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Abstract. There are several nonequivalent definitions of quantum finite
automata. Nearly all of them recognize only regular languages but not
all regular languages. On the other hand, for all these definitions there
is a result showing that there is a language l such that the size of the
quantum automaton recognizing L is essentially smaller than the size of
the minimal deterministic automaton recognizing L.

For most of the definitions of quantum finite automata the problem
to describe the class of the languages recognizable by the quantum au-
tomata is still open. The partial results are surveyed in this paper. More-
over, for the most popular definition of the QFA, the class of languages
recognizable by a QFA is not closed under union or any other binary
Boolean operation where both arguments are significant.

The end of the paper is devoted to unpublished results of the de-
scription of the class of the recognizable languages in terms of the sec-
ond order predicate logics. This research is influenced by the results of
Büchi [1, 2], Elgot [3], Trakhtenbrot [4] (description of regular languages
in terms of MSO), R.Fagin [5, 6] (description of NP in terms of ESO),
von Neumann [7] (quantum logics), Barenco, Bennett et al. [8] (universal
quantum gates).

1 Introduction

A quantum finite automaton (QFA) is a theoretical model for a quantum com-
puter with a finite memory.

If we compare them with their classical (non-quantum) counterparts, QFAs
have both strengths and weaknesses. The strength of QFAs is shown by the
fact that quantum automata can be exponentially more space efficient than
deterministic or probabilistic automata [9]. The weakness of QFAs is caused by
the fact that any quantum process has to be reversible (unitary). This makes
quantum automata unable to recognize some regular languages.

2 Definitions

Quantum finite automata (QFA) were introduced independently by Moore and
Crutchfield [10] and Kondacs and Watrous [11]. They differ in a seemingly small
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detail. The first definition allows the measurement only at the very end of the
computation process. Hence the computation is performed on the quantum in-
formation only. The second definition allows the measurement at every step of
the computation. In the process of the measurement the quantum information
(or rather, a part of it) is transformed into the classical information. The clas-
sical information is not processed in the subsequent steps of the computation.
However, we add the classical probabilities obtained during these many measure-
ments. There is something not 100 percent natural in this definition. We will see
below that this leads to unusual properties of the quantum automata and the
languages recognized by these automata.

To distinguish these quantum automata, we call them, correspondingly, MO-
QFA (measure-once) and MM-QFA (measure-many).

Definition 1. An MM-QFA is a tuple M = (Q; Σ; V ; q0; Qacc; Qrej) where Q is
a finite set of states, Σ is an input alphabet, V is a transition function, q0∈Q is
a starting state, and Qacc ⊆ Q and Qrej ⊆ Q are sets of accepting and rejecting
states (Qacc ∩ Qrej = ∅). The states in Qacc and Qrej, are called halting states
and the states in Qnon = Q − (Qacc ∪ Qrej) are called non halting states. κ and
$ are symbols that do not belong to Σ. We use κ and $ as the left and the right
endmarker, respectively. The working alphabet of M is Γ = Σ ∪ {κ; $}.

The state of M can be any superposition of states in Q (i. e., any linear
combination of them with complex coefficients). We use |q〉 to denote the super-
position consisting of state q only. l2(Q) denotes the linear space consisting of
all superpositions, with l2-distance on this linear space.

The transition function V is a mapping from Γ × l2(Q) to l2(Q) such that, for
every a∈Γ , the function Va : l2(Q) → l2(Q) defined by Va(x) = V (a, x) is a uni-
tary transformation (a linear transformation on l2(Q) that preserves l2 norm).

The computation of a MM-QFA starts in the superposition |q0〉. Then trans-
formations corresponding to the left endmarker κ, the letters of the input word
x and the right endmarker $ are applied. The transformation corresponding to
a∈Γ consists of two steps.

1. First, Va is applied. The new superposition ψ′ is Va(ψ) where ψ is the su-
perposition before this step.

2. Then, ψ′ is observed with respect to Eacc, Erej , Enon where Eacc = span{|q〉 :
q∈Qacc}, Erej = span{|q〉 : q∈Qrej}, Enon = span{|q〉 : q∈Qnon}. It means
that if the system’s state before the measurement was

ψ′ =
∑

qi∈Qacc

αi |qi〉 +
∑

qj∈Qrej

βj |qj〉 +
∑

qk∈Qnon

γk |qk〉

then the measurement accepts ψ′ with probability Σα2
i , rejects with prob-

ability Σβ2
j and continues the computation (applies transformations corre-

sponding to next letters) with probability Σγ2
k with the system having state

ψ = Σγk |qk〉.
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We regard these two transformations as reading a letter a. We use V ′
a to

denote the transformation consisting of Va followed by projection to Enon. This
is the transformation mapping ψ to the non-halting part of Va(ψ). We use V ′

w

to denote the product of transformations V ′
w = V ′

an
V ′

an−1
. . . V ′

a2
V ′

a1
, where ai is

the i-th letter of the word w. We also use ψy to denote the non-halting part of
QFA’s state after reading the left endmarker κ and the word y∈Σ∗. From the
notation it follows that ψw = V ′

κw(|q0〉).
We will say that an automaton recognizes a language L with probability p

(p > 1
2 ) if it accepts any word x∈L with probability ≥ p and rejects any word

x/∈L with probability ≥ p.
The MO-QFA differ from MM-QFA only in the additional requirement de-

manding that non-zero amplitudes can be obtained by the accepting and reject-
ing states no earlier than on reading the end-marker of the input word.

A probability distribution {(pi, φi)|1 ≤ i ≤ k} on pure states {φi}i=1 with
probabilities 0 ≤ pi ≤ 1 (

∑k
i=1(pi) = 1), is called a mixed state or mixture.

A quantum finite automaton with mixed states is a tuple

(Q, Σ, φinit, {Tδ}, Qa, Qr, Qnon),

where Q is finite a set of states, Σ is an input alphabet, φinit is a initial mixed
state, {Tδ} is a set of quantum transformations, which consists of defined se-
quence of measurements and unitary transformations, Qa 
 Q, Qr 
 Q and
Qnon 
 Q are sets of accepting, rejecting and non-halting states.

3 MO-Quantum Finite Automata

Sometimes even MO-QFA can be size-efficient compared with the classical FA.

Theorem 1. [9]

1. For every prime p the language Lp = { the length of the input word is a
multiple of p } can be recognized by a MO-QFA with no more than const log p
states.

2. For every p a deterministic FA recognizing Lp needs at least p states.
3. For every p a probabilistic FA with a bounded error recognizing Lp needs at

least p states.

4 MM-Quantum Finite Automata

4.1 First Results

The previous work on 1-way quantum finite automata (QFAs) has mainly con-
sidered 3 questions:

1. What is the class of languages recognized by QFAs?
2. What accepting probabilities can be achieved?
3. How does the size of QFAs (the number of states) compare to the size of

deterministic (probabilistic) automata?
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In this paper, we consider the first question. The first results in this direction
were obtained by Kondacs and Watrous [11].

Theorem 2. [11]

1. All languages recognized by 1-way MM-QFAs are regular.
2. There is a regular language that cannot be recognized by a 1-way MM-QFA

with probability 1
2 + ε for any ε > 0.

Brodsky and Pippenger [12] generalized the second part of Theorem 2 by
showing that any language satisfying a certain property is not recognizable by
an MM-QFA.

Theorem 3. [12] Let L be a language and M be its minimal automaton (the
smallest DFA recognizing L). Assume that there is a word x such that M contains
states q1, q2 satisfying:

1. q1 �= q2,
2. If M starts in the state q1 and reads x, it passes to q2,
3. If M starts in the state q2 and reads x, it passes to q2, and
4. There is a word y such that if M starts in q2 and reads y, it passes to q1,

then L cannot be recognized by any 1-way quantum finite automaton (Fig.1).

��

��

��

��
q1 q2 ��x

y
x�

Fig. 1. Conditions of theorem 3

A language L with the minimal automaton not containing a fragment of
Theorem 3 is called satisfying the partial order condition [13]. [12] conjectured
that any language satisfying the partial order condition is recognizable by a
1-way QFA. In this paper, we disprove this conjecture.

Another direction of research is studying the accepting probabilities of QFAs.

Theorem 4. [9] The language a∗b∗ is recognizable by an MM-QFA with proba-
bility 0.68... but not with probability 7/9 + ε for any ε > 0.

This shows that the classes of languages recognizable with different probabil-
ities are different. Next results in this direction were obtained by [14] where the
probabilities with which the languages a∗

1 . . . a∗
n can be recognized are studied.

There is also a lot of results about the number of states needed for QFA to
recognize different languages. In some cases, it can be exponentially less than
for deterministic or even for probabilistic automata [9, 15]. In other cases, it can
be exponentially bigger than for deterministic automata [16, 17].

A good survey on early results on quantum automata is Gruska [18].
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4.2 Necessary Condition

First, we give the new condition which implies that the language is not recogniz-
able by an MM-QFA. Similarly to the previous condition (Theorems 3), it can
be formulated as a condition about the minimal deterministic automaton of a
language. This condition is visualized in Figure 2.

Theorem 5. [19] Let L be a language. Assume that there are words x, y, z1,
z2 such that its minimal automaton M contains states q1, q2, q3 satisfying:

1. q2 �= q3,
2. if M starts in the state q1 and reads x, it passes to q2,
3. if M starts in the state q2 and reads x, it passes to q2,
4. if M starts in the state q1 and reads y, it passes to q3,
5. if M starts in the state q3 and reads y, it passes to q3,
6. for all words t ∈ (x|y)∗ there exists a word t1 ∈ (x|y)∗ such that if M starts

in the state q2 and reads tt1, it passes to q2,
7. for all words t ∈ (x|y)∗ there exists a word t1 ∈ (x|y)∗ such that if M starts

in the state q3 and reads tt1, it passes to q3,
8. if M starts in the state q2 and reads z1, it passes to an accepting state,
9. if M starts in the state q2 and reads z2, it passes to a rejecting state,

10. if M starts in the state q3 and reads z1, it passes to a rejecting state,
11. if M starts in the state q3 and reads z2, it passes to an accepting state.

Then L cannot be recognized by a 1-way MM-QFA.

For languages whose minimal automaton does not contain the construction of
Figure 3, this condition (together with Theorem 3) is necessary and sufficient.

Theorem 6. [19] Let U be the class of languages whose minimal automaton
does not contain ”two cycles in a row” (Fig. 3). A language that belongs to U
can be recognized by a 1-way MM-QFA if and only if its minimal deterministic
automaton does not contain the ”forbidden construction” from Theorem 3 and
the ”forbidden construction” from Theorem 5.

��

��
q2

��

��
q3

x, y�x, y�

��

��

� �

yx q1

��

���
acc

��

��	
rej

z1 z2

��

���
rej

��

��	
acc

z1 z2

Fig. 2. Conditions of theorem 5, conditions 6 and 7 are shown symbolically
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Fig. 3. Conditions of theorem 6

4.3 Non-closure Under Union

Let L1 be the language consisting of all words that start with any number of
letters a and after first letter b (if there is one) there is an odd number of letters a.

This language satisfies the conditions of Theorem 5. (q1, q2 and q3 of Theorem
5 are just q1, q2 and q3 of G1. x, y, z1 and z2 are b, aba, ab and b.) Hence, it
cannot be recognized by a QFA.

Consider 2 other languages L2 and L3 defined as follows.
L2 consists of all words which start with an even number of letters a and after

first letter b (if there is one) there is an odd number of letters a.
L3 consists of all words which start with an odd number of letters a and after

first letter b (if there is one) there is an odd number of letters a.
It is easy to see that L1 = L2

⋃
L3.

These languages (or rather their minimal automata) do not contain any of the
“forbidden constructions” of Theorem 6. Therefore, L2 and L3 can be recognized
by a MM-QFA and we get

Theorem 7. [20] There are two languages L2 and L3 which are recognizable
by a MM-QFA but the union of them L1 = L2

⋃
L3 is not recognizable by a

MM-QFA.

Corollary 1. [20] The class of languages recognizable by a MM-QFA is not
closed under union.

As L2
⋂

L3 = ∅ then also L1 = L2∆L3. So the class of languages recognizable
by MM-QFA is not closed under symmetric difference. From this and from the
fact that this class is closed under complement, it easily follows:

Corollary 2. [20] The class of languages recognizable by a MM-QFA is not
closed under any binary boolean operation where both arguments are significant.

Theorem 8. [19] If 2 languages L1 and L2 are recognizable by a MM-QFA with
probabilities p1 and p2 and 1

p1
+ 1

p2
< 3 then L = L1

⋃
L2 is also recognizable by

QFA with probability 2p1p2
p1+p2+p1p2

.

Theorem 9. [19] If 2 languages L1 and L2 are recognizable by a MM-QFA
with probabilities p1 and p2 and p1 > 2/3 and p2 > 2/3, then L = L1

⋃
L2 is

recognizable by QFA with probability p3 > 1/2.

4.4 More “Forbidden” Constructions

If we allow the “two cycles in a row” construction, Theorem 6 is not longer true.
More and more complicated “forbidden fragments” that imply non-recognizability
by an MM-QFA are possible.
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Theorem 10. [19] Let L be a language and M be its minimal automaton. If M
contains a fragment of the form shown in Figure 4 where a, b, c, d, e, f, g, h, i ∈
Σ∗ are words and q0, qa, qb, qc, qad, qae, qbd, qbf , qce, qcf are states of M
and

1. If M reads x ∈ {a, b, c} in the state q0, its state changes to qx.
2. If M reads x ∈ {a, b, c} in the state qx, its state again becomes qx.
3. If M reads any string consisting of a, b and c in a state qx (x ∈ {a, b, c}),

it moves to a state from which it can return to the same state qx by reading
some (possibly, different) string consisting of a, b and c.

4. If M reads y ∈ {d, e, f} in the state qx (x ∈ {a, b, c}), it moves to the state
qxy.1

5. If M reads y ∈ {a, b, c} in a state qxy, its state again becomes qxy.
6. If M reads any string consisting of d, e and f in the state qxy it moves

to a state from which it can return to the same state qxy by reading some
(possibly, different) string consisting of d, e and f .

7. Reading g in the state qad, h in the state qbf and i in the state qce leads to
accepting states. Reading h in the state qae, i in the state qbd, g in the state
qcf leads to rejecting states.

then L is not recognizable by an MM-QFA.

��
��

qa ��
��

qb

a, b, c
�

��
��

b

q0

��
��

�

qad ��
��
�

qae

d e

��
��

�

qbe ��
��
�

qbf

e f

�

��
��

qc

a, b, c
�

��
��

�

qcf ��
��
�

qcd

f d

a

�a, b, c
�

� �� � �
d, e, f
�

c

d, e, f d, e, f d, e, f d, e, f d, e, f

��
��

�

acc ��
��

rej

h

��
��

�
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��

rej

i

��
��

�

acc ��
��

rej

g

�

g

�

h

�

i

�

Fig. 4. Conditions of theorem 10

1 Note: We do not have this constraint (and the next two constraints) for pairs x =
a, y = f , x = b, y = e and x = c, y = d for which the state qxy is not defined.
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5 Descriptive Complexity

Deterministic finite automata can be regarded as a special type of Turing ma-
chines working real-time. Deterministic finite automata can also be regarded
as a special type of Turing machines working in small space. Hence theory of
finite automata is a part of computational coplexity theory. However, compu-
tational complexity theory was soon followed by descriptive complexity theory.
The origins and the first impressive results of the decsriptive complexity theory
is described by N.Immerman [21, 22].

Computational complexity began with the natural physical notions of time
and space. Given a property, S, an important issue is the computational com-
plexity of checking whether or not an input satisfies S. For a long time, the
notion of complexity referred to the time or space used in the computation. A
mathematician might ask, ”What is the complexity of expressing the property
S?” It should not be surprising that these two questions - that of cheching and
that of expressing - are related. However, it is startling how tied they are when
the second question refers to expressing the property in first-order logic. Many
complexity classes originally defined in terms of time or space resources have pre-
cise definitions in first-order or second-order logic. At first, this was discovered
for finite automata.

In early sixties Büchi [1, 2], Elgot [3] and Trakhtenbrot [4] showed how a
logical formula may effectively be transformed into a finite state automaton ac-
cepting the language specified by the formula, and vice versa. It demonstrates
how to relate the specification of a system behaviour (the formula) to a possi-
ble implementation (the behaviour of an automaton) - which underlies modern
checking tools.

The monadic second-order (MSO) logic of one successor is a logical frame-
work that allows one to specify string prperties using quantification over sets of
positions in the string.

Now we consider an example how an automaton can be described by a for-
mula. Let the input word have the length n in the alphabet {a, b}. Then the
considered sets are subsets of the set {1, 2, . . . , n}. Pa(x) and Pb(x) are, respec-
tively, predicates

Pa(x) = {the symbol number x in the input word equals a}

Pb(x) = {the symbol number x in the input word equals b}
Now we wish to show how the regular language

{the length of the input word is a multiple of 3}

can be described. We use also individual predicates

S(x, y) = {y = x + 1}

first(x) = {x = 1}
last(x) = {x = n}
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We use in our example three set-variables having the following meaning:

X1 = {all the positions i such that i ≡ 1(mod3)}

X2 = {all the positions i such that i ≡ 2(mod3)}

X0 = {all the positions i such that i ≡ 0(mod3)}

The MSO formula is as follows.

∃X1X2X0((X1 ∩ X2 = φ) ∧ (X1 ∩ X2 = φ) ∧ (X1 ∩ X2 = φ)∧

∧∀(first(x) ⇒ X1(x))∧

∧∀xy(S(x, y) ∧ ((X1 ∧ X2(y)) ∨ (X2(x) ∧ X0(y)) ∨ (X0(x) ∧ X1(y))∧

∧∀x(last(x) ⇒ X0(x)))

It needs to be reminded that Büchi [1] considers description of automata on
infinite strings. On the other hand, up to now quantum automata have been
considered as processing finite words only. Perhaps there is some quantum ma-
chanics based motivation behind this restriction.

As for classical Büchi automata, in the 1970’s there was relatively little inter-
est in these automata. There was some theoretical work on automata with infinite
state spaces such as pushdown tree automata. However, the decision problems
usually became undecidable. Thus, while of some theoretical interest, it did not
appear to have major impact on Computing Science. The situation changed on
1977 when Pnueli’s paper [23] appeared. Pnueli proposed the use of Temporal
Logic for reasoning about continuously operating concurrent programs. Tempo-
ral Logic is atype of modal logic that provides a formalism for describing how the
truth values of assertions vary over time. While there are a variety of different
systems of Temporal Logic, typical temporal operators or modalities include Fp
(”sometimes p”) which is true now provided there is a future moment where p
holds, and Gp (”always p) which is true now provided that p holds at all future
moments. As Pnueli argued, Temporal Logic seems particularly well-suited to
describing correct behaviour of continouosly operating concurrent programs.

Automata provide strictly more expressive power than (ordinary) Temporal
Logic. The property G2p, meaning that at all even moments p holds, is easily
described by an automaton, but not in Temporal Logic. Today Büchi and related
automata are studied both from theoretical and practical viewpoint. The cen-
tral technical use of automata by Büchi - to provide a decision procedure for a
logical theory by reduction to the emptiness problem for the automata - remains
today the main use of such automata in connection with logical theories, such
as Temporal Logic, for reasoning about program correctness.

Many automata classes are now described in terms of logics. For instance,
Engelfriet and Hoogeboom [24] equated 2DGSM, the family of string trans-
ductions realized by deterministic two-way finite state transducers (i.e. finite
state automata equiped with a two-way input tape and a one-way output tape)
and MSOS, the family obtained by restricting monadic second-order definable
graph transductions to strings. Thus, string transductions that are specified in



10 R. Freivalds

MSO logic can be implemented on two-way finite state transducers, and vice
versa.

In 1974 Fagin gave a characterization of nondeterministic polynomial time
(NP) as the set of properties expressible in second-order existential logic. Some
the results arising from this approach include characterizing polynomial time
(P) as the set of properties expressible in first-order logic plus a least fixed point
operator, and showing that the set of first-order inductive definitions for finite
structures is closed under complementation.

It is well known that second-order formulas may be transformed into prenex
form, with all second-order quantifiers in front. Let SO be the set of second-order
expressible properties, and let ESO be the set of second-order properties that
may be written in prenex form with no universal second-order quantifiers.

We consider the following example. Let the structure G = ({1, 2, · · · , n}, E)
represent a graph of n vertices, and E be a single binary relation representing
the edges of the graph. We say that the graph G is 3-colourable (in colors Red,
Yellow, Blue) iff its vertices may be coloured with one of three colours such
that no two adjacent vertices are the same colour. Three colourability is an
NP-complete property. Consider the following ESO-formula α where R, Y, B are
set-variables expressing the set of the vertices coloured correspondingly.

α = (∃R)(∃Y )(∃B)((R(x) ∨ Y (x) ∨ B(x)) ∧ (∀y)(E(x, y) ⇒

¬(R(x) ∧ R(y)) ∧ ¬(Y (x) ∧ Y (y)) ∧ ¬(B(x) ∧ B(y))))

Observe that a graph G satisfies α iff G is 3-colourable. Fagin [5] proves that all
NP-properties and only these properties are ESO-expressible.

Theorem 11. [5] (ESO) = NP.

Stockmeyer [25] followed this theorem by a nice characterization of the
polynomial-time hierarchy.

Theorem 12. [25] (SO) = PH.

Definition 2. We now define (FO + LFP) to be the set of first-order inductive
definitions. We do this by adding a least fixed point operator (LFP) to first-order
logic. If φ(Rk, x1, · · · , xk) is an Rk -positive formula (i.e. R does not occure
within any negation signs) in (FO + LFP) then (LFPRk

x1,···,xk
φ) is a formula

in (FO + LFP) denoting the least fixed point of φ. We also define IND[f(n)]
to be the sublanguage of (FO + LFP) in which we only include least fixed points
of first-order formulas φ for which |φ| is O[f(n)]. For example, the reflexive,
transitive closure of E is expressible as (LFPRxyβ) and is thus in IND[log n].
Note also that,

(FO + LFP ) = ∪∞
k=1IND[nk].

Immerman [26] and Vardi [27] characterized the complexity of (FO + LFP)
as follows,
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Theorem 13. [26, 27] (FO + LFP) = P.

Immerman [28] characterized the complexity of PSPACE similar way,

Theorem 14. [28] PSPACE = ∪∞
k=1FO[2nk

].

These theorems are most exciting. Indeed, Theorem 13 says that if we add
to first-order logic the power to define new relations by induction, then we can
express exactly the properties that are checkabale in polynomial time. Poly-
nomial time is characterized using only basic logical notions and no mention
of computation. The famous open problems in Theory of Computation turn
out to be equivalent to purely logical problems. For instance, P =?NP is
equivalent to whether or not every second-order expressible property over fi-
nite ordered structures is already expressible in first-order logic using inductive
definitions.

6 Description of Languages Recognized by QFA

We noted in Section 4 (Theorem 2) that QFA recognize only regular languages
but not all regular languages. Hence the logical description of these languages
should be weaker that MSO considered by Büchi. The first intension is to con-
sider ”natural” subclasses of MSO. However, Theorem 7 shows that even the
most popular logical operations conjunctions and disjunctions cannot be present
in the logics we are seeking for. The only way out is to consider less standard
logics, like Quantum Logics introduced by von Neumann[7].

Instead of ∨, ∧, ¬ we use only unitary operations. However, von Neumann’s
quantum logics turns out to be very far removed from qubits, discrete uni-
tary transformations and all the usual machinery of quantum finite automata.
Next ideas come from fuzzy logics by L.Zadeh [29]. Predicates Pa(x) were re-
placed by distributions of probabilities in [29]. Following this line, I constructed
a logic allowing distributions of amplitudes with amplitudes being complex num-
bers [where distribution means that the total of square moduli of these values
equals 1]. Finally, I use a result by D. P. DiVincenzo [30] who proved that two-
bit quantum gates are universal for quantum computation. I use also a result
by A.Barenco et al. [8] where the authors prove that all one-bit quantum gates
(U(2)) and the two-bit exclusive-or gate (that maps Boolean values (x, y) to
(x, x ⊕ y)) is universal in the sense that all unitary operations on arbitrarily
many bits n (U(2n)) can be expressed as compositions of these gates. This al-
lows to use in this new logics only a logical operation exclusive-or and arbitrary
rotations of one qbit.

However, I do not describe here the details of this logics because in June
2005 Ilze Dzelme defended in the University of Latvia her Master thesis [31]
containing the theorem 15 (below).

Generalized quantifiers were introduced by Mostowski [32]. This theorem uses
the notion of Lindström quantifiers. [We take the definition of these quantifiers
from [33]].
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Consider the classical first-order existential quantifier applied to some
quantifier-free formula ψ with free variable x, i.e. consider the formula Ψ =
∃xψ(x). Given an ordered structure A, we can associate a binary (i.e., 0-1) se-
quence aψ with ψ by evaluating ψ for every possible value of x from UA and
then adding 0 for false and 1 for true to aψ. To be more formal: If n is assigned
to x then aψ(n)=1 iff ψ(x) evaluates to true. The formula Ψ evaluates to true in
A if the above defined sequence aψ is such that it has at least one position with
the value 1. It is immediate to give a condition for sequences corresponding to a
universal quantifier (all positions must be 1), or for the ∃! quantifier (exactly one
position must be 1), or for modular quantifiers ∃≡k (the number of 1 positions
must be equivalent to 0 mod k).

Thus, it is very natural to define generalized quantifiers by considering ar-
bitrary conditions on binary sequences (which we will call logical acceptance
types). Let us give a formal definition.

Let τ be a set of s-tuples of binary sequences, i.e., τ consists of tuples
(a1, · · · , as) where for every i(1 ≤ i ≤ s), ai is a mapping from {1, · · ·k} to
{0, 1} for some k. We call such a τ a logical acceptance type. The set of all
s-tuples of finite binary sequences will in the following be denoted by τ(s).

Then we denote the Lindström quantifier given by τ by Qτ . By QτΣk−FO we
denote the set of formulae built as follows: If ψ1, · · · , ψs are Σk − FO formulae,
each over r free variables.

Let A be a finite structure over the corresponding signature.. Then A |=
Qτ

−→x [ψ1(−→x ), · · · , ψs(−→x )] if the tuple (a1, · · · , as) is in τ , where the sequences ai

are defined as follows: For 1 ≤ n ≤ |UA|r, ai(n) = 1 if and only if A |= ψi(−→x )
where n is the rank of −→x on the order of r-tuples over A(1 ≤ i ≤ s). QτΣk−FO is
defined analogously. We write Q0

τΣ0
k for Mod(Q0

τΣ0
k) and Q0

τΠ0
k for Mod(Q0

τΠ0
k).

Given a Lindström quantifier Qτ , define Q+
τ to be the set of first-order for-

mulae in prenex normal form that starts with one quantifier Qτ followed by
arbitrary first-order formulae.

Second-order Lindström quantifiers are defined as follows. Let τ ∈ τ(s) be a
logical acceptance type as above. By QτΣk − SO we denote the set of formulae
built as follows: If ψ1, · · · , ψs are Σk − SO formulae, each over q free predicates−→
R = R1, R2, · · · , Rr, then Qτ

−→
R [ψ1(

−→
R ), · · · , ψs(

−→
R )] is a QτΣk − SO formula.

The semantics of such a formula is defined as follows: Let r the sum of arities
of all predicate symbols in −→

R . Then we can identify one possible assigment of−→
R over a set UA with its characteristic sequence c−→

R
which is a binary string of

length |UA|r.
Based on the lexicographical ordering of these strings, we define an ordering

on assignments of −→
R . Let now A be a finite structure over the corresponding

signature. Then A |= Qτ
−→
R [ψ1(

−→
R ), · · · , ψs(

−→
R )] if the tuple (a1, · · · , as) is in τ ,

where the sequences ai are defined as follows: For 1 ≤ n ≤ |UA|r, ai(n) = 1 if
and only if A |= ψi(−→x ) where n is the rank of −→x in the above-sketched order
of assignements of −→

R (1 ≤ i ≤ s). Analogously to the first-order case, we can
also define QτΠk − SO. We use Qτ − FO and Qτ − SO as abbreviations for
QτΣ0 − SO and QτΣ0 − SO, resp.
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Theorem 15. [31] A language can be recognized by a MO-QFA if and only if
this language can be described by a second-order Lindström quantifier formula
corresponding to group languages.
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