 12 4
9 6 7 6 11
10 16 11 19 20
11 10 20 5 9
12 5 16 18 10
13 15 5 16 14
14 14 14 9 13
15 19 13 17 16
16 11 10 15 15
17 12 15 13 17
18 9 17 8 8
19 20 19 11 12

—_—

ONPROHOONA

ttr range of
closest three

1 2 3 4 5 6 7
popularity rank

Fig. 13. There is only 0-3 difference between the closest three ttr-s that are associated
with the more popular ranks (Table []). For example, 3 of the ttr-s associated with
popularity rank 2, are located in rows 3-5 in Table [ (underlined and highlighted in
a different color). In the above figure, this corresponds to range-bar associated with
popularity rank 2 that stretches between lines 3-5.

of this paper, we aggregate the 01:59 mode with that of 2h and consider them a
single 27.3% mode.

The Fj,4 functions in Table [0l reflect reality, and are in fact the reason for
the log-uniform CDFs observed in Fig. Bl We therefore seek an algorithm that
can “learn” these functions and be able to imitate them. Given such an artificial
Fiog, we would finally be able to match head-sizes (produced in Section[§ their
size defines their popularity rank) to head-times (produced in Section 2] their
value defines their ttr-s) and complete our model.
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At first glance, the four Fj,, functions appear to have little similarities (the
correlation coefficient between the columns of Table [fis only 0.1-0.3), seemingly
deeming failure on the generalization attempt. However a closer inspection re-
veals some regularities. Consider for example the more popular (and therefore
more important to model) ranks: at least three of four values of each such rank
are clustering across neighboring lines (ttr-s). This is made clearer in Fig.

Another observation is that when dividing popularity-ranks into two (1-10
vs. 11-20), around 75% of the more popular ranks are found in the top half of
Table 6, which indicates a clear tendency of more popular ranks to be associated
with smaller ttr-s. (This coincides with the log-uniformity of the original estimate
distributions). It is our job to capture these regularities.

In the initialization part of our algorithm, which we call the pool algorithm, we
associate ttr=0 (of Ti,q,) with popularity rank=1, that is, the maximal estimate
is also the most popular. The rationale of this decision is that

1. according to Table [ this is usually the case in real traces,

2. as explained in Section 2], making T}, the most popular estimate constitutes
a realistic worst case scenario, which is most appropriate to serve as the
default setting, and

3. it is the “safest” decision due to the constraint that estimates must be longer
than runtimes.

The last two items are the reason why we chose to follow the CTC example
and enforce a sizable first rank on the construction of Fj,, (end of Section[8)) that
“breaks” the exponential contiguity observed in Fig. To complete the initial-
ization part, we allocate an empty vector V,,, designated to hold popularity
ranks. Any popularity rank may have up to four occurrences within Vper.

The body of the pool-algorithm iterates through the rest of the ttr-s in ascend-
ing order (Jy = 1,...,19) and performs the following steps on each iteration:

1. For each trace file log, insert the popularity rank Fjog(Jiir) t0 Vipoor, but only
if this rank wasn’t already mapped to some smaller ttr in previous iterations.
(In other words, insert all the values from within the Jy, line in Table [
that weren’t already chosen.)

2. If there exists popularity ranks that have four occurrences within Ve,
choose the smallest of these ranks R, map Jy,- to R, remove all occurrences
of R from V)01, and move on to the next iteration.

3. Otherwise, randomly choose two (not necessarily different) popularity ranks
from within Vj0;, map the smaller of these to Ji,, and remove all its occur-
rences from Vi

A main principle of the algorithm is the gradual iteration over Table [d such
that no popularity-rank R is eligible for mapping to Jy., before we have actually
witnessed at least one occasion in which R was mapped to a ttr that is smaller
than or equal to Jy,. This aims to imitate the original Fj,, functions, along
with serving as the first safety-mechanism obstructing more popular ranks to be
mapped to longer estimates (recall that estimate CDFs are log-uniform, which
means most estimates are short).
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Another important principle of the algorithm is that increased number of
occurrences of the same R within V)., implies a greater chance of R to be
randomly chosen. And so, an R that is mapped to a ttr < Ju, within two
traces (two occurrences within V), has double the chance of being chosen in
comparison to a popularity rank for which this condition holds with respect to
only one trace (one occurrence within Vpee). This aspect of the algorithm also
alms to capture the commonality between the various traces.

Item number two in the algorithm tries to make sure an R will not be mapped
to a ttr that is bigger than all the ttr-s to which it was mapped in the four traces.
Like the first principle mentioned above, this item has the role of making sure
the resulting mapping isn’t too different than that of the original logs. It also
serves as the second safety-mechanism limiting the probability of more popular
ranks to be mapped to longer estimates.

The combination of the above “safety mechanisms” was usually enough to
produce satisfactory results. However, on rare occasions, too many high popu-
larity ranks have managed to nevertheless “escape” these mechanisms and be
mapped to longer estimates. Adding a third safety-mechanism, in the form of
using the minimum between two choices of popularity ranks (third item of the
algorithm), has turned this probability negligible.

9.4 Embedding User-Supplied Estimates

While the estimate distributions of the traces bare remarkable resemblance, they
are also very distinct within the “head of the head” (as discussed in Section [,
that is, the 1-3 most popular estimates. For example, considering Table [ the
difference between the percentage of SDSC and CTC jobs associated with 18h
(10% vs. 24%) is enough to yield completely different distributions. Another ex-
ample is BLUE’s shift of the maximum from 36h to 2h, or its two huge modes
in 15min and 30min; the fact that more than 60% of its jobs use one of these
estimates (along with 01:59), cannot be captured by any general model. Yet an-
other example is KTH4H’s unique modes below 5min. This variance among the
most important estimate bins, along with the fact users may be aware of spe-
cial queues and other influential technicalities concerning their site, mandates a
general model to allow its user to manually supply head estimates as parameters.

To this end, we allow the user to supply the model with a vector of up to 20
(ti, p;) pairs. The manner in which these pairs are embedded within our model
is the following: The t; values replace default-generated head times (Section [3.2))
that are the closest to them, with the exception of T},,, which is never replaced
unless explicitly given by the user as one of the (¢;, p;) pairs. (This is due to the
reasons discussed in Section [I3]) As an example, in order to effectively replace
the maximal value of BLUE, the user must supply two pairs: (36h,1%) to prevent
the model from making the old maximum (36h) the most popular estimate, and
(2h,27%) to generate the new maximum.

Similarly to times, user supplied p; sizes (job percents) replace default-
generated sizes (Section [§]) that are the closest to them. Once again, the biggest
value (reserved for T),..) is not replaced if the user did not supply a pair
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containing T}, 4.. Additionally, the remaining non-user head-sizes are scaled such
that the total mass of the head is still 89% (scaling however do applies to the
largest non-user size). If scaling is not possible (sum of user sizes exceed 89%),
non-user head-sizes are simply eliminated, and the tail sizes are scaled such that
the sum of the entire distribution is 100%.

Finally, the pool algorithm is refined to skip ttr-s that are associated with
user-supplied estimates and to avoid mapping their associated popularity ranks.

10 Overview of the Model

Now that all the different pieces are in place, let us briefly review the default
operation of the estimates model we have developed:

1. Get input. The mandatory parameters are maximal estimate value T}, 4., and
number of jobs N (which is the number of estimates the model must produce
as output). A third, “semi mandatory”, parameter is the percentage of jobs
associated with T},4.. While the model can arbitrarily decide this value by
itself, its variation in reality is too big to be captured by a model, whereas
its influence on performance results is too detrimental to be ignored (Tinax
jobs are the “worst kind” of jobs in the eyes of the scheduler; Section ).

2. Compute the value of K (different estimate times) as defined in Section [Gl

. Generate K time-values using F};, as defined in Section [1

4. Generate 20 “head” time-values using the algorithm defined in Section
and combine them with the K time-values produced in the previous item.
Non-head times are denoted “tail” times.

5. Generate K sizes (jobs percent) using Fp,, as defined in Section B The
largest 20 sizes are the head sizes. The rest are tail.

6. Map between time- and size-values using Fi,qp as defined in Section [0 by

— Randomly mapping between tail-times and tail-sizes in a uniform manner
(Section [B.1]).

— Mapping head-times and head-sizes using the pool algorithm
(Section @.3).

7. If received user supplied estimate bins, embed them within the model as
described in Section

w

10.1 About the Complexity

The only part which is non-trivial in our model is the pool algorithm: Generating
the estimate time values by themselves is a trivial operation. Generating sizes
(percentages of jobs) is equally trivial. Mapping between these two value sets
is also a relatively easy operation, as all but the 20 most popular sizes can be
randomly mapped. All the complexity of the model concentrates in solving the
problem of deciding how many jobs are associated with each “head” estimate, or
in other words, where exactly to place the larger modes. The question of whether
a simpler alternative than the one suggested here exists, is an open one, and it
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is conceivable there’s a positive answer. However, all the “immediate” heuristics
we could think of in order to perform this task in a simpler manner have been
checked and verified to be inadequate. In fact, it is these inadequacies that has
lead us step by step in the development of the pool algorithm.

11 Validating the Model

Having implemented the estimate model, we now go on to validate its effective-
ness. This is essentially composed of two parts. The first is obviously making
sure that the resulting distribution is similar to that of the traces (Section [TT.1]).
However, this is not enough by itself, as our ultimate goal is to allow realistic
performance evaluation. The second part is therefore checking whether perfor-
mance results obtained by using the original data are comparable to those pro-
duced when replacing original estimates with artificial values produced by the
model (Section IT.3]). The latter part mandates developing a method according
to which artificial estimates are assigned to jobs (Section [T.2]).

11.1 Validating the Distribution

Fig. [[4 plots the original CDFs (solid line) against those generated by the
“vanilla” model using various seeds. The only input parameters that are given
to the model are those listed in Section [0 that is, the maximal estimate Tyuqz,
then number of jobs N, and the percentage of jobs associated with T},,4.. Recall
that BLUE’s maximum is considered to be 2 hours and that in order to reflect
this we must explicitly supply the model with an additional pair (Section [@.4]).

The results indicate the model has notable success in generating distributions
that are remarkably similar to that of SDSC-106 and CTC; it is far less successful
with respect to the other two traces. However, this should come as no surprise
because, as mentioned earlier, the model has no pretense of reflecting abnor-
malities or features that are unique to individual traces. In the case of KTH4H,
these are the large modes that are found below 5 minutes (Table Bl). In fact, if
aggregating these modes with that of 5 minutes, we get that a remarkable 25.5%
of KTH4H’s jobs have estimates that are 5 minutes or less, which is inherently
different in comparison to the other traces. In the case of BLUE, its uniqueness
takes the form of two exceptional modes located at 15 and 30 minutes. This dis-
tinctive quality is especially apparent in Fig. [I0l where the three biggest modes
“break” the log-uniform contiguity.

The practical question is therefore if the model can produce good results when
provided with minimal additional information highlighting the trace-specific ab-
normalities. The amount of such information is inherently limited if we are
to keep the model applicable and maintain its practical value. We therefore
define the “improved” setting in which the KTH4H model is provided with
the additional (5min,25%) pair. The BLUE model is provided with two ad-
ditional pairs associated with its two exceptional modes: (15min,16%) and
(30min, 18%).



Modeling User Runtime Estimates 27

100 SDSC-106 CTC KTH4H BLUE
seedd ! ‘,.,
80 |-|seedl - 4 ;";,
— seed2 - v .Jf‘ g’ ¥
2 60 seed3 £ e iy
o rig == | §= d el
Q 40 utel
20 : ! [
0 ‘
E § EESASSS85E £ SESNSSSGE § SESASSSGE § 5ES8S6sS
-® —m -® —m -® —m -® -®

estimate

Fig. 14. The original estimate distribution of the traces (solid lines) vs. the output of
the vanilla model, when used with four different seeds. Output is less successful for
traces with unique features.
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Fig.15. Output of the model under the “improved” setting which provides minimal
information identifying the unique features

The results of the improved setting are shown in Fig.[[Hland indicate that this
additional information was all that the model needed in order to produce satis-
factory results (also) with respect to the two “unique” traces. To test the impact
of additional information on situations where the vanilla model manages to pro-
duce reasonable results by itself, the improved setting supplied three additional
pairs (of the most popular estimates) when modeling CTC and SDSC-106. It is
not apparent whether the additional information made a qualitative difference.

The important conclusion that follows from the successful experiment we have
conducted in this section, is that estimate distributions are indeed extremely sim-
ilar: Most of their variance concentrates within the 1-3 most popular estimates,
and once these are provided, the model produces very good results.

11.2 Assigning Estimates to Jobs

The next step in validating the model is putting it to use within a simulation. For
this purpose we have decided to simulate the EASY scheduler and evaluate its
performance under the four workloads. This can be done with original estimates
or after replacing them with artificial values that were generated by our model.
Similar performance results would indicate success.
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The common practice when modeling a parallel workload is to define canonical
random variables to represent the different attributes of the jobs, e.g. runtime,
size, inter-arrival time etc. [6L[15,20]. Generating a workload of N jobs is then
performed by creating N samples of these random variables. Importantly, each
sample is generated independently of other samples.

In this respect, assignment of artificial estimates to jobs is subtle, as this
must be done under the constraint that estimates mustn’t be smaller than the
runtimes of the jobs to which they are assigned. Here, we can’t just simply
randomly choose a value. However, if independence between jobs is still assumed,
we can easily overcome the problem by using the random shuffle algorithm. This
algorithm gets two vectors Vestimate and Viyntime that hold N values as suggested
by their names. The content of both vectors is generated as usual, according to
the procedure described above (under the assumption of independence). Now all
that is needed is a random permutation that maps between the two, such that
every estimate is equal to or bigger than its associated runtime. The random
shuffle algorithm finds such a permutation by iterating through V,yniime and
randomly pairing each runtime R with some estimate E € Vigtimate for which
E > R. After values are paired, they are removed from their respective vectors.

Note that we do not claim that the independence assumption underlying the
random shuffle algorithm is correct. On the contrary. We only argue that this
is the common practice. However, there is a way to transform the original data
such that this assumption holds: The algorithm can be applied to the original
data, that is, we can populate the Vestimate vector with original trace estimates
and reassign them to jobs using the shuffle algorithm. The outcome of doing
this would be that the original estimates are “randomly shuffled” between jobs
(which is the source of the algorithm’s name). The result of such shuffling is to
create independent “real” estimates. This is suitable as a basis for comparison
with our model, as explained below.

11.3 Validating Performance Results

Several estimate-generation models have been evaluated and compared against
the original data:

— The X2-model: simply doubles user estimates on the fly [16]2T].

— The shft-model: the result of applying the random shuffle algorithm (defined
above) to the original data. As noted, assuming independence in this context
is correct.

— The f-model: upon receiving a job’s runtime R, uniformly chooses an esti-
mate from the closed range [R, R-(f+1)]. In accordance with [21], six values
of f were chosen: 0 (complete accuracy), 1, 3, 10, 100, and 300.

— The feit-model: targets accuracy (suggested by Mu’alem and Feitelson [21]
and explained in the introduction).

— The wvanl-model: the vanilla setting of the model developed in this paper
(defined above).

— The impr-model: the improved setting of our model, supplying it with some
additional information (defined above).
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Notice X2and shfl aren’t models per-se as both are based on real estimates. The
competitors of our model are f and feit (producing estimates based on runtime).

Performance results are shown in Fig. in the form of average wait time
and bounded slowdown. The black dotted lines present the results of running
the simulations using the original data. Therefore, models that are closer to this
line are more realistic. Recall that our aim here is not to improve performance.
Rather, it is to produce trustworthy results that are closest to reality. All the
results associated with models that contain a random component (all but X2 and
10) are the average of one hundred different simulation runs employing different
seeds. The error-bars associated with these models display the absolute-deviation
(average of absolute value of deviation from the average).
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Fig. 16. Validating badness. The reason for the peculiar results associated with the
average wait time of SDSC and BLUE, remain unknown.

When examining Fig. 6 it is clear the two variants of our algorithm are
more realistic, in that they usually do a better job in capturing the “badness”
of user estimates (compare with f-s and feit). Another observation is that us-
ing increased f-s (or feit) to model increased user inaccuracy (for the sake of
realism) is erroneous, as f0 usually produces results that are much closer to the
truth. In fact, f0 is usually comparable to the results obtained by our model
with the exception of the SDSC trace. However, this is limited to the FCFS-
based EASY scenario: if introducing a certain amount of limited SJF-ness to the
scheduler (e.g. as in [25l[1]), f0 yields considerably better performance results
in comparison to the original, whereas our model stays relatively the same (fig-
ure not shown to conserve space). Another scenario in which f0 can’t be used
is when evaluating system-generated runtime predictors that make use of esti-
mates (along with other job characteristics) [14]23[18,25]. Finally (returning to
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the context of EASY), unlike f0, our model has room for improvement as will
shortly be discussed, and we believe it has potential to “go the extra mile”.

A key point in understanding the performance results is noticing that the
vanilla setting of our algorithm is surprisingly more successful in being closer
to the original than its improved counterpart. This is troublesome as our entire
case is built on the argument that models that are more accurate would yield
results that are closer to the truth. The answer to the riddle is revealed when
examining the shfl model. The fact of the matter is that one cannot get more
accurate than shfl, as it “generates” a distribution that is identical to that of
the original. Yet it too seems to be inferior to our vanilla model. This exposes
our independence assumption (the random shuffle algorithm) as the true guilty
party which is responsible for the difference between impr and the original. The
correct comparison between impr and vanl should actually be based on which is
closer to shfl, not to the original, as only with shfl can independence be assumed.
Based on this criterion, impr is consistently better than vanl.

Once this is understood, we can also explain why the performance of impr
(in terms of wait and slowdown) is always better than that of vanl. Consider
the difference between the two models: impr simply has much more accurate
data regarding shorter jobs (e.g. KTH4H’s 25% of 5 minutes jobs). As short jobs
benefit the most from the backfilling optimization, impr consistently outperforms
vanl (in absolute terms).

11.4 Repetitiveness Is Missing

We are not interested in artificially producing worse results by means of falsely
boosting up estimates (as is done by wanl with respect to #mpr). This would
be equivalent to, say, increasing the fraction of jobs that estimate to run Ti,4z,
which can arbitrarily worsen results. Our true goal is creating a reliable model.
The above indicates that the problem lies in the assumption of independence,
namely, the manner we assign estimates to jobs. While it is possible that this
is partially because we neglected to enforce the accuracy to be as displayed in
Fig. [l (the accuracy histograms of even shfl are dissimilar to that of the original),
we conjecture that the independence assumption is more acute.

It has been known for over a decade that the work generated by users is highly
repetitive [I2,[10]. Recent work [28,24] suggests that the correct way to model
a workload is by viewing it as a sequence of user sessions, that is, bursts of
very similar jobs by the same user. This doctrine suggests that a correct model
cannot just draw values from a given distribution while disregarding previous
values as is done by most existing parallel workload models (e.g. [615,20,4]).
The rationale of this claim is that the repetitive nature of the sequence within
the session may have a decisive effect on performance results[

5 A remarkable example stressing the importance of this phenomenon was recently
published [26]: changing a runtime of only one job (within a log that spans two
years) by a mere 30 seconds, resulted in a change of 8% in the average bounded
slowdown of all the jobs; the reason was traced to be a certain user-session and its
interaction with the scheduler.
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Fig.17. Runtime and estimate of all the jobs submitted by three arbitrary users from
the SDSC trace shows remarkable repetitiveness

Since users tend to submit bursts of jobs having the same estimate value
(Fig. ), the end result is somewhat similar to that of the existence of esti-
mates modes, but in a more “temporal sense”: At any time instance, jobs within
the wait-queue tend to look the same to the scheduler, as jobs belonging to the
same session usually share the same estimate value. Consequently, the scheduler
has less flexibility in making backfilling decision and the performance is nega-
tively effected. Our shfl algorithm, along with all the rest of the models, do not
entail the concept of sessions and therefore result in superior performance in
comparison to the original.

Accordingly, our future work includes developing an assignment mechanism
that is session aware. This can be obtained if the procedure that pairs runtimes
and estimates gets additional information associating jobs with users. User-based
modeling [24] can supply this data.

12 Conclusions and Future Work

User runtime estimates significantly effect the performance of parallel systems
[2ILILI8]. As part of the effort to allow realistic and trustworthy performance
analysis of such systems, there is a need for an estimates model that successfully
captures their main characteristics.

A number of models have been suggested, but these are all lacking in some
respect. Their shortcoming include implicitly revealing too much information
about real runtimes, erroneously emulating the accuracy ratio of runtime to
estimate, neglecting to take into consideration the fact that all production in-
stallations have a limit on the maximal allowed estimate, and that this value
is always one of the more popular estimates. Importantly, two key ingredients
are missing from existing models: the inherently modal nature of the estimates
caused by users’ tendency to supply “round” values [21,2/[17], and the tempo-
ral repetitive nature of user estimates, assigning the same value to bursts of
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jobs (sessions) [26]28]. These have decisive effect on performance results, as low
estimate-variance of waiting jobs reduces the effectiveness of backfilling.

Consequently, the outcome of using any of the existing models are simulation
results that are unrealistically better than those obtained with real estimates.
Thus, it is erroneous to use these models, and in particular, the popular “f-
model” in which each job’s estimate is randomly chosen from [R,(f + 1)R],
where R is the job’s runtime and f is some positive constant.

Variants of the f-model are often used to investigate the impact of the in-
herent inaccuracy of user estimates, or to artificially generate estimates when
those are missing from existing workloads (trace files, models) that are used
to drive simulations [111[29211[1],[13]. When conducting performance evaluation,
the common (false) justification for using the f-model is that “overestimation
commonly occurs in practice and is beneficial for overall system performance”
[13]. Indeed, overestimation is common. But the improved performance is sim-
ply an undesirable byproduct of the artificial manner in which overestimation is
obtained; real user overestimation actually degrades performance significantly.
In fact, using exact runtimes as estimates is actually more realistic than utilizing
the f-model! While both approaches usually yield unrealistically improved per-
formance (in comparison to those obtained with real estimates), perfect accuracy
is almost always closer to the truth.

In this paper we produce a model that targets estimates modality. We view
the estimates distribution as a sequence of modes, and investigate their main
characteristics. Our findings include the invariant that 20 “head” estimates are
used by about 90% of the jobs throughout the entire log. The popularity of
head estimates (percentage of jobs using them) decreases exponentially, whereas
the tail obeys a power-law. The few hundred values that are used as estimates,
are well-fitted by a fractional model, while at the same time, 15 out of the 20
head estimates are identical across all the production logs we have examined.
The major difficulty faced by this paper was determining how popular is each
head estimate (how many jobs are associated with each). This was solved by
the “pool algorithm”, aimed to capture similarities between profiles of head-
estimates within the analyzed production logs.

We found that all modeled aspects of the estimates distribution are almost
identical across the logs, and therefore our model defines only two mandatory
parameters: the number of jobs and the maximal allowed estimate (1,4, ). While
considerable variance does in fact exist, it is mostly encapsulated within the
percentage of jobs estimated to run for T),4,. The remaining variance (if any)
is attributed to another 1-2 very popular modes that sometimes exist, but are
unique to individual logs. When provided this additional information, our model
produces distributions that are remarkably similar to that of the original.

When put to use in simulation (by replacing real estimates with artificial
ones), our model consistently yields performance results that are closer to the
original than those obtained by other models. In fact, these results are almost
identical to when real estimates are used and are randomly shuffled between jobs.
This suggests that the temporal repetitiveness of per-user estimates may be the
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final obstacle separating us from achieving truly realistic results. Consequently,
our future work includes developing an improved assignment scheme of estimates
to jobs that will preserve this feature.

Our estimates model is available to download from the parallel workload
archive [9]. Its interface contains two functions: generating the distribution
modes, and assigning estimates to jobs. The latter is essentially random shuf-
fling of estimates between jobs, under the constraint that runtimes are smaller
than estimates. Our future work includes refining this function such that the
user-session quality takes effect.
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