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Abstract. A prefix-free language is a prime if it cannot be decomposed
into a concatenation of two prefix-free languages. We show that we can
check in polynomial time if a language generated by a simple context-
free grammar is a prime. Our algorithm computes a canonical represen-
tation of a simple language, converting its arbitrary simple grammar into
Prime Normal Form (PNF); a simple grammar is in PNF if all its non-
terminals define primes. We also improve the complexity of testing the
equivalence of simple grammars. The best previously known algorithm
for this problem worked in O(n13) time. We improve it to O(n7 log2 n)
and O(n5 polylog v) deterministic time, and O(n4 polylog n) randomized
time, where n is the total size of the grammars involved, and v is the
length of a shortest string derivable from a nonterminal, maximized over
all nonterminals. Our improvement is based on a version of Caucal’s
algorithm from [1].

1 Introduction

An important question in language theory is, given a class of languages, find
a canonical representation of any language of this class. Such a representation
often permits to solve various decidability problems related to a given class
of languages, such as equivalence of languages, non-emptiness, etc. Most often
the canonical representation of the language is given by a special form of its
grammar, called a normal form. In this paper, we give an algorithm converting a
simple grammar into its equivalent, unique representation in a form of so-called
Prime Normal Form (PNF). The canonical form of simple grammar was studied
by Courcelle, c.f. [2]. The crucial question that our algorithm is confronted with,
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is whether a simple language is prime, i.e., not decomposable into a concatenation
of two non-trivial prefix-free languages.

In general, the canonical representation of any type of language may be
substantially larger than its original grammar. This is also the case for sim-
ple languages. Hence verifying the equivalence of simple languages by means of
canonical representations may be inefficient. The equivalence problem for sim-
ple context-free grammars is a classical question in formal language theory. It
is a nontrivial problem, since the inclusion problem for simple languages is un-
decidable. A. Korenjak and J. Hopcroft, see [3, 4], proved that the equivalence
problem is decidable and they gave the first, doubly exponential time algorithm
solving it. Their result was improved by D. Caucal to O(n3v(G)) time, see [1].
The parameter n is the size of the simple grammar and v(G) is the length of
a shortest string derived from a nonterminal, maximized over all nonterminals.
Caucal’s algorithm is exponential since v(G) can be exponential with respect to
n. Y. Hirshfeld, M. Jerrum, and F. Moller gave the first polynomial O(n13) time
algorithm for this problem in [5]. We call it the HJM algorithm.

In the second part of the paper we design an algorithm based on a version
of Caucal’s algorithm, that has a better complexity than HJM. More precisely,
our algorithm works in time O(n7 log2 n). On the other hand a variation of our
algorithm works in time O(n5 polylog (v(G))), thus beating the complexity of
Caucal’s algorithm, e.g., for v(G) ∈ Ω(n3). Similarly as the HJM algorithm, we
apply the techniques used in the algorithmic theory of compressed strings, based
on Lempel-Ziv string encoding. The idea of such an encoding is that, instead of
representing a string explicitly, we design a context-free grammar generating
the string as a one-word language. As the combinatorial complexity of such
a grammar can be significantly smaller than the length of the word, it may be
considered as a succinct representation of the word. Such encodings were recently
considered by researchers, mainly in the context of efficient pattern matching.
There is one problem in this field which is of particular interest to us — the
compressed first mismatch problem (First-MP). Given two strings encoded by
a grammar, First-MP looks for the position of the first symbol at which the
strings differ. Polynomial time algorithms for computing First-MP were given
independently in [5] and [6], in very disjoint settings. More powerful algorithms
were given in [7], where a more complicated problem of fully compressed string-
matching was solved. For the purpose of this paper, we will use the result from
[8], which we adopted to obtain a faster algorithm.

Simple languages are applied by IDT Canada to perform packet classification
at wire speed. Classes of packets are described with the aid of simple languages,
and their recognition is made by a so-called Concatenation State Machine, an
efficient version of a stateless pushdown automaton. As shown in [9], there is a
one-to-one correspondence between Concatenation State Machines and simple
grammars. In order to store large sets of classification policies in memory, it
is necessary to reuse their common parts. A natural way to do this consists in
decomposing simple languages into primes, each of which is stored in memory
only once. When a new classification policy is added to memory, we verify if
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its prime factors are already stored in the data base. The algorithms described
in this paper are used to decompose classification policies into primes and to
identify primes for reuse.

2 Simple Languages

A context-free grammar G = (Σ, N, P ) is composed of a finite set Σ of terminals,
a finite set N of nonterminals disjoint from Σ, and a finite set P ⊂ N ×(N ∪Σ)∗

of production rules. For every β, γ ∈ (N ∪Σ)∗, if (A, α) ∈ P , then βAγ → βαγ. A
derivation β

∗−→ γ is a finite sequence (α0, α1, . . . , αn) such that β = α0, γ = αn,
and αi−1 → αi for i ∈ [1, n].

For every sequence of nonterminals α ∈ N∗ of a grammar G = (Σ, N, P ),
we denote by LG(α) the set of terminal strings derivable from α, i.e., LG(α) def=
{w ∈ Σ∗ | α

∗−→ w}. Often, if G is known from the context, we will write L(α)
instead of LG(α).

A grammar G = (Σ, N, P ) is in Greibach normal form if for every production
rule (A → α) ∈ P , we have α ∈ ΣN∗. A grammar G = (Σ, N, P ) is a simple
context-free grammar (simple grammar) if G is a Greibach normal form grammar
and such that whenever A → a α1 and A → a α2, for a same a ∈ Σ, then α1 = α2.

A language L ⊆ Σ∗ is a simple language (also called s-language) if L = {ε}
(where ε denotes the empty word) or if there exists a simple grammar G =
(Σ, N, P ) such that LG(A) = L, for some A ∈ N . The definition implies that
every nonterminal of a simple grammar defines a simple language. Since simple
languages are prefix codes and are closed by concatenation, the family of simple
languages under concatenation constitutes a free monoid with {ε} as unit. Thus,
every non-trivial simple language L (i.e. L �= {ε} and L �= ∅) admits a unique
decomposition into prime (i.e. undecomposable, non-trivial) simple languages,
L = P1P2 . . . Pn.

3 Prime Normal Form for Simple Grammars

In this section we give an algorithm converting any simple grammar to its canon-
ical representation called Prime Normal Form. A simple grammar is in Prime
Normal Form (PNF) if each of its nonterminals represents a prime. We will use
the following algebraic notation for left and right division in the free monoid
of prefix codes. If L = L1L2 for some prefix codes L, L1, L2, then by L−1

1 L we
denote L2 and by LL−1

2 we denote L1. We call L1 a left divider and L2 a right
divider of L.

Let L be a prefix code and L = P1P2 . . . Pn be its decomposition into primes.
Prime Pn will be called final prime of L, and it will be denoted by f(L). In
particular, if L is a prime, then f(L) = L.

Lemma 1. Let G = (Σ, N, P ) be a simple grammar. For every X ∈ N , there
exists Y ∈ N , such that f(L(X)) = L(Y ).
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Proof. Let w ∈ L(X)f(L(X))−1, and X
∗−→ wα be the leftmost derivation in G,

with α ∈ N+. Since L(α) = f(L(X)) and L(α) is a prime, α consists of a single
nonterminal, i.e., α ∈ N . �	

Let w0 α0 → . . . → wi αi → . . . → wnαn be the leftmost derivation X
∗−→w, with

w0 = ε, α0 = X , wn = w, αn = ε, wi ∈ Σ∗, and αi ∈ N∗, for i ∈ [0, n]. We are
interested in the subsequence π(X, w) = Y0, Y1, . . . , Yj of α0, α1, . . . , αn, which
consists of those elements of α0, . . . , αn that are single nonterminals. E.g., for
the leftmost derivation of abcdef ∈ L(X):

X → a Y Y → ab Y → abc Y → abcd Y Z → abcde Z → abcdef

we have π(X, abcdef) = X, Y, Y, Z.

Definition 1. Let G = (Σ, N, P ) be a simple grammar. We define relation D
over N ∪ {ε} as follows. (X, Y ) ∈ D if and only if:

– there exists a rule (X → aαY ) in P for some a ∈ Σ and α ∈ N∗, or
– Y = ε and there exists a rule (X → a) in P for some a ∈ Σ.

Relation D can be seen as a digraph (N ∪ {ε}, D, ε) with sink ε. In a digraph
with a sink, vertex v is called a d-articulation point of vertex u if and only if
v is present on every path from u to the sink. It was shown in [10] that the
order of first (or last) occurrences of the d-articulation points of a vertex v is
the same in all paths from v to the sink. Thus, it is natural to represent the
set of all d-articulation points for a given vertex v as an ordered list of vertices,
(u0, u1, . . . , un), where u0 = v and un is the sink.

In [10], it was shown that a prefix code L is prime if and only if the initial
state v1 of the minimal deterministic automaton for L does not have any d-
articulation point except sink and v1 itself. Moreover, the list of d-articulation
points (v1, v2, . . . , vn) corresponds to the prime decomposition of L, the factors
being the languages defined by automata having vi as the initial state and vi+1
as the final state (with all outgoing transitions of the final state removed), for
i ∈ [1, n), respectively.

Lemma 2. For every path π from X to ε in D there exists a word w ∈ L(X),
such that π = π(X, w). Conversely, for every w ∈ L(X), π(X, w) defines a path
from X to ε in D.

We say that a grammar G = (Σ, N, P ) is reduced if there is no two different
nonterminals defining the same language, i.e., for all X, Y ∈ N , if L(X) = L(Y )
then X = Y . By Lemma 1, the set of nonterminals F (X) def= {Y ∈ N | L(Y ) =
f(L(X))} is nonempty. If the underlying grammar is reduced then F (X) consists
of a single nonterminal which, by convenient abuse of notation, will be denoted
by f(X).

Theorem 1. Let G = (Σ, N, P ) be a reduced simple grammar. For every X ∈
N , L(X) is prime if and only if X does not have d-articulation points in D
except sink and X itself. Moreover, if Y ∈ N is a d-articulation point of X then
L(Y ) is a right divider of L(X).
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Proof. By Lemma 1, since G is reduced, every derivation starting in X is of form
X

∗−→ w′ f(X) ∗−→ w. Thus, for every w ∈ L(X), π(X, w) contains f(X), i.e., f(X)
is a d-articulation point of X in D.

Let Y be a d-articulation point of X in D. By Lemma 2, every derivation
starting in X passes by Y , thus Y is a d-articulation point for X in the (infinite)
deterministic automaton for X , which implies that L(Y ) is a right divider of
L(X), cf. [11]. �	

Theorem 2. Given a reduced simple grammar G = (Σ, N, P ), we can find f(X)
for all X ∈ N in linear time.

Proof. By Theorem 1, the non-terminal f(X) is exactly the second last d-
articulation point for X in D. Calculating f(X) for all X ∈ N can be done
in linear time, by using an algorithm for finding dominators in flow graphs,
cf. [12]. �	

The algorithm for transforming a simple grammar G = (Σ, N, P ) into PNF,
called PNF(G, S), is presented in Figure 1.

Input: Simple grammar G = (Σ, N, P ) and S ∈ N+.

Output: Simple grammar G′ in PNF and S′ ∈ N+, such that LG(S) = LG′(S′).

1. Reduce G.
Find redundant nonterminals by checking if L(X) = L(Y ), for all X, Y ∈ N .
Each redundant nonterminal is substituted in P and in S, and removed from N .

2. For every X ∈ N , find f(X) ∈ N .
Construct the digraph D and find the second-last d-articulation point for X.
If for every X ∈ N , X = f(X), then return (G, S).

3. Construct a new grammar G′ = (Σ, N, P ′) and new S′:

Define morphism h : N �→ N∗ as: h(X) def=
j

X if X = f(X)
Xf(X) otherwise.

Set S′ to h(S), and P ′ as follows, for a ∈ Σ, X, Y ∈ N , α ∈ N∗:
(a) If (X → aα) ∈ P and X = f(X), then (X → ah(α)) is in P ′.
(b) If (X → aαf(X)) ∈ P and X �= f(X), then (X → ah(α)) is in P ′.
(c) If (X → aαY ) ∈ P , X �= f(X) and Y �= f(X), then (X → ah(α)Y ) is in P ′.

4. Set G to G′, S to S′ and go to 1.

Fig. 1. Algorithm PNF(G, S)

We present an example of the execution of the algorithm. The input con-
sists of a simple grammar G = {(X → aAA), (X → bY Y ), (Y → aY ), (Y →
bBA), (A → a), (B → aXA), (B → b)}, and a simple language represented as a
word S = XA over nonterminals of G. We obtain the grammar in PNF while
keeping track of the decomposition of S. For each iteration, we give the value of
S, the grammar G, the digraph D (solid lines), the d-articulation tree (dotted
lines), and the values f(x) for x ∈ {X, Y, A, B} and h(x) for x ∈ {X, Y, A, B, S}.
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Iteration 1:

S = XA
X = aAA + bY Y
Y = aY + bBA
A = a
B = aXA + b

X

A

B Y

ε

x f(x) h(x)
X A XA
Y A Y A
A A A
B B B
S − XAA

Iteration 2:

S = XAA
X = aA + bYAY
Y = aY + bB
A = a
B = aXAA + b

X

Y

BA

ε

x f(x) h(x)
X X X
Y B Y B
A A A
B B B
S − XAA

Iteration 3:

S = XAA
X = aA + bYBAY B
Y = aY + b
A = a
B = aXAA + b

X

A B

Y

ε

x f(x) h(x)
X X X
Y Y Y
A A A
B B B
S − XAA

Theorem 3. The algorithm PNF(G, S) correctly computes a PNF simple gram-
mar G′ and S′ such that LG(S) = LG′(S′).

Proof. Step 1 does not change the semantics of any nonterminal, so it reduces
G to an equivalent simple grammar. Step 2 effectively finds final primes for all
nonterminals. Step 3 transforms the grammar G into G′ by right-factorizing
every non-prime nonterminal X by f(X): If X is prime then LG(X) = LG′(X),
otherwise LG(X) = LG′(Xf(X)). Every production (X → α) ∈ P is rewritten
accordingly into a corresponding production (X → β) ∈ P ′. Hence, for all
X ∈ N , LG(X) = LG′(h(X)). Thus morphism h converts grammar G together
with S to a grammar G′ with S′ = h(S) such that LG(S) = LG′(S′). Every
iteration of the program cuts the length of non-prime nonterminals, in terms of
their prime decomposition, by one. Thus, the total number of iterations equals
the maximum length of the prime decompositions of nonterminals of the initial
grammar. Hence the algorithm terminates. By the exit condition from Step 2,
each nonterminal is prime, hence G is in PNF. �	

Both steps, 2 and 3, of the algorithm may be computed in linear time, hence
the complexity of each iteration of the main loop is dominated by grammar
reduction from step 1.

The polynomial time algorithm from Section 6, repeated O(n2) times may be
used to perform the grammar reduction. However, for grammar G = {(A1 →
aA2A2), (A2 → aA3A3), . . . , (An−1 → aAnAn), (An → a)}, language LG(A1)
has an exponential number of primes with respect to the size of G. Hence the
number of iterations of the main loop of PNF(G, S) may be exponential and so
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may be the size of the resulting PNF grammar. Since simple languages constitute
a free monoid, the PNF form is unique.

Corollary 1. Every simple language L can be represented by a PNF simple
grammar G = (Σ, N, P ) and a starting word S ∈ N∗, such that LG(S) = L. Such
a representation is unique. The problem of constructing the PNF representation
of L given by a simple grammar is decidable. The PNF representation may be of
exponential size with respect to the size of the original grammar.

4 First Mismatch-Pair Problem

Our approach to transform Caucal’s algorithm for the equivalence problem of
simple grammar, cf. [1], into a polynomial time one (with respect to the size of
the input grammar) is to use compressed representations of sequences of nonter-
minals, instead of using explicit representations.

We will use the terminology of acyclic morphisms because it is more conve-
nient in presenting our algorithms. It is basically equivalent to the representation
of a single word by a context-free grammar generating exactly one word, or to a
“straight line program”.

A morphism over a monoid M is an application H : M 
→ M such that
H(1M ) = 1M and H(x · y) = H(x) · H(y), for all x, y ∈ M . A morphism
H : M 
→ M is fully defined by providing the values for the generators of M .
Thus, a morphism H over a finitely generated free monoid N∗ is usually defined
by providing H : N 
→ N∗. A morphism H : N → N+ is said to be acyclic
if we can order elements of N in such a way that for each A ∈ N , we have:
H(A) = A or A > B for each symbol B occurring in the string H(A). For an
acyclic morphism H over N∗ we denote H |N | by H∗, since H |N |+1 = H |N |.
If H∗(α) = w then we say that (H, α) is a compressed representation of w.
The size of w can be exponential with respect to the size of its compressed
representation.

Let G = (Σ, N, P ) be a simple grammar. We say that an acyclic morphism
H : N 
→ N+ is self-proving in G if for each A ∈ N we have:

– If A → a α then H(A) → a β and H∗(α) = H∗(β); and
– If H(A) → a β then A → a α and H∗(α) = H∗(β).

The concept of self-proving relations was introduced by Courcelle, c.f [13].
The idea of Courcelle and the following Lemma are reformulated in the terms
of acyclic morphisms and given here for completeness.

Lemma 3. If H is an acyclic morphism self-proving in G = (Σ, N, P ), then
LG(x) = LG(H(x)), for every x ∈ N∗.

The crucial tool in the polynomial-time algorithms is the compressed first
mismatch-pair problem, First-MP :
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Input: an acyclic morphism H : N 
→ N+ and two strings x, y ∈ N∗;
Output:

– First-MP(x, y, H) = nil, if H∗(x) = H∗(y);
– First-MP(x, y, H) = failure, if one of H∗(x), H∗(y) is a proper

prefix of the other;
– First-MP(x, y, H) = (A, B) ∈ N × N , where (A, B) is the first

mismatch pair, i.e., the first symbols occurring at the same po-
sition in H∗(x) and in H∗(y), respectively, which are different.

We say that a morphism H is binary if |H(A)| ≤ 2 for each A ∈ N . The
following fact can be shown using the algorithm from [8].

Lemma 4. Assume that given acyclic morphism H : N 
→ N+ is binary and
that the length of x and y is at most O(|N |), then we can solve First-MP(x, y, H)
in time O(k2 · h2), where k = |N | and h

def= min{k ≥ 0 | Hk = Hk+1} is the
depth of the morphism.

5 The Equivalence Algorithm

Conceptually it is easier to deal with grammars in binary Greibach Normal
Form (denoted GNF2). This means that each side of the production is of the
form (A → aα), where a ∈ Σ and α ∈ {ε} ∪ N ∪ N2.

Lemma 5. For each simple grammar G of total size n (the total number of
symbols describing G) there is an equivalent simple grammar G′ in GNF2 with
only O(n) nonterminal symbols. G′ can be constructed from G in O(n) time.

The total size of a grammar in GNF2 is of a same order as the size of N . Hence
by the size of a grammar G = (Σ, N, P ), we mean n = |N |.

All known algorithms for the equivalence problem for simple grammars are
based on the possibility of computing the quotient of one prefix language by
another, assuming that the quotient exists and the languages are given as two
nonterminals of a simple grammar.

More precisely, let A and B be two nonterminals of a simple grammar G =
(Σ, N, P ), such that L(A) = L(B) · L, for some language L ⊆ Σ∗. The language
L can be derived from A by a leftmost derivation following any word w from
L(B), i.e., A

∗−→ wγ, for γ ∈ N∗, and L(γ) = L.
Let ||A|| denote the length of the shortest word derivable from A.

Lemma 6. Let G be a simple grammar of size n. We can compute the lengths
of shortest words derivable from all nonterminals of G in time O(n log n).

Proof. Finding ||A|| for all A ∈ N corresponds to the single-source shortest paths
problem in an and/or graph, which, using Dijkstra algorithm, can be solved in
time O(n log n). �	

Lemma 7. Let A and B be two nonterminals of a simple grammar G=(Σ, N, P )
such that L(A) = L(B) · L, for some L ⊆ Σ∗. We can compute γ ∈ N∗ such
that L(γ) = L in time O(n). It is guaranteed that |γ| ≤ n.
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Proof. Consider the parse tree for the derivation of a shortest word w from A.
The idea is to find a path down the tree which cuts off left of this path subtrees
γ generating prefix of w of length ||B||. Since w is a shortest word, no path of
the parse tree contains two occurrences of the same nonterminal hence the depth
of the tree is at most n. Therefore |γ| ≤ n and computing the value takes O(n)
time. �	
The result of the algorithm for finding the quotient of A by B as described in
the proof of Lemma 7 will be denoted by quot(A, B). The algorithm will give a
result for any pair of nonterminals A and B, as long as ||A|| ≥ ||B||. Notice that
L(A) = L(B quot(A, B)) only if L(B) is a left divider of L(A).

Lemma 3 is the starting point for the design of the algorithm EQUIVA-
LENCE. Assume that we fix a linear order A1 < A2 . . . < An of nonterminals,
such that whenever i < j, we have ||Ai|| ≤ ||Aj ||. The idea of the algorithm is
to construct a self-proving morphism H or, in the process of its construction, to
discover a failure which contradicts L(A) = L(B). The main point of the algo-
rithm is to keep pairs of long strings in compressed form. We keep only strings of
linear length, their explicit representations are determined by the morphism H .
Each time a new rule is generated by setting H(A) = Bγ, where γ = quot(A, B),
we create pairs (α, β) such that A → a α and Bγ → a β, for every letter a of the
terminal alphabet. We keep the generated pairs in set Q. To each pair we apply
operation First-MP, which “eliminates” the next nonterminal, or finds that we
have a pair of identical strings, such pairs are removed from Q. By doing that,
the algorithm is checking locally for the proof of the nonequivalence of A and
B. If the nonequivalence is not discovered and there is nothing to process, i.e.,
Q is empty, the algorithm returns the value TRUE, meaning L(A) = L(B).

The algorithm EQUIVALENCE is presented in Fig. 2. For technical reasons
(to simplify the description of the algorithm) we assume that First-MP(x, y, H)
gives ordered pairs in the sense that if First-MP(x, y, H) = (A, B) then A > B.
For α ∈ N+ and a ∈ Σ, by α

a−→ we denote that there is a β ∈ N∗ such that
α → a β, and by α � a−→ that there is not. We write (α, β) a−→(α′, β′) to say that
α → a α′ and β → a β′.

Lemma 8. The algorithm is correct. The algorithm makes O(n) iterations.

Proof. In each iteration, either a pair of strings is removed from Q, or a nonter-
minal is “eliminated” and no more than |Σ| pairs of strings are inserted into Q.
The crucial property is that whenever H(A) = Bγ, then the nonterminals in Bγ
are of smaller rank than A, ensuring that H is acyclic. Note also that First-MP
returns a pair (A, B) such that H(A) = A, therefore a nonterminal can only be
“eliminated” once. After at most n − 1 eliminations, First-MP will either find
that H∗(β1) = H∗(β2) and remove the pair from Q or return failure. Thus, the
maximum number of iterations is O(n).

Correctness follows from Lemma 3. �	
Corollary 2. The algorithm EQUIVALENCE(X, Y, G) works in time
O(n F (n)), where n is the size of G, and F (n) is the complexity of the First
Mismatch-Pair Problem.
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Input: Simple grammar G = (Σ, N, P ) and nonterminals X, Y ∈ N ;

Output: TRUE if LG(X) = LG(Y ), FALSE otherwise.

Initialization:
Q := {(X, Y )};
for each A ∈ N do H [A] := A;

while Q is not empty do
(β1, β2) := an element of Q;
switch (First-MP(β1, β2, H)) do

case nil : remove (β1, β2) from Q;
case failure : return FALSE;
case (A,B) :

γ := quot(A, B);
H [A] := Bγ; /* The nonterminal A is “eliminated” */
for each a ∈ Σ do

if (A, Bγ) a−→(β1, β2) then insert (β1, β2) into Q;
if (A a−→ and B � a−→) or (A � a−→ and B

a−→) then return FALSE;
return TRUE;

Fig. 2. Algorithm EQUIVALENCE (X, Y, G)

Lemma 9. Every instance of First-MP(α, β, H) in EQUIVALENCE (X, Y, G)
can be solved in time:

1. O(n6 log2 n) and
2. O(n4 polylog v(G)).

where n is the size of G, and v(G) is the length of a shortest string derivable
from a nonterminal, maximized over all nonterminals.

Proof. In the proof we use twice Lemma 4.

1. Assume H is an acyclic morphism over N , where n = |N | such that |H(A)| ≤
n for each A. Then we can construct a morphism Hb such that H∗

b = H∗,
over a set of k ≤ n2 nonterminals and with depth h = O(n log n).
The transformation of the morphism can be done similarly to a balanced
transformation into a Chomsky normal form. If H(A) = B1B2 . . . Bn then
we introduce n − 2 new auxiliary nonterminals to change it into a balanced
binary tree generating B1B2 . . . Bn from A. We need O(n) new nontermi-
nals per each original one, altogether the number of nonterminals increases to
O(n2), i.e., k is in O(n2). However the depth is changed only logarithmically.
Observe that on each top down path in generation we have at most n orig-
inal nonterminals, all of them should be different, and at most O(n log n)
auxiliary nonterminals, i.e., h is in O(n log n). Now, point 1 follows from
Lemma 4.

2. We can use the technique from [14] which transforms each grammar gen-
erating a single word u into a grammar of depth O(log |u|) by introducing
O(n polylogn) new nonterminals. Then Lemma 4 can be applied. �	
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The series of lemmas gives directly the following theorem, due to the fact that
after binarization of the morphism the number of variables grows quadratically
and the depth only grows by a logarithmic factor.

Theorem 4. The algorithm EQUIVALENCE (X, Y, G) deciding on the equiv-
alence of two nonterminals X and Y in a simple grammar G, works in time
O(n7 log2 n) and O(n5 polylog v(G)), where n is the size of G, and v(G) is the
length of a shortest string derivable from a nonterminal, maximized over all
nonterminals.

6 Randomized Algorithm for First-MP

We reduce equality of two compressed texts H∗(A) and H∗(B), to equality of
two polynomials of degree at most max(|H∗(A)|, |H∗(B)|). It is essential that the
uncompressed lengths of strings H∗(A) and H∗(B) is only singly exponential. It
follows from the construction of the operation quot which involves only shortest
strings derivable from nonterminals of the grammar G.

Lemma 10 (Randomized Equality Testing). We can check if H∗(A) =
H∗(B) in O(n polylogn) randomized time.

Lemma 11. The first mismatch-pair problem can be solved by a randomized
algorithm in time O(n2 polylogn).

Proof. We can check the equality of two prefixes of H∗(A) and H∗(B) at the
same time as the equality of H∗(A) and H∗(B). This can be done by changing H
into H ′ which generates only corresponding segments. We omit the details. Then
Lemma 10 can be applied. If we can compute the equality of prefixes then we can
do a binary search to compute the first mismatch. We have to add as a coefficient
the number of iterations in the binary search. This number is logarithmic with
respect to the lengths of uncompressed strings, hence it is O(n), since the lengths
are only singly exponential. This completes the proof. �	
Theorem 5. We can solve the equivalence problem for simple grammars by a
randomized algorithm in O(n4 polylogn) time.

7 Conclusion

We have given an algorithm converting any simple grammar to its canonical
representation called Prime Normal Form. We also improved the complexity
of the best existing algorithm verifying equivalence of simple languages. This
result may be used to reduce simple grammars, which is the most expensive step
of the PNF algorithm. Despite this improvement, this algorithm still works in
exponential time in the worst case, since its output may be of exponential size.
However, this theoretical limitation does not seem to occur in practice in the
context of network packet filtering and classification.

One interesting open problem is to propose a canonical representation of
a simple grammar, and an algorithm computing it, such that the size of this
representation is polynomial in the size of the original grammar.
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