LNCS 3834

Dror Feitelson

Eitan Frachtenberg

Larry Rudolph

Uwe Schwiegelshohn (Eds.)

Job Scheduling
Strategies
for Parallel Processing

11th International Workshop, JSSPP 2005
Cambridge, MA, USA, June 2005
Revised Selected Papers

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3834

Dror Feitelson Eitan Frachtenberg
Larry Rudolph Uwe Schwiegelshohn (Eds.)

Job Scheduling
Strategies
for Parallel Processing

11th International Workshop, JSSPP 2005
Cambridge, MA, USA, June 19, 2005
Revised Selected Papers

@ Springer

Volume Editors

Dror Feitelson

The Hebrew University, School of Computer Science and Engineering
91904 Jerusalem, Israel

E-mail: feit@cs.huji.ac.il

Eitan Frachtenberg

Los Alamos National Laboratory, Computer and Computational Sciences Division
Los Alamos, NM 87545, USA

E-mail: etcs@cs.huji.ac.il

Larry Rudolph

Massachusetts Institute of Technology, CSAIL
32 Vassar Street, Cambridge, MA 02139, USA
E-mail: rudolph@csail.mit.edu

Uwe Schwiegelshohn

University of Dortmund, Robotics Research Institute (IRF-IT)
44221 Dortmund, Germany

E-mail: uwe.schwiegelshohn @udo.edu

Library of Congress Control Number: 2005937592

CR Subject Classification (1998): D.4, D.1.3,F.2.2,C.1.2,B.2.1,B.6,F.1.2

ISSN 0302-9743
ISBN-10 3-540-31024-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31024-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11605300 06/3142 543210

Preface

This volume contains the papers presented at the 11th workshop on Job Schedul-
ing Strategies for Parallel Processing. The workshop was held in Boston, MA,
on June 19, 2005, in conjunction with the 19th ACM International Conference
on Supercomputing (ICS05).

The papers went through a complete review process, with the full version
being read and evaluated by an average of five reviewers. We would like to thank
the Program Committee members for their willingness to participate in this
effort and their excellent, detailed reviews: Su-Hui Chiang, Walfredo Cirne, Allen
Downey, Wolfgang Gentzsch, Allan Gottlieb, Moe Jette, Richard Lagerstrom,
Virginia Lo, Jose Moreira, Bill Nitzberg, and Mark Squillante. We would also
like to thank Sally Lee of MIT for her assistance in the organization of the
workshop and the preparation of the pre-conference proceedings.

The papers in this volume cover a wide range of parallel architectures, from
distributed grids, through clusters, to massively-parallel supercomputers. The
diversity extends to application domains as well, from short, sequential tasks,
through interdependent tasks and distributed animation rendering, to classical
large-scale parallel workloads. In addition, the methods and metrics used for
scheduling and evaluation include not only the usual performance and workload
considerations, but also considerations such as security, fairness, and timezones.
This wide range of topics attests to the continuing viability of job scheduling
research.

The continued interest in this area is reflected by the longevity of this work-
shop, which has now reached its 11th consecutive year. The proceedings of pre-
vious workshops are available from Springer as LNCS volumes 949, 1162, 1291,
1459, 1659, 1911, 2221, 2537, 2862, and 3277 (and since 1998 they have also been
available online).

Finally, we would like to give our warmest thanks to Dror Feitelson and Larry
Rudolph, the founding co-organizers of the workshop. Their efforts to promote
this field are evidenced by the continuing success of this workshop. Even though
they are stepping down from the organization of the workshop, we hope they
will continue to lend their expertise and contribution to the workshop and the
field as a whole.

August 2005 Eitan Frachtenberg
Uwe Schwiegelshohn

Table of Contents

Modeling User Runtime Estimates
Dan Tsafrir, Yoav Etsion, Dror G. Feitelson

Workload Analysis of a Cluster in a Grid Environment
Emmanuel Medernach

ScoPred—Scalable User-Directed Performance Prediction Using
Complexity Modeling and Historical Data
Benjamin J. Lafreniere, Angela C. Sodan

Open Job Management Architecture for the Blue Gene/L
Supercomputer
Yariv Aridor, Tamar Domany, Oleg Goldshmidt, Yevgeny Kliteynik,
Jose Moreira, Edi Shmueli i

AnthillSched: A Scheduling Strategy for Irregular and Iterative
I/O-Intensive Parallel Jobs
Luis Fabricio Gdes, Pedro Guerra, Bruno Coutinho,
Leonardo Rocha, Wagner Meira, Renato Ferreira, Dorgival Guedes,
Walfredo Cirne

An Extended Evaluation of Two-Phase Scheduling Methods for
Animation Rendering
Yunhong Zhou, Terence Kelly, Janet Wiener, Eric Anderson

Co-scheduling with User-Settable Reservations
Kenneth Yoshimoto, Patricia Kovatch, Phil Andrews

Scheduling Moldable BSP Tasks
Pierre-Frangois Dutot, Marco A.S. Netto, Alfredo Goldman,
Fabio Kom

Evolving Toward the Perfect Schedule: Co-scheduling Job
Assignments and Data Replication in Wide-Area Systems Using a
Genetic Algorithm

Thomas Phan, Kavitha Ranganathan, Radu Sion

Wave Scheduler: Scheduling for Faster Turnaround Time in Peer-Based
Desktop Grid Systems
Dayi Zhou, Virginia Lo

VIII Table of Contents

Enhancing Security of Real-Time Applications on Grids Through
Dynamic Scheduling
Tao Xie, Xia0 QUNo ot

Unfairness Metrics for Space-Sharing Parallel Job Schedulers
Gerald Sabin, P. Sadayappan i

Pitfalls in Parallel Job Scheduling Evaluation
FEitan Frachtenberg, Dror G. Feitelson

Author Index

Modeling User Runtime Estimates

Dan Tsafrir, Yoav Etsion, and Dror G. Feitelson

School of Computer Science and Engineering,
The Hebrew University, 91904 Jerusalem, Israel
{dants, etsman, feit}@cs.huji.ac.il

Abstract. User estimates of job runtimes have emerged as an important
component of the workload on parallel machines, and can have a signifi-
cant impact on how a scheduler treats different jobs, and thus on overall
performance. It is therefore highly desirable to have a good model of
the relationship between parallel jobs and their associated estimates. We
construct such a model based on a detailed analysis of several workload
traces. The model incorporates those features that are consistent in all
of the logs, most notably the inherently modal nature of estimates (e.g.
only 20 different values are used as estimates for about 90% of the jobs).
We find that the behavior of users, as manifested through the estimate
distributions, is remarkably similar across the different workload traces.
Indeed, providing our model with only the maximal allowed estimate
value, along with the percentage of jobs that have used it, yields results
that are very similar to the original. The remaining difference (if any)
is largely eliminated by providing information on one or two additional
popular estimates. Consequently, in comparison to previous models, sim-
ulations that utilize our model are better in reproducing scheduling be-
havior similar to that observed when using real estimates.

1 Introduction

EASY Backfilling [19,21] is probably the most commonly used method for
scheduling parallel jobs at the present time [7]. The idea is simple: Whenever
the system status changes (a new job arrives or a running job terminates), the
scheduler scans the queue of waiting jobs in order of arrival. Upon reaching the
first queued job that can not be started immediately (not enough free proces-
sors), the scheduler makes a reservation on the job’s behalf. This is the earliest
time in which enough free processors would accumulate and allow the job to run.
The scheduler then continues to scan the queue looking for smaller jobs (require
less processors) that have been waiting less, but can be started immediately
without interfering with the reservation. The action of selecting smaller jobs for
execution before their time is called backfilling.

To use backfilling, the scheduler must know in advance the length of each
job, that is, how long jobs will run.! This information is used when comput-
ing the reservation time (requires knowing when processors of currently running

! This is true for any backfilling scheduler, not just EASY.

D. Feitelson et al. (Eds.): JSSPP 2005, LNCS 3834, pp. 1-35, 2005.
© Springer-Verlag Berlin Heidelberg 2005

2 D. Tsafrir, Y. Etsion, and D.G. Feitelson

jobs will become available) and when determining if a waiting job is eligible for
backfilling (must be short enough so as not to interfere with the reservation).
As this information is not generally available, users are required to provide run-
time estimates for submitted jobs. Obviously, jobs that violate their estimates
are killed. This is essential to insure that reservations are respected. Indeed,
backfilling is largely based on the assumption that users would be motivated to
provide accurate estimates, because jobs would have a better chance to backfill
if the estimates are tight, but would be killed if the estimates are too short.

However, empirical investigations of this issue found that user runtime esti-
mates are actually rather inaccurate [21]. Results from four different installations
are shown in Fig. 1 (Section 4 discusses the four presented workloads in detail).
These graphs are histograms of the estimation accuracy: what percentage of the
requested time was actually used. The promising peak at 100% actually reflects
jobs that reached their allocated time and were then killed by the system ac-
cording to the backfilling rules. The hump near zero was conjectured to reflect
jobs that failed on startup, based on the fact that all of them are very short
(less than 90 seconds). The rest of the jobs, that actually ran successfully, have
a rather flat uniform-like histogram.

6 _SDSC-SP2 .. CTC-SP2 ., _ KTH-SP2 . SDSC-BLUE

<
S 12 12 - 12 - 12 -
(2]
Keo)
=X
© 8 8 8 8
@
E
E 4 4 4 4 k
"
Wbt L o “mﬂuHVmMﬂ N ‘L
0~ [0 0 T 1 0 T T
0 50 100 0 50 100 0 50 100 0 50 100
OK jobs accuracy [%]
B killed jobs

B <90sec jobs

Fig. 1. Accuracy histogram of user runtime estimates: accuracy = 100 x Tvntime
estimate

The issue of user runtime estimates has since become the focus of intensive
research. A number of studies have suggested that inaccurate runtime estimates
are actually good, as they provide the scheduler with more flexibility and even-
tually lead to better performance; as a result, it was even proposed to simply
double the user runtime estimates before using them [29,21], or further, ran-
domizing them [22]. In contrast, other studies contend that accurate runtime
estimates are actually better, as they can lead to even better performance if
used correctly, e.g. by scheduling in some SJF (shortest job first) based order

Modeling User Runtime Estimates 3

[14,23, 1, 25]. Still other studies have shown that the accuracy of user estimates
can have non-trivial effects on the results of performance evaluations [8].

1.1 Motivation

All this activity spurred a search for ways to model user runtime estimates.
Such a model is needed for three reasons. First, it is useful as part of a general
workload model that can be used to study different job scheduling schemes, e.g.
by means of simulation. Second, it is often the case that existing log files from
production systems (used to drive simulations) are missing this information; a
model can help in artificially manufacturing it. Third, a model may provide
insights that will be useful in the study of whether and how the inaccuracy of
estimates may be exploited by the scheduler.

We would like to make it clear that this paper targets the first two reasons
mentioned above, that is, we aim to model and reflect reality, not to make it bet-
ter. Indeed, in a different study, we show how backfilling schedulers can produce
and utilize better runtime predictions that dramatically improve performance
[25]. But even this novel technique often relies on user estimates under various
conditions. Additionally, recall that user estimates have a role that is different
than just serving as approximated runtimes, as they are also part of the user
contract: the system guarantees a job will never be killed before its user estimate
is reached. Consequently, system generated predictions (or other conceivable fu-
ture mechanisms that are similar) can’t “just” replace estimates.

At the same time, estimates ensure that jobs will indeed be killed at some
point. Systems with no user estimates at all (that is, no runtime upper bound)
are also undesirable, as these will allow jobs to run indefinitely, potentially over-
whelming the system. At the very least we would expect users to choose some
runtime upper-bound from a predefined set of values. However, this scenario is
rather similar to reality, in which most users are already limiting themselves to
very few canonical “round” estimates (as will be shown below), and jobs that
exceed their estimates are immediately killed. It turns out there is actually no
fundamental difference between allowing users to choose “any value”, or from
within a limited set.

Therefore, regardless of any possible scheduling improvements or changes, it
seems a parallel workload model will not be complete if realistic user estimates
are not included. Importantly, we will show that systems perform better if real
user estimates are replaced with artificial ones, generated by existing models.
This uncaptured “badness” quality of real user estimates constitutes a serious
deficiency of existing models, as the purpose of these is to reflect reality, not to
paint a brighter (false) picture. While counter intuitive, our goal in this paper
is to produce estimates such that performance is worsened, not improved. Only
when such a model is available, we can take the next step and consider ways to
improve performance, based on a truly representative workload.

In the reminder of this section we survey the estimate models that have been
proposed, and point out their shortcomings. This motivates the quest for a better
model, which we propose in this paper.

4 D. Tsafrir, Y. Etsion, and D.G. Feitelson

1.2 Existing Models

The simplest possible model is to assume that user estimates are accurate. For
example, such a model was used by Feitelson in [8]. This approach has two
advantages: it is extremely simple, and it avoids the murky issue of how to
model user estimates correctly. However, as witnessed by the data in Fig. 1, it
is far from the truth.

A generalization of this model is to assume that a job’s estimate is uniformly
distributed within [R, (f +1)R], where R is the job’s runtime, and f is some non
negative factor (f can’t be negative because jobs are killed once their estimates
are reached). If f = 0, this means that the estimates are identical to runtimes; if
f =4, they are distributed between R and 5R, with an average of 3R. Arguably,
higher f values model increasingly inaccurate users. This model, which we call
the “f-model”, was proposed by Mu’alem and Feitelson [11] and several variants
of it were used to investigate the effects of inaccuracy [29,21,1]. It was also
used by several researchers in simulations using workloads that did not contain
estimates data [13,8]. The main problem with this model is that the estimates
it creates are overly correlated with the real runtimes, so it actually gives the
scheduler considerable amount of valuable information that is unavailable when
real user estimates are used. In particular, it enables the scheduler to effectively
identify shorter jobs and select them for backfilling, leading to SJF-like behavior.
For example, under this model, a one-hour job will always appear longer than
a one-minute job (in reality, this is often not the case). This leads to better
performance results than those observed when using real user estimates.

A third model, also proposed by Mu’alem and Feitelson, attempts to repro-
duce the histograms of Fig. 1. These flat histograms imply that R/E = u, i.e.
that the ratio of the actual runtime R to the estimate F can be modeled as a
uniformly distributed random variable (u € [0,1]). By changing sides we find
that given a runtime R divided by w results in an artificial estimate E. While
unrelated to the actual user estimate for this particular job, this is expected
to lead to the same general statistics of all the estimates taken together. The
model also created the peak at 100% and the hump at low values. Finally, if E
came out outrageous (because u happened to be very small), it was truncated
to 24 hours. This was called the “¢-model” by Zhang et al. [27] (¢ denoted the
fraction of jobs in the 100% peak), who used it in various simulations.

The problem with this model is that it is missing a “hidden” factor which is
often overlooked: that all production installations have a limit on the maximal
allowed runtime. For example, on the SDSC SP2 machine this limit is 18 hours.
Naturally, the limit also applies to estimates, as it is meaningless to estimate
that a job will run for say 37 hours if all jobs are limited to 18 hours.

Consider Fig. 2 which displays the average accuracy of jobs grouped to 100
equally sized bins according to their runtime, for four different production traces.
It has previously been conjectured that the apparent connection between longer
runtimes and increased accuracy, is because the more a job progresses in its com-
putation, the grater its chances become to reach successful completion [3]. How-
ever, this false hypothesis ignores the existence of a maximal allowed runtime,

Modeling User Runtime Estimates 5

> T T } ¥ —
g Tsoscsp2 —1. o T A]
g 081 “crcspe - | | .
g 06 KTH-SP2 - [il
8 04 [{SDSC-BLUE :
S 02 e
© 0 ks v2%
10s 30s 1m 2m 18h

avg. runtime

Fig. 2. Average accuracy as a function of jobs’ (binned) average runtime

which suggests long jobs are guaranteed to have high accuracy. For example, if a
job runs for 17 hours, its estimate must be in the range of 17 to 18 hours, so it’s
using at least 94.4% of its estimate. In other words, in contrast to the underlying
assumption of the ¢-model, the distribution of jobs in the accuracy histogram
(Fig. 1) is not uniform. Rather, long jobs must be on the right, where accuracy
is high, while short jobs tend to be on the left, at lower accuracies.

A fourth rather similar model was proposed by Cirne and Berman [3], which
took the opposite direction in comparison to the previous model and chose to pro-
duce runtimes as multiples of estimates and accuracies, while generating direct
models to the latter two. This decision was based on the argument that accu-
racies correlate with estimates less than they do with runtimes. In their model,
accuracies were claimed to be well-modeled by a gamma distribution (this seems
to be the result of trying to model the uniform part of the histogram along with
the hump at low accuracies, by using one function for both). Estimates were suc-
cessfully modeled by a log-uniform distribution. This methodology suffers from
the same problem as the previous model, because accuracy is again independent
of runtime. In addition, this model is not useful when attempting to add esti-
mates to existing logs that lack them, or to workloads that are generated by
other models which usually include runtimes and lack estimates [10, 6, 15, 20].

In addition to the per-model shortcomings mentioned above, there are two
drawbacks from which all of them collectively suffer: The first is lack of repeti-
tiveness: The work of users of parallel machines usually takes the form of bursts
of very similar jobs, characterized as “sessions” [8,28]. In the SDSC-SP2 log
for example, the median value of the number of different estimates used by a
user is only 3, which means most of the associated jobs look identical to the
scheduler. It has been recently shown that such repetitiveness can have decisive
effect on performance [26]. The second shortcoming is a direct result of the first:
estimates form a modal distribution composed of very few values, a fact that is
not reflected in any existing model. This is further discussed in the next section.

The conclusion from the above discussion is that all currently available models
for generating user estimates are lacking in some respect. Consequently, using
them in simulations leads to performance results that are generally unrealistically
better than those obtained when real user estimates are used. Our goal in this
paper is to capture the “badness” of real user estimates by finding a model that
matches all known information about them: their distribution, their connection
with each job’s runtime, and their effect on scheduler performance.

6 D. Tsafrir, Y. Etsion, and D.G. Feitelson

2 Modality

We require a model capable of generating realistic user estimates. The usual
manner in which such problems are tackled is by fitting observed data to well
known distributions, later to be used for producing artificial data. To some ex-
tent, this methodology is applicable when modeling estimates, which appear to
be well captured using the log-uniform distribution [3] as shown in Fig. 3.

1 SDSC-SP2 CTC-SP2 KTH-SP2 SDSC-BLUE
e & P =]
ol - [!
a 8.2 A" S ey Pl
. 4 i - = ol 7
© o e e -
0.4 = 8 = -
0.2
0
EEE EESSSS55 ESE SESNS6S85 ELE SES85655 ES§ FE585585%
-® -0 ~® —-™ -® —m -® —m
runtime ------- .
estimate time [log scale]

Fig. 3. Runtime and estimate CDFs (cumulative distribution functions) of the four
workload traces. Runtime-curves are much higher than estimate-curves because run-
times are much shorter than estimates. For example, in CTC, 40% of the estimates are
shorter than one hour (60% are longer), while for runtimes the situation is reversed
(only 40% are longer than one hour).

The difficulty lies in that user estimates embody another important charac-
teristic: unlike runtimes, they are inherently modal [21, 2, 17], because users tend
to repeatedly use the same “round” values (e.g. five minutes, one hour, and so
on). This is reflected in the staircase-like estimate curves of Fig. 3, in which each
mode corresponds to a popular estimate value.

In particular, note the significant modes located at the maximal estimate of
each trace, where the runtime and estimate curves finally meet (in Section 4 we
will see that 4h and 2h effectively serve as the maximal estimate values of KTH-
SP2 and SDSC-BLUE, respectively). Evidently, the maximal estimate is always
a popular value. For example, this value is used by a remarkable 24% of CTC
jobs. This phenomenon probably reflects users’ lack of knowledge or inability to
predict how long their jobs will run, along with their tendency to “play it safe”
in the face of strict system policy to kill underestimated jobs.

In the context of job scheduling, this observation is quite significant, as
maximal-estimate jobs are the “worst kind” of jobs in the eyes of a scheduler as
they are too long to be backfilled. In fact, if all jobs chose their estimates to be
the maximal value, all backfilling activity would stop completely.?

The observation about the maximal estimate mode may also be applied, to
some extent, on other (shorter) modes: Consider the scenario in which an SJF

2 Except for when using the “extra” nodes, see [21] for details.

Modeling User Runtime Estimates 7

scheduler must work with estimates that are highly inaccurate. If these esti-
mates nevertheless result in a relatively correct ordering of waiting jobs, per-
formance can be dramatically improved (up to an order of magnitude accord-
ing to [1]). However, if estimates are modal, many jobs look the same in the
eyes of the scheduler, which consequently fails to prioritize them correctly, and
performance deteriorates. In general, if the estimate distribution is dominated
by only a few large monolithic modes, performance is negatively effected, as
less variance among jobs means less opportunities for the scheduler to perform
backfilling.

Modality is absent from existing estimate models. An immediate heuristic
that therefore comes to mind when trying to incorporate modality, is to “round”
artificially generated estimates (e.g. by one of the models described above) to
the nearest “canonical” value: values smaller than 1 hour are rounded to (say)
the nearest multiple of 5 minutes, values smaller than 5 hours are rounded to
the nearest hour, and so on. Experiments have shown that this heuristic fails
in capturing the badness of user estimates, and performance results are similar
to those obtained before this artificial modality was introduced. Additionally,
arbitrary “rounding” fails to reproduce the various properties of the estimate
distribution, as reported in the following sections.

The fact of the matter is that modes have a different (worse) nature than pro-
duced by the above. For example, when examining the number of jobs associated
with the most popular estimates, we learn that these decay in an exponential
manner e.g. half of the jobs use only 5 estimate values, 90% of the jobs use 20
estimates values etc. In contrast, the decay of less popular modes obeys a power
law. In fact, almost every estimates-related aspect exhibit clear “model-able”
(that can be modeled) characteristics.

3 Methodology

The modal nature of estimates motivates the following methodology. When ex-
amining a trace, we view its estimate distribution as a series of K modes given by
{(Q,Pi)}fil- Each pair (¢;, p;) represents one mode, such that ¢; is the estimate-
value in seconds (¢ for time), and p; is the percentage of jobs that use t; as
their estimate (p for percent or popularity). For example, the CTC mode series
includes the pair (18h,23.8%) because 23.8% of the jobs have used 18 hours
as their estimate. Occasionally, we refer to modes as bins within the estimate
histogram. Note that Zfil p; = 100% (we are considering all the jobs in the
trace). The remainder of this section serves as a roadmap of this paper, describ-

ing step-by-step how the {(ti,pi)}fil mode-series is constructed.

3.1 Roadmap of This Paper

Each of the following paragraphs correspond to a section or two in this paper,
and may contain some associated definitions to be used later on.

8 D. Tsafrir, Y. Etsion, and D.G. Feitelson

Trace Files. We build our model carefully, one component at a time, in order to
achieve the desired effect. Each step is based on analyzing user estimates in traces
from various production machines, in an attempt to find invariants that are not
unique to a single installation. The trace files we used and the manipulations we
applied on them are discussed in Section 4.

Mass Disparity. Our first step is showing that the modes composing the mode-
series naturally divide into two groups: About 20 “head” estimate values are
used throughout the entire trace by about 90% of the jobs. The rest of the
estimates are considered “tail” values. This subject is titled “mass disparity” and
is discussed in Section 5. We will see that the two mode groups have distinctive
characteristics and actually require a separate model. Naturally, the efforts we
invest in modeling the two are proportional to the mass they entail.

Number of Estimates. We start the modeling in Section 6 by finding out how
many different estimates there are, that is, modeling the value of K. Note that
this mostly effects the tail as we already know the head size (~20).

Time Ranks. The next step is modeling the values themselves, that is, what
exactly are the K time-values {t,-}fil. The indexing of this ascendingly sorted
series is according to the values, with ¢; being the shortest and tx being the
maximal value allowed within the trace (also denoted T},4.). The index i denotes
the time rank of estimate t;. This concept proved to be very helpful in our
modeling efforts. We also define the normalized time of an estimate t; to be
ti/Tmax (& value between 0 and 1). Section 7 defines the function Fi;, that gets
i as input (time rank), and returns ¢; (seconds).

Popularity Ranks. Likewise, we need to model the mode sizes / popularities /
percentages: {p; };il This series is sorted in order of decreasing popularity, so p;
is the percentage of jobs associated with the most popular estimate. The index
J denotes the popularity rank of the mode to which p; belongs. For example,
the popularity rank of 18h within CTC is 1 (p1 = 23.8%), as this is the most
popular estimate. We also define the normalized popularity rank to be j/K (a
value between 0 and 1). Section 8 defines the function F,,, that gets j as input
(popularity rank), and returns p;, the associated mode size.

Mapping. Given the above two series, we need to generate a mapping between
them, namely, to determine the popularity p; of any given estimate ¢;, which are
paired to form a mode. Section 9 defines the function F,,;, that gets ¢ as input
(time rank) and returns j as output (popularity rank). Using the two functions
defined above, we can now associate each ¢; with the appropriate p;. This yields
a complete description of the estimates distribution. The model is then briefly
surveyed in Section 10.

Validation. Finally, the last part of this paper is validating that the resulting
distribution resembles the reality. Additionally, we also verify through simulation
that the “badness” of user estimates is successfully captured, by replacing the
original estimates with those generated by our model. The replacement activity

Modeling User Runtime Estimates 9

mandates developing a method according to which estimates are assigned to jobs
(recall that an estimate of a job must be bigger than or equal to its runtime).
This is done in Section 11. The paper is concluded in Section 12.

3.2 Input, Output, and Availability

As we go along, the number of model parameters accumulates to around a dozen.
Most are optional and are supplied with reasonable default values. The only
mandatory parameters are the number of jobs N (the number of estimates to
produce), and the maximal allowed estimate value Tj,4,. Another important
parameter is the percentage of jobs associated with T},,., as this popular mode
exhibits great variance and has decisive effect on performance. The output of the
model is the series of the modes: how many jobs use which estimate.

The model we develop is somewhat sophisticated and involves several techni-
cal issues with subtle nature. As it is our purpose to allow simulations that are
more realistic, the C++ source code of the model is made available for down-
load from the parallel workload archive [9]. Its interface is composed of two
function: The first gets a structure containing all the model parameters (all but
two are assigned default values), and returns an array of K modes. The sec-
ond function gets the mode array and another array composed of job structures
(which includes ID and runtime). It than associates each job with a suitable
estimate.

4 The Trace Files

The analysis and simulations reported in this paper are based on four accounting
logs from large-scale parallel machines that are listed in Table 1. These are all
the logs from the parallel workload archive [9] that contain information about
user estimates and were available at the time we began this research (the DAS2
log, which also contains this data, was added since). Since traces span the past
decade, were generated at different sites, by machines with different sizes, and
reflect different load conditions, we have reason to believe consistent results
obtained in this paper are truly representative.

The data in Table 1 relates to the original traces, their recommended
“cleaned” version (excludes various non-representative anomalies [9,26]), and
a “sane” version. The latter applies a filter on “cleaned” logs to remove jobs
that cannot be used in simulations (unknown size, runtime, or submission time).
As our goal is providing a model for the sake of performance analysis through
simulation, our modeling activity targets only sane jobs. In particular, the K
column in Table 1 is related to the sane versions, as is all the data presented in
this paper.

During the study we found that two of the sane logs need to be further
manipulated to be useful in this context. The first is the SDSC log: We say an
estimate mode is “owned” by a user if this estimate was exclusively used by
only that user within the log. It turns out that user 106 is uniquely creative in

10 D. Tsafrir, Y. Etsion, and D.G. Feitelson

Table 1. The trace files. The variables M, U, X, and K are months duration, number
of users, maximal estimate value, and number of estimate bins, respectively. SC stands
for “supercomputer”. BLUE relates to San-Diego’s Blue-Horizon machine. The others
are SP2 machines. See [9] for more details.

Abbrev. Site Start End CPUs Number of jobs (N) M U X K

original cleaned sane mon usr max est
SDSC-106 San-Diego SC Ctr. Apr 98 Apr 00 128 73,103 59,332 53,673 24428 18h 339
CTC Cornell Theory Ctr. Jun 96 May 97 512 79,302 77,222 77,222 11679 18h 265
KTH4H Swedish Royal Instit. Sep 96 Aug 97 100 23,070 23,070 23,070 11209 4h 106
BLUE San-Diego SC Ctr. Apr 00 Jun 03 1,152 250,440 243,314 223,407 32468 36h 525
SDSC San-Diego SC Ctr. Apr 98 Apr 00 128 73,496 59,725 54,053 24428 18h 543

KTH Swedish Royal Instit. Sep 96 Aug 97 100 28,490 28,490 28,490 11214 60h 271
B 200 T T]
S 480 [-
g ol oKW ctc]
) 1 i it 1] 5
£ 0 100 200 300 400 500 600 700

user-rank

Fig. 4. Assume there are n users in a log. Users are associated with the number of
modes they own m; (i = 1,...,n) such that m, is the smallest and m, is the biggest.
The i index is defined to be the user-rank and serves as an X-value; m; serves as the
associated Y-value. Only positive m;-s are displayed (users that own no modes are not
shown). The SDSC outlier is associated with user 106 which is order of magnitude
more “industrious” than other users, exclusively owning 38% of SDSC’s modes.

comparison to others, owning 204 estimates of the 543 found in SDSC (38%).
This is highly irregular® as shown in Fig. 4 which displays the number of modes
owned by each user (only owners are shown). We therefore remove this unique
activity from the log for the remainder of the discussion (regular activity of user
106, using estimates that are also used by others, is allowed to remain). The
resulting log is called SDSC-106. This version is beneficial when modeling K in
Section 6 (number of estimate modes) and Fi;,, in Section 7 (actual estimate
time values). Other aspects of the model are not affected.

The other problematic workload was KTH: This log is actually a combination
of three different modes of activity: running jobs of up to 4 hours on weekdays,
running jobs of up to 15 hours on weeknights, and running jobs of up to 60 hours
on weekends. We have found that in the context of user estimates modeling,
considering these three domains in an aggregated manner is similar to, say,
aggregating CTC and BLUE to be a single log. We therefore focused on only
one of them — the daytime workload with the 4-hour limit, which is the largest
component of the log. This will be denoted by KTH4H.

3 In fact, as this activity is concentrated within about 2 months of the log, it actually
constitutes a workload flurry [26].

Modeling User Runtime Estimates 11

Recall our claim that maximal estimate values are always popular (Fig. 3).
We have argued that 4h and 2h are the effective maxima of KTH and BLUE,
respectively. Obviously, this is the case for KTH (most of the time 4h is the max-
imum). As for BLUE, this machine had an “express” and “interactive” priority
queues defined, with a limit of 2 hours on submitted jobs [9]. Indeed, the vast
majority of 2-hours estimate jobs are from within these queues, which means
here too users provided the maximal value available to them (while still allowing
their jobs to be accepted to the higher priority queues).

5 Mass Disparity of Estimates

Examining the histogram of estimates immediately reveals that the distribution
is highly modal (Fig. 3): A small number of values are used very many times,
while many other values are only used a small number of times. In this section,
we establish the mass disparity among estimate bins.

Human beings tend to estimate runtime with “round” or “canonical” num-
bers: 15 minutes, one hour etc. [21, 1, 17]. This has two consequences. One is that
the number of bins in the histogram (K) is very small relative to the number of
jobs in the trace (V). According to Table 1, N may be in the order of tens to
hundreds of thousands, while K is invariably in the order of only a few hundreds.

The other consequence is that a small set of canonical bins dominates the set of
values. Similar phenomena have been observed in many other types of workloads.
They are called a “mass disparity”, because the mass of the distribution is not
spread out equally; rather, a small set of values gets a disproportionally large
part of the mass [5].

The mass disparity of user runtime estimates is illustrated in Fig. 5. These
are CDF's related to the bin size (the number of jobs composing a bin). In each
graph, the top line is simply the distribution of bin sizes. This line grows sharply

SDSC-106 cTC KTH4H BLUE
1 e 1 T 1 — 1 T
o8 b4 H osf- A il o8 A i espo
06 i i 06l 06 il i d 06y
TR A ijoin : Sijoint : joint : A+ ijoint
O 0.4 Ri-iratio ¢ 0.4 - ratio 0.4 .-‘ ratio : 0.4 < ratio
o P99 ; £ 9/91] i L: i15/85] . Li i7/93
02 F ot 0.2 F 0.2 B 0.2 “__..-
0 0 et 0 2l " 0 i
- o o o o - O O © © O - o o O o - O O O O O
~— o o o ~ O O O O — o o o ~ O O O O
— o o - O O O ~— o o ~ O O O
-2 -e8 -2 -e8

bin fraction (of that size)
job fraction (fall within bins of that size) - | bin size [jobs]

Fig. 5. Distributions of bins and of jobs, showing that a small fraction of the bins
account for a large fraction of the jobs and vice versa. The actual fractions are indicated
by the joint ratio, which is a generalization of the proverbial 10/90 rule.

12 D. Tsafrir, Y. Etsion, and D.G. Feitelson

Table 2. Mass disparity: per-log minimal number of estimate bins needed to cover the
specified percent of the jobs

jobs 10% 50% 75% 90% 95% 98% 99% 100%
SDSC-106 1 6 12 22 39 77 116 339

CTC 1 4 10 22 36 62 89 265
KTH4H 1 6 12 21 28 36 43 106
BLUE 1 3 8 23 42 76 116 563
SDSC 1 6 12 23 43 91 156 543
KTH 1 8 21 41 60 89 122 270
SDSC-106 CTC KTH4H BLUE
o 1000 1000 1000 1000
X
[}
2 100 100 100 100
..6 4—#%%
o 10 . 10 . 10 -+ 10
E
2 1 1 el 1 * 1 L
~— o ~— o o o ~— o o o — o o o
o ~— o o — o o — o o
2 -2 -2 -2
popularity rank

Fig. 6. Weeks in which an estimate appears, as a function of its popularity-rank. Recall
that using popularity-ranks implies estimates are sorted on the X-axis from the most
popular to the least. The top-20 most popular estimates appear throughout the logs.

at the beginning, indicating that there are very many small bins (i.e. values that
are used by only a small number of jobs). The other line is the distribution of
jobs, showing the fraction of jobs with estimates that fall into bins of the different
sizes. This line starts out flat and only grows sharply at the end, indicating that
most jobs belong to large bins (i.e. most estimate values are the popular values
that are repeatedly used very many times).

The figure also shows the joint ratio for each case. This is a generalization
of the well-know 10/90 rule. For example, the joint ratio of 9/91 for the CTC
log means that 9% of the bins account for 91% of the jobs, and vice versa: the
other 91% of the bins contain only 9% of the jobs. Further details about the
shape of the distributions are given in Table 2. This shows the absolute number
of bins involved, rather than their fraction; for example, the CTC row shows
that a mere 4 bins cover 50% of the jobs, 10 bins cover 75% of the jobs, and 22
bins contain 90%. Indeed, a bit more than 20 head bins are enough to account
for 90% of the jobs in all four logs.

“Head” bins dramatically vary in size: While the most popular is used by
10 — 25% of the jobs, only ~ 1% use the 20-th most popular. Regardless, all
head bins, whether large or small, have a common temporal quality: their use
is not confined to a limited period of time. Rather, they are uniformly used
throughout the entire log. This is shown in Fig. 6 that plots the number of

Modeling User Runtime Estimates 13

weeks in which estimates are used, as a function of their popularity ranks. The
horizontal dot sequence associated with head bins indicates they are spread
out evenly throughout the log. Further, the point of intersection between this
sequence and the Y-axis is always the duration of the trace, e.g. for SDSC this
is 2 years (a bit more than 100 weeks).

6 Number of Estimates

We have established that about 20 popular “head” bins represent about 90% of
the jobs’ estimate distribution mass. We are left with the question of modeling
the number of the other “tail” bins used by the remaining 10%.

Examining the four traces of choice in Table 1, we see that K tends to grow
with the size of the trace, where this “size” can be measured in various ways: as
the number of jobs executed (IV), as the duration of time spanned (M), as the
maximal estimate (X), or as the number of different active users (U). Note that
the U metric also measures size, as new users continue to appear throughout
each log. This is relevant because after all, users are the ones generating the
estimates. In fact, in each of the four traces of choice, about 40% of the estimate
modes are exclusively owned (as defined above) by various users.*

We have experimented in modeling K as a function of the aspects mentioned
above (individually or combined), and most attempts revealed some insightful
observations. In fact, we are convinced K is the product of a combination of

K] linear model --- 1
o power model - -- -
7} SDSC — a
3 _SDSC-106 —
[72]
= 0 50,000 100,000 150,000 200,000 250,000
(2]
-_% 10 3 30 45 ¥ 120 350 5 600 3
] S A L R)
o) 8 T 25 40 100 & 300 / &)
© 6 & 20 Es 35 F..;Jf S 8o s 250 500 f
£ 1ol 15 ey 30 r".-l'?"j_ =4 200 1 400 ¢
B AT 10 T 25 By 6o p 1 150 1 500 &
2 1 s r‘ 20 &= 40 1 100 .
0 0 15 20 50 200
e & & 3 S S 3 3 S S 3 3
N N o o o o o o o
~— — o o o o o
- - ~ ~ 0
the four traces — N
linear model === . i
power model jobs submitted so far

Fig. 7. Modeling K using a power model K = aN® (o = 1.1, 2 = 0.5) and a liner
model which is defined by the points as specified in Table 3. In the top figure, curves
associated with SDSC share the same texture (color), the higher is of SDSC-106.

4 A surprising anecdote is that the actual number of bin-owners is also (exactly) 40,
in three of the four traces.

14 D. Tsafrir, Y. Etsion, and D.G. Feitelson

Table 3. Points defining the linear model of K using N. The slope indicates the arrival
rate of new estimates.

N (jobs) 0 20 200 1,000 10,0000 70,000 250,000
K (ests) 0 10 20 35 90 340 565
K/N (slope) ~ 1/2 1/18 1/53 1/164 1/240 1/800

all factors, and that they all effect it to some degree. However, in the interest
of being short while avoiding unwarranted complications (considering this only
affects the tail of the distribution), we have chosen to model K as a function of
N alone, which obtains tolerable results.

Fig. 7 plots K as a function of the number of jobs submitted so far (if n is
an X value, its associated Y is the number of estimate bins in use, before the
n-th job was submitted). Note how the vanilla version of KTH and SDSC stands
out: the former due to the three estimate domains it contains, and the latter
due to user 106. All curves can be rather successfully fitted with a power model
on individual bases (we present one such power model that was simultaneously
fitted against all four traces of choice). Accordingly, we allow the user of our
model to supply the appropriate coefficients (as optional parameters). However,
as this only effects tail bins, we set an ad-hoc linear model (defined by Table 3)
as the default configuration. This provides a tolerable approximation of K for
any given job number N.

7 Time Values of Estimates

Having computed a K approximation (order of a few hundreds), we know how
many estimate bins should be produced by our model. Let us continue to gener-
ate these K values, namely manufacture the {t,-}fil series. It has already been
noted that users tend to give “round” estimates [21,2,17], but this loose spec-
ification is not enough. In this section we develop a simple method to generate
K such appropriate values. We are currently not considering the most popular
(20) estimates in a separate manner. These will be addressed in detail later on
(Section 9), complementing the model we develop in this section.

Recall that the time-ranks of estimates are their associated indexes, when
ascendingly numbered from shortest to longest. Evidently, this concept can be
very helpful for our purposes. We define a function Fi;,, that upon a time-rank
input 4, return the associated time value t; (seconds), such that Fi;pn, (i) = t;.

The top-left of Fig. 8 plots normalized estimate time (¢;/Tinaz, where Thyaq
is the maximal estimate) as a function of its associated normalized time-rank
(i/K), for all four traces. According to the top-right and bottom of Fig. 8, it
turns out the resulting curves can be modeled with great success when using the
fractional function f(z) = (aailggr for some @ > 1 (z is normalized time-rank).
Further, the actual values of a (Table 4) are correlated with K, in that bigger
K implies smaller a.

Modeling User Runtime Estimates 15

real data model

: KTHAH e s
% o8f "ot Nt Wl
g 9°T|spsc-106 — PP s
g 3 [L BLUE -] e
S o2 i QR
.g 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
kel
Q ’ KTH4H CTC SDSC-106 BLUE
= L[real — | 4]
g gg model ---- | /- £ ya
€ 04 A // /f //

0.2 > -t _— S

0

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

normalized time-rank (i/K)

_ (a—1)x

Fig. 8. Modeling estimate times using f(z)

Table 4. The a parameter of the fractional fit presented in Fig. 8 is correlated with
the number of different estimates (K)

trace KTH4H CTC SDSC-106 BLUE
a 191 > 157 > 1.50 > 1.24
K 106 < 266 < 339 < 525

An obvious property of f(x) in the relevant domain (x € [0, 1]) is that when
a gets closer to 1, its numerator goes to zero and therefore the curve gets closer
to the bottom and right axes. On the other hand, as a gets further from 1 (goes
to infinity), its numerator and denominator get more and more similar, which
means the function converges to f(x) = x (the main diagonal). The practical
meaning of this is that less estimate values (smaller K, bigger a) means estimates’
temporal spread is more uniform. In contrast, more estimate values (bigger K,
smaller a) means a tendency of estimates to concentrate at the beginning of the
Y-axis, namely, be shorter.

In order to reduce the number of user-supplied parameters of our model, we
can approximate a as a function of K (which we already know how to reasonably
deduce from the number of jobs). The problem is that we only have four samples
(Table 4), too few to produce a fit. One heuristic to overcome this problem is
splitting the traces in two and computing K and a for each half. This enlarges
our sample space by eight (two additional samples per trace) to a total of twelve.
The results of fitting this data to the best model we could find are shown in Fig. 9
and indicate a moderate success.

We can now define the required Fy;,, to be

(a—l)li(

K

an(l) = Tmaa: . f (Z/K) = Tmaa: :

Generating the {ti}ilil series of time values is done by simply assigning 1,2, ..., K
to the time-rank 7 in an iterative manner. Finally, as almost 100% of the estimates

16 D. Tsafrir, Y. Etsion, and D.G. Feitelson

. [KThaA data +

2 18 fk [power model ---- .

@ Ny

g 1.6 S N CIC

5 T+ , spsc-106

w LB e S— BLUE

e 12 ¥ e
1

100 200 300 400 500 600 700
different estmates (K)

Fig. 9. Modeling a as a function of K using 1 + aK” (with o = 12.1, 8 = —0.6). A
bigger K results in an a-parameter that is closer (but never equal) to 1, as required.

are given in a minute resolution, the generated values are rounded to the nearest
multiple of 60 (if not colliding with previously generated estimates).

8 Popularity of Estimates

In the previous section we have modeled the time values of estimates. Here we
raise the question of how popular is each estimate, that is, how many jobs are
actually using each estimate value? Answering this question implies modeling
the {pi}fil percentage series. Once again, like in the previous section, ranking
the estimates (this time based on popularity) proves to be highly beneficial.
Recall that {pi}fil is descendingly sorted such that p; is the percentage of jobs
using the most popular estimate value, p; is the percentage of jobs using the
i-most popular estimate value, and i serves as the associated popularity rank.
We seek a function Fj,, such that Fpop(i) = p;. Note that the constraint of
Zfil Fp (i) = 100 must hold.

Fig. 10 plots the size (percent) of each estimate bin, as a function of its
popularity-rank. There’s a clear distinction between the top-20 most popu-
lar estimates (distribution’s head) and the others (tail), in that the sizes of
head-bins decay exponentially, whereas the decay of the tail obeys some power
law.

The suggested fits are indeed very successful (R? > 0.95 in both cases). How-
ever, when concentrating on the head (left or middle of Fig. 10), it is evident
the exponential model is less successful for the first few estimates. For example,
in CTC the most popular estimate is used by about 24% of the jobs, while in
SDSC this is true for only 11%. In BLUE the situation is worse as the three
top ranking estimates “break” the exponential curve. (Indeed, the exponential
fit was produced after excluding these “abnormal” points.) Obviously, no model
is perfect. But this seemingly minor deficiency (at the “head of the head”) is
actually quite significant, as a large part of the distribution mass lies within this
part (differences in less popular estimates are far less important).

Modeling User Runtime Estimates 17

all head [x <= 20 tail [x > 20
100 25 [‘ T] 10 []
. model
10 Pl : SDSC-106 — |/ _
— “"”%@ 20 1 SDSC — !
N CTC =
[- 15 1 KTH - g 0.1 "
2 0.1 3 i KTH4H = g G
o E 10 [BLUE 4 oot
ol 5L P 0.001 U
0.001 2 o i
e i
1e-04 0 L 1e-04
12 5 20 100 500 1 5 10 15 20 20 50 100 200 500

estimate popularity-rank

Fig. 10. Modeling percent of jobs associated with estimate bins, as a function of pop-
ularity rank. The head (middle) is modeled by the exponential function ae®® +~ (with
a = 14.05, 8 = —0.18, and v = 0.46). The tail (right) is modeled by the wz” power
law (with w = 795.6 and p = —2.27). Note that the middle figure has linear axes, while
the other two are log scaled. The left figure concatenates the head and tail models.

We note that the observed differences among the traces at the “head of the
head” expose an inherent weakness in any estimate model one might suggest,
because the effect of the variance among these 1-3 estimates is decisive. Conse-
quently, our model will allow (though not mandate) the user to provide informa-
tion regarding top-ranking estimates as model parameters (this will be further
addressed in the next section). As for the default, recall that a job estimating
to run for the maximal allowed value (T),q.) is the worst kind of job in the
eyes of a backfilling scheduler (Section 2). For this reason, we prefer the default
model to follow the CTC example by making the (single) top ranking estimate
“break” the exponential contiguity. This significant job percentage will later be
associated with T}, to serve as a realistic worst case scenario. We therefore
define F,,, as follows

89— 31, (ae7 +7) i =1
Fpop(i) = § a4+~ i=2,3,..,20
R i=21,22,.. K

Starting with the (simplest) middle branch, Fj., is determined by the expo-
nential model for all head popularity ranks but the first (the default values
for the coefficients are specified in the caption of Fig. 10). The first branch is
defined so as to preserve the invariant shown in Table 2 that the twenty top
ranking estimates are enough to cover almost 90% of the jobs. Finally, the third
branch determine sizes of tail estimates according to a power law (again, co-
efficient values are specified in Fig. 10). But to preserve the constraint that
Zfil Fpop(i) = 100, tail sizes are scaled by a factor of %%, where A is the

sum of the tail: Zfim w - iP. The resulting default curve is almost identical to
the one associated with the model as presented in Fig. 10, with a top rank of a
bit more than 20% (to be associated with Tyqz).

18 D. Tsafrir, Y. Etsion, and D.G. Feitelson
9 Mapping Time to Popularity

The next step after separately generating the estimates’ time {t; } _, and pop-
ularity {p; }j=1 is figuring out how two construct a bipartite matching between
the two. We seek a function Fj,qp such that F.,(i) = j, that is, we want to
map each time-rank to a popularity-rank in a manner that yields an estimate
distributions similar to those found in the original traces (Fig. 3).

9.1 Mapping of Tail Estimates

As a first step towards constructing F,qp, let us examine this mapping as it
appears in the four traces. Fig. 11 scatter plots normalized popularity-ranks vs.
normalized time-ranks: one point per estimate.® The points appear to be more
or less uniformly distributed, which means there is no apparent mapping rule.

= 100 rSElS’C 106 100 14 E;q,xu,; 100 KTH4H
X~ 80 [yl Y 80 [t i 5 tY +€+l 80 [t Fats h
[= T, Fel kg A SR
S 60 f**’z“‘f‘l"“ 60 [% SELERY 60 [taa
; Sl £ Vi WE e A L e
Qa0 pt L;‘\ o 40 "“a?r“”‘ 40 [t Mt
44 ¥ . + ¥ 44 + et 4
é 20 #{W ;"f\dt* 20 ‘h:’*: ‘;ﬁtﬁj 20 vl ::‘)
£ 0 M ik 0 AR 0 B Wy kS 0 Y, e
5 0 20 40 60 80100 0 20 40 60 80100 0 20 40 60 80100 0 20 40 60 80100
[

norm. popularity-rank [%]

Fig.11. Scatter plots of relative popularity-ranks vs. relative time-ranks appear to
reveal a uniform distribution across all traces

9 SDSC-106 CTC KTH4H

= 10 100 100 100

c 80 80 80 80

T 60 60 60 60

°E’ 40 40 40 40

=20 20 20 20

€ 0 0 0 0

) 0 20 40 60 80100 0 20 40 60 80100 0 20 40 60 80100 0 20 40 60 80100

O 0-20% O 20-40% H 40-60% B 60-80% W 80-100%

norm. popularity—rank [%]

Fig.12. Aggregating the data shown in Fig. 11 into a grid-based heat-map reveals
no further insight, other than a consistent tendency of popular estimates to be short
(bottom-left black cells)

In an effort to expose some trend possibly hidden within the “disorder” of the
scatter plots, we counted the number of points in each grid-cell within Fig. 11.

5 A scatter plot of actual values turns out to be meaningless.

Modeling User Runtime Estimates 19

We then generated an associated heat-map for each sub-figure by assigning a
color based on the point-count of each cell: cells that are populated by 80-100%
of the maximal (cell) point-count found within the sub-figure (denoted C'), are
assigned with black; cells populated by 0-20% of C' are assigned with white; the
remaining cells are assigned with a gray intensity that is linearly proportional
to their point-count, batched in multiples of 20% of C.

The result, displayed in Fig. 12, appears to strengthen our initial hypothe-
sis that the mapping between popularity-ranks and time-ranks is more or less
uniformally random, as other than the bottom-left cell being consistently black
(top-20 popular estimates show tendency of being shorter), there is no consistent
pattern that emerges when comparing the different traces.

Our next step was therefore to randomly map between time and popularity
ranks. Regrettably, this resulted in failure, as the generated CDFs were signifi-
cantly different than those displayed in Fig. 3, because “big modes” fell in wrong
places. The fact of the matter is that when (uniformly) randomly mapping be-
tween time and popularity ranks, there is a nonnegligible probability that the
4-5 most popular estimates are assigned to (say) times in the proximity of the
maximal value, which means that the majority of the distribution mass is much
too long. Alternatively, there is also a nonnegligible probability that the opposite
will occur, namely, that none of the more popular estimates will be assigned to
a time in the proximity of T}, contrary to our previous findings.

We conclude that it is tail estimates (in terms of popularity) that are roughly
randomly mapped to times in a uniform manner, forming the relatively balanced
scatter plot observed in Fig. 11. This appearance is created due to the fact
there are much more tail estimates (few hundreds) than head’s (20). The head
estimates minority, which nevertheless constitute 90% of the mass, distributes
differently and requires a greater modeling effort.

9.2 Determining Head Times

We have reached the point where the effort to model user estimates is reduced
to simply determining 20 actual time-values and mapping them correctly to the
appropriate (head) sizes. In other words, our task is as simple as producing 20
(ti, pi) pairs. These are good news, as the number of samples is small enough to
allow a thorough examination of the entire sample-space. The bad news is that
unlike previous parts of the model that are actually relatively trivial, and in
spite of considerable efforts we’ve made, we failed to produce a simple method
to accomplish the task. In the interest of practicality and space, we do not
describe our various unsuccessful attempts to produce a simple straightforward
solution. Instead, we concentrate on describing the sophisticated algorithm we’ve
developed that has finally managed to deliver satisfactory results.

Let us examine the relevant sample space. Table 5 lists the 20 most popular
estimates in each trace, and their associated sizes (percent of jobs). Of the 36
values displayed, a remarkable 15 are joint times across all traces (we ignore
KTH4H when deciding which values, bigger than 4h, are joint). The joint times
are highlighted in bold font, and have values one would expect from humans

20 D. Tsafrir, Y. Etsion, and D.G. Feitelson

Table 5. The top-20 most popular modes in the four traces. Each column contains
exactly 20 job percent values. Note that 15 of the top-20 estimates are joint across
all traces (excluding KTH4H for estimates bigger than 4 hours). Joint estimates are
highlighted in bold font. The parenthesized subscripts denote the associated popularity-
ranks (e.g. in BLUE, 2h is the most popular value used by 21.3% of the jobs). Notice
that the sum of each column is invariantly in the neighborhood of 89%, the value we
used in Section 8 to define Fjo,p.

estimate SDSC-106 CTC KTH4H BLUE

hh:mm

1 00:01 6.6)

2 00:02 4.0 (10

3 00:03 2.2 (1)

4 00:04 1.2 (20,

5 00:05 11.3, 88 1154 2.7

6 00:10 7.9 6.4 96 433

70012 124

8 00:15 3043 10605 534 160,

9 00:20 4.8, 2002 31az 25
10 00:30 4.7 350 BB 17.7@
11 00:40 1300 0.5 0
120045 1.1y
13 00:50 0.5 (20)
14 01:00 10.5 426 58 494
15 01:30 0.84s 1.3as 1.509
16 01:40 1.4 16
17 01:59 6-0(4)
18 02:00 5.3 546 450 2130
19 02:10 1.3 an)
20 02:30 1.2 1.4 (15
21 03:00 3840 49x 254s 1.8 .o
22 03:20 5.1 (s
23 03:50 3.3 11
24 04:00 5.7, 224y 1254 1.6
25 04:50 0.6 (20,
26 05:00 1.4 1.1 (16 0.9 (15)
27 06:00 2.0 1 6.1 5 1.0 (14
28 07:00 0.9 1
29 08:00 3.4, 1.5 (14 0.8 (1r)
30 10:00 334 1.70s 0.9 (16)
31 12:00 4.0 2.2 (10) 0.6 1s)
32 15:00 0.9 1.5 (15
33 16:00 1.0 oo
34 17:00 0.6 (10)
35 18:00 9.8 23.8, 2.1 (o)
36 36:00 1.1 s
sum (all) 86.4 88.9 89.3 88.7

sum (joint) 81.2 84.4 60.4 79.1

Modeling User Runtime Estimates 21

to ordinarily use. Note that this is regardless of the different per-trace maximal
estimate limits. We conclude that joint times should be hard-coded in our model,
as it is fairly reasonable to conjecture humans will always extensively use values
like 15 minutes, 1 hour, etc. We therefore define the first head-mapping step —
determining the 20 time values that are the most popular — as follows:

1. Choose Tpaz, the maximal estimate (which is a mandatory parameter of our
model). As previously mentioned, this is always a top ranking value.

2. Choose all hard-coded joint times that are smaller than T}, -

3. Choose in descending order multiples of T} oyna (smaller than T),,.), where
Tround is 200h, then 100h, 50h, 10h, 5h, 2h, 1h, 20m, 10m, and 5m. We stop
when the number of (different) chosen values reaches 20.

The role of the third item above is to add a relative aspect to the process of
choosing popular estimates, which is largely hard-coded. As will later be shown,
this manages to successfully capture KTH4H’s condensed nature. At the other
end, workloads with larger estimate domains, of jobs that span hundreds of
hours, do in fact exist [2]. Regrettably, their owners refuse to share them with
the community. Nevertheless, our algorithm generates longer times based on the
modes they report (400h, 200h, 100h, and 50h in the NCSA O2K traces).

Finally, recall we have already generated K time values using Fy;,, defined in
Section 7. Head times generated here, replace the 20 values generated by Fiim,
that are the closest to them (and so the structure reported in Fig. 8 is preserved).

9.3 Mapping of Head Estimates

Having both head times (seconds) and sizes (job percentages), we go on to map
between them. As usual, mapping is made possible by using the associated ranks,
rather than the actual values. For this purpose we need two new definitions:

First, we define a new type of time-rank, the top-20 time rank (or ttr for
short), which is rather similar to the ordinary time-rank: All top-20 times, ex-
cluding T}z, are ascendingly sorted. The first is assigned a ttr=1, the second a
ttr=2, and the last a ttr=19. For example, according to Table 5, in CTC, 00:05
has ttr=1, 00:10 has ttr=2, 01:30 has a ttr=7, and 17:00 has a ttr=19. T}, is
always associated with ttr=0.

Second, for each trace-file log, we define a function Fj,, that maps ttr-s
to the associated popularity ranks, within that log. For example, Fii.(0)=1
as Tpar=18h (associated with ttr=0) is its most popular estimate. Likewise,
F,i(1)=3, as bmin is the smallest top-20 estimate (ttr=1) and is the third most
popular estimate within CTC. Table 6 lists F},4 of the four traces. Recall that 2h
is the effective T}, of BLUE and therefore this is the estimate we choose to as-
sociate with ttr=0. Additionally, note the BLUE 01:59 mode near its T},4,=2h
(Table 5). This is probably due to users trying to enjoy both worlds: use the
maximal value, while “tricking” the system to assign their jobs a higher priority
as a result of being shorter. We are not interested (nor able) to model such phe-
nomena. Therefore, in the generation of Table 6 and throughout the reminder

22 D. Tsafrir, Y. Etsion, and D.G. Feitelson

Table 6. The Fj,4 functions of the four traces. The four most popular ranks in each
trace are highlighted in bold font.

tr Fsgsc—106 Fete Frenan Foiue

0 3 1 1 1
1 1 3 4 6
2 4 4 10 5
3 17 2 14 3
4 13 12 20 7
5 7 9 2 2
6 8 8 3 18
7 18 18 7 19
8 2 6 12 4
9 6 7 6 11
10 16 11 19 20
11 10 20 5 9
12 5 16 18 10
13 15 5 16 14
14 14 14 9 13
15 19 13 17 16
16 11 10 15 15
17 12 15 13 17
18 9 17 8 8
19 20 19 11 12

—_—a
ONROHOONA

ttr range of
closest three

1 2 3 4 5 6 7
popularity rank

Fig. 13. There is only 0-3 difference between the closest three ttr-s that are associated
with the more popular ranks (Table 6). For example, 3 of the ttr-s associated with
popularity rank 2, are located in rows 3-5 in Table 6 (underlined and highlighted in
a different color). In the above figure, this corresponds to range-bar associated with
popularity rank 2 that stretches between lines 3-5.

of this paper, we aggregate the 01:59 mode with that of 2h and consider them a
single 27.3% mode.

The Fj,4 functions in Table 6 reflect reality, and are in fact the reason for
the log-uniform CDFs observed in Fig. 3. We therefore seek an algorithm that
can “learn” these functions and be able to imitate them. Given such an artificial
Fiog, we would finally be able to match head-sizes (produced in Section 8, their
size defines their popularity rank) to head-times (produced in Section 9.2, their
value defines their ttr-s) and complete our model.

Modeling User Runtime Estimates 23

At first glance, the four Fj,, functions appear to have little similarities (the
correlation coefficient between the columns of Table 6 is only 0.1-0.3), seemingly
deeming failure on the generalization attempt. However a closer inspection re-
veals some regularities. Consider for example the more popular (and therefore
more important to model) ranks: at least three of four values of each such rank
are clustering across neighboring lines (ttr-s). This is made clearer in Fig. 13.

Another observation is that when dividing popularity-ranks into two (1-10
vs. 11-20), around 75% of the more popular ranks are found in the top half of
Table 6, which indicates a clear tendency of more popular ranks to be associated
with smaller ttr-s. (This coincides with the log-uniformity of the original estimate
distributions). It is our job to capture these regularities.

In the initialization part of our algorithm, which we call the pool algorithm, we
associate ttr=0 (of Ti,q,) with popularity rank=1, that is, the maximal estimate
is also the most popular. The rationale of this decision is that

1. according to Table 6 this is usually the case in real traces,

2. as explained in Section 2, making 7,4, the most popular estimate constitutes
a realistic worst case scenario, which is most appropriate to serve as the
default setting, and

3. it is the “safest” decision due to the constraint that estimates must be longer
than runtimes.

The last two items are the reason why we chose to follow the CTC example
and enforce a sizable first rank on the construction of Fj,, (end of Section 8) that
“breaks” the exponential contiguity observed in Fig. 10. To complete the initial-
ization part, we allocate an empty vector V,,, designated to hold popularity
ranks. Any popularity rank may have up to four occurrences within Vper.

The body of the pool-algorithm iterates through the rest of the ttr-s in ascend-
ing order (Jy = 1,...,19) and performs the following steps on each iteration:

1. For each trace file log, insert the popularity rank Fjo,(Jiir) t0 Vipoor, but only
if this rank wasn’t already mapped to some smaller ttr in previous iterations.
(In other words, insert all the values from within the Jy, line in Table 6,
that weren’t already chosen.)

2. If there exists popularity ranks that have four occurrences within Ve,
choose the smallest of these ranks R, map Jy,- to R, remove all occurrences
of R from Vj01, and move on to the next iteration.

3. Otherwise, randomly choose two (not necessarily different) popularity ranks
from within Vj0;, map the smaller of these to Ji,, and remove all its occur-
rences from Vi

A main principle of the algorithm is the gradual iteration over Table 6, such
that no popularity-rank R is eligible for mapping to Jy,, before we have actually
witnessed at least one occasion in which R was mapped to a ttr that is smaller
than or equal to Jy,. This aims to imitate the original Fj,, functions, along
with serving as the first safety-mechanism obstructing more popular ranks to be
mapped to longer estimates (recall that estimate CDFs are log-uniform, which
means most estimates are short).

24 D. Tsafrir, Y. Etsion, and D.G. Feitelson

Another important principle of the algorithm is that increased number of
occurrences of the same R within V)., implies a greater chance of R to be
randomly chosen. And so, an R that is mapped to a ttr < Ju, within two
traces (two occurrences within V), has double the chance of being chosen in
comparison to a popularity rank for which this condition holds with respect to
only one trace (one occurrence within Vpee). This aspect of the algorithm also
alms to capture the commonality between the various traces.

Item number two in the algorithm tries to make sure an R will not be mapped
to a ttr that is bigger than all the ttr-s to which it was mapped in the four traces.
Like the first principle mentioned above, this item has the role of making sure
the resulting mapping isn’t too different than that of the original logs. It also
serves as the second safety-mechanism limiting the probability of more popular
ranks to be mapped to longer estimates.

The combination of the above “safety mechanisms” was usually enough to
produce satisfactory results. However, on rare occasions, too many high popu-
larity ranks have managed to nevertheless “escape” these mechanisms and be
mapped to longer estimates. Adding a third safety-mechanism, in the form of
using the minimum between two choices of popularity ranks (third item of the
algorithm), has turned this probability negligible.

9.4 Embedding User-Supplied Estimates

While the estimate distributions of the traces bare remarkable resemblance, they
are also very distinct within the “head of the head” (as discussed in Section 8),
that is, the 1-3 most popular estimates. For example, considering Table 5, the
difference between the percentage of SDSC and CTC jobs associated with 18h
(10% vs. 24%) is enough to yield completely different distributions. Another ex-
ample is BLUE’s shift of the maximum from 36h to 2h, or its two huge modes
in 15min and 30min; the fact that more than 60% of its jobs use one of these
estimates (along with 01:59), cannot be captured by any general model. Yet an-
other example is KTH4H’s unique modes below 5min. This variance among the
most important estimate bins, along with the fact users may be aware of spe-
cial queues and other influential technicalities concerning their site, mandates a
general model to allow its user to manually supply head estimates as parameters.

To this end, we allow the user to supply the model with a vector of up to 20
(t;, p;) pairs. The manner in which these pairs are embedded within our model
is the following: The t; values replace default-generated head times (Section 9.2)
that are the closest to them, with the exception of T},,, which is never replaced
unless explicitly given by the user as one of the (¢;, p;) pairs. (This is due to the
reasons discussed in Section 9.3.) As an example, in order to effectively replace
the maximal value of BLUE, the user must supply two pairs: (36h,1%) to prevent
the model from making the old maximum (36h) the most popular estimate, and
(2h,27%) to generate the new maximum.

Similarly to times, user supplied p; sizes (job percents) replace default-
generated sizes (Section 8) that are the closest to them. Once again, the biggest
value (reserved for T),..) is not replaced if the user did not supply a pair

Modeling User Runtime Estimates 25

containing T}, 4.. Additionally, the remaining non-user head-sizes are scaled such
that the total mass of the head is still 89% (scaling however do applies to the
largest non-user size). If scaling is not possible (sum of user sizes exceed 89%),
non-user head-sizes are simply eliminated, and the tail sizes are scaled such that
the sum of the entire distribution is 100%.

Finally, the pool algorithm is refined to skip ttr-s that are associated with
user-supplied estimates and to avoid mapping their associated popularity ranks.

10 Overview of the Model

Now that all the different pieces are in place, let us briefly review the default
operation of the estimates model we have developed:

1. Get input. The mandatory parameters are maximal estimate value T}, 4., and
number of jobs N (which is the number of estimates the model must produce
as output). A third, “semi mandatory”, parameter is the percentage of jobs
associated with T},4.. While the model can arbitrarily decide this value by
itself, its variation in reality is too big to be captured by a model, whereas
its influence on performance results is too detrimental to be ignored (Tinax
jobs are the “worst kind” of jobs in the eyes of the scheduler; Section 2).

2. Compute the value of K (different estimate times) as defined in Section 6.

. Generate K time-values using Fy;,, as defined in Section 7.

4. Generate 20 “head” time-values using the algorithm defined in Section 9.2
and combine them with the K time-values produced in the previous item.
Non-head times are denoted “tail” times.

5. Generate K sizes (jobs percent) using Fp,, as defined in Section 8. The
largest 20 sizes are the head sizes. The rest are tail.

6. Map between time- and size-values using F,qp as defined in Section 9, by

— Randomly mapping between tail-times and tail-sizes in a uniform manner
(Section 9.1).

— Mapping head-times and head-sizes using the pool algorithm
(Section 9.3).

7. If received user supplied estimate bins, embed them within the model as
described in Section 9.4.

w

10.1 About the Complexity

The only part which is non-trivial in our model is the pool algorithm: Generating
the estimate time values by themselves is a trivial operation. Generating sizes
(percentages of jobs) is equally trivial. Mapping between these two value sets
is also a relatively easy operation, as all but the 20 most popular sizes can be
randomly mapped. All the complexity of the model concentrates in solving the
problem of deciding how many jobs are associated with each “head” estimate, or
in other words, where exactly to place the larger modes. The question of whether
a simpler alternative than the one suggested here exists, is an open one, and it

26 D. Tsafrir, Y. Etsion, and D.G. Feitelson

is conceivable there’s a positive answer. However, all the “immediate” heuristics
we could think of in order to perform this task in a simpler manner have been
checked and verified to be inadequate. In fact, it is these inadequacies that has
lead us step by step in the development of the pool algorithm.

11 Validating the Model

Having implemented the estimate model, we now go on to validate its effective-
ness. This is essentially composed of two parts. The first is obviously making
sure that the resulting distribution is similar to that of the traces (Section 11.1).
However, this is not enough by itself, as our ultimate goal is to allow realistic
performance evaluation. The second part is therefore checking whether perfor-
mance results obtained by using the original data are comparable to those pro-
duced when replacing original estimates with artificial values produced by the
model (Section 11.3). The latter part mandates developing a method according
to which artificial estimates are assigned to jobs (Section 11.2).

11.1 Validating the Distribution

Fig. 14 plots the original CDFs (solid line) against those generated by the
“vanilla” model using various seeds. The only input parameters that are given
to the model are those listed in Section 10, that is, the maximal estimate T},q4,
then number of jobs N, and the percentage of jobs associated with T},4,. Recall
that BLUE’s maximum is considered to be 2 hours and that in order to reflect
this we must explicitly supply the model with an additional pair (Section 9.4).

The results indicate the model has notable success in generating distributions
that are remarkably similar to that of SDSC-106 and CTC; it is far less successful
with respect to the other two traces. However, this should come as no surprise
because, as mentioned earlier, the model has no pretense of reflecting abnor-
malities or features that are unique to individual traces. In the case of KTH4H,
these are the large modes that are found below 5 minutes (Table 5). In fact, if
aggregating these modes with that of 5 minutes, we get that a remarkable 25.5%
of KTH4H’s jobs have estimates that are 5 minutes or less, which is inherently
different in comparison to the other traces. In the case of BLUE, its uniqueness
takes the form of two exceptional modes located at 15 and 30 minutes. This dis-
tinctive quality is especially apparent in Fig. 10, where the three biggest modes
“break” the log-uniform contiguity.

The practical question is therefore if the model can produce good results when
provided with minimal additional information highlighting the trace-specific ab-
normalities. The amount of such information is inherently limited if we are
to keep the model applicable and maintain its practical value. We therefore
define the “improved” setting in which the KTH4H model is provided with
the additional (5min,25%) pair. The BLUE model is provided with two ad-
ditional pairs associated with its two exceptional modes: (15min,16%) and
(30min, 18%).

Modeling User Runtime Estimates 27

100 SDSC-106 CTC KTH4H BLUE
seedd ! ‘,.,
80 |-|seedl - 4 ;";,
— seed2 - v .Jf‘ g’ ¥
X 60 seed3 £ e iy
o rig == | §= d el
Q 40 utel
20 : ! [
0 ‘
E § EESASSS85E £ SESNSSSGE § SESASSSSE § 5ES8S6sS
-® —m -® —m -® -m -® -®

estimate

Fig. 14. The original estimate distribution of the traces (solid lines) vs. the output of
the vanilla model, when used with four different seeds. Output is less successful for
traces with unique features.

100 SDSC-106 CTC KTH4H BLUE
seed) ‘ e
80 |-|{seedi - g f
—_ seed2 4 i
® 6o ||seed3]
o orig =~
O 40
(@]
20
0
E 5 SESSSSSHE 5 SETASSSEE § SESSSSSGE § 5ETATSSg

estimate

Fig.15. Output of the model under the “improved” setting which provides minimal
information identifying the unique features

The results of the improved setting are shown in Fig. 15 and indicate that this
additional information was all that the model needed in order to produce satis-
factory results (also) with respect to the two “unique” traces. To test the impact
of additional information on situations where the vanilla model manages to pro-
duce reasonable results by itself, the improved setting supplied three additional
pairs (of the most popular estimates) when modeling CTC and SDSC-106. It is
not apparent whether the additional information made a qualitative difference.

The important conclusion that follows from the successful experiment we have
conducted in this section, is that estimate distributions are indeed extremely sim-
ilar: Most of their variance concentrates within the 1-3 most popular estimates,
and once these are provided, the model produces very good results.

11.2 Assigning Estimates to Jobs

The next step in validating the model is putting it to use within a simulation. For
this purpose we have decided to simulate the EASY scheduler and evaluate its
performance under the four workloads. This can be done with original estimates
or after replacing them with artificial values that were generated by our model.
Similar performance results would indicate success.

28 D. Tsafrir, Y. Etsion, and D.G. Feitelson

The common practice when modeling a parallel workload is to define canonical
random variables to represent the different attributes of the jobs, e.g. runtime,
size, inter-arrival time etc. [6,15,20]. Generating a workload of N jobs is then
performed by creating N samples of these random variables. Importantly, each
sample is generated independently of other samples.

In this respect, assignment of artificial estimates to jobs is subtle, as this
must be done under the constraint that estimates mustn’t be smaller than the
runtimes of the jobs to which they are assigned. Here, we can’t just simply
randomly choose a value. However, if independence between jobs is still assumed,
we can easily overcome the problem by using the random shuffle algorithm. This
algorithm gets two vectors Vestimate and Viyntime that hold N values as suggested
by their names. The content of both vectors is generated as usual, according to
the procedure described above (under the assumption of independence). Now all
that is needed is a random permutation that maps between the two, such that
every estimate is equal to or bigger than its associated runtime. The random
shuffle algorithm finds such a permutation by iterating through V,yniime and
randomly pairing each runtime R with some estimate E € Vs imate for which
E > R. After values are paired, they are removed from their respective vectors.

Note that we do not claim that the independence assumption underlying the
random shuffle algorithm is correct. On the contrary. We only argue that this
is the common practice. However, there is a way to transform the original data
such that this assumption holds: The algorithm can be applied to the original
data, that is, we can populate the Vestimate vector with original trace estimates
and reassign them to jobs using the shuffle algorithm. The outcome of doing
this would be that the original estimates are “randomly shuffled” between jobs
(which is the source of the algorithm’s name). The result of such shuffling is to
create independent “real” estimates. This is suitable as a basis for comparison
with our model, as explained below.

11.3 Validating Performance Results

Several estimate-generation models have been evaluated and compared against
the original data:

— The X2-model: simply doubles user estimates on the fly [16, 21].

— The shft-model: the result of applying the random shuffle algorithm (defined
above) to the original data. As noted, assuming independence in this context
is correct.

— The f-model: upon receiving a job’s runtime R, uniformly chooses an esti-
mate from the closed range [R, R-(f+1)]. In accordance with [21], six values
of f were chosen: 0 (complete accuracy), 1, 3, 10, 100, and 300.

— The feit-model: targets accuracy (suggested by Mu’alem and Feitelson [21]
and explained in the introduction).

— The wvanl-model: the vanilla setting of the model developed in this paper
(defined above).

— The impr-model: the improved setting of our model, supplying it with some
additional information (defined above).

Modeling User Runtime Estimates 29

Notice X2and shfl aren’t models per-se as both are based on real estimates. The
competitors of our model are f and feit (producing estimates based on runtime).

Performance results are shown in Fig. 16 in the form of average wait time
and bounded slowdown. The black dotted lines present the results of running
the simulations using the original data. Therefore, models that are closer to this
line are more realistic. Recall that our aim here is not to improve performance.
Rather, it is to produce trustworthy results that are closest to reality. All the
results associated with models that contain a random component (all but X2 and
10) are the average of one hundred different simulation runs employing different
seeds. The error-bars associated with these models display the absolute-deviation
(average of absolute value of deviation from the average).

SDSC-106 CTC KTH4H BLUE
100 36

3
-
N

70

bounded slowdown
o] ©
o o
shuf —E—
f0 {1
3 I
10 =~
=
feit —{——
impr {0 e
N w N
P —

SDSC-106 CTC KTH4H BLUE
400 24 14 140
8
QL e Reeesddedesssssssssssspepa 130
S 360 20 D S L S T —— e
£ 120
= 320 16 12
s 110
ol M
280 12 11 100
RgUEEgREE RgRUeZgRRr RgRUeEgeRr RgREEEeER
*+ original model

Fig. 16. Validating badness. The reason for the peculiar results associated with the
average wait time of SDSC and BLUE, remain unknown.

When examining Fig. 16, it is clear the two variants of our algorithm are
more realistic, in that they usually do a better job in capturing the “badness”
of user estimates (compare with f-s and feit). Another observation is that us-
ing increased f-s (or feit) to model increased user inaccuracy (for the sake of
realism) is erroneous, as f0 usually produces results that are much closer to the
truth. In fact, f0 is usually comparable to the results obtained by our model
with the exception of the SDSC trace. However, this is limited to the FCFS-
based EASY scenario: if introducing a certain amount of limited SJF-ness to the
scheduler (e.g. as in [25,1]), f0 yields considerably better performance results
in comparison to the original, whereas our model stays relatively the same (fig-
ure not shown to conserve space). Another scenario in which f0 can’t be used
is when evaluating system-generated runtime predictors that make use of esti-
mates (along with other job characteristics) [14, 23, 18, 25]. Finally (returning to

30 D. Tsafrir, Y. Etsion, and D.G. Feitelson

the context of EASY), unlike f0, our model has room for improvement as will
shortly be discussed, and we believe it has potential to “go the extra mile”.

A key point in understanding the performance results is noticing that the
vanilla setting of our algorithm is surprisingly more successful in being closer
to the original than its improved counterpart. This is troublesome as our entire
case is built on the argument that models that are more accurate would yield
results that are closer to the truth. The answer to the riddle is revealed when
examining the shfl model. The fact of the matter is that one cannot get more
accurate than shfl, as it “generates” a distribution that is identical to that of
the original. Yet it too seems to be inferior to our vanilla model. This exposes
our independence assumption (the random shuffle algorithm) as the true guilty
party which is responsible for the difference between impr and the original. The
correct comparison between impr and vanl should actually be based on which is
closer to shfl, not to the original, as only with shfl can independence be assumed.
Based on this criterion, impr is consistently better than vanl.

Once this is understood, we can also explain why the performance of impr
(in terms of wait and slowdown) is always better than that of vanl. Consider
the difference between the two models: impr simply has much more accurate
data regarding shorter jobs (e.g. KTH4H’s 25% of 5 minutes jobs). As short jobs
benefit the most from the backfilling optimization, impr consistently outperforms
vanl (in absolute terms).

11.4 Repetitiveness Is Missing

We are not interested in artificially producing worse results by means of falsely
boosting up estimates (as is done by wanl with respect to #mpr). This would
be equivalent to, say, increasing the fraction of jobs that estimate to run Ti,qz,
which can arbitrarily worsen results. Our true goal is creating a reliable model.
The above indicates that the problem lies in the assumption of independence,
namely, the manner we assign estimates to jobs. While it is possible that this
is partially because we neglected to enforce the accuracy to be as displayed in
Fig. 1 (the accuracy histograms of even shfl are dissimilar to that of the original),
we conjecture that the independence assumption is more acute.

It has been known for over a decade that the work generated by users is highly
repetitive [12,10]. Recent work [28,24] suggests that the correct way to model
a workload is by viewing it as a sequence of user sessions, that is, bursts of
very similar jobs by the same user. This doctrine suggests that a correct model
cannot just draw values from a given distribution while disregarding previous
values as is done by most existing parallel workload models (e.g. [6,15, 20, 4]).
The rationale of this claim is that the repetitive nature of the sequence within
the session may have a decisive effect on performance results.

5 A remarkable example stressing the importance of this phenomenon was recently
published [26]: changing a runtime of only one job (within a log that spans two
years) by a mere 30 seconds, resulted in a change of 8% in the average bounded
slowdown of all the jobs; the reason was traced to be a certain user-session and its
interaction with the scheduler.

Modeling User Runtime Estimates 31

10° — -
[N T S e, St et e ek T P === T T
IC (D o o e f 0 || ——] T
? ‘ 1 AN 1 S | 1 s |
> 10
0 100 200 300 400 500 600 700 800
) 5
g g r—— B i ="
2§ RS - AT
£ 5 4ot B
- 0 200 400 600 800 1000 1200
@ 10°
rcY S -
g - T g sttt ittt it <t elsisstasioa ielalvte otiele lulsileiae Vot
> 10
0 100 200 300 400 500 600
estimate -------
runtime job of user

Fig.17. Runtime and estimate of all the jobs submitted by three arbitrary users from
the SDSC trace shows remarkable repetitiveness

Since users tend to submit bursts of jobs having the same estimate value
(Fig. 17), the end result is somewhat similar to that of the existence of esti-
mates modes, but in a more “temporal sense”: At any time instance, jobs within
the wait-queue tend to look the same to the scheduler, as jobs belonging to the
same session usually share the same estimate value. Consequently, the scheduler
has less flexibility in making backfilling decision and the performance is nega-
tively effected. Our shfl algorithm, along with all the rest of the models, do not
entail the concept of sessions and therefore result in superior performance in
comparison to the original.

Accordingly, our future work includes developing an assignment mechanism
that is session aware. This can be obtained if the procedure that pairs runtimes
and estimates gets additional information associating jobs with users. User-based
modeling [24] can supply this data.

12 Conclusions and Future Work

User runtime estimates significantly effect the performance of parallel systems
[21,1,8]. As part of the effort to allow realistic and trustworthy performance
analysis of such systems, there is a need for an estimates model that successfully
captures their main characteristics.

A number of models have been suggested, but these are all lacking in some
respect. Their shortcoming include implicitly revealing too much information
about real runtimes, erroneously emulating the accuracy ratio of runtime to
estimate, neglecting to take into consideration the fact that all production in-
stallations have a limit on the maximal allowed estimate, and that this value
is always one of the more popular estimates. Importantly, two key ingredients
are missing from existing models: the inherently modal nature of the estimates
caused by users’ tendency to supply “round” values [21,2,17], and the tempo-
ral repetitive nature of user estimates, assigning the same value to bursts of

32 D. Tsafrir, Y. Etsion, and D.G. Feitelson

jobs (sessions) [26,28]. These have decisive effect on performance results, as low
estimate-variance of waiting jobs reduces the effectiveness of backfilling.

Consequently, the outcome of using any of the existing models are simulation
results that are unrealistically better than those obtained with real estimates.
Thus, it is erroneous to use these models, and in particular, the popular “f-
model” in which each job’s estimate is randomly chosen from [R,(f + 1)R],
where R is the job’s runtime and f is some positive constant.

Variants of the f-model are often used to investigate the impact of the in-
herent inaccuracy of user estimates, or to artificially generate estimates when
those are missing from existing workloads (trace files, models) that are used
to drive simulations [11,29, 21, 1, 13]. When conducting performance evaluation,
the common (false) justification for using the f-model is that “overestimation
commonly occurs in practice and is beneficial for overall system performance”
[13]. Indeed, overestimation is common. But the improved performance is sim-
ply an undesirable byproduct of the artificial manner in which overestimation is
obtained; real user overestimation actually degrades performance significantly.
In fact, using exact runtimes as estimates is actually more realistic than utilizing
the f-model! While both approaches usually yield unrealistically improved per-
formance (in comparison to those obtained with real estimates), perfect accuracy
is almost always closer to the truth.

In this paper we produce a model that targets estimates modality. We view
the estimates distribution as a sequence of modes, and investigate their main
characteristics. Our findings include the invariant that 20 “head” estimates are
used by about 90% of the jobs throughout the entire log. The popularity of
head estimates (percentage of jobs using them) decreases exponentially, whereas
the tail obeys a power-law. The few hundred values that are used as estimates,
are well-fitted by a fractional model, while at the same time, 15 out of the 20
head estimates are identical across all the production logs we have examined.
The major difficulty faced by this paper was determining how popular is each
head estimate (how many jobs are associated with each). This was solved by
the “pool algorithm”, aimed to capture similarities between profiles of head-
estimates within the analyzed production logs.

We found that all modeled aspects of the estimates distribution are almost
identical across the logs, and therefore our model defines only two mandatory
parameters: the number of jobs and the maximal allowed estimate (1,4,). While
considerable variance does in fact exist, it is mostly encapsulated within the
percentage of jobs estimated to run for T),4,. The remaining variance (if any)
is attributed to another 1-2 very popular modes that sometimes exist, but are
unique to individual logs. When provided this additional information, our model
produces distributions that are remarkably similar to that of the original.

When put to use in simulation (by replacing real estimates with artificial
ones), our model consistently yields performance results that are closer to the
original than those obtained by other models. In fact, these results are almost
identical to when real estimates are used and are randomly shuffled between jobs.
This suggests that the temporal repetitiveness of per-user estimates may be the

Modeling User Runtime Estimates 33

final obstacle separating us from achieving truly realistic results. Consequently,
our future work includes developing an improved assignment scheme of estimates
to jobs that will preserve this feature.

Our estimates model is available to download from the parallel workload
archive [9]. Its interface contains two functions: generating the distribution
modes, and assigning estimates to jobs. The latter is essentially random shuf-
fling of estimates between jobs, under the constraint that runtimes are smaller
than estimates. Our future work includes refining this function such that the
user-session quality takes effect.

Acknowledgment. This research was supported in part by the Israel Science
Foundation (grant no. 167/03).

References

1. S-H. Chiang, A. Arpaci-Dusseau, and M. K. Vernon, “The impact of more ac-
curate requested runtimes on production job scheduling performance”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn (eds.), pp. 103-127, Springer Verlag, 2002. Lect. Notes Com-
put. Sci. vol. 2537.

2. S-H. Chiang and M. K. Vernon, “Characteristics of a large shared memory produc-
tion workload”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson
and L. Rudolph (eds.), pp. 159-187, Springer Verlag, 2001. Lect. Notes Comput.
Sci. vol. 2221.

3. W. Cirne and F. Berman, “A comprehensive model of the supercomputer work-
load”. In 4th Workshop on Workload Characterization, Dec 2001.

4. W. Cirne and F. Berman, “A model for moldable supercomputer jobs”. In 15th
Intl. Parallel € Distributed Processing Symp., Apr 2001.

5. M. E. Crovella, “Performance evaluation with heavy tailed distributions”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp- 1-10, Springer Verlag, 2001. Lect. Notes Comput. Sci. vol. 2221.

6. A. B. Downey, “A parallel workload model and its implications for processor allo-
cation”. In 6th Intl. Symp. High Performance Distributed Comput., pp. 112-124,
Aug 1997.

7. Y. Etsion and D. Tsafrir, A Short Survey of Commercial Cluster Batch Schedulers.
Technical Report 2005-13, Hebrew University, May 2005.

8. D. G. Feitelson, “Experimental analysis of the root causes of performance evalu-
ation results: a backfilling case study”. IEEFE Trans. Parallel & Distributed Syst.
16(2), pp. 175-182, Feb 2005.

9. D. G. Feitelson, “Parallel workloads archive”. URL http://www.cs. huji.ac.il /labs
/parallel/workload.

10. D. G. Feitelson and M. A. Jette, “Improved utilization and responsiveness with
gang scheduling”. In Job Scheduling Strategies for Parallel Processing, D. G. Fei-
telson and L. Rudolph (eds.), pp. 238-261, Springer Verlag, 1997. Lect. Notes
Comput. Sci. vol. 1291.

34

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

D. Tsafrir, Y. Etsion, and D.G. Feitelson

D. G. Feitelson and A. Mu’alem Weil, “Utilization and predictability in scheduling
the IBM SP2 with backfilling”. In 12th Intl. Parallel Processing Symp., pp. 542—
546, Apr 1998.

D. G. Feitelson and B. Nitzberg, “Job characteristics of a production parallel sci-
entific workload on the NASA Ames iPSC/860”. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 337-360, Springer-
Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

E. Frachtenberg, D. G. Feitelson, J. Fernandez, and F. Petrini, “Parallel job
scheduling under dynamic workloads”. In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.), pp. 208-
227, Springer Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

R. Gibbons, “A historical application profiler for use by parallel schedulers”. In
Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 5877, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

J. Jann, P. Pattnaik, H. Franke, F. Wang, J. Skovira, and J. Riodan, “Model-
ing of workload in MPPs”. In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), pp. 95-116, Springer Verlag, 1997. Lect.
Notes Comput. Sci. vol. 1291.

P. J. Keleher, D. Zotkin, and D. Perkovic, “Attacking the bottlenecks of backfilling
schedulers”. Cluster Comput. 3(4), pp. 255-263, 2000.

C. B. Lee, Y. Schwartzman, J. Hardy, and A. Snavely, “Are user runtime esti-
mates inherently inaccurate?”. In Job Scheduling Strategies for Parallel Process-
ing, D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn (eds.), Springer Verlag,
Jun 2004. Lect. Notes Comput. Sci. vol. 3277.

H. Li, D. Groep, and J. T. L. Wolters, “Predicting job start times on clusters”. In
International Symposium on Cluster Computing and the Grid (CCGrid), 2004.

D. Lifka, “The ANL/IBM SP scheduling system”. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 295-303, Springer-
Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers: mod-
eling the characteristics of rigid jobs”. J. Parallel & Distributed Comput. 63(11),
pp. 1105-1122, Nov 2003.

A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads, and
user runtime estimates in scheduling the IBM SP2 with backfilling”. IEEE Trans.
Parallel & Distributed Syst. 12(6), pp. 529-543, Jun 2001.

D. Perkovic and P. J. Keleher, “Randomization, speculation, and adaptation in
batch schedulers”. In Supercomputing, p. 7, Sep 2000.

W. Smith, I. Foster, and V. Taylor, “Predicting application run times using histor-
ical information”. In Job Scheduling Strategies for Parallel Processing, D. G. Fei-
telson and L. Rudolph (eds.), pp. 122-142, Springer Verlag, 1998. Lect. Notes
Comput. Sci. vol. 1459.

D. Talby, User Modeling of Parallel Workloads. PhD thesis, The Hebrew University
of Jerusalem, Israel, 2007 In preparation.

D. Tsafrir, Y. Etsion, and D. G. Feitelson, Backfilling Using Runtime Predic-
tions Rather Than User Estimates. Technical Report 2005-5, Hebrew University,
Feb 2005.

D. Tsafrir and D. G. Feitelson, Workload Flurries. Technical Report 2003-85,
Hebrew University, Nov 2003.

Modeling User Runtime Estimates 35

27. Y. Zhang, H. Franke, J. E. Moreira, and A. Sivasubramaniam, “An integrated

28.

29.

approach to parallel scheduling using gang-scheduling, backfilling, and migration”.
In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 133-158, Springer Verlag, 2001. Lect. Notes Comput. Sci. vol. 2221.

J. Zilber, O. Amit, and D. Talby, “What is worth learning from parallel workloads?
A user and session based analysis”. In Intl. Conf. Supercomputing, Jun 2005.

D. Zotkin and P. J. Keleher, “Job-length estimation and performance in backfilling
schedulers”. In 8th Intl. Symp. High Performance Distributed Comput., Aug 1999.

Workload Analysis of a Cluster in a Grid
Environment

Emmanuel Medernach

Laboratoire de Physique Corpusculaire, CNRS-IN2P3
Campus des Cézeaux,
63177 Aubiere Cedex, France
medernac@clermont.in2p3.fr

Abstract. With Grids, we are able to share computing resources and
to provide for scientific communities a global transparent access to local
facilities. In such an environment the problems of fair resource sharing
and best usage arise. In this paper, the analysis of the LPC cluster usage
(Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France) in
the EGEE Grid environment is done, and from the results a model for
job arrival is proposed.

1 Introduction

Analysis of a cluster workload is essential to understand better user behavior
and how resources are used [1]. We are interested to model and simulate the
usage of a Grid cluster node in order to compare different scheduling policies
and to find the best suited one for our needs.

The Grid gives new ways to share resources between sites, both as computing
and storage resources. Grid defines a global architecture for distributed schedul-
ing and resource management [2] that enable resources scaling. We would like
to understand better such a system so that a model can be defined. With such a
model, simulation may be done and a quality of service and fairness could then
be proposed to the different users and groups.

Briefly, we have some groups of users that each submit jobs to a group of
clusters. These jobs are placed inside a waiting queue on some clusters before
being scheduled and then processed. Each group of users have their own need
and their own strategy to job submittal. We wish:

1. to have good metrics that describes the group and user usage of the site.

2. to model the global behavior (average job waiting time, average waiting
queue length, system utilization, etc.) in order to know what is the influence
of each parameter and to avoid site saturation.

3. to simulate jobs arrivals and characteristics to test and compare different
scheduling strategies. The goal is to maximize system utilization and to
provide fairness between site users to avoid job starvation.

As parallel scheduling for p machines is a hard problem [3] [4], heuristics are
used [5]. Moreover we have no exact value about the duration of jobs, making

D. Feitelson et al. (Eds.): JSSPP 2005, LNCS 3834, pp. 36-61, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Workload Analysis of a Cluster in a Grid Environment 37

the problem difficult. We need a good model to be able to compare different
scheduling strategies. We believe that being able to characterize users and groups
behavior we could better design scheduling strategies that promote fairness and
maintain a good throughput. From this paper some metrics are revealed, from
the job submittal protocol a detailed arrival model for single user and group is
proposed and scheduling problems are discussed. We then suggest a new design
based on our observation and show relationship between fairness issue and system
utilization as a flow problem.

Our cluster usage in the EGEE (Enabling Grids for E-science in Europe) Grid
is presented in section 2, the Grid middleware used is described. Corresponding
scheduling scheme is shown in section 3. Then the workload of the LPC (Labo-
ratoire de Physique Corpusculaire) computing resource, is presented (section 4)
and the logs are analyzed statistically. A model is then proposed in section 5
that describes the job arrival rate to this cluster. Simulation and validation are
done in section 6 with comparison with related works in section 7. Results are
discussed in section 8. Section 9 concludes this paper.

2 Environment

2.1 Local Situation

The EGEE node at LPC Clermont-Ferrand is a Linux cluster made of 70 dual 3.0
GHz CPUs with 1 GB of RAM and managed by two servers with the LCG (LHC
Computing Grid Project) middleware. Each server has the same queues with the
same configuration, but different machines behind. One server has more machine
behind it, because the other one runs other grid services. Users could run their
jobs by sending them to the two servers transparently. The two servers are not
coordinated. We are currently using MAUI as our cluster scheduler [6] [7]. It is
shared with the regional Grid INSTRUIRE (http://www.instruire.org). Our
LPC Cluster role in EGEE is to be used mostly by Biomedical users® located in
Europe and by High Energy Physics Communities. Biomedical research is one
core application of the EGEE project. The approach is to apply the computing
methods and tools developed in high energy physics for biomedical applications.
Our team has been involved in international research group focused on deploying
biomedical applications in a Grid environment.

GATE is one pilot application. It is based on the Monte Carlo GEANT4 [g]
toolkit developed by the high energy physics community. Radiotherapy and
brachytherapy use ionizing radiations to treat cancer. Before each treatment,
physicians and physicists plan the treatment using analytical treatment planning
systems and medical images data of the tumor. By using the Grid environment
provided by the EGEE project, we will be able to reduce the computing time of
Monte Carlo simulations in order to provide a reasonable time consuming tool
for specific cancer treatment requiring Monte-Carlo accuracy.

L Our cluster represented 75% of all the Biomed Virtual Organization (VO) jobs in
2004.

38 E. Medernach

Another group is Dteam, this group is partly responsible of sending tests and
monitoring jobs to our site. Total CPU time used by this group is small relatively
to the other one, but the jobs sent are important for the site monitoring. There
are also groups using the cluster from the LHC experiments at CERN (http:
//www.cern.ch). There are different kind of jobs for a given group. For example,
Data Analysis requires a lot of I/O whereas Monte-Carlo Simulation needs few

1/0.

2.2 EGEE Grid Technology

In Grid world, resources are controlled by their owners. For instance different
kind of scheduling policies could be used for each site. A Grid resource center
provides to the Grid computing and/or storage resources and also services that
allow jobs to be submitted by guests users, security services, monitoring tools,
storage facility and software management. The main issue of submitting a job to
a remote site is to provide some warranty of security and correct execution. In
fact the middleware automatically resubmits job when there is a problem with
one site. Security and authentication are also provided as Grid services.

The Grid principle is to allow user a worldwide transparent access to com-
puting and storage resources. In the case of EGEE, this access is aimed to be
transparent by using LCG middleware built on top of the Globus Toolkit [9].
Middleware acts as a layer of software that provides homogeneous access to
different Grid resource centers.

2.3 LCG Middleware

LCG is organized into Virtual Organizations (VOs): dynamic collections of in-
dividuals and institutions sharing resources in a flexible, secure and coordinated
manner. Resource sharing is facilitated and controlled by a set of services that
allow resources to be discovered, accessed, allocated, monitored and accounted
for, regardless of their physical location. Since these services provide a layer
between physical resources and applications, they are often referred to as Grid
Middleware [10].

Bag of task applications are parallel applications composed of independent
jobs. No communications are required between running jobs. Since jobs from
a same task may execute on different sites communications between jobs are
avoided. In this context, users submit their jobs to the Grid one by one through
the middleware. Our cluster receives jobs only from the EGEE Grid, users could
access it only by the LCG Middleware. Our current LCG Grid middleware forces
users to divide their computations in jobs units composed of individual processes
(with one CPU only), and submits them as such. This means that each job
requests for one and only one processor. In our case we have dual processors
machines, we allow 2 jobs per machines, one for each CPU on it. Users could
directly specify the execution site or let a Grid service choose the best destination
for them. Users give only a rough estimation of the maximum job running time,

Workload Analysis of a Cluster in a Grid Environment 39

mainly a wall clock time. In general this estimated time is overestimated and
very imprecise [11]. Instead of speaking about an estimated time, it could be
better to speak about an upper bound for job duration, so this value provided
by users is more a precision value. The bigger the value is the more imprecise
the value of the actual runtime could be.

Figure 1 shows the scenario of a job submittal. In this figure rounded boxes
are grid services and ellipses are the different jobs states. As there is no com-
munications between jobs, jobs could run independently on multiple clusters.
Instead of communicating between job execution, jobs write output files to some
Storage Elements (SE) of the Grid. Small output files could also be sent to
the UL Replica Location Service (RLS) is a Grid service that allow location of
replicated data. Other jobs may read and work on the data generated, forming
“pipelines” of jobs.

The users Grid entry point is called an User Interface (UI). This is the gateway
to Grid services. From this machine, users are given the capability to submit jobs
to the Grid and to follow their jobs status [12].

When they submit a job they usually don’t specify where it will run, they even
don’t know about the queues where the job can run at the time of job submittal.
In fact they could know about it by asking to the Information System of sites
but they usually don’t because the Resource Broker (RB) does that for them.
When an user submits a job he submits it with a corresponding file describing
the jobs attributes and requirements, that file is called a JDL file. In that file
one could define the job runtime estimate but this is not mandatory.

A Computing Element (CE) is composed of Grid queues. A Computing Ele-
ment is built on a homogeneous farm of computing nodes called Worker Nodes
(WN) and on a node called a GateKeeper acting as a security front-end to
the rest of the Grid. The RB submits the job to the best queue found and
translates the JDL to talk to the Job Submission Service located on the site
GateKeeper.

Users can query the Information System in order to know both the state
of different grid nodes and where their jobs are able to run depending on job
requirements. This match-making process has been packaged as a Grid service
known as the Resource Broker (RB). Users could either submit their jobs directly
to different sites or to a central Resource Broker which then dispatches their jobs
to matching sites.

The services of the Workload Management System (WMS) are responsible for
the acceptance of job submits and the dispatching of these jobs to the appropriate
CEs, depending on job requirements and on available resources. The Resource
Broker is the machine where the WMS services run, there is at least one RB
for each VO. The duty of the RB is to find the best resource matching the
requirements of a job (match-making process). Load balancing is done in EGEE
globally with the use of the Resource Broker: User could specify a Rank formula
in order to sort all the CE and to choose the best one. Different choosing strategy
may be used: ”Choose the site with the biggest number of free CPUs”, ” Choose

40 E. Medernach

Vis on

[User Interface (UI)]

Account

Aathenticat
Proxy ‘ Job submittal Resource Broker (RB)
Job description file

User Interface (U) \ Input Sandbox

Resource Broker (RB) \ Wrapper script
‘ Input Sandbox
\ Output Sandbox

Fig. 1. Job submittal scenario

VOOV OV VN NS

II Worker Nodes (WNs)

the site randomly”, ” Choose the site with the least mean waiting time”, ” Choose
the site with the least number of waiting jobs”, etc. (For more details read [13])

Users are then mapped to a local account on the chosen executing CE. When
a CE receives a job, it enqueues it inside an appropriate batch queue, chosen
depending on the job requirements, for instance depending on the maximum
running time. A scheduler then proceeds all these queues to decide the execution
of jobs. Users could question about status of their jobs during all the job lifetime.

3 Scheduling Scheme

The goal of the scheduler is first to enable execution of jobs, to maximize job
throughput and to maintain a good equilibrium between users in their usage of
the cluster [14]. At the same time scheduler has to avoid starvation, that is jobs,
users or groups that access scarcely to available cluster resources compared to
others.

Scheduling is done on-line, i.e the scheduler has no knowledge about all the
job input requests but jobs are submitted to the cluster at arbitrary time. No
preemption is done, the cluster uses a space-slicing mode for jobs: one job gets a
dedicated CPU for its use and the batch system manage to kill job which exceeds
their time limits. We have dual processors, we allow 2 jobs per machines, one

Workload Analysis of a Cluster in a Grid Environment 41

for each CPU on it. In a Grid environment long-time running jobs are common.
The worst case is when the cluster is full of jobs running for days and at the
same time receiving jobs blocked in the waiting queue.

Short jobs like monitoring jobs barely delay too much longer jobs. For ex-
ample, a 1 day job could wait 15 minutes before starting, but it is unwise if a
5 minutes job has to wait the same 15 minutes. This results in production of
algorithms classes that encourage the start of short jobs over longer jobs. (Short
jobs have higher priority [15]) Some other solution proposed is to split the cluster
in static sub-clusters but this is not compatible with a sharing vision like Grids.
Ideal on-line scheduler will maximize cluster usage and fairness between groups
and users. Of course a good trade-off has to be found between the two.

3.1 Local Situation

First our scheduling scheme is not LPC specific. It is common for most of the 150
sites part of the EGEE Grid because of the underlying middleware architecture
constraints. They mostly differ from us only by the priorities granted to the
different types of jobs, groups or users.

We are using two servers to manage our 140 CPUs, on each machine there
are 5 queues where each group could send their jobs to. Each queue has its own
limit in maximum CPU Time. A job in a given queue is killed if it exceeds its
queue time limit. There are in fact two limits, one is the maximum CPU time,
the other one is the maximum total time (or Wall time) a job could use. For each
queue there is also a limit in the number of jobs than can run at a given time.
This is done in order to avoid that the cluster is full with long running jobs and
short jobs cannot run before days. Likely there is the same limit in number of
running jobs for a given group.

Table 1. Queue configuration (maximum CPU time, Wall time, running jobs and
priority)

Queue Max CPU Max Wall Max Jobs Priority
(H:M) (H:M)

Test 00:05 00:15 130 1,000,000
Short 00:20 01:30 130 270,000
Long 08:00 24:00 130 10,000
Day 24:00 36:00 130 0
Infinite 48:00 72:00 130 -360,000

Maui Scheduler and the Portable Batch System (PBS) run on multiple hard-
ware and operating systems. MAUI [7] is a scheduling policy engine that is used
together with the PBS batch system. PBS manages the job reception in queues
and execution on cluster nodes. MAUI is a priority based scheduler but it is un-
fortunately not event driven, it polls regularly the PBS queues to decide which
jobs to run. MAUI allows to add a priority property for each queue. Our site

42 E. Medernach

configuration is that the shorter the queue allows jobs to run, the more priority is
given to that job. MAUI sees all queues as only one queue with priorities. Jobs
are then selected to run depending on a priority based on the job attributes
such as owner, group, queue, waiting time, etc. If a job violates a site policy
it is placed temporary in a blocked state and temporarily not considered for
scheduling. To avoid starvation, jobs get a priority bonus proportionnaly with
their waiting time. The waiting time bonus is 10 for each waiting seconds. This
allow old waiting jobs to jump to the top of the queue.

4 Workload Data Analysis

Workload analysis allows to obtain a model of the user behavior [16]. Such a
model is essential for understanding how the different parameters change the
resource center usage. Meta-computing workload [17] like Grid environments is
composed of different site workloads. We are interested in modelling workload of
our site which is part of the EGEE computational Grid. Our site receives only
jobs coming from the EGEE Grid and each requests for only one CPU.

Traces of users activities are obtained from accountings on the server logs.
Logs contain information about users, resources used, jobs arrival time and jobs
completion time. It is possible to use directly these traces to obtain a static simu-
lation or to use a dynamic model instead. Workload models are more flexible than
logs, because they allow to generate traces with different parameters and better
understand workload properties [1]. Workload analysis allows to obtain a model
of users activity. Such a model is essential for understanding how the different
parameters change the resource center usage. Our workload data has been con-
verted to the Standard Workload Format (http://www.cs.huji.ac.il/labs
/parallel/workload/) and made publicly available for further researches. A
more detailed description of the scheduling scheme is available at the same place.

14000

Biomed jobs —— Dteam jobs
10000

12000

8000

10000

6000

Number of jobs
]
Number of jobs

4000 F

| 2000

alll}

o 0
01Aug 01Sep 010ct 01Nov 01Dec 01Jan O01Feb O1Mar 01Apr 01May 01Aug 01Sep 010ct 01Nov 01Dec 01Jan 01Feb 01Mar 01Apr 01May
Date Date

(a) Number of Biomed jobs received per (b) Number of Dteam jobs received per
weeks (from August 2004 to May 2005) weeks (from August 2004 to May 2005)

Fig. 2. Number of jobs received per VO and per week from August 2004 to May 2005

Workload Analysis of a Cluster in a Grid Environment 43

WA
mrA v

) Site utilization —— A
. \ I
“ j \ M (\
20 \/\{ [\/\ / \/ x oot / \ ’I{

LRI vy Y

0 05
01Aug 01Sep 010ct 01Nov 01Dec 0fJan 01Feb 01Mar 01Apr 01 May 01Aug 01Sep 01 0ct 01 Nov 01 Dec 01Jan 01Feb01Mar 01 Apr 01 May
Date Date

X

s
X

System utilization (%)
CPU Time (Days)
°

-

(a) System utilization per weeks (from (b) CPU consumed by Biomed and
August 2004 to May 2005) Dteam jobs per weeks (from August 2004
to May 2005)

Fig. 3. Cluster utilization as CPU consumed per VO and per week from August 2004
to May 2005

Workload is from August 1st 2004 to May 15th 2005. We moved to a cluster
containing 140 CPUs since September 15th. This can be visible in the Fig. 2,
3(a) and 3(b), where we notice that the number of jobs sent increases. Statistics
are obtained from the PBS log files. PBS log files are well structured for data
analysis. An AWK script is used to extract information from PBS log files. AWK
acts on lines matched by regular expressions. We do not have information about
users Login time because users send jobs to our cluster from an User Interface
(UI) of the EGEE Grid and not directly. There is no indication of which job is
part of the same job and whether it has other parts on other machines from the
site log files.

4.1 Running Time

During 280 days, our site received 230474 jobs from which 94474 Dteam jobs and
108197 Biomed jobs (table 2). For all these jobs there are 23208 jobs that failed
and were dequeued. It appears that jobs are submitted irregularly and by bursts,
that is lot of jobs submitted in a short period of time followed by a period of
relative inactivity. From the logs, there are not much differences between CPU
time and total time, so jobs sent to our cluster are really CPU intensive jobs
and not I/O intensive. I/O is very important for us because there is a lot of file
transfert before a job running on a node, they fetch their files from some Storage
Element (SE) if needed before execution. We have pipelines of jobs, fetching and
writing their data to SEs. Knowing that it does not take much time compared
to the whole execution time is important.

Dteam jobs are mainly short monitoring jobs but all Dteam jobs are not regu-
larly sent jobs. We have 6784.6 days CPU time consumed by Biomed for 108197
jobs (Mean of one hour and half per jobs, table 2). Repartition of cumulative
job duration distributions for Biomed VO is shown on Fig. 4. The duration of
about 70% of Biomed jobs are less than 15 minutes and 50% under 10 seconds,

44 E. Medernach

Table 2. Group running time in seconds, Total number of jobs submitted. Group
mean waiting time in seconds, corresponding Standard Deviation and Coefficient of

Variation.
Group Number Mean Standard Mean Standard CV
of jobs Runtime (s) Deviation Waiting time (s) Deviation
Biomed 108197 5417 22942.2 781.5 16398.8 20.9
Dteam 94474 222 3673.6 1424.1 26104.5 18.3
LHCb 9709 2072 7783.4 217.7 2000.7 9.1
Atlas 7979 13071 28788.8 2332.8 13052.1 5.5
Dzero 1332 213 393.9 90.7 546.3 6.0

there are a dominant number of small running jobs but the distribution is very
wide as shown by the high standard deviation compared to the mean in table 2.

Users submit their jobs with an estimated run length. For relationships be-
tween execution time and requested job duration and its accuracy see [18]. To
sum up estimated jobs duration are essentially inaccurate. It is in fact an upper
bound for job duration which could in reality take any value below it. Table 3
shows for each queue the mean running time, its standard deviation and coef-
ficient of variation (CV) which is the ratio between standard deviation and the
mean. CV decreases as the queue maximum runtime increase. This means that
jobs in shorter queues vary a lot in their duration compared to longer jobs and
we can expect that more the upper bound given is high the more confidence in
using the queue mean runtime as a an estimation we could have.

1 AR T U T 1 T T
— Dieam Job duration + Biomed Job duration’ +
09 ya 09 /’M
4 Vel
08 08
0.7 f 0.7 M
o o
8 os 8 os f/""'
2 o0s 2 o0s
S ll S
8 os 8 os
i r w ll
03 .= 03 1
02 I | 02 i !
01 o1
0 0
10 sec 1 min 5min 15 min 1h 8h 24h 48h 10 sec 1 min 5min 15 min 1h 8h 24h 48h
Duration (hours) Duration (hours)
(a) Dteam job runtime (b) Biomed job runtime

Fig. 4. Dteam and Biomed job runtime distributions (logscale on time axis)

A commonly used method for modelling duration distribution is to use log-
uniform distribution. Figures 4(a) and 4(b) show the fraction of Dteam and
Biomed jobs with duration less than some value. Job duration has been modelled
with a multi-stage log-uniform model in [19] which is piecewise linear in log space.
In this case Dteam and Biomed job duration could be approximated respectively
with a 3 and a 6 stages log-uniform distribution.

Workload Analysis of a Cluster in a Grid Environment 45

Table 3. Queue number of job, mean running time in seconds, corresponding Stan-
dard Deviation and Coefficient of Variation, Queue mean waiting time in seconds,
corresponding Standard Deviation, Coefficient of Variation

Queue Number Mean Standard CV Mean Standard CV
of jobs Running time (s) Deviation Waiting time (s) Deviation
Test 45760 31.0 373.6 12.0 33335.9 148326.4 4.4
Short 81963 149.5 1230.5 8.2 1249.7 27621.8 22.1
Long 32879 2943.2 11881.2 4.0 535.1 5338.8 9.9
Day 19275 6634.8 25489.2 3.8 466.8 8170.7 17.5
Infinite 49060 10062.2 30824.5 3.0 1753.9 24439.8 13.9

4.2 Waiting Time

Table 2 shows that jobs coming from the Dteam group are the more unfairly
treaten. Dteam group sends short jobs very often, Dteam jobs are then all placed
in queue waiting that long jobs from other groups finished. Dzero group sends
short jobs more rarely and is also less penalized than Dteam because there are
less Dzero jobs that are waiting together in queue before being treated. The
best treated group is LHCb with not very long running jobs (average of about
34 minutes) and one job about every 41 minutes. The best behavior to reduce
waiting time per jobs seems to send jobs that are not too short compared to
the waiting factor, and send not too very often in order to avoid that they all
wait together inside a queue. Very long jobs is not a good behavior too as the
scheduler delay them to run shorter one if possible.

Table 3 shows the mean waiting time per jobs on a given queue. There is a
problem with such a metric, for example: Consider one job arriving on a cluster
with only one free CPU, it will run on it during a time 7' with no waiting time.
Consider now that this job is splitted in N shorter jobs (numbered 0...N — 1)
with equal total duration T'. Then the waiting time for the job number ¢ will be
iT/N, and the total waiting time (N — 1)T'/2. So the more a job is splitted the
more it will wait in total. Another metric that does not depend on the number
of jobs is the total waiting time divided by the number of jobs and by the total
job duration. Let note WT this normalized waiting time, We obtain:

TotalWaitingTime MeanW aitingT'ime

WT = = .
w NJobs x Total Duration N Jobs * MeanDuration

(1)

With this metric, the Test queue is still the most unfairly treated and the
Infinite queue has the more benefits compared to the other queues. Dteam group
is again bad treated because their jobs are mainly sent to the Test queue. The
more unfairly treated group is Dzero.

These results demonstrate that despite the fact that the middleware advises
to set priorities to queues as a workaround, it does not prevent the fact that
shorter jobs are unfairly treaten because there is no kind of preemption done.
If the site is full with long jobs, job on the top of the waiting queue still has to
wait until the first job finished before starting whatever priorities are in effect.

46 E. Medernach
Table 4. Queue and Group normalized waiting time

Queue wT Group WT

Test 2.35e-2 Biomed 1.58¢e-5
Short 1.02e-4 Dteam 6.79e-5
Long 5.53e-6 LHCb 1.08e-5
Day 3.65e-6 Atlas 2.23e-5
Infinite 3.55e-6 Dzero 31.9e-5

The intuition behind this measure is that the correct metric in a Grid en-
vironment has to be an user-centric metric, for instance a computing flow rate
granted to that user as suggested below. What is really important for an user
is the quantity of computing power granted to him. Grids are a way to grant
computing power to different users, by having a way to control the part granted
to everyone we could propose real fairness as a Quality of Services in Grids. But
for the moment there is no warranty with the current middleware.

4.3 Arrival Time

Job arrival daily cycle is presented in Fig. 5. This figure shows the number of
arrival depending on job arrival hours, with a 10 minutes sampling. Clearly users
prefer to send their jobs at o’clock. In fact we receive regular monitoring jobs
from the VO Dteam. The monitoring jobs are submitted every hour from goc.
grid-support.ac.uk. Users are located in all Europe, so the effect of sending at
working hours is summed over all users timezones. However the shape is similar
compared to other daily cycle, during night (before 8am) less jobs are submitted
and there is an activity peak around midday, 2pm and 4pm.

4000

Job arrivals pér time of déy
3500 \
3000

2500 \L
2000 | h

:§ A \JI v’\ A ’\ i |
§ 1500 \ \ \ \ \Jl \V’\\I | RJ\/\V/ ’\ ’\
1000 AtAn
AR
B0 TN 2 5 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24

Hours

Fig. 5. Job arrival daily cycle

Workload Analysis of a Cluster in a Grid Environment 47

Table 5. Group interarrival time in seconds, corresponding Standard Deviation and
Coefficient of Variation

Group Mean Standard CV
(seconds) Deviation

Biomed 223.6 5194.5 23.22
Dteam 256.2 2385.4 9.31

LHCb 2474.6 39460.5 15.94
Atlas 2824.1 60789.4 21.52
Dzero 5018.7 50996.6 10.16

Table 5 shows the moments of interarrival time for each group. CV is much
higher than 1, this means that arrivals are not Poisson processes and are very
irregularly distributed. For instance we could receive 10 jobs in 10 minutes fol-
lowed by nothing during the 50 next minutes. In this case we have a mean
interarrival time of 6 minutes but in fact when jobs arrived they arrived every
minutes.

Figure 3(a) shows the system utilization of our cluster during each week.
There are a maximum of 980 CPU days consumed each week for 140 CPUs. We
have a highly varying cluster activity.

4.4 Frequency Analysis

Job arrival rate is a common measurement for a site usage in queuing theory.
Figures 6(a) and 6(b) present the job arrival rate distribution. It is the number
of time n jobs are submitted during interval length of 5 minutes. They show
that most of the time the cluster does not receive jobs but jobs arrived grouped.
Users actually submit groups of jobs and not stand-alone jobs. It is as a fact
very common that users send thousands of jobs at once in a Grid environment

; (Biomed) ——) T ies (Dteam)

Proportion
Proportion
]

0.001 [0.001 T

0.0001) 0.0001

151 .

5 10 15 2 25 30 3 40 0 5 10 15 20 25
Jobs sent per 5 minutes Jobs sent per 5 minutes

1e-05
[

(a) Biomed job arrival rate each 5 min- (b) Dteam job arrival rate each 5 min-
utes utes

Fig. 6. Arrival frequencies for Biomed and Dteam VOs (Proportion of occurrences of
n jobs received during an interval of 5 minutes)

48 E. Medernach

because they tend to see the Grid as providing infinite resources. It explains the
shape of the arrival rate: it fastly decreases but too slowly compared to a Poisson
distribution. Poisson distribution is usually used for modelling the arrival process
but evidences are against that fact [20].

Dteam monitoring jobs are short and regular jobs, there is no need of a special
arrival model for such jobs. What we observe for other kind of jobs is that the
job arrival law is not a Poisson Law (see table 5 where C'V > 1) as for instance
a web site traffic [21]. What really happens is that users come using the cluster
from an User Interface during some time interval. During this time they send
jobs to the cluster. Users log to an User Interface machine in order to send their
jobs to a RB that dispatch them to some CEs. Note that one can send jobs to
our cluster only from an User Interface, it means for instance that jobs running
on a cluster cannot send secondary jobs. On a computing site we do not have
this user login information, but only job arrival.

First we look at modelling user arrival and submission behavior. Secondly we
show that the model proposed shows good results for a group behavior.

5 Model

5.1 Login Model

In this section we begin to model user Login/Logout behavior from the Grid job
flow (Fig. 1). We neglect the case where an user has multiple login on different
Ul at the same time. We mean that a user is in the state Login if he is in the
state of sending jobs from an UI to our cluster, else he is in the state Logout.
Markov chains are like automatons with for each state a probability of tran-
sition. One property of Markov chains is that future states depend only on the
current state and not on the past history. So a Markov state must contains all
the information needed for future states. We decided to model the Login/Logout
behavior as a continuous Markov chain. During each dt, a Logout user has a
probability during dt of Adt to login and a Login user has a probability during

1-Adt 1-98 dt

ddt
Logout

A dt

Fig. 7. Login/Logout cycle

Workload Analysis of a Cluster in a Grid Environment 49

dt of 6dt to logout (see Fig. 7). A is called the Login rate and § is called the
Logout rate.

All these parameters could vary over time as we see with the variation of
the week job arrival (Fig. 3(a)) or during day time (Fig. 5) The Markov model
proposed could be used more accurately with non-constant parameters at the
expense of more calculation and more difficult fitting. For example, one could
numerically use Fourier series for the Login rate or for the submittal rate to
model this daily cycle. Another solution would be to take the parameters to
be constants during the time interval [h;h + t] for ¢ small enough and study
the frequencies with our model for that particular time interval. We use now
constant parameters for calculation, looking for general properties.

We would like to have the probabilities during time that the user is logged
or not logged. Let Progin (t) and Progout(t) be respectively probability that the
user is logged or not logged at time t. We have from the modelling:

Progout(t + dt) = (1 — Adt)Progout (t) + 6dtProgin () (2)
PrLogin(t + dt) = (1 — 6dt)Progin(t) + AdtPrLogout (t) (3)

At equilibrium we have no variation so

PLogout (t + dt) - PLogout (t) - PLogout (4)
PLogin(t + dt) = 7DLogin (t) = PLogin (5>
We obtain:
6 A
PLogout -)\+6 PLogin =)\+6 (6>

5.2 Job Submittal Model

During period when users are logged they could submit jobs. We model the job
submittal rate for one user as follows: During dt when the user is logged he has
a probability of pdt to submit a job. With § = 0 we have a delayed Poisson
process, with g = 0 no jobs are submitted. The full model is shown at Fig. 8,
it shows all the possible outcomes with corresponding probabilities from one of
the possible state to the next after a small period dt. Numbers inside circles are
the number of jobs submitted from the start. Login states are below and Logout
states are at the top. We have:

— Pn(t) is the probability to be in the state “User is not logged at time t and
n jobs have been submitted between time 0 and t.”

— Q,(t) is the probability to be in the state “User is logged at time t and n
jobs have been submitted between time 0 and t.”

— R, (t) is the probability to be in the state “n jobs have been submitted between
time 0 and t.” We have R,, = P, + On.

50 E. Medernach

1-A dt 1-A dt 1-A dt 1-A dt

Logout

1-@+p dt 1-@+p dt 1-@+p) dt 1-(3+p dt

Fig. 8. Markov modelling of jobs submittal

From the model, we obtain with the same method as before this recursive
differential equation:

M=(3 i) ™
(&) =(3) ®
(&) =#(&)* (uor-r) o

This results to the following recursive equation (in case the parameters are
constants, M is a constant)

<ZZ> = eMt/e—W (MQ?”) dz. (10)

We take a look at the probability of having no job arrival during an interval
of time ¢ which is Py and Qg. Ry is the the probability that no jobs have been
submitted between arbitrary time 0 and t. So from the above model, we have:

Po) _(-x 6 Po
= 11
<Qo> (A —(M+5)> <Q0> (11)
At arbitrary time we could be in the state Login with probability A\/(X + 6)

and in the state Logout with the probability §/(A+ ¢). We have from the results
above:

Workload Analysis of a Cluster in a Grid Environment 51

(&) = Gy =, 15 () 2
Ro = Po+ Qo (13)

Finally we obtain the result.

e—"ht _ e—mgt mle—mQt _ m2e—m1t
Ro(t) = mo (14)
mip — Mo mi —ma
Where
Ap
mo = A+ 6 = MPLogin 15

(15)

mi+mg=A+0+u (16)
mime = Al (17)
(18)

With A = 0 or p = 0, we obtain that no jobs are submitted (Ro(t) = 1). With
6 = 0, this is a Poisson process and Rq(t) = e~ #t. Note that during a period of
t there are in average pProgint jobs submitted, we have also for small period ¢,

Ro(t) ~1-— /JPLogmt. (19)

We have also
RE)(O) = 7/“"PLogin (20)
RY(0) = — Number of jobs submitted (21)

Total duration

Ro(t) could be estimated by splitting the arrival processes in intervals of
duration ¢ and estimating the ratio of intervals with no arrival. The error of this
estimation is linear with ¢. Another issue is that the logs precision is not below
one second.

5.3 Model Characteristics
We have also these interesting properties:

R”(O)
RO0) = ~1Progin L0\ = —p (22)
° " RY(0)

Probability distribution of the duration between two jobs arrival is called an
interarrival process. Interarrival process is a common metric in queuing theory.
We have A(t) = Py(t) + Qo(t) with the initial condition that user just submits
a job. This implies that user is logged.

Po(0) = 0.0, Qo(0) =1.0

52 E. Medernach

—mit _ ,—mat —mat __ —mat
Alt) = e e mie moe (23)
mip — Mo mi —ma
— Mo
p=" (24)
mi1 — mo
A(t) = pe™™" + (1 — p)e™™?* (25)

We have u € [m1; m2] because

(1 —ma)(p —ma) = p = (A + 6+ p)p+ dp
(1 —m1)(p—m2) = —b6p <0 (26)

So p € [0; 1], and we have an hyper-exponential interarrival law of order 2 with
parameters p = (u — ma)/(my1 — ma), m1, ma. This result is coherent with other
experimental fitting results [22] Moreover any hyper-exponential law of order 2
may be modelled with the Markov chain described in Fig. 8 with parameters
w=pmi+ (1 —p)ma, A\ =mima/pu, 6 =mi+mas—pu— A\

Let calculate the mean interarrival time. Probability to have an interarrival
time between 6 and 0 + df is A(0) — A(6 + df) = —A’(0)dl. The mean is

A= / —0A'(0)df = / A(6)db. (27)
0 0
~ 1 A+06
A = = . 28
/Uf’PLogin)\/l, ()

Let compute the variance of interarrival distribution.

var = / (0 — A4 (0)do (29
0
var = 2 / 0.A(0)do — A2 (30)
0
var 9 ou
o=z U (31)
OV2=1+2 P%Ogout‘g (32)

Another interesting property is the number of jobs submitted by this model
during a Login period. Let P, be the probability to receive n jobs during a Login
period. We have:

)" g st 6 K
P" frg H frd ".
/0 nl © be dt u+6(u+6) (33)

This is a geometric law. The mean number of jobs submitted by Login period
is pu/é.

Workload Analysis of a Cluster in a Grid Environment 53

5.4 Group Model

Groups are composed of users, either regular users sending jobs at regular time
or users with a Login/Logout like behavior. Metrics defined below as the mean
number of jobs sent by Login state, the mean submittal rate and probability of
Login could represent an user behavior.

Figure 9 shows the sorted distribution of users submittal rate (4Progin). Ex-
cept for the highest values it is quite a straight line in logspace. This observation
could be included in a group model.

0.0001

Job submittal rate —— /./
16-05 ’/

16-06
g

M/

1e-07 MM
e

16-08 /r'/

16-09
0

Job submittal rate (Jobs per seconds)

20 40 80 100 120

60
User rank

Fig. 9. Users job submittal rates during their period of activity

6 Simulation and Validation

We have done a simulation in Scheme [23] directly using the Markov model. We
began by fitting users behavior from the logs with our model. Like the frequency
obtained from the logs, the model shows a majority of intervals with no job
arrival, possibly followed by a relatively flat area and a fast decreases. Some
fitting results are presented in Fig. 6. Norm used to fit real data is the maximum
difference between the two cumulative distributions. We fitted the frequency
data for each user.

During a period of ¢ there are in average uProgint jobs submitted. We evaluate
the value of /Progin Which is the average number of jobs submitted by seconds.
We use that value when doing a set of simulation in order to fit a known real
user probability distribution. We have two free parameters, so we vary Progin
between 0.0 and 1.0 and lambda which the inverse is the average time an user
is Logout. Some results obtained are shown in Fig. 6.

1 parameter decides of the frequency length of the curve. Without the Login
behavior we would have obtained a classic Poisson curve of p parameter. 1/pu
is the mean interarrival time during Login period. An idea to evaluate p would
be to evaluate the job arrival rate during Login periods, but we lack that Login
information.

6 and A are the Logout and Login parameters. What is really important is
the ratio A/(A+8) which is Progin. This is the ratio between time user is active

54 E. Medernach

Biomed user ——)) Biomed user ——
imulation (Error = 4.929-3) —x— Simulation (Error = 3.5340-3) —x—
Poisson distrbution TG win 18 sama mas

01

Probability
Probability

0.001

TR
“w
X *.
0.0001

0 5 I 20 25 0 5 I 20 25

0.001

0.0001

Jobs sent per 5 minutes Jobs sent per 5 minutes
(a) Biomed user 1 (b) Biomed user 2
1 T T 1 T T
med user —— Biomed user' ——
Smu\alon (Error = 11073 2) —-xme \ S\mula(\on 1Error 8.78e2) —-x-—
0.1 0.1
> oo > oo
5 5
8 8
<} <}
o o001 T oo
0.0001 0.0001
1005 . . 1005 L1
) 5 I 20 25 3 5 10 15 20 25
Jobs sent per 5 minutes Jobs sent per 5 minutes
(c) Biomed user 3 (d) Biomed user 4
Name 0 6 A Error

Biomed user 1 0.0837 2.079¢e-2 2.1e-4 4.929e-3
Biomed user 2 0.0620 1.188e-2 1.2e-4 3.534e-3
Biomed user 3 0.0832 2.475e-2 2.5e-4 1.1078e-2
Biomed user 4 0.0365 1.428e-3 1.075e-4 8.78e-2

Fig. 10. Biomed simulation results

on the cluster and total time. § and Pr,gin are measures of the deviation from a
classic Poisson law. For instance, the mean number of jobs submitted by Login
period is p/é6 and the mean job submittal rate is pProgin. For a same Progin
we could have very different scenarios. A user could be active for long time but
rarely logged and another user could be active for short period with frequent
login. 1/6 is the mean Login time, 1/A is the mean Logout time.

The Ry probability is essential for studying job arrival time. 1 — R(¢) is the
probability that between time 0 and ¢ we have received at least one job. It is
easier to fit the Ro distribution for an user than the interarrival distribution
because we have more points. Figure 11(a) shows a typical graph of Ry for
a Biomed user. It shows for instance that for intervals of 10000 seconds, this
Biomed user has a probability of about 0.2 to submits one or more jobs. We
have fitted this probability with hyper-exponential curve, that is a summation
of exponential curves. There was too much noises for high interval time to fit
that curve. In fact errors on Rg are linear with ¢. So we have smoothed the curve

Workload Analysis of a Cluster in a Grid Environment 55

"Ro probamlmy mv Biomed user 6 at LPC cluster ! RO probabﬂmymr user’aal NASA Ames
r-exponential fiting (order 2) -~ Hyper-exponential fiting (order 2)
09
095
08
09 07
2 oss N E 06';
2 2 osf
g g n
£ 08 e T o4
0.75 03
02
e e e e St o N [N S S S it
0.1 o e L
065)
0 5000 10000 15000 20000 25000 30000 0 5000 10000 15000 20000 25000 30000
Interval length (seconds) Interval length (seconds)
(a) LPC cluster Biomed user (b) NASA Ames most active user
! " Ro probamwcorusens at DAS2 150 cluster ! RO probabm«ycoruseras at'SDSC Blue Harizon
r-exponential fitting (order 2) -----— Hyper-exponential fitting (order 2) ------
0.99 095
098
09
097
Z £ oss
5 5
g o E
D‘: D‘: 08
0.95
075 -
0.94 s
0.8 e T Q7 [E S
0.92 0.65
0 2000 4000 6000 8000 10000 12000 0 5000 10000 15000 20000 25000 30000
Interval length (seconds) Interval length (seconds)
(c) DAS2 fs0 cluster most active user (d) SDSC Blue Horizon most active
user

Fig. 11. Hyper-Exponential fitting of Ry for a Biomed LPC user and for the most
active users at NASA Ames, DAS2 and SDSC Blue Horizon clusters

before fitting by averaging near points. R¢ for this user was fitted with a sum
of two exponentials.

It seems that more than the Login/Logout behavior there is also a notion of
user activity. For example during the preparation of jobs or analysis phase of the
results an user does not use the Grid and consequently the cluster at all. More
than the Login and Logout state an Inactive state could be added to the model
if needed.

6.1 Other Workloads Comparison

User number 3 is the most active user from the NASA Ames iPSC/860 work-
load 2. Figure 11(b) shows its Ro(t) probability, it is clearly hyper-exponential

2 The workload log from the NASA Ames iPSC/860 was graciously provided by
Bill Nitzberg. The workload logs from DAS2 were graciously provided by Hui
Li, David Groep and Lex Wolters. The workload log from the SDSC Blue Hori-
zon was graciously provided by Travis Earheart and Nancy Wilkins-Diehr. All
are available at the Parallel Workload Archives http://www.cs.huji.ac.il/labs/
parallel/workload/.

56 E. Medernach

of order 2, as other users like number 22 and 23. Other users like number 12 and
15 are more classical Poissonian users.

DAS2 Clusters (see note 2) used also PBS and MAUI as their batch system
and scheduler. The main difference we have with them is that they use Globus
to co-allocate nodes on different clusters. We only have bag of tasks applications
which interacts together in a pipeline way by files stored on SEs. Their fsO 144
CPUs cluster is quite similar with ours. Figure 11(c) shows the R(¢) probability
for their most active user and corresponding hyper-exponential fitting or order 2.

SDSC Blue Horizon cluster (see note 2) have a total of 144 nodes. The
Ro(t) distribution probability of their most active user was fitted with a hyper-
exponential of order 2 in Fig. 11(d).

7 Related Works

Our Grid environment is very particular and different from common cluster
environment as parallelism involved requires no interaction between processes
and degree of parallelism is one for all jobs.

To be able to completely simulate the node usage we need not only the jobs
submittal process but also the job duration process. Our runtime model is similar
with the Downey model [19] for runtime which is composed of linear pieces in
logspace. There is a strong correlation between successive jobs running time but
it seems unlikely that a general model for duration may be made because it
depends highly on algorithms and data used by users.

Most other models use Poisson distribution for interarrival distribution. But
evidences, like CV be much higher than one, demonstrate that exponential
distributions does not fit well the real data [24][25]. The need of a detailed
model was expressed in [26]. With constant parameters our model exhibits a
hyper-exponential distribution for interarrival rate and justify such a distribu-
tion choice. One strong benefit of our model is that it is general and could be
used numerically with non-constant parameters at the expense of difficult fitting.

8 Discussion

What could be stated is that job maximum run times provided by users are essen-
tially inaccurate, some authors are even not using this information for schedul-
ing [2]. Maybe a better concept is the relative urgency of a job. For example on
a grid software managers are people responsible for installing software on cluster
nodes by sending installation jobs. Software manager jobs may be regarded as
more urgent than other jobs type. So sending jobs with an estimated runtime
could be replaced by sending jobs with an urgency parameter. That urgency
could be established in part as a site policy. Each site administrator could define
some users classes for different kind of jobs and software used with different jobs
priorities. For instance a site hosted in some laboratory might wish to promote
its scientific domain more than other domain, or some specific applications might
need quality of services like real time interaction.

Workload Analysis of a Cluster in a Grid Environment 57

Another idea for scheduling is to have some sort of risk assessment measured
during the scheduler decision. This risk assessment may be based on blocking
probabilities obtained either from the logs or from some user behavior models.
For example, it could be wise to forbid that a group or an user takes all the
cluster at a given time but instead to let some few percents of it open for short
jobs or low CPU consuming jobs like monitoring. Because users are inclined to
regard Grid as providing infinite resources they send thousands jobs at once.
The risks of having the cluster taken by few users during a long amount of time
is great, unfairly forcing other users/groups to wait.

Information System shows for a site the number of job currently running and
waiting. But it is not really the relevant metric in an on-line environment. A
better metric for a cluster is the computing flow rate input and the computing
flow rate capacity. A cluster is able to treat some amount of computation per
unit of time. So a cluster is contributing to the Grid with some computation
flow rate (in GigaFLOPS or TeraFLOPS). As with classical queuing theory if
the input rate is higher than the capacity, the site is overloaded and the global
performances are low due to jobs waiting to be processed. What happens is
that the site receive more jobs that is is able to treat in a given time. So the
queues begin to grow and jobs have to wait more and more before being started,
resulting in performance decay. Similarly when the computation submitted rate
is lower than the site capacity the site is under-used. Job submittal have also
to be fairly distributed according to the site capacity. For example, a site that
is twice bigger than another site have to receive twice more computing request
than the other site. But there is a problem to globally enforce this submittal
scheme on all the Grid. This is why a local site migration policy may be better
than a central migration policy done with the RB.

To be more precise there are two different kinds of cluster flow rate metrics,
one is the local flow rate and the other one is the global flow rate. The local
computing flow rate is the flow rate that one job sees when reaching the site.
The global flow rate is the computing flow rate a group of jobs see when reaching
the site. That global flow rate is also the main measurement for meta-scheduling
between sites. These two metrics are different, for instance we could have a site
with a lot of slow machines (low local flow rate and big global flow rate) and
another site with only few supercomputers (big local flow rate and low global
flow rate). But the most interesting metric for one job is the local flow rate. This
means that if each job wants individually to be processed at the best local flow
rate site, this site will saturate and be globally slow.

As far as all users and groups computation total flow rate is less than the site
global flow rate or site capacity, there is no real fairness issue because there is no
strife to access the site resources, there is enough for all. The problem comes when
the sum of all computation flow rate is greater than the site capacity, firstly this
globally reduces the site performance, secondly the scheduler must take decision
to share fairly these resources. The Grid is an ideal tool that would allow to
balance the load between sites by migrating jobs [2]. A site that share their
resources and is not saturated could discharge another heavily loaded site. Some

58 E. Medernach

kind of local site flow control could maintain a bounded input rate even with
fluctuating jobs submittal. For instance fairness between groups and users could
be maintained by decreasing the most demanding input rate and distributing it
to other less saturated sites.

Another benefits is that applications computing flow rates may be partly
expressed by users in their job requirements. Computing flow rate takes into
account both the jobs sizes and their time limits. Fairness between users is then
ensured if whatever may be flow values asked by each user, part granted to each
penalizes no other one. Computing flow rate granted by a site to an application
may depend on the applications degree of parallelism, that is for the moment
the number of jobs. For instance it may be more difficult to serve an application
composed of only one job asking for a lot of computing flow rate than to serve
an application asking the same computing flow rate but composed of many jobs.
Urgency is not totally measured by a computing flow rate. For example a critical
medical application which is a matter of life or death arriving on a full site has
to be treated in priority. Allocating flow rates between users and groups has to
be right and to take under account priority or urgency issues.

To use a site wisely users have to bound their computational flow rate and to
negotiate it with site managers. A computing model has to be defined and pub-
lished. These remarks are important in the case of on-line computing like Grids
where meta-scheduling strategy have to take a lot of parameters into account.
General on-line load balancing and scheduling algorithms [27] [28] [29] [30] may
be applied. The problem of finding the best suited scheduling policy is still an
open problem. A better understanding of job running time is necessary to have
a full model.

The LCG middleware allows users to send their jobs to different nodes. This
is done by the way of a central element called a Resource Broker, that collects
user’s requests and distributes them to computing sites. The main purpose is
to match the available resources and balance the load of job submittal requests.
Jobs are better localized near the data they need to use.

Common algorithms for scheduling a site rely on such a central view of the
site. But it is in fact unrealistic to claim to know the global state of the Grid at a
given time in order to schedule jobs. This is why we would like to advise instead a
peer to peer [31] view of the Grid over a centralized one. In this view computing
sites themselves work together with other computing sites to balance the average
workload. Not relying on dependent services greatly improves the reliability and
adaptability of the whole systems. That kind of meta-scheduling have to be
globally distributed as stated by Dmitry Zotkin and Peter J. Keleher [11]:

In a distributed system like Grid, the use of a central Grid scheduler(like
the Resource Broker used in LCG middleware) may result in a perfor-
mance bottleneck and lead to a failure of the whole system. It is therefore
appropriate to use a decentralized scheduler architecture and distributed
algorithm. (Dmitry Zotkin and Peter J. Keleher)

gLite [32] is the next generation middleware for Grid computing. gLite will
provide lightweight middleware for Grid computing. The gLite Grid services fol-

Workload Analysis of a Cluster in a Grid Environment 59

low a Service Oriented Architecture which will facilitate interoperability among
Grid services. Architecture details of gLite could be viewed in [10]. The architec-
ture constituted by this set of services is not bound to specific implementations
of the services and although the services are expected to work together in a
concerted way in order to achieve the goals of the end-user they can be deployed
and used independently, allowing their exploitation in different contexts. The
gLite service decomposition has been largely influenced by the work performed
in the LCG project. Service implementations need to be inter-operable in such a
way that a client may talk to different independent implementations of the same
service. This can be achieved in developing lightweight services that only require
minimal support from their deployment environment and defining standard and
extensible communication protocols between Grid services.

9 Conclusion

So far we have analyzed the workload of a Grid enabled cluster and proposed
an infinite Markov-based model that describes the process of jobs arrival. Then
a numerical fitting has been done between the logs and the model. We find a
very similar behavior compared to the logs, even bursts were observed during
the simulation.

Acknowledgments

The cluster at LPC Clermont-Ferrand was funded by Conseil Régional
d’Auvergne within the framework of the INSTRUIRE project (http://www.
instruire.org).

References

1. Dror G. Feitelson. Workload modeling for performance evaluation. In Maria Carla
Calzarossa and Salvatore Tucci, editors, Performance Evaluation of Complex Sys-
tems: Techniques and Tools, pages 114—141. Springer-Verlag, Sep 2002. Lect. Notes
Comput. Sci. vol. 2459.

2. Darin England and Jon B. Weissman. Costs and benefits of load sharing in the
computational grid. In Dror G. Feitelson and Larry Rudolph, editors, Job Schedul-
ing Strategies for Parallel Processing. Springer-Verlag, 2004.

3. M. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, CA., 1979.

4. Stephan Mertens. The easiest hard problem: Number partitioning. In A.G. Per-
cus, G. Istrate, and C. Moore, editors, Computational Complexity and Statistical
Physics, New York, 2004. Oxford University Press.

5. Dror G. Feitelson and Larry Rudolph. Parallel job scheduling: Issues and ap-
proaches. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, pages 1-18. Springer-Verlag, 1995. Lect. Notes Com-
put. Sci. vol. 949.

60

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

E. Medernach

David Jackson, Quinn Snell, and Mark Clement. Core algorithms of the Maui
scheduler. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strate-
gies for Parallel Processing, pages 87—102. Springer Verlag, 2001. Lect. Notes
Comput. Sci. vol. 2221.

Brett Bode, David M. Halstead, Ricky Kendall, and Zhou Lei. The Portable Batch
Scheduler and the Maui Scheduler on Linux Clusters, USENIX Association. 4th
Annual Linux Showcase Conference, 2000.

S. Agostinelli et al. Geant 4 (GEometry ANd Tracking): a Simulation toolkit.
Nuclear Instruments and Methods in Physics Research, pages 250-303, 2003.

Tan Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115-128, Summer 1997.

EGEE Design Team. EGEE middleware architecture, EGEE-DJRA1.1-476451-
v1.0, August 2004. Also available as https://edms.cern.ch/document/476451/
1.0.

Dmitry Zotkin and Peter J. Keleher. Job-length estimation and performance in
backfilling schedulers. In HPDC, 1999.

Antonio Delgado Peris, Patricia Méndez Lorenzo, Flavia Donno, Andrea Sciaba,
Simone Campana, and Roberto Santinelli. LCG User guide, 2004.

G. Avellino, S. Beco, B. Cantalupo, A. Maraschini, F. Pacini, M. Sottilaro, A. Ter-
racina, D. Colling, F. Giacomini, E. Ronchieri, A. Gianelle, R. Peluso, M. Sgar-
avatto, A. Guarise, R. Piro, A. Werbrouck, D. Koufil, A. Kfenek, L. Matyska,
M. Mulag, J. Pospisil, M. Ruda, Z. Salvet, J. Sitera, J. Skrabal, M. Voct, M. Mez-
zadri, F. Prelz, S. Monforte, and M. Pappalardo. The datagrid workload manage-
ment system: Challenges and results. Kluwer Academic Publishers, 2004.

Dror G. Feitelson and Larry Rudolph. Toward convergence in job schedulers for
parallel supercomputers. In Dror G. Feitelson and Larry Rudolph, editors, Job
Scheduling Strategies for Parallel Processing, pages 1-26. Springer-Verlag, 1996.
Lect. Notes Comput. Sci. vol. 1162.

Su-Hui Chiang, Andrea Arpaci-Dusseau, and Mary K. Vernon. The impact of
more accurate requested runtimes on production job scheduling performance. In
Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn, editors, Job Scheduling
Strategies for Parallel Processing, pages 103—127. Springer Verlag, 2002. Lect. Notes
Comput. Sci. vol. 2537.

Maria Calzarossa and Giuseppe Serazzi. Workload characterization: A survey.
Proc. IEEE, 81(8):1136-1150, 1993.

Steve J. Chapin, Walfredo Cirne, Dror G. Feitelson, James Patton Jones, Scott T.
Leutenegger, Uwe Schwiegelshohn, Warren Smith, and David Talby. Benchmarks
and standards for the evaluation of parallel job schedulers. In Dror G. Feitelson
and Larry Rudolph, editors, Job Scheduling Strategies for Parallel Processing, pages
67-90. Springer-Verlag, 1999. Lect. Notes Comput. Sci. vol. 1659.

Walfredo Cirne and Francine Berman. A comprehensive model of the supercom-
puter workload, 2001.

Allen B. Downey and Dror G. Feitelson. The elusive goal of workload characteri-
zation. Perf. Eval. Rev., 26(4):14-29, 1999.

Dror G. Feitelson and Bill Nitzberg. Job characteristics of a production parallel
scientific workload on the NASA Ames iPSC/860. In Dror G. Feitelson and Larry
Rudolph, editors, Job Scheduling Strategies for Parallel Processing, pages 337-360.
Springer-Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

Vern Paxson and Sally Floyd. Wide area traffic: the failure of Poisson modeling.
IEEE/ACM Transactions on Networking, 3(3):226-244, 1995.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Workload Analysis of a Cluster in a Grid Environment 61

Hui Li, David Groep, and Lex Wolters. Workload characteristics of a multi-cluster
supercomputer. In Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn,
editors, Job Scheduling Strategies for Parallel Processing. Springer Verlag, 2004.
Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised® report
on the algorithmic language Scheme. ACM SIGPLAN Notices, 33(9):26-76, 1998.
Dror G. Feitelson. Metrics for parallel job scheduling and their convergence. In
Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for Par-
allel Processing, pages 188-205. Springer Verlag, 2001. Lect. Notes Comput. Sci.
vol. 2221.

Joefon Jann, Pratap Pattnaik, Hubertus Franke, Fang Wang, Joseph Skovira, and
Joseph Riodan. Modeling of workload in MPPs. In Dror G. Feitelson and Larry
Rudolph, editors, Job Scheduling Strategies for Parallel Processing, pages 95—116.
Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

David Talby, Dror G. Feitelson, and Adi Raveh. Comparing logs and models
of parallel workloads using the co-plot method. In Dror G. Feitelson and Larry
Rudolph, editors, Job Scheduling Strategies for Parallel Processing, pages 43—66.
Springer Verlag, 1999. Lect. Notes Comput. Sci. vol. 1659.

Yossi Azar, Bala Kalyansasundaram, Serge A. Plotkin, Kirk Pruhs, and Orli
Waarts. On-line load balancing of temporary tasks. J. Algorithms, 22(1):93-110,
1997.

Yossi Azar, Andrei Z. Broder, and Anna R. Karlin. On-line load balancing. The-
oretical Computer Science, 130(1):73-84, 1994.

A. Bar-Noy, A. Freund, and J. Naor. New algorithms for related machines with
temporary jobs. In E.K. Burke, editor, Journal of Scheduling, pages 259-272.
Springer-Verlag, 2000.

Tak-Wah Lam, Hing-Fung Ting, Kar-Keung To, and Wai-Ha Wong. On-line load
balancing of temporary tasks revisited. Theoretical Computer Science, 270(1—
2):325-340, 2002.

Nazareno Andrade, Walfredo Cirne, Francisco Brasileiro, and Paulo Roisenberg.
OurGrid: An approach to easily assemble grids with equitable resource sharing. In
Proceedings of the 9th Workshop on Job Scheduling Strategies for Parallel Process-
ing, June 2003.

EGEE Design Team. Design of the EGEE middleware grid services. EGEE JRA1,
2004. Also available as https://edms.cern.ch/document/487871/1.0.

ScoPred—Scalable User-Directed Performance
Prediction Using Complexity Modeling and
Historical Data

Benjamin J. Lafreniere and Angela C. Sodan

University of Windsor, Windsor ON N9B 3P4, Canada
{lafreni, acsodan}@uwindsor.ca

Abstract. Using historical information to predict future runs of parallel
jobs has shown to be valuable in job scheduling. Trends toward more flex-
ible job-scheduling techniques such as adaptive resource allocation, and
toward the expansion of scheduling to grids, make runtime predictions
even more important. We present a technique of employing both a user’s
knowledge of his/her parallel application and historical application-run
data, synthesizing them to derive accurate and scalable predictions for
future runs. These scalable predictions apply to runtime characteristics
for different numbers of nodes (processor scalability) and different prob-
lem sizes (problem-size scalability). We employ multiple linear regression
and show that for decently accurate complexity models, good prediction
accuracy can be obtained.

1 Introduction

The typical approach in parallel job scheduling is that users provide estimates
about the runtimes of their jobs with such estimates being, in the general case,
much higher than the actual runtime (ranging from 20% [12] to 16 times [11]
higher in different studies for different supercomputing centers). The availabil-
ity of more accurate information about runtimes of parallel programs has been
shown to be valuable to improve average response times. However, results also
exist suggesting that the overestimation of runtimes provides some benefits by
creating holes in the schedule that can be filled with short jobs [10]. Thus, the
need for accurate estimates in standard job scheduling is not yet fully decided.
However, in the context of grid scheduling for simultaneous execution of jobs on
multiple sites, reservations of resources on remote sites is required and prediction
is unequivocally relevant. The simplest approach to obtain accurate estimates is
recording runtimes of previous job executions and using them to predict future
runtimes with the same job configuration and the same number of resources.
For grid computing, more detailed runtime information may be needed to esti-
mate performance on different systems. Furthermore, grid middleware may be
composed of different components, and a more detailed recording of these com-
ponents (and their performance for certain applications and machines) is needed
to support optimal configuration of grid jobs [16].

D. Feitelson et al. (Eds.): JSSPP 2005, LNCS 3834, pp. 62-90, 2005.
© Springer-Verlag Berlin Heidelberg 2005

ScoPred—Scalable User-Directed Performance Prediction 63

To make matters more complicated, modern job scheduling employs advanced
approaches such as flexible time sharing and adaptive resource allocation [6].
Flexible time sharing means relaxing global synchronous gang scheduling if jobs
can be matched well [8][4] or could mean abandoning global control altogether
[14]. In both cases the aim is improving resource utilization. Adaptive resource
allocation means that the number of nodes allocated to a job changes during its
runtime, typically driven by the changing workload of the machine [7][2]. Time
sharing makes it necessary to know more detailed application characteristics such
as the fractions of total runtime spent on communication and I/O, to allow us to
find proper matches and estimate slowdowns. For adaptive resource allocation,
it becomes relevant to estimate runtime on different numbers of resources; if
we can predict resource times with different numbers of nodes, we can better
predict the benefits of certain adaptation decisions. This leads to the challenge
of generating scalable predictions, i.e. predicting resource times with allocations
other than those previously measured. Such scalable prediction is also useful if
the user moves to larger problem sizes for which no performance data is available
yet.

Several approaches exist which utilize special compilers to provide perfor-
mance models of applications. A difficulty of this approach is that abstract mod-
els may not always be extractable in a fully automated manner, particularly if
the code behavior is complex. As well, runtime measurements or simulations are
typically needed for quantification of the parameters. Our target is a standard
job-execution environment running primarily MPI based applications, and not
equipped with any such special compilers. However, we assume that users have
some rough knowledge of their applications and know, for example, which pa-
rameters in their application determine runtime. Furthermore, users may be able
to provide rough cost estimations (closely resembling the steps needed to derive
complexity estimates) as suggested in [15]. Whether estimated formulas for per-
formance models are provided by the user or extracted by a special compiler, the
system must then perform quantification of coefficients within the formula, to
turn the rough estimate into a concrete model for the system being used. This
challenge motivates the following goals for our ScoPred performance predictor:

— Support prediction of overall execution times as well as prediction of resource
times (computation, communication, I/0O)

— Support such prediction on the same and on different numbers of nodes
(scaling the prediction)

— Assume that a rough model is available as input such as via cost/complexity
estimations from the user (user-directed) or a formula provided by the com-
piler (compiler-directed) and leave all quantification (determination of coef-
ficients) to the system

— Provide a practically feasible approach

— Provide a mathematically sound approach.

In our ScoPred approach, we apply the following innovative solutions toward
meeting these goals:

64 B.J. Lafreniere and A.C. Sodan

— Take the performance-determining parameters and a rough resource-usage
model as input

— Employ multiple linear regression to determine the coefficients and provide
mean values, confidence intervals, and prediction intervals.

2 Related Work

Performance data bases or repositories were first proposed in [9]. Due to a lack
of models describing the application behavior, measurements such as runtime
or memory usage were used to match the runtime of future runs with previous
measurements, i.e. no scaling was applied. The approach is extended in [13] to
consider a number of additional criteria such as the application parameters. The
difficulty addressed by considering the different criteria is to associate the run-
times with a particular application and the correct instance of that application.
This can become difficult as a single user may run the same application with
different parameters and under different names [9][13].

Furthermore, to estimate the cost under varying resource allocation, a proper
cost model needs to consider the fact that speedup curves are not linear but that
the curve typically flattens (and finally declines) if more resources are allocated.
In [5], a general statistical model is proposed which is useful for studying gen-
eral adaptation benefits in simulation studies. This, however, does not help us
to find an application’s specific cost model. The Grads project [17] employs per-
formance models created by the compiler to predict performance and monitors
whether these predictions are met. The approach in [19] considers floating-point
operations and accesses to the memory hierarchy to predict performance on dif-
ferent architectures, while focusing on the memory accesses. Memory accesses
are extracted via a simulator, and application characteristics are convolved with
machine characteristics. In [18], a prediction model for different architectures is
described which extracts the program structure by static analysis of the program
binary, after which execution profiling is used to obtain dependence on param-
eters such as execution frequency for vertexes in the program graph and reuse
distances for memory locations. Linear regression is applied, but only used for
the memory-access cost, and the approach currently only considers single-CPU
performance. Scalability is not considered.

The most closely related approach is presented in [15]. This approach takes
cost/complexity estimations as input, while differentiating explicitly different
sources of overhead such as communication, load imbalance, or synchronization
loss. Coefficients are then obtained from actual program runs.

Both [18] and [15], consider linear combinations of cost terms. In [15], either
additive or multiplicative combinations are possible, the latter describing inter-
action between cost terms. Predictions are compared to actual runtimes, with
the average relative error found for 2D FFT to be only 12.5%, whereas simple
linear interpolation (without interactions) resulted in an error of 750%. The ap-
proach considers different parameters and employs a least-squares method but
does not provide confidence or prediction intervals.

ScoPred—Scalable User-Directed Performance Prediction 65
3 The Prediction System

3.1 Overall Framework

The ScoPred performance predictor is embedded into a job-scheduling and job-
control framework as shown in Fig. 1. Several tools interact via an integrated
design. The Dynamic Directory stores information about the current job execu-
tion, including user-provided estimates, and retrieves information about previous
runs from a performance repository. The ScoPro monitor [1] provides information
about the characteristics of jobs such as the fraction of computation, communica-
tion, and I/O time as well as slowdowns under coscheduling. Furthermore, it can
monitor progress on heterogeneous resources. ScoPro employs dynamic instru-
mentation and can, for loosely synchronous applications, extract behavior from
a few iterations. The adaptation controller interacts with the application, deter-
mining potentially new workload targets per node and initiating the adaptation.
In [3], we have presented an approach to perform such adaptation via overpar-
titioning or partitioning from scratch in either the time or space dimension.

3.2 Application Model

We apply the view that application performance is dominated by certain data
structures or computations that depend on a few critical parameters, such as

Job Scheduler

CreatelobEntry redictJobBehavior
StoreUserEstimates
bin ScoPred
Store/RetrieveLongTermJobInfos
/ J Y RetrievelobInfos Performance
Performance) Store/UpdatePrediction| Predictor
Reposito < Dynamic <
[N Directory
. Start/RestartMonitoring
Recordlob itorData
GetJobResourceAllocaonStatus
Adaptation ScoPro
controller Monitor
. —
\\\A A’/'
IIlI|||I|I|I|IIIIII |
L1||||||||i|||||
Jobs

Fig. 1. Overall integrated framework for job scheduling and job control. Solid arrows
indicate invocations and are labeled with the corresponding function.

66 B.J. Lafreniere and A.C. Sodan

the size of an array. Often these parameters determine the problem size of the
application and changing the parameters changes the problem size. Then, it
would be possible to model application performance by modeling the dependence
of the cost on these parameters. In many cases, an application’s user is aware
of which application parameters are critical, as the user may explicitly want to
change them to switch to a different problem size. In this case, the user should
be able to specify which these parameters are.

Typically such parameters appear as input to the application but they may
also be statically compiled into the code. We assume in the following that the
values of the critical parameters are specified with the submission of the job (it
would not be difficult to build a corresponding programming environment that
makes such submissions straightforward). Furthermore, we assume that a unique
identification is attached to the application (the name is not necessarily sufficient
and may be different for program versions compiled for different numbers of
nodes). We do not make any efforts to automatically match jobs as done in
[9][13], but instead focus on the prediction aspect.

We assume that the user, in addition to the specification of the critical param-
eters, also provides a rough cost estimate describing the qualitative/structural
relationship (without the quantification of system dependent coefficients). Such
estimates could be close to the estimations represented by mathematically de-
rived algorithmic complexity estimates. Importantly, complexity-oriented esti-
mations would focus on the complexity of the model expressed in various terms
such as T' = 2M?3 + log(N) + Mlog(N) with T being the runtime, M being the
size of one dimension in a matrix, and N being the number of nodes. Let us
assume that the first term specifies computation cost in terms of computation
steps and the second and third term specify communication cost in terms of
sizes and numbers of messages. Note that the coefficients from the replication in
iteration steps as well as the computation time per step, message startup cost
and transfer cost are omitted. These are the coeflicients to be determined by the
predictor. We assume that the estimate takes the form of a linear combination
of different cost terms. However, as will be explained below, variables may be
multiplied within the terms.

The idea is to specify a rough cost formula which only reflects critical, i.e.
dominating performance influences. The system should provide the possibility
to add an automatic correction to approximate missing cost terms which are not
crucial but also not negligible if high prediction accuracy is to be obtained. What
is exactly to be modeled depends on the application and on the desirable range
of prediction. Thus, if a small problem size fits into the cache and a larger one
does not, and this significantly influences performance, the memory access cost
in dependence to the parameters should be modeled. Similarly, if load imbalance
could become an issue, this should also be modeled, etc. Note that an alternative
to the user providing specifications is the compiler providing them. In this case,
the derived formulas may be more detailed though the compiler might require
monitoring / runtime feedback or a simulator to prune irrelevant details and
extract the relevant formulas.

ScoPred—Scalable User-Directed Performance Prediction 67

Our current prediction system works for a particular machine, i.e. we do not
include any machine model and prediction facilities across machines.

3.3 Architecture and Functionality

In the following, we describe the details of the predictor functionality. The Sco-
Pred predictor takes as input:

— Specifications of the critical parameters and the estimation formulas depend-
ing on them

— The actual values of the critical parameters for the current job submission

— Information about previous runs of the same application (parameters values
and performance of the job run).

Note that the number of nodes on which the application is run is typically
one of the critical parameters (unless the application always runs with the same
number of nodes).

The values predicted may be:

— Runtime of the whole job
— Differentiated time consumed on different resources such as computation
time (CPU), communication time (network), and I/O time (disk).

The latter requires that the monitor provides the actual times for the different
program execution components from previous runs to match them against the
prediction. Providing cost estimations for different resources is typically not a
problem for the user because these different aspects need to be considered (as
far as applicable) to obtain an estimation of the runtime function for the whole
job.

The goal of the estimation may be to predict

1. Future runtimes with the same parameter values

2. Future runtimes with different problem sizes (one or several of the parameters
other than the number of nodes)

3. Future runtimes with a smaller or higher degree of parallelism (smaller or
larger number of nodes)

4. Combinations of different problem sizes and a different degree of parallelism

Option 3 can be applied if resources are allocated adaptively (as for malleable
or moldable applications), and is thus of particular interest. Option 4 is a typical
case, as for production runs (runs other than tests for speedup graphs with
varying numbers of nodes) there is typically a correlation between problem size
and number of nodes, i.e. larger problem sizes require a larger number of nodes
and vice versa. Note that this option is always at least a two-variable prediction,
whereas the others potentially predict a single variable only. Options 2, 3, and
4 require the scalability features of our predictor.

The prediction system provides point estimates of the mean of values, and
associated confidence and prediction intervals.

68 B.J. Lafreniere and A.C. Sodan

4 Multiple Linear Regression and Its Application in
ScoPred

4.1 Overview of Multiple Linear Regression

Linear regression, also known as linear least squares regression, is a widely used
mathematical modeling technique [20]. Given a data set and an appropriate
function, least squares regression determines the values for coefficients within
the function that produce an equation which best fits the data set. Simple linear
regression applies to equations with a single dependent variable, and a single
independent variable. Multiple linear regression applies to equations with a single
dependent variable and multiple independent variables.

In order to be appropriate for linear regression, the supplied function must
be linear in the parameters [21]. This is satisfied if and only if the function is of
the form [20]:

f(Z: B) = By + Bix1 + Baws + - - + By (1)
where:
— Each independent variable (z1,2,...,2x) in the function is multiplied by
an unknown coefficient (B, Ba, ..., B).

— There is at most one unknown coefficient with no corresponding independent
variable (By).
— The individual terms are summed to produce a final function value.

The independent variables may be the product of several application param-
eters, and particular application parameters may be components of more than
one independent variable, though no two independent variable may be exactly
the same.

For instance,

Yi = BO + Bl \/.’I,‘ + 321‘2 + Bg.’l?Z + B4Z (2)

is a valid function.
Given a function which satisfies the above conditions, we can relate the func-
tion to the data set by adding an error component, e:

f(Z: B) = By + Bizy + Bawa + -+ + Bray + ¢ (3)

In all but perfect models, the value of € will vary for each observation. The
total set of € values is referred to as the error component, or set of residuals.
Three assumptions must hold regarding error component [22].

The set of values of € must:

— Be independent, in the probabilistic sense (the value of a particular e value
should be unrelated to the other values of ¢, except insofar as they satisfy
these conditions)

— Have a mean of 0 and a common variance

— Have a normal probability distribution

ScoPred—Scalable User-Directed Performance Prediction 69

Given a suitable function and data set, we can calculate the values for the
coefficients such that the sum of the squares of the residual values is minimized.
That is, we choose By, By, ..., Bx such that

k
SSE = (y: — 9:)° (4)

i=1

is minimized, where y; refers to the i** observed response value, and ¢; refers to
the value of (1) with the i'" observations of all dependent variables.

To find values for the coefficients which minimize SSF, partial differentials
of (1) are taken with respect to each unknown coefficient. The resulting set of
partial differential equations is then solved as a system of linear equations. For
further details, refer to [21][20].

4.2 Statistical Tests and Metrics

There are several ways of evaluating how well a calculated regression equation fits
the data. Two commonly used measures of a fit’s significance are the coefficient
of determination, and the analysis of variance F-test [22].

The coefficient of determination (often called R? or multiple R?) [22] ex-
presses the proportion of the variance that is explained by the regression model.
Informally, this is a measure of how much better the model is at expressing the
relationship, as compared to simply using the mean of the response data. An
R? value of 0 indicates that the mean of the response data is a better predictor
of the response, whereas an R? value of 1.0 indicates that the response fits the
curve perfectly, explaining 100% of the deviation from the mean in each response
value. For convenience, we consider any value less than 0 to be equivalent to 0,
and this allows us to interpret the coefficient of determination as a percentage. A
value related to the coefficient of determination is the adjusted R?, or shrunken
R?. As the number of independent variables in a regression formula rises, the
R? value becomes artificially inflated. To compensate for this effect, the adjusted
R? value takes into account the number of independent variables [22].

Another way of testing whether a regression model is significant is through
a statistical test. For any given configuration of coefficient values we can test
whether the data supports that configuration at a given confidence level. If the
regression model is significant, then at least one of the independent variables is
contributing significant information for the prediction of the response variable
[22]. To prove this, we attempt to reject the contrapositive statement that no
independent variable contributes any information for the prediction of the re-
sponse. This is referred to as the null hypothesis, and we attempt to reject it with
95% confidence. If successful, we have shown with 95% confidence that at least
one of the independent variables is contributing significant information for the
prediction of the response variable. That is, the regression model is significant.

4.3 Using a Regression Model for Prediction

Once the regression model is generated and we have verified that the model
effectively describes the relationship between the predictor variables and the

70 B.J. Lafreniere and A.C. Sodan

response, the model can be used to predict the response for given values of
the independent variables. These predictions take the form of a point estimate
which is a prediction of the mean function value for a certain parameter-value
combination. In addition, the confidence interval (typically 95%) is provided,
describing the probability with which the mean value of future observations
for this parameter-value combination falls into the corresponding interval. Fur-
thermore, a prediction interval is provided which describes the probability that
future observed function values fall into the corresponding interval. Note that
both the confidence and the prediction interval become wider as the parameter-
value combinations are further away from the means of the observed values of
the independent variables used to build the regression model, i.e. the prediction
becomes less reliable.

4.4 Multiple Linear Regression in Parallel Performance Prediction

Given the above explanations, we can now explain how a scalable model of an
application can be built through a straightforward application of linear regres-
sion. Given an application that we wish to model, we proceed as follows. To start,
the static (static variables) or dynamic parameters (arguments of the program
invocation) of an application, which are specified to influence the application’s
characteristics, are considered as components of the independent variables of our
model. Similarly, application characteristics that we wish to construct a model
of (runtime, I/O time, etc) are considered as the response variables. By storing
the parameters with which application runs are submitted, and the correspond-
ing observations of the characteristic under study, we build a data set of our
independent and response variables.

At this point we have a data set, but we still need a function to fit to the data.
As described above, the function is supplied by the user (or by a compiler) as an
estimation formula (see Section 3.2) of the relation between the characteristic
under study and the application parameters. However, it is still lacking a quan-
tification of the coefficients. Coefficient variables (whose values are unknown at
this point) are automatically added into the equation by our system in a manner
that ensures the resulting equation is linear in the parameters. Once we have
added the unknown coefficients, we have an equation of the form described in
Section 4.1. We can now use linear regression to determine the quantification by
calculating values for the coefficient variables that best fit the equation to the
data, giving us a model of the application.

By substituting in the parameters, the model can be used to predict the
performance of the characteristic under study for a future run of the application.
We use statistical measures such as the coefficient of determination, R? and the
analysis of variance F-test to determine how successful the regression model fits
the data, and to calculate confidence intervals for our predictions.

Since fitting the function values into a regression model always involves some
inaccuracy regarding the individual values for certain parameter-value combina-
tions (points), employing the prediction from the model for points with avail-
able observations is not very meaningful. We can gain better predictions by only

ScoPred—Scalable User-Directed Performance Prediction 71

considering the different historical values for exactly the corresponding point.
The main benefit from the regression model comes from predicting performance
for unobserved parameter-value combinations.

4.5 Implementation

We have used Java to write the overall interface for our performance predictor.
This interface handles the interaction with the job scheduler and the dynamic
directory in regards to storage of new or modified application profiles and re-
trieval of existing profiles. All statistical calculations are performed through calls
to the Waterloo Maple symbolic algebra system [27] using custom functions pro-
grammed in Maple’s native language. To allow the Java components access to
the Maple components, we used the OpenMaple API for Java [28], which allows
us to call code in a running Maple environment from external Java programs.
The calls to the Maple environment to calculate a model, or make a prediction
based on an existing model take in the order of a second, which is acceptable in
a job-scheduling environment for parallel machines.

5 Experimental Evaluation

5.1 Experimental Setup

To evaluate our system, we have chosen the Linpack benchmark [29] and two
applications from the NAS Parallel Benchmarks Version 2.4 [23]. The selected
NAS benchmarks are the EP embarrassingly parallel benchmark, and the FT
3D Fast Fourier transformation benchmark.

Some of the tests were run on a local 16 node Debian GNU/Linux cluster
running Linux kernel 2.6.6. Each node of this cluster is equipped with 2 Intel
Xeon 2.0 Ghz processors, of which our tests only use one. Other tests requir-
ing more than 16 nodes were run on 64 nodes of a Redhat GNU/Linux cluster
running Linux kernel 2.6.8.1. Each node of this cluster is equipped with 2 Intel
Opteron/244 1.8 Ghz processors, of which our tests only use one. Each clus-
ter uses a Myrinet network for application-level communication, using MPICH
version 1.2.6 over GM.

Each benchmark was run for varying problem sizes and different numbers of
nodes (NAS provides a number of different categories: S, W, A, B, etc. which
have increasing problem sizes, and Linpack allows problem sizes and node con-
figurations to be specified). For each run, the runtime in seconds was recorded.
Unless otherwise specified, each application was run 3 times in each configuration
of problem size/nodes. In our case, the values for multiple runs were nearly iden-
tical, but we have used multiple observations to take into account the variation
in runtime that could be caused by other applications running simultaneously on
a time-shared system. In practice, if there is little variation between application
runs with the same configuration for an application, we could model using only
one run for each configuration. However, multiple linear regression does have the
ability to model applications for which there is variation among runs with the
same configuration.

72 B.J. Lafreniere and A.C. Sodan

For the subset of gathered data selected for each test, we feed all observed
runs into our predictor, but for the sake of clarity only show the mean values
in the tables of observations below. After providing a subset of the gathered
data to our predictor, predictions are made for the excluded problem size/node
configurations.

We test the following cases:

— Processor Scalability: Prediction towards larger number of nodes given data
for a smaller number of nodes (malleability test or test for user choosing new
number of nodes)

— Problem-size Scalability: Prediction towards larger problem sizes given data
for smaller problem sizes (user switching to larger problem size)

— Problem-size/Processor Scalability: Prediction towards larger problem sizes
and larger number of processors given data from situations with data for
smaller numbers of nodes/problem size (user switching to larger problem
size on larger number of nodes)

Whenever possible, we omit observations with runtimes of less than one second
and in some of our experiments below this limits the number of experiments we
can perform on the gathered data sets.

5.2 EP

The EP benchmark represents the simplest of parallel programs. Communication
occurs only twice: once when the job begins, sending a segment of the total work
to each of the nodes; and once right before the job terminates, collecting back
the results of each node’s calculations. The lack of communication time makes
this benchmark very simple to model, and we use it as a demonstration of our
technique.

We ran the EP benchmark on the local 16 node cluster, varying the number
of nodes from 2 to 16 in increments of 2. The mean values of the three gathered
observations for each configuration are shown in Table 1.

Before this data can be entered into our system, we must provide an estimate
of how the benchmark’s runtime varies with its parameters. To do so, we consider
the benchmark’s algorithm. The EP benchmark accepts two parameters, the
number of nodes (P), and the problem size (N). Each node is assigned the task
of generating (N/P) pairs of Gaussian random deviates according to a specific
scheme, and tabulates the number of pairs in successive annuli [23]. Since the
time to generate a pair of random numbers is relatively constant, we estimate
that the runtime (7) of a particular job will be given by:

T =N/P (5)

This estimate is entered into our system. As the first step toward turning this
estimate into a detailed model, the system adds unknown coefficients into the
equation, giving us:

T =DB1(N/P)+ By (6)

where By and By represent the unknown constants added by our system.

ScoPred—Scalable User-Directed Performance Prediction 73

Table 1. Mean values for EP benchmark observations

nodes \ class | S =2* W =2% A=2% B=2"
2 2.10 4.19 33.60 138.24
4 1.09 2.10 16.81 67.28
6 0.72 1.46 11.26 44.82
8 0.54 1.09 8.40 34.86
10 0.43 0.87 6.74 29.03
12 0.36 0.71 5.62 2247
14 0.31 0.62 5.17 20.11
16 0.28 0.56 4.36 17.38

In the first experiment, we test our system for processor scalability, using data
from the A and B columns. Table 2 shows the results of using our system to model
either the A or B column, i.e. the table shows the result of two separate sets
of processor-scalability predictions. In each column, a subset of the observations
is input into the system (shown in light grey). The cells highlighted in darker
grey are the predictions of our system given the input data for that column. For
each value we provide a point estimate, followed by the 95% confidence interval,
and the 95% prediction interval (in parentheses). Below the point estimate and
confidence/prediction intervals is the percentage that the estimate deviates from
the mean of the observations.

For the A column test outlined in Table 2, the system assigns a value of
1/3996971.35 for By and a value of 0.025 for By, giving the model:

T = (N/3996971.35P) + 0.025 (7)
For the B column, the values of By and B; are similar, giving us the model:
T = (N/3906469.72P) + 0.085 (8)

We observe in Table 2 that our predictions tend to be a bit low, though all
predictions are well within a 10% deviation from the mean of the observations.
While our predictions for Class A come very close, the mean of the observations
does not fall within the 95% confidence or prediction intervals for the 14 and
16 node predictions. For Class B, the mean of the observations is within both
the 95% confidence and prediction intervals for all predictions. This does not
necessarily indicate that the predictions for Class B are better as we observe
that the confidence and prediction intervals for Class B are considerably wider.
This is likely due to greater variation observed between data points of the same
configuration for Class B.

74 B.J. Lafreniere and A.C. Sodan

Table 2. Results of the processor-scalability predictions for 12, 14, and 16 node cases
in the EP benchmark

nodes \ class | A = 2% B =2%

2 33.60 138.24

4 16.81 67.28

6 11.26 44.82

8 8.40 34.86

10 6.74 29.03

12 5.62 +/- 0.03 (0.08) || 22.99 +/- 2.77 (8.09)
-0.06% +2.31%

14 4.82 +/- 0.03 (0.08) || 19.72 +/- 2.89 (8.13)
-6.71% - 1.96%

16 4.22 +/- 0.03 (0.08) || 17.26 +/- 2.98 (8.16)
-321% -0.73%

Table 3. Results of problem-size scalability prediction of the B problem size for the
EP benchmark

nodes\class | S=22 |wW=2" |[A=28 |B=2%

2 2.10 4.19 33.60 134.43 +/- 0.18 (0.19)
-2.76%

4 1.09 2.10 16.81 67.17 +/- 0.27 (0.29)
-0.17%

6 0.72 1.45 11.26 44.92 +/- 0.34 (0.36)
+0.22%

8 0.55 1.09 8.40 33.49 +/- 0.28 (0.30)
-3.94%

In our second experiment, we test our system with the task of problem-size
scalability, modeling the 2, 4, 6, and 8-processor rows respectively. We provide
the data for problem sizes S, W, and A for each processor row, and use the
generated model to predict problem size B for that row. The results are shown
in Table 3.

We see that our predictions are very good, with all predictions less than 5%
from the mean of the actual observations. Also, in all but the 2 processor case,
the mean of the actual observation is within the 95% confidence and prediction
intervals.

ScoPred—Scalable User-Directed Performance Prediction

75

Table 4. Results of problem-size/processor scalability predictions for the EP

benchmark
nodes\ | S=2"[W=25[A=2% B=2%
class
2 2.10 4.19 33.60
4 1.09 2.10 16.81
6 0.72 1.45 11.26
8 0.55 1.09 8.40 34.39 +/- 0.61 (3.95)
-1.36 %
10 0.43 0.87 6.74 27.51 +/- 0.59 (3.95)
-523 %
12 5.73 +/- 0.63 (3.95) | 22.93 +/- 0.58 (3.94)
+1.90 % +2.05 %
14 4.91 +/- 0.64 (3.95) | 19.65 +/- 0.58 (3.94)
-4.97 % -2.30 %
16 4.29 +/- 0.64 (3.95) | 17.19 +/- 0.59 (3.94)
-1.61 % -1.13 %

In our final experiment for the EP benchmark, our system is tested with the
task of modeling both problem size and number of processors simultaneously.
We provide the system with columns S, W, and A and rows 2, 4, 6, 8, and 10,
and use the generated model to predict A on 12, 14, and 16 processors, and B
on 8, 10, 12, 14, and 16 processors. The results are shown in Table 4.

The multivariate model created by entering observations varying in both num-
ber of nodes and problem-size is almost as successful as the models of one or
the other alone. All values are within 6% of the observed mean, and none of
the observed means falls outside of the 95% prediction interval (only one falls
outside the 95% confidence interval).

Finally, we want to note that the R? values for these predictions are close to
1.0 and that the F tests are passed at a greater than 95% confidence level in all
cases.

53 FT

The FT benchmark solves a partial differential equation (PDE) using a 3-D
Fast Fourier Transform (FFT) [23]. The 3-D FFT is solved using a standard
transpose algorithm. Due to the nature of the algorithm, it can only be run on
a power-of-two number of nodes. The FT benchmark is more complex to model
than the EP benchmark, as there is extensive communication throughout the
application run.

The algorithm employs a 3-dimensional array which determines the problem
size. Though the size of the FFT array is set for each class of benchmark, the
user may vary the number of iterations performed for each class. We have set all
tests to 6 iterations to make the runs with different problem sizes comparable.

76 B.J. Lafreniere and A.C. Sodan

Table 5. Mean values for FT benchmark observations

nodes\ | S = W= A= B= C=

class 64x64x64 | 128x128x32 | 256x256x128 | 512x256x256 | 512x512x512
2 0.21 0.48 9.91 43.94 N/A

4 0.11 0.25 5.30 23.23 101.69 *

8 0.06 0.14 2.68 12.16 N/A

16 0.03 0.08 1.51 6.69 29.36 *

32 0.02 0.04 0.87 3.69 16.57

64 0.01 * 0.02 * 047 * 1.95 * 8.63 *

In each iteration, a 3-D FFT is performed, and the resulting data set is evolved
before being used as the input for the next iteration.

The FT benchmark was run for 2, 4, 8, 16, 32 and 64 nodes with problem sizes
varying from Class S (64x64x64) to Class C (512x512x512). The mean values of
the application runs are summarized in Table 5. We were unable to obtain any
data points for two configurations, which are marked N/A. For most configura-
tions, we gathered 6 data points. For the remaining configurations (marked with
an *) we only gathered 3 data points.

The time complexity of computing a 3D FFT using the transpose algorithm
is well studied and easily found in many textbooks. In [24], the following formula
is given in an analysis of the 3-D FFT algorithm.

T = (N/P)log(N) + 2V P —1+2(N/P) (9)

where T is the runtime, N is the problem size, and P is the number of processors.
However, an inspection of the code for the FT benchmark reveals that it utilizes
all-to-all communications within processor subgroups rather than the point-to-
point communications used by the algorithm analyzed in [24]. This motivates us
to form an alternate estimate that assumes that scatter/gather is being used for
the implementation of all-to-all. Based on the analysis of CPU time given in [24]
and the complexity of scatter/gather operations given in [30], we get:

T = (N/P)log(N) + (N/P)log(N) (10)

In this formula, the first (N/P)log(N) represents the time spent on processing
in the FFT algorithm. The second (N/P)log(N) represents the time spent on
communication.

We test the FT benchmark with three tests similar to those used for the EP
benchmark: testing the processor scalability, problem-size scalability, and finally
both together.

As with EP, we test processor scalability by providing a subset of the obser-
vations and predicting the observations not provided in that column. This time

ScoPred—Scalable User-Directed Performance Prediction

7

Table 6. Results of processor scalability prediction and of the 64, 32-64, and 16-64
node cases of Class A of the FT benchmark

nodes \ | A=256x256x128 A=256x256x128 A=256x256x128

class

2 991 991 9.91

4 5.30 5.30 5.30

8 2.68 2.68 2.68

16 1.51 1.51 1.57 +/- 0.1 (0.25)

+4.20%
32 0.87 0.94 +/- 0.06 (0.21) || 0.97 +/- 0.11 (0.25)
+ 8.25% +11.71%

64 0.61 +/- 0.05 (0.19) [} 0.64 +/- 0.07 (0.21) || 0.67 +/- 0.11 (0.26)

+29.79% +36.17% +42.55%

we perform three tests for each problem size. In the first test, we provide all but
the 64 processor observations, in the second, we provide all but the 32 and 64
processor observations, and in the third we provide all but the 16, 32 and 64
processor observations. We perform these tests for Class A and Class B, as they
are the only full columns which have a significant number of observations with
runtime greater than one second. The results are summarized in Table 6 and
Table 7.

As shown in Table 6, our scalability model yields fairly accurate point esti-
mates for 16 and 32 processors, with all below 12% deviation from the mean
of the observations.The point estimates for 64 processors seem quite poor, with
deviations between 29% and 43% from the mean of the observations.This might

Table 7. Results of processor scalability prediction and of the 64, 32-64, and 16-64
node cases of Class B of the FT benchmark

nodes \ | B=512x256x256 B=512x256x256 B=512x256x256

class

2 43.94 43.94 43.94

4 23.23 23.23 23.23

8 12.16 12.16 12.16

16 6.69 6.69 7.09 +/- 0.21 (0.56)

+ 6.06%
32 3.69 4.22 +/- 0.17 (0.56) || 4.45 +/- 0.23 (0.56)
+ 14.52% +20.76%

64 2.68 +/- 0.16 (0.64) || 2.89 +/- 0.18 (0.56) || 3.13 +/- 0.25 (0.57)

+37.20% +47.95% + 60.24%

78 B.J. Lafreniere and A.C. Sodan

Class B
45 4 (512x256x256)
40
35
E s Observed
‘g 25 M Predicted
o 20
15
10
5 n
L l
T T S R T I I S S S

VRO INORPPL PRI PP P I ERPL PP PRSI

Nodes

Fig. 2. A graph showing the results of the processor scalability prediction of 16-64 node
configurations for Class B of the FT benchmark. The three observation points to the
left (in gray) show the observations provided to the system, and the three prediction
points (in black) represent the predictions made by the system. Where both observation
and prediction points are shown, this is to illustrate the accuracy of the prediction vs.
the mean of the actual observations.

be explained by the extremely small (less than a second) runtime values for the
64 node case. In all cases the mean of the observations falls within the 95%
prediction interval, and two cases fall within the 95% confidence interval.

The scalability tests for Class B are slightly worse than Class A. However, the
16 processor case in the right column, and the 32 processor case in the center
column are fairly accurate predictions, both with point estimates less than 15%
from the mean of observations, and both with 95% prediction intervals that
accurately predict the location of the mean of observations. As with Class A,
some of the higher deviations of 64 processor predictions may be explained by the
small size of the mean of observations. Fig. 2 shows a plot of the results for the
16-64 processor case, which appears to be the least accurate of the three Class B
scalability tests. Even in this case, the 16 processor prediction is quite accurate
(6% deviation from the mean of observations), and the all predictions are quite
accurate when considered in an absolute sense, rather than as a percentage
deviation from the mean of observations. Fig. 2 also shows how far away the
32 and 64 processor predictions are from the set of provided observations, and
suggests that this may also be a factor affecting accuracy.

Table 8 shows the results of our problem-size scalability tests for the FT
benchmark. Due to the small runtimes of all of the observations for Class S,
these observations were excluded from the tests. The observations for Class W
were included despite their small runtimes to provide us with enough data points
to get meaningful predictions. We performed four tests, separately modeling 2,
16, 32, and 64 processors, and predicting Class C from the observations of Class
W, A, and B. The point-estimates are very close to the mean of the observed

ScoPred—Scalable User-Directed Performance Prediction 79

Table 8. Results of the problem-size scalability prediction of the C problem-size for
the FT benchmark

nodes\ | W= A= B= C=

class 128x128x32| 256x256x128 | 512x256x256 | 512x512x512

4 0.25 5.30 23.23 100.47 +/- 0.12 (0.13)
- 1.20%

16 0.08 1.51 6.69 28.91 +/- 0.30 (0.33)
- 1.54%

32 0.04 0.87 3.69 15.91 +/- 0.13 (0.14)
- 4.00%

64 0.02 0.47 1.95 8.43 +/- 0.09 (0.09)
-2.36%

values, all less than 4%. However, the means of the observed values do not fall
into any of the 95% confidence or prediction intervals. This is likely due to
the small number of configurations used to build the model. When very few
observations are used to build a model, the model can easily pass very close
to all provided observations, and because of this predicts tight confidence and
prediction intervals.

As with the EP benchmark, we tested our system with the task of modeling
both problem size and number of processors simultaneously for the FT bench-
mark. The very small runtimes of many of the observations for the FT bench-
mark made this difficult, and limited the number of useful observations that
we could use. Including only observations greater than one second, we tested
two configurations, with results shown in Table 9. In the first configuration, we
provided observations from Class A and Class B for 2, 4, 8, and 16 processors,
and 2, 4, 8, 16, and 32 processors respectively. We then predicted Class B with
64 processors, and Class C with 16, 32, and 64 processors. In the second con-
figuration, we provided observations from Class A and Class B for 2, 4, 8, and
16 processors, and predicted Class B with 32 and 64 processors and Class C
with 16, 32, and 64 processors. In both tests, the predictions for Class C deviate
from the mean of observations by between 17% and 25%, with the 95% confi-
dence and prediction intervals failing to capture the mean of observations. The
predictions for Class B are better, with point estimates less than 11% from the
mean of observations, and all of the prediction intervals (and most of the con-
fidence intervals) accurately capturing the mean of observations. In the second
test, the mean of observations for Class B with 32 processors falls outside of the
95% confidence interval, but only by 0.19 seconds. A possible explanation for
the poorer predictions for Class C is the relative size of the Class C problem
size as compared to the problem sizes of Class A and Class B. When making

80 B.J. Lafreniere and A.C. Sodan

Table 9. Results of problem-size/processor scalability predictions for the FT bench-
mark. In the upper table, the 64 processor case of Class B, and the 16-64 processor
cases of Class C are predicted. In the lower table, the 32-64 processor cases of Class B
and the 16-64 processor cases of Class C are predicted.

nodes \ | A=256x256x128 | B=512x256x256 C=512x512x512
class
2 9.91 43.94
4 5.30 23.23
8 2.68 12.16
16 1.51 6.69 24.22 +/-0.21 (1.13)
-17.52%
32 3.69 12.42 +/- 0.15 (1.12)
-25.06%
64 1.99 +/- 0.19 (1.13) | 6.52 +/- 0.16 (1.12)
+ 1.88 % -24.48%
nodes \ | A=256x256x128 | B=512x256x256 C=512x512x512
class
2 9.91 43.94
4 5.30 23.23
8 2.68 12.16
16 1.51 6.69 24.20 +/- 0.22 (1.17)
-17.58 %
32 3.29 +/-0.21 (1.17) | 12.38 +/-0.17 (1.17)
-10.72% -25.30%
64 1.92 +/-0.22 (1.17) | 6.46 +/-0.19 (1.17)
-1.71% -25.17%

predictions for Class C, we are predicting for a problem size that is very far from
the provided observations (4 times larger than Class B and 8 times larger than
Class A).

Since the formula used for the FT benchmark provides us with a breakdown
of the complexity into communication time and processing time, and the FT
benchmark allows us to measure the time spent on various tasks, we can take a
closer look at why some of our predictions for F'T are inaccurate. Furthermore,
this differentiation gives us a chance to demonstrate the capability of our system
to predict different resource characteristics separately.

By taking a closer look at the algorithm, we find that the entire algorithm
is made up of setup time and a number of iterations in which an FFT is per-
formed and between which, the data is evolved. The FFT time consists of CPU
(FFTcpu) and communication time (F'FTcomm). We notice that two terms
(setup time and evolve time) were not considered in the original model but have

ScoPred—Scalable User-Directed Performance Prediction 81

significant effect on the total runtime. Motivated by this, we also model these
additional terms (SetupTime and EvolveTime).

T = SetupTime + EvolveTime + FFTcpu + FTcomm (11)

Table 10 shows the breakdown of the runtimes for the B problem size, accord-
ing to the four cost components described above. Furthermore, the percentage
of communication in relation to the overall runtime is given. Unlike our other
FT tests, in these tests we only use three observations for each configuration to
calculate the mean of observations and to input into the system for prediction.

We model SetupTime and EvolveTime both as N/P (obvious from the ob-
servations). The original CPU-time model becomes FFTcpu = (N/P)log(N).
The model for communication remains the same and is now explicitly described
in FFTcomm = (N/P)log(N).

Table 11 shows two tests in which models are generated and predictions are
made for all terms separately. In the first tests, we provide observations for 2, 4,
8, 16, and 32 processors and predict the 64 processor values. In the second test,
we provide observations for 2, 4, 8, and 16 processors and predict the 32 and 64
processor cases. We see that FFTcpu is modeled fairly accurately, with point
predictions less than 11% from the mean of observations. However, F'F'Tcomm
is quite poor, with deviations of 44% to 134% off the mean of observations. The
Total Runtime prediction is simply the sum of the predictions of the individual
components. These predictions are about the same as the predictions of the total
runtime presented in Table 7. The results indicate that the inaccuracy of our
predictions is due to an inaccurate communication model — which is critical, con-
sidering that the communication amounts to up to about 47%. It is well known
that different algorithms may be chosen for the implementation of collective op-
erations. For instance, the all-to-all which dominates in FT can be implemented
using scatter/gather, pairwise-exchange, or a linear algorithm [31] [32]. Without
knowing which algorithms are employed by the MPI library in use, the model

Table 10. Mean values for the FT benchmark observations, broken down into Setup,
Evolve, FFTcpu, and FFTcomm time for Class B

nodes \ | Total Setup | Evolve | FFTcpu | FFTcomm | % fft
class Runtime| Time | Time comm
2 43.87 1.27 2.23 33.68 6.58 16.34%
4 23.27 0.63 1.13 16.80 4.67 21.74%
8 12.19 0.32 0.56 8.35 2.95 26.10%
16 6.78 0.16 0.29 3.96 2.32 36.89%
32 3.72 0.08 0.13 1.96 1.48 42.98%
64 1.95 0.04 0.07 0.97 0.85 46.62%

82 B.J. Lafreniere and A.C. Sodan

Table 11. Results of the problem-size scalability prediction for Class B (512x256x256)
of the FT benchmark, broken down into Setup, Evolve, FFTcpu, and FFTcomm time.
In the upper table, we provide observations from 2-32 processors and predict the 64
processor case. In the lower table, we provide observations from 2-16 processors, and
predict the 32 and 64 processor cases.

nodes\| Total Setup Evolve FFTcpu | FFTcomm | % fft
class | Runtime | Time Time comm
2 43.87 1.27 2.23 33.68 6.58 16.34%
4 23.27 0.63 1.13 16.80 4.67 21.74%
8 12.19 0.32 0.56 8.35 2.95 26.10%
16 6.78 0.16 0.29 3.96 2.32 36.89%
32 3.72 0.08 0.13 1.96 1.48 42.98%
64 2.71 +/- || 0.04 +/- 0.07 +/- || 0.88 +/- 1.72 +/- 46.62%

0.34 0.00 0.01 0.06 0.27

(0.97) (0.01) (0.02) (0.18) (0.76)

+38.74% || 0.00% 0.00% -9.59% +102.35%
nodes\| Total Setup Evolve FFTcpu | FFTcomm | % fft
class | Runtime | Time Time comm
2 43.87 1.27 2.23 33.68 6.58 16.34%
4 23.27 0.63 1.13 16.80 4.67 21.74%
8 12.19 0.32 0.56 8.35 2.95 26.10%
16 6.78 0.16 0.29 3.96 2.32 36.89%
32 430+/- [{0.08+/- |]|0.15+/- 1.93 +/- || 2.14 +/- 42.98%

0.35 0.00 0.01 0.09 0.25

(0.84) (0.01) (0.02) (0.21) (0.60)

+15.49% | 0.00% +15.38% || - 1.70% +44.59%
64 298 +/- || 0.04 +/- || 0.08 +/- || 0.87 +/- 1.99 +/- 46.62%

0.36 0.00 0.01 0.09 0.26

(0.84) (0.01) (0.02) (0.21) (0.60)

+52.56% || 0.00% +14.29% || - 10.62% || +134.12%

cannot properly capture communication behavior. As a future extension, such
information could be made available for all applications per collective operation
in the dynamic directory. Another possible explanation is the small size of the
communication observations for 32 and 64 processors. In a further test, we pro-
vided 2, 4, and 8 processors and predicted 16, 32, and 64 processors. The 16
processor prediction was fairly accurate (11.21% off the mean of observations).

5.4 Linpack

The Linpack benchmark is the standard test of a supercomputer’s performance,
and is used to establish the Top 500 list of supercomputers. The benchmark
application generates and then solves a random dense linear system using LU

ScoPred—Scalable User-Directed Performance Prediction 83

factorization [29]. We use the High-Performance Linpack (HPL) implementation
of the Linpack benchmark provided in [29]. Unlike the FT benchmark, HPL can
be run on any number of processors in a variety of configurations, and can be
run with user-specified problem sizes. As well, HPL allows the user to specify
several characteristics of the algorithm, such as whether the benchmark will use
a binary exchange swapping algorithm, a spread-roll swapping algorithm, or a
hybrid of the two. The user is also able to specify the block size that is used by
the algorithm. The complexity of the benchmark is well studied and is provided
in [32]. Dropping the constant terms which do not make a difference in our
system, the formula is as shown below:

T = N?*/3PQ + N*(3P + Q)/(2PQ) + Nlog(P) + NP (12)

where T is the runtime, IV is the size of one side of the square matrix constituting
the problem size, and P and () describe the arrangement of processors in a P
by @ grid. Thus PQ gives the total number of processors used.

The benchmark was run on square configurations (P = @) of nodes varying
from 2x2 to 8x8, and with N varying from 8000 to 14000 in increments of 1000.
Each configuration was run three times and in all cases we used the binary
exchange swapping algorithm, and a block size of 64. The mean values of the
observations are shown in Table 12.

As with the EP and FT benchmarks, we test processor-scalability, problem-
size scalability, and both processor and problem-size scalability simultaneously.

To test processor-scalability, we ran seven tests, one for each problem size. In
each test, the problem size was kept constant and the processor configuration was
varied. The observations for 2x2, 3x3, 4x4, 5x5, 6x6, and 7x7 processor configura-
tions was provided, and 8x8 was predicted. The results are shown in Table 13.

The quality of the predictions varies between the different problem sizes, with
point estimates from 6.90% to 52.02% from the mean of the corresponding ob-
servations. A possible explanation for the poor predictions is the small number
of provided observations for a relatively complex formula. Multiple linear re-
gression works best with large numbers of observations, and relatively simple
formulas, with few coefficients to calculate. In this case, we have a formula with
five coefficients to calculate (one in front of each term in the formula, and one

Table 12. Mean values for the Linpack benchmark observations

node\ | 8000 | 9000> | 10000%| 11000*> | 12000> | 13000° | 14000*
S1ze
2x2 | 174.07] 255.81| 365.05 | 492.14 | 661.67 | 857.91 | 1066.88
3x3 | 69.12 | 104.54| 148.43 | 201.67 | 264.84 | 344.20 | 436.65
4x4 | 3237 | 49.69 | 74.84 [105.76 | 140.54 | 183.68 | 233.86
5x5 | 20.38 [29.72 | 42.49 | 59.68 81.12 | 111.18 | 145.49
6x6 | 14.30 | 20.48 |27.31 |38.11 5130 | 68.43 | 90.51
7x7 | 11.50 | 15.10 | 20.76 | 29.13 3836 | 46.98 | 59.28
8x8 |8.63 | 11.75 | 15.76 | 20.50 27.16 | 34.47 | 43.87

84 B.J. Lafreniere and A.C. Sodan

Table 13. Processor-scalability tests for the Linpack benchmark

node \| 8000°> | 9000> 10000> | 11000 | 12000%> | 13000> | 14000°
S1ze
2x2 | 174.07 | 255.81 | 365.05 | 492.14 | 661.67 | 857.91 1066.88
3x3 | 69.12 | 10454 | 148.43 | 201.67 | 264.84 | 34420 | 436.65
4x4 | 3237 | 49.69 74.84 105.76 | 140.54 | 183.68 | 233.86
5x5 | 2038 | 29.72 42.49 59.68 81.12 11118 | 145.49
6x6 | 1430 | 20.48 27.31 38.11 51.30 68.43 90.51
7x7 | 1150 | 15.10 20.76 29.13 38.36 46.98 59.28
8x8 | 7.20+/-|| 8.57+/- || 19.49+/- || 31.17+/- || 39.64 +/- || 36.85 +/-|| 35.60+/-
2.19 1.75 1.40 13.16 3.00 6.16 8.05
2.43) || (1.94) (1.55) 14.55) || (3.33) (6.82) (8.91)
-16.56%|| -27.10% || +23.70% || +52.02% || +45.96% || + 6.90% || -18.85%

Table 14. Problem-size scalability tests for the Linpack benchmark

node\ | 8000 | 9000> | 100007 | 11000% | 12000% | 13000> 14000
size
2x2 174.07 | 255.81 | 365.05 | 492.14 | 661.67 | 870.83 +/- 1130.51 +/-
23.26 (24.66) | 65.55 (66.06)
+1.51% +5.96%

3x3 69.12 | 104.54 | 148.43 | 201.67 | 264.84 | 338.75 +/- 424.11 +/-
1.92 (2.04) 5.41 (5.46)
-1.58% -2.87%

4x4 3237 | 49.69 | 74.84 | 105.76 | 140.54 | 177.14 +/- 213.59 +/-
2.58 (2.74) 7.28 (7.34)
-3.56% -8.67%

5x5 20.38 | 29.72 | 4249 | 59.68 | 81.12 | 107.58 +/- 139.34 +/-
4.00 (4.24) 11.28 (11.36)

-3.24% -4.23%

6x6 14.30 | 20.48 | 27.31 | 38.11 | 51.30 | 69.2 +/- 9220 +/-
2.86 (3.03) 8.05 (8.11)
+1.13% +1.87%

X7 11.50 | 15.10 | 20.76 | 29.13 | 38.36 | 48.59 +/- 58.99 +/-
3.57 (3.78) 10.05 (10.13)
+3.43% -0.49%

8x8 8.63 11.75 | 15776 | 20.50 | 27.16 | 35.83 +/- 47.18 +/-

2.13 (2.26) 6.00 (6.05)
+3.96% +7.56%

constant term at the end) and observations for six distinct processor configu-
rations. To contrast, the EP and FT benchmarks only had two coefficients to
calculate, though they also had fewer distinct configurations.

ScoPred—Scalable User-Directed Performance Prediction 85

Table 15. Problem-size/processor scalability test for the Linpack benchmark

node\ | 8000 | 9000> | 10000> | 11000> | 12000> | 13000> | 14000>
size
2x2 | 174.07 | 255.81 | 365.05 | 492.14 | 661.67 | 857.91 | 1084.47 +/]
3.61 (6.13)
+1.65%
3x3 | 69.12 | 104.54 | 14843 | 201.67 | 264.84 | 34420 | 443.60 +/-
1.35 (5.14)
+1.59%
4x4 | 3237 | 4969 | 74.84 105.76 | 140.54 | 183.68 | 231.75 +/-
1.36 (5.14)
-0.90%
5x5 | 2038 | 29.72 | 42.49 59.68 81.12 111.18 | 138.66 +/-
1.26 (5.11)
-4.70%
6x6 | 1430 | 20.48 | 27.31 38.11 51.30 68.43 90.12 +/-
1.29 (5.12)
0.42%
7x7 | 1150 | 15.10 | 20.76 29.13 38.36 46.98 61.56 +/-
1.77 (5.26)
+3.84%
8x8 | 6.88 +/- | 9.77 +/-| 13.68 +/-| 18.78 +/- | 25.25 +/- | 33.28 +/-| 43.03 +/-
1.44 1.49 1.62 1.81 2.06 2.36 2.69 (5.64)
(5.16) | (5.18) | (5.21) | (5.28) (5.37) (5.49)
2036%| -16.89% -13.22% | -8.41% | -7.01% | -3.46% | -1.90%

To test problem-size scalability we ran six separate tests. In each test, the
processor configuration was kept constant, and the problem size was varied. The
observations for 80002 to 12000% were provided, and 130002 and 140002 were
predicted. The results are shown in Table 14. In all of the tests, the predictions
are quite accurate, with all point estimates less than 9% from the mean of
observations, and in all but two predictions, with the mean of observations falling
within both the 95% confidence and prediction intervals.

Next, we test processor and problem-size scalability at the same time. In
this test, we provide the observations for problem sizes 8000? to 130002, and
processor configurations 2x2 to 7x7, and we predict the 14000% problem size for
all processor configurations, and the 8x8 processor configuration for all problem
sizes. The results are shown in Table 15. As with the separate processor and
problem-size tests above, the model predicts problem-size more accurately than
processor-size. However, it is interesting how the processor-size predictions are
improved considerably when both are modeled simultaneously.

In our final set of tests, we test our system with the task of modeling three
parameters (N, P, and Q) of Linpack simultaneously, demonstrating the capa-
bility of our multiple linear regression approach. That is, we are modeling all
three parameters from the complexity estimate above. For these tests, we gath-
ered observations on our local 16 node cluster for N ranging from 3000 to 9000,

86 B.J. Lafreniere and A.C. Sodan

Table 16. Mean values for observations of problem sizes 3000% to 9000 run on 16
nodes in various configurations

config \| 3000> | 4000 | 5000> | 6000> | 7000> | 8000> | 9000*
size
1x16 | 2.95 5.93 1041 | 16.66 | 2522 |36.22 |50.15
2x8 249 [522 [945 1537 | 23.42 [3359 |46.71
4x4 250 [5.14 [9.26 1496 | 2274 |32.87 | 45.57
8x2 2.95 5.95 1042 | 16.60 | 24.84 |35.48 | 48.81
16x1 | 4.23 8.09 13.68 | 21.08 |31.01 |43.51 | 5897

Table 17. Problem-size/processor-configuration test for the Linpack benchmark, pre-
dicting 60002 problem size, and 4x4 processor-configuration

config\| 3000 | 4000 | 5000° 6000> 7000> | 8000> | 9000°
size
1x16 | 2.95 5.93 10.41 167 +/- | 2522 | 36.22 50.15
0.15 (0.72)
+0.21%
2x8 2.49 5.22 9.45 14.96 +/- | 2342 | 33.59 46.71
0.11 (0.71)
-2.63%

4xd | 2.62+/- | 4.97 +/- | 8.84 +/- | 14.57 +/- | 22.51 +/- 33.01 +/-| 46.42 +/-
0.13 0.14 0.15 0.15 (0.71)| 0.16 0.19 0.27

(0.71) (0.71) (0.71) (0.72) (0.72) (0.75)
+5.09% | -3.22% | -4.53% | -2.63% -1.01% | +0.43% | +1.87%
8x2 2.95 5.95 10.42 16.05 +/- | 24.84 35.48 48.81
0.15 (0.71),
-3.32%
16x1 | 4.23 8.09 13.68 20.85 +/- | 31.01 43.51 58.97
0.18 (0.72),
-1.09%

for all possible configuration of 16 processors (1x16, 2x8, 4x4, 8x2, and 16x1).
The mean values for the observations are shown in Table 16.

As a first test, we provide all observations except those for the 60002 problem
size and 4x4 processor configuration, and then predict the excluded row and
column. The results are shown in Table 17. The results are very good, with all
of the point estimates less than 6% from the mean of observations, and the 95%
prediction interval accurately capturing the mean of observation.

Our second set of tests is somewhat more challenging, predicting the 16x1
processor configuration, and the 90002 problem size. The challenge comes from
the 16x1 problem size, which shows significantly different runtimes from the other
processor-configurations. The results are shown in Table 18. The predictions are
quite accurate, this time with all point estimates less than 4% from the mean

ScoPred—Scalable User-Directed Performance Prediction 87

Table 18. Problem-size/processor-configuration test for the Linpack benchmark, pre-
dicting the 90002 problem size, and 16x1 processor-configuration

config\ 3000 | 4000> | 5000> | 6000 | 7000 | 8000> | 9000>
size
1x16 | 2.95 5.93 10.41 1666 | 2522 | 3622 | 49.88 +/-
0.32 (0.65)
-0.52%
2x8 | 2.49 5.22 9.45 1537 [2342 [3359 | 46.88+/-
0.44 (0.71)
+0.36%
4x4 | 2.50 5.14 9.26 1496 | 2274 | 3287 46.75 +/-
0.33 (0.66)
+2.59%
8x2 | 2.95 5.95 1042 [1660 | 2484 | 3548 50.18 +/-
0.27 (0.63)
+2.81%
16x1 | 429 +/- | 7.84 +/- | 1321 +/-| 20.74 +/-| 30.75 +/-| 43.61 +/-| 59.64 +/-
0.74 0.79 0.80 0.78 0.78 0.83 0.95 (1.10)
093) | (0.97) | (0.98) | (0.96) | (0.97) | (1.01)
+131% | -3.03% | -3.38% | -1.63% | -0.81% | +0.22% | + 1.14%

of the observations, and nearly all of the means of observations within the 95%
confidence and prediction intervals (the exceptions being 4x4 9000? and 8x2
90002).

6 Summary and Conclusions

We have presented an approach to employ both complexity estimates from the
user and historical information from previous runs to make scalable predictions
in the processor-number dimension (processor scalability), problem-size dimen-
sion (problem-size scalability), and processor-number/problem-size dimensions
simultaneously. The solution applied is multiple linear regression, which not only
provides predictions of mean values but also confidence and prediction intervals.
The user provides rough complexity estimates and the coefficients are determined
by the prediction system.

In our tests on the NAS EP and FT benchmarks, and the Linpack bench-
mark we have demonstrated that this approach is capable of making reliable
predictions if the complexity estimate / model provided by the user are decently
accurate. This requirement can create problems when communication libraries
are utilized, as they may employ different algorithms, or even switch between
algorithms depending on different parameters of the communication operations.
The former problem can be addressed by documenting the complexity of the
communication algorithms implemented in popular libraries, and possibly mak-
ing this information available for automatic retrieval. Another difficulty can be

88 B.J. Lafreniere and A.C. Sodan

that problem-sizes and the number of nodes used often grow exponentially, as
observed in the FT benchmark. This leads to the prediction of data points far
away from the set of observations, which is more challenging.

We have also demonstrated that different characteristics such as computa-
tion and communication time can be considered and predicted separately, which
is useful for coscheduling in a time-sharing environment. Another application
would be prediction of an application’s memory consumption using derived
space-complexity estimates which are available for many algorithms.

Future work includes automatic checking of whether the assumptions regard-
ing the error term hold and rejecting or modifying a model for which they are
not met. A more advanced extension would be to experiment with automati-
cally correcting inaccurate models by tear-down and build-up approaches of the
function. That such approaches are feasible has been shown in [33]. How feasible
it is for a user to provide the necessary models requires further exploration, as
does the possibility of replacing or supplementing user estimates with compiler-
derived models. The required models could also potentially be generated in a
fully automated manner [34].

Acknowledgement

This research was supported by CFI via Grant No. 6191 and partially by NSERC.
We thank SHARCNET for allowing us time on 64 nodes of their cluster at
McMaster University, and in particular Mark Hahn for assisting us with running
our tests.

References

[1] Angela C. Sodan and Lun Liu. Dynamic Multi-Resource Monitoring for Predictive
Job Scheduling with ScoPro. Technical Report 04-002, U of W, CS Department,
February 2005.

[2] Angela C. Sodan and Xuemin Huang. Adaptive Time/Space Scheduling with
SCOJO. Int. Symp. on High-Performance Computing Systems (HPCS), Win-
nipeg/Manitoba, May 2004, pp. 165-178.

[3] Angela C. Sodan and Lin Han. ATOP-Space and Time Adaptation for Parallel
and Grid Applications via Flexible Data Partitioning. 3rd ACM/IFIP/USENIX
Workshop on Reflective and Adaptive Middleware, Toronto, Oct. 2004.

[4] Angela C. Sodan and Lei Lan. LOMARC-Lookahead Matchmaking in Multi-
Resource Coscheduling. JSSPP (Workshop on Job Scheduling Strategies for Par-
allel Processing), New York / USA, June 2004, to appear in Springer.

[5] W. Cirne and F. Berman. A Model for Moldable Supercomputer Jobs. Proc. In-
ternat. Parallel and Distributed Processing Symposium (IPDPS), April 2001.

[6] Angela C. Sodan. Loosely Coordinated Coscheduling in the Context of Other Dy-
namic Approaches for Job Scheduling—A Survey. Concurrency & Computation:
Practice & Experience. Accepted for publication. (57 pages).

[7] V. K. Naik, S. K. Setia, and M. S. Squillante. Processor Allocation in Multi-
programmed Distributed-Memory Parallel Computer Systems. J. of Parallel and
Distributed Computing, Vol. 46, No. 1, 1997, pp. 28-47.

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

ScoPred—Scalable User-Directed Performance Prediction 89

Eitan Frachtenberg, Dror Feitelson, Fabrizio Petrini, and Juan Fernandez. Flex-
ible CoScheduling: Mitigating Load Imbalance and Improving Utilization of Het-
erogeneous Resources. Proc. Int. Parallel and Distributed Processing Symposium
(IPDPS’03), Nice, France, April 2003.

R.A. Gibbons. Historical Application Profiler for Use by Parallel Schedulers. Proc.
IPPS Workshop on Job Scheduling Strategies for Parallel Processing (JSSPP),
April 1997, Lecture Notes in Computer Science 1291, Springer Verlag.

Mu’alem A and Feitelson D G. 2001. Utilization, Predictability, Workloads and
User Runtime Estimates in Scheduling the IBM SP2 with Backfilling. IEEE Trans-
actions Parallel & Distributed Systems June 2001, 12(6).

Perkovic D and Keleher P J. Randomization, Speculation, and Adaptation in Batch
Schedulers. Proc. ACM/IEEE Supercomputing (SC), Dallas/TX, Nov. 2000.
Chiang S-H and Vernon M K. Characteristics of a Large Shared Memory Pro-
duction Workload. Proc. Workshop on Job Scheduling Strategies for Parallel Pro-
cessing (JSSPP), June 2001, Lecture Notes in Computer Science 2221, Springer-
Verlag, pp. 159-187.

Smith W, Taylor V, and Foster 1. Using Run-Time Predictions to FEstimate
Queue Wait Times and Improve Scheduler Performance. Proc. Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP), 1999, Lecture Notes in
Computer Science 1659, Springer Verlag.

Arpaci-Dusseau A C, Culler D E, and Mainwaring A M. Schedul-
ing with Implicit Information in Distributed Systems. Proc. SIGMET-
RICS’98/PERFORMANCE’98 Joint Conference on the Measurement and Mod-
eling of Computer Systems, Madison/WI, USA, June 1998.

M.E. Crovella and T.J. LeBlanc. Parallel Performance Prediction Using Lost Cy-
cles Analysis. Proc. Supercomputing (SC), 1994.

K. Keahey, P. Beckman, and J. Ahrens. Ligature: Component Architecture for
High Performance Applications. The International Journal of High Performance
Applications, 14(4):347-356, Winter 2000.

Frederik Vraalsen, Ruth A. Aydt, Celso L. Mendes, and Daniel A. Reed. Per-
formance Contracts: Predicting and Monitoring Grid Application Behavior. Proc.
2nd Internat. Workshop on Grid Computing, Nov. 2001.

G. Marin and J. Mellor-Crummey. Cross-Architecture Predictions for Scientific
Applications Using Parameterized Models. Proc. Joint. Internat. Conf. on Mea-
surement and Modeling of Computer Systems (SIGMETRICS), New York, NY,
USA, June 2004.

A. Snavely, L. Carrington, and N. Wolter. Modeling Application Performance by
Conwvolving Machine Signatures with Application Profiles. Proc. IEEE 3th Annual
Workshop on Workload Characterization, 2001.

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl .nist.gov
/div898/handbook, retrieved October, 2004.

J. Cohen, P. Cohen, S.G. West, and L.S. Alken. Applied Multiple Regres-
ston/Correlation Analysis for the Behavioural Sciences, 3rd ed. Mahwah, New
Jersey, USA: Lawrence Erlbaum Associates, 2003.

W. Mendenhall, R.J. Beaver, and B.M. Beaver. Introduction to Probability and
Statistics, 10th edition. Pacific Grove, CA, USA: Brooks/Cole Publishing Com-
pany, 1999.

D.H. Bailey, T. Harris, W.C. Saphir, R.F. Van der Wijngaart, A.C. Woo, M.
Yarrow. The NAS Parallel Benchmarks 2.0. NAS Technical Report NAS-95-020,
NASA Ames Research Center, Moffett Field, CA, 1995.

90

[24]

[25]

[26]

[27]

[28]

[29]

[30]
31]

[32]

[33]

[34]

B.J. Lafreniere and A.C. Sodan

A. Grama, A. Gupta, G. Karypis, V. Kumar. Introduction to Parallel Computing,
2nd ed. Addison Wesley, 2003.

M. Yarrow, R.F. Van der Wijngaart. Communication Improvement for the LU
NAS Parallel Benchmark: A Model for Efficient Parallel Relazation Schemes.
NAS Technical Report NAS-97-032, NASA Ames Research Center, Moffett Field,
CA, 1997.

E. Barszcz, R. Fatoohi, V. Venkatakrishnan, S. Weeratunga. Solution of Regular,
Sparse Triangular Linear Systems on Vector and Distributed-Memory Multiproces-
sors. NAS Applied Research Branch Report RNR-~94-007, NASA Ames Research
Center, Moffet Field, CA, 1993.

Maple 9.5-Advanced Mathematics Software for Engineers, Academics, Re-
searchers, and Students, http://www.maplesoft.com /products /maple /index
.aspx, retrieved December 2004.

OpenMaple-An API into Maple, http://www.adaptscience .com/ products/
/maple/html/OpenMaple.html, retrieved December 2004.

HPL-A Portable Implementation of the High-Performance Linpack Benchmark
for Distributed-Memory Computers, http://www.netlib.org/benchmark /hpl/, re-
trieved June, 2005.

Tan Foster. Designing and Building Parallel Programs. Reading, MA: Addison-
Wesley, 1995.

S. S. Vadhiyar, G. E. Fagg, and J. Dongarra. Automatically Tuned Collective
Communications. IEEE/ACM Supercomputing, Nov. 2000.

J. Pjesivac-Grbovié¢, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and J. J.
Dongarra. Performance Analysis of MPI Collective Operations. PMEO-PDS, Apr.
2005.

Ljupco Todorowski, Peter Ljubi¢, and Saso Dzeroski. Inducing Polynomial Equa-
tions for Regression. ECML, 2004.

E. Schmidt, A. Schulz, L. Kruse, G. von Célln, and W. Nebel. Automatic Gener-
ation of Complexity Functions for High-Level Power Analysis. PATMOS, 2001.

Open Job Management Architecture for the
Blue Gene/L Supercomputer

Yariv Aridor!, Tamar Domany!, Oleg Goldshmidt®,
Yevgeny Kliteynik!, Jose Moreira?, and Edi Shmueli'

! IBM Haifa Research Labs, Haifa, Israel
{yariv, tamar, olegg, kliteyn, edi}@il.ibm.com
2 IBM Systems and Technology Group, Rochester MN

jmoreira@us.ibm.com

Abstract. We describe an open job management architecture of the
Blue Gene/L supercomputer. The architecture allows integration of vir-
tually any job management system with Blue Gene/L with minimal ef-
fort. The architecture has several ”openness” characteristics. First, any
job management system runs outside the Blue Gene/L core (i.e. no part
of the job management system runs on Blue Gene/L resources). Sec-
ond, the logic of the scheduling cycle (i.e. when to match jobs with re-
sources) can be retained without modifications. Third, job management
systems can use different scheduling and resources allocation models and
algorithms.

We describe the architecture, its main components, and its opera-
tion. We discuss in detail two job management systems, one based on
LoadLeveler, the other — on SLURM, that have been successfully in-
tegrated with Blue Gene/L, independently of each other. Even though
the two systems are very different, Blue Gene/L’s open job management
architecture naturally accommodated both.

1 Introduction

Blue Gene/L is a highly scalable parallel supercomputer developed by IBM Re-
search for the Lawrence Livermore National Laboratory [1]. The supercomputer
is intended to run highly parallel computational jobs developed using the pop-
ular MPI programming model [2,3]. The computational core of the full Blue
Gene/L consists of 64 x 32 x 32 = 65536 = 2'6 nodes connected by a multi-
toroidal interconnect [5]. A Blue Gene/L prototype of a quarter of the full size
(16 x 32 x 32 = 16384 = 2! nodes) is currently rated the fastest supercomputer
in the world [4]. The computational core is augmented by an I/O subsystem that
is comprised of additional nodes and an internal control subsystem.

An essential component of parallel computers is a job management system
that schedules submitted jobs for execution, allocates computational and com-
munications resources for each job, launches the jobs, tracks their progress, pro-
vides infrastructure for runtime job control (signaling, user interaction, debug-
ging, etc.), and handles job termination and resource release. A typical job man-
agement system consists of a master scheduling daemon and slave daemons that

D. Feitelson et al. (Eds.): JSSPP 2005, LNCS 3834, pp. 91-107, 2005.
© Springer-Verlag Berlin Heidelberg 2005

92 Y. Aridor et al.

launch, monitor, and control the running parallel jobs upon instructions from
the master and periodically report the jobs’ state. Quite a few such systems are
available: the Portable Batch System (PBS, see [6]), LoadLeveler [7], Condor,
[8], and SLURM [9], are but a few examples.

Job management systems are usually tightly integrated with the multicom-
puters they run on. Often the architectural details (such as the hardware and
the OS, the interconnect type and topology, etc.) of the machine are exposed to
— and hardwired into — the job management system. Even if this is not the
case, there is still the problem that the slave daemons run on the same nodes
that execute the user jobs. This means that the machine architecture and the
requirements of the applications put restrictions on the job management system
that can be used on the particular machine: a job management system that has
not been ported to the particular architecture cannot be used. On the other
hand, an application that needs, for example, a particular version of an oper-
ating system can only be run if there is a corresponding port of the slave job
management daemons available.

This paper describes the open job management architecture we developed for
Blue Gene/L. By “open” we mean that virtually any job management system, be
it a third party product or an in-house development, can be integrated with Blue
Gene/L without architectural changes or a major porting effort. In other words,
our architecture decouples the job management system from Blue Gene/L’s core,
thus removing the restrictions mentioned above. The particular “openness char-
acteristics” of Blue Gene/L’s job management architecture are:

1. The whole job management system runs outside of Blue Gene/L’s core, keep-
ing Blue Gene/L clean of any external software and removing the traditional
dependency of the job management system on the core architecture.

2. The job management system logic can be retained without modifications.
For instance, while one job management system may search for available
resources each time it schedules a job, another may partition the machine in
advance and match the static partitions with submitted jobs. Our architec-
ture allows both schemes, as well as many others.

3. The job management system can access and manipulate Blue Gene/L’s re-
sources in a well-defined manner that allows using different scheduling and
resource allocation schemes. For instance, a job management system can use
any scheduling policy (first come first served, backfilling, etc.),! and any al-
gorithm for matching resources to the job (first fit, best fit, and so on), since
Blue Gene/L presents raw information on its components without imposing
a particular model of allocation of available resources.

In this paper we present the basic structure of Blue Gene/L’s open job man-
agement architecture below, discuss its main features, and describe an imple-
mentation of a job management system based on IBM’s LoadLeveler [7] for Blue

1 At present, Blue Gene/L does not support checkpoint/restart, and therefore cannot
preempt running jobs. This is not a limitation of our job management architecture:
once the core support is added it will be simple to add the corresponding functionality
to the job management system described here.

Open Job Management Architecture for the Blue Gene/L Supercomputer 93

Gene/L. We also describe a very different job management system based on
SLURM [9] that has recently been integrated successfully with Blue Gene/L.
The sequence of job and resource management operations in the two systems
differs very significantly. Nevertheless the architecture is capable of naturally
accommodating both schemes.

The rest of the paper is organized as follows. Section 2 describes Blue Gene/L’s
open job management architecture in detail. Section 3 describes our implemen-
tation of LoadLeveler for Blue Gene/L. Section 4 shows how a very different
SLURM-based job management system can be integrated into the same frame-
work. Section 5 presents some experiments and performance measurements we
conducted, and Section 6 concludes the paper.

2 The Open Job Management Architecture

The core of the job management infrastructure of Blue Gene/L consists of two
main components. One is a portable API we developed to interact with the
Blue Gene/L’s internal control system. The control system is responsible for
everything that happens inside the Blue Gene/L core, from boot to shutdown.
In particular, it implements all the low level operations that are necessary for
managing the Blue Gene/L’s resources and the parallel jobs that run in the
core. The API provides an abstraction for the job management functionality,
namely access to information on the state of Blue Gene/L (which computational
and communications resources are busy or free, which components are faulty
or operational, what jobs are running, what resources are allocated to them,
etc.) and a set of job and resource management primitives (such as allocation
of resources, booting the nodes, launching, signaling, and terminating jobs, and
so on), while hiding the internals of Blue Gene/L from the job management
system. We called the API the Job Management Bridge API, or Bridge API for
short, since it provides a “bridge” between the job management system and the
internal Blue Gene/L control system.

The Bridge API is essential for providing Blue Gene/L with the openness
characteristics 1 and 3 described above. Moreover, the implementation of the
API does not impose any restrictions on the order in which the primitives can
be invoked, which is what provides property 2 (see also “Order of operations”
in Section 2.2 below).

The second component is a special program called mpirun, instances of which
run on a cluster of designated machines outside of the Blue Gene/L core. Each
instance of mpirun is a “proxy” of the real parallel job running on the Blue
Gene/L core, and communicates with it using the Bridge API. The slave dae-
mons of the job management system run on the same dedicated cluster and
interact only with the mpiruns (see Figure 1). All the job control operations
such as launching, signals, and termination are passed from a daemon to the
corresponding mpirun, and from the mpirun to the real parallel job it controls.
All the feedback from the running parallel job is delivered to the mpirun and
passed to the job management system. Thus, the traditional job management

94 Y. Aridor et al.

architecture is preserved: the job management system sees Blue Gene/L as a
cluster running mpiruns. This provides a clean separation between the Blue
Gene/L core and the job management system satisfying the openness property 1
above.

From the point of view of the slave daemons the mpiruns represent the real
jobs. The mpiruns communicate with Blue Gene/L’s internal control system via
the Bridge API, which provides the necessary abstraction. The master daemon
that manages a queue of submitted jobs?, schedules jobs, and allocates resources,
communicates with the slaves and uses the Bridge API to query the machine
state and determine which resources are available (cf. Figure 1).

BlueGene/L Core

Four parallel jobs are running
Parallel Jobs <] on the BlueGene/L core
Each job is monitored by a
Compute and single mpirun program
[
10 nodes t The job management system
daemons run outside the
I I I I I BlueGene/L core

Control System

[

o

o

- - =

lmplrunl lmplrunl S

i |8

Slave Slave 3

Cluster Nodes \ i
G

Master T
3

Submitted Jobs

Fig. 1. Blue Gene/L’s open job management architecture

2.1 Resource Management on Blue Gene/L

A central part of the job management system is allocating resources for each
scheduled job. On Blue Gene/L each job requests — and is allocated — several
classes of resources, namely computational nodes, interconnect resources such
as network switches and links, and I/O resources. For reasons of protection and
security Blue Gene/L does not allow messages belonging to one job pass through
hardware allocated to another job (this also helps avoiding contention on network

2 There may be more than one such queue, as is the case in Condor [8]. This is internal
to the job management system and is transparently supported by our architecture.

Open Job Management Architecture for the Blue Gene/L Supercomputer 95

resources and simplifies routing). Thus, all the resources allocated to a job are
dedicated.

The set of resources that belong to a job is called a partition. A partition
consists of a set of computational nodes® connected according to the job’s re-
quirements and the corresponding network and I/O resources. Before a job can
run its partition must be “booted.” By booting a partition we mean the process
of booting and configuring all the nodes that belong to the partition, wiring all
the network switches as required, and performing all the initialization required
to start a job. This process is not instantaneous in general, and after issuing the
appropriate command the system should monitor the partition’s status until the
partition is ready (cf. “Partition Management” in Section 2.2 below). Destroying
a partition is the reverse process.

In what follows we will treat Blue Gene/L partition management as an integral
part of the job management system.

2.2 The Bridge API

The Bridge API is logically divided into several major areas: the data retrieval
part, the partition management part, and the job management part. The API
can be called directly from C or C++ code. All the Bridge API functions return
a status code that indicates success or failure of each operation.

2.2.1 Machine State Query

To allocate resources for a job, the scheduler must have access to the current
state of Blue Gene/L. There is a number of accessor functions that will fetch the
information on the machine as a whole or parts thereof from Blue Gene/L itself.
Each accessor will allocate memory for the structure retrieved and fill it with
data. This arrangement allows using the structures in name only, rather than in
size, keeping the details hidden from the client. This means, however, that client
code must free the memory when a data structure is no longer needed, and the
API provides the corresponding functions.

The highest-level function that provides access to the machine state is get
BGL () that brings the full snapshot of the current state of all the Blue Gene/L re-
sources into the scheduler. Once the snapshot is available, a generic data retrieval
function, get data() can be called to retrieve various components, properties,
and fields: it accepts a pointer to the queried structure, a field specification, and
a pointer to memory where the query result is written. This is the only mech-
anism to access the machine resources, and the implementation details are not
exposed to the client.

3 We assume below that a partition is a logical rectangle of nodes with dimensions
that are specified by the job to which the partition is allocated. There may be other
policies that specify the partitions’ shapes: the jobs may specify the overall number
of nodes only, letting the job management system determine the dimensions; the
partition sizes may be predetermined and not related to job sizes at all (cf. Section
4 below); in general, partitions don’t even have to be rectangular. All these options
are supported by our architecture.

96 Y. Aridor et al.

2.2.2 Partition Management

The partition management API facilitates adding and removing partitions, boot
and shutdown of partition components, and queries of the partition state. The
basic functions are:

1. add partition() — aggregate some of the Blue Gene/L resources into a
partition and add the partition to the system. This operation, as well as
the complementary remove partition() (cf. item 2 below) does not cause
any physical side effects in the Blue Gene/L core but only creates a logical
association of resources. Each resource, for instance a compute node or a
network link, can belong to more than one partition as long as no more
than one of the partitions is active (cf. item 3 below). Partitions may be
added without reference to a particular job. This facilitates such operations
as partition reservation. A job management system can limit the number
of partitions that a resource can belong to, and, once add partition() is
called, consider the partition components “allocated” and unavailable until
the partition is removed, but this is not mandatory.

2. remove partition() — remove a partition from the system. This does not
necessarily mean that the resources that belonged to that partition are free
— some or all of them may belong to other partitions, one of which may be
active. Just like add partition(), remove partition() does not have any
physical consequences, it only removes a logical association of resources.

3. create partition() — activate a partition, i.e. boot all the nodes that
belong to it, connect all the switch ports according to the partition topology
specification, and prepare the partition to run a job. This operation, together
with the complementary destroy partition() (cf. item 4 below) cause real
changes in the Blue Gene/L core. In particular, any core resource, e.g. a node
or a network link, can belong only to one active partition at a time, and no
other partition that shares one or more resources with an active partition
can be activated until the active partition is destroyed (cf. item 4 below).
Executing create partition() does not necessarily mean that the partition
is allocated to a job — it is a policy decision left to the job management
system. A partition that is already active but not allocated to a particular
job can be used to run a job from the submit queue, if it fits the requirements.

4. destroy partition() — deactivate, (i.e. shut down) a partition, usually
after the job running in the partition terminates. This does not destroy
logical associations between Blue Gene/L resources and partitions — the
partition still exists and its resources remain appropriately marked.

5. get partition() — retrieves the full information about a partition. This
function is useful for various queries, the most important of which is checking
the partition’s state, for instance whether the partition is active or not.

2.2.3 Job Management
The job management APT facilitates control of the jobs running on Blue Gene/L.
The basic job management functions are:

Open Job Management Architecture for the Blue Gene/L Supercomputer 97

1. add job() — adds a job to Blue Gene/L. This is a purely logical operation
that does not mean that the job starts to run, or has been scheduled, or has
been allocated resources. It is, however, a necessary step before a job can
run on Blue Gene/L.

2. remove job() — removes a job from Blue Gene/L. This normally happens
after the job terminates, whether normally or abnormally.

3. start job() — launches the job. This does not necessarily mean that the
job starts running immediately, nor is it implied that the job’s partition is
active: the job can remain “pending,” i.e. waiting for its partition to boot,
and it will start when the boot is completed.

4. signal job() — send a signal to a job. The job does not have to be running.
However, there is not much sense in sending a signal to a job that is not
running: the signal will either be ignored or an error code will be returned
that can be handled by the caller.

5. cancel job() — cancel a job. This is a special case of signal job() used
to terminate a running job. Again, there is no sense is canceling a job that
is not yet running — one should use remove job() (item 2 above).

6. get job() — retrieves the full information about the job. The most im-
portant use is to query the job’s status, for instance whether or not it has
terminated.

2.2.4 Order of Operations

It is important to note that very few restrictions are placed on the order of the
above Bridge API functions. Consider the following scenarios that show how few
dependencies there are:

— Partitions can be created in advance, i.e. not as a result of a request from a
particular job. Thus, some or all of add partition(), create partition(),
and get partition() (items 1, 3, and 5 from "Partition Management”
above) may precede the scheduling cycle that will consist of job manage-
ment operations only. For instance, the SLURM-based job management sys-
tem described in Section 4 below takes advantage of this.

— A job can be started before a partition is ready and will wait for the
partition to boot, providing a “launch and forget” functionality. In prin-
ciple there is nothing that prevents monitoring of the status of such “pend-
ing” job, or even terminating it before it starts executing — thus calls to
add job(), start job(), and get job() (items 1, 3, and 6 from ”Job Man-
agement” above) can precede calls to functions create partition() and
get partition() (items 3 and 5 from ”Partition Management” above).

— In off-line (batch) scheduling systems, when the job list is known in advance,
one can populate the system with all the needed partitions and jobs. The
scheduling system will just need to start each job in its designated partition
when the time comes. Thus add partition() and add job() can be called
in the preparation phase and only create partition() and start job()
will be called for each job.

There are some trivial exceptions, of course, e.g., a job must be added to the
system with add job()) before it can start via start job(), a partition must be

98 Y. Aridor et al.

added with add partition() before it can be queried with get partition(),
and calling destroy partition() will have no effect unless create parti-
tion() has been called.

In general, there are purely logical operations, such as

— add partition(),

— remove partition(),
add job(),

— remove job(),

physical operations like

— create partition(),
— destroy partition(),
— start job(),
— signal jobQ),
— cancel job(Q),

and query operations like

— get partition(),
— get job().

The logical operations have no real side effects (apart from storing or erasing
information), and accordingly add partition() and add job() can be called
virtually any time. The physical and query operations can be performed only
on objects that logically exist, and one cannot destroy an inactive partition of
signal or cancel a job that is not running.

These restrictions will be satisfied by any sane job management system. No
other restrictions are imposed on the logic of the job management system, and
any job cycle model can be used.

2.3 mpirun

A typical job management system consists of a master scheduling daemon run-
ning on the central management node and slave daemons that execute on the
cluster or multicomputer nodes. The master daemon accepts the submitted jobs
and places them in a queue. When appropriate, it chooses the next job to execute
from that queue and the nodes where that job will execute, and instructs the
slave daemon on that machine to launch the job. The slave daemon forks and
executes the job, which can be serial or parallel. It continuously monitors the
running job and periodically reports to the master that the job is alive. Even-
tually, when the job terminates, the slave reports the termination event to the
master, signaling the completion of the job’s lifecycle.

The slave daemons are not allowed to run inside the Blue Gene/L core, any
action they perform has a corresponding Bridge API function that delegates
the action to Blue Gene/L’s internal control system. The slave daemons run on
designated machines outside the Blue Gene/L core, and instead of forking the

Open Job Management Architecture for the Blue Gene/L Supercomputer 99

real user job they execute mpirun, which starts the real job in Blue Gene/L’s core
via the Bridge API (as shown in Figure 1). A slave daemon needs monitor only
the state of the corresponding mpirun, not the state of the real parallel job, while
mpirun queries the state of the real job via the Bridge API and communicates
the result to the slave daemon.

When mpirun detects that the job has terminated — normally or abnormally
— it exits with the return code of the job. The slave reports the termination
event and the exit code to the master, signaling the completion of that job’s
lifecycle.

On the other hand, a failure of mpirun is noticed by Blue Gene/L’s internal
control system via the usual socket control mechanisms. The parallel job the
mpirun controlled is orphaned, loses its communication channel with the job
management system, and, in general, dies. Thus, a parallel job and the corre-
sponding mpirun do indeed form a single logical entity with the same lifespan.

The role of mpirun is not limited to just querying the state of the parallel job.
It can actively perform other actions such as allocating and booting a partition
for the job, as well as cleaning and halting the partition when the job terminates.
Obviously, in this case the master daemon should not concern itself with these
additional tasks.

This flexibility allows different job management system to optimize their per-
formance by designating a different set of responsibilities to mpirun. For example,
in our LoadLeveler port to Blue Gene/L (see Section 3 below), the booting of
the partition is initiated by the LoadLeveler master daemon, but it is the mpirun
that waits for the partition to boot and launches the job on it. This allows the
single scheduling thread of LoadLeveler to consider the next jobs in the queue,
even if the partition for the previous job is not yet ready.

Redirection of standard input and output to and from the parallel job is an
additional important role of mpirun. Any input that is received on mpirun’s
standard input, is forwarded to the parallel job running on the Blue Gene/L
core. When the parallel job writes to standard output or error, its output is
forwarded back to mpirun’s standard output or error respectively.

This redirection is important because it is similar to the way job management
systems handle their jobs’ I/O. When the slave daemons fork and execute jobs,
they redirect the jobs standard input and output to files. For a Blue Gene/L
job, this means that the files used for mpirun’s standard output and error will
actually contain the parallel job’s standard output and error, and the file used
as an input for mpirun will be forwarded to the parallel job.

2.4 Related Work

There are other efforts to provide open architectures for resource and job man-
agement, notably in the realm of grid computing, e.g. GRAM [10], DRMAA [11].
The main focus in those efforts lies in management of heterogeneous resources
and providing consistent, standardized APIs in heterogeneous systems. While
there are similarities with our Bridge API, our focus is quite different. We have
a homogeneous machine, and we are interested in allowing any job management

100 Y. Aridor et al.

system to be integrated with it, while GRAM and DRMAA aim to allow a single
job management system to operate on heterogeneous resources, or to facilitate
co-operation between local schedulers and global meta-schedulers.

3 LoadLeveler for Blue Gene/L

To validate our design we implemented our own job management system on
the basis of LoadLeveler, a job scheduling system developed by IBM [7], and
integrated it with Blue Gene/L. LoadLeveler is a classical scheduling system
that consists of a master scheduling daemon and slave daemons that launch
and monitor jobs on cluster nodes. We successfully deployed LoadLeveler on a
16 x 32 x 32 = 2 node Blue Gene/L prototype [4]. LoadLeveler launches and
controls mpiruns on the job management cluster of 4 nodes, and the mpiruns,
in turn, control the real parallel jobs running on the Blue Gene/L core.
Adapting LoadLeveler to work with Blue Gene/L included development of a
partition allocator that used the Bridge API and was called by the LoadLeveler
scheduler, and making the slave daemons call mpirun with the proper arguments.
The difficulty of creating a partition allocator depends primarily on the sophis-
tication of the associated algorithms, which may vary according to the needs of
the customer. The actual integration with the Bridge API and mpirun is simple.

3.1 LoadLeveler Job Cycle Model

LoadLeveler does not make any assumptions regarding Blue Gene/L’s workload.
It is an on-line system where jobs of any size and priority can arrive at any time.
The lifecycle of a job on Blue Gene/L starts when a user submits the job to the
job management system. The job is placed on a queue, and the scheduler picks
a job from the queue periodically and attempts to schedule it.

The scheduler’s task is to allocate a partition to the chosen job and launch the
job on the partition. The job carries a set of requirements that the partition must
satisfy. In particular, the job may specify its total size or a particular shape (a
three-dimensional rectangle of specified size x X y X z), and the required partition
topology — a mesh or a torus (cf. [5]). It may happen that no partition that
can accommodate the job can be found, then the scheduler may choose another
job from the queue, according to some algorithm (e.g. backfilling, cf. [12]). The
details of possible scheduling algorithms are beyond the scope of this paper —
we focus on the general architecture of the job management system that can
accommodate different schedulers.

In general, the input for the scheduler of the job management system con-
sists of the job requirements and the current state of Blue Gene/L’s resources.
A partition that contains the necessary resources (computational nodes, com-
munication, and I/0) is created, and the job is launched. For each terminating
job the corresponding partition is destroyed, thus returning the resources to the
system for further reuse.

as

1.

10.

Open Job Management Architecture for the Blue Gene/L Supercomputer 101

Down to a finer level of details, the typical job lifecycle in Blue Gene/L looks
follows:

The scheduler obtains the full information on the machine state to make a
decision whether to launch or defer the job and how to allocate resources
for it. The information is obtained via the get BGL() function of the Bridge
APT (cf. “Machine State Query” in Section 2.2).

If suitable resources cannot be found another job may be picked from the
submissions queue. Once resources are found they are aggregated into a par-
tition, and the Blue Gene/L’s control system is informed via the add parti-
tion() function of the Bridge API (item 1 in “Partition Management” in
Section 2.2).

The new partition (i.e. all the computational and I/O nodes that belong to it)
is booted next. This is accomplished via the create partition() function of
the Bridge API (item 3 in “Partition Management” in Section 2.2). From this
moment on the resources included in the partition are considered effectively
“allocated” by LoadLeveler.

. The boot is not instantaneous, so the job management system will monitor

the partition’s state until the partition is ready to run the job. The probing
functionality is provided by the get partition() function of the Bridge
API (item 5 in “Partition Management” in Section 2.2).

Once the partition is up and ready, the scheduled job is added to Blue
Gene/L’s control system. The add job() of the Bridge API (item 1 in “Job
Management” in Section 2.2) is used for this task.

The next logical task is launching the job on the prepared partition. This is
achieved via the start job() function of the Bridge API (item 3 in “Job
Management” in Section 2.2).

The system then keeps monitoring the running job, checking its status pe-
riodically using the get job() function (item 6 in “Job Management” in
Section 2.2) until the job terminates, normally or abnormally.

Once the job terminates, it is removed from the system via the remove job()
(item 2 in “Job Management” in Section 2.2) and steps can be taken to
release the resources.

The partition is shut down — a task performed using the destroy parti-
tion() of the Bridge API (item 4 in “Partition Management” in Section
2.2).

The now idle partition can be removed — the remove partition() (item 2
in “Partition Management” in Section 2.2) provides the necessary facilities
— and the corresponding resources can be reused for other jobs from this
moment on.

Note that if a job fails the system releases the resources in exactly the same

way as in the case of normal termination, except that the failure is handled as
appropriate by mpirun. Note also that Blue Gene/L kills a parallel job if any

of

its processes fails for any reason. This is a characteristic of the Blue Gene/L

itself, and not a limitation of the job management architecture.

102 Y. Aridor et al.

Cycle Complete

remove_partition()

@)
@)

create_partition()

add_partition()

j[get_BGL ()
Job Cycle Start

A LoadLeveler job cycle
is composed of ten
stages that are executed
in a serial manner

destroy partition ()

fianp eelS

get_partition()

No

juswabeuey| uonied

Has boot
completed?

@ remove_job ()

The dashed blocks group
bridge APlIs that share a
related functionality

juswabeue|y qor

Fig. 2. LoadLeveler job cycle

The job cycle described above is depicted as a flow chart in Figure 2. The
chart shows how the machine state query, the partition management, and the
job management components of the Bridge API are used.

3.2 mpirun for LoadLeveler

In our architecture, the actual communication with Blue Gene/L’s internal con-
trol system is a function of the mpirun proxy job. In our implementation mpirun
handles stages 4 through 8 (cf. Section 3.1 above). In other words, LoadLeveler
handles job scheduling and creation and destruction of partitions, while mpirun
is responsible for monitoring the partitions’ boot, adding, starting, monitoring
jobs, and removing terminated jobs from the system.

Figure 3 shows the same job cycle flow chart as Figure 2, showing the sepa-
ration of concerns between LoadLeveler and mpirun.

This division of labor between LoadLeveler and mpirun is by no means the
only one possible. For instance an implementation of mpirun may be passed the
job and partition structures (or references thereof) and handle all the stages
starting from 2 to the final 10 (cf. Section 3.1). Alternatively, the role of mpirun
may be reduced to stages 6 and 7 only: if the scheduler is invoked each time a
job terminates it can handle stages 8 through 10 before picking another job from
the queue.

Our LoadLeveler scheduler is single-threaded, so any additional tasks, e.g.
synchronous waiting for a partition to boot (stage 4 in Section 3.1), will prevent
it from scheduling another job from the queue while it is busy. A multi-threaded

Open Job Management Architecture for the Blue Gene/L Supercomputer 103

Cycle Complete

-
o
) — e
get_BGL () e L @ L. (%
create_partition() destroy_partition()| @
)
oo
i No
The ten-stage LoadLeveler Cgaz& ?&;7
job cycle is executed partly g
by LoadLeveler itself, and Yes
partly by mpirun 3
_job () 'g
The dashed blocks group E
bridge APIs that are
executed by each
component

Fig. 3. mpirun for LoadLeveler

scheduler will be free of this disadvantage, at the expense of added complexity.
Our design lets the scheduler process a job and allocate resources to it, and
delegates all the tasks performed on a job and its allocated partition, including
get partition(), to mpirun.

4 SLURM and Blue Gene/L

In this section we describe another — very different — implementation of a job
management system for Blue Gene/L based on SLURM (Simple Linux Utility
for Resource Management, [9]). SLURM is an open source resource manager
designed for Linux clusters. Like other classic job management systems, it con-
sists of a master daemon on one central machine and slave daemons on all the
cluster nodes. SLURM for Blue Gene/L was successfully deployed and tested
on a 32K node Blue Gene/L machine [14]: like LoadLeveler, it launches and
controls mpirun instances that in turn control parallel jobs running on Blue
Gene/L. SLURM’s job cycle, however, is very different from that of LoadLeveler
(cf. Section 3.1).

4.1 Partitioning and Job Cycle in SLURM

SLURM operates under a number of assumptions regarding the expected work-
load that lead to a very different job cycle model and hence a different resource
management scheme from LoadLeveler. In particular, SLURM assumes that

104 Y. Aridor et al.

V a ™

[

\ 0|C
)

Fig. 4. Possible SLURM partitions

— most jobs are short enough for the partition boot time overhead to be sub-
stantial (see Section 5 for relevant performance measurements);

— all job sizes are powers of 2;

— jobs do not request a specific shape, specifying the total size only; the system
is free to choose a partition of arbitrary shape and does so, picking a partition
from the prepared set;

— jobs that require the full machine have low priority and thus can be delayed
(e.g. until the next weekend).

SLURM takes advantage of the fact that the Bridge API allows resources
belonging to different inactive partitions to overlap. Each resource can belong
to a set of partitions. The system will not consider the resource allocated until a
job starts in one of the partitions the resource belongs to. Accordingly, SLURM
adds a set of partitions of various sizes to the system (using add partition(),
cf. “Partition Management” in Section 2.2) in advance. The partition set covers
all resources and the partitions may overlap. For example, SLURM may divide
the machine into partitions of size 1/2%, i.e. there will be partitions containing
halves, quarters, eighths of the machine, etc., as well as a partition that contains
the entire machine (cf. Figure 4).

SLURM maintains two job queues: one for jobs of size up to half the system
and one for jobs larger than half the machine. The latter jobs are only run during
specific time (e.g. on weekends). On job arrival, SLURM picks a partition for
it from the existing set of partitions and boots it, if needed. Once booted, a
partition will remain booted until its resources are required for another partition
(i-e. the full machine partition). This scheme is designed to minimize the number
of partition boots.

Open Job Management Architecture for the Blue Gene/L Supercomputer 105

| Job cycle Start

get_BGL() g
B s
| 2 No s parttion ™
add_partition() E¥ e _intidized? -
| 3!
| 4 No| @ 4" Yes
i P F ey -
A | %G — g [
< Pattion > [} |oreatepartition() i
e 2 H o
e g s
| H get_partition() =. : B C
Z "| start_job () &
L] - — =
A SLURM-ike job e "R D) ! H
N coerem o Inbalzaion ™~ g i | wesdeeD =z
perfnr?ns a pregalar.lnn - Gompe? i ' ‘,_:E
S 1 X
° - R T o g
phase, where multiple Yes H s i
partitions of various | o Hasp = o
- ! - terminated? - =
sizes are added. R s
Incoming jobs are then . l/\-'es
executed on partitions (3) -
that most suite their remove_jeb ()
needs

Cycle Complete J

Fig. 5. Job cycle in SLURM

From a more general point of view we can say that the entire system is divided
into a set of already booted partitions, and there is a job queue for each job size.
Since the partitioning is done in advance the job cycle can be summarized as
finding a suitable partition, starting the job, and waiting for the job to terminate,
which corresponds to stages 5 through 8 in Section 3.1 above (cf. Figure 5). The
lightweight job cycle is controlled by mpirun, while the preparation phase is
performed by SLURM proper.

SLURM maintains the partition information and the job queues. For each job
it chooses a partition from the existing set and starts mpirun. The mpirun in
turn adds the job, starts it, monitors it, and removes it upon termination.

Note how different this picture is from the LoadLeveler model of Section 3.
Note also that partition management is not a part of the normal job cycle. Only
when jobs requiring the whole machine are run over weekends need partitions be
rebooted. During normal operation they remain pre-allocated and pre-initialized.

Nonetheless, both SLURM and LoadLeveler are accommodated equally well
by the open job management architecture of Blue Gene/L.

5 Performance

We performed some experiments on a 4096-node Blue Gene/L prototype in order
to assess the performance of our architecture. We intentionally ran jobs that do
nothing to isolate the overhead of adding, creating, and destroying partitions,
and launching jobs. Some representative results are shown in Table 1 that lists
times (in seconds) taken by different stages of the LoadLeveler job cycle (cf.
Section 3.1). All the times are averages of several experiments.

These results are not final. The system is still under development, and the
performance is continuously being improved.

106 Y. Aridor et al.

Table 1. Times (in seconds) taken by different job cycle stages of Section 3.1

size stages stage stages stages total
(nodes) 1—3 4 5—8 9—10 (sec)
512 1 26 14 10 51
1024 1 36 15 11 63
2048 2 38 19 11 70

One can note that the dependency of partition boot times (stage 4 of Section
3.1) and the rest of the operations on the size of the partition is rather weak.
This is expected since the boot process and the job loading are parallelized.
Resource management proper (stages 1 —3 and 9 — 10) takes even less time than
booting a partition. Overall, we can conclude that for jobs longer than a few
minutes the resource and job management overhead (of the order of a minute,
according to Table 1) is small.

6 Conclusions

We presented Blue Gene/L’s open job management architecture that allows in-
tegration of virtually any job management system with Blue Gene/L. The job
management system runs outside of Blue Gene/L core, and the integration does
not involve any architectural changes in the system, or affect its logic.

The two main components of the architecture are the Bridge API that provides
an abstraction on top of Blue Gene/L’s internal control system, and a proxy
mpirun program that represents the real parallel job to the job management
system. The Bridge API imposes only the most trivial restrictions on the job
lifecycle model and logic used by the job management system, and the division
of labor between mpirun and the job management system is also very flexible.

There are two implementations of job management system that have been
successfully integrated with Blue Gene/L, one based on LoadLeveler, the other
— on SLURM. Blue Gene/L’s open job management architecture accommodates
both system equally well, despite very significant differences. Work is now under
way to integrate yet another job management system, PBS.

Acknowledgments

We are grateful to Morris Jette and Danny Auble for discussions of their work
on SLURM for Blue Gene/L.

References

1. N. R. Adiga et al. “An Overview of the Blue Gene/L Supercomputer,” Supercom-
puting 2002.
2. http://www.mpi-forum.org/docs/mpi-20-html/mpi2-report.html

®

10.
11.
12.
13.

14.

Open Job Management Architecture for the Blue Gene/L Supercomputer 107

. W. Gropp, E. Lusk, & A. Skjellum. “Using MPI: Portable Parallel Programming

with the Message Passing Interface,” 2nd edition, MIT Press, Cambridge, MA,
1999.

. Top 500, http://www.top500.0rg/lists/2004/11/
. Y. Aridor et al. “Multi-Toroidal Interconnects: Using Additional Communication

Links to Improve Utilization of Parallel Computers” In: 10th Workshop on Job
Scheduling Strategies for Parallel Processing, New York, NY, 2004.

. http://www.openpbs.org
. A. Prenneis, Jr. “LoadLeveler: Workload Management for Parallel and Distributed

Computing Environments.” In Proceedings of Supercomputing Europe (SUPEUR),
1996.

http://www.cs.wisc.edu/condor/

M. A. Jette, A. B. Yoo, and M. Grondona “SLURM: Simple Linux Utility for
Resource Management.” In D. G. Feitelson and L. Rudolph, editors, Job Scheduling
Strategies for Parallel Processing, pp. 37 51. Springer-Verlag, 2003.
http://www-unix.globus.org/toolkit/docs/3.2/gram/ws/index . html
http://www.drmaa.org/

A. W. Mualem and D. G. Feitelson “Utilization, Predictability, Workloads, and
User Runtime Estimates in Scheduling the IBM SP2 with Backfilling.” In IEEE
Transactions on Parallel and Distributed Computing, v. 12, pp. 529-543, 2001.
G. Almasi et al. “System Management in the BlueGene/L Supercomputer,” 3rd
Workshop on Massively Parallel Processing, Nice, France, 2003.

M. Jette, D. Auble, private communication, 2005. See also “SLURM Blue
Gene User and Administrator Guide”, http://www.llnl.gov /linux /slurm
/bluegene.html

AnthillSched: A Scheduling Strategy for
Irregular and Iterative
I/O-Intensive Parallel Jobs

Luis Fabricio Gées!, Pedro Guerra!, Bruno Coutinho!, Leonardo Rocha!,
Wagner Meira!, Renato Ferreira!, Dorgival Guedes®, and Walfredo Cirne?

! Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
{1fwgoes, pcalais, coutinho, lcrocha,
meira, renato, dorgival}@dcc.ufmg.br
2 Universidade Federal de Campina Grande, Campina Grande, PB
walfredo@dsc.ufcg.edu.br

Abstract. Irregular and iterative I/O-intensive jobs need a different ap-
proach from parallel job schedulers. The focus in this case is not only the
processing requirements anymore: memory, network and storage capacity
must all be considered in making a scheduling decision. Job executions
are irregular and data dependent, alternating between CPU-bound and
I/O-bound phases. In this paper, we propose and implement a parallel
job scheduling strategy for such jobs, called AnthillSched, based on a
simple heuristic: we map the behavior of a parallel application with min-
imal resources as we vary its input parameters. From that mapping we
infer the best scheduling for a certain set of input parameters given the
available resources. To test and verify AnthillSched we used logs obtained
from a real system executing data mining jobs. Our main contributions
are the implementation of a parallel job scheduling strategy in a real
system and the performance analysis of AnthillSched, which allowed us
to discard some other scheduling alternatives considered previously.

1 Introduction

Increasing processing power, network bandwidth, main memory, and disk ca-
pacity have been enabling efficient and scalable parallelizations of a wide class
of applications that include data mining [1, 2], scientific visualization [3,4], and
simulation [5]. These applications are not only demanding in terms of system
resources, but also a parallelization challenge, since they are usually irregular,
I/O-intensive, and iterative. We refer to them as 3I applications or jobs. As
irregular jobs, their execution time is not really predictable, and pure analyti-
cal cost models are usually not accurate. The fact that they are I/O intensive
make them even less predictable, since their performance is significantly affected
by the system components and by the amount of overlap between computation
and communication that is achieved during the job execution. Further, 31 jobs
perform computations spanning several data domains, not only consuming data

D. Feitelson et al. (Eds.): JSSPP 2005, LNCS 3834, pp. 108-122, 2005.
© Springer-Verlag Berlin Heidelberg 2005

AnthillSched: A Scheduling Strategy 109

from those domains, but also generating new data dinamically, increasing the
volume of information to be handled in real time. Finally, iterativeness raises
two issues that affect the parallelization: locality of reference and degree of par-
allelism. The locality of reference is important because the access patterns vary
over time with each iteration. The degree of parallelism is a function of the
data dependencies among iterations. As a consequence of these characteristics,
scheduling of 3I jobs is quite a challenge, and determining optimal scheduling
for them is a very complex task, since it must consider locality, input size, data
dependences, and parallelization opportunities.

Generally speaking, parallel job schedulers have been designed to deal with
CPU-intensive jobs [6,7,8,9,10,11,12,13,14,15,16,17]. Some researchers have
proposed strategies to deal with I/O-intensive and irregular jobs [18,19, 4, 5, 20,
21, 22], but not with 3I jobs.

In this paper we investigate the scheduling of 3I jobs, in particular filter-
labeled stream programs executed in Anthill, our run-time system [23]. Filter
stream programs are structured as pipelines of filters that communicate using
streams, where parallelism is achieved by the instantiation of multiple copies
of any given filter [24]. The labeled stream abstraction extends the model by
guaranteeing consistent addressing among filter instances by the use of labels
associated with any data that traverses a stream. These programs are funda-
mentally asynchronous and implemented using an event-based paradigm. In the
scope of this work, a job is the execution of a program with specific input pa-
rameters on specific data using a number of instances for each filter. The main
issue is that each filter demands a different amount of CPU and I/O and, in
order to be efficient, there must be a continuous and balanced data flow between
filters. Our premise is that the balance of the data flow between filters may be
achieved by scheduling the proper number of filter copies or instances. In this pa-
per we propose, implement, and evaluate a parallel job scheduling strategy called
AnthillSched, which determines the number of filter instances according to each
filter’s CPU and I/O demands and schedules them. We evaluate AnthillSched
using logs derived from actual workloads submitted to the Tamandud! system,
which is a data mining service that executes data mining 3I jobs on Anthill.

This paper is organized as follows. We present the related work in Sec-
tion 2. The following section introduces the Anthill programming environment,
and Section 4 describes our proposed scheduling strategy. We then present the
workload, metrics, experimental setup, results and the performance analysis of
AnthillSched in the following sections. Finally, we present our conclusions and
discuss some future work.

2 Related Work

While we are not aware of works on scheduling 31 jobs, other researchers have
addressed the issue of scheduling parallel I/O-intensive jobs. Wiseman et al.
presented Paired-Gang Scheduling, in which I/O-intensive and CPU-intensive

! Tamandud means anteater in Portuguese.

110 L.F. Gées et al.

jobs share the same time slots [21]. Thus, when an I/O-intensive job waits for
an 1/0 request, the CPU-intensive job uses the CPU, increasing utilization.
This approach indicates that processor sharing is a good mechanism to increase
performance in mixed loads.

Another work shows three versions of an I/O-Aware Gang Scheduling (IOGS)
strategy [22]. The first one, for each job, looks for the row in the Ousterhout Ma-
trix (time-space matrix) with the least number of free slots where job file nodes
are available, considering a serverless file system. This approach is not efficient for
workloads with lower I/O intensity. The second version, called Adaptive-IOGS,
uses IOGS, but also tries the traditional gang scheduling approach. It fails to deal
with high I/O-intensive workloads. The last version, called Migration-Adaptive
TIOGS, includes the migration of jobs to their associated file nodes during exe-
cution. This strategy outperformed all the other ones.

A job scheduling strategy for data mining applications in a cluster/grid was
proposed by Silva and Hruschka [20]. It groups independent tasks that use the
same data to form a bigger job and schedules it to the same group of processors.
Thus, the amount of transferred data is reduced and the jobs performance is
increased.

Storage Affinity is a job scheduling strategy that exploits temporal and spatial
data locality for bag-of-tasks jobs. It schedules jobs close to their data according
to the storage affinity metric it defines (distance from data) and also uses task
replication when necessary. It has presented better performance than XSufferage
(a priori informed) and WQR (non-informed) [5].

Finally, a very closely related work is LPSched, a job scheduling strategy
that deals with asynchronous data flow I/O-intensive jobs using linear program-
ming [4]. It assumes that information about job behavior is available a priori
and it dynamically monitors cluster/grid resources at run time. It maximizes the
data flow between tasks and minimizes the number of processors used per job.
AnthillSched differs from LPSched in many points: it supports labeled streams
and iterative data flow communication; it uses a simple heuristic and does not
use run-time monitors.

3 The Anthill Programming Environment

A previous implementation of the Filter-Stream programming model is Data-
Cutter, a middleware that enables efficient application execution on distributed
heterogeneous environments [3]. DataCutter allows the instantiation of several
(transparent) copies of each filter at runtime so that the application can balance
the different computation demands of different filters as well as achieve high per-
formance. The stream abstraction maintains the illusion of point-to-point com-
munication between filters, and when a given copy outputs data to the stream,
the middleware takes care of delivering the data to one of the transparent copies
on the other end. Broadcast is possible, but selecting a particular copy to receive
the data is tricky, since DataCutter implements automatic destination selection
mechanisms based on round-robin or demand-driven models.

AnthillSched: A Scheduling Strategy 111

Filter L

Databases Filter N

beast strFLFY) (o
1P

Fig. 1. Anthill programming model

We extend that programming model in the Anthill environment by providing
a mechanism named labeled stream which allows the selection of a particular
copy as destination based on some information related to the data (the labels).
Such extension provides a richer programming environment, making it easier for
transparent copies to partition global state [23]. Besides that, Anthill provides a
task-oriented framework, in which the application execution can be modeled as
a collection of tasks which represent iterations over the input data that may or
may not be dependent on one another. In that way, Anthill explores parallelism
in time and space, as well as it makes it easy to exploit asynchrony.

As we see in Figure 1, a job in Anthill explores time parallelism like a pipeline,
since it is composed of N filters (processing phases or stages) connected by
streams (communication channels). This job model explicitly forces the pro-
grammer to divide the job in well defined phases (filters), in which input data
is transformed by each filter into another data domain that is required by the
next filter.

The Anthill programming model also explores spatial parallelism, as each filter
can have multiple copies, or instances, executing in different compute nodes.
Each communication channel between filters can be defined as point-to-point,
to direct each piece of data to a specific filter copy (either round-robin or by
defining a labeled stream) or broadcast, where data is copied to all filter copies
of the filter in next level. A consequence of spatial parallelism is data parallelism,
because a dataset is automatically partitioned among filter copies. Together
with streams, data parallelism provides an efficient mechanism to divide the I/O
demands among filters, while labeling allows data delivery to remain consistent
when necessary.

The task-oriented interface is what allows Anthill to efficiently exploit the
asynchrony of the application. Each job is seen as a set of work slices (WS)
to be executed which may represent iterations of an algorithm and may be
created dynamically as input data is being processed (that is particularly useful
for data-dependent, iterative applications). When a work slice W.S; is created,

112 L.F. Gées et al.

its data dependencies to any previous slice WS; are explicitly indicated. That
gives Anthill information about all synchronization that is really required by the
application, allowing it to exploit all asynchrony in slices that already had their
dependencies met.

4 Anthill Scheduler

It should be noted that Anthill’s programming model deals with only qualita-
tive aspects of 31 jobs. As we presented, Anthill allows asynchrony, iterative-
ness, spatial and data parallelism, but it does not deal with quantitative aspects
such as the number of filter copies, number of transmitted bytes during an it-
eration etc. Thus, to deal with quantitative aspects, we need a job scheduling
strategy that can determine the number of filter copies considering filter execu-
tion times, filter I/O demands, data complexity, etc. It is important to notice
that the overall application performance is highly dependent on such scheduling
decisions.

To address that problem we propose AnthillSched, a parallel job schedul-
ing strategy, implemented as Anthill’s job scheduler. It focuses on the proper
scheduling of a 3I job on a cluster, that is, the decision about the number of
copies of each filter, based on the job input parameters. These parameters are
specific for each algorithm being executed in a job; for a clustering algorithm,
for example, it might be the number of clusters to be considered. Based on those
parameters, AnthillSched must output the number of instances for each filter in
the algorithm. There are two possible alternatives to implement that: use ana-
lytical modeling, which is very complex and can be infeasible to our problem, or
a simpler solution, which is what we chose in the work.

Our approach is based on a simple experimental heuristic to solve a very
complex problem in an efficient, although possibly not optimal, way. Our deci-
sion to use a heuristic was based on the fact that the 3I applications in which
we are interested have very complex interactions, Since the processing and the
applications themselves are iterative (users may run a same algorithm multi-
ple times with different input parameters, trying to get a better result for their
particular problems). Going for a full analytical model would most often be a
very complex task. Although we may not be able to get to an optimal solution,
with the simpler scheduling strategy, however, we still expect to eliminate pos-
sible bottlenecks and provide a continuous data flow with high asynchrony to
31 jobs.

Given a program that must be scheduled, the domain of its input parameters
must be first identified and clearly mapped. AnthillSched requires ¢ controlled
executions, one for each possible permutation of the input parameters. For ex-
ample, if we have input parameters A and B, and each parameter can assume 10
different values, we have 100 possible permutations. A controlled execution is the
execution of a job with one copy of each filter (sequential pipeline) with certain
combination of input parameters (say, combination 7). For each job execution,
we collect the number of input bytes 3;; and the execution time F;; for each

AnthillSched: A Scheduling Strategy 113

filter j. During the execution of AnthillSched we use B;; to represent the bytes
actually received by a filter, since that may change during the computation. At
ﬁI‘St7 Bij = ﬂw

In Anthill, each job is executed according to a FCFS strategy with exclusive
access to all processors in the cluster. When a new job arrives, Anthill executes
AnthillSched with the job’s set of input parameters (i) and the number of avail-
able processors (p) as input. The scheduler outputs the number of filter copies
C;; for each filter j (represented as a whole as C;), after m iterations. First, for
each iteration, the number of copies of each filter Cj; is calculated according to
Fig. 2, where n is the number of filters in the pipeline for that application. In the
first step, we normalize the number of input bytes B;; and the execution time
E;; dividing them by the total sum of bytes and execution times, respectively.
Then, we sum the normalized values and divide it by two, in order to obtain
the relative resource requirements of each filter. For example, if we had a job
with 3 filters, we might find that filterl, filter2 and filter3, respectively, utilize
0.6, 0.2 and 0.2 of the total of resources to execute the job. Finally, according
to the number of available processors p, we calculate the number of copies Cj;
proportionally to the relative requirements of each filter.

function AnthillSched (i, p : integer) : array of integer
for 1 to m do
for j=1tondo

(5ot er o)
g B, E.

— k=1 "tk k=1 "ik
Cij =pX 2

endfor;

for j=1tondo
q = (j + 1)mod(n)
if (broadcast(Sij, Siq))
Big = Biq X Ciq
endfor;
endfor;
return C;
end;

Fig. 2. AnthillSched’s algorithm

The second step in Fig. 2 handles broadcast operations, since when a broad-
cast occurs between two filters, the number of input bytes of the destination
filter will increase according to it’s number of copies. For every filter j, we must
consider its stream to the next filter ¢ (where ¢ = (j 4+ 1)mod(n)); that stream
is identified as S;q. If S}, is a broadcast stream, the number of input bytes re-
ceived by the destination filter during the controlled execution 3;, (which had a
single copy of each filter) must be multiplied by the number of copies Cj,. Thus,
AnthillSched must recalculate the number of input bytes B;, for that filter and
iterate again.

114 L.F. Gées et al.

If we have a large number of possible input permutations, it is not feasible to
run all controlled executions and store them. A solution in this case is to consider
only a sampling of the space of possible permutations. When a new, or not yet
considered, combination of input parameters of a job is found, an interpolation
between the two nearest combinations can approximate the number of copies for
each filter for that job.

For each new submitted job, Anthill calls AnthillSched with the job’s per-
mutation of input parameters. The scheduling process overhead is negligible,
because the heuristic is very simple and can be solved in polynomial time as we
see in Figure 2, since it defines a limit for the iterations, m.

During preliminary tests we verified that controlled executions that spent less
than 5 seconds did not need to be parallelized. This threshold can vary according
to the jobs and input data, but as a general rule, short sequential jobs do not
need to be parallelized to improve performance. Thus, we created an optimized
version of AnthillSched that determines if a certain job must execute in parallel
(more than one copy per filter). Otherwise, it executes a sequential version of
the job. We named this version Optimized AnthillSched (OAS).

5 Results

In this section we evaluate our scheduling strategy by applying it to a data
mining application: the ID3 algorithm for building decision trees. In particular,
we want to investigate whether the number of filter copies C; for a 31 job depends
equally on the number of input bytes B;; and execution time E;; of each filter j.
Thus, if the number of each filter’s copies Cj; is uniformly distributed according
to B;; and E;;, we eliminate possible bottlenecks and provide a continuous data
flow with high asynchrony for a job.

To test and analyze our hypothesis, we compared two versions of AnthillSched
(non-optimized and optimized) to other two job scheduling strategies: Balanced
Strategy (BS) and All-in-all Strategy(AS). The proposed strategies use the max-
imum number of processors available. The BS tries to balance the number of
processors assigned to each filter, assumint that all filters have equal loads. For
example, if we have a job with 3 filters and a cluster of 15 processors, each filter
will have 5 copies. In AS, every filter has one copy on every processor, executing
concurrently.

5.1 Experimental Setup

For the workload we used real logs of data mining jobs executed in the Tamandua
platform by its users. As previously mentioned, Tamandua is a scalable, service-
oriented data mining platform executing on different clusters that uses efficient
algorithms with large databases. The logs used are from clusters were Tamandud
is being used to mine government databases (one on public expenditures, another
on public safety — 911 calls). Currently there are various data mining algorithms
implemented in Anthill, such as A priori, K-Means, etc. In our experiments, we

AnthillSched: A Scheduling Strategy 115

Min. Node Size Distribution Inter—Arrival Times Distribution

0.8

0.6

2 x
o A
— x
- & 04
0.2 r
o ‘ ‘ ‘ ‘ ‘
1 2 3 4 5 6 7 8 9 10 11+ 0 10000 20000 30000 40000 50000 60000
minimum node size Inter—Arrival Time (seconds)
(a) Minimum node size histogram (b) Inter-arrival time inverse cumulative
distribution

Fig. 3. Workload characterization

chose to focus on ID3 (a decision tree algorithm for classification) [1]. The main
input parameter that influences ID3 is the minimum node size, which defines the
minimum number of homogeneous points needed to create a node in the decision
tree.

Based on real logs from Tamandud, we characterized the inter-arrival time be-
tween jobs as shown in Fig. 3(b) and the minimum node size used as a parameter
for each job in Fig. 3(a). As we see in Fig. 3(a), the majority of minimum node
size values are concentrated between 0 and 10. In ID3, as an approximation, the
minimum node size may be considered inversely proportional to the execution
time, so it means that long-running jobs are predominant over short jobs.

Based on the characterization of Tamandud logs, we created a workload model
that uses the inter-arrival time pattern between jobs and the minimum node size
pattern. We verified that the inter-arrival time (Fig. 3(b)) fits an exponential
distribution with parameter A = 0.00015352, with chi-square test value equal to
0. The minimum node size fits a Pareto distribution with parameters 6 = 0.61815
and a = 0.00075019, where 6 is the continuous shape parameter and a is the
continuous scale parameter (Fig. 3(a)). Using a workload generator, we generated
10 workloads, each one composed of 1000 jobs executing the ID3 algorithm
with minimum node size and submission time derived from the distribution in
Figure 3.

To test the scheduling strategies under different conditions, we varied the load
(job arrival rate) between light, medium and heady. The light load considered
the inter-arrival time between jobs based on all points shown in 3(b), so it has
long periods of inactivity and a few peak periods, in which the inter-arrival time
between jobs is small. To create the medium load workload, we used only a
subset of the inter-arrival times from Fig 3(b) with the peak periods. Finally,
the heavy load assumes that all jobs of the workload arrive at same time; in this
case we just ignore the inter-arrival time between jobs.

To evaluate our proposal, we used 5 performance metrics: workload execution
time (Eq. 1), workload idle time (Eq. 2), mean job response time (Eq. 4), mean
job wait time (Eq. 3) and mean job slowdown (Eq. 5). As the parallel computer,

116 L.F. Gées et al.

we used a Linux cluster composed of 16 nodes with 3.0 GHz Pentium 4 proces-
sors, 1 GB main memories and 120 GB secondary memories each, interconnected
by a Fast Ethernet Switch.

1
2
3

WorkloadExzecTime =)", JobExzecTime;
WorkloadIdleTime = TotalTime — Y, JobExecTime;

MeanJobW aitTime =y,]‘\I,Z%:;gf’ s

(1)
2)
3)
(4)

. JobW aitTime;+JobEzecTime;
MeanJobRespTime =Y " | *° MNZZ??O})JO::C e

JobRespTime;

MechObSlodewn — Zn JobExzecTime; (5>

i=1 NumberO fJobs

5.2 Experimental Results

Using the workload derived from the previous characterization, we present some
experimental results in order to evaluate the effectiveness of the scheduling
strategies discussed. More specifically, we evaluate how well the scheduling
strategies work when the system is submitted to varying workload and num-
ber of processors.

In order to evaluate the impact of the variability of the workload on the
effectiveness of the strategies, we increased the load on each experiment to test
which scheduling strategy presents a better performance to each situation and
which strategies are impossible to use in practice. In the first three experiments
(light, medium and heavy load), we used a cluster configuration composed of
only 8 processors. With the heavy load, we saturated the system to test the
alternatives. In our final experiment (scalability under heavy load), we compare
the two best strategies with the same optimizations and analyze the scalability
of the strategies for different cluster configurations (8, 12 and 16 processors). We
used a 0.95 confidence level and approximate visual inspection to compare all
alternatives. The confidence intervals are represented by ¢; (lower bound) and
¢o (upper bound).

This first experiment tests the scheduling strategies under light load for a
cluster with 8 processors. As we see in Table 1(a), the mean execution time for
all workloads and strategies was very close.

A light load implies large inter-arrival times; in this case, the intervals were
often larger than the time necessary to execute a job. Thus, if a scheduling
strategy spends more time executing jobs than another one, for a light load it
does not matter. However, we observe in Table 1(b) that system using Optimized
AnthillSched (OAS) spent more time idle than the other ones. This is a first
indication that jobs executed with OAS strategy have a lower response time, as
we confirm in Table 1(d). When a job spends less time executing, as the inter-
arrival time is long, the system stays idle for more time, waiting for a new job
submission, than a system in which a job spends more time executing. As can
be seen on Table 1(c), the mean job wait time, and consequently the mean job
response time for OAS, is really lower than the other strategies.

AnthillSched: A Scheduling Strategy 117

Table 1. Scheduling strategies performance for different workloads under light load

Strategy Average Min Max Std. Dev c1 c2
AS 2065488.41 2029272.33 2155312.68 36921.23 2042604.83 2088371.99
BS 2065463.77 2029279.84 2155222.41 36903.64 2042591.09 2088336.45

NOAS 2065464.68 2029245.12 2155317.20 36930.32 2042575.47 2088353.90
OAS 2065410.48 2029242.96 2155136.99 36896.76 2042542.06 2088278.89

(a) Execution time for each strategy under light load

Strategy Average Min Max Std. Dev c1 co
AS 1189.08 61.86 3980.32 1309.36 377.54 2000.61
BS 1214.08 57.10 4070.59 1321.27 395.17 2033.00

NOAS 1209.70 90.26 3975.80 1304.82 400.98 2018.43
OAS 1263.55 90.19 4156.01 1328.39 440.22 2086.88

(b) Idle time for each strategy under light load

Strategy Average Min Max Std. Dev ¢; c2

AS 9.61 7.07 11.82 1.49 8.69 10.53
BS 7.87 5.77 9.32 1.157.16 8.59
NOAS 8.13 6.01 10.24 1.33 7.30 8.95
OAS 4.84 3.64 5.89 067 4.43 5.25

(¢) Mean job wait time for each strategy under light load

Strategy Average Min Max Std. Dev c1 co

AS 189.28 186.76 191.46 1.50 188.35 190.21
BS 162.16 158.03 164.50 2.04 160.89 163.42
NOAS 168.28 166.28 170.67 1.36 167.44 169.44
OAS 107.82 101.68 110.65 2.63 106.45 109.19

(d) Mean job response time for each strategy under light load

As our first conclusions, this experiment shows that for a light load, indepen-
dent of scheduling strategy, the inter-arrival time between jobs prevails over the
workload execution time, because jobs are shorter than that. As we expected, a
scheduling strategy that reduces the mean job wait time and consequently the
response time, increases the idle time of the system.

Table 2 shows the results for the moderate load profile.

With medium load, the inter-arrival times are not always larger than response
times. In Table 2(a), AS presented the worst execution time for all workloads.
After that, BS and Non Optimized AnthillSched (NOAS) presented similar per-
formance, with a little advantage for BS. Table 2(b) shows that on average, OAS
achieved the higher idle time. As we confirm in Table 2(c,d), the mean job wait
and response time are lower when the OAS is used, so the system have more idle
time waiting for another job arrival.

118

Table 2. Scheduling strategies performance for different workloads under medium load

Strategy
AS

BS
NOAS
OAS

L.F. Gées et al.

Average Min
179681.76 179401.58 179807.61
154321.87 150995.24 155923.21
160181.04 159284.49 161230.22
103100.88 97447.90 106026.05

Max Std. Dev

C1 C2
106.49 179615.75 179747.77
1394.01 153457.87 155185.87
548.70 159840.95 160521.12
2413.90 101604.76 104597.01

(a) Execution time for each strategy under a medium load

Strategy Average

Strategy Average Min

Max Std. Dev

C1 C2

AS 11.40 0.00 86.56 27.22 -5.48 28.27
BS 10.42 0.00 84.74 26.52 -6.02 26.86
NOAS 21.01 0.00 120.53 39.66 -3.57 45.60
OAS 32.59 0.00 119.77 48.37 2.61 62.57

(b) Idle time for each strategy under medium load

Min

Max Std. Dev

C1 C2

AS 56660.14 53618.32 58737.13 1442.26 55766.23 57554.05
BS 44165.69 41342.79 46325.72 1612.33 43166.37 45165.00
NOAS 46849.72 43929.01 49249.10 1449.23 45951.49 47747.95
OAS 18721.51 15228.08 21785.22 2032.29 17461.90 19981.11

(c) Mean job wait time for each strategy under medium load

Strategy Average Min Max Std. Dev
AS 56839.81 53798.01 58916.78
BS 44319.97 41497.70 46481.64
NOAS 47009.87 44089.37 49409.53
OAS 18824.49 15325.52 21891.15

C1 C2
1442.28 55945.88 57733.73
1613.01 43320.23 45319.71
1449.21 46111.66 47908.09
2033.92 17563.88 20085.10

(d) Mean job response time for each strategy under medium load

With this experiment, we observe that the All-in-all Strategy (AS) is not a
viable strategy based to all evaluated metrics. In our context, we cannot assume
that all filters are complementary (CPU-bound and I/O-bound), as AS does.
However, for other type of jobs or maybe a subgroup of filters, resource sharing
can be a good alternative [21]. Moreover, the Balanced Strategy (BS) and Non-
Optimized AnthillSched (NOAS) presented similar performance, so we cannot
discard both alternatives.

Based on our previous experiment, we do not consider AS an alternative from
this point on. In the third experiment, we evaluate the scheduling strategies
under heavy load. In this case we do not consider the system idle time, given
that all jobs are submitted at the same time. The results are shown in Fig. 4.

In this case, for all metrics, OAS was the best strategy, and NOAS the worst.
NOAS and BS parallelize short jobs, creating unnecessary overhead and reducing
performance. Not only that, but NOAS scheduling decisions are slightly worse

execution time (seconds)

170000
160000

150000
140000
130000
120000
110000 ¢
100000
90000
1

Execution Time x Workloads

T —5 T
A, +-NOAS 4

M

workloads

AnthillSched: A Scheduling Strategy

2 3 4 5 6 7 8 9 10

mean response time (seconds)

90000

80000 -
70000 |
60000 |
50000 |
40000
30000
20000
10000

0

119

Mean Response Time x Workloads

BS ——
-

1

2

3 4 5 6 7 8 9 10
workloads

(a) Execution time per workload (b) Mean job response time per workload

Mean Wait Time x Workloads
90000

80000 g+ * Noiz -
70000

60000

50000 T e R X x - ¥

40000
30000
20000 |
10000 -

0

mean wait time (seconds)

1 2 3 4 5 6 7 8 9 10
workloads

(c) Mean job wait time per workload

Fig. 4. Scheduling strategies performance for 10 different workloads

than BS. That happens because in our data mining jobs, the first filter tends to
have much more work than the others, so NOAS assigns more processors to it
and fewer processors to the other ones. However, the first filter reads data from
secondary storage; its copies are only effective if they can be placed where data
is stored. If there are more copies of it than nodes with input data, some copies
will be idle, while other filters, that got fewer copies, become bottlenecks.

Based on the confidence intervals, our results show that NOAS is not a viable
alternative, because for short jobs, the parallelization of jobs leads to a high
response time, as we see in Fig. 4(b). Moreover, BS presented a lower perfor-
mance than OAS. Despite of the low performance achieved with BS, we are not
convinced yet that OAS is really better than BS. Because there is a considerable
amount of short jobs in the workloads, the optimization in AnthillSched may
be what gives it an advantage over BS. To check that, we included the same
optimization in BS for the next experiment.

Our final experiment verifies whether OAS has a better performance than
OBS (Optimized Balanced Scheduling) and if it scales up from 8 to 16 processors.
We used the heavy load configuration and varied the number of processors from
8, 12 to 16 while considering four performance metrics (execution, response, wait
and slowdown times, mean values for all workloads).

According to Fig. 5 and a visual inspection of the confidence intervals, all
metrics show that even with the optimized version of BS, OAS has better per-

120 L.F. Gées et al.

Execution Time x Number of Processors Response Time x Number of Processors
140000 — 70000 —
OAS —— OAS ——
120000 OBS - 1 60000 | OBS - 1
) @)
o h =]
§ 100000 S 50000 -
8
Q Q
< 80000 | 2 40000 |
(o} Q
£ £
T 60000 F S 30000 -
2 g
3 40000 - 2 20000 f
3
3 [
20000 E 10000 |
o S 0 P S
8 12 16 8 12 16
number of processors number of processors
(a) Execution time per workload (b) Mean job response time per workload
Wait Time x Number of Processors Slowdown Time x Number of Processors
70000 — 25000 —
OAS —— OAS ——
60000 - OBS -+ ~ OBS -+
_ 3 20000
2 50000 - s
5 g
g 40000 [< 5000
< £
2 30000 | S 10000 |
= o
g 20000 | 2
S 5000 -
10000 |
o P 0 P S
8 12 16 8 12 16
number of processors number of processors
(¢) Mean job wait time per workload (d) Mean job slowdown per workload

Fig.5. OBS and OAS performance for all workloads in a cluster with 8, 12 and 16
processors

formance. In Fig. 5(d), the large slowdown is due to the short jobs, which have
low execution times, but high job wait times (Fig. 5(c)) under the heavy load.
Finally, this last experiment showed that OAS is more efficient than OBS.
Moreover, OAS scaled up from 8 to 16 processors. Due to our limitations on
computing resources, we could not vary the number of processors beyond 16.
From the results, our main hypothesis that the number of filter copies C; for 31
jobs depends equally on the number of input bytes B; and the execution time
E; of each filter was verified. In preliminary tests, not shown in this paper, we
observed that the use of different weights for CPU and I/O requirements in the
AnthillSched algorithm (Fig. 2) did not seem to be a good alternative as the exe-
cution time of the controlled execution increased. However, as future work, these
experiments can be more explored before we definitely discard this alternative.

6 Conclusion

In this work we have proposed, implemented (in a real system) and analyzed
the performance of AnthillSched. Irregular and Iterative I/O-intensive jobs have
some features that are not taken into account by parallel job schedulers. To deal
with those features, we proposed a scheduling strategy based on simple heuristics
that performs well.

AnthillSched: A Scheduling Strategy 121

Our experiments show that sharing all resources among all filters is not a
viable alternative. They also show that a balanced distribution of filter copies
among processors is not the best alternative either. Finally, we concluded that
the use of a scheduling strategy which considers jobs input parameters and dis-
tributes the filter copies according to each job’s CPU and I/O requirements is
a good alternative. We named this strategy AnthillSched. It creates a continu-
ous data flow among filters, avoiding bottlenecks and taking iterativeness into
account. Our experiments show that AnthillSched is also a scalable alternative.

Our main contributions are the implementation of our proposed parallel job
scheduling strategy in a real system and a performance analysis of AnthillSched,
which discarded some other alternative solutions.

As future works we see, among others: the creation and validation of a math-
ematical model to evaluate the performance of parallel 31 jobs, the exploration
of different weights for CPU and I/O requirements in AnthillSched, and its use
with other applications.

References

1. Utgoff, P., Brodley, C.: An incremental method for finding multivariate splits for
decision trees. In: Proceedings of the Seventh International Conference on Machine
Learning, Morgan Kaufman (1990)

2. Veloso, A., Meira, W., Ferreira, R., Guedes, D., Parthasarathy, S.: Asynchronous
and anticipatory filter-stream based parallel algorithm for frequent itemset mining.
In: Proceedings of the European Conference on Principles of Data Mining and
Knowledge Discovery. (2004)

3. Beynon, C.M., Ferreira, R., Kurc, T., Sussmany, A., Saltz, J.: Datacutter: Mid-
dleware for filtering very large scientific datasets on archival storage systems. In:
Proceedings of the IEEE Mass Storage Systems Symposium. (2000)

4. Nascimento, L.T., Ferreira, R.: LPSched — dataflow application scheduling in
grids. Master’s thesis, Federal University of Minas Gerais (2004) (in Portuguese).

5. Neto, E.S., Cirne, W., Brasileiro, F., Lima, A.: Exploiting replication and data
reuse to efficiently schedule data-intensive applications on grids. In: Proceedings
of the Job Scheduling Strategies for Parallel Processing Workshop. (2004)

6. Beaumont, O., Boudet, V., Robert, Y.: A realistic model and an efficient heuris-
tic for scheduling with heterogeneous processors. In: Proceedings of the IEEE
Heterogeneous Computing Workshop. (2002)

7. Chapin, S.J., et al.: Benchmarks and standards for the evaluation of parallel job
schedulers. In: Proceedings of the Job Scheduling Strategies for Parallel Processing
Workshop. (1999) 67-90

8. Feitelson, D., Nitzberg, B.: Job characteristics of a production parallel scientific
workload on the NASA Ames iPSC/860. In: Proceedings of the Job Scheduling
Strategies for Parallel Processing Workshop. (1995) 337-360

9. Feitelson, D., Rudolph, L.: Evaluation of design choices for gang scheduling using
distributed hierarchical control. Journal of Parallel and Distributed Computing
(1996) 18-34

10. Feitelson, D.: A survey of scheduling in multiprogrammed parallel systems research.
Technical Report Report RC 19790, IBM T. J. Watson Research Center (1997)

122

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

L.F. Gées et al.

Franke, H., Jann, J., Moreira, J., Pattnaik, P., Jette, M.: An evaluation of par-
allel job scheduling for ASCI Blue-Pacific. In: Proceedings of the ACM/IEEE
Conference on Supercomputing. (1999)

Frachtenberg, E., Feitelson, D., Petrini, F., Fernandez, J.: Flexible CoScheduling:
Mitigating load imbalance and improving utilization of heterogeneous resources. In:
Proceedings of the 17th International Parallel and Distributed Processing Sympo-
sium. (2003)

Goées, L.F.W., Martins, C.A.P.S.: Proposal and development of a reconfigurable
parallel job scheduling algorithm. Master’s thesis, Pontific Catholic University of
Minas Gerais (2004) (in Portuguese).

Goées, L.F.W., Martins, C.A.P.S.: Reconfigurable gang scheduling algorithm. In:
Proceedings of the Job Scheduling Strategies for Parallel Processing Workshop.
(2004)

Streit, A.: A self-tuning job scheduler family with dynamic policy switching. In:
Proceedings of the Job Scheduling Strategies for Parallel Processing Workshop.
(2002) 1-23

Zhang, Y., Franke, H., Moreira, E.J., Sivasubramaniam, A.: Improving parallel job
scheduling by combining gang scheduling and backfilling techniques. In: Proceed-
ings of the IEEE International Parallel and Distributed Processing Symposium.
(2000)

Zhou, B.B., Brent, R.P.: Gang scheduling with a queue for large jobs. In: Proceed-
ings of the IEEE International Parallel and Distributed Processing Symposium.
(2001)

Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: Ourgrid: An approach to
easily assemble grids with equitable resource sharing. In: Proceedings of the Job
Scheduling Strategies for Parallel Processing Workshop. (2003)

Batat, A., Feitelson, D.: Gang scheduling with memory considerations. In: Proceed-
ings of the IEEE International Parallel and Distributed Processing Symposium.
(2000) 109-114

Silva, F.A.B., Hruschka, S.C.E.R.: A scheduling algorithm for running bag-of-tasks
data mining applications on the grid. In: Proceedings of the EuroPar. (2004)
Wiseman, Y., Feitelson, D.: Paired gang scheduling. IEEE Transactions Parallel
and Distributed Systems (2003) 581-592

Zhang, Y., Yang, A., Sivasubramaniam, A., Moreira, E.J.: Gang scheduling exten-
sions for I/O intensive workloads. In: Proceedings of the Job Scheduling Strategies
for Parallel Processing Workshop. (2003)

Fonseca, R., Meira, W., Guedes, D., Drummond, L.: Anthill: A scalable run-time
environment for data mining applications. In: Proceedings of the 17th Symposium
on Computer Architecture and High-Performance Computing (SBAC-PAD), SBC
(2005)

Acharya, A., Uysal, M., Saltz, J.: Active disks: Programming model, algorithms and
evaluation. In: Proceedings of the International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS VIII). (1998)
81-91

An Extended Evaluation of Two-Phase
Scheduling Methods for Animation Rendering

Yunhong Zhou, Terence Kelly, Janet Wiener, and Eric Anderson

Hewlett-Packard Laboratories,
1501 Page Mill Rd,
Palo Alto, CA 94304
{yunhong.zhou, terence.p.kelly,
janet.wiener, eric. anderson4}@hp. com

Abstract. Recently HP Labs engaged in a joint project with Dream-
Works Animation to develop a Utility Rendering Service that was used to
render part of the computer-animated feature film Shrek 2. In a compan-
ion paper [2] we formalized the problem of scheduling animation render-
ing jobs and demonstrated that the general problem is computationally
intractable, as are severely restricted special cases. We presented a novel
and efficient two-phase scheduling method and evaluated it both theo-
retically and via simulation using large and detailed traces collected in
DreamWorks Animation’s production environment.

In this paper we describe the overall experience of the joint project and
greatly expand our empirical evaluations of job scheduling strategies for
improving scheduling performance. Our new results include a workload
characterization of Shrek 2 animation rendering jobs. We furthermore
present parameter sensitivity analyses based on simulations using ran-
domly generated synthetic workloads. Whereas our previous theoretical
results imply that worst-case performance can be far from optimal for
certain workloads, our current empirical results demonstrate that our
scheduling method achieves performance quite close to optimal for both
real and synthetic workloads. We furthermore offer advice for tuning a
parameter associated with our method. Finally, we report a surprising
performance anomaly involving a workload parameter that our previous
theoretical analysis identified as crucial to performance. Our results also
shed light on performance tradeoffs surrounding task parallelization.

1 Introduction

The problem of scheduling computational jobs onto processors arises in numer-
ous scientifically and commercially important contexts. In this paper we focus
on an interesting subclass with three special properties: jobs consist of nonpre-
emptible tasks; tasks must execute in stages; and jobs yield completion rewards
if they finish by a deadline. In previous work we have formalized this problem as
the disconnected staged scheduling problem (Dssp), described its computational
complexity, proposed a novel scheduling method, and evaluated our solution

D. Feitelson et al. (Eds.): JSSPP 2005, LNCS 3834, pp. 123-145, 2005.
© Springer-Verlag Berlin Heidelberg 2005

124 Y. Zhou et al.

theoretically and empirically using traces from an animation rendering applica-
tion [2]. The companion paper also mentions a range of practical domains other
than animation rendering in which DSSP arises.

This paper extends our previous work three ways. First, we provide a detailed
description of the joint project between our company and DreamWorks Anima-
tion that first brought DSSP to our attention. We believe that this case study
is interesting in its own right because it shows how modern parallel processing
technologies are applied to a commercially important problem substantially dif-
ferent from traditional scientific applications of parallel computing. The joint
project rendered parts of the animated feature film Shrek 2 in a 1,000-CPU
cluster on HP premises and thus illustrates the intersection of parallel process-
ing and “utility computing.” Our description of the project furthermore places
scheduling and other parallel computing technologies in a broader context of
business considerations. Finally, the project shows how new requirements driven
by business needs led to a new and interesting formal problem, which in turn cre-
ated research opportunities at the intersection of theoretical Computer Science,
CS systems, and Operations Research.

Second, we provide a thorough and detailed workload characterization of
traces we collected in the aforementioned cluster during the rendering of Shrek 2.
These are the traces used in our previous empirical work, and in some of the
extended empirical work presented in this paper.

Our third and major technical contribution in this paper is to greatly extend
our empirical results and explore via simulation several open questions raised by
our previous theoretical analysis. Whereas our previous empirical results were
based exclusively on traces collected in DreamWorks Animation’s production
environment, in this paper we supplement the production traces with randomly-
generated synthetic workloads. The latter transcend the domain-specific pecu-
liarities of the former and thus allow us to evaluate the generality and robustness
of our solution. Our new empirical work addresses three main issues:

1. We have proven theoretically that our solution architecture yields near-
optimal results if jobs’ critical paths are short; worst-case performance can
be arbitrarily poor, however, if critical paths are long. How pessimistic are
these theoretical results? Do real or random workloads lead to worst-case
performance?

2. In some domains, including animation rendering, it is possible to shorten the
critical paths of jobs by parallelizing tasks. What are the benefits of such
parallelization? Is parallelization always beneficial?

3. Our solution architecture contains an adjustable parameter. Can we offer
generic, domain-independent guidance on how to tune it?

In addition to addressing these issues we also report interesting and unantici-
pated relationships between problem parameters and performance.

The remainder of this paper is structured as follows: Section 2 defines DSSP
and summarizes our previous results. Section 3 characterizes the DreamWorks
Animation rendering workload, and Section 4 presents our extended empirical

An Extended Evaluation of Two-Phase Scheduling Methods 125

results. Section 5 describes the joint HP /DreamWorks Animation project that
motivated our interest in the DSSP, Section 6 reviews related work, and Section 7
concludes.

2 Background and Previous Work

In our previous work on DSSP [2] we formalized the abstract scheduling problem
and described its computational complexity. We furthermore introduced a novel
two-phase scheduling method better suited to the special features of Dssp than
existing solutions. Finally, we evaluated our solution’s performance through both
theoretical analysis and trace-driven simulation using workload traces collected
in a commercial production environment. This section reviews our previous work
and describes open questions that we address in the present paper.

2.1 Problem

Informally, in DSSP we are given a set of independent computational jobs. Each
job is labeled with a completion reward that accrues if and only if the job fin-
ishes by a given global deadline. Jobs consist of nonpreemptible computational
tasks, and a job completes when all of its tasks have completed. Tasks must be
performed in stages: no task in a later stage may start until all tasks in earlier
stages have finished. Tasks within a stage may execute in parallel, but need not
do so. We are also given a set of processors; at most one task may occupy a
processor at a time. Our goal is to place tasks on processors to maximize the
aggregate completion reward of jobs that complete by the global deadline.

Formally, we are given J jobs, indexed j € 1...J. Job j contains G; stages,
indexed g € 1...G;. The set of tasks in stage g of job j is denoted Sg;. Stages
encode precedence constraints among tasks within a job: no task in stage g + 1
may begin until all tasks in stage g have completed; no precedence constraints
exist among tasks in different jobs. The execution time (or “length”) of task
i is denoted L;. The total processing demand of job j, denoted Ti(j), equals
Zngjl Ziesgj L;. The critical path length (CPL) of a job is the amount of time
that is required to complete the job on an unlimited number of processors; it
is denoted T (j) = Z?il max;es,; {Li}. Figure 1 illustrates the stage and task
structure of two jobs, and their critical path lengths.

There are P identical processors. At most one task may occupy a processor
at a time, and tasks may not be preempted, stopped/re-started, or migrated
after they are placed on processors. Let C; denote the completion time of job j
in a schedule and let R; denote its completion reward. D is the global deadline
for all the jobs. Our goal is to schedule tasks onto processors to maximize the
aggregate reward Ry = ijl Up(Cy), where Up(C;) = R; if C; < D and
Up(C;) = 0 otherwise. Our objective function is sometimes called “weighted
unit penalty” [4].

The computational complexity of DSsP is formidable, even for very restricted
special cases. In [2] we show that general DSSP is not merely NP-hard but also

126 Y. Zhou et al.

critical path length T,_(1)

j=1, g=1,i=1

‘j:l,g:l,i:Z ‘
e .
critical path length T_(2) P %//////////% j=1, g=3.i=5

ors

i
&

_ ;"2 (= e=ri=2 =2 e=2 1210 |l e=3ii
‘j=2,g=2, i=10 ‘ Py H_]:Z,g:l,|=7 HJ:Z.g:Z,l:II ‘

R EXSET RN
Les =0 =D

time ———=

processt

Fig.1. Job (j), task (i), and stage Fig.2. A schedule for the jobs in
(g) structure for two jobs Figure 1

NP-hard to approximate within any polynomial factor, assuming that P # NP.
Even for the special case where jobs have unit rewards and tasks have unit
execution times, it is strongly NP-complete to solve DSSP optimally.

2.2 Two-Phase Scheduling Method

Before reviewing our approach to DSSP, we motivate the need for a specialized
solution by considering shortcomings of existing alternatives. Scheduling in mod-
ern production environments almost always relies on priority schedulers such as
the commercial LSF product [18] or an open-source counterpart like Condor [5].
Priority schedulers by themselves are inadequate to properly address DSSP. The
fundamental problem is that ordinal priorities are semantically too weak to ex-
press completion rewards. Ordinal priorities can express, e.g., that “job A is more
important than job B.” However sums and ratios of priorities are not meaningful
and therefore they cannot express, e.g., “jobs B and C together are 30% more
valuable than A alone.” When submitted workload exceeds available computa-
tional capacity, a priority scheduler cannot make principled decisions. In our
example, it cannot know whether to run A alone or B and C together if those
are the only combinations that can complete by the deadline. Priority sched-
ulers make performance-critical job selection decisions as accidental by-products
of task dispatching decisions.

Our solution, by contrast, decomposes DSSP into two conceptually simple and
computationally feasible phases. First, an offline job selection phase chooses a
reward-maximizing subset of jobs to execute such that it expects all of these
jobs to complete by the deadline. An online task dispatching phase then places
tasks from the selected jobs onto processors to complete as many as possible by
the deadline. Completion rewards guide the first phase but not the second. Task
dispatching can achieve better performance precisely because it can safely ignore
completion rewards and consider only the computational properties of jobs but
not their business value.

Job selection chooses a subset of jobs with maximal aggregate completion re-
ward such that their total processing demand does not exceed available capacity.

An Extended Evaluation of Two-Phase Scheduling Methods 127

Let binary decision variable z; = 1 if job j is selected and z; = 0 otherwise and
let P denote the number of processors. Our selection problem is the following
integer program:

Maximize 25:1 z;R; (1)
subject to Z;.Izl z;T1(j) < r-PD (2)

The summation in objective Equation 1 assumes that all selected jobs can be
scheduled, regardless of their Ti.; jobs with Too(j) > D have Up(C;) = 0 and
may be discarded before job selection. PD in the right-hand side of Equation 2
is the total amount of processor time available between ¢ = 0 and ¢t = D. By
tuning selection parameter r we may select a set of jobs whose total processor
demand is less than or greater than the capacity that is actually available. The
final schedule after task dispatching typically achieves less than 100% utilization
because precedence constraints force idleness as shown in Figure 2. Intuitively, r
should therefore be set to slightly less than 1. Later we propose a way to compute
good values of r.

The selection problem is a classic 0-1 knapsack problem, for which a wide
range of solvers exist [11]. In this paper we solve the selection problem optimally
using a simple knapsack algorithm, dynamic programming (DP) by profits. Our
previous work explores a wider range of job selectors, including a sophisticated
mixed-integer programming selector that can account for a wide range of side
constraints [2].

Once a subset of jobs has been selected, a dispatcher places their tasks on
processors. We employ a non-delay (or “work-conserving”) dispatcher that places
runnable jobs onto idle processors whenever one of each is available. The end
result is a schedule that contains idle time due only to precedence constraints.

Given an idle processor and several runnable tasks, a dispatcher policy decides
which task to run. In [2] we implemented and empirically evaluated over two
dozen dispatcher policies. Our previous results show that our novel dispatcher
policy LCPF outperforms a wide range of alternatives by several performance
metrics. LCPF chooses a runnable task from the job whose critical path is longest.
Intuitively, LCPF favors jobs at greatest risk of missing the deadline. To the
best of our knowledge, LCPF represents the first attempt to tailor a dispatcher
policy to the special features of DSSP, particularly its disconnected precedence
constraint DAG. Our empirical results in this paper include two other dispatcher
policies: STCPU chooses the runnable task whose parent job has the shortest total
CPU time, and RANDOM chooses a runnable task at random. In the special case
where each job contains exactly one task, LCPF coincides with the well-known
longest job first policy, and STCPU reduces to shortest job first.

2.3 Previous Performance Evaluation

Our theoretical results on the computational complexity of DSSP show that this
problem is hard to solve optimally, and it is hard even to approximate within a
polynomial factor if job completion rewards and task execution times are unre-
stricted. However, we have also shown in [2] that in the unweighted case (i.e.,

128 Y. Zhou et al.

uniform job completion rewards) a two-phase solution method using a greedy
(possibly sub-optimal) selector and any non-delay dispatcher can achieve near-
optimal performance if the maximum critical path length of any input job, de-
noted T32%%, is small relative to the global deadline D. Here we re-state this
result:

Theorem 1. The two-phase scheduling method with the selection parameter r =

1—-(1—-1/P)(T2**/D) and any non-delay dispatcher completes at least (1 —

max

% (1= 5))OPT — 1 jobs before the deadline, where OPT is the mazimum

number of jobs that can be completed by any algorithm.

Theorem 1 implies that any two-phase solution (with a proper selection pa-
rameter r) completes at least half as many jobs as an optimal algorithm if
TRax < DJ2. As TR /D goes to 0, its performance approaches that of the
optimal algorithm.

The bound of Theorem 1 can be attained by two-phase algorithms that re-
quire remarkably little information about the computational demands of tasks.
Specifically, it is necessary to know only the aggregate processing demand of
subsets of tasks during selection. Knowledge of individual task execution times
is mot required.

Our previous work includes empirical evaluations of selectors, dispatchers, and
combinations of the two. Briefly, we find that for the DreamWorks Animation
production scheduling traces that we used:

1. Dispatcher policies differ dramatically in terms of job completion time dis-
tributions and other performance measures; our LCPF policy outperforms
alternatives by several measures.

2. LCPF is relatively insensitive to a poorly-tuned selection parameter r.

3. An optimal selector with a well-tuned r and an LCPF dispatcher achieves 9%—
32% higher aggregate value in the weighted case than a priority scheduler
with no selection.

3 Workload Characterization

In this section, we describe a real production system where animation rendering
jobs were run and then characterize the jobs and tasks in this workload.

3.1 Rendering Infrastructure

In early 2004, DreamWorks Animation began to supplement their in-house ren-
der farm with an extra cluster of 500 machines for production of the animated
feature film Shrek 2. Each machine in this cluster is an HP ProLiant DL360
server with two 2.8-GHz Xeon processors, 4 GB of memory and two 36-GB 10k
RPM SCSI disks. It contains a total of 1,000 CPUs and can serve up to 1,000
tasks simultaneously, because at most one task may occupy a processor at any
time.

An Extended Evaluation of Two-Phase Scheduling Methods 129

Our workload characterization is based on LSF [18] scheduler logs collected
on this cluster during the period 15 February—10 April 2004. The logs associate
tasks with their parent render jobs and we reconstructed their stage structure.
We removed from consideration all jobs that did not complete successfully, e.g.,
because a user canceled them. Our final trace contains 56 nights, 2,388 jobs, and
280,011 tasks.

3.2 Jobs, Tasks, and Stages

Table 1 shows statistics about jobs, tasks, and stages in the eight week workload.
While the number of tasks and jobs varied widely across all of the nights —
there were a few weekend nights where very little rendering was done, as shown
in Figure 3 — the medians shown in the fifth column represent the majority of
nights. Most nights have a few tens of jobs and a few thousands of tasks. Task
length varies widely; some tasks complete in less than a second while many tasks
take hours. The median task length is 1.5 hours.

The middle section of Table 1 shows the percentage of jobs that were run
twice during a single night. These jobs completed on the first run and produced
the correct number of frames, but the frames were not satisfactory for some
reason and the job was resubmitted. Note that in order for a job to run twice in
one night, 2 - T, (j) must fit in the 13 hour time window.

Table 1. Task and job statistics

Minimum Maximum Average Std Dev Median

Number of tasks/job 3 1328 117 114 84
Number of jobs/night 5 79 43 18 41
Number of tasks/night 880 8908 5000 1970 4976
Task length L; 0 85686 8500 9899 5356
Maximum tasks in stage 1 700 93 93 91
Percent of jobs rerun/night 0% 26.4% 12.4%
T+ in hours (all nights) 0.06 24.07 4.35 346 3.42
T+ in hours (average/night) 0.59 14.04 4.61 0.50
T in hours (all nights) 0.23 5026.36 276.77 420.08 134.72
T in hours (average/night) 6.12 1849.48 301.22 396.49

2

9,

S

3 B AP

§ 0 10 20 30 40 50 60

Night

Fig. 3. Time series of the number of jobs each night. Low workloads correspond to
weekends.

130 Y. Zhou et al.

Table 2. Most stages of jobs have 1-3 tasks. Jobs have one or two stages with many
tasks.

Number of stages per job with: 1 task 2 tasks 3 tasks more than 3 tasks

Average (all jobs) 224 1.07 0.21 1.62
5]
35 g
30 2
2 I3 —
o 25 @ A 3
5 20 g B 3
- + <
g 15 8 <
8 - P
3 10 s 5
o 5 3
0 ! E oMLl v 0
0 2 4 6 8 10 z 0 200 400 600 800 0 5 10 15 20 25
number of stages Maximum number of tasks in stage Maximum stage length (hours)

Fig. 4. Histogram of num- Fig.5. The maximum Fig.6. The length of the
ber of stages per job number of tasks in a single longest single stage ac-
stage is highly correlated counts for most of T (7)
with number of frames
that the job renders

The number of stages per job is shown in Figure 4. Most jobs have 3—7 stages,
depending on whether all of physical simulation, model baking, and frame ren-
dering need to be done (with some gluing stages in between). However, only 1
or 2 of the stages have more than 3 tasks, as shown in Table 2. Those stages
usually compute something per frame (e.g., render the frame), which is why
Figure 5 shows that the maximum number of tasks in a single stage is strongly
correlated with the number of frames being rendered. For 82% of the jobs, the
maximum number of tasks in a stage equals the number of frames. Figure 6
shows that the maximum length of that single stage is nearly equal to T, i.e.,
in most cases a single stage accounts for most of a job’s critical path length.

3.3 T and T; Distributions for Jobs

Figure 7 shows the relationship between T, and T for each job. T is generally
around 100 times as much as Ty, because the longest stage has a median of
91 tasks. The median To, of 3.4 hours shows that most jobs can complete in
a short time, given enough resources. However, Figure 8 demonstrates that on
most nights (75%), there is at least one job that cannot be completed within a
13 hour time window.

3.4 Predictions of T, and T}

The previous section analyzed the actual T, and T; of jobs. In practice, the
actual times are not known before the jobs execute. Scheduling decisions must
be made based on predicted times. In this section, we compare the predictions
that DreamWorks Animation artists supplied before a job was run with the
actual run times.

An Extended Evaluation of Two-Phase Scheduling Methods 131

10000 . 100 100
1000

Percent of nights
(4]
o

Actual CPL (hours)

Total CPU time of job (hours)
5

0.01
0.01 01 1 10 100 0 5 10 15 20 25 0.01 0.1 1 10 100
CPL of job (hours) Maximum CPL (hours) Predicted CPL of job (hours)

Fig. 7. Critical path lengths Fig.8. CDF of T2 per Fig.9. Predicted and actual

vs. total CPU times of jobs, night T appear correlated on log
logarithmic scales scales but often differ by 30—
100%

e & 6000 g

5 ® k=N

£ é 5000 53

°§> g 4000 “g’g

5 = 3000 So

o =) oag

o & 2000 [638

g S 1000 i s=

Q (e} [*}

= o 04 1 10 10010080000 - 0 = 0 5 1015 20 25

> e 0 50 100150200250300350 Predicted CPU time of night
Predicted CPU time of job (hours) Priority (1000’s of hours)

Fig. 10. Predicted and ac- Fig.11. Jobs’ CPU de- Fig.12. Sums of predicted
tual 71 also appear corre- mand are not correlated vs. actual CPU demand
lated but often differ by a with priorities for all jobs in each night
factor of 2-10

Figure 9 shows a scatterplot of predicted versus actual T, for jobs in our
trace. Predictions are based on an estimate of the time required to render a
single frame from the job. While Figure 9 suggests a strong correlation between
the predicted and actual times, only 14% of the predictions are within 10% of
the actual Ts. Only 46% of the predictions are within 30% of the actual T,
and 21% of the predictions are wrong by a factor of 2 or more.

Figure 10 shows a similar scatterplot for T;. These predictions are formed by
multiplying the estimated time to render a single frame by the number of frames
in the job, which leaves even more room for error, since not all frames take the
same amount of time to render. Only 37% of the predictions are within 20%, 25%
are wrong by a factor of 2 or more, and 7% are wrong by a factor of 10 or more.

However, while T predictions are not very accurate for individual jobs (and
we have no predictions of individual task execution times), our predictions are
quite good when aggregated over all jobs for a given night. 32% of the predictions
are within 10% and 80% are within 30% of the actual sums. Only 4% of the
predictions are wrong by a factor of 2 or more. Figure 12 shows the sums of the
predicted and actual T for all jobs in each night, relative to each other. These
sums are the only quantity for which we have good predictions. Fortunately,
in job selection, we only need the sum of T for a set of jobs rather than the
individual jobs’ requirements; that sum indicates whether the set can fit in the
knapsack capacity of PD.

132 Y. Zhou et al.

3.5 Job Priorities

Currently, DreamWorks Animation uses job priorities to decide which jobs to
run first. Table 3 shows the priority categories that they use and the percentage
of jobs assigned to each category. In Figure 11, we compare the CPU demand
of jobs in different priority categories. Unsurprisingly, we find little correlation
because job priorities are intended to reflect the relative importance of jobs, not
their computational demands.

Table 3. Number and percent of jobs in each priority band

Priority 0-99 100-199 200-299 300-399

Must do Must do Good If there
Meaning first tonight to do is time
Percent of jobs (all nights) 55.2% 81% 35.7% 1.0%
Number of jobs (all nights) 1318 193 853 24
Number of jobs (average/night) 24 4 15 0.4

4 Sensitivity Analysis

In this section, we evaluate how sensitive the performance of our scheduling
method is to two variables: a parameter of our method and a property of our
workload. We describe these variables first and then present the questions that
the rest of this section tries to answer.

The scheduling method presented in Section 2.2 is a two-phase method. The
first phase, job selection, uses a selection parameter r to decide the subset of
jobs to run. As r approaches 1, the number of chosen jobs increases to fill all of
the CPU time. The lower the value of 7, the more idle time is allowed in the job
schedule but the lower the possible reward if all jobs complete.

The workload itself contains many jobs, each of which has a critical path
length T, and the workload has a maximum CPL T3%**. Theorem 1 shows
that our two-phase scheduling method achieves close-to-optimal performance
if TM2x/D is small and jobs have unit rewards. It leaves open the case where
T2ax /D is large, as it is in DreamWorks Animation’s workload, and jobs have
non-unit rewards. In addition, while Theorem 1 gives tight worst-case bounds
for pathological examples, we wanted to explore average case performance. Our
evaluation therefore aims to answer the following questions:

1. How should the selection parameter r be set? Does it depend on the dis-
patching policy used?

2. How sensitive is dispatcher performance to different maximum critical path
lengths?

3. What happens to performance as T2** ~ D? Is it as bad as the worst case
given by Theorem 17

4. Can we improve performance by breaking long tasks into small pieces
(thereby shortening 772%)?

An Extended Evaluation of Two-Phase Scheduling Methods 133

In order to answer the latter three questions, we needed to generate work-
loads with varying values of T32%*. We therefore decided to generate synthetic
workloads. We first describe our synthetic workload generation and then present
our results.

4.1 Synthetic Workload Generation

In our standard synthetic workloads, T2**/D = 1. We then transform these
workloads to create new workloads with lower values of T32**. We first describe
how we generate a standard synthetic workload.

For all experiments in the next few subsections, the number of CPUs P = 100
and the global deadline D = 13 hours = 4680 x 10 seconds. For job completion
rewards, we use the size-dependent reward function R; = T7(j). For each stan-
dard workload, we add jobs to the workload until the total CPU demand of the
workload exceeds 2 x P x D.

While the workload is not full, we create new jobs as follows: For each new
job, we draw a random number of stages from U[5, 10] where Ula, b] denotes an
integer drawn with uniform probability from the set {a,a + 1,...,b}. For each
stage, we draw a number of tasks from U[1,10]. For each task, we draw a task
length from U[1,600]. After choosing task lengths for every task in a job, we
then compute the job’s critical path length T,.. If T < D, we add the job to
the workload; otherwise, we discard it.

To transform an already generated workload into a new one with a desired
T22x we alter the number of stages that it has. A job with fewer stages will
probably have a shorter T, since it will have fewer dependencies between tasks.
We therefore also generated workloads with a fixed number of stages. For each
such workload, we first create a standard workload where the number of stages
in each job is always 10, and the task lengths are drawn from U[1, 600]. We then
alter the workload so that each job has a smaller (fixed) number of stages, say 6.
For each job, we reassign all tasks that were previously in a stage > 6 to a stage
drawn from U[1, 6]. The new workload therefore has the same number of jobs and
the same total processing time as the original workload and, unlike the previous
transformation, the same number of tasks. We call this transformation T1.

A different way to alter the T, of a job is as follows: While the job’s T4
exceeds the new T2%* we find the task with the longest length and replace it
with two tasks that are half as long (in the same stage as the original task). The
CPU time of the job (and of each stage of each job) therefore remains constant,
but the job now has more parallizable tasks. We call this transformation T2.

4.2 Scheduling Performance When T2** =~ D

While Theorem 1 shows that the two-phase scheduling method achieves near-
optimal performance if (T'22*/ D) is small and jobs have unit rewards, it does not
apply to the more general case where T222*/D is large and jobs have non-unit
completion rewards. Furthermore we do not know how pessimistic the bound
of Theorem 1 is when critical paths are long: We know that the bound is tight

134 Y. Zhou et al.

because we can construct pathological inputs that result in worst-case perfor-
mance given by the theorem. However our theoretical results alone shed little
light on whether such inputs are likely to arise in practice. How does the worst-
case bound of Theorem 1 compare with average performance for workloads with
Tnax ~ D?

In this section we answer this question by generating synthetic workloads
with T22* ~ D and applying our two-phase scheduling method to them in
simulation. We use DP by profits to solve the job selection problem optimally.
Ideally, we would like to compare the performance achieved by our scheduler with
the optimal solution value. However, as discussed in Section 2 and proven in [2],
it is computationally infeasible to solve DSSP optimally. We therefore instead
compute an upper bound equal to the aggregate value of jobs selected when
selection parameter r = 1. This is the reward that would accrue if we select jobs
to utilize available processor capacity as fully as possible, and all selected jobs
complete by the deadline. It is clearly an upper bound for the optimal value of
the overall scheduling problem (which may be lower if some jobs fail to complete
on time). When evaluating our two-phase scheduler we use the term performance
ratio to denote the ratio of its actual performance to the upper bound discussed
above.

Section 4.1 describes how to generate synthetic workloads with 72%* close to
D. For each workload generated in this way, we run the two-phase scheduling
method with varying values of selection parameter r during job selection. In this
experiment we use three dispatcher policies during the task dispatching phase:
LCPF, STCPU, and RANDOM, and we vary the selection parameter r from 0.7
to 1.0 in increments of 0.01. For each (r, dispatcher) pair we generate 20 different
random workloads and report mean performance ratio. Figure 13 presents our
results.

The figure shows that LCPF clearly dominates both STCPU and RANDOM for
any fixed r value. This is not surprising because LCPF takes into account the
critical paths of jobs while the other policies do not. For workloads with long
critical paths, performance will suffer if the jobs with the longest critical paths
are started too late to complete on time. Both STCPU and RANDOM ignore jobs’
critical path lengths and therefore start many long jobs too late to complete by
the deadline, while LCPF starts long jobs as early as possible.

Comparing STCPU with RANDOM, we see that STCPU is slightly better when
r > 0.92 and RANDOM is slightly better when r < 0.87; their performance is
similar when r is in the range [0.87, 0.92]. Note also that RANDOM becomes less
effective when more jobs are selected whereas STCPU is relatively insensitive to
the tuning of r. This is intuitive because RANDOM treats all tasks equally, and
if too many jobs are selected it will spread available processor capacity among
them roughly evenly, with the result that many fail to complete by the deadline.
By contrast, STCPU imposes a near-total priority order on jobs, because it is
rare for two jobs to have the same total processing demand. If r increases and
more jobs are selected, some of the additional jobs have small processing demand
and STCPU finishes them early during task dispatching. This has relatively little

An Extended Evaluation of Two-Phase Scheduling Methods 135

2 08 //”"““ e]
|
28 iiisasaian. 2
2% o S PR g
3 ;é 0.6 F R 3
£ - e
P =
SE 041 3 ol
€2 9
23 E o
=5
g | =
e 02 LCPF —— Q-
STCPU e .
0 RANDOM A
0.7 0.75 0.8 0.85 0.9 0.95 1 1 2 3 4 5 6 7 8 9 10
selection parameter r number of stages per job
Fig. 13. Performance ratio vs. se- Fig.14. FIGS/ maxcpl.vs.s. eps
lection parameter r, for synthetic MaxCPL vs. number of stages for
workloads with T2 /D ~ 1 each of eight synthetic workloads

generated by transformation T1

impact on the remaining processing capacity available to larger jobs, and the
overall result is that many jobs still finish by the deadline.

Figure 13 shows that the performance of LCPF reaches a maximum of roughly
0.84 when r = 0.87. In other words, LCPF achieves at least 84% of the opti-
mal performance even though the maximum critical path lengths T2%* in the
workloads used are at least 97% of the deadline D. This result stands in stark
contrast to the very weak performance bound that Theorem 1 would guarantee
with similarly long critical paths: If T2%*/D = 0.97, our previous theoretical
results state that a two-phase scheduler can achieve as little as 3% of optimal
performance in the unit-reward case.

Finally, we observe in Figure 13 that LCPF’s performance is relatively flat
when r is in the range [0.85, 1]. When r < 0.85, all selected jobs finish by
the deadline and selecting more jobs simply increases the number that finish.
As the selection parameter increases beyond r > 0.85, performance does not
improve because the additional jobs selected do not complete by the deadline;
more processing capacity is used, but it is wasted on jobs that do not complete
quickly enough to yield a reward. Because a job that fails to complete by the
deadline simply wastes any capacity devoted to it, it might be best in practice to
set r to a relatively low value rather than a higher value that achieves comparable
reward (e.g., 0.85 as opposed to 1 in the figure). Our results suggest that for LCPF
and the workload studied (T2* ~ D) a value of r in the range [0.85, 9] is a
good choice.

4.3 Performance vs. MaxCPL

In this section we empirically evaluate the performance of the two-phase schedu-
ling method as the maximum critical path length T22** of the workload varies.
Intuitively, jobs with relatively long critical paths face higher risk of finishing
after deadline D and thus yielding no reward. Theorem 1 shows that the worst-
case performance of two-phase scheduling for unit-reward DSSP is a strictly de-
creasing function of (T2**/D). However our theoretical worst-case bounds for

136 Y. Zhou et al.

unit-reward DSSP do not necessarily predict typical performance in the weighted
case. We therefore explore via simulation the relationship between maximum
critical path length T 22* and the performance ratio that our scheduling method
achieves.

We describe two classes of simulation experiments to address this issue and
compare their results qualitatively. Our first approach uses the workloads with
a fixed number of stages and transform them into new workloads with fewer
number of stages using transformation T1. While it directly alters only the
number of stages per job, Figure 14 shows that the number of stages is closely
related to T 2%* for the workload. T52®* is almost a linear function of the number
of stages for jobs in the synthetic workload.

Figures 15, 16, and 17 show the performance ratio of three dispatching poli-
cies as the number of stages per job varies. One feature of these figures is that
RANDOM differs qualitatively from LCPF and STCPU: The latter two policies dom-
inate RANDOM for most values of r and for most numbers of stages. Furthermore,
for all r values except r = 1.0, the performance of RANDOM decreases slowly as
the number of stages (and T2%*) increases, but suffers only slightly. Finally, the
performance of RANDOM relies heavily on a well-tuned 7. If r is close to 1 its
performance degrades substantially. For the workload studied, r of 0.8 to 0.9
seems appropriate for RANDOM and yields far better performance than r = 1.

Figures 16 and 17 show that LCPF outperforms STCPU by a wide margin when
the number of stages per job is large. Furthermore, contrary to our intuition that
performance should decrease monotonically as the number of stages increases,
we notice a local minimum of the performance ratios of both LCPF and STCPU at
roughly 5 stages/job. Upon further investigation of Figure 14 we found that 5
stages corresponds to T2®* &~ D /2. We conjecture that LCPF and STCPU exhibit
non-monotonicity while RANDOM does not for the following reason: Whereas
RANDOM disperses processor capacity across tasks from all jobs, LCPF and STCPU
take a different approach. They impose an order on jobs and try to finish some
jobs (the ones with greatest CPL and smallest total CPU demand, respectively)
before devoting any processing capacity to others. If T2 ~ 0.5 x D, STCPU
and LCPF will process a set of jobs and finish them slightly after ¢ = D/2. By
the time they finish these jobs, there may not be time to start the remaining
jobs and finish them by the deadline. The remaining jobs are started late and
narrowly miss the deadline, thus contributing no value and wasting processing
resources.

Our second set of experiments uses the workloads that altered T35** directly
using transformation T2. We again present results for three dispatching policies:
Figure 19 for LCPF, Figure 20 for STCPU, and Figure 18 for RANDOM.

The results for this set of experiments are similar to those for the first set:
STCPU and LCPF resemble each other but not RANDOM; LCPF outperforms STCPU
when MaxCPL is long; and RANDOM is more sensitive to selection parameter r
than the other two. In both experiments, the results show minima for MaxCPL
slightly larger than D/2. Furthermore these results shed additional light on the
relationship between performance ratio and MaxCPL: Figures 19 and 20 show

An Extended Evaluation of Two-Phase Scheduling Methods 137

[BES
ok
(nP 3

performance ratio
(output value / upper bound)

RANDOM

1 2 3 4 5 6 7

number of stages per job

Fig. 15. Performance ratio vs. number of

o
©

stages with dispatching policy RANDOM

=)
=}
=
28
g8
uﬂq
a
25
£3
£z
£
S8 04} g
= 2
U o
as
&
=
K 02 b
0

1 2 3 4 5 6 7 8 9

number of stages per job

Fig. 16. Performance ratio vs. number

stages with dispatching policy LCPF

=
=
=
o2
EF
o
85
23
EZ | ,
g% 04
52
[="n=1
&
g o2rf 1
r=0.9 -
r=0.85

1 2 3 4 5 6 7 8 9

number of stages per job

Fig. 17. Performance ratio vs number of

stages with dispatching policy STCPU

5 09F
i=}
2
L8
g% 0.8 |
=
g3 0.7
F
S
25 0.6
&
3
~ 05 -
04 L i L L - - L L - - L L
0.0 0.2 0.4 0.6 0.8 1.0

MaxCPL/Deadline with 20 steps

Fig. 18. Performance ratio vs MaxCPL
with dispatching policy RANDOM

) 09 r
i=
2
L8 L
e 0.8
g
532 o7t
E
&%
5 06f 1
2. ——
2 e
S o5t —a 1
e
.8 —H—
04 L
0.0 02 04 0.6 0.8 1.0

MaxCPL/Deadline with 20 steps

Fig. 19. Performance ratio vs. MaxCPL
with dispatching policy LCPF

= 09 r
=
3
g5
P 0.8 -
&
=
53 o7t
€2
25 0.6 -
=3
B
= 05 -
0.4 e S S S S S S S S
0.0 0.2 04 0.6 0.8 1.0

MaxCPL/Deadline with 20 steps

Fig. 20. Performance ratio vs. MaxCPL
with dispatching policy sTCPU

138 Y. Zhou et al.

second local minima at around 722 = 0.35 x D, that is, at T2 ~ D/3. It
is possible for the performance of our scheduling method to have multiple local
minima with respect to T52®*, and these local minima occur at approximately
D/n from the right side, where n = 2,3,... is an integer. We conjecture that
LCPF and STCPU finish jobs in “rounds.” If T2** ~ D /n these policies will finish
the first n — 1 rounds; jobs in the last round will narrowly miss the deadline,
thereby wasting processor resources without contributing value.

4.4 Selection Parameter Tuning

DSSP is a deadline scheduling problem where a job’s completion reward is zero
if it completes after the global deadline D. If too many jobs are selected during
the job selection phase, then during task dispatching these selected jobs will
compete for limited processor capacity and each job has a higher risk of finishing
too late. It is thus important to set the selection parameter r properly for each
dispatching policy; in most cases it should be strictly less than 1. Let ro =
1—(1-1/P)(T2**/D). Theorem 1 has proved that a general two-phase solution
with r = rg completes at least rq- OPT — 1 jobs before the deadline, where OPT
is the maximum number of jobs that can be completed by any scheduler. This
seems to suggest a default selection parameter value. This section tries to find a
reasonably good value for r for various dispatching policies.

We begin by briefly reviewing our simulation results from Section 4.3. Fig-
ure 15 shows that for dispatcher policy RANDOM, the worst strategy is to choose
r > 1. Figure 15 suggests that the best choice of r is in the range [0.85,0.9]. For
any r € [0.85,0.9], performance is strictly better than for r = 1.

For dispatching polices such as LCPF or STCPU, it is also true that r slightly
less than 1 is better than » = 1. However the best selection parameter is no longer
a fixed constant. Given two fixed selection parameters r; < ro, we consider their
corresponding performance ratio curves which we denote f1, fo respectively. It
is highly likely that when T0** is small, then f; > f>. At some value T3,
these two curves intersect. After that 172 > T2%% . then the order is reversed
1 < fa

Figures 19 and 20 suggest that the best value of r is correlated to the maxi-
mum critical path length of the workload. Inspired by the value of ry above,
we suspect that it is possible to find a constant A € [0, 1], such that r =
1—X1-1/P)(T22x/D) is a good choice for the selection parameter. Figure 21
shows the performance ratio of our algorithm using LCPF dispatching policy with
three A values: A = 0.0, 0.2, and 1.0. A = 0.0 corresponds to the selection pa-
rameter r= 1.0; A = 1.0 corresponds to the selection parameter r = ry; and A =
0.2 corresponds to r =1—0.2(1 — 1/P)(T2**/D).

Figure 21 shows that for dispatching policy LCPF, the curve corresponding to
A = 0.2 consistently performs better than the curve corresponding to A = 0.0,
i.e., 7 = 1.0. Furthermore, both A = 0.2 and A = 0.0 perform much better
than A = 1.0. This is because r(is too conservative; it is appropriate only for
worst-case inputs. For the class of workloads studied and for our LCPF dispatcher
policy, a good selection parameter is around r =1 — 0.2(1 — 1/P)(T2**/D).

An Extended Evaluation of Two-Phase Scheduling Methods 139

08 -

0.6 -

0.4

performance ratio
(output value / upper bound)

02 r

0.0 0.2 0.4 0.6 0.8 1.0
MaxCPL/Deadline with 20 steps

Fig. 21. Performance ratio vs. MaxCPL with LCPF and r =1 — A\(1 — 1/P)(T%*/D),
for three A values

4.5 Tradeoff Between Parallelism and Performance

Parallelism is an important technique in scientific computing and parallel com-
puting to improve system utilization and job throughput by breaking long se-
quential tasks into multiple parallel tasks. For a multi-processor system, if there
is only one long-running task, then only one processor is fully occupied and all
other processors are left idle. Breaking long tasks into multiple short tasks will
definitely increase system utilization. Remarkably, however, for DSSP paralleliza-
tion is not necessarily helpful even if it entails no overhead. In other words, if
we have an opportunity to parallelize tasks in a particular instance of DSSP and
thereby reduce critical path lengths, it is not always advantageous to do so.

Consider, for instance, the workloads with 72%* /D ~ 0.8 in Figures 19 and 20.
If by parallelizing tasks we reduce T22*/D to roughly 0.55, performance will be
worse for both LCPF and STCPU even though parallelization does not increase
total processing demand. If LCPF is the task dispatching policy, then parallelism
is beneficial only if the given workload has T2** < D/2. Finally, if T2**/D
is small, then the two-phase scheduling method produces a solution with near-
optimal performance regardless of the dispatcher policy used; even if parallelism
incurs no extra cost, it cannot yield large performance improvements.

5 DreamWorks Animation Engagement Experience

In August 2003, HP Labs embarked on a challenge to provide remote rendering
services to DreamWorks Animation. In early February 2004, we went into full
production for the movie Shrek 2. We learned that the utilification [22] process of
bringing the customer’s workload up on a remote facility was not straightforward,
and had many unexpected challenges.

We went through four stages in utilification. First a feasibility stage where we
determined whether or not a remote service was feasible. Second, an instantiation
stage where we brought up the service. Third, a confidence-building stage where
we demonstrated to the customer’s satisfaction that the remote service could

140 Y. Zhou et al.

correctly support their workload. Fourth, an ongoing maintenance stage where
we optimize our delivery of the service, and keep the service up to date for the
customer needs. In the following we describe these stages in detail.

5.1 Feasibility Stage

Our evaluation started in August 2003. We needed to determine whether we
would be able to place a remote facility about 20 miles away from the primary
site. We found that there were four feasibility questions:

1. Schedule - the proposed schedule said that we needed to be in production in
only five months, by January 2004. Could we acquire all of the equipment
and implement the system in that time?

2. Bandwidth and latency - will the 1 Gbit/s network connection between the
sites be sufficient to support a cluster of 1,000 2.8 GHz CPUs?

3. Software and configuration - will we be able to install, configure, and adapt
the existing software and configuration to work with a remote cluster?

4. Business Model - can the lawyers agree on an appropriate contract for the
project?

While we expected (3) to provide the most difficulty, we in fact discovered that
(4) presented the most substantial difficulties, in particular because the Shrek 2
franchise had a large estimated monetary value, and DreamWorks Animation
therefore had an understandable concern about exposing content outside of their
company. Hence, we negotiated protections such as sanitization of gathered data
for analysis, an isolated network to protect their content, a double-stage firewall
to protect access from the HP network, and a camera to monitor the physical
installation.

Performing the bandwidth and latency analysis was the hardest technical
challenge we faced during the feasibility stage. The sustained and burst packet
rates we needed to handle normally would require specialized network analyzer
hardware, but we needed general purpose, full-packet capture for weeks of data.
We developed a solution based on commodity hardware that used improved
software for packet capture, buffering to local memory to handle bursts of data,
parallel use of multiple disks spread across multiple trays, and opportunistic
compression of data to increase the effective disk space and increase the time-
periods for contiguous captures. The solution could handle traffic for hours at 30-
50MB/s and bursts above 100MB /s with negligible drops on the tracing machine.

Our second challenge was to analyze the data. We have collected billions of
NFS requests and replies, so putting this in a database or directly processing
the raw traces would be either too slow or too expensive. Luckily we had previ-
ously developed a new, highly efficient trace storage format called “DataSeries”
for handling block I/O traces and process traces. The format was general, and
provided streaming access to database-like tables. We therefore developed a con-
verter from the raw tcpdump traces into DataSeries, and built our analysis on

An Extended Evaluation of Two-Phase Scheduling Methods 141

the converted files. This has provided us with a flexible, extensible data for-
mat and structure for our analysis. Multiple people have been able to add new
analysis in to our existing structure within a few days.

We did not hit the original schedule because of the length of time it took
to negotiate the legal agreements and the unexpected length of the confidence-
building stage. Both of these parts were originally scheduled as taking at most
a few weeks, and in fact both took months. Luckily, the need for the service was
not excessively strong until early February 2004, so we were able to provide the
service on an appropriate schedule, just one different than we expected.

5.2 Instantiation Stage

The primary difficulty that occurred during the instantiation stage was installing
and configuring all 500 machines. When our racks of machines arrived, we dis-
covered that some of them were configured both physically and logically wrong.
The physical mistakes involved cabling errors, which were straightforward if te-
dious to repair. The logical mistakes were more difficult because they involved
incorrect firmware versions. After a little study, we developed a tool for automat-
ically updating the firmware and firmware configuration on all of our machines
automatically. We wrote an extensive document about the problems with the
order fulfillment process for rack systems which was presented back to the HP
order fulfillment team. The key lesson was that many traditional tools that are
used involve per-machine human effort. While those tools are acceptable if you
have 1-10 machines, they become unusable at 500. We needed to automate many
of these actions, and found moreover that it was important to write idempotent
tools: any time we ran a task across 500 machines (even one as simple as remov-
ing a file), a few machines would fail to execute the task correctly. Our solution
was to design our automation to take a machine to a particular state and re-
port on changes it made, which meant that we could simply execute global tasks
multiple times until we received a report of no changes.

5.3 Testing Stage

Once we had instantiated the rendering service, we then had to verify that it
worked to the satisfaction of various people responsible for making the movie.
Moreover, we wanted to perform these read-write tests with no risk to the pro-
duction data. Our problem therefore was to clone an appropriate subset of the
total 15-20 TB of data such that we could show that our cluster rendered frames
correctly, and so that there would be minimal changes from testing to production.

While we solved this problem by using a DreamWorks Animation specific
feature in their rendering system of having a few variables to change expected
file locations, and setting the source file systems to read only, we found a better
solution by having a write-redirector that snapshot the backend file systems to
isolate us from underlying changes and store our writes in a second location. This
solution enables us to test and verify our solution much faster. Then moving into
production would merely have required removing the write redirector to send all
of the accesses directly at the file systems.

142 Y. Zhou et al.

5.4 Maintenance and Optimization

We moved into production in two stages, first on a movie that was not due to
release until 2005, and then on Shrek 2. When we moved into production we
identified some reporting and job submission issues that we had not addressed
during the instantiation phase that we needed to solve. Once we entered into
full production, our goal was really to optimize and maintain the cluster. We
made many small, but cumulative improvements to our service: simple service-
specific host monitoring to detect failed hosts, automatic job retry for failed jobs,
farm usage analysis and reporting, tracing through render job executions, and
NF'S performance analysis. Specifically, we found an interesting aspect to explore
scheduling improvements over this multi-processor rendering environment, and
that motivated our current work.

6 Related Work

Scheduling is a basic research problem in both computer science and operations
research. The space of problems is vast; [4,17] provide good reviews. In this
section we focus on non-preemptive multiprocessor scheduling without processor-
sharing.

6.1 Minimizing Makespan or Mean Completion Time

Much scheduling research focuses on minimizing makespan for tasks with ar-
bitrary precedence constraints. Variants of list scheduling heuristics and their
associated dispatching policies are the main focus of both theoretical and em-
pirical studies [8, 3,9, 1]. See Kwok and Ahmad [14] for a recent survey of static
scheduling algorithms and Sgall [19] for online scheduling algorithms.

Another important optimization metric for job scheduling research is to min-
imize mean task completion time. The classic shortest job first (SJF) heuristic is
optimal in the offline case with no precedence constraints and each job consists
of a single task; SJF works well in many online scheduling systems.

The large queueing-theoretic literature on processor scheduling typically as-
sumes continuous online job arrivals and emphasizes mean response times and
fairness, e.g., Wierman and Harchol-Balter [21]. Kumar and Shorey analyze mean
response time for stochastic “fork-join” jobs, where fork-join jobs closely resem-
ble the stage-structured jobs of DSSP [13]. Our work on Dssp differs because we
are confronted with a fixed set of jobs rather than a continuous arrival process.
Deadline scheduling is therefore a more appropriate goal for DSSP.

6.2 Grid and Resource Management

For heterogeneous distributed systems such as the Grid, job scheduling is a ma-
jor component of resource management. See Feitelson et al. [7] for an overview
of theory and practice in this space, and Krallmann et al. [12] for a general
framework for the design and evaluation of scheduling algorithms. Most work

An Extended Evaluation of Two-Phase Scheduling Methods 143

in this space empirically evaluates scheduling heuristics, such as backfilling [15],
adaptive scheduling [10], and task grouping [20], to improve system utilization
and throughput. Markov [16] described a two-stage scheduling strategy for Sun’s
Grid Engine that superficially resembles our two-phase decomposition approach.
In fact there is no similarity: The first stage of Markov’s approach assigns static
priorities to jobs and the second stage assigns dynamic priorities to server re-
sources. Most of the work in the Grid space does not emphasize precedence
constraints among jobs/tasks.

6.3 Commercial Products

Open-source schedulers such as Condor manage resources, monitor jobs, and en-
force precedence constraints [6]. Commercial products such as LSF additionally
enforce fair-share constraints [18]. These priority schedulers have no explicit se-
lection phase, so they must handle overload and enforce fair-share constraints
through dispatching decisions. Our two-phase deadline scheduler for DSSP can
employ a priority scheduler for task dispatching after an optimal solver has se-
lected jobs. Selection can enforce a wide range of constraints, thereby allowing
greater latitude for dispatching decisions. Furthermore, the completion rewards
of our framework are more expressive than ordinal priorities and thus better
suited to DSSP.

7 Concluding Remarks

In this paper we evaluated the two-phase scheduling method for DSSP through
parameter tuning and sensitivity analysis. Contrary to our intuition that the
performance of our scheduling method should decrease as the maximum crit-
ical path length of the input workload increases, our empirical results show
that even though there is a close correlation between performance ratio and
MaxCPL value, it is not monotonic for dispatching polices such as LCPF. More
exploration is needed to determine why the performance ratio decreases signif-
icantly when T2®* ~ D /2. We tentatively conjecture that when deadline is an
integral multiple of MaxCPL, dispatcher policies such as LCPF that associate
task priorities with job properties suffer because many of the jobs narrowly fail
to complete by the deadline, thus achieving no reward and wasting processor
resources.

Furthermore, contrary to the worst-case performance bound in our previous
work which is pessimistically bad if T2 ~ D, our new empirical evaluation
shows that our algorithm performs very well for this special case, with a perfor-
mance ratio of more than 80%.

Based on these empirical evaluation results, we believe that MaxCPL alone
is insufficient to describe the workload and predict the performance of our sche-
duling methods. It will be interesting to explore the distribution of critical path
lengths for all the jobs in the workload and determine its impact on the perfor-
mance of the two-phase scheduling method.

144

Y. Zhou et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Thomas L. Adam, K. M. Chandy, and J. R. Dickson. A comparison of list schedules
for parallel processing systems. Communications of the ACM, 17(12):685-690,
December 1974.

. Eric Anderson, Dirk Beyer, Kamalika Chaudhuri, Terence Kelly, Norman Salazar,

Cipriano Santos, Ram Swaminathan, Robert Tarjan, Janet Wiener, and Yunhong
Zhou. Value-maximizing deadline scheduling and its application to animation ren-
dering. In Proceedings of 17th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), Las Vegas, NV, July 2005. ACM press. A 2-page poster
also appears in SIGMETRICS 2005.

. Richard P. Brent. The parallel evaluation of general arithmetic expressions. JACM,

21(2):201-206, 1974.

. Peter Brucker. Scheduling Algorithms. Springer, 3rd edition, 2001.
. The Condor Project. http://www.cs.wisc.edu/condor/.
. Directed acyclic graph manager (DAGMan) for Condor scheduler. http://

www.cs.wisc.edu/condor/dagman/.

. Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik, and

Parkson Wong. Theory and practice in parallel job scheduling. In Proceedings of
JSSPP, LNCS 1291, pages 1-34, 1997.

. Ron Graham. Bounds for certain multiprocessor anomalies. Bell Sys Tech J,

45:1563-1581, 1966.

. Ronald Graham. Bounds on multiprocessing time anomalies. SIAM J Appl Math,

17:263-269, 1969.

Elisa Heymann, Miquel A. Senar, Emilio Luque, and Miron Livny. Adaptive sche-
duling for master-worker applications on the computational grid. In Mark Baker
Rajkumar Buyya, editor, Proceedings of the First IEEE/ACM International Work-
shop on Grid Computing (GRID 2000), LNCS 1971, pages 214-227. Springer, 2000.
Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer,
2004.

Jochen Krallmann, Uwe Schwiegelshohn, and Ramin Yahyapour. On the design
and evaluation of job scheduling algorithms. In Proceedings of JSSPP, LNCS 1659,
pages 17-42, 1999.

Anurag Kumar and Rajeev Shorey. Performance analysis and scheduling of stochas-
tic fork-join jobs in a multicomputer system. IEEE Trans Par Dist Sys, 4(10),
October 1993.

Yu-Kwong Kwok and Ishfag Ahmad. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Computing Surveys, 31(4):406-471,
December 1999.

David A. Lifka. The ANL/IBM SP scheduling system. In Proceedings of JSSPP,
LNCS 949, pages 295-303, 1995.

Lev Markov. Two stage optimization of job scheduling and assignment in hetero-
geneous compute farms. In Proc. IEEE Workshop on Future Trends in Distributed
Computing Systems, pages 119-124, Suzhou, China, May 2004.

Michael Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, 2nd
edition, 2002.

Platform Computing. LSF Scheduler. http://www.platform.com/products/
LSFfamily/.

Jiri Sgall. On-line scheduling—a survey. In A. Fiat and G.J. Woeginger, editors,
Online Algorithms: The State of the Art, number 1442 in LNCS, pages 196-231.
Springer-Verlag, 1998.

An Extended Evaluation of Two-Phase Scheduling Methods 145

20. Ling Tan and Zahir Tari. Dynamic task assignment in server farms: Better per-
formance by task grouping. In Proc. of the Int. Symposium on Computers and
Communications (ISCC), pages 175-180, July 2002.

21. Adam Wierman and Mor Harchol-Balter. Classifying scheduling policies with re-
spect to unfairness in an M/GI/1. In SIGMETRICS, pages 238-249, June 2003.

22. John Wilkes, Jeffrey Mogul, and Jaap Suermondt. Utilification. In Proceedings of
the 11th ACM SIGOPS FEuropean Workshop, 2004.

Co-scheduling with User-Settable Reservations

Kenneth Yoshimoto, Patricia Kovatch, and Phil Andrews

San Diego Supercomputer Center,
University of California, San Diego
{kenneth, pkovatch, andrews}@sdsc.edu

Abstract. As grid computing becomes more commonplace, so does the
importance of coscheduling these geographically distributed resources.
Negotiating resource management and scheduling decisions for these re-
sources is similar to making travel arrangements: guesses are made and
then remade or confirmed depending on the availability of resources. This
“Travel Agent Method” serves as the basis for a production scheduler
and metascheduler suitable for making travel arrangements for a grid.
This strategy is more easily implemented than centralized metascheduler
because arrangements can be made without requiring control over the
individual schedulers for each resource: the reservations are set by users
or automatically by negotiating with each local scheduler’s user settable
interface. The Generic Universal Remote is a working implementation of
such a system and proves that a user-settable reservation facility on local
schedulers in a grid is sufficient to enable automated metascheduling.

1 Introduction

A grid is a distributed computing and resource environment connected via soft-
ware and hardware. The resources can be as diverse as electron microscopes
or Terabyte-sized databases. Computational resources that are a component of
a grid usually have many processors available for the use of scientists and re-
searchers. These resources often have unique characteristics like a “large” amount
of memory or access to “large” amounts of disk. Generally the compute resources
have a local resource manager and scheduler to allow sharing of resources be-
tween the different users of the system.

In the case of this project, development was done within the context of a
specific Grid, the TeraGrid [3], an NSF-funded project to create and link several
supercomputer class systems across one of the world’s fastest networks. The ini-
tial middleware suite used for coordination has been Globus [4,5], while recently
there has been significant work done on the use of a Global File System [2], ini-
tially based on the General Purpose File System, GPFS [8], from IBM. A similar
approach is being investigated by the European Grid community, DEISA [1].

A prior study by another group evaluated multi-site submission of single
jobs [7]. This article describes a strategy for scheduling a single job over multi-
ple sites.

A variety of applications can make use of these grid resources. Some
applications use loosely-coupled communication resources while others require

D. Feitelson et al. (Eds.): JSSPP 2005, LNCS 3834, pp. 146-156, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

Co-scheduling with User-Settable Reservations 147

tightly-coupled communication resources. Some need to stage data from one
location to another before it can compute and process additional data. Some
applications can make use of distributed resources but synchronize some com-
munications between the sites. Because of this synchronization, resources need
to be available at multiple sites at the same time. Some applications want to
run at the earliest time possible regardless of the machine type or geographical
location of the resources.

Often the grid is compared to an electric utility: always available. But this
does not necessarily apply to High Performance Computing (HPC) and grid
computing, where demand exceeds supply. The electrical grid is planned to al-
ways have more electrical supply than demand. If demand ever exceeds supply,
there are rolling brownouts. In this situation where supply exceeds demand, “on-
demand” is easy: just plug into a wall outlet, because there’s enough slack in the
system to provide the power necessary to run a radio. This can be contrasted
with HPC and grid computing, where demand often exceeds supply. There are
always more applications, more compute, more data and other resources needed
to further the never -ending stream of research. The continual demand for capa-
bility requires the commitment of resources for specific jobs. The electric grid /”on
demand” analogy breaks down for HPC. The scheduling strategies for these two
situations are entirely different.

A better analogy is an industry where complex workflows cause excess de-
mand for limited resources: travel. Every day, travel agents create multi-resource
itineraries. An itinerary with round-trip airplane flights, rental car and hotel
reservations corresponds very well to that of a grid job that needs to do pipeline
computation. The travel agent works with a number of different independent re-
source providers to generate a valid itinerary. One thing that’s interesting about
this model is that there is no requirement for global coordination. The airline
does not need to know that there are rental cars available at the destination, for
example. For the travel industry, there is a many-to-many supplier-to-consumer
market. For the electric grid, there is one supplier through which all consumers
in a region must go. The economics of the travel industry is a better model for
HPC/grid computing.

The Generic Universal Remote (GUR) provides distributed resource manage-
ment capabilities that make efficient use of HPC/grid computing resources based
on a travel agent’s methods. It provides automatic negotiation of coordinated
cross-site (pipeline and co-scheduled) and first possible run-time (Disneyland or
load balanced) reservations allowing these types of jobs to run efficiently. These
types of jobs are scheduled in an automatic way by taking advantage of lo-
cal scheduler’s user-settable reservation capabilities. GUR requests and confirms
reservations from independent local schedulers to generate a grid reservation. It
uses a simple heuristic to generate a valid, but not necessarily optimal sched-
ule. GUR does not require centralized control over all the grid resources, unlike
other metascheduling solutions. GUR automatically reserves resources from a
scientists’ laptop that not only makes it easier for the scientist, but it reduces
load on the remote “login” nodes. This decentralized local scheduler works like

148 K. Yoshimoto, P. Kovatch, and P. Andrews

a “universal remote” where it commands and coordinates access to multiple,
heterogeneous distributed resources based on where you “point it”, much like a
universal electronics remote.

2 Grid Scheduling Strategies

Many different types of applications make use of grid resources. Some typi-
cal scenarios include communication-, compute-intensive and combination-type
jobs. Communication-intensive applications launch jobs to run on a single re-
mote cluster. Computation a4ASintensive jobs run on geographically distributed
clusters. Communication- and computation-intensive jobs run on a single remote
cluster and then possibly transfer the data to another site for visualization.

These applications represent three types of job scheduling scenarios that are
common to grid computing:

1. Run x job on n nodes, where all n nodes are located at any one of a set of
sites, at the earliest possible time (Disneyland)

2. Run x job on n nodes, where n nodes may be distributed across multiple
sites at the same time (co-scheduled)

3. Run x job at site A, then move output to site B for additional computation,
visualization or database access (pipeline)

In the first scenario, a user wants to run as quickly as possible. For instance,
the user has a communication-intensive type of job and doesn’t care which sin-
gle compute resource (out of a set of compute resources) the job runs on. For
example, when you visit Disneyland with your friends, the object is to get on
as many rides as possible. Since the rides are popular, there is a wait to get
on the rides. Which means you and your friends will wait in line for a ride and
then move to the next ride in sequential fashion. A more efficient way to get on
more rides would be to split up with your friends and have each of you wait in
line at different rides. Then, whoever gets to the front of the line first “wins”
and you and your friends leave their different lines to join the “winning” per-
son. This method allows you and your friends to ride as many rides as possible.
Many scientific computation applications exhibit this behavior. A brain imaging
application renders images from raw data is an example of a kind of application
that uses this kind of scheduling scenario. It has been shown that this strategy
does not necessarily reach the optimal solution, if the resources are heteroge-
neous [7]. We have also not studied the effect on global and local utilization
with such a strategy. Intuitively, a “market” of resource consumers and resource
providers might be expected to emerge. Information, in the form of submitted
jobs, would be available to resource providers. We speculate that this dissem-
ination of information might allow more efficient global utilization, without a
centralized scheduling mechanism.

Some kinds of computation-intensive jobs make use of geographically dis-
tributed resources. These jobs run within each separate site and communicate
between sites. For example, to develop a full weather model for the ocean’s at-
mosphere, one part of the job computes the ocean’s effects on the atmosphere at

Co-scheduling with User-Settable Reservations 149

one site and the other part of the model computes the effects of the atmosphere
on the ocean. The distributed jobs then communicate at the end of the model
to share the data to develop a complete model. This kind of job needs resources
to be available simultaneously (co-scheduled).

Different sites offer different capabilities. Because of this, users want to com-
pute at one site, move data to another site, visualize the data at another site
and finally store the output at a last site. The storing of data can’t start until
the data is visualized. And the visualization can’t start until the data is moved
and so on. The space for the data needs to be available at the remote site. So
a schedule of reservations is needed on resources to complete the job workflow.
Each step in the process depends on the previous step. An example of this kind
of job is an astronomy model that needs specific compute resources at one site
and the data and visualization resources at another site. Another instance is a
database server with a limited amount of space. In this limited amount of space,
users can bring up their own database and stage data into it. A resource man-
ager and scheduler for the database can grant space reservation requests to user.
These reservations can be coordinated with regular compute reservations on a
separate system. This staging of events is called a pipeline.

3 Grid User-Settable Reservations and Catalina
Scheduling

A local scheduler called “Catalina,” was developed to provide a user-settable
reservation facility for IBM’s LoadLeveler, Portable Batch System (PBS) or any
local resource manager that has an interface for an external scheduler. Catalina
is a reservations-based, single-queue scheduler, much like the Maui scheduler. It
prioritize jobs, based on a number of different characteristics. It calculates the
expansion factor for how long a job is waiting and adjusts the priority on the
job so it won’t starve. It also has backfill capabilities to keep the processors busy
until the right number of nodes is available for a larger job with higher priority.
When a system reservation is made, jobs that will complete before the system
reservation starts are scheduled to run. It can schedule any kind of resource
including data, database or compute. Catalina consists of 10,000 lines of Python
with some functions written in C. The user-settable reservation facility consists
of a command-line client run by an unprivileged user. Parameters provided to
the user include:

. Allocation charge account

. Exact or maximum number of nodes requested
. Duration of the reservation

. Earliest time at which the reservation can start
. Latest time at which reservation may end

. Email address for failure notification

ST W N

To keep users from severely disrupting the batch schedule, reservations are
restricted by the following policies:

150 K. Yoshimoto, P. Kovatch, and P. Andrews

Flow A* User creates meta job file
B* GUR requests coordinated
« reservations on clusters
A Job File C* Local schedulers respond to GUR
requests
dinated reservations for
* | nodes are™steated
GUR
workstation
C
spsc e s e
TG Linux
po90s poss
D

Fig. 1. Job Flow Schematic

1. User-settable reservations are made only after all currently queued jobs are
scheduled

2. Number of reservations per account can be limited

. Number of nodes and duration of each reservation can be limited

4. Global limit on the number of node-seconds devoted to user-settable reser-
vations in a configurable time window

w

Catalina is the scheduler running on the production supercomputers at the San
Diego Supercomputer Center. For instance, it’s the scheduler for Blue Horizon,
an 1100 processor IBM SP2. It interfaces with LoadLeveler, IBM’s proprietary
resource manager. [t’s been running successfully for over three years. In this time,
none of the 2000+ user accounts on Blue Horizon interrupted, interfered or delayed
the overall batch scheduling process with user-settable reservation capability.
Catalina is consistent with the Global Grid Forum Advanced Reservations API.
More information on Catalina can be found at http://www.sdsc.edu/catalina.

4 Travel Agent Method

When a travel agent makes reservations for a trip, the agent starts with specific
dates and start /end point locations in mind. Then the agent makes a starting guess
based on those dates and locations for a specific time for the reservation. The agent
may check several airlines (resources) for availability that match the traveler’s pa-
rameters. If the flight meets the traveler’s needs, the reservation is made. If several

Co-scheduling with User-Settable Reservations 151

Travel Agent *® Diversity of producers: each agent can
be configured to use a different set of
clusters

* Diversity of scheduling: each agent can
be independently designed

User 1 .| User3 N
User 2 : serd
[| Agéf1 Agént 2 | Agent3
Ped
Cluster A Cluster C
" Cluster E
Cluster 8 | Cluster D

Fig. 2. Job Flow Schematic

flights meet the traveler’s needs, the first available flight in those times is booked.
If no flights meet the traveler’s need, the agent makes another guess about flight
times to match the traveler’s next best time. If the traveler’s needs are met, the
reservation is made. If not, another guess is made, and so on. This trial and er-
ror strategy generates resource reservations in an acceptable amount of time since
there are a finite number of resources available in a specific time period.

Once the airline is reserved, the agent will make the car reservation based on
the airline arrival and departure times. And the hotel reservation is dependent
on the airline and car rentals times and so on. A draft itinerary is created and
checked with the traveler before being booked permanently.

Making reservations for distributed grid resources can be done in a similar
way: resources can be scheduled sequentially for jobs requiring staged multiple
resources or in parallel for co-scheduled resources. Both user-controlled (manual)
and automatic reserved resource acquisitions make efficient use of grid resources
since system administrator time is not required to check and make reservations
at different sites. This strategy makes reservations for the three different types
of jobs requests outlined in the Grid Usage Scenarios section.

5 Generic Universal Remote (GUR)

Traditionally, only system administrators make reservations for resources with lo-
cal schedulers. With this approach, creating Disneyland, co-scheduled or pipeline
reservations require communication with the local system administrators at each
of the sites the user wants to run. Contacting individual system administrators

152 K. Yoshimoto, P. Kovatch, and P. Andrews

at each site is a time consuming process that undoubtedly requires multiple iter-
ations Traditional approaches to metascheduling require a centralized scheduler
that controls the schedulers at each of the sites. This is an impractical approach
on the grid, where each site has it’s own security and local scheduling policies.

When the user-settable reservation capability is available to users, then users
can “self-schedule” and request resources when needed. Users act as their own
travel agent and reserve co-scheduled jobs without manual system administrator
intervention. This manual process is automated with GUR.

Using the Travel Agent Method, the GUR negotiates reservations with local
schedulers. It probes the local schedulers to find potential suitable times and then
makes a guess at possible times for the job to execute. Once a time is found, the
reservation is made. In order for this to happen, user settable reservations need
to be available on the local schedulers.

GUR is a metascheduler that was developed to automatically created coordi-
nated reservations on local schedulers, using the user-settable reservation facility.
A user submits a metajob to GUR providing information such as:

. Total number of nodes needed
. Minimum and maximum number of nodes needed for each local system
. Job duration
. Earliest start time
. Latest end time
. Usage scenario
(a) Single system (Disneyland)
(b) Multiple systems (co-scheduled)
(c) Multiple systems (pipeline)

S T W N =

A GUR job request would look something like this:

[metajob]
total modes = 12
machine _preference = datastar655, purduesp
machine _preference reorder = yes
duration = 7200
earliest _start = 07 : 0011/09/2004
latest _end = 09 : 30;1/09/2004
usage _pattern = multiple
machines _dict _string = {
'datastar655 : {
‘username__string’ ' kenneth’,
‘account _string’ i’ sys200/,
‘email _notify' ' kenneth@Qsdsc.edu’,
"min_int’ : 1,
'max_int’ : 158

2

Co-scheduling with User-Settable Reservations 153

"purduesp’ : {
'username__string’ ' kenneth’,
‘account _string’ ' TG — ST A040001N’,
'email_notify' ' kennethQsdsc.edu,
'min_int’ : 1,
"max__int’ : 2
}
}

For job submission, architecture-specific requirements are abstracted into a
GUR configuration file. Jobs request required resource features by specifiying a
‘'machine’, such as ’datastar655’. This would mean p655 nodes on DataStar. At
least one node must be used on each cluster. No more than 158 can be used on
’datastar655’, and no more than 2 can be used on purduesp’.

Then GUR probes each system to make a rough guess at each system’s queue
load. It does this by setting test reservations on each system and checking the
delay for each reservation. This approach is not optimal for all possible queue
states, but it does provide usable information on the status of each system.

In order of the least loaded system, GUR makes reservations consistent with
the minimum and maximum nodes for each system and the total number of
nodes requested. Nodes are preferentially distributed to the least loaded systems.
If the initial distribution of nodes to systems is not possible in the requested time
frame, a new distribution is generated, giving more nodes to the more heavily
loaded clusters. As soon as a solution is found, GUR stops. GUR does not have
a 24 hour hold on reservations or a two phase commit. It makes reservations and
cancels them, if they are no longer required. While finding the initial optimal
distribution of times and nodes, GUR makes a “sliding reservation window” time
based on the requested running parameters of the earliest start time and latest
end time. It binds the job to the reservation and vise versa.

In addition, GUR is “generic” and works with any local scheduler (with user-
settable or manually-settable reservations) that schedules any kind of compute,
data or instrumental resource. GUR can perform a series of scripted tasks. For
instance, a job can automatically compile and execute based on GURs instruc-
tions. It can also stage data or an executable. This enables a “universal” grid
roaming capability, where jobs can be launched from a laptop regardless of the
operating system on the destination resource. It also reduces the load on “login”
nodes because users don’t need to login to submit jobs. If the user performs
a grid-proxy-init and specifies a GSI-enabled SSH, then GUR will use that to
contact the remote systems. If no GSI-enabled SSH is available, or the remote
system’s gatekeeper is down, GUR will use regular SSH, setting up an agent for
the user.

If a reservation cannot be fulfilled, perhaps due to hardware failure or un-
planned maintenance, then the local scheduler is expected to email notification
to the user.

If any local scheduler is unable to provide the minimum number of nodes
within the sliding reservation window, GUR informs the user that the reservation

154 K. Yoshimoto, P. Kovatch, and P. Andrews

is not possible. The user may then expand the time window, reduce the number
of resources requested or both and resubmit.

GUR also gives your local computer the capacity to act like a television
“remote” where it can control the geographically distributed resources on the
grid behind it by providing a single, uniform, easy-to-use interface for the user.

GUR works with any local scheduler that takes user-settable reservations
(such as Catalina) or has an interface for reservations. It can also work with the
Maui Scheduler with manual system administrative assistance. GUR conforms to
Global Grid Forum Advance Reservations API. GUR does not currently support
pipeline jobs, but it would be easy to extend the multiple usage pattern to
pipeline by providing a time offset to each resource so they happen in sequential
rather than simultaneous order.

More information on GUR can be found at http://www.sdsc.edu/ kenneth/
gur.html. GUR can be downloaded from http://www.sdsc.edu/scheduler/
gur.html.

6 Real-Life Experiences with Metascheduling and GUR

Several previous experiences explored the use of coordinated reservations. At
a previous SuperComputing conference, a user manually created reservations
through the General-purpose Architecture for Reservation and Allocation
(GARA) to the Portable Batch System Professional (PBSPro). The co-scheduled
metajob ran across sites using MPICH-G.

In another demonstration, a user made reservations on an SDSC IA-32 Linux
cluster running the Portable Batch System (PBS) resource manager and on
SDSC’s Blue Horizon, an 1100 processor SP, running the LoadLeveler resource
manage r. The co-scheduled metajob ran between the machines using MPICH.

Co-scheduled reservations were made with the Silver metascheduler on Blue
Horizon’s LoadLeveler/Maui and an SP at Pacific Northwest Laboratories run-
ning LoadLeverl/Maui. ECCE/NWChem was the application. Silver is a cen-
tralized metascheduler that only works with the Maui scheduler.

Additionally, SP clusters at SDSC, University of Michigan 4AS Ann Arbor
and University of Texas AAS Austin were reserved and scheduled a centralized
metascheduler during a separate SuperComputing demonstration. These clusters
all shared the same UID/GID space. All the clusters used LoadLeveler and the
Maui scheduler. Again, the centralized metascheduler made the reservations from
a privileged account for a co-scheduled metajob.

In a new approach, GUR was used to automatically schedule jobs with various
characteristics on several heterogeneous compute platforms. At SDSC, Disney-
land and co-scheduled jobs were scheduled between Blue Horizon and a Linux
cluster. Both of these resources are working, production supercomputers with
real user jobs scheduled and running at the time of the tests.

User job requests were made from each compute platform to GUR. These jobs
requested a various number of processors, run times and executables. Some jobs
requested to run at the same time on both platforms. And other jobs requested to

Co-scheduling with User-Settable Reservations 155

run at the earliest possible time. All of these tests worked. This tests shows that
grid metascheduling can be performed with local schedulers with user-settable
reservations and a decentralized metascheduler.

In the latest demonstration of GUR capability, at SC2004, co-scheduled reser-
vations were made across three platforms. These were SDSC DataStar (IBM SP
with Catalina), SDSC Linux cluster (ia64/Myrinet with Catalina), and Purdue SP
(IBM SP with PBSPro). The SDSC machines are running production workload,
while the Purdue machine was a test system. GUR was able to successfully create
a set of synchronized reservations across the three clusters. GUR reserved 10 nodes
on SDSC DataStar, one node on SDSC Linux cluster, and one node on the Purdue
SP. These reservations were all scheduled to start at 7am Nov 9, 2004 PST.

GUR is similar to Silver in that it depends on reservations created on the lo-
cal schedulers. It differs in using user-settable reservations rather than privileged
reservations. GUR resembles Condor-G, since GUR can submit jobs to diverse
compute resources. GUR makes use of user-settable reservations to provide syn-
chronization of job starts, which Condor-G [6] does not do.

7 Conclusion

Resources can be easily scheduled on a grid by deploying an automatic scheduler
that mimics the human travel agent’s process for making reservations. Reading the
user’s request for resources, making a guess at the best possible times and sliding
the window of those times until a match is found reserves resources in a reason-
able amount of time. Various types of typical HPC/grid computing jobs can be
scheduled in this manner, including Disneyland, co-scheduled and pipeline jobs.

A working version of this metascheduler, GUR, along with a local scheduler
with user-settable reservations, Catalina, proves that this approach is possible.
The Catalina-GUR system demonstrates that a user-settable reservation facil-
ity is sufficient to enable automatic, coordinated metascheduling. User settable
reservations are practical since they are controlled by policies that restrict users
from interrupting the flow of the batch system. The ability to request any number
of nodes up to a maximum makes it much easier to explore the node distribution
space throughout the grid.

This architecture allows many alternate metaschedulers to participate in the
grid. It also allows additional flexibility since it can be run from a laptop, giving
unprecedented, ubiquitous access to users of the grid. In addition, it also removes
the requirement for a centralized metascheduler, which is difficult to coordinate
and make secure. The combination of user-settable reservations along with an
automated, de-centralized metascheduler is an approach that allows many new
types of HPC applications to run on a grid.

Acknowledgments

We wish to thank Wendy Lin of Purdue for development of code to enable user-
settable reservations on the Purdue SP.

156 K. Yoshimoto, P. Kovatch, and P. Andrews

References

1. wuw.deisa.org.

2. Phil Andrews, Tom Sherwin, and Bryan Banister. A centralized data access model
for grid computing. In IEEE Symposium on Mass Storage Systems, pages 280—289,
April 2003.

3. Charlie Cattlett. The teragrid: A primer. www.teragrid.org, 2002.

4. Tan Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115-128, Summer 1997.

5. Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. Grid services for
distributed system integration. IEEE Computer, 35(6):37-46, 2002.

6. James Frey, Todd Tannenbaum, Miron Livny, Ian T. Foster, and Steven Tuecke.
Condor-G: A computation management agent for multi-institutional grids. In High
Performance Distributed Computing (HPDC-10), August 2001.

7. Gerald Sabin, Rajkumar Kettimuthu, Arun Rajan, and Ponnuswamy Sadayappan.
Scheduling of parallel jobs in a heterogeneous multi-site environment. In Dror G. Fei-
telson, Larry Rudolph, and Uwe Schwiegelshohn, editors, Job Scheduling Strategies
for Parallel Processing, pages 87-104. Springer Verlag, 2003. Lect. Notes Comput.
Sci. vol. 2862.

8. Frank Schmuck and Roger Haskin. GPFS: A shared-disk file system for large com-
puting clusters. In USENIX, editor, Proceedings of the FAST 02 Conference on
File and Storage Technologies: January 28-30, 2002, Monterey, California, USA,
Berkeley, CA, USA, 2002. USENIX.

Scheduling Moldable BSP Tasks*

Pierre-Francois Dutot!, Marco A.S. Netto?**,
Alfredo Goldman?, and Fabio Kon?

! Laboratoire ID-IMAG, 38330 Montbonnot, France
2 Department of Computer Science, University of Sdo Paulo, Sdo Paulo, Brazil

Abstract. Our main goal in this paper is to study the scheduling of
parallel BSP tasks on clusters of computers. We focus our attention on
special characteristics of BSP tasks, which can use fewer processors than
the original required, but with a particular cost model. We discuss the
problem of scheduling a batch of BSP tasks on a fixed number of com-
puters. The objective is to minimize the completion time of the last task
(makespan). We show that the problem is difficult and present approx-
imation algorithms and heuristics. We finish the paper presenting the
results of extensive simulations under different workloads.

1 Introduction

With the growing popularity of Computational Grids [1] the model of environ-
ment in which parallel applications are executing is changing rapidly. In contrast
to dedicated homogeneous clusters, where the number of processors and their
characteristics are known a priori, Computational Grids are highly dynamic.
In these new environments, the number of machines available for computation
and their characteristics can change frequently. When we look at the case of
Opportunistic Grid Computing, which uses the shared idle time of the exist-
ing computing infrastructure [2], the changes in machine availability occur even
more rapidly. Thus, a model of parallel computation that does not allow varia-
tions in the number of processors available for computation would not fit well in
this environment.

Moldable tasks are able to maximize the use of available resources in a dy-
namic Grid in the presence of fluctuations in machine availability. In this paper
we extend the Bulk Synchronous Parallel (BSP) model [3] of computation to
allow for the definition of moldable tasks that can be executed in a varying
number of processors. As it will be described in detail later, a BSP application
is a sequence of supersteps, composed of the execution of independent processes,
separated by barrier synchronizations.

Due to complexity of the grid environment, we have first focused our work on
the problem of scheduling tasks with a fixed set of available computers. How-
ever, we are currently investigating mechanisms to improve the scheduling by

* Research supported by a grant from CNPq, Brazil - grant number: 55.2028/02-9.
** PhD student supported by a fellowship from CAPES, Brazil.

D. Feitelson et al. (Eds.): JSSPP 2005, LNCS 3834, pp. 157-172, 2005.
© Springer-Verlag Berlin Heidelberg 2005

158 P.-F. Dutot et al.

supporting preemption of BSP tasks so as to schedule malleable tasks. We are
also studying mechanisms to propose a dynamic scheduling scheme. These im-
provements we allow us to develop sophisticated heuristics to schedule parallel
applications on actual computational grids.

The remainder of this paper is organized as follows. At the end of this section
we present our motivation and related work regarding the scheduling of moldable
tasks. In Section 2 we describe the BSP model and we also discuss the moldability
on BSP and the problem of scheduling moldable tasks. In Section 3 we propose
an approximation algorithm and some heuristics providing complexity proofs. In
Section 4 we show experimental results to evaluate the proposed algorithms. In
Section 5, we close the paper with some final remarks and ideas for future works.

1.1 Motivation

Our group is developing a novel Grid middleware infrastructure called Inte-
Grade [2]. The main principles of InteGrade are: modern object-oriented design,
efficient communication based on CORBA, and native support for parallel com-
puting. In the current version!, the BSP model [4] for parallel computation is
supported through an implementation of the BSPlib [5] library. In this paper,
we propose new scheduling algorithms for batches of BSP tasks, which are being
included into the InteGrade system.

Using only rigid BSP tasks, we could use classical results for scheduling tasks
with different execution times and number of processors. However, in our grid
environment we can easily reduce the number of processors of a BSP task, allo-
cating two or more processes to the same processor. As our environment is based
on CORBA, there are no differences between local and remote communications,
this is transparent to the programmer.

Given a BSP task that requires execution time ¢ on m processors, we can
allocate it without effort, depending on the memory constraints, using fewer
processors. The behavior of moldability can be approximated by a discrete func-
tion. If fewer than n processors are available, say n’, the execution time can be
estimated by ¢[1.

1.2 Related Work

Most existing works for scheduling moldable tasks are based on a two-phase ap-
proach introduced by Turek, Wolf, and Yu [6]. The basic idea is to select, in a
first step, an allocation (the number of processors allocated to each task) and
then solve the resulting non-moldable scheduling problem, which is a classical
multiprocessor scheduling problem. As far as the makespan criterion is con-
cerned, this problem is identical to a 2-dimensional strip-packing problem [7, 8].
It is clear that applying an approximation of guarantee A for the non-moldable
problem on the allocation of an optimal solution provides the same guarantee A
for the moldable problem. Ludwig [9] improved the complexity of the allocation

1 Available for download at http://gsd.ime.usp.br/integrade

Scheduling Moldable BSP Tasks 159

selection of the Turek’s algorithm in the special case of monotonic tasks. Based
on this result and on the 2-dimensional strip-packing algorithm of guarantee 2
proposed by Steinberg [10], he presented a 2-approximation algorithm for the
moldable scheduling problem. These results however are designed for the general
moldable tasks problem, where each task has a different execution time for each
number of processors.

As we will see in the formal definition of BSP moldable tasks, the size of our
instances is much smaller. This happens because we know the penalty incurred
when the number of processors allocated to a task is different from the requested
number of processors.

Mounié, Rapine and Trystram improved this 2-approximation result by con-
centrating more on the first phase (the allocation problem). More precisely, they
proposed to select an allocation such that it is no longer needed to solve a general
strip-packing instance, but a simpler one where better performance guarantees
can be ensured. They published a /3-approximation algorithm [11] and later
submitted a 3/2-approximation algorithm [12, 13]. However, these results are for
a special case of moldable tasks where the execution time decreases when the
number of processors allocated to the task increases and the workload (defined
as timex processors) increases accordingly. We will see that this hypothesis is not
verified here. To the best of our knowledge there is no other work on scheduling
moldable BSP tasks.

2 The BSP Computing Model

The Bulk Synchronous Parallel model (BSP) [3] was introduced by Leslie Valiant
as a bridging model, linking architecture and software. BSP offers both a pow-
erful abstraction for computer architects and compiler writers and a concise
model of parallel program execution, enabling accurate performance prediction
for proactive application design.

A BSP abstract computer consists of a collection of virtual processors, each
with local memory, connected by an interconnection network whose only proper-
ties of interest are the time to do a barrier synchronization and the rate at which
continuous, randomly addressed data can be delivered. A BSP computation con-
sists of a sequence of parallel supersteps, where each superstep is composed of
computation and communication, followed by a barrier of synchronization.

The BSP model is compatible with conventional SPMD/MPMD (single/mul-
tiple program, multiple data), and is at least as flexible as MPI [14], having
both remote memory (DRMA) and message-passing (BSMP) capabilities. The
timing of communication operations, however, is different since the effects of BSP
communication operations do not become effective until the next superstep.

The postponing of communications to the end of a superstep is the key idea
for implementations of the BSP model. It removes the need to support non-
barrier synchronizations among processes and guarantees that processes within
a superstep are mutually independent. This makes BSP easier to implement on
different architectures and makes BSP programs easier to write, to understand,

160 P.-F. Dutot et al.

and to analyze mathematically. For example, since the timing of BSP communi-
cations makes circular data dependencies among BSP processes impossible, there
is no risk of deadlocks or livelocks in a BSP program. Also, the separation of the
computation, communication, and synchronization phases allows one to com-
pute time bounds and predict performance using relatively simple mathematical
equations [15].

An advantage of BSP over other approaches to architecture-independent pro-
gramming, such as the PVM [16] and MPT [17] message passing libraries, lies in
the simplicity of its interface, as there are only 20 basic functions. A piece of
software written for an ordinary sequential machine can be transformed into a
parallel application with the addition of only a few instructions.

Another advantage is performance predictability. The performance of a BSP
computer is analyzed by assuming that, in one time unit, an operation can be
computed by a processor on the data available in local memory and based on
the following parameters:

P — the number of processors;

w? — the time to compute the superstep s on processor i;

h{ — the number of bytes sent or received by processor ¢ on superstep s;
g — the ratio of communication throughput to processor throughput;

[— the time required to barrier synchronize all processors.

GU o

To avoid congestion, for every processor on each superstep, h{ must be no
greater than [;]

Moreover, there are plenty of algorithms developed for CGM (Coarse Grained
Multicomputer Model) [18], which has the same principles of BSP, and can be
easily ported to BSP.

Several implementations of the BSP model have been developed since the
initial proposal by Valiant. They provide to the users full control over commu-
nication and synchronization in their applications. The mapping of virtual BSP
processors to physical processors is hidden from the user, no matter what the
real machine architecture is. BSP implementations developed in the past include:
Oxford’s BSPIib [5] (1993), JBSP [19] (1999), a Java version, PUB [20] (1999)
and BSP-G [21] (2003).

2.1 Moldability on BSP

Given a BSP task that requires n processors, it is composed of n different pro-
cesses which communicate on the global synchronization points. When designing
BSP algorithms, for example using CGM techniques, one of the goals can be to
distribute the load across processes more or less as evenly as possible.

To model moldability we use the following fact. When embedding BSP
processes into homogeneous processors, if a single processor receives two tasks,
intuitively, it will have twice as much work as the other processors. To reach
each global synchronization, this processor will have to execute two processes
and to send and receive the data corresponding to these processes. However, to
continue processing, all the other processors have to wait. Hence, the program

Scheduling Moldable BSP Tasks 161

completion time on n — 1 processors will be approximately two times the original
expected time on n processors.

The same idea can be used when scheduling BSP tasks on fewer proces-
sors than the required. Each BSP process has to be scheduled to a processor
and the expected completion time will be the original time multiplied by the
maximum number of processes allocated to a processor. It is clear to observe
that when processes are allocated to homogeneous processors, in order to min-
imize execution time the difference in the number of processes allocated to the
most and to the least loaded processor should be at most one. This difference
must be zero when the used number of processors exactly divides the number of
processes.

For the scheduling algorithms used in this paper, given a BSP task composed
of n processes and with processing time ¢, if n’ < n processors are used, the
processing time will be ¢,]. So, if only n — 1 processors are available, the
execution time of these tasks will be the same whether using n — 1, or [}]
processors. Obviously, in the last case, we will have a smaller work area (number
of processors times execution time).

2.2 Notations and Properties

We are considering the problem of scheduling independent moldable BSP tasks
on a cluster of m processors.

In the rest of the paper the number of processors requested by the BSP task
¢ will be denoted reg;. The execution time of task 7 on a number p of processors
will be t;(p). As we are dealing with BSP tasks, we can reduce the number of
processors allocated to a task at the cost of a longer execution time. The relation
between processor allocation and time is the following:

; ti(p) = (¢ + Dti(req)

Vatp € |:TQQi reqz-[

q+1’

where p and ¢ are integers. In this work we do not consider a minimal number
of processors for each task.

Table 1 shows an example with req; = 7 and ¢;(reg;) = 1, and the resulting
workload which is defined as the product of processors allocated and execution
times. We can see in this example that the workload is not monotonous in our
case as in some other works on moldable tasks [11], but it is always larger than
or equal to the workload with the required number of processors. Remark that
for any task, on one processor the workload is equal to the minimum workload.

Table 1. A BSP task and its possible execution times and associated workloads

F£procs. 7 6 5 4 3 2 1
time 1 2 2 2 3 4
work 7 12 10 8 9 8 7

162 P.-F. Dutot et al.

2.3 NP-Hardness

The problem of scheduling independent moldable tasks is generally believed to
be NP-hard, but this has never been formally proven. It contains as a special
case the problem of scheduling independent sequential tasks (requiring only one
processor), which is NP-hard [22]. However, the size of the moldable tasks prob-
lem is O(n *m) since each task has to be defined with all its possible allocation,
whereas the size of the sequential problem is O(n + In(m)) since we only need
to know the number of available processors and the length of each task.

In the BSP moldable task problem, the problem size is hopefully much smaller,
as we only need to know for each task the requested number of processors and the
execution time for this required number of processors. The moldable behavior of
the tasks is then deduced from the definition of BSP moldable tasks. Therefore
the overall size of an instance is in O(n * In(m)) which is polynomial in both n
and In(m). The reduction from the multi-processor scheduling problem is then
polynomial, which proves the NP-hardness of our problem.

3 Algorithms

To solve efficiently the problem of scheduling parallel BSP tasks, we have to
design polynomial algorithm which provides on average a result close to the
optimal. The first step is therefore to determine a good lower bound of the
optimal value to be able to measure the performance of our algorithms. Two
classic lower bounds for scheduling parallel tasks are the total workload divided
by the number of available processors and the length of the longest task. With
our previous notations, these two lower bounds are respectively >, ¢;(reg;)/m
and max; t;(reg;).

3.1 Guaranteed Algorithm

The best way to assess the quality of an algorithm is to mathematically prove
that for any instance, the ratio between the makespan w of the schedule produced
by the algorithm and the optimal makespan w* is bounded by a constant factor p.

As we said in the introduction, the problem of scheduling independent mold-
able tasks has already been studied and some guaranteed algorithms have al-
ready been proposed for this problem. The best algorithm to date is a 3/2-
approximation algorithm proposed by Mounié et al. [13], however this algorithm
needs an additional monotonicity property for the tasks. This property states
that the workload is non decreasing when the number of processors allocated
to a task increases which is clearly not the case with our moldable BSP tasks.
An older algorithm which does not require this monotonic property has been de-
signed by Ludwig [9]. This algorithm has a performance ratio of 2 as does the one
we are proposing below, however it is much more complicated to use since it in-
volves a strip packing phase. This is why we decided to design a 2-approximation
algorithm based on our knowledge of the BSP tasks.

Scheduling Moldable BSP Tasks 163

The algorithm is based on the dual approximation scheme as defined by [23].
The dual approximation scheme is based on successive guess @ of the optimal
makespan, and for each guess runs a simple scheduler which either outputs a
schedule of makespan lower or equal to 2w, or outputs that @ is lower than
the optimal. With this scheduler and a binary search, the value of & quickly
converges toward a lower bound of the optimal makespan for which we can
produce a schedule in no more than 2@ units of time.

The scheduler works as follows. Based on the guess @, we determine for each
task ¢ the minimal allocation a; (if it exists) such that ¢;(a;) < 2. If there is a
task such that this a; does not exists (i.e. t;(req;) > 2&) the optimal makespan
is larger than this particular ¢;(reg;) and therefore larger than &. Given these a;,
we schedule all the tasks that require more than one processor (“large” tasks)
on exactly a; processors, and we schedule the remaining tasks (“small” tasks,
requiring exactly one processor) on the g remaining processors with a largest
processing time first order.

There are three cases in which this algorithm fails to produce a schedule in
no more than 2@ units of time:

1. There are too many processors required by “large” tasks (3, -, @i > m).

2. There are no processors left for “small” tasks (>_, ., a; = m and
Ztm:l a; > 0)

3. One of the sequential tasks is scheduled to complete after the 2& deadline.
As the first fit has a 2-approximation ratio, it means that there is too much
workload for “small” tasks

(PCamr ti(1) > (m =32, o1 a:)w).

For each case we will prove that if the schedule fails, the guess @ is lower than
the optimal makespan. Before going into details for each case, we need to prove
the following lemma:

Lemma 1. For all task i such that a; > 1, we have t;(reg;)req; > a;&.

The idea behind this lemma is that the a; processors allocated to task ¢ are used
efficiently for a sufficient period of time.

Proof. For a; equal to 2, we know that ¢;(a; — 1) > 20 as a; is the minimal
number of processors to have an execution time no more than 2. As we noted
in Section 2.2 the workload on one processor is equal to the minimal workload
reg;t;(regq;), therefore we can write when a; = 2 and t;(a; — 1) = req;ti(req;)
that ¢;(req;)req; > a;.

For the other extremal case, when a; = req;, since req; > 2 we have req; —1 >
req;/2 and then t;(req; — 1) = 2t;(req;) by definition of the execution times
(see Section 2.2). By definition of a;, we then have 2t;(req;) > 2w and then
req;t;(req;) > a;w.

For the general case where 2 < a; < reg;, by definition of ¢;(a;), there exists
an integer g such that ¢;(a;) = (¢+1)ti(req;). As a; is minimum, ¢;(a; —1) > 20

164 P.-F. Dutot et al.

and there exists also an integer s > 1 such that t;(a; — 1) = (¢ + s + 1)t;(reg;).
Therefore we have the following lower bound for ¢;(reg;):

2w

ti req;) >
(req:) qg+s+1

(1)

By definition of the execution times, as t;(a; — 1) = (¢ + s + 1)t;(reg;), we
have a; — 1 < reg;/(q + s) which can be rewritten as:

req; > (g+s)(a; — 1)+ 1 (2)

By combining inequalities 1 and 2, we have a lower bound for the left term
of the lemma:

2(a+s)(ai 1) +1)

3
q+s+1 (3)

ti(reg;)req; >

In order to conclude, we have to compare the values of a; and 2((¢ + s)(a; —
1)+ 1)/(g+ s + 1) which is done by comparing their difference:
2((g+s)(a; — 1) + 1)—a;(g + s+ 1) = 2qa; +2sa;—2q—2s + 2 — qa; — sa; — a;
=q(a; —2) + s(a; — 2) — (a; — 2)

This value being positive or equal to zero, a;w is a lower bound of the right
term of inequality 3, which concludes the proof of the lemma. O

Theorem 1. When the schedule fails, the guess & is too small.

Proof.

Case 1.

Zai>m

a;>1

In this case the minimal total workload), reg;t;(reg;) can be bounded in the
following way:

Zm%’ti(mql‘) > Z req;ti(req;)
7 a;>1
Z aid)
a;>1

Z a;w > mw

a; >1

Therefore @ is lower than the optimal makespan.

Scheduling Moldable BSP Tasks 165

Case 2.

Zai:mand Zai>0

a;>1 a;=1

As previously, we can bound the minimal total workload but this time the
strong inequality is the first one:

Zreq,-t,-(reqi) > Z reqiti(req;)
i

a; >1
E req;t;(req;) > E a;w
a;>1 a;>1
E a;w = mo
a;>1

Which again proves that the guess was too small.
Case 3.
Z ti(l) > <m— Z a,-) w
a;=1 a;>1

Finally in this case, the bounding is a little more subtle:

Zreqiti(reqi) = Z req;ti(req;) + Z req;ti(req;)
i

a;>1 a;=1

> Z a;o + Z t;(1)
a;>1 a;=

> Zaler (m Za2>w—md}
a;>1 a;>1

Therefore in all the cases where the schedule fails, the guess was lower than
the optimal makespan. O

Corollary 1. The proposed algorithm provides a 2-approximation for BSP
moldable tasks.

The sum of the sequential execution times of all the tasks is an upper bound of
the optimal makespan, which is polynomial in the size of the instance. Starting
from this guess, we can use the algorithm in a binary search of the lowest possible
value @ for which we can build a schedule in at most 2. If €/2 is the size of the
last step of the binary search, @ — €/2 is a lower bound of the optimal w*, and
2w < 2w™* 4 € which means that the schedule produced in the last step is at most
2 + € times longer than the optimal.

3.2 Tested Heuristics

We have implemented four algorithms to schedule a set of BSP tasks, each task
comprising a set of processes, on homogeneous processors.

166 P.-F. Dutot et al.

The first algorithm A1 is the well-known Largest Task First list scheduling
(where largest refers to number of processorsx execution time i.e. the workload)
with a pre-processing stage. This pre-processing consists of modifying all tasks
regarding the maximum number of processors maxnprocs each one will receive.
The idea here is to reduce the size of the largest jobs in order to have less
heterogeneity in the set of tasks.

When the original number of processors reqnprocs of a task is modified, the
amount of time regtime needed to execute it is also modified. The pseudo-code
below is executed on each task before scheduling.

Algorithm 1. Pseudo-code for pre-processing each task to be scheduled in al-
gorithm Al
if task.regnprocs > maxnprocs then
task.reqtime = [(task.reqnprocs/mazxnprocs)] * task.reqtime

task.reqnprocs = maxnprocs
end if

The main problem of this algorithm is that we must verify all possible
maxnprocs values, from one to the number of processors available in the comput-
ing system so as to discover the most appropriated value. Doing this we noticed
that the true LTF scheduling (i.e. when maxnprocs = m tasks are not reduced)
was usually far from the optimal makespan.

Once the tasks are reduced they are sorted according to their sizes in O(n *
In(n)) steps, and then scheduled in n steps. The overall complexity of this algo-
rithm is therefore O(m * n x In(n)).

The second algorithm A2 is based on the idea of reducing the idle time in
the schedule by optimizing the placement of the different tasks (see Fig. 1). The
algorithm comprises two steps:

1. Look for the best task such that, when scheduled, the idle time is reduced
or remains the same. Best task means the smallest amount of idle time, the
better the task. Note that in this step, the number of processors and time
to execute the task can be modified. If a task is found, schedule it.

2. If Step 1 has failed, schedule the first largest task that was not scheduled
yet.

As we have seen in the presentation of the BSP moldable model, for a given
task there can be several allocations having the same execution time. For ex-
ample, in Table 1 the allocations to 4, 5 and 6 processors all have an execution
time of 2. We therefore will only consider here interesting allocations, for which
there is no smaller allocation for the same execution time.

With this restriction the number of possible allocations goes down from
reqnprocs to approximately 2,/reqnprocs. This greatly reduces the complexity
of the algorithm, however the overall complexity is still greater than O(nxIn(m))
which is the size of the instance.

Scheduling Moldable BSP Tasks 167

good scheduling
New task

TASKS

&N IDLE TIME

Fig. 1. Examples of schedulings to reduce the idle time

The third algorithm A3 is a derivation of the second one previously pre-
sented. It basically consists of scheduling tasks that generate the smallest idle
time, even if the new idle time is greater than the original one. Thus, the first
step presented in the previous algorithm is not limited to smaller idle times, and
the second step is never executed.

The fourth algorithm A4 is the guaranteed algorithm presented in the pre-
vious section. It is the fastest algorithm, however we will see that its average
behavior is far from the best solutions found.

4 Experimental Results

In order to evaluate the algorithms, we developed a simulator that implements
the presented algorithms and used both real and generated workloads. The real
workloads? are from two IBM SP2 systems located at Cornell Theory Center
(CTC) and San Diego Supercomputer Center (SDSC) [24], and the generated
workloads were generated by a Gaussian distribution. Unlike the real workloads,
the number of processors requested by the tasks in the generated instances are
in most cases not powers of two [25], which are “bad” tasks for our algorithms
as for example 32 is divisible by 16, 8, 4 and 2, and 33 is divisible only by 11 and
3. Note that although the real workloads are not from execution of parallel BSP
tasks, the selected machines work with regular parallel applications, and to the
best of our knowledge there should be no difference between workloads of MPI
and BSP applications.

To perform the experiments we chose three different platforms: with respec-
tively 64, 128 and 256 processors. We selected the SDSC workloads to evaluate
the algorithms on 64 and 128 processors and the CTC workloads were used in
the experiments with 256 processors. The generated workloads were used for all
platforms.

For each experiment we performed 40 executions with different workloads, and
then we took out the five best and the five worst results to reduce the deviation.

2 Available at: http://www.cs.huji.ac.il/labs/parallel /workload /logs.html

168 P.-F. Dutot et al.

makespan / lowerbound
b

makespan / lowerbound
N

11 %&ﬁg

0 0.25 0.5 0.75 1 1.25 15 1.75 2 0 0.25 0.5 0.75 1 1.25 15 1.75 2
tasks / # procs # tasks / # procs
(a) Real Workloads (b) Generated Workloads

Fig. 2. Evaluation of the scheduling algorithms on 64 processors

Al —— Al ——
A2 1

—— —— /;’
A3 —K— 1.9 A3 —K— - =s
17 1AL —e— =+ At —o— /g/
T 1.8
S 16 + /1 S ’
S T S 17
o o
2 1 8
g s g 16
5 5
Z 14 + < 15
c c
© T ©
& 13 " / a
9] i y 3]
2 o 2
< 3(4 T 13
€ 12 ¥ \ € |
+ T 12 £
p.
11 A ’§\ & @ L
N4 11 < Ty
—— L :
1 1

0 0.25 05 0.75 1 1.25 15 1.75 2 0 0.25 05 0.75 1 1.25 15 1.75 2
tasks / # procs # tasks / # procs
(a) Real Workloads (b) Generated Workloads

Fig. 3. Evaluation of the scheduling algorithms on 128 processors

The tasks in each real workload experiment were selected randomly from all
the tasks in the corresponding logs. The graphics illustrated in Fig. 2, 3 and 4
depict the results obtained in our experiments. In these figures the z-axis is the
ratio between the number of tasks scheduled and the number of processors of the
computer, while the y-axis is the ratio between the schedule length and a lower
bound for the considered instance. This lower bound is actually the maximum
of the two classical lower bounds: the execution time of the longest task (when
allocated to its required number of processors) and the minimal average workload
per processor. The schedule produced by the fourth algorithm is always lower or
equal to two times the average workload.

Based on the results we can observe that algorithm A1 generally produces the
best schedules. The algorithms A2 and A3 have similar behaviors and are very
close to Al. Finally, as expected the fourth algorithm has a ratio which is close
to 2 in the unfavorable cases. Remark that for the generated workload, the worst
results of A4 are for tasks/processors ratios close to 1. This result confirms the

Scheduling Moldable BSP Tasks 169

1.8 2
ﬁé = 4% = ¢—3
17 [As —e— Ry /!!/
’; 1.8 4
S 16 =+ °
c 1 c T
E P /f, 5 1.7
2 15 pos €
) +)
Z 14 Z 15
g + g
2 s T /f, 2 14
Q Q
X 1 T X
© X © 1.3
£ 12 + £
\é: 1 1.2 ¥
14 + " @
i] s
! 0 0.25 0.5 0.75 1 1.25 15 1.75 2 ! 0 0.25 0.5 0.75 1 1.25 15 1.75 2
tasks / # procs # tasks / # procs
(a) Real Workloads (b) Generated Workloads

Fig. 4. Evaluation of the scheduling algorithms on 256 processors

intuition [12] that for moldable task problems the difficult part is when there
are approximately as many tasks as processors.

To illustrate the difference between the fourth algorithm and the three other
algorithms, we included Fig. 5, 6, 7 and 8 that depict schedules for 25 tasks on
16 processors made with the four algorithms. On Fig. 8 it appears clearly that
reducing all the tasks to the allocation which is the smallest below the 2w limit
tends to produce schedules close to twice the optimal, since most of the tasks
are sequential.

[MAKESPAN = 224 [MILB = 1.035] (nhprocs = 16 maxnprocs = 2 ntasks = 25)
_———

Fig. 5. A schedule of 25 tasks on 16 processors with algorithm A1l

MAKESPAN = 234 [M/LB = 1.081] (nprocs = 16 ntasks = 25)
4

Fig. 6. A schedule of 25 tasks on 16 processors with algorithm A2

MAKESPARN = 231 [MILE = 1.087] (nprocs = 16 ntasks = 25)
1 =

Fig. 7. A schedule of 25 tasks on 16 processors with algorithm A3

MAKESPAN = 403 [M/LB = 1.862] (nprocs = 16 ntasks = 25)

Fig. 8. A schedule of 25 tasks on 16 processors with algorithm A4

170 P.-F. Dutot et al.

1400 -A:

1200

1000

800

time (ms)

400

200 g :
. g/i?/; /?/

0 10 20 30 40 50 60 70 80 90 100
tasks

Fig. 9. Execution times for up to 100 tasks on 64 rocessors

As mentioned previously, the main problem of the algorithm Al is that we
need to schedule the tasks several times in order to discover the threshold, which
is the maximum amount of processors the tasks should use. However, when there
is a small number of processors in the computing environment, this algorithm is
still usable in reasonable time. For larger numbers of processors, the algorithms
A2 and A3 should be used, since even if they do not produce the best results,
the difference is within reasonable bounds. As we could have guessed, the longer
it takes to schedule the tasks, the better the results.

This is illustrated in Fig. 9, where the execution times of the four algorithms
are compared on 64 processors for 10 to 100 tasks. As previously described, the
fourth algorithm is much faster than the three others, and the slowest algorithm
is the first one. The execution times on the time scale are in milliseconds. For
larger instances (1024 tasks on 512 processors) we witnessed execution times of
several minutes on a recent computer (Pentium IIT 800 MHz, 512MB RAM). We
executed all the other experiments on the same computer.

Another important observation is that the results using real and generated
workloads are similar for the algorithms A1, A2 and A3. Our main goal to make
experiments with generated workloads is that the real workloads are mostly
made of regulars tasks, as well as tasks requiring processors in powers of two.
These characteristics are usually found only in dedicated computer systems, such
as supercomputers and clusters. Thus, we have used workloads with other char-
acteristics in order to verify the quality of the proposed algorithms on different
environments.

5 Conclusion and Future Work

In this paper we studied the scheduling of moldable BSP parallel tasks. First we
showed that the problem is N P-hard, and then we provided a 2-approximation
algorithm and some good heuristics. On the algorithms, the number of processors
given to a task with n processes can range from 1 to n. However, due mainly
to memory limitations this may not be feasible in practice. Moreover, with few

Scheduling Moldable BSP Tasks 171

processors the task can be delayed for long time. Thus, as future work we intend
to limit the minimal number of processors for a task in order to limit the maximal
number of processes in each processor.

This work has as its final goal an implementation to be used to schedule par-
allel applications on our grid environment, InteGrade. Also as future works we
intend to explore the possibilities provided by our grid environment, processors
heterogeneity, parallel tasks preemption, and machine unavailability. For the last
two cases we will study in detail the effects of interrupting a parallel task and
possibly continue to execute it on a different number of processors, which is pos-
sible with the BSP synchronizations and our already implemented checkpointing
library [26].

References

1. Foster, 1., Kesselman, C., eds.: The Grid 2: Blueprint for a New Computing In-
frastructure. Morgan Kaufmann Publishers, San Francisco (2003)

2. Goldchleger, A., Kon, F., Goldman, A., Finger, M., Bezerra, G.C.: InteGrade:
Object-Oriented Grid Middleware Leveraging Idle Computing Power of Desktop
Machines. Concurrency and Computation: Practice and Experience 16 (2004)
449-459

3. Valiant, L.G.: A bridging model for parallel computation. Communications of the
ACM 33 (1990) 103-111

4. Goldchleger, A., Queiroz, C.A., Kon, F., Goldman, A.: Running highly-coupled
parallel applications in a computational grid. In: Proceedings of the 22th Brazilian
Symposium on Computer Networks. (2004)

5. Hill, J.M.D., McColl, B., Stefanescu, D.C., Goudreau, M.W., Lang, K., Rao, S.B.,
Suel, T., Tsantilas, T., Bisseling, R.H.: BSPlib: The BSP programming library.
Parallel Computing 24 (1998) 1947-1980

6. Turek, J., Wolf, J.L.., Yu, P.S.: Approximate algorithms for scheduling parallelizable
tasks. In: Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms
and Architectures, San Diego, California, SIGACT/SIGARCH (1992) 323-332

7. Baker, R., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions.
SIAM Journal on Computing 9 (1980) 846-855

8. Coffman, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for
level-oriented two-dimensional packing algorithms. SIAM Journal on Computing
9 (1980) 808-826

9. Ludwig, W.T.: Algorithms for scheduling malleable and nonmalleable parallel
tasks. PhD thesis, University of Wisconsin - Madison, Department of Computer
Sciences (1995)

10. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing 26 (1997) 401-409

11. Mounie, G., Rapine, C., Trystram, D.: Efficient approximation algorithm for
scheduling malleable tasks. In: Proceedings of the 11th ACM Symposium of Par-
allel Algorithms and Architecture. (1999) 23-32

12. Mounié, G.: Efficient scheduling of parallel application : the monotonic malleable
tasks. PhD thesis, Institut National Polytechnique de Grenoble (2000) Available
in french only.

13. Mounie, G., Rapine, C., Trystram, D.: A g—approximation algorithm for indepen-
dent scheduling malleable tasks. (Submitted for publication 2001)

172

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

P.-F. Dutot et al.

Message Passing Interface Forum: MPI: A Message Passing Interface. In: Proceed-
ings of Supercomputing '93, IEEE Computer Society Press (1993) 878-883
Skillicorn, D.B., Hill, J.M.D.,; McColl, W.F.: Questions and answers about BSP.
Journal of Scientific Programming 6 (1997) 249-274

Sunderam, V.S.: PVM: a framework for parallel distributed computing. Concur-
rency, Practice and Experience 2 (1990) 315-340

Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI message passing interface standard. Parallel Computing 22
(1996) 789-828

Dehne, F.: Coarse grained parallel algorithms. Algorithmica Special Issue on
“Coarse grained parallel algorithms” 24 (1999) 173-176

Gu, Y., Lee, B.S., Cai, W.: JBSP: A BSP Programming Library in Java. Journal
of Parallel and Distributed Computing 61 (2001) 1126-1142

Bonorden, O., Juurlink, B., von Otte, I., Rieping, I.: The paderborn university bsp
(pub) library. Parallel Computing 29 (2003) 187-207

Tong, W., Ding, J., Cai, L.: A parallel programming environment on grid. In:
Proceedings of the International Conference on Computational Science. Volume
2657 of Lecture Notes in Computer Science., Springer (2003) 225-234

Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. W. H. Freeman, New York (1979)

Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: theoretical and practical results. Journal of the ACM 34 (1987)
144-162

Mu’alem, A.W., Feitelson, D.G.: Utilization, predictability, workloads, and user
runtime estimates in scheduling the IBM SP2 with backfilling. IEEE Transactions
Parallel & Distributed Systems 12 (2001) 529-543

Cirne, W., Berman, F.: A model for moldable supercomputer jobs. In: Proceedings
of the 15th International Parallel & Distributed Processing Symposium. (2001)
de Camargo, R.Y., Goldchleger, A., Kon, F., Goldman, A.: Checkpointing-based
rollback recovery for parallel applications on the integrade grid middleware. In:
Proceedings of the 2nd workshop on Middleware for grid computing, New York,
NY, USA, ACM Press (2004) 35-40

Evolving Toward the Perfect Schedule:
Co-scheduling Job Assignments and
Data Replication in Wide-Area Systems
Using a Genetic Algorithm

Thomas Phan®, Kavitha Ranganathan?, and Radu Sion®

1 IBM Almaden Research Center
phantom@us.ibm.com
2 IBM T.J. Watson Research Center
kavithar@Qus.ibm.com
3 Stony Brook University
sion@cs.stonybrook.edu

Abstract. Traditional job schedulers for grid or cluster systems are re-
sponsible for assigning incoming jobs to compute nodes in such a way
that some evaluative condition is met. Such systems generally take into
consideration the availability of compute cycles, queue lengths, and ex-
pected job execution times, but they typically do not account directly
for data staging and thus miss significant associated opportunities for
optimisation. Intuitively, a tighter integration of job scheduling and au-
tomated data replication can yield significant advantages due to the po-
tential for optimised, faster access to data and decreased overall execu-
tion time. In this paper we consider data placement as a first-class citizen
in scheduling and use an optimisation heuristic for generating schedules.
We make the following two contributions. First, we identify the necessity
for co-scheduling job dispatching and data replication assignments and
posit that simultaneously scheduling both is critical for achieving good
makespans. Second, we show that deploying a genetic search algorithm to
solve the optimal allocation problem has the potential to achieve signifi-
cant speed-up results versus traditional allocation mechanisms. Through
simulation, we show that our algorithm provides on average an approxi-
mately 20-45% faster makespan than greedy schedulers.

1 Introduction

Traditional job schedulers for grid or cluster systems are responsible for assigning
incoming jobs to compute nodes in such a way that some evaluative condition
is met, such as the minimisation of the overall execution time of the jobs or
the maximisation of throughput or utilisation. Such systems generally take into
consideration the availability of compute cycles, job queue lengths, and expected
job execution times, but they typically do not account directly for data stag-
ing and thus miss significant associated opportunities for optimisation. Indeed,
the impact of data and replication management on job scheduling behaviour

D. Feitelson et al. (Eds.): JSSPP 2005, LNCS 3834, pp. 173-193, 2005.
© Springer-Verlag Berlin Heidelberg 2005

174 T. Phan, K. Ranganathan, and R. Sion

has largely remained unstudied. In this paper we investigate mechanisms that
simultaneously schedule both job assignments and data replication and propose
an optimised co-scheduling algorithm as a solution.

This problem is especially relevant in data-intensive grid and cluster systems
where increasingly fast wide-area networks connect vast numbers of computation
and storage resources. For example, the Grid Physics Network [10] and the Par-
ticle Physics Data Grid [18] require access to massive (on the scale of petabytes)
amounts of data files for computational jobs. In addition to traditional files, we
further anticipate more diverse and widespread utilisation of other types of data
from a variety of sources; for example, grid applications may use Java objects
from an RMI server, SOAP replies from a Web service, or aggregated SQL tuples
from a DBMS.

Given that large-scale data access is an increasingly important part of grid ap-
plications, it follows that an intelligent job-dispatching scheduler must be aware
of data transfer costs because jobs must have their requisite data sets in order
to execute. In the absence of such awareness, data must be manually staged at
compute nodes before jobs can be started (thereby inconveniencing the user) or
replicated and transferred by the system but with the data costs neglected by the
scheduler (thereby producing sub-optimal and inefficient schedules). Intuitively,
a tighter integration of job scheduling and automated data replication potentially
yields significant advantages due to the potential for optimised, faster access to
data and decreased overall execution time. However, there are significant chal-
lenges to such an integration, including the minimisation of data transfers costs,
the placement scheduling of jobs to compute nodes with respect to the data
costs, and the performance of the scheduling algorithm itself. Overcoming these
obstacles involves creating an optimised schedule that minimises the submitted
jobs’ time to completion (the “makespan”) that should take into consideration
both computation and data transfer times.

Previous efforts in job scheduling either do not consider data placement at
all or often feature “last minute” sub-optimal approaches, in effect decoupling
data replication from job dispatching. Traditional FIFO and backfilling parallel
schedulers (surveyed in [8] and [9]) assume that data is already pre-staged and
available to the application executables on the compute nodes, while workflow
schedulers consider only the precedence relationship between the applications
and the data and do not consider optimisation, e.g. [13]. Other recent approaches
for co-scheduling provide greedy, sub-optimal solutions, e.g. [4] [19] [16].

This work includes the following two contributions. First, we identify the
necessity for co-scheduling job dispatching and data replication and posit that
simultaneously scheduling both is critical for achieving good makespans. We
focus on a massively-parallel computation model that comprises a collection of
heterogeneous independent jobs with no inter-job communication. Second, we
show that deploying a genetic search algorithm to solve the optimal allocation
problem has the potential to achieve significant speed-up results. In our work we
observe that there are three important variables within a job scheduling system,
namely the job order in the global scheduler queue, the assignment of jobs to

Evolving Toward the Perfect Schedule: Co-scheduling Job Assignments 175

compute nodes, and the assignment of data replicas to local data stores. There
exists an optimal solution that provides the best schedule with the minimal
makespan, but the solution space is prohibitively large for exhaustive searches.
To find the best combination of these three variables in the solution space, we
provide an optimisation heuristic using a genetic algorithm. By representing the
three variables in a “chromosome” and allowing them to compete and evolve, the
algorithm naturally converges towards an optimal (or near-optimal) solution.

We use simulations to evaluate our genetic algorithm approach against tra-
ditional greedy algorithms. Our experiments find that our approach provides
on average an approximately 20-45% faster makespan than greedy schedulers.
Furthermore, our work provides an initial promising look at how fine-tuning the
genetic algorithm can lead to better performance for co-scheduling.

This paper is organised in the following manner. In Section 2 we discuss
related work. We describe our model and assumptions in Section 3, present
our genetic algorithm methodology in Section 4 and present the results of our
simulation experiments in Section 5. We conclude the paper in Section 6.

2 Related Work

The need for scheduling job assignment and data placement together arises from
modern clustered deployments. The work in [24] suggests I/O communities can
be formed from compute nodes clustered around a storage system. Other re-
searchers have considered the high-level problem of precedence workflow schedul-
ing to ensure that data has been automatically staged at a compute node before
assigned jobs at that node begin computing [7] [13]. Such work assumes that
once a workflow schedule has been planned, lower-level batch schedulers will ex-
ecute the proper job assignments and data replication. Our work fits into this
latter category of job and data schedulers.

Other researchers have looked into the problem of job and data co-scheduling,
but none have considered an integrated approach or optimisation algorithms to
improve scheduling performance. The XSufferage algorithm [4] includes network
transmission delay during the scheduling of jobs to sites but only replicates data
from the original source repository and not across sites. The work in [19] looks
at a variety of techniques to intelligently replicate data across sites and assign
jobs to sites; the best results come from a scheme where local monitors keep
track of popular files and preemptively replicate them to other sites, thereby
allowing a scheduler to assign jobs to those sites that already host needed data.
However, this work only considers jobs that use a single input file and assumes
homogeneous network conditions. The Close-to-Files algorithm [16] assumes that
single-file input data has already been replicated across sites and then uses an
exhaustive algorithm to search across all combinations of compute sites and data
sites to find the combination with the minimum cost, including computation and
transmission delay. The Storage Affinity algorithm [21] treats file systems at each
site as a passive cache; an initial job executing at a site must pull in data to
the site, and subsequent jobs are assigned to sites that have the most amount of

176 T. Phan, K. Ranganathan, and R. Sion

needed residual data from previous application runs. The work in [5] decouples
jobs scheduling from data scheduling: at the end of periodic intervals when jobs
are scheduled, the popularity of needed files is calculated and then used by the
data scheduler to replicate data for the next set of jobs, which may or may not
share the same data requirements as the previous set.

Although these previous efforts have identified and addressed the problem
of job and data co-scheduling, the scheduling is generally based on decoupled
algorithms that schedule jobs in reaction to prior data scheduling. Furthermore,
all these previous algorithms perform FIFO scheduling for only one job at a
time, resulting in typically locally-optimum schedules only. On the other hand,
we suggest a methodology to provide simultaneous co-scheduling in an integrated
manner using global optimisation heuristics. In our work we execute a genetic
algorithm that converges to a schedule by looking at the jobs in the scheduler
queue as well as replicated data objects at once. While other researchers have
looked at global optimisation algorithms for job scheduling [3] [22], they do not
consider job and data co-scheduling. In the future, we plan to use simulations to
compare the performance and benefits of our genetic algorithm with the other
scheduling approaches listed above.

3 Job and Data Co-scheduling Model

Consider the scenario illustrated in Figure 1 that depicts a typical distributed
grid or cluster deployment. Jobs are submitted to a centralised scheduler that
queues the jobs until they are dispatched to distributed compute nodes. This
scheduler can potentially be a meta-scheduler that assigns jobs to other local
schedulers (to improve scalability at the cost of increased administration), but

i | Compute E?;‘
N;fe Store Data
#1 Object
#1 Remote
Data
Store
Scheduler queue - #1
ata
Object
- #2
- " " : : Wide-area Remote
ol ol ol : :
. = | Compute : network paty
K #2 # Node : : Store
#2 #2
Local
Data : Data
Store : Object
#s |i #D
M| Compute :
Node
#C

Fig. 1. A high-level overview of a job submission system in a generalised distributed
grid. Note that although our work can be extended to multiple LANs containing clusters
of compute nodes and local data stores (as is depicted here), for simplicity in this paper
we consider only a single LAN.

Evolving Toward the Perfect Schedule: Co-scheduling Job Assignments 177

in our work we consider only a single centralised scheduler responsible for as-
signing jobs; in future work we look to extend this model to a decentralised
meta-scheduling system.

The compute nodes are supported by local data stores capable of caching
read-only replicas of data downloaded from remote data stores. These local data
stores, depending on the context of the applications, can range from web proxy
caches to data warehouses. We assume that the compute nodes and the local
data stores are connected on a high-speed LAN (e.g. Ethernet or Myrinet) and
that data can be transferred across the stores. (The model can be extended
to multiple LANs containing clusters of compute nodes and data stores, but
for simplicity we assume a single LAN in this paper.) Data downloaded from
the remote store must cross a wide-area network such as the Internet. In the
remainder of this paper, we use the term “data object” [23] to encompass a
variety of potential data manifestations, including Java objects and aggregated
SQL tuples, although its meaning can be intuitively construed to be a file on a
file system.

Our model relies on the following key assumptions on the class of jobs being
scheduled and the facilities available to the scheduler:

v/ The jobs are from a collection of heterogeneous independent jobs with no
inter-job communication. As such, we do not consider jobs with parallel tasks
(e.g. MPI programs).

v/ Data retrieved from the remote data stores is read-only. We only consider
the class of applications that do not write back to the remote data store;
for these applications, computed output is typically directed to the local file
system at the compute nodes, and such output is commonly much smaller
and negligible compared to input data.

v/ The computation time required by a job is known to the scheduler. In prac-
tical terms, when jobs are submitted to a scheduler, the submitting user
typically assigns an expected duration of usage to each job [17].

v/ The data objects required to be downloaded for a job are known to the
scheduler and can be specified at the time of job submission.

v/ The local data stores are assumed to have enough secondary storage to hold
all data objects. In a more realistic setting of limited storage, a policy like
LRU could be implemented for storage management.

v/ The communication cost for acquiring this data can be calculated for each
job. The only communication cost we consider is transmission delay, which
can be computed by dividing a data object’s size by the bottleneck band-
width between a sender and receiver. As such, we do not consider queueing
delay or propagation delay.

o If the data object is a file, its size is typically known to the job’s user and
specified at submission time. On the other hand, if the object is produced
dynamically by a remote server, we assume that there exists a remote
API that can provide the approximate size of the object. For example, for
data downloads from a web server, one can use HIT'TP’s HEAD method
to get the requested URI’s size prior to actually downloading it.

178 T. Phan, K. Ranganathan, and R. Sion

e The bottleneck bandwidth between two network points can be ascer-
tained using known techniques [12] [20] that typically trade off accuracy
with convergence speed. We assume such information can be periodically
updated by a background process and made available to the scheduler.

/ Finally, we do not include arbitrarily detailed delays and costs in our model
(e.g. database access time, data marshalling, or disk rotational latency), as
these are dominated by transmission delay and computation time.

Given these assumptions, the lifecycle of a submitted job proceeds as follows.
When a job is submitted to the queue, the scheduler assigns it to a compute
node (using a traditional load-balancing algorithm or the algorithm we discuss
in this paper). Each compute node maintains its own queue from which jobs run
in FIFO order. Each job requires data objects from remote data stores; these
objects can be downloaded and replicated on-demand to one of the local data
stores (again, using a traditional algorithm or the algorithm we discuss in this
paper), thereby obviating the need for subsequent jobs to download the same
objects from the remote data store. In our work we associate a job to its required
data objects through a Zipf distribution. All required data must be downloaded
before a job can begin, and objects are downloaded in parallel at the time that
a job is run. (Although parallel downloads will almost certainly reduce the last
hop’s bandwidth, for simplicity we assume that the bottleneck bandwidth is a
more significant concern.) A requested object will always be downloaded from
a local data store, if it exists there, rather than from the remote store. If a job
requires an object that is currently being downloaded by another job executing
at a different compute node, the job either waits for that download to complete
or instantiates its own, whichever is faster based on expected download time
maintained by the scheduler.

Intuitively, it can be seen that if jobs are assigned to compute nodes first,
the latency incurred from accessing data objects may vary drastically because
the objects may or may not have been already cached at a close local data
store. On the other hand, if data objects are replicated to local data stores first,
then the subsequent job executions will be delayed due to these same variations
in access costs. Furthermore, the ordering of the jobs in the queue can affect
the performance. For example, if job A is waiting for job B (on a different
compute node) to finish downloading an object, job A blocks any other jobs
from executing on its compute node. Instead, if we rearrange the job queue such
that other shorter jobs run before job A, then these shorter jobs can start and
finish by the time job A is ready to run. (This approach is similar to backfilling
algorithms [14] that schedule parallel jobs requiring multiple processors.) The
resulting tradeoffs affect the makespan.

With this scenario as it is illustrated in Figure 1, it can be seen that there are
three independent variables in the system, namely (1) the ordering of the jobs in
the global scheduler’s queue, which translates to the ordering in the individual
queue at each compute node, (2) the assignment of jobs in the queue to the
individual compute nodes; and (3) the assignment of the data object replicas to
the local data stores. The number of combinations can be determined as follows:

Evolving Toward the Perfect Schedule: Co-scheduling Job Assignments 179

v/ Suppose there are J jobs in the scheduler queue. There are then J! ways to
arrange the jobs.

v/ Suppose there are C' compute nodes. There are then C” ways to assign the
J jobs to these C' compute nodes.

v/ Suppose there are D data objects and S local data stores. There are then
SP ways to replicate the D objects onto the S stores.

There are thus J!- C7 - SP different combinations of these three assign-
ments. Within this solution space there exists some tuple of {job ordering, job-
to-compute node assignment, object-to-local data store assignment} that will
produce the minimal makespan for the set of jobs. However, for any reasonable
deployment instantiation (e.g. J=20 and C=10), the number of combinations
becomes prohibitively large for an exhaustive search.

Existing work in job scheduling can be analysed in the context presented
above. Prior work in schedulers that dispatch jobs in FIFO order eliminate all
but one of the J! job orderings possible. Schedulers that assume the data objects
have been preemptively assigned to local data stores eliminate all but one of the
SP ways to replicate. Essentially all prior efforts have made assumptions that
allow the scheduler to make decisions from a drastically reduced solution space
that may or may not include the optimal schedule.

The relationship between these three variables is intertwined. Although they
can be changed independently of one another, adjusting one variable will have
an adverse or beneficial effect on the schedule’s makespan that can be counter-
balanced by adjusting another variable. We analyse this interplay in Section 5
on results.

4 Methodology: A Genetic Algorithm

With a solution space size of J!-C” - SP| the goal is to find the schedule in this
space that produces the shortest makespan. To achieve this goal, we use a genetic
algorithm [2] as a search heuristic. While other approaches exist, each has its
limitations. For example, an exhaustive search, as mentioned, would be pointless
given the potentially huge size of the solution space. An iterated hill-climbing
search samples local regions but may get stuck at a local optima. Simulated
annealing can break out of local optima, but the mapping of this approach’s pa-
rameters, such as the temperature, to a given problem domain is not always clear.

4.1 Overview

A genetic algorithm (GA) simulates the behaviour of Darwinian natural selec-
tion and converges toward an optimal solution through successive generations of
recombination, mutation, and selection, as shown in the pseudocode of Figure 2
(adapted from [15]). A potential solution in the problem space is represented as a
chromosome. In the context of our problem, one chromosome is a schedule that
consists of string representations of a tuple of {queue order, job assignments,
object assignments}.

180 T. Phan, K. Ranganathan, and R. Sion

Procedure genetic algorithm
{

t = 0;

initialise P(t);

evaluate P(t);

while (! done)

{
alter P(t);
t =1t + 1
select P(t) from P(t - 1);
evaluate P(t);
}

Fig. 2. Pseudocode for a genetic search algorithm. In this code, the variable t represents
the current generation and P(t) represents the population at that generation.

Initially a random set of chromosomes is instantiated as the population. The
chromosomes in the population are evaluated (hashed) to some metric, and the
best ones are chosen to be parents. In our context, the evaluation produces the
makespan that results from executing the schedule of a particular chromosome.
The parents recombine to produce children, simulating sexual crossover, and oc-
casionally a mutation may arise which produces new characteristics that were
not present in either parent; for simplification, in this work we did not imple-
ment the optional mutation. The best subset of the children is chosen, based
on an evaluation function, to be the parents of the next generation. We further
implemented elitism, where the best chromosome is guaranteed to be included
in each generation in order to accelerate the convergence to an optimum, if it is
found. The generational loop ends when some criteria is met; in our implementa-
tion we terminate after 100 generations (this value is an arbitrary number, as we
had observed that it is large enough to allow the GA to converge). At the end, a
global optimum or near-optimum is found. Note that finding the global optimum
is not guaranteed because the recombination has probabilistic characteristics.

Using a GA is naturally suited in our context. The job queue, job assignments,
and object assignments can be intuitively represented as character strings, which
allows us to leverage prior genetic algorithm research in how to effectively re-
combine string representations of chromosomes (e.g. [6]).

It is important to note that a GA is most effective when it operates upon
a large collection of possible solutions. In our context, the GA should look at
a large window of jobs at once in order to achieve the tightest packing of jobs
into a schedule. In contrast, traditional FIFO schedulers consider only the front
job in the queue. The optimising scheduler in [22] uses dynamic programming
and considers a large group of jobs called a “lookahead,” on the order of 10-50
jobs. In our work we call the collection of jobs a snapshot window. The scheduler
takes this snapshot of queued jobs and feeds it into the scheduling algorithm.

Our simulation thus only models one static batch of jobs in the job queue.
In the future, we will look at a more dynamic situation where jobs are arriving

Evolving Toward the Perfect Schedule: Co-scheduling Job Assignments 181

even as the current batch of jobs is being evaluated and dispatched by the GA.
In such an approach, there will be two queues, namely one to hold incoming jobs
and another to hold the latest snapshot of jobs that had been taken from the first
queue. Furthermore, note that taking the snapshot can vary in two ways, namely
by the frequency of taking the snapshot (e.g. at periodic wallclock intervals or
when a particular queue size is reached) or by the size of the snapshot window
(e.g. the entire queue or a portion of the queue starting from the front).

4.2 Workflow

The objective of the genetic algorithm is to find a combination of the three
variables that minimises the makespan for the jobs. The resulting schedule that
corresponds to the minimum makespan will be carried out, with jobs being
executed on compute nodes and data objects being replicated to data stores in
order to be accessed by the executing jobs. At a high level, the workflow proceeds
as follows:

i. Jobs requests enter the system and are queued by the job scheduler.

ii. The scheduler takes a snapshot of the jobs in the queue and gives it to the
scheduling algorithm.

iii. Given a snapshot, the genetic algorithm executes. The objective of the algo-
rithm is to find the minimal makespan. The evaluation function, described
in subsection 4.5, takes the current instance of the three variables as input
and returns the resulting makespan. As the genetic algorithm executes, it
will converge to the schedule with the minimum makespan.

iv. Given the genetic algorithm’s output of an optimal schedule consisting of the
job order, job assignments, and object assignments, the schedule is executed.
Jobs are dispatched and executed on the compute nodes, and the data objects
are replicated on-demand to the data stores so they can be accessed by
the jobs.

4.3 Chromosomes

As mentioned previously, each chromosome consists of three strings, correspond-
ing to the job ordering, the assignment of jobs to compute nodes, and the assign-
ment of data objects to local data stores. We can represent each one as an array
of integers. For each type of chromosome, recombination and mutation can only
occur between strings representing the same characteristic. The initial state of
the GA is a set of randomly initialised chromosomes.

Job ordering. The job ordering for a particular snapshot window can be rep-
resented as a queue (vector) of job unique identifiers. Note that the jobs can
have their own range of identifiers, but once they are in the queue, they can
be represented by a simpler range of identifiers going from job 0 to J-1 for a
snapshot of J jobs. The representation is simply a vector of these identifiers. An
example queue is shown in Figure 3.

182 T. Phan, K. Ranganathan, and R. Sion

Front J2 | J5 | JO | J1 J3 | J4 | J7 | JB

Fig.3. An example queue of 8 jobs

0 1 2 3 < 5 6 7

cojcz|c2z|cC1|Co|Ct1| C3| Ct

Fig.4. An example mapping of 8 jobs to 4 compute nodes

0 1 2 3

50 | S2 | 81| 82

Fig.5. An example assignment of 4 data objects to 3 local data stores

Assignment of jobs to compute nodes. The assignments can be represented
as an array of size J, and each cell in the array takes on a value between 0 and
C-1 for C compute nodes. The i*" element of the array contains an identifier for
the compute node to which job ¢ has been assigned. An example assignment is

shown in Figure 4.

Assignment of data object replicas to local data store. Similarly, these
assignments can be represented as an array of size D for D objects, and each cell
can take on a value between 0 and S-1 for S local data stores. The i*" element
contains an integer identifier of the local data store to which object ¢ has been
assigned. An example assignment is shown in Figure 5.

4.4 Recombination and Mutation

Recombination is applied only to strings of the same type to produce a new
child chromosome. In a two-parent recombination scheme for arrays of unique
elements, we can use a 2-point crossover scheme where a randomly-chosen con-
tiguous subsection of the first parent is copied to the child, and then all remain-
ing items in the second parent (that have not already been taken from the first
parent’s subsection) are then copied to the child in order [6]. In a uni-parent
mutation scheme, we can choose two items at random from an array and reverse
the elements between them, inclusive. Note that in our experiments, we did not
implement the optional mutation scheme, as we wanted to keep our GA as simple
as possible in order to identify trends resulting from recombination. In the fu-
ture we will explore ways of using mutation to increase the probability of finding
global optima. Other recombination and mutation schemes are possible (as well
as different chromosome representations) and will be explored in future work.

Evolving Toward the Perfect Schedule: Co-scheduling Job Assignments 183

4.5 Evaluation Function

A key component of the genetic algorithm is the evaluation function. Given
a particular job ordering, set of job assignments to compute nodes, and set
of object assignments to local data stores, the evaluation function returns the
makespan calculated deterministically from the algorithm described below. The
rules use the lookup tables in Table 1. We note that the evaluation function is
easily replaceable: if one were to decide upon a different model of job execution
(with different ways of managing object downloads and executing jobs) or a
different evaluation metric (such as response time or system saturation), a new
evaluation function could just as easily be plugged into the GA as long as the
same function is executed for all the chromosomes in the population.

At any given iteration of the genetic algorithm, the evaluation function exe-
cutes to find the makespan of the jobs in the current queue snapshot. The pseu-
docode of the evaluation function is shown in Figure 6. We provide an overview
of this function here.

The evaluation function considers all jobs in the queue over the loop spanning
lines 6 to 37. As part of the randomisation performed by the genetic algorithm
at a given iteration, the order of the jobs in the queue will be set, allowing the
jobs to be dispatched in that order.

Table 1. Lookup tables used in the GA’s evaluation function

Lookup table Comment

REQUIRES (Job J;, DataObject O;) 1 if Job J; requires/accesses Object O;.

COMPUTE (Job J;, ComputeNode C;) The time for Job J; to execute on compute
node Cj.

BANDWIDTH (Site a, Site b) The bottleneck bandwidth between two
sites. The sites can be data stores or com-
pute nodes.

SIZE (DataObject O;) The size of object O; (e.g. in bytes).

NACT (ComputeNode C;) Next Available Compute Time: the next
available time that a job can start on com-
pute node Cj.

NAOT (Object Oy) Next Available Object Time: the next avail-
able time that an object O; can be down-
loaded.

In the loop spanning lines 11 to 29, the function looks at all objects required
by the currently considered job and finds the maximum transmission delay in-
curred by the objects. Data objects required by the job must be downloaded
to the compute node prior to the job’s execution either from the data object’s
source data store or from a local data store. Since the assignment of data object
to local data store is known during a given iteration of the GA, we can calculate
the transmission delay of moving the object from the source data store to the
assigned local data store (line 17) and then update the NAOT table entry corre-
sponding to this object (lines 18-22). Note that the NAOT is the next available

184 T. Phan, K. Ranganathan, and R. Sion

01: int evaluate(Queue, ComputeNodeAssignments, DataStoreAssignments)
02: {

03: makespan = O;

04: clock = getcurrenttime();

05:

06: foreach job J in Queue

07: {

08: // This job J is assigned to compute node C.

09:

10: maxTD = 0; // maximum transmission delay across all objects

11: foreach object 0i required by this job

12: {

13: // This data object 0 resides originally in Ssource and is

14: // assigned to Sassigned.

15:

16: // calculate the transmission delay for this object

17: TD = SIZE(0i) / BANDWIDTH(Ssource, Sassigned);

18: if ((clock+TD) < NAOT(0i))

19: {

20: NAOT(0i) = clock + TD;

21: // file transfer from Ssource to Sassigned would occur

here

22: }

23: finalHopDelay = SIZE(0i) / BANDWIDTH(Sassigned, C); //
optional

24:

25: // keep track of the maximum transmission delay

26: maxTD = MAX(maxTD, NAOT(0i) + finalHopDelay);

27:

28: // file transfer from Sassigned to compute node C would
occur here

29: }

30:

31: startComputeTime = NACT(C)+ maxTD;

32: completionTime = startComputeTime + COMPUTE(J, C);

33: NACT(C) = MAX(NACT(C), completionTime);

34:

35: // keep track of the largest makespan across all jobs

36: makespan = MAX(makespan, completionTime);

37: }

38: return makespan;

39: }

Fig. 6. Evaluation function for the genetic algorithm

time that the object is available for a final-hop transfer to the compute node
regardless of the local data store. The object may have already been transferred
to a different store, but if the current job can transfer it faster to its assigned
store, then it will do so (lines 18-22). Also note that if the object is assigned to

Evolving Toward the Perfect Schedule: Co-scheduling Job Assignments 185

a local data store that is on the compute nodes’ LAN, then the object must still
be transferred across one more hop to the compute node (see line 23 and 26).

Lines 31 and 32 compute the start and end computation time for the job
at the compute node. Line 36 keeps track of the largest completion time seen
so far for all the jobs. Line 38 returns the resulting makespan, i.e. the longest
completion time for the current set of jobs.

5 Experiments and Results

To show the effectiveness of the GA in improving the scheduling, we simulated
our GA and a number of traditional greedy FIFO scheduler algorithms that
dispatch jobs (to random or to least-loaded compute nodes) and replicate data
objects (no replication or to random local data stores). We used a simulation
program developed in-house that maintains a queue for the scheduler, queues
for individual compute nodes, and simulation clocks that updates the simulation
time as the experiments progressed. We ran the simulations on a Fedora Linux
box running at 1 Ghz with 256 MB of RAM.

5.1 Experimental Setup

Our aim is to compare the performance of different algorithms to schedule jobs.
Since all the algorithms use some randomisation in their execution, it was im-
portant to normalise the experiments to achieve results that could be compared
across different schemes. We thus configured the algorithm simulations to ini-
tially read in startup parameters from a file (e.g. the jobs in the queue, the job
assignments, the object assignments, etc.) that were all randomly determined
beforehand. All experiments were performed with three different initialisation
sets with ten runs each and averaged; the graphs represent this final average for
any particular experiment. The experimental parameters were set according to
values shown in Table 2.

Table 2. Experimental parameters

Experimental parameter Comment

Queue size Varies by experiment; 40-160
Number of compute nodes Varies; 5-20

Number of local data stores Varies; 5-20

Number of remote data stores 20

Number of data objects 50

Data object popularity Based on Zipf distribution

Average object size Uniformly distributed, 50-1500 MB
Average remote-to-local store bandwidth Uniformly distributed, 700-1300 kbps
Average local store-to-compute node bandwidth Uniformly distributed, 7000-13000 kbps
GA: number of parents Varies; typically 10

GA: number of children Varies; typically 50

GA: number of generations 100

186 T. Phan, K. Ranganathan, and R. Sion

The simulations use a synthetic benchmark based on CMS experiments [11]
that are representative of the heterogeneous independent tasks programming
model. Jobs download a number of data objects, perform execution, and termi-
nate. Data objects are chosen based on a Zipf distribution [1]. The computation
time for each job is kD seconds, where k is a unitless coefficient and D is the
total size of the data objects downloaded in GBytes; in our experiments k is
typically 300 (although in subsection 5.2 this value is varied).

5.2 Results

We first wanted to compare the GA against several greedy FIFO scheduling
algorithms. In the experiments the naming of the algorithms is as follows:

v/ Genetic algorithms (2 variations):
e all varying: the genetic algorithm with all three variables allowed to
evolve
e rep-none: the genetic algorithm with the job queue and the job assign-
ments allowed to evolve, but the objects are not replicated (a job must
always download the data object from the remote data store)
v/ Greedy algorithms (2x2 = 4 variations):
Job dispatching strategies
e jobs-LL: jobs are dispatched in FIFO order to the compute node with
the shortest time until next availability
e jobs-rand: jobs are dispatched in FIFO order to a random compute node
Data replication strategies
e rep-none: objects are not replicated (a job must always download the
data object from the remote data store)
e rep-rand: objects are replicated to random local data stores

Makespans for Various Algorithms. In this experiment, we ran the six
algorithms with 20 compute nodes, 20 local data stores, and 100 jobs in the
queue. Two results, as shown in Figure 7, can be seen. First, as expected, data
placement /replication has a strong impact on the resulting makespan. Compar-
ing the three pairs of experiments that vary by having replication activated or
deactivated, namely (1) GA all varying and GA rep-none, (2) Greedy, jobs-LL,
rep-none and Greedy, jobs-LL, rep-rand, and (3) Greedy, jobs-rand, rep-none and
Greedy, jobs-rand, rep-rand, we can see that in the absence of an object repli-
cation strategy, the makespan suffers. Adding a replication strategy improves
the makespan because object requests can be fulfilled by the local data store
instead of by the remote data store, thereby reducing access latency as well as
actual bandwidth utilisation (this latter reduction is potentially important when
bandwidth consumption is metered).

The second result from this experiment is that the GA with all varying param-
eters provides the best performance of all the algorithms. Its resulting makespan
is 22% faster than the best greedy algorithm (Greedy, jobs-LL, rep-rand) and
47% faster than the worst greedy algorithm (Greedy, jobs-rand, rep-none). To

Evolving Toward the Perfect Schedule: Co-scheduling Job Assignments 187

Makespan [sec]

Fig. 7.
stores

Makespan [sec]

60000
50000
40000
30000
20000
10000
0
GA, GA, Greedy, Greedy, Greedy, Greedy,
all varying rep-none jobs-LL, jobs-LL, jobs-rand, jobs-rand,
rep-none rep-rand rep-none rep-rand
Algorithm

Makespans for various algorithms using 20 compute nodes and 20 local data

60000 T T
50000
40000
30000
20000
10000
0
GA, GA, Greedy, Greedy, Greedy, Greedy,
all varying rep-none jobs-LL, jobs-LL, jobs-rand, jobs-rand,
rep-none rep-rand rep-none rep-rand
Algorithm

Fig. 8. Makespans for various algorithms using 5 compute nodes and 5 local data stores

better explain the result of why the GA is faster than the greedy algorithm, we
ran another experiment with 5 compute nodes and 5 local data stores, as shown

in Figure 8.

188 T. Phan, K. Ranganathan, and R. Sion

As can be seen, the performance of the GA is comparable to that of the greedy
algorithms. This result is due to the fact that with the reduced number of compute
nodes and local data stores, the solution space becomes smaller, and both types
of algorithms become more equally likely to come across an optimum solution. If
we restrict our attention to just the assignment of the 100 jobs in the queue, in the
previous experiment with 20 compute nodes there are 20'°° possible assignments,
whereas with 5 compute nodes there are only 5'%° possible assignments, a differ-
ence in the order of 1050, With the larger solution space in the previous experiment,
the variance of makespans will be larger, thus allowing the GA to potentially find a
much better solution. It can be seen that in these scenarios where the deployment
configuration of the grid system contains a large number of compute nodes and
local data stores, a GA approach tends to compute better schedules.

30000 '
GA, all varying ——

Greedy, jobs-LL, rep-rand t222222

25000

20000

15000

Makespan [sec]

10000

5000

40 80 160
Queue length [# of jobs]

Fig. 9. Makespans for different queue lengths

Effect of Queue Length. In this experiment we ran the same application
but with varying numbers of jobs in the queue and with 20 compute nodes and
20 local data stores; Figure 9 shows the results. For conciseness, we show only
the best GA (GA all varying) and the best greedy algorithm (Greedy, jobs-LL,
rep-rand). It can be seen that the GA performs consistently better than the
greedy algorithm, although with an increasing number of jobs in the queue, the
difference between the two algorithms decreases. We suspect that as more jobs
are involved, the number of permutations increases dramatically (from 40! to
160!), thereby producing too large of a solution space for the GA to explore in
100 generations. Although in the previous subsection we observed that increasing
the solution space provides a more likely chance of finding better solutions,

Evolving Toward the Perfect Schedule: Co-scheduling Job Assignments 189

30000

GA,'aII varying C———
Greedy, jobs-LL, rep-rand tzzzz22

25000

20000

15000

Makespan [sec]

10000

5000

10 100 500
Computation coefficient

Fig. 10. Makespans for different computation coefficients

we conjecture that there is a trade-off point somewhere; we are continuing to
investigate this issue.

Effect of Computation Ratio Coefficients. In previous experiments we
set the computation coefficient to be 300 as mentioned in subsection 5.1. In
Figure 10 we show the effect of changing this value. With a smaller coefficient,
jobs contain less computation with the same amount of communication delay,
and with a larger coefficient, jobs contain more computation. As can be seen,
as the coefficient increases, the difference between the GA and the greedy algo-
rithms decreases. This result stems from the fact that when there are more jobs
with smaller running times (which includes both computation and communica-
tion), the effect of permuting the job queue is essentially tantamount to that of
backfilling in a parallel scheduler: when a job is delayed waiting, other smaller
jobs with less computation can be run before the long job, thereby reducing the
overall makespan.

Effect of Population Size. In Figure 11 we show the effect of population
size on the makespan produced by the GA. In all previous experiments, we had
been running with a population comprising 10 parents spawning 50 children
per generation. We can change the population characteristics by varying two
parameters: the number of children selected to be parents per generation and
the ratio of parents to children produced. The trend shown in the figure is that as
the population size increases, there are more chromosomes from which to choose,
thereby increasing the probability that one of them may contain the optimum

190 T. Phan, K. Ranganathan, and R. Sion

18200
10 parents ——1
] 30 parents
18000 50 parents

17800

17600]

17400

17200

Makespan [sec]

17000

16800

16600

16400

16200 -
1:2 1:5 1:10
Parents:children ratio

Fig. 11. Makespans for different GA ratios of parents to children

35

10 parents
30 parents 277772
50 parents s

30

25

20

Algorithm running time [sec]

o -]]

1:2 1:5 1:10
Parents:children ratio

Fig. 12. GA running times for different ratios of parents to children

solution. As expected, the best makespan results from the largest configuration
in the experiment, 50 parents and a ratio of 1 parent to 50 children.

However, this accuracy comes at the cost of increased running time of the
algorithm. As the population size increases, the time to execute the evaluation

Evolving Toward the Perfect Schedule: Co-scheduling Job Assignments 191

function on all members increases as well. As can be seen in Figure 12, the
running time accordingly increases with the population size. This tradeoff of
running time against the desire to find the optimal solution can be made by the
scheduler’s administrator. For completeness, we note that the greedy algorithms
typically executed in under 1 second. While this performance is faster than that
of the GA, this distinction is dwarfed by the difference between the makespans
produced by greedy algorithms and the GA; as was shown in Figure 4 for this
benchmark, the makespan difference can be on the order of thousands of seconds.

6 Conclusion and Future Work

In this paper we looked at the problem of co-scheduling job dispatching and
data replication in wide-area distributed systems in an integrated manner. In our
model, the system contains three variables, namely the order of the jobs in the
global scheduler queue, the assignment of jobs to the individual compute nodes,
and the assignment of the data objects to the local data stores. The solution
space is enormous, making an exhaustive search to find the optimal tuple of
these three variables prohibitively costly. In our work we showed that a genetic
algorithm is a viable approach to finding the optimal solution. Our simulations
show our implementation of a GA produces a makespan that is 20-45% faster
than traditionally-used greedy algorithms.
For future work, we plan to do the following:

v/ More comprehensive comparisons. We look to simulate other approaches
that can be used to perform co-scheduling, including those found in the
related work section as well as other well-known scheduling algorithms, such
as traditional backfilling, shortest-job-first, and priority-based scheduling.

v/ Handling inaccurate estimates. Our evaluation function used in the GA re-
lies on the accuracy of the estimates for the data object size, bottleneck
bandwidth, and job computation time. However, these estimates may be ex-
tremely inaccurate, leading the GA to produce inefficient schedules. In the
future we will look into implementing a fallback scheduling algorithm, such
as those in the related work, when the scheduler detects widely fluctuating
or inaccurate estimates. Additionally, we will research different evaluation
functions and metrics that may not be dependent on such estimates.

v/ Improved simulation. We plan to run a more detailed simulation with real-
world constraints in our model. For example, we are looking at nodal topolo-
gies, more accurate bandwidth estimates, and more detailed evaluation func-
tions that consider finer-grained costs and different models of job execution.

v/ More robust GA. Alternative genetic algorithm methodologies will also be
explored, such as different representations, evaluation functions, alterations,
and selections. Furthermore, we conjecture that since all three variables in
the chromosome were independently evolved, there may be conflicting inter-
play between them. For instance, as the job queue permutations evolves to
an optimum, the job assignments may have evolved in the opposite direc-
tion; the latter situation might occur because the job queue evolution has

192 T. Phan, K. Ranganathan, and R. Sion

a greater impact on the evaluation function. In the future we will look into
ways of hashing all three variables into a single string for the chromosome
so that there will be reduced interplay.

Acknowledgments

We would like to thank the paper reviewers for their invaluable comments and
insight.

References

1. L. Adamic. “Zipf, Power-laws, and Pareto — a ranking tutorial,” www.hpl.hp.com/
research/idl/papers/ranking/ranking.html

2. T. Baeck, D. Fogel, and Z. Michalewicz (eds). “Evolutionary Computation 1: Basic
Algorithms and Operators,” Institute of Physics Publishing, 2000.

3. T. Braun, H. Siegel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J. Robert-
son, M. Theys, B. Yao, D. Hengsen, and R. Freund. “A Comparison of Eleven
Static Heuristics for Mapping a Class of Independent Tasks onto Heterogeneous
Distributed Computing Systems,” Journal of Parallel and Distributed Computing,
vol. 61, no. 6, June 2001.

4. H. Casanova, A. Legrand, D. Zagorodnov, F. Berman. “Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments,” In Proceedings of the 9th
Heterogeneous Computing Workshop, May 2000.

5. A. Chakrabarti, D. R. A., and S. Sengupta. “Integration of Scheduling and Repli-
cation in Data Grids,” In Proceedings of the International Conference on High
Performance Computing, 2004.

6. L. Davis. “Job Shop Scheduling with Genetic Algorithms,” In Proceedings of the
International Conference on High Performance Computing, 1985.

7. E. Deelman, T. Kosar, C. Kesselman, and M. Livny. “What Makes Workflows Work
in an Opportunistic Environment?” Concurrency and Computation: Practice and
Experience, 2004.

8. D. Feitelson. “A Survey of Scheduling in Multiprogrammed Parallel Systems,” IBM
Research Report RC 19790 (87657), 1994.

9. D. Feitelson, L. Rudolph, and U. Schwiegelshohn. “Parallel Job Scheduling — A
Status Report,” In Proceedings of the 10th Workshop on Job Scheduling Strategies
for Parallel Processing, 2004.

10. The Grid Physics Project. www.griphyn.org

11. K. Holtman. “CMS Requirements for the Grid,” In Proceedings of the International
Conference on Computing in High Energy and Nuclear Physics, 2001.

12. N. Hu, L. Li, Z. Mao, P. Steenkiste, and J. Wang. “Locating Internet Bottlenecks:
Algorithms, Measurements, and Implications,” In Proceedings of SIGCOMM, 2004.

13. T. Kosar and M. Livny. “Stork: Making Data Placement a First Class Citizen in the
Grid,” In Proceedings of IEEE International Conference on Distributed Computing
Systems, 2004.

14. D. Lifka. “The ANL/IBM SP Scheduling System,” In Job Scheduling Strategies for
Parallel Processing, Lecture Notes on Compute Science, Springer-Verlag 1995.

15. Z. Michaelewicz and D. Fogel. How to Solve It: Modern Heuristics, Springer-Verlag,
2000.

16

17.

18.
19.

20.

21.

22.

23.

24.

Evolving Toward the Perfect Schedule: Co-scheduling Job Assignments 193

H. Mohamed and D. Epema. “An Evaluation of the Close-to-Files Processor and
Data Co-Allocation Policy in Multiclusters,” In Proceedings of the IEEE Interna-
tional Conference on Cluster Computing, 2004.

A. Mu’alem and D. Feitelson. “Utilization, Predictability, Workloads,and User
Runtime Estimates in Scheduling the IBM SP2 with Backfilling,” IEEE Trans-
actions on Parallel and Distributed Systems, June 2001.

The Particle Physics Data Grid, www.ppdg.net

K. Ranganathan and I. Foster. “Computation Scheduling and Data Replication
Algorithms for Data Grids,” Grid Resource Management: State of the Art and
Future Trends, J. Nabrzyski, J. Schopf, and J. Weglarz, eds. Kluwer Academic
Publishers, 2003.

V. Ribeiro, R. Riedi, and R. Baraniuk. “Locating Available Bandwidth Bottle-
necks,” IEEFE Internet Computing, September-October 2004.

E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima. “Exploiting Replication and
Data Reuse to Efficiently Schedule Data-Intensive Applications on Grids,” In Pro-
ceedings of the 10th Workshop on Job Scheduling Strategies for Parallel Processing,
2004.

E. Schmueli and D. Feitelson. “Backfilling with Lookahead to Optimize the Packing
of Parallel Jobs,” Springer-Verlag Lecture Notes in Computer Science, vol. 2862,
2003.

H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, and B. Tierney. “File
and Object Replication in Data Grids,” In Proceedings of the 10th International
Symposium on High Performance Distributed Computing, 2001.

D. Thain, J. Bent, A. Arpaci-Dusseau, R. Arpaci-Dusseau, and M. Livny. “Gath-
ering at the Well: Creating Communities for Grid I/O”, In Proceedings of Super-
computing, 2001.

Wave Scheduler: Scheduling for Faster
Turnaround Time in Peer-Based
Desktop Grid Systems

Dayi Zhou and Virginia Lo

University of Oregon, Eugene OR 97402, USA

Abstract. The recent success of Internet-based computing projects,
coupled with rapid developments in peer-to-peer systems, has stimulated
interest in the notion of harvesting idle cycles under a peer-to-peer model.
The problem we address in this paper is the development of scheduling
strategies to achieve faster turnaround time in an open peer-based desk-
top grid system. The challenges for this problem are two-fold: How does
the scheduler quickly discover idle cycles in the absence of global infor-
mation about host availability? And how can faster turnaround time be
achieved within the opportunistic scheduling environment offered by vol-
unteer hosts? We propose a novel peer-based scheduling method, Wave
Scheduler, which allows peers to self organize into a timezone-aware over-
lay network using structured overlay network. The Wave Scheduler then
exploits large blocks of idle night-time cycles by migrating jobs to hosts
located in night-time zones around the globe, which are discovered by
scalable resource discovery methods.

Simulation results show that the slowdown factors of all migration
schemes are consistently lower than the slowdown factors of the non-
migration schemes. Compared to traditional migration strategies we
tested, the Wave Scheduler performs best. However under heavy load
conditions, there is contention for those night-time hosts. Therefore, we
propose an adaptive migration strategy for Wave Scheduler to further
improve performance.

1 Introduction

It is widely acknowledged that a vast amount of idle cycles lie scattered through-
out the Internet. The recent success of Internet-based computing projects such
as SETI@Qhome [1] and the Stanford Folding Project [2], coupled with rapid
developments in peer-to-peer systems, has stimulated interest in the notion of
harvesting idle cycles for desktop machines under a peer-to-peer model.

A peer-based desktop grid system allows cycle donors to organize themselves
into an overlay network. Each peer is a potential donor of idle cycles as well as
a potential source of jobs for automatic scheduling in the virtual resource pool.
Many current research projects are exploring Internet-wide cycle-sharing using
a peer-based model [3-6].

D. Feitelson et al. (Eds.): JSSPP 2005, LNCS 3834, pp. 194-218, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Wave Scheduler: Scheduling for Faster Turnaround Time 195

The major benefits of peer-based desktop grid systems are that they are
scalable and lightweight, compared with institutional-based Grid systems [7-9],
load sharing systems in local networks [10,11,12,13] and Internet-based global
computing projects [1,2, 14, 15, 16]. The latter systems do not scale well because
they depend on centralized servers for scheduling and resource management and
often incur overhead for negotiation and administration.!

However, to design scheduling methods satisfying jobs with fast turnaround
requirements is a big challenge in dynamic, opportunistic peer-based desktop
grid systems, which faces a number of unique challenges inherent to the nature
of the peer-to-peer environment.

The challenge comes from the opportunistic and volatile nature of the peer-
based desktop grid systems. Peer-based desktop grid systems use non-dedicated
machines in which local jobs have much higher priority than foreign jobs. There-
fore, compared to running on dedicated machines, the foreign job will make
slower progress since it can only access a fraction of the host’s CPU availabil-
ity. The resources are highly volatile in peer-based desktop grid system. Nodes
may leave and join the systems at any time, and resource owners may withdraw
their resources at any time. Therefore, the foreign jobs may experience frequent
failures due to the volatility of the resources.

Another challenge for design of an efficient scheduling system for peer-based
desktop grid systems comes from the difficulties in collecting global and accurate
resource information. It is unscalable to collect resource information on all the
nodes in a large scale peer-based desktop grid system. Also users, especially
home machine cycle donors, may find it is intrusive to report their CPU usage
periodically to some remote clients. Therefore, scheduling in large scale cycle
sharing systems are usually best effort scheduling based on limited resource
information.

The problem we address in this paper is the development of scheduling strate-
gies that achieve fast turnaround time and are deployable within a peer-based
model. To our best knowledge, we are the first to study this scheduling problem
in a fully distributed peer-based environment using Internet-wide cycle donors.

We propose Wave Scheduler, a novel scalable scheduler for peer-based desk-
top grid systems. Wave scheduler has two major components: a self-organized,
timezone-aware overlay network and an efficient scheduling and migration
strategy.

Self-organized Timezone-Aware Overlay Network. The Wave Scheduler
allows hosts to organize themselves by timezone to indicate when they have large
blocks of idle time. The Wave Scheduler uses a timezone-aware overlay network
built on a structured overlay network such as CAN [17], Chord [18] or Pastry [19].
For example, a host in Pacific Time timezone can join the corresponding area in
the overlay network to indicate that with high probability his machine will be
idle from 8:00-14:00 GMT when he sleeps.

1 A range of research issues faced by desktop grid systems are beyond the scope of
this paper including incentives and fairness, security (malicious hosts, protecting the
local host), etc.

196 D. Zhou and V. Lo

Efficient Scheduling and Migration. Under the Wave Scheduler, a client
initially schedules its job on a host in the current nighttime zone. When the host
machine is no longer idle, the job is migrated to a new nighttime zone. Thus,
jobs ride a wave of idle cycles around the world to reduce turnaround time.

A class of applications suitable for scheduling and migration in Wave Sched-
uler are long running workpile jobs. Workpile jobs, also known as bag-of-tasks,
are CPU intensive and embarassingly parallel. For workpile jobs which run in the
order of hours to days, the overheads of migration costs are negligible. Examples
of such workpile applications include state-space search algorithms, ray-tracing
programs, and long-running simulations.

The contributions of this paper include the following:

— Creation of an innovative scheduling method, the Wave scheduler, which
exploits large chunk of idle cycles such as the nighttime cycles for fast
turnaround.

— Analysis of a range of migration strategies, including migration under Wave
Scheduler, with respect to turnaround time, success rate, and overhead.

2 Problem Description

The problem we address in this paper is the design of scheduling strategies for
faster turnaround time for bag-of-tasks applications in large, open peer-based
desktop grid systems. In this section, we discuss the key dimensions of the
problem including the open peer-based cycle sharing infrastructure, the host
availability model, and the characteristics of the applications supported by our
scheduling strategies.

2.1 Open Peer-Based Desktop Grid System

The peer-based desktop grid system we are studying is open, symmetric, and
fully distributed. In peer-based desktop grid systems, hosts join a community-
based overlay network depending on their interests. Any client peer can submit
applications; the application scheduler on the client will select a group of hosts
whose resources match requirements of the application.

In a large, open peer-based desktop grid system, global resource discovery
and scheduling of idle hosts using centralized servers is not feasible. Several
research projects have addressed resource discovery for peer-to-peer cycle sharing
[20,4,21]. One approach builds an auxiliary hierarchy among the peers such
that a dynamic group of super-peers (similar to Gnutella’s ultrapeers [22]) are
designated to collect resource information and conduct the resource discovery
on behalf of the other peers. Alternatively, each client peer uses a distributed
scalable algorithm to discover available resources. These protocols are either
probing based, such as expanding ring and random walk, or gossip based such
as exchanging and caching resource advertisements.

On receiving a request for computational cycles from some client, the host
returns resource information including CPU power, memory size, disk size, etc.

Wave Scheduler: Scheduling for Faster Turnaround Time 197

It also returns information regarding the current status of the machine regarding
its availability to accept a foreign job. The client then chooses a host to schedule
the job using its host selection criteria and waits for acknowledgment. The client
then ships the job to the selected host. The job can be migrated to a new host
if the current host becomes unavailable.

2.2 Host Availability Model

In open cycle sharing systems, users can make strict policies to decide when the
host is available, which will limit the amount of cycles available to foreign jobs. A
lesson learned from previous cycle sharing systems is that inconvenienced users
will quickly withdraw from the system. To keep the users in the system, a cycle
sharing system must be designed to preserve user control over her idle cycles
and to cause minimal disturbance to the host machine.

The legendary Condor load sharing project [10, 8], developed at the University
of Wisconsin in the 1980s for distributed systems, allows users to specify that
foreign jobs should be preempted whenever mouse or keyboard events occur.
Condor also supports strict owner policies in its classified advertisement of re-
source information [23]: users can rank foreign applications, specify a minimum
CPU load threshold for cycle sharing, or specify specific time slots when foreign
jobs are allowed to that host.

Another example of strict user-defined policies is the popular SETI@home
project [1]. Users donate cycles by downloading a screensaver program from a
central SETI@home server. The screensaver works like standard screensaver pro-
grams: it runs when no mouse or keyboard activities have been detected for a
pre-configured time; otherwise it sleeps. SETI@home can also be configured to
run in background mode, enabling it to continue computing all the time. How-
ever, screensaver mode is the default mode suggested by the SETI@home group
and is the dominant mode employed by the SETI@home volunteer community.

As peer-based cycle sharing becomes more widespread, the majority of the
users will most likely be more conservative than current users when donating

_ Local Jobs

7

m Available cycles
l:l Unavailable cycles

CPU}oad =75%

Mt

Mouse/keyboard Events

Fig. 1. A sample host profile of available idle cycles

198 D. Zhou and V. Lo

cycles to anonymous clients in an open cycle sharing environment. The cycle
sharing pattern will be cautiously generous: users are willing to join the system
only if they know their own work will not be disturbed by foreign jobs. CPU
cycle sharing will be likely limited to the time when owners are away from their
machines and the CPU load from local applications is light. Figure 1 illustrates
a sample host profile of available idle cycles under a strict user local policy:
Host is available only when CPU load is less than 75% and there is no mouse or
keyboard activity for 15 minutes.

2.3 Application Characteristic

The type of applications we are looking at in this study are large Workpile
(Bag-of-tasks) jobs, requiring large amounts of CPU cycles but little if any data
communication. Examples of workpile applications include state-space search
algorithms, ray-tracing programs, gene sequencing and long-running simulations.
Often these applications have higher performance requirements such as faster
turnaround time and higher throughput. Some of the above applications may
have real time constraints, such as weather forecasting, or deadlines such as
scientific simulations that must be completed in time for a conference submission
(such as JSSPP).

The migration cost is higher in global peer-based cycle sharing systems than
in local area network as the codes and data are transferred on the Internet. If a
short job that runs for a few minutes, is migrated many times in its life span, the
accumulated migration cost may well counter the migration benefit. Long jobs
which run for hours or even for months receive maximal benefit from migration
schemes. For such jobs, the cost of migration, which includes resource discovery
overhead to find a migration target, checkpointing, and cost to transfer the code
and data is negligible compared to the total runtime of the job.

The size of many long running applications is small and these applications
require minimal data communication. For example, the average data moved per
CPU hour by users of SETI@home is only 21.25 KB, which is feasible even
for users with slow dial-up connections. With respect to program size, Stanford
Folding is only about 371KB, and SETI@home is around 791KB (because it
includes the graphical interface for the screensaver). These applications run for
a long time. Using the same SETI@home example, the average computation
time of each job is over 6 hours (the major type of CPU in SETI@home is
Intel x86).

3 Wave Scheduling for Workpile Applications

Wave scheduling is an idea that springs naturally from the observation that
millions of machines are idle for large chunks of time. For example, most home
machines and office machines lie idle at night. It is influenced by the notion
of prime time v. non-prime time scheduling regimes enforced by parallel job
schedulers [24], which schedules long jobs at night to improve turnaround time.

Wave Scheduler: Scheduling for Faster Turnaround Time 199

There are many motivations for the design of Wave Scheduler.

— First, resource information such as when the host will be idle and how long
the host will continue to be idle with high probability will help the scheduler
make much better decisions. Wave scheduler builds this information into
the overlay network by having hosts organize themselves into the overlay
network according to their timezone information.

— Second, efficient use of large and relatively stable chunks of continuing idle
cycles provides the best performance improvement, while performance im-
provement by using sporadic and volatile small pieces of idle cycles in seconds
or minutes is marginal and may be countered by high resource discovery and
scheduling overhead. Therefore, the Wave scheduler proposes to use long idle
night-time cycles.

— Third, the cycle donors are geographically distributed nodes, so that their
idle times are well dispersed on the human time scale. Machines enter night-
time in the order of the time zones around the world. In such a system,
migration is an efficient scheme for faster turnaround.

— Fourth, the scheduler should be easy to install and not intrusive to users’ pri-
vacy. The particular wave scheduler studied in this paper only needs minimal
user input such as time zone information.

Wave Scheduler builds a timezone-aware, structured overlay network and it
migrates jobs from busy hosts to idle hosts. Wave scheduler can utilize any
structured overlay network such as CAN [17], Pastry [19], and Chord [18]. The
algorithm we present here uses a CAN overlay [17] to organize nodes located in
different timezones. In this section, we introduce the structured overlay network,
and then we describe Wave Scheduler.

3.1 Structured Overlay Network

Structured overlay networks take advantage of the power of regular topologies:
symmetric and balanced topologies, explicit label-based or Cartesian distance
based routing and theoretical-bounded virtual routing latency and neighbor ta-
ble size. In this section, we will describe the original CAN (Content Addressable
Network) protocol, which is used by our Wave Scheduler.

The CAN structured overlay [17] uses a Cartesian coordinate space. The entire
space is partitioned among all the physical nodes in the system at any time, and
each physical node owns a distinct subspace in the overall space. Any coordinate
that lies within its subspace can be used as an address to the physical node
which owns the subspace. For example, in Figure 2, the whole Cartesian space is
partitioned among 7 nodes, A,B,C,D,E.F and G. The neighbors of a given node
in the CAN overlay are those nodes who are adjacent along d — 1 dimensions and
abut along one dimension. The neighbors of node G are nodes F, E; B, and C.

In Figure 2, new node N joins the CAN space by picking a coordinate in the
Cartesian space and sending a message into the CAN destined for that coordi-
nate. (The method for picking the coordinate is application-specific.) There is a
bootstrap mechanism for injecting the message into the CAN space at a starting

200 D. Zhou and V. Lo

(0.83,0.27)
@)

" New Node

1 83,027

Fig. 2. Node join in CAN

0.11,09®
A—1—E-~

C D H

Search for (0.11, 0.9)

Fig. 3. Routing in CAN

node. The message is then routed from node to node through the CAN space
until it reaches node D who owns the subspace containing N’s coordinate. Each
node along the way forwards the message to the neighbor that is closest in the
Cartesian space to the destination. When the message reaches D, it then splits
the CAN space with the new node N and adjusts the neighbor tables accordingly.
Latency for the join operation is bounded by O(n(l/d)) in which n is the number
of peers in the overlay network and d is the number of dimensions of the CAN
overlay network.

Figure 3 illustrates the coordinate-based routing from a source node to a
destination node which uses the same hop by hop forwarding mechanism and is
also bounded by O(n(1/®).

In this study, we utilize CAN’s label-based routing for host discovery in all
of our scheduling strategies. The CAN protocol is fully described by Ratnasamy
et.al [17].

3.2 Wave Scheduling

In this section, we will present the Wave Scheduler, which takes advantage of
the idle night cycles. Our wave scheduling protocol functions as follows (see
Figure 4).

Wave Scheduler: Scheduling for Faster Turnaround Time 201

TimeZane
1 2 3 4

I KILIF €] 8} A 0
: ° B
M H E @ B C @ Application

TimeZane
1 2 3 4

| KILIF G [n} A
J | @ @ : Might Zone
M H 0 E @ B [: Day Zone

Task

Fig. 4. Job initiation and migration in wave scheduling

— Wavezones in the CAN overlay. We divide the CAN virtual overlay
space into several wavezones. Each wavezone represents several geographical
timezones. A straightforward way to divide the CAN space is to select one
dimension of the d-dimensional Cartesian space used by CAN and divide the
space into several wavezones along that dimension. For example, a 1 x 24
CAN space could be divided into 4 wavezones each containing 6 continuous
timezones.

— Host nodes join the overlay. A host node that wishes to offer its night-
time cycles knows which timezone it occupies, say timezone 8. It randomly
selects a node label in wavezone 2 containing timezone 8 such as (0.37, 7.12)
and sends a join message to that node. According to the CAN protocol, the
message will reach the physical node in charge of CAN node (0.37, 7.12) who
will split the portion of the CAN space it owns, giving part of it to the new
host node.

— Client selects initial nightzone. The scheduler for a workpile applica-
tion knows which timezones are currently nightzones. It select one of these
nightzones (based on some nightzone selection criteria) and decides on the
number A of hosts it would like to target.

— Selects set of target hosts. The scheduler randomly generates a collection
of h node labels in the wavezone containing the target nightzone and sends a
request message to each target node label using CAN routing which finds the
physical host which owns that node label. Or it does an expanding ring search
starting from a random point in the target wavezone. After negotiations, the
application scheduler selects a subset of those nodes to ship jobs to.

— Migration to next timezone. When morning comes to a host node and
the host is no longer available, it selects a new target nightzone, randomly
selects a host node in that nightzone for migration, and after negotiating
with that host, migrates the unfinished job to the new host.

3.3 Extensions to Wave Scheduler

The night-time concept can be extended to any long interval of available time. The
overlay does not necessary need to be timezone based but can be organized based

202 D. Zhou and V. Lo

on available time intervals. For example, a user in Pacific Time timezone can reg-
ister her home machine in a wavezone containing hosts idle from 0:00-10:00 GMT,
when she knows she is at work during the daytime. Wave scheduler can even ac-
cept more complicated user profiles, which indicates users’ daily schedules.

Wave Scheduling can also be easily leveraged to handle heterogeneity of the
hosts in the system. Information such as operating systems, memory and ma-
chine types can be represented by further dividing the node label space or
adding separate dimensions. For example, a third dimension is added to rep-
resent the operating system and it is divided into subspaces that represent each
type of operating systems. When a client needs extra cycles, it can generate a
node label. The first two dimensions are generated in the way described above
and the third dimension has a value indicating the hosts need to be running
a specific operating system. The third dimension can be empty, indicating the
client does not care about the operating system type. In heterogeneous peer-
based desktop grid system, the hosts have different CPU speeds. The differ-
ence between CPU speeds can be solved by normalizing the length of the idle
time by the CPU speed and organize hosts according to this normalized profile
information.

4 Peer-Based Scheduling Strategies That Utilize
Migration

In this section, we describe the scheduling/migration strategies we evaluated in
this paper. First we describe the key components that serve as building blocks for
our scheduling strategies. Then we describe the peer-based migration strategies
studied in this paper. In this study, we assume that all the migration schemes
are built on a structured overlay network.

Our scheduling model is composed of the following four key components: host
selection criteria, host discovery strategy, local scheduling policy, and migration
scheme. When a client wants to schedule a job, the scheduler chooses the can-
didate host(s) satisfying the host selection criteria via host discovery. Then it
schedules the job on the candidate host. If there are multiple candidate hosts,
it will select one to schedule the job on. A migration scheme decides when and
where to migrate the job. It uses host discovery and host selection strategy to
decide where to migrate the host. Other modules including checkpointing, result
verification and monitoring are out of the scope of this discussion.

Host Selection. A client uses its host selection criteria to decide whether the
host can be a candidate, and it selects one of them on which to schedule a job if
there are multiple candidates. We also assume that each host can host at most
one foreign job at a time.

The following terms define the criteria we use in this study, motivated by
our earlier discussion of strict user control. Unclaimed means that there is no
foreign job on that host. Available means that there is no foreign job on that
host and the host is idle. Local user policy can be made to decide whether the

Wave Scheduler: Scheduling for Faster Turnaround Time 203

host is idle based on criteria such as if the CPU load is below some threshold,
or if there are no recent mouse/keyboard activities. The user policy can even
blackout arbitrary time slots.

Different scheduling methods use different host selection criteria. Simple
scheduling methods relax their hosts selection criteria to use any wunclaimed
hosts, while fast turnaround scheduling methods try to schedule foreign job on
available hosts for instant execution.

In this study, we use a low-complexity host selection strategy when there are
multiple candidates: a client selects the first discovered host that satisfies the
particular host selection criteria used by the scheduling method.

Host Discovery. The purpose of the host discovery scheme is to discovery can-
didate hosts to accept the foreign job. The scheme needs to take into account
the tradeoff between the message overhead and the success rate of the opera-
tion [20,21]. Two schemes are used in this study.

Label-based random discovery. When the client needs extra cycles, the client ran-
domly chooses a point in the CAN coordinate space and sends a request to that
point. The peer owning that point will receive this request and return the re-
source information about whether it has already accepted a foreign job (claimed)
and whether it is available. If the host does not satisfy the host selection criteria,
the client can repeatedly generate another random point and contact another
host. The maximum number of queries the client can issue is a configurable
parameter.

Ezxpanding Ring Search. When the client needs extra cycles, the client sends out a
request with the host selection criteria to its direct neighbors. On receiving such
request, if the criteria can be satisfied, the neighbor acknowledges the client. If
the request is not satisfied, the client increases the search scope and forwards the
request to its neighbors one-hop farther away. This procedure is repeated until
the request is satisfied or the searching scope limit is reached. The client can
choose to initiate the search in its own neighborhood, or it can choose a random
point in the system (by generating a random node label and asking the owner
of that random label to start the search). The benefit of the latter approach is
to create a balanced load in cases of a skewed client request distribution in the
CAN space.

Local Scheduling. The local scheduling policy on a host determines the type of
service a host gives to a foreign job that it has accepted. Two common policies
are: screensaver and background. With screensaver, foreign jobs can only run
when there is no recent mouse/keyboard activity. With background, foreign jobs
continue running as background processes with low priority even when users are
present at their machines. We only consider the screensaver option in this study
to reflect a conservative policy most likely in open peer-to-peer cycle sharing
systems.

204 D. Zhou and V. Lo

Note that under screensaver mode, the availability of a host to run the foreign
job does not mean that the job receives 100% of the machine’s CPU cycles.
Instead the job concurrently shares cycles with other local jobs.

Migration. Migration was originally designed for load sharing in distributed
computing to move active processes from a heavily loaded machine to a lightly
loaded machine. Theoretical and experimental studies have shown that migration
can be used to improve turnaround time [25, 26].

There are two important issues for migration schemes: when to migrate the
jobs and where to migrate the jobs. Traditional load sharing systems used central
servers or high overhead information exchange to collect resource information
about hosts in the system to determine when and where to migrate jobs [25, 26].
New scalable strategies are needed to guide migration decisions in a peer-to-peer
system.

The optimal solution of when to migration the job requires accurate pred-
ication of future resource availability on all the hosts. Many researchers have
addressed the CPU availability prediction problem for the Grid or for load shar-
ing systems [27,28,29], but they all require a central location to collect and
process the resource information. In our study, we assume there is no resource
availability prediction and that migration is a simple best effort decision based
primarily on local information, e.g. when the host becomes unavailable due to
user activity.

The same resource availability issue exists for where to migrate the job. But
the issue of where to migrate the job is also related to the scalable host discovery
which we have discussed. The scheduler needs the host discovery to discover
candidate hosts which are suitable to migrate the job to.

We compare several migration schemes that differ regarding when to migrate
and where to migrate.

The options for when to migrate include:

— Immediate migration. Once the host is no longer available, the foreign jobs
are immediately migrated to another available host.

— Linger migration. Linger migration allows foreign jobs to linger on the host
for a random amount of time after the host becomes unavailable. After lin-
gering, if the host becomes available again, the foreign job can continue
execution on that host. Linger migration avoids unnecessary migration as
the host might only be temporarily unavailable. Linger migration can also
be used to avoid network congestion or contention for available hosts when
a large number of jobs need to be migrated at the same time.

There are also two options for where to migrate the jobs:

— Random. The new host is selected in a random area in the overlay network.
There is no targeted area for the search; the new host is a random host found
in the area where the resource discovery scheme is launched.

— Night-time machines. The night-time machines are assumed to be idle for a
large chunk of time. The Wave Scheduler uses the geographic CAN overlay
to select a host in the night-time zone.

Wave Scheduler: Scheduling for Faster Turnaround Time 205

4.1 Scheduling Strategies

The scheduling strategies we study are built on the above components. They
all use the same host discovery schemes but different host selection criteria and
different migration schemes.

Each strategy has two distinct steps: initial scheduling and later migration.
In initial scheduling, the initiator of the job uses host discovery to discover hosts
satisfying the host selection criteria and schedules job on the chosen host. The
migration schemes also use host discovery to discover candidate hosts, and they
use different options discussed above to decide when and where to migrate the
job. Table 1 summarizes the difference between different migration schemes.

Table 1. Different migration strategies

When to migrate
Where to migrate Immediate Migration Linger
Random Host Migration-immediate Migration-linger
Host in night-zone ~ Wave-immediate Wave-linger

The non-migration strategy follows the SETI@home model. It uses the more
relaxed host selection criteria: any unclaimed host can be a candidate.

— No-migration. With no-migration, a client initially schedules the task on
an unclaimed host, and the task never migrates during its lifetime. The task
runs in screensaver mode when the user is not using the machine, and sleeps
when the machine is unavailable.

The following are all migration schemes. The first four migration schemes try
to only use available hosts for fast execution. When it fails to find available hosts
for migration, the host will inform the initiator of the job and let the initiator
reschedule the job.

— Migration-immediate. With migration-immediate, the client initially
schedules the task on an available host. When the host becomes unavailable
migration-immediate immediately migrates the job to a random available
host. In the best case, the task begins running immediately, migrates as
soon as the current host in unavailable, and continues to run right away on
a new available host.

— Wave-immediate. Wave-immediate works the same as migration-
immediate except the job is migrated to a host in the night-time zone.

— Migration-linger. With migration-linger, a client initially schedules the
task on an available host. When the host becomes unavailable, migration-
linger allows the task to linger on the host for a random amount of time. If
the host is still unavailable after the lingering time is up, it then migrates.

— Wave-linger. Wave-linger works the same as migration-linger except that
the job is allowed to linger before migrating to a host in the night-time zone.

206 D. Zhou and V. Lo

The migration schemes described above put minimal burden on the hosts. A
host only needs to try to migrate the task once when it becomes unavailable,
i.e. there is no backoff and retry. Instead, if the host fails to find an idle host,
it notifies the original client node who initially scheduled the job on this host,
letting the client reschedule the job.

The last two migration strategies are more persistent in their efforts to find an
available host. They are adaptive strategies in that they adjust to the conditions
on the local host, and on their ability to find a migration target. These adaptive
strategies put a bigger burden on the host since it must retry several times on
behalf of the foreign task.

— Migration-adaptive. For initial scheduling, migration-adaptive tries to
find a host that is available. If it cannot, migration-adaptive schedules the
task on an unclaimed host where the task will sleep for a random amount of
time.

When the host becomes unavailable, migration-adaptive will try to mi-
grate the task to a random new host that is available. If it cannot find such
a host, it allows the job to linger on the current host for a random amount
of time and try again later. A cycle of attempted migration and lingering is
repeated until the job finishes.

— Wave-adaptive. Wave-adaptive is the same as migration-adaptive except
that it migrates to a host in the night-time wave zone.

5 Simulation

We conducted simulations to investigate the performance of the migration strate-
gies described above and their effectiveness at reducing turnaround time, relative
to a no-migration policy similar to SETI@home. We also evaluated the perfor-
mance of the Wave Scheduler to see what gains are achievable through our
strategy of exploiting knowledge of available idle blocks of time at night.

5.1 Simulation Configuration

We use a 5000 node structured overlay in the simulation. Nodes join the overlay
following the CAN protocol (or timezone-aware CAN protocol in the case of
the Wave scheduler). The simulation is built with ns, a widely used network
simulation tool [30].

Profile of Available Cycles on Hosts. To evaluate the performance of differ-
ent scheduling methods, a coarse-grain hourly synthetic profile is generated for
each machine as follows: During the night-time (from 12pm to 6 am), the host
is available with a very low CPU utilization level, from 0% to 10%. During the
daytime, for each one hour slot it is randomly decided whether the machine is
available or not. Finally, the local CPU load in a free daytime slot is generated
from a uniform distribution ranging from 0% to 30%. We assume that when a
host is running a foreign job, it can still initiate resource discovery for migration

Wave Scheduler: Scheduling for Faster Turnaround Time 207

and relay messages for other hosts. The percentage of available time during the
day varies from 5% to 95%. For simplicity, we assume all the hosts have the same
computational power.

Job Workload. During the simulation, a given peer can be both a client and a
host. A random group of peers (10% to 90%) are chosen as clients. Each client
submits a job to the system at a random point during the day. The job runtime
is defined as the time needed for the job to run to completion on a dedicated
machine. Job runtime is randomly distributed from 12 hours to 24 hours.

Host Discovery Parameters. We set the parameters of the resource discov-
ery schemes to be scalable and to have low latency. The maximum number of
scheduling attempts for random node label-based resource discovery is 5 times
and the search scope for expanding ring search is 2 hops.

Migration Parameters. The lingering time for the linger-migration models
is randomly chosen in the range 1 hour to 3 hours. In the adaptive model, the
linger time of a foreign job when it cannot find a better host to migrate to is
also randomly chosen in the range 1 hour to 3 hours.

Wave Scheduler. For the Wave scheduler, a 1x 24 CAN space is divided into
6 wavezones, each containing 4 time zones based on its second dimension. We
studied the performance of a variety of strategies for selecting the initial wave-
zone and the wavezone to migrate to. The variations included (a) migrate the
job to the wavezone whose earliest timezone just entered night-time, (b) migrate
the job to a random night-time zone, and (c) migrate the job to a wavezone that
currently contains the most night-time zones. The first option performs better
than the others, since it provides the maximal length of night-time cycles. The
simulation results presented in this paper use this option. However, it may be
better to randomly select a nightzone to balance network traffic if many jobs
simultaneously require wave scheduling.

5.2 Simulation Metrics

Our evaluation of different scheduling strategies is focused on the turnaround
time of a job, the time from when it first began execution to when it completes
execution in the system.

In our study, a job is considered to have failed if the client fails to find a
host satisfying host selection criteria, either when it initially tries to schedule
the job, or when it later tries to migrate. Most of the performance metrics are
measured only for those jobs that successfully complete execution. In this study,
we do not model rescheduling, as we are interested in the success rate of the
first scheduling attempt which includes the initial scheduling and the following
successful migrations. The job completes in the shortest time if the client only
needs to schedule the job once, so the slowdown factor measured this way show
the peak performance of each migration scheme. Also it is interesting to see what
percentage of jobs needs to be rescheduled under different migration models.

208 D. Zhou and V. Lo

The metrics used in the study are the followings:

— % of jobs that fail to complete (job failure rate). the number of failed
jobs divided by the total number of jobs submitted to the system.

— Average slowdown factor. The slowdown of a job is its turnaround time
(time to complete execution in the peer-to-peer cycle sharing system) divided
by the job runtime (time to complete execution on a dedicated machine).
We average the slowdown over all jobs that successfully complete execution.

— Average number of migrations per job. the number of times a job
migrates during its lifetime in the system, averaged over all jobs that suc-
cessfully complete execution.

We do not include migration and resource discovery overhead when plotting
the average slowdown factor. The migration and resource discovery overhead
do not make a visible difference in the results when migrations and resource
discoveries are infrequent and the jobs run for a long time. We will analyze
migration overhead, which dominates the computation overhead in the discussion
of number of migrations.

5.3 Simulation Results

In this section, the legends in each graphs are ordered from top to bottom to
match the relative position of the corresponding curves. Each data point is the
average over 15 simulation runs.

No-migration vs. Migration. We first compare no-migration with the two
basic migration schemes: migration-immediate and migration-linger. We measure
the performance of these scheduling strategies as a function of percentage of free
time on the hosts. When the percentage of free time on hosts increases on the
x-axis, the load of the system decreases. We also examine the impact of the
resource discovery scheme employed.

(a) The impact of migration on job turnaround times

Figure 5 shows the average slowdown factor for successfully completed jobs as
a function of free time on the hosts during the daytime hours. As expected,
jobs progress faster with more available time on hosts during daytime. The
performance of the no-migration strategy is clearly the worst since there is no
effort made to avoid long waiting times when the host is not free. Note that the
slowdown of migration-immediate (for both expanding ring and random host
discovery) is always 1, since only jobs that successfully run to completion are
considered. The success rate of different scheduling schemes will be discussed in
section 5.3(b).

The performance of migration-linger is better than the no-migration strategy
but worse than the others with its wasted lingering time associated with each
migration. The performance of the adaptive models is the closest to the ide-
alized migration-immediate schemes since it adaptively invokes the migration-
immediate scheme whenever possible.

Wave Scheduler: Scheduling for Faster Turnaround Time 209

The slowdown factor is mainly influenced by the migration model used. How-
ever, for the linger and adaptive strategies, the resource discovery protocol also
plays a role when the free time on the host is limited (e.g. when the percentage of
hosts free time during daytime is less than 65%). We noticed that for the linger
strategy, random performs better with respect to slowdown, but for the adap-
tive strategy, expanding ring performs better. This can be explained as follows:
For comparable search times, expanding ring contacts more hosts than the ran-
dom node label-based search, and therefore yields a higher successful migration
rate. However, since with migration-linger, every successful migration implies
(wasted) lingering time, ultimately random has lower slowdown with its lower
migration success rate. This observation is supported by Figure 9 which shows
the average number of migrations for each strategy. For the adaptive strategy,
expanding ring has lower slowdown than random as expected.

No-migration (random) —»—
No-migration (expanding ring) —+—
Migration-linger (expanding ring) —*—
Migration-linger (random) —<—
Migration-adaptive (random) —&—
Migration-adaptive (expanding ring) —®&—
3+ Migration-immediate (random) —e—
Migration-immediate (expanding ring) —e—

Average Slow Down Factor

Percentage of Free Time on Hosts during Daytime (%)

Fig.5. Average slowdown factor for no-migration vs. migration (The percentage of
clients in the system is 20%)

Figure 5 also shows that the slowdown factor for the no-migration strategy
and for migration-immediate is insensitive to the resource discovery schemes.

Figure 6 further confirms the improvement of turnaround time when using
a migration model under heavy load. The majority of jobs scheduled by no-
migration scheduling experienced a slowdown greater than 2 and in the extreme
case, jobs may experience slowdown greater than 5. The majority of jobs sched-
uled by migration-adaptive and migration-immediate have small slowdown or no
slowdown at all.

(b) The impact of migration on successful job completion

The above results regarding slowdown factor cannot be considered in isolation.
In particular, it is necessary to also consider the job failure rates, i.e. percentage
of jobs for which a host satisfying host selection criteria cannot be found either
in initial scheduling or in migration.

210 D. Zhou and V. Lo

1 E No Migration
B Migration-linger
- & Migration-adaptive
= B Migration-immediate
= 0.8 |
2
&
Z
g e
g
=%
0.4
0.
i 2] -
Is, -1 l4,5) [EALH 2y
slowdown Iactor

Fig. 6. Histogram of slowdown factors of successfully finished jobs (The percentage of
clients is 20% and the percentage of free time on hosts is 15%)

100 T T T T T
Migration-immediate (random) —e—
90 3 Migration-linger (random) —>— |
Migration-immediate (expanding ring) —e—
30 Migration-linger (expanding ring) —*—]
Migration-adaptive (random) —&—
0t Migration-adaptive (expanding ring) —®— |
S No-migration (random) —»—
e 60 L No-migration (expanding ring) —+— |
§
g 50]
=
£ 40+ g
<
]
= 30}]
20 b
10 | b
0 . . . & = = = W

10 20 30 40 50 60 70 80 90

Percentage of Free Time on Hosts during Daytime (%)

Fig. 7. % of jobs that fail to complete(The percentage of clients in the system is 20%)

Figure 7 shows the percentage of jobs that failed to finish assuming the same
simulation configuration as in Figure 5. For the two strict migration models
(migration-immediate and migration-linger) which only use local availability in-
formation, the failure rate is extremely high. The adaptive models, which use a
small amount of global information at migration time, have dramatically fewer
failed jobs — close to zero.

Clearly, there is a tradeoff between the job turnaround time and percentage
of jobs that successfully complete. The strict models have the lowest turnaround
time, but extremely high failure rates when free time on the hosts is limited.
The adaptive model performs best because it achieves low turnaround time with
most of the jobs successfully completed.

Wave Scheduler: Scheduling for Faster Turnaround Time 211

Job Failure Rate(%)

10 20 30 40 50 60 70 80 90

Percentage of Client Peers(%)

Migration-immediate (random) ——
Migration-linger (random) —x—
Migration-immediate (expanding ring) —
Migration-linger (expanding ring) —k—
No-migration (random) —
Migration-adaptive (random) —e—
Migration-adaptive (expanding ring) —a
No-migration (expanding ring) —

Fig. 8. % of jobs that fail to complete (The percentage of free time on the hosts during
the day is 15%)

When the number of client requests increase, there will be intense compe-
tition for free hosts. When the free time on these hosts is small, the situation
is even worse. Figure 8 shows that the failure rate of all scheduling strategies
increases with the increasing number of client requests. The persistently high
failure rate of migration-immediate makes it impractical for real applications
when the available resources are very limited.

The simulation results show that with abundant host free time, the failure
rate of migration-adaptive using an expanding ring search is even slightly lower
than the no-migration scheme.

(¢) Number of migrations during job lifetime

Figure 9 shows that the average number of migrations varies with the different
migration scheduling strategies. The graph shows that when the percentage of
host free time increases, the number of migrations increases first and then de-
creases. The reason is that there are two factors that influence the number of
migrations: the number of currently available hosts and the length of free time
slots on the hosts. With more available hosts, there is higher chance of migration
success and therefore a larger number of migrations. With longer free time slots,
the need for the jobs to migrate is reduced. With higher percentage of free time,
the amount of currently available hosts increases and the length of free time slots
also increases.

We can demonstrate that migration overhead is low using the same graph.
In early morning or late night, the network traffic in the Internet is usually
light. Therefore the network connection from the end-host to the Internet is
usually the bottleneck link when downloading or uploading data. In the following
computation, we assume the upload bandwidth of the host is 256kb, which is
the bandwidth of slow-end DSL users and download bandwidth is higher than
upload bandwidth with DSL. If the amount of data to be transmitted during
the migration is 1MB, the slowdown factor of migration schemes will increase

212 D. Zhou and V. Lo

T T T T T
Migration-adaptive (expanding ring) —&—
Migration-immediate (expanding ring) —e—
Migration-linger (expanding ring) —*—

10 | Migration-adaptive (random) —&—
Migration-immediate (random)
Migration-linger (random)

Average Number of Migrations

Percentage of Free Time on Hosts during Daytime (%)

Fig. 9. Average number of migrations for successfully finished jobs (The percentage of
clients in the system is 20%)

by at most 0.005 when the running time of the job is longer than 12 hours.
Even when the amount of data to transmit is 20MB, which is quite large for a
scientific computation, the influence is at most 0.1. The time overhead of resource
discoveries is much smaller and negligible compared with that of migration.

Performance of Wave Scheduler. This section presents the evaluation of the
Wave Scheduler. In order to focus on the difference between migration strategies,
we only describe results with the resource discovery method set as expanding
ring search. (Simulations with random node label-based discovery show the same
relative performance.)

(a) Impact of Wave scheduler on turnaround time

Figure 10 shows that the turnaround time of jobs with Wave Schedulers is lower
than other migration schedulers. Jobs progress faster with the Wave Scheduler
because it can identify hosts with potentially large chunks of available times.
The turnaround time of wave-adaptive is consistently low, while the turnaround
time of migration-adaptive is significantly higher when the amount of free time
is small. When the percentage of free time on hosts is 15%, the turnaround time
of jobs under wave-adaptive is about 75% of that under migration-adaptive.

(b) Impact of Wave scheduler on successful job completion

The percentage of jobs that fails to complete using the Wave scheduler is influ-
enced by two factors. Wave identifies available hosts with large chunks of future
free time. However, if the ratio of requests to the number of such hosts is limited,
there will be scheduling conflicts.

When the free time on hosts is limited, the Wave scheduler does better than
other migration schemes since it was designed for this exact situation. (see
Figure 12). The intensive contention for night-time hosts is relieved by wave-
adaptive, which adapts to the amount of free time by continuing to stay on the

Wave Scheduler: Scheduling for Faster Turnaround Time 213

No-migration (expanding ring) —+—
Migration-linger (expanding ring) —*—
Wave-linger (expanding ring) —v—
Migration-adaptive (expanding ring) —#—
Wave-adaptive (expanding ring) —4—
Migration-immediate (expanding ring) —e—

3+ Wave-immediate (expanding ring) —&—

Average Slow Down Factor

1 L L L . . . " L .
10 20 30 40 50 60 70 80 90

Percentage of Free Time on Hosts during Daytime (%)

Fig. 10. Wave Scheduler: Average slow down factor(The percentage of clientd request
is 20%)

100 T T T T T T
Migration-immediate (expanding ring) —e—

90 3 Migration-linger (expanding ring) —*%— |
Wave-immediate (expanding ring) —+—

80 I Wave-linger (expanding ring) —v— |
Wave-adaptive (expanding ring) —4—

70 F Migration-adaptive (expanding ring) —®— |

No-migration (expanding ring) —+—
60 b

40 1

Job Failure Rate(%)
wn
(=)
T
.

30 b

0 - gy a1 g g

10 20 30 40 50 60 70 80 90
Percentage of Host Available Time during Daytime(%)

Fig. 11. Wave scheduler: % of job that fail to complete (The percentage of clients in
the system is 20%)

hosts in case of contention. The job failure rate of wave-adaptive is competitive
with the no-migration model and slightly lower than with migration-adaptive.

Figure 11 shows the percentage of jobs that failed to finish under the same
simulation configuration as in Figure 10. The job failure rate of the Wave sched-
uler is relatively higher than others when the percentage of free time on hosts
increases, as wave-immediate uses strict rules about using night-time hosts and
this cause contention. The other two wave scheduler strategies perform as well
as migration-adaptive and the no-migration strategy.

(¢) Number of migrations during job lifetime with Wave scheduler
Figure 13 compares the average number of migrations of successfully finished
jobs with the wave migration strategies versus the standard migration. As we

214 D. Zhou and V. Lo

100

Job Failure Rate(%)

10 20 30 40 50 60 70 80 90
Percentage of Client Peers(%)
Migration-immediate (expanding ring) ——
Migration-linger (expanding ring) ——
Wave-immediate (expanding ring) —a
Wave-linger (expanding ring) ——
Migration-adaptive (expanding ring) ——
Wave-adaptive (expanding ring) —a—
No-migration (expanding ring) —

Fig. 12. Wave scheduler: % of job that fail to complete (The percentage of available
time on the hosts during the day is 15%)

12 T T T T T T
Migration-adaptive (expanding ring) —#—
Migration-immediate (expanding ring) —e—
10 Migration-linger (expanding ring) —*— |

‘Wave-immediate (expanding ring) —4—
Wave-adaptive (expanding ring) —4—
Wave-linger (expanding ring) —v—

Average Number of Migration
[}

0 I I I I I I I I L
10 20 30 40 50 60 70 80 90

Percentage of Free Time on Hosts during Daytime (%)

Fig.13. Wave scheduler: Average number of migrations (The percentage of client in
the system is 20%)

expected, jobs scheduled with the Wave scheduler finished with fewer migrations,
because it exploits the long available intervals at night while the others may end
up using short, dispersed time slots during the day. As in the discussion about
migration overhead in section 5.3(c), the migration overhead of Wave Scheduler
is even smaller compared with the standard migration schemes and therefore it
is acceptable for jobs with long running time.

6 Conclusion and Future Work

We studied job scheduling strategies with the goal of faster turnaround time in
open peer-based cycle sharing systems. The fundamental lesson to be learned

Wave Scheduler: Scheduling for Faster Turnaround Time 215

is that under strong owner policies on host availability for cycle sharing, the
ability to utilize free cycles wherever and whenever they are available is critical.
Migration achieves this goal by moving jobs away from busy hosts and to idle
hosts. The best migration strategies that we studied, wave and adaptive, were
able to use fairly straightforward mechanisms to make better decisions about
when and where to migrate.

We also observed that careful design of the infrastructure of a peer-to-peer
cycle sharing system impacts the performance of its schedulers. For example, the
use of a structured overlay network that supports timezone-aware overlay was
essential for the functioning of our wave scheduler. To recap:

— Compared with no-migration schemes, migration significantly reduces
turnaround time.

— The adaptive strategies perform best overall with respect to both low
turnaround time and low job failure rate.

— Wave scheduler performs better than the other migration strategies when
the free time during the day is limited.

— Wave-adaptive improves upon wave because it reduces collisions on night-
time hosts. It performs best among all the scheduling strategies.

To further improve the performance of Wave Scheduler and conduct a more
realistic and comprehensive evaluation of Wave Scheduler and other peer-based
scheduling using migration schemes, our ongoing and future work include the
following tasks:

1) Improving Wave Scheduler by using the schemes discussed in section 3 in-
cluding expanding the night-time cycles to any idle cycles and overlay con-
struction including information other than just CPU cycles.

2) Evaluating Wave Scheduler and other migration schemes using a retry model
in which clients retry after a random amount of time if the job fails to be
scheduled on host in initial scheduling or migration. Alternatively, a client
can make an intelligent decision about the how long it needs to wait before
retry based on estimation of current load of the system.

3) Evaluating Wave Scheduler using workload trace such as Condor trace and
desktop grid trace used by [31].

4) Studying the characteristics of bag-of-tasks scientific computation to under-
stand what impact Wave Scheduler can make for real applications.

5) Collecting activity based resource profiles and generating CPU usage pattern
from such profiles as a supporting study to our work.

6) Studying the migration cost on an Internet test-bed such as PlanetLab [32].

6.1 Related Work

The related work can be divided into two categories: peer-to-peer networks and
cycle sharing systems.

Peer-to-peer networks emerged with the popular file sharing systems. The
first generation peer-to-peer protocols [22] were extended to efficient, scalable

216 D. Zhou and V. Lo

and robust structured peer-to-peer overlay networks [17, 19, 18]. Structured peer-
to-peer overlay networks are motivated by distributed hash table algorithms
which use consistent hash function to hash a key onto a physical node in the
overlay network. A wealth of peer-to-peer applications including file sharing,
storage sharing, and web caching are built atop structured overlay networks.
The popularity of peer-to-peer file sharing techniques naturally stimulated the
development of peer-based cycle sharing systems.

The second research area is cycle sharing systems which can be divided into
three categories: Internet-based computing infrastructures, institutional-based
cycle sharing systems and desktop grid systems.

Internet-based computing infrastructures [1, 14, 15] use a client-server model
to distribute tasks to volunteers scattered in the Internet. The hosts actively
download tasks and data from a central server. A foreign task then stays on
the same host during their entire life spans. The hosts report the results to the
central server when the computation is done. Because Internet-based computing
projects require manual coordination from central servers, they may experience
downtime due to surges in hosts requests.

Institutional-based cycle sharing systems promote resource sharing within
one or a few institutions. In order to access resources in institutional-based cycle
sharing systems, the user first needs to acquire an account from the system ad-
ministrator. The most notable practical institutional-based cycle sharing system
is Condor [10, 8], which was first installed as a production system 15 years ago.
The work continued to evolve from a load sharing system within one institution
to a load sharing system within several institutions. Condor-G uses Globus [7]
for inter-domain resource management. The strict membership requirement and
heavyweight resource management and scheduling methods used by this type of
system make it hard for average users to install and maintain their own cycle
sharing systems.

The new desktop grid systems [33, 34] harness idle cycles on desktop machines.
Our work belongs to one type of desktop grid systems, the peer-based desktop
grid systems [3,4, 5], which harness idle cycles on desktop machines under a
peer-based model. Each node in these systems can be either a single machine
or an institution joining the peer-to-peer overlay network. Each peer can be
both a cycle donor and a cycle consumer. Peer-based cycle sharing systems is a
new research field, which charts many challenging research problems including
scalable resource discovery and management, incentives for node to join the
system, trust and security schemes. OurGrid [3] proposed an accounting scheme
to aid equitable resource sharing in order to attract nodes to join the system.
Flock of Condor [4] proposed to organize the nodes in a Pastry [19] overlay
network. Nodes broadcast resource information in a limited scope for resource
discovery. Our CCOF model [5] proposed a generic scalable modular peer-to-peer
cycle sharing architecture which supports automatic scheduling for arbitrary
client applications.

To our best knowledge, none of the previous work has addressed the fast
turnaround scheduling problem in a scalable peer-based cycle sharing system.

Wave Scheduler: Scheduling for Faster Turnaround Time 217

A recent paper [31] describes scheduling for rapid application turnaround on
enterprise desktop grids. The computation infrastructure used a client-server
model, in which a server stores the input data and schedules tasks to a host.
When the host becomes available, it sends a request to the server. The server
keeps a queue of available hosts and chooses the best hosts based on resource cri-
teria such as clock rate and number of cycles delivered in the past. The work did
not considering migration schemes. Moreover, this work is limited to scheduling
within one institution and it uses a client-server infrastructure, while scheduling
in a large scale fully distributed peer-based cycle sharing system is much more
complicated and challenging.

References

1. D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “SETI@home:
An experiment in public-resource computing,” Communications of the ACM,
vol. 45, 2002.

2. “Folding@home http://folding.stanford.edu/.”

3. N. Andrade, W. Cirne, F. Brasileiro, and P. Roisenberg, “OurGrid: An approach
to easily assemble grids with equitable resource sharing,” in Proceedings of the 9th
Workshop on Job Scheduling Strategies for Parallel Processing, 2003.

4. A. Butt, R. Zhang, and Y. Hu, “A self-organizing flock of condors,” in Proceedings
of SC2003, 2003.

5. V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao, “Cluster Computing on the Fly:
P2P scheduling of idle cycles in the Internet,” in IPTPS, 2004.

6. R. Gupta and A. Somani, “Compup2p: An architecture for sharing of computing
resources in peer-to-peer networks with selfish nodes,” in Proceedings of second
Workshop on the Economics of peer-to-peer systems, 2004.

7. 1. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit,”
The International Journal of Supercomputer Applications and High Performance
Computing, vol. 11, 1997.

8. D. Thain, T. Tannenbaum, and M. Livny, “Condor and the grid,” in Grid Com-
putng: Making the Global Infrastructure a Reality, F. Berman, G. Fox, and T. Hey,
Eds. John Wiley & Sons Inc., 2002.

9. “Legion http://www.cs.virginia.edu/ legion/.”

10. M. Litzkow, M. Livny, and M. Mutka, “Condor -a hunter of idle workstations,” in
the 8th International Conference on Distributed Computing Systems, 1988.

11. S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia: a load sharing facility for large,
heterogeneous distributed computer systems,” Software - Practice and Experience,
vol. 23, no. 12, 1993.

12. D. Ghormley, D. Petrou, S. Rodrigues, A. Vahdat, and T. Anderson, “GLUnix:a
global layer unix of a network of workstations,” Software-Practice and Experience,
vol. 28, no. 9, 1998.

13. “LSF load sharing facility, http://accl.grc.nasa.gov /Isf/aboutlsf.html.”

14. “BOINC: Berkeley open infrastructure for network computing, http://
boinc.berkeley.edu/.”

15. N. Camiel, S. London, N. Nisan, and O. Regev, “The popcorn project: Distributed
computation over the Internet in java,” in Proceedings of The 6th International
World Wide Web Conference, 1997.

218

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.
31.

32.
33.

34.

D. Zhou and V. Lo

B. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff, “Charlotte: Metacomputing
on the web,” in Proceedings of the 9th International Conference on Paralel and
Distributed Computing Systems, 1996.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable content
addressable network,” in Proc. ACM SIGCOMM, 2001.

I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: a
scalable peer-to-peer lookup service for internet applications,” in Proc. ACM SIG-
COMM, 2001.

A. Rowstron and P. Druschel, “Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems,” in Proc. 18th IFIP/ACM Int’l Conf.
on Distributed Systems Platforms, 2001.

A. Tamnitchi and 1. Foster, “A peer-to-peer approach to resource location in grid
environments,” in Grid Resource Management, J. Weglarz, J. Nabrzyski, J. Schopf,
and M. Stroinski, Eds., 2003.

D. Zhou and V. Lo, “Cluster Computing on the Fly: resource discovery in a cycle
sharing peer-to-peer system,” in Proceedings of the 4th International Workshop
on Global and P2P Computing (GP2PC’04), 2004.

“The Gnutella protocol specification (version 0.6).”

R. Raman, M. Livny, and M. Solomon, “Matchmaking: Distributed resource man-
agement for high throughput computing,” in Proceedings of the Seventh IEEE
International Symposium on High Performance Distributed Computing (HPDC?7),
1998.

V. Lo and J. Mache, “Job scheduling for prime time vs. non-prime time,” in Proc
4th IEEE International Conference on Cluster Computing (CLUSTER 2002), 2002.
D. Eager, E. Lazowska, and J. Zahorjan, “Adaptive load sharing in homogeneous
distributed systems,” IEEE Trans. on Software Engineering, vol. 12(5), 1986.

N. Shivaratri, P. Krueger, and M. Singhal, “Load distributing for locally distributed
systems,” Computer, vol. 25(12), 1992.

J. Brevik and D. Nurmi, “Quantifying machine availability in networked and desk-
top grid systems,” UCSB, Tech. Rep. CS2003-37.

L. Yang, I. Foster, and J. Schopf, “Homeostatic and tendency-based CPU load
predictions,” in Proceedings of the 17th International Symposium on Parallel and
Distributed Processing, 2003.

P. Dinda, “The statistical properties of host load,” Scientific Programming, vol. 7,
no. 3—4, 1999.

“ns, http://www.isi.edu/nsnam/ns/.”

D. Kondo, A. Chien, and H. Casanova, “Resource management for rapid applica-
tion turnaround on enterprise desktop grids,” in Proceedings of SC2004, 2004.
“Planetlab, http://www.planet-lab.org/.”

O. Lodygensky, G. Fedak, V. Neri, F. Cappello, D. Thain, and M. Livny,
“Xtremweb & condor: sharing resources between internet connected condor pool,”
in Proceedings of GP2PC2003(Global and Peer-to-Peer computing on large scale
distributed systems), 2003.

“Entropia, inc. http://www.entropia.com.”

Enhancing Security of Real-Time Applications on Grids
Through Dynamic Scheduling

Tao Xie and Xiao Qin

Department of Computer Science,
New Mexico Institute of Mining and Technology,
801 Leroy Place, Socorro, New Mexico 87801-4796
{xietao, xgin}@cs.nmt.edu

Abstract. Real-time applications with security requirements are emerging in
various areas including government, education, and business. However, con-
ventional real-time scheduling algorithms failed to fulfill the security require-
ments of real-time applications. In this paper we propose a dynamic real-time
scheduling algorithm, or SAREG, which is capable of enhancing quality of se-
curity for real-time applications running on Grids. In addition, we present a
mathematical model to formally describe a scheduling framework, security-
sensitive real-time applications, and security overheads. We leverage the model
to measure security overheads incurred by security services, including encryp-
tion, authentication, integrity check, etc. The SAREG algorithm seamlessly in-
tegrates security requirements into real-time scheduling by employing the secu-
rity overhead model. To evaluate the effectiveness of SAREG, we conducted
extensive simulations using a real world trace from a supercomputing center.
Experimental results show that SAREG significantly improves system perform-
ance in terms of quality of security and schedulability over three existing
scheduling algorithms.

1 Introduction

A computational grid is a collection of geographically dispersed computing resources,
providing a large virtual computing system to users. With rapid advances in process-
ing power, network bandwidth, and storage capacity, Grids are emerging as next gen-
eration computing platforms for large-scale computation and data intensive problems
in industry, academic, and government organizations. As typical scientific simulation
and computation require a large amount of compute power, it becomes crucial to take
advantage of application scheduling to enable the sharing and aggregation of geo-
graphically distributed resources to meet the needs of highly complex scientific
problems [32].

Recently there have been some efforts devoted to the development of real-time ap-
plications on Grids [9]. Real-time applications depend not only on results of computa-
tion, but also on time instants at which these results become available [13]. The con-
sequences of missing deadlines of hard real-time systems may be catastrophic,
whereas such consequences for soft real-time systems are relatively less damaging.
Examples of hard real-time applications include distributed defense and surveillance
applications [38], and distributed medical data systems [20]. On-line transaction proc-
essing systems are examples of soft real-time applications [26].

D. Feitelson et al. (Eds.): JSSPP 2005, LNCS 3834, pp. 219-237, 2005.
© Springer-Verlag Berlin Heidelberg 2005

220 T. Xie and X. Qin

There exist a growing number of systems that have real time and security consid-
erations [36], because sensitive data and processing require special safeguard and
protection against unauthorized access. In particular, a variety of motivating real-time
applications running on Grids require security protections to completely fulfill their
security-critical needs. Unfortunately, conventional wisdom on real time systems is
inadequate for applications with real-time and security requirements. This is mainly
because traditional real-time systems are developed to guarantee timing constraints
while possibly posing unacceptable security risks.

To tackle the aforementioned problem, we proposed a real-time scheduling algo-
rithm (referred to as SAREG) with security awareness, which is intended to seam-
lessly integrate security into real-time scheduling for applications running on Grids.
In this paper we use trace-driven simulation to compare the performance of the
SAREG algorithm against three baseline scheduling algorithms for Grids. Our simula-
tor combines performance and security overhead estimates using a security overhead
model based on three most commonly used security services. We have used a real
world trace from a supercomputing centre to drive our simulations. Also, we concen-
trate on three security services, namely, authentication, integrity, and encryption. Our
empirical results demonstrate that the SAREG scheduling algorithm is able to achieve
high quality of security while guaranteeing timing constraints posed by real-time
applications.

To put our work in a large perspective, in the next section we summarize related
work in the areas of computer security and real-time systems. Section 3 describes the
preliminary system architecture and task model. In Section 4 we propose a real-time
scheduling algorithm for parallel applications on Grids. We present in Section 5 the
experimental results based on real world traces from a supercomputing centre. We
also provide insight into system parameters that ultimately affect performance poten-
tial of SAREG. Finally, Section 6 concludes the paper with summary and futuredirec-
tions.

The rest of the paper is organized in the following way. Section 2 includes a sum-
mary of related work in this area. Section 3 discusses the system architecture and task
model with security requirements. Section 4 proposes a security overhead model.
Section 5 presents the security-aware real-time scheduling strategy. Performance
analysis of the SAREC-EDF algorithm is explained in Section 6. Section7 concludes
the paper with summary and future research directions.

2 Related Work

Scheduling algorithms for Grids have been extensively studied in the past both ex-
perimentally and theoretically. Wu and Sun considered memory availability as a per-
formance factor and introduced memory-aware scheduling in Grid environments [42].
Li compared the performance of a variety of scheduling and processor allocation
algorithms for grid computing [21]. In et al. proposed a framework for policy based
scheduling in resource allocation of grid computing [18]. However, these scheduling
algorithms are not suitable for real-time applications, because there is no guarantee to
finish real-time tasks in specified time intervals.

The issue of scheduling for real-time applications was previously reported in the
literature. Conventional real-time scheduling algorithms such as Rate Monotonic

Enhancing Security of Real-Time Applications 221

(RM) algorithm [23], Earliest Deadline First (EDF) [37], and Spring scheduling algo-
rithm [33] were successfully applied in real-time systems. We proposed both static
[30] and dynamic [31] scheduling schemes for real-time systems. Unfortunately, none
of the above real-time scheduling algorithms can be directly applied to the Grid envi-
ronments.

Real-time scheduling is a key factor in obtaining high performance and predictabil-
ity for Grids. Various aspects of complicated real-time scheduling problems in the
context of Grids were addressed in the literature. He et al. proposed a dynamic sched-
uling for parallel jobs with soft-deadlines in Grids [16]. Caron et al. developed an
algorithm that considers both priority and deadlines of tasks on Grids [6]. However,
most of existing real-time scheduling algorithms perform poorly for security-sensitive
real-time applications on Grids due to the ignorance of security requirements imposed
by the applications.

Recently increasing attention has been drawn toward security-awareness in Grids,
because efficient and flexible security has become a baseline requirement. Humphrey
et al. examined the current state of the art in securing a group of activities and intro-
duced new technologies that promise to meet the security requirements of Grids [17].
Azzedin and Maheswaran integrated the notion of “trust” into resource management
of a grid computing systems [3]. Wright et al. proposed a security architecture for a
network of computers bound together by an overlying framework used to provide
users a powerful virtual heterogeneous machine [41]. Connelly and Chien proposed
an approach to protecting tightly coupled, high-performance component communica-
tion [7]. However, the above security techniques are not appropriate for real-time
applications due to the lack of ability to express and handle timing constraints.

Some work has been done to incorporate security into a variety of real-time appli-
cations. George and Haritsa proposed concurrency control protocols to support appli-
cations with real-time and security requirements [12]. Ahmed and Vrbsky developed
a secure optimistic concurrency control protocol that can make trade-offs between
security and real-time requirements [2]. Son et al. proposed an approach to trading off
quality of security to achieve required real-time performance [35]. In [36], a new
scheme was developed to improve timeliness by allowing partial violations of secu-
rity. Our work is fundamentally different from the above approaches because they are
focused on concurrency control protocols whereas ours is intended to develop a secu-
rity-aware real-time scheduling algorithm, which can meet security constraints in
addition to real-time requirements of tasks running on Grids.

Most recently, we proposed a dynamic security-aware scheduling algorithm for a
single machine [43] and clusters [44][45]. We conducted simulations to show that
compared with three heuristic algorithms, the proposed algorithm can consistently
improve overall system performance in terms of quality of security and system sched-
ulability under a wide range of workload conditions.

3 Mathematical Model

A mathematical model of security-aware real-time scheduling for Grids is presented
in this section. This model, which describes a scheduling framework, security-
sensitive real-time jobs, and security overheads, allows the SAREG algorithm to be-
formally presented in Section 4.

222 T. Xie and X. Qin

3.1 Scheduling Framework

A Grid can be specified as G = {M;, M, ..., M,,}, where M;, I <i <n, is a site or clus-
ter [27]. The n sites are connected by wide-area networks (See Figure 1). The sched-
uling framework is general in the sense that it can be applied to small-scale grids
where computational sites are connected by LAN or MAN. Each site M; is repre-
sented as a vector, e.g., M; = (P, N;, T;, Q;), where P; is the peek computational power
measured by an overall CPU capacity (e.g., BIPS), N; is the number of machines in
the site, 7; is a set of accepted jobs running on M;, and Q; is a scheduler. Note that
there exists a scheduler in each site, and we advocate the use of a distributed schedul-
ing framework rather than a centralized one. This is mainly because a centralized
scheduler in a large-scale grid inevitably becomes a severe performance bottleneck,
resulting to a significant performance drop when workload is high. The distributed
scheduling infrastructure makes a system portable, secure, and capable of distributing
scheduling workload among an array of computational sites in the system [28][29].

Each site continues to receive reasonably up-to-date global load information by
monitoring resource utilization of the Grid, and periodically broadcasts it local load
information to other sites of the Grid. When a real-time job is submitted by a user to a
local site, the corresponding scheduler assigns the job to a group of local machines or
migrate the job to a remote site within in the Grid. The scheduler consists of a sched-
ule queue used to accommodate incoming real-time jobs. The scheduler queue is
maintained by an admission controller. If the incoming real-time jobs can be sched-
uled, the admission controller will place the tasks in the accepted queue for further
processing. In case no site can guarantee the deadline of the submitted real-time job, it
will be dropped into a local rejected list. The scheduler processes all the accepted
tasks by its scheduling policy before transmits them into the dispatch queue, where
the quality of security of accepted jobs are maximized. After the quality of security is
enhanced, the real-time job is dispatched to one of the designated site M; € G. The
machines in site M; can execute a number of real-time tasks in parallel.

- }O O«: -

Local M; Local -
C> T30 O«: -

Fig. 1. The scheduling framework for SAREG in a computational Grid

Enhancing Security of Real-Time Applications 223

3.2 Security-Sensitive Real-Time Jobs

A real-time job is specified as a set of rational parameters, e.g., J; = (e, p; di I, S;),
where e¢; is the execute time, p; is the number of machines required to execute J;, d; is
the deadline, and /; denotes the amount of data (measured in KB) to be protected. e;
can be estimated by code profiling and statistical prediction [5]. A collection of secu-

rity services required by J; is specified as S; = (S l.l , S 1.2 s eees ST, where § l.j denotes
the security level range of the jth security service. Our security-aware scheduler is
. 2

intended to determine the most appropriate point s; in space S;, e.g., s; = (Sil s ST,

s!), where 57 e §7, 1 <j<q.

A schedule of a job J; is formally denoted as the following expression:
X = ((Ui,l 2810:(0,5,8,5)""(O-i,pi >Si pi)) : (1)

where J; is divided into p; tasks, O ; and s, ;are the start time and the security level

of the jth task.

The SAREG algorithm is able to measure the security benefits gained by each ad-
mitted job. To implement this basic and valuable functionality, we quantitatively
model the security benefit of the jth task of job J; as a security level function denoted
by SL: S; — 91, where R is the set of positive real numbers:

4
SL(s; ;) = Zwlk si'fj . (2)
k=1

1,72 %0200

q
1 2 j j
where s, ; =(s s s),()_wl/ Sl,Zw{ =1.
Jj=1

Note that Wl.j is the weight of the jth security service for the task. Users specify in

their requests the weights to reflect relative priorities given to the required security
services. The security benefit of job J; is computed as the summation of the security
levels of all its tasks. Thus, we have the following equation:

Di
SL(s;)=Y_SL(s,) - 3)
j=1
where s, = (8,1 8,5 s i) -
The scheduling decision of the job J; is feasible if (1) all its tasks can be completed
before the deadline d;, and (2) the corresponding security requirements are satisfied.

Specifically, given a real-time job J that consists of p; tasks, we can obtain the fol-

lowing non-linear optimization problem formulation to compute the optimal security
benefit of J;:

J
i

maximize ST(s;)= > wis, - @

q
k=1

j:

224 T. Xie and X. Qin

subject to min(S}) < S[.Ifj < max(S}), fij =d; . where f;is the finish time
of the jth task of J;, and min(S [.j)and max(S [.j) are the minimum and maximum

security requirements of J,.

The SAREG scheduling algorithm to be presented in the next section strives to en-
hance quality of security, which is defined by the sum of the security levels of all the
admitted jobs. Thus, the following security value function needs to be optimized,
subjecting to certain timing and security constraints:

maximize SV =% %"y SI(s,) - 5)

Jj=11,eT;

where T is a set of accepted jobs running on site M;, y;; is set to 1 if job J; is accepted
by the jth site, and is set to 0 otherwise. Substituting Equation (4) into (5) yields the
following security value objective function. Thus, our job scheduling problem for
Grid environments can be formally defined as follows: given a Grid G = {M;, M,, ...,
M,} and a list of jobs submitted to the Grid, find a schedule

Y= ((O-"*I’S"’l)’(a"*z’s’*z)’"'(G"*”"’s"’”")) for each job J;, such that the total security
level of jobs on G (Equation 6) is maximized.
?;

SV =22 i 22 WS (6)

i=1 JeT, k=1 =l

3.3 Security Overhead

Since security is achieved at the cost of performance degradation, it is critical and
fundamental to quantitatively measure overhead caused by various security services.
Unfortunately, less attention has been paid to models used to measure security over-
heads. Recently Irvine and Levin proposed a security overhead framework, which can
be used for a variety of purposes [19]. However, security overhead model for each
security services in the context of real-time computing remains an open issue. To
enforce security in real-time applications while making security-aware schedulingal-
gorithms predictable and practical, in this section we proposed an effective model that
is capable of approximately, yet reasonably, measuring security overheads experi-
enced by tasks with an array of security requirements. With the security overhead
model in place, schedulers are enabled to be aware of security overheads, thereby
incorporating the overheads into the process of scheduling tasks. Particularly, the
model can be employed to compute the earliest start times and the minimal security
overhead. Without loss of generality, we consider three security services widely de-
ployed in real-time systems, namely, encryption, integrity, and authentication.

3.4 Encryption Overhead

Encryption is used to encrypt real-time applications (executable file) and the data they
produced such that a third party is unable to discover users’ private algorithmsem-
bedded in the executable applications or understand the data created by the applica-
tions Suppose each site has ten optional encryption algorithms, which are listed in

Enhancing Security of Real-Time Applications 225

Table 1. Cryptographic algorithms used for encryption service

Cryptographic s :SL M (s]) MB/s

SEAL 0.1 168.75

RC4 0.2 96.43
Blowfish 0.3 37.5

Knufu/Khafre 0.4 33.75

RC5 0.5 29.35

Rijndael 0.6 21.09
DES 0.7 15
IDEA 0.8 13.5
3DES 0.9 6.25

Table 1. Based on their performance, each cryptographic algorithm is assigned a cor-
responding security level in the range from 0.1 to 0.9. For example, level 0.9 implies
that we use 3DES, which is the strongest yet slowest encryption function among the
alternatives. Since computation overhead caused by encryption mainly depends on the
cryptographic algorithms used and the size of the data to be protected, Figure 2 (a)
shows encryption time in seconds as a function of encryption algorithms and size of
data to be secured measured on a 175 MHz Dec Alpha600 machine [25].

Let Sie be the encryption security level of ¢, and the computation overhead of the
encryption service can be calculated using Equation (7), where /; is the amount of data
whose confidentiality must be guaranteed, and ££° (Sf) is a function used to map a

security level to its corresponding encryption method’s performance.

e (s)=1, /1 (s) - (7
3.5 Integrity Overhead
Integrity services make it possible to ensure that no one can modify or tamper appli-

cations while they are executing on clusters. This can be accomplished by
using a variety of hash functions [4]. Ten commonly used hash functions and their

CPU Cest for Encryplion Serice CPU Cost for Integity Service CPU Cost for Authentication Service

G 2000 T

gi&-ﬂ Eﬁtﬂ ¢

o 100 01000 E

£ £ =

F o5, F 500, 5 §

2 2 5

5 0 0.0, Qo

Pl R e S
B0 'JA;-é"?ng_g‘.D __’_"\;.-sdﬂ?ng_gi.o o e 08

400 N e o ARE o s !
R _ 0 e A . m e 08
Size of Data (MB) o™ Sequrity Level Size of Data (MB)0 0 ™" Security Level Size of Data (MB) 0 Security Level

Fig. 2. CPU overhead of security services

226 T. Xie and X. Qin

Table 2. Ten hash functions used for integrity service

Hash Functions sf:SL M8 (sF):KB/ms

MD4 0.1 23.90
MD5 0.2 17.09
RIPEMD 0.3 12.00
RIPEMD-128 0.4 9.73
SHA-1 0.5 6.88
RIPEMD-160 0.6 5.69
Tiger 0.7 4.36
Snefru-128 0.8 0.75
MD2 0.9 0.53
Snefru-256 1.0 0.50

performance (evaluated on a 90 MHz Pentium machine) are shown in Table 2. Based
on their performance, each hash function is assigned a corresponding security level in
the range from 0.1 to 1.0. For example, level 0.1 implies that we use MD4, which is
the weakest yet fastest hash function among the alternatives. Level 1.0 means that
Snefru-256 is employed for integrity, and Snefru-256 the slowest yet strongest func-
tion among the competitors.

Let Sig be the integrity security level of #;, and the computation overhead of the in-
tegrity service can be calculated using Equation (8), where /; is the amount of data
whose integrity must be guaranteed, and f/* (Slg) is a function used to map a secu-

rity level to its corresponding hash function’s performance. The security overhead
model for integrity is depicted in Figure 2 (b).

cf(sEy=1[u®(st). (8)

3.6 Authentication Overhead

Tasks must be submitted from authenticated users and, thus, authentication services
are deployed to authenticate users who wish to access the Grid [8]. Table 3 enlists
three authentication techniques: weak authentication using HMAC-MDS; acceptable
authentication using HMAC-SHA-1, and fair authentication using CBC-MAC-AES.

Each authentication technique is assigned a security level Si“ in accordance with the

Table 3. Three authentication methods

Authentication s : Security Level ¢/ (s;): Time (ms)
Methods ' C
HMAC-MD5 0.3 90
HMAC-SHA-1 0.6 148

CBC-MAC-AES 0.9 163

Enhancing Security of Real-Time Applications 227

performance. Thus, authentication overhead Cl.a (Sla) is a function of security level

S [a . The security overhead model for authentication is shown in Figure 2(c).

3.7 Modeling Security Overheads

Now we can derive security overhead, which is the sum of the three items above.
Suppose task #; requires g security services, which are provided in sequential order.
Let s/ and Cii (sif)be the security level and overhead of the jth security service, the

security overhead ¢, experienced by #;, can be computed using Equation (9). In par-

ticular, the security overhead of #; with security requirements for the three services
above is modeled by Equation (10).

q
¢, = chf (s/),where s/ e S/ . 9)

j=1

i j j
¢, = th:r(sif),where s;eS/ .

Jjefa, e, g}

(10)

It is to be noted that ci(s5)s cf(s2)s and cl(st) in Equation (10) are derived from

Equations (7)-(8) and Table 2. In section 5, Equation (10) will be used to calculated
the earliest start times and minimal security overhead. (See Equations 11 and Equa-
tionl2)

4 The SAREG Scheduling Algorithm

The SAREG algorithm is outlined in Figure 3. The goal of the algorithm is to deliver
high quality of security under two conditions: (1) the security level promotion will not
miss its deadline; and (2) the security level promotion will not result in any accepted
subsequent task to be failed. To achieve the goal, SAREG strives to maximize security
level (measured by Equation 5) of each accepted job (see Step 21) while maintaining
reasonably high guarantee ratios (see Step 12).

Before optimizing the security level of each task of job J; on M;, SAREG attempts
to meet the real-time requirement of J;. This can be accomplished by calculating the
earliest start time (use Equation 11) and the minimal security overhead of J; (use
Equation 12) in Steps 2 and 3, followed by checking if all the tasks of J; can be com-
pleted before the deadline d; (see Step 4). If the deadline cannot be met by M;, J; is
rejected by Step 23.

The security level of each task in J; on M; is optimized in the following way. Recall
that the security service weights used in Equations (2), (4), and (6) reflect the impor-
tance of the three security services, directly indicating that it is desirable to give
higher priorities to security services with higher weights (see Step 5). In other words,
enhancing security levels of more important services tends to yield a maximized secu-
rity level of the task on M;.

In the case of a particular security service v, €fa,e, g}> Step 10 escalates the secu-

rity level s while satisfying the following timing constraints (see Step 12). Step 21

228 T. Xie and X. Qin

. for each task # of job J; on site M; do
Compute o-,f , the earliest start time of J; on site Mj;

1

2

3. Compute the minimal security overhead c"”" of task #;;
4 if ¢/ +e,, +c" <d, then (See Property 1)

5

Sort the security service weights in a decreasing order, e.g.,

Vi

w < W,.V2 < Wl.v‘} , Where v, € {a,e,g}, 1<1<3
6 for each security service v, e {a,e,g},1<1<3, do
7. s, = min{s; }

8 for each security service v, e {a,e,g},1<1<3, do
9

while S;:Ik < max{Siv’} do

10. increase security level s
11. Use Equation (10) to calculate the security overhead of #, on M;;
12. if ol te,+ Del(sh)>d, (based on Property 1) then
be{a,e,g}
13. decrease security level sl?j'k; break;
14. end while
15. end for
16. SL(s;,) = wabsfk
be{a,e,g}
17. else Migrate ¢, to another site M,, subjecting to
min {O'I:f,;' +e,+ Zc ,((s } d,

ISr<n,r#j betaes) r,]
18. end for
19. if Property 2 is satisfied then /* All the tasks in J; can be finished before d;
20. v, <1, where h =j or r; /* Accept job J; */
21. /* Optimize quality of security, see Equation (4) */

Find site M, for J;, maximize S[(s Z Zw’ sP
k=1 be{a,e,g}
22. dispatch job J; to M, according to the schedule generated above;
23. else y , « 0;/* Reject J;, since no feasible schedule is available */

Fig. 3. The SAREG scheduling algorithm

is able to maximize the security level of all the tasks in J; by identifying a site M), that
provides the maximal security level and dispatching J; to M), (see Step 22).
The time complexity of the SAREG scheduling algorithm is given as follows.

Theorem 1. The time complexity of SAREG is O(knm), where n is the number of sites
in a Grid, m is the number of tasks running on a site, and k is the number of possible

security level ranks for a particular security service V; (v, € {a,e,g},1<1<3).

Enhancing Security of Real-Time Applications 229

Proof. The time complexity of finding the earliest start time for the task on a site is
O(m) (Step 2). To obtain the minimal security overhead ci’""" of the task; the time

complexity is a constant O(/) (Step 3). Sorting the security service weights in a de-
creasing order (Step 5) takes a constant time O(/) since we only have 3 security ser-
vices. To increase the task’s three security levels to their possible maximal ranks
under the constraints (Step 12), the worst case time complexity is O(3km)
(Step 8 ~ Step 15). To find site M, on which the security level of task is optimized
(Step 20 ~ Step 22), the time complexity is O(n). Thus, the time complexity of the
SAREG algorithm is as follows: O(n)(O(m) + O(1) + O(1) + O(3km)) + O(n) =
O(knm). O

Since n, m and k cannot be very big numbers in practice, the time complexity of
SAREG should be low based on the expression above. This time complexity indicates
that the execution time of SAREG is a small value compared with task execution
times (e.g., the real world trace used in our simulations shows that the average job
execution time is 8031 Sec.). Thus, the CPU overhead of executing SAREG-EDF is
ignored in our experiments.

5 Performance Evaluation

In the previous Section we proposed the SAREG scheduling algorithm, which inte-
grates security requirements into scheduling for real-time applications on Grids. Now
we are in a position to evaluate the effectiveness of SAREG by conducting extensive
simulations based on a real world trace from San Diego Supercomputer Center
(SDSC SP2 log). The real trace was sampled on a 128-node (66MHz) IBM SP2 from
May 1998 through April 2000. To simplify our experiments, we utilized the first three
months data with 6400 parallel jobs in simulation.

In purpose of revealing the strength of SAREG, we compared it against two well-
know scheduling algorithms, namely, Min-Min and Sufferage [25] in addition to a
traditional real-time scheduling algorithm - the Earliest Deadline First algorithm
(EDF). Min-Min and Sufferage are non-preemptive task scheduling algorithms, which
were designed to schedule a stream of independent tasks onto a heterogeneous dis-
tributed computing system such as a Grid. Note that Min-Min a