

Lecture Notes in Computer Science 3845
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jacques Farré Igor Litovsky
Sylvain Schmitz (Eds.)

Implementation
and Application
of Automata

10th International Conference, CIAA 2005
Sophia Antipolis, France, June 27-29, 2005
Revised Selected Papers

13

Volume Editors

Jacques Farré
Sylvain Schmitz
Université de Nice - Sophia Antipolis
Laboratoire I3S, Les Algorithmes - bât. Euclide B
2000, route des lucioles, BP 121, 06903 Sophia Antipolis - Cedex, France
E-mail: Jacques.Farre@unice.fr;schmitz@i3s.unice.fr

Igor Litovsky
Université de Nice - Sophia Antipolis
Ecole Polytechnique
930, route des colles, BP 145, 06903 Sophia Antipolis - Cedex, France
E-mail: lito@essi.fr

Library of Congress Control Number: 2006920773

CR Subject Classification (1998): F.1.1, F.1.2, F.4.2, F.4.3, F.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-31023-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31023-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11605157 06/3142 5 4 3 2 1 0

Preface

The 10th International Conference on Implementation and Application of Au-
tomata (CIAA 2005) was held in the Technopole of Sophia Antipolis, France, on
June 27–29, 2005.

This volume of the Lecture Notes in Computer Science series contains the
notes of the two invited lectures, the 26 papers selected for presentation at the
conference, and the abstracts of the eight posters that were displayed.

The papers and posters were selected amongst 87 submitted papers. The
submissions came from countries in five continents. They show applications of
automata in many fields, including mathematics, linguistics, networks, XML
processing, biology and music. The elderly lady of automata is alive and kicking,
ready to face the new challenges of computer science.

Based on the reviews, the Best Paper Award was given to Markus Lohrey
and Sebastian Maneth for their excellent article on Tree Automata and XPath
on Compressed Trees (see page 225). This award was generously sponsored by
the University of California at Santa Barbara.

We wish to thank all the Program Committee members and the additional
referees for their efforts in refereeing and selecting papers, and maintaining the
high standard of CIAA conferences. We are grateful to all the contributors to
the conference, in particular to the invited speakers, for making CIAA 2005 a
scientific success.

We also thank the Computer Science Department of the École Polytechnique
Universitaire of the University of Nice - Sophia Antipolis for accommodating
CIAA in its buildings and providing the logistical support.

October 2005 J. Farré
I. Litovsky
S. Schmitz

Organization

Program Committee

Olivier Carton LIAFA, Paris, France
Jean-Marc Champarnaud Université de Rouen, France
Maxime Crochemore Université de Marne-la-Vallée, France
Jürgen Dassow University of Magdeburg, Germany
Jacques Farré (Co-chair) Université de Nice - Sophia Antipolis, France
José Fortes Gálvez Universidad de Las Palmas de Gran Canaria, Spain
Jozef Gruska Masaryk University, Brno, Czech Republic
Tero Harju University of Turku, Finland
Oscar Ibarra University of California at Santa Barbara, USA
Balázs Imreh University of Szeged, Hungary
Masami Ito Kyoto Sangyo University, Japan
Lauri Karttunen PARC, California, USA
Nils Klarlund Lucent Bell Labs, USA
Bertrand Le Saëc LaBRI, Bordeaux, France
Igor Litovsky (Co-chair) Université de Nice - Sophia Antipolis, France
Do Long Van Institute of Mathematics, Hanoi, Vietnam
Carlos Mart́ın Vide Universitat Rovira i Virgili, Tarragona, Spain
Denis Maurel Université de Tours, France
Filippo Mignosi Università degli Studi di Palermo, Italy
Victor Mitrana University of Bucharest, Romania
Mehryar Mohri New York University, USA
Jean-Éric Pin LIAFA, Paris, France
Jacques Sakarovitch ENST, Paris, France
Kai T. Salomaa Queen’s University, Kingston, Canada
Pierluigi San Pietro Politecnico di Milano, Italy
Bruce W. Watson University of Eindhoven, The Netherlands

University of Pretoria, South Africa
Thomas Wilke Christian-Albrechts-Universität zu Kiel, Germany
Pierre Wolper Université de Liège, Belgium
Derick Wood Hong Kong University, China
Hsu-Chun Yen National Taiwan University, Taipei, Taiwan
Sheng Yu University of Western Ontario, London, Canada

Additional Referees

Cyril Allauzen
Yongbo An

Marcella Anselmo
Ricardo Baeza-Yates

Constantinos Bartzi
Marie-Pierre Béal

VIII Organization

Gary Benson
Vilmos Bilicki
Zoltán Blázsik
Luc Boasson
Bernard Boigelot
Béatrice Bouchou
Lubos Brim
Tevfik Bultan
Pascal Caron
Didier Caucal
Christian Choffrut
Loek Cleophas
Stefano Crespi Reghizzi
Mark Daley
Zhe Dang
Pál Dömösi
Michael Domaratzki
J.-Ph. Dubernard
Chiara Epifanio
Berndt Farwert
Rūsiņš Freivalds
Dora Giammarresi
Irène Guessarian
Peter Habermehl
Jan Holub
Andrew Horner
Géza Horváth

Sándor Horváth
Lucian Ilie
Csanád Imreh
Tatiana B. Jajcayova
Tao Jiang
Sandrine Julia
Jarkko Kari
André Kempe
Ernest Ketcha Ngassam
Daniel Kirsten
Felix Klaedtke
Ines Klimann
Hirotada Kobayashi
Satoshi Kobayashi
Mojmı́r Kr̆et́ınský
Antońın Kucera
Grégory Kucherov
Olivier Lecarme
Sylvain Lombardy
Jean Mairesse
Nicolas Markey
Ian Mcquillan
Christophe Morvan
Angelo Morzenti
Christopher Nehaniv
Alexander Okhotin
Michael Palis

Andrei Păun
Radek Pélanek
Dominique Perrin
Lubos Popeĺınsky
Marc Pouzet
Matteo Pradella
Christophe Prieur
Ashish Rastogi
Bala Ravikumar
Chloe Rispal
Eric Rivals
Nicoletta Sabadini
Nicolae Sântean
Sylvain Schmitz
Patrice Séébold
Olivier Serre
Petr Sośık
Paola Spoletini
Ralf Stiebe
Samuel Tardieu
Marc Tommasi
Nicholas Tran
Szilvia Varró-Gyapay
Misha Volkov
François Yvon
Marc Zeitoun
Gilles Zémor

Steering Committee

Jean-Marc Champarnaud Université de Rouen, France
Oscar Ibarra University of California at Santa Barbara, USA
Denis Maurel Université de Tours, France
Derick Wood Hong Kong University, China
Sheng Yu University of Western Ontario, London, Canada

Organizing Committee

Jacques Farré (Co-chair)
Carine Fédèle

Micheline Hagneré
Corinne Julien

Igor Litovsky (Co-chair)
Sylvain Schmitz

Sponsoring Institutions

Université de Nice - Sophia Antipolis (UNSA)
Centre National de la Recherche Scientifique (CNRS)

Organization IX

Institut National de Recherche en Informatique et en Automatique (INRIA
Sophia Antipolis)
European Association for Theoretical Computer Science (EATCS)

Ministère de l’Éducation Nationale, de l’Enseignement Supérieur et de la Recherche
(direction des relations internationales et de la coopération)
Conseil Régional Provence-Alpes-Côte d’Azur
Conseil Général des Alpes Maritimes
Communauté d’Agglomération de Sophia Antipolis
SAEM Sophia Antipolis Côte d’Azur

Table of Contents

Invited Lectures

Languages Recognizable by Quantum Finite Automata
Rūsiņš Freivalds . 1

The Language, the Expression, and the (Small) Automaton
Jacques Sakarovitch . 15

Technical Contributions

Minimization of Non-deterministic Automata with Large Alphabets
Parosh Aziz Abdulla, Johann Deneux, Lisa Kaati, Marcus Nilsson . . . 31

Simulating Two-Dimensional Recognizability by Pushdown and Queue
Automata

Marcella Anselmo, Maria Madonia . 43

Component Composition Preserving Behavioural Contracts Based
on Communication Traces

Arnaud Bailly, Mireille Clerbout, Isabelle Simplot-Ryl 54

Strong Retiming Equivalence of Synchronous Schemes
Miklós Bartha . 66

Prime Normal Form and Equivalence of Simple Grammars
Cédric Bastien, Jurek Czyzowicz, Wojciech Fraczak,
Wojciech Rytter . 78

An Incremental Algorithm for Constructing Minimal Deterministic
Finite Cover Automata

Cezar Câmpeanu, Andrei Păun, Jason R. Smith 90

Finite Automata and Unions of Regular Patterns with Bounded
Constant Segments

Antonio Cano, Pedro Garćıa . 104

Inside Vaucanson
Thomas Claveirole, Sylvain Lombardy, Sarah O’Connor,
Louis-Noël Pouchet, Jacques Sakarovitch . 116

XII Table of Contents

Deterministic Recognition of Trees Accepted by a Linear Pushdown
Tree Automaton

Akio Fujiyoshi, Ikuo Kawaharada . 129

Shorter Regular Expressions from Finite-State Automata
Yo-Sub Han, Derick Wood . 141

Wind in the Willows – Generating Music by Means of Tree Transducers
Johanna Högberg . 153

On Deterministic Catalytic Systems
Oscar H. Ibarra, Hsu-Chun Yen . 163

Restricting the Use of Auxiliary Symbols for Restarting Automata
Tomasz Jurdziński, Friedrich Otto . 176

A Class of Rational n-WFSM Auto-intersections
André Kempe, Jean-Marc Champarnaud, Jason Eisner,
Franck Guingne, Florent Nicart . 188

Experiments with Deterministic ω-Automata for Formulas of Linear
Temporal Logic

Joachim Klein, Christel Baier . 199

Computing Affine Hulls over Q and Z from Sets Represented
by Number Decision Diagrams

Louis Latour . 213

Tree Automata and XPath on Compressed Trees
Markus Lohrey, Sebastian Maneth . 225

Deeper Connections Between LTL and Alternating Automata
Radek Pelánek, Jan Strejček . 238

The Structure of Subword Graphs and Suffix Trees of Fibonacci Words
Wojciech Rytter . 250

Observations on Determinization of Büchi Automata
Christoph Schulte Althoff, Wolfgang Thomas, Nico Wallmeier 262

The Interval Rank of Monotonic Automata
Tamara Shcherbak . 273

Compressing XML Documents Using Recursive Finite State Automata
Hariharan Subramanian, Priti Shankar . 282

Table of Contents XIII

Non-backtracking Top-Down Algorithm for Checking Tree Automata
Containment

Tadahiro Suda, Haruo Hosoya . 294

Size Reduction of Multitape Automata
Hellis Tamm, Matti Nykänen, Esko Ukkonen . 307

Robust Spelling Correction
Manuel Vilares, Juan Otero, Jesús Vilares . 319

On Two-Dimensional Pattern Matching by Finite Automata
Jan Žd’árek, Bořivoj Melichar . 329

Poster Abstracts

Incremental and Semi-incremental Construction of Pseudo-Minimal
Automata

Jan Daciuk, Denis Maurel, Agata Savary . 341

Is Learning RFSAs Better Than Learning DFAs?
Pedro Garćıa, José Ruiz, Antonio Cano, Gloria Alvarez 343

Learning Stochastic Finite Automata for Musical Style Recognition
Colin de la Higuera, Frédéric Piat, Frédéric Tantini 345

Simulation of Soliton Circuits
Miklós Krész . 347

Acyclic Automata with Easy-to-Find Short Regular Expressions
José João Morais, Nelma Moreira, Rogério Reis 349

On the Equivalence Problem for Programs with Mode Switching
Rimma I. Podlovchenko, Dmitry M. Rusakov,
Vladimir A. Zakharov . 351

Automata and AB-Categorial Grammars
Isabelle Tellier . 353

On a Class of Bijective Binary Transducers with Finitary Description
Despite Infinite State Set

Michael Vielhaber, Mónica del Pilar Canales Ch. 356

Author Index . 359

Languages Recognizable by Quantum Finite

Automata�

Rūsiņš Freivalds

Institute of Mathematics and Computer Science,
University of Latvia, Raiņa bulv. 29, R̄ıga, Latvia

Rusins.Freivalds@mii.lu.lv

Abstract. There are several nonequivalent definitions of quantum finite
automata. Nearly all of them recognize only regular languages but not
all regular languages. On the other hand, for all these definitions there
is a result showing that there is a language l such that the size of the
quantum automaton recognizing L is essentially smaller than the size of
the minimal deterministic automaton recognizing L.

For most of the definitions of quantum finite automata the problem
to describe the class of the languages recognizable by the quantum au-
tomata is still open. The partial results are surveyed in this paper. More-
over, for the most popular definition of the QFA, the class of languages
recognizable by a QFA is not closed under union or any other binary
Boolean operation where both arguments are significant.

The end of the paper is devoted to unpublished results of the de-
scription of the class of the recognizable languages in terms of the sec-
ond order predicate logics. This research is influenced by the results of
Büchi [1, 2], Elgot [3], Trakhtenbrot [4] (description of regular languages
in terms of MSO), R.Fagin [5, 6] (description of NP in terms of ESO),
von Neumann [7] (quantum logics), Barenco, Bennett et al. [8] (universal
quantum gates).

1 Introduction

A quantum finite automaton (QFA) is a theoretical model for a quantum com-
puter with a finite memory.

If we compare them with their classical (non-quantum) counterparts, QFAs
have both strengths and weaknesses. The strength of QFAs is shown by the
fact that quantum automata can be exponentially more space efficient than
deterministic or probabilistic automata [9]. The weakness of QFAs is caused by
the fact that any quantum process has to be reversible (unitary). This makes
quantum automata unable to recognize some regular languages.

2 Definitions

Quantum finite automata (QFA) were introduced independently by Moore and
Crutchfield [10] and Kondacs and Watrous [11]. They differ in a seemingly small
� Research supported by Grant No.05.1528 from the Latvian Council of Science and

European Commission, contract IST-1999-11234.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 1–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 R. Freivalds

detail. The first definition allows the measurement only at the very end of the
computation process. Hence the computation is performed on the quantum in-
formation only. The second definition allows the measurement at every step of
the computation. In the process of the measurement the quantum information
(or rather, a part of it) is transformed into the classical information. The clas-
sical information is not processed in the subsequent steps of the computation.
However, we add the classical probabilities obtained during these many measure-
ments. There is something not 100 percent natural in this definition. We will see
below that this leads to unusual properties of the quantum automata and the
languages recognized by these automata.

To distinguish these quantum automata, we call them, correspondingly, MO-
QFA (measure-once) and MM-QFA (measure-many).

Definition 1. An MM-QFA is a tuple M = (Q;Σ;V ; q0;Qacc;Qrej) where Q is
a finite set of states, Σ is an input alphabet, V is a transition function, q0∈Q is
a starting state, and Qacc ⊆ Q and Qrej ⊆ Q are sets of accepting and rejecting
states (Qacc ∩Qrej = ∅). The states in Qacc and Qrej, are called halting states
and the states in Qnon = Q− (Qacc ∪Qrej) are called non halting states. κ and
$ are symbols that do not belong to Σ. We use κ and $ as the left and the right
endmarker, respectively. The working alphabet of M is Γ = Σ ∪ {κ; $}.

The state of M can be any superposition of states in Q (i. e., any linear
combination of them with complex coefficients). We use |q〉 to denote the super-
position consisting of state q only. l2(Q) denotes the linear space consisting of
all superpositions, with l2-distance on this linear space.

The transition function V is a mapping from Γ × l2(Q) to l2(Q) such that, for
every a∈Γ , the function Va : l2(Q)→ l2(Q) defined by Va(x) = V (a, x) is a uni-
tary transformation (a linear transformation on l2(Q) that preserves l2 norm).

The computation of a MM-QFA starts in the superposition |q0〉. Then trans-
formations corresponding to the left endmarker κ, the letters of the input word
x and the right endmarker $ are applied. The transformation corresponding to
a∈Γ consists of two steps.

1. First, Va is applied. The new superposition ψ′ is Va(ψ) where ψ is the su-
perposition before this step.

2. Then, ψ′ is observed with respect to Eacc, Erej , Enon where Eacc = span{|q〉 :
q∈Qacc}, Erej = span{|q〉 : q∈Qrej}, Enon = span{|q〉 : q∈Qnon}. It means
that if the system’s state before the measurement was

ψ′ =
∑

qi∈Qacc

αi |qi〉+
∑

qj∈Qrej

βj |qj〉+
∑

qk∈Qnon

γk |qk〉

then the measurement accepts ψ′ with probability Σα2
i , rejects with prob-

ability Σβ2
j and continues the computation (applies transformations corre-

sponding to next letters) with probability Σγ2
k with the system having state

ψ = Σγk |qk〉.

Languages Recognizable by Quantum Finite Automata 3

We regard these two transformations as reading a letter a. We use V ′
a to

denote the transformation consisting of Va followed by projection to Enon. This
is the transformation mapping ψ to the non-halting part of Va(ψ). We use V ′

w

to denote the product of transformations V ′
w = V ′

an
V ′

an−1
. . . V ′

a2
V ′

a1
, where ai is

the i-th letter of the word w. We also use ψy to denote the non-halting part of
QFA’s state after reading the left endmarker κ and the word y∈Σ∗. From the
notation it follows that ψw = V ′

κw(|q0〉).
We will say that an automaton recognizes a language L with probability p

(p > 1
2) if it accepts any word x∈L with probability ≥ p and rejects any word

x/∈L with probability ≥ p.
The MO-QFA differ from MM-QFA only in the additional requirement de-

manding that non-zero amplitudes can be obtained by the accepting and reject-
ing states no earlier than on reading the end-marker of the input word.

A probability distribution {(pi, φi)|1 ≤ i ≤ k} on pure states {φi}i=1 with
probabilities 0 ≤ pi ≤ 1 (

∑k
i=1(pi) = 1), is called a mixed state or mixture.

A quantum finite automaton with mixed states is a tuple

(Q,Σ, φinit, {Tδ}, Qa, Qr, Qnon),

where Q is finite a set of states, Σ is an input alphabet, φinit is a initial mixed
state, {Tδ} is a set of quantum transformations, which consists of defined se-
quence of measurements and unitary transformations, Qa � Q, Qr � Q and
Qnon � Q are sets of accepting, rejecting and non-halting states.

3 MO-Quantum Finite Automata

Sometimes even MO-QFA can be size-efficient compared with the classical FA.

Theorem 1. [9]

1. For every prime p the language Lp = { the length of the input word is a
multiple of p } can be recognized by a MO-QFA with no more than const log p
states.

2. For every p a deterministic FA recognizing Lp needs at least p states.
3. For every p a probabilistic FA with a bounded error recognizing Lp needs at

least p states.

4 MM-Quantum Finite Automata

4.1 First Results

The previous work on 1-way quantum finite automata (QFAs) has mainly con-
sidered 3 questions:

1. What is the class of languages recognized by QFAs?
2. What accepting probabilities can be achieved?
3. How does the size of QFAs (the number of states) compare to the size of

deterministic (probabilistic) automata?

4 R. Freivalds

In this paper, we consider the first question. The first results in this direction
were obtained by Kondacs and Watrous [11].

Theorem 2. [11]

1. All languages recognized by 1-way MM-QFAs are regular.
2. There is a regular language that cannot be recognized by a 1-way MM-QFA

with probability 1
2 + ε for any ε > 0.

Brodsky and Pippenger [12] generalized the second part of Theorem 2 by
showing that any language satisfying a certain property is not recognizable by
an MM-QFA.

Theorem 3. [12] Let L be a language and M be its minimal automaton (the
smallest DFA recognizing L). Assume that there is a word x such that M contains
states q1, q2 satisfying:

1. q1 �= q2,
2. If M starts in the state q1 and reads x, it passes to q2,
3. If M starts in the state q2 and reads x, it passes to q2, and
4. There is a word y such that if M starts in q2 and reads y, it passes to q1,

then L cannot be recognized by any 1-way quantum finite automaton (Fig.1).

��
��

��
��

q1 q2 ��x

y
x�

Fig. 1. Conditions of theorem 3

A language L with the minimal automaton not containing a fragment of
Theorem 3 is called satisfying the partial order condition [13]. [12] conjectured
that any language satisfying the partial order condition is recognizable by a
1-way QFA. In this paper, we disprove this conjecture.

Another direction of research is studying the accepting probabilities of QFAs.

Theorem 4. [9] The language a∗b∗ is recognizable by an MM-QFA with proba-
bility 0.68... but not with probability 7/9 + ε for any ε > 0.

This shows that the classes of languages recognizable with different probabil-
ities are different. Next results in this direction were obtained by [14] where the
probabilities with which the languages a∗1 . . . a

∗
n can be recognized are studied.

There is also a lot of results about the number of states needed for QFA to
recognize different languages. In some cases, it can be exponentially less than
for deterministic or even for probabilistic automata [9, 15]. In other cases, it can
be exponentially bigger than for deterministic automata [16, 17].

A good survey on early results on quantum automata is Gruska [18].

Languages Recognizable by Quantum Finite Automata 5

4.2 Necessary Condition

First, we give the new condition which implies that the language is not recogniz-
able by an MM-QFA. Similarly to the previous condition (Theorems 3), it can
be formulated as a condition about the minimal deterministic automaton of a
language. This condition is visualized in Figure 2.

Theorem 5. [19] Let L be a language. Assume that there are words x, y, z1,
z2 such that its minimal automaton M contains states q1, q2, q3 satisfying:

1. q2 �= q3,
2. if M starts in the state q1 and reads x, it passes to q2,
3. if M starts in the state q2 and reads x, it passes to q2,
4. if M starts in the state q1 and reads y, it passes to q3,
5. if M starts in the state q3 and reads y, it passes to q3,
6. for all words t ∈ (x|y)∗ there exists a word t1 ∈ (x|y)∗ such that if M starts

in the state q2 and reads tt1, it passes to q2,
7. for all words t ∈ (x|y)∗ there exists a word t1 ∈ (x|y)∗ such that if M starts

in the state q3 and reads tt1, it passes to q3,
8. if M starts in the state q2 and reads z1, it passes to an accepting state,
9. if M starts in the state q2 and reads z2, it passes to a rejecting state,

10. if M starts in the state q3 and reads z1, it passes to a rejecting state,
11. if M starts in the state q3 and reads z2, it passes to an accepting state.

Then L cannot be recognized by a 1-way MM-QFA.

For languages whose minimal automaton does not contain the construction of
Figure 3, this condition (together with Theorem 3) is necessary and sufficient.

Theorem 6. [19] Let U be the class of languages whose minimal automaton
does not contain ”two cycles in a row” (Fig. 3). A language that belongs to U
can be recognized by a 1-way MM-QFA if and only if its minimal deterministic
automaton does not contain the ”forbidden construction” from Theorem 3 and
the ”forbidden construction” from Theorem 5.

��
��
q2 ��

��
q3

x, y�x, y�

��
��

� �

yx q1

��
��	
acc ��

��

rej

z1 z2

��
��	
rej ��

��

acc

z1 z2

Fig. 2. Conditions of theorem 5, conditions 6 and 7 are shown symbolically

6 R. Freivalds

��
��

��
��

q1 q2
�x

x

��
��

�

�
q3y

y�

Fig. 3. Conditions of theorem 6

4.3 Non-closure Under Union

Let L1 be the language consisting of all words that start with any number of
letters a and after first letter b (if there is one) there is an odd number of letters a.

This language satisfies the conditions of Theorem 5. (q1, q2 and q3 of Theorem
5 are just q1, q2 and q3 of G1. x, y, z1 and z2 are b, aba, ab and b.) Hence, it
cannot be recognized by a QFA.

Consider 2 other languages L2 and L3 defined as follows.
L2 consists of all words which start with an even number of letters a and after

first letter b (if there is one) there is an odd number of letters a.
L3 consists of all words which start with an odd number of letters a and after

first letter b (if there is one) there is an odd number of letters a.
It is easy to see that L1 = L2

⋃
L3.

These languages (or rather their minimal automata) do not contain any of the
“forbidden constructions” of Theorem 6. Therefore, L2 and L3 can be recognized
by a MM-QFA and we get

Theorem 7. [20] There are two languages L2 and L3 which are recognizable
by a MM-QFA but the union of them L1 = L2

⋃
L3 is not recognizable by a

MM-QFA.

Corollary 1. [20] The class of languages recognizable by a MM-QFA is not
closed under union.

As L2
⋂

L3 = ∅ then also L1 = L2ΔL3. So the class of languages recognizable
by MM-QFA is not closed under symmetric difference. From this and from the
fact that this class is closed under complement, it easily follows:

Corollary 2. [20] The class of languages recognizable by a MM-QFA is not
closed under any binary boolean operation where both arguments are significant.

Theorem 8. [19] If 2 languages L1 and L2 are recognizable by a MM-QFA with
probabilities p1 and p2 and 1

p1
+ 1

p2
< 3 then L = L1

⋃
L2 is also recognizable by

QFA with probability 2p1p2
p1+p2+p1p2

.

Theorem 9. [19] If 2 languages L1 and L2 are recognizable by a MM-QFA
with probabilities p1 and p2 and p1 > 2/3 and p2 > 2/3, then L = L1

⋃
L2 is

recognizable by QFA with probability p3 > 1/2.

4.4 More “Forbidden” Constructions

If we allow the “two cycles in a row” construction, Theorem 6 is not longer true.
More and more complicated “forbidden fragments” that imply non-recognizability
by an MM-QFA are possible.

Languages Recognizable by Quantum Finite Automata 7

Theorem 10. [19] Let L be a language and M be its minimal automaton. If M
contains a fragment of the form shown in Figure 4 where a, b, c, d, e, f, g, h, i ∈
Σ∗ are words and q0, qa, qb, qc, qad, qae, qbd, qbf , qce, qcf are states of M
and

1. If M reads x ∈ {a, b, c} in the state q0, its state changes to qx.
2. If M reads x ∈ {a, b, c} in the state qx, its state again becomes qx.
3. If M reads any string consisting of a, b and c in a state qx (x ∈ {a, b, c}),

it moves to a state from which it can return to the same state qx by reading
some (possibly, different) string consisting of a, b and c.

4. If M reads y ∈ {d, e, f} in the state qx (x ∈ {a, b, c}), it moves to the state
qxy.1

5. If M reads y ∈ {a, b, c} in a state qxy, its state again becomes qxy.
6. If M reads any string consisting of d, e and f in the state qxy it moves

to a state from which it can return to the same state qxy by reading some
(possibly, different) string consisting of d, e and f .

7. Reading g in the state qad, h in the state qbf and i in the state qce leads to
accepting states. Reading h in the state qae, i in the state qbd, g in the state
qcf leads to rejecting states.

then L is not recognizable by an MM-QFA.

��
��

qa ��
��

qb

a, b, c�

��
��

b

q0

��
��	

qad ��
��

qae

d e

��
��	

qbe ��
��

qbf

e f

�

��
��

qc

a, b, c�

��
��	

qcf ��
��

qcd

f d

a

�a, b, c�

� �� � �d, e, f�

c

d, e, f d, e, f d, e, f d, e, f d, e, f

��
��	

acc ��
��

rej

h

��
��	

acc ��
��

rej

i

��
��	

acc ��
��

rej

g

	

g

	

h

	

i

Fig. 4. Conditions of theorem 10

1 Note: We do not have this constraint (and the next two constraints) for pairs x =
a, y = f , x = b, y = e and x = c, y = d for which the state qxy is not defined.

8 R. Freivalds

5 Descriptive Complexity

Deterministic finite automata can be regarded as a special type of Turing ma-
chines working real-time. Deterministic finite automata can also be regarded
as a special type of Turing machines working in small space. Hence theory of
finite automata is a part of computational coplexity theory. However, compu-
tational complexity theory was soon followed by descriptive complexity theory.
The origins and the first impressive results of the decsriptive complexity theory
is described by N.Immerman [21, 22].

Computational complexity began with the natural physical notions of time
and space. Given a property, S, an important issue is the computational com-
plexity of checking whether or not an input satisfies S. For a long time, the
notion of complexity referred to the time or space used in the computation. A
mathematician might ask, ”What is the complexity of expressing the property
S?” It should not be surprising that these two questions - that of cheching and
that of expressing - are related. However, it is startling how tied they are when
the second question refers to expressing the property in first-order logic. Many
complexity classes originally defined in terms of time or space resources have pre-
cise definitions in first-order or second-order logic. At first, this was discovered
for finite automata.

In early sixties Büchi [1, 2], Elgot [3] and Trakhtenbrot [4] showed how a
logical formula may effectively be transformed into a finite state automaton ac-
cepting the language specified by the formula, and vice versa. It demonstrates
how to relate the specification of a system behaviour (the formula) to a possi-
ble implementation (the behaviour of an automaton) - which underlies modern
checking tools.

The monadic second-order (MSO) logic of one successor is a logical frame-
work that allows one to specify string prperties using quantification over sets of
positions in the string.

Now we consider an example how an automaton can be described by a for-
mula. Let the input word have the length n in the alphabet {a, b}. Then the
considered sets are subsets of the set {1, 2, . . . ,n}. Pa(x) and Pb(x) are, respec-
tively, predicates

Pa(x) = {the symbol number x in the input word equals a}

Pb(x) = {the symbol number x in the input word equals b}
Now we wish to show how the regular language

{the length of the input word is a multiple of 3}

can be described. We use also individual predicates

S(x, y) = {y = x + 1}

first(x) = {x = 1}
last(x) = {x = n}

Languages Recognizable by Quantum Finite Automata 9

We use in our example three set-variables having the following meaning:

X1 = {all the positions i such that i ≡ 1(mod3)}

X2 = {all the positions i such that i ≡ 2(mod3)}

X0 = {all the positions i such that i ≡ 0(mod3)}

The MSO formula is as follows.

∃X1X2X0((X1 ∩X2 = φ) ∧ (X1 ∩X2 = φ) ∧ (X1 ∩X2 = φ)∧

∧∀(first(x) ⇒ X1(x))∧

∧∀xy(S(x, y) ∧ ((X1 ∧X2(y)) ∨ (X2(x) ∧X0(y)) ∨ (X0(x) ∧X1(y))∧

∧∀x(last(x)⇒ X0(x)))

It needs to be reminded that Büchi [1] considers description of automata on
infinite strings. On the other hand, up to now quantum automata have been
considered as processing finite words only. Perhaps there is some quantum ma-
chanics based motivation behind this restriction.

As for classical Büchi automata, in the 1970’s there was relatively little inter-
est in these automata. There was some theoretical work on automata with infinite
state spaces such as pushdown tree automata. However, the decision problems
usually became undecidable. Thus, while of some theoretical interest, it did not
appear to have major impact on Computing Science. The situation changed on
1977 when Pnueli’s paper [23] appeared. Pnueli proposed the use of Temporal
Logic for reasoning about continuously operating concurrent programs. Tempo-
ral Logic is atype of modal logic that provides a formalism for describing how the
truth values of assertions vary over time. While there are a variety of different
systems of Temporal Logic, typical temporal operators or modalities include Fp
(”sometimes p”) which is true now provided there is a future moment where p
holds, and Gp (”always p) which is true now provided that p holds at all future
moments. As Pnueli argued, Temporal Logic seems particularly well-suited to
describing correct behaviour of continouosly operating concurrent programs.

Automata provide strictly more expressive power than (ordinary) Temporal
Logic. The property G2p, meaning that at all even moments p holds, is easily
described by an automaton, but not in Temporal Logic. Today Büchi and related
automata are studied both from theoretical and practical viewpoint. The cen-
tral technical use of automata by Büchi - to provide a decision procedure for a
logical theory by reduction to the emptiness problem for the automata - remains
today the main use of such automata in connection with logical theories, such
as Temporal Logic, for reasoning about program correctness.

Many automata classes are now described in terms of logics. For instance,
Engelfriet and Hoogeboom [24] equated 2DGSM, the family of string trans-
ductions realized by deterministic two-way finite state transducers (i.e. finite
state automata equiped with a two-way input tape and a one-way output tape)
and MSOS, the family obtained by restricting monadic second-order definable
graph transductions to strings. Thus, string transductions that are specified in

10 R. Freivalds

MSO logic can be implemented on two-way finite state transducers, and vice
versa.

In 1974 Fagin gave a characterization of nondeterministic polynomial time
(NP) as the set of properties expressible in second-order existential logic. Some
the results arising from this approach include characterizing polynomial time
(P) as the set of properties expressible in first-order logic plus a least fixed point
operator, and showing that the set of first-order inductive definitions for finite
structures is closed under complementation.

It is well known that second-order formulas may be transformed into prenex
form, with all second-order quantifiers in front. Let SO be the set of second-order
expressible properties, and let ESO be the set of second-order properties that
may be written in prenex form with no universal second-order quantifiers.

We consider the following example. Let the structure G = ({1, 2, · · · ,n}, E)
represent a graph of n vertices, and E be a single binary relation representing
the edges of the graph. We say that the graph G is 3-colourable (in colors Red,
Yellow, Blue) iff its vertices may be coloured with one of three colours such
that no two adjacent vertices are the same colour. Three colourability is an
NP-complete property. Consider the following ESO-formula α where R, Y,B are
set-variables expressing the set of the vertices coloured correspondingly.

α = (∃R)(∃Y)(∃B)((R(x) ∨ Y (x) ∨B(x)) ∧ (∀y)(E(x, y) ⇒

¬(R(x) ∧R(y)) ∧ ¬(Y (x) ∧ Y (y)) ∧ ¬(B(x) ∧B(y))))

Observe that a graph G satisfies α iff G is 3-colourable. Fagin [5] proves that all
NP-properties and only these properties are ESO-expressible.

Theorem 11. [5] (ESO) = NP.

Stockmeyer [25] followed this theorem by a nice characterization of the
polynomial-time hierarchy.

Theorem 12. [25] (SO) = PH.

Definition 2. We now define (FO + LFP) to be the set of first-order inductive
definitions. We do this by adding a least fixed point operator (LFP) to first-order
logic. If φ(Rk, x1, · · · , xk) is an Rk -positive formula (i.e. R does not occure
within any negation signs) in (FO + LFP) then (LFPRk

x1,···,xk
φ) is a formula

in (FO + LFP) denoting the least fixed point of φ. We also define IND[f(n)]
to be the sublanguage of (FO + LFP) in which we only include least fixed points
of first-order formulas φ for which |φ| is O[f(n)]. For example, the reflexive,
transitive closure of E is expressible as (LFPRxyβ) and is thus in IND[log n].
Note also that,

(FO + LFP) = ∪∞
k=1IND[nk].

Immerman [26] and Vardi [27] characterized the complexity of (FO + LFP)
as follows,

Languages Recognizable by Quantum Finite Automata 11

Theorem 13. [26, 27] (FO + LFP) = P.

Immerman [28] characterized the complexity of PSPACE similar way,

Theorem 14. [28] PSPACE = ∪∞
k=1FO[2nk

].

These theorems are most exciting. Indeed, Theorem 13 says that if we add
to first-order logic the power to define new relations by induction, then we can
express exactly the properties that are checkabale in polynomial time. Poly-
nomial time is characterized using only basic logical notions and no mention
of computation. The famous open problems in Theory of Computation turn
out to be equivalent to purely logical problems. For instance, P =?NP is
equivalent to whether or not every second-order expressible property over fi-
nite ordered structures is already expressible in first-order logic using inductive
definitions.

6 Description of Languages Recognized by QFA

We noted in Section 4 (Theorem 2) that QFA recognize only regular languages
but not all regular languages. Hence the logical description of these languages
should be weaker that MSO considered by Büchi. The first intension is to con-
sider ”natural” subclasses of MSO. However, Theorem 7 shows that even the
most popular logical operations conjunctions and disjunctions cannot be present
in the logics we are seeking for. The only way out is to consider less standard
logics, like Quantum Logics introduced by von Neumann[7].

Instead of ∨,∧,¬ we use only unitary operations. However, von Neumann’s
quantum logics turns out to be very far removed from qubits, discrete uni-
tary transformations and all the usual machinery of quantum finite automata.
Next ideas come from fuzzy logics by L.Zadeh [29]. Predicates Pa(x) were re-
placed by distributions of probabilities in [29]. Following this line, I constructed
a logic allowing distributions of amplitudes with amplitudes being complex num-
bers [where distribution means that the total of square moduli of these values
equals 1]. Finally, I use a result by D. P. DiVincenzo [30] who proved that two-
bit quantum gates are universal for quantum computation. I use also a result
by A.Barenco et al. [8] where the authors prove that all one-bit quantum gates
(U(2)) and the two-bit exclusive-or gate (that maps Boolean values (x, y) to
(x, x ⊕ y)) is universal in the sense that all unitary operations on arbitrarily
many bits n (U(2n)) can be expressed as compositions of these gates. This al-
lows to use in this new logics only a logical operation exclusive-or and arbitrary
rotations of one qbit.

However, I do not describe here the details of this logics because in June
2005 Ilze Dzelme defended in the University of Latvia her Master thesis [31]
containing the theorem 15 (below).

Generalized quantifiers were introduced by Mostowski [32]. This theorem uses
the notion of Lindström quantifiers. [We take the definition of these quantifiers
from [33]].

12 R. Freivalds

Consider the classical first-order existential quantifier applied to some
quantifier-free formula ψ with free variable x, i.e. consider the formula Ψ =
∃xψ(x). Given an ordered structure A, we can associate a binary (i.e., 0-1) se-
quence aψ with ψ by evaluating ψ for every possible value of x from UA and
then adding 0 for false and 1 for true to aψ. To be more formal: If n is assigned
to x then aψ(n)=1 iff ψ(x) evaluates to true. The formula Ψ evaluates to true in
A if the above defined sequence aψ is such that it has at least one position with
the value 1. It is immediate to give a condition for sequences corresponding to a
universal quantifier (all positions must be 1), or for the ∃! quantifier (exactly one
position must be 1), or for modular quantifiers ∃≡k (the number of 1 positions
must be equivalent to 0 mod k).

Thus, it is very natural to define generalized quantifiers by considering ar-
bitrary conditions on binary sequences (which we will call logical acceptance
types). Let us give a formal definition.

Let τ be a set of s-tuples of binary sequences, i.e., τ consists of tuples
(a1, · · · , as) where for every i(1 ≤ i ≤ s), ai is a mapping from {1, · · ·k} to
{0, 1} for some k. We call such a τ a logical acceptance type. The set of all
s-tuples of finite binary sequences will in the following be denoted by τ(s).

Then we denote the Lindström quantifier given by τ by Qτ . By QτΣk−FO we
denote the set of formulae built as follows: If ψ1, · · · , ψs are Σk − FO formulae,
each over r free variables.

Let A be a finite structure over the corresponding signature.. Then A |=
Qτ
−→x [ψ1(−→x), · · · , ψs(−→x)] if the tuple (a1, · · · , as) is in τ , where the sequences ai

are defined as follows: For 1 ≤ n ≤ |UA|r, ai(n) = 1 if and only if A |= ψi(−→x)
where n is the rank of−→x on the order of r-tuples over A(1 ≤ i ≤ s). QτΣk−FO is
defined analogously. We write Q0

τΣ
0
k for Mod(Q0

τΣ
0
k) and Q0

τΠ
0
k for Mod(Q0

τΠ
0
k).

Given a Lindström quantifier Qτ , define Q+
τ to be the set of first-order for-

mulae in prenex normal form that starts with one quantifier Qτ followed by
arbitrary first-order formulae.

Second-order Lindström quantifiers are defined as follows. Let τ ∈ τ(s) be a
logical acceptance type as above. By QτΣk − SO we denote the set of formulae
built as follows: If ψ1, · · · , ψs are Σk − SO formulae, each over q free predicates−→
R = R1, R2, · · · , Rr, then Qτ

−→
R [ψ1(

−→
R), · · · , ψs(

−→
R)] is a QτΣk − SO formula.

The semantics of such a formula is defined as follows: Let r the sum of arities
of all predicate symbols in −→R . Then we can identify one possible assigment of−→
R over a set UA with its characteristic sequence c−→

R
which is a binary string of

length |UA|r.
Based on the lexicographical ordering of these strings, we define an ordering

on assignments of −→R . Let now A be a finite structure over the corresponding
signature. Then A |= Qτ

−→
R [ψ1(

−→
R), · · · , ψs(

−→
R)] if the tuple (a1, · · · , as) is in τ ,

where the sequences ai are defined as follows: For 1 ≤ n ≤ |UA|r, ai(n) = 1 if
and only if A |= ψi(−→x) where n is the rank of −→x in the above-sketched order
of assignements of −→R (1 ≤ i ≤ s). Analogously to the first-order case, we can
also define QτΠk − SO. We use Qτ − FO and Qτ − SO as abbreviations for
QτΣ0 − SO and QτΣ0 − SO, resp.

Languages Recognizable by Quantum Finite Automata 13

Theorem 15. [31] A language can be recognized by a MO-QFA if and only if
this language can be described by a second-order Lindström quantifier formula
corresponding to group languages.

References

1. Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 6 (1960) 66–92

2. Büchi, J.R.: On a decision method in restricted second order arithmetic. In Nagel,
E., ed.: Proceeding of the International Congress on Logic, Methodology and Phi-
losophy of Science, Stanford, CA, Stanford University Press (1960) 1–11

3. Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc. 98 (1961) 21–51

4. Trakhtenbrot, B.A.: Finite automata and the logic of one-place predicates. Siberian
Mathematical Journal 3 (1962) 103–131 (in Russian), English translation: Ameri-
can Mathematical Society Translations 59 (1966) 23–55.

5. Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets.
In Karp, R.M., ed.: Complexity of Computation. Volume 7 of SIAM-AMS Pro-
ceedings. (1974) 43–73

6. Fagin, R.: Monadic generalized spectra. Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik 21 (1975) 89–96

7. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton
University Press, Princeton, NJ (1932)

8. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N.H., Shor,
P.W., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum
computation. Physical Review A 52 (1995) 3457–3467

9. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: Strengths, weaknesses
and generalizations. In: Proc. FOCS’98. (1998) 332–341 also quant-ph/98020622.

10. Moore, C., Crutchfield, J.P.: Quantum automata and quantum grammars. Theor.
Comput. Sci. 237 (2000) 275–306 also quant-ph/9707031.

11. Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In:
Proc. FOCS’97. (1997) 66–75

12. Brodsky, A., Pippenger, N.: Characterizations of 1-way quantum finite automata.
SIAM J. Comput. 31 (2002) 1456–1478 also quant-ph/9903014.

13. Meyer, A.R., Thompson, C.: Remarks on algebraic decomposition of automata.
Mathematical Systems Theory 3 (1969) 110–118

14. Ambainis, A., Bonner, R.F., Freivalds, R., Kikusts, A.: Probabilities to accept
languages by quantum finite automata. In: Proc. COCOON’99. (1999) 174–183
also quant-ph/9904066.

15. Kikusts, A.: A small 1-way quantum finite automaton (1998) quant-ph/9810065.
16. Ambainis, A., Nayak, A., Ta-Shma, A., Vazirani, U.: Dense quantum coding and

quantum finite automata. J. ACM 49 (2002) 496–511 also quant-ph/9804043.
17. Nayak, A.: Optimal lower bounds for quantum automata and random access codes.

In: Proc. FOCS’99. (1999) 369–377 also quant-ph/9904093.
18. Gruska, J.: Descriptional complexity issues in quantum computing. Journal of

Automata, Languages and Combinatorics 5 (2000) 191–218

2 Quant-ph preprints are available at http://www.arxiv.org/abs/quant-ph/preprint-
number.

14 R. Freivalds

19. Ambainis, A., Kikusts, A., Valdats, M.: On the class of languages recognizable by
1-way quantum finite automata. In Ferreira, A., Reichel, H., eds.: Proc. STACS’01.
Volume 2010 of Lecture Notes in Computer Science., Springer (2001) 75–86

20. Valdats, M.: The class of languages recognizable by 1-way quantum finite automata
is not closed under union. In: Proc. Int. Workshop Quantum Computation and
Learning, Sundbyholm Slott, Sweden (2000) 52–64

21. Immerman, N.: Descriptive and computational complexity. In Csirik, J., Demetro-
vics, J., Gécseg, F., eds.: Proc. FCT’89. Volume 380 of Lecture Notes in Computer
Science., Springer (1989) 244–245

22. Immerman, N.: Descriptive complexity: A logician’s approach to computation.
Notices of the AMS 42 (1995) 1127–1133

23. Pnueli, A.: The temporal logic of programs. In: Proc. FOCS’77. (1977) 1–14
24. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way

finite-state transducers. ACM Trans. Comput. Logic 2 (2001) 216–254
25. Stockmeyer, L.: The polynomial-time hierarchy. Theoretical Computer Science 3

(1977) 1–22
26. Immerman, N.: Relational queries computable in polynomial time (extended ab-

stract). In: Proc. STOC ’82, New York, NY, USA, ACM Press (1982) 147–152
27. Vardi, M.Y.: Complexity of relational query languages. In: Proc. STOC’82. (1982)

137–146
28. Immerman, N.: Upper and lower bounds for first order expressibility. J. Comput.

Syst. Sci. 25 (1982) 76–98
29. Zadeh, L.A.: Fuzzy sets. Information and Control 8 (1965) 338–353
30. Vincenzo, D.P.D.: Two-bit gates are universal for quantum computation. Physical

Review A 51 (1995) 1015–1022
31. Dzelme, I.: Quantum finite automata and logics. Master’s thesis, University of

Latvia (2005) Advisor: Freivalds, R.
32. Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44

(1957) 12–36
33. Burtschik, H.J., Vollmer, H.: Lindström quantifiers and leaf language definability.

In: Electronic Colloquium on Computational Complexity. (1996) TR96–005

The Language, the Expression,

and the (Small) Automaton

Jacques Sakarovitch

LTCI, CNRS/ENST,
46 rue Barrault, F-75634 Paris Cedex 13, France

sakarovitch@enst.fr

Abstract. This survey paper reviews the means that allow to go from
one representation of the languages to the other and how, and to what ex-
tend, one can keep them small. Some emphasis is put on the comparison
between the expressions that can be computed from a given automaton
and on the construction of the derived term automaton of an expression.

1 Plato’s Cave

Formal language theory, especially that part which consists in the study of the
so-called regular or recognisable languages, is a model instance of Plato’s myth
of the cavern. The real objects are the languages – or the power series – po-
tentially infinite and what we, poor computer scientists bound to manipulate
finite objects, can only see are the expressions that denote, or the automata that
recognize them. Hopefully, these expressions and automata are fairly faithful de-
scriptions of the languages (or of the series) they stand for and all the more
effective that one can take advantage of this double light.

K

F

A

P(A∗)

RecA∗

Aut A∗RegE A∗

Reg A∗ ⊇ Rec A∗

Φ

L

E

B

P(A∗)

Reg A∗

Aut A∗RegE A∗

Reg A∗ ⊆ Rec A∗

Ψ E

F

A
B

P(A∗)

RecA∗Reg A∗

Aut A∗RegE A∗

Reg A∗ = Rec A∗

Φ
Ψ

Fig. 1. The Φ and Ψ algorithms

It is the idea I have tried to illustrate with Figure 1 in the case of Kleene’s
Theorem. Kleene’s Theorem states the equality of two classes of languages: the
class of recognisable languages, that is those languages recognised by a finite

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 15–30, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

16 J. Sakarovitch

automaton, and the class of regular languages, that is those languages denoted
by a regular expression. A closer look at the proof allows to argue that Kleene’s
Theorem is indeed the combination of two classes of algorithms: one that trans-
form an automaton into an expression and one that build an automaton from an
expression. In this setting, the real languages — or series — almost disappear:
only exist their symbolic (and finitary) representations.

In this talk, mostly a survey, I review the means that allow to go from one
representation of the languages to the other and how, and to what extend, one
can keep them small.

The first section presents the classical methods of computing an expression
from an automaton and of computing an automaton from an expression. We
discuss the relationships between the different expressions obtained from a given
automaton and the ways of reaching a compact one. In the second section, I
classify the methods that build an automaton from an expression and describe
with more details the one which is probably the lesser known: Antimirov’s con-
struction of derived term automaton.

As a conclusion, I mention the problem of finding an algorithm that is inverse
to those which compute an expression from an automaton, hence taming the
combinatorial explosion induced by the latter ones, and sketch a first attempt
to solve it.

2 The Φ Algorithms

We use mostly classical notation ([1, 2]). In particular we denote an automaton
as A = 〈Q,A,E, I, T 〉 where I and T are subsets of the set Q of states, and E
is the set of transitions labeled by letters of the alphabet A, or equivalently as
A = 〈 I, E, T 〉 where E is the square matrix of dimension Q whose entry (p, q)
is the set of letters that label the transitions from p to q, and where I and T
are Boolean vectors of dimension Q. The language accepted by A is denoted by
L(A) and with the latter notation, L(A) = I ·E∗ · T .

A “Φ algorithms”, computes an expression for L(A) and thus amounts to
compute expressions for the entries of the star of the matrix E. We shall con-
sider this problem both from a theoretical and from an experimental point of
view.

2.1 A Theoretical Point of View

There are (at least) four methods or algorithms for computing a regular expres-
sion that denotes L(A):

1. Iterative computation of E∗: known as McNaughton–Yamada algorithm after
their seminal paper ([3]) and probably the most popular among textbooks
on automata theory. Called algorithm MNY here.

2. Direct computation of the entries of E∗: the so-called state elimination
method ([4, 5]) looks more elementary and is indeed the easiest for hand
computation as well as for computer implementation (cf. Figure 2).

The Language, the Expression, and the (Small) Automaton 17

3. Computation of E∗ · T as a solution of a system of linear equations. Based
on Arden’s Lemma, it also allows to consider E∗ · T as a fixed point.

4. Recursive computation of E∗: based on Arden’s Lemma as well, this algo-
rithm appeared first in Conway’s book ([6]) conjugates mathematical ele-
gance and computational inefficiency.

q

pi rj

Ki Hj

L

G
pi rj

G + Ki L∗ Hj

Fig. 2. One step in the state elimination method

The first three algorithms rely on a total order ω on Q, the fourth on a recur-
sive division τ of the same set Q. All these algorithms, and for each algorithm
all orders on Q will give by definition equivalent, but likely distinct, expressions.
It is thus a natural problem that to compare these expressions; but this raise
the question: ‘what does it mean to compare expressions’? A possible answer —
the one we choose here — consists in the characterisation of which of the basic
identities are necessary to transform one into another. We thus first begin with
a presentation of those identities which roughly follows that that Krob ([7]) gave
of Conway’s system ([6]).

Trivial and natural identities

E + 0 ≡ 0 + E ≡ E , E · 0 ≡ 0 · E ≡ 0 , E · 1 ≡ 1 · E ≡ E (T)
(E + F) + G ≡ E + (F + G) , (E · F) · G ≡ E · (F · G) (A)
E · (F + G) ≡ E · F + E · G , (E + F) · G ≡ E · G + F · G (D)

E + F ≡ F + E (C)

Aperiodic identities

E∗ ≡ 1 + E · E∗ , E∗ ≡ 1 + E∗ · E (U)
(E + F)∗ ≡ E∗ · (F · E∗)∗ , (E + F)∗ ≡ (E∗ · F)∗ · E∗ (S)

(E · F)∗ ≡ 1 + E · (F · E)∗ · F (P)

Cyclic identities

E∗ ≡ E<n · (En)∗ (Z)n

Idempotency identities

E + E ≡ E (I) (E∗)∗ ≡ E∗ (J)

18 J. Sakarovitch

The State Elimination and Equation Solution Methods

Proposition 1 ([8]). The state elimination method and the solution (by
Gaussian elimination) of a system of linear equations taken from an automaton
give the same regular expression (assuming that the same order in elimination
is used in both cases).

Proof. For p and q in Q, the set of words which are the label of a computation
which goes from p to a final state of A is written: Lp = {f

∣∣ ∃t ∈ T p
f−−→
A

t}
and we write Ep,q for the set of labels of transitions which go from p to q and
the symbol δp,R for a subset R of Q, which is 1A∗ if p is in R and ∅ if not. The
system of equations associated with A is written:

L(A) =
∑
p∈I

Lp =
∑
p∈Q

δp,I Lp (1)

∀p ∈ Q Lp =
∑
q∈Q

Ep,q Lq + δp,T (2)

After the elimination of a certain number of unknowns Lp – we write Q′ for the
set of indices of those which have not been eliminated – we obtain a system of
the form:

L(A) =
∑
p∈Q′

Gp Lp + H (3)

∀p ∈ Q′ Lp =
∑
q∈Q′

Fp,q Lq + Kp (4)

We can make a generalised automaton B′ corresponding to such a system, whose
set of states is Q′ ∪ {i, t}, where i and t do not belong to Q′, and such that,
for all p and q in Q′: (i) the transition from p to q is labelled Fp,q; (ii) the
transition from p to t is labelled Kp;(iii) the transition from i to p is labelled Gp;
and(iv) the transition from i to t is labelled H .
Note that this definition applied to the system (1)–(2) characterises the automa-
ton constructed in the first phase of the state elimination method applied to A.

The elimination in the system (3)–(4) of the unknown Lp by substitutions
and the application of Arden’s Lemma give the system:

L(A) =
∑

r∈Q′\p

[
Gr + Gp F

∗
p,pFp,r

]
Lr +

[
H + Gp F

∗
p,pKp

]
(5)

∀r ∈ Q′ \ p Lr =
∑

q∈Q′\p

[
Fr,q + Fr,p F

∗
p,pFr,q

]
Lq +

[
Kr + Fr,p F

∗
p,pKp

]
(6)

whose coefficients are exactly the transition labels of the generalised automaton
obtained by removing the state p from B′.

Thus, since the starting points correspond and since each step maintains
the correspondence, the expression obtained for L(A) by the state elimination
method is the same as that obtained by the solution of the system (1)–(2).

The Language, the Expression, and the (Small) Automaton 19

More precisely, we can say that the state elimination method reproduces in the
automaton A the computations corresponding to the solution of the system.

The State Elimination and MNY Algorithms, Identical Orders
The order ω fixes the operation of the state elimination method whose result
is a rational expression over A∗, written1 EB MC(A,ω). For greater precision,
we write the result of this algorithm EB MC(A,ω, (p, q)) when we take p as the
initial state and q as the final state.

On the other hand, we will write MMN Y (A,ω) for the matrix of rational
expressions obtained when we apply the McNaughton–Yamada algorithm to the
automaton A whose states are ordered by ω. It then follows that:

Proposition 2 ([8]). Let A = 〈Q,A,E, I, T 〉 an automaton over A∗. For every
(total) order ω on Q and all p and q in Q, we have:

(U) [MMN Y (A,ω)]p,q ≡ EB MC(A,ω, (p, q)) .

Proof. To prove this result we will show a correspondence between the operations
performed by the two algorithms. The difficulty, if it can be called that, is that
we have to compare two objects whose form and mode of construction are rather
different: on one hand a Q×Q matrix obtained by successive transformations,
from which we choose one entry, and on the other an expression obtained by
repeated modification of an automaton, hence of a matrix, but one whose size
decreases at each step.

In the following, A and ω are fixed and remain implicit. The automaton A
has n states, identified with the integers from 1 to n; the two algorithms per-
form n steps starting in a situation called ‘step 0’, the kth step of the state elim-
ination method consisting of the removal of state k, and that of algorithm MNY
consisting of calculating the labels of paths that do not include nodes (strictly)
greater than k. We write:

E(k)(r, s)

for the label of the transition from r to s in the automaton obtained from A
(and ω) at the kth step of the state elimination method; necessarily, in this
notation, k + 1 � r and k + 1 � s (abbreviated to k + 1 � r, s). We write:

M(k)
r,s

for the entry r, s of the n×n matrix computed by the kth step of algorithm MNY.
At step 0, the automaton A has not been modified and we have:

∀r, s , 1 � r, s � n M(0)
r,s = E(0)(r, s) , (7)

which will be the base case of the inductions to come. Algorithm MNY is written:

∀k , 0 < k � n , ∀r, s , 1 � r, s � n

M(k)
r,s = M(k−1)

r,s + M(k−1)
r,k · [M(k−1)

k,k]∗ ·M(k−1)
k,s . (8)

1 A reminder that this algorithm is due to J. Brzozowski and E. McCluskey ([9]).

20 J. Sakarovitch

The state elimination algorithm is written:

∀k , 0 < k � n , ∀r, s , k < r, s � n

E(k)(r, s) = E(k−1)(r, s) + E(k−1)(r, k) · [E(k−1)(k, k)]∗ · E(k−1)(k, s) (9)

Hence we conclude, for given r and s and by induction on k:

∀r, s , 1 � r, s � n , ∀k , 0 � k < min(r, s) M(k)
r,s = E(k)(r, s) (10)

We see in fact (as there is even so something to see) that if k < min(r, s) then
all integer triples (l, u, v) such that M(l)

u,v occurs in the computation of M(k)
r,s by

the (recursive) use of (8), are such that l < min(u, v).
Suppose now that we have p and q, also fixed, such that 1 � p < q � n (the

other cases are dealt with similarly). We call the initial and final states added
to A in the first phase of the state elimination method i and t respectively;
i and t are not integers between 1 and n. The transition from i to p and that
from q to t are labelled 1A∗ . Now let us consider step p of each algorithm. For
every state s, p < s, M(p)

p,s is given by (8):

M(p)
p,s = M(p−1)

p,s + M(p−1)
p,p · [M(p−1)

p,p]∗ ·M(p−1)
p,s

and E(p)(i, s) by:

E(p)(i, s) = [E(p−1)(p, p)]∗ · E(p−1)(p, s)

and hence, by (10):

∀s , p < s � n (U) M(p)
p,s ≡ E(p)(i, s) . (11)

Next we consider the steps following p (and row p of the matrices M(k)). For
all k, p < k, and all s, k < s � n, M(k)

p,s is always computed by (8) and E(k)(i, s)
by:

E(k)(i, s) = E(k−1)(i, s) + E(k−1)(i, k) · [E(k−1)(k, k)]∗ · E(k−1)(k, s) . (12)

From (11), and based on an observation analogous to the previous one, we con-
clude from the term-by-term correspondence of (8) and (12) that:

∀k , p < k , ∀s , p < s � n (U) M(k)
p,s ≡ E(k)(i, s) . (13)

The analysis of step q gives a similar, and symmetric, result to that which we
have just obtained from the analysis of step p: for all r, q < r, we have:

M(q)
r,q = M(q−1)

r,q + M(q−1)
r,q · [M(q−1)

q,q]∗ ·M(q−1)
q,q

and E(q)(r, t) = E(q−1)(r, q) · [E(q−1)(q, q)]∗

and hence

∀r , q < r � n (U) M(q)
r,q ≡ E(q)(r, t) . (14)

The Language, the Expression, and the (Small) Automaton 21

The steps following q give rise to an equation symmetric to (13) (for column q
of the matrices M(k)):

∀k , q < k , ∀r , q < r � n (U) M(k)
r,q ≡ E(k)(r, t) . (15)

Finally, from:

M(k)
p,q = M(k−1)

p,q + M(k−1)
p,k · [M(k−1)

k,k]∗ ·M(k−1)
k,q

and E(k)(i, t) = E(k−1)(i, t) + E(k−1)(i, k) · [E(k−1)(k, k)]∗ · E(k−1)(k, t)

Equations (10), (13) and (15) together allow us to conclude, by induction on k,
that:

∀k , q � k � n (U) M(k)
p,q ≡ E(k)(i, t) . (16)

When we reach k = n in this equation we obtain the identity we want.

The State Elimination and MNY Algorithms, Distinct Orders
Having compared the state elimination and MNYalgorithms under the same
order, that is the same execution conditions, we can compare the results of these
algorithms for different execution conditions.

Theorem 1 (Conway [6], Krob [7]). Let A = 〈Q,A,E, I, T 〉 be an automa-
ton over A∗. The expressions denoting L(A) computed by the McNaughton–
Yamada algorithm, like those computed by the state elimination method or the
solution of a system of equations, are all equivalent modulo (S) and (P), i.e.,
for all orders ω and ω′ on Q and all p and q in Q:

(S) ∧ (P) [MMN Y (A,ω)]p,q ≡ [MMN Y (A,ω′)]p,q ,

(S) ∧ (P) EB MC(A,ω, (p, q)) ≡ EB MC(A,ω′, (p, q)) .

Proof. The previous proposition allows us to show the property for expressions
computed by the state elimination method, which is easier to deal with (remem-
bering that (P) ‘contains’ (U)). Furthermore, we can go from an order ω to any
other order ω′, a permutation of Q, by a series of transpositions.

We therefore arrive at the situation illustrated in Figure 3 (left) and need
to show that the expressions obtained by the state elimination method when
we first remove the state r and then r′ are equivalent to those obtained from
removing first r′ and then r, modulo (S) ∧ (P).

The removal of state r gives the expressions in Figure 3 (right). The removal
of state r′ gives the expression:

E = KL∗H + (KL∗G + K ′) [G′L∗G + L′]∗ (G′L∗H + H ′) ,

which using (S) (and the natural identities) becomes:

E ≡ KL∗H + KL∗G
[
L′∗G′L∗G

]∗
L′∗G′L∗H

+ K ′ [
L′∗G′L∗G

]∗
L′∗G′L∗H + KL∗G

[
L′∗G′L∗G

]∗
L′∗H ′

+ K ′ [
L′∗G′L∗G

]∗
L′∗H ′ .

22 J. Sakarovitch

We write:

K ′ [
L′∗G′L∗G

]∗
L′∗H ′ ≡ K ′L′∗H ′ + K ′L′∗G′L∗ [

GL′∗G′L∗]∗ GL′∗H ′

by using (P) then, by ‘switching the brackets’ (using the identity (XY)∗X ≡
X(YX)∗ which is also a consequence of (P)), we obtain:

E ≡ KL∗H

+ KL∗G
[
L′∗G′L∗G

]∗
L′∗G′L∗H + K ′L′∗G′ [

L∗GL′∗G′]∗ L∗H

+ KL∗G
[
L′∗G′L∗G

]∗
L′∗H ′ + K ′L′∗G′ [

L∗GL′∗G′]∗ L∗GL′∗H ′

+ K ′L′∗H ′

an expression that is perfectly symmetric in the letters with and without ticks,
which shows that we would have obtained the same result if we had started by
removing r′ then r.

p q

r r′

K′ H

G

G′K H ′

L L′

p q

r′
K L∗G + K′

K L∗H

G′ L∗H + H ′

G′ L∗G + L′

Fig. 3. First step of two in the state elimination method

Remark 1. It is known that the Φ-algorithms described above are valid for au-
tomata with multiplicity. It is thus not surprising that the idempotency identities
are not used to pass from an expression to another one. On the other hand, it
is also known ([6]) that an infinite number of identities (among which the cyclic
identities (Z)n for all prime numbers n) are necessary to derive all possible
equivalence among epressions. Taking this into account, the above results show
that all expressions computed from a given automaton can be considered as
‘close’ since only the two identities (S) and (P) are necessary to derive one from
another.

The State Elimination and the Recursive Methods
Finally, it remains to compare the matrices obtained by the algorithm MNY and
the recursive algorithm. A simple two state automaton is sufficient for observing
that there is no hope for a global comparison of the entries of the two matrices.
We can however state the following conjecture.

Conjecture 1. For every recursive division τ of Q and for every pair (p, q) of
states, there exists an ordering ω′ of Q such that

(U) [C(τ)]p,q ≡ E(ω′, p, q) .

The Language, the Expression, and the (Small) Automaton 23

2.2 An Experimental Point of View

It is easily seen that the size of a regular expression E computed from an au-
tomaton A may be exponential in the number of states of A. A complete graph
shows that this combinatorial explosion is unavoidable.

But most of the interesting automata are not complete graph. Basic examples
show how different the size of expressions computed from a same automaton can
be: in Figure 4, E1 is obtained by eliminating the states in the order 1–2–3
whereas E2 is obtained with the reverse order 3–2–1.

1 2 3
b

b

a

a

a b

E1 = a∗ + a∗b(ba∗b)∗ba∗ + a∗b(ba∗b)∗a(b + a(ba∗b)∗a)∗a(ba∗b)∗ba∗

E2 = (a + b(ab∗a)∗b)∗

Fig. 4. Two results of the state elimination method

Finding the ordering of states that yields the shortest expression for a given
automaton is probably a hard combinatorial problem. On the other hand, it is
not too difficult to design heuristics which do not imply heavy computations and
prove to be pretty efficient.

In order to create as few transitions as possible at a given step (cf. Figure 2),
one associates to every state q an index which is the product of the in-degree of
q by its out-degree (once the possible loop on q is discarded); one then choose to
eliminate among those states with smallest index a state without loop, if any;
the index is then recomputed at each step.

This rather naive heuristic had been implemented in vaucanson ([10]). Del-
gado and Morais ([11]) have proposed a heuristic which is based on the same
principle, but in which the length of the expressions that label the transitions
is also taken into account in the computation of the index. This other heuristic
has also been implemented in the newer version of vaucanson ([12]). First ex-
periments show that it might be better (on a first set of “random” automata,
it outperforms the naive one in 55% of the cases). More experiments on much
larger sets of automata need certainly to be done: the proof of a heuristic is in
the computing.

3 The Ψ Algorithms

We call “Ψ algorithm” an algorithm that is given a regular expression E and
computes an automaton which accepts the language denoted by E. As for the Φ
algorithms, there is no much mystery left in this question. But not all aspects
are equally well-known.

24 J. Sakarovitch

3.1 A Theoretical Point of View

Although there are numerous ways to present them, there are two main distinct
constructions of an automaton from a regular expression: the standard automa-
ton and the derived term automaton. Automata are compared via morphisms.

The Standard Automaton
We say that an automaton is standard if it has only one initial state and if this
initial state is not the end of any transition (and if the automaton is accessi-
ble). We call standard automaton of an expression E the automaton SE build
by induction on the depth of E, starting from the (unique possible) standard
automata for 0, 1, and every letter a in A, and with the “natural” constructions
for the union, product and star: cf. Figures 5 and 6. Of course, any standard
automaton is not, in general, the standard automaton of an expression.

Let us denote by �(E) the literal length of the expression E — that is the
number of occurrences of letters in E.

Proposition 3 (Glushkov [13]). The standard automaton SE of the expres-
sion E has �(E) + 1 states.

A i Bj A Bk

Ai Bj
a

b

1A∗

1A∗

1A∗

Ai Bj
a

b

a

b

a

b

b

a

a

b

Fig. 5. Construction of the standard automaton for the union and the product

Ai
a

b

1A∗

1A∗

Ai
a

b

a

b

b

a

Fig. 6. Construction of the standard automaton for the star

The ‘standard automaton of an expression’ is usually attributed to Glushkov
[13] and hence often called Glushkov’s automaton. It is also called position au-
tomaton of E as the original method of construction somehow starts from the
occurrences of letters in E, taken as states, and then computes the transitions—
also by induction on the depth of E. A characteristic feature of SE is that it is
small in terms of the ‘input’ E: linear for the states, quadratic for the transitions

The Language, the Expression, and the (Small) Automaton 25

and it is so because it is non deterministic. In [3], McNaughton and Yamada al-
ready had the idea of using the positions of letters in the expression in order to
define an automaton but they computed directly2 its determinised version and
thus lost any property on the size of the result. The mode of construction given
here is adapted from [14]; it is well suited to the generalisation to automata with
multiplicity ([14, 8, 15]).

Another method for building an automaton from an expression was given by
Thompson ([16]). It amounts to recursive connection via spontaneous transitions
(i.e. ε-moves) of ‘atomic’ automata that recognise letters and it was designed
for a direct array implementation. It is folklore that the backward closure (i.e.
suppression of spontaneous transitions by following first the spontaneous transi-
tions and then a transition labeled with a letter) in the Thompson’s automaton
of E yields the standard automaton of E. Hence the former can be seen as an
‘extended version’ of the latter and falls in the same category.

The Derived Term Automaton
A second class of algorithms is based on the definition of the derivation of an
expression. First introduced by Brzozowski [17], the definition of derivation has
been slightly, but smartly, modified by Antimirov [18] and yields a non deter-
ministic automaton AE which we propose to call the derived term automaton of
the expression E. This automaton AE is smaller than or equal to the standard
automaton SE. The automaton of derived expressions computed in [17] is the
determinised automaton of AE.

An algebraic characterization of regular languages is that every regular lan-
guage has a finite number of left quotients. The purpose of “Brozozowski” deriv-
atives was to lift that characterization at the level of expressions [17]. Antimirov
“partial derivatives” achieve the same lifting in an indirect but more efficient
way. To an expression E that denotes a language L is associated a finite set T
of expressions — which we call derived terms of E — such that any left quotient
of L is a union of some of the languages denoted by the expressions in T [18].

The notion of derived terms is indeed better understood when expressed in the
larger framework of power series — languages being series with coefficients in the
Boolean semiring — and of expressions with multiplicity (cf. [15]). A series s is
rational — i.e. denoted by a regular expression E — iff it is contained in a finitely
generated module (of series) U which is closed under left quotient. The derived
terms of E are then expressions that denote a set of generators of U . The follow-
ing definitions give a procedure for computing the derived terms of an expression.

Definition 1 (Brozozowski–Antimirov [18]). Let E be a regular expression
on A and let a be a letter in A. The B-derivative3 of E with respect to a, de-
noted ∂

∂a E, is a set of regular expressions on A, recursively defined by:

2 Probably because in those early times, an automaton had to be deterministic.
3 We call it “B-derivative” and not simply “derivative” for two reasons. First in order

to avoid confusion with the derivation defined by Brzozowski, and second because
the formulae depend on the semiring of multiplicities and can be defined for other
semirings (cf. [15]).

26 J. Sakarovitch

∂

∂a
0 =

∂

∂a
1 = ∅ ,

∀a, b ∈ A
∂

∂a
b =

{
{1} if b = a
∅ otherwise

∂

∂a
(E+F) =

∂

∂a
E ∪ ∂

∂a
F (17)

∂

∂a
(E · F) =

[
∂

∂a
E
]
· F ∪ c(E)

∂

∂a
F (18)

∂

∂a
(E∗) =

[
∂

∂a
E
]
· E∗ (19)

The induction implied by (17 – 19) should be interpreted by distributing
derivation and product over union:

∂

∂a

[⋃
i∈I

Ei

]
=

⋃
i∈I

∂

∂a
Ei ,

[⋃
i∈I

Ei

]
· F =

⋃
i∈I

(Ei · F) .

Definition 2. Let E be a regular expression on A and g a non empty word of A∗,
i.e. g = f a with a in A. The B-derivative of E with respect to g, denoted ∂

∂g E, is
the set of regular expressions on A, recursively defined by formulae (17) – (19)
and by:

∀f ∈ A+ , ∀a ∈ A
∂

∂fa
E =

∂

∂a

(
∂

∂f
E
)

. (20)

We shall call derived term of E the expression E itself or any of the expressions
which belongs to a set ∂

∂g E for some g in A+.

Theorem 2 (Antimirov [18]). The number of derived terms of an expres-
sion E is finite and smaller than or equal to �(E) + 1.

Remark 2. Contrary to the derivation defined by Brzozowski [17], the result of
the B-derivation of an expression is not one expression but a set of expressions.
As a result, it overcomes another drawback of its predecessor. The number of
Brzozowski derivatives of an expression is not finite directly but only modulo
the identities (A), (C) and (I) described above. The computation of the derived
terms does not involve any identity.

Definition 3. The derived term automaton of an expression E is the finite au-
tomaton AE whose states are the derived terms of E and whose transitions are
defined by:

(i) if K and K′ are derived terms of E and if a is a letter of A, (K, a,K′) is
a transition of AE if and only if K′ belongs to ∂

∂a K;
(ii) the initial state of AE is E;
(iii) a derived term K is a final state of AE if and only if c(K) = 1;

The Language, the Expression, and the (Small) Automaton 27

We write E1 = a∗ + a∗b H1 + a∗bF1 G1 H1

with H1 = (b a∗b)∗b a∗ , F1 = (b a∗b)∗a ,
and G1 = (b + a (b a∗b)∗a)∗a .

The successive derivations of E1 with res-
pect to a and b give 7 derived terms:
E1 itself, a∗ , H1 , X1 = a∗bH1 ,
Y1 = a∗b F1 G1 H1 , Z1 = F1 G1 H1 ,
and T1 = G1 H1 .

E1

Y1 Z1 T1

X1 H1

a∗

a

a

a

b

b

a

a

b

b

a

b

a b

a

a

Fig. 7. The derived terms of E1 and its derived term automaton

Figure 7 shows the derived terms of the expression E1 computed at Figure 4
and the corresponding derived term automaton.

The two classes of algorithms are not without relationships between them. A
first one was given by Berry–Sethi who showed that the Brzozowski derivation
applied on a “ linearized” version of an expression gives the standard automaton
of that expression [19, 20]. A more interesting one is established by means of
morphisms of automata that we should define first.

Morphisms of Automata
Let A = 〈Q,A,E, I, T 〉 and B = 〈R,A, F, J, U 〉 be two B-automata. A (surjec-
tive) map ϕ : Q −→ R induces (or is) a morphism fromA onto B if (p, a, q) ∈ E
implies (ϕ(p), a, ϕ(q)) ∈ F and this morphism is a (B)-quotient if moreover
(r, a, s) ∈ F and p ∈ ϕ−1(r) implies that there exists q in ϕ−1(s) such that
(p, a, q) ∈ E . Every automaton has a unique minimal quotient.

Theorem 3 (Champarnaud–Ziadi [21]). For any expression E, the derived
term automaton AE is a quotient of the standard automaton SE.

This result implies in particular the bound of Theorem 2 on the number of
derived terms. It is to be noted also that if the derived term automaton is a
quotient of the standard automaton, it is not its minimal quotient. Theorem 3
has been generalised to expressions with multiplicity but this generalisation re-
quires special care in the definition of the derived terms in the case where the
multiplicity semiring is not a positive semiring ([15]).

3.2 An Experimental Point of View

The effective computation of the standard automaton of an expression has been
the subject of many works. If the actual efficiency of the computation depends
unpon the implementation, it is known that the construction of SE is of quadratic
complexity (with respect to �(E)) ([22]).

The determination of the complexity of the computation of the derived term
automaton if an expression E is more difficult. The key property, proven in [21],
is that every derived term of E is a product of subexpressions of E.

Proposition 4 (Champarnaud–Ziadi [21]). For every expression E, the de-
rived term automaton AE can be computed with a quadratic complexity (with
respect to �(E)).

28 J. Sakarovitch

The Champarnaud–Ziadi algorithm has been transformed in order to be valid
for automata with multiplicity and it has been implemented in vaucanson (cf.
[12] in this volume).

It appears that AE is particularly ‘economical’ — sizewize and by comparison
with SE — when E is obtained by a Φ algorithm from a finite automaton. We
come back to his fact in the conclusion. However, it seems that, even in this
case, the computation of SE followed by a quotient is far more efficient than the
direct computation of AE. Other constructions have been proposed recently that
yield automata which are smaller than the standard automaton ([23–25]). Their
proper relationships with the derived term automaton, and the efficiency of their
computation are still to be worked out by extensive experimentations (cf. [26]).

4 Can Expressions and Automata Code for Each Other?

We have seen that a Φ-algorithm is likely to generate, from an automaton A, an
expression with a literal length which is exponential in the number of states of
A and that a Ψ -algorithm is likely to build, from an expression E, an automaton
whose number of states is (rougly) equal to the literal length of E. These two
facts together imply that there is little hope to find algorithms which are inverse
of each other in these general families. However, the standard automaton of
an expression on one hand, and an expression computed, for instance, by the
state elimination method on the other hand, are of such particular form that the
problem is certainly to be tackled.

In [27], Caron and Ziadi have described an algorithm, say Θ, which decides
whether or not an automaton A is the standard automaton of an expression E;
and if the answer is positive, Θ moreover computes an expression which is al-
most E, namely the star normal form of E as defined by Brüggemann-Klein
[22]. Even if Θ is not properly a Φ-type algorithm since it does not compute an
expression for every automaton, it holds:

For any star normal form regular expression E, Θ(Ψs(E)) = E .

The problem of finding an algorithm that is inverse of a Φ-algorithm has been
addressed in a recent joint paper of mine and Sylvain Lombardy ([28]). We give
there a partial solution to that problem in the following way.

There are two main ingredients in the construction of an algorithm Ω that
gives back an automaton A from an expression that has been computed from A.
The first one is a sligthly modified derivation which, roughly speaking, ‘breaks’
the sums at the upper level. As a result, in particular, the corresponding derived
term automaton may have more than one initial state. The second step is to take
the minimal co-quotient of this new derived term automaton. [The minimal co-
quotient is the transposed of the minimal quotient of the transposed automaton.]
This Ω is not an inverse of a Φ-algorithm as described above but of a Φ′-algorithm
which consists in performing first a partial linearisation Λ of the automaton A
and then a normal Φ-algorithm. We then have (cf. [28] for more details):

For any automaton A, Ω(Φ′(A)) = A .

The Language, the Expression, and the (Small) Automaton 29

Reducing the amount of information that one has to bring in with the lineari-
sation Λ is the subject of ongoing research work.

E

B
AutA∗RegE A∗

Ψ

Θ

F

A

AutA∗RegE A∗

Φ

Ω

Fig. 8. The Θ and Ω algorithms

References

1. Eilenberg, S.: Automata, Languages, and Machines. Vol. A. Academic Press (1974)
2. Berstel, J.: Transductions and Context-free Languages. B. G. Teubner (1979)
3. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.

IRE Trans. Electronic Computers 9 (1960) 39–47
4. Wood, D.: Theory of Computation. John Wiley (1987)
5. Yu, S.: Regular languages. In Rozenberg, G., Salomaa, A., eds.: Handbook of

Formal Languages. Volume 1., Elsevier (1997) 41–111
6. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
7. Krob, D.: Complete systems of B-rational identities. Theoret. Computer Sci. 89

(1991) 207–343
8. Sakarovitch, J.: Eléments de théorie des automates. Vuibert (2003) English trans-

lation: Elements of Automata Theory, Cambridge University Press, to appear.
9. Brzozowski, J.A., McCluskey, E.J.: Signal flow graph techniques for sequential

circuit state diagrams. IEEE Trans. Electronic Computers 12 (1963) 67–76
10. Lombardy, S., Régis-Gianas, Y., Sakarovitch, J.: Introducing Vaucanson. Theoret.

Computer Sci. 328 (2004) 67–76 Journal version of Proc. of CIAA 2003, Lect.
Notes in Comp. Sc. 2759, (2003), 96–107 (with R. Poss).

11. Delgado, Morais: Approximation to the smallest regular expression for a given
regular language. In Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S., eds.: Proc.
of CIAA 04, Lecture Notes in Computer Science 3317, Springer (2004) 312–314

12. Claveirole, T., Lombardy, S., 0’Connor, S., Pouchet, L.N., Sakarovitch, J.: Inside
Vaucanson. In Farré, J., Litovsky, I., eds.: Proc. of CIAA 05, Springer (2005) this
volume.

13. Glushkov, V.M.: The abstract theory of automata. Russian Math. Surveys 16
(1961) 1–53

14. Caron, P., Flouret, M.: Glushkov construction for multiplicities. In Daley, M.,
Eramian, M., Yu, S., eds.: Pre-Proceedings of CIAA’00. (2000) 52–61

15. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity.
Theor. Comput. Sci. 332 (2005) 141–177

16. Thompson, K.: Regular expression search algorithm. Comm. Assoc. Comput.
Mach. 11 (1968) 419–422

17. Brzozowski, J.A.: Derivatives of regular expressions. J. Assoc. Comput. Mach. 11
(1964) 481–494

30 J. Sakarovitch

18. Antimirov, V.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155 (1996) 291–319

19. Berry, G., Sethi, R.: From regular expressions to deterministic automata. Theor.
Comput. Sci. 48 (1986) 117–126

20. Berstel, J., Pin, J.E.: Local languages and the Berry-Sethi algorithm. Theor.
Comput. Sci. 155 (1996) 439–446

21. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theor. Comput. Sci. 289 (2002) 137–163

22. Brügemann-Klein, A.: Regular expressions into finite automata. Theor. Comput.
Sci. 120 (1993) 197–213

23. Hagenah, C., Musholl, A.: Computing ε-free NFAs from regular expressions in
O(n log2(n)) time. Theoret. Inform. Appl. 34 (2000) 257–277

24. Hromkovic, J., Seibert, S., Wilke, T.: Translating regular expressions into small
ε-free nondeterministic finite automata. J. Comput. System Sci. 62 (2001) 565–588

25. Ilie, L., Yu, S.: Constructing NFAs by optimal use of positions in regular expres-
sions. In Apolostolico, A., Takeda, M., eds.: Proc. of CPM’02, Lecture Notes in
Computer Science 2373, Springer (2002) 279–288

26. Champarnaud, J.M., Nicart, F., Ziadi, D.: Computing the follow automaton of an
expression. In Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S., eds.: Proc. of
CIAA 04, Lecture Notes in Computer Science 3317, Springer (2004) 90–101

27. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theor. Comput. Sci.
233 (2000) 75–90

28. Lombardy, S., Sakarovitch, J.: How expressions can code for automata. Theoret.
Inform. App. 39 (2005) 217–237

Minimization of Non-deterministic Automata

with Large Alphabets�

Parosh Aziz Abdulla, Johann Deneux, Lisa Kaati, and Marcus Nilsson

Dept. of Information Technology, P.O. Box 337, S-751 05 Uppsala, Sweden
{parosh, johannd, kaati, marcusn}@it.uu.se

Abstract. There has been several attempts over the years to solve the
bisimulation minimization problem for finite automata. One of the most
famous algorithms is the one suggested by Paige and Tarjan. The algo-
rithm has a complexity of O(m log n) where m is the number of edges
and n is the number of states in the automaton. A bottleneck in the ap-
plication of the algorithm is often the number of labels which may appear
on the edges of the automaton. In this paper we adapt the Paige-Tarjan
algorithm to the case where the labels are symbolically represented using
Binary Decision Diagrams (BDDs). We show that our algorithm has an
overall complexity of O(� · m · log n) where � is the size of the alphabet.
This means that our algorithm will have the same worst case behavior as
other algorithms. However, as shown by our prototype implementation,
we get a vast improvement in performance due to the compact represen-
tation provided by the BDDs.

1 Introduction

Several algorithms have been proposed in the literature for solving the coarsest
refinement problem: given a finite state automaton and an initial partitioning of
the set of states, find the coarsest stable refinement of the given partitioning.
The problem is equivalent to the minimization of non-deterministic automata
modulo bisimulation, and consequently also gives an algorithm for minimizing
deterministic automata modulo language equivalence. Minimization is relevant in
many areas of computer science such as concurrency theory, formal verification,
set theory, etc. For instance, in formal verification, several existing tools use
minimization with respect to bisimulation in order to reduce the size of the
state space to be analyzed [1–3]. Also, bisimulation is of particular interest in
regular model checking. This is a framework which has recently been extensively
studied for verification of systems with infinite state spaces (see e.g.[4]).

The idea of regular model checking is to represent the state space of a system
using regular languages. Most regular model checking algorithms rely heavily on
efficient methods for checking bisimulation [5].

There has been several attempts over the years to solve the coarsest refinement
problem. In [6] Hopcroft presents an algorithm for minimization of a determinis-
tic automaton in O(n log n) time. The algorithm relies on a “negative strategy”:
� This work was supported by the the Swedish Research Council (http://www.vr.se/).

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 31–42, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

32 P.A. Abdulla et al.

start from the initial partitioning and perform a number of iterations. During
each iteration choose a block (equivalence class) B, and split all the blocks
which violate the stability condition with respect to B. The main ingredient is
the choice of the blocks which are used in the splitting (the so called “process
the smaller half strategy”). The paper [7] solves the problem for the special case
of deterministic and unlabeled automata in linear time, using a “positive strat-
egy”: start with blocks which are singletons, and perform a number of iterations,
where one or more blocks are merged during each iteration. Paige and Tarjan [8]
generalized the algorithm of Hopcroft to the case of non-deterministic automata.
The key idea is to employ counters which give the number of edges from states to
blocks. This makes it possible to avoid partitioning with respect to large blocks.
The algorithm runs in O(m log n) time where m is the number of edges and n
is the number of states in the automaton.

Many applications give rise to automata with large alphabets. For instance,
transition systems generated by verification tools such as SPIN [9] usually have
very large alphabets [10]. Also, the bottle-neck in applications of regular model
checking is often the size of the alphabet in the automata which arise during
the analysis [5, 4]. Therefore, this paper adapts the Paige-Tarjan algorithm [8]
to consider automata which have large alphabets. To deal with the size of the
alphabet, we use a symbolic representation of labels on the edges of the au-
tomaton. More precisely, for states q and r, we characterize the set of symbols
on which the automaton can move from q to r. This characterization is given
through a Binary Decision Diagram (BDD) [11]. The main task then is to adapt
each step of the Paige-Tarjan algorithm which operates on explicit representa-
tion of the transition relation into a symbolic one which operates on BDDs. To
achieve that, we use Algebraic Decision Diagrams (ADDs) [12] to give a compact
representation of the counters. Also, we show that each BDD or ADD operation
can be performed in O(�) time where � is the size of the alphabet. We show that
this implies an overall complexity of O(� ·m · log n) of our algorithm. In other
words, the algorithm will have the same worst case behavior as other algorithms.
However, as shown by our prototype implementation, we often get a great im-
provement in performance due to the compact representation provided by the
BDDs and ADDs.

Related Work. The algorithm of [8] operates on an explicit representation of
the (unlabeled) automaton. For automata with large alphabets, we report a big
improvement compared to [8] using our prototype (see Section 7).

Fernandez [13] presents an algorithm with complexity O(m log n) in the case
of labeled automata, the algorithm operates on an explicit representation of the
automaton, where each edge is labeled with one symbol. In our case, an edge is
labeled with a BDD which characterizes a set of symbols. Therefore the worst
case complexity of our algorithm is the same as the one reported in [13]. More
precisely, we can replace each edge, labeled with a BDD B, by a set of edges
each carrying one symbol whose encoding satisfies B.

Bouali and De Simone [14] present a symbolic approach to the problem. The
whole automaton and the computed blocks are encoded using BDDs. Such a full

Minimization of Non-deterministic Automata with Large Alphabets 33

symbolic representation is in contrast with our approach where we only encode
the alphabet symbolically, while we maintain an explicit representation of the
set of states and of the blocks. The authors of [14] do not perform a complexity
analysis. However, they mention that they do not gain a drastic improvement
compared to the classical algorithm. This indicates that, at least in the case of
a large alphabet, it is more efficient to avoid a fully symbolic representation.

The work in [10] combines the negative and positive approaches to bisim-
ulation (described above) in the non-symbolic case. The authors also propose
a symbolic algorithm for unlabeled automata, where each block is represented
as a BDD. They show that their algorithm performs O(n) symbolic steps. No
experimental results are reported for the symbolic algorithm.

In [15] Klarlund presents an algorithm where the whole automaton (rather
than only the alphabet) is represented symbolically. However, this algorithm can
only be applied in the case of deterministic automata.

In [16] Fisler and Vardi compare symbolic versions of the Paige-Tarjan al-
gorithm and algorithms described in the two papers [17] and [18]. The latter
two papers aim at adapting minimization to the context of the on-the-fly model
checking. The paper argues both theoretically and based on experimental data
that the Paige-Tarjan algorithm performs better than both.

Outline. In the next two Sections we give preliminaries on automata, equiva-
lence relations, BDDs, and ADDs. In Section 4 we describe our algorithm which
consists of performing a number of iterations; and analyze its correctness and
complexity. In Section 5 we describe the data structures we use in the imple-
mentation of the algorithm. Section 6 describes the steps performed during each
iteration. We report on the results we obtain through running our prototype in
Section 7. Finally, we give some conclusions and directions for future research in
Section 8.

2 Preliminaries

In this section, we give some preliminaries of automata and equivalence relations.
Throughout this paper, we will work with a non-deterministic automaton, NFA,
which is a triple 〈Q, Σ,Δ〉 where

– Q is a finite set of states, with |Q| = n
– Σ is a finite set of symbols, with |Σ| = �.
– Δ is a function Δ : Q×Q→ 2Σ. An edge is a pair 〈q, r〉 such that Δ(q, r) �= ∅.

We say that q and r are respectively the source and the target of the edge
〈q, r〉. We let m be the number of edges.

In other words, we consider an automaton with n states and m edges. Each
edge is labeled with a set of symbols from an alphabet of size �. Without loss of
generality, we assume that each state is the source of at least one edge; which
implies m ≥ n. The automaton can change state from q to r on the symbols
Δ(q, r). We write q

a−→ r to denote that a ∈ Δ(q, r) and q −→ r to denote that

34 P.A. Abdulla et al.

Δ(q, r) is not empty. We use (q −→ r) to denote the set {a : a ∈ Δ(q, r)}, and
use Pre(r) to denote the set {q : (q −→ r) �= ∅}. An element of Pre(r) is said
to be a predecessor of r. For a state q ∈ Q and a set R ⊆ Q, we use (q −→ R) to
denote the set

⋃
r∈R(q −→ r), and Pre(R) to denote the set

⋃
r∈R Pre(r).

We consider equivalence relations on Q. For an equivalence relation �, we let
(Q/ �) be the set of equivalence classes, henceforth called blocks of �. For q ∈ Q,
a ∈ Σ, and B ∈ (Q/ �), we define count(q)(B)(a) to be the size of the set
{r : r ∈ B and q

a−→ r}.
For two equivalence relations � and �′, we say that � is coarser than �′ if

�′⊆�. Alternatively, we say that �′ is a refinement of �. Notice that each block
of � is the union of a number of blocks of �′.

An equivalence relation � is stable with respect to an equivalence relation
�′, if whenever q � r then (q −→ B) = (r −→ B) for each B ∈ (Q/ �′).
Equivalently, if q � r and q

a−→ q1 then there is an r1 such that r
a−→ r1 and

q1 �′ r1. In other words, equivalent states in � make moves on the same set of
symbols to blocks in �′. We say that � is stable if it is stable with respect to
itself. The coarsest refinement problem is defined as follows:

Instance. An equivalence relation �init .
Task. Find the coarsest stable refinement of �init .

3 BDDs and ADDs

In this section we recall some preliminaries of BDDs and ADDs, and introduce
concepts which we will use in our algorithm.

We assume familiarity with Binary Decision Diagrams (BDDs) (see e.g. [11,
19, 20]) Algebraic Decision Diagrams (ADDs) [12] are extensions of BDDs in the
sense that the leaves of an ADD are labeled with natural numbers (rather than
only 0 and 1 as is the case with BDDs).

BDDs. We encode each symbol of the alphabet Σ by a finite binary word.
Furthermore, we encode sets of symbols of Σ by Boolean expressions which
are represented by BDDs. To do that, we use a set V of BDD variables where
|V | = �log2 (|Σ|)� (recall that � = |Σ|). The variable vi represents the ith posi-
tion in the encoding of a word (see the example below). A Boolean expression
over V represents the set of symbols whose encodings satisfy the expression.
Consequently, each BDD characterizes a set of symbols. In fact, each path from
the root to a leaf of a BDD, represents a set of symbols, namely the set of sym-
bols satisfying the path. Sometimes, we identify a BDD with the set of symbols
it represents. For instance, given a BDD B and a symbol a ∈ Σ, we use a ∈ B
to denote that a belongs to the set characterized by B. Also, we use B(a) to
denote the truth value of the formula a ∈ B. In our algorithm, we use BDDs to
represent the function Δ in the definition of an automaton (see Section 2). More
precisely, for each q, r ∈ Q, we represent Δ(q, r) by a BDD B such that a ∈ B iff
a ∈ Δ(q, r). We write Δ(q, r) = B to denote that the set of symbols in Δ(q, r) is
characterized by B.

Minimization of Non-deterministic Automata with Large Alphabets 35

Operations on BDDs. The classical algorithm for computing a binary oper-
ation such as conjunction and disjunction on two BDDs is of time complexity
O(2k) where k is the number of variables which appear in the two input BDDs
(see e.g. [11, 19, 20] for a description of the algorithm). In our case the value of k
is bounded by |V |. Since |V | = �log2 (|Σ|)� it follows that these operations can
performed in O(�) time.

ADDs. In a similar fashion to BDDs, we use an ADD to encode a multiset of
symbols in Σ. Also in the case of ADDs, a path from the root to a leaf characterizes
a set of symbols. For an ADD A, the paths from the root to the leaf labeled i,
characterizes the set of symbols which occur i times in the multiset represented by
A. We useA(a) to denote the number of occurrences a in the multiset represented
by A. By the symbol set of A we mean the set {a : A(a) > 0}. We perform the
following operations on ADDs:

– Addition: A1 + A2 is an ADD A such that A(a) = A1(a) + A2(a) for each
a. We define the subtraction A1 −A2 of two ADDs in a similar manner.

– Comparison: A1 ⊕ A2 returns a BDD B such that B(a) is true iff A1(a) =
A2(a).

– BDD conversion: A is a BDD which characterizes the symbol set of A.

Using a similar reasoning to BDDs, all the above operations can be performed
in time O(�). Sometimes, we mix BDDs and ADDs in the above operations. In
such a case we interpret a BDD B as an ADD where B(a) = 1 iff a ∈ B. For
instance, given an ADD A and a BDD B then (A + B)(a) is equal to A(a) in
case a �∈ B , and is equal to A(a) + 1 otherwise.

Example. We consider the alphabet {a, b, c, d, e, f}. We use the encoding a: 000,
b: 001, c: 010, d: 011, e: 100, f : 101. A dashed line in Figure 1 represents the
false branch while the filled line represent the true branch of the BDD (ADD).
Figure 1 a) shows a BDD characterizing the set {a, b, e}, while Figure 1 b) shows
an ADD A with A(e) = 3, A(a) = A(f) = 2, A(d) = 1, and A(b) = A(c) = 0.

V0

V1

1 0

V1

V2

V0

V1 V1

V2 V2 V2

2 3 10

a) b)

Fig. 1. Example of a BDD and an ADD

36 P.A. Abdulla et al.

4 Algorithm

In this section, we describe our algorithm which consists of performing a number
of iterations. Each step of the iteration is described in detail in Section 6. Given
an initial equivalence �init , the iterations generate two sequences of equivalences
of the forms �0,�1,�2, . . . ,�t and ∼=0,∼=1,∼=2, . . . ,∼=t respectively. We define
�0 to be �init and ∼=0 to be Q × Q. We derive �i+1 and ∼=i+1 from �i and
∼=i as follows. Let Bi ∈ (Q/ �i) and Si ∈ (Q/ ∼=i) be such that1 Bi ⊂ Si and
|Bi| ≤ |Si|

2 . We define �i+1 such that q �i+1 r iff the following three conditions
are satisfied:

– q �i r.

– (q −→ Bi) = (r −→ Bi).

–

⎛⎝count(q)(Bi)(a)
=

count(q)(Si)(a)

⎞⎠ iff

⎛⎝ count(r)(Bi)(a)
=

count(r)(Si)(a)

⎞⎠ for each a ∈ Σ.

We define ∼=i+1 such that q ∼=i+1 r iff the following two conditions are satis-
fied:

– q ∼=i r.

– q ∈ Bi iff r ∈ Bi.

The iteration continues until we reach the termination point n at which we have
�t = ∼=t. In the next Section, we describe the data structures which we use to
represent the equivalences �i and ∼=i; and in Section 6 we show how we can
implement each step to maintain the above invariants.

Now, we proceed to prove some properties of the generated equivalences. The
following lemma shows that �i is a refinement of ∼=i. This implies that, up to
the termination point, we will be able to pick Bi ∈ (Q/ �i) and Si ∈ (Q/ ∼=i)
such that Bi ⊂ Si and |Bi| ≤ |Si|

2 .

Lemma 1. �i ⊆ ∼=i for all i.

Next, we show partial correctness of the algorithm (Theorem 1). To do that, we
show two auxiliary lemmas.

Lemma 2. �i is stable with respect to ∼=i, for all i.

Lemma 3. For any stable refinement �′ of �init , it is the case that �′ ⊆ �i

for each i.

By definition we know that each �i (and in particular �t) is a refinement of
�init . From Lemma 2 and the fact that �t=∼=t we know that �t is stable. This,
together with Lemma 3 implies the following.
1 As we will show below (Lemma 1), �i is a refinement of ∼=i and therefore such Bi

and Si exist.

Minimization of Non-deterministic Automata with Large Alphabets 37

Theorem 1. �t is the coarsest stable refinement of �init .

Termination of the algorithm can be shown as follows: We know that, as long as
the algorithm has not terminated we have Bi ⊂ Si and consequently ∼=i+1 ⊂ ∼=i.
By finiteness of Q it follows that after at most t = |Q| − 1 steps we reach a point
where there are no Bt ∈ (Q/ �t) and St ∈ (Q/ ∼=t) such that Bt ⊂ St and
|Bt| ≤ |St|

2 . This implies �t = ∼=t.

Theorem 2. There is a t ≤ n− 1 such that �t = ∼=t.

Finally, we consider complexity of the algorithm.

Lemma 4. For each q ∈ Q and i < j if q ∈ Bi ∩Bj then |Bj | ≤ |Bi|
2 .

In Section 6 we will show that each iteration i can be performed in time

O

⎛⎝� ·

⎛⎝|Bi|+
∑
q∈Bi

|Pre(q)|

⎞⎠⎞⎠
From this and Lemma 4, we get the following.

Theorem 3. The algorithm has complexity O (� ·m · log n).

5 Data Structures

In this section we describe the data structures used in the representation of
the equivalences �i and ∼=i (see Section 4). Also, we use a number of auxiliary
data structures which allow efficient implementation of each iteration in the
algorithm.

Each state is represented by a record which we identify with the state itself.
We maintain three lists of blocks:

– Q which corresponds to blocks in �i. Each state points to the block in Q
containing it. Each block in Q is equipped with a natural number which
indicates its size.

– X which corresponds to the blocks in ∼=i. A block of X is simple if contains
a single block of Q, and is compound otherwise.

– C which is a sublist of X containing only the compound blocks in X .

The elements of the above lists are doubly linked. This allows deletion of elements
in constant time. Each block in Q or X is represented by a record which we will
identify with the block itself. Each block S in Q contains:

– a natural number which is equal to the size of the block.
– a pointer to a doubly linked list of its elements.
– a pointer to the block of X containing it.

38 P.A. Abdulla et al.

Each block in X contains:

– a pointer to a doubly linked list of the blocks of Q contained in it.
– a pointer to a list of pairs: the first element of the pair is a state q such that

q has an edge to a state in S; the second element is an ADD A(q,S) which
encodes count(q)(S), i.e., A(q,S)(a) = count(q)(S)(a) for each a ∈ Σ.

A state r has the following pointers to

– all pairs of the form 〈q,B〉 where Δ(q, r) = B.
– the block in Q which it belongs to.

We shall also use a number of lists which will create and then destroy after
each iteration step. These lists are implemented as hash tables, which means
that searching for an element in the list can be assumed to take constant time.

6 Refinement Steps

In this section we describe how to implement each iteration of the algorithm of
Section 4, so that an iteration takes O

(
� ·

(
|Bi|+

∑
q∈Bi

|Pre(q)|
))

time. An
iteration consists of six steps as follows.

Step 1. This step chooses two blocks2 B and S. Remove a block S from C.
Examine the first two blocks in S. Let B be the smaller one. If they are equal
in size, then B can be arbitrarily chosen to be anyone of them. This step can be
performed in constant time.

Step 2. This step is to maintain the invariant that q ∼=i+1 r implies that q ∈ B
iff r ∈ B. Remove B from S and create a new block S′ in X . The block S′ is
simple and contains B as its only block. If S is still compound, put it back into
C. This step can be performed in constant time.

Step 3. Create a new list L, implemented as a hash table. Each element of L is
a record containing a pointer to a state q and an ADD which we call AL(q). The
ADD AL(q) characterizes count(q)(B), i.e., it gives, for each a ∈ Σ, the number
of edges from q which go to states in B and whose symbol sets include a. We
create L by scanning the elements of B. For each r ∈ B and each edge 〈q, r〉 we
add q to L with AL(q) = B where B = Δ(q, r). If q already is in L we modify the
value of AL(q) to be AL(q) + B, i.e., we update AL(q) according to the symbols
in the set Δ(q, r).

Since L is a hash table, searching for a state q in L takes constant time.
Performing addition on ADDs takes O(�) time (Section 2).

Step 4. We partition each block of Q with respect to B. This will maintain the
invariant that q �i r implies (q −→ B) = (r −→ B). We create a new block
DB for each block D of Q and BDD B such that there is a state q ∈ B with

2 These blocks correspond to Bi and Si chosen during the ith iteration (Section 4).

Minimization of Non-deterministic Automata with Large Alphabets 39

q in L and AL(q) = B. Intuitively, the block DB will contain all states which
originally belonged to D and which have edges to B on the same set of symbols
(namely the set of symbols characterized by B). To perform this operation, each
block D in Q will maintain a list LD, implemented as a hash table. Each element
of LD is a pair, where the first element is a BDD and the second element is a
pointer to a block. We traverse the list L created in step 3 above. For each state
q in L, we consider the block D in Q to which q currently belongs. We remove
q from D. We find the entry in LD with a BDD equal to AL(q). We insert q in
the corresponding block.

In the second phase of step 4, we add the newly created blocks to Q. If a block
D has become empty we remove it from Q. If the block in X which contains B
or one of the newly created blocks has become compound, we insert it in C.

Computing AL(q) takes time O(�) (see Section 3). Since LD is a hash table,
searching the table takes constant time. Removing q from D and inserting it
in the new block takes constant time. Moving and checking emptiness of block
takes constant time.

Step 5. We partition each block of Q with respect to S−B. This will keep the
invariant that q �i r implies⎛⎝ count(q)(Bi)(a)

=
count(q)(Si)(a)

⎞⎠ iff

⎛⎝count(r)(Bi)(a)
=

count(r)(Si)(a)

⎞⎠
This step is similar to Step 4 above. The only difference is the manner in which
we insert a state in the list LD. When considering a state q in L, belonging to
(say) block D, we compute B = AL(q) ⊕AS(q) . The position of q in LD will be
determined by the BDD B (rather by the BDD AL(q) as was the case in Step 4).
Intuitively, the BDD B characterizes the set of symbols through which the state
q moves to S −B. This means that, states which will end up in the same block
will move to S −B on the same set of symbols, and hence the above mentioned
invariant will be maintained.

Step 6. Since B was removed from S, the value of count(q)(S)(a) may have
been reduced (in case q has an edge to B labeled with a). This step updates the
value of count(q)(S)(a) accordingly. Recall that L contains all states which have
edges to B. We scan the list L, and for each state q, we replace the current value
A of AS(q) by A−AL(q) (takes O(�)). If A becomes empty we discard the pair
q and its associated ADD AS(q) from the list pointed to by S. Finally, we make
B point to the list L.

Observe that the time spent on an iteration is O (�) per scanned edge and
state of B, which gives a total time of O

(
� ·

(
|Bi|+

∑
q∈Bi

|Pre(q)|
))

.

7 Experiments

There is no official set of benchmarks for testing algorithms that compute bisim-
ulation equivalence [10]. Therefore, we have implemented a procedure for ran-

40 P.A. Abdulla et al.

domly generating non-deterministic automata. In the procedure, we can change
a number of parameters which decide the shape of the generated automata. Such
parameters include the number of states, the size of the alphabet, the density of
edges between two states, the probability that a certain symbol is included in
the symbol set between two states, and the size of such a set.

In Table 1 we compare the execution times of our implementation of the al-
gorithm and a non-symbolic version of the Paige-Tarjan algorithm. To make
the comparison meaningful we have implemented both versions of the algorithm
in the same code, using the same data structures and the same procedures.
As evident from the table, the symbolic version is almost insensitive to the
size of the alphabet, while the non-symbolic version exhibits an exponential in-
crease in time until we reach a point where it takes too long time (more than
24 hours). The above experiments are conducted with the number of states
being equal to 20. We get a similar behaviour pattern when increasing the
number of states. We have tested our prototype on automata with up to 200
states.

We have also compared our implementation with The Concurrency Work-
Bench (CWB) [21] and The Concurrency WorkBench of The New Century
(CWB-NC) [2]. The results are presented in Table 2. CWB uses minimization
techniques based on the Kanellakis and Smolka algorithm [22], while CWB-NC
uses the Paige-Tarjan algorithm. Both tools show similar behaviour to the non-
symbolic version of our code.

Table 1. Comparing the symbolic and the non-symbolic versions of the algorithm on
automata with 20 states. The execution time is measured in seconds. Larger numbers
of states give similar behaviours.

Symbols in alphabet 22 24 25 27 29 210 211 212 240 280 2100 2120

Non-symbolic 3.99 4.55 4.81 7.18 32.9 120.7 557.7 1955 – – – –

Symbolic 0.05 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.11 0.12

Table 2. The execution time for our implementation of the algorithm and minimization
in CWB and CWB-NC. The automata have 150 states and 250 transitions. Execution
time is measured in seconds.

Symbols in alphabet 22 25 210 211 212 225 240 250 280 2100 2115

Symbolic 4.69 6.05 6.52 6.60 6.60 6.69 6.84 7.66 8.43 10.15 12.46

CWB 0.13 0.68 10.60 18.50 28.44 – – – – – –

CWB-NC 0.31 0.32 – – – – – – – – –

In Figure 2 we keep the size of alphabet intact while we increase the proba-
bility that a symbol is included in the symbol set of an edge. We observe that
while our algorithm copes well with large alphabets, its efficiency decreases with
symbol density.

Minimization of Non-deterministic Automata with Large Alphabets 41

 0

 2

 4

 6

 8

 10

2^{0} 2^{10} 2^{20} 2^{30} 2^{40} 2^{50} 2^{60} 2^{70} 2^{80} 2^{90}

T
im

e

Number of symbols in alphabet

1.0

0.8

0.6

0.4

0.2

Fig. 2. Increasing the symbol density, while keeping the size of the alphabet fixed. The
automata have 150 states and 250 transitions.

8 Conclusions and Future Work

We have presented a version of the Paige-Tarjan algorithm where the edge rela-
tion for labeled automata is represented symbolically using BDDs. For automata
with large alphabets, our experiments indicate that the algorithm behaves better
than algorithms which operate on an explicit representation of the automaton.

One direction for future research, is to consider Boolean encodings of the
alphabet which are not canonical (as is the case with BDDs) and then use SAT
solvers to perform the necessary operations on the symbolic encoding. It is well-
known that SAT solvers outperform BDDs in certain applications, and it could
be interesting to find out whether this is the case for minimization of automata.
Also, we intend to consider similar algorithms for checking simulation relations.
This is relevant, for instance, in the context of regular model checking, where
several classes of acceleration techniques rely on computing simulations [4].

References

1. Bouali, A.: Xeve, an esterel verification environment. In: Proc. 10th Int. Conf. on
Computer Aided Verification. Volume 1427 of Lecture Notes in Computer Science.,
Springer Verlag (1998) 500–504

2. Cleaveland, R., Sims, S.: The NCSU concurrency workbench. In: Proc. 8th Int.
Conf. on Computer Aided Verification. Volume 1102 of Lecture Notes in Computer
Science., Springer Verlag (1996) 394–397

3. Fernandez, J.C., Garavel, H., Kerbrat, A., Mateescu, R., Mounier, L., Sighireanu,
M.: CADP: A Protocol Validation and Verification Toolbox. In: CAV’96, LNCS
1102 (1996)

4. Abdulla, P., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Proc. CONCUR 2004, 15th Int. Conf. on Concurrency Theory. (2004)
348–360

5. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Algorithmic improvements in
regular model checking. In: Proc. 15th Int. Conf. on Computer Aided Verification.
Volume 2725 of Lecture Notes in Computer Science. (2003) 236–248

42 P.A. Abdulla et al.

6. Hopcroft, J.E.: An n log n algorithm for minimizing the states in a finite automaton.
In Kohavi, Z., ed.: The Theory of Machines and Computations. Academic Press
(1971) 189–196

7. Paige, R., Tarjan, R., Bonic, R.: A linear time solution to the single function
coarsest partition problem. Theoretical Computer Science 40 (1985) 67–84

8. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal on
Computing 16 (1987) 973–989

9. Holzmann, G.: Design and Validation of Computer Protocols. Prentice Hall (1991)
10. Dovier, A., Piazza, C., Policriti, A.: An efficient algorithm for computing bisimu-

lation equivalence. Theoretical Computer Science 311 (2004) 221–256
11. Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE

Trans. on Computers C-35 (1986) 677–691
12. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E., Pardo, A.,

Somenzi, F.: Algebraic decision diagrams and their applications. In: ICCAD ’93:
Proc. of the 1993 IEEE/ACM international conference on Computer-aided design,
IEEE Computer Society Press (1993) 188–191

13. Fernandez, J.C.: An implementation of an efficient algorithm for bisimulation
equivalence. Sci. Comput. Program. 13 (1989)

14. Bouali, A., de Simone, R.: Symbolic bisimulation minimisation. In: Proc. Work-
shop on Computer Aided Verification. Volume 663 of Lecture Notes in Computer
Science. (1992) 96–108

15. Klarlund, N.: An n log n algorithm for online bdd refinement. J. Algorithms 32
(1999) 133–154

16. Fisler, K., Vardi, M.Y.: Bisimulation and model checking. In: Conference on
Correct Hardware Design and Verification Methods. (1999) 338–341

17. Bouajjani, A., Fernandez, J., Halbwachs, N.: Minimal model generation (1990)
Manuscript.

18. Lee, D., Yannakakis, M.: Online minimization of transition systems. In: Proc. 24th

ACM Symp. on Theory of Computing. (1992)
19. Andersen, H.R.: An introduction to binary decision diagrams. Technical Report

DK-2800, Department of Information Technology, Technical University of Denmark
(1998)

20. Somenzi, F.: Binary decision diagrams (1999)
21. Cleaveland, R., Parrow, J., Steffen, B.: The Concurrency Workbench: A seman-

tics based tool for the verification of concurrent systems. ACM Transactions on
Programming Languages and Systems 15 (1993)

22. Kanellakis, P., Smolka, S.: CCS expressions, finite state processes, and three prob-
lems of equivalence. Information and Computation 86 (1990) 43–68

Simulating Two-Dimensional Recognizability by

Pushdown and Queue Automata�

Marcella Anselmo1 and Maria Madonia2

1 Dipartimento di Informatica ed Applicazioni, Università di Salerno,
I-84081 Baronissi (SA), Italy

anselmo@dia.unisa.it
2 Dip. Matematica e Informatica, Università di Catania,

Viale Andrea Doria 6/a, 95125 Catania, Italy
madonia@dmi.unict.it

Abstract. The aim of this paper is to investigate sequential models
to describe two-dimensional languages. The intent is to add more capa-
bilities to 4NFA in order to encompass a wider class of languages. We
show that any (tiling) recognizable language can be simulated by a 4NFA
with an extra queue whose size is bounded by the minimum of the two
dimensions of a picture; and that 2NFA (i.e. automata moving only in
two directions) with an analogous queue are sufficient when the alphabet
is unary. A special class of recognizable languages can be simulated also
by 4-way pushdown automata with a stack of size bounded by the sum of
the two dimensions of the picture. Such a class is also characterized by a
recursive definition involving the operations of union, intersection and a
new diagonal overlapping operation applied to languages recognized by
2NFA.

1 Introduction

Two-dimensional (2D) languages are the generalization of string languages to two
dimensions. Their elements are two-dimensional strings or pictures, i.e. rectan-
gular arrays of symbols taken in a finite alphabet. Many approaches have been
presented in the literature in order to generalize formal one-dimensional (1D)
language theory to two dimensions. In [6] all the attempts made in this direction
till 90’s are collected and compared. Furthermore an unifying point of view is
presented: the family of picture languages called REC is proposed as the candi-
date to be “the” generalization of the class of regular one-dimensional languages.
Indeed REC family is well characterized from very different points of view and
thus inherits several properties from the class of regular 1D languages.

Some recent papers study REC family from the point of view of regular expres-
sions [1, 2, 14], other ones look for recognizability in terms of grammars [4, 14]. In
this paper we are more extensively concerned with simulation of REC by some

� Work partially supported by MIUR Cofin: Linguaggi Formali e Automi: Metodi,
Modelli e Applicazioni.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 43–53, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

44 M. Anselmo and M. Madonia

proper kind of automata. Historically a first attempt to recognize 2D languages
by means of automata was done in 1967 by M. Blum and C. Hewitt (cf. [3])
who defined 4-way automata. A deterministic (non-deterministic) four-way au-
tomaton, denoted by 4DFA (4NFA), is defined as an extension of the two-way
automaton for strings by allowing it to move in four directions: left, right, up,
down. The families of picture languages recognized by some 4DFA and 4NFA
are denoted by L(4DFA) and L(4NFA) respectively. We will use this notation
for any other type of automata: if M is an automaton of a certain type, then
L(M) is the family of languages accepted by automata as M. Unlike the one-
dimensional case, L(4DFA) is strictly included in L(4NFA) (cf. [3]). Both families
L(4DFA) and L(4NFA) are closed under Boolean union and intersection opera-
tions and under rotation. The family L(4DFA) is also closed under complement,
while L(4NFA) is not [11]. On the other hand, L(4DFA) and L(4NFA) are not
closed under row and column concatenation, and their closure operations [8].
Some restricted versions of 4NFA have been studied, as 3NFA ([12]) and 2NFA
([2]). Even if 4NFA are a direct generalization of classical (one-way or two-way)
finite automata for 1D string languages, unfortunately they define only a proper
subclass of REC.

Another device to recognize 2D languages was introduced in 1977 by K. In-
oue and A. Nakamura [7] and was called two-way on-line tesselation acceptor
(2OTA). Informally the 2OTA is an infinite array of identical finite-state au-
tomata in a two dimensional space. The deterministic version is denoted by
2DOTA and is less powerful than 2OTA. The 2OTA have the worth to recognize
exactly REC family. Other devices that generalize their 1D counterpart are al-
ternating finite automata (AFA) defined in [9], alternating pushdown automata
(APDA), alternating counter automata (ACA) [15] (see also [13]). Such mod-
els, together with 2OTA’s one, have a major feature of being somehow parallel
devices.

In this paper we are interested in recognizability of 2D languages by finite
sequential automata. We start from 4NFA and add extra capability in order
to encompass a wider class of languages, still keeping a sequential structure. In
particular we consider 4NFA equipped with bounded stack or queue and compare
them with REC family or some other families inside REC. A particular attention
is devoted to the case of an unary alphabet. Observe that studying 2D languages
on a one-letter alphabet means to study the “shape” of pictures, ignoring their
“content”. The family of recognizable languages over a unary alphabet is denoted
REC(1).

In particular we show that any language in REC can be simulated by a 4NFA
equipped with a queue of size bounded by the minimal dimension of the input
picture (denoted 4NQA). Unfortunately the 4NQA are powerful enough to define
also some non-recognizable language. The model of 4NQA can be simplified when
we restrict to an unary alphabet. A 2NQA (a 4NQA that can move only in two
directions) is sufficient to simulate any recognizable unary language. Moreover
we show that with some strong restrictions this model exactly characterizes

Simulating 2D Recognizability by Pushdown and Queue Automata 45

REC(1). Our simulation follows some basic ideas for analogous simulations of
REC family (see [6]).

We then consider 4NFA equipped with a stack. If the size of the stack is
bounded by the minimal of the dimensions of the picture (as for 4NQA) it seems
that several recognizable languages would be not accepted. Indeed we could not
keep in memory a row or a column indifferently. Furthermore, using a stack
instead of a queue, when we pop the stack, some necessary information could
get lost. Hence we consider 4NFA equipped with a stack of size bounded by
the sum of the dimensions of the picture and call them 4-way pushdown au-
tomata (4NPDA). When restricted to one-row pictures, 4NPDA are equivalent
to two-way pushdown automata on strings. Since two-way pushdown automata
on strings recognize also context-free (string) languages, 4NPDA recognize lan-
guages not in REC. Nevertheless we show that 4NPDA are able to recognize
a quite large family inside REC, here called L(2DOTA�). This is the class of
languages that are either recognized by 2DOTA or the rotation of a language rec-
ognized by 2DOTA. Furthermore, every example provided in the literature of a
language in REC but not in L(2DOTA) is a rotation of a language in L(2DOTA).
We use a characterization of L(2DOTA) by 2AFA in [10]. The class L(2DOTA�)
is also characterized by a recursive definition: a language in L(2DOTA�) can be
obtained from some languages accepted by 2NFA by iterating their union, inter-
section and diagonal overlapping. The diagonal overlapping is a new operation
on pictures and picture languages here defined; in the unary alphabet case it is
strictly linked to the diagonal concatenation as defined in [1, 2].

The paper is organized as follows. In Section 2 we briefly recall some prelimi-
nary definitions and results later used in the paper. Section 3 contains the main
results about 4NQA. Section 4 is devoted to 4NPDA and the class L(2DOTA�).
Section 5 draws some conclusions.

2 Preliminaries

In this section we recall some terminology for two-dimensional languages. For all
definitions and classical results refer to [6]. Deterministic and non-deterministic
4-way automata (4DFA and 4NFA, resp.) are a generalization of 2-way (one-
dimensional) finite automata where the reading head can move in four directions:
Left, Right, Up and Down. When the head can move only in two directions,
right and down, we obtain deterministic and non-deterministic 2-way automata
(2DFA and 2NFA, resp.). The definition of two-dimensional on-line tessellation
acceptor, denoted by 2OTA is in [7]. If M is an automaton of a certain type,
then L(M) will denote the family of languages accepted by automata as M.

Let Σ be a finite alphabet. A two-dimensional string (or a picture) over Σ
is a two-dimensional rectangular array of elements of Σ. The set of all two-
dimensional strings over Σ is denoted by Σ∗∗ and a two-dimensional language
over Σ is a subset of Σ∗∗. Given a picture p ∈ Σ∗∗, let pi,j denote the symbol
in p with coordinates (i, j), let �1(p) denote the number of rows of p and �2(p)
denote the number of columns of p. The pair (�1(p), �2(p)) of dimensions of p is

46 M. Anselmo and M. Madonia

called the size of the picture p. The set of all two-dimensional strings over Σ of
size (n,m) is denoted by Σn×m. For any picture p of size (n,m), we consider
picture p̂ of size (n+2,m+2) obtained by surrounding p with a special boundary
symbol # �∈ Σ.

A tiling system for a language L over Σ with local alphabet Γ is a pair (Θ, π)
where Θ is a set of tiles, that is pictures of dimension (2, 2) over Γ ∪ {�}, and
π : Γ∪{�} → Σ is an alphabetic mapping. Then, we say that a language L ⊆ Σ∗∗

is recognizable by tiling system (Θ, π) if L = π(L′) and L′ is the set of all pictures
p such that the sub-pictures of p̂ are all in Θ. The family of two-dimensional
languages recognizable by tiling systems is denoted by REC(Σ), briefly REC
when the alphabet can be omitted, and by REC(1) when a one-letter alphabet
is dealt with. Note that one-row languages in REC exactly correspond to regular
string languages.

3 Four-Way Queue Automata

In this section we define 4-way queue automata (4NQA) as 4NFA equipped
with a queue bounded by the minimum of the input’s dimensions and the class
L(4NQA) of languages accepted by 4NQA. We show that REC family is strictly
contained in L(4NQA). In the one-letter alphabet case REC(1) can be simulated
by a weaker model: 2NQA, that is 4NQA that can move only right and down.
A restrictive extra condition allows to recognize exactly REC(1).

Informally, a 4-way non-deterministic queue automaton A, referred as 4NQA,
is a 4NFA supplied with a queue (“first in, first out” memory) over some alphabet
Φ. Its computation depends on the transition function δ: at each step, given the
actual state, the symbol read in the actual position and the symbol at the head
of the queue, the automaton A, according to δ, non-deterministically, dequeues
or not the symbol from the head of the queue, enqueues or not a symbol onto
the tail of the queue, changes state and moves by one position in one direction
(Left, Right, Up or Down) or stands in the actual position (no move). As usual,
a 4NQA recognizes a picture p if, starting in the top-left corner of p in the
initial state, it non-deterministically can reach an accepting state. Moreover
during a computation of a 4NQA, the maximal length of the queue is never
greater than min{�1(p), �2(p)}+1. A 2-way non-deterministic queue automaton,
referred to as 2NQA is a 4NQA that can move right and down, but not up or
left.

Example 1. Let L be the language of pictures that are the column concatenation
of two identical squares. More formally L = {p | �1(p) = n ≥ 1, �2(p) = 2n and
p(i, j) = p(i, j + n) ∀1 ≤ i, j ≤ n}. The language L is accepted by a 4NQA that
compares the i-th column with the n + i-th one, for any i = 1, · · · ,n, as follows.
It enqueues the content of the i-th column in the queue while moving down, then
moves to n + i-th column following the diagonal, and moving down it dequeues
if the symbol at the head of the queue matches the one in the cell. Note that
this 4NQA for L acts deterministically.

Simulating 2D Recognizability by Pushdown and Queue Automata 47

Proposition 1. The family REC is strictly contained in L(4NQA).

Proof. Let L ∈ REC(Σ), let (Θ, π) be a tiling system over the alphabet Γ for
L and let L′ be the underlying local language. L is recognized by a 4NQA A,
with queue alphabet Θ and states qx with x ∈ Γ , that operates as follows on
p ∈ Σ∗∗, with n = �1(p) and m = �2(p). A guesses l = min{n,m} and let us
suppose, w.l.o.g., n ≤ m. A scans p column by column, from top to bottom in
the attempt to find, non-deterministically, a picture p′ ∈ L′ that corresponds to
p in L′. For this, the transition function of A is designed so that when A enters
in the j-th column (j > 1) of p, then the queue contains the guessed sequence
of tiles covering the (j− 2)-th and (j − 1)-th column of p̂′. So A using the state,
these tiles and the symbols of the j-th column, can guess the tiles covering the
(j−1)-th and j-th column of p̂′ and can push them in the queue. For example, if
A is reading pi,j , then, actually, the symbol at the top of the queue is the guessed

tile t1 =
p′i−1,j−2 p′i−1,j−1
p′i,j−2 p′i,j−1

for p̂′ and the state is qp′
i−1,j

. Now the automaton A

can guess the tile t2 =
p′i−1,j−1 p′i−1,j

p′i,j−1 p′i,j
for p̂′ (if at least one such tile exists in

Θ otherwise A halts without accepting). Then A dequeues t1, enqueues t2, goes
down in the state qp′

i,j
and repeats this procedure. When A reaches the bottom

of the j-th column, it moves right to the (j + 1)-th column and then up to top
position of the column without changing the queue. If the construction of p̂′ can
be completed then A accepts the picture p.

The inclusion is strict since language L in Example 1 is in L(4NQA), but it
is not in REC (see [6]). ��

Remark 1. Bounding the queue of a 4NQA by the minimum of the dimensions
of a picture has an important byproduct. When 4NQA are restricted to one-row
languages, they are equivalent to 2-way automata on strings with unitary size
queue that recognize only regular languages (the queue symbol can be simulated
by the states).

In the case of an unary alphabet, Proposition 1 can be specified and gives the
following result.

Proposition 2. Let |Σ| = 1. The family REC(1) is contained in L(2NQA).

Proof. Let L ∈ REC(1), (Θ, π), Γ , L′ and n be as in Proposition 1. The 2NQA,
A, that recognizes L is similar to the 4NQA constructed in Proposition 1. The
only difference is that, since |Σ| = 1, it is no more necessary to scan all the
positions of the picture p. Therefore, A works in this way: first it fills up the
queue moving downwards in the first column. When it reaches the bottom, it
moves to the right, then remaining in the bottom position of the second column,
it updates the queue for n+1 times in order to obtain in the queue the sequence
of guessed tiles for the first two columns of p. Then A moves again to the right
and repeats the cycle on the next column. If it reaches the bottom-right corner
of p then it accepts (see Example 2). ��

48 M. Anselmo and M. Madonia

Example 2. The language L of squares over an unary alphabet Σ = {a}, that is
L = {p ∈ {a}∗∗ | �1(p) = �2(p)}, can be easily recognized by a simple 2NFA that
follows the diagonal and accepts when it founds the corner. Moreover a tiling
system (Θ, π) over the alphabet Γ = {0, 1, �} for L is the one containing all the
(2,2) sub-pictures of a square with 1 on the diagonal and 0 elsewhere, surrounded
by �. The simulation of such a tiling system following the proof of Proposition
2 provides a 2NQA A that on a square picture of size (4, 4) acts as follows.
The states of A are qx where x is the symbol in Γ that has been guessed to be
in the considered position. A moving downwards in the first column, enqueues

the following tiles, one at each position:
� �
� 1

;
� 1
� 0

;
� 0
� 0

;
� 0
� 0

;
� 0
� �

. Then it moves

right (at the bottom of the second column) in state q� and without moving, it

dequeues
� �
� 1

and enqueues
� �
1 0

; (since it is the only tile of the form
� �
1 γ

with

γ ∈ Γ) and enters state q0. Now, it alternates a dequeue and an enqueue of the

following tiles, respectively:
� 1
� 0

;
1 0
0 1

;
� 0
� 0

;
0 1
0 0

;
� 0
� 0

;
0 0
0 0

;
� 0
� �

;
0 0
� �

.

At the end of these updates A moves right in state q�, acting in a similar way
for the following columns.

Remark 2. Note that in Proposition 2, the automatonA that recognizes L is very
particular: it scans only the first column and the last row of the input picture
p, going downwards in the first column and right in the last row; it enqueues
one symbol (without dequeueing) only when it moves down (i.e. only when it
scans the first column); it leaves the j-th column (with j ≥ 2) only after having
updated the queue (with one symbol enqueued and one dequeued) exactly n+1
times where n is the number of rows in p.

We will call such a special type of 2NQA a restricted 2NQA.

Proposition 3. Let |Σ| = 1 and L ⊆ Σ∗∗. If L is accepted by a restricted 2NQA
then L ∈REC(1).

Proof. Let A be a restricted 2NQA that recognizes L. We construct a tiling
system (Θ, π) on a local alphabet Γ . The idea is to construct, given a picture
p = (n,m) ∈ Σ∗∗, a picture p′ ∈ Γ ∗∗ which can “describe” the computation of
the automaton A on p and such that p = π(p′). For this, we set Γ = Q×Φ×Q,
where Q is the set of states of A and Φ is its queue alphabet. Moreover, we define
the set of tiles Θ so that the j-th column of p′ can depict a sequence of steps
of the computation of A on p, beginning with the step in which A enters for
the first time in that column and ending with the step in which A leaves that
column.

More exactly, define the set Θ so that if, for a fixed column j of p̂′, for
i = 1, . . . ,n we have p′i,j = (qi,j, Pi,j, q

′
i,j), then q1,j = q2,j = . . . = qn,j is the

state in which A reaches the position (n, j), q′i,j, for i = 1 . . .n, is the sequence
of the states of A when it remains in the column j and Pi,j, for i = 1, . . . ,n,
is the symbol that A enqueues when it is in the state q′i−1,j. In this way, the
sequence P1,j, P2,j, . . ., Pn,j represents the queue when A leaves the column j.

Simulating 2D Recognizability by Pushdown and Queue Automata 49

The symbol q1,j = . . . = qn,j is needed to know if two columns can be adjacent:
if A leaves the j-th column in the state q, then it must enter in the (j + 1)-th
column in the same state (i.e. q′n,j = qn,j+1 . . . = q1,j+1). ��

4 Four-Way Pushdown Automata and the Class
L(2DOTA�)

In this section we define 4-way pushdown automata (4NPDA) as 4NFA equipped
with a stack bounded by the sum of the dimensions of a picture. This device
is able to simulate the class L(2DOTA�) of languages either recognized by a
2DOTA or whose rotation is recognized by a 2DOTA. Moreover a language in
this class can be recursively defined applying union, intersection and diagonal
overlapping to some languages in L(2NFA). The diagonal overlapping is a new
operation on pictures and picture languages here introduced.

Informally, a 4-way non-deterministic pushdown automaton, referred to as
4NPDA, works as a classical two-way pushdown automaton on strings, with the
only difference that it can now move in four directions: Left, Right, Up, and
Down (since it scans 2D pictures). A 4NPDA recognizes a picture p if, starting
in the top-left corner of p in the initial state, it non-deterministically can reach
an accepting state and, during this computation, the maximal length of the
stack is never greater than �1(p) + �2(p). A 2-way non-deterministic pushdown
automaton, referred to as 2NPDA is a 4NPDA that can move right and down,
but not up or left.

Remark 3. When 4NPDA are restricted to one-row languages, that is languages
contained in Σ1×n, they are equivalent to 2-way pushdown automata with a
stack of length up to the length of the input string. Since two-way pushdown
automata on strings recognize also non-regular (string) languages, 4NPDA rec-
ognize languages not in REC.

On the other hand, it seems that 4-way automata equipped with a stack
of length up to the minimal dimension are not able to recognize several 2D
languages in REC.

Let us recall that a two-dimensional alternating automaton (here denoted
4AFA) ([9, 13]) is a generalization of 4NFA where a state can be either existential
or universal. A computation that meets an universal (existential, resp.) state
accepts if every (at least one, resp.) path from that state is accepting. A two-
way two-dimensional alternating automaton (here denoted 2AFA) is a 4AFA
that can move rigth and down only.

Example 3. Let L ⊆ Σ∗∗ be the language of squares whose last row is equal to
the last column. More formally L = {p ∈ Σ∗∗ | �1(p) = �2(p)=n and for any i=
1, · · · ,n, p(n, i) = p(i,n)}. A 2AFA recognizing L is the following. The initial
state q0 is an existential state and the transitions from q0 for any σ ∈ Σ are
given by: δ(qo, σ) = {(qc,no move), (qa,no move) | a ∈ Σ}. The state qc deter-
ministically accepts if we are in the bottom-right corner. The transitions from an

50 M. Anselmo and M. Madonia

universal state qa are given by: δ(qa, σ) = {(qaR, R), (qaD, D), (qD,no move)}.
State qaR deterministically checks whether at the right end of the row there is
an a symbol and accepts in this case. In an anologous way, state qaD determin-
istically checks whether at the bottom of the column there is an a symbol and
accepts in this case. State qD moves one cell in diagonal and enters q0.

Proposition 4. The family L(2AFA) is contained in L(4NPDA).

Proof. Let L ∈ L(2AFA) and let A be a 2AFA for L. For the sake of simplicity,
suppose that A at each step moves rigth or down. A 4NPDA P that simulates
A is the following. When A reaches an universal state q in position (i, j), then P
has to check if all the possible paths of the computation tree, starting from q in
position (i, j), are accepting. So P fills its stack with some triples (q, d, k), where
q is the state, d ∈ {Rigth,Down} is the direction and k is a number indicating
which path is actually checked. When P has completed an accepting path t of
A, it can return in position (i, j) by popping his stack, and thus check the next
path. Note that, since A can move only right and down, P ’s stack contains at
most �1(p) + �2(p) symbols, where p is the input picture. ��

Consider now the family L(2DOTA�) of all languages in L(2DOTA) and all their
rotations.

Corollary 1. The family L(2DOTA�) is contained in L(4NPDA).

Proof. If L ∈ L(2DOTA) then it is the 180◦ rotation of a language L′ ∈ L(2AFA)
([10]) and L′ is accepted by a 4NPDA A (Proposition 4). Hence L is accepted
by a 4NPDA that starts by reaching the bottom-right corner and then continues
with a reversed copy of A. Moreover L(4NPDA) is closed under rotation since,
in a similar way as before, any rotation of a language accepted by a 4NPDA
is also accepted by a 4NPDA that first deterministically reaches some corner.
Observe that in any case the sum of the dimensions is the same and so the size
of the stack. ��

Let us now introduce the operation of diagonal overlapping. Given a picture p,
let us denote for any 1 ≤ i ≤ i′ ≤ �1(p) and 1 ≤ j ≤ j′ ≤ �2(p), by p[(i, j), (i′, j′)]
the sub-picture of p with top-left corner in position (i, j) and bottom-right corner
in position (i′, j′) (as in [8]).

Definition 1. Let p, q ∈ Σ∗∗ two pictures such that p
1(p),
2(p) = q1,1. The
diagonal overlapping of p with q, denoted p(ov)q, is the language of words z ∈
Σ∗∗ with �1(z) = �1(p) + �1(q) − 1, �2(z) = �2(p) + �2(q) − 1 and such that
z[(1, 1), (�1(p), �2(p)] = p and z[(�1(p), �2(p)), (�1(z), �2(z))] = q.

Moreover for L1, L2 ⊆ Σ∗∗, the diagonal overlapping of L1 with L2, denoted
L1(ov)L2, is the language L1(ov)L2 = {p(ov)q | p ∈ L1, q ∈ L2}.

Remark 4. Consider an unary alphabet. The diagonal concatenation of p =
(n,m) and q = (n′,m′), as defined in [1, 2], is the picture of size (n+n′,m+m′).
Hence, in the case of an unary alphabet, the descriptional power of the diago-
nal overlapping is the same as that of the diagonal concatenation. The diagonal

Simulating 2D Recognizability by Pushdown and Queue Automata 51

overlapping of p with q is the diagonal concatenation of p with a picture obtained
from q by erasing one row and one column.

Now we set the recursive definition of 2-way recursive languages. Observe that
in the case of an unary alphabet, the class L(2NFA) has been characterized in
[1, 2] as both the family of rational relations and the family of languages obtained
from finite languages using union, diagonal concatenation and its closure.

Definition 2. Let L ⊆ Σ∗∗. L is a 2-way recursive language if there exist
X1, . . . , Xh, Y1, . . . , Yk ⊆ Σ∗∗, L = Y1, such that, ∀i = 1, . . . , h, Xi ∈ L(2NFA)
and, ∀j = 1, . . . , k, Yj can be obtained applying to some languages in the set
{X1, . . . , Xh, Y1, . . . , Yk} a finite number of ∪, ∩ and (ov) operations where any
(ov) operation has a language in {X1, . . . , Xh} as its first parameter and a lan-
guage in {Y1, . . . , Yk} as its second parameter.

Example 4. Let L be the language defined in Example 3. L is a 2-way recursive
language. Indeed L = Σ1,1 ∪

⋃
σ∈Σ Lσ where for every σ ∈ Σ, Lσ = L′

σ ∩ L′′
σ ∩

(Σ2,2(ov)L) with L′
σ = {p ∈ Σ∗∗ | p1,
2(p) = σ}, and L′′

σ = {p ∈ Σ∗∗ | p
1(p),1 =
σ}. Remark that Σ1,1, Σ2,2, L′

σ and L′′
σ are all in L(2NFA).

Proposition 5. L ∈ L(2AFA) if and only if L is a 2-way recursive language.

Proof. Let A be a 2AFA accepting L, δ its transition function and q0 its starting
state. Set nΣ =

∑
σ∈Σ |δ(q0, σ)|. First suppose q0 is an existential state. If nΣ > 1

then L is the union of nΣ languages in L(2AFA), following the nΣ possible
choices for the transitions. If nΣ = 1 and δ(qo, σ) = (q1, R) (= (q1, D), resp.)
then L = L1,2(ov)L1, (L = L2,1(ov)L1, resp.) where L1,2 = {p ∈ Σ1×2 | p1,1 =
σ} ∈ L(2NFA), L2,1 = {p ∈ Σ2×1 | p1,1 = σ} ∈ L(2NFA), and L1 ∈ L(2AFA) is
the language recognized by A with initial state q1. When q0 is a universal state
an analogous proof holds with intersection instead of union. For the sake of
brevity, we omit some details about border conditions and no move transitions.

Vice versa, let L be a 2-way recursive language. The proof is by induction. If
L ∈ L(2NFA) then L ∈ L(2AFA) since a 2AFA is a generalization of a 2NFA.
If L = L1 ∪ L2 and L1, L2 are 2-way recursive then by inductive hypothesis,
for i = 1, 2, Li is accepted by a 2AFA Ai with initial state qi. Then we can
define a 2AFA A joining A1 and A2 with a new initial existential state q0 and
δ(q0, σ) = {(q1,no move), (q2,no move)}. The proof is analogous when L =
L1∩L2 and L1, L2 are 2-way recursive, with the only difference that q0 is now a
universal state. Finally, suppose L = L1(ov)L2 where L1 ∈ L(2NFA) and L2 is
a 2-way recursive language. W.l.o.g. suppose that the 2NFA A1 recognizing L1
always accepts in the bottom-right corner of a picture. By inductive hypothesis,
L2 is accepted by a 2AFA A2 with initial state q2. So we can obtain a 2AFA
accepting L by simulating first A1 (viewed as a 2AFA that can guess the bottom
border) and then starting A2 each time A1 on some position would enter an
accepting state if the position would be a bottom-right corner. Remark that the
construction is possible since it works basically connecting initial states of 2AFA
unless in the case of (ov) operations. ��

52 M. Anselmo and M. Madonia

Corollary 2. L ∈ L(2DOTA�) if and only if L is the rotation of a 2-way re-
cursive language.

Proof. The proof easily follows from Proposition 5 and a result in [10] stating
that L ∈ L(2AFA) iff it is the 180◦ rotation of a language in L(2DOTA). ��

Example 5. Consider again the language L defined in Example 3. The simulation
of the 2AFA recognizing L given in Example 3, that follows the proof of Propo-
sition 5, leads to the definition of L as a 2-way recursive language presented in
Example 4. Remark that L is in L(2AFA), but its reverse is not (see [10]).

5 Some Conclusions

In order to represent tiling recognizable two-dimensional languages (REC family)
by a sequential device, we have considered 4NFA with some added capabilities.
Following the theory of formal (one-dimensional) languages, we considered ex-
tra capability consisting of some bounded queue or stack and established some
partial results about their relationship with the REC family. The considered
models seem not able to describe exactly this family. This is the case also when
different limitations on the size of the extra memory are imposed. Moreover,
the result cannot be improved also restricting to the deterministic counterparts
of the considered models. Indeed, REC family is intrinsically non-deterministic
and the deterministic versions of 4NQA and 4NPDA are already able enough
to recognize languages not in REC (see Example 1 that can be also adapted
to a 4NPDA). Further steps will be to design some model that is conceptually
different from the ones for one-dimensional case.

Acknowledgements. We want to greatly thank Dora Giammarresi for helpful
discussions and comments.

References

1. Anselmo, M., Giammarresi, D., Madonia, M.: Regular Expressions for Two-
Dimensional Languages Over One-Letter Alphabet (Proc. DLT04), Calude C. S.,
Calude E., Dinneen M. J. (Eds), LNCS 3340 Springer Verlag (2004) 63-75

2. Anselmo, M., Giammarresi, D., Madonia, M.: New operations and regular expres-
sions for two-dimensional languages over one-letter alphabet. Theor. Comp. Sc.
(2005) (to appear)

3. Blum, M., Hewitt, C.: Automata on a two-dimensional tape. IEEE Symposium on
Switching and Automata Theory. (1967) 155-160

4. Crespi Reghizzi S., Pradella, M.: Tile Rewriting Grammars, (Proc. Developments
in Language Theory DLT 2003), LNCS 2710 Springer Verlag (2003) 206-217

5. Giammarresi, D., Restivo, A.: Two-dimensional finite state recognizability. Funda-
menta Informaticae 25:3, 4 (1996) 399-422

6. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: G. Rozenberg et al
Eds: Handbook of Formal Languages Vol. III. Springer Verlag (1997) 215-268

Simulating 2D Recognizability by Pushdown and Queue Automata 53

7. Inoue, K., Nakamura, A.: Some properties of two-dimensional on-line tessellation
acceptors. Information Sciences. 13 (1997) 95-121

8. Inoue, K., Takanami, I., Nakamura, A.: A note on two-dimensional finite automata.
Information Processing Letters 7:1 (1978) 49-52

9. Inoue, K., Takanami, I., Taniguchi, H.: Two-dimensional alternating Turing ma-
chines. Theor. Comp. Sc. 27 (1983) 61-83

10. Ito, A., Inoue, K., Takanami, I.: Deterministic two-dimensional On-line tesselation
Acceptors are equivalent to two-way two-dimensional alternating finite automata
through 180◦-rotation. Theor. Comp. Sc. 66 (1989) 273-287

11. Kari, J., Moore, C.: New results on alternating and non-deterministic two-
dimensional finite-state automata (Proc. STACS 2001) LNCS 2010 Springer Verlag
(2001)

12. Kinber, E. B.: Three-way Automata on Rectangular Tapes over a One-Letter Al-
phabet. Information Sciences 35 Elsevier Sc. Publ. (1985) 61-77

13. Lindgren, K., Moore, C., Nordhal, M. G.: Complexity by two-dimensional patterns.
J. of Statistical Physics 91 (1998) 909-951

14. Matz, O.: Regular expressions and Context-free Grammars for picture languages.
(Proc. STACS’97) LNCS 1200 Springer Verlag (1997) 283-294

15. Okazaki, T., Ito, A., Inoue, K., Wang, Y.: Closure property of space-bounded
two-dimensional alternating Turing machines, pushdown automata, and counter
automata. Int. J. of Pattern Rec. and Artif. Intelligence 15:7 (2001) 1143-1165

Component Composition Preserving Behavioural

Contracts Based on Communication Traces

Arnaud Bailly, Mireille Clerbout, and Isabelle Simplot-Ryl

LIFL, CNRS UMR 8022,
Université de Lille I, Cité Scientifique,

F-59655 Villeneuve d’Ascq Cedex, France
{bailly, clerbout, ryl}@lifl.fr

Abstract. This paper investigates the compositional properties of reu-
sable software components defined with explicit dependencies and be-
havioural contracts expressing rely-guarantee specifications in the form of
communication traces. In this setting, connection of components through
their matching ports is indeed compositional and yields a new component
or composite that respects its constituents’ contracts. Thus the behav-
iour of the composite is computed from the behaviours of its constituents
and is known to conform to the contracts without any new proof.

1 Introduction

Components and composition are the embodiment of a very old problem solving
strategy: Divide et Impera. In the broad field of engineering, this decomposition
strategy aims at identifying, given a large problem, how known solutions can be
composed to solve the problem. This practice alleviates the burden of complex
engineering as known solutions are reused and domain-specific only parts need
adhoc solutions. Component software [1] emerged from object-oriented program-
ming as a way to apply compositional engineering to the construction of complex
software. The main achievement of the field has been the production of distrib-
uted component frameworks such as Corba Component Model (Ccm) [2], J2ee
and .Net. These frameworks provide technical solutions to software engineers
at the implementation and detailed design levels but they are not adequate for
reasoning and verifying systems and components interactions.

What is needed is then component models and methods that lend themselves
to formal compositional reasoning. Architectural Description Languages (Adl
[3]) have pioneered the field while trying to give precise meanings to the notion
of software architecture and providing tools to reason about it. One achieved
work is Sofa [4], an Adl and framework that allows decomposition of frames
or systems’ interfaces into components, interfaces and connectors specified with
regular languages over messages, down to primitive components. System behav-
iour can then be inferred using languages’ composition rules. As this work is
mostly aimed towards providing adaptable softwares, it gives a formal definition
of substitutability that is based on language inclusion. One problem with this

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 54–65, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Component Composition Preserving Behavioural Contracts 55

approach is that correct behaviour should be re-proved at each (de)composition
step as it is changed by connectors’ specifications. Similar works based on process
algebras (e.g. [5–7]) are quite successful at modelling complex behaviours, in-
cluding reflective behaviours and encoding of structural evolutions of systems.
This complexity is of course at the price of the complexity of proofs and the
undecidability of most properties.

Some questions that should be addressed by such models are: Given a certain
assembly of components, what properties can be inferred from their composition
as a system? Is it possible to find a system that has defined expected properties?
Is a particular component substitutable with another component without break-
ing the whole system? Is it possible to preserve properties through composition?
In terms of formal languages theory, all these questions can be reduced to the
use of synchronization products of languages and the well-known problem of re-
constructing a language from its projections onto sub-alphabets. An overview of
the problem of composition in the setting of finite state automata is studied in
[8], where compositionality of automata depends on the composition rules used.
In this paper, we consider some classical form of trace-based specification given
in terms of regular languages. And we show that we obtain “good composition
properties” using an encoding of the topology of a set of connected components
in the alphabet. More precisely, we are stating and proving some desirable prop-
erties of a composite (set of components seen as a component) that are preserved
by composition: The behaviour of the composite respects the contract of the ser-
vices it provides and uses, and any client using its services will not be blocked
by misbehaving clients using other services. A full version of this work including
proofs is available as technical report [9].

Composition and decomposition of systems are widely studied in the litera-
ture in several settings. Composition of formal specification gives rise in [10] to
two different notions of invariants : Existential invariants guarantee preservation
of a property through composition with any other component, while universal
properties require composition with components holding the same property to
be kept through composition. In [11], specifications are given in terms of TLA
formulas and the specification of a complete system is a conjunction of compo-
nent specifications. Then, Composition and Decomposition theorems allow to
prove large systems by reasoning about their components. In more “practical”
models, like ArchJava for example [12], there exists some kind of “consistency
by construction” but often reduced to some syntactical or typing properties.
What we obtain here is some kind of “compositional behavioural typing rela-
tion” similar to the compositional typing relations in the Pi-calculus, which from
our knowledge does not exist in other formalisms.

Paper Overview. Section 2 introduces the model, notations, and specification
we use, Section 3 describes the composition itself, deals with the consistency
of a set of composed components called a system, and defines a notion of com-
posite extracted from a system, Section 4 concludes the paper and gives some
perspectives of this work.

56 A. Bailly, M. Clerbout, and I. Simplot-Ryl

2 Component Model and Specifications

2.1 Component Model

The component model we use is an abstraction of the Corba Component Model,
simple enough to fit a large number of used models. A component is an opaque
object communicating through ports. A port may be synchronous, then com-
munication is by method calls, or asynchronous, then messages are structured
events. Furthermore, a port may represent a service provided by the compo-
nent or required by the component from its environment. Synchronous ports are
typed by interfaces : A provided synchronous port is called a facet ; a required
one is called a receptacle. Provided and required asynchronous ports are called
respectively sinks and sources. Components do not operate in isolation; they
must be connected through their ports to operate, that is to exchange messages.
Throughout this article, we focus on the simpler case where the connections of
components are established at deployment time and do not change until the
system stops.

We consider behavioural specifications of services, and we emphasize the fact
that all the components that offer a specific service should be similar from
a client’s viewpoint (especially in open systems). Services usage is observable
through messages exchanged between various components, so the specifications
are given in terms of communication traces, which are sequences of messages. An
asynchronous event is modelled by a message sent between two objects, whereas
a method call is modelled by two events: a message from the caller to the callee
representing the call of the method, and a message from the callee to the caller
representing the return of the method call. As we consider distributed systems,
each element of the system, a component for example, only knows about its own
communications, so its specification is a language (set of traces) whose words
(traces) are sequences of messages sent or received by this element. So the lan-
guage defines a contract between the specified element and its potential user(s).
In the case of interfaces, this contract relates calls made by the client to returns
produced by a component providing this interface. In the case of components,
this contract allows relating messages received/produced on provided ports to
messages on required ports. This is a very low level form of rely-guarantee speci-
fication that can be derived from a lot of known models based on state machines,
predicates on traces, . . .

Observable events are messages exchanged by elements of the system (e.g. a
call to a method m). A distinctive feature of our model is the form of the alpha-
bet: A letter representing an event includes sender’s and receiver’s identity and
the names of the ports through which the communication occurs. It is an essen-
tial aspect of our formalism that allows us to take into account the configuration
resulting from a system configuration. While the specification is abstract and
deals with models of components, the semantics of composition deals with iden-
tified instances of components and ports through proper renaming (alphabetic
morphisms). These requirements lead to the following definition of the event
alphabet:

Component Composition Preserving Behavioural Contracts 57

Definition 1 (Event alphabet). An event alphabet is composed of letters of
the form (c1, p1, c2, p2, k,n) where:

– c1 is a component and p1 is the name of a required port of this component,
– c2 is a component and p2 is the name of a provided port of this component,
– k is the “kind”: method call (call), return from method call (return),

or asynchronous event (event),
– n is the name of the method or the event.

2.2 Definitions – Notations

A projection ΠY : X∗ → Y ∗ is an alphabetical morphism such that Y ⊆ X and
ΠY(x) = x if x ∈ Y and ε otherwise. The prefix-closure of a language L denoted
by pf(L) is pf(L) = {u | ∃v such that uv ∈ L}, L is said to be prefix-closed if
L = pf(L).

We use in the following two particular products on languages. The shuffle
product of L1 and L2 denoted L1 		L2 is defined as:

L1 		L2 =
⋃

u∈L1,v∈L2

{u1v1u2v2 . . . unvn | u = u1u2 . . . un, v = v1v2 . . . vn}.

For languages L1 ⊆ Σ∗
1 , L2 ⊆ Σ∗

2 , the synchronization product of L1 and L2 on
Σ1 and Σ2 denoted L1

Σ1,Σ2 L2 is defined as:

L1

Σ1,Σ2

L2 = {u ∈ (Σ1 ∪Σ2)∗ | ΠΣ1(u) ∈ L1, ΠΣ2(u) ∈ L2}.

We use this definition given by Duboc in [13] instead of De Simone’s one [14]
since it gives an associative operation:

L1

Σ1,Σ2 L2

Σ2,Σ3 L3 = (L1

Σ1,Σ2 L2)

Σ1∪Σ2,Σ3 L3
= L1

Σ1,Σ2∪Σ3(L2

Σ2,Σ3 L3).

We also use some notations to simplify the writing. Let E be an event alphabet.
For short, we denote

Π(c,p) = Π{(c1,p1,c2,p2,k,n)∈E|(c1,p1)=(c,p)∨(c2,p2)=(c,p)}.

Let E and E ′ be event alphabets. We denote by hβ1,...,βn
α1,...,αn

the strictly alphabetical
morphism:

hβ1,...,βn
α1,...,αn

: E −→ E ′
(c1, p1, c2, p2, k,n) �−→ (c′1, p

′
1, c

′
2, p

′
2, k,n) with

c′1 = βi if c1 = αi and c′1 = c1 otherwise,
p′1 = βi if p1 = αi and p′1 = p1 otherwise,
c′2 = βi if c2 = αi and c′2 = c2 otherwise,
p′2 = βi if p2 = αi and p′2 = p2 otherwise.

58 A. Bailly, M. Clerbout, and I. Simplot-Ryl

2.3 Specifications

The specifications are given in terms of communication traces. More precisely,
each element of the system is specified by a regular language whose elements are
valid communication traces of this element (traces where the context and the
element both respect the specification). Each trace corresponds to an observation
of the system, thus, specifications are prefix-closed languages to take into account
observations at any time. In execution traces, it is clear that method calls must
preceede the corresponding returns, even if we allow some concurrency inside
components. Thus we consider for specification purposes well-formed languages.
A language L over an event alphabet E is said to be well-formed if L is prefix-
closed and

L ⊆ pf((
⊔⊔

(x,y,z,t,call,n)∈E
((x, y, z, t, call,n)(x, y, z, t, return,n))∗)⊔⊔

(x,y,z,t,event,n)∈E
(x, y, z, t, event,n)∗).

An interface specification is a contract offered by an interface to its clients, more
precisely, this is a contract on the interface as a type: Each port typed by the
interface should offer this contract to its clients. Components are also defined as
types: each instance of a component must respect the component specification.
Thus, to write specifications we use variables as components identities, these
variables will be instantiated with the identities of component instances for a
particular system configuration.

Definition 2 (Connection variables). In an event, the variables γ1 and �1
(resp. γ2 and �2) denote the identity of a component and the name of one of its
required (resp. provided) port.

Definition 3 (Interface). An interface specification I is a pair [[meth,LI]]
where meth is a set of method names, LI a regular prefix-closed language of
α(I)∗ with α(I) = {(γ1, �1, γ2, �2, k,n) | n ∈ meth ∧ k ∈ {call, return}} and
LI is included in

pf((
⋃

(γ1,�1,γ2,�2,call,n)∈α(I)

((γ1, �1, γ2, �2, call,n)(γ1, �1, γ2, �2, return,n)))∗).

A component specification describes the behaviour of its instances (i.e. pieces
of software that offer ports), thus, we first have to define ports.

Definition 4 (Port). A port is a tuple (n, t, g) where n is the port name, t its
type (an interface or an asynchronous event type) and g its kind (receptacle,
facet, source or sink).

The event alphabet of a component is the set of events it can send or receive
through its ports. So, it is built from the alphabets of the types of its ports.
But when we specify a particular component we use a variable γ to denote
an instance of this component. In the event of the alphabets of required (resp.

Component Composition Preserving Behavioural Contracts 59

provided) ports, γ replaces γ1 (resp. γ2) and the effective name of the port
in this component replace �1 (resp. �2). Note that this allows us to deal with
components having several ports of the same type.

Definition 5 (Component specification). A component specification C is
defined by C = [[P,L]] with:

– P a set of ports whose names are pairwise distinct,
– L a regular well-formed language over α(C) which is the union of:

• hγ,f
γ2,�2

(α(I)) for each (f, I, facet) ∈ P ,
• hγ,r

γ1,�1
(α(I)) for each (r, I, receptacle) ∈ P ,

• {(γ, s, γ2, �2, event,n)} for each (s,n, source) of P ,
• {(γ1, �1, γ, s, event,n)} for each (s,n, sink) of P ,

where γ is the variable that represents any instance of this component.

The specification of a particular component instance is then obtained by in-
stantiation of the variable γ with the actual identity of the component instance.

Definition 6 (Component instance). A component instance of C = [[P,L]]
whose name is c is c = 〈P, hc

γ(L)〉, its alphabet is α(c) = hc
γ(α(C)).

A component provides and uses ports. We expect such a piece of code to abide
by the specification of its ports, so we first describe three basic properties that
a component must respect to be consistent.

For a receptacle, we want messages emitted by an element (most of the time a
component) through a receptacle to be accepted by the specification of its type
(interface).

Definition 7. A language L over an event alphabet E is consistent for the re-
ceptacle (r, I, receptacle) of γ (denoted by L �γ (r, I, receptacle)) if:

Π(γ,r)(L) ⊆ hγ,r
γ1,�1

(LI).

A component that offers a sink must be able to receive events at any time,
which is expressed by the following definition (remember that we are interested
in prefix-closed languages):

Definition 8. A language L over an event alphabet E is consistent for the sink
(s, S, sink) of γ (denoted by L �γ (s, S, sink)) if:

(u ∈ L)⇒ (u(γ1, �1, γ, s, event, S) ∈ L).

A component that offers a facet has to respect its specification. We require
another property which is of great importance in the setting of open distributed
systems: At each time, a facet must be available independently of the external
events not controlled by the component (as calls received on the other facets)
in order all the components offering the same service to be equivalent from the
viewpoint of a client.

60 A. Bailly, M. Clerbout, and I. Simplot-Ryl

Definition 9. A language L over an event alphabet E is consistent for the facet
(f, I, facet) of γ (denoted by L �γ (f, I, facet)) if:

hγ,f
γ2,�2

(LI) ⊆ Π(γ,f)(L) (1)
and

∀u ∈ L, ∀x ∈ E such that Π(γ,f)(u)x ∈ hγ,f
γ2,�2

(LI), (2)
∃v such that uvx ∈ L and ∀(ϕ, T, g) with g ∈ {facet, sink}, Π(γ,ϕ)(v) = ε

Part (1) says that the behaviour of an element must conform to the specifica-
tion of a facet it “offers”: An element must accept all specified calls and returns
are completely specified by calls. Part (2) indicates that at each time, each event
valid for the facet specification should be accessible independently of events not
controlled by the component, that is events on other facets or sinks.

The three previous definitions lead us to define a consistent component.

Definition 10 (Consistent component). A component C = [[P,L]] is con-
sistent if for each (n, t, g) of P such that g belongs to {receptacle, facet, sink}:

L �γ (n, t, g).

An instance of a consistent component is said to be consistent.

3 Component Composition

3.1 Connecting Components

In this subsection, we describe how to compose components to obtain systems,
that is to say sets of inter-connected components.

Definition 11 (Connection). A connection is a tuple (c1, p1, c2, p2) where c1
and c2 are component instances, p1 is the name of a required port of c1 and p2
is the name of a provided port of c2 such that p1 and p2 are of the same type.
For X a set of connections, we denote the set of elements of X by:

elem(X) = {(c, p) | ∃(c, p, c′, p′) ∈ X or ∃(c′, p′, c, p) ∈ X}.

The event alphabet has been designed to embed the structure of the system in
languages. Thus, when connecting components, we instantiate the connection
variables to register the connections in the language. This allows us to deal with
several instances of the same component as the names of the ports allow us to
deal with components having several ports of the same type.

Definition 12 (Connection morphism). Let E be an event alphabet and X
a set of connections. Then the connection morphism hX is defined by:

hX : E −→ E
(c, p, γ2, �2, k,n) �−→ (c, p, c′, p′, k,n) if (c, p, c′, p′) ∈ X
(γ1, �1, c, p, k,n) �−→ (c′, p′, c, p, k,n) if (c′, p′, c, p) ∈ X
x �−→ x otherwise.

Component Composition Preserving Behavioural Contracts 61

Definition 13 (System). A system S = 〈B,X〉 is built from a set of consistent
component instances B = {c1, . . . , cn} and a set of connections X over B. The
alphabet of S, denoted by α(S) is:

α(S) =
⋃

1≤i≤n

hX(α(ci)).

The behaviour of S is deduced from the behaviour of its components and from the
connections, it is: LB,X = LS = hX(Lc1)

X

α(c1),α(c2) . . .

X
α(cn−1),α(cn) hX(Lcn),

with

X
Σ,Ξ the synchronization product on the alphabets hX(Σ) and hX(Ξ).

Notice that as the synchronization product of well-formed languages is well-
formed, the language of a system is well-formed. The creation of systems from
components allows us to build sub-systems. Then, it is interesting to be able to
compose systems in a “compositional” way.

Definition 14 (External connections). Let S1 = 〈B1, X1〉, S2 = 〈B2, X2〉 be
two systems such that B1 ∩ B2 = ∅. Then, a connection set X is said external
for these systems if and only if:

elem(X) ∩ elem(X1) = ∅
and elem(X) ∩ elem(X2) = ∅
and ∀(c1, p1, c2, p2) ∈ X, {c1, c2} ∩B1 �= ∅ ∧ {c1, c2} ∩B2 �= ∅.

Definition 15 (Composition of two systems). Let S1 = 〈B1, X1〉 and S2 =
〈B2, X2〉 be two systems such that B1 ∩B2 = ∅ and X be an external connection
set for these systems. Then the composition of the systems by X, denoted by S =
S1◦XS2, is the system S = 〈B1∪B2, X1∪X2∪X〉 (with LS = LB1∪B2,X1∪X2∪X).

The next proposition states that it is possible to hierarchically compute the
system languages, which is a basic required property of component systems.

Proposition 1. Let S1 = 〈B1, X1〉 and S2 = 〈B2, X2〉 be two systems with
B1 ∩B2 = ∅. Then, the system S = S1 ◦X S2 with X an external connection set
for S1 and S2 is such that

LS = hX(LS1)
X

α(S1),α(S2)
hX(LS2).

We can now notice two interesting properties of the composition operation.

Proposition 2. The composition (◦) of systems is commutative.

Proposition 3. Let S1 = 〈B1, X1〉, S2 = 〈B2, X2〉 and S3 = 〈B3, X3〉 be sys-
tems such that B1, B2 and B3 are pairwise disjoint. Let Y1 be external for S1
and S2, Y2 be external for S2 and S3, and Y3 be external for S1 and S3 such that
elem(Y1) ∩ elem(Y2) = elem(Y1) ∩ elem(Y3) = elem(Y2) ∩ elem(Y3) = ∅, then:

(S1 ◦Y1 S2) ◦Y2∪Y3 S3 = S1 ◦Y1∪Y3 (S2 ◦Y2 S3).

62 A. Bailly, M. Clerbout, and I. Simplot-Ryl

The problem is now to show that the connections preserve consistency of compo-
nents. As the components we connect are consistent, the connections are proved
to work: any message sent by a component on a connection respect the specifi-
cation of its partner on this connection. But as we use synchronization products
to compute the language of a system, it is not obvious that all the components
are still consistent for the non-connected ports: for example it could happen that
the trace language of the system does not contain any call to a method m which
is supposed to be provided by a component.

3.2 System Consistency

Now, we show that a system is consistent with regard to the behavioural typing:
all its components are still consistent after connection. Using the properties of
component languages, it is straigthforward to show that for receptacles and sinks.

Notation 1. Let P be a set of ports and X a set of connections. We denote by
P \X the set of ports of P whose name does not belong to elem(X) and P ∩X
the set of ports of P whose name belongs to elem(X).

Proposition 4. Let S = 〈B,X〉 be a system. Then, we have:

∀c = 〈P,Lc〉 ∈ B,∀(r, I, receptacle) ∈ P \X,LS �c (r, I, receptacle)
∀c = 〈P,Lc〉 ∈ B,∀(si, Si, sink) ∈ P \X,LS �c (si, Si, sink) .

To show a similar property in the case of facet, we have to require another
property from the systems we consider. We will consider “loop-free” systems that
we call Dag (Directed Acyclic Graph). One of the consistency properties imposes
that a component is always able to provide a service it offers independently from
actions depending on other clients. This can only be ensured if we forbid cyclic
connections: a simple example of this problem is a component c that provides
two facets f1 and f2, and requires a receptacle r. If we connect r to f1 and if f1
and f2 use services of r to provide their own services then a call on f2 can lead
to a deadlock. This restriction on the system expresses the idea that “ones does
not require a service one provides”.

Definition 16. A system S = 〈B,X〉 is said to be a Dag if and only if the
graph G = 〈B,E〉 is a Dag where E ⊆ B × B is defined by: ∀(ci, cj) ∈ B × B,
((ci, cj) ∈ E)⇔ (∃(ci, pi, cj, pj) ∈ X).

Proposition 5. Let S = 〈B,X〉 be a system with B = {c1, . . . , cn}. Then, we
have

∀c = 〈P,Lc〉 ∈ B,∀(f, I, facet) ∈ P \X,LS �c (f, I, facet).

Sketch of Proof. We add to Definition 16 the definition of the height of a com-
ponent instance c of B: it is the length of the longest path in G whose origin is
c and is denoted by height(c). Then we show the proposition by induction on
the height of components of the system using the fact that in a Dag system, if
there exists a connection (c, p, c′, p′), then height(c) > height(c′).

Component Composition Preserving Behavioural Contracts 63

As conclusion of this section, a Dag system has been shown to be consistent
for its non connected ports.

3.3 Composites

We are now able to define a composite as an abstraction of a component system.
The abstraction operation hides the internal structure of a system, shows it as
a unique component, and renames the external ports in order port names to be
unique for a given composite. Let us remark that the composite is here seen as
an instance of component. This allows hierarchical reasoning about systems.

Definition 17 (Composite). A composite is the abstraction of a Dag com-
ponent system. Let S = 〈B,X〉 be a Dag with B = {c1, . . . , cn}, we can extract
from S a composite c

c = abstract(S) = 〈P,Lc〉
such that P = {(ci p, T,G) | ∃ci = 〈Pi,Li〉 ∈ B with (p, T,G) ∈ Pi \X}
and Lc = hc(LS),

with hc the abstraction morphism

hc : α(S) −→ hc(α(S)) = α(c)
(γ1, �1, ci, p, k,n) �−→ (γ1, �1, c, ci p, k,n) for each ci and each p,
(ci, p, γ2, �2, k,n) �−→ (c, ci p, γ2, �2, k,n) for each ci and each p,
x �−→ ε otherwise.

Proposition 6. A composite is an instance of a consistent component.

Sketch of Proof. Once again, it is straigthforward to show that a composite is
consistent for its sinks. To show that a composite is consistent for its facets and
for its receptacles, we need to introduce a property of the operations we use on
languages: For S = 〈B,X〉, a component c of B, a non-connected port p of c, an
identity γ of a composite, and an interface I, we have:

hγ(hc,p
γi,�i

(LI)) = hγ,c p
γi,�i

(LI) with i ∈ {1, 2} (1)
hγ ◦Π(c,p) = Π(γ,c p) ◦ hγ . (2)

Thus, we get the proposition using:

– (1) and (2),
– the fact that the system abstracted to get the composite is consistent,
– the fact that the synchronization product of well-formed languages is well-

formed.

This proposition allows us to directly use composite as components without any
proof of their consistency: The model ensures the consistency.

64 A. Bailly, M. Clerbout, and I. Simplot-Ryl

4 Conclusion

The main result of this paper is that our formal model for component-oriented
systems is fully compositional: A composite built from components is itself a
component that can be used in further composition. The obvious advantage of
this property is that when designing systems from components, nothing needs to
be re-proved on the system: It is guaranteed to behave according to the specifica-
tion of its facets and its receptacles. Of course, this property needs to be proved
for atomic components, which is the subject of other work on formal testing [15].

From this starting point, there are numerous tracks that can be followed. A
first extension would be to consider systems that are not DAGs: a lot of “real”
systems are DAGs, in particular the ones without asynchronous events, anyway
some of them may not be. Thus, we should consider systems that are not DAGs.
The compositional property we have shown in this paper is not true in general.
So, we will have to determine the class of systems for which the property re-
mains true or to add proof obligations in the other cases. One other important
issue that is not addressed in this paper is substitutability of components. This
issue is tied to the notion of behavioural subtyping introduced in the context
of object-oriented programming [16]: a notion of behavioural subtyping of com-
ponents could be inferred from a classical one for facets. The closely related
topic of components’ adaptations has been studied in [17, 18] but mostly from
the point-of-view of object-oriented programming languages and design. Another
important aspect that is not dealt with in this paper is the possible dynamic
evolution of connections. We have currently a specification tool that may be used
to analyze and design softwares but not yet to control component systems. There
are approaches [19, 20] that explicitly model lifecycle of components (mostly ob-
jects) thus providing a way to reason on changes in the structure of the system.
Such considerations will introduce new reasoning problems in our model.

References

1. Szyperski, C.: Component Software – Beyong Object Oriented Programming. 2nd
edn. Addison-Wesley / ACM Press (2002)

2. OMG: CORBA Components, Version 3.0, formal/02-06-65. (2003)
3. Medvidovic, N., Taylor, R.N.: A classification and comparison framework for soft-

ware architecture description languages. IEEE Transactions On Software Engi-
neering 26 (2000) 70–93

4. Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE Tran-
sations on Software Engineering 28 (2002) 1056–1076

5. Acherman, F., Nierstrasz, O.: Applications = Components + Scripts – A tour of
Piccola. In: Software Architectures and Component Technology. Kluwer (2001)

6. Allen, R., Garlan, D.: A formal basis for architectural connection. ACM Transac-
tions on Software Engineering and Methodology 6 (1997) 213–249

7. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software
architectures. In Schäfer, W., Botella, P., eds.: 5th European Software Engineering
Conference (ESEC). Volume 989 of Lecture Notes in Computer Science., Springer
(1995) 137–153

Component Composition Preserving Behavioural Contracts 65

8. ter Beek, M.H., Kleijn, J.: Team automata satisfying compositionality. In Araki,
K., Gnesi, S., Mandrioli, D., eds.: International Symposium of Formal Methods
Europe (FME). Volume 2805 of Lecture Notes in Computer Science., Pisa, Italy,
Springer (2003) 381–400

9. Simplot-Ryl, I., Bailly, A., Clerbout, M.: Component composition preserving be-
havioral contracts. Technical Report TR-05-01, Université des Sciences et Tech-
nologies de Lille, France (2005) http://www.lifl.fr/∼ryl/publi/RR-2005-01.pdf.

10. Charpentier, M.: Composing invariants. In Araki, K., Gnesi, S., Mandrioli, D.,
eds.: International Symposium of Formal Methods Europe (FME). Volume 2805 of
Lecture Notes in Computer Science., Pisa, Italy, Springer (2003) 401–421

11. Abadi, M., Lamport, L.: Conjoining specifications. ACM Transactions on Pro-
gramming Languages and Systems 17 (1995) 507–534

12. Aldrich, J., Chambers, C., Notkin, D.: Architectural reasoning in archjava. In
Magnusson, B., ed.: Proc. of the 16th European Conference - Object-Oriented
Programming (ECOOP 2002). Volume 2374 of Lecture Notes in Computer Science.,
Malaga, Spain, Springer (2002) 334–367

13. Duboc, C.: Commutations dans les Monoides libres : un Cadre Théorique pour
l’Étude du Parallélisme. PhD thesis, Université de Rouen, France (1986)

14. de Simone, R.: Langages infinitaires et produit de mixage. Theoretical Computer
Science 31 (1984) 83–100

15. Simplot-Ryl, I., Clerbout, M., Bailly, A.: Stac: Communication traces based speci-
fictions and tests of software components. In: Proc. of the 15th Nordic Workshop
on Programming Theory (NWPT’03), Turku, Finland (2003)

16. Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems 16 (1994) 1811–1841

17. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
Journal of Systems and Software 74 (2005) 45–54

18. Moisan, S., Ressouche, A., Rigault, J.P.: Behavioral substitutability in component
frameworks: A formal approach. In: ESEC/FSE 2003 Specification and Verifica-
tion of Component-Based Systems Workshop. Volume TR #03-11 of Iowa State
University., Helsinki, Finland (2003)

19. Canal, C., Fuentes, L., Troya, J., Vallecillo, A.: Extending CORBA interfaces
with pi-calculus for protocol compatibility. In: Proc. TOOLS Europe’2000, Mont
Saint-Michel, France, IEEE Computer Society Press (2000) 208–225

20. Harel, D., Kupferman, O.: On object systems and behavioral inheritance. IEEE
Transations on Software Engineering 28 (2002) 889–903

Strong Retiming Equivalence of Synchronous

Schemes

Miklós Bartha

Memorial University of Newfoundland,
St. John’s, NL, Canada

bartha@cs.mun.ca

Abstract. Strong retiming equivalence is the join of two basic equiva-
lence relations of synchronous schemes: strong equivalence and retiming
equivalence, which play an important role in the optimization of syn-
chronous systems. Each of these equivalences is characterized separately
in an algebraic/category theoretic framework, and the characterization
is carried over to the join of them. Tree-reducible schemes are introduced
to facilitate the proof that strong retiming equivalence is decidable.

1 Introduction

The concept of a synchronous system arises naturally from that of a systolic sys-
tem, which has turned out to be one of the most attractive tools in massive par-
allel computing. During the past few decades, a large number of systolic systems
have been designed, many of them manufactured. Transformation methodologies
for the design and optimization of systolic systems have been developed, but a
rigorous mathematical foundation has not been provided until recently [1, 2, 3].

The present paper aims at providing an algebraic/category theoretic charac-
terization of retiming equivalence and strong equivalence of synchronous systems,
by which a decision algorithm can be obtained for the join of these two basic
equivalences. The reader is referred to [4] for the category theoretic, and to [5]
for the universal algebraic terminology used.

As introduced in [6], a synchronous system is partitioned into functional ele-
ments (combinational logic) and registers (clocked memory). Such a system can
be described by an edge-weighted directed graph G, called a communication
graph, in which the vertices represent functional elements and the edges corre-
spond to interconnections between the functional elements. The weight of each
edge in G is a non-negative integer, which indicates the length of a queue of
registers placed along the interconnection between the two functional elements
corresponding to the endpoints of the edge. The external interface is represented
in G by a distinguished vertex, called the host.

In a synchronous system, every functional element has a fixed primitive op-
eration associated with it. These operations are designed to manipulate some
simple data (e.g. signals) in the usual algebraic sense. The registers and func-
tional elements are organized by a common clock, which renders the follow-
ing step-by-step behavior to the system. A configuration of the system is an

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 66–77, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Strong Retiming Equivalence of Synchronous Schemes 67

assignment of data to each register. With each clock tick, the current configu-
ration is mapped into a new one in such a way that every functional element
performs the primitive operation associated with it. The operands (result) of the
operation performed by each functional element are taken from (is forwarded to)
the nearest registers lying on the interconnections arriving at (leading out of)
the functional element. At the same time, data are advanced one register in the
queue of registers along each interconnection. If there is no register along an
interconnection, then data are always propagated through that interconnection
during a single clock cycle. This phenomenon is called rippling. To avoid circular
rippling of data within the system, it is assumed that every oriented cycle in the
graph of the system contains at least one edge having strictly positive weight.

Synchronous systems are analogous to sequential circuits, and can naturally
be viewed as structural Mealy automata [7]. The states of the automaton rep-
resented by a system S are the configurations of S, which are structured in as
many components as the number of registers in S. The transition function of the
automaton is also structured with regard to the state, input, and output compo-
nents, and it is specified as the combinational logic determined by the intercon-
nected functional elements in S. See [2, 8] for an analysis of the algebraic proper-
ties of such automata as morphisms in an appropriate strict monoidal category.

2 Synchronous Schemes

The simple communication graph model of synchronous systems, as presented
in the introduction, has two major shortcomings.

1. The operations performed by the functional elements are not necessarily
commutative, therefore the edges arriving at each functional element must
be ordered.

2. Representing the external interface by one vertex (the host) gives the false
impression that the input to the system depends on the output in the same
clock cycle. Also, cycles of the communication graph going through the host
vertex need not contain edges with a strictly positive weight.

Addressing these two shortcomings, synchronous systems have been redefined
in [9] as follows. A synchronous scheme over a ranked alphabet Σ = {Σn|n ≥ 0}
is a finite directed graph F having the following additional structure.

1. Each vertex v is labeled by either a symbol in Σ, or one of the symbols in

{icj | j ∈ [q]} ∪ {oci | i ∈ [p]},

where p and q are fixed non-negative integers, and [n] = {1, . . . ,n}. If the
label of v is in Σ, then v is called a box. Boxes represent functional elements
in synchronous systems, and their label indicates the operation associated
with them already at the syntactical level. Vertices labeled by the symbols
{icj | 1 ≤ j ≤ q} and {oci | 1 ≤ i ≤ p} are unique, and they are called input
and output channels , respectively. We shall assume that each label, not only

68 M. Bartha

those in Σ, has a fixed rank associated with it, so that rank(oci) = 1 and
rank(icj) = 0. Then, for each vertex v, the in-degree of v (that is, the
number of edges arriving at v) must equal the rank of the symbol labeling
v. Furthermore, the outdegree of each output channel is zero.

2. The edges arriving at each vertex v labeled by a symbol of rank n are ordered,
which order is captured by saying that these edges enter v at the 1st, . . .,
n-th input port . The notation u→i v indicates that the edge arriving at the
ith input port of v originates from vertex u.

3. Each edge e is assigned a non-negative integer weight w(e). This weight
specifies the number of registers placed along the interconnection represented
by e. It is required that in each oriented cycle of F there exists at least one
edge e with w(e) > 0. This requirement will be referred to as the exclusion
of circular rippling.

Notice that the edges leading out of a vertex u are not ordered. The suggested
meaning is that the same value originating from the (single) output port of u is
fanned out into several directions in each clock cycle.

A synchronous system is a triple S = (Σ,F, I), where F is a synchronous Σ-
scheme (SΣ-scheme, for short), and (Σ, I) is a Σ-algebra. If F is an SΣ-scheme
having p output and q input channels, then we shall write F : p → q. Isomor-
phism of SΣ-schemes is defined in a straightforward manner as graph isomor-
phism preserving all labels and weights. In the sequel, we shall not distinguish
between isomorphic schemes. Let FR denote the directed graph obtained from
F by reversing the direction of each edge in it. When forgetting the weight of the
edges, FR becomes a flowchart scheme (also known as Elgot scheme [10, 11]).
This flowchart will be denoted by fl(F).

3 Retiming Synchronous Schemes

Let F be an SΣ-scheme and u be a box in F labeled by σ ∈ Σn such that
all the edges e1, . . . , en arriving at the input ports of u have positive weights.
Retiming u then means subtracting 1 from w(ei) for each i ∈ [n], and adding 1
to the weight of each edge leading out of u. Elementary retiming is the binary
relation ρ on the set of SΣ-schemes by which FρF ′ if F ′ results from F by retim-
ing a single box in it. Retiming equivalence is the smallest equivalence relation
containing ρ.

A retiming count vector for scheme F is an assignment R of integers to all of
its boxes. Extend R to all vertices of F by fixing R(v) = 0 for each i/o channel.
We say that R is legal if for every edge e : u→ v in F , w(e)+R(u)−R(v) ≥ 0. If
R is legal, then it takes F into a scheme F ′ that has the same underlying graph
structure as F , but the weight w′(e) of each edge e : u→ v is w(e)+R(u)−R(v).
It is clear by this definition that if R is legal for F , then −R is legal for F ′, and
−R takes F ′ back to F .

Proposition 1. Synchronous schemes F and F ′ are retiming equivalent iff
there exists a legal retiming count vector R taking F into F ′.

Strong Retiming Equivalence of Synchronous Schemes 69

Retiming is a fundamental tool in the optimization of synchronous systems. It
allows the registers of a system to be rearranged in order to achieve a more favor-
able pattern of them inside the scheme of the system. For example, it might be
possible to shift the registers around in such a way that the resulting scheme be-
comes systolic in the sense that each edge has a strictly positive weight. The obvi-
ous advantage of dealing with a systolic system rather than an ordinary synchro-
nous one is that the clock period (i.e. the length of a clock cycle) can be chosen
as small as the maximum amount of time required to perform a single operation
in Σ. Even when the total number of registers in the scheme is too small to allow
such a transformation, it is possible to first slow the system down by multiplying
each weight with the same suitably large positive integer k, and then apply retim-
ing on the resulting scheme to obtain a systolic arrangement. The cost of slow-
down is a factor of k regarding the clock period, which might be well worth con-
sidering if rippling occurs in the system on very long paths. See [6] for the details.

As to the impact of retiming on the behavior of synchronous systems, it turns
out that the damage caused by rearranging the registers is relatively minor. The
systems before and after the retiming can simulate each other in the following
sense.

Definition 1. System S1 can simulate system S2 if, for every sufficiently old
configuration c2 of S2, there exists a configuration c1 of S1 such that S1 and
S2 exhibit the same behavior when started from configurations c1 and c2, re-
spectively. Systems S1 and S2 are simulation equivalent if they can simulate
each other. SΣ-schemes F1 and F2 are simulation equivalent if the systems
S1 = (Σ,F1, I) and S2 = (Σ,F2, I) are such under all interpretations I.

The fact that retiming equivalence of synchronous schemes implies simulation
equivalence is commonly known as the “Retiming Lemma”, and it was first
proved in [6].

Retiming, as a phenomenon, has been considered earlier in a different graph
theoretic context. It has been extensively studied in a model called marked graph
[12]. Marked graphs are essentially Petri nets in which all places have in- and out-
degree 1. In that context, retiming count vectors are called firing count vectors,
and the framework for their study is linear algebra relying on the incidence
matrix of the underlying graph. The only conceptual difference between firing
marked graphs and retiming synchronous schemes is that in the latter model
we do not allow a fixed set of vertices, namely the i/o channels, to be retimed.
The reason is that the retiming of these vertices would not be consistent with
simulation equivalence. This restriction is minor, however, so that all important
results on marked graphs can easily be adopted for synchronous schemes with
appropriate modifications.

4 Basic Constructions on Schemes

As we have noted earlier, synchronous schemes have an underlying flowchart
structure, which will be in the focus of the constructions that follow. To avoid

70 M. Bartha

confusing terminological changes, we shall consider flowchart schemes simply as
unweighted synchronous schemes, in which the exclusion of circular rippling does
not apply. On the other hand, for the sake of a uniform treatment, all edges will
be reversed in synchronous schemes.

The term FΣ-scheme will be used as a shorthand for Σ-flowchart scheme. An
FΣ-scheme F is called accessible if every box of F can be reached from at least
one output channel by a directed path. Every FΣ-scheme can be made accessible
simply by deleting its inaccessible boxes, therefore we shall assume from now on
that our schemes are all accessible.

The following constructions are concerned with the so called vertical structure
of FΣ-schemes, which is the category FlΣ constructed as the coproduct (disjoint
union) of the categories FlΣ(n, p), n, p ∈ N .

– For each (n, p) ∈ N ×N , FlΣ(n, p) has as objects all accessible FΣ-schemes
n→ p.

– A morphism F → F ′ between FΣ-schemes F, F ′ : n → p is a mapping α
from the set of vertices of F into that of F ′ which preserves:
a) the labeling of the vertices;
b) the edges, so that if u→i v holds in F , then α(u)→i α(v) holds in F ′.

– Composition of morphisms is defined in FlΣ(n, p) as that of mappings, and
the identity morphisms are the identity maps.

It is straightforward to check that the above data indeed determine a category,
which is a preorder [4]. In other words, given two objects F and F ′, there exists
at most one morphism F → F ′ in FlΣ . Morphisms in FlΣ represent reductions
of FΣ-schemes, and inverse morphisms are called unfoldings. Unfolding a scheme
F thus means blowing it up into a scheme F ′ such that F ′ → F holds.

There is also a horizontal structure of schemes over the set N as objects, in
which schemes themselves are the morphisms n→ p. In that category, composi-
tion is defined as serial composition of schemes. The interested reader is referred
to [2, 13] for the description of the 2-category of schemes and their behaviors.
Another interesting and more general approach is outlined in [8]. In the present
discussion, however, we do not need the horizontal part of this 2-category, and
therefore this part will be omitted.

Sometimes it is useful to consider an FΣ-scheme F : n → p as a separate
partial algebraic structure over the set of vertices of F different from the output
channels. In this structure there are n constants, namely the vertices adjacent to
the output channels. Furthermore, for each σ ∈ Σq, there are q unary operations
〈σ, i〉, i ∈ [q] if q ≥ 1, and one unary operation 〈σ, 0〉 if q = 0. If i ≥ 1, then
the operation 〈σ, i〉 is defined on vertex u of F iff u is labeled by σ, and in that
case 〈σ, i〉(u) is the unique vertex v for which u →i v. The operation 〈σ, 0〉 is
interpreted as if there was a loop around each vertex labeled by the constant
symbol σ, that is, 〈σ, 0〉 is an appropriate restriction of the identity function.
No operation is defined on the input channels. In this algebraic setting, F being
accessible means that, with the possible exception of the input channels, F is
generated by its constants.

Strong Retiming Equivalence of Synchronous Schemes 71

By the above algebraic formalism, a morphism α : F → F ′ becomes a strong
homomorphism of partial algebras [5], which preserves the given sequence of in-
put channels. A strong congruence relation of F by which the input channels form
singleton groups is called a scheme congruence of F . Clearly, every scheme mor-
phism α : F → F ′ induces a scheme congruence on F , which will be denoted by
θα. By the homomorphism theorem, if α is onto, then F/θα

∼= F ′, where the iso-
morphism and the quotient scheme F/θα are meant in the usual algebraic sense.

Let F be a synchronous scheme. The relation of having the same strong behav-
ior is defined on the vertices of F as the largest scheme congruence μF in F . The
congruence μF gives rise to a minimal scheme F/μF in the usual way (cf. [10]),
and schemes F1, F2 are said to be strong equivalent if F1/μF1 = F2/μF2 . Clearly,
two FΣ-schemes belong to the same connected component of FlΣ iff they reduce
to the same minimal scheme, which is a terminal object in the given component.

By the standard definition in graph theory, a directed walk in graph G is an
alternating sequence of vertices and edges, which starts and ends with a vertex,
and in which each edge points from the vertex immediately preceding it to the
vertex immediately following it. Let F be an FΣ-scheme, and α = v0e1 . . . envn

be a directed walk in F . By the pattern of α we mean the sequence p(α) =
σ0i1 . . . inσn, where σj , 0 ≤ j ≤ n, is the label of vertex vj and ij identifies
the output of vj−1 where ej originates from. In general, a pattern of walks is
a sequence p = σ0i1 . . . inσn such that σj ∈ Σ ∪ {ick|k ≥ 1} ∪ {ocl|l ≥ 1} and
1 ≤ ij ≤ rank(σj−1). We say that pattern p is viable for vertex u if there exists
a directed walk α in F starting from u such that p = p(α). In this case, end(u, p)
denotes the last vertex of α. It is easy to see that, for every two vertices u and
v of F , uμFv is equivalent to saying that an arbitrary pattern p is viable for u
iff p is viable for v.

The category FlΣ is known to have all pushouts [4]. The pushout object of
a pair of morphisms α : F → G and β : F → H is the scheme F/(θα � θβ),
where θα � θβ is the join (least upper bound) of θα and θβ . Constructing the
coproduct of two schemes belonging to the same connected component of FlΣ
is a similar simple exercise. It is also easy to see that the category FlΣ has
all pullbacks and finite products of schemes belonging to the same connected
component. The construction of pullbacks and products is analogous to that of
their counterparts in the category Set of all sets and mappings.

5 Tree-Reducible Schemes

Let G = (V (G), E(G)) be an arbitrary directed graph. Recall that a subset
S ⊆ V (G) is strongly connected if for every u, v ∈ S there exists a directed
path in G from u to v going through vertices of S only. A strong component is
an (inclusionwise) maximal strongly connected subset. For two vertices u, v ∈
V (G), we say that v is reachable from u, notation reach(u, v), if there exists a
directed path from u to v in G. The closure of a set S ⊆ V (G) is then the set
S̄ = {v ∈ V (G) | reach(u, v) and u ∈ S}. With a slight ambiguity, the notation
S̄ will also be used for the subgraph of G spanned by S̄.

72 M. Bartha

Definition 2. An FΣ-scheme F : n→ p is tree-reducible if the graph obtained
from F by deleting its input channels (together with all adjacent edges) and
shrinking every strong component to one vertex consists of n disjoint trees.

Let Fb denote the subgraph of F determined by its boxes. By Definition 2,
if F is tree-reducible, then every strong component S of Fb has a unique entry
edge by which it can be reached starting from some output channel.

There is an apparent similarity between reducible and tree-reducible flowchart
schemes. Recall from [14] that an FΣ-scheme F is reducible if every strongly
connected subset of vertices in F has a unique entry vertex. Definition 2 above
requires the existence of a unique entry edge, although for strong components
of F only. Eventually, the classes of reducible and tree-reducible schemes are
incomparable.

Every FΣ-scheme F can be unfolded into a tree-reducible scheme in the fol-
lowing way. Recursively, in a top-down manner, whenever a strong component S
of F is found that has k ≥ 2 entry edges, take k identical copies of S̄ and redirect
each entry edge of S into its “own” copy of S̄. The straightforward details of this
procedure are left to the reader. The resulting tree-reducible FΣ-scheme will be
denoted by tr(F). The unfolding determines a morphism ιF : tr(F)→ F in the
category FlΣ . The function tr itself is called tree unfolding.

Lemma 1. Let α : F → G be a morphism in FlΣ. If F is tree-reducible, then
α factors through ιG and an appropriate morphism tr(α) : F → tr(G).

Lemma 1 has a number of important consequences regarding the full subcat-
egory TFlΣ of FlΣ determined by tree-reducible schemes.

Corollary 1. Tree unfolding defines a right adjoint for the inclusion functor
TFlΣ → FlΣ.

Proof. Indeed, by Lemma 1, there is a one-to-one correspondence between mor-
phisms F → G in FlΣ and morphisms F → tr(G) in TFlΣ , provided that F is
tree-reducible. Thus, TFlΣ is a coreflexive subcategory of FlΣ .

The adjunction established in this way implies the following statement by a
general category theoretical argument.

Corollary 2. The category TFlΣ has all pullbacks and pushouts. Every con-
nected component of TFlΣ has finite products, coproducts, and a terminal ob-
ject. The pushouts and coproducts are the same as they are in FlΣ, whereas
the pullbacks, products, and terminal objects are obtained by tree-unfolding the
corresponding objects in FlΣ.

Recall from [5] that in any algebra A, the principal congruence relation of A
induced by a pair (a, b) of its elements is the smallest congruence θ(a, b) joining a
with b. If u and v are two boxes of some FΣ-scheme F such that reach(u, v) and
uμF v, then the principal scheme congruence θ(u, v) of F is called an elementary
contraction.

Strong Retiming Equivalence of Synchronous Schemes 73

Definition 3. A scheme congruence θ of a tree-reducible FΣ-scheme F is tree-
preserving if the scheme F/θ is also tree-reducible.

As the main result of this section, we now present a theorem characterizing
tree-preserving scheme congruences.

Theorem 1. A scheme congruence of a tree-reducible FΣ-scheme F is tree-pre-
serving iff it is the join of elementary contractions.

Now we turn to defining the category SynΣ of synchronous Σ-schemes. The
objects of this category are all accessible SΣ-schemes (synchronous Σ-schemes,
that is). A morphism F → F ′ in SynΣ is a morphism fl(F) → fl(F ′) in FlΣ
that preserves the weight of the edges. (Recall that fl(F) is the the flowchart
scheme determined by F). Accordingly, a scheme congruence of F is one of fl(F)
that is compatible with the weight function. An SΣ-scheme S is tree-reducible
if fl(F) is such. The full subcategory of tree-reducible SΣ-schemes is denoted by
TSynΣ .

There is a simple way to characterize synchronous schemes as ordinary flow-
chart schemes, so that the constructions of Sections 4 and 5 can be lifted into
the categories SynΣ and TSynΣ . Introducing a new symbol ∇, let Σ∇ denote
the extension of Σ by ∇ as a unary operation symbol. For obvious reasons,
vertices labeled by ∇ will be called registers in schemes. With each SΣ-scheme
F , we then associate the FΣ∇-scheme fl∇(F), which is obtained from fl(F) by
subdividing every edge e in it by n registers, where n is the weight of e. In this
manner, SynΣ can be identified with an appropriate subcategory of FlΣ∇ . Any
scheme congruence of an SΣ-scheme F , too, can be specified as the restriction
of an appropriate scheme congruence of fl∇(F) to its non-register vertices.

Let Fl0Σ∇ denote the disjoint union of those connected components of FlΣ∇
the schemes in which obey the exclusion of circular rippling, and do not contain
cycles consisting of registers only. If F is a scheme in Fl0Σ∇ such that some
registers in F have an in-degree greater than one, then unfold F into a scheme
reg(F) that does not have such registers, has the same (Σ)-boxes as F , and
satisfies the condition that, along every path connecting two boxes, the total
number of registers is the same as it is in F . It is easy to see that the unfolding
reg defines a right adjoint for the inclusion functor SynΣ → Fl0Σ∇ . Thus, SynΣ

is a coreflexive subcategory of Fl0Σ∇ . By this observation, the lifting of all results
in Sections 4 and 5 from FlΣ and TFlΣ to SynΣ and TSynΣ follows the general
category theoretical argument already applied under Corollaries 1 and 2.

6 Deciding Strong Retiming Equivalence

In this section we study the relation of strong retiming equivalence on the set of
SΣ-schemes. We shall use the preorders FlΣ and SynΣ simply as binary rela-
tions over the sets FlΣ and SynΣ of all accessible FΣ-schemes and SΣ-schemes,
respectively. In both cases, this preorder will be denoted by →s. Concerning
retiming, →r will stand for the partial order induced on SynΣ by non-negative
legal retiming count vectors. Note that if F →r F ′, then fl(F) = fl(F ′).

74 M. Bartha

Definition 4. The relation of strong retiming equivalence on the set SynΣ is
the smallest equivalence relation containing →s and →r.

Strong retiming equivalence will be denoted by ∼. The relations of retiming
equivalence and strong equivalence, as introduced already in Sections 3 and 4,
will be denoted ∼r and ∼s, respectively.

The practical importance of retiming equivalence has been pointed out in
Section 3. The role of strong equivalence in the optimization of synchronous
systems is self-explanatory: reduction of schemes means reduction in the size of
systems. As to the behavior of schemes, if we assume that the initial configura-
tion in all systems is a standard one by which each register is assigned the same
distinguished datum ⊥, then strong equivalent schemes have the exact same
input-output behavior under all interpretations. See [1] for the details. Simula-
tion equivalence, however, in the sense of Definition 1, is guaranteed only for
a subset of strongly equivalent schemes. This subset of ∼s was identified in [3]
as finitary strong equivalence, and it was proved that simulation equivalence is
the smallest equivalence relation containing ∼r and finitary strong equivalence.
With only a slight generalization of the concept “behavior”, however, it can be
achieved that simulation equivalence coincide with strong retiming equivalence.
This issue will be dealt with in a forthcoming paper.

It is well-known from the literature that strong equivalence of schemes is
decidable. In order to decide if F ∼s F ′, one must construct the minimal schemes
for F and F ′, and see if they are isomorphic. Regarding retiming equivalence,
Murata’s [12] similar result on marked graphs can be adopted to prove that ∼r,
too, is decidable. Our aim is to prove that the join of these two relations remains
decidable. As a first step, we are going to prove the equation

∼=←s ◦ ∼r ◦ →s, (1)

which will help us to decide the relation ∼. Equation (1) says that if two acces-
sible SΣ-schemes F1 and F2 are strong retiming equivalent, then they can be
unfolded into appropriate schemes F ′

1 and F ′
2 that are already retiming equiva-

lent. We could use (1) to decide F1 ∼ F2 only if we knew the extent to which F1
and F2 must be unfolded in order to obtain a suitable pair F ′

1, F
′
2. Our goal is

to provide an upper bound for the extent of this unfolding, and we shall indeed
find one when the scope of (1) is restricted to tree-reducible SΣ-schemes.

Lemma 2. ∼r ◦ ←s⊆←s ◦ ∼r.

Proof. Let F , F ′ and U be SΣ-schemes such that F ∼r U and F ′ →s U . Then
there exists a legal retiming count vector R : F → U and a scheme morphism
α : F ′ → U . Since fl(U) = fl(F), F can be unfolded into a scheme U ′ for which
fl(U ′) = fl(F ′) and α : U ′ → F . For every vertex v of U ′, define R′(v) = R(α(v)).
It is now easy to check that the retiming R′ takes U ′ to F ′.

Corollary 3. ∼=←s ◦ ∼r ◦ →s.

Proof. It is sufficient to prove that the relation ρ =←s ◦ ∼r ◦ →s is transitive.
To this end observe that →s ◦ ←s⊆←s ◦ →s, because the category SynΣ has
all pullbacks. Thus, we have

Strong Retiming Equivalence of Synchronous Schemes 75

←s ◦ ∼r ◦ →s ◦ ←s ◦ ∼r ◦ →s⊆←s ◦ ∼r ◦ ←s ◦ →s ◦ ∼r ◦ →s.

Hence by Lemma 2,

ρ ◦ ρ ⊆←s ◦ ←s ◦ ∼r ◦ ∼r ◦ →s ◦ →s= ρ.

Repeating the proofs of Lemma 2 and Corollary 3 in the subset TSynΣ of
tree-reducible SΣ-schemes, we obtain the following result.

Corollary 4. ∼= tr◦ ←s ◦ ∼r ◦ →s ◦tr−1,
where the relation →s is restricted to the subset of tree-reducible schemes.

Theorem 2. Let F and F ′ be tree-reducible SΣ-schemes such that F ∼r F ′, and
assume that θ is a tree-preserving scheme congruence of F . Then F/θ ∼r F ′/θ,
provided that θ is a scheme congruence of F ′, too.

Proof. We have seen under Theorem 1 that θ is tree-preserving iff it is the join
of elementary contractions. Hence, by the second isomorphism theorem, we can
assume that θ = θ(u, v), where u and v are two distinct internal vertices of F
having the same strong behavior and satisfying the condition reach(u, v).

In our argument we shall make use of the following characterization of the
congruence θ(u, v). Define the relation ξ on the set of boxes of F by: aξb if there
exists a pattern p of walks in fl(F) such that a = end(z1, p) and b = end(z2, p),
where {z1, z2} ⊆ {u, v}. Then θ(u, v) = ξ+, i.e., the transitive closure of ξ.

Let R : F → F ′ be a legal retiming count vector that preserves the congruence
θ. We shall prove that if aξb holds for any two vertices a, b of F , then R(a) = R(b).
Since θ = ξ+, this immediately implies R(a) = R(b) whenever a ≡ b (θ). Thus,
an appropriate retiming count vector R/θ : F/θ → F ′/θ is readily obtained by
defining R/θ (aθ) = R(a) for each group aθ of the congruence θ.

Let us assume that aξb. Then there exists a pattern p of walks for which a =
end(z1, p) and b = end(z2, p), where z1, z2 ∈ {u, v}. Without loss of generality
we can assume that z1 = u and z2 = v. Since u and v have the same strong
behavior in both F and F ′, we have

R(a)−R(u) = R(b)−R(v). (2)

Let p0 be the pattern of an arbitrary path leading from u to v, and consider the
patterns p0, p

2
0(= p0p0), . . . , pk

0 for all k ≥ 1. The number of boxes being finite in
F , there must be two non-negative integers k < l and an internal vertex z such
that

z = end(u, pk
0) = end(u, pl

0).

While keeping the pattern p = p0 fixed, apply (2) iteratively by choosing for u
and v the vertices end(u, pi

0) and end(u, pi+1
0), 0 ≤ i < l. Adding up the last

(l − k) of the corresponding equations, we obtain that

R(z)−R(z) = (l − k) · (R(u)−R(v)),

from which R(u) = R(v) follows immediately. The required equation R(a) =
R(b) can then be derived again from (2).

Theorem 3. The relation of strong retiming equivalence is decidable.

76 M. Bartha

Proof. Let G and G′ be SΣ-schemes. By Corollary 4, G ∼ G′ iff there exist
some tree-reducible schemes F and F ′ such that F →s tr(G), F ′ →s tr(G′)
and F ∼r F ′. See Fig. 1a. Then, in the category TSynΣ, there are morphisms
F → tr(G) and F ′ → tr(G′), which determine two morphisms fl(F)→ fl(tr(G))
and fl(F ′) (= fl(F)) → fl(tr(G′)) in TFlΣ . Let φ and φ′ denote the scheme
congruences of fl(F) induced by these two morphisms.

�
�

�
�

���

�
�
�
�
���

� �

�
���

�
���

F F ′∼r

H∼rH
′

tr(G) tr(G′)
a)

�
�

�
�

���

�
�
�
�
���

�

�
���

�
���

Ĥ

fl(F)=fl(F ′)

fl(tr(G)) fl(tr(G′))
b)

Fig. 1. The proof of Theorem 3 in a diagram

Now construct the product of fl(tr(G)) and fl(tr(G′)) as a tree-reducible FΣ-
scheme Ĥ. Since Ĥ is a product, there exists a morphism fl(F)→ Ĥ that makes
the diagram of Fig. 1b commute. For the scheme congruence θ induced by this
morphism, we thus have θ ⊆ φ and θ ⊆ φ′. On the other hand, φ and φ′ are also
SΣ-scheme congruences of F and F ′, for which F/φ = tr(G) and F ′/φ′ = tr(G′).
It follows that θ, too, is an SΣ-scheme congruence of both F and F ′. Theorem 2
then implies that

H = F/θ ∼r F ′/θ = H ′.

See again the diagram of Fig. 1a.
According to the argument above, one can decide strong retiming equivalence

of G and G′ by the following algorithm.

Step 1. See if fl(G) ∼s fl(G′). If not, then G and G′ are not strong retiming
equivalent. Otherwise goto Step 2.

Step 2. Construct the schemes H and H ′, which are the unfoldings of G and G′

to the extent determined by the product of fl(tr(G)) and fl(tr(G′)) in TFlΣ ,
and test whether H and H ′ are retiming equivalent.

The schemes G and G′ are strong retiming equivalent iff the result of the test
performed in Step 2 is positive.

7 Conclusion

We have worked out an algebraic/category theoretic framework to characterize
two basic equivalence relations of synchronous schemes: strong equivalence and
retiming equivalence. On the basis of this characterization we have proved that
strong retiming equivalence, the join of these two equivalences, is decidable. As

Strong Retiming Equivalence of Synchronous Schemes 77

part of this proof, we have given a characterization of tree-reducible flowchart
schemes and tree-preserving scheme congruences, which is an interesting result
by itself.

In order to prove that strong retiming equivalence (∼) is decidable, we first
showed that G ∼ G′ iff G and G′ can be unfolded into some schemes F and
F ′ that are already retiming equivalent. Our second observation was that if G
and G′ are tree-reducible, then the schemes F and F ′ can be chosen “minimal”
in the sense that their common underlying flowchart scheme is the product of
fl(G) and fl(G′) in the category TFlΣ of tree-reducible Σ-flowchart schemes. The
decidability of ∼ then followed from some known results on flowchart schemes
and marked graphs.

References

1. Bartha, M.: Foundations of a theory of synchronous systems. Theoret. Comput.
Sci. 100 (1992) 325–346

2. Bartha, M.: An algebraic model of synchronous systems. Information and Com-
putation 97 (1992) 97–131

3. Bartha, M., Cirovic, B.: On some equivalence notions of synchronous systems. In:
Ésik, Z., Fülöp, Z., ed., Proceedings, 11th International Conference on Automata
and Formal Languages, Dogogókő, Hungary (2005)

4. Mac Lane, S.: Categories for the Working Mathematician. Springer Verlag, Berlin
(1971)

5. Grätzer, G.: Universal Algebra. Springer-Verlag, Berlin (1968) (1979)
6. Leiserson, C.E., Saxe, J.B.: Optimizing synchronous systems. J. VLSI Comput.

Systems 1 (1983) 41–67
7. Gécseg, F., Peák, I.: Algebraic Theory of Automata. Akadémiai Kiadó, Budapest

(1972)
8. Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace, and fixed-point seman-

tics. Theoret. Informatics Appl. 36 (2002) 181–194
9. Bartha, M.: An equational axiomatization of systolic systems. Theoret. Comput.

Sci. 55 (1987) 265–289
10. Elgot, C.C.: Monadic computations and iterative algebraic theories. In: Rose,

H.E., ed., Logic Colloquium 73, North-Holland, Amsterdam, (1975) 175–230.
11. Elgot, C.C.: Selected Papers. Bloom, S.L., ed., Springer Verlag, New York (1982)
12. Murata, T.: Circuit theoretic analysis and synthesis of marked graphs. IEEE

Transactions on Circuits and Systems vol. CAS-24 7 (1977) 400–405
13. Bloom, S.L., Ésik, Z.: Iteration Theories. Springer Verlag, Berlin (1993)
14. Bloom, S.L., Tindell, R.: Algebraic and graph theoretic characterizations of struc-

tured flowchart schemes. Theoret. Comput. Sci. 9 (1979) 265–286

Prime Normal Form and Equivalence of Simple

Grammars�

Cédric Bastien1, Jurek Czyzowicz1, Wojciech Fraczak1,2,
and Wojciech Rytter3,4

1 Dépt d’informatique, Université du Québec en Outaouais, Gatineau PQ, Canada
{basc01, Jurek.Czyzowicz}@uqo.ca

2 IDT Canada Inc., Ottawa ON, Canada
wojtek.fraczak@idt.com

3 Inst. of Informatics, Warsaw University, Warsaw, Poland
rytter@mimuw.edu.pl

4 New Jersey Institute of Technology, USA

Abstract. A prefix-free language is a prime if it cannot be decomposed
into a concatenation of two prefix-free languages. We show that we can
check in polynomial time if a language generated by a simple context-
free grammar is a prime. Our algorithm computes a canonical represen-
tation of a simple language, converting its arbitrary simple grammar into
Prime Normal Form (PNF); a simple grammar is in PNF if all its non-
terminals define primes. We also improve the complexity of testing the
equivalence of simple grammars. The best previously known algorithm
for this problem worked in O(n13) time. We improve it to O(n7 log2 n)
and O(n5 polylog v) deterministic time, and O(n4 polylog n) randomized
time, where n is the total size of the grammars involved, and v is the
length of a shortest string derivable from a nonterminal, maximized over
all nonterminals. Our improvement is based on a version of Caucal’s
algorithm from [1].

1 Introduction

An important question in language theory is, given a class of languages, find
a canonical representation of any language of this class. Such a representation
often permits to solve various decidability problems related to a given class
of languages, such as equivalence of languages, non-emptiness, etc. Most often
the canonical representation of the language is given by a special form of its
grammar, called a normal form. In this paper, we give an algorithm converting a
simple grammar into its equivalent, unique representation in a form of so-called
Prime Normal Form (PNF). The canonical form of simple grammar was studied
by Courcelle, c.f. [2]. The crucial question that our algorithm is confronted with,

� The research of the first three authors was supported by NSERC and the research
of the fourth author was supported by the grants KBN 4T11C04425 and ITR-CCR-
0313219.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 78–89, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Prime Normal Form and Equivalence of Simple Grammars 79

is whether a simple language is prime, i.e., not decomposable into a concatenation
of two non-trivial prefix-free languages.

In general, the canonical representation of any type of language may be
substantially larger than its original grammar. This is also the case for sim-
ple languages. Hence verifying the equivalence of simple languages by means of
canonical representations may be inefficient. The equivalence problem for sim-
ple context-free grammars is a classical question in formal language theory. It
is a nontrivial problem, since the inclusion problem for simple languages is un-
decidable. A. Korenjak and J. Hopcroft, see [3, 4], proved that the equivalence
problem is decidable and they gave the first, doubly exponential time algorithm
solving it. Their result was improved by D. Caucal to O(n3v(G)) time, see [1].
The parameter n is the size of the simple grammar and v(G) is the length of
a shortest string derived from a nonterminal, maximized over all nonterminals.
Caucal’s algorithm is exponential since v(G) can be exponential with respect to
n. Y. Hirshfeld, M. Jerrum, and F. Moller gave the first polynomial O(n13) time
algorithm for this problem in [5]. We call it the HJM algorithm.

In the second part of the paper we design an algorithm based on a version
of Caucal’s algorithm, that has a better complexity than HJM. More precisely,
our algorithm works in time O(n7 log2 n). On the other hand a variation of our
algorithm works in time O(n5 polylog (v(G))), thus beating the complexity of
Caucal’s algorithm, e.g., for v(G) ∈ Ω(n3). Similarly as the HJM algorithm, we
apply the techniques used in the algorithmic theory of compressed strings, based
on Lempel-Ziv string encoding. The idea of such an encoding is that, instead of
representing a string explicitly, we design a context-free grammar generating
the string as a one-word language. As the combinatorial complexity of such
a grammar can be significantly smaller than the length of the word, it may be
considered as a succinct representation of the word. Such encodings were recently
considered by researchers, mainly in the context of efficient pattern matching.
There is one problem in this field which is of particular interest to us — the
compressed first mismatch problem (First-MP). Given two strings encoded by
a grammar, First-MP looks for the position of the first symbol at which the
strings differ. Polynomial time algorithms for computing First-MP were given
independently in [5] and [6], in very disjoint settings. More powerful algorithms
were given in [7], where a more complicated problem of fully compressed string-
matching was solved. For the purpose of this paper, we will use the result from
[8], which we adopted to obtain a faster algorithm.

Simple languages are applied by IDT Canada to perform packet classification
at wire speed. Classes of packets are described with the aid of simple languages,
and their recognition is made by a so-called Concatenation State Machine, an
efficient version of a stateless pushdown automaton. As shown in [9], there is a
one-to-one correspondence between Concatenation State Machines and simple
grammars. In order to store large sets of classification policies in memory, it
is necessary to reuse their common parts. A natural way to do this consists in
decomposing simple languages into primes, each of which is stored in memory
only once. When a new classification policy is added to memory, we verify if

80 C. Bastien et al.

its prime factors are already stored in the data base. The algorithms described
in this paper are used to decompose classification policies into primes and to
identify primes for reuse.

2 Simple Languages

A context-free grammar G = (Σ,N, P) is composed of a finite set Σ of terminals,
a finite set N of nonterminals disjoint from Σ, and a finite set P ⊂ N×(N∪Σ)∗

of production rules. For every β, γ ∈ (N∪Σ)∗, if (A,α) ∈ P , then βAγ → βαγ. A
derivation β

∗−→ γ is a finite sequence (α0, α1, . . . , αn) such that β = α0, γ = αn,
and αi−1 → αi for i ∈ [1,n].

For every sequence of nonterminals α ∈ N∗ of a grammar G = (Σ,N, P),
we denote by LG(α) the set of terminal strings derivable from α, i.e., LG(α) def=
{w ∈ Σ∗ | α ∗−→w}. Often, if G is known from the context, we will write L(α)
instead of LG(α).

A grammar G = (Σ,N, P) is in Greibach normal form if for every production
rule (A → α) ∈ P , we have α ∈ ΣN∗. A grammar G = (Σ,N, P) is a simple
context-free grammar (simple grammar) if G is a Greibach normal form grammar
and such that whenever A→ aα1 and A→ aα2, for a same a ∈ Σ, then α1 = α2.

A language L ⊆ Σ∗ is a simple language (also called s-language) if L = {ε}
(where ε denotes the empty word) or if there exists a simple grammar G =
(Σ,N, P) such that LG(A) = L, for some A ∈ N . The definition implies that
every nonterminal of a simple grammar defines a simple language. Since simple
languages are prefix codes and are closed by concatenation, the family of simple
languages under concatenation constitutes a free monoid with {ε} as unit. Thus,
every non-trivial simple language L (i.e. L �= {ε} and L �= ∅) admits a unique
decomposition into prime (i.e. undecomposable, non-trivial) simple languages,
L = P1P2 . . . Pn.

3 Prime Normal Form for Simple Grammars

In this section we give an algorithm converting any simple grammar to its canon-
ical representation called Prime Normal Form. A simple grammar is in Prime
Normal Form (PNF) if each of its nonterminals represents a prime. We will use
the following algebraic notation for left and right division in the free monoid
of prefix codes. If L = L1L2 for some prefix codes L,L1, L2, then by L−1

1 L we
denote L2 and by LL−1

2 we denote L1. We call L1 a left divider and L2 a right
divider of L.

Let L be a prefix code and L = P1P2 . . . Pn be its decomposition into primes.
Prime Pn will be called final prime of L, and it will be denoted by f(L). In
particular, if L is a prime, then f(L) = L.

Lemma 1. Let G = (Σ,N, P) be a simple grammar. For every X ∈ N , there
exists Y ∈ N , such that f(L(X)) = L(Y).

Prime Normal Form and Equivalence of Simple Grammars 81

Proof. Let w ∈ L(X)f(L(X))−1, and X
∗−→wα be the leftmost derivation in G,

with α ∈ N+. Since L(α) = f(L(X)) and L(α) is a prime, α consists of a single
nonterminal, i.e., α ∈ N . ��

Let w0 α0 → . . .→ wi αi → . . .→ wnαn be the leftmost derivation X
∗−→w, with

w0 = ε, α0 = X , wn = w, αn = ε, wi ∈ Σ∗, and αi ∈ N∗, for i ∈ [0,n]. We are
interested in the subsequence π(X,w) = Y0, Y1, . . . , Yj of α0, α1, . . . , αn, which
consists of those elements of α0, . . . , αn that are single nonterminals. E.g., for
the leftmost derivation of abcdef ∈ L(X):

X → a Y Y → ab Y → abc Y → abcd Y Z → abcdeZ → abcdef

we have π(X, abcdef) = X,Y, Y, Z.

Definition 1. Let G = (Σ,N, P) be a simple grammar. We define relation D
over N ∪ {ε} as follows. (X,Y) ∈ D if and only if:

– there exists a rule (X → aαY) in P for some a ∈ Σ and α ∈ N∗, or
– Y = ε and there exists a rule (X → a) in P for some a ∈ Σ.

Relation D can be seen as a digraph (N ∪ {ε},D, ε) with sink ε. In a digraph
with a sink, vertex v is called a d-articulation point of vertex u if and only if
v is present on every path from u to the sink. It was shown in [10] that the
order of first (or last) occurrences of the d-articulation points of a vertex v is
the same in all paths from v to the sink. Thus, it is natural to represent the
set of all d-articulation points for a given vertex v as an ordered list of vertices,
(u0, u1, . . . , un), where u0 = v and un is the sink.

In [10], it was shown that a prefix code L is prime if and only if the initial
state v1 of the minimal deterministic automaton for L does not have any d-
articulation point except sink and v1 itself. Moreover, the list of d-articulation
points (v1, v2, . . . , vn) corresponds to the prime decomposition of L, the factors
being the languages defined by automata having vi as the initial state and vi+1
as the final state (with all outgoing transitions of the final state removed), for
i ∈ [1,n), respectively.

Lemma 2. For every path π from X to ε in D there exists a word w ∈ L(X),
such that π = π(X,w). Conversely, for every w ∈ L(X), π(X,w) defines a path
from X to ε in D.

We say that a grammar G = (Σ,N, P) is reduced if there is no two different
nonterminals defining the same language, i.e., for all X,Y ∈ N , if L(X) = L(Y)
then X = Y . By Lemma 1, the set of nonterminals F (X) def= {Y ∈ N | L(Y) =
f(L(X))} is nonempty. If the underlying grammar is reduced then F (X) consists
of a single nonterminal which, by convenient abuse of notation, will be denoted
by f(X).

Theorem 1. Let G = (Σ,N, P) be a reduced simple grammar. For every X ∈
N , L(X) is prime if and only if X does not have d-articulation points in D
except sink and X itself. Moreover, if Y ∈ N is a d-articulation point of X then
L(Y) is a right divider of L(X).

82 C. Bastien et al.

Proof. By Lemma 1, since G is reduced, every derivation starting in X is of form
X

∗−→w′ f(X) ∗−→w. Thus, for every w ∈ L(X), π(X,w) contains f(X), i.e., f(X)
is a d-articulation point of X in D.

Let Y be a d-articulation point of X in D. By Lemma 2, every derivation
starting in X passes by Y , thus Y is a d-articulation point for X in the (infinite)
deterministic automaton for X , which implies that L(Y) is a right divider of
L(X), cf. [11]. ��

Theorem 2. Given a reduced simple grammar G = (Σ,N, P), we can find f(X)
for all X ∈ N in linear time.

Proof. By Theorem 1, the non-terminal f(X) is exactly the second last d-
articulation point for X in D. Calculating f(X) for all X ∈ N can be done
in linear time, by using an algorithm for finding dominators in flow graphs,
cf. [12]. ��

The algorithm for transforming a simple grammar G = (Σ,N, P) into PNF,
called PNF(G,S), is presented in Figure 1.

Input: Simple grammar G = (Σ, N, P) and S ∈ N+.

Output: Simple grammar G′ in PNF and S′ ∈ N+, such that LG(S) = LG′(S′).

1. Reduce G.
Find redundant nonterminals by checking if L(X) = L(Y), for all X, Y ∈ N .
Each redundant nonterminal is substituted in P and in S, and removed from N .

2. For every X ∈ N , find f(X) ∈ N .
Construct the digraph D and find the second-last d-articulation point for X.
If for every X ∈ N , X = f(X), then return (G, S).

3. Construct a new grammar G′ = (Σ, N, P ′) and new S′:

Define morphism h : N �→ N∗ as: h(X)
def
=

j
X if X = f(X)
Xf(X) otherwise.

Set S′ to h(S), and P ′ as follows, for a ∈ Σ, X, Y ∈ N , α ∈ N∗:
(a) If (X → aα) ∈ P and X = f(X), then (X → ah(α)) is in P ′.
(b) If (X → aαf(X)) ∈ P and X �= f(X), then (X → ah(α)) is in P ′.
(c) If (X → aαY) ∈ P , X �= f(X) and Y �= f(X), then (X → ah(α)Y) is in P ′.

4. Set G to G′, S to S′ and go to 1.

Fig. 1. Algorithm PNF(G, S)

We present an example of the execution of the algorithm. The input con-
sists of a simple grammar G = {(X → aAA), (X → bY Y), (Y → aY), (Y →
bBA), (A → a), (B → aXA), (B → b)}, and a simple language represented as a
word S = XA over nonterminals of G. We obtain the grammar in PNF while
keeping track of the decomposition of S. For each iteration, we give the value of
S, the grammar G, the digraph D (solid lines), the d-articulation tree (dotted
lines), and the values f(x) for x ∈ {X,Y,A,B} and h(x) for x ∈ {X,Y,A,B, S}.

Prime Normal Form and Equivalence of Simple Grammars 83

Iteration 1:

S = XA
X = aAA + bY Y
Y = aY + bBA
A = a
B = aXA + b

X

A

B Y

ε

x f(x) h(x)
X A XA
Y A Y A
A A A
B B B
S − XAA

Iteration 2:

S = XAA
X = aA + bYAY
Y = aY + bB
A = a
B = aXAA + b

X

Y

BA

ε

x f(x) h(x)
X X X
Y B Y B
A A A
B B B
S − XAA

Iteration 3:

S = XAA
X = aA + bYBAY B
Y = aY + b
A = a
B = aXAA + b

X

A B

Y

ε

x f(x) h(x)
X X X
Y Y Y
A A A
B B B
S − XAA

Theorem 3. The algorithm PNF(G,S) correctly computes a PNF simple gram-
mar G′ and S′ such that LG(S) = LG′(S′).

Proof. Step 1 does not change the semantics of any nonterminal, so it reduces
G to an equivalent simple grammar. Step 2 effectively finds final primes for all
nonterminals. Step 3 transforms the grammar G into G′ by right-factorizing
every non-prime nonterminal X by f(X): If X is prime then LG(X) = LG′(X),
otherwise LG(X) = LG′(Xf(X)). Every production (X → α) ∈ P is rewritten
accordingly into a corresponding production (X → β) ∈ P ′. Hence, for all
X ∈ N , LG(X) = LG′(h(X)). Thus morphism h converts grammar G together
with S to a grammar G′ with S′ = h(S) such that LG(S) = LG′(S′). Every
iteration of the program cuts the length of non-prime nonterminals, in terms of
their prime decomposition, by one. Thus, the total number of iterations equals
the maximum length of the prime decompositions of nonterminals of the initial
grammar. Hence the algorithm terminates. By the exit condition from Step 2,
each nonterminal is prime, hence G is in PNF. ��

Both steps, 2 and 3, of the algorithm may be computed in linear time, hence
the complexity of each iteration of the main loop is dominated by grammar
reduction from step 1.

The polynomial time algorithm from Section 6, repeated O(n2) times may be
used to perform the grammar reduction. However, for grammar G = {(A1 →
aA2A2), (A2 → aA3A3), . . . , (An−1 → aAnAn), (An → a)}, language LG(A1)
has an exponential number of primes with respect to the size of G. Hence the
number of iterations of the main loop of PNF(G,S) may be exponential and so

84 C. Bastien et al.

may be the size of the resulting PNF grammar. Since simple languages constitute
a free monoid, the PNF form is unique.

Corollary 1. Every simple language L can be represented by a PNF simple
grammar G = (Σ,N, P) and a starting word S ∈ N∗, such that LG(S) = L. Such
a representation is unique. The problem of constructing the PNF representation
of L given by a simple grammar is decidable. The PNF representation may be of
exponential size with respect to the size of the original grammar.

4 First Mismatch-Pair Problem

Our approach to transform Caucal’s algorithm for the equivalence problem of
simple grammar, cf. [1], into a polynomial time one (with respect to the size of
the input grammar) is to use compressed representations of sequences of nonter-
minals, instead of using explicit representations.

We will use the terminology of acyclic morphisms because it is more conve-
nient in presenting our algorithms. It is basically equivalent to the representation
of a single word by a context-free grammar generating exactly one word, or to a
“straight line program”.

A morphism over a monoid M is an application H : M �→ M such that
H(1M) = 1M and H(x · y) = H(x) · H(y), for all x, y ∈ M . A morphism
H : M �→ M is fully defined by providing the values for the generators of M .
Thus, a morphism H over a finitely generated free monoid N∗ is usually defined
by providing H : N �→ N∗. A morphism H : N → N+ is said to be acyclic
if we can order elements of N in such a way that for each A ∈ N , we have:
H(A) = A or A > B for each symbol B occurring in the string H(A). For an
acyclic morphism H over N∗ we denote H |N | by H∗, since H |N |+1 = H |N |.
If H∗(α) = w then we say that (H,α) is a compressed representation of w.
The size of w can be exponential with respect to the size of its compressed
representation.

Let G = (Σ,N, P) be a simple grammar. We say that an acyclic morphism
H : N �→ N+ is self-proving in G if for each A ∈ N we have:

– If A→ aα then H(A)→ a β and H∗(α) = H∗(β); and
– If H(A)→ a β then A→ aα and H∗(α) = H∗(β).

The concept of self-proving relations was introduced by Courcelle, c.f [13].
The idea of Courcelle and the following Lemma are reformulated in the terms
of acyclic morphisms and given here for completeness.

Lemma 3. If H is an acyclic morphism self-proving in G = (Σ,N, P), then
LG(x) = LG(H(x)), for every x ∈ N∗.

The crucial tool in the polynomial-time algorithms is the compressed first
mismatch-pair problem, First-MP :

Prime Normal Form and Equivalence of Simple Grammars 85

Input: an acyclic morphism H : N �→ N+ and two strings x, y ∈ N∗;
Output:

– First-MP(x, y,H) = nil, if H∗(x) = H∗(y);
– First-MP(x, y,H) = failure, if one of H∗(x), H∗(y) is a proper

prefix of the other;
– First-MP(x, y,H) = (A,B) ∈ N × N , where (A,B) is the first

mismatch pair, i.e., the first symbols occurring at the same po-
sition in H∗(x) and in H∗(y), respectively, which are different.

We say that a morphism H is binary if |H(A)| ≤ 2 for each A ∈ N . The
following fact can be shown using the algorithm from [8].

Lemma 4. Assume that given acyclic morphism H : N �→ N+ is binary and
that the length of x and y is at most O(|N |), then we can solve First-MP(x, y,H)
in time O(k2 · h2), where k = |N | and h

def= min{k ≥ 0 | Hk = Hk+1} is the
depth of the morphism.

5 The Equivalence Algorithm

Conceptually it is easier to deal with grammars in binary Greibach Normal
Form (denoted GNF2). This means that each side of the production is of the
form (A→ aα), where a ∈ Σ and α ∈ {ε} ∪N ∪N2.

Lemma 5. For each simple grammar G of total size n (the total number of
symbols describing G) there is an equivalent simple grammar G′ in GNF2 with
only O(n) nonterminal symbols. G′ can be constructed from G in O(n) time.

The total size of a grammar in GNF2 is of a same order as the size of N . Hence
by the size of a grammar G = (Σ,N, P), we mean n = |N |.

All known algorithms for the equivalence problem for simple grammars are
based on the possibility of computing the quotient of one prefix language by
another, assuming that the quotient exists and the languages are given as two
nonterminals of a simple grammar.

More precisely, let A and B be two nonterminals of a simple grammar G =
(Σ,N, P), such that L(A) = L(B) ·L, for some language L ⊆ Σ∗. The language
L can be derived from A by a leftmost derivation following any word w from
L(B), i.e., A ∗−→wγ, for γ ∈ N∗, and L(γ) = L.

Let ||A|| denote the length of the shortest word derivable from A.

Lemma 6. Let G be a simple grammar of size n. We can compute the lengths
of shortest words derivable from all nonterminals of G in time O(n log n).

Proof. Finding ||A|| for all A ∈ N corresponds to the single-source shortest paths
problem in an and/or graph, which, using Dijkstra algorithm, can be solved in
time O(n log n). ��

Lemma 7. Let A and B be two nonterminals of a simple grammar G=(Σ,N, P)
such that L(A) = L(B) · L, for some L ⊆ Σ∗. We can compute γ ∈ N∗ such
that L(γ) = L in time O(n). It is guaranteed that |γ| ≤ n.

86 C. Bastien et al.

Proof. Consider the parse tree for the derivation of a shortest word w from A.
The idea is to find a path down the tree which cuts off left of this path subtrees
γ generating prefix of w of length ||B||. Since w is a shortest word, no path of
the parse tree contains two occurrences of the same nonterminal hence the depth
of the tree is at most n. Therefore |γ| ≤ n and computing the value takes O(n)
time. ��
The result of the algorithm for finding the quotient of A by B as described in
the proof of Lemma 7 will be denoted by quot(A,B). The algorithm will give a
result for any pair of nonterminals A and B, as long as ||A|| ≥ ||B||. Notice that
L(A) = L(B quot(A,B)) only if L(B) is a left divider of L(A).

Lemma 3 is the starting point for the design of the algorithm EQUIVA-
LENCE. Assume that we fix a linear order A1 < A2 . . . < An of nonterminals,
such that whenever i < j, we have ||Ai|| ≤ ||Aj ||. The idea of the algorithm is
to construct a self-proving morphism H or, in the process of its construction, to
discover a failure which contradicts L(A) = L(B). The main point of the algo-
rithm is to keep pairs of long strings in compressed form. We keep only strings of
linear length, their explicit representations are determined by the morphism H .
Each time a new rule is generated by setting H(A) = Bγ, where γ = quot(A,B),
we create pairs (α, β) such that A→ aα and Bγ → a β, for every letter a of the
terminal alphabet. We keep the generated pairs in set Q. To each pair we apply
operation First-MP, which “eliminates” the next nonterminal, or finds that we
have a pair of identical strings, such pairs are removed from Q. By doing that,
the algorithm is checking locally for the proof of the nonequivalence of A and
B. If the nonequivalence is not discovered and there is nothing to process, i.e.,
Q is empty, the algorithm returns the value TRUE, meaning L(A) = L(B).

The algorithm EQUIVALENCE is presented in Fig. 2. For technical reasons
(to simplify the description of the algorithm) we assume that First-MP(x, y,H)
gives ordered pairs in the sense that if First-MP(x, y,H) = (A,B) then A > B.
For α ∈ N+ and a ∈ Σ, by α

a−→ we denote that there is a β ∈ N∗ such that
α → a β, and by α � a−→ that there is not. We write (α, β) a−→(α′, β′) to say that
α→ aα′ and β → a β′.

Lemma 8. The algorithm is correct. The algorithm makes O(n) iterations.

Proof. In each iteration, either a pair of strings is removed from Q, or a nonter-
minal is “eliminated” and no more than |Σ| pairs of strings are inserted into Q.
The crucial property is that whenever H(A) = Bγ, then the nonterminals in Bγ
are of smaller rank than A, ensuring that H is acyclic. Note also that First-MP
returns a pair (A,B) such that H(A) = A, therefore a nonterminal can only be
“eliminated” once. After at most n − 1 eliminations, First-MP will either find
that H∗(β1) = H∗(β2) and remove the pair from Q or return failure. Thus, the
maximum number of iterations is O(n).

Correctness follows from Lemma 3. ��
Corollary 2. The algorithm EQUIVALENCE(X,Y,G) works in time
O(nF (n)), where n is the size of G, and F (n) is the complexity of the First
Mismatch-Pair Problem.

Prime Normal Form and Equivalence of Simple Grammars 87

Input: Simple grammar G = (Σ, N, P) and nonterminals X, Y ∈ N ;

Output: TRUE if LG(X) = LG(Y), FALSE otherwise.

Initialization:
Q := {(X, Y)};
for each A ∈ N do H [A] := A;

while Q is not empty do
(β1, β2) := an element of Q;
switch (First-MP(β1, β2, H)) do

case nil : remove (β1, β2) from Q;
case failure : return FALSE;
case (A,B) :

γ := quot(A, B);
H [A] := Bγ; /* The nonterminal A is “eliminated” */
for each a ∈ Σ do

if (A, Bγ)
a−→(β1, β2) then insert (β1, β2) into Q;

if (A
a−→ and B � a−→) or (A � a−→ and B

a−→) then return FALSE;
return TRUE;

Fig. 2. Algorithm EQUIVALENCE (X, Y, G)

Lemma 9. Every instance of First-MP(α, β,H) in EQUIVALENCE (X,Y,G)
can be solved in time:

1. O(n6 log2 n) and
2. O(n4 polylog v(G)).

where n is the size of G, and v(G) is the length of a shortest string derivable
from a nonterminal, maximized over all nonterminals.

Proof. In the proof we use twice Lemma 4.

1. Assume H is an acyclic morphism over N , where n = |N | such that |H(A)| ≤
n for each A. Then we can construct a morphism Hb such that H∗

b = H∗,
over a set of k ≤ n2 nonterminals and with depth h = O(n log n).
The transformation of the morphism can be done similarly to a balanced
transformation into a Chomsky normal form. If H(A) = B1B2 . . . Bn then
we introduce n− 2 new auxiliary nonterminals to change it into a balanced
binary tree generating B1B2 . . . Bn from A. We need O(n) new nontermi-
nals per each original one, altogether the number of nonterminals increases to
O(n2), i.e., k is in O(n2). However the depth is changed only logarithmically.
Observe that on each top down path in generation we have at most n orig-
inal nonterminals, all of them should be different, and at most O(n log n)
auxiliary nonterminals, i.e., h is in O(n log n). Now, point 1 follows from
Lemma 4.

2. We can use the technique from [14] which transforms each grammar gen-
erating a single word u into a grammar of depth O(log |u|) by introducing
O(n polylogn) new nonterminals. Then Lemma 4 can be applied. ��

88 C. Bastien et al.

The series of lemmas gives directly the following theorem, due to the fact that
after binarization of the morphism the number of variables grows quadratically
and the depth only grows by a logarithmic factor.

Theorem 4. The algorithm EQUIVALENCE (X,Y,G) deciding on the equiv-
alence of two nonterminals X and Y in a simple grammar G, works in time
O(n7 log2 n) and O(n5 polylog v(G)), where n is the size of G, and v(G) is the
length of a shortest string derivable from a nonterminal, maximized over all
nonterminals.

6 Randomized Algorithm for First-MP

We reduce equality of two compressed texts H∗(A) and H∗(B), to equality of
two polynomials of degree at most max(|H∗(A)|, |H∗(B)|). It is essential that the
uncompressed lengths of strings H∗(A) and H∗(B) is only singly exponential. It
follows from the construction of the operation quot which involves only shortest
strings derivable from nonterminals of the grammar G.

Lemma 10 (Randomized Equality Testing). We can check if H∗(A) =
H∗(B) in O(n polylogn) randomized time.

Lemma 11. The first mismatch-pair problem can be solved by a randomized
algorithm in time O(n2 polylogn).

Proof. We can check the equality of two prefixes of H∗(A) and H∗(B) at the
same time as the equality of H∗(A) and H∗(B). This can be done by changing H
into H ′ which generates only corresponding segments. We omit the details. Then
Lemma 10 can be applied. If we can compute the equality of prefixes then we can
do a binary search to compute the first mismatch. We have to add as a coefficient
the number of iterations in the binary search. This number is logarithmic with
respect to the lengths of uncompressed strings, hence it is O(n), since the lengths
are only singly exponential. This completes the proof. ��
Theorem 5. We can solve the equivalence problem for simple grammars by a
randomized algorithm in O(n4 polylogn) time.

7 Conclusion

We have given an algorithm converting any simple grammar to its canonical
representation called Prime Normal Form. We also improved the complexity
of the best existing algorithm verifying equivalence of simple languages. This
result may be used to reduce simple grammars, which is the most expensive step
of the PNF algorithm. Despite this improvement, this algorithm still works in
exponential time in the worst case, since its output may be of exponential size.
However, this theoretical limitation does not seem to occur in practice in the
context of network packet filtering and classification.

One interesting open problem is to propose a canonical representation of
a simple grammar, and an algorithm computing it, such that the size of this
representation is polynomial in the size of the original grammar.

Prime Normal Form and Equivalence of Simple Grammars 89

References

1. Caucal, D.: A fast algorithm to decide on simple grammars equivalence. In: Optimal
Algorithms. Volume 401 of LNCS. Springer (1989) 66–85

2. Courcelle, B.: Une forme canonique pour les grammaires simples deterministes.
RAIRO informatique (1974) 19–36

3. Korenjak, A.J., Hopcroft, J.E.: Simple deterministic languages. In: Proc. IEEE
7th Annual Symposium on Switching and Automata Theory. IEEE Symposium on
Foundations of Computer Science (1966) 36–46

4. Harrison, M.: Introduction to formal language theory. Addison Wesley (1978)
5. Hirshfeld, Y., Jerrum, M., Moller, F.: A polynomial algorithm for deciding bisimi-

larity of normed context-free processes. Theoretical Computer Science 158 (1996)
143–159

6. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In:
ESA. Volume 855 of LNCS. Springer (1994) 460–470

7. Karpinski, M., Rytter, W., Shinohara, A.: Pattern-matching for strings with short
descriptions. In Galil, Z., Ukkonen, E., eds.: Proceedings of the 6th Annual Sympo-
sium on Combinatorial Pattern Matching. Number 937, Espoo, Finland, Springer-
Verlag, Berlin (1995) 205–214

8. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching for
strings in terms of straight-line programs. Journal of Discrete Algorithms 1 (2000)
187–204

9. Debski, W., Fraczak, W.: Concatenation state machines and simple functions. In:
Implementation and Application of Automata, CIAA’04. Volume 3317 of LNCS.
Springer (2004) 113–124

10. Czyzowicz, J., Fraczak, W., Pelc, A., Rytter, W.: Prime decompositions of regu-
lar prefix codes. In: Implementation and Application of Automata, CIAA 2002.
Volume 2608 of LNCS. Springer, Tours, France (2003) 85–94

11. Fraczak, W., Podolak, A.: A characterization of s-languages. Information Process-
ing Letters 89 (2004) 65–70

12. Georgiadis, L., Tarjan, R.E.: Finding dominators revisited: extended abstract. In:
Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2004, SIAM (2004) 869–878

13. Courcelle, B.: An axiomatic approach to the Korenjak-Hopcroft algorithms. Math-
ematical Systems Theory 16 (1983) 191–231

14. Rytter, W.: Application of Lempel–Ziv factorization to the approximation of
grammar-based compression. Theoretical Computer Science 302 (2003) 211–222

An Incremental Algorithm for Constructing

Minimal Deterministic Finite Cover Automata

Cezar Câmpeanu1, Andrei Păun2,�, and Jason R. Smith2

1 Department of Computer Science and Information Technology,
University of Prince Edward Island, Charlottetown, P.E.I., Canada C1A 4P3

ccampeanu@upei.ca
2 Department of Computer Science/Institute for Micromanufacturing,

College of Engineering and Science, Louisiana Tech University,
Ruston, P.O. Box 10348, Louisiana, LA-71272, USA

{apaun, jrs026}@latech.edu

Abstract. We present a fast incremental algorithm for constructing
minimal DFCA for a given language. Since it was shown that the DFCA
for a language L can have less states than the DFA for L, this technique
seems to be the best choice for incrementally building the automaton for
a large language, especially when the number of states in the DFCA is
significantly less than the number of states in the corresponding minimal
DFA. We have implemented the proposed algorithm and have tested it
against the best known DFCA minimization technique.

1 Introduction

We have witnessed in recent years a growing interest in the design of incremental
algorithms for finite automata [1–10]. The reason behind the (renewed) interest
for such incremental algorithms used for building a minimal Deterministic Finite
Automata (DFA) for a given dictionary (finite language) comes from the obser-
vation that such an incremental algorithm could have much smaller memory
requirements than a “global” minimization algorithm with little or no increase
in the time complexity of the overall minimization process.

The small memory requirements for incremental algorithms (as opposed to
“classical” minimization techniques) come from the fact that the DFA for a finite
language is built word-by-word and minimized as words are inserted into the
DFA. In this way the state complexity (and thus the memory requirements) of the
incrementally built DFA could remain small as compared to the state complexity
of a trie built for the whole dictionary as a first step and then minimizing the
trie into a small DFA using a fast algorithm such as Hopcroft’s which requires
O(n log(n)) time and O(n) space.

In the current paper we continue the research work in the incremental algo-
rithms area, with the observation that for finite languages there is the recently
defined concept of Deterministic Finite Cover Automata (DFCA) [11]. To con-
serve even more memory during the intermediate steps of the construction of the
� Corresponding author.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 90–103, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Incremental Algorithm for Constructing Minimal DFCA 91

automaton we will devise an incremental algorithm for DFCA. We have proved
in [12] that when transforming an NFA into a DFA and also into a DFCA the
DFA can have exponentially more states than the DFCA; thus, there is a large
class of languages for which the DFCA is the desirable representation as op-
posed to the DFA. For the recent results and properties of DFCA we refer the
reader to [11, 13, 14, 12, 15, 16, 17]. We note that a Hopcroft-type algorithm (with
O(n log(n)) time and O(n) space complexities) for the minimization of DFCA
was described in [15], but no incremental algorithms for DFCA are known. An-
other advantage of incremental solutions, beside efficiency, is maintenance, since
the technique for increasing the number of words in the dictionary is already
built-in. We fill this gap by describing an incremental algorithm for DFCA in
the current paper. We have implemented in the Grail+ package [18] both the al-
gorithm from [15] and the incremental algorithm proposed in the current paper;
the preliminary tests suggest that the incremental algorithm is far superior with
respect to the memory requirements as opposed to the Hopcroft-like algorithm,
while no noticeable slow-down was observed for the languages tested.

The presented algorithm has complexity O(kn) in time and O(n2) in space
for adding a word of size k into a DFCA with n states. The time complexity is
considered linear in literature in such a case (see [5]) due to the fact that the
size of a word from the language is usually much smaller than the size of the au-
tomaton accepting the language. Thus, we provide a fast incremental algorithm
(having the same time complexity as the known incremental algorithms for DFA
described in [10]), but with a small increase in the memory requirements. This
increase is small since, in practice, the complexity n is usually of logarithmical
order of the complexity (trie size) of non-incremental algorithms. We will give
an example of a language containing 2n words for which the Hopcroft-like al-
gorithm for DFCA requires O(2n) space, whereas our algorithm requires O(n2)
space.

For more information on incremental algorithms for DFA we refer the reader
to [1, 2, 3, 4, 5, 7, 8, 9, 10]. It is worth noting that the paper [3] could be very inter-
esting as it provides a comparison between the major algorithms (incremental/
non-incremental) for the DFA, the comparison being performed using various
dictionaries.

2 Preliminaries

We assume the reader is familiar with the basic notations of formal languages and
finite automata, cf. e.g. [19, 20, 21]. The cardinality of a finite set A is denoted
with #A, the set of words over a finite alphabet Σ is denoted Σ∗, and the empty
word is λ. The length of a word w ∈ Σ∗ is denoted |w|. The set of words over Σ
of length at most (respectively, at least) n is denoted Σ≤n (respectively Σ≥n).

For a DFA D = (Σ,Q, q0, δ, F), we can always assume, without loss of gen-
erality, that Q = {0, 1, . . . ,n − 1} and q0 = 0; we will use this every time is
convenient for simplifying our notations. If L is a finite language, we denote by
l the maximum among the length of words in L.

92 C. Câmpeanu, A. Păun, and J.R. Smith

Definition 1. A language L′ over Σ is called a cover language for the finite
language L if L′∩Σ≤l = L. A deterministic finite cover automaton (DFCA) for
L is a deterministic finite automaton (DFA) A, such that the language accepted
by A is a cover language of L.

Definition 2. Let x, y ∈ Σ∗. We define the following similarity relation by:
x ∼L y if for all z ∈ Σ∗ such that xz, yz ∈ Σ≤l, xz ∈ L iff yz ∈ L, and we write
x �∼L y if x ∼L y does not hold.

Definition 3. Let A = (Q,Σ, δ, 0, F) be a DFA (or a DFCA). We define, for
each state q ∈ Q, level(q) = min{|w| | δ(0, w) = q}.

Definition 4. Let A = (Q,Σ, δ, 0, F) be a DFCA for L. We consider two states
p, q ∈ Q and m = max{level(p), level(q)}. We say that p is similar with q in
A, denoted by p ∼A q, if for every w ∈ Σ≤l−m, δ(p, w) ∈ F iff δ(q, w) ∈ F . We
say that two states are dissimilar if they are not similar.

The following theorem gives the procedure to “merge” two similar states.

Theorem 1. Let A = (Q,Σ, δ, s, F) be a DFCA of L. Suppose that for p, q ∈
Q, p ∼A q, p �= q and level(p) ≤ level(q). Then we can construct a DFCA,
A′ = (Q′, Σ, δ′, s, F ′), for L such that Q′ = Q−{q}, F ′ = F −{q}, and for each
t ∈ Q′ and a ∈ Σ we have

δ′(t, a) =
{
δ(t, a) if δ(t, a) �= q,
p if δ(t, a) = q

.

We say that q is merged into p if we can apply the above theorem for p and q.

Definition 5. A DFCA A for a finite language is a minimal DFCA if and only
if any two different states of A are dissimilar.

Theorem 2. Any minimal DFCA of L has the same number of states.

We refer the reader to [11] for the proofs of the above results.

3 Adding a Word to the Language of a DFCA

In this section we will give the algorithm for adding a word to the language
accepted by a minimal DFCA while keeping the new DFCA minimal. For better
readability, we will set the notations for the subsequent results: L ⊂ Σ∗ is a finite
language over an alphabet Σ and l is the length of the longest word(s) in L. We
also consider C = (Σ,QC , δC , 0, FC) a minimal DFCA for L (L = L(C) ∩Σ≤l),
where QC = {0, 1, . . . ,n − 1}. Let w ∈ Σ∗, w = w1 . . . wk, wi ∈ Σ, 1 ≤ i ≤ k
be the new word to be added to the language L; thus, we want to construct the
minimal DFCA A recognizing the language L ∪ {w}.

An Incremental Algorithm for Constructing Minimal DFCA 93

The minimal DFA accepting {w} is denoted W = (Σ,QW , 0, δw, FW), where

QW = {0, 1, . . . , k + 1},
δw(i, wi+1) = i + 1, for all 0 ≤ i < k,

δw(i, a) = k + 1, for all 0 ≤ i ≤ k and a �= wi, or i = k + 1,
FW = {k}.

Let us denote by si = δC(0, w1 . . . wi), and s0 = 0. We will consider and
construct different algorithms for two cases: k ≤ l or k > l.

3.1 Adding a Word Shorter Than the Longest Word in the DFCA,
i.e., Case k ≤ l

We consider now the case where the newly added word w has length less than
or equal to l. We will first modify the cover automaton C such that the new
automaton A will accept a cover language for L ∪ {w}. The construction is the
standard Cartesian product between two automata [19]. We observe that the
automaton W has a particular shape (a “line”), making many of the states in
the Cartesian product unreachable.

Before giving the actual construction we note that the states of the form
(p, k+1) with p ∈ QC from the Cartesian product will have the same transitions
as in the automaton C. Moreover, such a state is final in A if and only if p ∈ FC .
Another crucial observation is that for each (p, i) of the new automaton where i
is not the sink state of W (i.e. i �= k + 1), p = si. Due to the particular shape of
the automaton W and the fact that C is deterministic, we have that the number
of such states (p, i) is equal to the number of different prefixes for w. We now
know that the number of states that can be reachable from the start state (0, 0)
can be at most #QC +k+1: #QC states of the form (p, k+1) and at most k+1
states of the form (p, i) with i �= k + 1. Thus, the original automaton C can be
“embedded” in the new automaton with its states becoming the states (p, k+1)
in the Cartesian product. It should be clear that the following construction is
equivalent to the standard Cartesian product between C and W .

We now construct the DFA A = (Σ,QA, δA, 0A, FA), with QA = QC ∪ QW ;
each state q ∈ QC is denoted in QA by (q, k + 1) and each state i ∈ QW is
denoted by (si, i). The initial state is (s0, 0) = (0, 0), the set of final states is
FA = {(q, s) | q ∈ FC or s = k}, and the transition function δA is given by the
the following formula:

δA((p, i), a) =
{

(si+1, i + 1) if i ≤ k, p = si, and wi+1 = a
(δC(p, a), k + 1) otherwise.

We can now use a standard breadth first search (BFS) algorithm to com-
pute/update the levels of the states in QA, as well as detecting any unreachable
states of the form (p, k + 1).

The next step is to minimize this DFCA; we are now interested in detecting
all the similarities in the automaton A. To do this we will use the notions level

94 C. Câmpeanu, A. Păun, and J.R. Smith

and gap of the states; level was defined in Section 2, while the gap between each
pair of states will be a matrix called the “gap” table [16]. We define the gap
between two states p and q (in the automaton C) as the length of the shortest
word z ∈ Σ∗ that distinguishes p from q:

gapC(p, q) = min({|z| | δC(p, z) ∈ FC and δC(q, z) �∈ FC}
∪{|z| | δC(p, z) �∈ FC and δC(q, z) ∈ FC}).

The gap in the automaton A is defined similarly.

Remark 1. The level for reachable states (p, i) is at least the level of the state p,
for all values of i, since we do not introduce any “shortcuts”. For a state (p, i) ∈
QA, if i < k, then levelA((p, i)) = i and if i = k + 1, we have levelA((p, i)) ≥
levelC(p).

We shall call from now on the states (p, k+1), “original states” and the states
(si, i), “cloned” states (see also [2, 10]).

If x ∈ Σ∗ is not a prefix of w, we have δA((0, 0), x) = (δC(0, x), k+1). On the
other hand, if x is a prefix of w, i.e., x = w1 . . . wi, we have δA((0, 0), x) = (si, i).

Lemma 1. If levelA(si, k + 1) = levelC(si), we have levelA(si+1, k + 1) =
levelC(si+1).

Proof. Let us assume that levelA((si, k + 1)) = levelC(si). We distinguish two
cases: either levelC(si+1) = levelC(si) + 1 or levelC(si+1) < levelC(si) + 1.

In the first case levelC(si+1) ≤ levelA(si+1, k + 1) ≤ levelA(si, k + 1) + 1 =
levelC(si) + 1 = levelC(si+1), thus we have that levelC(si+1) = levelA((si+1,
k + 1)).

The second case means that there is u ∈ Σ∗ such that δC(0, u) = si+1,
|u| < levelC(si)+1, u �= w1 . . . wiwi+1, and without the loss of generality we can
choose u the shortest with these properties. Therefore, δA((0, 0), u) = (si+1, k+1)
and we have levelC(si+1) ≤ levelA(si+1, k + 1) ≤ |u| = levelC(si+1). ��

The following lemma shows that for each cloned state the level will increase
only for the cloned state or only for the original state, but not for both.

Lemma 2. For every 0 ≤ i ≤ k we have the following properties:

if levelA(si, k + 1) > levelC(si), then levelA(si, i) = levelC(si);
if levelA(si, i) > levelC(si), then levelA(si, k + 1) = levelC(si).

Proof. For i = 0, the lemma is true, since level(s0, 0) = 0. Let us now consider
i > 0, then levelA(si, i) ≥ levelC(si) and levelA(si, k + 1) ≥ levelC(si).
If both inequalities are strict, from the first inequality it immediately follows
that δC(0, w1 . . . wi) = si and δC(0, u) = si, for some u ∈ Σ<i.
If all these u are prefixes of w, then (si, k + 1) is unreachable. Therefore, there
is one that is not a prefix of w. We can consider without loss of generality that
u is the shortest prefix with these properties.

Since δA((0, 0), u) = (δC(0, u), k + 1) = (si, k + 1), it follows that
levelA(si, k + 1) ≤ levelC(si), a contradiction. ��

An Incremental Algorithm for Constructing Minimal DFCA 95

Corollary 1. There are at most k + 1 states (si, i), (si, k + 1), 1 ≤ i ≤ k for
which we have that levelA((si, i)) > levelC(si) or levelA((si, k+1)) > levelC(si).

Remark 2. The gap between two “original” states is the same in A as it is in C,
i.e., gapA((p, k + 1), q(k + 1)) = gapC(p, q).

Remark 3. Using the definition of similarity, we have that two states (p, i) and
(q, j) are similar in A if gapA((p, i), (q, j))+max{levelA((p, i)), level((q, j))} > l.

The following result drastically reduces the number of possible similarities in
the automaton A; we will see that we need to check for similarities only between
states considered in Lemma 2 and the other states in A.

Lemma 3. The states (p, k+1) and (q, k+1) are dissimilar if levelA(p, k+1) =
levelC(p) and levelA(q, k + 1) = levelC(q).

Proof. Assume they are similar. Therefore, using the definitions of similarity and
gap, we have that gapA((p, k+1), (q, k+1))+max(levelA(p, k+1), levelA(q, k+
1)) > l. Since the states did not change their levels (levelA(p, k +1) = levelC(p)
and levelA(q, k + 1) = levelC(q)) and the function gap does not change for
pairs of states with k + 1 on the second component, we have that gapC(p, q) +
max(levelC(p), levelC(q)) > l, which means p ∼C q, contradicting our assump-
tion of minimality for C. ��

Following the result in Lemma 3, our algorithm needs to identify only the
similarities between the states of the type (si, i) or (si, k + 1) and all the other
states in the automaton (including similarities between these states).

To achieve this goal we will store in memory all the computed values of gap
between any two states (from the previous step) and after adding the new word
to the language, use this information at the current step to compute/update the
similarities between any states.

Let us count how many similarities between “old states” may occur. Any two
states q and p are dissimilar in C, but the states (p, k + 1) and (q, k + 1), may
become similar. This can happen only if at least one of them changes its level
and gapA((p, k + 1), (q, k + 1)) + max{levelA((p, k + 1)), levelA((q, k + 1))} > l,
i.e., only when one of them, say p, is equal to si, for some 0 ≤ i ≤ k, according
to Corollary 1.

Looking only at the gapA((si, k + 1), (q, k + 1)) and at the new level(s) for
(si, k + 1) and (q, k + 1), one can decide immediately whether (p, k + 1) ∼A

(q, k + 1) or not. To compute the (new) levels in A we need to do this just for
states (si, k + 1), which takes at most O(n) steps. To decide all the similarities
between states of the type (si, k + 1) and (q, k + 1), one needs exactly n checks
for each state (si, k + 1), thus in total O(kn) such comparisons.

We now proceed to detect similarities between the states of the form (si, i)
with i ≤ k and the rest of the states. We start with the last final state newly
introduced, the state (sk, k). It is obvious that (sk, k) is of level k and that using
a transition labelled with a letter a ∈ Σ, the state (sk, k) will go into a state
of the form (p, k + 1): δA((sk, k), a) = (p, k + 1). To compute the gap between

96 C. Câmpeanu, A. Păun, and J.R. Smith

(sk, k) and any “old state”, assuming that we have the gap table for all pairs of
old states (see Remark 2), we use the following lemma.

Lemma 4. For all q ∈ FC , we have that

gapA((sk, k), (q, k + 1)) = 1 + min
a∈Σ
{gapC(δC(sk, a), δC(q, a))} .

For all q ∈ QC − FC , we have then that gapA((sk, k), (q, k + 1)) = 0.

Proof. Since the gap between states with k + 1 on the second component is not
changed as observed in Remark 2, and (δC(sk, a), δC(q, a)) ∈ QC × {k + 1}, by
the definition of gap we obtain:

gapA((sk, k), (q, k + 1)) = 1 + min
a∈Σ
{gapA(δA((sk, k), a), δA((q, k + 1), a))}

= 1 + min
a∈Σ
{gapC(δC(sk, a), δC(p, a))}.

The second part of the lemma is obvious. ��

Once the gap between (sk, k) and all the original states is computed, then
the gap between the state (sk−1, k − 1) and all the old states plus (sk, k) can
be computed using a similar observation to Lemma 4. Denote by Sm = {(si, i) |
i ≥ m} ∪ {(p, k + 1) | p ∈ QC}, where 1 ≤ m ≤ k.

Lemma 5. Assume that the gapA was computed between all pairs of states in
Sm. Then one can compute the gapA for all pairs of states from Sm−1.

Proof. Since Sm ⊂ Sm−1, we already have most of the values of gapA computed;
we only need to determine gapA for (sm−1,m − 1) and all the states from Sm.
We notice that in one step the states (sm−1,m − 1) and (p, j) ∈ Sm will go in
states from Sm, i.e., δA((sm−1,m− 1), a), δA((p, j), a) ∈ Sm, for all a ∈ Σ, thus
the gapA for Sm−1 can be computed. ��

The exact formula to “extend” the gapA from Sm to Sm−1 is given by the
following lemma.

Lemma 6. For any state q ∈ QC and for any 0 ≤ i < k we have:

if (si, i) ∈ FA and (q, k + 1) ∈ QA − FA or vice versa, then gapA((si, i), (q, k +
1)) = 0;
if (si, i) ∈ FA and (q, k + 1) ∈ FA, then the gap can be computed as follows:
gapA((si, i), (q, k + 1)) = 1 + min

a∈Σ
{gapA(δA((si, i), a), δA((q, k + 1), a))} =

min({gapA((si+1, i + 1), (δC(q, wi), k + 1))} ∪ {gapC(δC(si, a), δC(q, a)) | a ∈
Σ − {wi}}).

We can have a small speedup for the gap computation in the implementa-
tion of the algorithm by noticing that gapA((si, i), (p, k + 1)) = gapC(si, p) if
gapC(si, p) < k − i for all 0 ≤ i ≤ k − 1.

Lemma 4 and Lemma 6 suggest the work of the algorithm. We first compute
the gap between (sk, k) and the old states; we now have the gap computed

An Incremental Algorithm for Constructing Minimal DFCA 97

between all the states in Sk. At the second step we can compute the gap between
(sk−1, k−1) and the states from Sk obtaining gap for Sk−1. At the next step we
can compute the gap between (sk−2, k − 2) and states from Sk−1 using values
of gap computed for Sk−1 obtaining gap for Sk−2. The process can be iterated
up until we have computed all the gap function for S0, which is actually the gap
for all pairs of states in QA.

Once the gap matrix is fully computed, the similarities between any two
states p, q ∈ QA can be determined easily by checking the levels of p, q and the
gapA(p, q) using Remark 3. We do this just for the “cloned” states and “original”
states that change their levels, since all the other pairs of states are dissimilar
by Lemma 3.

The Incremental Algorithm: We give now a sketch for the incremental algorithm
proposed; a more detailed pseudocode can be found in the appendix along with
the C++ source code (implementation in the Grail+ package).

Input C, gapC, w, k, l
Output A, gapA

Build A as, described in subsection 3.1
Do a breath first search to compute levelA(p, i) for all (p, i) ∈ QA.
For all q ∈ QC

Compute gapA((sk, k), (q, k + 1)) (cf. Lemma 4)
For i=k-1 down to 0

For all q ∈ QC

Compute gapA((si, i), (q, k + 1)) (cf. Lemma 6)
For all q ∈ FC

Compute similarity for the pairs (sk, k), (q, k + 1).
For i=k-1 down to 0

For j=k+1 down to i + 1
Compute similarity for the pairs (si, k + 1), (sj , k + 1),

For i=k-1 down to 0
For all q ∈ QC

Compute similarity for the pairs (si, i), (q, k + 1).
Reduce the automaton by merging similar states.

The algorithm has been implemented in Grail+ and was tested against the
algorithm presented in [15]. The source code of the implementation as well as
the Grail+ updated version will be made available by e-mail request and also at
the address http://www.latech.edu/∼apaun/cover.html. The test language
chosen was Lk = {w | |w| = k} since it was expected that this language will pro-
vide good compression results for the DFCA. We obtained the following results1

that show an excellent performance of our method for the chosen test language.
He have been running both algorithms on the same computer (CPU: Pentium

1 It is worth mentioning that the words were inserted incrementally in the standard
lexicographical order to the cover automaton. We do not believe that this fact had
a significant influence on the time/space efficiency of the proposed algorithm.

98 C. Câmpeanu, A. Păun, and J.R. Smith

4 3.4 GHz; Memory: 1GB DDR400; OS: Linux 2.6.8.1 kernel (Slackware 10.0)).
In the table we give the name of the algorithm, the maximum number of states
in the memory during the execution of the algorithm, the maximum memory
space needed, and the time required for the algorithm to finish (for the Körner
algorithm we give the time required without and then with the trie building).

Algorithm States Memory req. Time/time with trie l Alphabet size
Körner 3905 70k 1.512s/1.961s 5 5
Incremnt. 18 1.8k 0.461s 5 5
Körner 19530 1.4M 40.52s/52.706s 6 5
Incremnt. 21 2.2k 3.196s 6 5
Körner 97655 7.0M 24min 49.26s/34min 6.944s 7 5
Incremnt. 24 2.7k 22.420s 7 5

3.2 Adding a Word of Length |w| = k > l

We start the discussion in this case by noting that if there exists x ∈ L, such
that l < |xu| ≤ k and δC(0, x) = δC(0, xu) = p (where p ∈ QC), then we need to
“split” the state p, otherwise the word xu of length less than or equal to k will
be also considered in the new cover language. In other words, to make sure that
no other words are in the language accepted by the new DFCA A, all loops in
C must be expanded to chains of length at least l. However, any chain of length
greater than l should go in a “sink” state with the last transition of that chain
because we accept only one word of length greater than l. We will construct the
new automaton as having the level encoded in the state; thus, the states will be
of the form (p, i), where p ∈ QC and levelA((p, i)) = i (the level information will
be attached to each state by construction).

We construct the following DFCA: A = (Σ,QA, δA, (n, 0), FA), where:

δA((p, i), a) =

⎧⎪⎪⎨⎪⎪⎩
(δC(p, a), i + 1) if i ≤ l,
(δC(si, a), i + 1) if i ≤ l, p = n and wi+1 �= a,
(n, i + 1) if p = n and wi+1 = a,
(n, k + 1) in all other cases.

FA = {(q, s) | q ∈ FC , s ≤ l} ∪ {(n, k)} ∪ {(n, i) | si ∈ FC}.
Of course, QA ⊂ QC × {0, 1, . . . , k + 1}.

Lemma 7. The DFA A constructed above is accepting L(A) = L ∪ {w}.

Proof. Let x ∈ L: if x is not a prefix of w, then δA((n, 0), x) = (δC(0, x), |x|).
Since x ∈ L, we have that δC(0, x) ∈ FC , thus by the definition of FA and
because |x| ≤ l, we also have that (δC(0, x), |x|) ∈ FA. This means that if x is
not a prefix of w then x ∈ L(A).

If x is a prefix of w, i.e., x = w1 . . . wi we also have that δA((n, 0), x) =
(n, |x|) = (n, i). But (n, i) ∈ FA if and only if si ∈ FC , which is true if
x = w1 . . . wi. Therefore, L ⊆ L(A). We also have that w ∈ L(A), since
δA((n, 0), w) = (n, k) ∈ FA.

An Incremental Algorithm for Constructing Minimal DFCA 99

We will now prove that L(A) ⊆ L ∪ {w}: in other words, for the automaton
A, if x ∈ L(A) then x ∈ L ∪ {w}. Let x ∈ L(A), i.e., δA((n, 0), x) ∈ FA. We
distinguish two cases: when x is not a prefix of w and when x is a prefix of w.

In the first case, δA((n, 0), x) = (δC(0, x), |x|), which implies by the definition
of FA that |x| ≤ l. But since δC(0, x) ∈ FC and |x| ≤ l, it follows that x ∈ L.

In the second case, x is a prefix of w, so δA((n, 0), x) = (n, |x|). Since x ∈ L(A),
(n, |x|) needs to be final in A, thus either |x| = i where si ∈ FC or |x| = k. In
other words, x is a prefix of w that is in L or x = w, i.e., x ∈ L ∪ {w}. ��

We now describe the properties of the automaton A: we can easily see that
levelA(p, i)) ≥ levelC(p) for all possible values of p and i. Also, one can note
that the state (n, k + 1) is a sink state and levelA((n, k + 1)) = l + 1.

Since this automaton has a particular form, we can speed up the process of
completing the gap table for the new automaton by giving some formulas for
particular pairs of states.

Remark 4. 1. All states (p, l), with p ∈ FC are final and they are equivalent to
(n, k). Therefore, they can be merged together; the gap between these states is
k + 1.

2. The sink state (n, k + 1), is similar with all non-final states which cannot
reach a final state with a word of length at most k − l − 1.

3. The gap between the sink state and (n, k) (final state) is 0.
Using the above remarks and a technique similar to the one in [22] we can

now compute the gap function for all states of A. For our algorithm we only need
to compute the gap function for the sink state (n, k + 1) and all other states.
This is done using a BFS traversal for each final state of the graph associated
with the new DFA while considering the arrows reversed.

Once we have the gap computed for the sink state and all other states we can
proceed to the next step.

Let us compute gapA((p, i), (q, j) for states p, q ∈ QC , and i, j ≤ l.

Remark 5. If gapC(p, q) + max(i, j) ≤ l, gapA((p, i), (q, j)) = gapC(p, q).
For the states with higher levels, i.e., gap(p, q)+max(i, j) > l, one can compute

the gapA table using the technique for computing gap for a (not necessarily
minimal) DFA as in [16].

For computing the gap function between the states (n, i) and all other states
we use the same technique used in Lemma 6. Due to the space limitations, we
leave the details of updating the gap function to the reader.

The minimization algorithm for this case is basically the same as for the case
|w| < l, with the following differences:

1. the initial construction has to embed the level in the name of the state, and
we do this up to level l;

2. we first compute the gap between the sink state (n, k + 1) and all other
states;

3. the “old” states having several levels will inherit the gap table from C as
described in Remark 5;

100 C. Câmpeanu, A. Păun, and J.R. Smith

4. the next steps are the same as in [16], computing the gap function for the
“newly introduced” states, using a formula as given below:

gapA((n, i), (p, j)) =

⎧⎨⎩
0, if si ∈ FC and p /∈ FC or si /∈ FC and p ∈ FC

1 + min{gapA(δA((n, i), a), δA((p, j), a)) | a ∈ Σ},
otherwise.

Due to the space limitations, we leave the details of updating the gap function
and the details (e.g., pseudocode) of the algorithm to the reader.

Remark 6. The time complexity for adding a word of length k greater than l
increases significantly, since each time we “expand” the DFCA for l to a DFA
for L ∪ {w} we can have an explosion in the number of states. This behavior is
expected mostly in the case when n is much smaller than k.

To avoid such explosions, the best choice is to start the incremental algorithm
with the longest word in the language. When this cannot be done due to specific
restrictions imposed by the problem/language considered, one should try to add
it as soon as possible.

4 Final Remarks

Our incremental algorithm described in section 3.1 is fast, but it was observed
(see e.g.[10]) that such an incremental algorithm could be modified to run even
faster if one can perform a preprocessing (which is in fact sorting) of the input
set of strings. We already have good results in this direction and submission
of another paper describing an incremental algorithm for sorted input data is
expected. The string subtraction has a similar algorithm to the string addition.
We also devised a string subtraction algorithm, but due to the space limita-
tion of the contribution we have not included it. We also plan to conduct more
experiments using real dictionaries and compare the difference in the memory re-
quirements between our incremental algorithms and other DFCA minimization
algorithms. It is also worth noting that the string addition algorithm for the case
when |w| > l can produce a high number of states, thus it is now efficient to first
scan the words in the language and find the longest word (requires O(n) time),
and then to start the algorithm with the longest word in L. The discussion for
the case |w| > l is valuable if one needs the ability to update (maybe later) the
language; for example, adding a new word to a spellchecker should permit also
the addition of longer words. It is open whether a faster algorithm for the case
|w| > l can be devised, or whether one can design an incremental algorithm of
linear space for the string addition into the language of a DFCA.

Acknowledgments

We would like to mention the DFCA fruitful discussions with S. Yu and the in-
sightful suggestions received from the anonymous referees. C. Câmpeanu grate-
fully acknowledges the support received from NSERC DGP-I249600; A. Păun

An Incremental Algorithm for Constructing Minimal DFCA 101

gratefully acknowledges the support in part by a LA BoR RSC grant and NSF
IMR-0414903.

References

1. Carrasco, R.C., Forcada, M.L.: Incremental construction and maintenence of min-
imal finite-state automata. Computational Linguistics 28 2 (2002) 207–216

2. Daciuk, J., Mihov, S., Watson, B., Watson, R.E.: Incremental construction of
minimal acyclic finite state automata. Computational Linguistics 26 1 (2000)
3–16

3. Daciuk, J.: Comparison of construction algorithms for minimal, acyclic, determin-
istic, finite-state automata from sets of strings. Lecture Notes in Computer Science
2608 (2003) 255–261

4. Mihov, S.: Direct construction of minimal acyclic finite states automata. Ann. de
l’Université de Sofia “St. Kl. Ohridski”, Faculté de Mathematique et Informatique,
Sofia, Bulgaria 92 2 (1998)

5. Sgarbas, K.N., Fakotakis, N.D., Kokkinakis, G.K.: Optimal insertion in determin-
istic DAWGs. Theoretical Computer Science 301 1(3) (2003) 103–117

6. Sgarbas, K.N., Fakotakis, N.D., Kokkinakis, G.K.: Two algorithms for incremental
construction of directed acyclic word graphs. International Journal on Artificial
Intelligence Tools, World Scientific 4 3 (1995) 369–381

7. Watson, B.W.: A taxonomy of finite automata minimization algorithms. Eindhoven
University of Technology, The Netherlands, Computing Science Note 93/44 (1993)

8. Watson, B.W.: Taxonomies and Toolkits of Regular Language Algorithms. Ph.D.
thesis, Eindhoven University of Technology, the Netherlands (1995)

9. Watson, B.W.: An incremental DFA minimization algorithm. Finite State Methods
in Natural Language Processing; ESSLLI Workshop, Helsinki, Finland, August
(2001) 20–24

10. Watson, B.W., Daciuk, J.: An efficient incremental DFA minimization algorithm.
Natural Language Engineering 9 1 (2003) 49–64

11. Câmpeanu, C., Sântean, N., Yu, S.: Minimal cover-automata for finite languages.
Theoretical Computer Science 267 1-2 (2001) 3–16

12. Câmpeanu, C., Păun, A., Kari, L.: Results on transforming NFA into DFCA.
Fundamenta Informaticae 64 1-4 (2005) 53–63

13. Câmpeanu, C., Păun, A.: Counting the number of minimal DFCA obtained by
merging states. International Journal of Foundations of Computer Science 14 6
(2003) 995–1006

14. Câmpeanu, C., Păun, A.: Lower bounds for NFA to DFCA transformations. Pro-
ceedings of DFCS 2004, London Ontario, Canada, (2004) 121–130

15. Körner, H.: A time and space efficient algorithm for minimizing cover automata
for finite languages. International Journal of Foundations of Computer Science 14
6 (2003) 1071–1086

16. Păun, A., Sântean, N., Yu, S.: An O(n2) algorithm for minimal cover-automata
for finite languages. Proceedings of the 5th International Conference on Imple-
mentation and Application of Automata Implementing Automata CIAA’00 (2000)
243–251

17. Sântean, N.: Towards a Minimal Representation for Finite Languages: Theory and
Practice. MSc thesis, Department of Computer Science, The University of Western
Ontario, Canada (2000)

102 C. Câmpeanu, A. Păun, and J.R. Smith

18. World Wide Web: The Grail+ project. A symbolic computation environ-
ment for finite-state machines, regular expressions, and finite languages (2002)
http://www.csd.uwo.ca/Research/grail.

19. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley (1979)

20. Salomaa, A.: Formal Languages. Academic Press (1973)
21. Yu, S.: Regular languages. Handbook of Formal Languages, Vol I, eds. G. Rozen-

berg and A. Salomaa, Springer-Verlag (1997) 41–110
22. Câmpeanu, C., Păun, A., Yu, S.: An efficient algorithm for constructing mini-

mal cover automata for finite languages. International Journal of Foundations of
Computer Science 13 1 (2002) 83–98

A The Pseudocode for the Algorithm

Input: A DFCA C = (Σ,Q, 0, δ, F) for the language L with the length of the
largest word l. We also have as input the new word to be introduced w with
|w| ≤ l, and the precomputed arrays level and gap which store the levels of the
states and the gaps between states, respectively.

Output: A DFCA A = (Σ,Q′, 0′, δ′, F ′) for the language L ∪ {w} with the
arrays level and gap updated.

if w ∈ L or if |w| > l return /* do nothing in these cases*/
let k = |w|
create k + 1 new states with the labels n,n + 1, . . . ,n + k − 1,n + k
create the arrays old of size k + 1 and merged of size n + k + 1 initialized with
0. old[0] = 0
for i=1 to k do old[i] = δ(old[i− 1], w[i])
new = n
for i=0 to k − 1 do

for all a ∈ Σ do δ(new, a) = δ(old[i], a)
δ(new,w[i]) = new + 1; new = new + 1

for all a ∈ Σ do δ(n + k, a) = δ(old[k], a)
Apply the Breadth First algorithm starting in n and compute/update the levels
of all states old[i] with 0 ≤ i ≤ k. If such a state p becomes unreachable, then
merged[p] = 1
for j=0 to n− 1 do /*we compute the gaps between old states and n + k*/

if j �∈ F then gap[n + k, j] = 0; gap[j,n + k] = 0
else min = l + 1

for all a ∈ Σ do
currentgap = gap[δ(j, a), δ(old[k], a)]
if min > currentgap then min = currentgap

gap[n + k, j] = min + 1; gap[j,n + k] = min + 1
for i = n + k − 1 down to n do

for j = 0 to n− 1 do /*find the gaps between i and the old states*/
min=l+1
for all a ∈ Σ do

An Incremental Algorithm for Constructing Minimal DFCA 103

currentgap = gap[δ(j, a), δ(i, a)]
if min > currentgap then min = currentgap

gap[i, j] = min + 1; gap[j, i] = min + 1
for j = i + 1 to n + k do /*find the gaps between the new states*/

gap[i, j] = min(gap[old[i−n], j], gap[δ(i, w[i−n]), δ(j, w[i−n)]+1)
/* We have the gap matrix completely computed, thus the similarities between
the new states and the old states can now be detected */

for j=0 to k do
if old[j] �= i and merged[i] + merged[j] == 0 then

lev = max(level[old[j]], level[i])
if gap[old[j], i] + lev > l then merge(i, old[j])

for i = n + k dow to n do
for j = i− 1 down to 0 do

if merged[j] == 0 then lev = max(level[i], level[j])
if gap[i, j] + lev > l then merge(i,j)

/* We now delete the rows and columns from the matrix gap for the states that
were deleted (either merged or unreachable)*/
swap(0,n) /* the new start state n is swapped with the old start state*/
i = 1; j = n + k
while i < j do

while merged[j] == 1 do j = j − 1 /*j points to the last state that does
not disappear*/

while merged[i] == 0 do i = i + 1 /* i points to the first state that
disappears */

swap(i,j) /* we update the gap level and merged arrays*/
i=i+1; j=j-1

Finite Automata and Unions of Regular

Patterns with Bounded Constant Segments

Antonio Cano and Pedro Garćıa

Departamento de Sistemas Informáticos y Computación,
Universidad Politécnica de Valencia, Valencia, Spain

{acano, pgarcia}@dsic.upv.es

Abstract. The class of unbounded unions of regular pattern languages
with bounded constant segments is identifiable from positive data in the
limit [1]. Otherwise, no efficient algorithm that performs the inference of
this class of languages is known. We propose a solution to this problem
using the existing connexion between the positive variety of languages
of dot depth 1/2, LJ + [2] and the class of unbounded union of pattern
languages RP+L.

1 Introduction

Pattern languages have been introduced by Angluin in [3], where she has shown
that they are identifiable from positive data. They have been used for machine
discovery of protein motifs from amino acid sequences in [4].

A pattern is a word on the alphabet Σ ∪X , where Σ is a finite alphabet (of
constant symbols) and X is a disjoint countable alphabet (of variables). Given
a pattern p, the language L(p) is defined as the set of words on Σ obtained by
replacing the variables in p by constant words.

The class of pattern languages is efficiently identifiable from positive data in
the limit [3]. From the point of view of applications, the use of only one pattern is
not enough flexible and it would be more interesting to use several patterns. The
problem for doing so is that the class of pattern languages is not closed under
union. If we consider the closure under union of the class of pattern languages
P+L we obtain a class (unbounded unions of pattern languages) that is not
identifiable from positive samples, as any word w ∈ Σ∗ is also a pattern such that
L(w) = {w} and, consequently, the class of unions of pattern languages contains
every finite language and also some infinite languages. The same problem still
remains when we consider the union of regular pattern languagesRP+L, that is,
patterns in which any variable occurs at most once in the pattern. Shinohara and
Arimura [1] have considered an interesting restriction of the class of unbounded
unions of regular pattern languages, for any k > 0 they consider the class of
unions of pattern in which the length of the constant segments is bounded by k
(unbounded union of regular pattern languages with bounded constant segments
(RP+

k L)). In other words, a language belongs to RP+L if and only if it belongs
toRP+

k L for some k > 0. For any k,RP+
k is identifiable from positive data in the

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 104–115, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Finite Automata and Unions of Regular Patterns 105

limit [1]. The proof given by Shinohara and Arimura uses a theorem of Higman
on well-quasi ordering. Nevertheless, they do not give an efficient algorithm to
identify any class RP+

k L.
In this work we propose an efficient algorithm for the inference of RP+

k L
using a relation between RP+L and the positive variety of languages LJ + [2],
also known as languages of dot-depth 1/2.

We show here that, for any k > 0, RP+
k L ⊆ LJ

+
k+1. From this fact and from

the relation LJ+
k = J+ ∗ LIk [5] the problem of the inference of RP+

k L from
positive data can be solved in an easy way through the scheme of inference of
languages in varieties of the form V ∗ LI proposed in [6] and [7]. So, we give an
efficient algorithm to learn languages from RP+

k L.

2 Preliminaries

In this section we will describe some facts about formal languages in order to
make the notation understandable to the reader. For further details about the
definitions, the reader is referred to [8].

Let Σ be a finite alphabet and let Σ∗ be the free monoid generated by Σ with
concatenation as the binary operation and ε as neutral element, and let Σ+ be
the free semigroup generated by Σ with concatenation as the binary operation.
Any subset L ⊆ Σ∗ is called language, we will refer to its elements as words and
the length of a word will be denoted as |x|. Let Σk (resp. Σ≤k) be the set of
word of length k (resp. less than or equal to k) on Σ∗.

Given x ∈ Σ∗, if x = uvw with u, v, w ∈ Σ∗, then u (resp. w) is called prefix
(resp. suffix) of x, whereas v is called a segment of x. The set of prefixes (resp.
suffixes) of a word x will be denoted as Pr(x) (resp. Suf(x)). We will also denote
by Prk(x) the prefix of length k of x (resp. by Sufk(x) the suffix of length k of
x). Given x, y ∈ Σ∗, we say that x = a1a2 · · ·an, with ai ∈ Σ, i = 1, 2, . . . ,n is
a subword of y, and we denote this relationship by x | y if y = z0a1z1a2 · · · anzn,
with zi ∈ Σ∗ for i = 0, 1, . . . ,n.

A Nondeterministic Finite Automaton (NFA) is defined as a quintuple A =
(Q,Σ, δ,Q0, F) where Q is a finite set of states, Σ is a finite alphabet, Q0 ⊆ Q is
the set of initial states, F ⊆ Q is the set of final states and δ is a partial function
from Q × Σ into P(Q), which can be extended to a function from P(Q) × Σ
into P(Q) by establishing δ(Q′, a) =

⋃
q∈Q′ δ(q, a) for any Q′ ⊆ Q and a ∈ Σ. It

can also be extended to a function from P(Q) × Σ∗ into P(Q) by establishing
δ(Q′, ε) = Q′ and δ(Q′, xa) = δ(δ(Q′, x), a), for every Q′ ⊆ Q, x ∈ Σ∗ and
a ∈ Σ. If in the previous definition we take Q0 = {q0} with q0 ∈ Q and δ as a
function from Q × Σ∗ into Q, we obtain the definition of Deterministic Finite
Automaton (DFA).

A word x is accepted by an automaton A if δ((Q0), x) ∩ F �= ∅. The set of
words accepted by A is denoted by L(A).

A sequential machine is a sextuple A = (Q,Σ,Δ, δ, λ, F) where Q, Σ and δ
are defined in the same way as in a DFA, Δ is the output alphabet and the
output function λ is a function that maps Q×Σ into Δ∗, which can be extended

106 A. Cano and P. Garćıa

to Q×Σ∗ by establishing λ(q, ε) = ε, and λ(q, xa) = λ(q, x)λ(δ(q, x), a), for every
q ∈ Q, x ∈ Σ∗ and a ∈ Σ.

We use the model of learning called identification in the limit [9]. An algorithm
A identifies a class of languages H in the limit if and only if for any L ∈ H ,
on input of any presentation of L, the infinite sequence of output languages
obtained by A converges to L.

2.1 Formal Languages

A language is of level 1/2 in the Straubing-Thérien hierarchy if it is a finite union
of languages of the form Σ∗a1Σ

∗a2Σ
∗ · · ·Σ∗anΣ

∗, where a1, . . . , an ∈ Σ. The
family of languages of level 1/2 in the Straubing-Thérien’s hierarchy forms the
positive variety J+ corresponding to the variety of ordered monoids J+ [5].

The languages of dot-depth 1/2 are finite unions of languages of the form
u0Σ

∗u1Σ
∗ · · ·uk−1Σ

∗uk, where k ≥ 0 and u0, . . . , uk ∈ Σ∗. The family of lan-
guages of dot-depth 1/2 forms the positive variety LJ + corresponding to the
variety of ordered semigroups LJ+ [5].

The next theoretical result comes from [5] and characterizes some subclasses
of LJ +.

Given some words u1, u2, . . . , un of the same length, we define

L(u1, . . . , un) = {u ∈ Σ+ | u1, . . . , un occur in this order as segments of u}

If we set u = u1u2 · · ·un ∈ (Σk)∗ with ui ∈ Σk for i ∈ {1, . . . ,n}, we also denote
L(u1, . . . , un) by L(u).

Theorem 1. [5] Let L be a language of Σ+. The following conditions are equiv-
alent.

(1) L is of dot-depth 1/2,
(2) L is a finite union of languages of the form {u}, with |u| < k− 1 or pΣ∗∩

L(u1, . . . , un)∩Σ∗s, where, for some k > 1, p, s ∈ Σk−1 and u1, . . . , un is
a sequence of words of Σk.

For a given k > 0, we will denote by LJ +
k the languages defined in (2).

It is known that LJ+ = J+ ∗ LI and that LJ+
k = J+ ∗ LIk [5].

LI is the variety of locally trivial finite semigroups. For any k > 0 the variety
of languages corresponding to LIk consists of languages of the form XΣ∗Y ∪ Z
with X,Y ⊆ Σk and Z ⊆ Σ<k, some other definition can be found in [10].

2.2 Pattern Languages

Let Σ be a set of constant symbols containing at least two symbols, and X be
a countable set of variable symbols. We assume that Σ ∩X = ∅. A pattern p is
a word on (Σ ∪X)∗. Note that we consider the empty word ε. We denote by P
the set of all patterns. The length of a pattern p ∈ P , will be denoted by |p|.
A substitution ρ is a homomorphism from patterns to patterns that maps every
constant to itself. For a pattern p and a substitution ρ. We say that a pattern

Finite Automata and Unions of Regular Patterns 107

q is a generalization of p, or p is an instance of q, and we denote that fact by
p $ q, if there is a substitution ρ such that ρ(q) = p.

The language defined by a pattern p ∈ P is the set L(p) = {w ∈ Σ∗ | w $ p}.
We denote by PL the class of all pattern languages.

In this paper, we are specially concerned about a subclass of P . A pattern
p ∈ P is regular, if each variable appears at most once in p, i. e. for any x ∈ X ,
the number of occurrences of x in p |p|x ≤ 1. A regular pattern language is a
pattern language defined by a regular pattern. We denote by RP the set of all
regular patters, and by RPL the set of all regular patterns languages.

We are also concerned with unions of languages defined by patterns. By P+

we denote the class of all nonempty finite subsets of P . Analogously, by RP+

we denote the class of all nonempty finite subsets of RP , and by RP+L the
corresponding class of languages.

The next proposition shows that the class of unions of pattern languages is
exactly the positive variety LJ +.

Proposition 1. The class of unions of regular pattern languages RP+L is the
positive variety of languages LJ +.

Proof. By the definition of LJ +, it suffices to see that for any pattern p, L(p) =
u0Σ

∗u1Σ
∗ · · ·uk−1Σ

∗uk, for some k ≥ 0 and u0, . . . , uk ∈ Σ∗, and that for any
language L in this form, there exists a pattern p, such that L(p) = L.

Finally we are interested in unions of bounded pattern languages. Given an
integer k ≥ 0 a k-bounded pattern is a pattern that has at most k constant
consecutive symbols. We will denote the set of all these patterns as Pk, and as
in the previous cases we will denote by RPk and RPkL, the sets of k-bounded
regular patterns and k-bounded regular pattern languages. From the definition of
bounded pattern we obtain the definition of union of k-bounded regular pattern
and k-bounded regular pattern languages, that will be denoted by RP+

k and
RP+

k L respectively.

3 Inferring J +

In this section we describe an algorithm for the inference of languages that
belongs to J +.

Given a sample S = {x1, x2, . . . , xn} we can associate a language LJ+S ∈ J +

as follows

LJ+S = {x ∈ Σ∗ | there exists i ∈ {1, . . . ,n} such that xi | x}.

Proposition 2. LJ+S is the smallest language in J + that contains S.

Proof. If K ∈ J + and w ∈ K, any word x such that w | x belongs to K. If
furthermore S ⊆ K, K contains all words x such that xi | x for some xi ∈ S.
And then, LJ+S ⊆ K.

Algorithm 1 yields a NFA by constructing for every word xi an automaton
that accepts all words which have xi as subwords, we order S and check the

108 A. Cano and P. Garćıa

acceptance of any word before constructing the automaton in order to save
automaton size.

For the study of the convergence of Algorithm 1 we have that for any alphabet
Σ and any language L ∈ J +(Σ∗), L can be written as

⋃
1≤i≤m Σ∗ai,1Σ

∗ . . .
Σ∗ ai,niΣ

∗. Then, if we use as input of the algorithm the set S = {a1,1 · · ·
a1,n1 , . . . , am,1 · · · am,nm}, we have that LJ+S = L, and the result follows from
Proposition 2.

The time complexity of Algorithm 1 is N ·Σ. Let S = {x1, x2, . . . , xn} and let
N = |x1|+|x2|+· · ·+|xn|. As for any i ∈ {1, . . . ,n} The J+ Inference Algorithm
constructs an automaton whose number of states is |xi|+ 1, having every state
at most |Σ| transitions, the complexity of the algorithm is N ·Σ. Nevertheless,
if we consider an implementation where the construction of transitions is linear,
the overall algorithm complexity would be linear with the size of the input
data.

Algorithm 1. J + Inference
Input: S set of words over Σ∗

Output: NFA A = (Q,Σ, δ, Q0, F), such that L(A) = LJ +S

Method:
Q = ∅ ; δ = ∅ ; F = ∅ ; Q0 = ∅
Order S by decreasing length as: S = {x1, x2, . . . , xm}
For xi = a1a2 . . . an ∈ S Do

If δ(Q0, x) ∩ F = ∅ Then
Q = Q ∪ {(i, 0), (i, 1), . . . , (i, n)}
For j = 0 To n − 1 Do

δ = δ ∪ ((i, j), aj , (i, j + 1))
For c ∈ Σ\{aj}

δ = δ ∪ ((i, j), c, (i, j))
For c ∈ Σ

δ = δ ∪ ((i, n), c, (i, n))
Q0 = Q0 ∪ {(i, 0)}
F = F ∪ {(i, n)}

Return (A)

4 Inferring LJ +

We recall the following definitions and theorems that will lead us in the inference
process. We follow a similar scheme to the scheme used in [6, 7].

Theorem 2 (Ginzburg and Rose, see [11]). Let τ : Σ∗ → Γ ∗ be the se-
quential function realized by the transducer τ = (P,Σ, Γ, δ1, λ, p0, F) and let
A = (Q,Γ, δ2, q0.F

′) be an automaton such that L = L(A). The language
τ−1(L) ⊆ Σ∗ is recognized by the cascade product A◦τ = (Q×P,A, δ, [q0, p0], F ′

×F), with the transition function defined as δ([q, p], a) = (δ2(q, λ(p, a)), δ1(p, a)).

We define now the transduction τk,F , for k and F ⊆ Σk−1, that will be used
in the sequel.

Finite Automata and Unions of Regular Patterns 109

Definition 1. For k > 0 and a finite set of word F ⊆ Σk−1. Let τk,F =
(Q,Σ,B, δ, λ, q0, F ∪ Σ<k−1) be a sequential machine defined as Q = ∪k−1

i=0 Σ
i,

p0 = ε , B =
⋃k−1

i=1 �k−iΣi ∪ Σk and for every p ∈ Q and a ∈ A, the transition
and output functions are respectively defined as:

δ(p, a) =
{
pa if |p| < k − 1
fk−1(pa) if |p| = k − 1 and

λ(p, a) =
{
�k−|pa|pa if |p| < k − 1
pa if |p| = k − 1 .

The sequential machine τk,F , for a given k > 0 and a word x ∈ Σ∗, outputs a
word τk.F (x) whose symbols are the segments of length k (considering as initial
segments �k−1a1 | �k−2a1a2 | · · · | �a1 · · · ak−2 being w = a1 · · · an ∈ Prefix(x))
of x, in order, and the last segment of length k−1 belong to F . Examples of τk,F

for the values k = 2 with F = {a} and k = 3 with F = {aa, bb} for Σ = {a, b}
can be seen in Figure 1.

1

a

b

1

a

b

aa

ab

ba

bb

a/�a

b/�b

a/aa

b/bb

b/aba/ba

a/��a

b/��b

a/�aa

b/�ab

a/�ba

b/�bb

a/aaa

b/bbb

a/abab/bab

b/aab

a/bba

a/baa

b/abb

Fig. 1. Transducers τ2,{a} and τ3,{aa,bb}

In order to use τk,F in some algebraic proofs, we define the morphism h from
B∗ into (Σk)∗ for any word b ∈ B∗ by setting

h(b) =
{
b if b ∈ Σk

1 otherwise

Now, we describe the algorithm 2 in order to infer languages from LJ +
k . This

algorithm will use some of the above elements.

110 A. Cano and P. Garćıa

Given a word x, we can associate to this word a language LLJ+
k
{x} in LJ +

k

as follows,

LLJ+
k {x} =

{
x if |x| < k
Prk−1(x)Σ∗ ∩ L(h(τk(x))) ∩Σ∗Sufk−1(x) if |x| ≥ k.

Given a sample S = {x1, x2, . . . , xn}, we can extend the previous definition
by associating the language LLJ+

k S ∈ LJ
+ as follows

x ∈ LJ+
k S ⇔ there exists i, such that x ∈ LLJ+

k {xi}.

Proposition 3. LLJ+
k S is the smallest language in LJ +

k that contains S.

Proof. It suffices to show that the result holds for S = {x} for some x ∈ Σ∗.
The result is trivial if |x| < k.

If S ∈ L and L ∈ LJ +
k then for any i ∈ {1, . . . ,n} there exists yi with

τk,Σk−1(yi) | τk,Σk−1(xi) and Prk−1(xi)Σ∗∩L(h(τk,Σk−1(yi)))∩Σ∗Sufk−1(xi) ⊆
L. So, for any i ∈ {1, . . . ,n}, LLJ+

k {xi} ⊆ L. And then, LLJ+
k S ⊆ L.

The algorithm 2 tries to calculate LLJ+
k {xi} for any xi in S. We order S and

check the acceptance of any word before constructing the automaton. To see that
the algorithm calculates LLJ+

k {xi} for any xi, it suffices to see that if |xi| < k−1,
xi is accepted by the definition of the cascade product and by the fact that the
transduction is filled by the symbols � on the left. If |xi| ≥ k, the language of the
automaton contains L(u1, . . . , un) by the definition of the transducer τk,F , fur-
ther more since the transduction is filled by the symbols � on the left this implies
that the prefix of all words belonging to the language accepted by the automaton
is exactly Prk(x). Finally, by choosing F = Sufk−1(x), the suffix of all all word
belonging to the language accepted by the automaton is exactly Sufk−1(x).

Algorithm 2. LJ +

k Inference
Input: S set of words over Σ∗ and k a positive integer
Output: NFA A = (Q,Σ, δ, Q0, F), consistent with S such that L(A) = LLJ +

k
S

Method:
Q = ∅ ; δ = ∅ ; F = ∅ ; Q0 = ∅
Order S by decreasing length as: S = {x1, x2, . . . , xm}
For 1 ≤ i ≤ m Do

If δ(Q0, x) ∩ F = ∅ Then
A′ = (Q′, Σ′, δ′, Q′

0, F
′) = J + Inference(τk,Sufk−1(x)(xi))

A = A ∪ A′ ◦ τk,Sufk−1(x)

Return (A′)

The convergence of Algorithm 2 is a direct consequence of Proposition 3.
The time complexity of Algorithm 2 is N ∗ |Σ|k+1. Let S = {x1, x2, . . . , xn}

and let N = |x1| + |x2| + · · · + |xn|. The size of the transducer τk,F is of order
|Σk| but computing τk,F (xi) for i ∈ {1, . . . ,n}, is of order |xi|. Since the only
remaining steps to be done by the algorithm are: to apply the Algorithm 2 and to
calculate the cascade product, the complexity of the Algorithm 2 is N ∗ |Σ|k+1.

Finite Automata and Unions of Regular Patterns 111

5 Inferring Finite Unions of Pattern Languages with
Constant Segments

In this section we show that we can infer k-bounded pattern languages by using
the inference algorithm used to learn LJ+ languages.

In order to do so, we define a new product of automata and transducers. This
product is in some sense the inverse of the cascade product.

Definition 2. Let A = (Q1, Σ, δ, q0, F) be a finite deterministic automaton, and
let τ = (Q2, Σ, Γ, δ′, λ, p0, F

′) be a sequential transducer. We define the product
A◦τ = (Q1×Q2, Γ, δ

′′, (q0, p0), F ×F ′) with δ′′((q, p), b) = (q′, p′) if δ′(p, a) = p′,
λ(p, a) = b and δ(q, a) = q′.

The next proposition gives us the meaning of this operation.

Proposition 4. Given a DFA A = (Q1, Σ, δ, q0, F) and a finite transducer
τ = (Q2, Σ, Γ, δ′, λ, p0, F

′), L(A◦τ) = τ(L(A)).

Proof. Let w ∈ τ(L(A)), then there exists x ∈ L(A) such that τ(x) = w. Then,
we have δ′(p0, a) = f ′, λ(p0, x) = w and δ(q, x) = f , for some f ∈ F and f ′ ∈ F .
And so, δ′′((q0, p0), w) = (f, f ′) ∈ F × F ′, that is w ∈ L(A◦τ).

Conversely, Let w ∈ L(A◦τ), this implies that δ′′((q0, p0), w) = (f, f ′) for
some f ∈ F and f ′ ∈ F ′, and there exists x ∈ Σ∗ such that δ′(p0, a) = f ′,
λ(p0, x) = w and δ(q, x) = f . And so, τ(x) = w and x ∈ L(A). And so,
x ∈ τ(L(A)).

Note that if there does not exist p ∈ P and a, b ∈ A such that λ(p, a) = λ(p, b)
we have that A◦τ is a deterministic automaton.

Theorem 3. RPL+
k is included in LJ +

k+1. Furthermore, any language belong-
ing to RPL+

k can be obtained as a finite union of languages belonging to LJ+
k+1.

Proof. It suffices to prove the theorem for patterns of the form u0x1u1 · · ·
un−1xnun, since the class of languages LJ+ is closed under finite union. Since
p ∈ RPk we have that |ui| ≤ k for 1 ≤ i ≤ n.

We now give a process to obtain the pattern language L(p) of the form
u0Σ

∗u1 · · ·un−1Σ
∗un from languages belonging to LJ +.

Since p is a regular pattern we know that there exists an automaton Ap such
that L(p) = L(Ap).

Now let τk+1,Σk−1 be the transducer defined in Definition 1, then by Propo-
sition 4 we know that L(A◦τk+1,Σk) = τk+1,Σk(L(A)).

Let B =
⋃k−1

i=1 �k−iΣi ∪ Σk, and let as denote by h the morphism from B∗

into (Σk)∗ introduced in Definition 1.
We denote by P the set of acyclic paths of A◦τk+1,Σk going from the initial

state to some final state. Note that this set is finite. We claim that

112 A. Cano and P. Garćıa

L(p) =
⋃
X∈P

|x|=k,u0∈Pre(x)

|y|=k,un∈Suf(y)

xΣ∗ ∩ L(h(X)) ∩Σ∗y

⋃
{x ∈ L(p) | |x| < k}.

The result is clearly true for any w ∈ Σ∗ with |w| < k. So, let us suppose
|w| ≥ k.

Let w ∈ L(p), we know that τk+1,Σk(w) ∈ L(A◦τk+1, Σ
k), which means that

there exists X ∈ P such that X | τk+1,Σk(w), and then, if we take x = Prk(w)
and y = Sufk(w), we have that w ∈ xΣ∗ ∩ L(h(X)) ∩Σ∗y.

In the other direction let w ∈ xΣ∗ ∩ L(h(X)) ∩ Σ∗y for some x, y ∈ Σk and
X ∈ P . By Proposition 4 and the definition of P , there exists a word z ∈ Σ∗

such that τk+1,Σk(z) = X and z ∈ L(p). Since z ∈ L(p) and p is k bounded we
have that v0v1 · · · vn | h(X) with |vi| = k and vi = xiuiyi for some xi, yi ∈ Σ∗

with 0 ≤ i ≤ n. Then τk+1,Σk(z)|τk+1,Σk(w) and v0v1 · · · vn | h(τk+1,Σk(z)), and
so, necessarily w ∈ L(p).

This theorem implies that k-bounded regular pattern languages can be iden-
tified by the LJ +

k+1 Inference Algorithm in the limit.
The following example shows the behavior of the previous algorithm.

Example 1. Let p1 = axayb and p2 = bxb be 1-bounded patterns. Figure 2 shows
the automaton that accepts L(p1) ∪ L(p2).

The automaton constructed in Theorem 3 in order to obtain the words on Σ2

required to learn the pattern is shown in Figure 3.
This shows that the sequences (aa, ab), (ab, ba, ab), (bb) and (ba, ab) are

enough to describe L(p1)∪L(p2). By (aa, ab) we obtain aΣ∗∩L(aa, ab)∩Σ∗b, by
(ab, ba, ab) we obtain aΣ∗∩L(ab, ba, ab)∩Σ∗b, by (bb) we obtain bΣ∗∩L(bb)∩Σ∗b
and (ba, ab) we obtain bΣ∗ ∩L(ba, ab)∩Σ∗b. Note that they are the only paths
without cycles from the initial to the final states.

1

2 4 6

3 5

a

a

b

b

a

b

b

a

a b

a b

Fig. 2. Automaton accepting L(p1 ∪ p2) for the patterns p1 = axayb and p2 = bxb

Finite Automata and Unions of Regular Patterns 113

1, 1

2, a

3, b

3, a

4, a

5, b

2, b

6, b

�a

�b

aa

ab

ba
ab ba

bb

ba
ab

ba

aa

bb

bb

aa

bb

Fig. 3. Automaton accepting A(L(p1∪p2))◦τ2 for the patterns p2 = axayb and p2 = bxb

1

1

2

2

3

3 4

�b

�b

bb

ba ab

B2 − �a

B2 − �a

B2 − bb

B2 − ba

B2

B2 − ab B2

1

1

2

2

3

3

4

4 5

�a

�a

aa

ab

ab

ba ab

B2 − �a

B2 − �a

B2 − aa

B2 − ab

B2 − ab

B2 − ba

B2

B2 − ab B2

Fig. 4. The automaton obtained for the J + inference algorithm for the samples
{(�a, aa, ab), (�a, ab, ba, ab), (�a, ab, ba, ab, ba, ab), (�b, bb), (�b, bb, bb), (�b, ba, ab)}

Otherwise, (aa, ab), (ab, ba, ab), (bb) and (ba, ab) also gives a characteristic set
for the inference of L(p1)∪L(p2). Let us consider the set S = {aab, abab, ababab,
bb, bab, bbb}, note that this set contains the characteristic set {aab, abab, bb,
bab}. By appliying the J+ Inference Algorithm to the set τ2,Σ(S) we obtain the
automaton shown in Figure 4.

Finally, Figure 5 shows the automaton obtained from the algorithm used to
learn LJ +

2 . We can verify that the minimal automaton obtained for the automa-

114 A. Cano and P. Garćıa

1, 1

1, 1

2, b

2, b

3, b

3, a 4, b

3, a

4, a

2, a

b

b

b
a

b

a b

a b
a

b

b

b

a b

a

a

a

1, 1

1, 1

2, a

2, a

3, a

3, b

4, b

4, a 5, b

4, a

5, a

2, b

a

a

a

b

b
a

b

b a

a b
a

b

a

a

b

b a
b

a b a

Fig. 5. The automaton obtained for the LJ +

2
inference algorithm for the samples

S = {aab, abab, ababab, bb, bbb, bab}

ton shown in Figure 5 is exactly the automaton shown in Figure 2 that accepts
the language L(p1) ∪ L(p2).

6 Conclusions

In this article we give an efficient inference algorithm for the positive varieties of
languages J + and LJ +. The algorithm for LJ + is done by using the algorithm
for J + and the cascade product.

By using this algorithm and some new and old theoretical results, we solve the
open problem of given an efficient algorithm to infer unbounded unions of regular
pattern languages with bounded constant segments proposed in [1]. This shows
the that study of the algebraic theory of automata can give us some knowledge
in order to perform new algorithms to be applied in practice.

References

1. Shinohara, T., Arimura, H.: Inductive inference of unbounded unions of pattern
languages from positive data. Theoretical Computer Science 241 (2000) 191–209

2. Pin, J.E., Weil, P.: Polynomial closure and unambiguous product. Theory
Comput. Systems 30 (1997) 1–38

Finite Automata and Unions of Regular Patterns 115

3. Angluin, D.: Finding common patterns to a set of strings. in Proc. 11th Ann.
Symp. Theoryof Computing (1979) 130–141

4. Arikawa, S., Kuhara, S., Miyano, S., Shinohara, A., Shinohara, T.: A learning
algorithm for elementary formal systems and its experiments on identification of
trandmembrane domains. in Proc. 25th Hawaii Int. Conf. on System Science 1
(1992) 675–684

5. Pin, J.E., Weil, P.: The wreath product principle for ordered semigroups.
Communications in Algebra 30 (2002) 5677–5713

6. Garcia, P., Ruiz, J.: Learning in varieties of the form V*LI from positive data.
To appear (-)

7. Garcia, P., Ruiz, J.: Learning k-testable and k-piecewise testable languages from
positive data. Grammars. Special Issue on Grammar Induction (2004) 125–140

8. Hopcroft, J., Ullman, J.: Introduction to automata theory, languages and
computation. Addison-Wesley (1980)

9. Gold, E.M.: Language identification in thelimit. Information and Control (1967)
447–474

10. Pin, J.E.: Varieties of formal languages. North Oxford, London and Plenum,
New-York (1986) (Traduction of Variétés de langages formels).

11. Berstel, J.: Transductions and Context Free Languages. Teubner (1979)

Inside Vaucanson

Thomas Claveirole1, Sylvain Lombardy2, Sarah O’Connor1,
Louis-Noël Pouchet1, and Jacques Sakarovitch3

1 LRDE, EPITA
{claveirole, o-connor, pouchet}@lrde.epita.fr

2 LIAFA, Université Paris 7
lombardy@liafa.jussieu.fr

3 LTCI, CNRS/ENST
sakarovitch@enst.fr

Abstract. This paper presents some features of the Vaucanson plat-
form. We describe some original algorithms on weighted automata and
transducers (computation of the quotient, conversion of a regular ex-
pression into a weighted automaton, and composition). We explain how
complex declarations due to the generic programming are masked from
the user and finally we present a proposal for an XML format that allows
implicit descriptions for simple types of automata.

1 Introduction

At CIAA’03, we had announced our project Vaucanson, a software platform
for computing with automata and transducers (see [1]). We have made some
demonstration of the possibilities of Vaucanson at CIAA’04. We would like to
report now on how some features of Vaucanson have been implemented at the
light of the first years of experiments. This applies to the algorithms as well as
to the programming facilities that had to be incorporated within Vaucanson.

We first describe three of the algorithms implemented in Vaucanson: those
which generalize to automata with multiplicity the Hopcroft algorithm of mini-
mization, the construction of the derived term automaton of a regular expression
and the composition of (sub-)normalized transducers.

We then explain how we have overcome the intrinsic difficulty of generic static
programming. And we finally introduce the last version of an XML format to
describe automata, implemented as input-output in Vaucanson. In particular,
Vaucanson is complemented with a model of a graphical interface, which relies
on the XML format to interact with the Vaucanson library.

The description of the algorithms is complemented with the results of some
benchmarks of the last version of Vaucanson 1. All the tests have been run on
a server installed at ENST, a bi-Xeon 3.2 GHz with 4 Go of RAM.

2 On the Algorithms

The Vaucanson platform provides the most usual algorithms on automata:
determinization, minimization, product, Thompson automaton of an expression,
1 Downloadable at http://vaucanson.lrde.epita.fr.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 116–128, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Inside Vaucanson 117

standard automaton, ε-transitions removal, etc. Each of these algorithms has
been written such that it can be applied to the largest range of automata. For
instance, product or ε-transitions removal are generic and can be applied to
automata with any multiplicity.

As an example, let us mention the automaton An, drawn below, that had
been used in [1] for benchmarking the determinization and that will serve as the
basis of other tests in this paper.

On the latest version of Vaucanson the
determinization test gives the following result
for A20 (the minimal deterministic automaton
equivalent to An has 2n states).

Platform time (seconds) space (MB)

FSM 60 447

Vaucanson 105 1709

0

1

2

3n-3

n-2

n-1

a

aa

a

a, c

c

cc

c

a

c

b, c

b, c

b, cb, c

b, c

b, c

We focus now on three algorithms that are extensions for automata with
multiplicities of more or less well-known algorithms: a minimization algorithm
adapted from Hopcroft algorithm, a rather sophisticated algorithm for building
an expression, adapted from a method due to Champarnaud and Ziadi [2], and
finally an algorithm for the composition of transducers with multiplicity.

2.1 Minimal Quotient

Definition of the Minimal Quotient. The notion of minimal quotient (or K-
covering) is the generalization to weighted automata of the minimal automaton
for DFA’s. It consists in computing a (smaller) automaton by merging states
which have the “same” outgoing transitions. (cf. [3, 4]).

More formally, this definition is equivalent to the following one (straightfor-
ward from [5]). Let A = (I, E, T) be an automaton characterized by its initial
vector I, its transition matrix E and its final vector T . The minimal quotient
of B is the (unique) smallest automaton B = (J, F, U) such that:

J = IK, KF = EK, and KU = T,

where K is an amalgamation matrix (i.e. with one and only one non-zero coef-
ficient, equal to 1, on every row). It is quite obvious that the minimal quotient
of A is equivalent to A.

Algorithm for the Minimal Quotient. The minimal quotient of a DFA can be
computed either by the Moore algorithm or by the Hopcroft algorithm [6].2

These both algorithms consist in refining a partition over states (initialized w.r.t.
the terminal states) but they are different: given a class P and a letter a, the
Moore algorithm consists in considering the classes of successors of P by a and

2 The Brzozowski algorithm is not a computation of quotient, even if it gives the same
result on DFAs.

118 T. Claveirole et al.

splitting P , whereas the Hopcroft algorithm consists in considering the classes
of predecessors of P by a and splitting them. Therefore, the Hopcroft algorithm
can more directly be extended to NFAs or weighted automata:

1. Computation of a backward transition table: for every state q and every
letter a, the list of pairs (p, w) is stored, for all transitions from p to q
labelled by a with multiplicity w. The current implementation of automata
in Vaucanson already provides this table.

2. The algorithm is initialized by sorting states with respect to their terminal
function. This provides the initial partition that has to be refined to be a
right congruence. For every part P and every letter a, the pair (P, a) is
inserted into a queue l.

3. While l is not empty, the front of l, a pair (P, a) is poped up; for every part Q
which has successors by a in P , the part Q is splitted such that two states q
and q′ remain in the same part if and only if the sum of weights of their
outgoing transitions labelled by a that arrive in P are equal. If new parts
are created, they are inserted into l (paired with every letter).

4. An automaton whose states are the parts is then created. The terminal
function of the part is the (common) terminal function of each of its states,
the initial function is the sum, and the multiplicity of (P, a,Q) is the sum,
for any state p of P of the multiplicities of transitions (p, a, q) for every q
in Q.

Comparison with the Classical Hopcroft Algorithm. The principle of the algo-
rithm is the same as the principle of the minimization algorithm: a backward
transition table is computed and a partition is refined by considering predeces-
sors of each part. Nevertheless, the existence of multiplicities has a number of
outcomes in every step of the algorithm.

First, the transition table does not contain lists of states, but lists of states
paired with weights.

In step 2, the initial partition has as many parts as the terminal function has
values. In step 3, it is not sufficient to know wether a state q has a successor
in P but which is the multiplicity from q to P . Moreover, one add to l every
subpart obtained from Q whereas in the Hopcroft algorithm the smallest among
both subparts is inserted, which is crucial to reach the n log n complexity in the
classical case. The complexity of that generalized Hopcroft algorithm is therefore
more likely to be quadratic.

Minimizing Deterministic Automata. Minimization of DFAs is a special case of
computing the quotient and we have first tested implementations in this case
to allow comparison with other platforms. It has been shown in [7] that the
de Brujin graph, Bn is the worst case for Hopcroft minimization algorithm,
since it can lead to n2n steps in the main loop of the algorithm: let A = {a, b}
be the alphabet; the states of Bn are labelled by words of length n over A, that
gives 2n states. The state an is initial, for every x, y in A, every word w in An−1

there is a transition from xw to wy labelled by y and xw is final if and only if
x = a. We also test minimization on the the determinized automaton of An.

Inside Vaucanson 119

Four procedures are tested; the one proposed by FSM (unknown algorithm),
and two algorithms proposed by Vaucanson: Moore and Hopcroft.3

Input B12 B17 det(A12) det(A17)

FSM 0.048 1.791 0.065 2.829

Moore 0.271 37.11 0.470 146.77

Hop. 0.074 45.599 0.338 1752.33

Test of the Generalized Quotient. Let C1 be the Z-automaton of Figure 1 that
maps every word w on {a, b}2, seen as a binary number, on its value w̄. For every
positive integer n, let Cn+1 be the automaton recursively defined as the product
of C1 by Cn. Cn maps every words w on w̄n. In the following tests, we compute
Cn, which has 2n states and then the minimal quotient Vn of Cn which has n+1
states.

b

a + b 2a + 2b

(a) The automaton C1

3b 4b 4b

a + b 2a + 2b 4a + 4b 8a + 8b

3b 2b

b
(b) The quotient of C3

Fig. 1. The automata Cn

n 8 9 10 11 12

Cn edges 6817 20195 60073 179195 535537

Vn edges 45 55 66 78 91

Time 0.036 0.112 0.340 0.999 3.161

2.2 Automaton of Derived Terms

The Vaucanson platform provides several algorithms to convert any regular
expression (with multiplicity) into a (weighted) finite automaton. We present
here the algorithm that constructs the derived term automaton AE of an expres-
sion E [8, 5]. This automaton is rather small: it has been proven that AE is a
quotient of the standard (or position, or Glushkov) automaton of E [2, 5].

We have implemented the algorithm and the data structure proposed by
Champarnaud and Ziadi [2] for the computation of derived terms, together with
the necessary improvement in order to deal with multiplicity in expressions. The
main point proven in [2] is that every derived term of a regular expression E is
a product of subexpressions of E. Therefore, each derived term is represented
by a list of nodes in the tree of the regular expression E. Moreover, this tree
is equipped with some “links” that help to perform the derivation: for every
∗-node n, there is a link from the child of n to n itself, and for every ·-node,
there is a link from the left child of n to its right child.
3 The Brzozowski algorithm that consists in applying a co-determinization followed

by a determinization does not succeed in reasonable time on these inputs.

120 T. Claveirole et al.

Two basic functions are c(E) and first(E, a). The function c(E) gives the weight
of the empty word in the series described by E and first(E, a) returns a set of
pairs weight/position recursively defined by:

first(0, a) = ∅ , first(1, a) = ∅ ,

∀b ∈ A first(b, a) =
(1K, y) with y position of a in E, if a = b,

∅ otherwise

first(k E, a) = {(kx, y) | (x, y) ∈ first(E, a)} , first(E k, a) = first(E, a) ,

first(E + F, a) = first(E, a) ∪ first(F, a) , first(E · F, a) = first(E, a) ∪ first(c(E)F, a) ,

first(E∗, a) = first(c(E)∗E, a) , if c(E)∗ is defined in K.

These functions are easily computed on the tree of the regular expression.
The computation of the derivatives of E with respect to a consists, for every
position x in first(E, a), to go up to the root of the tree of E and collect the
destinations of the links starting from the nodes on that path.

Example 1. Let E1 = (5 F1) with F1 = ((2ab) + ((3b) · (4(ab)∗)))∗.

The derived terms of E1 are:

K1 = b · F1,

K2 = (4 (ab)∗) · F1,

K3 = F1,

K4 = (b · (ab)∗) · F1, and
K5 = (ab)∗ · F1.

For instance, ∂
∂a K2 = 8K1 ⊕ 4K4.

E1

K1

K3

K2

K4

K5

5

4

10 a

15 b

b

2a

3b

8a

12b

4a

b

2a

3b
a

The automaton AE1 .

The tree of E1 is equipped with links. The coding for E1 itself is I.

One computes first(I, a) = {(10, V I)} and
going up from V I, one get:

∂
∂a E1 = 10[V II, II].

Finally, we get the same automaton with the
following coding for derived terms:

K0 =[I] K1 =[V II, II] K2 =[XI, II]
K3 =[II] K4 =[XV,XII, II] K5 =[XII, II]

For instance,

first([XI, II], a)= {(4, XIV), (8, V I)}
and ∂

∂a [XI, II] = 4[XV,XII, II]⊕ 8[V II, II].

I : 5.

II : ∗

III : +

IV : 2.

V : ·

V I : a V II : b

V III : ·

IX : 3.

X : b

XI : 4.

XII : ∗

XIII : ·

XIV : aXV : b

Test on the Derived Terms. A set of expressions is provided by the elimination
algorithm applied on A15 with random orderings on states. The automaton of

Inside Vaucanson 121

derived terms AE of every expression E is computed, and also the quotient VE of
the standard (Glushkov) automaton of the expression E. One thousand expres-
sions are generated this way and classified w.r.t. their litteral length lE– which
is the size of SE. We present here means for four significant classes.

Derived term AE Standard SE

Class lE AE states time VE states time

1 110 24 0.123 24 0.012

7 410 53 0.470 51 0.050

14 1035 66 1.169 60 0.138

20 7821 90 13.412 78 1.418

2.3 Composition of Transducers with Multiplicity

A most fundamental result in the theory of transducers is Elgot and Mezei’s
Composition Theorem ([9]): The composition of two finite transducers is realized
by a finite transducer. The same result holds true for weighted transducers — up
to some definition problems which will not be considered here. The proof is, or
can be translated into, an algorithm for the construction of the transducer that
realizes the composition. And there are two main proofs for the Composition
Theorem.

The first proof follows from Kleene-Schützenberger characterization of ratio-
nal relations from A∗ into B∗ as recognizable series on A∗ with multiplicity
in RatB∗. Transducers are thus representations of A∗ by matrices with entries
in RatB∗ and representations can be composed in a natural way: this yields a
representation for the composition of transducers [10]. This proof has the advan-
tage that it generalizes directly to weighted transducers: they are representations
by matrices with entries in KRatB∗ if K is the multiplicity semiring. It is thus
perfectly “generic” i.e. independent from the type of considered transducers and
hence fits well with the architecture of Vaucanson. It is the one we have first
implemented. Besides its genericity, this algorithm has a serious drawback: as it
deals with real-time transducers, the transition “outputs” may be regular expres-
sions and the composition requires the computation of the image (by the second
transducer) of all these expressions, a computation that may prove to be costly.

The other proof, certainly better known, relies on the realization of rational
relations by projections and intersection with rational (regular) languages (see
[11, 12]). We have also implemented another composition algorithm which follows
more closely this classical proof and which works directly on transducers seen as
labeled graphs.

Let us first sketch quickly an algorithm that corresponds to that proof in the
unweighted case. In spite of its simplicity, it has not been described so often;
it can be seen as a simplified version of the algorithm for the weighted case of
[13, 14] which we shall mention again later. It can be also found in [15].

We consider two normalized transducers T = 〈Q,A∗×B∗, E, I, T 〉 and U =
〈R,B∗ × C∗, F, J, U〉 , that is transitions of T are labeled in A × 1 or in 1 × B

122 T. Claveirole et al.

and those of U are labeled in B × 1 or in 1× C. The proof of the Composition
Theorem as presented in [12] is equivalent to the construction of the transducer

T $% U = 〈Q×R,A∗ × C∗, G, I × J, T × U〉

by the following rules.

(i) If (p, (a, 1), q) ∈ E then for all r ∈ R
(
(p, r), (a, 1), (q, r)

)
∈ G .

(ii) If (r, (1, c), s) ∈ F then for all q ∈ Q
(
(q, r), (1, c), (q, s)

)
∈ G .

(iii) If (p, (1, b), q) ∈ E and (r, (b, 1), s) ∈ F then
(
(p, r), (1, 1), (q, s)

)
∈ G .

A next possible step is to eliminate the transitions with label (1, 1) by means
of a classical closure algorithm.

T1

(1, y)

(1, x)
(b, 1)

(a, 1)

U1
(x, 1) (y, 1)

(1, u)(1, v)

(b, 1)

(a, 1)

(b, 1)

(a, 1)

(b, 1)

(a, 1)

(1, u)

(1, v)

(1, u)(1, v)

(1, u)(1, v)

(1, 1)

(1, 1)

T1 �	 U1

(b, 1)

(a, 1)

(1, v)

(1, u)

(b, 1)

(1, v)

(a, 1)

(1, u)

Fig. 2. Composition Theorem on Boolean transducers

This construction can easily be extended to transducers which we shall call
sub-normalized and which are such that transitions are labeled in Â× B̂ \ (1, 1)
where Â = A∪{1} . It amounts to replace (iii) by (iii’) If (p, (x, b), q) ∈ E with
x ∈ Â and (r, (b, y), s) ∈ F with y ∈ Ĉ then

(
(p, r), (x, y), (q, s)

)
∈ G .

In this form, it contains as a particular case the composition of letter-to-letter
transducers.

It is known that this construction is not correct if multiplicities are to be
taken into account. Let us say that two paths in T $% U are equivalent if they
correspond to the same pair of paths in T and U . For instance, there is one
path labeled (aa, y) in T1 and one path labeled (y, u) in U1; and there are two
equivalent paths labeled (aa, u) in T1 $% U1. Hence, T $% U does not realize the
composition of the weighted relations realized by T and U .

In [11], the Composition Theorem is proved for weighted transductions (at
least for those with weights taken in a complete positive and commutative semi-
ring, which allows to dispose of the question of definition). In this proof, the

Inside Vaucanson 123

multiplicity, that is the selection among the equivalent paths, is taken care of,
so to speak, by the intersection with a certain local language T .

As we already mentioned, a construction of a weighted transducer that realizes
the composition of two weighted transductions is given in [13, 14]. It amounts
first to mark the transitions which, in the above construction, have a label one
component of which is the empty word, and then to choose a filter, that is
a language on the alphabet of marks which retains one path in every set of
equivalent paths. Besides implementing a proof of the Composition Theorem,
this construction has the advantage of being well-suited to the lazy evaluation
of the composition, that is the implementation of an algorithm that does not
compute the composed transducer but the output of it on any input word (with
the same number of steps as if the composed transducer had been computed).
On the other hand, it is easy to verify that the language T in Eilenberg’s proof
plays the role of a filter.

(1, y)

(1, y)

(1, x)
(b, 1)

(b, 1)

(a, 1)

(x, 1)

(y, 1)

(y, 1)

(1, u)(1, v)

(1, v)

(1, v)

(1, v)

(b, 1)

(b, 1)

(a, 1)
(1, u)

(a, 1)

(a, 1)

(1, u)
(1, u)

Fig. 3. A composition that preserves multiplicity

We have implemented a construction on transducers that corresponds to this
filter T and as it is chosen beforehand we avoid the introduction of marked
transductions. We replace them by a preliminary operation on the transducers
and the intersection with T is then realized by the deletion of certain states in
the product. The construction on T and U can be described as follows:

(a) Split the states of T and their outgoing transitions in such a way they are
labeled either in (A× 1) — black states — or in Â×B (or the state is final)
— white states; the incoming transitions are duplicated on split states. This
is transducer T ′.

(b) Split the states of U and their incoming transitions in such a way they are
labeled either in (1×C) — black states — or in B×Ĉ (or the state is initial)
— white states; the outgoing transitions are duplicated on split states. This
is transducer U ′.

124 T. Claveirole et al.

(c) Apply the preceeding algorithm [steps (i), (ii) and (iii’)] to T ′ and U ′ in
order to build T ′ $% U ′.

(d) Delete the black-black states (every state in T ′ $% U ′ is a pair of states).
(e) Trim and eliminate the transitions with label (1, 1) by classical closure.

Figure 3 shows the construction applied to T1 and U1.

Composition Algorithm. We consider the rewriting rule abn → ban. This trans-
formation is achieved by the composition of a left sequential transducer by a right
sequential transducer, respectively performing rewriting from right to left and
left to right. The composition has been implemented using both the composition
of representations and the composition of sub-normalized transducers.

Algorithm n Nb. states Nb. transitions Time

Sub-normalized 20 30084 40356 0.551
transducer 40 232564 305506 4.849

Representation 20 441 882 2.042
40 1681 3362 36.195

3 Coping with Generic Static Programming

Genericity in Vaucanson. In order to ensure maximal genericity of the func-
tions and algorithms written in the Vaucanson library, most of the objects that
come into the definiton of automata are parameterizable. For instance and to
quote a few, one can, but also one has to, define the type of the following entities:

– the alphabet, i.e. the type of “letters”: characters, pairs of characters, etc.
– the multiplicity, which involves both the domain (B,Z,Q,R for instance) and

also the semiring operations considered on these domains: usual + and ×,
or min and +, or max and +, etc.

– the transition label type such as letter, polynomial, (rational) series, etc.

As already advocated in [1], the use of C++ static genericity is one of the
characteristic features of Vaucanson. Algorithms are written once, and the
assurance is given that they will work for all kinds of automata (concerning the
above parameters). In order to achieve efficiency, the use of “classical” virtual
methods and abstract classes is avoided. Instead, static mechanisms similar to
those described by [16] and [17] are used. The combination of genericity for
such a wide range of types and the use of such methods for static mechanism
have a heavy counterpart: programming becomes pretty tough, even for most
advanced users. The solution to this drawback which threatened the usability of
Vaucanson came through the writing of “context headers”.

Context Headers. The Vaucanson platform now provides a set of context
headers, each of them contains all the needed declarations for a classical type of
automata such as Boolean automata, automata with multiplicity in Z, max-plus
or min-plus automata, or transducers.

Inside Vaucanson 125

The objective is achieved to some extend. The wide range of functions imple-
mented in the Vaucanson library may be used with a minimal amount of decla-
rations when applied to classical types of automata. On the other hand, advanced
users may also use their own definitions to take the most of the genericity in Vau-
canson. On the developer’s side, genericity is kept and algorithms are written
once and specializable in various ways (regarding the automaton type, a partic-
ular implementation, etc). By offering predefined types to the user, Vaucanson
provides services which are in fact context-sensitive, as the new_rat_exp() or
thompson_of() functions for instance.

The Future of Context Headers. As explained in [1], the “type” of an entity
in Vaucanson does not refer only to the type of a variable but also to how this
variable is implemented. The present headers refer to the general implementation
of automata and do not thus insure the best possible efficiency.

Moreover, the writing of a context header is a tedious process, and every user’s
wish or need cannot be fulfilled by a library of headers: the possible combinations
of types are potentially infinite.

A more elegant solution that we plan to implement in a near future will be to
provide a kind of parameterized context, for which only the most usual parameters
are fixed. As an example, an automaton with “numerical” multiplicity would be
defined by a header weighted_automaton which will have as parameters the
type of the letters of the alphabet and the type of the weight: int, float,
etc.

4 The XML Exchange Format for Automata

At CIAA’04, the Vaucanson group presented an XML description format for
automata. This format was elaborated both as a proposal for an exchange format
within the community of automata users and as an input-output standard in
order to allow communications between Vaucanson and other softwares dealing
with automata4. We shall present a new proposal at CIAA’05, and the XML
format proposed will be described there. We describe here only the main features
of this new format, their motivation, and the way Vaucanson handles it.

4.1 The XML Proposal

Quick Review of the Format. The description of automata is structured
in two parts. The <type> tag provides automaton type definition, like Boolean
automaton, or weighted ones with the ability to specify weight type, alphabet
specification, etc. The <content> tag provides the definition of the automaton
“structure”. The visual representation of automata involves a very large amount
of informations. The <geometry> data corresponds to the embedding of the
automaton in a plane (with informations such as state coordinates or edge type
for a transition). The <drawing> data contains the definition of attributes that

4 Vaucanson supports as well the FSM format for loading and saving automata.

126 T. Claveirole et al.

characterize the actual drawing of the graph (such as label position or state
color for instance). Most of them are indeed implicit and provided by drawing
programs; the format only provides the possibility to make them explicit at every
level of the description.

From DTD to XSD. The most important difference with our previous pro-
posal is the change from a DTD (Document Type Definition) describing the tags
for automata representation to an XSD Schema.

This change is indeed a consequence of the same simplification policy which
lead us to the definition of context headers: it is desirable to keep the description
of automata simple when describing widely used structures, while giving the
possibility to describe the most complex ones.

For XML, this simplification amounts to have default types, in order to omit
<type> tag when describing common Boolean automata or transducers.

The problem then arises when describing an automaton or a transducer, the
default values for the <type> tag must of course be different. This is not possible
with a DTD description. The use of a XSD overcomes this difficulty, since it
is possible to define different properties for a same element, according to the
embracing context. Is is so possible to locally alter the behavior of a tag, and
make it context-sensitive. With this feature, default values for the <type> tag
are achieved, whether it is a child of <transducer> or of <automaton>.

It is of course possible to redefine only the tag where default values are in-
appropriate, inside the <type> tag. For instance, in order to define a weighted
automaton on Z, it is sufficient to write a <semiring> tag as a child of <type>,
with set attribute set to Z.

4.2 Implementation in Vaucanson

In order to implement support of proposed XML format in Vaucanson, two
main objectives need to be achieved: maintenance easiness in case of format
modification or extension and routines availability to access state geometric co-
ordinates specified in the XML document.

Parsing the XML Document. To parse the XML document and create the
associated tree, we use the Apache Xerces C++ parser [18]. Xerces is a validating
XML parser, and handles well DTD document validation or XSD validation.

Building the Automaton. When reading and interpreting data, the pro-
gram faces a totally dynamic content. It doesn’t know, a priori, tag proper-
ties it will read. We face the problem of knowledge of the treatment type, not
data type. In order to solve this problem, we use the Factory Method design
pattern [19].

Factory Method is a creational pattern. It encourages the user to create a
common interface for handled objects (in this case tags), while the exact type
of the object is chosen by a subclass according to the context. The main routine
deals with abstraction since it knows how to manipulate tags, but doesn’t know
about data it is dealing with.

Inside Vaucanson 127

Acknowledgments

The help and support of all members of the Vaucanson Group is gratefully
acknowledged: A. Demaille for the management of the group at LRDE, R. Poss
and Y. Régis-Gianas for keeping an eye on the evolution of the platform,
R. Bigaignon, M. Cadilhac, F. Terrones at LRDE and R. Souza at ENST for
their participation to the writing of the platform and especially for the
benchmarking.

The help of H. Assaoui and Ph. Martins for the installation of the vaucanson
server at ENST is also gratefully acknowledged.

References

1. Lombardy, S., Régis-Gianas, Y., Sakarovitch, J.: Introducing vaucanson. Theo-
retical Computer Science 328 (2004) 77–96

2. Champarnaud, J.M., Ziadi, D.: Canonical derivatives, partial derivatives and finite
automaton constructions. Theor. Comput. Sci. 289 (2002) 137–163

3. Kuich, W., Walk, K.: Block-stochastic matrices and associated finite-state lan-
guages. Computing (Arch. Elektron. Rechnen) 1 (1966) 50–61

4. Sakarovitch, J.: Eléments de théorie des automates. Vuibert (2003) Translation:
Elements of Automata Theory, Cambridge Universiy Press, to appear.

5. Lombardy, S., Sakarovitch, J.: Derivatives of rational expressions with multiplicity.
Theoretical Computer Science 332 (2005) 141–177

6. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In:
Theory of machines and computations (Proc. Internat. Sympos., Technion, Haifa,
1971). Academic Press, New York (1971) 189–196

7. Berstel, J., Carton, O.: On the complexity of hopcroft’s state minimization algo-
rithm. In Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S., eds.: CIAA. Volume
3317 of Lecture Notes in Computer Science., Springer (2004) 35–44

8. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155 (1996) 291–319

9. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM
J. Res. Develop 9 (1965) 47–68

10. Schützenberger, M.P.: On the definition of a family of automata. Information and
Control 4 (1961) 245–270

11. Eilenberg, S.: Automata, languages, and machines. Vol. A. Academic Press [A
subsidiary of Harcourt Brace Jovanovich, Publishers], New York (1974) Pure and
Applied Mathematics, Vol. 58.

12. Berstel, J.: Transductions and context-free languages. Volume 38 of Leitfäden der
Angewandten Mathematik und Mechanik [Guides to Applied Mathematics and
Mechanics]. B. G. Teubner, Stuttgart (1979)

13. Pereira, F., Riley, M.: Speech Recognition by Composition of Weighted Finite
Automata. In: Finite State Devices for Natural Language. Proc. MIT Press (1997)

14. Mohri, M., Pereira, F.C.N., Riley, M.: The design principles of a weighted finite-
state transducer library. Theor. Comput. Sci. 231 (2000) 17–32

15. Lothaire, M.: Algebraic combinatorics on words. Volume 90 of Encyclopedia of
Mathematics and its Applications. Cambridge University Press, Cambridge (2002)

128 T. Claveirole et al.

16. Burrus, N., Duret-Lutz, A., Géraud, T., Lesage, D., Poss, R.: A static c++ object-
oriented programming (scoop) paradigm mixing benefits of traditional oop and
generic programming. In: Proc. of MPOOL’03, 18th SIGPLAN Conf. (2003)

17. Régis-Gianas, Y., Poss, R.: On orthogonal specialization in c++: Dealing with
efficiency and algebraic abstraction in vaucanson. In: Proc. of POOSC’2003. (2003)

18. Xerces: (http://xml.apache.org/xerces-c/)
19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley (1995)

Deterministic Recognition of Trees Accepted by

a Linear Pushdown Tree Automaton�

Akio Fujiyoshi1 and Ikuo Kawaharada2

1 Department of Computer and Information Sciences, Ibaraki University,
4-12-1 Nakanarusawa, Hitachi, Ibaraki, 316-8511, Japan

fujiyosi@mx.ibaraki.ac.jp
2 Graduate School of Electro-Communications,

University of Electro-Communications,
1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan

ikuo@calvyn.cs.uec.ac.jp

Abstract. In this paper, a deterministic recognition algorithm for the
class of tree languages accepted by (nondeterministic) linear pushdown
tree automata (L-PDTAs) is proposed. L-PDTAs accept an important
class of tree languages since the class of their yield languages coincides
with the class of yield languages generated by tree adjoining grammars
(TAGs). The proposed algorithm is obtained by combining a bottom-
up parsing procedure on trees with the CKY (Cocke-Kasami-Younger)
algorithm. The running time of the algorithm is O(n4), where n is the
number of nodes of an input tree.

1 Introduction

Nondeterminism plays a very important role in the design of automata, with
which we can reduce the number of states and rules of automata. Of course,
nondeterminism is not realistic, so we need to consider a systematic way of
constructing efficient deterministic recognition algorithms which simulate non-
determinism. It is easy for finite automata because it is a well-known fact that
any (nondeterministic) finite automaton can be converted into an equivalent
deterministic finite automaton, and we can obtain a deterministic linear time
recognition algorithm from it. The same condition holds for finite tree automata
because it is known that (nondeterministic) top-down tree automata, (nondeter-
ministic) bottom-up tree automata, and deterministic bottom-up tree automata
are convertible between each other [1, 2]. However, when we take automata with
a pushdown stack, the condition will be complicated. Fortunately, for pushdown
finite automata, we have the CKY (Cocke-Kasami-Younger) algorithm, whose
running time is the cube of the length of an input string. On the other hand, the
construction of an efficient deterministic recognition algorithm for trees accepted

� This study is supported in part by a Grant-in-Aid for Young Scientists ((B)
17700004) from the Japanese Ministry of Education, Culture, Sports, Science and
Technology.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 129–140, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

130 A. Fujiyoshi and I. Kawaharada

by a pushdown tree automaton (PDTA) [3] seems difficult because PDTAs have
the capability of duplicating their pushdown stack. The fact that the class of
yield languages of PDTAs coincides with the class of indexed languages is indi-
rect evidence that the construction of the algorithm might be difficult since the
emptiness problem and the uniform membership problem of indexed languages
are exponential time complete [4]. However, there exists a restricted version of
PDTAs which accepts an interesting class of tree languages.

In this paper, linear PDTAs (L-PDTAs) are considered, and a deterministic
recognition algorithm for trees accepted by an L-PDTA is proposed. L-PDTAs
are top-down tree automata with a pushdown stack that are disallowed to dupli-
cate their pushdown stack. It is known that the class of tree languages accepted
by L-PDTAs coincides with that generated by linear, monadic context-free tree
grammars (LM-CFTGs) [5, 6], and the class of their yield languages coincides
with the class of yield languages generated by tree adjoining grammars (TAGs)
[5]. TAGs [7, 8, 9, 10, 11, 12, 13] are a formalism for tree structures which have
been widely studied and related to natural languages. The deterministic recog-
nition algorithm presented in this paper is the combination of the CKY algorithm
and a bottom-up parsing procedure on trees. It is shown that the algorithm de-
termines whether an input tree can be accepted by a given L-PDTA in O(n4)
time, where n is the number of nodes of an input tree.

2 Preliminaries

In this section, terms, definitions, and former results which will be used in the
rest of this paper are introduced.

Let N be the set of all natural numbers, and let N+ be the set of all positive
integers. The concatenation operator is denoted by ‘ · ’. For an alphabet Σ, the
set of strings over Σ is denoted by Σ∗, and the empty string is denoted by λ.

2.1 Ranked Alphabets and Trees

A ranked alphabet is a finite set of symbols in which each symbol is associated
with a natural number, called the rank of a symbol. Let Σ be a ranked alphabet.
For a ∈ Σ, the rank of a is denoted by rank(a). For n ≥ 0, let Σn = {a ∈ Σ |
rank(a) = n}.

A set D is a tree domain if D is a nonempty finite subset of (N+)∗ satisfying
the following conditions:

• For any d ∈ D, if d′, d′′ ∈ (N+)∗ and d = d′ · d′′, then d′ ∈ D.
• For any d ∈ D and i, j ∈ N+, if i ≤ j and d · j ∈ D, then d · i ∈ D.

Let D be a tree domain, and let d ∈ D. Elements in D are called nodes. A node
d′ is a child of d if there exists i ∈ N+ such that d′ = d · i. A node is called a leaf
if it has no child. The node λ is called the root. A node that is neither a leaf nor
the root is called an internal node.

Let Σ be a ranked alphabet. A tree over Σ is a function α : D → Σ where
D is a tree domain. The set of trees over Σ is denoted by TΣ. The domain of a

Deterministic Recognition of Trees Accepted by a Linear PDTA 131

tree α is denoted by Dα. For d ∈ Dα, α(d) is called the label of d. The subtree
of α at d is α/d = {(d′, a) ∈ (N+)∗ ×Σ | (d · d′, a) ∈ α}.

A path is a sequence of nodes d0d1 · · · dn such that n ≥ 0, d0, d1, . . . , dn ∈ D
and for 0 ≤ i ≤ n− 1, di+1 is a child of di.

The expression of a tree over Σ is defined to be a string over elements of Σ,
parentheses and commas. For α ∈ TΣ, if α(λ) = b, max{i ∈ N+ | i ∈ Dα} = n
and for each 1 ≤ i ≤ n, the expression of α/i is αi, then the expression of
α is b(α1, α2, . . . , αn). Note that n is the number of the children of the root.
For b ∈ Σ0, trees are written as b instead of b(). When the expression of α
is b(α1, α2, . . . , αn), it is written that α = b(α1, α2, . . . , αn), i.e., each tree is
identified with its expression.

Let Σ be a ranked alphabet, and let I be a set that is disjoint from Σ. TΣ(I)
is defined to be TΣ∪I where Σ ∪ I is the ranked alphabet obtained from Σ by
adding all elements in I as symbols of rank 0.

Let X = {x1, x2, . . .} be the fixed countable set of variables. Let X0 = ∅ and
for n ≥ 1, let Xn = {x1, x2, . . . , xn}. x1 is situationally denoted by x.

Let α, β ∈ TΣ, and let d ∈ Dα. We define α〈d ← β〉 = {(d′, a) | (d′, a) ∈ α
and d is not a prefix of d′} ∪ {(d · d′′, b) | (d′′, b) ∈ β}, i.e., the tree α〈d ← β〉 is
the result of replacing α/d by β.

Let ε be the special symbol that can be contained in Σ0. The yield of a tree
is a function from TΣ into Σ∗ defined as follows. For α ∈ TΣ, (1) if α = a ∈
(Σ0 − {ε}), then yield(α) = a, (1’) if α = ε, then yield(α) = λ and (2) if
α = a(α1, α2, . . . , αn) for some a ∈ Σn and α1, α2, . . . , αn ∈ TΣ , then yield(α) =
yield(α1) · yield(α2) · · · · · yield(αn). For L ⊆ TΣ, the yield language of L is the
set yield(L) = {yield(α) | α ∈ L}.

2.2 Pushdown Tree Automata

Pushdown tree automata (PDTAs) [3] were introduced by I. Guessarian in order
to formalize the class of tree languages generated by context-free tree grammars
(CFTGs) [14]. A PDTA can be seen as the combination of an ordinary pushdown
finite automaton [15] and a top-down tree automaton [2]. In [3], a variety of
PDTAs were introduced, and it was shown that all of them accept the same
class of tree languages. The definition of a PDTA in this paper can be described
as “a restricted PDTA accepting by empty store” in terms of [3].

Definition 1. A pushdown tree automaton (PDTA) is a six-tuple M = (Q,Σ, Γ,
q0, Z0, R), where Q is a finite set of states, Σ is a ranked alphabet, called the
input alphabet, Γ is a ranked alphabet such that Γ = Γ0∪Γ1, called the pushdown
alphabet, q0 ∈ Q is the initial state, Z0 ∈ Γ0 is the start symbol, and R is a finite
set of rules of one of the following forms:

Read rule :
(i) q(a,A)→ a with a ∈ Σ0, q ∈ Q and A ∈ Γ0
(ii) q(b(x1, x2, . . . , xn), B) → b(q1(x1, π1), q2(x2, π2), . . . , qn(xn, πn)) with

n ≥ 1, b ∈ Σn, q, q1, q2, . . . , qn ∈ Q, B ∈ Γ1 and π1, π2, . . . , πn ∈ Γ ∗
1 Γ0 ∪

Γ ∗
1

132 A. Fujiyoshi and I. Kawaharada

ε-rule :
(iii) q(x,A)→ q′(x, π) with q, q′ ∈ Q, A ∈ Γ0 and π ∈ Γ ∗

1 Γ0
(iv) q(x,B)→ q′(x, π) with q, q′ ∈ Q, B ∈ Γ1 and π ∈ Γ ∗

1 Γ0 ∪ Γ ∗
1

An instantaneous description of M is a triple q(α, π) ∈ Q × TΣ × Γ ∗
1 Γ0. Let

ID be the set of all instantaneous descriptions of M . A configuration of M is an
element of TΣ(ID). The move relation M� of M is the relation defined as follows.
For any configurations c, c′ ∈ TΣ(ID), c M� c′ if there exists a node d ∈ Dc that
satisfies one of the following conditions:

• A type (i) rule q(a,A)→ a is in R, c/d = q(a,A), and c′ = c〈d← a〉.
• A type (ii) rule q(b(x1, x2, . . . , xn), B) → b(q1(x1, π1), q2(x2, π2), . . . ,

qn(xn, πn)) is in R, c/d = q(b(α1, α2, . . . , αn), Bρ) for some α1, α2, . . . , αn ∈
TΣ and ρ ∈ Γ ∗

1 Γ0, and c′ = c〈d ← b(q1(α1, π
′
1), q2(α2, π

′
2), . . . , qn(αn, π

′
n))〉

where for each 1 ≤ i ≤ n, if πi ∈ Γ ∗
1 Γ0, then π′

i = πi, and if πi ∈ Γ ∗
1 , then

π′
i = πiρ.

• A type (iii) rule q(x,A) → q′(x, π) is in R, c/d = q(α,A) and α ∈ TΣ, and
c′ = c〈d← q′(α, π)〉.

• A type (iv) rule q(x,B) → q′(x, π) is in R, c/d = q(α,Bρ) for some α ∈ TΣ

and ρ ∈ Γ ∗
1 Γ0, and c′ = c〈d ← q′(α, π′)〉 where if π ∈ Γ ∗

1 Γ0, then π′ = π,
and if π ∈ Γ ∗

1 , then π′ = πρ.

A computation is a finite sequence of configurations c1c2 · · · cn such that n ≥ 1,
c1, c2, . . . , cn ∈ TΣ(ID) and c1 M� c2 M� · · · M� cn. When there exists a compu-
tation c1c2 · · · cn, we write c1 M�∗ cn. The tree language accepted by M is the set
T (M) = {α ∈ TΣ | q0(α,Z0) M�∗ α}.

Linear PDTAs (L-PDTAs) [5] are PDTAs that don’t have the capability of
duplicating their pushdown stack. The class of tree languages accepted by L-
PDTAs coincides with that generated by linear, monadic context-free tree gram-
mars (LM-CFTGs) [5, 6], and the class of their yield languages coincides with
the class of yield languages generated by tree adjoining grammars (TAGs) [5].

Definition 2. Let M = (Q,Σ, Γ, q0, Z0, R) be a PDTA. M is linear if it satisfies
the following conditions:

• For each type (ii) rule q(b(x1, x2, . . . , xn), B) → b(q1(x1, π1), q2(x2, π2), . . . ,
qn(xn, πn)) in R, |{i | 1 ≤ i ≤ n and πi ∈ Γ ∗

1 }| = 1.
• For each type (iv) rule q(x,B)→ q′(x, π) in R, π ∈ Γ ∗

1 .

Example 1. The following M is an L-PDTA that accepts a tree language whose
yield language is Lww = {ww | w ∈ {a, b}+}. M = (Q,Σ, Γ, q0, Z0, R), where
Q = {q0, q1, q2, qA, qB}, Σ = Σ0 ∪ Σ2, Σ0 = {a, b}, Σ2 = {d}, Γ0 = {Z0},
Γ1 = {N,A,B}, and R consists of the following rules:

q0(x, Z0)→ q1(x,NZ0), q1(d(x1, x2), N)→ d(qA(x1, Z0), q1(x2, NA)),
q1(d(x1, x2), N)→ d(qB(x1, Z0), q1(x2, NB)), q1(x,N)→ q2(x, λ),
q2(d(x1, x2), A)→ d(q2(x1, λ), qA(x2, Z0)), qA(a, Z0)→ a,

Deterministic Recognition of Trees Accepted by a Linear PDTA 133

Fig. 1. An example of a tree accepted by M

q2(d(x1, x2), B)→ d(q2(x1, λ), qB(x2, Z0)), qB(b, Z0)→ b,
q2(x,A) → qA(x, λ), and q2(x,B)→ qB(x, λ).

In Fig. 1, a tree in T (M) and the movement of M for the tree are illustrated.

The recognition algorithm introduced in this paper is based on the CKY
algorithm. Thus we need to be able to convert the rules of an L-PDTA into simple
ones, which are analogous to productions of a context-free grammar (CFG) in
Chomsky normal form [15].

Lemma 1. For any L-PDTA M , we can construct an L-PDTA M ′ = (Q,Σ, Γ, q,
Z0, R) such that T (M) = T (M ′), Q = {q}, and R consists of rules of one of the
following forms:

(i) q(a,A)→ a with a ∈ Σ0, q ∈ Q and A ∈ Γ0
(ii) q(b(x1, x2, . . . , xn), A) → b(q(x1, C1), q(x2, C2), . . . , q(xn, Cn)) with n ≥ 1,

b ∈ Σn, q ∈ Q, A ∈ Γ1 and C1, C2, . . . , Cn ∈ Γ0 ∪ {λ} such that |{i | 1 ≤
i ≤ n and Ci = λ}| = 1

(iii) q(x,A) → q(x,BC) with q ∈ Q, A,C ∈ Γ0 and B ∈ Γ1
(iv) q(x,A) → q(x,BC) with q ∈ Q, A,B,C ∈ Γ1

Proof. From the L-PDTA M , we can construct an LM-CFTG that generates
T (M) (by Lemma 6.4 in [5]). It is known that any LM-CFTG can be converted
into an equivalent LM-CFTG whose productions are one of the following forms:

1. A→ a
2. A(x)→ b(C1, . . . , Ci−1, x, Ci+1, . . . , Cn)
3. A→ B(C)
4. A(x)→ B(C(x))

134 A. Fujiyoshi and I. Kawaharada

Here, uppercase characters are nonterminals, and lowercase characters are ter-
minals. The above-mentioned fact is slightly different from the content of the
normal form theorem introduced in [5], but it is easy to obtain this normal form
in the same way as the construction of Chomsky normal form of CFGs. Thus an
LM-CFTG with simple productions that generates T (M) can be obtained. Ac-
cording to the construction method presented in the proof of Lemma 6.3 in [5],
we can construct an L-PDTA M ′ that satisfies the above condition and accepts
T (M). ��

An L-PDTA satisfying the condition of Lemma 1 is said to be in simple form.

Example 2. The following M ′ is an L-PDTA in simple form that is equivalent
to M in Example 1. M ′ = ({q}, Σ, Γ, q, S,R), where Σ = Σ0 ∪Σ2, Σ0 = {a, b},
Σ2 = {d}, Γ0 = {S,A,B}, Γ1 = {C,D1, D2, D3, D4, E1, E2, E3, E4}, and R
consists of the following rules:

q(x, S)→ q(x,D1A), q(x, S)→ q(x,E1A), q(x,E1)→ q(x,D1C),
q(x, S)→ q(x,D2B), q(x, S)→ q(x,E2B), q(x,E2)→ q(x,D2C),
q(x,C)→ q(x,D1D3), q(x,C)→ q(x,E3D3), q(x,E3)→ q(x,D1C),
q(x,C)→ q(x,D2D4), q(x,C)→ q(x,E4D4), q(x,E4)→ q(x,D2C),
q(d(x1, x2), D1)→ d(q(x1, A), q(x2, λ)), q(a,A)→ a,
q(d(x1, x2), D2)→ d(q(x1, B), q(x2, λ)), q(a,B)→ b,
q(d(x1, x2), D3)→ d(q(x1, λ), q(x2, A)), and
q(d(x1, x2), D4)→ d(q(x1, λ), q(x2, B)).

In Fig. 2, a tree in T (M ′) and the movement of M ′ for the tree are illustrated.

Fig. 2. An example of a tree accepted by M ′

Deterministic Recognition of Trees Accepted by a Linear PDTA 135

3 Recognition Algorithms

Our goal is to present a recognition algorithm which determines whether an input
tree is accepted by a given L-PDTA. For the purpose of easier understanding,
however, an algorithm in a special case will be presented first. Then the algorithm
will be extended for general L-PDTAs.

3.1 A Recognition Algorithm for L-PDTAs with a Monadic Input
Alphabet

To explain the utilization of the CKY algorithm for the recognition of trees, we
consider the special case where the input alphabet of an L-PDTA, Σ is monadic.
In this case, the movement of the recognition algorithm is clear because the shape
of any tree in TΣ is like a string.

Let Σ = Σ0 ∪ Σ1, and let M = ({q}, Σ, Γ, q, Z0, R) be a PDTA in simple
form. By the following function, CKY(α,Z0) returns true if and only if an input
tree α ∈ TΣ is accepted by M .

CKY:
input: a tree α ∈ TΣ and a pushdown symbol A ∈ Γ
output: true or false

begin
1 Let m be the number of nodes in α.
2 Let V be an m×m matrix.
3 Suppose that α = a1(a2(· · · (am) · · ·)) with a1, a2, . . . , am ∈ Σ.
4 for i := 1 to m do begin
5 Vi,1 :={A ∈ Γ |q(ai, A)→ ai or q(ai(x), A)→ ai(q(x, λ)) is in R}
6 for j := 2 to i do begin
7 Vi−j+1,j := ∅
8 for k := 1 to j − 1 do
9 Vi−j+1,j := Vi−j+1,j ∪ {A ∈ Γ | B ∈ Vi−j+1,k,

C ∈ Vi−j+1+k,j−k , and q(x,A)→ q(x,BC) is in R}
end

end
10 if A ∈ V1,m then return true else return false
end

On line 5, Vi,1 is set to be all pushdown symbols that can be poped out when
the automaton reads ai. If Σ is not monadic, the construction of the set Vi,1 is
not so easy. Thus we need a bottom-up parsing procedure on an input tree in
the general case.

3.2 A Recognition Algorithm for General L-PDTAs

We present a recognition algorithm for trees accepted by a general L-PDTA. Let
M = ({q}, Σ, Γ, q, Z0, R) be a L-PDTA in simple form. This algorithm consists
of three parts: Parse-Tree, Parse and CKY. The function Parse-Tree takes an
input and initializes global variables. Then the main procedure Parse is invoked.

136 A. Fujiyoshi and I. Kawaharada

Parse is defined recursively and checks the input tree in a bottom-up way. In
Parse, the function CKY is invoked.

The function Parse-Tree takes a tree α as input and returns accept if and
only if α ∈ L(G). This function prepares a set Ud·i as a global variable for each
node d of α and each i-th child of d.

Parse-Tree:
input: a tree α ∈ TΣ

output: accept or reject
begin
1 for each node d ∈ Dα do begin
2 Let n be the number of children of d.
3 for i := 1 to n do Ud·i := ∅

end
4 Parse(α, λ)
5 if CKY (α, λ, Z0) = true then return accept else return reject
end

The procedure Parse takes a tree and a node as input. The node shows the
location in the tree being processed. The purpose of this procedure is to complete
the set Ud·i for each node d of α and each i-th child of d. Intuitively speaking, the
set Ud·i will store pushdown symbols that can be poped out when the automaton
reads the label of the node d and passes the content of its pushdown stack to
the i-th child of d. As this procedure works in a bottom-up way, the set Ud·i will
be completed from the leaves to the root.

Parse:
input: a tree α ∈ TΣ and a node d ∈ Dα

begin
1 Let b ∈ Σ be the symbol such that α(d) = b.
2 Let n be the number of children of d.
3 if n �= 0 then begin
4 for i := 1 to n do Parse(α, d·i)
5 for each type (ii) rule q(b(x1, x2, . . . , xn), A)→ b(q(x1, C1), . . . ,

q(xi−1, Ci−1), q(xi, λ), q(xi+1, Ci+1), . . . , q(xn, Cn)) in R
with C1, . . . , Ci−1, Ci+1, . . . , Cn ∈ Γ0 do

6 if ∀j ∈ {1, . . . , i− 1, i + 1, . . . ,n}, CKY (α, d·j, Cj) = true
then Ud·i := Ud·i ∪ {A}

end
end

The function CKY takes a tree α, a node d ∈ Dα and a pushdown symbol
A as input. In CKY, the algorithm traverses every node in the subtree α/d in
the order of depth-first search. Intuitive speaking, when the algorithm reaches a
leaf node, it checks whether the path from the root to the leaf can be accepted
by M with A as the start symbol. Note that some elements of the matrix V are
reused. See Fig. 3.

Deterministic Recognition of Trees Accepted by a Linear PDTA 137

Fig. 3. Traversal of every node in the subtree α/d

CKY:
input: a tree α ∈ TΣ , a node d ∈ Dα, and a pushdown symbol A ∈ Γ
output: true or false

begin
1 Let m be the number of nodes in the subtree α/d.
2 Let V be an m×m matrix.
3 W := ∅
4 for each node d′ ∈ Dα/d in the order of depth-first search do begin
5 if d′ is not the root of α/d then begin
6 i := |d′|
7 Vi,1 := Ud·d′

8 for j := 2 to i do begin
9 Vi−j+1,j := ∅
10 for k := 1 to j − 1 do
11 Vi−j+1,j := Vi−j+1,j ∪ {A ∈ Γ | B ∈ Vi−j+1,k ,

C ∈ Vi−j+1+k,j−k , and q(x,A) → q(x,BC) is in R}
end

end
12 if d′ is a leaf then begin
13 i := |d′|+ 1
14 Vi,1 := {A ∈ Γ |q(a,A)→ a is in R and α(d·d′) = a}
15 for j := 2 to i do begin
16 Vi−j+1,j := ∅
17 for k := 1 to j − 1 do
18 Vi−j+1,j := Vi−j+1,j ∪ {A ∈ Γ | B ∈ Vi−j+1,k ,

C ∈ Vi−j+1+k,j−k , and q(x,A) → q(x,BC) is in R}
end

19 W := W ∪ V1,i

end
end

20 if A ∈W then return true else return false
end

138 A. Fujiyoshi and I. Kawaharada

Fig. 4. The content of the matrix V when d′ = 2·2·2·1·1

Example 3. Suppose that we take the automaton M ′ in Example 2 and input
to the algorithmthe the tree illustrated in Fig. 2 (call it α). Imagine that during
the process of Parse-Tree(α), Parse(α, λ) has been completed and CKY(α, λ, S)
is being processed. In Fig. 4, the content of the matrix V when d′ = 2·2·2·1·1
is illustrated. Because S ∈ V1,6, CKY(α, λ, S) returns true. Thus Parse-Tree(α)
returns accept.

For the recognition algorithm for general L-PDTAs, we have the following results:

Theorem 1. For any α ∈ TΣ, α ∈ T (M) if and only if Parse-Tree(α) returns
accept.

Proof. To show the correctness of the theorem, we prove that the following
statement holds for any A ∈ N0, α ∈ TΣ and d ∈ Dα.

q(α/d,A) M�∗ α/d iff CKY (α, d,A) = true after invoking Parse(α, d).

We prove the “only if” part by induction on the length of computation. Basis.
If q(α/d,A) M� α/d, then α/d = a for some a ∈ Σ0. Parse(α, d) does nothing.
Because q(a,A) → a is in R, A will be in V1,1. Therefore CKY (α, d,A) re-
turns true. I.S. For k ≥ 2, assume that the statement holds if the length of
the computation is less than k. Suppose that q(α/d,A) M�∗ α/d is a computa-
tion of length k. Then there exists a path d1d2 · · ·dm such that d1 = d, dm

is a leaf, and for 1 ≤ i ≤ m − 1, the read rule applied to di is of the form
q(bi(x1, x2, . . . , xni), Ai) → bi(q(x1, Ci,1), . . . , q(xhi , λ), . . . , q(xni , Ci,ni) with
bi = α(di) ∈ Σni , Ai ∈ Γ1, di·hi = di+1, and Ci,1, . . . , Ci,hi−1, Ci,hi+1, . . . , Ci,ni∈
Γ0 and the read rule applied to dm is of the form q(bm, Am) → bm with
bm = α(dm) ∈ Σ0 and Am ∈ Γ1. Intuitively speaking, this path consists of
nodes which received the content of pushdown stack from its parent. And the
following computation is possible. q(α/d,A) M�∗ q(α/d,A1A2 · · ·Am) M�∗ α/d. Be-

Deterministic Recognition of Trees Accepted by a Linear PDTA 139

cause q(α/di·j, Ci,j) M�∗ α/di·j for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ ni, the induction
hypothesis can be used. We know that for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ ni,
CKY (α, di·j, Ci,j) = true after invoking Parse(α, di·j). Thus after invoking
Parse(α, d), Ai ∈ Udi+1 for 1 ≤ i ≤ m − 1. Because R contains ε-rules which
generate the string of stack symbols A1A2 · · ·Am from A, A will be in V1,m.
Therefore CKY (α, d,A) returns true.

The “if” part is proved by induction on the number of nodes in the subtree
α/d as follows. Basis. When α/d = a for some a ∈ Σ0, the statement clearly
holds. I.S. For k ≥ 2, assume that the statement holds if the number of nodes
in the subtree α/d is less than k. Suppose that the number of nodes in the
subtree α/d is k and CKY (α, d,A) = true after invoking Parse(α, d). Then
these exist a path d1d2 · · · dm and a string of stack symbols A1A2 · · ·Am ∈
Γ ∗

1 Γ0 such that d1 = d, dm is a leaf, Ai ∈ Udi+1 for 1 ≤ i ≤ m − 1 and
q(α/d,A) M�∗ q(α/d,A1A2 · · ·Am). For 1 ≤ i ≤ m − 1, since Ai ∈ Udi+1, a read
rule q(bi(x1, x2, . . . , xni), Ai)→bi(q(x1, Ci,1), . . . , q(xhi , λ), . . . , q(xni , Ci,ni) with
bi = α(di) ∈ Σni , 1 ≤ hi ≤ ni, and Ci,1, . . . , Ci,hi−1, Ci,hi+1, . . . , Ci,ni ∈ Γ0 such
that CKY (α, di·j, Ci,j) = true after invoking Parse(α, di·j), is in R. By the
induction hypothesis, q(α/di·j, Ci,j) M�∗ α/di·j for 1 ≤ i ≤ m−1 and 1 ≤ j ≤ ni.
Therefore q(α/d,A1A2 · · ·Am) M�∗ α/d.

By the statement, for any α ∈ TΣ , q(α,Z0) M�∗ α if and only if CKY (α, λ, Z0)
returns true after invoking Parse(α, λ). Therefore the theorem holds. ��

Theorem 2. The recognition algorithm for general L-PDTAs runs in O(n4)
time, where n is the number of nodes of an input tree.

Proof. Letα ∈ TΣ be a treewithnnodes.Whenα is inputted to the algorithm, the
funtion CKY will be invokedO(n) times. The time needed to compute the function
CKY isO(n3). Therefore the total time needed to finish the algorithm isO(n4). ��

4 Conclusion

In this paper, an O(n4) time recognition algorithm for trees accepted by an
L-PDTA was presented. We expect that the time complexity of the algorithm
can be improved to O(n3). Algorithms with O(n4) or O(n3) time complexity
might be a little slow in actual applications. However, we expect that there exist
faster recognition algorithms for deterministic L-PDTAs. For future work, the
development of a recognition algorithm for general PDTAs should be pursued
because it might be used for many applications such as the recognition of RNA
secondary structures.

References

1. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (1997) release October, 1rst 2002.

140 A. Fujiyoshi and I. Kawaharada

2. Gécseg, F., Steinby, M.: Tree Languages. In: Handbook of Formal Languages.
Volume 3. Springer-Verlag, Berlin (1997) 1–68

3. Guessarian, I.: Pushdown tree automata. Mathematical Systems Theory 16 (1983)
237–263

4. Tanaka, S., Kasai, T.: The emptiness problem for indexed languages is exponential
time complete. IEICE Trans. (published in Japanese) J68-D (1985) 1727–1734

5. Fujiyoshi, A., Kasai, T.: Spinal-formed context-free tree grammars. Theory of
Computing Systems 33 (2000) 59–83

6. Fujiyoshi, A.: Linearity and nondeletion on monadic context-free tree grammars.
Information Processing Letters 93 (2005) 103–107

7. Abeillé, A., Rambow, O., eds.: Tree adjoining grammars: formalisms, linguistic
analysis and processing. CSLI Publications, Stanford, California (2000)

8. Fujiyoshi, A.: Epsilon-free grammars and lexicalized grammars that generate the
class of the mildly context-sensitive languages. In: Proceedings of 7th Interna-
tional Workshop on Tree Adjoining Grammar and Related Formalisms (TAG+7).
Vancouver (2004) 16–23

9. Joshi, A.K., Levy, L.S., Takahashi, M.: Tree adjunct grammars. J. Computer &
System Sciences 10 (1975) 136–163

10. Joshi, A.K., Schabes, Y.: Tree-adjoining grammars. In: Handbook of Formal
Languages. Volume 3. Springer-Verlag, Berlin (1997) 69–124

11. Rajasekaran, S.: Tree-adjoining language parsing in O(n6) time. SIAM J. Comput.
25 (1996) 862–873

12. Rajasekaran, S., Yooseph, S.: TAL recognition in O(M(n2)) time. J. Computer &
System Sciences 56 (1998) 83–89

13. Vijay-Shanker, K., Weir, D.J.: The equivalence of four extensions of context-free
grammars. Mathematical Systems Theory 27 (1994) 511–546

14. Rounds, W.C.: Mapping and grammars on trees. Mathematical Systems Theory
4 (1970) 257–287

15. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison Wesley, Reading, Massachusetts (1979)

Shorter Regular Expressions from Finite-State

Automata�

Yo-Sub Han and Derick Wood

Department of Computer Science,
The Hong Kong University of Science and Technology

{emmous, dwood}@cs.ust.hk

Abstract. We consider the use of state elimination to construct shorter
regular expressions from finite-state automata. Although state elimina-
tion is an intuitive method for computing regular expressions from finite-
state automata, the resulting regular expressions are often very long and
complicated. We examine the minimization of finite-state automata to
obtain shorter expressions first. Then, we introduce vertical chopping
based on bridge states and horizontal chopping based on the structural
properties of given finite-state automata. We prove that we should not
eliminate bridge states until we eliminate all non-bridge states to obtain
shorter regular expressions. In addition, we suggest heuristics for state
elimination that lead to shorter regular expressions based on vertical
chopping and horizontal chopping.

Note that we have omitted almost all proofs in this preliminary
version.

1 Introduction

It is well known that the family of languages defined by finite-state automata
(FAs) is the same as the family of languages described by regular expressions [1].
This result is proved by showing that we can construct FAs from regular expres-
sions and that we can compute regular expressions from FAs.

There are a number of FA constructions; for example, the Thompson construc-
tion [2], the position construction [3, 4] and the follow construction [5]. These
constructions are inductive and, therefore, preserve the structural properties of
regular expressions. For instance, the size of a Thompson automaton is bounded
by the size of a given regular expression [6] and the number of states in a position
automaton is the number of character appearances in the corresponding regular
expression plus one [7].

When converting FAs into regular expressions, we can use either linear equa-
tions [8] or state elimination [9]. We consider state elimination. State elimination
was already in use in the 1960’s, in particular by Brzozowski and McCluskey,
Jr. [9] and was carefully formulated by Wood [10]. The idea behind state elimina-
tion is simple. We keep removing states, except the start and the final states for
� The authors were supported under the Research Grants Council of Hong Kong Com-

petitive Earmarked Research Grant HKUST6197/01E.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 141–152, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

142 Y.-S. Han and D. Wood

a a

a

b ba

b

a
aa∗b

b a

b

a
aa∗b

ab

ab

a(ab)∗(aa∗b+ab)

Fig. 1. An example of state elimination. The dotted states are being removed.

a given FA, while maintaining the transition information of the automaton until
there are no more states to eliminate. We illustrate state elimination in Fig. 1.

In Section 2, we define some basic notions. In Section 3, we describe state
elimination and suggest two ways to obtain smaller finite-state automata. Then,
we introduce vertical chopping and horizontal chopping of a given FA in Sec-
tions 4 and 5. Furthermore, we show that we should not eliminate bridge states,
which are defined in Section 4, until we eliminate all non-bridge states to ob-
tain a shorter regular expression. Finally, we suggest some heuristics for state
elimination that lead to shorter regular expressions.

2 Preliminaries

Let Σ denote a finite alphabet of characters and Σ∗ denote the set of all strings
over Σ. A language over Σ is any subset of Σ∗. The character ∅ denotes the
empty language and the character λ denotes the null string.

A finite-state automaton A is specified by a tuple (Q,Σ, δ, s, F), where Q is
a finite set of states, Σ is an input alphabet, δ ⊆ Q×Σ ×Q is a (finite) set of
transitions, s ∈ Q is the start state and F ⊆ Q is a set of final states. Let |Q| be
the number of states in Q and |δ| be the number of transitions in δ. Then, the
size of A is |A| = |Q| + |δ|. Given a transition (p, a, q) in δ, where p, q ∈ Q and
a ∈ Σ, we say p has an out-transition and q has an in-transition. Furthermore,
p is a source state of q and q is a target state of p. A string x in Σ∗ is accepted
by A if there is a labeled path from s to a final state in F that spells out x. Thus,
the language L(A) of a finite-state automaton A is the set of all strings spelled
out by paths from s to a final state in F . We define A to be non-returning if
the start state of A does not have any in-transitions and A to be non-exiting if
a final state of A does not have any out-transitions. We assume that A has only

Shorter Regular Expressions from Finite-State Automata 143

useful states: that is, each state appears on some path from the start state to
some final state.

3 State Elimination

We define the state elimination of q ∈ Q \ {s, f} in A to be the bypassing
of state q, q’s in-transitions, q’s out-transitions and q’s self-looping transition
with equivalent expression transition sequences. For each in-transition (pi, αi, q),
1 ≤ i ≤ m, for some m ≥ 1, for each out-transition (q, γ, rj), 1 ≤ j ≤ n, for some
n ≥ 1, and for the self-looping transition (q, β, q) in δ, construct a new transition
(pi, αi · β∗ · γj , rj). If there exists transition (p, ν, r) in δ for some expression ν,
then we merge two transitions to give the bypass transition (p, (αi ·β∗ ·γj)+ν, r).
We then remove q and all transitions into and out of q in δ. We denote the
resulting automaton by Aq = (Q \ {q}, Σ, δq, s, F). State elimination maintains
the language accepted by a given automaton while removing states. Note that
we have regular expressions instead of single characters on a transition of Aq.
We say that a finite-state automaton with regular expressions on transitions is
an expression automaton (EA) [9, 11].

Given an FA A = (Q,Σ, δ, s, F) that is not non-returning and not non-exiting,
we transform A into a new FA A′ such that L(A′) = L(A) and A′ is non-returning
and non-exiting by introducing a new start state s′ and a new final state f ′ as
follows: A′ = (Q ∪ {s′, f ′}, Σ, δ ∪ {(s′, λ, s)} ∪ {(fi, λ, f

′) | fi ∈ F}, s′, f ′).

Lemma 1. Let A = (Q,Σ, δ, s, f) be a non-returning and non-exiting expression
automaton with at least three states and q be a state in Q\{s, f}. Then, L(Aq) =
L(A) and Aq is non-returning and non-exiting.

Once we eliminate all states in Q\{s, f} for A that is non-returning and non-
exiting, we obtain an expression automaton AQ\{s,f} = ({s, f}, Σ, (s, E, f), s, f),
where E is the corresponding regular expression for A.

One problem with state elimination is that it may increase the size of labels
on transitions exponentially while removing states for a given automaton. For
example in Fig. 2, if we remove q from the automaton A, then we have to
introduce O(mn) duplicate strings as new transition labels.

x1

xm

z1

zn

y

q
m,n⋃

i=1,j=1
xiy

∗zj

Fig. 2. An example of state elimination that produce many duplicate strings

144 Y.-S. Han and D. Wood

a a

a
c d

b

b d

p q r

Fig. 3. An example of different regular expressions by different removal sequences for
a given finite-state automaton. E1 = (aa + b)(a + cb)∗(cd + d) is the output of state
elimination in p → r → q order and E2 = (aa + b)a∗c(ba∗c)∗(ba∗d + d) + (aa + b)a∗d
is the output of state elimination in p → q → r order, where L(E1) = L(E2).

Another problem with state elimination is that different removal sequences
result in different regular expressions. Although we cannot always avoid expo-
nential blow-up, we can still obtain shorter regular expressions by choosing a
better removal sequence. Fig. 3 illustrates this idea.

Recently, Delgado and Morais [12] investigated heuristics for computing a
shorter regular expression from a given finite-state automaton A. They define
the weight of a state q in A. Given a transition t = (p, α, q), the weight of t is
the total number of character appearances in α. Then, the weight of a state q
in A, which we call state weight, is defined as the sum of in-transition weights +
the sum of out-transition weights + the loop weight. Then, they remove a state
that has the lightest weight based on state weight. Although this heuristic is
better than random selection, it is straightforward to give examples in which the
greedy choice does not lead to shorter regular expressions.

Assume that we have an algorithm to compute an optimal removal sequence
for a given automaton A. Then, if we have a smaller automaton A′ such that
L(A) = L(A′), then we can compute the optimal removal sequence more rapidly
and the removal sequence will lead to a shorter regular expression.

We define two states p and q in an FA A = (Q,Σ, δ, s, F) to be equivalent if
the following conditions hold: 1) p ∈ F if and only if q ∈ F and 2) (p, a, t) ∈ δ if
and only if (q, a, t) ∈ δ, where t ∈ Q and a ∈ Σ. If we have two equivalent states,
then we remove one of them, say p, and redirect all in-transitions of p into q.
This does not change the language of A but it does reduce the size of A.

Lemma 2. If two source states of a current state q are equivalent, then we need
fewer new transitions when eliminating q after merging the two states.

Now we consider the target states of the current state t ∈ Q of an FA A =
(Q,Σ, δ, s, F). Assume that t has two target states p and q and two out-transitions
of t have the same character; namely, (t, a, p) ∈ δ if and only if (t, a, q) ∈ δ, where
a ∈ Σ, and p and q have no other in-transitions except from t as shown in Fig. 4.
Then, we delete p and attach all out-transitions of p to q so that all out-transitions
are from q.

Lemma 3. If the current state t, in an FA A = (Q,Σ, δ, s, F), has two target
states that are reachable only from t via the same transition label, then we need
fewer new transitions when removing q after merging the two states.

Shorter Regular Expressions from Finite-State Automata 145

t

p

q

t q
a

a

a

b

a
a

b

Fig. 4. Note that state t has the same out-transitions to two target states p and q. We
make all out-transitions of p leave from q and remove p.

Ilie et al. [13] adopted these ideas to minimize NFAs and designed anO(m log n)
time algorithm using O(m+n) space that discovers equivalent states for a given
FA A, where n is the number of states and m is the number of transitions of
A. Note that the nondeterministic finite-state automaton (NFA) minimization
problem in general is known to be PSPACE-complete [14].

4 Vertical Chopping

Assume that we have a finite-state automaton A that cannot be minimized any
further by using equivalent states. Then, we have to compute a removal sequence
for A. One question arising from Fig. 3 is why does removing the middle state at
the last step lead to a shorter regular expression than when removing it at the
second to last step. We observe that the middle state in Fig. 3 has some helpful
properties.

Definition 1. We define a state b in a DFA A to be a bridge state if it satisfies
the following three conditions:

1. State b is neither a start nor a final state.
2. For each string w ∈ L(A), its path in A must pass through b at least once.
3. Once w’s path passes through state b for the first time, the path can never

pass through any states that have been visited before apart from state b.

Note that we can decompose A into two subautomata A1 and A2 such that
L(A) = L(A1) · L(A2) from the first and the second requirements. However, we
may have several duplicate states and transitions in both A1 and A2 without
the third requirement. Then, it does not give a smaller subautomaton in the
worst-case. Fig. 5 illustrates this phenomenon.

The third requirement guarantees that if we partition A at a bridge state b
into A1 and A2, then all out-transitions of b appear only in A2. Therefore, A1
and A2 have only b as a common state between them. Fig. 6 gives an example
of bridge states.

Assume that there is only one final state in A. If there is more than one final
state, then we introduce a new final state f ′ and connect all final states to f ′

146 Y.-S. Han and D. Wood

0

A1 A2

1 2 3 4 5 6

0 1 2 3 0 1 2 3 4 5 6

A

Fig. 5. State 3 satisfies both the first and second conditions in Definition 1 and, there-
fore, we can partition A into two subautomata A1 and A2, where L(A) = L(A1)·L(A2).
However, A2 has the same size as A, where state 3 is now the start state of A2.

0 1

2

3 4

5

6

7

8

9a
b

b

b
a a

b

b
a

a
b

b

a

a

a

Fig. 6. States 1 and 7 are bridge states

0 1

2

3 4

5

6

7

8

9a
b

b

b
a a

b

b
a

a
b

b

a

a

a

7

Fig. 7. An example of vertical chopping of the automaton in Fig. 6 at state 7

by null transitions. Given an FA A = (Q,Σ, δ, s, f) and a bridge state b ∈ Q, we
partition A into two subautomata A1 and A2 as follows: A1 = (Q1, Σ, δ1, s, b)
and A2 = (Q2, Σ, δ2, b, f), where Q1 is a subset of states of A that appear on
some path from s and b without visiting b twice in A, Q2 = Q \ Q1 ∪ {b}, δ2
is a subset of transitions of A that appear on some path from b to f in A and
δ1 = δ \ δ2. Fig. 7 illustrates partitioning at a bridge state.

Lemma 4. Given an FA A, let A1 and A2 be subautomata of A that are parti-
tioned at a bridge state of A. Then, L(A) = L(A1) · L(A2).

Note that if states p and q are bridge states in A, then q is still a bridge
state in one of the resulting subautomata after the partitioning of A at p. For

Shorter Regular Expressions from Finite-State Automata 147

example, as shown in Fig. 6, state 1 is a bridge state of A and is a bridge state of
A1, shown in Fig. 7, after chopping at state 7. Let B = {b1, b2, . . . , bk} be a set
of bridge states in A, where k is the total number of bridge states in A. Then,
B \ {bi} is the set of bridge states of A1 and A2 after chopping A at state bi.

We say a path in A is simple if it does not have any cycles. Then, from the
second requirement of bridge states in Definition 1, we establish the following
statement.

Lemma 5. Let P be a simple path from s to f in A. Then, only the states in
P can be bridge states of A.

Since A is essentially a directed graph, we can compute all bridge states for
A using Depth-First Search (DFS) based on Lemma 5.

Theorem 1. We can compute a set of bridge states for a given automaton A =
(Q,Σ, δ, s, f) in O(|Q| + |δ|) time using DFS.

Now we demonstrate how bridge states can help to compute a shorter regular
expression from a given automaton A. Note that we use state elimination for
computing regular expressions. As we have mentioned previously, the removal
sequence for state elimination is crucial when we wish to compute a shorter
regular expression.

Lemma 6. If all states in a given automaton A = (Q,Σ, δ, s, f) are bridge
states, then state elimination results in the same regular expression whatever the
removal sequence of states of A we use.

a b b c a

c b b

Fig. 8. An example of an FA whose states are all bridge states. Note that state elimi-
nation always gives ac∗bbb∗cb∗a no matter which removal sequence we use.

Now we answer the question arising in Fig. 3. We assume that there are no
three consecutive bridge states in A. If there are, then we delete the middle bridge
state by state elimination. Given an expression automaton A = (Q,Σ, δ, s, f), let
C(A) be the total number of character appearances in transitions of A; that is,

C(A) =
∑
i,j

|eij |, for each (qi, eij , qj) ∈ δ, where qi, qj ∈ Q.

For example, if A is ({s, f}, Σ, (s, E, f), s, f), which is the final expression au-
tomaton of state elimination for computing a corresponding regular expression,
then C(A) = |E|.

148 Y.-S. Han and D. Wood

Theorem 2. Given an expression automaton A = (Q,Σ, δ, s, f) and a set B
of bridge states of A, the optimal removal sequence must eliminate all states in
Q \B before eliminating any bridge states.

Proof (sketch of proof). Without loss of generality, we assume that we have an
optimal removal sequence OPT of state eliminations for A that eliminates a
bridge state b first. We prove that there is a shorter regular expression using a
different removal sequence and, therefore, OPT is not an optimal sequence.

Since we assume that there are no three consecutive bridge states in A, either
a target state or a source state of b must not be a bridge state. Let us assume that
a target state is not a bridge state. Let Ab be the resulting expression automaton
after the state elimination of b. Then, C(A) < C(Ab) by Fig. 2. Let q be the next
state to be eliminated after b by OPT. We consider two cases: Case 1 is when q
is a target or a source state of b and Case 2 is when q is neither a target state
nor a source state of b.

1. If q is a target or a source state of b. Assume that q is a target state of b. In Ab,
q has at least the same number of in-transitions compared to q in A and each
in-transition of q in Ab has a longer expression than the regular expression
of the corresponding in-transitions of q in A. Therefore, C(Ap) < C(Abp).
Moreover, a target state of p in Abp has longer expressions of in-transitions
than the corresponding expression of in-transitions in Ap.

2. If q is neither a target nor a source state of b. The state elimination of q
produces the same new expressions in both A and Ab. Then, since C(A) <
C(Ab), we conclude that C(Ap) < C(Abp).

Let AOPT be the expression automaton computed by OPT and A′ be the
corresponding expression automaton that we construct by eliminating the same
state as OPT does except for b. Then, by the same argument, it is always true
that C(A′) < C(AOPT). Once OPT completes state elimination, then C(A′) <
C(AOPT) and A′ has three states s, f and b. Note that C(AOPT) is the size of
the regular expression computed by OPT.

Now we eliminate b from A′ and denote the resulting expression automaton by
A′

b. Note that C(A′
b) = C(A′) is the size of the corresponding regular expression

that we have computed. Since C(A′
b) = C(A′) < C(AOPT), we have computed a

regular expression that is shorter than the regular expression computed by OPT
— a contradiction. Therefore, the optimal removal sequence must eliminate all
non-bridge states before eliminating any bridge states. 	

Theorem 2 suggests that given an automaton A, we identify all bridge states of
A, chop A into several subautomata using bridge states, compute corresponding
regular expressions for each subautomaton and catenate the resulting regular
expressions to give a regular expression for A. Note that each subautomaton is
disjoint from every other subautomaton except for bridge states. Thus, vertical
chopping is a divide-and-conquer approach based on the structural properties
of A.

Shorter Regular Expressions from Finite-State Automata 149

5 Horizontal Chopping

Now we have an automaton A without any bridge states and, therefore, we can
assume that there is only one start state and one final state in A. Although
we cannot avoid computing a removal sequence for A, we can sometimes avoid
examining all removal sequences of A to compute such a sequence. For example,
we can partition A, shown in Fig. 9, into two subautomata Au and Al and
compute corresponding regular expressions eu and el for Au and Al, respectively.
Then, a regular expression for A is eu + el, which does not increase the number
of character appearances.

4

5

6

b

b

b
a a

b

b
a

a

7

Au

Al

⇒1

2

3

4

5

6

b

b

b
a a

b

b
a

a

71

2

3

71

Fig. 9. An example of horizontal chopping for a given automaton without bridge states

Another interesting observation is as follows. Assume that an optimal removal
sequence is 5 → 3 → 4 → 6 → 2 for the given FA in Fig. 9. Then, a removal
sequence, 3 → 4 → 6 → 5 → 2 gives the same regular expression as before since
state elimination of a state in the upper subautomaton does not affect expressions
in the lower subautomaton. It implies that sometimes when we compute an optimal
removal sequence for a given FA A, we can compute optimal removal sequences
for subautomata and combine them. This approach is also a divide-and-conquer
approach. Since we partition A horizontally, we call it horizontal chopping.

For horizontal chopping of a given FA A = (Q,Σ, δ, s, f), we have to identify
subautomata of A such that all subautomata are disjoint from each other except
s and f . Our algorithm is based on DFS. When exploring A, we maintain a group
index for each state of A. First, we assign a different group index for each child of
s in A. Assume p is the current state with group index i and q is the next state
to visit in DFS. If q does not have a group index, (then it must have been visited
for the first time) q inherits the group index i from p. Otherwise, q already has a
group index j and we combine two group indices i and j and regard them as the
same group. We continue to explore until we have visited all states in A.

Fig. 10 illustrates how DFS identifies groups from a given automaton. Note
that when we visit state q from state p, we merge group 1 and group 2 into a
single group.

150 Y.-S. Han and D. Wood

s p

q

f

1

2

3

1 1

2 2

1

1

1

3 3 3 3

Fig. 10. An example of DFS that identify groups. The label outside a state is its group
index. Note that group 1 and group 2 belong to the same group because of q. Therefore,
there are two disjoint subautomata that we can use horizontal chopping.

Theorem 3. Given a finite-state automaton A = (Q,Σ, δ, s, f), we can discover
all subautomata that are disjoint from each other except s and f in O(|Q|+ |δ|)
time using DFS.

Moreover, once we partition A horizontally, some states become bridge states
of subautomata. For example, state 2 is a bridge state of Au and states 3, 4 and
6 are bridge states of Al in Fig. 9. Note that these states are not bridge states of
A. Therefore, we can compute bridge states for each subautomaton and perform
vertical chopping if there are bridge states; then, again we can repeat horizon-
tal chopping. We continue chopping until no further chopping is possible, and,
then compute a removal sequence. Note that state elimination using horizontal
chopping and vertical chopping works well for FAs that preserve the structural
properties of corresponding regular expressions. For example, for each catena-
tion operation of a given regular expression that is not enclosed by a Kleene
star, there is a bridge state in the corresponding Thompson automaton and po-
sition automaton. Similarly, for each union operation that is not enclosed by a
Kleene star, we can find a horizontal chopping in the corresponding Thompson
automaton. On the other hand, we might not be able to perform any vertical
chopping or horizontal chopping in the worst-case. However, then it implies that
such an FA is already complex and barely preserves any structural properties of
the possible regular expressions. In this case, we can only choose brute force.

6 Conclusions

There are several FA constructions from regular expressions and each construc-
tion has different properties [7, 6, 3, 5, 4, 2]. On the other hand, there are only
two main methods to compute a regular expression from a given FA; namely,

Shorter Regular Expressions from Finite-State Automata 151

linear equations [8] and state elimination [9]. State elimination is an intuitive
construction: we compute a regular expression by removing states in a given
automaton while maintaining expressions in transitions. The resulting regular
expression obtained by state elimination depends on the removal sequence of
states. If we choose a good removal sequence, then we obtain a shorter regular
expression. On the other hand, we have to try all possible sequences to find the
optimal sequence, which is undesirable since there are O(m!) sequences, where
m is the number of states. Moreover, state elimination blows up the sizes of
regular expressions in transitions. These observations attract us to investigate
state elimination for reducing the size of regular expressions and computing a
better removal sequence that ensures to have a shorter regular expression.

We have examined NFA minimization to reduce the number of character
appearances based on state equivalence. Furthermore, we have investigated the
properties of bridge states of an FA and showed that bridge states must be
eliminated after eliminating all non-bridge states in A in order to have a shorter
regular expression. We can perform vertical chopping of A using bridge states.
We have also discovered that we can use horizontal chopping that ensures to
compute a state removal sequence of A quickly: once we partition A horizontally,
then we can repeat vertical chopping for each subautomaton. We have designed
two algorithms for identifying vertical chopping and horizontal chopping of A
based on DFS. Both algorithms have a linear running time in the size of A. The
combination of vertical chopping and horizontal chopping suggests a divide-and-
conquer heuristic for computing a better removal sequence of states of A.

References

1. Kleene, S.: Representation of events in nerve nets and finite automata. In Shannon,
C., McCarthy, J., eds.: Automata Studies, Princeton, NJ, Princeton University
Press (1956) 3–42

2. Thompson, K.: Regular expression search algorithm. Communications of the ACM
11 (1968) 419–422

3. Glushkov, V.: The abstract theory of automata. Russian Mathematical Surveys
16 (1961) 1–53

4. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IEEE Transactions on Electronic Computers 9 (1960) 39–47

5. Ilie, L., Yu, S.: Follow automata. Information and Computation 186 (2003) 140–
162

6. Giammarresi, D., Ponty, J.L., Wood, D., Ziadi, D.: A characterization of Thompson
digraphs. Discrete Applied Mathematics 134 (2004) 317–337

7. Caron, P., Ziadi, D.: Characterization of Glushkov automata. Theoretical Com-
puter Science 233 (2000) 75–90

8. Eilenberg, S.: Automata, Languages, and Machines. Volume A. Academic Press,
New York, NY (1974)

9. Brzozowski, J., McCluskey, Jr., E.: Signal flow graph techniques for sequential
circuit state diagrams. IEEE Transactions on Electronic Computers EC-12 (1963)
67–76

152 Y.-S. Han and D. Wood

10. Wood, D.: Theory of Computation. John Wiley & Sons, Inc., New York, NY
(1987)

11. Han, Y.S., Wood, D.: The generalization of generalized automata: Expression
automata. In: Proceedings of CIAA’04, Springer-Verlag (2004) 156–166 Lecture
Notes in Computer Science 3317.

12. Delgado, M., Morais, J.: Approximation to the smallest regular expression for a
given regular language. In: Proceedings of CIAA’04, Springer-Verlag (2004) 312–
314 Lecture Notes in Computer Science 3317.

13. Ilie, L., Navarro, G., Yu, S.: On NFA reductions. In Karhumaki, J., Maurer, H.,
Paun, G., Rozenberg, G., eds.: Theory is Forever (Salomaa Festschrift). Lecture
Notes in Computer Science 3113, Springer-Verlag, Heidelberg (2004) 112–124

14. Jiang, T., Ravikumar, B.: Minimal NFA problems are hard. SIAM Journal on
Computing 22 (1993) 1117–1141

Wind in the Willows – Generating Music

by Means of Tree Transducers

Johanna Högberg

Department of Computing Science, Ume̊a University,
S–901 87 Ume̊a, Sweden
johanna@cs.umu.se

Abstract. We implement a rule-based system for algorithmic compo-
sition. This system, that we call Willow, resides in the Treebag envi-
ronment and consists of a sequence of formal devices, familiar from the
field of tree grammars and tree transducers. Since these devices are well
studied, we can apply known results to derive the descriptive complexity
of the system as a whole.

1 Introduction

In music theory, it is widely believed that music is syntax – to a large extent or
even in its entirety (see [1] for quotations and references supporting this claim). If
this is true, it should be possible to describe some of the basic aspects of musical
composition by means of grammars and automata. Here, we describe a first
attempt in this direction, a system named Willow, and draw some conclusions
regarding the descriptional complexity of the generated tunes.

It is conventional to represent syntax by means of a tree structure (e.g. as a
parse or derivation tree). For the first two bars of the sonata in C-major KV545
by Mozart, the representation could look as shown in Figure 1. The generation
and transformation of trees such as the one in the figure is studied within the
theory of tree grammars and tree transducers, the latter being formal automata
that transform input trees into output trees. Parts of this theory have been im-
plemented in Treebag [2], a system that we use in order to implement Willow.

In Figure 2, we see the set-up. The components of Willow, mainly a regular
tree grammar and a number of top-down tree transducers (an ignorant trans-
ducer is a special kind of top-down tree transducer), are arranged in the fashion
of an assembly line. At the very beginning of the line, the regular tree grammar
generates an initial tree representing a metre, i.e. a rhythmic pattern. The tree is
then transformed step by step by some twelve tree transducers, each of them be-
stowing a specific musical property on the generated piece. For example, the last
top-down tree transducer along the assembly line, namely Accompaniment,
adds an accompaniment to an otherwise already finished tune. Because of lim-
ited space, the components cannot be described in detail here, but their names
indicate their purpose. The algebra visible in Figure 2 was added for technical
reasons and does not partake in the generation process.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 153–162, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

154 J. Högberg

4
4

4
4

extract

first voice

measure

concat

half

c

concat

qu
ar

te
r

e

qu
ar

te
r

g

measure

concat

concat

qu
ar

te
rd

ot

b

co
nc

at
si
xt

ee
nt

h

c

si
xt

ee
nt

h

d

half

c

second voice

measure

concat

concat

co
nc

at
ei

gh
th

c

ei
gh

th

g

co
nc

at
ei

gh
th

e

ei
gh

th

g

concat

co
nc

at
ei

gh
th

c

ei
gh

th

g

co
nc

at
ei

gh
th

e

ei
gh

th

g

measure

concat

concat
co

nc
at

ei
gh

th

c

ei
gh

th

g

co
nc

at
ei

gh
th

f

ei
gh

th

g

concat

co
nc

at
ei

gh
th

c

ei
gh

th

g

co
nc

at
ei

gh
th

e

ei
gh

th

g

Fig. 1. Above, the first two bars of the sonata in C-major KV545 by Mozart, and
below, the same piece represented by a tree

One benefit of Willow is that, since the workers are separate entities, they can
be replaced one at a time. Say for example that one worker, perhaps Mr Jazz-
transducer, assigns chords mimicking Lillian Hardin, but that the user prefers
pop. Then the user could simply substitute Mr Justin-transducer for Mr Jazz-
transducer and have things her way. Similarly Mr Walz could substitute Mr
March, Ms Guitar Mrs Piano, and Lady Choir old Sir Solo. Another benefit
is that the generated music could take the rôle of raw material for a human
composer. A computer executing the system could generate an endless supply
of themes and tunes, without hesitation or embarrassment. It would then be
up to the composer to pick and choose among the material as she pleases, and
hopefully there will be some parts that appeal to her. These parts could then be
fed into the next step in the construction line; the computer could for example

Wind in the Willows – Generating Music by Means of Tree Transducers 155

Fig. 2. Willow is implemented in Treebag and consists of a regular tree grammar, a
number of top-down tree transducers, a free-term algebra, and a score display

suggest an accompaniment or a decoration. Again the human composer would
be able to provide the computer with guidance and feedback.

One of the principles that have guided the design of Willow is that every
component should be firmly rooted in music theory. Although we shall not discuss
music theory in detail here, it is useful to know the following basic facts. Most
tunes are based on a set of chords; tuples of tones that are sounded together (or
nearly so). For tunes written in a major scale, there is an associated set of seven
chords called the triads of the major scale. In analytic notation, these chords are
referred to as I , ii, III , IV , V , vi, and vii◦.

A chord progression is a sequence of chords. Though the chords in a chord
progression can be any triads in the scale, depending on the genre, some pro-
gressions are more likely than others. E.g. pop music often contains the chord
progression shown as (a) in Figure 4, while the progression ii, V , I is associated
with jazz, and I , IV , I , V with blues. A common feature of these progressions is

156 J. Högberg

that they tend to start at the tonic (I), search their way towards the dominant
(V) while creating tension, and then fall back to the tonic, resolving the tension.
This cycle of increasing and decreasing tension is called a phrase. In fact, the
relaxation of tension at the end of the phrase is so important that it has been
given a name; the chord progression that ends a phrase is called a cadence.

The paper is structured as follows. The next section recalls briefly some basic
notations of the theory of tree grammars and tree transducers. Sections 3 and
4 attempt to give the reader an impression of how Willow generates a tune,
by discussing the components Chord and Cadence, respectively. The paper is
then concluded by a brief discussion of descriptional complexity. A full length
version of this paper [1], together with a Treebag worksheet for Willow, can
be downloaded at [3]. It is unfortunate (and obvious) that samples of the music
that Willows produces cannot not be included in this paper. To compensate for
this, we direct the reader to a collection of generated audio files, also available
at [3]. For an introduction to music theory, see for example [4]. For preliminaries
concerning tree grammars and tree transducers, see [5], [6] or Appendix A of
[2]. Related work includes [7], [8], [9], [10], and [11], although none of these use
devices from formal language theory, with the exception of [10], which uses
L-systems.

2 Tree Transducers

Let us now recall the notations of tree language theory we shall use in order to
generate music. Let Σ be a signature, i.e., a finite union Σ =

⋃n
k=1 Σ

(k), where
each Σ(k) is a finite set of symbols of rank k. Let S be any set, then the set of
trees over Σ indexed by S, denoted by TΣ(S), is defined inductively as follows;
S ∪ Σ(0) ⊆ TΣ(S) and for k ≥ 1, f ∈ Σ(k), and t1, . . . , tk ∈ TΣ(S), the tree
f [t1 . . . tk] belongs to TΣ(S). The set TΣ of trees over Σ is TΣ(∅). A subset of
TΣ is called a tree language.

Let X = {x1, x2, . . .} be a set of special symbols, so-called variables, all of
rank zero, that is disjoint with every signature in this paper. When we only
wish to talk about a subset {x1, . . . , xk} of X , we refer to the subset as Xk. If
t ∈ TΣ(X) for some arbitrary signature Σ, then we denote by t[[t1, . . . , tk]] the
tree that results when each occurrence of xi in t is replaced by ti, i ∈ [k].

A top-down tree transducer (or simply, td transducer) is a quintuple td =
(Σ,Σ′, Q,R, q0), where Σ is an input signature, Σ′ is an output signature, Q is
a signature of states of rank 1, such that Q∩(Σ∪Σ′) = ∅, R is a finite set of rules,
and q0 ∈ Q is the initial state. Every rule in R has the form q[f [x1, . . . , xk]] → t,
where k ∈ N, q ∈ Q, f ∈ Σ(k), and t ∈ TΣ′(Q(Xk)). To improve legibility, we
henceforth write q f [tq, . . . , tk], rather than q[f [tq, . . . , tk]], when q ∈ Q.

For trees s, s′ ∈ TΣ′(Q(TΣ)), there is a transduction step s �→td s′ by a rule
q f [x1, . . . , xk] → t ∈ R if s = s0[[q f [t1, . . . , tk]]] for some tree s0 containing x1
exactly once, and s′ = s0[[t[[t1, . . . , tk]]]]. We denote the transitive closure of �→td

by ∗�→td and say that there is a transduction from s to s′ if s
∗�→td s′. Finally,

td(s) = {s′ ∈ TΣ′ | q0[s] ∗�→td s′}.

Wind in the Willows – Generating Music by Means of Tree Transducers 157

Let td = (Σ,Σ′, Q,R, q0) be a td transducer.We call td a linear td transducer if,
in every rule, each variable occurs at most once in its right-hand side. A td trans-
ducer that is not linear is copying. If there is at least one rule r in R whose left-
hand side contains a variable that does not occur in the right-hand side, we say
that td is deleting. Furthermore, if, for all q ∈ Q and f ∈ Σ(k), there is a rule
q f [x1, . . . , xk] → t ∈ R, td is total. If there is at most one such rule for all q ∈ Q
and f ∈ Σ(k), then it is deterministic. A td transducer is partial if it is not total.

3 Chord Progressions

Recall that Willow’s assembly line consists of a regular tree grammar that gener-
ates an initial tree, and a sequence of twelve td transducers that add an attribute
each, thereby contributing to the final representation of a tune. We shall not dis-
cuss regular tree grammars in this paper, but the reader may consult [5] to learn
more about this device. Out of the twelve td transducers, only Chord and
Cadence will be described in detail.

The td transducer Chord assigns chords to the lower nodes of the tree, using
states to represent chord transitions. The assignment is done in such a way that
when the assigned chords are read from left to right, they appear in accordance

I⇒I

◦
◦

◦
◦ ◦

◦
◦ ◦

◦
◦

◦ ◦
◦

◦ ◦

�→
◦

I⇒V

◦
◦

◦ ◦
◦

◦ ◦

V ⇒I

◦
◦

◦ ◦
◦

◦ ◦

∗�→

◦
◦

I⇒IV

◦
◦ ◦

IV ⇒V

◦
◦ ◦

◦
V ⇒IV

◦
◦ ◦

IV ⇒I

◦
◦ ◦

∗�→

◦
◦

◦
I⇒I

◦
I⇒IV

◦

IV

◦
◦

V ⇒I

◦
I⇒IV

◦

◦
IV ⇒V

◦
V ⇒I

◦

∗�→

◦
◦

◦
I I

IV

◦
◦

V I

◦
IV V

Fig. 3. The td transducer Chord assigns a chord progression common to pop music

158 J. Högberg

(a)

I IV V

(b)

I

I

IV

IV

V

V

Fig. 4. A chord progression common to pop (a), augmented with sinks (b)

with the chord progression (a) of Figure 4. It is not desirable that all chords are
assigned to nodes at the same level, as this would correspond to a tune where
the chord changes every n-th note, giving a dull and monotonic impression. In
an attempt to attack this problem, we have made Chord nondeterministic; as
soon as a state represents an allowed transition (i.e. an edge between two nodes
in the graph of Figure 4), there is one applicable rule which terminates, and
one or more applicable rules which continue to elaborate the progression. If a
state does not represent an allowed transition (i.e. I⇒V), then no applicable
terminating rule exists. A selection of Chord’s rules follows:

{ I⇒I ◦[x1, x2] → ◦[I⇒V x1, V ⇒I x2] Move from I to I, passing through V.

I⇒V ◦[x1, x2] → ◦[I⇒IV x1, IV ⇒V x2] Move from I to V, passing through IV.

I⇒IV ◦[x1, x2] → ◦[I⇒IV x1, IV ⇒IV x2] When moving from I to IV, linger on IV...

I⇒IV ◦[x1, x2] → I or assign I to the current node.

V ⇒V ◦[x1, x2] → ◦[V ⇒I x1, I⇒V x2] Move from V to V, passing through I.

. . . }

The transformation of an input tree is shown in Figure 3. Notice that, as our
initial state is I⇒I, the first chord of the tune is I. The last chord is however
not I. This is unfortunate, because it would be useful if we could specify the
destination, as well as the start, of the progression. One remedy is to augment
the progression graph with sinks. Compare the original progression (a) with
the augmented version (b), both given in Figure 4. When some sink, suppose
I, occurs in a derivation, it will always be preceded by I. When the derivation
terminates, the I will disappear, leaving the I behind. So if we want our generated
tune to both begin and end with an I, and have a number of different chords in
the middle, it suffices if we choose as our initial state the state I⇒I.

This particular version of Chord assigns a chord progression common to
pop, but a corresponding td transducer can be built for many other genres.
To facilitate this construction, we implemented the perl script progression.pl
(available at [3]). The script takes as input a plain text description of a progres-
sion graph and outputs the corresponding, nondeterministic, td transducer.

The technique described in this section is also used by Willow to assign other
musical properties whose variations can be expressed as graphs. Examples of
this kind are the melodic arc, which is not allowed to leap more than four half
tones, and the tempo, which is also to be changed incrementally.

Wind in the Willows – Generating Music by Means of Tree Transducers 159

4 Adding a Cadence Using Non-determinism

As mentioned in the introduction, the chord progression that ends a phrase is
called a cadence. The td transducer Cadence takes the last two tones of a
piece and turns them into a cadence. For this, it is, of course, necessary to find
the last two tones in the given tree representation of the piece. This cannot
be accomplished by a deterministic td transducer in the general case; there
are decisions that must be made early in the transduction, but in accordance
with information that can only be obtained towards the end. A nondeterministic
partial td transducer, on the other hand, can guess by making a nondeterministic
choice. If the guess is erroneous, then the transduction will fail to terminate and
no output tree will be produced; but if the guess is correct, the objective is
accomplished and the last two notes of the output tree turned into a cadence.
For this purpose, we construct a nondeterministic partial td transducer td =
(Σ,Σ′, Q,R, qs), the components of which are as follows.

Σ = { ◦(2), ♩(0) } Σ′ = Σ ∪ { d(1), t(1) } Q = { qs, qd, qt, qp }
R = { qs ◦ [x1, x2] → ◦[qp x1, qs x2] Search for the parent of the last note,

qs ◦ [x1, x2] → ◦[qd x1, qt x2] or guess that we have found it.
qd ◦ [x1, x2] → ◦[qp x1, qd x2] Stay to the right while looking for the

second to last note.
qd ♩ → d[♩] Place the d marker for ‘dominant’.
qt ♩ → t[♩] If state qt encounters anything but a

leaf, the transduction fails.
qp ◦ [x1, x2] → ◦[qp x1, qp x2] Copy the rest of the tree to the output.
qp ♩ → ♩ }

One possible transduction is shown in Figure 5. At the very first step, td
guesses nondeterministically that it has found the parent of the last note. Clearly,
this is not the case. After a number of transduction steps the rightmost tree of
the figure has been reached. At this point the transduction must abort, because
there are no rules with left-hand side qt ◦ [x1, x2]. However, this type of dead-end
transductions is automatically detected and avoided in Treebag. An alternative
transduction is shown in Figure 6. Here, the td transducer waits a number of
steps before guessing that it has found the sought parent. This time it is correct,
so the transduction succeeds in turning the last two notes into a cadence and
terminating.

qs

◦
◦

♩ ♩
◦

◦
♩ ♩

♩
�→

◦
qd

◦
♩ ♩

qt

◦
◦

♩ ♩
♩

∗�→

◦
◦

♩ d

♩

qt

◦
◦

♩ ♩
♩

Fig. 5. The transduction fails because of an incorrect earlier guess

160 J. Högberg

qs

◦
◦

♩ ♩
◦

◦
♩ ♩

♩
�→

◦
qp

◦
♩ ♩

qs

◦
◦

♩ ♩
♩

∗�→

◦
◦

♩ ♩
qs

◦
◦

♩ ♩
♩

∗�→

◦
◦

♩ ♩
◦

qd

◦
♩ ♩

qt

♩
∗�→

◦
◦

♩ ♩
◦

◦
♩ d

♩

qt

♩
�→

◦
◦

♩ ♩
◦

◦
♩ d

♩

t

♩

Fig. 6. After a series of correct guesses the nondeterministic td transducer terminates

5 Descriptional Complexity

It was stated in the introduction that an ignorant transducer is a special kind of
td transducer, and before we consider the major topic of this section, we should
elaborate on what we mean, in this particular case, by “special”. The trans-
ducers that form Willow are each responsible for one distinct attribute of the
finished piece. In other words, rather than completely rebuilding its input tree, a
particular transducer contributes by affixing a few labels to the input tree, which
is then passed on to the next transducer in the assembly line. The implication
is that if the transducers were to be defined using traditional notation, most of
their rules would take the following form:

q f [t1, . . . , t1] → f [q t1, . . . , q t1]

That is, but for a few exceptions, the rules would dictate that the current node
of the input tree should be left untouched, and that the transducer shall continue
to work on the subtrees with no change of internal state. E.g. the definition file
for Scale would require more than 3000 rules, out of which less than 300 would
cause any change in the input tree whatsoever. To be able to describe the td
transducers more concisely, we use the idea of an ignorant transducer. As with a
partial td transducer, the definition of an ignorant transducer need not be total,
but when an ignorant transducer encounters a state and symbol combination
for which it has no appropriate rule, rather than aborting the computation, it
keeps the irksome node (i.e. copies it to the output) and continues to work on its
subtrees. Hence, an ignorant transducer is a weaker version of the td transducer,
as we no longer can express transductions that are partial.

Let us now discuss the descriptive complexity of Willow. The simplicity of
its components is probably one of the most appealing properties of Willow. We
will now apply results concerning composition of transductions, to show that
much of this simplicity is retained when it is the system as a whole that is under

Wind in the Willows – Generating Music by Means of Tree Transducers 161

consideration. Denote the composition of td transducers td2 and td2 by td2 ◦ td1,
i.e., td2 ◦ td1 =

⋃
t′∈td1(t) td2(t′). We make use of the following result by Baker.

Theorem 1. [12] The composition td2 ◦ td1 of td transductions td1 and td2 is
a td transduction if

1) td1 is deterministic or td2 is linear, and
2) td1 is total or td2 is nondeleting.

If, in addition, both td1 and td2 are linear, deterministic, total, or nondeleting,
then td2 ◦ td1 has the respective property as well.

The td transducers that constitute Willow are all nondeleting, which means
that the second requirement of Theorem 1 is always met. Recall that regular tree
languages are closed under linear td transductions. As a consequence, we can
combine the apparatus of Ab form, Chord progression, and Tempo in a
single regular tree grammar. Applying Theorem 1, we can collapse the sequence
consisting of the remaining twelve td transducers by iteratively replacing pairs
of them with a single td transducer. Moreover, it is well known that the class
of all regular tree languages is closed under linear td transductions. Hence, we
can collapse the first three components into a regular tree grammar. We reach
a point when the system has been reduced to a regular tree grammar and two
td transducers (see Table 1), and cannot be simplified further using Theorem 1.
In [13], a type of tree grammar called tree grammar with branching synchroni-
sation and nested tables of depth n (branching grammar of depth n, for short)
has been introduced, and it has been shown that the class BSTn of tree lan-
guages generated is equal to the closure of the regular tree languages under n
tree transducers. Hence, we conclude with the following theorem.

Theorem 2. Willow generates a tree language in BST2.

Table 1. The constituents of Willow, ordered as they occur in the generation process.
The abbreviations lin., and det. stand for linear and deterministic, respectively.

Component Device Lin. Det. Collapses to
Ab form rtg n/a no

reg. tree grammarChord progression td yes no
Tempo td yes no
Voices td no yes

copy. nondet. td

Flip td yes yes
Melodic arc td yes no
Arrange td yes no
Cadence td yes no
Anfang td yes no
Aaba form td no yes

copy. nondet. td
Scale td yes yes
Analysis td yes yes
Accompaniment td yes yes

162 J. Högberg

6 Limitations and Future Work

The tunes produced by Willow are all in major scales, on the ABAA form,
and there are no extrinsic tones or decorations. The accompaniment follows a
repetitive pattern governed by chord progression and tempo, and cadences are
exceedingly simple. The actual implementation provided works fairly well, but
needs further testing to become completely reliable.

A user can regulate the generation process to some degree by selecting, or
designing, the td transducers, and setting the order in which they are to be
applied. We would like to extend this interaction in order to make it possible to
input a theme, e.g. by means of a digital keyboard, and have the system weave
a cannon or a fugue around it.

At present, the generated trees are interpreted by the component ScoreDis-
play in a deterministic, but rather ad hoc, manner. This disagrees with the
general design of Treebag – algebras interpret trees, while displays visualise
(or in this case, perform) the results. This makes an algebra for evaluating trees
as musical pieces an important future aim.

Acknowledgements. The author wishes to thank the anonymous referees for
encouragement and constructive comments.

References

1. Högberg, J.: Wind in the Willows. Technical Report UMINF-05.13, Computing
Science, Univ. Ume̊a (2005)

2. Drewes, F.: Grammatical Picture Generation. Springer (2005)
3. Högberg, J.: Willow – Algorithmic Composition using Tree Automata. Internet

resource (2005) Available at http://www.cs.umu.se/~johanna/willow/.
4. Kerman, J., Tomlinson, G.: Listen. Fourth edn. Bedford, Freeman, & Worth (2000)
5. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
6. Fülöp, Z., Vogler, H.: Syntax-Directed Semantics: Formal Models Based on Tree

Transducers. Springer-Verlag New York, Inc. (1998)
7. Roads, C.: Grammars as Representations for Music. Computer Music Journal

(1979) 48–55
8. Baroni, M.: The concept of musical grammar. Music Analysis 2 (1983) 175–208
9. Lerdahl, F., Jackendoff, R.: Toward a formal theory of tonal music. Journal of

Music Theory 21 (1977) 111–171
10. Prusinkiewicz, P.: Score generation with L-systems. In Berg, P., ed.: Proceedings

of the International Computer Music Conference 1986. Number 1, Royal Conser-
vatory, The Hague, Netherlands (1986) 455–457

11. Lindblom, B., Sundberg, J.: Towards a Generative Theory of Melody. Swedish
Journal of Musicology (1970) 77–88

12. Baker, B.S.: Composition of Top–down and Bottom–up Tree Transductions. In-
formation and Control (1979) 186–213

13. Drewes, F., Engelfriet, J.: Branching Synchronisation Grammars with Nested Ta-
bles. Journal of Computer and System Sciences (2004) 611–656

On Deterministic Catalytic Systems�

Oscar H. Ibarra1,�� and Hsu-Chun Yen2

1 Department of Computer Science,
University of California, Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu
2 Department of Electrical Engineering,

National Taiwan University, Taipei, Taiwan 106, R.O.C.
yen@cc.ee.ntu.edu.tw

Abstract. We look at a 1-membrane catalytic P system with evolu-
tion rules of the form Ca → Cv or a → v, where C is a catalyst, a
is a noncatalyst symbol, and v is a (possibly null) string representing
a multiset of noncatalyst symbols. (Note that we are only interested in
the multiplicities of the symbols.) A catalytic system can be regarded
as a language acceptor in the following sense. Given an input alphabet
Σ consisting of noncatalyst symbols, the system starts with an initial
configuration wz, where w is a fixed string of catalysts and noncatalysts
not containing any symbol in z, and z = an1

1
...a

nk
k for some nonnegative

integers n1, ..., nk, with {a1, ..., ak} ⊆ Σ. At each step, a maximal mul-
tiset of rules is nondeterministically selected and applied in parallel to
the current configuration to derive the next configuration (note that the
next configuration is not unique, in general). The string z is accepted if
the system eventually halts.

It is known that a 1-membrane catalytic system is universal in the
sense that any unary recursively enumerable language can be accepted
by a 1-membrane catalytic system (even by purely catalytic systems, i.e.,
when all rules are of the form Ca → Cv). A catalytic system is said to
be deterministic if at each step, there is a unique maximally parallel
multiset of rules applicable. It has been an open problem whether de-
terministic systems of this kind are universal. We answer this question
negatively: We show that the membership problem for deterministic cat-
alytic systems is decidable. In fact, we show that the Parikh map of the
language (⊆ a∗

1...a
∗
k) accepted by any deterministic catalytic system is

a simple semilinear set which can be effectively constructed. Since non-
deterministic 1-membrane catalytic system acceptors (with 2 catalysts)
are universal, our result gives the first example of a variant of P systems
for which the nondeterministic version is universal, but the deterministic
version is not.

We also show that for a deterministic 1-membrane catalytic system us-
ing only rules of type Ca → Cv, the set of reachable configurations from

� The research of Oscar H. Ibarra was supported in part by NSF Grants CCR-0208595,
CCF-0430945, IIS-0451097 and CCF-0524136. The research of Hsu-Chun Yen was
supported in part by NSC Grant 93-2213-E-002-003, Taiwan.

�� Corresponding author.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 163–175, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

164 O.H. Ibarra and H.-C. Yen

a given initial configuration is an effective semilinear set. The application
of rules of type a → v, however, is sufficient to render the reachability set
non-semilinear. Our results generalize to multi-membrane deterministic
catalytic systems. We also consider deterministic catalytic systems which
allow rules to be prioritized and investigate three classes of such systems,
depending on how priority in the application of the rules is interpreted.
For these three prioritized systems, we obtain contrasting results: two
are universal and one only accepts semilinear sets.

Keywords: Membrane computing, deterministic catalytic system, de-
terministic versus nondeterministic, symport/antiport system, counter
machine, semilinear set, priority.

1 Introduction

There has been a great deal of research activities in the area of membrane com-
puting (a branch of natural computing) initiated by Gheorghe Păun in a seminal
paper [1] over six years ago (see also [2]). Membrane computing identifies an un-
conventional computing model, namely a P system, from natural phenomena of
cell evolutions and chemical reactions. Due to the built-in nature of maximal par-
allelism inherent in the model, P systems have a great potential for implementing
massively parallel systems in an efficient way that would allow us to solve cur-
rently intractable problems once future bio-technology (or silicon-technology)
gives way to a practical bio-realization (or chip-realization).

A P system is a computing model, which abstracts from the way the living cells
process chemical compounds in their compartmental structure. Thus, regions
defined by a membrane structure contain objects that evolve according to given
rules. The objects can be described by symbols or by strings of symbols, in
such a way that multisets of objects are placed in regions of the membrane
structure. The membranes themselves are organized as a tree structure (this
can be represented by a Venn diagram) where one membrane may contain other
membranes. By using the rules in a nondeterministic, maximally parallel manner,
transitions between the system configurations can be obtained. A sequence of
transitions shows how the system is evolving. Various ways of controlling the
transfer of objects from a region to another and applying the rules, as well
as possibilities to dissolve, divide or create membranes have been studied. P
systems were introduced with the goal to abstract a new computing model from
the structure and the functioning of the living cell (as a branch of the general
effort of Natural Computing – to explore new models, ideas, paradigms from the
way nature computes). Membrane computing has been quite successful: many
models have been introduced, most of them Turing complete and/or able to
solve computationally intractable problems (NP-complete, PSPACE-complete)
in a feasible time (polynomial), by trading space for time. (See the P system
website at http://psystems.disco.unimib/it for a large collection of papers in the
area, and in particular the monograph [3].)

On Deterministic Catalytic Systems 165

In the standard semantics of P systems [2, 3, 4], each evolution step of a system
P is a result of applying all the rules in P in a maximally parallel manner. More
precisely, starting from the initial configuration, w, the system goes through a
sequence of configurations, where each configuration is derived from the directly
preceding configuration in one step by the application of a multiset of rules,
which are chosen nondeterministically. For example, a catalytic rule Ca → Cv
in membrane m is applicable if there is a catalyst C and an object (symbol) a
in the preceding configuration in membrane m. The result of applying this rule
is the evolution of v from a. If there is another occurrence of C and another
occurrence of a, then the same rule or another rule with Ca on the left hand
side can be applied. Thus, in general, the number of times a particular rule is
applied at anyone step can be unbounded. We require that the application of the
rules is maximal: all objects, from all membranes, which can be the subject of
local evolution rules have to evolve simultaneously. Configuration z is reachable
(from the starting configuration) if it appears in some execution sequence; z is
halting if no rule is applicable on z.

Two popular models of P systems are the catalytic system [2] and the sym-
port/antiport system [5]. An interesting subclass of the latter was studied in [6]
– each system is deterministic in the sense that the computation path of the
system is unique, i.e., at each step of the computation, the maximal multiset of
rules that is applicable is unique. It was shown in [6] that any recursively enu-
merable unary language L ⊆ o∗ can be accepted by a deterministic 1-membrane
symport/antiport system. Thus, for symport/antiport systems, the determinis-
tic and nondeterministic versions are equivalent and they are universal. It also
follows from the construction in [7] that for another model of P systems, called
communicating P systems, the deterministic and nondeterministic versions are
equivalent as both can accept any unary recursively enumerable language. How-
ever, the deterministic-versus-nondeterministic question was left open in [6] for
the class of catalytic systems (these systems have rules of the form Ca → Cv
or a → v), where the proofs of universality involve a high degree of parallelism
[7, 8]. For a discussion of this open question and its importance, see [9, 10]. We
answer this question negatively in this paper. Since nondeterministic catalytic
systems are universal, our result also gives the first example of a variant of P
systems for which the nondeterministic version is universal, but the deterministic
version is not.

For a catalytic system serving as a language acceptor, the system starts with
an initial configuration wz, where w is a fixed string of catalysts and noncatalysts
not containing any symbol in z, and z = an1

1 ...ank

k for some nonnegative integers
n1, ...,nk, with {a1, ..., ak} a distinguished subset of noncatalyst symbols (the
input alphabet). At each step, a maximal multiset of rules are nondeterministi-
cally selected and applied in parallel to the current configuration to derive the
next configuration (note that the next configuration is not unique, in general).
The string z is accepted if the system eventually halts. Unlike nondeterministic
1-membrane catalytic system acceptors (with 2 catalysts) which are universal,
we are able to show using a graph-theoretic approach that the Parikh map of the

166 O.H. Ibarra and H.-C. Yen

language (⊆ a∗1...a
∗
k) accepted by any deterministic catalytic system is a simple

semilinear set which can also be effectively constructed. Our result gives the
first example of a variant of P systems for which the nondeterministic version
is universal, but the deterministic version is not. For deterministic 1-membrane
catalytic systems using only rules of type Ca → Cv, we show the set of reach-
able configurations from a given initial configuration to be effective semilinear.
In contrast, the reachability set is no longer semilinear in general if rules of type
a → v are also used. Our result generalizes to multi-membrane catalytic systems.

We also consider deterministic catalytic systems which allow rules to be pri-
oritized. Three such systems, namely, statically prioritized, strongly prioritized
and weakly prioritized catalytic systems, are investigated. For statically priori-
tized systems, rules are divided into different priority groups, and if a rule in
a higher priority group is applicable, then no rules from a lower priority group
can be used. For both strongly prioritized and weakly prioritized systems, the
underlying priority relation is a strict partial order (i.e., irreflexive, asymmet-
ric, and transitive). Under the semantics of strong priority, if a rule with higher
priority is used, then no rule of a lower priority can be used even if the two
rules do not compete for objects. This notion of strong priority coincides with
the semantics of the priority relation used in [2]. For weakly prioritized systems,
a rule is applicable if it cannot be replaced by a higher priority one. For these
three prioritized systems, we obtain contrasting results by showing that deter-
ministic strongly and weakly prioritized catalytic systems are universal, whereas
statically prioritized systems only accept semilinear sets.

Due to page limitation, some proofs are omitted. Complete proofs
will appear later in an expanded (journal) version of this paper.

2 Nonuniversality of Deterministic Catalytic Systems

Consider a catalytic system (CS, for short) in which all rules are of the form:
Ca → Cv or a → v, where C is a catalyst, a is a noncatalyst symbol, and v is a
(possibly null) string of noncatalyst symbols. (Note that we are only interested
in the multiplicities of the symbols.) Unless stated otherwise, we assume that
catalytic systems operate under the maximally parallel mode, i.e., at each step
the maximal multiset of rules is applied. A CS is said to be deterministic if at
each step, there is a unique maximally parallel multiset of rules applicable. A
CS is referred to as a purely CS if only rules of the form Ca → Cv are used.

Given two configurations c and c′, we write c
S→ c′ to denote that applying

the multiset S at c yields c′, and S is a maximally applicable multiset of rules
at c. We also write c

S1···Sk→ c′ to denote the reachability of c′ from c through
applying sequence S1 · · ·Sk of multisets of rules (or c

∗→ c′ if the actual sequence
is irrelevant). Given a configuration c , we write #c to denote the Parikh map
of c, and #c(x) the number of occurrences of symbol x in c, where x is either a
catalytic or a noncatalytic symbol.

Next we recall the definition of a semilinear set [11]. Let N be the set of
nonnegative integers and k be a positive integer. A subset R of Nk is a linear

On Deterministic Catalytic Systems 167

set if there exist vectors v0, v1, . . . , vt in Nk such that R = {v | v = v0 +m1v1 +
· · · + mtvt, mi ∈ N}. The vectors v0 (referred to as the constant vector) and
v1, v2, . . . , vt (referred to as the periods) are called the generators of the linear
set R. The set R ⊆ Nk is semilinear if it is a finite union of linear sets. The
empty set is a trivial semilinear set. Every finite subset of Nk is semilinear – it
is a finite union of linear sets whose generators are constant vectors. It is also
clear that the semilinear sets are closed under (finite) union. It is also known
that they are closed under complementation and intersection.

2.1 Deterministic Purely Catalytic Systems

We first consider deterministic purely CSs, i.e., all rules are of the form Ca → Cv.
Due to the nature of determinism as well as the number of catalysts being
bounded, an infinite computation of a deterministic purely CS is ‘periodic’ in
the sense stated in the following theorem.

Theorem 1. Given a deterministic purely CS P and an initial configuration c0,
the following three statements are equivalent:

1. P does not halt;
2. there exist c and c′ with #c′ ≥ #c such that c0

∗→ c
∗→ c′;

3. the computation of P is of the form c0
T1···Tr(S1···Sk)ω

→ , where T1, ..., Tr, S1,
..., Sk are multisets of rules. (That is, following a finite prefix the computa-
tion is ‘periodic’ with S1 · · ·Sk repeating forever.)

Proof. To proceed, we require the following claims whose proofs are omitted due
to space limitation:

(Claim 1) Suppose c
H→ d and c′ H′→ d′, where c, c′, d, d′ are configurations

and H and H ′ are two multisets of rules. If rule Ca → Cv is in H ′−H , then
#c(a) < #c′(a).

(Claim 2) Given a computation c1
H1→ c2

H2→ · · · ci−1
Hi−1→ ci and a con-

figuration c′1 with #c′
1
≥ #c1 , then there exist multisets H ′

1, ..., H
′
i−1 and

configurations c′2, ..., c′i such that (i) c′1
H′

1→ c′2
H′

2→ · · · c′i−1
H′

i−1→ c′i, (ii) Hj ⊆
H ′

j , ∀j, 1 ≤ j ≤ i− 1, and (iii) #cj ≤ #c′
j
, ∀j, 1 ≤ j ≤ i.

(Claim 3) If c1
H1···Hk→ c2, #c2 ≥ #c1 and c2

H1···Hk→ c3, then it must be
the case that c1

H1···Hk→ c2
H1···Hk→ c3 · · · H1···Hk→ ci · · ·, i.e., H1 · · ·Hk repeats

forever.

We are now in a position to prove our theorem. We first show (1) =⇒ (2).
Assume that P does not terminate. Let c0 → c1 → · · · → cl → · · · (l ∈ N)
be an infinite computation. According to Higman’s and König’s lemmas (see
[12]), there exist i < j such that #ci ≤ #cj ; hence, (2) holds. Now we establish

(2) =⇒ (3). Let H1 · · ·Hk be the sequence of rule sets such that ci
H1···Hk→ cj

and #ci ≤ #cj . According to Claim 2, there are rule sets Ht
1, H

t
2 · · ·Ht

k and

168 O.H. Ibarra and H.-C. Yen

configurations cjt , t ≥ 1, such that ci
H1···Hk→ cj

H1
1 ···H1

k→ cj1

H2
1 ···H2

k→ cj2 · · ·
Ht

1···Ht
k→

cjt · · ·. Furthermore, for all 1 ≤ l ≤ k and 1 ≤ t, Ht
l ⊆ Ht+1

l , and #cjt
≤ #cjt+1

.
Since the number of catalytic symbols (which bounds the degree of maximal
parallelism) is a constant, for all 1 ≤ l ≤ k there must be an tl such that
Htl

l = Htl+1
l = Htl+2

l = · · ·. Choose t′ to be the maximum among all tl, such that

Ht′
l = Ht′+1

l for all 1 ≤ l ≤ k. Now we have cjt′
Ht′

1 ···Ht′
k→ cjt′+1

· · · Ht′
1 ···Ht′

k→ cjt′+2
.

By letting Sl = Ht′
l , 1 ≤ l ≤ k, Claim 3 guarantees that S1 · · ·Sk repeat forever

at cjt′ . Therefore. (3) holds. (3) =⇒ (1) is trivial. This completes the proof of
the theorem. 	

From (3) of Theorem 1, we immediately have:

Corollary 1. Given a deterministic purely CS P and an initial configuration
c0, the reachability set {#c | c0

∗→ c} is semilinear.

Corollary 2. Given a deterministic purely CS P and an initial configuration
c0, the problem of determining whether P halts is decidable.

Now consider the case when CSs serve as language acceptors. Consider a CS
P with initial configuration won1

1 ...onk

k , where noncatalytic symbols o1, ..., ok are
distinguished input symbols not in w, and w is a fixed string (independent of
n1, ...,nk) not containing symbol o1, ..., ok. The word on1

1 ...onk

k is accepted if
P halts. It is known [7] that even for k = 1, any unary RE language can be
accepted by the a purely CS operating in a nondeterministic manner. Hence,
nondeterministic purely CSs are universal. Surprisingly, however, deterministic
purely CSs are not universal as the following result indicates.

Theorem 2. Deterministic purely catalytic systems are not universal.

2.2 Deterministic Catalytic Systems

Now we consider the full class of deterministic CSs, where the rules are of the
form Ca → Cv or a → v. Intuitively, what makes the reachability set of a
deterministic purely CS ‘simpler’ is that any infinite computation of such a
system is periodic in the sense described in (3) of Theorem 1. Such a periodic
behavior is partly due to the fact that the maximum degree of parallelism during
the course of the computation of a deterministic purely CS is bounded by the
number of catalytic symbols in the initial configuration. Note, however, that the
degree of parallelism becomes unbounded if the CS uses rules of type a → v. In
fact, the semilinearity result no longer holds for the full class of deterministic
CSs as the following example indicates. It is interesting to note that the degree
of parallelism in this example is unbounded.

Example 1: Consider a CS with only one rule a1 → a1a1 and initial config-
uration a1. Then the Parikh map of the set of all reachable configurations is
{2n|n ≥ 1}, which is clearly not semilinear. 	

Although the reachability set of a deterministic (not necessarily purely) CS
is not semilinear in general, being deterministic does make the computational

On Deterministic Catalytic Systems 169

power of the model weaker than its nondeterministic counterpart. In what fol-
lows, we propose a graph-theoretic approach for reasoning about the behaviors
of deterministic CSs.

Consider a deterministic CS P , in which {C1, ..., Ck} is the set of catalytic
symbols, and Σ = {a1, ..., am} is the set of noncatalytic symbols. Let c0 be the
initial configuration which contains (possibly multiple copies of) Ci, ∀1 ≤ i ≤ k.
Two rules r1 and r2 are said to be in conflict if one of the following holds:

– r1 : Ciat → Ciw1, r2 : Cjat → Cjw2, and either w1 �= w2 or i �= j
– r1 : Ciat → Ciw1, r2 : at → w2,
– r1 : at → w1, r2 : at → w2, and w1 �= w2

In each of the above, rules r1 and r2 compete for the same noncatalyst at. (In
this case, at is said to be involved in two conflicting rules.) At any point in
time, a deterministic CS can never enable a rule that is in conflict with another
rule. Under the unprioritized mode, conflicting rules can be removed without
affecting the computation of the CS, regardless of the initial configuration. Note
that rules C1a1 → C1w1 and C1a2 → C1w2 are not conflicting rules, and in
fact, the absence of a1 (resp. a2) makes C1a2 → C1w2 (resp., C1a1 → C1w1)
applicable.

In what follows, we employ a graph-theoretic approach to reasoning about the
behaviors of deterministic CSs. We construct a directed labelled graph GP,c0 =
(V,E), called the execution graph, such that V = Σ and E={(ai, aj)r | ∃ a rule
r of the form Ctai → Ctw or ai → w, such that aj in w, and ai is not involved
in any conflicting rules}. (The subscript r is the label of edge (ai, aj). We also
write ai

r→ aj .) A careful examination of GP,c0 reveals an important property:
for each node ai, the outgoing edges of ai (if they exist) are of the same label.

To set the stage for the non-universality result of deterministic CSs, we require
the following lemma:

Lemma 1. Consider a deterministic CS P with {C1, ..., Ck} and {a1, ..., am} as
the sets of catalysts and noncatalysts, respectively. Let c0 be the initial configu-
ration. Then:

1. P does not halt on c0 iff there is a reachable loop from some node ai0 with
#c0(ai0) > 0 in GP,c0 .

2. Let c′0 be a configuration such that (∀ 1 ≤ i ≤ k, #c′
0
(Ci) = #c0(Ci))

and (∀ 1 ≤ j ≤ m, (#c0(aj) > 0 =⇒ #c′
0
(aj) = 1) ∧ (#c0(aj) = 0 =⇒

#c′
0
(aj) = 0)). Then P halts on c0 iff P halts on c′0.

3. The problem of determining whether P halts on c0 is decidable in polynomial
time.

Deterministic CSs also have the following monotonic property regarding non-
terminating computations.

Lemma 2. Given a deterministic CS P, if P does not halt from configuration
c, then P does not halt from any configuration c′ such that #c′ ≥ #c.

Hence, we have the following result.

170 O.H. Ibarra and H.-C. Yen

Theorem 3. For a deterministic CS P and a fixed string w, the set L ={on1
1 ...onk

k

| P halts on won1
1 ...onk

k } is effective semilinear. In fact, L is either empty, or of the
form on1

1 ...onk

k , where ni = ∗ or 0, 1 ≤ i ≤ k.
We immediately have the following, which strengthens Theorem 2:

Corollary 3. Deterministic catalytic systems are not universal.
In contrast, it is known that nondeterministic 1-membrane CSs are universal

[8] (see also [13]) even operating under the 3-Max-Parallel mode. The univer-
sality result holds for either purely CSs with three catalysts, or CSs with two
catalysts. In fact, to simulate a Turing machine M the 1-membrane CS need no
more than k noncatalysts for some fixed k, independent of M , as [13] shows.

Consider the following extension of CS:
– multi-membrane CSs, where each rule in a membrane looks like: Ca → Cv

or a → v, where the symbols in v have designated target membranes speci-
fying where they are to be moved. The catalyst C remains in the membrane
containing the rule. In this case w represents the configurations w1, ...wm in
the m membranes.

It turns out that our results obtained thus far can be extended to multi-membrane
CSs. Hence, deterministic multi-membrane CSs are not universal. Theorem 1 and
Corollary 1 (characterizing semilinear reachability sets) also hold for determinis-
tic purely catalytic multi-membrane CSs (i.e., without a → v type of rules). The
proofs are similar to that for the 1-membrane case.

3 Prioritized Deterministic Catalytic Systems

Now let us look at catalytic systems which allow rules to be prioritized according
to the following two types of priority relations. Let R be the set of rules of a CS.
For a priority relation ρ over R, we write ρ(r1) < ρ(r2) (or simply r1 < r2, if
ρ is understood) to denote that (r1, r2) ∈ ρ, meaning that r2 takes precedence
over r1. ρ is said to be of
– Type A: if ρ is irreflexive, asymmetric, transitive, and the complement of

ρ, i.e., ρ̄ = {(r, r′) | ¬((r, r′) ∈ ρ)∧¬((r′, r) ∈ ρ)}, is an equivalence relation.
Clearly, ρ̄ induces equivalence classes Ω1, Ω2, ..., Ωk, for some k, such that
∀1 ≤ i < j ≤ k, ∀r ∈ Ωi, r

′ ∈ Ωj , ρ(r) < ρ(r′). The subscript i of Ωi can
be thought of as the priority level of rules in Ωi. For r ∈ Ωi, we also write
ρ̄(r) = i. (The interested reader is referred to [14] for an example of applying
this notion of a priority relation to reasoning about concurrent systems.)

– Type B: if ρ is an irreflexive, asymmetric, and transitive relation. That is,
ρ is a strict partial order.

Example 2: Consider a strict partial order ρ over R = {r1, ..., r6}: (r5 >
r3 > r2 > r1); (r6 > r4 > r2 > r1); (r5 > r4); and (r6 > r3). Then ρ̄ =
{(r5, r6), (r6, r5), (r3, r4), (r4, r3)}∪{(ri, ri) | 1 ≤ i ≤ 6}, which is an equivalence
relation. Hence, ρ is of type A. Furthermore, ρ̄ partitions R into the following
equivalence classes Ω1 = {r1}, Ω2 = {r2}, Ω3 = {r3, r4}, Ω4 = {r5, r6}, such that
for 1 ≤ i < j ≤ 4, rules in Ωi have a lower priority than those in Ωj . 	

On Deterministic Catalytic Systems 171

3.1 Systems w.r.t. Type A Priority Relation

Let P be a deterministic CS, c and c′ be two configurations, and H be a mul-
tiset of rules. With respect to a priority relation ρ of type A (with ρ̄ inducing
equivalence classes Ω1, Ω2, ..., Ωk),

1. (static priority): c′ is said to follow c through the application of H under the
statically prioritized mode, written as c

H→t c′, if H is the maximal multiset
satisfying the following:
(i) ∀ ri, rj ∈ H , ρ̄(ri) = ρ̄(rj) (i.e., ri and rj are in the same Ωl, for some

l),
(ii) ¬ ∃ r, r �∈ H , r is applicable in c and ρ̄(r) > ρ̄(r′) for some rule r′ ∈ H .
In words, H is the maximal multiset of rules such that if a rule in a higher
priority group is applicable, then no rules from a lower priority group can
be used.

We first show the following result which characterizes the computations of
non-halting CSs.

Lemma 3. Given a deterministic purely CS P operating under the statically
prioritized mode, and an initial configuration c0, P does not halt iff there exist
c and c′ with #c′ ≥ #c such that c0

∗→t c
∗→t c

′.

At this point, we do not know whether the reachability set of a deterministic
statically prioritized purely CS is semilinear or not. Lemma 3, in conjunction
with Higman’s and König’s lemmas, is sufficient to yield the decidability of the
halting problem for such prioritized CSs. Hence, we have the following, whose
proof parallels that of Theorem 2.

Theorem 4. Deterministic purely catalytic systems under the statically priori-
tized mode are not universal.

We now consider the full class of deterministic statically prioritized CSs with
both catalytic and noncatalytic rules. It turns out that the graph-theoretic ap-
proach employed in Section 2.2 remains valid for this new class of CSs.

Let ρ be the underlying priority relation of type A. Given a deterministic
statically prioritized CS P and an initial configuration c0, we construct a directed
labelled graph Gt

P,c0
= (V,E), where V is the set of noncatalytic symbols, and

E={(ai, aj)r | ∃ a rule r of the form Ctai → Ctw or ai → w, such that aj

in w, and no rule r′ of equal or higher priority level (i.e., ρ̄(r′) ≥ ρ̄(r)) is in
conflict with r}. It is important to explain why E constructed above does not
leave out edges corresponding to applicable rules. Suppose r is a rule in conflict
with another rule of equal priority level in ρ. P being deterministic prohibits r
from being enabled; hence, r can be dropped without affecting the computation
of P . Similarly, if r is in conflict with a rule r′ of higher priority level, then r can
never be applied since r and r′ become enabled simultaneously, and only the one
of the higher priority level prevails. Again, r plays no role in P ’s computation in
this case. It is therefore clear that like the execution graph in the unprioritized
case, Gt

P,c0
also enjoys the property that for each node in V, the outgoing edges

172 O.H. Ibarra and H.-C. Yen

of the node are uniquely labelled. What makes this property critical is that if
a noncatalyst ai is in the current configuration of P , the only way to prevent
the unique rule associated with ai (in the execution graph) from being applied
indefinitely is for P to apply rules of higher priority level forever, implying P to
be non-halting. Therefore, it becomes fairly easy to see that P is non-halting iff
Gt

P,c0
has a reachable loop from some node whose corresponding symbol appears

in c0. In view of this key observation, Lemmas 1, 2 and Theorem 3 also hold for
deterministic statically prioritized CSs. Hence, we have:

Theorem 5. For a deterministic statically prioritized CS P and a fixed string
w, the set L ={on1

1 ...onk

k | P halts on won1
1 ...onk

k } is effective semilinear. In fact,
L is either empty, or of the form on1

1 ...onk

k , where ni = ∗ or 0, 1 ≤ i ≤ k.

3.2 Systems w.r.t. Type B Priority Relation

Again, let P be a deterministic CS, c and c′ be two configurations, and H be a
multiset of rules. With respect to a priority relation ρ of type B, the following
two notions of priority are considered.

1. (Strong priority): c′ is said to follow c through the application of H under the
strongly prioritized mode, written as c

H→s c′, if H is the maximal multiset
satisfying the following:
(a) ∀ rule r1 ∈ H , ¬ ∃ r2 �∈ H such that ρ(r1) < ρ(r2) and (H−{r1})∪{r2}

is still applicable,
(b) ∀r1, r2 ∈ H , ¬(ρ(r1) < ρ(r2))
In words, if a rule with higher priority is used, then no rule of a lower priority
can be used, even if the two rules do not compete for objects. Note that this
priority notion coincides with the one used in [2].

2. (Weak priority): c′ is said to follow c through the application of H under the
weakly prioritized mode, written as c

H→w c′, if H is the maximal multiset
satisfying the following:

∀ rule r1 ∈ H , ¬ ∃ r2 �∈ H such that ρ(r1) < ρ(r2) and (H−{r1})∪{r2}
is still applicable.

In words, none of the rules in H can be replaced by a higher priority one.

We use the following simple example to illustrate the difference between the
above two notions of priority.

Example 3: Consider a deterministic CS P with the following rules:

Rule r1 : Cb1 → Cb2; Rule r2 : Ca1 → Ca2; Rule r3 : Da1 → Da3;
Rule r4 : Ec1 → Ec2; Rule r5 : Fc1 → Fc3; Rule r6 : Gd1 → Dd2;
(Priority relation): ρ(r1) > ρ(r2) > ρ(r3); ρ(r4) > ρ(r5)

Then

CDEFGa1b1c1d1
{r1,r4,r6}→ s CDEFGa1b2c2d2

CDEFGa1b1c1d1
{r1,r3,r4,r6}→ w CDEFGa3b2c2d2

On Deterministic Catalytic Systems 173

Note that under the weak priority semantics, the application of r1 makes r3
applicable, since r2 (competing for the catalyst C with r1) is ‘disabled’ by r1.
Under the strong priority semantics, however, the application of r1 disables r3
(since ρ(r3) < ρ(r1)) even though these two rules do not compete for objects. 	

In contrast to Theorem 2 (also Theorem 3) that deterministic unprioritized
CSs are not universal, allowing strongly or weakly prioritized rules boosts the
computational power as the following result shows.

Theorem 6. Deterministic purely CSs under the weakly prioritized (or strongly
prioritized) mode are universal.

Proof. (Sketch) The proof involves the construction of a purely CS that simulates
a given deterministic k-counter machine which starts with one counter having
value n and the other counters empty. We only consider the case k = 2, the
generalization for any k being straightforward.

Let M be a deterministic two-counter machine. Each of M ’s transitions is of
one of the following forms:

– (Increment) s : c + +, goto s′ (on state s, increment counter c by one and
move to state s′);

– (Test-for-zero/Decrement) s : if c = 0, goto s1 else c − −, goto s2 (on
state s, if counter c is zero, go to state s1; otherwise, decrement counter c
by one and move to state s2.

We show how to construct a deterministic purely CS P under the either the
strongly or the weakly prioritized mode such that starting with one counter
empty and the other counter having value n, M halts iff P halts on the initial
configuration w(o1)n, where w is a string of catalytic and noncatalytic symbols
not including the symbol o1. Let the two counters of M be c1 and c2.

At any instant, the configuration of P is of the form C1C2D1D2s(o1)n1(o2)n2t,
where C1, D1 (resp., C2, D2) are catalysts associated with the simulation of M ’s
transitions operating on counter c1 (resp., c2), s represents the current state of
M , n1 and n2 keep track of the values of counters c1 and c2, respectively, and t
is a noncatalyst whose purpose will be explained later.

We are now in a position to see how the two types of M ’s transitions are simu-
lated. Without loss of generality,we assume the operations to be simulated operate
on counter c1; the cases on counter c2 are similar. LetC1C2D1D2s(o1)n1(o2)n2t2 be
the current configuration.

• Transition s : c1 + +, goto s′ (assuming that from s′, the next transition
operates on counter c1.)
P utilizes the following rules:

r1 : C1s → C1qso1; r2 : C1qs → C1q
′
s; r3 : C1q

′
s → C1s

′t2;
h′

1 : C2t2 → C2t
′
2; h′

2 : C2t
′
2 → C2t

′′
2 ; h′

3 : C2t
′′
2 → C2.

Note that symmetrically we also have rules h1 : C1t1 → C1t
′
1; h2 : C1t

′
1 →

C1t
′′
1 h3 : C1t

′′
1 → C1. If the next transition to be executed on state s′

operates on counter c2, then rule r3 becomes C1q
′
s → C1s

′t1.
Using the above rules, incrementing counter c1 is simulated through the
following sequence:

174 O.H. Ibarra and H.-C. Yen

C1C2D1D2s(o1)n1(o2)n2t2
{r1,h′

1}→ w C1C2D1D2qs(o1)n1+1(o2)n2t′2
{r2,h′

2}→ w C1C2D1D2q
′
s(o1)n1+1(o2)n2t′′2 ,

{r3,h′
3}→ w C1C2D1D2s

′(o1)n1+1(o2)n2t2,
It will be seen later that the length of the above sequence (i.e., three steps)
is exactly the same as that of simulating a test-for-zero/decrement.

• Transition s : if c1 = 0, goto s1 else c1 −−, goto s2
P has the following rules, in addition to the h′

1, h
′
2 and h′

3 defined above.
Assume that from s1 and s2, M ’s transitions operate on counter c1; the
other cases are similar.
f1 : C1s → C1qs2b; f2 : C1o1 → C1; f3 : C1qs2 → C1qs1 ;
f4 : D1qs1 → D1s1 t2; f5 : D1qs2 → D1s2 t2; f6 : D1b → D1d; f7 :
C1d → C1;
The priority relation has
f1 > f2 > f3; {h1, h2, h3} > f2; f7 > f2 > f3; f6 > {f4, f5};
{r1, r2, r3} > f2.
Care has to be taken regarding f2, which decrements counter c1. Priority
relation {r1, r2, r3} > f2 is to prevent f2 from being falsely applied when
simulating an ‘increment’. Note that f3 and f5 are conflicting rules. The
simulation involves the following sequence:

C1C2D1D2s(o1)n1(o2)n2 t2
{f1,h′

1}→ w C1C2D1D2qs2b(o1)n1(o2)n2t′2
{f2,f6,h′

2}→ w C1C2D1D2qs2d(o1)n1−1(o2)n2t′′2 ,
{f5,f7,h′

3}→ w C1C2D1D2s2(o1)n1−1(o2)n2t2, provided n1 > 0;
or

{f3,f6,h′
2}→ w C1C2D1D2qs1d(o2)n2t′′2 ,

{f4,f7,h′
3}→ w C1C2D1D2s1(o2)n2t2, provided n1 = 0;

In the second step of the above sequence, the application of f6 disables f5,
allowing f3 to be applied if counter c1 is zero. In the third step, the use of f7
disables both f2 and f3, while allowing either f4 or f5 to be applied.

Clearly, M halts iff P terminates. It is also obvious that P is deterministic. It
is easy to observe that the above argument works for deterministic purely CSs
under both the strongly prioritized and the weakly prioritized modes. 	

References

1. Păun, G.: Computing with membranes. Turku University Computer Science Re-
search Report No. 208 (1998)

2. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61 (2000) 108–143

3. Păun, G.: Membrane Computing: An Introduction. Springer-Verlag (2002)
4. Păun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer

Science 287 (2002) 73–100

On Deterministic Catalytic Systems 175

5. Păun, A., Păun, G.: The power of communication: P systems with sym-
port/antiport. New Generation Computers 20 (2002) 295–306

6. Freund, R., Păun, G.: On deterministic P systems. See P Systems Web Page at
http://psystems.disco.unimib.it (2003)

7. Sosik, P.: P systems versus register machines: two universality proofs. In: Pre-
Proceedings of Workshop on Membrane Computing (WMC-CdeA2002), Curtea de
Argeş, Romania (2002) 371–382

8. Freund, R., Kari, L., Oswald, M., Sosik, P.: Computationally universal P systems
without priorities: two catalysts are sufficient. Theoretical Computer Science 330
(2005) 251–266

9. Calude, C., Păun, G.: Computing with Cells and Atoms: After Five Years (new text
added to Russian edition of the book with the same title first published by Taylor
and Francis Publishers, London, 2001). To be published by Pushchino Publishing
House. (2004)

10. Păun, G.: Further twenty six open problems in membrane computing., Written
for the Third Brainstorming Week on Membrane Computing, Sevilla, Spain (see P
Systems Web Page at http://psystems.disco.unimib.it) (2005)

11. Ginsburg, S.: The Mathematical Theory of Context-Free Languages. New York:
McGraw-Hill (1966)

12. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math.
Soc. 3 (1952) 326–336

13. Ibarra, O., Yen, H., Dang, Z.: The power of maximal parallelism in P systems. In:
Eighth International Conference on Developments in Language Theory (DLT’04).
LNCS 3340, Springer (2004) 212–224

14. Bause, F.: On the analysis of Petri nets with static priorities. Acta Informatica
33 (1996) 669–685

Restricting the Use of Auxiliary Symbols

for Restarting Automata�

Tomasz Jurdziński1 and Friedrich Otto2

1 Institute of Computer Science, University of Wroc�law,
51-151 Wroc�law, Poland
tju@ii.uni.wroc.pl

2 Fachbereich Mathematik/Informatik, Universität Kassel,
34109 Kassel, Germany

otto@theory.informatik.uni-kassel.de

Abstract. The most general models of restarting automata make use
of auxiliary symbols in their rewrite operations. Here we put restrictions
on the way in which restarting automata use auxiliary symbols, and we
investigate the influence of these restrictions on their expressive power. In
fact, we consider two types of restrictions. First, we consider the number
of auxiliary symbols in the tape alphabet of a restarting automaton as a
measure of its descriptional complexity. Secondly, we consider the number
of occurrences of auxiliary symbols on the tape as a dynamic complexity
measure. We establish some lower and upper bounds with respect to
these complexity measures concerning the ability of restarting automata
to recognize the (deterministic) context-free languages and some of their
subclasses.

1 Introduction

The restarting automaton was introduced by Jančar et al. as a formal tool to
model the analysis by reduction, which is a technique used in linguistics to ana-
lyze sentences of natural languages [1]. It consists of a stepwise simplification of a
given sentence so that the syntactical correctness or incorrectness of the sentence
is not affected. It is applied primarily in languages that have a free word-order.
Already several programs used in Czech and German (corpus) linguistics are
based on the idea of restarting automata [2, 3].

A (two-way) restarting automaton, RLWW-automaton for short, is a device M
that consists of a finite-state control, a flexible tape containing a word delimited
by sentinels, and a read/write window of a fixed size. This window is moved
along the tape by move-right and move-left operations until the control decides
(nondeterministically) that the content of the window should be rewritten by
some shorter string. In fact, the new string may contain auxiliary symbols that
do not belong to the input alphabet. After the rewrite operation, M can continue

� This work was supported by a grant from the Deutsche Forschungsgemeinschaft. It
was performed while Tomasz Jurdziński was visiting the University of Kassel.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 176–187, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Restricting the Use of Auxiliary Symbols for Restarting Automata 177

to move its window until it either halts and accepts, or halts and rejects, or
restarts, that is, it places its window over the left end of the tape, reenters the
initial state, and continues with the computation. Thus, each computation of M
can be described through a sequence of cycles.

Also various restricted versions of the restarting automaton have been consid-
ered. A one-way restarting automaton, RRWW-automaton for short, does not use
any move-left operations. If, in addition, it is required to perform a restart step
immediately after executing a rewrite operation, then it is an RWW-automaton.

Many well-known classes of formal languages have been characterized in terms
of restricted variants of the restarting automaton. For example, the deterministic
R(R)WW-automaton characterizes the class of Church-Rosser languages [4, 5] of
McNaughton et al. [6], the monotone R(R)WW-automaton characterizes the class
CFL of context-free languages [7], and various types of deterministic monotone
R(R)WW-automata characterize the class DCFL of deterministic context-free lan-
guages [7].

Here we place some restrictions on the way in which restarting automata
make use of auxiliary symbols. This direction of research is motivated by the fact
that originally the analysis by reduction does not involve the use of auxiliary
symbols. On the other hand, the expressive power of restarting automata without
auxiliary symbols is relatively weak, as not even all context-free languages can
be recognized by them [7]. Thus, we introduce an intermediate level, at which
auxiliary symbols can be used only in a restricted way. Actually, we consider
two types of restrictions. First we consider the number of auxiliary symbols in
the tape alphabet as a measure of the descriptional complexity of the restarting
automaton, and secondly we interpret the number of occurrences of auxiliary
symbols on the tape as a dynamic complexity measure. We analyze the influence
of these restrictions on the ability of various types of restarting automata to
recognize certain well-studied classes of formal languages.

In Section 2 we give the necessary definitions in short. In Section 3 we in-
vestigate the expressive power of deterministic restarting automata that use
auxiliary symbols in a restricted way only. Then, in Section 4, we study how
many auxiliary symbols (in the alphabet or on the tape) are needed by nonde-
terministic RWW-automata to accept any context-free language, and we show
that all k-linear languages (k ≥ 2) are accepted by RLWW-automata with only
two occurrences of a single auxiliary symbol. In addition, for k = 2 we improve
upon this result by showing that a single occurrence of a single auxiliary symbol
suffices. Because of the page limit not all proofs are given in the paper. For a
complete and detailed presentation we refer to the technical report [8].

Notation. Throughout the paper ε will denote the empty word, and for i, j ∈ N,
[i, j] := { l ∈ N | i ≤ l ≤ j }.

2 Definitions

Here we describe in short the type of restarting automaton we will be dealing
with. More details can be found in [9].

178 T. Jurdziński and F. Otto

A two-way restarting automaton, RLWW-automaton for short, is a nondeter-
ministic machine that is described by an 8-tuple M = (Q,Σ, Γ, c| , $, q0, k, δ),
where Q is a finite set of states, Σ is a finite input alphabet, and Γ is a finite
tape alphabet containing Σ. The symbols c| , $ �∈ Γ serve as markers for the left
and right border of the work space, respectively, which cannot be removed from
the tape. Further, q0 ∈ Q is the initial state, k ≥ 1 is the size of the read-write
window, and δ is the transition relation that associates to a pair (q, u) consisting
of a state q and a possible content u of the read/write window a finite set of
possible transition steps. There are five types of transition steps:

1. A move-right step (MVR) causes M to shift the read/write window one po-
sition to the right and to change the state. However, the read/write window
cannot move across the right sentinel $.

2. A move-left step (MVL) causes M to shift the read/write window one position
to the left and to change the state. However, the read/write window cannot
move across the left sentinel c| .

3. A rewrite step causes M to replace the content u of the read/write window
by a shorter string v, thereby shortening the tape, and to change the state.
Further, the read/write window is placed immediately to the right of the
string v.

4. A restart step causes M to place its read/write window over the left end of
the tape, so that the first symbol it sees is the left sentinel c| , and to reenter
the initial state q0.

5. An accept step causes M to halt and accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say
that M rejects in this situation. Further, the transition relation must satisfy the
additional requirement that within each computation of M , rewrite steps and
restart steps occur alternatingly with a rewrite step coming first.

A configuration of M is a string αqβ where q is a state, and either α = ε
and β ∈ {c| } · Γ ∗ · {$} or α ∈ {c| } · Γ ∗ and β ∈ Γ ∗ · {$}; here q represents the
current state, αβ is the current content of the tape, and it is understood that the
window contains the first k symbols of β or all of β when |β| ≤ k. A restarting
configuration is of the form q0c|w$, where q0 is the initial state and w ∈ Γ ∗; if
w ∈ Σ∗, then q0c|w$ is an initial configuration. Thus, initial configurations are
a particular type of restarting configurations.

In general, the automaton M is nondeterministic, that is, there can be two
or more instructions with the same left-hand side (q, u). If that is not the case,
the automaton is deterministic.

Each computation of a two-way restarting automaton M consists of certain
phases. A phase, called a cycle, starts in a restarting configuration, the win-
dow moves along the tape performing MVR and MVL operations and a single
rewrite operation until a restart operation is performed and thus a new restart-
ing configuration is reached. If no further restart operation is performed, any
finite computation necessarily finishes in a halting configuration – such a phase
is called a tail. During a tail at most one rewrite operation may be executed.

Restricting the Use of Auxiliary Symbols for Restarting Automata 179

An input w ∈ Σ∗ is accepted by M , if there is a computation which, starting
with the initial configuration q0c|w$, finishes by executing an accept instruction.
By L(M) we denote the language consisting of all words accepted by M ; we say
that M recognizes (accepts) the language L(M).

Various subclasses of RLWW-automata have been studied. They are obtained
by combining two types of restrictions:

(a) Restrictions on the movement of the read/write window (expressed by the
first part of the class name): RL- denotes no restriction, RR- means that no
MVL operations are available, R- means that no MVL operations are available
and that each rewrite step is immediately followed by a restart.

(b) Restrictions on the rewrite-instructions (expressed by the second part of
the class name): -WW denotes no restriction, -W means that no auxiliary
symbols are available (that is, Γ = Σ), -ε means that no auxiliary symbols
are available and that each rewrite step is simply a deletion (that is, if
(q′, v) ∈ δ(q, u) is a rewrite instruction of M , then v is obtained from u by
deleting some symbols).

By det-RLWW we denote the class of deterministic RLWW-automata, and
analogously for the other types of restarting automata. Further, for each type
X of automata, we denote the class of languages that are accepted by automata
from that class by L(X).

Finally, we define some new complexity measures for restarting automata
with auxiliary symbols. For each type X of restarting automata with auxiliary
symbols, and integers i, j ∈ N, aux(j, i)-X, a-aux(j, i)-X, and g-aux(j, i)-X denote
the class of restarting automata M of type X for which the number of auxiliary
symbols in the tape alphabet does not exceed the number i and,

– for aux: the number of occurrences of auxiliary symbols in any configuration
during any computation of M starting from an initial configuration is not
larger than j;

– for a-aux: the number of occurrences of auxiliary symbols in any configuration
during any accepting computation of M starting from an initial configuration
is not larger than j;

– for g-aux: for each x ∈ L(M), there exists an accepting computation of M
such that the number of occurrences of auxiliary symbols in any configuration
during that computation is not larger than j.

In some cases we may replace the constant j by a non-constant function, which
is used to measure the number of occurrences of auxiliary symbols on the tape
as a function of the length of the input.

As our main interest concerns those classes with only a single auxiliary sym-
bol in the alphabet, we introduce the notation aux(j)-X as a shorthand for
aux(j, 1)-X.

Observe that, for each type X ∈ {RL, RR, R, det-RL, det-RR, det-R}, XW and
aux(0)-XWW denote essentially the same class of automata.

180 T. Jurdziński and F. Otto

Proposition 1. The following relationships hold for each i ∈ N and each func-
tion j : N → N :

1. L(Y-aux(j, i)-RLWW) = L(Y-aux(j, i)-RRWW) for each type Y ∈ {a-, g-}.
2. L(aux(j, i)-RLWW) ⊆ L(aux(2j, i)-RRWW).

Proof. (1) For each RLWW-automaton M , there exists an RRWW-automaton M ′

such that M and M ′ use the same tape alphabet, they recognize the same lan-
guage, and in each accepting computation M ′ executes exactly the same rewrite
steps as M does in the corresponding computation [10]. More precisely, in each
cycle of a computation M ′ guesses crossing tables for M and simultaneously ver-
ifies that its guesses are correct. In the affirmative M ′ has successfully simulated
the corresponding cycle of M ; otherwise M ′ has made a mistake, and therefore
it terminates the simulation and halts without accepting. Thus, as long as M ′

simulates the computation of M correctly, both automata will always have the
same number of occurrences of auxiliary symbols on their tapes.

(2) When M ′ makes an incorrect guess, then this can result in the introduction
of at most j additional occurrences of auxiliary symbols, as M ′ only applies
rewrite operations of M . Hence, in this case M ′ may have up to 2j occurrences
of auxiliary symbols on its tape. 	

3 Deterministic Restarting Automata

In [11] a non-context-free language Llr is presented such that Llr ∈ L(det-RW) .
On the other hand, there exist context-free languages which are not even recog-
nized by RRW-automata [7]. Thus, we have the following results.

Corollary 1.

(a) DCFL � L(aux(0)-det-RWW).
(b) The classes CFL and L(aux(0)-det-RWW) are incomparable under inclusion.

It is known that auxiliary symbols increase the expressive power of determin-
istic RWW-automata [7]. Here, we show that already a single occurrence of a
single auxiliary symbol has that effect.

Proposition 2. The language Lpow := { a2n | n ∈ N } belongs to the class
L(aux(1)-det-RWW).

Proof. A det-RWW-automaton M for the language Lpow works as follows, where
A is the only auxiliary symbol :

1. It accepts an input of the form a, aa or aaaa immediately.
2. If the tape content does not contain an occurrence of the symbol A, then a

rewrite step of the form aaaa$ → Aaa$ is applied.
3. If the tape content does contain an occurrence of A, then

– M rejects, if the tape content has a prefix of the form c| aiA for some
integer i < 4;

Restricting the Use of Auxiliary Symbols for Restarting Automata 181

– M applies a rewrite step of the form c| a4A → c|a2, if the tape content
has a prefix of the form c| a4A;

– M applies a rewrite step of the form a4A → Aa2, if the tape content has
a prefix of the form c| aiA for some integer i > 4.

It follows easily that L(M) = Lpow, and that no configuration of M that is
reachable from an initial configuration ever contains more than a single occur-
rence of the auxiliary symbol A. 	

Using the pumping lemma for restarting automata [10], it can be shown easily
that Lpow is not accepted by any RLW-automaton. Thus, we obtain the following
proper inclusions.

Corollary 2. For each type X ∈ {det-R(R)WW, det-RLWW,R(R)WW,RLWW},
L(aux(0)-X) � L(aux(1)-X).

As shown in [9] (Section 5), det-RL-automata even accept some languages
that are not growing context-sensitive. Hence, we see that the language class
L(aux(0)-det-RLWW) is not included in the class GCSL of growing context-
sensitive languages. As GCSL includes the class of Church-Rosser languages,
which coincides with the class L(det-RRWW), we obtain the following conse-
quences.

Corollary 3. For each i ∈ N+ and each function j : N → N,

L(aux(0)-det-RLWW) �⊂ L(aux(j, i)-det-RRWW) � L(aux(j, i)-det-RLWW).

Currently we do not know whether all context-free languages can be accepted
by det-RLWW-automata. However, we can at least show that this is impossible
when the number of occurrences of auxiliary symbols is restricted too much.

Proposition 3. The language Lpal2 := {wwRvvR | w, v ∈ {0, 1}∗ } is not ac-
cepted by any deterministic RLWW-automaton that uses only o(n/ log5 n) occur-
rences of auxiliary symbols.

The proof of this proposition, which is based on Kolmogorov complexity, is
quite involved. It can be found in [8]. This result yields the following lower bound
result.

Corollary 4. If CFL is contained in the language class L(aux(j, i)-det-RLWW)
for some function j and some integer i, then j(n) �∈ o(n/ log5 n).

It is currently not even known whether the deterministic RLWW-automaton is
at all less expressive than the nondeterministic RLWW-automaton. However, as
the language Lpal2 is 2-linear, and as the class of 2-linear languages is included in
aux(1)-RLWW (see Theorem 4), we have at least the following separation result.

Corollary 5. For each function j(n) ∈ o(n/ log5 n) and each integer i > 0,

L(aux(j, i)-det-RLWW) � L(aux(j, i)-RLWW).

182 T. Jurdziński and F. Otto

4 Nondeterministic Restarting Automata

Here we investigate the complexity of context-free languages with respect to
the number of auxiliary symbols used. As already R-automata can accept some
languages that are not even growing context-sensitive [12], while some context-
free languages cannot be accepted by RRW-automata [7], we have the following
basic fact.

Corollary 6. The language classes L(aux(0)-X) and CFL are incomparable un-
der set inclusion for each type X ∈ {RLWW, RRWW, RWW}.

However, each context-free language can be accepted by an RWW-automaton
that has only a single auxiliary letter.

Theorem 1. CFL is included in L(aux(n, 1)-RWW).

Proof. Let G be a context-free grammar in Chomsky normal form with the set
N of nonterminals, let m := |N |, and let L̂ be the set of all sentential forms that
can be derived in G.

For each α ∈ L̂, we consider a derivation tree for α. If α is sufficiently long,
then there exists a subtree with at least 4m (and at most 8m) leaves. The
RWW-automaton guesses a subword of α which corresponds to such a subtree
and replaces it by the encoding of the nonterminal appearing at the root of
that subtree.

In order to use this technique when there is only one auxiliary symbol in the
alphabet, we encode the i-th nonterminal of G by AaiA, where A is the only
auxiliary symbol of the RWW-automaton considered and a is a fixed terminal
symbol. As each rewrite step shortens the sentential form by at least 4m − 1
symbols, the rewrite steps remain length-reducing even when the above encoding
for nonterminals of G is being used. 	

If only the accepting computations with the smallest number of occurrences
of auxiliary symbols are taken into account, then a technique of Hemaspaandra
et al. for space efficient computations [13, 14] can be used to derive the following
result.

Theorem 2. CFL is included in L(g-aux(log n, 1)-RWW).

For the rest of the paper we restrict our attention to a particular class of
context-free languages. A language L is called k-linear [15] if there is a context-
free grammar G = (N,Σ, P, S) for L that contains a starting rule of the form
S → S1 . . . Sk such that S does not occur in any other rule of G, and Si is
the starting symbol of a linear subgrammar Gi = (Ni, Σ, Pi, Si) for each i ∈
{1, . . . , k}. Further, Ni ∩ Nj = ∅ for each i �= j, and Si does not occur on the
righthand side of any rule of Gi (1 ≤ i ≤ k). Thus, L is the concatenation
L1 · L2 · . . . · Lk of the linear languages Li := L(Gi) (1 ≤ i ≤ k). By k-LIN we
denote the class of k-linear languages.

Theorem 3.
⋃

k∈N k-LIN � L(aux(2)-RLWW).

Restricting the Use of Auxiliary Symbols for Restarting Automata 183

Proof. The computation of an RLWW-automaton M can be described trans-
parently by a finite set of meta-instructions of the form (E1, u → v, E2) and
(E,Accept), where E1, E2, and E are regular languages, which are called the reg-
ular constraints of the meta-instruction. In a restarting configuration of the form
q0c|w$, M nondeterministically chooses a meta-instruction. If (E1, u → v, E2) is
chosen, then M halts and rejects, if w does not admit a factorization of the form
w = w1uw2 such that c|w1 ∈ E1 and w2$ ∈ E2. Otherwise, one such factoriza-
tion is chosen nondeterministically and the restarting configuration q0c|w1vw2$
is reached. If (E,Accept) is chosen, then M halts and accepts, if c|w$ ∈ E,
otherwise, it halts and rejects.

Let L be a k-linear language, and let G be a k-linear grammar that gener-
ates L. First, we describe the idea of accepting L using only two occurrences of
auxiliary symbols on the tape, but without restricting the number of auxiliary
symbols in the alphabet.

For an input word x we first guess a G1-derivation S1 ⇒∗ x1 for a prefix x1
of x such that x = x1 . . . xk, xi ∈ L(Gi) for i ∈ [1, k], in a bottom-up fashion.
We start by choosing a production X → α for X ∈ N1 and α ∈ Σ∗. That is,
we perform a rewrite step α → X . Then we simulate consecutive steps of the
derivation in reverse order by applying meta-instructions

(c|Σ∗, αXβ → Y,Σ∗$)

for X,Y ∈ N1, α, β ∈ Σ∗, corresponding to productions Y → αXβ of G1.
When a tape content of the form S1y is reached, where y ∈ Σ∗, we begin

to simulate a G2-derivation for L2 = L(G2) by first executing the last step in
a derivation of x2 ∈ L2. Thereafter, the tape contains two auxiliary symbols:
S1 ∈ N1 and X ∈ N2. This means that we have already found a prefix x1 ∈ L1
and started to simulate a G2-derivation for x2 ∈ L2. So we can remove S1.
Further, we process consecutive factors analogously. In general, we can describe
this behaviour by the following meta-instructions, where u, y, v ∈ Σ∗, i ∈ [1, k]:

(c|Σ∗, u → X,Σ∗$) for (X → u) ∈ P1,
(c|Σ∗, uXy → Y,Σ∗$) for X,Y ∈ Ni, (Y → uXy) ∈ Pi,
(c|SiΣ

∗, u → X,Σ∗$) for X ∈ Ni+1, (X → u) ∈ Pi+1,
(c| , Si → ε,Σ∗XΣ∗$) for X ∈ Ni+1,
(c|Sk$,Accept).

However, this schema does not guarantee that the automaton is length-reducing,
for example, a production X → y where |y| ≤ 1 can be applied. Further, our
aim is to use only one auxiliary symbol in the alphabet.

Without loss of generality we can assume that the grammar does neither
contain any productions of the form X → Y for |Y | ≤ 1 and X �∈ {S1, . . . , Sk}
nor of the form Si → X for i ∈ [1, k] and X ∈ N . Further, we can assume that
Σ contains at least two symbols, say 0 and 1 (as context-free languages over a
one-letter alphabet are regular). In order to apply the above strategy using only
one auxiliary symbol, an occurrence of this auxiliary symbol will be followed by
a binary encoding (of a fixed length) of the actual nonterminal of G. In order to

184 T. Jurdziński and F. Otto

make the resulting rewrite operations length-reducing, ‘short’ factors xi will not
be processed separately and for the remaining ‘long’ factors, we simulate several
derivation steps by a single rewrite operation. In this way we will have sufficient
space for the encodings.

Let p := 2 · max(�log |N |�, �log k�), and let X1, . . . , X|N | be the nonterminals
of G. For each occurrence of the only auxiliary symbol A of M on the tape, the p
symbols following A will be interpreted as follows: the first p/2 symbols encode
the number i of the nonterminal Xi, and the next p/2 symbols encode j, the
index of the last factor xj processed previously. For Xi ∈ N , we use bin(Xi) to
denote the (p/2)-bit encoding of i, and for i ∈ [1, k], bin(i) denotes the (p/2)-bit
encoding of i.

Finally, let r := max{ |α| | (X → α) ∈ P }+p. The automaton M will proceed
according to the following strategy:

1. If the tape does not contain any occurrences of the auxiliary symbol, and
if the length of the tape content is not longer than k · r, then M decides
whether the input belongs to L in a tail computation.

2. If the tape does not contain any occurrences of the auxiliary symbol, but the
length of the tape content exceeds the number k·r, then M guesses a minimal
index j such that |xj | > r. Next M guesses a derivation X ⇒∗

G u such that
p + 1 < |u| ≤ r, u ∈ Σ∗, and X ∈ N , M finds an occurrence of the factor u
within the tape content, and executes the rewrite step u → Abin(X)bin(0).

3. To simulate a derivation step in a single factor, M has a meta-instruction of
the form

(c|Σ∗, uAbin(Y)bin(j)v → Abin(X)bin(j), Σ∗$)

for each production X → uY v, where X,Y ∈ Ni and i > j ≥ 0.
4. To finish the derivation of a factor xi, M has a meta-instruction of the form

(c| , yuAbin(Y)bin(j − 1)v → Abin(Si)bin(i), Σ∗$)

for each y = xjxj+1 . . . xi−1 such that xl ∈ Ll and |xl| ≤ r for l ∈ [j, i− 1],
and for each production Si → uY v.

5. To start the processing of a new factor, M guesses the next value j > i such
that |xj | > r, where i is the index of the previously processed factor. Next
M chooses a derivation X ⇒∗

G u such that p + 1 < |u| ≤ r, X ∈ Nj , finds
the factor u on the tape, and executes the meta-instruction

(c|Abin(Si)bin(i)Σ∗, u → Abin(X)bin(i), Σ∗$).

6. In order to remove an occurrence of the auxiliary symbol which is not needed
anymore from the tape (together with the encoding of the nonterminal which
follows this symbol), M uses the meta-instructions

(c| , Abin(Si)bin(i) → ε,Σ∗Abin(X)bin(i)Σ∗$)

for X ∈ Nj , j > i.

Restricting the Use of Auxiliary Symbols for Restarting Automata 185

7. Finally, for each y = xjxj+1 . . . xi−1 and y′ = xi+1 . . . xk such that xl ∈ Ll

and |xl| ≤ r for l ∈ [j, k] − {i}, i ∈ [1, k], M has the meta-instruction

(c| yAbin(Si)bin(j − 1)y′$,Accept).

The above meta-instructions define a length-reducing RLWW-automaton which
recognizes L(G) and which uses at most two occurrences of the single auxiliary
symbol A. 	

From the proof above we obtain the following consequence.

Corollary 7. LIN � L(aux(1)-RLWW).

Actually, this result can be extended as follows, improving on Theorem 3 at
least for the case k = 2.

Theorem 4. 2-LIN � L(aux(1)-RLWW).

Proof. Let G = (N,Σ, P, S) be a 2-linear grammar with starting production
S → S1S2 and linear subgrammars Gi = (Ni, Σ, Pi, Si) for i = 1, 2. We describe
a restarting automaton M for L := L(G) that never has more than a single
occurrence of an auxiliary symbol on its tape, but that uses many different
auxiliary symbols. Then we will point out how to get rid of all but one auxiliary
symbol by employing an appropriate encoding.

In the following description we will make use of a constant c ∈ N+ that we will
specify later. Given an input word of length below 2c + 2, M accepts or rejects
immediately in a tail computation. For an input x satisfying |x| ≥ 2c+2, M must
determine whether x has a factorization x = x1x2 such that x1 ∈ L(G1) and
x2 ∈ L(G2). As a first step towards this aim, M chooses nondeterministically
one of the cases (i) |x1|, |x2| > c, (ii) |x1| ≤ c (and so |x2| > c), or (iii) |x2| ≤ c
(and so |x1| > c).

In cases (ii) and (iii) M guesses a Gi-derivation of xi from Si in reverse order
for the factor xi satisfying |xi| > c using only a single occurrence of an auxiliary
symbol on the tape, verifying that the remaining factor xj , j �= i, belongs to
L(Gj) in the final step.

Finally, in case (i) M works as follows. First, it guesses a G1-derivation for
x1 in reverse order. Thereafter, M simulates a G2-derivation

S2 ⇒ s0X1r0 ⇒ s0s1X2r1r0
⇒∗ s0s1 . . . sm−1Xmrm−1 . . . r1r0
⇒ s0s1 . . . sm−1smrm−1 . . . r1r0

of x2 = s0s1 . . . sm−1smrm−1 . . . r1r0 from S2, where Xi−1 → si−1Xiri−1 is the
i-th step of this derivation for 1 ≤ i ≤ m, X0 := S2, and Xm → sm is the
last step. As M must remember the position of the nonterminal Xi within the
current content of the tape, it uses a finite number of symbols at the suffix of
the tape content to indicate where the encoding of this nonterminal is located.
Unfortunately, M cannot apply any rewrite step to the suffix as long as i ≤ j,
where j is the minimal value for which rj �= ε. Therefore, the initial part of

186 T. Jurdziński and F. Otto

length j of the G2-derivation is treated separately. Eventually, the restarting
configuration q0c|Xjsj . . . sm−1smrm−1 . . . rj$ is reached.

If sj �= ε and rj �= ε, then the simulation of the derivation step Xj → sjXj+1rj

will require more than one rewrite step of M . Therefore, we use a fixed number of
input symbols that follow directly after the auxiliary symbol and a fixed number
of input symbols that are adjacent to the right sentinel $ to encode information
about the derivation step to be simulated and to coordinate the rewrite steps.

As this requires some extra space for the encodings, M will simulate at least c
steps of the G2-derivation at once, using several cycles. The matter is complicated
by the fact that we have to distinguish between those parts of the G2-derivation
where the factors ri are empty and those parts, where these factors are non-empty.

The automaton M accepts the language L, but it is not length-reducing, and
furthermore, it uses many different auxiliary symbols. Fortunately, we can trans-
form it into a length-reducing automaton with only a single auxiliary symbol in
its alphabet by using an appropriate encoding. The size of the constant c is de-
termined as part of this encoding. The details can be found in [8]. 	

5 Conclusions and Open Problems

We have seen that two occurrences of a single auxiliary symbol suffice to accept
every k-linear language, and that for k = 2, already a single occurrence suffices.
On the other hand, we have seen that a bounded number of occurrences of auxil-
iary symbols does not suffice to accept all context-free languages by deterministic
RLWW-automata. However, many problems concerning the new measures remain
open. For example, is there an infinite hierarchy with respect to the number of
auxiliary symbols in the tape alphabet? Or is it possible to show that a single
auxiliary symbol is always sufficient by using appropriate encodings? What can
be said in general on the number of occurrences of auxiliary symbols on the
tape? Is there an infinite hierarchy with respect to the number of occurrences
of auxiliary symbols? Other interesting questions concern the context-free lan-
guages. For example, is there a constant d such that each context-free language
is accepted by a nondeterministic RLWW-automaton that uses at most d occur-
rences of auxiliary symbols? Recall that each deterministic context-free language
is accepted by a monotone det-R-automaton [7], that is, for these languages no
auxiliary symbols are required at all.

Acknowledgement. The authors thank Frantǐsek Mráz and Martin Plátek
from Charles University, Prague, for many fruitful discussions on restarting au-
tomata in general and on the topic of this paper in particular.

References

1. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: Restarting automata. In Reichel, H.,
ed.: FCT 1995, LNCS 965, Springer, Berlin (1995) 283–292

2. Oliva, K., Květoň, P., Ondruška, R.: The computational complexity of rule-based
part-of-speech tagging. In Matoušek, V., Mautner, P., eds.: TSD 2003, LNCS 2807,
Springer, Berlin (2003) 82–89

Restricting the Use of Auxiliary Symbols for Restarting Automata 187

3. Plátek, M., Lopatková, M., Oliva, K.: Restarting automata: motivations and ap-
plications. In Holzer, M., ed.: Workshop ‘Petrinetze’ and 13. Theorietag ‘For-
male Sprachen und Automaten’, Institut für Informatik, Technische Universität
München (2003) 90–96

4. Niemann, G., Otto, F.: Restarting automata, Church-Rosser languages, and repre-
sentations of r.e. languages. In Rozenberg, G., Thomas, W., eds.: Developments in
Language Theory - Foundations, Applications, and Perspectives, DLT 1999, World
Scientific, Singapore (2000) 103–114

5. Niemann, G., Otto, F.: Further results on restarting automata. In Ito, M., Imaoka,
T., eds.: Words, Languages and Combinatorics III, World Scientific, Singapore
(2003) 352–369

6. McNaughton, R., Narendran, P., Otto, F.: Church-Rosser Thue systems and formal
languages. J. Assoc. Comput. Mach. 35 (1988) 324–344

7. Jančar, P., Mráz, F., Plátek, M., Vogel, J.: On monotonic automata with a restart
operation. J. Autom. Lang. Comb. 4 (1999) 283–292

8. Jurdziński, T., Otto, F.: Restarting automata with restricted utilization of auxil-
iary symbols. Mathematische Schriften Kassel 2/05, Universität Kassel (2005)

9. Otto, F.: Restarting Automata - Notes for a Course at the 3rd International PhD
School in Formal Languages and Applications. Mathematische Schriften Kassel
6/04, Universität Kassel (2004)

10. Plátek, M.: Two-way restarting automata and j-monotonicity. In Pacholski, L.,
Ružička, P., eds.: SOFSEM 2001, LNCS 2234, Springer, Berlin (2001) 316–325

11. Plátek, M., Otto, F., Mráz, F., Jurdziński, T.: Restarting automata and variants
of j-monotonicity. Mathematische Schriften Kassel 9/03, Universität Kassel (2003)

12. Jurdziński, T., Otto, F., Mráz, F., Plátek, M.: On the complexity of 2-monotone
restarting automata. In Calude, C., Calude, E., Dinneen, M., eds.: DLT 2004,
LNCS 3340, Springer, Berlin (2004) 237–248

13. Hemaspaandra, L., Mukherji, P., Tantau, T.: Computation with absolutely no
space overhead. In Ésik, Z., Fülöp, Z., eds.: DLT 2003, LNCS 2710, Springer,
Berlin (2003) 325–336

14. Hemaspaandra, L., Mukherji, P., Tantau, T.: Overhead-free computation, dcfls,
and cfls. In: The Computing Research Repository cs. CC/0410035. (2004)

15. Salomaa, A.: Formal Languages. Academic Press (1973)

A Class of Rational n-WFSM Auto-intersections

André Kempe1, Jean-Marc Champarnaud2, Jason Eisner3, Franck Guingne1,4,
and Florent Nicart1,4

1 Xerox Research Centre Europe, Grenoble Laboratory,
6 chemin de Maupertuis, 38240 Meylan, France

Andre.Kempe@xrce.xerox.com
http://www.xrce.xerox.com

2 PSI Laboratory, Université de Rouen, CNRS, 76821 Mont-Saint-Aignan, France
Jean-Marc.Champarnaud@univ-rouen.fr

http://www.univ-rouen.fr/psi/
3 Johns Hopkins University, Computer Science Department,
3400 N. Charles St., Baltimore, MD 21218, United States

jason@cs.jhu.edu
http://www.cs.jhu.edu/∼jason/

4 LIFAR Laboratory, Université de Rouen, 76821 Mont-Saint-Aignan, France
{Franck.Guingne, Florent.Nicart}@univ-rouen.fr

http://www.univ-rouen.fr/LIFAR/

Abstract. Weighted finite-state machines with n tapes describe n-ary
rational string relations. The join n-ary relation is very important in
applications. It is shown how to compute it via a more simple opera-
tion, the auto-intersection. Join and auto-intersection generally do not
preserve rationality. We define a class of triples 〈A, i, j〉 such that the
auto-intersection of the machine A on tapes i and j can be computed
by a delay-based algorithm. We point out how to extend this class and
hope that it is sufficient for many practical applications.

1 Introduction

Multi-tape finite-state machines (FSMs) [1, 5] are a natural generalization of the
familiar finite-state acceptors (one tape) and transducers (two tapes). Multi-tape
machines have been used in the morphology of Semitic languages, to synchronize
the vowels, consonants, and templatic pattern into a surface form [3, 6].

The n-ary relation defined by a (weighted) n-tape FSM is a (weighted) rational
relation. Finite relations are defined by acyclic FSMs, and are well-studied since
they can be viewed as relational databases whose fields are strings [7]. E.g., a
two-column database can be represented by an acyclic finite-state transducer.

Unfortunately, one pays a price for generalizing to multi-column databases
with infinitely many rows, as defined by cyclic FSMs. Cyclic FSMs are closed
under the rational operations, but not under all relational operations, as finite
databases are. For example, transducers are not closed under intersection [1].

In this paper we consider a practically useful generalization of transducer
intersection, multi-tape join, which is analogous to natural join of databases.
More precisely, we study an equivalent but simpler problem, auto-intersection.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 188–198, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Class of Rational n-WFSM Auto-intersections 189

The emptiness or rationality of the result is generally undecidable [7]. Therefore
we define a simple class Θ of triples 〈A, i, j〉 such that the auto-intersection of
the machine A w.r.t. tapes i and j is rational. Our auto-intersection algorithm
for this class is based on the notion of delay [8, 9]. We focus on the case of an
auto-intersection w.r.t. two tapes, which is sufficient to explain the basic ideas
and problems, and we briefly discuss the general case. We conclude by pointing
out possible extensions of the class Θ.

Weighted n-ary relations and their machines are introduced in Section 2. Join
and auto-intersection operations are presented in Section 3. A class of compilable
auto-intersections and the associated algorithm are defined in Section 4.

2 Definitions

We recall some definitions about n-ary weighted relations and their machines,
following the usual definitions for multi-tape automata [2, 10], with semiring
weights added just as for acceptors and transducers [11, 12]. See [7] for details.

Weighted n-Ary Relations: A weighted n-ary relation is a function from
(Σ∗)n to K, for a given finite alphabet Σ and a given weight semiring K =
〈K,⊕,⊗, 0̄, 1̄〉. A relation assigns a weight to any n-tuple of strings. A weight of
0̄ can be interpreted as meaning that the tuple is not in the relation.1 We are
especially interested in rational (or regular) n-ary relations, i.e. relations that
can be encoded by n-tape weighted finite-state machines, which we now define.

We adopt the convention that variable names referring to n-tuples of strings
include a superscript (n). Thus we write s(n) rather than

→
s for a tuple of strings

〈s1, . . . sn〉. We also use this convention for the names of objects that contain
n-tuples of strings, such as n-tape machines and their transitions and paths.

Multi-tape Weighted Finite-State Machines: An n-tape weighted finite-
state machine (WFSM or n-WFSM) A(n) is defined by a six-tuple A(n) =
〈Σ, Q,K, E(n), λ, �〉, with Σ being a finite alphabet, Q a finite set of states,
K= 〈K,⊕,⊗, 0̄, 1̄〉 the semiring of weights, E(n)⊆ (Q × (Σ∗)n × K × Q) a finite
set of weighted n-tape transitions, λ : Q → K a function that assigns initial
weights to states, and � : Q → K a function that assigns final weights to states.
We say that q ∈ Q is an initial state if λ(q) �= 0̄, and a final state if �(q) �= 0̄.

Any transition e(n) ∈ E(n) has the form e(n) = 〈p, �(n), w,n〉. We refer to
these four components as the transition’s source state p(e(n)) ∈ Q, its label
�(e(n))∈(Σ∗)n, its weight w(e(n))∈K, and its target state n(e(n))∈Q. We refer
by E(q) to the set of out-going transitions of a state q∈Q (with E(q)⊆E(n)).

A path γ(n) of length k ≥ 0 is a sequence of transitions e
(n)
1 e

(n)
2 · · · e(n)

k where
n(e(n)

i)=p(e(n)
i+1) for all i∈ [[1, k−1]]. The path’s label �(γ(n)) is the element-wise

concatenation of the labels of its transitions. The path’s weight w(γ(n)) is

1 It is convenient to define the support of an arbitrary weighted relation R(n), as being
the set of tuples to which the relation gives non-0̄ weight.

190 A. Kempe et al.

w(γ(n)) def= λ(p(e(n)
1)) ⊗

⎛⎝ ⊗
j∈[[1,k]]

w
(
e
(n)
j

)⎞⎠⊗ �(n(e(n)
k)) (1)

The path is said to be successful, and to accept its label, if w(γ(n)) �= 0̄.
We denote by ΓA(n) the set of all successful paths of A(n), and by ΓA(n)(s(n))
the set of successful paths (if any) that accept the n-tuple of strings s(n). Now,
the machine A(n) defines a weighted n-ary relation R(A(n)) : (Σ∗)n → K that
assigns to each n-tuple, s(n), the total weight of all paths accepting it:

RA(n)(s(n)) def=
⊕

γ(n)∈Γ
A(n) (s(n))

w(γ(n)) (2)

3 Operations

We now describe some central operations on n-ary weighted relations and their
n-WFSMs [13]. The auto-intersection operation is introduced, with the aim of
simplifying the computation of the join operation. Our notation is inspired by
relational databases. For mathematical details of simple operations see [7].

Simple Operations: The set of n-ary weighted rational relations can be con-
structed as the closure of the elementary n-ary weighted relations (those whose
support consists of at most one tuple) under the basic rational operations of
union, concatenation and Kleene closure. These rational operations can be im-
plemented by simple constructions on the corresponding nondeterministic n-tape
WFSMs [14]. These n-tape constructions and their semiring-weighted versions
are exactly the same as for acceptors and transducers, since they are indifferent
to the n-tuple transition labels.

The projection operator π〈j1,...jm〉, with j1, . . . jm ∈ [[1,n]], maps an n-ary re-
lation to an m-ary one by retaining in each tuple components specified by the
indices j1, . . . jm and placing them in the specified order. Indices may occur in
any order, possibly with repeats. Thus the tapes can be permuted or duplicated:
π〈2,1〉 inverts a 2-ary relation. The complementary projection operator π{j1,...jm}
removes the tapes j1, . . . jm and preserves the order of other tapes.

Join Operation: Our join operator differs from database join in that database
columns are named, whereas our tapes are numbered. Since tapes must explicitly
be selected by number, join is neither associative nor commutative.

For any distinct i1, . . . ir ∈ [[1,n]] and any distinct j1, . . . jr ∈ [[1, m]], we define
a join operator �{i1=j1,...ir=jr}. It combines an n-ary and an m-ary relation into
an (n + m − r)-ary relation defined as follows:2

2 For example the tuples 〈abc, def, ε〉 and 〈def, ghi, ε, jkl〉 combine in the join
�{2=1,3=3} and yield the tuple 〈abc, def, ε, ghi, jkl〉, with a weight equal to the prod-
uct of their weights.

A Class of Rational n-WFSM Auto-intersections 191

(
R(n)

1 �{i1=j1,...ir=jr} R(m)
2

)
(〈u1, . . .un, s1, . . . sm−r〉) def= R(n)

1 (u(n)) ⊗R(m)
2 (v(m)) (3)

v(m) being the unique tuple s. t. π{j1,...jr}(v
(m)) = s(m−r) and (∀k ∈ [[1, r]]) vjk

= uik
.

The intersection of two n-ary relations is the n-ary relation defined by the join
operator �{1=1,2=2,...n=n}. Examples of single-tape join (where r = 1) are the
join �{1=1} (the intersection of two acceptors) and the join �{2=1} that can be
used to express transducer composition. The cross product ×, as in R(n)

1 ×R(m)
2 ,

can be expressed as �∅, the join of no tapes (r = 0). Our main concern in this
paper is multi-tape join (r > 1).

Some practical applications require the multi-tape join operation, for example:
probabilistic normalization of n-WFSMs conditioned on r tapes,3 or searching
for cognates [16]. Unfortunately, rational relations are not closed under arbitrary
joins [7]. The join operation is so useful that it is helpful to have a partial
algorithm: hence our motivation for studying auto-intersection.

Auto-intersection: For any distinct i1, j1, . . . ir, jr ∈ [[1,n]], we define an auto-
intersection operator σ{i1=j1,i2=j2,...ir=jr}. It maps a relation R(n) to a subset
of that relation, preserving tuples s(n) whose elements are equal in pairs as
specified, but removing other tuples from the support of the relation.4 The formal
definition is:

(
σ{i1=j1,...ir=jr}(R(n))

)
(〈s1, . . . sn〉)def=

{
R(n)(〈s1, . . . sn〉) if (∀k∈ [[1, r]])sik

=sjk

0̄ otherwise
(4)

It is easy to check that auto-intersecting a relation is different from joining
the relation with its own projections. Actually, join and auto-intersection are
related by the following equalities:

R(n)
1 �{i1=j1,...ir=jr} R(m)

2 = π{n+j1,...n+jr}
(

σ{i1=n+j1,...ir=n+jr}(R(n)
1 ×R(m)

2)
)

(5)

σ{i1=j1,...ir=jr}(R(n)) = R(n) �{i1=1,j1=2,...ir=2r−1,jr=2r}

⎛⎜⎝(π〈1,1〉(Σ∗)×· · ·×π〈1,1〉(Σ∗)︸ ︷︷ ︸
r times

⎞⎟⎠ (6)

Thus, for any class of difficult join instances whose results are non-rational
or have undecidable properties [7], there is a corresponding class of difficult
auto-intersection instances, and vice-versa. Conversely, a partial solution to one
problem would yield a partial solution to the other.

The case r = 1 is single-pair auto-intersection. An auto-intersection on mul-
tiple pairs of tapes (r > 1) can be defined in terms of multiple single-pair auto-
intersections:

σ{i1=j1,...ir=jr}(R(n)) def= σ{ir=jr}(· · ·σ{i1=j1}(R(n)) · · ·) (7)
3 This is a straightforward generalization of J. Eisner’s construction for probabilistic

normalization of transducers (n = 2) conditioned on one tape (r = 1) [15].
4 The requirement that the 2r indices be distinct mirrors the similar requirement on

join and is needed for (6) to hold. But it can be evaded by duplicating tapes: the
illegal operation σ{1=2,2=3}(R) can be computed as π{3}(σ{1=2,3=4}(π〈1,2,2,3〉(R))).

192 A. Kempe et al.

Nonetheless, it may be wise to compute σ{i1=j1,...ir=jr} all at once rather than
one tape pair at a time. The reason is that even when σ{i1=j1,...ir=jr} is rational,
a finite-state strategy for computing it via (7) could fail by encountering non-
rational intermediate results. For example, consider applying σ{2=3,4=5} to the
rational 5-ary relation {〈aibj, ci, cj , x, y〉 | i, j ∈ N}. The final result is rational
(the empty relation), but the intermediate result after applying just σ{2=3} would
be the non-rational relation {〈aibi, ci, ci, x, y〉 | i ∈ N}.

4 Single-Pair Auto-intersection

As indicated by (5), a join can be computed via an auto-intersection, which
can be decomposed as a sequence of single-pair auto-intersections as in (7). We
therefore focus on the single-pair case, which is sufficient to explain the basic
ideas and problems. As a consequence of Post’s Correspondence Problem, there
exists no fully general algorithm for auto-intersection [7]. We show that it is
however possible to compile the auto-intersection σ{i=j}(A) for a limited class
of triples 〈A, i, j〉 whose definition is based on the notion of delay.

By delay we mean the difference of length of two strings of an n-tuple:5

δ〈i,j〉(s(n)) = |si|−|sj| (with i, j ∈ [[1,n]]). The delay of a path γ is determined
from its respective labels on tapes i and j: δ〈i,j〉(γ) = |�i(γ)|−|�j(γ)|.

For any R(n)
1 , its autointersection R(n) = σ{i=j}(R(n)

1) assigns a weight 0̄ to
each string tuple s(n) such that si �= sj . For simplicity, our auto-intersection
construction will ensure this by never creating any successful paths γ for which
�i(γ) �= �j(γ). One consequence is that all successful paths of our constructed
A(n) = σ{i=j}(A

(n)
1), where A

(n)
1 expresses R(n)

1 , will have a delay equal to 0:
∀γ ∈ ΓA(n) , �i(γ) = �j(γ) ⇒ |�i(γ)| = |�j(γ)| ⇒ δ〈i,j〉(γ) = 0.

To be more specific, let Γ 0 ⊆ Γ
A

(n)
1

be the set of successful paths of A
(n)
1 with

a delay of 0. Then our construction will “copy” an appropriate subset of Γ 0

into the constructed A(n). Note that ∀γ = γ1γ2 · · · γr ∈ Γ 0,
∑r

h=1 δ〈i,j〉(γh) =
δ〈i,j〉(γ) = 0.

4.1 Bounded Delay Auto-intersection

We now focus temporarily on n-WFSMs such as A
(n)
1 in Figure 1, whose cycles

all have a positive delay with respect to the tapes i, j of the single-pair auto-
intersection.

Such an n-WFSM might contain paths with arbitrarily large delay. How-
ever, if we consider only its paths γ ∈ Γ 0, it turns out that they must have
bounded delay. That is, that there is a bound δmax

〈i,j〉(A
(n)
1) for the WFSM such

that |δ〈i,j〉(γ1)| ≤ δmax
〈i,j〉(A

(n)
1) for any prefix γ1 of any γ ∈ Γ 0.

In this section, we outline how to compute the bound δmax
〈i,j〉(A

(n)
1). Then, while

the algorithm of the next section (4.2) is copying paths from A
(n)
1 , it can avoid

5 We use the notion of delay similarly as in the synchronization of transducers [8, 9].

A Class of Rational n-WFSM Auto-intersections 193

1c 2c 3c

a2 a3 a4a1

Fig. 1. An example n-WFSM A
(n)

1
, having four acyclic factors ah and three cycles ch

with positive delay

4

0

δ

γ

a

a1

1c 1c 1c
a2

2c
2c

a3

3c 3c 3c

Fig. 2. Hypothetical monitoring of the delay of successively longer prefixes γ1 of one
path γ through A

(n)

1
whose total delay δ〈i,j〉(γ) = 0. Global extrema are marked. By

assumption, each of the cycles c1, c2, c3 has positive delay.

extending any prefix whose delay’s absolute value exceeds δmax
〈i,j〉(A

(n)
1). (Such a

prefix is useless because it will not extend into a path in Γ 0, let alone a path
with �i(γ) = �j(γ).)

If we plotted the delay for successively longer prefixes γ1 of a given path
γ ∈ Γ 0, as γ1 ranges from ε to γ, we would obtain a curve that begins and ends
with delay δ〈i,j〉(γ1)=0, as shown in Figure 2. How can we bound the maximum
δ̂〈i,j〉(γ1) and minimum δ̌〈i,j〉(γ1) along this curve?

A lower bound is given by δ̌LR
〈i,j〉(A

(n)
1) ≤ 0, defined as the minimum delay of

any acyclic path that begins at an initial state of A
(n)
1 . Why? Since γ ∈ Γ 0 is a

successful path, any prefix γ1 of γ can be regarded as an acyclic path of this sort
with zero or more cycles inserted. But these cycles can only increase the total
delay (by the assumption that their delay is positive), so δ〈i,j〉(γ1) ≥ δ̌LR

〈i,j〉(A
(n)
1).

An upper bound is given by δ̂RL
〈i,j〉(A

(n)
1) ≥ 0, defined as the negation of the

minimum delay of any acyclic path that ends at a final state of A
(n)
1 . By sym-

metry, that minimum delay is a lower bound on the delay of any suffix γ2 of γ.
But if we factor γ = γ1γ2, we have δ〈i,j〉(γ1) + δ〈i,j〉(γ2) = δ〈i,j〉(γ) = 0, since
γ ∈ Γ 0. It follows that δ̂RL

〈i,j〉(A
(n)
1) is an upper bound on the delay of γ1.

The minimum δ̌LR
〈i,j〉(A

(n)
1) is finite because there are only finitely many acyclic

paths from initial states to consider. δ̂RL
〈i,j〉(A

(n)
1) is similar. Exhaustively consid-

ering all these acyclic paths by backtracking, as illustrated in Figure 3, takes

194 A. Kempe et al.

(a)

0
LR

δLR

γa1

1c
a2

2c

a3

3c

a4

(b)

0

δRL

RLγ

a4

3ca3

2c

a2
1ca1

Fig. 3. Monitoring the delay on all acyclic paths of A
(n)

1
, exploring (a) forward from ini-

tial states and (b) backward from final states. In (b), the sign of the delay is negated.
Global extrema are marked. Gaps denote points where the search algorithm back-
tracked to avoid completing a cycle. Dashed arrows lead from a choice point to alter-
native paths that are explored after backtracking.

exponential time in the worst case.6 However, that is presumably unavoidable
since the decision problem associated with finding δ̌LR

〈i,j〉(A
(n)
1) is NP-complete

(by a trivial reduction from Hamiltonian Path).
Visually, all acyclic prefix paths are represented in Figure 3a, so a given acyclic

prefix path must fall entirely above the minimum of Figure 3a. A possibly cyclic
prefix path as in Figure 2 can only be higher still, since all cycles have positive
delay. A visual argument can also be made from Figure 3b.

These prefix-delay bounds, δ〈i,j〉(γ1) ∈ [[δ̌LR
〈i,j〉(A

(n)
1), δ̂RL

〈i,j〉(A
(n)
1)]], in fact ap-

ply whenever γ1 is a prefix of a γ ∈ Γ 0 that traverses no cycle of negative
delay. If on the other hand γ traverses no cycle of positive delay, we have
similarly δ〈i,j〉(γ1) ∈ [[δ̌RL

〈i,j〉(A
(n)
1), δ̂LR

〈i,j〉(A
(n)
1)]], where these bounds are found

by considering maximum rather than minimum delays. In either case, we see
that

|δ〈i,j〉(γ1)| ≤ δmax
〈i,j〉(A

(n)
1) (8)

def= max
(
|δ̂LR

〈i,j〉(A
(n)
1)| , |δ̂RL

〈i,j〉(A
(n)
1)| , |δ̌LR

〈i,j〉(A
(n)
1)| , |δ̌RL

〈i,j〉(A
(n)
1)|

)
(9)

Definition of the Class: Let Θ be the class of all the triples 〈A(n)
1 , i, j〉 such

that A
(n)
1 does not contain a path traversing both a cycle with positive delay

and a cycle with negative delay (with respect to tapes i and j). The Algorithm
AutoIntersectSinglePair (see Section 4.2) computes the auto-intersection
A(n) = σ{i=j}(A

(n)
1) for any triple in Θ, thanks to the property that it has a

delay not exceeding the limit δmax
〈i,j〉(A

(n)
1) defined in (9).

6 In practice, one would first trim A
(n)

1
to remove edges and states that do not appear

on any successful path. This may reduce the problem size, without affecting the
defined relation or its auto-intersection.

A Class of Rational n-WFSM Auto-intersections 195

(a)
2

/w3ba:ab

a:ε /w1

a:a

1

0

/ρ1

/w2ε:ε

ε:a /w4

/w0

(b)

εa:
2

ba:ab 3/w

7

ν=0
aξ=(,ε)

a:a 0/w

ε:ε 2/w

1

/w

ν=2
ξ=(ε,ε)

4/w:aε

ν=0
aaξ=(,ε)

1

/ρ
ξ=(ε,)

ν=1
ξ=(ε,ε)

ν=0
ξ=(ε,ε)

ba:ab 3/w

6

a:a 0/w

ε:ε 2/w

0

3

a

1

5ν=1
aξ=(,ε)

4

1/wεa:

ν=2
(ba,ab)ξ=

4/w:aε

ν=2

Fig. 4. (a) An n-WFSM A
(2)

1
and (b) its auto-intersection A(2) =σ{1=2}(A

(2)

1
) (dashed

parts are not constructed)

4.2 Algorithm for Bounded Delay Auto-intersection

We take first the example of the n-WFSM A
(2)
1 of Figure 4a. The triple 〈A(2)

1 , 1, 2〉
is obviously in the class Θ. The delay of the auto-intersection A(2) = σ{1=2}(A

(2)
1)

is bounded by δmax
〈1,2〉(A

(2)
1) = 1. The support ((a:a ∪ a:ε)∗ (ba:ab)∗ ε:a) of A

(2)
1

is equal to { 〈ai+j(ba)h, ai(ab)ha〉 | i, j, h ∈ N }.
To construct the auto-intersection,7 we copy states and transitions one by one

from A
(2)
1 (Figure 4a) to A(2) (Figure 4b), starting with the initial states. We

assign to each state q of A(2) two variables: ν[q] = q1 is the associated state of
A

(2)
1 , and ξ[q]=(s, u) gives the “leftover strings” of the path read while reaching

q: s has been read on tape i but not yet on tape j, and vice-versa for u. (Thus
the delay accumulated so far is |s| − |u|. In practice either s or u will be ε.)

In our example, we start at the initial state q1 = 0, with ν[0] = 0 and
ξ[0] = (ε, ε). Then, we copy the three outgoing transitions of q1 = 0, with their
original labels and weights, as well as creating their respective target states with
appropriate ν and ξ. If a target state has already been created with this ν and
ξ, we reuse it. If not, we create it and proceed to copy its outgoing transitions.

The target state of a transition e has an ξ[n(e)] that is obtained from the
ξ[p(e)] of its source state, concatenated with the relevant components of its label

7 Our construction bears resemblance to known transducer synchronization proce-
dures. The algorithm of Frougny and Sakarovitch [8] and Mohri’s algorithm [9] can,
however, not cope with n-FSMs having unbounded delay, such as the one in Fig-
ure 4a. Furthermore, they generate synchronized n-FSMs, which is not necessarily
what one is aiming for. The algorithm [8] is based on a K-covering of the transducer.
Our algorithm is based on a general reachability-driven construction, as [9], but the
labeling of the transitions is quite different since our algorithm performs a copy of
the original labeling, and we also construct only such paths whose delay does not
exceed some limit that we are able to determine.

196 A. Kempe et al.

AutoIntersectSinglePair(A(n)
1 , i, j, δmax

〈i,j〉) → A(n) :
1 A(n) ← 〈Σ← Σ1, Q← �©, K← K1, E(n)← �©, λ, ρ〉
2 Stack ← �©

3 for ∀q1 ∈ {Q1 : λ(q1) �= 0̄} do
4 getPushState(q1, (ε, ε))
5 while Stack �= � © do
6 q ← pop(Stack)
7 q1 ← ν[q]
8 (s, u) ← ξ[q]
9 for ∀e1 ∈ E(q1) do
10 (s′, u′) ← createLeftoverStrings(s · π〈i〉(
(e1)), u · π〈j〉(
(e1)))
11 if (s′=ε ∨ u′=ε) ∧ (|(|s′| − |u′|)| ≤ δmax

〈i,j〉(A
(n)
1))

12 then q′ ← getPushState(n(e1), (s′, u′))
13 E ← E ∪ { 〈q,
(e1), w(e1), q′〉 }
14 return A(n)

createLeftoverStrings(ṡ, u̇) → (s′, u′) :
15 x ← longestCommonPrefix(ṡ, u̇)
16 return (x−1 · ṡ, x−1 · u̇)

getPushState(q1, (s′, u′)) → q′ :
17 if ∃q ∈ Q : ν[q] = q1 ∧ ξ[q] = (s′, u′)
18 then q′ ← q

19 else q′ ← createNewState()
20 ν[q′] ← q1
21 ξ[q′] ← (s′, u′)
22 if s′ = ε ∧ u′ = ε

23 then λ(q′) ← λ(q1)
24 ρ(q′) ← ρ(q1)
25 else λ(q′) ← 0̄
26 ρ(q′) ← 0̄
27 Q ← Q ∪ {q′}
28 push(Stack, q′)
29 return q′

Fig. 5. The main algorithm AutoIntersectSinglePair. It relies on a prior compu-
tation of δmax

〈i,j〉(A
(n)

1
).

�(e). The longest common prefix of s and u in ξ[n(e)] = (s, u) is then removed.
For example, for the cyclic transition e on q =5 (a copy of that on q1 = 1), the
leftover strings of the target are ξ[n(e)] = 〈ab, ab〉−1(〈a, ε〉〈ba, ab〉) = 〈a, ε〉. Also,
ν[n(e)] = 1. This implies that n(e)=p(e) because they have the same ξ and ν.

In Figure 4b, new state q = 2 and its incoming transition are not created
because here the delay of 2 (determined from ξ[q]) has an absolute value that
exceeds δmax

〈1,2〉(A
(2)
1) = 1, which means that any path to new state q=2 cannot be

A Class of Rational n-WFSM Auto-intersections 197

in A(2). State q =4 and its incoming transitions are not created either, because
both leftover strings in ξ[4] are non-empty, which means that any path traversing
q=4 has different strings on tape 1 and 2 and can therefore not be in A(2). State
q = 6 is non-final, although q1 = 2 = ν[6] is final, because ξ[6] is not (ε, ε),
which means that any path ending in q = 6 has different strings on tape 1 and
2. As expected, the support ((a:a)∗ a:ε (a:a)∗ (ba:ab)∗ ε:a) of the constructed
auto-intersection A(2) is equal to { 〈ai+j+1(ba)h, ai+j+1(ba)h〉 | i, j, h ∈ N }.

Algorithm: The formal algorithm AutoIntersectSinglePair in Figure 5
finds the auto-intersection, provided only that δmax

〈i,j〉(A
(n)
1) is indeed an upper

bound on the absolute value of the delay of any prefix γ1 of any successful path
γ in A

(n)
1 such that �i(γ) = �j(γ).

We have seen how to find such a bound when 〈A(n)
1 , i, j〉 is in the class Θ.

Such a bound may also exist in other cases. Even when such a bound is not
known or does not exist, one could impose one arbitrarily, in order to obtain an
approximate auto-intersection.

The loop at line 5 must terminate, since a finite state set Q will be constructed
for A(n) and each state is pushed only once. Q is finite because distinct states
q ∈ Q must have distinct values for ν[q] and/or ξ[q]. The number of values of
ν[q]=q1 is limited by |Q1| (the number of states of A1), and the number of values
of ξ[q] = (s, u) both by |Σ1| and δmax

〈i,j〉 because either s or u is empty and the

other string is not longer than δmax
〈i,j〉. As a result, |Q| < 2 |Q1| |Σ1|δ

max
〈i,j〉+1−1

|Σ1|−1 .

5 Conclusion

We conclude with two enhancements of the auto-intersection construction. Both
attempt to remove cycles of A that prevent 〈A, i, j〉 from falling in Θ.

First, one can eliminate paths γ such that �i(γ) not only differs from �j(γ), but
differs from �j(γ′) for all γ′ such that A(γ′) �= 0̄, or vice-versa. Given 〈A(n), i, j〉,
define A

(1)
i to be the projection π〈i〉(A(n)).8 Define A

(1)
j similarly, and put A′(n) =

(A(n) �{i=1} A
(1)
j) �{j=1} A

(1)
i .9 Now σ{i=j}(A) can be found as σ{i=j}(A′),

which helps if 〈A′, i, j〉 falls in Θ.
The second point is related to the generalization (7) for auto-intersection on

multiple pairs of tapes. Given a problem σ{i1=j1,...ir=jr}(A), we nondeterministi-
cally select a pair (ih, jh) (if any) such that 〈A, ih, jh〉 ∈ Θ, and use our method
to compute A′ = σ{ih=jh}(A). We now attempt to continue in the same way by

8 More precisely, A
(1)

i should define a “neutrally weighted” version of the projected
language, in which non-0̄ string weights have been changed to 1̄. To obtain this,
replace all 0̄ and non-0̄ weights in the weighted acceptor π〈i〉(A

(n)) with false and
true respectively to get an ordinary unweighted acceptor over the Boolean semiring;
determinize this by standard methods; and then replace all false and true weights
with 0̄ and 1̄ respectively.

9 These single-tape joins are guaranteed to succeed (for commutative semirings): they
can be computed similarly to transducer composition.

198 A. Kempe et al.

auto-intersecting A′ on the remaining r− 1 tapes. Note that A′ may have fewer
cycles than A, so we may have 〈A′, ih′ , jh′〉 ∈ Θ even if 〈A, ih′ , jh′〉 �∈ Θ.

Acknowledgments

We wish to thank Mark-Jan Nederhof for pointing out the relationship be-
tween auto-intersection and Post’s Correspondence Problem (personal commu-
nication), and the anonymous reviewers of our paper for their advice.

References

1. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal
of Research and Development 3 (1959) 114–125

2. Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite automata. IBM
Journal of Research and Development 9 (1965) 47–68

3. Kay, M.: Nonconcatenative finite-state morphology. In: Proc. 3rd Int. Conf. EACL,
Copenhagen, Denmark (1987) 2–10

4. Harju, T., Karhumäki, J.: The equivalence problem of multitape finite automata.
Theoretical Computer Science 78 (1991) 347–355

5. Kaplan, R.M., Kay, M.: Regular models of phonological rule systems. Computa-
tional Linguistics 20 (1994) 331–378

6. Kiraz, G.A.: Multitiered nonlinear morphology using multitape finite automata: a
case study on Syriac and Arabic. Computational Lingistics 26 (2000) 77–105

7. Kempe, A., Champarnaud, J.M., Eisner, J.: A note on join and auto-intersection
of n-ary rational relations. In Watson, B., Cleophas, L., eds.: Proc. Eindhoven
FASTAR Days. Number 04–40 in TU/e CS TR, Eindhoven, Netherlands (2004)
64–78

8. Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite
words. Theoretical Computer Science 108 (1993) 45–82

9. Mohri, M.: Edit-distance of weighted automata. In: Proc. 7th Int. Conf. CIAA
(2002). Volume 2608 of Lecture Notes in Computer Science., Tours, France,
Springer Verlag, Berlin, Germany (2003) 1–23

10. Eilenberg, S.: Automata, Languages, and Machines. Volume A. Academic Press,
San Diego (1974)

11. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Number 5 in EATCS
Monographs on Theoretical Computer Science. Springer Verlag, Berlin, Germany
(1986)

12. Mohri, M., Pereira, F.C.N., Riley, M.: A rational design for a weighted finite-state
transducer library. Lecture Notes in Computer Science 1436 (1998) 144–158

13. Kempe, A., Guingne, F., Nicart, F.: Algorithms for weighted multi-tape automata.
Research report 2004/031, Xerox Research Centre Europe, Meylan, France (2004)

14. Rosenberg, A.L.: On n-tape finite state acceptors. In: IEEE Symposium on Foun-
dations of Computer Science (FOCS). (1964) 76–81

15. Eisner, J.: Parameter estimation for probabilistic finite-state transducers. In: Proc.
of the 40th Annual Meeting of the Association for Computational Linguistics,
Philadelphia (2002)

16. Kempe, A.: NLP applications based on weighted multi-tape automata. In: Proc.
11th Conf. TALN, Fes, Morocco (2004) 253–258

Experiments with Deterministic ω-Automata

for Formulas of Linear Temporal Logic

Joachim Klein and Christel Baier

Universität Bonn, Institut für Informatik I, Römerstrasse 164, 53117 Bonn, Germany
jklein@ltl2dstar.de, baier@cs.uni-bonn.de

Abstract. This paper addresses the problem of generating determin-
istic ω-automata for formulas of linear temporal logic, which can be
solved by applying well-known algorithms to construct a nondetermin-
istic Büchi automaton for the given formula on which we then apply a
determinization algorithm. We study here in detail Safra’s determiniza-
tion algorithm, present several heuristics that attempt to decrease the
size of the resulting automata and report on experimental results.

1 Introduction

Automata on infinite words, in particular ω-automata and the related ω-regular
languages, play a crucial role in logic, for verification purposes and in other
areas, see e.g. [1, 2]. In the context of model checking, to check if a system satis-
fies a given specification, both the system and specification can be regarded as
ω-automata, allowing to perform operations like union and intersection or check-
ing for language emptiness with graph algorithms on the automata. As it is often
easier for the users of a model checker to specify the properties that they want
to verify using a formula in a suitable logic, e.g. linear time logic (LTL), an algo-
rithm for translating formulas to corresponding ω-automata is needed. For LTL
formulas, traditionally a conversion to nondeterministic Büchi automata (NBA)
is used. Despite a worst case exponential blowup in the size of the formula, in
practice the formulas tend to be small and due to good optimizing tools the
resulting NBA are of a manageable size for many interesting formulas. For stan-
dard model checking, the nondeterminism of the Büchi automaton does not pose
a problem. However, for some applications, such as the verification of Markov
decision processes [3, 4, 5], the quantitative analysis relies on the representation
of the formula by deterministic ω-automata. As deterministic Büchi automata
are not as expressive as NBA, it is necessary to use deterministic automata with
more complex acceptance types, such as Rabin and Streett automata. Safra [6, 7]
proposed an algorithm for the determinization of NBA. In the worst case, Safra’s
construction yields an exponential blowup, which was shown to be optimal up to
a constant factor in the exponent [8, 9]. The transformation from LTL formulas
to deterministic Rabin automata (DRA) via NBA and Safra’s algorithm leads to
a worst case double exponential blowup, which roughly meets the lower bound
established by Kupferman and Vardi [10].

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 199–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

200 J. Klein and C. Baier

The purpose of this paper is to study the question whether using Safra’s con-
struction to generate deterministic ω-automata for LTL formulas is feasible in
practice. We present a series of heuristic optimization methods. Some of them
can be understood as refinements of Safra’s algorithm, while others operate on
the resulting automata or on the formula level. Although an exponential blowup
is unavoidable in the worst-case, our empirical studies using our tool ltl2dstar
show that for many LTL formulas (benchmark formulas from [11, 12, 13] and ran-
domly chosen formulas), the resulting deterministic ω-automata have reasonable
size, in many cases of the same magnitude as NBA.

Organization of the Paper. Section 2 recalls the definitions of the relevant
automata types. Section 3 summarizes the main steps of Safra’s determinization
algorithm and presents several heuristics to improve the Safra algorithm. In Sec-
tion 4, we present techniques to reduce the automaton size that are independent
of the chosen determinization algorithm. Section 5 explains the main features of
our tool ltl2dstar and reports on experimental studies with a series of benchmark
examples. Section 6 concludes the paper.

2 ω-Automata

Throughout the paper, we assume some familiarity with formal languages, finite
automata and ω-automata. We briefly recall the basic concepts and explain our
notations concerning ω-automata with Büchi, Rabin and Streett acceptance. For
further details see e.g. [1, 2]. At a few places, we will also need LTL formulas.
Due to the length restrictions we skip an explanation of LTL and refer to [14, 15].

A nondeterministic ω-automaton over a nonempty, finite alphabet Σ is a tu-
ple A = (Q, Σ, δ, q0,Acc) where Q is a finite state space, δ : Q × Σ → 2Q the
transition function and q0 ∈ Q the initial state. The last component Acc denotes
the acceptance condition of A. For Büchi automata, Acc is a set of accepting
states, Acc = F for some F ⊆ Q. For Rabin or Streett automata, Acc is a set
{(L1, U1), . . . , (Lr, Ur)} of pairs1 (Ln, Un) consisting of sets Ln, Un ⊆ Q. A is
called deterministic if |δ(q, a)| = 1 for all q ∈ Q and a ∈ Σ. We write NBA, NRA,
NSA, DBA, DRA and DSA to denote the nondeterministic or deterministic ver-
sion of Büchi, Rabin or Streett automata, respectively. |A| denotes the number
of states in A (i.e., |A| = |Q|). The extended transition relation δ : Q×Σ∗ → 2Q

is defined by δ(q, ε) = {q} and δ(q, ax) =
⋃

p∈δ(q,a) δ(p, x) for a ∈ Σ and x ∈ Σ∗.
Given an infinite word ρ = a1a2 . . . over Σ, a run for ρ in A denotes any finite

or infinite state-sequence π = q0, q1, . . . where q0 ∈ Q0 and qi ∈ δ(qi−1, ai), i =
1, 2, . . . and such that π is either infinite or π = q0, . . . , qj where δ(qj , aj+1) = ∅.
We write inf(π) to denote the set of states that occur infinitely often in π. An
infinite run π is called accepting with respect to the Büchi acceptance condition
F if F is visited infinitely often in π, i.e., if inf(π) ∩ F �= ∅. For the Rabin ac-
ceptance condition {(L1, U1), . . . , (Lr, Ur)}, π is called accepting if there exists

1 Another common notation uses pairs (En,Fn) in reversed order, i.e. En = Un and
Fn = Ln.

Experiments with Deterministic ω-Automata for Formulas of LTL 201

an index n ∈ {1, . . . , r} such that inf(π) ∩ Un = ∅ and inf(π) ∩ Ln �= ∅. For the
Streett acceptance condition {(L1, U1), . . . , (Lr, Ur)}, π is called accepting if, for
all indices n ∈ {1, . . . , r}, inf(π) ∩ Ln = ∅ or inf(π) ∩ Un �= ∅. Any finite run
is non-accepting. The accepted language L(A) of an NBA (DBA, NRA, DRA,
NSA, DSA) A is the set of all infinite words σ ∈ Σω that have an accepting run
in A. As Streett acceptance is dual to Rabin acceptance, a DRA A regarded as a
DSA recognizes exactly the complement language of A. It is well known that the
classes of languages accepted by an NBA, NRA, DRA, NSA and DSA agree ex-
actly with the class of ω-regular languages, while DBA are strictly less expressive.

3 Heuristics to Improve Safra’s Construction

We will first recall the main steps of Safra’s algorithm to convert an NBA A into
an equivalent DRA A′ and then present several techniques that can decrease the
size of the resulting DRA, and thus can also lead to a speedup of the construction.
In the sequel, let A = (Q, Σ, δ, q0, F) be the NBA to be determinized.

Safra’s Algorithm. Safra’s idea [6, 7] was to use multiple powerset construc-
tions in parallel to track the runs originating in accepting states in addition
to the classical powerset construction, which allows to detect which runs are
finite and need to be rejected. These different powersets are organized in a tree-
structure called Safra trees, which become the states in the DRA. A Safra tree
consist of nodes that have a name, which allows us to refer to them and keep
track of their existence over multiple trees, and a label, a set of states from the
original NBA associated with this node. In addition, each node has a boolean
flag. The transition function of the DRA will transform a Safra tree to its suc-
cessor by separately applying the powerset construction to the labels of every
node of the tree. The initial tree (i.e., initial state in the DRA) will have only
a root node with {q0} as its powerset, therefore the label of the root node in
all trees will correspond to the standard powerset construction. As we want to
keep track of runs originating from accepting states, we create a new child for
every node that contains an accepting state in its label. The label of the newly
branched child consists of all the accepting states from the parent’s label. If at
a future point this node has an empty label (the runs it tracked were finite),
we can remove the node and record in the acceptance condition that these runs
should be rejected. As there is no limit on the branching of new nodes, the trees
can grow infinitely large. To get finite trees, both height and width of the trees
have to be bounded. The width can be limited by the observation that it is not
necessary that a state appears in the labels of multiple siblings. To have a well
defined rule which sibling is chosen to keep such a state, Safra proposes ordering
the siblings by ”age”, with the state only kept in the oldest sibling. After this
simplification, the labels of sibling nodes are disjoint. To bound the height, we
notice that the union of the labels of the children of a node in a Safra tree is
always a subset of the label of the parent node, as they track a subset of runs
that the parent tracks. When a parent and one of its child have exactly the same
labels, they both redundantly track the same runs and we can remove the child

202 J. Klein and C. Baier

node. We set a flag in the parent node to note this event, as it guarantees that
all runs tracked by the parent have visited at least one accepting state since the
last time the node was flagged. This will be used by the acceptance condition
to detect accepting cycles. The same reduction is used when the states of the
parent’s label are distributed over multiple children. After this step, the parent’s
label is a proper superset of the union of the child labels, limiting the height. In
fact, any proper Safra tree has at most |Q| nodes (up to |2Q| temporarily during
construction).

Formally, a Safra tree is an ordered tree T with node-set N ⊆ {0, 1, . . . , 2|Q|−
1} augmented with a marking function marked : N → {true, false}, and a
labeling function label : N → 2Q \ {∅} such that the label of a parent node is a
proper superset of the union of the labels of the children and the labels of sibling
nodes are disjoint. A DRA A′ = (Q′, Σ, δ′, q′0,Acc), equivalent to the original
NBA A, is obtained as follows. Q′ is the set of all Safra trees. The initial state
q′0 is the unique Safra tree with only one node, named 0, labeled with {q0} and
unmarked. The transition function δ′ transforms a Safra tree T into its successor
δ′(T , a) by the following procedure:2

1. Unmark. Set marked(n) = false for all nodes n in T .
2. Branch accepting. For every node n in T with label (n) ∩ F �= ∅, create a

new, unmarked node as the youngest child of n labeled with label(n)∩F . The
new node is named with an unused name from {0, 1, . . . , 2|Q| − 1}.

3. Powerset. For every node n, replace label(n) with
⋃

q∈label(n) δ(q, a).
4. Normalize siblings. For every two sibling nodes such that they share a state

q ∈ Q in their labels, remove q from the label of the youngest node and all
its children.

5. Remove empty. Remove all nodes with empty labels.
6. Mark. For every node whose label equals the union of the labels of its chil-

dren, remove all descendants of this node and mark it.

The acceptance condition is Acc = {(Ln, Un) : 0 ≤ n < 2|Q|} where Ln is the set
of all Safra trees with node n marked and Un the set of all Safra trees without
node n. This construction ensures that L(A) = L(A′) and |A′| = 2O(|Q|·log |Q|).
To decrease the size of the resulting DRA, we present four methods that can be
integrated in the algorithm.

I. True-Loops on Accepting States. An NBA state q is said to have a true-
self-loop if q ∈ δ(q, a) for all symbols a ∈ Σ. Let AccTrueLoop be the set of
accepting states of the NBA A with a true-self-loop. That is, AccTrueLoop =
{q ∈ F : q ∈ δ(q, a) for all a ∈ Σ}. Clearly, any run that eventually enters
AccTrueLoop can be modified to an accepting run. Thus, we may abort Safra’s
construction any time the label of the root node of a Safra tree T contains a
state q ∈ AccTrueLoop. In this case, we put δ′(T , a) = T for all a ∈ Σ and make
T accepting in the sense that we insert the acceptance pair ({T }, ∅).
2 Clearly, in practice it suffices to just generate the Safra trees as states of the DRA

that are actually reachable from the initial Safra tree q′
0 and the acceptance condition

can be easily simplified by removing never accepting or redundant pairs.

Experiments with Deterministic ω-Automata for Formulas of LTL 203

This simple heuristic is very useful, as without it, Safra’s construction tends
to generate many different Safra trees unnecessarily tracking alternative runs,
even though an accepting run (an NBA state in AccTrueLoop) has already been
found.

II. All Successors Are Accepting. If all NBA states q in the label of a node
n (of a Safra tree) have only successors that are accepting in NBA A then a
single powerset construction is sufficient as we only have to track if all runs from
q are finite; the infinite runs from q are all accepting as no non-accepting state
in the NBA can be reached. Safra’s construction handles this special case well
by default. If label(n) ⊆ F then node n will be marked and has no children (a
child with label(n) is branched in step 2 and deleted in step 6, marking n). If
all successors of label(n) are also in F then node n will stay marked and have
no children in subsequent trees or it will be deleted when the runs it tracks are
finite. A possibility for optimization remains, as it takes an additional step in
the beginning for Safra’s construction to fall into the pattern described above.
Let q be a state in A and succ∗(q) =

⋃
x∈Σ∗ δ(q, x) the set of all states reachable

from q. We define succAcc = {q ∈ F : succ∗(q) ⊆ F}. If after the construction
of a new tree with Safra’s algorithm, the label of a node n of the Safra tree has
only states that are members of succAcc and is not marked, it can be marked
(and the tree will thus be placed into Ln of the acceptance condition). This can
be done in an additional step:

7. Additional marking. For any unmarked node n with label (n) ⊆ succAcc
remove all children of n and mark n.

Calculating succAcc can be done in linear time in the size of A:

1. Calculate the strongly connected components (SCCs) of A.
2. In backward topological ordering, visit the SCCs and check:

(i) If all states in the current SCC are accepting and all SCCs that are
successors of the current SCC are marked, then mark the current SCC.

(ii) If the current SCC contains only a single non-accepting state q that has
no edge leading back to itself and all SCCs reachable from q are marked,
then mark the current SCC {q}.

Then, succAcc consists of all states in marked SCCs. Step 2(ii) treats non-
accepting NBA states q ∈ Q\F with δ(q, a) ⊆ succAcc as if they were accepting.

III. Naming the Nodes in Safra Trees. New nodes in Safra trees are only
created in step 2 (Branch accepting) of Safra’s construction. As we can choose
any unused name, we have significant freedom in choosing the name for the
new node. As the set of Safra trees that are created during Safra’s construction
becomes the set of states in the DRA, we are interested in having the smallest
number of different Safra trees. One way to keep the number of different Safra
trees low is to try to name new nodes in a way that the resulting tree matches
an already existing tree, thus adding no additional state to the DRA. To do this,
we mark the new nodes and then search for a matching tree among the already

204 J. Klein and C. Baier

existing trees. If no matching tree is found, the new nodes are named as normal
and a new state in the DRA is created for the tree. This can be implemented by
calculating the Safra trees the normal way, naming new nodes temporary with
a special symbol, e.g. ’*’. We simultaneously have to keep track of the names of
nodes deleted during steps 4, 5 and 6 of Safra’s construction, as they are still in
use in step 2 where the new nodes are named and can therefore not be reused. It
is clear that nodes that are created and then directly deleted again do not have
to be tracked, as we can pretend to have named them with a convenient name
that is unused.

Let T∗ be a Safra tree after the steps of Safra’s construction, with new nodes
marked with ’*’ and deleted ⊆ {0, 1, . . . , 2|Q|−1} the set of names of the deleted
nodes. Possible candidates for a match must have the same structure as T∗.
Formally, we define structural equality as an equivalence on Safra trees with
T1 ≡struct T2 iff T1 and T2 agree up to the names of the nodes. That is, there is a
isomorphism f : T1 → T2, which means a bijection from the node set of T1 to the
node set of T2 that preserves the labels, markings and topological structure. An
already constructed Safra tree T and a newly constructed tree T∗ match if the
following three conditions are met: (i) T ≡struct T∗, (ii) for all nodes n named ’*’
in T∗, the corresponding node f(n) in T is not named with a name from deleted
and (iii) for all nodes n not named ’*’ in T∗, the corresponding node f(n) in T
has the same name as the node in T∗. One way to keep track of the trees that
are possible candidates for matching is to partition the already existing trees by
structural equality. This can be implemented, for example, by a hash map that
allows for efficient access to all trees that are structural equal to T∗.

IV. Reordering. Safra’s construction assumes a strict ordering of the sibling
nodes in Safra trees, used in step 4 to reestablish the requirement on Safra trees
that siblings have disjoint labels. The strict ordering is not necessary in all cases
and can sometimes be relaxed. In our tool ltl2dstar we used a technique that
attempts to collapse Safra trees that differ only in the ordering of ”independent”
nodes. We skip further explanations here as this approach could only yield a
minor reduction in our experiments.

4 Other Techniques

The following techniques attempt to decrease the size of a deterministic ω-
automaton (DRA or DSA) for a given LTL-formula ϕ. These methods are inde-
pendent from the chosen algorithm to generate a deterministic automaton from
ϕ as they operate on a given DRA/DSA or on the formula level.

Rabin or Streett Automata. Some applications need a translation from LTL
formulas to deterministic ω-automata, but do not particularly care if the automa-
ton is a Rabin or a Streett automaton. It is well known that for some languages
Streett automata can be exponentially more compact than Rabin automata, and
vice versa, so this flexibility can have huge benefits. The switch from an DSA
to an equivalent DRA (or vice versa) is computationally hard. If we start with

Experiments with Deterministic ω-Automata for Formulas of LTL 205

an LTL formula ϕ then we may exploit the duality of Rabin and Streett ac-
ceptance and construct a DRA for ¬ϕ, yielding a DSA for ϕ. Already for small
formulas this simple trick can be very useful as illustrated in the following table.
The first two columns contain the number of states using the standard Safra’s
construction, the last two columns the number of states when the optimization
techniques suggested here were used.

DRA DSA DRA DSA
Formula (opt.) (opt.)

(�♦a) → (�♦b) 61 7 12 7
((�♦a)→ (�♦b)) ∧ ((�♦c) → (�♦d)) 67051 298 18526 49

In the sequel, we concentrate on techniques that attempt to decrease the size
of a DRA for a given LTL formula ϕ. By duality, analogue techniques are also
applicable to DSA.

Bisimulation Quotient. One of the standard algorithms for minimization of
deterministic finite automata is to calculate the quotient automaton that arises
by identifying all states accepting the same language. We now adapt this idea
to DRA by taking into account the acceptance signature of the runs. Let A =
(Q, Σ, δ, q0,Acc) be an DRA where Acc = {(Ln, Un) : n = 1, . . . , r}. Let acc(q)
denote the acceptance signature of state q, that is, the pair (IL, IU) where IL =
{n : q ∈ Ln} and IU = {n : q ∈ Un}. Bisimulation equivalence ≡ on Q is defined
by q ≡ p iff acc(δ(q, z)) = acc(δ(p, z)) for all z ∈ Σ∗. Clearly, q ≡ p implies that
the set of infinite words that have an accepting run starting in q agrees with the
set of infinite words that have an accepting run starting in p. In the classification
of [16], the above equivalence on the states of a DRA can be viewed as a notion
of direct bisimulation for Rabin automata. In fact, an alternative, but equivalent
coinductive definition of ≡ could be given in the typical bisimulation-style.

Let [q] = {p ∈ Q : p ≡ q} be the bisimulation equivalence class of state
q. For S ⊆ Q, let S/≡ = {[q] : q ∈ S}. The quotient automaton A/≡ =
(Q′, Σ, δ′, q′0, Ω

′), also a DRA, has the state space Q = Q/≡, initial state q′0 = [q0]
and the acceptance condition Acc′ = {(L1/≡, U1/≡), . . . , (Lr/≡, Ur/≡)}. The
transition relation is given by δ′([q], a) = [δ(q, a)]. It is easy to see that δ is
well-defined and that the accepted languages of A and A/≡ coincide (see [17]).
To calculate the quotient automaton, we may apply the standard partitioning-
splitter technique [18].

Union of DRA. If the starting point of the construction of a DRA is an LTL
formula, rather than an NBA, then for formulas ϕ = ϕ1 ∨ ϕ2 whose outermost
operator is disjunction, we may avoid the construction of an NBA for ϕ by first
constructing two DRA A1 and A2 for the subformulas ϕ1 and ϕ2 and finally
composing these two DRA into a DRA via a union-operator (implemented as a
simple product construction on the two DRAs). The generated union DRA might
be smaller than a DRA generated for the whole formula, as the subformulas are

206 J. Klein and C. Baier

shorter and probably simpler, which can lead to smaller NBA and DRA for the
subformulas.

(Co-)Safety Formulas and Deterministic Automata. Safety properties
are languages L ⊆ Σω that can be characterized via their bad prefixes. That is,
L is a safety property iff any word z ∈ Σω \ L has a finite prefix x such that
none of the words xz′ belongs to L. Co-safety properties are the duals of safety
properties. Any safety and co-safety ω-regular languages can be represented by
a DBA. For a certain type of LTL formulas that represent safety and co-safety
languages, a corresponding DBA can be generated directly, i.e., without using
Safra’s construction [19, 20]. As any DBA can be viewed as DRA or DSA, these
algorithms (which are implemented in the scheck-tool [20]) yield an alternative
to our construction for certain (co-)safety formulas.

5 Experimental Results

Safra’s construction and the optimizations described in the previous sections
were implemented in the tool ltl2dstar (LTL to deterministic Streett and Rabin
automata) which is available via http://www.ltl2dstar.de/. Another imple-
mentation of Safra’s algorithm [21] represented Safra trees with BDDs and used
a partly implicit calculation of successors. In our tool, we use explicit data struc-
tures for the Safra trees and calculate each successor tree separately, using hash
maps to efficiently find similar trees and match them to their respective state in
the deterministic automaton.

The basic building blocks available for the construction of DRA/DSA are:

– Safra: the generation of a DRA for an LTL formula ϕ by creating an NBA
with an external LTL-to-NBA translator and then applying Safra’s con-
struction on the NBA. Additionally, the procedure can be started with the
negated formula ¬ϕ to obtain a DSA for ϕ. If both a DRA and a DSA are
generated then the smaller one is returned.

– scheck: If the formula is syntactically (co-)safe then an DBA (which can be
viewed as a DRA or DSA) is constructed with the external tool scheck [20].

– union: If the formula has the form ϕ1 ∨ ϕ2 then we may construct DRA for
ϕ1 and ϕ2 and return the union of the two automata.3

These blocks can be combined such that the smallest of the generated automata
(DRA or DSA obtained with Safra and scheck or union, if applicable) is returned.
As long as we do not use optimizations which operate on the automaton after
it is fully generated, we can abort an alternative construction as soon as the
size of the generated automaton is superior to the already existing automaton.
If, however, we use the bisimulation quotienting technique, we cannot abort
directly, as the quotient might ultimately be smaller than the smallest automaton
obtained so far. For efficiency reasons, we suggest an heuristic approach with a
3 The dual opportunity to apply an intersection-operator for DSA if ϕ = ϕ1 ∧ ϕ2 is

covered by considering ¬ϕ ≡ ¬ϕ1 ∨ ¬ϕ2.

Experiments with Deterministic ω-Automata for Formulas of LTL 207

maxgrowth factor α. If the smallest automaton computed so far has N states
then the size limit of alternative computations is αN which allows the possibility
of a subsequent reduction of the current automaton via quotienting to 1

α of its
original size. Limiting the construction of the automata like this is obviously
sensitive to the order in which the different constructions are carried out. As
a heuristic for a good ordering, we used the sizes of the NBA for the relevant
formulas (the original formula ϕ and its negation) and start the construction
with the smallest NBA.

In the context of his diploma thesis, the first author performed a series of
experiments to investigate the gain of the proposed heuristics. Here, we sum-
marize the main results and refer to [17] for further details. Our experiments
were performed with the 39 benchmark formulas of [11, 12], 55 formulas4 based
on patterns from [13] and sets of 100 and 1000 random LTL formulas generated
with the test bench lbtt [22]. The chosen LTL-to-NBA translator5 was ltl2ba [27].
All experiments were conducted on a Pentium-M 1.5 GHz with 512 MB RAM,
running Linux.

Table 1 compares our suggested heuristics (including generating either a DRA
or DSA, depending on which one is smaller) to the standard Safra construction
(generating only DRA). Σ(|A|) denotes the total number of states of the gen-
erated automata, while Σ(t) is the total running time. Despite the additional
computations required for the generation of multiple automata and the bisim-
ulation technique (with maxgrowth factor α = 10), the overall running time of
our approach is roughly the same (or faster) as for simply using the unoptimized
Safra’s algorithm.

Table 1. Overall effect of the proposed heuristics as implemented in ltl2dstar

[11, 12] Patterns 100 random 1000 random

Σ(|A|) Σ(t) Σ(|A|) Σ(t) Σ(|A|) Σ(t) Σ(|A|) Σ(t)

Standard Safra (DRA) 1320 1.02 s 341121 358.98 s 1625 0.66 s 43375 12.58 s

ltl2dstar (DRA/DSA) 268 1.04 s 6399 73.83 s 474 1.49 s 4480 14.91 s

Size reduction -79.7 % -98.1 % -70.8 % -89.7 %

We will now consider the performance of the proposed heuristics separately.

Experiments with the On-the-Fly Techniques. Table 2 illustrates the prac-
tical performance of the effect of the heuristics explained in Section 3 for Safra’s
construction. The first row shows the total sizes of the generated DRA where all
on-the-fly optimizations were used. The second row shows the absolute differ-
ence to the standard Safra’s construction without the on-the-fly techniques. To

4 http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
5 For a comparison with other LTL-to-NBA translators, such as Modella [23], SPIN

[24, 25] and LTL→NBA [26] in the context of subsequent determinization, we refer
to [17].

208 J. Klein and C. Baier

Table 2. Results for the on-the-fly heuristics

[11, 12] Patterns 100 random 1000 random

Σ(|A|) with all opt. 926 246455 642 6743

No optimization +394 +94666 +983 +36632

No ’Trueloop detection’ +195 +1467 +651 +26254

No ’All successors accepting’ +113 +95 +38 +400

No ’Node renaming’ +40 +92687 +8 +90

No ’Reordering’ +16 +0 +8 +31

Σ(t) (no opt.) 0.48 s 358.50 s 0.70 s 12.89 s

Σ(t) (all opt.) 0.39 s 270.14 s 0.56 s 5.57 s

assess the individual impact of each heuristic I-IV, a run was carried out with
just this heuristic disabled. (In all cases, the methods that are not on-the-fly,
like quotienting and the union construction, were disabled.)

The effectiveness of all the on-the-fly heuristics combined was highest for the
random formulas, where they resulted in a reduction by around 60% for the 100
and 84% for the 1000 random formulas. This is mostly due to the ”true-loop
detection”, followed by ”all successors accepting”. For the formulas from [11]
and [12], the overall reduction is lower (around 30%) and ”all successors accept-
ing” plays a bigger role than for the random formulas. The pattern formulas,
while also having an overall reduction of around 30%, exhibit a completely dif-
ferent behavior. Here, the ”node renaming” is almost exclusively responsible for
the overall reduction. It seems that ”node renaming” works better for bigger
automata, which can be explained by the fact that a single tree that can be
matched early in the construction can result in a huge reduction of states, as an
incompatible naming generated by our default ”first free name”-strategy would
result in the duplication (also with different names) of many of the successor
states. The bigger the automaton gets, the more states would be duplicated, so
”node renaming” has a bigger effect. In all cases, the reordering heuristic does
not have a big effect. Another interesting point is the computation time (shown
in the last two rows). With all on-the-fly optimizations enabled, the running time
was shorter (around 20-50%) than with the on-the-fly heuristics disabled. Thus,
the benefit of handling fewer states far outweighs the additional effort needed to
carry out the optimizations.

Experiments with the Heuristics Suggested in Section 4. We already
mentioned that the difference between DRA- and DSA-sizes can be enormous
which motivates the flexibility in using Rabin or Streett automata. In fact, it
turned out that the minimum sizes of the deterministic automaton obtained by
constructing both an DRA and an DSA are often rather close to NBA. Table 3
shows a comparison between the automata sizes of DRA, DSA and NBA for the
pattern formulas.

Experiments with Deterministic ω-Automata for Formulas of LTL 209

T
ab

le
3.

A
u
to

m
a
ta

si
ze

s
fo

r
th

e
p
a
tt

er
n

fo
rm

u
la

s
(n

u
m

b
er

o
f

st
a
te

s,
fo

r
D

R
A

a
n
d

D
S
A

a
d
d
it
io

n
a
ll
y

th
e

n
u
m

b
er

o
f

a
cc

ep
ta

n
ce

p
a
ir
s,

N
B

A
g
en

er
a
te

d
w

it
h

ltl
2b

a)

G
lo

b
a
l

B
ef

o
re

R
A

ft
er

Q
B

et
w

ee
n

Q
a
n
d

R
A

ft
er

Q
u
n
ti
l
R

N
B

A
D

R
A

D
SA

N
B

A
D

R
A

D
SA

N
B

A
D

R
A

D
SA

N
B

A
D

R
A

D
SA

N
B

A
D

R
A

D
SA

A
b
sc

en
ce

1
2/

1
2/

1
4

4/
1

4/
1

2
3/

1
3/

1
4

7
/
2

4/
1

3
6
/
2

3/
1

U
n
iv

er
sa

li
ty

1
2/

1
2/

1
4

4/
1

4/
1

2
3/

1
3/

1
4

7
/
2

4/
1

3
6
/
2

3/
1

E
x
is
te

n
ce

2
2/

1
3
/
1

3
5
/
2

3/
1

5
3/

1
4
/
1

3
6
/
2

3/
1

2
5
/
1

4/
2

B
o
u
n
d
ed

E
x
is
te

n
ce

(2
)

6
1
1
/
2

6/
1

8
8/

1
8/

1
9

1
1
/
3

7/
1

1
6

6
2
/
3

8/
1

1
2

5
2
/
3

7/
1

P
re

ce
d
en

ce
3

5
/
2

3/
1

4
4/

1
4/

1
6

5/
2

8
/
1

4
9
/
2

4/
1

3
6
/
2

3/
1

R
es

p
o
n
se

2
4
/
1

3/
1

5
8/

1
8/

1
3

6
/
1

4/
1

6
2
2
/
3

4/
1

6
3
2
/
3

5/
2

P
re

ce
d
en

ce
C

h
a
in

(1
-2

)
5

4/
1

4/
1

6
7
/
2

5/
1

7
6
/
3

5/
1

8
2
9
/
2

5/
1

1
2

32
/2

3
8
9
/
4

P
re

ce
d
en

ce
C

h
a
in

(2
-1

)
5

4/
1

4/
1

5
5/

1
5/

1
7

7
/
2

5/
1

1
0

1
1
1
/
4

5/
1

1
0

7
9
/
4

4/
1

R
es

p
o
n
se

C
h
a
in

(2
-1

)
1
1

4
5
/
3

6/
1

2
0

1
6
/
2

7/
1

1
2

8
2
/
4

7/
1

3
5

3
5
6
3
/
7

9/
1

3
0

5
6
0
5
0
/
1
1

15
7/

4

R
es

p
o
n
se

C
h
a
in

(1
-2

)
5

2
0
/
2

14
/3

1
0

5/
1

5/
1

4
2
4
/
2

5/
2

1
5

18
/1

1
9
/
3

2
4

1
1
3
9
5
/
8

19
76

/1
1

C
o
n
st

r.
R

es
p
o
n
se

(1
-2

)
5

2
1
/
2

15
/3

1
0

5/
1

5/
1

4
2
5
/
2

5/
2

1
5

18
/1

1
9
/
3

2
4

3
1
7
4
2
/
8

39
52

/1
1

210 J. Klein and C. Baier

Table 4. Results for the bisimulation quotient technique

[11, 12] Patterns 100 random 1000 random

Σ(|A|) Σ(t) Σ(|A|) Σ(t) Σ(|A|) Σ(t) Σ(|A|) Σ(t)

No opt., no bisim. 1320 0.5 s 341121 362.5 s 1625 0.7 s 43375 12.9 s

No opt., with bisim. -636 0.5 s -217780 373.1 s -631 0.7 s -29990 12.9 s

No bisimulation 860 0.4 s 246435 272.8 s 638 0.7 s 6701 7.1 s

With bisimulation -474 0.4 s -142792 281.1 s -132 0.7 s -1383 7.2 s

To evaluate the performance of the bisimulation technique, we compare the
difference in the size of the original DRA and their bisimulation quotients (See
Table 4). It turns out that our simple equivalence provides a surprisingly big
reduction in the size of the automata at a very moderate cost (less than 3%
increase in running time). For the pattern formulas, the effect is highest, with
reductions by around 60%. For the formulas from [11] and [12] the reductions are
around 50%. For these two formula sets, building the quotient automaton works
roughly as well when the other heuristics are enabled, leading to a combined
reduction of around 70%! For the random formulas, the quotient-technique de-
creases the already reduced automata by an additional 20%, which improves the
(already high) reduction from the on-the-fly optimizations for the 1000 formulas
to an impressive 90%.

For the 20%-30% of the non-random benchmark formulas that have the re-
quired form, the union construction yields a reduction of ca. 10%-25%. For the
30%-60% of the formulas that are syntactically (co-)safe and thus valid input
for scheck, a reduction of around 20%, for the pattern formulas of around 50%,
is achieved. For a small number of formulas, the automata generated directly
using Safra’s construction are slightly smaller than those generated using one of
the special constructions.

6 Conclusion

We have considered Safra’s construction in the context of translating LTL formu-
las to deterministic Rabin or Streett automata and suggested several heuristics to
decrease the automaton-size. With various tests, we evaluated the performance
of its implementation in the tool ltl2dstar and the effect of our heuristics. In sum-
mary, for many formulas, Safra’s construction (with the presented heuristics) is
usable in practice and results in deterministic ω-automata with acceptable sizes
The proposed heuristics turned out to have a big impact in practice (overall re-
ductions of 70% and more) and contribute a great deal to the practical feasibility
of using Safra’s construction for LTL formulas. Perhaps surprisingly, the simple
quotient technique (via a variant of direct bisimulation) performed extremely
well in practice on the DRA and DSA: we observed an overall reduction of more
than 50% with a negligible increase of running time.

We concentrated on Safra’s construction; for a comparison with an alternative
construction by Muller/Schupp [28] see [29] in this volume. A comparison with

Experiments with Deterministic ω-Automata for Formulas of LTL 211

the construction by Emerson and Sistla [30] would be interesting as well. The
observation that the bisimulation technique leads to significant reductions in-
dicates that Safra’s construction produces many bisimulation equivalent states.
It might be possible to avoid the creation of these redundant states in the first
place. Although our rather strong notion of (direct) bisimulation for DRA (or
DSA) turned out to be very useful, weaker notions of bisimulation equivalence
might yield a better reduction. In fact, for Büchi automata, several other, more
advanced notions like fair or delayed (bi)simulation have been proposed (e.g.
[16]). If similar approaches can work for deterministic Rabin or Streett automata
remains to be seen. Further improvements might be possible by using the tech-
niques of [31] and [32] for the subset of DRA that are Büchi-type.

References

1. Thomas, W.: Languages, automata, and logic. Handbook of formal languages 3
(1997) 389–455

2. Grädel, E., Thomas, W., Wilke, T., eds.: Automata Logics, and Infinite Games: A
Guide to Current Research. Volume 2500 of LNCS. Springer (2002)

3. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University, Department of Computer Science (1997)

4. Baier, C., Kwiatkowska, M.: Model checking for a probabilistic branching time
logic with fairness. Distributed Computing 11 (1998) 125–155

5. Vardi, M.: Probabilistic linear-time model checking: An overview of the automata-
theoretic approach. In: Proc. Formal Methods for Real-Time and Probabilistic
Systems (ARTS). Volume 1601. (1999) 265–276

6. Safra, S.: On the complexity of ω-automata. In: Proc. 29th Annual Symposium on
Foundations of Computer Science (FOCS), IEEE Computer Society Press (1988)
319–327

7. Safra, S.: Complexity of Automata on Infinite Objects. PhD thesis, The Weizmann
Institue of Science, Rehovot, Israel (1989)

8. Michel, M.: Complementation is more difficult with automata on infinite words.
Technical report, CNET Paris (1988)

9. Löding, C.: Optimal bounds for the transformation of omega-automata. In:
FSTTCS’99. Volume 1738 of Lecture Notes in Computer Science., Springer (1999)
97–109

10. Kupferman, O., Vardi, M.Y.: Freedom, weakness, and determinism: From linear-
time to branching-time. In: Proc. 13th IEEE Symposium on Logic in Computer
Science. (1998) 81–92

11. Etessami, K., Holzmann, G.J.: Optimizing Büchi automata. In: CONCUR. Volume
1877 of Lecture Notes in Computer Science., Springer (2000) 153–167

12. Somenzi, F., Bloem, R.: Efficient Büchi automata from LTL formulae. In: Com-
puter Aided Verification (CAV’2000), Proc. Volume 1855 of Lecture Notes in Com-
puter Science., Springer (2000) 248–263

13. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: ICSE. (1999) 411–420

14. Emerson, E.A.: Temporal and modal logic. In van Leeuwen, J., ed.: Handbook of
Theoretical Computer Science, Volume B: Formal Models and Semantics. Elsevier
Science Publishers (1990) 995–1072

212 J. Klein and C. Baier

15. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (2000)
16. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games,

and state space reduction for Büchi automata. In: ICALP’2001. Volume 2076 of
Lecture Notes in Computer Science., Springer (2001) 694–707

17. Klein, J.: Linear time logic and deterministic omega-automata. Diploma thesis,
Universität Bonn, Institut für Informatik (2005)

18. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM Journal on
Computing 16 (1987) 973–989

19. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. In: Computer
Aided Verification (CAV’99), Proceedings. Volume 1633 of Lecture Notes in Com-
puter Science., Springer (1999)

20. Latvala, T.: On model checking safety properties. Research Report A76, Helsinki
University of Technology, Laboratory for Theoretical Computer Science, Espoo,
Finland (2002)

21. Tasiran, S., Hojati, R., Brayton, R.K.: Language containment of non-deterministic
ω-automata. In: CHARME’95. Volume 987 of Lecture Notes in Computer Science.,
Springer (1995) 261–277

22. Tauriainen, H.: Automated testing of Büchi automata translators for linear tem-
poral logic. Research report, Helsinki University of Technology, Laboratory for
Theoretical Computer Science (2000)

23. Sebastiani, R., Tonetta, S.: ”More Deterministic” vs. ”Smaller” Büchi Automata
for Efficient LTL Model Checking. In: CHARME 2003, Proc. Volume 2860 of
Lecture Notes in Computer Science., Springer (2003) 126–140

24. Holzmann, G.J.: The Model Checker Spin. IEEE Trans. on Software Engineering
23 (1997) 279–295 Special issue on Formal Methods in Software Practice.

25. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear temporal logic. In: PSTV’95, Proc. Volume 38 of IFIP Conference
Proceedings., Chapman & Hall (1995) 3–18

26. Fritz, C.: Constructing Büchi automata from linear temporal logic using simulation
relations for alternating Büchi automata. In: CIAA 2003. Volume 2759 of Lecture
Notes in Computer Science., Springer (2003) 35–48

27. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Computer
Aided Verification (CAV’2001), Proceedings. Volume 2102 of Lecture Notes in
Computer Science., Springer (2001) 53–65

28. Muller, D.E., Schupp, P.E.: Simulating alternating tree automata by nondetermin-
istic automata: New results and new proofs of the theorems of Rabin, McNaughton
and Safra. Theoretical Computer Science 141 (1995) 69–107

29. Althoff, C.S., Thomas, W., Wallmeier, N.: Observations on determinization of
Büchi automata. In: CIAA’05, Proceedings. Lecture Notes in Computer Science,
Springer (2005) , this volume.

30. Emerson, E.A., Sistla, A.P.: Deciding branching time logic. In: STOC’84, ACM
Press (1984) 14–24

31. Krishnan, S.C., Puri, A., Brayton, R.K.: Deterministic ω Automata vis-a-vis
Deterministic Buchi Automata. In: Algorithms and Computation, 5th Interna-
tional Symposium (ISAAC’94). Volume 834 of Lecture Notes in Computer Science.,
Springer (1994) 378–386

32. Löding, C.: Efficient minimization of deterministic weak omega-automata. Infor-
mation Processing Letters 79 (2001) 105–109

Computing Affine Hulls over Q and Z from Sets

Represented by Number Decision Diagrams

Louis Latour

Université de Liège,
Institut Montefiore, B28,

4000 Liège, Belgium
latour@montefiore.ulg.ac.be

Abstract. Number Decision Diagrams (NDD) are finite automata rep-
resenting sets of integer vectors and have recently been proposed as an
efficient data structure for representing sets definable in Presburger arith-
metic. In this context, some work has been done in order to generate
formulas or sets of generators from the NDDs. Taking another step in
this direction, this paper present algorithms that takes as input an NDD
and computes the affine hull over Q or over Z of the set represented by
the NDD, i.e., the smallest set defined by a conjunction of equations or
by a conjunction of equations and congruence relations that includes the
set represented by the NDD. Our algorithms run in time O(|Q| · |Σn

r | ·n)
and O(|Q|3 · |Σn

r | ·n3) respectively, where n is the number of components
of the vectors represented by the NDD, and |Q| and Σn

r are the number
of states and the alphabet of the NDD. On a prototype implementation,
the computations of affine hulls of NDDs with more than 100000 states
are done in seconds.

1 Introduction

It has been known for a long time that finite automata can be used for rep-
resenting sets of integer vectors (see [1]). In particular, sets definable in Pres-
burger arithmetic, i.e., first-order logic over the integers with addition and the
order relation, can be represented by finite automata. Many applications rely
on Presburger arithmetic, including integer programming problems, compiler
optimization techniques, program analysis tools and model-checking.

There exist different equivalent representations of Presburger definable sets
(see [1]), including formulas, semi-linear sets and finite automata, and different
approaches have been developed for handling Presburger definable sets. Finite
automata have recently been investigated as an efficient data structure for repre-
senting Presburger definable sets in practical applications [2, 3]. Finite automata
present two main advantages, there is a canonical representation and efficient
procedures exist for set operations and inclusion tests. However, simple arith-
metic operations, such as affine transformation, can be costly if performed on
automata. Therefore, it may appear efficient to handle both automaton and for-
mula representations of the set and perform the operations on the most appro-
priate representation. Also, having access to a simple formula representation of

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 213–224, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

214 L. Latour

the sets can shed light on the sometimes hidden relationships between variables,
or give a useful broad view of the set. It also provides a link to theorem provers.

Working with both automata and formulas implies being able to move from
one representation to the other. While generating automata from formulas is
now well understood [4], the issue of generating formulas from automata has
only been dealt with more recently. Algorithm for restricted classes of sets ap-
peared in [5], [6] and [7], and a solution for the general case has been presented
in [8]. In this paper, we approach the problem of extracting information from
automata differently, and instead of generating a formula matching exactly the
set represented, we compute the affine hull over Q and over Z, i.e., the smallest
affine space over Q or affine module over Z that includes the set represented by
the automaton. The main interests are that the computations are fast (linear
if arithmetic operations are performed in constant time), and affine spaces and
affine modules are easily dealt with since they can be represented by n equations
and congruence relations or by n generators together with an element of the set,
where n is the number of vector components. Furthermore, for a number of ap-
plications, affine hulls already provide useful information. For example, in the
context of verification, one could simplify a model by removing some variables
via the equations and congruence relations. Finally, the algorithms presented
in this paper could be integrated in a more general algorithm computating ex-
act formulas for sets represented by automata, as it is done in [6] where affine
hulls are computed in order to identify the left-hand sides (i.e. the vector of
coefficients) of the inequations occurring in the formula.

An algorithm computing the affine hull over Q of sets of positive vectors
represented by finite automata (with a least significant digit first encoding) has
been already presented in [9]. The time complexity of this algorithm is O(|Q| ·
|Σn

r |·n3), where |Q| is the number of states, n is the number of components in the
vectors of the represented set and Σn

r is the alphabet of the automaton. Also, a
finite automaton representing sets of integer vectors can be viewed as a program,
the states being the control locations and the transitions being affine assignments
based on the fact that adding a digit d as suffix to an encoding of a number z
is equivalent to multiply z by the encoding basis and adding d (when using
a most significant digit first encoding scheme). Therefore, some results in the
field of static analysis of program can be applied, and in particular, the method
proposed in [10] for computing affine relations among variables in a program
can be used with minor adaptations for computing the affine hull over Q of sets
represented by finite automata. The time complexity is then O(|Q| · |Σn

r | · n3).
In this paper, we present a more efficient algorithm whose time complexity is
O(|Q| · |Σn

r | ·n), and O(|Q| · |Σn
r | · n2) if a minimal set of generators is required.

Regarding the affine hull over Z, nothing has been done directly on sets rep-
resented by finite automata. In the context of static analysis, an algorithm for
computing the affine and congruence relations satisfied in a control point of
an affine programs has been presented in [11]. Although the computation is
proved to be finite, there is no bound on the number of operations required.
More recently, [12] describes a polynomial time algorithm for computing affine

Computing Affine Hulls over Q and Z from Sets Represented by NDD 215

relations over Zm, i.e. integer arithmetic modulo m, satisfied by the variables at a
given control location. In this paper, we give the first polynomial time algorithm
for computing the affine hull over Z of sets represented by finite automata. The
exact time complexity of our algorithm is O(|Q|3 · |Σn

r | ·n3). Note that our algo-
rithm for computing affine hulls over Q is part of our algorithm for computing
the affine hulls over Z.

This paper is organized as follows. In Section 2, we recall basic properties
regarding automata theory as well as linear algebra. In Section 3, we show how
finite automata can represent sets of integer vectors. In Section 4, we present
an efficient representation for generators of vector spaces, Z-modules and Zm-
modules. In Sections 5 and 6, we present our algorithms for computing affine
hulls over Q and over Z respectively. Some experimental results are provided in
Section 7, and we conclude in Section 8. The proofs of the results presented in
this paper are given in [13].

2 Preliminaries

We start with some preliminaries from linear algebra and automata theory. In
what follows, for any finite set S, the number of elements in S will be denoted
by |S|.

2.1 Finite Automata

An alphabet is a finite nonempty set of symbols. A word over an alphabet Σ is a
finite sequence of symbols taken from Σ. The symbol ε denotes the empty word,
i.e., the word containing no symbol. The length of a word w, denoted by |w|, is
the number of symbols in w. A language over Σ is a set of words over Σ, and
Σ∗ denotes the set of all words over Σ.

A deterministic finite automaton (DFA) A is a quintuple (Q, Σ, δ, sinit , QF),
where Q is a finite set of states, Σ is the input alphabet, δ : Q×Σ → Q is the
transition function, sinit is the initial state and QF ⊆ Q is the set of final states.

Function δ is extended to words: δ̂(s, ε)={s} and δ̂(s, uw)=
⋃

s′∈δ(s,u) δ̂(s′, w).
If s′ = δ(s, u) for s, s′ ∈ Q and u ∈ Σ, then we say that there is a transition
from s to s′ labeled by u. By extension, there is a path from s to s′ labeled by w
if s′ = δ̂(s, w). The language of A, denoted by L(A) is the set of words labeling
paths from the initial state to a final state. The set of words labeling paths from
a state s1 to a state s2 in A is denoted as LA(s1 → s2).

The DFA A = (Q, Σ, δ, sinit , QF) is reduced if for all words w �= ε labeling a
path rooted at sinit , there exists a word v ∈ Σ∗ such that wv ∈ L(A).

2.2 Basics on Linear Algebra

The following definitions and results can be found in elementary linear algebra
textbooks.

As usual, Q, Z and N denote the sets of rational numbers, integers and nat-
urals, and Zm = Z/(mZ), i.e., the equivalence classes of Z modulo m. In the

216 L. Latour

following, D will denote any set among Q, N, Z and Zm. In the case of Zm, any
addition or multiplication of elements in Zm correspond to addition or multipli-
cation in Z modulo m so that the result is in {0, . . . , m− 1}. The set of vectors
with n components in D is denoted Dn. The i-component of a vector x is writ-
ten x[i]. The superscript ·T denotes transposition. For any set S ⊆ Dn, vector
a ∈ Dn and scalar γ ∈ D, we denote by a + S and γS the sets {a + x | x ∈ S}
and {γx | x ∈ S} respectively.

For m, n ∈ N, m, n ≥ 1, Dm×n is the set of m× n-matrices with entry in D.
For a matrix A ∈ Dm×n, the row index set of A is {1, . . . , m} and the column
index set is {1, . . . , n}, and the entry located in the ith row and jth column is
written A[i, j]. The ith row of A is denoted A[i, ∗] and similarly, the jth column
is denoted A[∗, j]. Let S ⊆ Dn. The D-linear hull of S, denoted linD(S), and the
D-affine hull of S, denoted affD(S), are defined as follows.

linD(S) = {
n∑

i=1

λixi | λi ∈ D, xi ∈ S}, (1)

affD(S) = {
n∑

i=1

λixi | λi ∈ D, xi ∈ S,
n∑

i=1

λi = 1}. (2)

Example 1. Let S = {(1, 0), (1, 2), (1, 4)}. affQ(S) = {(1, k) | k ∈ Q} and
affZ(S) = {(1, 2 ∗ k) | k ∈ Z}.
The vectors x1, . . . , xn ∈ Dn are linearly independent over D iff

∑n
j=1 αjxj = 0

with αj ∈ D implies that αj = 0 for j = 1, . . . , n. If the vectors are not linearly
independent, they are linearly dependent over D. A set of vectors G is free over
D iff the vectors in G are linearly independent over D. A set G ⊆ Dn D-generates
a set S ⊆ Dn iff linD(G) = S. If in addition, G is free over D, then G is a D-basis
of S.

A subset M ⊆ Dn of vectors with entries in D is a D-module iff M �= ∅ and
M = linD(M). A subset S ⊆ Dn is a D-affine module iff S = a + M , where
a ∈ Dn and M is a D-module.

Proposition 1. Let S ⊆ Dn. The set linD(S) (resp. affD(S)) is the smallest
D-module (resp. D-affine module) containing S. The D-module M such that
affD(S) = a + M for some a ∈ Dn is unique.

Proposition 2. Any D-module S ⊆ Dn has a D-basis, and all D-basis of S have
the same number of elements d ≤ n called the dimension of S.

Since Q is a field, Q-modules and Q-affine modules have more properties than
their counterparts over the rings Z and Zm (except if m is prime, in which case
Zm is also a field). Consequently, Q-modules and Q-affine modules have specific
names and are called vector space and affine space respectively. For example,
one property displayed by vector spaces but not by Z-modules is the fact that
for any vector space V , any set S of linearly independent vectors in V can be
extended to form a basis of V .

Computing Affine Hulls over Q and Z from Sets Represented by NDD 217

2.3 Size and Complexity

We define the size of numbers as follows. The size of an integer number a ∈ Z
is 1 if a = 0, and 1 + �log |a|� otherwise. The size of a rational a/b where a ∈ Z,
b ∈ N \ {0} and gcd(a, b) = 1 is 1 if a = 0 and �1 + log |a|+ log |b|� otherwise.

In order to reason about the complexity of the algorithms presented in this
paper, we assume that direct memory accesses are performed in constant time
and that arithmetic operations are perform in unit time.

3 Automata-Based Representation of Integer Vector Sets

In this section, we explain how automata can represent sets of integer vectors.
The main idea consists in establishing a mapping between vectors and words.
Our encoding scheme of vectors is based on the positional expression of num-
bers (most significant digit first) with a signed-complement system for negative
integers.

Given an encoding basis r ∈ N, with r > 1, an r-encoding of an integer
a ∈ Z is a word w over Σr, such that if w = upup−1 . . . u0 where each ui ∈
Σr = {0, . . . , r − 1}, up = 0 if a ≥ 0 and up = r − 1 if a < 0, and a =
−rp · up

r−1 +
∑p−1

i=0 uir
i.

In order to encode a vector z ∈ Zn, one simply reads synchronously one digit
from the encodings of all its components, provided that these encodings share the
same length. This requirement can always be met by prefixing the encoding by a
sequence of copies of the leading digit of the initial encoding. So, an r-encoding
of an integer vector z ∈ Zn is a word w over Σn

r , such that if w = upup−1, . . . u0
where each ui ∈ (Σn

r , up ∈ (0, r − 1)n, and for each j ∈ {1, . . . , n}, we have
z[j] = −rp · up[j]

r−1 +
∑p−1

i=0 ui[j]ri.
The fact that w is an r-encoding of z is denoted by 〈w〉r = z. Also, we simply

write 0 for the symbol (0, . . . , 0) ∈ Σn
r .

Based on the definition of the encoding scheme, for all encodings u ∈ (Σn
r)+

and words v ∈ (Σn
r)∗, we have 〈uv〉r = r|v|〈u〉r + 〈0v〉r.

Let S ⊆ Zn. If the language L(S) containing all the encodings of all the vectors
in S is regular, then any DFA A accepting L(S), i.e. such that L(A) = L(S),
is a Number Decision Diagram (NDD), and we say that A represents S. In this
paper, we use the following notations. We denote by SA(sinit→s) the set of vectors
whose encoding labels paths from sinit to s in the NDD A, and by SA the set
represented by the NDD A. The encoding scheme that we use here is the same
as the one proposed in [1] and extended to Z in [2].

It is known (see [1]) that the sets definable in the first order theory 〈Z, +, <, Vr〉
correspond exactly to the sets that can be represented by finite-state automata
using the r-encoding scheme that has just been discussed. Note that 〈Z, +, <, Vr〉
is the first-order logic over the integers with addition and the ordering relation,
with an additional predicate Vr(x, y) returning true if y is the greatest power of r
dividing x and false otherwise.

In the remaining of this paper, r-encodings are simply called encodings since
we will always use the same encoding basis r.

218 L. Latour

4 Triangular Sets

The algorithms presented in this paper manipulate intensively vector spaces, Z-
modules and Zm-modules. In order to have more efficient procedures, we main-
tain sets of generators in a particular form: the triangular form [12]. For a non-
zero vector x, we call i the leading index of x and x[i] the leading entry of x if
x[i] �= 0 and x[j] = 0 for j ∈ {1, . . . , i − 1}. A set of non-zero vectors T is tri-
angular iff the leading entries of all vectors in T are positive and for all distinct
vectors x, x′ ∈ T , the leading indices of x and x′ are distinct. Intuitively, a set is
triangular if the vectors are the rows of a echelon matrix A with no zero-row, i.e.
each row of A has a non-zero element and if A[i, k] and A[j, k′] are the first non-
zero element of the ith and jth rows respectively with j > i, then k′ > k. Note
that a triangular set of integer vectors is a set of linearly independent vectors
over Q and Z.

There exist efficient procedures for generating an integer basis in triangular
form of a vector space or of a Z-module given a set of integer generators.

Proposition 3. There exists an algorithm GetTriangQBasis which, given a finite
set G ⊆ Zn as input, generates a triangular set G ⊆ Zn such that

– linQ(G) = linQ(G),
– the sizes of the components of vectors in G are bounded by n · (k + log n)

where k is the bound on the component size of vectors in G, and
– the time complexity of GetTriangQBasis is O(|G| · n2).

Proposition 4. There exists an algorithm GetTriangZBasis which, given a finite
set G ⊆ Zn as input, generates a triangular set G ⊆ Zn such that

– linZ(G) = linZ(G),
– the sizes of the components of vectors in G are bounded by k · n · log(

√
n),

where k is the bound on the component size of vectors in G, and
– the time complexity of GetTriangZBasis is O(|G| · k · n3 · log(

√
n)).

Note that computing a basis is more difficult over Z than over Q since a set
of linearly independent vectors over Z cannot be extended to form a basis as it
is the case over Q.

Proposition 5. Given a triangular set T ⊆ Zn and a vector x0 ∈ Zn, there
exists an algorithm that generates a set of congruences and a set of equations
such that

– the solutions of the system of equations (resp. equations and congruences)
are exactly the elements in x0 + linQ(T) (resp. x0 + linZ(T)).

– the coefficient sizes appearing in the congruences and in the equations are
bounded by O(n log n + nk), k being a bound on the size of the numbers in
the vectors in T and x0.

Proposition 6. There exists an algorithm UpdateTriangZm, which, given a
stricly positive integer m, a triangular set T ⊆ Zn

m and a vector x ∈ Zn
m, gener-

ates a triangular set T ′ ⊆ Zn
m such that

Computing Affine Hulls over Q and Z from Sets Represented by NDD 219

– linZm(T ′) = linZm(T ∪ {x}).
– The time complexity of UpdateTriangZm is O(n2 · q).

Proposition 7. The length of any sequence of triangular sets T1, . . . , Tk ⊆ Zn
m

such that for all i ∈ {1, . . . , k − 1} Ti+1 = UpdateTriangZm(m, Ti, xi) for some
xi ∈ Zn

m is bounded by n log m.

5 Affine Hulls over Q

In this section, we present an algorithm which takes as input a reduced NDD A =
(Q, Σn

r , δ, sinit , QF) and generates the affine hull over Q of the set represented
by A.

We briefly present the algorithm based on [10], and then present a more
efficient algorithm which takes advantage of the special affine transformation
corresponding to transitions in NDDs. In addition, this more efficient version
is also part of the more sophisticated algorithm for computing the affine hull
over Z.

The idea of the algorithm based on [10] is to explore the paths of A rooted at
the initial state sinit and to compute for each state s a vector xs and a triangular
set of vectors Gs such that xs ∈ SA(sinit→s) and xs+linQ(Gs) ⊆ affQ(SA(sinit→s)).
When handling a path labeled by w from sinit to s, the algorithm applies the
following recursive procedure.

– If xs has not yet been set, one sets xs equal to 〈w〉r and we propagate w
from s, that is, we apply the procedure to all paths from sinit to s′ labeled
by wu with u ∈ Σn

r such that δ(s, u) = s′.
– Otherwise, if 〈w〉r ∈ xs + linQ(Gs), then we do not propagate w. If on the

other hand, 〈w〉r �∈ xs + linQ(Gs), one has to add 〈w〉r − xs to Gs and to
propagate w from s.

Since for each s, one sets at most once xs and one adds at most n vectors to Gs,
the number of iterations is bounded, and at some point, no more path needs to
be explored. It can be proved that at this point, xs+linQ(Gs) = affQ(SA(sinit→s))
for all states s. Finally, one has to take the union of the affine hulls corresponding
to final states and again, take the affine hull over Q of this set.

We can improve the algorithm presented above. The main property is ex-
pressed in the following lemma.

Lemma 8. Let s, s′ ∈ Q with δ̂(s, v) = s′ for some v, and let V, Vs′ ⊆ Qn be
vector spaces such that affQ(SA) = xF + V and affQ(SA(sinit→s′)) = x′ + Vs′ for
some xF , x′ ∈ Zn. For all x1, x2 ∈ SA(sinit→s), we have x1 − x2 ∈ Vs′ ⊆ V .

Thanks to the previous property, we note that in the algorithm sketched
above, if 〈w〉r −xs is added to Gs, then 〈w〉r −xs can be added to all Gs′ where
s′ is reachable from s. We deduce that it is not necessary to compute at each
individual state s one basis Gs and one element xs such that xs + linQ(Gs) =
linQ(SA(sinit→s). One only needs to consider one element xs per state and one

220 L. Latour

basis G for the whole NDD. Also, from each state, one has to propagate only one
path. Indeed, if w1, w2 ∈ LA(sinit → s) and 〈w1〉r − 〈w2〉r is added to G, then
for v ∈ Σn

r , 〈w1v〉r − 〈w2v〉r ∈ linQ(G). Finally, in the above description, we did
not specify the order with which one consider the propagated paths. Adopting
a breadth first search approach allows us to manipulate smaller numbers.

Our algorithm QAffineHull takes a reduced NDD as input and works as follows.

1. Initially, the set G is empty. Also, for each state, one stores a vector xs ∈ Zn

which is initially set to ⊥.
2. It considers paths of increasing length originating from sinit , starting with

all paths of length 1, and at the kth iteration, it handles paths of length k
that have been propagated so far. When handling a path labeled by w from
sinit to s, there are two possibilities.
– If xs = ⊥, xs is set to 〈w〉r , and one will consider at the next iteration

the paths labeled by wu for all u ∈ Σn
r with δ(s, u) = s′ for some s′.

– If xs �= ⊥, then we add 〈w〉r − xs to G.
3. When all states have been visited once, we pick one final state sF ∈ QF

and we add to G all vectors xs − xsF where s ∈ QF . Then, the algorithm
terminates and it returns G as well as the vector xsF .

Theorem 9. Let lmin ≤ |Q| be the smallest positive integer such that for all
states s ∈ Q, there exists an encoding ws such that δ̂(sinit , ws) = s with |ws| ≤
lmin. Let xF ∈ Zn and G ⊆ Zn such that (G, xF) = QAffineHull(A). We have

– xF + linQ(G) = affQ(SA),
– |G| ≤ |Q| ·Σn

r ,
– The time complexity of QAffineHull is O(|Q| · |Σn

r | · n),
– The size of the numbers in G are bounded by O(lmin).

Finally, according to Proposition 3, we can compute a triangular set G of
at most n generators from the set G computed via the algorithm QAffineHull.
The sizes of the numbers in G are then bounded by O(n · (|Q|+ log n)) and the
time complexity for the call GetTriangQBasis(G) is O(|Q| · |Σn

r | ·n2). In addition,
thanks to Proposition 5, we can compute a system of linear equations aix = 0,
i = |G|+ 1, . . . , n such that x ∈ xF + linQ(G) ⇔

∧
i=|G|+1,...,n ai(x− xF) = 0.

6 Affine Hulls over Z

In this section, we give an algorithm for computing the affine hull in Zn of the
set represented by a reduced NDD A = (Q, Σn

r , δ, sinit , QF).
Note first that in general, if (G, xF) = QAffineHull(A), the set xF + linZ(G)

is not equal to affZ(SA). This stems from the fact that Lemma 8 does not hold
in the integer case because it does not consider the factor r|v| of the affine
transformations corresponding to the path from s1 to s2. Taking this factor into
consideration leads to the following lemma.

Computing Affine Hulls over Q and Z from Sets Represented by NDD 221

Lemma 10. Let s ∈ Q with δ̂(s, v) ∈ QF for some v, and let M ⊆ Zn be the
Z-module such that affZ(SA) = xF + M for some xF ∈ Zn. For all x1, x2 ∈
SA(sinit→s), we have r|v| · (x1 − x2) ∈M .

Based on the above lemma, we can extend Theorem 9 and prove the following
property regarding the output of algorithm QAffineHull.

Lemma 11. Let dmin be the smallest positive integer such that for all states
s ∈ Q, there exists an encoding ws such that δ̂(s, ws) ∈ QF with |ws| ≤ dmin.
Let M, G ⊆ Zn and xF ∈ Zn such that affZ(SA) = xF + M and (G, xF) =
QAffineHull(A).

– for all s ∈ Q, for all x1, x2 ∈ SA(sinit→s), x1 − x2 ∈ linZ(G), and,
– for all g ∈ G, rdming ∈M .

We now turn on the actual computation of affZ(SA). A first approach, similar
to what is done in [10] for the affine hull over Q, is to compute a finite Gs for each
state s such that if xs ∈ SA(sinit→s), then xs + linZ(Gs) ⊆ affZ(SA(sinit→s)). This
can be done by keeping a basis of Gs and considering paths of increasing length
until reaching a fixpoint at which for all states s, for all w ∈ LA(sinit → s),
〈w〉r ∈ xs + linZ(Gs). The problems with this approach are that numbers in
the basis of Gs can grow exponentially, and secondly, there is no bound on the
length of the paths before reaching the fixpoint. Based on Lemma 11, those two
problems can be solved in the following way. Let Gpre , M ⊆ Zn and xF ∈ Zn such
that (Gpre , xF) = QAffineHull(A), and affQ(SA) = xF + M . Since for all states
s and xs ∈ SA(sinit→s), 〈w〉r − xs ∈ linZ(Gpre), 〈w〉r − xs is a linear combination
over Z of vectors in Gpre , for any Z-basis Gpre of linZ(Gpre), the decomposition of
〈w〉r−xs with respect to Gpre is unique. Also, since for all g ∈ Gpre , rdming ∈M ,
this also holds for vectors g ∈ Gpre , and adding any combination of rdming to
any 〈w〉r−xs does not change the affine hull over Z. So, once the decomposition
of 〈w〉r − xs with respect to Gpre has been performed, we can work in Zrdmin ,
i.e. work in integer arithmetic modulo rdmin .

Based on the above considerations, our algorithm ZAffineHull takes a reduced
NDD as input and works as follows.

1. Via the algorithm QAffineHull, one computes a set Gpre and a vector xF .
Then, one computes a basis Gpre of linZ(Gpre) and set p = |Gpre |. Then for
each state s, one associates a triangular set Γs ⊆ Zp

rdmin
initially empty.

2. One considers paths of increasing length originating from sinit , starting with
all paths of length 1. Given the label w of a path from sinit to s, the procedure
works as follows.
– If xs = ⊥, then xs is set to 〈w〉r and one propagates w from s, that is,

for all u ∈ Σn
r with δ(s, u) = s′ for some s′ ∈ Q, one handles the path

labeled by wu at the next iteration.
– If xs �= ⊥, then one decomposes 〈w〉r − xs into a linear combina-

tion
∑

gi∈Gpre
γigi, which is always possible with γi ∈ Z. Let c ∈ Zp

with c[i] = γi mod rdmin and c[i] ∈ {0, . . . , rdmin − 1}, and let Γ ′
s =

UpdateTriangZm(r, dmin, Γs, c). There are 2 possibilities.

222 L. Latour

• If Γ ′
s �= Γs, then Γs is set to Γ ′

s and one propagates w from s.
• Otherwise, one does nothing and w is not propagated.

3. One updates a triangular set Γ ⊆ Zp

rdmin
, initially empty, via UpdateTri-

angZm with all vectors c ∈ Γs for all s ∈ QF .
4. Finally one generates the set G ⊆ Zn by adding the vectors g ∈ Zn such

that g =
∑

gi∈Gpre
c[i] · gi for some c ∈ Γ , g = rdmingi for some gi ∈ Gpre , or

g = xs − xF for some final state s ∈ QF . Then, one returns G together with
xF .

Theorem 12. Let lmin, dmin ≤ |Q| be the smallest positive integers such that
for all states s ∈ Q, there exist encodings wl, wd such that δ̂(sinit , wl) = s with
|wl| ≤ lmin and δ̂(s, wd) = sF for some sF ∈ QF with |wd| ≤ dmin. Let xF ∈ Zn,
G ⊆ Zn such that (G, xF) = ZAffineHull(A). We have

– xF + linZ(G) = affZ(SA),
– |G| ≤ |Q|+ 2n and the size of numbers in G are bounded by O(n · log(

√
n) ·

lmin + dmin),
– the time complexity of ZAffineHull is O(|Q| · |Σn

r | ·(log(
√

n) · lmin +d2
min) ·n3).

Note that if (G, xF) = ZAffineHull(A), then by applying the function
GetTriangZBasis to G, we can generate a basis G of linZ(G) in time O(|Q| ·(lmin+
dmin) ·n5) and the size of the numbers in G are bounded by O((lmin +dmin) ·n3).
Also, thanks to Proposition 5, from G and xF , we can generate a set of equations
and congruence relations describing affZ(SA).

7 Experimental Results

The algorithms presented in this paper have been implemented within the LASH
library1. Note that the algorithms have been slightly modified in order to use
the serial encoding as presented in [14], which significantly decreases the running
time. By using the serial encoding, we simplify the transition relation at the ex-
pense of additional states. As a rule of thumb, the number of states is multiplied
by the number of components of the represented vectors, and the number of tran-
sition can be exponentially decreased. As encoding basis, we have taken r = 2.

The time and memory used for the computation of the algorithms QAffineHull
and ZAffineHull in a prototype implementation running on a pentium-M at 1,5
GHz are given in the table below. The computations include the generation of a
triangular set G such that xF +linQ(G) = affQ(SA) or xF +linZ(G) = affZ(SA).
The columns indicate successively the set on which the computation is per-
formed, the number of components of the vectors in the set, the number of
states in the corresponding NDD (with alphabet Σ2), the values of lmin and
dmin (see Theorems 9 and 12), and finally, the time and memory requirement
for the computation of QAffineHull and ZAffineHull successively. Note that all
sets S1, . . . , S12 are defined by a boolean combination of several equations, in-
equations and congruence relations. In addition, S1, . . . , S6 are Z-affine modules
which is not the case of S7, . . . , S12.
1 Available at http://www.montefiore.ulg.ac.be/~boigelot/research/lash/

Computing Affine Hulls over Q and Z from Sets Represented by NDD 223

A QAffineHull ZAffineHull
Set n Nb. States lmin dmin Time (sec.) Mem (Mb) Time (sec.) Mem (Mb)

S1 7 64874 3 12 1.0 6.1 3.5 46.7

S2 6 115727 2 15 1.6 10.4 4.6 64.5

S3 6 287713 6 27 3.3 27.4 22.5 162.1

S4 6 215685 4 4 3.3 22.5 10.8 123.4

S5 10 281135 4 5 3.1 31.4 119.9 379.3

S6 11 112754 2 5 2.3 13.1 10.9 183.4

S7 7 279598 4 7 4.3 29.2 63.2 203.8

S8 7 42067 5 10 0.8 4.3 6.4 30.6

S9 6 54186 5 5 1.2 5.4 6.6 30.8

S10 7 50580 5 6 0.7 5.1 7.2 36.7

S11 6 52177 4 8 0.9 4.9 4.2 29.3

S12 6 44920 6 7 1.0 4.4 4.5 25.4

In the above table, we note that in the sets considered, the values of lmin and
dmin are small compared to |Q|, even more so if one uses the serialized encoding.
There exist sets for which the values of lmin and dmin have the same magnitude as
|Q|. For example, the NDDs representing the sets x = 0 mod 2k in base 2 have
k states and lmin � dmin � k. Our intuition is that whenever the characteristics
numbers of a set (i.e., the maximal value for finite set, the coefficient of the
inequation in a quantifier-free Presburger formula, . . .) are small then, lmin and
dmin are also small and our algorithms perform very well.

8 Conclusion

In this paper, we have presented two algorithms, QAffineHull and ZAffineHull,
that take a reduced NDD A as input and compute the affine hull over Q and
over Z respectively of the set represented by A. More precisely, they generate
a pair (G, xF) with a finite set G ⊆ Zn and xF ∈ Zn such that xF + linQ(G)
(resp. xF + linZ(G)) is the affine hull over Q (resp. Z) of the set represented
by A. The size of the numbers manipulated in QAfineHull (resp. ZAffineHull)
are bounded by O(|Q|) (resp. O(n log(

√
n) · |Q|)) and the time complexity is

O(|Q| · |Σn
r | · n) (resp. O(|Q|3 · |Σn

r | · n3)). The algorithms perform very well
for NDDs such that the distances from the initial state to each state and the
distances from each state to an accepting state are small, as we have shown in
a prototype implementation.

References

1. Bruyère, V., Hansel, G., Michaux, C., Villemaire, R.: Logic and p-recognizable sets
of integers. Bulletin of the Belgian Mathematical Society 1 (1994) 191–238

2. Wolper, P., Boigelot, B.: An automata-theoretic approach to Presburger arithmetic
constraints. In: Proceedings of Static Analysis Symposium. Volume 983 of Lecture
Notes in Computer Science., Glasgow, Springer-Verlag (1995) 21–32

224 L. Latour

3. Boudet, A., Comon, H.: Diophantine equations, Presburger arithmetic and finite
automata. In: Proceedings of CAAP’96. Number 1059 in Lecture Notes in Com-
puter Science, Springer-Verlag (1996) 30–43

4. Klaedtke, F.: On the automata size for Presburger arithmetic. In: Proceedings
of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS 2004),
IEEE Computer Society Press (2004) 110–119

5. Leroux, J.: Algorithmique de la vérification des systèmes à compteurs. Approxima-
tion et accélération. Implémentation de l’outil FAST. PhD Thesis, Ecole Normale
Supérieure de Cachan, Cachan, France (2003)

6. Latour, L.: From automata to formulas: Convex integer polyhedra. In: Proceed-
ings of 19th IEEE Symposium on Logic in Computer Science (LICS 2004), IEEE
Computer Society Press (2004) 120–129

7. Lugiez, D.: From automata to semi-linear sets: a solution for polyhedra and even
more general sets. Technical Report 21-2004, Lab. d’informatique de Marseilles
(2004)

8. Leroux, J.: A polynomial time Presburger criterion and synthesis for number
decision diagram. Technical report, Université de Montréal (2004)

9. Leroux, J.: The affine hull of a binary automaton is computable in polynomial
time. Electr. Notes Theor. Comput. Sci. 98 (2004) 89–104

10. M. Müller-Olm, H. Seidl: A note on Karr’s algorithm. In Josep Diaz, Juhani
Karhumk̈i, Arto Lepist0̈, eds.: Proceedings of the 31st International Colloquium
on Automata, Languages and Programming (ICALP 2004). Volume 3142 of Lecture
Notes in Computer Science., Springer-Verlag Heidelberg (2004)

11. Granger, P.: Static analysis of linear congruence equalitites among variables of
a program. In Abramsky, S., Maibaum, T.S.E., eds.: TAPSOFT’91: Proc. of the
International Joint Conference on Theory and Practice of Software Development.
Springer, Berlin, Heidelberg (1991) 169–192

12. M. Müller-Olm, H. Seidl: Analysis of modular arithmetic. In: To appear in the
European Symposium on Programming (ESOP 2005). Lecture Notes in Computer
Science, Springer-Verlag Heidelberg (2005)

13. Latour, L.: Computing affine hulls over Q and Z from sets represented by number
decision diagrams. Technical Report 2005-49, Centre Fédéré en Vérification (2005)

14. Boigelot, B., Latour, L.: Counting the solutions of presburger equations without
enumerating them. Theoretical Computer Science 313 (2004) 17–29

Tree Automata and XPath on Compressed Trees

Markus Lohrey1 and Sebastian Maneth2

1 FMI, University of Stuttgaert, Germany
lohrey@informatik.uni-stuttgart.de

2 Faculté I & C, EPFL, Switzerland
sebastian.maneth@epfl.ch

Abstract. The complexity of various membership problems for tree au-
tomata on compressed trees is analyzed. Two compressed representations
are considered: dags, which allow to share identical subtrees in a tree,
and straight-line context-free tree grammars, which moreover allow to
share identical intermediate parts of a tree. Several completeness results
for the classes NL, P, and PSPACE are obtained. Finally, the complex-
ity of the XPath evaluation problem on trees that are compressed via
straight-line context-free tree grammars is investigated.

1 Introduction

During the last decade, the massive increase in the volume of data has motivated
the investigation of algorithms on compressed data, like for instance compressed
strings, trees, or pictures. The general goal is to develop algorithms that directly
work on compressed data without prior decompression. Considerable amount of
work has been done concerning algorithms on compressed strings, see e.g. [1, 2].
In this paper we investigate the computational complexity of algorithmic prob-
lems on compressed trees. Trees serve as a fundamental data structure in many
fields of computer science, e.g. term rewriting, model checking, XML, etc. In
fact, in each of these domains, compressed trees in form of dags (directed acyclic
graphs), which allow to share identical subtrees in a tree, are used as a key for
obtaining more efficient algorithms, see for instance [3] (term graph rewriting),
[4] (model checking with BDDs), and [5, 6] (querying compressed XML docu-
ments). Recently, straight-line context-free tree grammars (SL cf tree grammars)
were proposed as another compressed representation of trees in the context of
XML [7]. Whereas a dag can be seen as a regular tree grammar [8] that gener-
ates exactly one tree, an SL cf tree grammar is a context-free tree grammar [8]
that generates exactly one tree. SL cf tree grammars allow to share identical
intermediate parts in a tree. This results in better compression rates in compar-
ison to dags: in the theoretical optimum, SL cf tree grammars lead to doubly
exponential compression rates, whereas dags only allow singly exponential com-
pression rates. In [9], a practical algorithm (BPLEX) for generating a small SL
cf tree grammar that produces a given input tree is presented. Experiments with
existing XML benchmark data show that BPLEX results in significantly better
compression rates than dag-based compression algorithms.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 225–237, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

226 M. Lohrey and S. Maneth

In Section 3 we study the problem of evaluating compressed trees via tree
automata [8, 10]. Tree automata play a fundamental role in many applications
where trees have to be processed in a systematic way. In the context of XML,
for instance, tree automata are used to type check documents against an XML
type [11, 12]. These applications motivate the investigation of general decision
problems for tree automata like emptiness, equivalence, and intersection non-
emptiness. Several complexity results are known for these problems, see e.g. [8].
Membership problems for tree automata were investigated in [13] for ranked
trees (see Table 1 for the results of [13]) and [14] for unranked trees from the
perspective of computational complexity. Here we extend this line of research by
investigating the computational complexity of membership problems for various
classes of tree automata on compressed trees (dags and SL cf tree grammars).
For deterministic/nondeterministic top-down/bottom-up tree automata we ana-
lyze the fixed membership problem (where the tree automaton is not part of the
input) as well as the uniform membership problem (where the tree automaton is
also part of the input). Moreover, we consider subclasses of SL cf tree grammars
that allow more efficient algorithms for evaluating tree automata. In particular,
linearity and the restriction that for some constant k, every production of the SL
cf tree grammar contains at most k parameters (variables) lead to better com-
plexity bounds. For all cases, we present upper and lower bounds which vary from
NL (nondeterministic logspace) to PSPACE (polynomial space). Our results are
collected in Table 1. We also briefly consider the parameterized complexity [15]
of membership problems for tree automata.

In Section 4 we consider the problem of evaluating core XPath expressions
over compressed trees. XPath is a widely used language for selecting nodes in
XML documents and is the core of many modern XML technologies. The query
problem for XPath asks whether a given node in a given (unranked) tree is
selected by a given XPath expression. For uncompressed trees, the complexity of
this problem is intensively studied in [16, 17]. For input trees that are represented
as dags, XPath evaluation was investigated in [5, 6]. In [6] it was shown that the
evaluation problem for core XPath (the navigational part of XPath) over dag-
compressed trees is PSPACE-complete. Here, we extend this result to linear SL cf
tree grammars (Theorem 9). This is remarkable, since linear SL cf tree grammars
lead to (provably) better compression rates than dags, which is also confirmed
by our experimental results for the BPLEX-algorithm (which produces linear SL
cf tree grammars) from [9].

Proofs that are omitted in the main part of this paper will appear in the full
version.

2 Preliminaries

For background in complexity theory see [18]. The set of all finite strings over a
(not necessarily finite) alphabet Σ is Σ∗. The empty string is ε. The length of
a string u is |u|. We write u � v for u, v ∈ Σ∗ if u is a prefix of v. The reflexive
and transitive closure of a binary relation → is denoted by ∗→.

Tree Automata and XPath on Compressed Trees 227

Trees, Dags, and SL cf Tree Grammars. A ranked alphabet is a pair
(F , arity), where F is a finite set of function symbols and arity : F → N assigns
to each α ∈ F its arity (or rank). Let Fi = {α ∈ F | arity(α) = i}. Function
symbols in F0 are called constants. In examples we use symbols a ∈ F0, h ∈ F1,
and f ∈ F2. Mostly we omit the function arity in the description of a ranked
alphabet. An F-labeled tree t (or ground term over F) is a pair t = (domt, λt),
where (i) domt ⊆ N∗ is finite, (ii) λt : domt → F , (iii) if v � w ∈ domt, then
also v ∈ domt, and (iv) if v ∈ domt and λt(v) ∈ Fn, then vi ∈ domt if and
only if 1 ≤ i ≤ n. Note that the edge relation of the tree t can be defined as
{(v, vi) ∈ domt × domt | v ∈ N∗, i ∈ N}. The size of t is |t| = |domt|. With an
F -labeled tree t we associate a term in the usual way: If λt(ε) = α ∈ Fi, then
this term is α(t1, . . . , ti), where tj is the term that corresponds to the subtree
of t rooted at the node j ∈ N. The set of all F -labeled trees is T (F). Let us
fix a countable set X of variables. The set of all F -labeled trees with variables
from X is T (F ,X). Formally, we consider variables as new constants and define
T (F ,X) = T (F∪X). A tree t ∈ T (F ,X) is linear, if every variable x ∈ X occurs
at most once in t. A term rewriting system, briefly TRS, over a ranked alphabet
F is a finite set R ⊆ (T (F ,X) \ X)× T (F ,X) such that for all (s, t) ∈ R, every
variable that occurs in t also occurs in s. The one-step rewrite relation →R over
T (F ,X) is defined as usual, see for instance [19].

Dags (directed acyclic graphs) are a popular compressed representation of
trees that allows to share identical subtrees. An F -labeled dag is a triple D =
(VD, λD, ED) where (i) VD is a finite set of nodes, (ii) λD : VD → F labels each
node with a symbol from F , (iii) ED ⊆ VD × N × VD (i.e. edges are directed
and labeled with natural numbers), (iv) every v ∈ VD contains precisely one i-
labeled outgoing edge for every 1 ≤ i ≤ arity(λD(v)), and (v) (VD, ED) is acyclic
and contains precisely one node rootD ∈ VD without incoming edges. The size
of D is |D| = |VD|. A root-path in D is a path v1, i1, v2, i2 · · · , vn in the graph
(VD, ED), i.e., vk ∈ VD (1 ≤ k ≤ n) and (vk, ik, vk+1) ∈ ED (1 ≤ k < n) that
moreover starts in the root node, i.e., v1 = rootD. Such a path can be identified
with the label-sequence i1i2 · · · in−1 ∈ N∗. An F -labeled dag D over F can be
unfolded into an F -labeled tree eval(D): domeval(D) is the set of all root-paths
in D (viewed as a subset of N∗), and if the root-path p ∈ N∗ ends in the node
v ∈ VD, then we set λeval(D)(p) = λD(v). Clearly the size of eval(D) is bounded
exponentially in |D|.

g

f

h a

1
2

3

1
2

1
Example 1. For the dag D on the right we have eval(D) =
g(f(h(a), h(a)), f(h(a), h(a)), h(a)). Moreover, the size
of D is 4. We have domeval(D) ={ε, 1, 2, 3, 11, 12, 21, 22, 31,
111, 121, 211, 221}.
Recently, a compressed representation of trees, which generalizes dags, was in-
troduced: straight-line context-free tree grammars (SL cf tree grammars) [7]. An
SL cf tree grammar is a tuple G = (F , N, S, P), where (i) N ∪ F is a ranked
alphabet, (ii) N is the set of nonterminals, (iii) F is the set of terminals, (iv)
S ∈ N is the start nonterminal and has rank 0, (v) P (the set of productions)
is a TRS over N ∪ F that contains for every A ∈ N exactly one rule of the

228 M. Lohrey and S. Maneth

form A(x1, . . . , xn) → tA, where n = arity(A) and x1, . . . , xn are pairwise dif-
ferent variables, and (vi) the relation {(A, B) ∈ N × N | B occurs in tA} is
acyclic. These conditions ensure that for every A ∈ N of rank n there is a
unique tree evalG(A)(x1, . . . , xn) ∈ T (F , {x1, . . . , xn}) with A(x1, . . . , xn) ∗→P

evalG(A)(x1, . . . , xn). Let eval(G) = evalG(S) ∈ T (F). Thus, an SL cf tree
grammar is a context free tree grammar [8] that generates exactly one tree.
Alternatively, an SL cf tree grammar is a recursive program scheme [20] that
generates a finite tree. The size of G is |G| =

∑
A∈N |tA|. We say that G is an

SL cf tree grammar with k parameters (k ≥ 0) if arity(A) ≤ k for every A ∈ N .
The SL cf tree grammar G is linear if for every production A(x1, . . . , xn) → tA
in P the tree tA is linear.

SL cf tree grammars generalize string generating straight-line programs [2] in
a natural way from strings to trees. The following example shows that SL cf tree
grammars may lead to doubly exponential compression rates; thus, they can be
exponentially more succinct than dags: Let the (non-linear) SL cf tree grammar
Gn consist of the following productions: S → A0(a), Ai(x) → Ai+1(Ai+1(x)) for
0 ≤ i < n, and An(x) → f(x, x). Then eval(Gn) is a complete binary tree of
height 2n. Thus, |eval(Gn)| ∈ O(22n

). Note that Gn has only one parameter. On
the other hand, it is easy to prove by induction over the number of productions
that linear SL cf tree grammars can only achieve exponential compression rates.
But linear SL cf tree grammars are still more succinct than dags: The tree
h(h(· · ·h(a) · · ·)) with 2n many occurrences of h can be generated by a linear
SL cf tree grammar of size O(n), which is not possible with dags.

An SL cf tree grammar G = (F , N, S, P) with 0 parameters (i.e., arity(A) = 0
for every nonterminal A ∈ N) can be easily transformed in logspace into an
F -labeled dag that generates the same tree: we take the disjoint union of all
right-hand sides of productions from P , where the root of the right-hand side
for the nonterminal A gets the additional label A. Then we merge for every
nonterminal A all nodes with label A. Note that since arity(A) = 0 for every
A ∈ N , nonterminals can only occur as leafs in right-hand sides of G. Thus, this
merging process results in a dag. For instance, the SL cf tree grammar with the
productions S → g(A, A, B), A → f(B, B), B → h(a) corresponds to the dag
from Example 1. Vice versa, from an F -labeled dag we can construct in logspace
an equivalent SL cf tree grammar with 0 parameters by taking the nodes of the
dag as nonterminals. Thus, dags can be seen as special SL cf tree grammars.
This justifies our choice to denote with eval both the evaluation function for
dags and unrestricted SL cf tree grammars.

Tree Automata. A (nondeterministic) top-down tree automaton, briefly TDTA,
is a tuple A = (Q,F , q0,R), where Q is a finite set of states, Q ∪ F is a ranked
alphabet with arity(q) = 1 for all q ∈ Q, q0 ∈ Q is the initial state, and R is a
TRS such that all rules have the form q(α(x1, . . . , xn)) → α(q1(x1), . . . , qn(xn)),
where q, q1, . . . , qn ∈ Q, x1, . . . , xn are pairwise different variables, and α ∈ F
has rank n. A is a deterministic TDTA if no two rules in R have the same left-
hand side. The tree language that is accepted by a TDTA A is T (A) = {t ∈
T (F) | q0(t)

∗→R t}. A (nondeterministic) bottom-up tree automaton, briefly

Tree Automata and XPath on Compressed Trees 229

BUTA, is a tuple A = (Q,F , Qf ,R), where Q and F are as above, Qf ⊆ Q
is the set of final states, and R is a TRS such that all rules have the form
α(q1(x1), . . . , qn(xn)) → q(α(x1, . . . , xn)), where q, q1, . . . , qn ∈ Q, x1, . . . , xn

are pairwise different variables, and α ∈ F has rank n. A is a deterministic
BUTA if no two rules in R have the same left-hand side. The tree language
that is accepted by a BUTA A is T (A) = {t ∈ T (F) | ∃q ∈ Qf : t

∗→R q(t)}.
It is straight-forward to transform a nondeterministic BUTA into an equivalent
nondeterministic TDTA and vice versa, and a logspace transducer is able to to
do these transformations. Thus, in the following we do not distinguish between
nondeterministic BUTA and nondeterministic TDTA, and we call them simply
tree automata (TA). A subset of T (F) is recognizable if it is accepted by a TA.
Using a powerset construction, every recognizable tree language can be also ac-
cepted by a deterministic BUTA, but this involves an exponential blowup in the
number of states. For deterministic TDTA the situation is different; they only
recognize a proper subclass of the recognizable tree languages. The size |A| of a
TA is the sum of the sizes of all left and right hand sides of rules. Let G be a class
of SL cf tree grammars (e.g., the class of all dags). The membership problem for
the fixed TA A and the class G is the following decision problem:

INPUT: G ∈ G
QUESTION: Does eval(G) ∈ T (A) hold?

For a class C of tree automata, the uniform membership problem for C and the
class G is the following decision problem:

INPUT: G ∈ G and A ∈ C
QUESTION: Does eval(G) ∈ T (A) hold?

The upper part of Table 1 collects the complexity results that were obtained in
[13] for uncompressed trees. The statement that for instance the membership
problem for TA is NC1-complete means that for every fixed TA the membership
problem is in NC1 and that there exists a fixed TA for which the membership
problem is NC1-hard. More details on tree automata can be found in [8, 10].

3 Membership Problems for Dags and SL CF Tree
Grammars

The time bounds in the following theorem are based on dynamic programming.
Note that only the number k of parameters appears in the exponent. The idea
of the proof is to run the tree automaton A bottom up on the right-hand sides
of G’s productions. For the parameters we have to assume at most nk different
possibilities of states of A which (a determinized simulation of) A maps to a
state of A.

Theorem 1. For a given TA A with n states and a linear SL cf tree grammar
G with k parameters we can check in time O(nk+1 · |G| · |A|) whether eval(G) ∈
T (A).

230 M. Lohrey and S. Maneth

Table 1 Complexity results for (uniform) membership problems

For a given deterministic BUTA A with n states and a given SL cf tree
grammar with k parameters we can check in time O(nk · |G| · |A|) whether
eval(G) ∈ T (A).

Recall that a dag can be seen as a (linear) SL cf tree grammar without parame-
ters. Thus, Theorem 1 can be also applied to dags in order to obtain a polynomial
time algorithm for the uniform membership problem for TA and dags. Using a
straightforward reduction from the P-complete monotone circuit-value problem,
we obtain:

Theorem 2. There exists a fixed deterministic BUTA A such that the member-
ship problem for A and dags is P-hard.

Remark 1. By Theorem 1 and 2, the (uniform) membership problem for (deter-
ministic) BUTA on dags is P-complete. This result may appear surprising when
compared with a recent result from [21]: the membership problem for so called
dag automata is NP-complete. But in contrast to our approach, a dag automa-
ton operates directly on a dag, whereas we consider ordinary tree automata that
run on the unfolded dag. This makes a crucial difference for the complexity of
the membership problem.

By the next theorem, a deterministic TDTA can be evaluated on a dag in NL
(nondeterministic logspace). The crucial fact is that a deterministic TDTA A
accepts a tree t if and only if the path language of t (which is, roughly speaking,
the set of all words labeling a maximal path in the tree t) is included in some
regular string language L [10], where L is accepted by a finite automaton B that

det. TDTA det. BUTA TA

fixed NC1-complete
uncompressed trees [13]

uniform L-complete
LOGDCFL,

L-hard
LOGCFL-
complete

fixed
dags

uniform
NL-complete P-complete

fixedlin.SL+fixednumber para.
uniform

P-complete

fixedSL + fixed number para.
uniform

P-complete PSPACE-
complete

fixed
unrestricted SL

uniform
P-complete PSPACE-complete

.

Tree Automata and XPath on Compressed Trees 231

is logspace constructible from A. Now we just guess a path in the input dag and
simulate B on this path. The NL lower bound is obtained by a reduction from
the graph accessibility problem for dags.

Theorem 3. The uniform membership problem for deterministic TDTA and
dags is in NL. Moreover, there exists a fixed deterministic TDTA such that the
membership problem for A and dags is NL-hard.

By combining the statements in Theorem 1–3 we obtain the results for dags in
Table 1.

SL cf tree grammars allow higher compression rates than dags. This makes
computational problems harder when input trees are represented via SL cf tree
grammars. The following result reflects this phenomenon. The PSPACE lower
bound can be shown by a reduction from QSAT (quantified boolean satisfiabil-
ity), see e.g. [18].

Theorem 4. The uniform membership problem for TA and SL cf tree grammars
is in PSPACE. Moreover, there exists a fixed deterministic BUTA such that the
membership problem for A and SL cf tree grammars is PSPACE-hard.

Only for deterministic TDTA we obtain more efficient algorithms in the context
of unrestricted SL cf tree grammars. The polynomial time upper bound in the
next theorem is again based on the concept of the path language of a tree. For
an SL cf tree grammar G, the path language of eval(G) can be generated by a
small context-free string grammar. The lower bound follows from a result of [22]
about string straight-line programs.

Theorem 5. The uniform membership problem for deterministic TDTA and SL
cf tree grammars is in P. Moreover, there is a fixed deterministic TDTA such
that the membership problem for A and linear SL cf tree grammars with only
one parameter is P-hard.

From Theorem 1 and 5 (resp. Theorem 4 and 5) we obtain the complexity results
for linear SL cf tree grammars with a fixed number of parameters (resp. unre-
stricted SL cf tree grammars) in Table 1, see lin. SL + fixed number para. (resp.
unrestricted SL). The following result completes our characterization presented
in Table 1.

Theorem 6. The uniform membership problem for TA and (non-linear) SL cf
tree grammars with only one parameter is PSPACE-hard.

Proof. We prove the theorem by a reduction from QSAT [18]. Let us take a
quantified boolean formula ψ = Q1x1 · · ·Qnxn ϕ, where Qi ∈ {∀, ∃} and ϕ is a
boolean formula with variables from X = {x1, . . . , xn}. W.l.o.g. we may assume
that in ϕ the negation operator ¬ only occurs directly in front of variables. Let
X̄ = {¬x | x ∈ X}. We define an SL cf tree grammar G as follows: The set
of terminals contains the binary function symbol f , a unary function symbol ti
for every xi ∈ X , and a constant a. The set of nonterminals contains the start

232 M. Lohrey and S. Maneth

nonterminal S, and for every subformula α of ψ it contains a nonterminal Aα of
arity 1. The productions of G are:

S → Aψ(a) Aα(y)→ f(Aβ(ti(y)), Aβ(y)) if α ∈ {∀xiβ, ∃xiβ}
Aα(y)→ y if α ∈ X ∪ X̄ Aα(y)→ f(Aβ(y), Aγ(y)) if α ∈ {β ∧ γ, β ∨ γ}

An occurrence of the symbol ti on a path in the tree eval(G) indicates that the
variable xi is set to true. Note that from a nonterminal Aα, where α begins with
a quantification ∃xi or ∀xi we first generate a branching node (labeled with the
binary symbol f). Moreover, the left branch gets in addition the unary symbol
ti, which indicates that xi is set to true. The absence of ti in the right branch
indicates that xi is set to false.

We define a nondeterministic TDTA A as follows: The state set of A contains
all subformulas of ψ plus an additional state q. The initial state of A is the whole
formula ψ. The set R of transition rules of A consists of the following rules:

q(f(y, z))→ f(q(y), q(z))
q(ti(y)) → ti(q(y)) for all i

q(a) → a

α(f(y, z))→ f(β(y), q(z)) if α = ∃xiβ for some i

α(f(y, z))→ f(q(y), β(z)) if α = ∃xiβ for some i

α(f(y, z))→ f(β(y), β(z)) if α = ∀xiβ for some i

α(f(y, z))→ f(β(y), q(z)) if α = β ∨ γ for some γ

α(f(y, z))→ f(q(y), γ(z)) if α = β ∨ γ for some β

α(f(y, z))→ f(β(y), γ(z)) if α = β ∧ γ

α(ti(y)) → ti(α(y)) if α ∈ (X ∪ X̄) \ {xi,¬xi}
α(ti(y)) → ti(q(y)) if α = xi

α(a) → a if α ∈ X̄

Figure 1 shows the tree eval(G) for the true quantified boolean formula ∀x1∃x2 :
(x1 ∧ ¬x2) ∨ (¬x1 ∧ x2), where in addition every node is labeled with a state of
the automaton A such that the overall labeling is an accepting run.

By the first three rules for state q, q(t) ∗→R t for every ground tree t. Thus, if
we reach the state q, then the corresponding subtree is accepted. If the current
state α is an existential subformula ∃xiβ, then we guess nondeterministically one
of the two subtrees of the current f -labeled node (i.e., we choose an assignment
for xi) and verify β in that subtree. The other subtree is accepted by sending q
to that subtree. Similarly, if the current state α is a universal subformula ∀xiβ,
then we verify β in both subtrees, i.e., for both assignments for xi. The rules for
α = β ∨ γ and α = β ∧ γ can be interpreted similarly. Note that by construction
of G and A, if the current state α is of the form ∃xiβ, ∀xiβ, β ∨ γ, or β ∧ γ,
then the current tree node in eval(G) is an f -labeled node. On the other hand, if
the current state is from X ∪ X̄ , then the current tree node in eval(G) is labeled
with a symbol tj or the constant a. If the current state is a variable xi, then we

Tree Automata and XPath on Compressed Trees 233

f
∀x1∃x2 : (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

f ∃x2 : (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) f ∃x2 : (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

f q f
(x1∧¬x2)∨
(¬x1∧x2) f (x1∧¬x2)∨

(¬x1∧x2)
f q

f q f q f x1∧¬x2 f q f q f
¬x1∧x2 f q f q

t2 q

t1 q

a q

t2 q

t1 q

a q

t2 q

t1 q

a q

t2 q

t1 q

a q

t1x1

a q

t1¬x2

a¬x2

t1 q

a q

t1 q

a q

t2 q

a q

t2 q

a q

t2¬x1

a¬x1

t2x2

a q

a q a q a q a q

Fig. 1

search for the symbol ti in the chain of tj-labeled nodes below the current node.
We accept by going into the state q as soon as we find ti: xi(ti(y))→ ti(q(y)) If
we do not find ti and end up in the constant a, then we block; note that there is
no rule of form xi(a) → a. On the other hand, if the current state is a negated
variable ¬xi, then we verify that there is no ti in the chain of tj-labeled nodes
below the current node. Thus, we block as soon as we find ti; note that there
is no rule with left-hand side ¬xi(ti(y)). On the other hand, if we finally reach
the constant a in state ¬xi, then we accept via the rule ¬xi(a) → a. From the
previous discussion, it is not hard to see that the formula ψ is true if and only
if eval(G) ∈ L(A). ��

From Theorem 1 and Theorems 4–6 we obtain the results for SL cf tree grammars
with a fixed number of parameters in Table 1.

We end this sections with two results concerning the parameterized complexity
of membership problems for tree automata. Parameterized complexity [15] is a
branch of complexity theory with the goal to understand which input parts of a
hard (e.g. NP-hard) problem are responsible for the combinatorial explosion. A
parameterized problem is a decision problem where the input is a pair (k, x) ∈
N × Σ∗. The first input component k is called the input parameter (it may
also consist of several natural numbers). A typical example of a parameterized
problem is the parameterized version of the clique problem, where the input is
a pair (k, G), G is an undirected graph, and it is asked whether G has a clique
of size k. A parameterized problem (with input (k, x)) is in the class FPT (fixed
parameter tractable), if the problem can be solved in time f(k) · |x|c. Here c is
a fixed constant and f is an arbitrary (e.g., exponential) computable function
on N. This means that the non-polynomial part of the algorithm is restricted to
the parameter k.

Theorem 7. The following parameterized problem is in FPT:
INPUT: An SL cf tree grammar G with k parameters and a TA A with n

states.

234 M. Lohrey and S. Maneth

INPUT PARAMETER: (k, n)
QUESTION: eval(G) ∈ T (A)?

Proof. We first transform A into a deterministic BUTA with at most 2n states.
Then we apply Theorem 1 which gives us a running time of 2kn · |G| · |A|. ��

In recent years, a structural theory of parameterized complexity with the aim
of showing that certain problems are unlikely to belong to FPT was developed.
Underlying this theory is the notion of parameterized reductions [15]: A parame-
terized reduction from a parameterized problem A (with input (k, x) ∈ N×Σ∗)
to a parameterized problem B (with input (�, y) ∈ N × Γ ∗) is a mapping
f : N × Σ∗ → N × Γ ∗ such that: (i) for all (k, x) ∈ N × Σ∗, (k, x) ∈ A if and
only if f(k, x) ∈ B, (ii) f(k, x) is computable in time g(k) · |x|c for some com-
putable function g and some constant c, and (iii) for some computable function
h, if f(k, x) = (�, y), then � ≤ h(k). A parameterized problem A is fpt-reducible
to a parameterized problem B if there exists a parameterized reduction from
A to B. One of the classes in the upper part of the parameterized complexity
spectrum is the class AW[P]. For the purpose of this paper it is not necessary
to present the quite technical definition of AW[P]. Roughly speaking, AW[P] re-
sults from taking the closure (w.r.t. fpt-reducibility) of a parameterized version
of the PSPACE-complete QSAT problem. Problems that are AW[P]-hard are
very unlikely to be in FPT.

Theorem 8. The following problem is AW[P]-hard w.r.t. fpt-reducibility:
INPUT: A deterministic BUTA A and an SL cf tree grammar G with k

parameters
INPUT PARAMETER: k
QUESTION: eval(G) ∈ T (A)?

The theorem can be shown by a parameterized reduction from the following
problem pFOMC (parameterized first-order model-checking), which is AW[P]-
hard w.r.t. fpt-reducibility [23]:

INPUT: A directed graph H = (V, E) and a sentence φ of first-order logic
(built up from the atomic formulas x = y and E(x, y) (for variables x and y)
using boolean connectives and quantification over nodes of H).

INPUT PARAMETER: The number of different variables that are used in φ
QUESTION: Is φ true in the graph H?

4 XPath Evaluation

In this section, we consider XML-trees that are compressed via SL cf tree gram-
mars and study the node selecting language XPath over such trees. For more
background on XPath see [16, 17]. We restrict our attention to linear SL cf
tree grammars. Skeletons of XML documents are usually modeled as rooted un-
ranked labeled trees. Analogously to Section 2, an unranked tree with labels from
an (unranked) alphabet Σ can be defined as a pair t = (domt, λt), where (i)

Tree Automata and XPath on Compressed Trees 235

domt ⊆ N∗ is finite, (ii) λt : domt → F , (iii) if v � w ∈ domt, then also
v ∈ domt, and (iv) if vi ∈ domt then also vj ∈ domt for every 1 ≤ j ≤ i. For
the purpose of this section, it is more suitable to view such an unranked tree
t = (domt, λt) as a relational structure t = (domt, child, next-sibling, (Qa)a∈Σ),
where Qa = λ−1

t (a) ⊆ domt, child = {(v, vi) ∈ domt×domt | v ∈ N∗, i ∈ N}, and
next-sibling = {(vi, v(i+1)) ∈ domt×domt | v ∈ N∗, i ∈ N}. Thus, child(u, v) is
the child-relation in t and next-sibling(u, v) if and only if v is the right sibling of
u. From the basic tree relations child and next-sibling further tree relations that
are called XPath-axes can be defined. For instance let descendant := child∗ (the
reflexive and transitive closure of child) and following-sibling := next-sibling∗.
For the definition of the other XPath axes see for instance [16]. In the following
we consider the four XPath axes child, descendant, next-sibling, and following-
sibling; handling of other axes is straightforward and needs no further ideas.

The node selection language core XPath [16] can be seen as the tree naviga-
tional core of XPath. Its syntax is given by the following EBNF; here, χ is an
XPath-axis and a ∈ Σ ∪ {∗} (where ∗ is a new symbol):

corexpath ::= locationpath | / locationpath
locationpath ::= locationstep (/ locationstep)∗

locationstep ::= χ :: a | χ :: a [pred]
pred ::= (pred and pred) | (pred or pred) | not(pred) | locationpath

Let Q∗ be the unary predicate that is true for every node of a tree t. We define the
semantics of core XPath by translating a given tree t = (domt, child, next-sibling,
(Qa)a∈Σ) and a given expression π ∈ L(corexpath) (resp. e ∈ L(pred)) into a
binary relation S[π, t] ⊆ domt × domt (resp. a unary relation E [e, t] ⊆ domt).
Let π, π1, π2 ∈ L(locationpath), e, e1, e2 ∈ L(pred), and let χ be an XPath axes
(recall that ε is the root of a tree).

S[χ :: a[e], t] := {(x, y) ∈ domt × domt | (x, y) ∈ χ, y ∈ Qa, y ∈ E [e, t]}
S[/π, t] := domt × {x ∈ domt | (ε, x) ∈ S[π, t]}

S[π1/π2, t] := {(x, y) ∈ domt × domt | ∃z : (x, z) ∈ S[π1, t], (z, y) ∈ S[π2, t]}
E [e1 and e2, t] := E [e1, t] ∩ E [e2, t]
E [e1 or e2, t] := E [e1, t] ∪ E [e2, t]
E [not(e), t] := domt \ E [e, t]

E [π, t] := {x ∈ domt | ∃y : (x, y) ∈ S[π, t]}

Recall that by definition SL cf tree grammars generate ranked trees. In order
to generate XML skeletons, i.e., unranked trees, with SL cf tree grammars, we
encode unranked trees by binary trees (and hence ranked trees) using a standard
encoding: For an unranked tree t = (domt, child, next-sibling, (Qa)a∈Σ) define
the binary encoding bin(t) = (domt, child1, child2, (Qa)a∈Σ), where (i) (u, v) ∈
child1 if and only if (u, v) ∈ child and there does not exist w ∈ domt with (w, v) ∈
next-sibling (i.e., v is the left-most child of u), and (ii) child2 = next-sibling. Note
that t and bin(t) have the same set of nodes. The following theorem is our main

236 M. Lohrey and S. Maneth

result in this section. PSPACE-hardness follows from the corresponding result
for dags [6].

Theorem 9. The following problem is PSPACE-complete:
INPUT: A linear SL cf tree grammar G generating a binary tree with eval(G)=

bin(t) for some (unique) unranked tree t, two nodes u, v of eval(G), and a core
XPath expression π ∈ L(corexpath).

QUESTION: (u, v) ∈ S[π, t]?

For the proof of the PSPACE upper bound in Theorem 9 we first translate a given
XPath expression into a first-order formula that uses the XPath axes as atomic
predicates. We then show that such a first-order formula can be evaluated on
eval(G) for a given linear SL cf tree grammar by an alternating Turing machine
[18] that works in polynomial time with respect to the size of the formula and
the size of the grammar. For this it is crucial that nodes of eval(G) can be
represented in polynomial space (with respect to the size of G) and hence can
be guessed in polynomial time. This does not hold for non-linear SL cf tree
grammars which can generate trees of doubly exponential size. Finally, one can
use the fact that PSPACE is precisely the class of all problems that can be solved
on an alternating Turing machine in polynomial time, cf. [18].

5 Open Problems and Conclusions

An interesting class of SL cf tree grammars that is missing in our present com-
plexity analysis of tree automata is the class of linear SL cf tree grammar (with
an unbounded number of parameters in contrast to Theorem 1). The results in
this paper leave a gap from P to PSPACE for the uniform membership problem
for TA and linear SL cf tree grammars (with an unbounded number of para-
meters). Our algorithm BPLEX from [9] outputs linear SL cf tree grammars.
Note that BPLEX, even when bounding the number of parameters by a small
constant (like 2 or 3), clearly outperforms compression by dags. The results
presented here show that with respect to tree automata membership problems
and XPath evaluation, exactly the same complexity bounds hold for linear SL
cf tree grammars with a bounded number of parameter as for dags [5, 6]. This
motivates us to believe that linear SL cf tree grammars are better suited than
dags as memory efficient representations of XML documents. Precise trade-offs
between the representations have to be determined in practice; we are currently
implementing our ideas as part of BPLEX. For the XPath evaluation problem,
the complexity for non-linear SL cf tree grammars remains open. We conjecture
that the PSPACE upper bound from Theorem 9 cannot be generalized to the
non-linear case.

References

1. Lohrey, M.: Word problems on compressed word. In Diaz, J., Karhumäki, J.,
Lepistö, A., Sannella, D., eds.: Proc. ICALP 2004, Turku (Finland). Number 3142
in Lecture Notes in Computer Science, Springer (2004) 906–918

Tree Automata and XPath on Compressed Trees 237

2. Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with im-
plicit input. In Diaz, J., Karhumäki, J., Lepistö, A., Sannella, D., eds.: Proc. ICALP
2004, Turku (Finland). Number 3142 in Lecture Notes in Computer Science,
Springer (2004) 15–27

3. Plump, D.: Term graph rewriting. In Ehrig, H., Engels, G., Kreowski, H.J., Rozen-
berg, G., eds.: Handbook of Graph Grammars and Computing by Graph Transfor-
mation. Volume 2. World Scientific (1999) 3–61

4. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Computing Surveys 24 (1992) 293–318

5. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In Freytag,
J.C., et al., eds.: Proc. VLDB 2003, Morgan Kaufmann (2003) 141–152

6. Frick, M., Grohe, M., Koch, C.: Query evaluation on compressed trees (extended
abstract). In: Proc. LICS’2003, IEEE Computer Society Press (2003) 188–197

7. Maneth, S., Busatto, G.: Tree transducers and tree compressions. In Walukiewicz,
I., ed.: Proc. FoSSaCS 2004, Barcelona (Spain). Number 2987 in Lecture Notes in
Computer Science, Springer (2004) 363–377

8. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (2002)

9. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML
documents. In: Proc. DBPL 2005, Trondheim (Norway), Springer (2005) to appear.

10. Gécseg, F., Steinby, M.: Tree automata. Akadémiai Kiadó (1984)
11. Murata, M., Lee, D., Mani, M.: Taxonomy of XML Schema Languages using

Formal Language Theory. In: Proc. Extreme Markup Languages 2000, Montréal
(Canada) (2000)

12. Neven, F.: Automata theory for XML researchers. SIGMOD Record 31 (2002)
39–46

13. Lohrey, M.: On the parallel complexity of tree automata. In Middeldorp, A., ed.:
Proc. RTA 2001, Utrecht (The Netherlands). Number 2051 in Lecture Notes in
Computer Science, Springer (2001) 201–215

14. Segoufin, L.: Typing and querying XML documents: some complexity bounds. In:
Proc. PODS 2003, ACM Press (2003) 167–178

15. Downey, R.G., Fellows, M.R.: Parametrized Complexity. Springer (1999)
16. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath

queries. In: Proc. VLDB 2002, Morgan Kaufmann (2002) 95–106
17. Gottlob, G., Koch, C., Pichler, R.: The complexity of XPath query evaluation. In:

Proc. PODS 2003, ACM Press (2003) 179–190
18. Papadimitriou, C.H.: Computational Complexity. Addison Wesley (1994)
19. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University

Press (1998)
20. Courcelle, B.: A representation of trees by languages I. Theoretical Computer

Science 6 (1978) 255–279
21. Anantharaman, S., Narendran, P., Rusinowitch, M.: Closure properties and deci-

sion problems of dag automata. Information Processing Letters 94 (2005) 231–240
22. Markey, N., Schnoebelen, P.: A PTIME-complete matching problem for SLP-

compressed words. Information Processing Letters 90 (2004) 3–6
23. Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries.

Journal of Computer and System Sciences 58 (1999) 407–427

Deeper Connections Between LTL and

Alternating Automata

Radek Pelánek and Jan Strejček

Faculty of Informatics, Masaryk University in Brno,
Botanická 68a, 602 00 Brno, Czech Republic

{xpelanek, strejcek}@fi.muni.cz

Abstract. It is known that Linear Temporal Logic (LTL) has the same
expressive power as alternating 1-weak automata (A1W automata, also
called alternating linear automata or very weak alternating automata).
A translation of LTL formulae into a language equivalent A1W automata
has been introduced in [1]. The inverse translation has been developed
independently in [2] and [3]. In the first part of the paper we show that
the latter translation wastes temporal operators and we propose some
improvements of this translation. The second part of the paper draws a
direct connection between fragments of the Until-Release hierarchy [4]
and alternation depth of nonaccepting and accepting states in A1W
automata. We also indicate some corollaries and applications of these
results.

1 Introduction

The study of connections between temporal logics and automata proved to be
very fruitful. The best example is the translation of linear temporal logic (LTL)
formulae into nondeterministic Büchi automata [5, 6], which is one of the cor-
nerstones of the automata-based model checking of LTL properties [7].

It is known for a long time that nondeterministic Büchi automata are more
expressive than LTL [8]. Only a few years ago, the alternating 1-weak Büchi
automata (or A1W automata for short, also known as alternating linear automata
or very weak alternating automata) have been identified as the type of automata
with the same expressive power as LTL. Muller, Saoudi, and Schupp [1] have
introduced a translation of LTL formulae into equivalent A1W automata. The
translation of A1W automata into equivalent LTL formulae has been presented
independently by Rohde [2], and Löding and Thomas [3].

The LTL→A1W translation has been recently used to build new and more
efficient algorithms translating LTL formulae into nondeterministic Büchi au-
tomata [9, 10]. Another application of this translation arises in connection with
verification algorithms working directly on alternating automata (for pointers
see [11]). The growing popularity of A1W automata is hindered by the fact that
it is often hard to see what language is recognized by an automaton. Here is the
point where the A1W→LTL translation can help as LTL formulae are easy to un-
derstand, especially if they contain only few occurrences of temporal operators.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 238–249, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Deeper Connections Between LTL and Alternating Automata 239

Unfortunately, the “standard” A1W→LTL translation does not provide optimal
results as it wastes next operators. For example, the automaton corresponding
to the formula a U (b∧(b U c)) is translated into formula a U (b∧X(b U c)). In this
paper we propose an improved A1W→LTL translation reducing the number of
next operators in the resulting formula. Our improved translation also prefers
the use of less expressive and easy-to-read unary temporal operators eventually
or globally instead of binary operator until. We prove that for an A1W automa-
ton produced by the standard translation of an LTL formula ϕ our translation
provides a formula with the same (or even lower) nesting depths of until, next,
and eventually operators comparing to these nesting depths in ϕ.

The improved translation also allows to define classes of A1W automata with
the same expressive power as LTL fragments with temporal operators until, next,
and eventually, where the nesting depth of each operator can be bounded. Sev-
eral interesting and previously studied LTL fragments fit into this general pattern,
namely fragments of the until hierarchy [12, 13], fragments without eventually op-
erator andwithboundednesting depth(s) ofnext or until or both operators studied
in [14, 15], and the fragment without until operator known as restricted LTL [16].

The second part of this paper presents connections between A1W automata
and some LTL fragments that are not covered by the pattern above, namely
fragments of the until-release (alternating) hierarchy [4] and fragments of the
hierarchy of temporal properties [17, 18]. In particular, we show that alternation
of until and release operators in a formula corresponds to alternation of nonac-
cepting and accepting states in an equivalent A1W automaton. Some corollaries
of this correspondence are presented as well.

The paper is structured as follows. In Section 2 we recall the definitions of
LTL and alternating 1-weak automata together with standard translations be-
tween these formalisms. Section 3 provides an improved version of A1W→LTL
translation and indicates some applications. Section 4 is devoted to the connec-
tion between A1W automata and the until-release hierarchy. Section 5 sums up
presented results and mentions some topics for future research. All proofs are
omitted due to the space limitations; they can be found in the full version of
this paper [19].

2 Preliminaries

2.1 Linear Temporal Logic (LTL)

The syntax of LTL is given by the abstract syntax equation

ϕ ::= � | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | Fϕ | ϕ1 U ϕ2,

where � stands for true and a ranges over a countable set Λ = {a, b, c, . . .} of
letters. We also use ⊥ to abbreviate ¬�, Gϕ to abbreviate ¬F¬ϕ, and ϕR ψ
to abbreviate ¬(¬ϕU¬ψ). The temporal operators X, F, U, G, R are called next,
eventually, until, globally, and release, respectively. Let us note that Fϕ can be
equivalently defined as an abbreviation for �Uϕ.

240 R. Pelánek and J. Strejček

We define the semantics of LTL in terms of languages over infinite words.
An alphabet is a finite set Σ ⊆ Λ. A word over alphabet Σ is an infinite sequence
w = w(0)w(1)w(2) . . . ∈ Σω of letters from Σ. For every i ∈ N0, by wi we denote
the suffix of w of the form w(i)w(i + 1)w(i + 2)

The validity of an LTL formula ϕ for w ∈ Σω is defined as follows:

w |= �
w |= a iff a = w(0)
w |= ¬ϕ iff w �|= ϕ
w |= ϕ1 ∧ ϕ2 iff w |= ϕ1 ∧ w |= ϕ2
w |= Xϕ iff w1 |= ϕ
w |= Fϕ iff ∃i ∈ N0 : wi |= ϕ
w |= ϕ1 U ϕ2 iff ∃i ∈ N0 : wi |= ϕ2 ∧ ∀ 0 ≤ j < i : wj |= ϕ1

Given an alphabet Σ, an LTL formula ϕ defines the language LΣ(ϕ) = {w ∈
Σω | w |= ϕ}.

Now we define a notation for LTL fragments given by bounds on nesting
depths of temporal operators. Let O ∈ {X, F, U} be a temporal operator. The
nesting depth of O in a formula ϕ, written O-depth(ϕ), is defined in the following
way, where Z and Z ′ range over unary and binary (temporal as well as boolean)
operators respectively.

O-depth(�) = 0
O-depth(a) = 0

O-depth(Zϕ) =
{

O-depth(ϕ) + 1 if Z = O
O-depth(ϕ) otherwise

O-depth(ϕ1Z
′ ϕ2) =

{
max{O-depth(ϕ1), O-depth(ϕ2)}+ 1 if Z ′ = O
max{O-depth(ϕ1), O-depth(ϕ2)} otherwise

For all m, n, k ∈ N0 ∪ {∞}, we set

LTL(Um, Xn, Fk) = {ϕ | U-depth(ϕ) ≤ m, X-depth(ϕ) ≤ n, F-depth(ϕ) ≤ k}.

We abuse this fragment notation by omitting the upper indices equal to ∞.
Moreover, we usually omit the whole operator if its index is 0. For example, by
LTL(Xn, F) we mean the fragment LTL(U0, Xn, F∞).

2.2 Alternating 1-Weak Büchi Automata (A1W)

The transition function of an alternating automaton assigns to each state and
letter a positive boolean formula over states. The set of positive boolean formulae
over set Q (denoted B+(Q)) consists of formulae � (true), ⊥ (false), all elements
of Q, and boolean combinations over Q built with ∧ and ∨. A subset S of Q is
a model of ϕ ∈ B+(Q) iff ϕ is satisfied by the valuation assigning true just to
states in S. A set S is a minimal model of ϕ (denoted S |= ϕ) iff S is a model
of ϕ and no proper subset of S is a model of ϕ.

An alternating Büchi automaton is a tuple A = (Σ, Q, q0, δ, F), where Σ is a
finite alphabet, Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q×Σ →

Deeper Connections Between LTL and Alternating Automata 241

B+(Q) is a transition function, and F ⊆ Q is a set of accepting states. By A(p)
we denote the automaton A with initial state p ∈ Q instead of q0.

A run of an alternating automaton is a (potentially infinite) tree. A tree is
a set T ⊆ N∗

0 such that if xc ∈ T , where x ∈ N∗
0 and c ∈ N0, then also x ∈ T and

xc′ ∈ T for all 0 ≤ c′ < c. A Q-labeled tree is a pair (T , r) where T is a tree and
r : T → Q is a labeling function. A run of an automaton A = (Σ, Q, q0, δ, F)
over word w ∈ Σω is a Q-labeled tree (T , r) such that r(ε) = q0 and for each
x ∈ T the set S = {r(xc) | c ∈ N0, xc ∈ T } satisfies S |= δ(r(x), w(|x|)). A run
(T , r) is accepting iff for each infinite path π in T it holds that Inf (π) ∩ F �= ∅,
where Inf (π) is the set of all labels (i.e. states) appearing infinitely often on π.
An automaton A accepts a word w ∈ Σω iff there exists an accepting run of A
over w. A language of all words accepted by an automaton A is denoted by L(A).

Let Succ(p) denote the set Succ(p) = {q | ∃a ∈ Σ, S ⊆ Q : S ∪ {q} |= δ(p, a)}
of all possible successors of p, and Succ′(p) = Succ(p) � {p}. An automaton
is called 1-weak if there exists an ordering < on the set of states Q such that
q ∈ Succ′(p) implies q < p. In the following we use A1W automaton or simply
automaton meaning ‘alternating 1-weak Büchi automaton’. Further, instead of
S |= δ(a, p) we write p

a→ S and say that an automaton has a transition leading
from p to S under a. A state p of an automaton has a loop whenever p ∈ Succ(p).

p

q1 q2

q3

a

a

a

b

b

b
c

c

c

Fig. 1. The automaton accepting the language a∗b{a, b, c}∗cω

An A1W automaton A = (Σ, Q, q0, δ, F) can be drawn as a graph; nodes are
the states and every transition p

a→ S is depicted as a branching edge labelled
with a and leading from node p to the nodes in S. Edges that are not leading to
any node correspond to the cases when S is the empty set. Initial and accept-
ing states are indicated in the standard way. For example, Figure 1 depicts an
automaton accepting the language a∗b{a, b, c}∗cω.

2.3 LTL→A1W Translation [1, 11]

In this subsection we treat every (sub)formula of the form Fϕ as an abbreviation
for �Uϕ.

Let ϕ be an LTL formula and Σ be an alphabet. The formula can be translated
into an automaton A satisfying L(A) = LΣ(ϕ), where A = (Σ, Q, qϕ, δ, F) and

242 R. Pelánek and J. Strejček

p

q r

a b

.

Fig. 2. Part of an automaton translated into the formula ϕp = (a ∧ Xϕq)U (b ∧ Xϕr)

– the states Q = {qψ, q¬ψ | ψ is a subformula of ϕ} correspond to the subfor-
mulae of ϕ and their negations,

– the transition function δ is defined inductively as:

δ(q�, a) = �
δ(qa, b) = � if a = b, δ(qa, b) = ⊥ otherwise
δ(q¬ψ, a) = δ(qψ, a)
δ(qψ∧ρ, a) = δ(qψ, a) ∧ δ(qρ, a)
δ(qXψ, a) = qψ

δ(qψUρ, a) = δ(qρ, a) ∨ (δ(qψ , a) ∧ qψUρ)

where α denotes the positive boolean formula dual to α defined by induction
on the structure of α as:

� = ⊥ q¬ψ = qψ β ∧ γ = β ∧ γ

⊥ = � qψ = q¬ψ β ∨ γ = β ∨ γ

– the set of accepting states is F = {q¬(ψUρ) | ψ U ρ is a subformula of ϕ}.
We use the notation AΣ(ϕ) for the automaton given by the translation of an

LTL formula ϕ with respect to an alphabet Σ.
For example, the translation applied on the formula ϕ = (a U b) ∧ FGc and

the alphabet Σ = {a, b, c} produces the automaton depicted on Figure 1, where
p, q1, q2, q3 stand for qϕ, qaUb, qFGc, qGc, respectively.

2.4 A1W→LTL Translation [2, 3]

Let A = (Σ, Q, q0, δ, F) be an A1W automaton. For each p ∈ Q we define an LTL
formula ϕp such that LΣ(ϕp) = L(A(p)) (in particular LΣ(ϕq0) = L(A)). The
definition proceeds by induction respecting the ordering of states; the formula
ϕp employs formulae of the form ϕq where q ∈ Succ′(p). This is the point where
the 1-weakness of the automaton is used. To illustrate the inductive step of
the translation, let us consider the situation depicted on Figure 2. The formula
corresponding to state p is ϕp = (a ∧ Xϕq)U (b ∧ Xϕr).

Before we give a formal definition of ϕp, we introduce some auxiliary formulae.
Let a ∈ Σ be a letter and S ⊆ Q be a set of states.

θ(a, S) = a ∧
∧
q∈S

Xϕq αp =
∨

p
a→ S

p ∈ S

θ(a, S � {p}) βp =
∨

p
a→ S

p �∈ S

θ(a, S)

Deeper Connections Between LTL and Alternating Automata 243

p

q

a

bb

c

Fig. 3. An automaton for the formula aU (b ∧ (bU c)) and alphabet {a, b, c}

The formula θ(a, S) represent a situation where the automaton makes a transition
under a into the set of states S. Formulae αp and βp correspond to all transitions
leading from state p; αp covers transitions with a loop while βp covers the others.
The definition of ϕp then depends on whether p is an accepting state or not.

ϕp =

{
αp U βp if p �∈ F

(αp U βp) ∨ Gαp if p ∈ F

Given an automaton A with an initial state q0, we set ϕ(A) = ϕq0 .

3 Improved A1W→LTL Translation

The weak point of the A1W→LTL translation presented above is that for each
successor q ∈ Succ′(p) of a state p the formula ϕp contains a subformula Xϕq even
if the X operator is not needed. This is illustrated by the automaton A in Figure 3
produced by translating formula a U (b∧(b U c)) with respect to alphabet {a, b, c}.
The reverse translation provides an equivalent formula ϕ(A) = a U (b∧X(b U c)).

Let p
a→ S be a transition and X ⊆ S. We now formulate conditions that

are sufficient to omit the X operator in front of ϕq (for every q ∈ X) in the
subformula of ϕp corresponding to the transition p

a→ S.

Definition 1. Let p
a→ S be a transition of an automaton A. A set X ⊆ S �{p}

is said to be X-free for p
a→ S if the following conditions hold.

1. For each q ∈ X there is S′
q ⊆ S such that q

a→ S′
q.

2. Let Y ⊆ X and for each q ∈ Y let S′
q ⊆ Q be a set satisfying q

a→ S′
q and

q �∈ S′
q. Then there exists a set S′′ ⊆ (S � Y) ∪

⋃
q∈Y S′

q satisfying p
a→ S′′.

Figure 4 illustrates the conditions for X-freeness. Please note that it can be
the case that p ∈ S. Further, in the first condition it can be the case that q ∈ S′

q.
It is easy to see that the empty set is X-free for every transition. Further,

every subset of an X-free set for a transition is X-free for the transition as well.
On the other hand, Figure 5 demonstrates that a union of two X-free sets need
not be X-free.

Let Xfree be an arbitrary but fixed function assigning to each transition p
a→ S

a set that is X-free for p
a→ S. We now introduce an improved A1W→LTL trans-

lation. Roughly speaking, the translation omits the X operators in front of sub-
formulae which correspond to the states in X-free sets given by the function Xfree.

244 R. Pelánek and J. Strejček

1.

2. p p

pp

qq

q1 q1q2 q2qn qn

a

a

a aa

a a

aa

SS

S S

S′
q

S′′

S′
q1 S′

q1
S′

q2 S′
q2

S′
qn S′

qn

Y Y

X

=⇒

=⇒

. . .

.

Fig. 4. The conditions for X-freeness

p

q1 q2

q3 q4

a

a

a

a

a

a

a

.

Fig. 5. The sets {q1}, {q2} are X-free for p
a→ {q1, q2} while the set {q1, q2} is not

The improved A1W→LTL translation exhibits similar structure as the origi-
nal one. Instead of formulae of the form θ(a, S) representing a transition under a
leading from an arbitrary state p to S, we define a specialized formula θ′p(a, S)
for each transition p

a→ S.

θ′p(a, S) = a ∧
∧

q ∈ S � Xfree(p a→ S)
q �= p

Xϕ′
q ∧

∧
q ∈Xfree(p a→S)

ϕ′
q

Deeper Connections Between LTL and Alternating Automata 245

α′
p =

∨
p

a→ S
p ∈ S

θ′p(a, S) β′
p =

∨
p

a→ S
p �∈ S

θ′p(a, S)

In the following definition of a formula ϕ′
p we identify some cases when U can be

replaced by “weaker” operators F or G. To this end we define two special types of
states. A state p is of the F-type if there is a transition p

a→ {p} for every a ∈ Σ.
A state p is of the G-type if every transition of the form p

a→ S satisfies p ∈ S.

ϕ′
p =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β′
p if p �∈ Succ(p)

⊥ if p ∈ Succ(p), p �∈ F, p is of G-type

Fβ′
p if p ∈ Succ(p), p �∈ F, p is of F-type and not of G-type

α′
p Uβ′

p if p ∈ Succ(p), p �∈ F, p is neither of F-type nor of G-type

� if p ∈ Succ(p), p ∈ F, p is of F-type

Gα′
p if p ∈ Succ(p), p ∈ F, p is of G-type and not of F-type

(α′
p Uβ′

p) ∨ Gα′
p if p ∈ Succ(p), p ∈ F, p is neither of F-type nor of G-type

By ϕXfree(A) we denote the formula ϕ′
q0

given by the improved translation using
the function Xfree. The following Theorems 1 and 2 say that the translation is
correct and that it does not waste temporal operators.

Theorem 1. Let A be an A1W automaton over alphabet Σ. Let Xfree be a func-
tion assigning an X-free set to each transition of A. Then L(A) = LΣ(ϕXfree(A)).

Theorem 1 is proved by induction with respect to ordering of states in the
automaton A. The theorem is a direct corollary of the following lemma.

Lemma 1. Let p
a→ S be a transition of an A1W automaton A such that for

each q ∈ Succ′(p) the equivalence ϕq ⇐⇒ ϕ′
q holds. Then θ(a, S � {p}) =⇒

θ′p(a, S). Further, θ′p(a, S) =⇒ βp ∨ αp. Moreover, if p �∈ S then θ′p(a, S) =⇒ βp.

Theorem 2. For each formula ϕ ∈ LTL(Um, Xn, Fk) and each alphabet Σ there
exists a function Xfree such that ϕXfree(AΣ(ϕ)) ∈ LTL(Um, Xn, Fk).

The function Xfree can be effectively constructed from the transition relation
of the automaton. For further details about the construction and for full proofs
see [19].

The improved translation enables us to study relations between fragments of
the form LTL(Um, Xn, Fk) and classes of A1W automata. In particular, we can
provide alternative definitions of language classes corresponding to some previ-
ously studied LTL fragments, namely fragments of the form LTL(Uk, X, F) con-
stituting the so-called until hierarchy [12, 13], fragments of the form LTL(U, Xn),
LTL(Um, X), or LTL(Um, Xn) studied in [14, 15], and the fragments LTL(X, F)
also called restricted LTL [16]. Due to the lack of space we mention only the

246 R. Pelánek and J. Strejček

alternative definition of languages definable in LTL(X, F). The other cases are a
bit more complicated and can be found in [19].

Lemma 2. A language is definable by a formula of LTL(X, F) if and only if
there exists an A1W automaton recognizing the language such that every state
with a loop is of F-type or G-type.

4 Until-Release Hierarchy and A1W Automata

The until-release hierarchy of LTL formulae has been introduced in [4]. It is
based on alternation depth of U and R operators. Therefore it is also called
alternating hierarchy. This hierarchy has a strong connection to the hierarchy of
temporal properties introduced by Manna and Pnueli [17, 18]. Moreover, there
is a relation between classes of until-release hierarchy and complexity of their
model checking problem (see [4]).

Definition 2. The classes URi, RUi of the Until-Release hierarchy are defined
inductively.

– The classes UR0 and RU0 are both identical to LTL(X).
– The class URi+1 is the least set containing RUi and closed under the appli-

cation of operators ∧,∨, X, and U.
– The class RUi+1 is the least set containing URi and closed under the appli-

cation of operators ∧,∨, X, and R.

Let us note that the hierarchy collapses on the third level with respect to its
expressive power. More precisely, each language is definable by LTL if and only if
it is definable by a positive boolean combination of UR2 and RU2 formulae. These
formulae are contained in UR3 as well as in RU3. In the following we identify
a fragment of the alternating hierarchy with the set of languages defined by
formulae of this fragment.

We now define the alternation depth of nonaccepting and accepting states in
the graph of an A1W automaton. We also define classes of languages recognized
by automata with a given alternation depth.

Definition 3. Let A = (Σ, Q, q0, δ, F) be an A1W automaton. For each i ∈ N0
we inductively define sets of states σi and πi as follows.

– σ0 is the smallest set of states satisfying
• {p | p �∈ F and Succ(p) = ∅} ⊆ σ0 and
• if p �∈ F and Succ(p) ⊆ σ0 then p ∈ σ0,

– π0 is the smallest set of states satisfying
• {p | p ∈ F and Succ(p) = ∅} ⊆ π0 and
• if p ∈ F and Succ(p) ⊆ π0 then p ∈ π0,

– σi+1 is the smallest set of states satisfying
• σi ∪ πi ⊆ σi+1 and
• if p �∈ F and Succ′(p) ⊆ σi+1 then p ∈ σi+1,

Deeper Connections Between LTL and Alternating Automata 247

– πi+1 is the smallest set of states satisfying
• σi ∪ πi ⊆ πi+1 and
• if p ∈ F and Succ′(p) ⊆ πi+1 then p ∈ πi+1.

We also define functions σA, πA : Q −→ N0 as

σA(p) = min{i | p ∈ σi} and πA(p) = min{i | p ∈ πi}.

Finally, for each i ∈ N0 we define sets Σi and Πi as

Σi = {L(A) | A = (Σ, Q, q0, δ, F) is an A1W automaton and σA(q0) ≤ i},
Πi = {L(A) | A = (Σ, Q, q0, δ, F) is an A1W automaton and πA(q0) ≤ i}.

The following theorem says that a language is definable by a formula of URi

if and only if it is recognized by an A1W automaton with alternation depth
of nonaccepting and accepting states at most i. An analogous statement holds
for RUi and alternation depth of accepting and nonaccepting states. It is worth
mentioning that the proof of the following theorem is not as simple as one can
think when looking at the definition of a formula ϕp in the standard A1W→LTL
translation. See [19] for details.

Theorem 3. For each i ∈ N0 it holds that URi = Σi and RUi = Πi.

The theorem allows us to transform the results proved for the until-release hi-
erarchy in [4] into statements about our hierarchy of Σi and Πi classes. This is
exemplified by the two following corollaries. For definitions of language classes
mentioned in the latter corollary (safety, guarantee, obligation,. . .) we refer
to [17, 18].

Corollary 1. The hierarchy of Σi and Πi classes collapses on the third level,
i.e. Σ3 = Π3 = Σi = Πi for all i > 3.

Corollary 2. A language definable in LTL is in safety, guarantee, obligation,
response, persistence, or reactivity class iff it is in Π1, Σ1, Π2 ∩Σ2, Π2, Σ2, or
Π3 ∩Σ3, respectively.

5 Summary and Future Work

The paper presents two main results. The first is the improved translation of
A1W automata into LTL formulae that are language equivalent. The second
result is a new automata-based definition of classes in the until-release hierar-
chy [4]. We also provide some corollaries of these results and indicate further
applications.

Besides the presented results our research brought several topics for future
work. For example, we would like to know whether there are some more general
or/and simpler conditions for a set to be X-free (see Definition 1). Another inter-
esting question is the relation between the sizes of LTL formulae and equivalent
A1W automata. Both standard and improved A1W→LTL translations can be

248 R. Pelánek and J. Strejček

modified to produce formulae that can be represented by directed acyclic graphs
of linear size with respect to the size of the original automata. However, we con-
jecture that A1W automata can be exponentially more succinct than LTL if we
stick with the standard representation of LTL formulae.

Acknowledgment. Authors have been partially supported as follows:
R. Pelánek by Czech Science Foundation (GAČR), grants No. 201/03/0509 and
102/05/H050, and J. Strejček by the research centre “Institute for Theoretical
Computer Science (ITI)”, project No. 1M0021620808.

References

1. Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In: Proceedings of the 3rd IEEE Symposium on Logic in Computer Science
(LICS 1988), IEEE Computer Society Press (1988) 422–427

2. Rohde, S.: Alternating automata and the temporal logic of ordinals. PhD thesis,
University of Illinois at Urbana-Champaign (1997)

3. Löding, C., Thomas, W.: Alternating automata and logics over infinite words
(extended abstract). In van Leeuwen, J., et al., eds.: Theoretical computer science:
exploring new frontiers of theoretical informatics: International Conference IFIP
TCS 2000. Volume 1872 of Lecture Notes in Computer Science., Springer-Verlag
(2000) 521–535

4. Černá, I., Pelánek, R.: Relating hierarchy of temporal properties to model check-
ing. In: Mathematical Foundations of Computer Science (MFCS). Volume 2747 of
Lecture Notes in Computer Science., Springer (2003)

5. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths
(extended abstract). In: 24th Annual Symposium on Foundations of Computer
Science, IEEE (1983) 185–194

6. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Information and
Computation 115 (1994) 1–37

7. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proceedings of the First Symposium on Logic in Computer Science,
Cambridge (1986) 322–331

8. Wolper, P.: Temporal logic can be more expressive. Information and Control 56
(1983) 72–99

9. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In Berry, G.,
Comon, H., Finkel, A., eds.: Proceedings of the 13th Conference on Computer
Aided Verification (CAV’01). Volume 2102 of Lecture Notes in Computer Science.,
Springer (2001) 53–65

10. Tauriainen, H.: On translating linear temporal logic into alternating and nonde-
terministic automata. Research Report A83, Helsinki University of Technology,
Laboratory for Theoretical Computer Science (2003)

11. Vardi, M.Y.: Alternating automata: Unifying truth and validity checking for tem-
poral logics. In McCune, W., ed.: Proceedings of the 14th International Conference
on Automated Deduction. Volume 1249 of LNAI., Springer (1997) 191–206

12. Thérien, D., Wilke, T.: Temporal logic and semidirect products: An effective char-
acterization of the until hierarchy. In: 37th Annual Symposium on Foundations of
Computer Science (FOCS ’96), IEEE (1996) 256–263

Deeper Connections Between LTL and Alternating Automata 249

13. Etessami, K., Wilke, T.: An until hierarchy and other applications of an
Ehrenfeucht-Fräıssé game for temporal logic. Information and Computation 160
(2000) 88–108

14. Kučera, A., Strejček, J.: The stuttering principle revisited. Acta Informatica (2005)
To appear.

15. Kučera, A., Strejček, J.: Characteristic patterns for LTL. In: Proceedings of
SOFSEM 2005. Volume 3381 of Lecture Notes in Computer Science., Springer-
Verlag (2005) 239–249

16. Perrin, D., Pin, J.E.: Infinite words. Volume 141 of Pure and Applied Mathematics.
Elsevier (2004)

17. Manna, Z., Pnueli, A.: A hierarchy of temporal properties. In: Proc. ACM Sym-
posium on Principles of Distributed Computing, ACM Press (1990) 377–410

18. Chang, E., Manna, Z., Pnueli, A.: Characterization of temporal property classes.
In Kuich, W., ed.: Automata, Languages and Programming, 19th International
Colloquium (ICALP ’92). Volume 623 of Lecture Notes in Computer Science.,
Springer-Verlag (1992) 474–486

19. Pelánek, R., Strejček, J.: Deeper connections between ltl and alternating automata.
Technical Report FIMU-RS-2004-08, Faculty of Informatics, Masaryk University
in Brno (2004) Available at http://www.fi.muni.cz/reports/.

The Structure of Subword Graphs and Suffix

Trees of Fibonacci Words�

Wojciech Rytter

Instytut Informatyki, Uniwersytet Warszawski,
Banacha 2, 02–097, Warszawa, Poland

Department of Computer Science, New Jersey Institute of Technology
rytter@mimuw.edu.pl

Abstract. We use automata-theoretic approach to analyze properties of
Fibonacci words. The directed acyclic subword graph (dawg) is a useful
deterministic automaton accepting all suffixes of the word. We show that
dawg’s of Fibonacci words have particularly simple structure. The sim-
ple structure of paths in these graphs gives simplified alternative proofs
and new interpretation of several known properties of Fibonacci words.
The structure of lengths of paths in the compacted subword graph corre-
sponds to a number-theoretic characterization of occurrences of subwords
in terms of Zeckendorff Fibonacci number system. Using the structural
properties of dawg’s it can be easily shown that for a string w we can
check if w is a subword of a Fibonacci word in time O(|w|) and O(1)
space. Compact dawg’s of Fibonacci words show a very regular structure
of their suffix trees and show how the suffix tree for the Fibonacci word
grows (extending the leaves in a very simple way) into the suffix tree for
the next Fibonacci word.

1 Introduction

Fibonacci words form a famous family of words, due to many interesting prop-
erties related to text algorithms and combinatorics on words, see [1, 2]. In par-
ticular Fibonacci words have Θ(n log n) positioned squares and they have lin-
ear number of runs: maximal periodic subsegments (x is said to be periodic iff
period(x) ≤ |x|/2). The structure of runs in general strings is rather mysterious,
and the structure of runs in Fibonacci words helps to understand this structure.
In this sense Fibonacci words are very representative. A very good source for
properties of these words is for example the book [2]. We rediscover/discover
several known/unknown properties of Fibonacci words in a novel way: analyzing
the automaton for the set of subwords. Let Fn be the n-th Fibonacci word, where

F0 = a, F1 = ab, Fn+1 = Fn · Fn−1

Denote by Φn the n-th Fibonacci number, where |Fn| = Φn. Define also the
infinite Fibonacci word F∞ = F∞(1, 2, 3, 4, . . .), such that each Fn is a prefix
of F∞. Hence
� Research supported by the grants 4T11C04425 and CCR-0313219.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 250–261, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

The Structure of Subword Graphs and Suffix Trees of Fibonacci Words 251

F∞ = abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaab. . .

By an occurrence of u in F∞ we mean a position i such that F∞[i+1 . . . i+|u|] =
u. Denote by first-occ(u) the first occurrence of u in F∞, and by occ(u) the set
of all occurrences. The structure of lengths of paths in the dawg’s of Fibonacci
words is closely related to the Fibonacci number system. This system consists
in representing a number as a sum of Fibonacci numbers, in such a way that
no two consecutive Fibonacci numbers are used. The sum of zero number of
integers equals zero. The corresponding representation of the number is called
Z-representation.

Theorem 1. [Zeckendorff Theorem, [3]]
Every nonnegative integer is uniquely represented in the Fibonacci number sys-
tem. Every number Fn ≤ k ≤ Fn+1 − 1 contains Fn as the largest term in its
Z-representation.

Define the dual Fibonacci system. In this system each positive integer x is repre-
sented as a sum of different Fibonacci numbers, however we require that if Φi is
not taken then Φi+1 is taken in the sum, whenever any Fibonacci number after
Φi is taken. It follows directly from Zeckendorff’s Theorem that:

Lemma 1. Every integer k > 0 is uniquely represented in the dual Fibonacci
number system.

If X is a set of integers then define:

X ⊕ j = {x + j : x ∈ X}.

Denote by gi (the i-th truncated Fibonacci word) the word Fi with the last two
letters removed. Using the dawg’s we show that for each nonempty subword u
of F∞ we have:

occ(u) = occ(gi)⊕ first-occ(u),

where gi is the shortest truncated Fibonacci word containing u.

Let Zn be the set of nonnegative integers which do not use Fibonacci numbers
Φ0, Φ1, . . . , Φn−1 in their Fibonacci representation. It follows directly from the
structure of the dawg that:

occ(gn+1) = occ(Fn) = Zn for n > 1 and occ(F1) = occ(F2), occ(F0) = Z1

The sorted set Zk[0],Zk[1],Zk[2], . . . is closely related to Fibonacci words, denote
by Dk the displacement structure of Zk:

Dk = (Zk[1]−Zk[0], Zk[2]−Zk[1], Zk[3]−Zk[2], Zk[4]−Zk[3], . . .).

The following fact is very useful in the analysis of the structure of runs in F∞.
It shows that the dsiplacement sequence is isomorphic to F∞.

252 W. Rytter

Lemma 2. Dk = hk(F∞), where hk(a) = Φk, hk(b) = Φk−1.

It follows easily from the structure of the dawg’s that every run in F∞ (except
aa, (ab)2) is of the form (Fi)kgi−1, where k ∈ {2, 3}. A similar analysis of the
structure of runs of squares has been already done by Iliopoulos, Moore, and
Smyth in [4]. However their proofs were syntactic, and here we present different
graph-theoretic proofs, based on the structure of the dawg of F∞ and on a
natural number-theoretic interpretation of the sets of lengths of its paths.

2 The Structure of Subword Graphs

We construct the infinite labelled graph G∞, The nodes of G∞ are all integers
i ≥ 0, the edges are constructed as follows:

(i− 1)
F∞(i)→ i, for i > 0, Φi − 2 b→ Φi+1 − 1, for odd i,

and Φi − 2 a→ Φi+1 − 1, for even i.

The graph G∞ is, in a certain sense, a subword graph of the infinite Fibonacci
word F∞. The initial segments of this graph are dawg’s of finite Fibonacci words.
Denote by finite-paths(G∞) the set of all finite words spelled by the paths of G∞
originating at 0, and by finite-subwords(F∞) the set of all finite sub-words of
F∞. The following fact follows from Theorem 6, which wil be proved later.

Theorem 2. finite-paths(G∞) = finite-subwords(F∞).

We say that a path is an a-path if it is an infinite path in G∞ which starts at
0, and chooses the edge labelled a whenever there is a choice. Similarly define
b-path. Denote by a-path(G∞) the infinite word spelled by the a-path, similarly
define b-path(G∞). The b-path(G∞) can be treated as the infinite lexicograph-
ically maximal pseudo-suffix of F∞ (each prefix of b-path(G∞) is a prefix of
maximal suffix of some finite Fibonacci word).

Theorem 3. a-path(G∞) = a · F∞, b-path(G∞) = b · F∞.

The edges of the form (i, i + 1) are called main edges. The suffixes of F∞ are
infinite words resulting by cutting off a finite prefix of F∞.

Theorem 4. a-path(G∞) and b-path(G∞) are not suffixes of F∞.
The infinite string corresponding to a path π of G∞ is a suffix of F∞ iff almost

all edges of π (all but a finite number) are main edges.

The nodes of outdegree greater than one are called fork nodes. We say that a
path starting from 0 is a fork-path iff it ends at a fork node in G∞. The next
theorem follows from the structure of the compacted infinite dawg G∞. However
we introduce later the compacted dawg’s in terms of finite words.

Theorem 5. For each k > 1 there is exactly one fork-path of length k in G∞.
This fork-path corresponds to the representation of k in the dual Fibonacci num-
ber system.

The Structure of Subword Graphs and Suffix Trees of Fibonacci Words 253

For each Φn+1− 2 < k ≤ Φn+2 − 2 there is a path of length k from the source
to the fork node Φn+2 − 2 .

Proof. It is easy to see that each path of total length k from the source to
a fork node in the compacted version of G∞, see Figure 4, corresponds to a
representation of a number k in the dual Fibonacci system, the example of
representing k = 60 is shown in Figure 4.

If we have paths of length k−1 then only a path ending at a fork node generates
two paths of length k. The theorem and Lemma 1 implies directly in a novel
way the following well known Sturmian property of F∞.

Corollary 1. There are exactly k + 1 different subwords of length k in F∞.

Let Gn be the subgraph of G∞ induced by the nodes [0 . . . Φn], see Figure 1.
Denote by dawg(w) the acyclic directed subword graph of a word w, see for
example [1, 5, 2] for the definition. We assume that the nodes on the main branch
of such a graph are consecutive integers starting with 0.

Theorem 6. For each n > 1 dawg(Fn) = Gn and paths(Gn) = suffixes(Fn).

Proof. The thesis follows from the on-line construction of dawg(Fn), see [1]. It
is enough to show that no extra nodes outside the main branch are created. If
dwag(Fn) = Gn then the next |Fn−1| − 2 symbols do not create new nodes or
new edges since gn is a prefix and suffix of gn+1, which consequently has the
period |Fn−1|. One extra edge is created from |Fn| − 2 to |Fn+1− 1| because the
next read symbol terminates the period |Fn−1|. We omit the details.

We refer the reader to [1] for the definition of the critical factorization point.
The starting position of a lexicographically maximal suffix, maximized over all
possible orders of the alphabet, is the critical factorization point. This implies
the following fact:

Theorem 7. Φn−min{ |a-path(Gn)|, |b-path(Gn)| } is the critical factorization
point of the n-th Fibonacci word.

This gives alternative proof, see [6], of the following fact.

Corollary 2. Φn−1 − 1 is a critical factorization point of Fn.

a b a a b a b a

b
b

a a b a a bba b a a ab

a
a

b

Fig. 1. The subword graph dawg(F6), the fork nodes (of outdegree 2) are drawn as
squares. The arrows show the ends of prefixes which are Fibonacci words.

254 W. Rytter

Each dawg(Fn) can be compactly described in O(n) space, see Figure 2 for the
first compaction, in which each chain (a sequence of nodes of indegree and out-
degree one) is represented by a single edge. We can further compact dawg(Fn).
Let us remove all nodes except fork nodes, the source and the sink. Call remain-
ing nods essential. Then for each edge outgoing from an essential node replace
it by an edge going to the next essential node, with label representing the word
”spelled” by the compressed path, see Figure 3. The resulting compacted sub-
word graph is denoted by cdawg(Fn).

32g a= = abag = abaaba = abaababaabag
4

g
5

g
6 = abaababaabaababaaba

b

ab a b ab a b ab a ba ba b
g

g

g

g

g

a a a a

b b b 7

6

5

42a

3

g

Fig. 2. The structure of dawg(F9), of 12th Fibonacci word (of length 89). The dashed
edges correspond to chains.

2 4 6 8ab ab ab

2

ba

ab

6abab 4
ba

3 5 7

ab 8

ba

g g g g

g

g

g

ggg

g

ab

ba gba

7
ba

ba

a ba F9

ba g5ba g3

Fig. 3. The power of compaction: cdawg(F11) of the Fibonacci word of length 233.
Observe that all labels (but one) are reverses of Fibonacci words.

By O(1) space we mean constant number of nonnegative integers not greater
than n.

Theorem 8. We can test if a word w is a subword of a Fibonacci word in time
O(|w|) and O(1) space.

Proof. It is easy to see that we can test if a specified subword of w is a Fibonacci
word in linear time and O(1) space. Then we can traverse G without remembering
it explicitly. In some places we have to test if a subword of w is a Fibonacci word.

Define f in(u) = occ(u)⊕ |u| and first-fin(u) = min(f in(u)).

Lemma 3. (A) For each pair of nonempty words u, w we have:

first-fin(u) = first-fin(w) ⇔ occ(u) = occ(w).

(B) For each nonempty subword u of F∞ we have
occ(u) = occ(gi) ⊕ first-occ(u), where gi is the shortest truncated Fibonacci
word containing u.

The Structure of Subword Graphs and Suffix Trees of Fibonacci Words 255

v3 v4 v5 v6 v7 v8 v9
34 551 2 3 5 8 13 21

2 5 13 34

3 8 21 55

v0

v1 v2

v8v6v5v3v2

v0

2

3
8

13

34
60 = 2 + 3 + 8 + 13 + 34

Fig. 4. We consider only fork nodes and put the lengths of the edges as the lengths
of compacted paths. The representation of k = 60 in the dual Fibonacci system corre-
sponds to a path (v0, v2, v3, v5, v6, v8). It illustrates the fact that for each k exactly
one word corresponds to a path from the source to a fork node.

Example. The shortest truncated Fibonacci word containing aa, as well as F3 =
abaab is g4 = abaaba. We have occ(F3) = occ(g4) = {0, 5, 8, 13, 18, 21, 26, 29, . . .},
and first-occ(aa) = 2, hence

occ(aa) = occ(F3)⊕ 2 = occ(g4)⊕ 2 = {2, 7, 10, 15, 20, 23, 28, 31, . . .}.

The structure of the graph G implies easily several number-theoretic properties
of the Fibonacci words. It follows from Lemma 3 and the structure of the graph
G, see Figure 4, that:

Theorem 9.

1. occ(gn+1) = occ(Fn) = Zn for n > 1
2. occ(F1) = occ(F2), occ(F0) = Z1.
3. For each subword u /∈ {F0, F1} of F∞ we have occ(u) = Zi ⊕ first-occ(u),

where gi is the smallest truncated Fibonacci word containing u as a subword.

Proof. The subword u ”moves” to the right by starting at first-occ(u) in G and
making shortcuts. Each shortcut corresponds to taking a Fibonacci number, no
two consecutive Fibonacci numbers are taken.

We investigate also the structure of the set

FIN(k) = {first-fin(u) : u is of size k }

The structure of this set easily follows from the way how paths of length k − 1
are extended into paths of length k. Only fork nodes i ∈ FIN(k − 1) generate
two elements of FIN(k), each other node i in FIN(k − 1) generates a single
element i + 1 in FIN(k), see Figure 5. We have:

FIN(k + 1) = FIN(k)⊕ 1 ∪ {Φi+1 − 1} where Φi − 2 ∈ FIN(k)

This implies directly the following fact.

256 W. Rytter

10

9

8

7

6

5

4

3

12

11

 kb

a

babaa

2

ba

a

b b

b ababaaab aaaba

1

Fig. 5. The structure of nodes of G which are endpoints of all k + 1 different strings
of length k. The end-positions of Fibonacci prefixes are indicated by vertical arrows.

Lemma 4. The set FIN(k) consists of a single interval or of two disjoint in-
tervals.

FIN(Φn − 1) = [Φn − 1 . . . 2 · Φn − 1];

We say that a subword w of F∞ is a right special subword, iff wa and wb are
subwords of F∞. Such subwords are responsible for the increase of the number
of subwords with respect to their length. These are the words corresponding to
paths to fork nodes, they are considered for example in [7]. It is easy to see from
the structure of G that right special subwords are exactly suffixes of gi’s. On the
other hand each suffix of gi is a reverse of a prefix of F∞. Let wR denote the
reverse of w. We gave a new proof of another property of F∞:

a word w is a right special factor of F∞ iff wR is a prefix of F∞.

3 The Structure of Runs in Fibonacci Words

We say that a run w is a p-run iff period(w) = p. The run is short if |w| <
3 ·period(w). The structure of runs has been already investigated in [8, 4]. Every
occurrence of a subword in F∞ implies an occurrence of some word gi starting at
the same position. Hence the runs correspond to adjacent occurrences or overlaps
of words gi. Consequently we have the following fact.

The Structure of Subword Graphs and Suffix Trees of Fibonacci Words 257

Lemma 5. [8] Every run of F∞ is of one of two types:

(Short runs) w = Fk · Fk · gk−1, or (Long runs) w = Fk · Fk · Fk · gk−1.

Denote by rep(x) the repetition order of the string (finite or infinite) x as

rep(x) = sup {|w|/period(w) : w ∈ finite-subwords(x)}.

The maximal repetitions correspond to long runs in F∞. This implies the fol-
lowing fact (already shown in [8]).

Corollary 3. [8] rep(F∞) = 2 + φ, where φ = 1+
√

5
2 is the golden ratio.

It follows from the structure of runs that there is no subword aaa in F∞. Using
the displacement sequence Dk, due to its recursive Fibonacci-like structure, we
can easily show the following (already shown using different methods) properties
of Fibonacci words.

Corollary 4. There are no subwords in F∞ of type x4, where x is nonempty.
For n > k, the number of occurrences of Fk in Fn is Fn−k − odd(n− k), where
odd(x) = 1 if x is an odd integer, and odd(x) = 0 otherwise.

abaababaabaababaababaabaababaababa abaababaabaababaababa abaababaabaababaababaabaababaababa

abaababaabaababaababaabaababaababa abaababaabaababaababa abaababaabaababaababaabaababaababa

abaababaabaababaababaabaababaababa abaababaabaababaababa abaababaabaababaababaabaababaababa

abaababaabaababaababaabaababaababa abaababaabaababaababa abaababaabaababaababaabaababaababa

abaababaabaababaababaabaababaababa abaababaabaababaababa abaababaabaababaababaabaababaababa

abaababaabaababaababaabaababaababa abaababaabaababaababa abaababaabaababaababaabaababaababa

abaababaabaababaababaabaababaababa abaababaabaababaababa abaababaabaababaababaabaababaababa

Fig. 6. The structure of runs in the Fibonacci word F11. The arrows show endpoints
of Fibonacci prefixes. F11 has 65 runs. The 21 1-runs of aa are not shown in the figure.
The runs are distributed as follows: there are 12 2-runs, 13 3-runs, 8 5-runs, 5 8-runs,
3 13-runs, 2 21-runs and 1 34-run.

258 W. Rytter

All runs correspond to occurrences of gi’s. HoweverZi is the set of all occurrences
of gi. The crucial role in understanding the structure of runs in Fn plays the
Displacement Lemma (Lemma 2). We know that the displacement sequence
is isomorphic to Fibonacci sequence, hence we can easily compute number of
different types of runs by computing numbers of a’s and b’s in prefix segments of
F∞. Using Lemma 2 we can describe the structure of runs in Fn, see Figure 6.

Theorem 10. [Structure of Runs] The Fibonacci word Fn has: Fn−3 Φ0-
runs; Fn−4 − 1 Φ1-runs, and Fn−k−2 Φk-runs for 2 ≤ k ≤ n− 2.

This gives alternative (compared with [9]) proof for the number of all runs.

Corollary 5. [9] Fn has 2 · Fn−2 − 3 runs.

We say that a square xx is primitive iff x is a primitive word, similarly de-
fine primitive cubes. The run FiFigi−1 contains |gi−1| primitive squares and
FiFiFigi−1 contains Φi + |gi−1| primitive squares. The short runs correspond to
bab in F∞ and long runs correspond to aa in F∞. Due to the Fibonacci-like
structure of displacement sequences (Lemma 2) and Theorem 10 we can calcu-
late (in a new easier way) the number of all positioned primitive squares and all
primitive positioned cubes in finite Fibonacci words.

4 The Structure of Suffix Trees

The suffix tree Tn of Fn is the tree of all paths of cdawg(Fn). The structure of
this tree and the way how Tn evolves into Tn+1 follows from the structure and
evolution of compacted dawg’s, see Figure 7 and Figure 8.

A terminal edge is an edge leading to a leaf. The suffix trees of Fibonacci
words grow at their leaves, by changing the terminal edges in a very simple
regular way.

Theorem 11. For n > 2 the suffix tree Tn of Fn has Φn−1 leaves and Φn−2
internal nodes. Let x be the last two symbols of Fn+1. Tn evolves into Tn+1 in
the following way:

– (long edges) each terminal edge (u, v) with label xFn−2 is transformed into
the subtree isomorphic to Sn, two end symbols are cut off from the label of
(u, v), and two edges originated at v are created , with labels xRFn−1 and x,

– (short edges) each terminal edge with label x changes its labels to x ·Fn−1.

We know precisely how the suffix trees grow. The sum of lengths of edges of
the suffix tree is the number of different subwords. We have Φn−3 short edges,
each of them grows by Φn−1, and Φn−2 long edges, each grows by Φn−1 + 2.
This gives easily a simple recurrence and a new suffix-tree oriented proof for the
known formula of the number Sub(n) of different subwords of Fn.

Corollary 6. For n > 2 we have:

Sub(n + 1) = Sub(n) + Φn−3 · Φn−1 + Φn−2 · (Φn−1 + 2)
Sub(n) = Φn−1Φn−2 + 2 · Φn−1 − 1

The Structure of Subword Graphs and Suffix Trees of Fibonacci Words 259

a

ba F1

ab

ba
1F

T
3

R

xx g

x

n−2

Fn−1x F n−2

subtree S n

x x F n−1

Fig. 7. The suffix tree T3 and the general rules to generate Tn+1 from Tn. The word
x ∈ {ab, ba}.

a

ba

baF1

ba F1

G 3

a

2
ab

ba
3

2
ba

3

ba

ba

g

gab

ab

a

2

2

ba

ba

ab

ba

ab F

F

F

F

a 2
ba

3
ba

g

g

ab

ba

ab 4F

2gab ab F4

ba g
3ba

G
6

4G

G 5

Fig. 8. The evolution of the compacted graph cdawg(F6)

We say that two labelled trees are structurally isomorphic iff they are isomorphic
as unordered trees in graph-theoretic sense, disregarding the labels. The following
fact also follows from the structure of cdawg’s.

Theorem 12. [Fibonacci-like structure of suffix trees of Fibonacci words]
For n > 4 the two subtrees rooted at the sons of the root of the suffix tree
T (Fn) are structurally isomorphic to the suffix trees T (Fn−1 and T (Fn−2),
respectively.

260 W. Rytter

ba

3

a

2ab g

ba

ab g
2

ab

ab

ba 3

3

ba

ab

ba 3

ba

F

F

F

ab g
2

3Fba

ba

F

a ba

2ab2ab

2ab

F
F

F

ba g

ba g

1

1

ab 4

ba

ab 4

ba

ab 4

ab 4

ab 4

ba

ba

ab 4

ba

F

F

F

F

F

F

R
0

4ab F

4ab F

R
1

R

R

R
R

R

R

R

R

R

2

3

1

2

3

2

3

3

3

T

T
5

4

T
6

Fig. 9. The evolution of the suffix tree T6 = T (F6). Observe that g1 is the empy string
and that the labels ab gi (for even i) and ba gj (for odd j) are reverses of Fibonacci
words, denote Rk = F R

k . We can obtain in the limit an infinite suffix tree T∞ of F∞.
Each path in T∞ will have the sequence of labels Ri1 , Ri2 , Ri3 . . ., where i1 ∈ {0, 1}
and for each k we have: ik+1 ∈ {ik + 1, ik + 2}.

The Structure of Subword Graphs and Suffix Trees of Fibonacci Words 261

Acknowledgment. I thank �Lukasz Mikulski [10] for helpful comments related
to Lemma 4. He has written an independent and more formal proof of this lemma.
The subword graphs for general Sturmian words have been already considered
in [11]. There is a huge literature on Sturmian words (each Fibonacci word is a
Sturmian one).

References

1. Crochemore, M., Rytter, W.: Jewels of stringology: text algorithms. World Scien-
tific (2003)

2. Smyth, W.: Computing Patterns in Strings. Addison-Wesley (2003)
3. Zeckendorff, E.: Représentation des nombres naturels par une somme des nombres

de fibonacci ou de nombres de lucas. Bulletin de la Société Royale des Sciences de
Liège 41 (1972) 179–182

4. Costas Iliopoulos, D.M., Smyth, W.: A characterization of the squares in a fibonacci
string. Theor. Comput. Sci. 172 (1997) 281–291

5. Charras, C., Lecroq, T.: Handbook of Exact String Matching Algorithms. King’s
College London Publications (2004)

6. Harju, T., Nowotka, D.: Density of critical factorizations. ITA 36 (2002) 315–327
7. Berstel, J., Karhumaki, J.: Combinatorics on words – a tutorial. Bulletin of the

EATCS 79 (2003) 178–228
8. Mignosi, F., Pirillo, G.: Repetitions in the fibonacci infinite word. RAIRO Inform.

Theor. Appl. 26 (1992) 199–204
9. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear

time. In: FOCS ’99: Proceedings of the 40th Annual Symposium on Foundations
of Computer Science, Washington, DC, USA, IEEE Computer Society (1999) 596

10. Mikulski, �L.: Personal communication (2005)
11. Epifanio, C., Mignosi, F., Shallit, J., Venturini, I.: Sturmian graphs and a conjec-

ture of moser. In Calude, C., Calude, E., Dinneen, M.J., eds.: Developments in
Language Theory. Volume 3340 of Lecture Notes in Comput. Sci., Springer (2004)
175–187

Observations on Determinization of Büchi

Automata

Christoph Schulte Althoff, Wolfgang Thomas, and Nico Wallmeier

RWTH Aachen, Lehrstuhl Informatik 7, 52056 Aachen, Germany
{althoff, thomas, wallmeier}@i7.informatik.rwth-aachen.de

Abstract. The two determinization procedures of Safra and Muller-
Schupp for Büchi automata are compared, based on an implementation
in a program called OmegaDet.

1 Introduction

A central result in the theory of ω-automata is McNaughton’s Theorem [1]. In
its original formulation it says that a nondeterministic Büchi automaton can be
converted into a deterministic Muller automaton. Many constructions have been
proposed to show this determinization result (cf. [2], [3] for hints to the litera-
ture). In most cases, the target automaton is a deterministic Rabin automaton,
which can be considered as a special form of Muller automaton. It is well-known
that the blow-up in number of states has to be greater than in the classical sub-
set construction; there is a lower bound of 2O(n log n) for the number of states of a
deterministic Rabin automaton, given a Büchi automaton with n states ([4], [5]).

Safra [6] was the first to find a construction which matches this lower bound.
It seems now the standard way of showing Büchi automata determinization.
But there is a second construction, again matching the lower bound, due to
Muller and Schupp [7]. Teaching experience of the second author indicates that
the Muller-Schupp proof can be explained more easily (the reader can judge
him/herself below). The two constructions are sufficiently different to justify a
closer comparison. This is the aim of present paper.

The study is based on an implementation of the two algorithms in a program
called OmegaDet. As it turns out, such an implementation is necessary not only
for a serious experimental performance comparison of the two procedures but
also for a better conceptual understanding of their behaviour. The two algo-
rithms are too involved to be analyzed by hand if one is interested in studying
say a dozen examples. We report here on some insights we obtained in this inves-
tigation, both regarding a better understanding of the characteristics (and the
similarities) of two the algorithms and of their performance. We observe that
(apart from some peripheral cases), the Safra algorithm uses stronger abstrac-
tions than the one of Muller-Schupp and thus yields smaller automata. (Maybe
this is a reason for the difficulties the Safra algorithm poses for exposition in lec-
tures.) Moreover, our experiments led to an improvement of the Muller-Schupp
procedure which can reduce the state space of the target automaton.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 262–272, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Observations on Determinization of Büchi Automata 263

The paper is structured as follows. In the subsequent Section 2 we present the
determinization procedures, with an emphasis on singling out those points where
they coincide and where they differ. In this exposition, we use the insights from
our experiments; we start with an explanation of the Muller-Schupp algorithm
and more briefly discuss the Safra construction. We do not give any details about
the correctness proofs. In Section 3 we give a brief introduction to (the user’s
view of) the program OmegaDet, in which also the subset based construction of
Hayashi and Miyano [8] for co-Büchi automata determinization is included. We
report on observations obtained in case studies and suggest the above mentioned
improvement of the Muller-Schupp algorithm. In Section 4 we comment on the
context of our work as well as on perspectives for extensions.

2 The Algorithms of Safra and Muller-Schupp

We consider Büchi automata in the format A = (Q, Σ, q0, Δ, F) where Q is the
finite set of states, Σ the input alphabet, q0 the initial state, Δ ⊆ Q × Σ × Q
the transition relation, and F ⊆ Q the set of “final states”. The automaton A
accepts the ω-word α ∈ Σω if a a run ρ ∈ Qω exists (defined in the standard
way) with infinitely many occurrences of states in F . In other words, one may
consider the run tree tα of A on α, which has a root (considered to be at “level
0”) labelled q0, and displays level by level the states reached after the α-prefixes
α(0) . . . α(i−1) for i = 0, 1, 2, Formally, a vertex on level i labelled p has the
successor nodes labelled q1, . . . , qk if for p and the letter a = α(i) the transitions
(p, a, q1), . . . , (p, a, qk) are applicable. We assume the tree to be sibling ordered,
with reference to an ordering of the set of states. The run dag rα of A on α is
obtained inductively from tα, level by level, by deleting a vertex v labelled q if
on the same level a vertex u labelled q appears to the left; in this case an edge
is added from the parent vertex of v to u. Clearly, the input word α is accepted
by A iff in the run dag rα there is an infinite path from the root on which an
F -state occurs infinitely often (henceforth we just speak of a “successful path”).

A deterministic Rabin automaton (we say “Rabin automaton” to be short)
has the format A = (Q, Σ, q0, δ, Ω) where Q, Σ, q0 are as for Büchi automata,
δ : Q×Σ → Q is the transition function, and Ω = ((E1, F1), . . . , (Ek, Fk)) a list
of “accepting pairs” with Ej , Fj ⊂ Q. The automaton accepts the input word
α ∈ Σω if for the unique run ρ ∈ Qω of A on α an index j exists such that some
Fj-state is visited infinitely often in ρ but each Ej-state only finitely often.

The starting point for the transformation of a Büchi automaton
A = (Q, Σ, q0, Δ, F) into an equivalent Rabin automaton (i.e., recognizing the
same ω-language) is to use a finite abstraction of the infinity of the finite prefixes
of run trees. If the Büchi automaton has scanned the prefix α(0) . . . α(i − 1) of
the input, the run tree up to level i is built up. Taking the run dag instead,
one observes that a structure of finite width suffices (since each state can occur
at most once on each level). The main point of the transformation of A into
a finite deterministic automaton is to invent a finite number of representations
of the infinitely many possible run dag prefixes, in a way that the existence of

264 C. Schulte Althoff, W. Thomas, and N. Wallmeier

an infinite path with infinitely many F -states can still be detected. For this, it
is necessary to separate the different threads of the run tree (or run dag) for
recording of the occurrence of final states. Both algorithms, the procedures by
Safra and Muller-Schupp, use tree structures for this purpose. A node in such a
tree provides the information which states are presently visited in certain threads
of the run tree; in particular, the root records the totality of presently reachable
states (as in the classical subset construction). Also both procedures adopt the
convention that a state is kept only at its leftmost occurrence on a tree level,
thus inheriting the rule mentioned above for constructing run dags.

2.1 Muller-Schupp Trees

Let us first introduce the tree structures used by Muller and Schupp, called
Muller-Schupp trees in the present paper. A Muller-Schupp tree is a finite sibling-
ordered strictly binary tree (i.e., each vertex except the leaves has precisely
two sons), whose vertices are named with positive natural numbers and ad-
ditionally are labelled by two items: a subset of Q and a color from the set
{red, yellow, green}. Since by construction the set of states at a parent node is
the disjoint union of the sets at the two sons, it would suffice to keep state-sets
as labels only for the leaves; however, for easier readability of the trees we prefer
to use the state-set labelling throughout.

The Muller-Schupp trees can be motivated in three stages, starting from the
computation tree tα of the given Büchi automaton on some input word α. The
first step consists in partitioning the sons of a vertex v into two classes, those
which carry a final state and those which carry a non-final state. The former
are collected in a set and declared as the label of the left son of v, the latter
(non-final) ones form the label of the right son (of course, one of the two sons can
vanish). Call the resulting tree with at most binary branching the “acceptance
tree” t1α. It is easy to verify that

tα has a successful path iff t1α has a path branching left infinitely often

If we keep only the occurrences of a state q which occur leftmost on the
respective level of the tree t1α, obtaining the tree t2α, the equivalence above holds
also for t2α instead of t1α.

The tree t2α grows in a deterministic fashion level by level, given α. Note
that each level has at most as many entries as there are states in A, so t2α
is of bounded width. The idea is to take as states of the deterministic Rabin
automaton compressed versions of the t2α-prefixes, level by level: A path segment
from a left son, respectively a right son, or from the root, to the next branching
point v is contracted into v. Then a strictly binary tree is obtained. The states of
such a path segment are forgotten except some information about the presence
of final states, given by three different colors which the remaining vertex v can
have: red, yellow, and green. It is clear that the number of such trees is finite.

The update step upon processing an input letter a (corresponding to the ex-
tension of t2α by one level), is performed by attaching sons to the leaves according
to the subset construction, starting from the state set at each leaf. Of course, no
son is introduced to a leaf if from none of its states a continuation of the run via

Observations on Determinization of Büchi Automata 265

a is possible. This case leads to the deletion of the whole path back to the last
branching point. Vertex names which are freed by this can be reused, however
not in the same update step. In the remaining case a left son, a right son, or both
are introduced, depending on whether there are only final states, only non-final
states, or both in the resulting state set. When a final state is encountered, the
vertex carrying it is colored green. By the cancellation policy (to keep only the
leftmost occurrence of a state) and the path compression procedure it can hap-
pen that path segments are merged in a single vertex (again setting free name of
the spared vertex). In this case the parent vertex may receive final states from
a son with which it is merged; we say then that it “receives a new final state”.

A vertex is colored red if the path segment it represents has no final state,
yellow if it has a final state but did not receive this state in the last step, and
it is colored green if it received a final state in the last step, either at a leaf via
the subset construction or by a merge step, for example with a vertex previously
colored yellow.

Using this update procedure, it turns out that t2α has a path branching left
infinitely often iff in the sequence of corresponding Muller-Schupp trees some
vertex v stays forever from some point onwards and has the color green again
and again. This is captured by a Rabin acceptance condition of pairs (Ei, Fi)
where i ranges over the finite reservoir of vertex names: Ei contains those trees
where i is missing, and Fi has those trees where i occurs colored green.

Formally, the update for a tree t and input letter a is carried out as follows:

Update of Muller-Schupp tree

1. Copy the given tree t, changing all colors green to yellow
2. Apply the subset construction (via letter a) to each leaf, add left and

right son carrying the reached final, respectively non-final states; color
these sons green and red, respectively.

3. Keep only the leftmost occurrence of each state.
4. Delete the vertices which are only on paths leading to leaves whose value

is the empty set.
5. As long as there exists a vertex of degree one merge this vertex with its

successor, inheriting the color green if this successor was colored green or
yellow.

6. Proceeding from the leaves, label each parent by the union of the two
state sets from the labelling of the two sons.

2.2 Safra Trees

The Safra trees are more succinct in the sense that they suppress as much as
possible the record of non-final states. Starting from the update step of the
Muller-Schupp algorithm (which of course was not the way these algorithms were
invented), the Safra construction introduces a technical simplification when the
subset construction is applied: Here only the left son (containing the final states
reached) is kept in the tree, no right son for the non-final states is introduced.

266 C. Schulte Althoff, W. Thomas, and N. Wallmeier

When from these non-final states at later stages final states are reached, new
son vertices are created successively in the Safra tree; in this situation more
than binary branching may occur. In a Muller-Schupp tree the intermediate
vertices with non-final state-sets amount to a binary encoding of the Safra trees.
However, due to different coloring policies, the embedding of a Safra tree into the
corresponding Muller-Schupp tree cannot in general be lifted to an embedding of
the Safra state space into the Muller-Schupp state space. In particular, a Safra
automaton can also be larger than the corresponding Muller-Schupp automaton;
cf. the remark at the end of Section 3. A didactic advantage of the Muller-Schupp
trees is that they convey more directly the structure of the computation tree of
the given Büchi automaton.

The difference of colorings reflects different recordings of visits of final states.
The Muller-Schupp procedure uses the coloring policy to signal “new visits to
final states”. The Safra algorithm marks a node by color green according to the
so-called breakpoint construction, signalling that all states of the node can be
reached via a past visit to a final state. Similarly as for Muller-Schupp trees, a
run is accepting if some vertex stays indefinitely from some point onwards and is
colored green again and again. For the formal definition of Safra trees and their
update function we refer the reader to [6] or [9].

Example 1. Let A0 be the Büchi automaton

0 1 2 3

4
0, 1

1 0 1

0 01

0

which accepts the 0-1-sequences which have the segment 11 only finitely often
but 101 infinitely often. In the figure on the next page we present the run dag for
the input word 10101010 . . ., right to it the run of Safra trees, and aside that the
run of Muller-Schupp trees. We skip the intermediate stages in the construction
process between two successive trees. A vertex is named by a number; following
the stroke we list the states belonging to its label. In a Muller-Schupp tree, a
vertex colored red is given as a dashed rectangle, colored yellow as a simple
rectangle, and colored green as a double-line rectangle. Similarly, the vertices of
a Safra tree receiving the mark green are displayed in double-line rectangles.

3 Implementation, Experiments, Conclusions

OmegaDet is a program written in C++ which offers implementations of four
determinization procedures for Büchi automata:

– the Safra construction
– the Muller-Schupp construction

Observations on Determinization of Büchi Automata 267

Input Run dag Safra Muller-Schupp

0 1|0 1|0

1

0 1 1|0,1 1|0,1

0

0 2 1|0,2 1|0,2

1

0 1 3 1|0,1,3 1|0,1,3

2|3 3|0,1
0

0 2 4 1|0,2,4

2|4

1|0,2,4

2|4 3|0,2
1

0 1 3 1|0,1,3

2|1

1|0,1,3

2|1 3|0,3

5|3 6|0
0

0 2 4 1|0,2,4

2|2 3|4

1|0,2,4

2|2 3|0,4

5|4 6|0
1

0 1 3 1|0,1,3

2|3 3|1

1|0,1,3

2|3 3|0,1

5|1 6|0
0

0 2 4 1|0,2,4

2|4 3|2

1|0,2,4

2|4 3|0,2

5|2 6|0

268 C. Schulte Althoff, W. Thomas, and N. Wallmeier

– an optimized Muller-Schupp construction (which is presented later in this
section)

– the Hayashi-Miyano construction (which can be applied to co-Büchi au-
tomata)

The fourth option is included since many examples we considered turned out
to be co-Büchi automata. This happens, for example, in cases where the accept-
ing loops consist of a single state only. In this case the Büchi condition holds iff
from some time onwards only final states are encountered (co-Büchi acceptance).
Other examples were not co-Büchi automata as such but could be transformed
to this shape by declaring more states (than previously) as final, without chang-
ing the accepted language. Thus a useful preprocessing consists in successively
declaring as final all states from which in one step only final states are reachable,
which does not change the language but might lead to a co-Büchi automaton.

The Hayashi-Miyano construction is a simple refinement of the subset con-
struction, needing only 2O(n) states (essentially two subsets) and will be prefer-
able if a large automaton can be presented as a co-Büchi automaton. An imple-
mentation exists also in the LASH package at Liège (see [8, 10, 11]).

The program OmegaDet asks the user to supply a Büchi automaton as a
text file. The format of text file is best explained by an example. Consider
the following Büchi automaton A1 which accepts all ω-words with only finitely
many b.

0 1a
a

a, b

2
ab
1
0 a 0
0 b 0
0 a 1
1 a 1

The first line of the text file is the number n of states of the Büchi
automaton, whose state set is then assumed to be {0, ..., n− 1}. The
initial state is 0. The second line contains the used alphabet Σ as a
string of single ASCII symbols. Each symbol of the string is used as
a single letter. Afterwards the final states are numerated in the third
line separated by spaces. Then the transitions of the automaton are
listed.

The user can choose the desired algorithms in a menu. He has the possibility
to either simulate a run interactively or to compute the deterministic Rabin
automaton. In the latter case, the program reports progress after every 200
computed states. The output is then delivered in four parts:

– the number of states
– the list of Safra trees, respectively Muller Schupp trees, each introduced by

a name si, respectively ki (for i = 0, 1, . . .) together with the word (the first
in the canonical ordering of words) via which the state is reached, and then
a display of the tree (to be explained below),

– the transition table, using the state names si, respectively ki,
– the list of accepting pairs and number of accepting pairs

Observations on Determinization of Büchi Automata 269

For the display of trees, a textual representation is used which indicates the
sons of some node by the subsequent lines, marked as sons by indentation after
a pointer symbol +->. So brother nodes are listed with same indentation. The
colors red, yellow, green are presented as the symbols -, 0, +, following each
vertex in Muller-Schupp trees; in Safra trees a mark ! is attached to a vertex if
it has color green.

As an example of the output we list the automaton according to Safra gener-
ated by the example above.

Deterministic Rabin automaton
according to Safra:

4 States:
s0:

[1|0]

s1: a
[1|0,1]

s2: aa
[1|0,1]
+-> [2|1]

s3: aaa
[1|0,1]
+-> [2|1]!

Transition table:
a b

s0 s1 s0
s1 s2 s0
s2 s3 s0
s3 s3 s0

Acceptance pairs:
for vertex 2 (sizes 2,1):
({s0,s1},{s3})

Overall: 1 pair with non-empty
acceptance set

We used the program for various Büchi automata, among them also the au-
tomata suggested by Michel [4] for showing the 2O(n log n) lower bound for com-
plementation of Büchi automata (see also [3] and [9]). Recall that the Büchi au-
tomatonMn considered in [4] has states 0, . . . , n, the input alphabet {1, . . . , n, �}
and the following transition graph:

0 1 2 n

. .
.

. . .
1

2
n

1, . . . , n, � 1, . . . , n, � 1, . . . , n, �

While we could compute the Rabin automaton according to Safra’s con-
struction easily up to automaton M5 (where a million states are reached for
the first time), the Rabin automaton following Muller-Schupp has about 5
million states already for M3, and the system ran out of memory for
M4 (see Table 1). The reader can obtain an impression of the program Omega-

270 C. Schulte Althoff, W. Thomas, and N. Wallmeier

Table 1. Comparison of Safra, Muller-Schupp and optimized Muller-Schupp

Safra Muller-Schupp Opt. Mulller-Schupp
States Pairs States Pairs States Pairs

M1 (2 states) 7 1 9 5 9 5

M2 (3 states) 33 2 4,058 8 262 7

M3 (4 states) 385 5 4,823,543 11 23,225 9

M4 (5 states) 13,601 7 memory exceeded 3,656,802 11

M5 (6 states) 1,059,057 9 memory exceeded memory exceeded

Det by calling http://www-i7.informatik.rwth-aachen.de/d/research/
omegadet.html; there the program itself, as well as the text files for the au-
tomata M1, . . . ,M5 and the output files are listed.

It was already mentioned in the previous section that the Muller-Schupp trees
tend to be larger due to the inclusion of vertices whose labels are formed from
non-final states. A more serious effect, however, is the procedure for introducing
new vertices as sons of the leaves and the naming scheme pursued here. Many
trees can be generated which have the same structure of vertex labels (and
colors), whereas a difference occurs in the vertex naming. An idea to spare vertex
names is to add new sons only for leaves which contain final states as well as
non-final states. This may result in the freeing of vertex names which may then
be reused more quickly.

Formally, we proceed as follows in this modification of the Muller-Schupp
algorithm:

Optimized update of Muller-Schupp tree

1. Copy the given tree t, changing all colors green to yellow
2. Apply the subset construction (via letter a) to each leaf.
3. Keep only the leftmost occurrence of each state.
4. For all leaves which contain final states as well as non-final states add

left and right son carrying the reached final, respectively non-final states;
color these sons green and red, respectively.

5. Color all leaves containing only final states green.
6. Items 4., 5. and 6. of original algorithm

Indeed, this modification can spare many states, as seen in the table above
(fourth column). In the example run of the one-page figure above, the optimiza-
tion is visible in the last four listed Muller-Schupp trees: The vertex names 5,6
are changed there to 4,5. Nevertheless, the number of the Muller-Schupp trees
grows still much faster than the number of Safra trees.

More case studies are reported in [12]. A simple general statement relating
the numbers of states of the two constructions is not obvious, since we observed
several cases where the Safra construction gives a slightly larger automaton than
the Muller-Schupp procedure. This happens, for example, for the automaton
A1 considered above, where the Safra construction yields four states and the

Observations on Determinization of Büchi Automata 271

Muller-Schupp construction (the normal one as well as the optimized one) only
two states. The delayed signalization of ”success” (by an extended initialization)
yields different Safra trees, distinguished by different colorings, for a unique
Muller-Schupp tree. A possibility to spare states in the Safra construction, which
appears in the exposition of [3], is to exchange the application of the powerset
construction and the creation of sons. In the example just mentioned this spares
one state, however still leads to a larger Safra automaton than the Muller-Schupp
one.

4 Outlook

We have presented the determinization procedures of Safra and Muller-Schupp,
working out their similarities and their differences. Remarks on the implemen-
tation focussed on the input and output format and the explanation of simple
case studies. In Michel’s example we found a drastic difference between the two
procedures, giving an advantage to Safra’s algorithm. We explained this effect
and suggested an improvement of the Muller-Schupp algorithm, giving (in some
cases) much smaller automata.

As a result of our experimental studies we found a tighter connection between
the two algorithms than expected, and we found the superiority of the Safra
procedure for building small automata.

Despite much research, the determinization algorithms have so far not reached
the stage of application examples of any serious scale, in definite contrast to
the many implementations based on Büchi automata and alternating automata,
applied mostly in model-checking. On the other hand, determinization is a nec-
essary prerequisite in certain domains, for example in the solution of games with
regular winning conditions (where a presentation by nondeterministic automata
does not suffice). It seems that before reaching real practice, determinization
still needs more investigation, not only with respect to the procedures as such
(as done in this paper) but also concerning the phases of ”preprocessing” and
”postprocessing”. The preprocessing phase would involve an analysis of the given
Büchi automaton, possibly its reduction e.g. with methods of [13] and the test
whether it can as well be represented as a co-Büchi automaton. In the latter
case, the simpler determinization procedure of Hayashi and Miyano [8] can be
applied (see e.g. [10]). The postprocessing would deal with the reduction or even
minimization of deterministic Rabin automata, and it would have to deal with
a parameter which we did not consider in the present paper: the complexity of
the acceptance condition (number of accepting pairs in a Rabin automaton).
So the present paper just addresses a single aspect in the general problem of
implementing Büchi automaton determinization.

Acknowledgement

We thank Detlef Kähler for his presentation of [14] in our seminar and remarks
on a preliminary version of the paper; we relied on his work at several places.

272 C. Schulte Althoff, W. Thomas, and N. Wallmeier

The second author acknowledges fruitful discussions with Christof Löding while
preparing a lecture on the Muller-Schupp algorithm.

References

1. McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Information and Control 9 (1966) 521–530

2. Thomas, W.: Automata on Infinite Objects. In van Leeuwen, J., ed.: Handbook of
Theoretical Computer Science. Volume B, Formal models and semantics. Elsevier
Science Publishers B. V. (1990) 133–191

3. Perrin, D., Pin, J.E.: Infinite Words: Automata, Semigroups, Logic and Games.
Volume 141 of Pure and Applied Mathematics. Elsevier (2004)

4. Michel, M.: Complementation is more difficult with automata on infinite words.
CNET, Paris (1988)

5. Löding, C.: Optimal bounds for the transformation of omega-automata. In: Proc.
of the 19th Conference on Foundations of Software Technology and Theoretical
Computer Science. Volume 1738 of Lecture Notes in Computer Science., Springer-
Verlag (1999) 97–109

6. Safra, S.: On the Complexity of ω-Automata. In: Proc. of the 29th Symp. on
Foundations of Computer Science, Los Alamitos, CA, IEEE Computer Society
Press (1988) 319–327

7. Muller, D., Schupp, P.: Simulating Alternating Tree Automata by Nondeterministic
Automata: New Results and New Proofs of the Theorems of Rabin, McNaughton
and Safra. Theoretical Computer Science 141 (1995) 69–107

8. Miyano, S., Hayashi, T.: Alternating Finite Automata on ω-Words. Theor. Com-
put. Sci. 32 (1984) 321–330

9. Thomas, W.: Languages, Automata and Logic. In: Handbook of Formal Language
Theory. Volume III. Springer-Verlag (1997) 389–455

10. Boigelot, B., Jodogne, S., Wolper, P.: An Effective Decision Procedure for Linear
Arithmetic with Integer and Real Variables. ACM Transaction on Computational
Logic (to appear) (2005)

11. : (The Liège Automata-based Symbolic Handler (LASH)) Available at http://
www.montefiore.ulg.ac.be/∼boigelot/research/lash/.

12. Schulte-Althoff, C.: Construction of deterministic ω-automata: A comparative
analysis of the algorithms by safra and muller/schupp. Diplomarbeit, RWTH
Aachen (2005)

13. Etessami, K., Wilke, T., Schuller, R.A.: Fair Simulation Relations, Parity Games,
and State Space Reduction for Büchi Automata. In: Proc. of ICALP 2001. Volume
2076 of Lecture Notes in Computer Science., Springer-Verlag (2001) 694–707

14. Kähler, D.: Determinisierung von ω-Automaten. Diplomarbeit, Christian-
Albrechts-Universität zu Kiel (2001)

The Interval Rank of Monotonic Automata

Tamara Shcherbak�

Ural State University, 620083 Ekaterinburg, Russia
tomsya@mail.ur.ru

Abstract. We solve the ‘order preserving’ version of the generalized
Černý problem (also known as the rank problem). Namely, for all n and
k such that 2 ≤ k ≤ n, we determine the least number �(n, k) such
that for each monotonic automaton with n states and interval rank k
there exists a word of length �(n, k) that compresses the state set of the
automaton to an interval of length k.

1 Motivation and Overview

A deterministic finite automaton (DFA) A = 〈Q, Σ, δ〉 is called monotonic if
its state set Q admits a linear order ≤ such that for each letter a ∈ Σ the
transformation δ(, a) of Q preserves ≤. This means that δ(q, a) ≤ δ(q′, a)
whenever q ≤ q′. Though monotonic automata form quite a natural subclass
of the class of counter-free automata, they are not yet well studied and remain
mysterious in some respects: for instance, no combinatorial characterization of
the class of rational languages recognized by monotonic automata has been found
so far.

Recall that the rank of a DFA A = 〈Q, Σ, δ〉 is the least cardinality of sets
of the form δ(Q, w) where w runs over Σ∗. Automata of rank 1 are also known
as synchronizable (or directed): for a synchronizable automaton A, there exists
a word whose action ‘resets’ A, i.e. brings all its states to a particular one. Any
word with this property is said to be a reset word for the automaton A. The
famous Černý conjecture [1] claims that each synchronizable automaton with n
states possesses a reset word of length at most (n−1)2. Its generalization known
as the rank conjecture (cf., e.g., [2]) claims that for every DFA A = 〈Q, Σ, δ〉
with n states and rank k there is a word w ∈ Σ∗ of length at most (n − k)2

such that |δ(Q, w)| = k. Both conjectures are open in general and reveal many
interesting connections with other areas of mathematics and computer science,
see the recent survey [3].

Synchronization properties of monotonic automata have been studied in the
recent paper [4]. It has turned out that the presence of a stable order on the
state set speeds up synchronization: for every monotonic DFA A = 〈Q, Σ, δ〉
with n states and rank k there is a word w ∈ Σ∗ of length at most n − k such
that |δ(Q, w)| = k [4–Theorem 1]. A related but more complicated problem (also

� The work was supported by the Federal Education Agency of Russia, grant no. 49123
and the Russian Foundation for Basic Research, grant 05-01-00540.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 273–281, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

274 T. Shcherbak

discussed in [4]) arises when one modifies the above notion of the rank in the
following way. For any non-empty subset P ⊂ Q, let [P] denote the least interval
of the chain 〈Q,≤〉 containing P . Now, given a monotonic DFA A = 〈Q, Σ, δ〉,
one defines its interval rank as the least cardinality of intervals of the form
[δ(Q, w)] where w runs over Σ∗. Clearly, monotonic automata of interval rank k
have usual rank at most k but the converse is not true for k > 1, and the interval
rank of a monotonic automata with n states and rank 2 can be equal even to n.

It is to be expected that compressing to small intervals requires more effort
than compressing to just small subsets that can be scattered over the state set
in an arbitrary way. Let �(n, k) stand for the least number such that for each
monotonic automaton with n states and interval rank k ≥ 2, there exists a word
of length �(n, k) that compresses the state set of the automaton to an interval
of length k. A series of examples [4] shows that no linear function of n can serve
as an upper bound for the function �(n, 2) [4–Propositions 1 and 2]. On the
other hand, Theorem 2 of [4] gives the following quadratic upper bound for the
function �(n, k) for all n > k ≥ 2:

�(n, k) ≤ (n− k)(n− k − 1)
2

+ 1. (1)

This bound has been shown to be exact for all ‘sufficiently large’ k, that is, for
all k ≥ �n

2 � [4–Propositions 3 and 4]. However, the problem of determining the
function �(n, k) for 2 ≤ k < �n

2 � was left open in [4]. In the present paper we
solve this problem by showing that for all n ≥ k ≥ 2 one has

�(n, k) ≤ "n(n− 2)
4

− (k + 1)(k − 2)
2

(2)

and exhibiting a series of examples that demonstrate that this bound is precise
for 2 ≤ k < �n

2 �.
The proofs, though elementary in their essence, are far from being easy and

require relatively long calculations. Due to size limitations, we include here de-
tailed proofs only for the case k = 2 while results and examples related to the
case k > 2 are presented on a less formal level.

2 An Upper Bound for �(n, 2)

We may assume that the state set Q of our monotonic automaton A = 〈Q, Σ, δ〉
is the set {1, 2, 3, . . . , n} of the first n positive integers with the usual order
1 < 2 < 3 < · · · < n. For x, y ∈ Q such that x ≤ y, we denote by [x, y] the
interval {x, x + 1, x + 2, . . . , y}. Given a word w ∈ Σ∗ and nonempty subset
X ⊆ Q, we write X . w for the set {δ(x, w) | x ∈ X}.

Now assume that the interval rank of the automaton A equals 2.

Lemma 1. If Q . w = [m, m + 1], then

δ(q, w) =

{
m whenever q ≤ m,

m + 1 whenever q ≥ m + 1.

The Interval Rank of Monotonic Automata 275

Proof. As the word w compresses the set Q to the interval [m, m + 1] either
δ(q, w) = m or δ(q, w) = m + 1 for every q ∈ Q. Suppose that δ(m, w) = m + 1
and consider the action of w2 on Q. We see that

Q.w2 = (Q . w) . w = [m, m + 1] . w = {m + 1}

whence rank of A is equal to 1, a contradiction. Thus, δ(m, w) = m and hence
δ(q, w) = m for all q ≤ m by the monotonicity of the automaton. The second
half of the lemma is proved in a symmetric way.

Let W2 be the set of all words w ∈ Σ∗ such that |[Q . w]| = 2.

Lemma 2. For every word v ∈ Σ∗ and for every word w ∈ W2, the interval
[Q . v] contains the interval [Q . w].

Proof. Arguing by contradiction, assume there exist v ∈ Σ∗ and w ∈ W2 such
that [Q . w] = [m, m + 1] � [Q . v] = [x, y]. Then either m + 1 ≤ x or y ≤ m.
Suppose for certainty that m + 1 ≤ x and consider the action of the word vw
on Q:

Q . vw = (Q . v) . w = [x, y] . w = {m + 1}.

Here the last equality follows from Lemma 1 because x, y ≥ m + 1. Hence rank
of A is 1, a contradiction.

Corollary 1. All words in W2 compress Q to the same interval.

Theorem 1. For each monotonic automaton A = 〈Q, Σ, δ〉 of interval rank 2,

the set W2 contains a word of length at most
⌈

n(n−2)
4

⌉
.

Proof. Denote the set of all non-singleton intervals of the chain 〈Q,≤〉 by int2(Q)
and consider the automaton I = 〈int2(Q), Σ, δ′〉 where δ′(I, a) = [I . a] for any
interval I ∈ int2(Q) and for any letter a ∈ Σ. We call I the interval automaton
of the monotonic automaton A. The set int2(Q) is naturally ordered by inclu-
sion. We represent this order on the figures below by drawing the states of the
automaton I as a triangular array in which intervals of the same size are aligned
in the same horizontal row and the interval [x, y] is placed immediately above
[x, y − 1] and [x + 1, y].

Let [m, m + 1] be the unique interval of size 2 to which the state set Q of
A can be compressed. It is easy to see that every word in W2 labels a path
from Q = [1, n] to [m, m + 1] in the automaton I, and conversely, every word
labeling such a path belongs to W2. We partition the set int2(Q) into three zones:
Z1 = {[x, y] | y ≤ m}, Z2 = {[x, y] | m < x} and Z3 = {[x, y] | x ≤ m < y}, see
Fig. 1.

From Lemma 2 it follows that every path starting at the state Q = [1, n] in
the automaton I never leaves the zone Z3. Therefore a minimum length path
from Q to [m, m+1] passes only through intervals in Z3 and visits each of them
at most once.

276 T. Shcherbak

�
� �

� � �
� � � �

� � � � �
� � � � � ��

�
�

�

�
�

�
�

�
�

[m, m + 1]

[1, n]

[1, m + 1]

[m, n]

Z1
Z2

Z3

Fig. 1

In fact, we can say more by applying an argument from [4]. An interval I ∈
int2(Q) is called extreme if it contains one of the two extreme states of the chain
〈Q,≤〉. It is shown in the proof of Theorem 2 in [4] that if a minimum length
path from Q to some interval I visits a non-extreme interval J then no extreme
interval occurs in the subpath between J and I. Therefore the maximum number
of intervals visited by a minimum length path from Q to [m, m + 1] is less than
or equal to

pp(m) = (m− 1)(n−m− 1) + max{m, n−m},

where the first summand is the number of non-extreme intervals in the zone Z3
and the second summand is the number of extreme intervals in the longest outer
side of Z3. Fig. 2 shows one of the paths visiting all p(m) ‘allowed’ intervals.

�
� �

� � �
� � � �

� � � � �
� � � � � �

� � � � � � �
� � � � � � � �

� � � � � � � � �
[m, m + 1]

[1, n]

[1, m + 1] [m, n]

Fig. 2

The Interval Rank of Monotonic Automata 277

Thus, the minimum length of a word in W2 does not exceed

p(m)− 1 =

{
(n−m− 1)m if m ≤ n−m,
(n−m)(m− 1) if m ≥ n−m.

If n is even, this function reaches its maximum n(n−2)
4 at m = n

2 ; if n is odd,

the maximum is equal to (n−1)2

4 and it is reached at m = n−1
2 when m ≤ n−m

and at m = n+1
2 when m ≥ n −m. Since (n−1)2

4 = n(n−2)
4 + 1

4 , we can express

the bound as
⌈

n(n−2)
4

⌉
independently of the parity of n.

3 Tightness of the Bound of Theorem 1

In order to show that the upper bound
⌈

n(n−2)
4

⌉
for �(n, 2) is tight, we have

to present for each n > 1 an n-state monotonic automaton of interval rank 2

such that no word of length less than
⌈

n(n−2)
4

⌉
compresses the states of the

automaton to an interval of size 2. For each odd n > 3 such an automaton
is exhibited in [4–Propositions 1 and 2], and the example for n = 3 is rather
obvious: 〈{1, 2, 3}, {a}, δ〉 with δ(1, a) = δ(2, a) = 2, δ(3, a) = 3. Therefore in
what follows we assume that n = 2m is even. The case n = 2 is trivial so we
assume that n ≥ 4.

Thus, for each m = 2, 3, . . . , we define an automaton Am with the state set
Qm = {1, 2, . . . , 2m}. The input alphabet Σ of Am consists of three letters A,
B and C whose action on the set Qm is defined as follows:

δ(q, A) =
{

2 if q ≤ m,
2m if q > m; (3)

δ(q, B) =

⎧⎨⎩
1 if q = 1,
q + 1 if 1 < q < m,
q if q ≥ m;

(4)

δ(q, C) =

⎧⎪⎪⎨⎪⎪⎩
1 if q < m,
2 if q = m,
m + 1 if q = m + 1,
q − 1 if q > m + 1.

(5)

The next figure shows the action of Σ on the set Qm for m = 4.
It is easy to see that the actions (3)–(5) preserve the natural order on the

set Qm. Therefore the automaton Am is monotonic.
Recall that a subset X ⊆ Q is said to be invariant with respect to a trans-

formation ϕ of the set Q if Xϕ ⊆ X . It is clear that the intervals [1, m] and
[m + 1, 2m] are invariant under the actions (3)–(5). Therefore for any word
w ∈ Σ∗ the set Qm . w contains at least one state in [1, m] and at least one state
in [m + 1, 2m] whence the rank of Am is at least 2, and so is the interval rank
of the automaton.

278 T. Shcherbak

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �1

2

3

4

5

6

7

8
A B C

Fig. 3. The automaton A4

Proposition 1. There exists a word w ∈ Σ∗ such that Qm . w = [m, m+1].

Proof. For each k = 1, . . . , m, consider the interval Ik = [m, m + k]. From
(4) and (5) we obtain Ik . CBm−2 ⊆ [m, m + k − 1] = Ik−1. On the other
hand, Qm .ABm−2 ⊆ [m, 2m] = Im, and thus Qm . w ⊆ [m, m + 1] for w =
ABm−2(CBm−2)m−1. As observed above, the interval rank of Am is at least 2
whence Qm . w = [m, m + 1] as required.

The reader may verify that in the interval automaton corresponding to the
automaton Am the word w = ABm−2(CBm−2)m−1 labels a path of the form
shown in Fig. 2 above.

As above, let W2 be the set of all words v ∈ Σ∗ such that |[Qm . v]| = 2.

Proposition 2. The length of any word v ∈W2 is at least m(m− 1).

Proof. From Corollary 1 we deduce that Qm . v = [m, m+1], whence [1, m] . v =
{m} and [m + 1, 2m] . v = {m + 1} as the intervals [1, m] and [m + 1, 2m]
are invariant. Another consequence of the invariancy of these intervals is that
[Q .uA] = [2, 2m] for any word u ∈ Σ∗.

Every word v ∈ W2 must contain at least one occurrence of A since A is the
only letter that changes the state 1. If we write v as v = uAw where the suffix
w contains no occurrence of A, then it is clear that the word Aw also belongs to
W2. This means that we may assume that v = Aw where w ∈ {B, C}∗.

Calculate the actions of the following words on the state m:

δ(m, ABk) = δ(m, CBk) =
{

2 + k if k < m− 2,
m if k ≥ m− 2; (6)

δ(m, ABkC) = δ(m, CBkC) =
{

1 if k < m− 2,
2 if k ≥ m− 2.

(7)

The Interval Rank of Monotonic Automata 279

Since δ(m, v) = m, from (6) and (7) it follows that the word v contains no
factors of the forms ABkC and CBkC with 0 ≤ k < m − 2. Therefore v =
ABk1CBk2 · · ·CBks , where k1, k2, . . . , ks ≥ m− 2. Further, we notice that the
only letter that moves the states from the interval [m + 1, 2m] down is C and in
order to move the state 2m to the state m the word v must have at least m− 1
occurrences of the letter C. Thus, s ≥ m and the length of v is at least m(m−1).

As m = n
2 , the automaton Am is indeed a witness for the lower bound

�(n, 2) ≥ n(n−2)
4 for each even n ≥ 4.

4 The Value of �(n, k) for 2 < k < �n
2�

Now let A = 〈Q, Σ, δ〉 be a monotonic automaton with interval rank k > 2. Let
Wk denote the set of all words w ∈ Σ∗ such that |[Q . w]| = k.

Theorem 2. For each automaton A = 〈Q, Σ, δ〉 of interval rank k the set Wk

contains a word of length at most

"n(n− 2)
4

− (k + 1)(k − 2)
2

#. (8)

�
� �

� � �
� � � �

� � � � �
� � � � � �

� � � � � � �
� � � � � � � �

� � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � �
� � � � � � � � � � � ��

�
�

�
�

�
��

�
�

�
�

�
�

�
�

�

[m, m+k−1]

[1, m + k − 1]

[1, n]

�
�

�
��

�
�

�
�

�
�[1, m + 1]

[m−k+2, m+1]

[m + k − 2, n]

[m+k−2, m+2k−3]

[m, n]

Z1 Z2

Z3

Z5Z4

Fig. 4

Some extra complications in the proof of Theorem 2 in comparison with the
one of Theorem 1 are caused by the fact that for k > 2 there is no uniqueness:
different words from Wk may compress the state set Q to different intervals

280 T. Shcherbak

of size k. One can however prove that the number of different intervals of the
form [Q . w] with w ∈ Wk does not exceed k − 1 (and this bound is tight).
Moreover, if [m, m + k − 1] is one of these intervals then the leftmost and the
rightmost intervals of size k that can be reached from Q are [m− k + 2, m + 1]
and respectively [m + k − 2, m + 2k − 3].

These observations lead to a partitioning of the set intk(Q) of all at least k-
element intervals of Q into the five zones shown on Fig. 4. Every path from the
interval [1, n] to the interval [m, m+k−1] passes only through intervals from the
zones Z3, Z4 and Z5. It can be also shown that no such path can penetrate both
the zones Z4 and Z5 ‘too deeply’ (see Lemma 4 of the appendix for a precise
formulation of the latter property). This together with the argument from [4]
restricting the number of extreme intervals in a minimum length path yields the
upper bound of Theorem 2.

In order to show that the upper bound is tight for 2 < k < �n
2 �, we have to

exhibit for each n > 2k an n-state monotonic automaton of interval rank k such

that no word of length less than
⌈

n(n−2)
4 − (k+1)(k−2)

2

⌉
compresses the states of

the automaton to an interval of size k. Here is the construction for even n = 2m,
the construction for odd n being similar. The input alphabet Σk of our automa-
ton Bm,k = 〈Qm, Σk, δ〉 consists of 2k − 1 letters A, B1, . . . , Bk−1, C1, . . . , Ck−1
that act on Qm as follows:

δ(q, A) =

{
1 if q ≤ m,

2m− 1 if q > m;
(9)

δ(q, B1) =

{
q if q ≤ m + k − 1 or q = 2m,

q − 1 if m + k − 1 < q < 2m;
(10)

δ(q, Bi) =

⎧⎪⎨⎪⎩
q if q ≤ m− i or q > m + k − i + 1,

m + k − i if m < q ≤ m + k − i + 1,

m− i if m− i ≤ q ≤ m,

(11)

for 1 < i ≤ k − 1;

δ(q, C1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q + 1 if q < m− k + 1,

q if m− k + 1 ≤ q ≤ m,

2m− 1 if m < q ≤ m + j,

2m if q > m + j;

(12)

δ(q, Cj) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q + 1 if q = m− k + 1,

q if q < m− k + j or m− k + j < q ≤ m,

2m− 1 if m < q ≤ m + j,

2m if q > m + j,

(13)

for 1 ≤ j ≤ k − 1.

Fig. 5 shows the action of Σ4 on the state set Qm for m = 6.

The Interval Rank of Monotonic Automata 281

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �1

2

3

4

5

m = 6

7

8

9

10

11

12
A B1 B2 B3 C1 C2 C3

Fig. 5. The automaton B6,4

For each � = 1, . . . , k − 1, consider the word w� = Bm−k
1 B2 · · ·Bk−�C�. Then

it is not hard to verify that the word Awm−k+1
1 w2w3 · · ·wk−1B

m−k
1 compresses

the set Qm to the interval [m, m + k − 1]. With somewhat more effort one can
prove that the interval rank of the automaton Bm,k is equal to k and that every

word in Wk must have the length at least m(m−1)− (k+1)(k−2)
2 thus confirming

the tightness of the bound (8).

Acknowledgment. The author is grateful to Dr. D. S. Ananichev for suggesting
the problem and for his guidance and to Prof. M. V. Volkov and Prof. J. Almeida
for several useful remarks.

References

1. Černý, J.: Poznámka k homogénnym eksperimentom s konecnými automatami.
Mat.-Fyz. Cas. Slovensk. Akad. Vied. 14 (1964) 208–216 [in Slovak].

2. Rystsov, I.: Rank of a finite automaton. Cybernetics and System Analysis 28 (1992)
323–328

3. Mateescu, A., Salomaa, A.: Many-valued truth functions, Černý’s conjecture and
road coloring. Bull. EATCS 68 (1999) 134–150

4. Ananichev, D.S., Volkov, M.V.: Synchronizing monotonic automata. Theoret. Com-
put. Sci. 327 (2004) 225–239

Compressing XML Documents Using Recursive

Finite State Automata

Hariharan Subramanian and Priti Shankar�

Department of Computer Science and Automation,
Indian Institute of Science,
Bangalore 560012, India

{hariharan, priti}@csa.iisc.ernet.in

Abstract. We propose a scheme for automatically generating compres-
sors for XML documents from Document Type Definition(DTD) specifi-
cations. Our algorithm is a lossless adaptive algorithm where the model
used for compression and decompression is generated automatically from
the DTD, and is used in conjunction with an arithmetic compressor to
produce a compressed version of the document. The structure of the
model mirrors the syntactic specification of the document. Our compres-
sion scheme is on-line, that is, it can compress the document as it is being
read. We have implemented the compressor generator, and provide the
results of experiments on some large XML databases whose DTD’s are
specified. We note that the average compression is better than that of
XMLPPM, the only other on-line tool we are aware of. The tool is able
to compress massive documents where XMLPPM failed to work as it ran
out of memory. We believe the main appeal of this technique is the fact
that the underlying model is so simple and yet so effective.

1 Introduction

Extensible Markup Language(XML) [1] is a standard meta language used to
describe a class of data objects, called XML documents and to specify how
they are to be processed by computer programs. XML is rapidly becoming a
standard for the creation and parsing of documents. However, a significant dis-
advantage is document size, which is a consequence of verbosity arising from
markup information. It is commonly observed that non-standardized text for-
mats for describing equivalent data are significantly shorter. Theoretically, there-
fore, one should be able to compress XML documents down to the same size as
the compressed versions of their non-standard counterparts. XML documents
have their structure specified by DTD which specify the syntax of the doc-
uments. From an information-theoretic standpoint, portions of the document
that have to do with its layout should not add to its entropy. It is therefore nat-
ural to investigate the use of syntactic models for the compression of such data.
Present day XML databases are massive and the need for compression is pressing.

� Contact Author.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 282–293, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Compressing XML Documents Using Recursive Finite State Automata 283

A desirable feature of a compression scheme is the ability to be able to query
the compressed document without decompressing the whole document. Whereas
we do not address this problem in this paper, the fact that syntax plays a cru-
cial rule in the compression model is an indication that the scheme might be
amenable to extensions that can achieve this. At present the scheme is totally
automatic where the user specifies just the DTD and the compressor and decom-
pressor are generated. DTD syntax, is very similar to that of Extended Context
Free Grammars[2]. The left hand side of each rule is an element and the right
hand side is a regular expression over elements. One could therefore construct
a model that mirrors the DTD in the same way that recursive descent parsers
mirror the underlying LL(1) [2] grammar. What is of importance here is that
the model tracks the structure of the document, and is able to make accurate
predictions of the expected symbols. More importantly, whenever the predicted
symbol is unique, there is no need to encode it at all as the decoder generates
the same model from the DTD and is thus able to generate the unique expected
symbol. Most markup symbols fall into this category of symbols. Character data
associated with a single element is automatically directed to the same model
for arithmetic compression irrespective of the instance of the element in the
DTD.

The syntax directed translation scheme converts the DTD into a set of De-
terministic Finite Automata (DFA) one for each element in the DTD. Each
transition is labeled by an element, and the action associated with a transition
is a call to a simulator for the DFA for the element labeling that transition.
Every element that has some attributes or character data has an associated
container. The scheme we describe automatically groups all data for the same
element into a single container which is compressed incrementally using a sin-
gle model for an arithmetic order-4 compressor[3, 4]. We have run experiments
on five large databases and compared the performance of our tool with that of
two well known XML-aware compression schemes, XMill[5] and XMLPPM[6].
Two of these databases, DBLP[7] and UniProt[8] are well known. The other
three (XMark[9], Michigan[10] and XOO7[11]) are XML benchmark projects.
The tool XMLPPM could not compress two of the databases as it ran out of
memory. The average compression ratio of our scheme is better than that of
XMLPPM and significantly better than that of XMill. The time and space over-
heads are somewhat larger than those of XMill. This is an inherent drawback of
a scheme based on arithmetic coding, which has to perform costly table updat-
ing operations after seeing every symbol. However XMill cannot perform on-line
compression as can XMLPPM and our tool XAUST(XML compression with
AUtomata and a STack). Section 2 describes related work. Section 3 is a short
background on arithmetic coding. Section 4 is a summary of the structure of
XML documents and DTD, and this is followed by a description of our scheme.
Section 5 compares our compression results with those of XMill and XMLPPM
and that of a general purpose compressor bzip2[12]. Section 6 concludes the
paper.

284 H. Subramanian and P. Shankar

2 Related Work

The use of syntax in the compression of program files is not new. Cameron[13]
has used Context Free Grammars (CFG) for compressing programs. Given esti-
mates for derivation step probabilities, he has shown how to construct practical
encoding systems for compression of programs whose syntax is defined by a CFG.
The models are, however, fairly complex in their operation. For the scheme to
be effective, these probabilities have to be learned on sample text. Syntax based
schemes have also been used for machine code compression [14, 15, 16, 17]. The
XML-specific compression schemes that we are aware of are XMLZIP[18], XMill
and XMLPPM. The last two have tried to take advantage of the structure in
XML data by either transforming the file after parsing, breaking up the tree into
components[5] or injecting hierarchical element structure symbols into a model
that multiplexes several models based on the syntactic structure of XML [6].
They do not require the DTD to compress the document, and even if it is avail-
able it is not used (XMill can use it but only interactively).

XMLZIP parses XML data and creates the underlying tree. It then breaks up
the tree into many components, the root component at depth d and a component
for each of the subtrees at depth d. Each of the subtrees is compressed using
Java’s ZIP-DEFLATE archive library. The advantage of such a scheme is that
it allows limited random access to parts of the document without the need to
have the whole tree in main memory.

XMill separates the structure from the content and compresses them sepa-
rately. Data items are grouped into containers and each container is compressed
separately. Different compressors are applied to compress different containers
depending on the content. The criterion for grouping data into a container is
not just the tagname but also the path from the root to the tagname. XMill
does not compress the document on-line.

XMLPPM uses a modeling technique called Multiplexed Hierarchical Mod-
eling (MHM), based on the SAX[19] encoding and on PPM[20] modeling. The
technique employs two basic ideas: multiplexing several text compression mod-
els based on the syntactic structure of XML (one model for element structure,
one for attributes, and so on), and injecting hierarchical element structure sym-
bols into the multiplexed models (these are essentially root to leaf paths to
the element). Multiplexing enables more effective hierarchical structure mod-
eling. A common case for these dependencies is for the enclosing element tag
to be strongly correlated with enclosed data. MHM exploits this by injecting
the enclosing tag symbol into the element, attribute or string model imme-
diately before an element, attribute or string is encoded. Injecting a symbol
means telling the model that it has been seen but not explicitly encoding or
decoding it.

At the cost of a degraded compression quality tools have been designed that
allow certain kinds of queries on the compressed versions. Examples of such
schemes are [21, 22, 23].

We first describe the well known arithmetic encoding technique that is em-
bedded into our scheme and is an essential component of it.

Compressing XML Documents Using Recursive Finite State Automata 285

3 Arithmetic Coding and Finite Context Modeling

3.1 Arithmetic Coding

Arithmetic coding does not replace every input symbol with a specific code.
Instead it processes a stream of input symbols and replaces it with a single
floating point output number. The longer (and more complex) the message, the
more bits are needed in the output number.

The output from an arithmetic coding process is a single number less than 1
and greater than or equal to 0. This single number can be uniquely decoded to
create the exact stream of symbols that went into its construction. In order to
construct the output number, the symbols being encoded need to have a set of
probabilities assigned to them. Initially the range of the message is the interval
[0, 1). As each symbol is processed, the range is narrowed to that portion of it
allocated to the symbol.

3.2 Finite Context Modeling

In a finite context scheme, the probabilities of each symbol are calculated based
on the context the symbol appears in. In its traditional setting, the context
is just the symbols that have been previously encountered. The order of the
model refers to the number of previous symbols that make up the context. In an
adaptive order k model, both the compressor and the decompresser start with
the same model. The compressor encodes a symbol using the existing model and
then updates the model to account for the new symbol. Typically a model is a
set of frequency tables one for each context. After seeing a symbol the frequency
counts in the tables are updated. The frequency counts are used to approximate
the probabilities and the scheme is adaptive because this is being done as the
symbols are being scanned. The decompresser similarly decodes a symbol using
the existing model and then updates the model. Since there are potentially qk

possibilities for level k contexts where q is the size of the symbol space, update
can be a costly process, and the tables consume a large amount of space. This
causes arithmetic coding to be somewhat slower than dictionary based schemes
like the Ziv-Lempel[24] scheme.

4 Automata Representing XML Documents

XML documents contain element tags which include start tags like <name> and
end tags like </name>. Elements can nest other elements and therefore a tree
structure can be associated with an XML document. Elements can also contain
plain text, comments and special processing instructions for XML processors. In
addition, opening element tags can have attributes with values such as gender
in <person gender=‘‘female’’>. Detailed specifications are given in [1].

XML documents have to conform to a specified syntax usually in the form
of a DTD. Usually XML documents are parsed to ensure that only valid data
reaches an application. Most XML parsing libraries use either the SAX interface

286 H. Subramanian and P. Shankar

or the DOM(Document Object Model) interface. SAX is an event based interface
suitable for search tools and algorithms that need one pass. The DOM model on
the other hand is suitable for algorithms that have to make multiple passes.

Since XML documents are stored as plain text files one possibility is to use
standard compression tools like bzip2 or ppm*. Cheney[6] has performed a study
of the compression using such general purpose tools and observed that each
general purpose compressor performs poorly on at least one document. Since
XML documents are governed by a rather restrictive set of rules the obvious
way to go, is to try to use the rules to predict what symbols to expect. Further
if the rules are already known a-priori then the compressor which is tuned to
take advantage of the rules can be generated directly from the rules themselves.
This is what we achieve in our scheme XAUST.

The scheme proposed in this paper assumes that the DTD describing the
data is known to both the sender and the receiver. Typically, an element of a
DTD consists of distinct beginning and ending tags enclosing regular expressions
over other elements. Elements can also contain plain text, comments and special
instructions for XML processors (“processing instructions”). Opening element
tags can have attributes with values.

Example 1. Consider a DTD defined as follows:

<!DOCTYPE addressBook[
<!ELEMENT addressBook (card*)>
<!ELEMENT card ((name | (givenName, familyName)), email, note?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT givenName (#PCDATA)>
<!ELEMENT familyName (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT note (#PCDATA)>
]>

Below is an instance of an XML document conforming to this DTD.

<addressBook>
<card>
<givenName>Hariharan</givenName>
<familyName>Iyer</familyName>
<email>hari@gmail.com</email>
</card>
<card>
<name>Priti Shankar</name>
<email>priti@gmail.com</email>
<note>Hariharan’s advisor</note>
</card>
</addressBook>

The strings following each element declaration are just regular expressions over
element names and therefore each of them can be associated with a DFA.

Compressing XML Documents Using Recursive Finite State Automata 287

givenName

familyName

name

email

note

Fig. 1. DFA for the right hand side of the production for nn in example 1

The DFA for the right hand side of the rule for element card is shown in
Fig., 1. There are two kinds of states in this automaton, those having a single
output transition and those with multiple output transitions. Symbols that label
single output transitions need not be encoded as their probability is 1. Thus
encoding of symbols by the arithmetic compressor needs to be performed only at
states with more than one outgoing transition. An arithmetic encoding procedure
is called at each such state for each element. As we observed in Section 3, the
arithmetic encoder maintains tables of frequencies which it updates each time
it encodes a symbol. Each element which has a #PCDATA attribute will result in
a call to an arithmetic encoder which uses a common model for all instances
of that element attribute and encodes them using the same set of frequency
tables. A typical sequence of actions is then as follows: Enter the start state
of a DFA representing the right side of a rule; if there is only one edge out of
the state then do nothing; if that element has a #PCDATA attribute then encode
the string of symbols using the frequency tables associated with that element; if
there is more than one edge encode the element labeling the edge taken, using
an arithmetic encoder for that state, and transit to the the start state of the
DFA for that element; the decoder mimics the action of the encoder generating
symbols that are certain and using the arithmetic decoder for symbols that are
not.

XAUST uses a single container for the character data associated with each
element though this has the capability to use the context (i.e. the path along
which it reached this element). The reason is best illustrated by the example
below:

Example 2. Consider the element below

<!ELEMENT Project (date, date, ...)>
<!ELEMENT Employee (date, ...)>
<!ELEMENT date (#PCDATA)>

The date in Employee is the joining date. The first and second date in Project
are the starting and ending dates respectively of the project. XAUST uses a
single model for date and the reason is clear. Experimentation indicates that
having different models for date in this case is counter-productive as different
models for essentially the same kind of data consume an inordinate amount of
memory with little or no gain in compression ratio.

288 H. Subramanian and P. Shankar

4.1 Compression and Decompression Using XAUST

A state of the compressor is a pair (element, state) where element represents
the current element whose DFA XAUST is traversing, and state the state of
the DFA where it currently is. Assume that the current state of the Encoder
is (i, j). When an open tag is encountered for element k in the document, the
current state pair of the encoder is stored on the calling stack and the DFA for
the element k is entered. The current state of the encoder now becomes (k, 0).
When the end tag is encountered for element k, the stack is popped and the
new state of the encoder becomes (i, j + 1). As mentioned earlier, tags are not
encoded if the number of output transitions is equal to 1. For example, for the
case below we need not encode the tag D but we have to encode B and C.

<!ELEMENT A ((B | C), D)>

Every state has an arithmetic model which it uses to encode the next state.
Note that this is different from the model used to encode character data, which
is handled as described below.

Consider the element below.

<!ELEMENT A ((#PCDATA | B)*)>

There are two transitions from the start state of the DFA for element A. One
of them invokes the arithmetic model for PCDATA which is common for all
PCDATA associated with any instance of element A in the document. The other
transition invokes the DFA for element B after pushing the current state in the
stack.

The pseudo-code for Encoder (Compressor) and Decoder (Decompresser) is
given below. For the sake of brevity only these two routines are shown. Encoding
and decoding attributes are also not shown. We can see the similarity between
Encoder and Decoder routines.

void Encoder()
{
ExitLoop = true;
//StateStruct is a pair of int(ElementIndex, StateIndex)
//ElementIndex represents the automaton
//StateIndex is the state in the above automaton
StateStruct CurrState(0, 0);

while(ExitLoop == false)
{

Type = GetNextType(FilePointer, ElementIndex);

switch(Type)
{
case OPENTAG:
//Encode ElementIndex in CurrState context
EncodeOpenTag(CurrState, ElementIndex);
Stack.push(CurrState);
CurrState = StateStruct(ElementIndex, 0);
break;

Compressing XML Documents Using Recursive Finite State Automata 289

case CLOSETAG:
//Encode CLOSETAG in CurrState context
EncodeCloseTag(CurrState);
if(Stack.empty() == true)
{

ExitLoop = true;
}
else
{

CurrState = Stack.pop();
//Make state transition in CurrState.ElementIndex
//automaton and get the next state
CurrState.StateIndex = MakeStateTransition(CurrState,

ElementIndex);
}
break;

case PCDATA:
//Encode Pcdata in Currstate context
EncodePcdata(CurrState);
CurrState.StateIndex = MakeStateTransition(CurrState, PCDATA);
break;

}
}

}

void Decoder()
{
ExitLoop = true;
StateStruct CurrState(0, 0);

while(ExitLoop == false)
{

//Decode the type in CurrState context
Type = DecodeNextType(FilePointer, CurrState, ElementIndex);

switch(Type)
{
case OPENTAG:
//Write open tag of the Element of ElementIndex
WriteOpenTag(ElementIndex);
Stack.push(CurrState);
CurrState = StateStruct(ElementIndex, 0);
break;

case CLOSETAG:
//Write close tag of the Element of ElementIndex
WriteCloseTag(ElementIndex);
if(Stack.empty() == true)

290 H. Subramanian and P. Shankar

{
ExitLoop = true;

}
else
{

CurrState = Stack.pop();
CurrState.StateIndex = MakeStateTransition(CurrState,

ElementIndex);
}
break;

case PCDATA:
DecodePcdata(CurrState);
CurrState.StateIndex = MakeStateTransition(CurrState, PCDATA);
break;

}
}

}

5 Experimental Results

We have examined the comparative performance of three tools XMill, XMLPPM
and XAUST on five large XML documents. The sizes of these documents are
displayed in Table 1. We define the Compression Ratio as the ratio of the size
of the compressed document to the size of the original document expressed as
a percentage. The compression ratios for all three schemes are shown in Fig., 2
along with that of a general purpose compressor bzip2. The compression ratios of
XAUST and XMLPPM are considerably better than that of XMill for all but one
of the documents. XMLPPM, however, ran out of memory for two documents.
It also takes significantly longer than XAUST whereas XMill is very fast and
economical in its use of space. The disadvantage of XMill is that it cannot
perform on-line compression. We expect that our scheme will do well wherever
the markup content is high as tags whose probability of occurrence is 1 are not
included in the compressed stream. Figure 2 also shows the compression ratios
for tags alone. XAUST compresses tags more efficiently than in other schemes.

Table 1. Sizes of XML documents that were compressed

Name Size (in MB)

auction 113
dblp 253
uniprot 1070
michigan 495
x007 128

Compressing XML Documents Using Recursive Finite State Automata 291

Fig. 2. Statistics for Compression Ratios, Running Times and Memory Usage for XMill,
XAUST, XMLPPM and bzip2. XMLPPM ran out of memory for uniprot.xml and
mich.xml. Running times are shown for only XML-aware schemes.

XAUST does not need a SAX parser as do XMill and XMLPPM as some form
of parsing is already embedded in its action.

6 Conclusion and Future Work

We have presented a scheme for the compression of XML documents where the
underlying arithmetic model for the compression of tags is a finite state automa-

292 H. Subramanian and P. Shankar

ton generated directly from the DTD of the document. The model is automatically
switched on transiting from one automaton to another storing enough information
on the stack so that return to the right state is possible; this ensures that the correct
model is always used for compression. (In fact it precisely achieves the multiplexing
of models mentioned in XMLPPM in a completely natural manner). On return, the
stack is used to recover the state from which a transition was made. The scheme is
reminiscent of a recursive descent parser except that it is not subject to the LL(1)
restrictions. Our technique directly generates the compressor from the DTD in the
appropriate format with no user interaction except the input of the DTD. Our ex-
periments on five large databases indicate that the scheme is better on the average
than XMLPPM in terms of compression ratio, much faster in terms of running
time and more economical in terms of memory usage. In fact XMLPPM ran out of
memory for UniProt and Michigan documents. The tool XMill runs much faster
and in less space, but its average performance is considerably inferior to that of
XAUST as can be observed from Fig. 2.

The dynamic space requirements for the compressor are dominated by the
size of the tables for the arithmetic compressor which grow exponentially with
the size of the context (order 4 is used here). Also updating these tables after
each symbol is processed makes the compression rather slow in comparison with
dictionary based schemes.

Future work will concentrate on modifying this scheme to facilitate simple
tree queries on the XML text.

References

1. XML: W3C recommendation. http://www.w3.org/TR/REC-xml (2004)
2. Backhouse, R.C.: Syntax of Programming Languages - Theory and Practice. Pren-

tice Hall International, London (1979)
3. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression.

Commun. ACM 30 (1987) 520–540
4. Nelson, M.: Arithmetic coding and statistical modeling.

http://dogma.net/markn/articles/arith/part1.htm. Dr. Dobbs Journal (1991)
5. Liefke, H., Suciu, D.: XMILL: An efficient compressor for XML data. In: SIGMOD

Conference. (2000) 153–164
6. Cheney, J.: Compressing XML with Multiplexed Hierarchical PPM Models. In:

Proceedings of the Data Compression Conference, IEEE Computer Society (2001)
163–172

7. DBLP: (http://www.informatik.uni-trier.de/∼ley/db)
8. UniProt: (http://www.ebi.uniprot.org)
9. XMark: (http://monetdb.cwi.nl/xml/generator.html)

10. Michigan: (http://www.eecs.umich.edu/db/mbench)
11. XOO7: (http://www.comp.nus.edu.sg/∼ebh/xoo7.html)
12. Bzip2: (http://www.bzip.org)
13. Cameron, R.D.: Source encoding using syntactic information source models. IEEE

Transactions on Information Theory 34 (1988) 843–850
14. Ernst, J., Evans, W.S., Fraser, C.W., Lucco, S., Proebsting, T.A.: Code compres-

sion. In: PLDI. (1997) 358–365

Compressing XML Documents Using Recursive Finite State Automata 293

15. Franz, M.: Adaptive compression of syntax trees and iterative dynamic code op-
timization: Two basic technologies for mobile object systems. In: Mobile Object
Systems: Towards the Programmable Internet. Springer-Verlag: Heidelberg, Ger-
many (1997) 263–276

16. Franz, M., Kistler, T.: Slim binaries. Commun. ACM 40 (1997) 87–94
17. Fraser, C.W.: Automatic inference of models for statistical code compression. In:

PLDI. (1999) 242–246
18. XMLZIP: (http://www.xmls.com)
19. SAX: (http://www.megginson.com/sax)
20. Cleary, J.G., Teahan, W.J.: Unbounded length contexts for PPM. The Computer

Journal 40 (1997) 67–75
21. Tolani, P.M., Haritsa, J.R.: XGRIND: A query-friendly XML compressor. In:

ICDE. (2002) 225–234
22. Min, J.K., Park, M.J., Chung, C.W.: XPRESS: A queriable compression for XML

data. In: SIGMOD Conference. (2003) 122–133
23. Arion, A., Bonifati, A., Costa, G., D’Aguanno, S., Manolescu, I., Pugliese, A.:

Efficient query evaluation over compressed XML data. In: EDBT. (2004) 200–218
24. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory 23 (1977) 337–343

Non-backtracking Top-Down Algorithm for

Checking Tree Automata Containment

Tadahiro Suda and Haruo Hosoya

Graduate School of Information Science and Technology,
University of Tokyo, Japan

{tada, hahosoya}@is.s.u-tokyo.ac.jp

Abstract. Checking tree automata containment is a fundamental op-
eration in static verification of XML processing programs. However, tree
automata containment problem is known to be EXPTIME-complete and
a standard algorithm with determinization of automata easily blows up
even in practical cases. Hosoya, Vouillon, and Pierce have proposed a
top-down algorithm that efficiently works for a large class of typical in-
stances. However, there still remains a considerable inefficiency because
of repeated calculation incurred by backtracking. In this paper, we pro-
pose a non-backtracking top-down algorithm which improves this ineffi-
ciency. In the algorithm, we introduce “dependencies” among performed
computations and, by exploiting these, we can recover certain kinds of
information lost by backtracking. One difficulty in constructing such al-
gorithm is, however, that, since some dependency information can be
useless, we may be misled to needless computation by using such in-
formation. To alleviate this problem, we carefully check the usefulness
of each dependency whenever we use it. Since these checks introduce a
subtlety to our algorithm, we rigorously formalize it with a correctness
proof. Our preliminary experiments show that our algorithm works more
efficiently compared to the previous algorithm.

1 Introduction

Tree automata are a finite-state machine model for accepting trees. This paper
aims at studying an efficient algorithm for the containment problem of tree
automata.

The primary motivation of this study is the application to static typecheck-
ing for XML processing. XML [1] is a world-wide emerging standard for tree-
structured documents that allows user-defined schemas for imposing structural
constraints on those data. The purpose of static typechecking is to analyze a
program for processing such XML documents and guarantee, before the exe-
cution, that generated documents conform to the schema given by the user.
Though various methods for static typechecking have been proposed [2–7], the
containment check between schemas is often used as the most important core (in
particular, in XDuce [2], CDuce [3], XQuery [4], and several theoretical frame-
works [5, 7]). As tree automata have been proved to be the most natural model

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 294–306, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Non-backtracking Top-Down Algorithm 295

for schemas (e.g., [8]),1 we focus on the containment problem of tree automata
in this paper.

Unfortunately, the containment problem of tree automata is known to have a
high complexity: EXPTIME-complete [11]. Since, in XML typechecking, we often
consider tree automata with a large number of states (more than 100 states),
naive algorithms are often not usable. In particular, a standard algorithm which
involves determinization of automata easily blows up since it needs to transform
input automata to completely separate automata with the number of states
exponential in the size of the input.

Hosoya, Vouillon, and Pierce have proposed a top-down algorithm [12] for
checking tree automata containment efficiently in typical cases. Their algorithm
checks a given goal of containment by recursively expanding it to subgoals
in a top-down way. During this check, the algorithm keeps track of already-
encountered containment goals as a set of “assumptions” in order to avoid rep-
etition of checking the same containment. However, in a later computation, the
assumptions may turn out to be false. At that moment, the algorithm performs
backtracking, which is not only costly by itself but also may incur repetition of
the same computation because some valuable information can be lost.

In this paper, we propose a non-backtracking top-down algorithm which im-
proves this inefficiency. In addition to already-encountered containments as in
the original top-down algorithm, our algorithm maintains dependency relations
among these containments. By exploiting this dependency information, we can
recover the above-mentioned information lost by backtracking and thus avoid
the wasteful repetition of computation. However, some dependency information
proved during the calculation can be useless (i.e., one containment depends on
another containment that actually does not hold), a naive introduction of this
mechanism would again cause extra computation. In order to overcome this dif-
ficulty, we carefully craft our algorithm in a way that eliminates dependency
relations as soon as they are proved to be useless. Since the algorithm becomes
quite subtle because of this handling of useless dependencies, we rigorously for-
malize our algorithm and prove its correctness. We have also implemented the
algorithm and compared it with the original top-down algorithm using several
non-trivial examples. The result indicates that our algorithm runs approximately
3 times to 8 times more efficiently than the previous one in these examples.

The rest of this paper is organized as follows. We first give preliminary no-
tations in Sec. 2. In Sec. 3, we first informally explain the existing top-down
algorithm, where we point out the inefficiency caused by backtracking, and then
describe the problem arising from naively introducing dependency information.
In Sec. 4, we formalize our non-backtracking algorithm that desirably handles
dependencies and prove its correctness. We discuss related work in Sec. 5. Fi-
nally, we verify the efficiency of our algorithm in practical cases by preliminary
experiments in Sec. 6. Due to space constraints, we omit the proofs of theorems
from this paper. These can be found in [13].

1 There are numerous schema languages, but most can be expressed more or less by
tree automata. (e.g., DTD [1], XML-schema [9], RELAX NG [10]).

296 T. Suda and H. Hosoya

2 Preliminaries

Let L be a finite set of labels, ranged over by l. We define a tree t as a labeled
binary tree by the following grammar:

t ::= # | l(t, t)

A tree automaton M is a triplet (L, Q, δ) where L is a finite set of labels, Q is a
finite set of states, and δ is a transition function from states to types. Types are
defined as subsets of {#}∪{l(s, s′) | l ∈ L, s, s′ ∈ Q}. We use the meta-variables
s, S, and T to range over Q, 2Q, and types, respectively. Also, we write δ(S)
for

⋃
s∈S δ(s). For any type T appearing in M , we write [[T]]M to denote the

set of all the trees matched by T , formally, the least solution of the following
equations: let us write [[a]]M for [[{a}]]M and

[[φ]]M = φ
[[#]]M = {#}

[[l(s, s′)]]M = {l(t, t′) | t ∈ [[δ(s)]]M , t′ ∈ [[δ(s′)]]M}
[[{a1, · · · , an}]]M =

⋃n
i=1[[ai]]M

For any set S of states, we define the language [[S]]M of S as [[δ(S)]]M . In the rest
of paper, we simply write [[·]] for [[·]]M when M is clear from the context. Also,
we write [[s]] for [[{s}]]. The tree automata containment problem is formalized as
follows: for a tree automaton M and two sets of states S and S′, answer “yes”
if and only if [[S]] ⊆ [[S′]].

3 Problems

Hosoya, Vouillon, and Pierce have proposed a “top-down” algorithm for checking
tree automata containment [12]. In their algorithm, containment check of given
two sets of states proceeds by recursively unfolding states by the transition func-
tion. That is, it starts with checking the given pair of state sets by comparing the
types yielded by unfolding the states; this eventually leads to checks of other pairs
of state sets, and then we repeat unfoldings and comparisons similarly for these.
In order to avoid repetition of checking the same pair, the algorithm keeps an “as-
sumption” set to remember pairs of state sets that have already been seen: later
when it encounters a pair that is already in the assumption set, it stops further
check of this.

For example, let us consider checking the containment [[s1]] ⊆ [[s2]] for the tree
automaton in Fig. 1 by their algorithm. In the example, we write an assumption
set in the following form:

{ s1≺s′1, · · · , sn≺s′n }

Intuitively, each si≺s′i stands for [[si]] ⊆ [[s′i]].
We start with the empty assumption set. To check [[s1]] ⊆ [[s2]], we first add

s1≺s2 to the assumption set:
{ s1≺s2 }

Non-backtracking Top-Down Algorithm 297

L = {a, b, c, d, e, f} Q = {s1, · · · , s8}
δ : s1 �→ {a(s1, s1), b(s3, s4)}

s2 �→ {a(s2, s2), b(s5, s7), b(s6, s8)}
s3 �→ {c(s4, s4), d(s9, s9), e(s4, s4)}
s4 �→ {#, a(s1, s1)}
s5 �→ {c(s8, s8), d(s10, s10), e(s2, s2)}
s6 �→ {c(s2, s2), d(s11, s11), e(s8, s8)}

s7 �→ {#, a(s2, s2)}
s8 �→ {#, a(s2, s2), b(s2, s2)}
s9 �→ {f(s3, s3)}
s10 �→ {f(s5, s5)}
s11 �→ {f(s5, s5), f(s6, s6)}

Fig. 1. An example of tree automaton

We then unfold s1 and s2 by the transition function δ and check the following
containment of types assuming the validity of containments in the assumption
set (i.e., assuming that [[s1]] ⊆ [[s2]] holds):

[[{a(s1, s1), b(s3, s4)}]] ⊆ [[{a(s2, s2), b(s5, s7), b(s6, s8)}]]

It is enough to compare the elements on both sides that have the same label.
Thus we check both of the following two containments:

(A) [[a(s1, s1)]] ⊆ [[a(s2, s2)]] (B) [[b(s3, s4)]] ⊆ [[{b(s5, s7), b(s6, s8)}]]

First, for the containment (A), showing [[s1]] ⊆ [[s2]] suffices. Since s1≺s2 is
already in the assumption set, we stop checking this containment further and we
judge right away that it holds.

Next, for the containment (B), it suffices to show:

[[s3]]× [[s4]] ⊆ ([[s5]]× [[s7]]) ∪ ([[s6]]× [[s8]])

The right hand side of this containment can be transformed into the conjunctive
normal form as follows: let us write T for the set of all trees and

(([[s5]]× T) ∩ (T × [[s7]])) ∪ (([[s6]]× T) ∩ (T × [[s8]]))

= (([[s5]]× T) ∪ (T × [[s8]])) ∩ (([[s6]]× T) ∪ (T × [[s7]]))
∩ ([[{s5, s6}]]× T) ∩ (T × [[{s7, s8}]])

Since [[s3]] × [[s4]] ⊆ ([[s5]] × T) ∪ (T × [[s8]]) is equivalent to “[[s3]] ⊆ [[s5]] or
[[s4]] ⊆ [[s8]]” and similarly for the other clauses in the last formula, it is enough
to check all of the followings.

(C) [[s3]] ⊆ [[s5]] or [[s4]] ⊆ [[s8]] (D) [[s3]] ⊆ [[s6]] or [[s4]] ⊆ [[s7]]
(E) [[s3]] ⊆ [[{s5, s6}]] (F) [[s4]] ⊆ [[{s7, s8}]]

Backtracking. Note that the algorithm needs to check disjunctions of con-
tainments and this is the cause of backtracking. Let us see this from how the
algorithm works for (C).

298 T. Suda and H. Hosoya

We begin with checking the first containment [[s3]] ⊆ [[s5]], for which we first
add s3≺s5 to the assumption set:

{ s1≺s2, s3≺s5 }

We then unfold s3 and s5 by δ and check the following containment:

[[{c(s4, s4), d(s9, s9), e(s4, s4)}}]] ⊆ [[{c(s8, s8), d(s10, s10), e(s2, s2)}]]

In order for this containment to hold, we need to show each of the following
three checks:

(G) [[c(s4, s4)]] ⊆ [[c(s8, s8)]] (H) [[d(s9, s9)]] ⊆ [[d(s10, s10)]]

(I) [[e(s4, s4)]] ⊆ [[e(s2, s2)]]

For the check of (G), since we only need to check [[s4]] ⊆ [[s8]], we add s4≺s8
to the assumption set as

{ s1≺s2, s3≺s5, s4≺s8 }

and check [[{#, a(s1, s1)}]] ⊆ [[{#, a(s2, s2)}]] as given by the unfolding of the
states s4 and s8. This succeeds by the trivial relation [[#]] ⊆ [[#]] and the fact
that the assumption set already contains s1≺s2. In order to show (H), all we
need is to check [[s9]] ⊆ [[s10]]. This holds since the unfolding of the states reduces
this relation to checking [[s3]] ⊆ [[s5]] and s3≺s5 is already in the assumption
set. As a result of this check, the assumption set becomes

{ s1≺s2, s3≺s5, s4≺s8, s9≺s10 }.

Finally, the containment (I) requires checking [[s4]] ⊆ [[s2]], but it does not hold
since # ∈ δ(s4) and # �∈ δ(s2). This makes the containment (I) false, leading
[[s3]] ⊆ [[s5]] to fail.

Here, since we have assumed [[s3]] ⊆ [[s5]] but it turns out to be false, we
roll back to the point (C). Since this is just before s3≺s5 was added to the
assumption set, the set is now reverted to

{ s1≺s2 }.

This backtracking is a source of inefficiency for the following reasons.

1. After the backtracking, we check the second check [[s4]] ⊆ [[s8]] of the dis-
junction in (C). However, the algorithm repeats the same calculation that
has already been done in the check of (G).

2. After finishing the check of (C), we continue with (D), which eventually
leads to the check of [[s4]] ⊆ [[s2]]. Even though this relation has already
been refuted when checking (I), the algorithm needs the same check once
again.

Non-backtracking Top-Down Algorithm 299

Introducing Dependency Information. We propose a technique to improve
the above inefficiency of the previous top-down algorithm. Our algorithm works
similarly to the previous one but it additionally maintains more refined infor-
mation including containment dependencies (expressing that “a containment
depends on other containments”) and refuted containments and uses these for
avoiding the above-mentioned needless calculation. Since our new algorithm
never reverts dependency information to a previous point in a blind way, we
call it a non-backtracking algorithm as oppose to the previous backtracking one.
For example, note that, in checking (G) above, when we judged [[s4]] ⊆ [[s8]], we
assumed the relation [[s1]] ⊆ [[s2]]. For this, our algorithm maintains the depen-
dency “[[s4]] ⊆ [[s8]] depends on [[s1]] ⊆ [[s2]].” This information is useful since,
later when we need to check [[s4]] ⊆ [[s8]], we can stop going further but instead
immediately say “succeed, provided [[s1]] ⊆ [[s2]] holds.”

However, in order to obtain an enough efficient algorithm, we need a care
in constructing our new algorithm. Among dependencies that have been proved
during the course of computation, there are useless ones expressing “a contain-
ment A depends on a false containment B”. It would make the algorithm slower
if we naively return as described in the last paragraph whenever we encounter A
for the next time. This is because the “conditional success” will later be canceled
by B’s falsity any way and the computation from now to then will be wasted.
One might think that such a dependency is stupid from the first place, but
the issue is that B’s falsity cannot be known at the moment where the depen-
dency is generated. As an example, the dependency “[[s9]] ⊆ [[s10]] depends on
[[s3]] ⊆ [[s5]]” was proved in the check of (H). However, [[s3]] ⊆ [[s5]] was refuted
later: the dependency turns out to be useless at the refutation point.

Our approach to this issue is to check uselessness of each dependency (i.e.,
validity of the depended containments) whenever we use it. However, such treat-
ment is not straightforward since blindly performing such a check will make
algorithm infinitely loop. Our observation is that the depended containments
that are unsafe to check can be characterized as those “still under checking,”
and a formalization of an algorithm involving a careful classification of contain-
ment relations is our main technical contribution in this paper.

4 Algorithm

We first introduce the following notation to express the containments that are
handled in our algorithm: a containment cont is either of the form s≺S (standing
for “[[s]] ⊆ [[S]]”), of the form T ≺T ′ (standing for “[[T]] ⊆ [[T ′]]”), or of the form
s≺S | s′≺S′ (standing for “[[s]] ⊆ [[S]] or [[s′]] ⊆ [[S′]]”). We also use π to range
over sets of containments of the form s≺S.

Our algorithm maintains an (extended) dependency set A = (U ,D ,F) where
U and F are sets of pairs of the form s≺S and D is a set of triplets of the
form π%s≺S. We store under-checking containments in U , dependencies (“s≺S
depends on the containments in π”) in D , and failed containments in F . For a
set D of dependencies, Dpair denotes {s≺S | π%s≺S ∈ D}. A dependency set
(U ,D ,F) is well-defined if it satisfies U ∩ F = φ, U ∩Dpair = φ, F ∩Dpair = φ

300 T. Suda and H. Hosoya

and, moreover, for any (s, S), there is at most one triplet of the form π%s≺S in
D. In the rest of this paper, we assume that any dependency set is well-defined.
A containment set π is consistent if [[s]] ⊆ [[S]] holds for all s≺S in π and a
dependency set (U ,D ,F) is consistent if it satisfies the following conditions:

– If π%s≺S ∈ D and π is consistent, then [[s]] ⊆ [[S]].
– If s≺S ∈ F , then [[s]] �⊆ [[S]].

(Note that the set U does not constrain the consistency of the dependency set.)
Our algorithm is defined by a set of rules that derive the following relation

A, cont � A′, ρ

where ρ ::= π | ⊥ and π is a subset of the under-checking pairs U of A. This
relation reads “the algorithm checks a given containment cont under a given
dependency set A and, as the result, it transforms A to A′ and returns ρ”. The
meaning of the last part “returns ρ” depends on the form of ρ.

ρ = π: “if both A and π are consistent, then cont holds.”
ρ =⊥: “if A is consistent, then cont does not hold.”

Since we are actually interested in simply checking [[s0]] ⊆ [[S0]] for given s0 and
S0, we start the algorithm by giving A = (φ, φ, φ) and cont = s0≺S0. (Note
that, when it succeeds, ρ(= π) = φ since we have U = φ and ensure π ⊆ U .)

Derivation Rules. First, let us see the derivation rules for the case cont = s≺S
(where A = (U ,D ,F), A′ = (U ′,D ′,F ′) and Ai = (Ui,Di,Fi)).

s ∈ S
A, s≺S � A, φ

(Mem)
s≺S ∈ U

A, s≺S � A, {s≺S} (InU) s≺S ∈ F
A, s≺S � A, ⊥ (InFf)

s 	∈ S s≺S 	∈ U ∪ F ∪ Dpair (U ∪ {s≺S},D ,F), δ(s)≺δ(S) � A′, π

A, s≺S � (U ′\{s≺S}, D ′ ∪ {π′ �s≺S},F ′), π′ where π′ = π\{s≺S} (Unfold)

s 	∈ S s≺S 	∈ U ∪ F ∪ Dpair (U ∪ {s≺S},D ,F), δ(s)≺δ(S) � A′, ⊥
A, s≺S � (U ′\{s≺S},D ′,F ′ ∪ {s≺S}), ⊥ (Unfoldf)

π�s≺S ∈ D for all 1 ≤ i ≤ m, Ai−1, si ≺Si � Ai, πi

where π = {s1 ≺S1, · · · , sm ≺Sm} and A0 = (U ∪ {s≺S},D\{π�s≺S}, F)

A, s≺S � (Um\{s≺S},Dm ∪ {π′ �s≺S}, Fm), π′ where π′ = m
i=1

πi\{s≺S} (InD)

π�s≺S ∈ D for all 1 ≤ i ≤ j − 1, Ai−1, si ≺Si � Ai, πi

Aj−1, sj ≺Sj � Aj , ⊥ Aj , δ(s)≺δ(S) � A′, π′

where π = {s1 ≺S1, · · · , sm ≺Sm} and A0 = (U ∪ {s≺S},D\{π�s≺S}, F)

A, s≺S � (U ′\{s≺S},D ′ ∪ {π′′ �s≺S}, F ′), π′′ where π′′ = π′\{s≺S} (InD&Unf)

π�s≺S ∈ D for all 1 ≤ i ≤ j − 1, Ai−1, si ≺Si � Ai, πi

Aj−1, sj ≺Sj � Aj , ⊥ Aj , δ(s)≺δ(S) � A′, ⊥
where π = {s1 ≺S1, · · · , sm ≺Sm} and A0 = (U ∪ {s≺S},D\{π�s≺S}, F)

A, s≺S � (U ′\{s≺S},D ′, F ′ ∪ {s≺S}), ⊥ (InD&Unff
)

Non-backtracking Top-Down Algorithm 301

If s ∈ S, we can easily conclude [[s]] ⊆ [[S]] by the definition of languages. We
thus return ρ = φ as the result of this check (Mem). When s≺S ∈ U (where
(U ,D ,F) is the original dependency set), we stop the further check of s≺S and
immediately return ρ = {s≺S} as the result (InU). This rule means the trivial
statement “if [[s]] ⊆ [[S]] holds, then [[s]] ⊆ [[S]] holds.” If s≺S ∈ F , then this
implies that we have already checked [[s]] �⊆ [[S]] and therefore we return ρ =⊥
immediately (InFf). When s≺S is neither in U , F , nor Dpair , then this means
that we encounter s≺S for the first time and therefore we first add s≺S to U
(this ensures the termination of our algorithm since the number of containments
in U ∪ F ∪Dpair increases monotonously) and then check δ(s)≺δ(S) under the
new dependency set (U ∪ {s≺S},D ,F). Suppose that the check succeeds with
A′ = (U ′,D ′,F ′) and π. Then, its direct meaning is that [[s]] ⊆ [[S]] depends
on π. However, this actually implies that [[s]] ⊆ [[S]] depends on π′ = π\{s≺S}
(intuitively because we can construct a proof tree such that every application
of InU with s≺S is recursively replaced by the proof tree showing [[s]] ⊆ [[S]]
depends on π). Thus we add π′%s≺S to D ′, remove s≺S from U ′, and then
return ρ = π′ (Unfold). On the other hand, suppose that [[s]] ⊆ [[S]] is refuted
as a result of checking δ(s)≺δ(S). In this case, we remove s≺S from U ′, add
s≺S to F ′, and return ρ =⊥ (Unfoldf).

If π%s≺S ∈ D , then this means that we have already proved that s≺S
depends on the consistency of π. However, since the dependency may be useless,
that is, π may be inconsistent, we successively check each pair in π. (Before
checking these pairs, we add s≺S to U and remove π%s≺S from D in order
to avoid rechecking s≺S.) Suppose that all checks of pairs si≺Si in π succeed
(1 ≤ i ≤ m), each proving that it depends on πi for some πi. From this result
and the above dependency π%s≺S, we know that s≺S depends on

⋃m
i=1 πi.

Then, similarly to Unfold, since the obtained dependency implies that s≺S
depends on π′ =

⋃m
i=1 πi\{s≺S}, we add π′%s≺S to D ′, remove s≺S from

U ′, and return ρ = π′ (InD). When some pair sj≺Sj in π turns out to be false,
this makes π inconsistent and hence π%s≺S becomes useless. In this case, we
recheck s≺S by unfolding these states, similarly to Unfold and Unfoldf, under
the dependency set resulted from checking s1≺S1 through sj≺Sj with s≺S in
U (InD&Unf and InD&Unff).

Next, we show the rules for cont = T ≺T ′.

T = φ

A, T ≺T ′ � A, φ
(Empty)

T = {#} # ∈ T ′

A, T ≺T ′ � A, φ
(Leaf)

T = {#} # 	∈ T ′

A, T ≺T ′ � A, ⊥ (Leaff)

T = {a1, · · · , am}(m ≥ 2) for all 1 ≤ i ≤ m, Ai−1, {ai}≺T ′ � Ai, πi

A0, T ≺T ′ � Am, m
i=1

πi

(Union)

T = {a1, · · · , am}(m ≥ 2) for all 1 ≤ i ≤ j − 1, Ai−1, {ai}≺T ′ � Ai, πi

Aj−1, {aj}≺T ′ � Aj , ⊥
A0, T ≺T ′ � Aj , ⊥

(Unionf)

302 T. Suda and H. Hosoya

T = {l(s, s′)} for all 1 ≤ i ≤ 2m, Ai−1, s≺Si|s′ ≺S′
i � Ai, πi

where
{l′(s, s′) ∈ T ′ | l′ = l} = {l(s1, s

′
1), · · · , l(sm, s′

m)},
Ii ⊆ {1, · · · , m}, Si = {sk | k ∈ Ii} and S′

i = {s′
k | k 	∈ Ii}

A0, T ≺T ′ � A2m , 2
m

i=1
πi

(Conj)

T = {l(s, s′)} for all 1 ≤ i ≤ j − 1, Ai−1, s≺Si|s′ ≺S′
i � Ai, πi

Aj−1, s≺Sj|s′ ≺S′
j � Aj , ⊥

where
{l′(s, s′) ∈ T ′ | l′ = l} = {l(s1, s

′
1), · · · , l(sm, s′

m)},
Ii ⊆ {1, · · · , m}, Si = {sk | k ∈ Ii} and S′

i = {s′
k | k 	∈ Ii}

A0, T ≺T ′ � Aj , ⊥
(Conjf)

If T = φ, then [[T]](= φ) ⊆ [[T ′]] trivially holds and therefore we return ρ = φ
right away (Empty). If T = {#}, then [[T]] ⊆ [[T ′]] is equivalent to # ∈ T ′.
Therefore, in this case, we return ρ = φ immediately when # ∈ T ′ holds (Leaf),
while we return ρ =⊥ when # �∈ T ′ (Leaff). If T = {a1, · · · , am}, then we
successively check ai≺T ′ for each i = 1, · · · , m. And if all checks of ai≺T ′

succeed with πi as a result, this proves that T ≺T ′ depends on ρ =
⋃m

i=1 πi and
therefore we return ρ (Union). On the other hand, if some pair aj≺T ′ (aj ∈ T) is
refuted, then this concludes [[T]] �⊆ [[T ′]] and therefore we return ρ =⊥ (Unionf).
When T = {l(s, s′)}, it is enough to compare l(s, s′) with the elements labeled
with l in T ′. Suppose that such elements in T ′ are l(si, s

′
i) for 1 ≤ i ≤ m. Then

the relation [[T]] ⊆ [[T ′]] is equivalent to

[[s]]× [[s′]] ⊆
m⋃

i=1

([[si]]× [[s′i]]) =
⋂

I⊆{1,···,m}

(⋃
i∈I

[[si]]× T
)
∪

⎛⎝T ×⋃
i�∈I

[[s′i]]

⎞⎠
by transforming the right hand similarly to the process in Sec. 3. We thus check
“[[s]] ⊆ [[

⋃
i∈I si]] or [[s′]] ⊆ [[

⋃
i�∈I s′i]]” for each subset I of {1, · · · , m} (Conj and

Conjf).
Finally, the rules for the case cont = s≺S | s′≺S′ are:

A, s≺S � A′, π

A, s≺S|s′ ≺S′ � A′, π
(Front)

A, s≺S � A′, ⊥ A′, s′ ≺S′ � A′′, π

A, s≺S|s′ ≺S′ � A′′, π
(Post)

A, s≺S � A′, ⊥ A′, s′ ≺S′ � A′′, ⊥
A, s≺S|s′ ≺S′ � A′′, ⊥ (Neitherf)

Here, we need to check whether or not at least one of [[s]] ⊆ [[S]] and [[s′]] ⊆ [[S′]]
holds. Hence, we first check [[s]] ⊆ [[S]] and, if it succeeds with π, then we return
ρ = π without checking [[s′]] ⊆ [[S′]] (Front); if [[s]] ⊆ [[S]] is refuted, then we
check [[s′]] ⊆ [[S′]] (Post and Neitherf).

Theorem 1. The complexity of the algorithm is bounded in 2O(|Q|).

Theorem 2 (Soundness). Suppose A, s ≺ S � A′, π. If both A and π are
consistent, then [[s]] ⊆ [[S]] holds and A′ is consistent.

Non-backtracking Top-Down Algorithm 303

Theorem 3 (Completeness). Suppose A, s≺ S � A′,⊥. If A is consistent,
then [[s]] �⊆ [[S]] holds and A′ is consistent.

5 Related Work

Since the tree automata containment problem is a key to XML type-checking,
several authors have investigated various techniques for practical algorithms. As
mentioned in Introduction, Hosoya, Vouillon, and Pierce have proposed a top-
down algorithm [12]. Our algorithm in the present paper is constructed on top
of theirs and adds an improvement to avoid backtracking by keeping track of
dependencies among containments to be checked. Frisch has also pursued for
improving the top-down algorithm [14]. He has pointed out that functional data
structures used in the original top-down algorithm for performing backtracking
can actually be replaced by destructive data structures (a hash table with a
stack). Our experiments implement an algorithm incorporating his remark and
confirmed that this replacement can indeed contribute to the efficiency (Sec. 6).
Frisch has also proposed a different approach [14] that, given a containment to
check, generates a set of certain forms of constraints and delegates this to a local
constraint solver [15]. An empirical comparison with this algorithm is still planed.

Another completely different approach has been investigated by Tozawa and
Hagiya [16]. They have used binary decision diagrams (BDDs) for representing
sets of sets of states of given tree automata and solving the containment problem
by using a series of operations on BDDs. Their algorithm behaves in a bottom-
up way and therefore some combinations of states may potentially be examined
even when it is not needed. Nevertheless they have given some experimental
results that indicate a potential advantage over the top-down approach.

6 Experiments

In our preliminary experiments, we compare the following three algorithms.

NonBack. Our non-backtracking top-down algorithm.
Origin. Hosoya-Vouillon-Pierce’s original top-down algorithm [12] using func-

tional data structures, maintaining no dependencies of containments or failed
containments.

Stack. Frisch’s version of top-down algorithm using destructive data structures
(mentioned in the previous section), maintaining only failed containments
(no dependencies of containments).

We have experimented on the third algorithm in order to see whether the cheaper
optimization suggested by Frisch can compete with our rather involved treat-
ment. We have used seven examples (explained below) as inputs to the algorithms
and measured the amortized elapsed time that each algorithm takes for each ex-
ample. We have also counted the number of times that states were unfolded by

304 T. Suda and H. Hosoya

Example Algorithm Time(Sec.) Unfold

addrbook NonBack 0.0028 126
Origin 0.0060 975
Stack 0.0026 126

bookmarks NonBack 0.0564 1050
Origin 0.2315 40597
Stack 0.0496 1050

html2latex NonBack 0.0837 1146
Origin 0.7094 139735
Stack 0.1668 2444

Example Algorithm Time(Sec.) Unfold

xbel NonBack 0.0044 313
Origin 0.0137 2701
Stack 0.0044 339

complex pat NonBack 1.1094 189
(n = 6) Origin 6.7649 17253

Stack 6.6449 724

docbook NonBack 1.5548 2134
Origin >1h. —
Stack 0.9097 2134

Fig. 2. Measurement result of experiments

the transition function during the check. The experiment has been done in the
following environment: Intel Mobile PentiumIII 700MHz with 256 mega bytes
memory under Linux (kernel version 2.4.7). The result is shown in Fig. 2.

In each of the first four examples, we take a small but non-trivial program
written in XDuce and measure the time spent for checking all the containments
needed in typechecking the program. Although these programs are not “real”
applications, these contain typical patterns of XML programming and some of
these (bookmarks and html2latex) use a relatively large schema, i.e., XHTML,
and hence experimenting on these is a meaningful benchmark. The result shows
that our non-backtracking algorithm works about 3 times to 8 times faster than
the original algorithm. It also shows that the running time is similar in our algo-
rithm and in Frisch’s version except that ours is about twice faster in html2latex.
Hence, it indicates that the cheaper optimization can be enough for many cases.

In the next example (complex pat), we examine the containment between A
and B1| . . . |Bn where A, B1, . . . , Bn are defined as follows using the notation of
regular expression types [12].

A = a[T1∗], a[T2∗], , a[Tn∗]
Bi = a[T1∗], . . . , a[Si], a[Ti+1∗], . . . , a[Tn∗] (i = 1, . . . , n− 1)
Bn = a[T1∗], , a[Ti+1∗], a[Sn∗]
Ti = bi[X] Si = bi[Y]

(Bn has an additional ∗ in the last label whereas the other Bi’s does not. This
is for ensuring the containment to hold.) In the above, X and Y are defined as
some types (not shown here) where the containment between X and Y holds, but
its check needs a large computation. Although this example itself is not taken
from a real application, a similar one could appear in checking a pattern match
(in the style of XDuce) that extracts, from a given sequence of a fixed length,
the first element whose content matches a particular type. The result in Fig. 2
shows that, for the case n = 6, our algorithm runs 6 times more efficiently than
Frisch’s version, and in fact, the ratio is proportional to n. Hence, this result
implies that, only with his simple optimization techniques, the algorithm can
still behave in a catastrophic manner in some cases.

Non-backtracking Top-Down Algorithm 305

In the final example (docbook), we perform a single containment check be-
tween version 2 and version 4 of the DocBook schema [17]. This series of schemas
is one of the largest popular schemas for XML and hence is a challenging ex-
ample for the containment algorithms. The result is that the original top-down
algorithm could not finish checking in a reasonable amount of time whereas the
other algorithms finish in about 1 second. Frisch’s algorithm is about 70% faster
than ours. However, note that the numbers of unfoldings are exactly the same
for these. Since, from the way the algorithm is constructed, the number of un-
foldings is always equal or smaller in our algorithm and since the additional
overhead is about 70% even in such a large example, we can expect that the
relative slowdown can be bounded by 70% in almost any situation. Consider-
ing that there are cases where we can save the algorithm from a catastrophic
slowdown, we believe that this overhead is acceptable in practice.

Acknowledgment. We would like to express our deepest gratitude to Susumu Nishi-
mura for his advice in improving the presentation of this paper. We also thank Alain
Frisch for his precious comments and suggestions. This work was partly supported by
The Inamori Foundation and Japan Society for the Promotion of Science.

References

1. Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E.: Extensible markup lan-
guage (XMLTM). http://www.w3.org/XML/ (2000)

2. Hosoya, H., Pierce, B.C.: XDuce: A typed XML processing language. ACM Trans-
actions on Internet Technology 3 (2003) 117–148

3. Benzaken, V., Castagna, G., Frisch, A.: CDuce: a white paper. In: PLAN-X:
Programming Language Technologies for XML. (2002)

4. Fankhauser, P., Fernández, M., Malhotra, A., Rys, M., Siméon, J., Wadler, P.:
XQuery 1.0 Formal Semantics. http://www.w3.org/TR/query-semantics/ (2001)

5. Milo, T., Suciu, D., Vianu, V.: Typechecking for XML transformers. In: Proceed-
ings of the Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Princi-
ples of Database Systems, ACM (2000) 11–22

6. Murata, M.: Transformation of documents and schemas by patterns and contextual
conditions. In: Principles of Document Processing ’96. Volume 1293 of Lecture
Notes in Computer Science., Springer-Verlag (1997) 153–169

7. Tozawa, A.: Towards static type checking for XSLT. In: Proceedings of ACM
Symposium on Document Engineering. (2001)

8. Murata, M., Lee, D., Mani, M.: Taxonomy of XML schema languages using formal
language theory. In: Extreme Markup Languages. (2001)

9. Fallside, D.C.: XML Schema Part 0: Primer, W3C Recommendation.
http://www.w3.org/TR/xmlschema-0/ (2001)

10. Clark, J., Murata, M.: RELAX NG. http://www.relaxng.org (2001)
11. Seidl, H.: Deciding equivalence of finite tree automata. SIAM Journal of Computing

19 (1990) 424–437
12. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular expression types for XML. In:

Proceedings of the International Conference on Functional Programming (ICFP).
(2000) 11–22

13. Suda, T., Hosoya, H.: Non-backtracking top-down algorithm for checking tree
automata containment. http://arbre.is.s.u-tokyo.ac.jp/ (2005) full version.

306 T. Suda and H. Hosoya

14. Frisch, A.: Théorie, conception et réalisation d’un langage de programmation fonc-
tionnel adapté à XML. PhD thesis, Universit Paris 7 (2004)

15. Dowling, W.F., Gallier, J.H.: Linear-time algorithms for testing the satisfiability
of propositional horn formulas. Journal of Logic Programming 1 (1984) 267–284

16. Tozawa, A., Hagiya, M.: XML schema containment checking based on semi-implicit
techniques. In: 8th International Conference on Implementation and Application
of Automata. Volume 2759 of Lecture Notes in Computer Science., Springer-Verlag
(2003) 213–225

17. OASIS: DocBook. http://www.docbook.org (2002)

Size Reduction of Multitape Automata

Hellis Tamm�, Matti Nykänen, and Esko Ukkonen

Department of Computer Science,
P.O. Box 68, 00014 University of Helsinki, Finland

{hellis.tamm, matti.nykanen, esko.ukkonen}@cs.helsinki.fi

Abstract. We present a method for size reduction of two-way multi-
tape automata. Our algorithm applies local transformations that change
the order in which transitions concerning different tapes occur in the
automaton graph, and merge suitable states into a single state. Our
work is motivated by implementation of a language for string manip-
ulation in database systems where string predicates are compiled into
two-way multitape automata. Additionally, we present a (one-tape) NFA
reduction algorithm that is based on a method proposed for DFA min-
imization by Kameda and Weiner, and apply this algorithm, combined
with the multitape automata reduction algorithm, on our multitape
automata.

1 Introduction

Multitape automata, introduced by Rabin and Scott [1], are a more difficult
research area than one-tape automata. Although the equivalence problem of
deterministic (one-way) multitape automata is decidable [2], the same problem
for nondeterministic multitape automata is not, and we are not aware of any
minimization procedure for multitape automata.

In this paper, we present a method to reduce the size of two-way multi-
tape automata. Our main motivation for this work is the implementation of the
Alignment Declaration Language, a language for expressing string predicates,
designed in the purposes of developing a string handling and manipulating data-
base system [3]. While this language provides means to declare string predi-
cates, these declarations must be converted into an executable form to be used
in database queries. As an intermediate form in this conversion, we use two-way
multitape automata. To make the final executable more concise and efficient to
simulate, we are interested in reducing the size of these automata. The automa-
ton model that we consider is a modified version of the Rabin-Scott model. Our
algorithm uses certain local factoring transformations that change the order in
which transitions concerning different tapes occur in the automaton graph, and
merge suitable states into a single state. The algorithm runs in polynomial time
with respect to the number of states of the automaton.

� Supported by the Academy of Finland grant 201560.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 307–318, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

308 H. Tamm, M. Nykänen, and E. Ukkonen

Also, we can view these multitape automata as if they were one-tape nonde-
terministic automata (NFA) instead, and apply appropriate techniques to reduce
their size. More specifically, we consider a method from [4] to reduce the size of
NFAs.

We combine this NFA reduction method along with our multitape automata
size reduction algorithm into an algorithm that alternatingly applies these pro-
cedures on a given automaton until no more size reduction can be achieved. By
experiments, this approach is quite successful.

Some details which are omitted in this paper can be found in [5] where we
presented the multitape automata size reduction algorithm and applied it along
with a minimization procedure for deterministic automata.

2 Alignment Declaration Language

The Alignment Declaration language is designed to describe string comparison
and manipulation operations over several strings that are manipulated together.
A basic statement of this language is an on-statement of the form <scan part>
on < condition part > where both the scan and condition parts are optional. A
scan part starts with a word scan or rightscan followed by a list of string vari-
ables, and its effect is to move the positions of currently considered characters of
corresponding strings, respectively, to the next or the previous position. A con-
dition part is a Boolean combination of character comparisons, such as x=’a’,
x=y, x=[or x=], which evaluate true if, respectively, the current character of
a string denoted by a variable x is ’a’, the same as the current character of a
string denoted by y, the left endmarker, or the right endmarker. Initially, the
current character for any string is the left endmarker. An on-statement holds
if and only if, after taking into account possible changes of current charac-
ters of the strings pointed out by the scan part, the condition part evaluates
true.

An on-statement is an expression in the Alignment Declaration language.
Other expressions are defined as follows. If Φ1 and Φ2 are expressions then their
concatenation Φ1Φ2 is an expression, repeat * times Φ1 end is an expression,
and choose Φ1|Φ2 end is an expression. The expression Φ1Φ2 holds if and only if
Φ1 holds and Φ2 holds when evaluated starting from the same currently consid-
ered character positions where the evaluation of Φ1 ends. The expression repeat
* times Φ1 end holds if and only if a k-fold concatenation of Φ1 with itself holds
for some k ≥ 0. The expression choose Φ1|Φ2 end holds if and only if Φ1 or Φ2
holds.

Some shorthands are defined in the language. For example, repeat * times
scan x on x=’a’ end can be written as scan* x on x=’a’. Different string
alphabets can be applied by using the keep-statement (see the example below).
A more complete description of the language can be found in [3].

Here is an example of an alignment declaration describing a property involv-
ing two strings x and y from the alphabet {a, b} such that y is the reversal
of x :

Size Reduction of Multitape Automata 309

reversal(x, y)
keep x in ’a’, ’b’
keep y in ’a’, ’b’

scan* x on
scan x on x=]
repeat * times
rightscan x on
scan y on x=y

end
rightscan x on x=[
scan y on y=]

end
end

3 Alignment Declarations as Multitape Automata

In this section we discuss how the alignment declarations are translated into two-
way multitape automata. First, we present the automaton model that is specially
designed for our application, and then we show how the automata are obtained.

We describe the n-tape automaton model as follows. There is a window whose
width is one symbol and height is n symbols, so that one symbol of each tape
shows through that window at any given time. We call the showing symbol of a
given tape the current symbol for that tape. Initially, the current symbols for all
tapes are their left endmarkers. If we want to read the next symbol from a tape,
we move that tape left with respect to the window. And if we want to read the
previous symbol from a tape, we move that tape right. These tape movements
are indicated in the automaton as transitions with the labels Li and Ri where L
and R are special symbols not belonging to the alphabet of the automaton, and
i is the tape involved. For reading an input string, there are transitions with the
labels like ai where a is a symbol read from the tape i ∈ {1, ..., n}. In addition,
transitions may involve special symbols [and] denoting the endmarkers, and
the symbol @ that is used to denote any string character or the right endmarker.
Also, the automaton can have transitions on empty string ε.

Formally, an n-tape automaton is given by a quintuple (Q, Σ, δ, qI , F) where
Q is a finite set of states, Σ is the input alphabet, δ : Q× (Σ′

{1,...,n}∪{ε})→ 2Q

is the transition function where Σ′ = Σ ∪ {[,], @} ∪ {L, R} and Σ′
{1,...,n} =

{ai | a ∈ Σ′, i ∈ {1, ..., n}}, qI ∈ Q is the initial state and F ⊆ Q is the set of
final states. The number of states |Q| is the size of the automaton.

Initially, the automaton is in the initial state. Let u be a string formed by
concatenating the labels of all transitions that appear on some path in the au-
tomaton graph going from the initial state to a final state. We consider u to be
an accepting computation if there exists an n-tuple (w1, ..., wn) where wi ∈ Σ∗

for i = 1, ..., n, such that if we read u from left one symbol at a time then,
on seeing any ci where c ∈ Σ ∪ {[,]} the symbol currently read from wi is c,
on seeing @i the current symbol of wi is not the left endmarker, and on seeing
Li or Ri the current symbol of wi is taken to be the next or the previous one,

310 H. Tamm, M. Nykänen, and E. Ukkonen

respectively. In this case, the n-tuple (w1, ..., wn) is accepted by the automaton.
The set of all n-tuples accepted by an automaton A is the language of A.

Now, let Φ be an alignment declaration with string variables x1, ..., xn. Then
Φ can be translated into an n-tape automaton A as follows. First, every Boolean
formula in all on-statements of Φ is transformed so that it consists of only and
and or operations combining character comparisons in a form x=’a’, x=[or x=].
To create A, we use a function Compile() described below which takes either
an alignment declaration or a part of it as its first input argument and the
automaton state as its second input argument, possibly creates new states and
transitions into the automaton and calls itself recursively, and finally outputs an
automaton state.

In the beginning, let A consist of a single final state qF . Then, a call to the
function Compile(Φ, qF) builds up A and yields the initial state qI of A. Let
Φ1 and Φ2 denote either expressions in the Alignment Declaration language or
parts of such Boolean formulas described above. Let q be an automaton state.
Then we define the function Compile() by induction over the structure of the
alignment declaration as follows:

1) Compile(Φ1Φ2, q) = Compile(Φ1 and Φ2, q) =
Compile(Φ1, Compile(Φ2, q));

2) Compile(choose Φ1|Φ2 end, q) = Compile(Φ1 or Φ2, q) = q1 where q1
is a new state with ε-transitions to Compile(Φ1, q) and Compile(Φ2, q);

3) Compile(repeat * times Φ1 end, q) = q1 where q1 is a new state
with ε-transitions to q and Compile(Φ1, q1);

4) Compile(on Φ1, q) = Compile(Φ1, q);
5) Compile(scan xi1 , ..., xik

on Φ1, q)= q1 where ij ∈ {1, ..., n} and

q1, ..., qk are new states with transitions qj

Lij−→ qj+1 for j = 1, ..., k,
with qk+1 = Compile(Φ1, q);

6) Compile(rightscan xi1 , ..., xik
on Φ1, q) = q1 where ij ∈ {1, ..., n}

and q1, ..., q2k are new states with transitions

q2j−1
@ij−→ q2j , q2j

Rij−→ q2j+1, and q2j−1
[ij−→ q2j+1 for j = 1, ..., k,

with q2k+1 = Compile(Φ1, q);
7) Compile(xi = σ, q) = q1 where i ∈ {1, ..., n}, σ ∈ Σ ∪ {[,]}, and

q1 is a new state with a transition q1
σi−→ q;

8) Compile(true, q) = q1 where q1 is a new state with ε-transition to q;
9) Compile(false, q) = q1 where q1 is a new state with no transitions.

The ε-transitions can be eliminated from A. Next, the automaton is modified
to eliminate some redundant checks and tape movements from it. For this reason,
the automaton is expanded so that it remembers in each state the last transition
labels for all tapes which appeared on any path from the initial state to the
given state. Those transitions that can be seen as redundant or impossible-to-
follow, by this local inspection of labels, are eliminated from the automaton.
Also, the states that are not on any path from the initial state to a final state
are eliminated.

Size Reduction of Multitape Automata 311

To continue with the example of Section 2, the 2-tape automaton, obtained
by applying the function Compile() on the alignment declaration reversal(x,
y) where the ε-transitions are eliminated, is shown in Figure 1 (left). Here, the
first tape corresponds to variable x and the second one to y. The expanded
automaton Arev is shown in Figure 1 (right).

L1 L1

]1

[1
R1 R1

[1

[1

L2 L2

]1
[11ba1

@1@1

a2 2b 2[2
]

L1 L1

]1]1

R1 R1

R1
R1

R1 R1

[1 [1
a1 1b

L2

L2

L2L2

]2 2b

a1 1b

L2

a2

a1 1b

L2

L2

R1 R1

]2

a , b , [1 1 1

a , b ,]1 1 1

a , b 1 1

Fig. 1. The automaton corresponding to the alignment declaration reversal(x, y)
(left) and the expanded automaton Arev (right)

4 Reduction Algorithm for Multitape Automata

We have designed an algorithm to reduce the size of an n-tape automaton A =
(Q, Σ, δ, qI , F). The algorithm is based on the following four language preserving
automaton transformations.

Swap Upwards. Let q′ ∈ Q be a non-initial and non-final state with k ≥ 1
incoming and one outgoing transition. Let the transitions associated with q′ be

q1
(a1)i1−→ q′, ..., qk

(ak)ik−→ q′ and q′
bj−→ q, such that j refers to a tape that is different

from all tapes il, l ∈ {1, ..., k}. Then q′ and its incoming and outgoing transitions
can be removed and replaced with new non-initial and non-final states q′1, ..., q

′
k

and transitions q1
bj−→ q′1, ..., qk

bj−→ q′k, and q′1
(a1)i1−→ q, ..., q′k

(ak)ik−→ q.

Sink Combine. Let q1, ..., qk be some non-initial states of A, all having exactly
one incoming transition labelled ai from a state q of A where q is different
from all qi, i ∈ {1, ..., k}. Then q1, ..., qk can be combined into one state q′,

312 H. Tamm, M. Nykänen, and E. Ukkonen

meaning that q1, ..., qk and their incoming and outgoing transitions are removed
and replaced by a new non-initial state q′ which is final if and only if any of
q1, ..., qk is final, with all outgoing transitions of q1, ..., qk now leaving q′, and the
transition q

ai−→ q′.
Swap Downwards and Source Combine are defined symmetrically. All trans-

formations are schematically presented in Figure 2.

jb jb

jb

q

q’
1q’ kq’. . .

q1 qk. . .q1 qk

1(a)i1 i)k(a
k

i)k(a
k1(a)i1

jb

jb jb

q1 qkq1 qk

1(a)i1 i)k(a
k

1q’ kq’. . .

i)k(a
k1(a)i1

q

q’

.

(b)

q

a ia i

q1 qk

a i

X1 Xk
X1

q

. . . q’

q

. . .
Xk

(c) qkq1

X1 Xk

a i

XkX1

a i a i

(d) . . .

. . .

q q

q’

q

. . .

(a)

Fig. 2. Automata transformations: (a) Swap Upwards; (b) Swap Downwards; (c) Sink
Combine; (d) Source Combine

Let q ∈ Q and i ∈ {1, ..., n}. A transition is called a future transition for the
state q and tape i if it is the first transition involving this tape on some path in
A that starts from q.

A central part of the reduction algorithm (presented in Figure 3) is the pro-
cedure MoveTransitionUp(). Let a ∈ Σ′. We want to find a set of future tran-
sitions for q and i, with the label ai, such that by calling MoveTransitionUp()
for each of these transitions and the state q, we can reduce the number of states
of A by a certain amount. When this procedure is invoked with a transition
(q1, ai, q2) and the state q, its goal is to decrease the number of states and tran-
sitions of A by “moving” the transition (q1, ai, q2) in the automaton graph “up”,
applying Swap Upwards and Sink Combine transformations on the way, until
this transition, along with one or more other transitions with the same label,
will be replaced by a transition out of q (instead of q1).

If we denote a set of future transitions for q and i bearing the label ai, by
ftq,i,a, then let us denote the set of all paths in A, which start from q and end by
any transition in ftq,i,a, by Pftq,i,a . Consider the following conditions imposed
on the path set Pftq,i,a . Let p be a path in the set Pftq,i,a and let the two last
states on p be q′ and q′′. Then the conditions are as follows:

(i) there are no loops in p, except that q′′ may be equal to q;
(ii) every state on p that appears after q and before q′′ is non-initial and non-

final, all of its incoming and outgoing transitions are traversed by some
path in Pftq,i,a , and all of its incoming transitions involve a tape that is
different from i;

(iii) if q′ has more than one outgoing transition then q′′ is non-initial and has
only one incoming transition.

Size Reduction of Multitape Automata 313

procedure MoveTransitionUp(A, (q1, ai, q2), q)
1. if transition (q1, ai, q2) exists in A then
2. use Sink Combine transformation to merge all such states that are reachable

from q1 by a transition labelled by ai and suitable for this transformation;
3. if q 	= q1 and outdegree(q1) = 1 then
4. use Swap Upwards transformation on the outgoing transition of q1

and let T be a set of transitions with the label ai

created by this transformation;
5. for all (q′

1, ai, q
′
2) ∈ T where q′

1, q
′
2 ∈ Q do

6. MoveTransitionUp((q′
1 , ai, q

′
2), q);

procedure Upwards(A, tape)
1. m := 0;
2. reduced := true;
3. while reduced = true do
4. reduced := false;
5. for all q ∈ Q as long as reduced = false do
6. find a set FTq,tape =

a∈σ′⊆Σ′
FTq,tape,a such that for each a ∈ σ′,

FTq,tape,a is as in (P1);
7. for all a ∈ σ′ where |FTq,tape,a| > 1 do
8. find a state q′ such that FTq′,tape,a = FTq,tape,a, FTq′,tape,a is as

in (P1), and the longest path from q′ to the originating state of
any transition in FTq,tape,a is of minimal length;

9. for all t ∈ FTq′,tape,a do
10. MoveTransitionUp(A, t, q′);
11. m := m + |FTq′,tape,a| − 1;
12. reduced := true;
13. return m;

Reduce A
1. m := 0;
2. A1 := CopyOf(A);
3. reduced := true;
4. while reduced = true do
5. reduced := false;
6. for tape := 1 to n do
7. mup := Upwards(A, tape);
8. mdown := Downwards(A1, tape);
9. if mup > 0 or mdown > 0 then
10. if mup ≥ mdown then
11. A1 := CopyOf(A);
12. m := m + mup;
13. else
14. A := CopyOf(A1);
15. m := m + mdown;
16. reduced := true;
17. return A,m;

Fig. 3. Procedures MoveTransitionUp(), Upwards(), and the reduction algorithm

314 H. Tamm, M. Nykänen, and E. Ukkonen

Now, the following propositions hold:

(P1) There is a unique maximal set FTq,i,a of future transitions for q and i, with
the label ai, such that the conditions (i) – (iii) hold for the set PFTq,i,a ;

(P2) The series of calls to MoveTransitionUp() where it is invoked with every
transition in FTq,i,a and q, results in size reduction of A by |FTq,i,a| − 1
states.

Also, given another b ∈ Σ′ with the set FTq,i,b satisfying (P1), the application
of transformations of (P2) for the set FTq,i,a does not affect the application of
transformations of (P2) for the set FTq,i,b. The proofs of these propositions can
be found in [5, Propositions 5.1 – 5.3].

Also, symmetric conditions can be specified that allow to eliminate automa-
ton states by applying a procedure that uses the Source Combine and Swap
Downwards transformations.

The reduction algorithm uses a variable m to indicate the number of states
eliminated from A. The idea of the algorithm is that for each tape of A, as
many states as possible are eliminated from A using the procedure Upwards(),
and from its copy A1 using a symmetric procedure Downwards() (not shown).
Given the automaton tape tape, Upwards() finds for each state q a set FTq,tape

that is the union of all sets FTq,tape,a of future transitions for q and tape, with
some symbol a, such that FTq,tape,a is as in (P1) above. For all FTq,tape,a that
consist of at least two transitions, a state q′ is found which has the same set of
future transitions FTq′,tape,a for this tape and symbol that satisfies (P1), and
which is as close to the transitions in FTq,tape,a as possible. Then the procedure
MoveTransitionUp() is called for all of the transitions in FTq′,tape,a and q′, and
by (P2) above, the value of m is increased by |FTq′,tape,a| − 1. After considering
every such set FTq,tape,a, the loop over all states is started again. This process
continues until no further reductions of A can be achieved using this approach
for any state of A. The return value of Upwards() indicates the number of states
eliminated by it.

In case any states were eliminated from either A or A1, a smaller one of these
automata is retained and the next round with a next tape is performed using
two copies of that automaton. Also, the value of m is updated accordingly. This
process is continued until no more states are eliminated for any tape.

For a fixed number of tapes and fixed alphabet, the time complexity of the
algorithm is O(|Q|4) [5].

5 Reducing the Size of an NFA

Our multitape automata can also be viewed as (one-tape) NFAs over the alpha-
bet Σ′

{1,...,n}. Therefore, it is interesting to apply NFA size reduction methods
as well. We propose here one such method.

Let A be an NFA. The reversal of A (denoted by AR) is obtained from A by
reversing the direction of all transitions and interchanging the initial and final
states. Let p and q be some states of A. If the set of all words that can be formed

Size Reduction of Multitape Automata 315

by concatenating the transition labels on some path from p to a final state of A
equals to the similarly created set for q then the states p and q are called equiv-
alent. We can make A deterministic by applying subset construction [6] on it.

Size reduction of NFAs has been recently considered in several articles, such
as [7, 8, 9]. Here we consider a method for NFA reduction based on [4]. Let A be
an NFA and let C be an automaton obtained from AR by subset construction.
That is, any state of C is a subset of the state set of A. By Kameda and Weiner
[4], two states of A are equivalent if and only if they appear exactly in the same
states of C. They mention that this is useful for DFA minimization. Namely, if
A is a DFA then by merging the equivalent states one can find a minimal DFA.
In the case of A being an NFA, this method can be used for the size reduction
of the automaton although the result is not necessarily a minimal NFA.

Similarly, we can find the equivalent states of the reversal automaton. Let B
be an automaton obtained by applying the subset construction on A. Then, two
states of AR are equivalent if and only if they appear exactly in the same states
of B. By the appropriate merging of the equivalent states of AR, we can reduce
the size of AR (and use this to reduce A).

Ilie and Yu [7] consider the right-invariant and left-invariant equivalences
which are refinements of the above state equivalence relations. Thus, the reduc-
tions according to the above equivalences result in automaton size reduction of
at least the same amount as obtained by [7]. Also, merging the equivalent states
in NFA can produce useless states, that is, states which are not on any path
from an initial state to a final state. These states can be eliminated, too.

Similarly to [7], we can possibly get a smaller NFA by combining the reduc-
tions corresponding to the two equivalences above. We propose the following
method for NFA reduction.

First, find and merge the equivalent states of an NFA according to the method
above, and eliminate the useless states from the automaton. Second, find and
merge the equivalent states of the reversal of the resulting automaton, eliminat-
ing the useless states as well. If the automaton size was reduced by the second
method, then again, apply the first method, etc. That is, alternatingly apply
two reduction methods (with the elimination of useless states), until no more
reduction of the automaton occurs.

6 Reducing the Size of a Multitape Automaton

To continue with the example of Sections 2 and 3, if we apply the NFA reduction
algorithm presented at the end of Section 5 to the automaton Arev, then its size
is reduced from 23 states to 11 states. The resulting automaton denoted by
RedNFA(Arev) is shown in Figure 4 (left).

Now, applying the multitape automata reduction algorithm of Section 4 after
the NFA reduction can lead to a further size reduction of the automaton. If
we apply this algorithm to RedNFA(Arev) then the result is the automaton
Redmulti(RedNFA(Arev)) having 9 states as shown in Figure 4 (right). Further
application of the NFA reduction algorithm on this automaton does not make it
any smaller.

316 H. Tamm, M. Nykänen, and E. Ukkonen

L1
1 1a , b

]1

R1

[1 a1 1b

L2

]2

L2 L2

a2

2b

L1
1 1a , b

]1

R1

]2 a2

2b

[1

L2

a1 1b

Fig. 4. The automata RedNF A(Arev) (left) and Redmulti(RedNF A(Arev)) (right)

On the other hand, we can also reduce Arev by applying the multitape au-
tomata reduction algorithm first. The resulting automaton (not shown) has 16
states. Now, if we apply the NFA reduction procedure on this automaton, the
result is the same as the automaton RedNFA(Arev). Further reduction of this
automaton is as above.

In this example, the end result of applying these two algorithms one after
another does not depend on which of them was applied first. However, generally,
this is not the case.

Finally, we propose the following algorithm to reduce the size of a multitape
automaton A that alternatingly applies two size-reducing algorithms. Apply two
sequences of algorithms consisting of the NFA reduction procedure of Section 5
and the multitape automata reduction algorithm of Section 4 by turn on A, at
one time starting with the NFA reduction algorithm and the other time starting
with the multitape automata reduction algorithm, and stopping when no more
size reduction occurs to A. Output the smaller of the resulting two automata.

7 Experimental Results

To test the algorithm presented at the end of Section 6, we have considered
a set of alignment declarations expressing different string properties, and made
experiments with the corresponding automata. The results of the experiments are
presented in the table in Figure 5. For each string predicate, the table shows the
number of tapes n and the alphabet size |Σ|, the size of the original automaton
|Aorig| (the result of applying the function Compile() on the corresponding
alignment declaration) after eliminating ε-transitions from it, and the size of
the expanded automaton |Aexp| after ε-transition elimination. The reduction
algorithm is applied on the ε-transition-free expanded automaton Aexp of each
string predicate. The table shows the size of the automaton during the reduction

Size Reduction of Multitape Automata 317

String n |Σ| |Aorig| |Aexp| Automaton size during
predicate the reduction process

RedNF A RedMulti RedNF A

reversal 2 2 17 23 11 9 9
Redmulti RedNF A Redmulti RedNF A

16 11 9 9

RedNF A Redmulti

substring 2 2 11 18 9 9
Redmulti RedNF A Redmulti

17 9 9

RedNF A Redmulti

subsequence 2 2 11 17 7 7
Redmulti RedNF A Redmulti

16 7 7

RedNF A Redmulti

prefix 2 2 9 16 7 7
Redmulti RedNF A Redmulti

15 7 7

RedNF A Redmulti

suffix 2 2 18 25 11 11
Redmulti RedNF A Redmulti

22 11 11

RedNF A Redmulti RedNF A

concatenation 3 2 21 20 13 12 12
Redmulti RedNF A Redmulti RedNF A

19 13 12 12

RedNF A Redmulti RedNF A

shuffle 3 2 21 51 12 10 10
Redmulti RedNF A Redmulti RedNF A

45 12 10 10

RedNF A Redmulti RedNF A

overlap 3 2 15 48 21 20 20
Redmulti RedNF A Redmulti RedNF A

44 20 19 19

RedNF A Redmulti RedNF A

edit distance 3 4 24 168 28 27 27
Redmulti RedNF A Redmulti RedNF A

143 28 27 27

Fig. 5. Automata sizes before and during the reduction process

process, given in two rows: the upper row shows the automaton size in the
sequence where the NFA reduction algorithm is applied first, and the lower
row shows the automaton size in the sequence where the multitape automata
reduction algorithm is applied first. The numbers in the columns with RedNFA

and Redmulti indicate the size of the automaton in the reduction process, after
applying the NFA reduction or the multitape automata reduction algorithm,
respectively.

318 H. Tamm, M. Nykänen, and E. Ukkonen

Even if both of these reduction sequences end up with the automata of the
same size, the automata may be different. For most cases in our experiments,
the reduced automaton is smaller than the original one, although this is not
always so, as for automata of overlap and edit distance predicates. However,
if one has in mind the efficiency of simulating the computations of automata,
then avoiding redundant checks of tape symbols and those paths that are not
possible to follow, seem to be important. Fortunately, most of the size growth
in the expanded automata seems to disappear as the result of the reduction
process.

References

1. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res.
Develop. 3 (1959) 114–125

2. Harju, T., Karhumäki, J.: The equivalence problem of multitape finite automata.
Theoretical Computer Science 78 (1991) 347–355

3. Grahne, G., Hakli, R., Nykänen, M., Tamm, H., Ukkonen, E.: Design and imple-
mentation of a string database query language. Inform. Syst. 28 (2003) 311–337

4. Kameda, T., Weiner, P.: On the state minimization of nondeterministic automata.
IEEE Trans. Comput. C-19 (1970) 617–627

5. Tamm, H.: On minimality and size reduction of one-tape and multitape finite
automata. PhD thesis, Department of Computer Science, University of Helsinki,
Finland (2004)

6. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley (1979)

7. Ilie, L., Yu, S.: Reducing NFAs by invariant equivalences. Theoretical Computer
Science 306 (2003) 373–390

8. Ilie, L., Navarro, G., Yu, S.: On NFA reductions. In: Theory is forever. Volume 3113
of Lecture Notes in Computer Science., Springer (2004) 112–124

9. Champarnaud, J.M., Coulon, F.: NFA reduction algorithms by means of regular
inequalities. Theoretical Computer Science 327 (2004) 241–253

Robust Spelling Correction�

Manuel Vilares1, Juan Otero1, and Jesús Vilares2

1 Department of Computer Science, University of Vigo,
Campus As Lagoas s/n, 32004 Ourense, Spain

{vilares, jop}@uvigo.es
2 Department of Computer Science, University of A Coruña,

Campus de Elviña s/n, 15071 A Coruña, Spain
jvilares@udc.es

Abstract. The paper introduces a robust spelling correction technique
to deal with ill-formed input strings, including unknown parts of un-
known length. In contrast to previous works, we derive profit from a
finer dynamic programming construction, which takes advantage of the
underlying grammatical structure, leading to an improved computational
behavior and error repair quality. The formal description applies a de-
ductive approach in order to simplify this task, separating it from the
interpretation strategy, and including cut-off facilities.

1 Introduction

Although spelling correction has been a central subject in natural language
processing (nlp) for a long time [1], recent years have seen a renewal of interest
in it due to the increasing amount of textual information available in electronic
format. Here, the state of the art [2] focuses on contextual and non-contextual
error correction. In relation to the former, most proposals are based on nlp tech-
niques and/or statistical-language models, integrating linguistic knowledge [3, 4].
For the latter, techniques look for possible editing sequences to reflect the error
occurrence phenomenon in spelling. These strategies study correction patterns,
most of them taking into account the edit distance [5], but also on occasion
introducing constraints on the spelling process [6] in order to cut down the com-
putational time needed for the correction.

Even non-contextual strategies can be of interest in a number of practical
applications, when no training corpus is available and/or it is not easy to obtain
statistics for estimating the linguistic model, these algorithms can be consid-
ered as a preliminary phase in a more sophisticated contextual approach such
as shallow and partial interpretation. Our proposal extends an original non-
contextual regional least-cost spelling correction proposal [7] in order to provide
both robustness in noisy conditions and general parameterizable cut-off criteria.
In relation to previous works, we provide a formal definition framework and an
improved computational behavior.
� Research supported by the Spanish Government under projects TIN2004-07246-

C03-01, TIN2004-07246-C03-02, and the Autonomous Government of Galicia under
projects PGIDIT03SIN30501PR and PGIDIT02SIN01E.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 319–328, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

320 M. Vilares, J. Otero, and J. Vilares

2 The Operational Model

Our aim is to parse a word w1..n = w1 . . . wn according to an rg G = (N, Σ, P, S).
We denote by w0 (resp. wn+1) the position in the string, w1..n, previous to w1
(resp. following wn). We generate from G a numbered minimal acyclic finite
automaton for the language L(G). In practice, we choose a device [8] generated
by Galena [9]. A finite automaton (fa) is a 5-tuple A = (Q, Σ, δ, q0 ,Qf) where:
Q is the set of states, Σ the set of input symbols, δ is a function of Q×Σ into
2Q defining the transitions of the automaton, q0 the initial state and Qf the set
of final states. We denote δ(q, a) by q.a, and we say that A is deterministic iff
| q.a |≤ 1, ∀q ∈ Q, a ∈ Σ. The notation is transitive, q.w1..n denotes the state
(n−2. . . (q.w1) n−2. . .).wn. As a consequence, w is accepted iff q0.w ∈ Qf , that is, the
language accepted by A is defined as L(A) = {w, such that q0.w ∈ Qf}. An fa
is acyclic when the underlying graph is. We define a path in the fa as a sequence
of states ρ = {q1, . . . , qn} , such that ∀i ∈ {1, . . . , n− 1}, ∃ai ∈ Σ, qi.ai = qi+1.

We also apply a minimization process [10]. In this sense, we say that two
states, p and q, are equivalent iff the fa with p as initial state and the one
that starts in q recognize the same language. An fa is minimal iff no pair in Q
is equivalent. Although the standard recognition is deterministic, the repair one
could introduce non-determinism by exploring alternatives associated to possibly
more than one recovery strategy. So, in order to get polynomial complexity, we
avoid duplicating intermediate computations in the repair of w1..n ∈ Σ+, storing
them in a table I of items, I = {[q, i], q ∈ Q, i ∈ [1, n + 1]}, where [q, i] looks
for the suffix wi..n to be analyzed from q ∈ Q.

Our description uses parsing schemata [11], a triple 〈I,H,D〉, with H =
{[a, i], a = wi} an initial set of items called hypothesis that encodes the word
to be recognized1, and D a set of deduction steps that allow items to be derived
from previous ones. These are of the form {η1, . . . , ηk % ξ /conds}, meaning that
if all antecedents ηi are present and the conditions conds are satisfied, then the
consequent ξ is generated. In our case, D = DInit ∪ DShift, where:

DInit = {� [q0, 1]} DShift = {[p, i] % [q, i + 1] /∃[a, i] ∈ H, q = p.a}

We associate a set of items Sw
p , called itemset, to each p ∈ Q; and apply these

deduction steps until no new item is generated. The word is recognized iff a final
item [qf , n + 1], qf ∈ Qf has been generated. We can assume that Qf = {qf},
and that there is only one transition from (resp. to) q0 (resp. qf). To get this,
it is sufficient to augment the original fa with two states which become the
new initial and final states, and are linked to the original ones through empty
transitions, our only concession to the notion of minimal fa.

3 Spelling Correction

We talk about an error in a word to mean the difference between what was
intended and what actually appears, and we call point of error the point at
1 A word w1...n ∈ Σ+, n ≥ 1 is represented by {[w1, 1], [w2, 2], . . . , [wn, n]}.

Robust Spelling Correction 321

which that difference occurs. So, a repair should be understood as a modification
allowing the recognizer both to recover the process and to avoid cascaded errors,
that is, errors precipitated by a previous erroneous repair diagnosis. This is the
goal of regional repairs [7], which we succinctly remember now.

Working on acyclic fas, we define an order relation p < q, with p, q ∈ Q iff
a path exists in the fa from p to q. A pair of states (p, q) is a region, Rq

p, in
the fa when it defines a sub-automaton with initial (resp. final) state in p (resp.
q). So, we say that a state r ∈ Rq

p iff there exists a path ρ in Rq
p, such that

r ∈ ρ, r �= p, q. Given r ∈ Q, it can be proved that there is only one minimal
region, M(r), in the fa containing it.

To begin with, we assume that we are dealing with the first error detected. We
extend the structure of items, as a pair [p, i], with an error counter e; resulting
in a new structure [p, i, e]. Given a point of error wj , the associated point of
detection is the initial state of the minimal region, M(wj) = Rq

p, containing
wj . Associated to the point of error (resp. detection) wj (resp. wi), we consider
the corresponding error (resp. detection) item [q, j,] (resp. [p, i,]). To filter
out undesirable repairs, we introduce criteria to select those with minimal cost.
For each a, b ∈ Σ we assume insert, I(a); delete, D(a), replace, R(a, b), and
transpose, T (a, b), costs. We apply, from the detection item, the deduction steps
Derror = DShift ∪ DInsert

error ∪ DDelete
error ∪ DReplace

error ∪ DTranspose
error , defined as follows:

DShift = {[r, l, e] � [s, l + 1, e], ∃[a, l] ∈ H, s = r.a}
DInsert

error = {[r, l, e] � [r, l + 1, e + I(a)]}
DDelete

error = {[r, l, e] � [s, l, e + D(wl)]
M(q0.w1..j) = Rqd

qs

r.wl = s ∈ Rqd
qs or s = qd

}

DReplace

error = {[r, l, e] � [s, l + 1, e + R(wl, a)],
M(q0.w1..j) = Rqd

qs

r.a = s ∈ Rqd
qs or s = qd

}

DTranspose

error = {[r, l, e] � [s, l + 2, e + T (wl, wl+1)]
M(q0.w1..j) = Rqd

qs

r.wl+1.wl = s ∈ Rqd
qs or s = qd

}

where w1..j looks for the current point of error. We also redefine DInit as {%
[q0, 1, 0]}. In any case, the error hypotheses apply on transitions behind the
repair region. The process continues until a repair covers that region, accepting
a character in the remaining string. When no repair is possible, the process
extends to the next region, taking the final state of the previous one as the new
point of error. We apply a principle of optimization, saving only those items with
minimal counters.

When the current error is not the first one, we can modify a previous repair
in order to avoid cascaded errors, by adding the cost of the new error hypotheses
to profit from the experience gained from previous ones. This allows us to get a
quality close to global methods [7], with a time complexity, in the worst case

O(
n!

τ ! ∗ (n− τ)!
∗ (n + τ) ∗ 2τ ∗ fan-outτμ)

where τ and fan-outμ are, respectively, the maximal error counter computed and
the maximal fan-out of the automaton in the scope of the repairs considered.
The input string is recognized iff a final item [qf , n+1, e], qf ∈ Qf , is generated.

322 M. Vilares, J. Otero, and J. Vilares

4 Spelling Incomplete Strings

In order to handle incomplete strings, we extend the input alphabet by introduc-
ing two new symbols. So, “?” stands for one unknown character, and “∗” stands
for an unknown sequence of input characters. Once the underlying fa detects
that the next input symbol to be shifted is one of these two extra symbols, we
apply the following set of deduction steps, Dincomplete:

DShift
incomplete = {[p, i, e] % [q, i + 1, e + I(a)] / ∃ [?, i] ∈ H, q = p.a}

DLoop shift
incomplete = {[p, i, e] % [q, i, e + I(a)] / ∃ [∗, i] ∈ H, q = p.a, � ∃ q.wi+1}

DLoop shift end
incomplete = {[p, i, e] % [q, i + 1, e + I(a)] / ∃ [∗, i] ∈ H, q = p.a, ∃ q.wi+1}

where I(a) is the insertion cost for a ∈ Σ. From an intuitive point of view,
DShift

incomplete applies any shift transition independently of the current lookahead
available, provided that this transition is applicable with respect to the fa con-
figuration and that the next input symbol is an unknown character. In relation
to DLoop shift

incomplete, it simulates shift actions on items corresponding to fa configu-
rations for which the next input symbol denotes an unknown sequence of char-
acters, when no standard shift action links up to the right-context. Given that
in this latter case new items are created in the same itemset, these transitions
may be applied any number of times to the same computation thread, without
scanning the input string. These deduction steps are applied until a recogni-
tion branch links up to the right-context by using a shift action, resuming the
standard recognition mode, as it is described by DLoop shift end

incomplete .
In this manner, when we deal with sequences of unknown characters, we can

examine different paths in the fa resolving the same “∗” symbol. Although this
could be useful for subsequent syntactic or semantic processing, an uncontrolled
over-generation is not of practical interest in most cases. We solve this by tabulat-
ing the number of characters used to rebuild the word, using the error counter,
and applying the principle of optimization. These steps are applied until new
items cannot be generated. The time bound is, also, in the worst case,

O(
n!

τ ! ∗ (n− τ)!
∗ (n + τ) ∗ 2τ ∗ fan-outτμ)

The correction is defined by a final item [qf , n + 1, e], qf ∈ Qf .

5 The Robust Frame

We are now ready to introduce the robust construction. We must now guarantee
the capacity to recover the recognizer from any unexpected situation derived
either from gaps in the scanner or from errors. To deal with this, it is sufficient
to combine the rules previously introduced. More exactly, we have that the new
set of deduction steps, Drobust, is given by:

Drobust = DInit ∪ DShift ∪ DInsert
error ∪ DDelete

error ∪ DReplace
error ∪

DTranspose
error ∪ DShift

incomplete ∪ D
Loop shift
incomplete ∪ D

Loop shift end
incomplete

Robust Spelling Correction 323

where there is no overlapping between the deduction subsets. The final robust
recognizer also has a time complexity, in the worst case

O(
n!

τ ! ∗ (n− τ)!
∗ (n + τ) ∗ 2τ ∗ fan-outτμ)

with respect to the length n of the ill-formed sentence. The input string is recog-
nized iff a final item [qf , n + 1, e], qf ∈ Qf , is generated.

6 Pruning Strategies

In dealing with spelling correction, ill-formed expressions can often be resolved in
different manners, which forces us to consider a framework involving ambiguities.
Although most of these ambiguities will be eliminated in subsequent and more
sophisticated analysis tasks, a number of them can already be treated at this
stage. Disregarding pure statistical aspects, we focus on the formalization of cut-
off schemata in order to limit the repair space and, as a consequence, reduce the
computational impact derived from exploring useless repair paths.

Nevertheless, the interpretation of an fa as a sequential transitional formal-
ism imposes an essential guideline on the design of any pruning strategy. If we
also take into account that the dynamic frame previously defined updates error
counters at each new item generation, it appears that pruning techniques based
on threshold error criteria seem to be particularly well adapted. So, we can con-
sider a set of simple cut-off schemata, combining the repair hypotheses in order
to allow the user to implement human-like correction strategies.

6.1 Path-Based Pruning

We refer here to a classic technique [5, 12] consisting of pruning repair branches
on items with an error below a given threshold. From an operational viewpoint,
the consideration of this pruning mechanism does not require any modification
in the item structure, and we must only apply a test on the error counter each
time a new item is generated. If the counter computed is greater than the defined
threshold, ρ, we simply prune the parse process on the corresponding branch by
stopping any action on that item. So, we can only take into account what is now
in our parse scheme:

∀I % [p, i, e] ∈ Drobust, e < ρ

As an example, considering the discrete metric assigning a unitary cost to each
repair deduction step in robust mode, we could cut-off all repair branches with
an error counter higher than a fixed proportion on the length of the word.

6.2 Sequence-Based Pruning

Another possible approach is to limit the number of consecutive errors included
in a path, pruning them on items in these sequences with a quality below a given
threshold, σ. In order to implement this pruning strategy, we must first introduce

324 M. Vilares, J. Otero, and J. Vilares

an additional error counter, el, representing the local error count accumulated
along a sequence of repair hypotheses in the path we are now exploring. So,
items take the new structure [p, i, eg, el], where the error counter eg is the same
as that considered in the original robust algorithm. At this point, we re-define
the following deduction steps from the original scheme for the robust mode:

DShift = {[p, i, eg, el] � [q, i + 1, eg, 0], ∃[a, i] ∈ H, q = p.a}

which implies that each time a shift action is performed, a sequence of possible
repair hypotheses is broken and, as a consequence, no sequence-based pruning
can be considered in that case. At this point, all that remains is to test that no
sequence of deduction steps in Drobust exceeds the threshold σ. So, we have that
the complete previous deduction step

[p, i, eg] % [q, j, eg +&] ∈ Drobust

is now replaced by another one of the form

[p, i, eg, el] % [q, j, eg +&, el +&] ∈ Drobust, el +& < σ

So, for example, we could contemplate cutting off any branch including a se-
quence of repair hypotheses.

6.3 Type-Based Pruning

Sometimes we may be more interested in detecting the presence of some par-
ticular hypotheses in a path of the fa or even in a sequence of this path. This
translates into applying the previous path and sequence based approaches to a
particular kind of deduction hypotheses. Taking, for example, the case of DInsert

robust
and assuming a threshold τ to locate the pruning action on a path, we have that
the new deduction steps are now:

∀I % [p, i, eg, el] ∈ DInsert
robust, eg < τ

and, if we deal with a sequence on a path, we have that:

[p, i, eg, el] % [q, j, eg +&, el +&] ∈ DInsert
robust, el +& < τ

assuming that standard shift actions re-initialize to zero local counters. However,
we need a pair of counters associated to each kind of deduction steps in order to
consider type-based pruning for insert, delete, replace or transpose hypotheses.
As an example, we could cut-off any branch considering more than two delete
hypotheses in the same branch.

7 Experimental Results

We consider a lexicon for Spanish built from Galena [9], which includes 514,781
different words, to illustrate this aspect. The lexicon is recognized by an fa
containing 58,170 states connected by 153,599 transitions, of sufficient size to

Robust Spelling Correction 325

allow us to consider it as a representative starting point for our purposes. In
order to take the edit distance [5] as the error metric for measuring the quality
of a repair, it is sufficient to consider discrete costs I(a) = D(a) = 1, ∀a ∈ Σ
and R(a, b) = T (a, b) = 1, ∀a, b ∈ Σ, a �= b. In particular, this choice will allows
us to compare our proposal with the original conditions for Savary’s one [12].

Our goal is now to illustrate the robustness in a variety of situations. We look
for a set of tests that will show both the effects from the topological distribution
of errors and unknown sequences in the input string and, whenever possible, the
structural influence of the operational kernel in the recognition process. Three
different kinds of patterns are considered for modeling ill-formed input strings.

The former, which we call unknown, is given by words which do not include
spelling errors, but only unknown symbols. This, for example, is the case of
the ill-formed word agu*teis. Taking a path-threshold 2, the completion is
aguasteis (you watered). The second kind of pattern, which we call error-
correction, gathers words including only errors. For the error input augasteis
with path-threshold 2, the correction is aguasteis. The third pattern, which we
call overlapping, groups words combining both unknown symbols and spelling
errors. In the case of aga*teis with path-threshold 2, the repair is aguasteis,

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 c

om
pu

te
d

ite
m

s

Position of the first point of error

Our proposal with cut-off
Our proposal without cut-off
Standard recognition mode

Savary’s proposal

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 c

om
pu

te
d

ite
m

s

Length of the current suffix

Our proposal with cut-off
Our proposal without cut-off
Standard recognition mode

Savary’s proposal

Fig. 1. Items generated for the unknown example

 0

 10000

 20000

 30000

 40000

 50000

 60000

 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 c

om
pu

te
d

ite
m

s

Position of the first point of error

Our proposal with cut-off
Our proposal without cut-off
Standard recognition mode

Savary’s proposal
 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 3 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 c

om
pu

te
d

ite
m

s

Length of the current suffix

Our proposal with cut-off
Our proposal without cut-off
Standard recognition mode

Savary’s proposal

Fig. 2. Items generated for the error-correction example

326 M. Vilares, J. Otero, and J. Vilares

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 2 3 4 5 6 7 8 9 10

N
um

be
r

of
 c

om
pu

te
d

ite
m

s

Position of the first point of error

Our proposal with cut-off
Our proposal without cut-off
Standard recognition mode

Savary’s proposal

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 3 4 5 6 7 8 9 10 11 12

N
um

be
r

of
 c

om
pu

te
d

ite
m

s

Length of the current suffix

Our proposal with cut-off
Our proposal without cut-off
Standard recognition mode

Savary’s proposal

Fig. 3. Items generated for the overlapping example

which is generated by rebuilding the unknown sequence “∗” with ‘‘s’’ and,
later, re-taking the error mode to insert ‘‘u’’ before the second ‘‘a’’.

The results are shown, for the unknown, error-correction and overlapping
examples in Figs. 1, 2 and 3; respectively. In all cases, we have started from the
same sample of words, which has the same distribution observed in the original
lexicon in terms of lengths of the strings dealt with. On these words and for each
length category, we have randomly generated errors and unknown sequences in
a number and position in the input string. This is of some importance since
the efficiency of previous proposals depends on these factors [5, 12]. No other
morphological dependencies have been detected.

In relation to the pruning criteria chosen, we consider a specific one for each
example. So, in the unknown case, path and sequence thresholds are 3. Type
ones are only considered for delete hypothesis and also fixed to 3. For the error
correction example, path and sequence thresholds are, respectively, 3 and 2.
Here, type ones are considered for all error hypotheses and fixed to 1. In the
overlapping case, path and sequence thresholds are 4; and type ones are also
fixed for all error hypotheses. In dealing with deletions it has a value of 3, and
in the case of insertion, replacement and transposition its value is 1.

The number of items generated by the system during the robust recogni-
tion process has been taken as the reference for appreciating the efficiency of
our method, rather than purely temporal criteria, which are more dependent
on its implementation. These items are measured in relation to both the po-
sition of the first point at which a difference which was attended to by the
user occurs in the word and the length of the suffix from it. So, we are sure
to take into account the degree of penetration in the fa at that point, which
determines the effectiveness of the repair strategy since it influences the num-
ber of repair schemata to follow. In particular, in our proposal, it determines
the number of regions in the fa including the point of error or the first un-
known point and, as a consequence, the possibility of considering a non-global
resolution.

In each figure, we compare four different graphs corresponding to our prun-
ing proposal, the results without cut-off, the Savary’s approach [12] with the

Robust Spelling Correction 327

same path-threshold of our pruning schemata and, finally, the number of items
that would be generated in standard recognition mode if we had considered the
correct input string from which we have obtained the erroneous one analyzed
by the previous three graphs corresponding to robust techniques. So, we can
estimate the computational behavior of the different robust techniques consid-
ered, but we can also to illustrate the computational effort exclusively due to the
application of the robust mechanisms in each case. In relation to the Savary’s
proposal, the original algorithm allows to consider path-based pruning and, in
order to introduce unknown symbols, we have simply extended it by simulating
insertions.

These results show a noticeable improvement in computational complexity
due to the consideration of pruning techniques. Here, it is important to remem-
ber that errors and unknown sequences were randomly generated and therefore
we have not profited from any linguistic knowledge in order to design efficient
pruning criteria. In spite of this apparent lack of performance, the application of
these cut-off techniques has augmented the precision 2 by 4’06% for the unknown
example, 7’76% for the error correction one, and 1’95% for the overlapping case.
In relation to this, although the errors in our tests have been randomly gener-
ated, we must remember that we have fixed the original, and correct, corpus. As
a consequence, we can easily estimate this parameter.

The graphs corresponding to the standard recognition mode illustrate the
complexity of the robust strategy. This is due, essentially, to the number of fa
paths to be explored, which also explains the greater amount of items generated
when the point of origin for the application of the robust mode is close to the
beginning of the word. Finally, comparison with the Savary’s method, in the
best of our knowledge the most efficient proposal on spelling correction, seems
to put into evidence the validity of our approach from the point of view of the
efficiency.

8 Conclusions

The gap with human performance in spelling correction, which is mainly due to
the mismatch between what was in the text, what actually appears in the input
and the set of available dictionary entries, should be covered by a flexible and
robust strategy at various levels.

A robust model for non-contextual spelling correction is described, which
allows the algorithm to deal with distortions caused by incomplete string acqui-
sition, simulating human performance in non-contextual word recognition. Our
goal is to compensate the noise effect resulting from ill-formed word recogni-
tion, in order to avoid degradation in the performance of the recognizer. The
consideration of cut-off criteria provides the capability to control the correction
mechanisms, conducting the process through the nearest neighbors of a given
character string in a dictionary.

2 The rate reflecting when the algorithm provides the repair attended by the user.

328 M. Vilares, J. Otero, and J. Vilares

References

1. Peterson, J.: Computer Programs For Spelling Correction. Springer-Verlag, Inc.,
Berlin, Germany / Heidelberg, Germany / London, UK / etc. (1980)

2. Kukich, K.: Techniques for automatically correcting words in text. ACM Comput-
ing Surveys 24 (1992) 377–439

3. Agirre, E., Gojenola, K., Sarasola, K., Voutilainen, A.: Towards a single proposal
in spelling correction. In Boitet, C., Whitelock, P., eds.: Proc. of the 36th Annual
Meeting of the ACL, San Francisco, California, Association for Computational
Linguistics, Morgan Kaufmann Publishers (1998) 22–28

4. Elmi, M., Evens, M.: Spelling correction using context. In Boitet, C., Whitelock,
P., eds.: Proc. of the 36th Annual Meeting of the ACL, San Francisco, California,
Association for Computational Linguistics, Morgan Kaufmann Publishers (1998)
360–364

5. Oflazer, K.: Error-tolerant finite-state recognition with applications to morpholog-
ical analysis and spelling correction. Computational Linguistics 22 (1996) 73–89

6. Du, M., Chang, S.: A model and a fast algorithm for multiple errors spelling
correction. Acta Informatica 29 (1992) 281–302

7. Vilares, M., Otero, J., Graña, J.: Regional finite-state error repair. Lecture Notes
in Computer Science 3317 (2005) 269–280

8. Lucchesi, C., Kowaltowski, T.: Applications of finite automata representing large
vocabularies. Software-Practice and Experience 23 (1993) 15–30

9. Graña, J., Barcala, F., Alonso, M.: Compilation methods of minimal acyclic au-
tomata for large dictionaries. Lecture Notes in Computer Science 2494 (2002)
135–148

10. Daciuk, J., Mihov, S., Watson, B., Watson, R.: Incremental construction of minimal
acyclic finite-state automata. Computational Linguistics 26 (2000) 3–16

11. Sikkel, K.: Parsing Schemata. PhD thesis, Univ. of Twente, The Netherlands
(1993)

12. Savary, A.: Typographical nearest-neighbor search in a finite-state lexicon and its
application to spelling correction. Lecture Notes in Computer Science 2494 (2001)
251–260

On Two-Dimensional Pattern Matching by

Finite Automata�

Jan Žd’́arek and Bořivoj Melichar

Department of Computer Science and Engineering,
Faculty of Electrical Engineering, Czech Technical University in Prague,

Karlovo náměst́ı 13, 121 35 Praha 2, Czech Republic
{melichar, zdarekj}@fel.cvut.cz

Abstract. This paper presents a general concept of two-dimensional
pattern matching using conventional (one-dimensional) finite automata.
Then two particular models and methods, implementations of the general
principle, are presented. The first of these two models presents an au-
tomata based version of the Bird and Baker approach with lower space
complexity than the original algorithm. The second introduces a new
model for two-dimensional approximate pattern matching using the two-
dimensional Hamming distance.

1 Introduction

In recent years there has been unceasing interest in two and more dimensional
pattern matching problems. Such interest is substantiated by the growing com-
putational strength of our computers allowing multidimensional data, e.g. NMR
scans, photographs, etc., to be processed.

In this paper the idea of dimensional (linear) reduction is used to provide a
generic algorithm of 2D pattern matching using finite automata, FA for short.
This has been known for a very long time and is widely used (for a nice survey in
the area of 2D matching see [1]). In our approach, by the dimensional reduction
of the problem we obtain a mapping between final states and one-dimensional
strings of the d dimensional pattern and a new preprocessed d− 1 dimensional
text array that is over an alphabet of automaton final state labels. Then linear
reduction is used again and after d−1 steps we finally obtain the one-dimensional
problem. From now on let us restrict our deliberation to describing the most
practical case, i.e. 2D pattern matching by finite automata.

Based on the generic algorithm, a couple of automata based models and
algorithms for 2D exact and 2D approximate pattern matching using a 2D
Hamming distance are presented. For this purpose some of the wide scale of
classical FA solving one-dimensional exact and approximate pattern matching
problems [2,3,4] are reused. The proposed methods in fact generalize the one-
dimensional pattern matching approach based on finite automata.
� This research is partially supported by the MŠMT under research program MSM

6840770014.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 329–340, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

330 J. Žd’́arek and B. Melichar

1.1 Basic Notions

Let A be a finite alphabet and its elements are called symbols. A set of strings
over A is denoted by A∗ and A� is a set of strings of length �. The empty string
is denoted by ε. Language L is any subset of A∗, L ⊆ A∗. Let P ∈ Am and
T ∈ An be a pattern and a text, respectively, m ≤ n. An exact occurrence of P
in T is index i, such that P [1, . . . , m] = T [i, . . . , i + m − 1], i + m − 1 ≤ n. If
some string R is a substring of T and the relevant edit distance is D(P, R) ≤ k
then R is an approximate occurrence of P in T with at most k errors.

An array (picture, 2D string) is a rectangular arrangement PA of symbols
taken from a finite alphabet. The set of all arrays over alphabet A is denoted by
A∗∗ and a 2D language over A is thus any subset of A∗∗. The set of all arrays
of size (n × n′) over A, where n, n′ > 0, is denoted by An×n′

. ([5] discusses the
theory of 2D languages in detail.) The size of an array is the size of its rectangular
shape, denoted by |PA| or (x × y), and its numerical value is the product of its
x and y components, |PA| = xy. A 2D exact occurrence of PA ∈ Am×m′

in
TA ∈ An×n′

is a pair (i, j), such that PA[1, . . . , m; 1, . . . , m′] = TA[i, . . . , i +
m− 1; j, . . . , j + m′ − 1]. If for some sub-array X of TA and a relevant 2D edit
distance 2D-dist(PA, X) ≤ k then X is a 2D approximate occurrence of PA in
TA with at most k errors.

A finite automaton (FA) is a quintuple (Q, A, δ, I, F). Q is a finite set of
states, A is a finite input alphabet, F ⊆ Q is a set of final states. If FA is
nondeterministic (NFA), then δ is a mapping Q× (A∪ {ε}) '→ P(Q) and I ⊆ Q
is a set of initial states. A deterministic FA (DFA) is (Q, A, δ, q0, F), where δ is
a (partial) function Q×A '→ Q; q0 ∈ Q is the only initial state.

By custom the term finite automaton is used where a pattern matching au-
tomaton (PMA) would be more appropriate. The PMA is a program based on a
run of an FA, e.g. the AC automaton (or machine) uses “forward” δ and “back-
ward” fail functions [6]. A PMA may be able to do some additional operations,
e.g. it may have some “actions” assigned to some or all of its transitions or states
(a generalization of a transducer).

1.2 Types of Pattern Matching Automata

In 1997 Melichar and Holub [4] showed that 1D pattern matching problems are
sequential problems and therefore it is possible to solve them using FA. Moreover,
they presented a six-dimensional classification of all 192 then known 1D pattern
matching problems for an alphabet of finite size.

The classification criteria (see Fig. 1) are: 1. nature of the pattern; 2. integrity
of the pattern; 3. number of patterns; 4. way of matching (exact or approximate
using various distances); 5. importance of symbols in the pattern; 6. number of
instances of the pattern.

The original model has been updated recently [7] in its fourth dimension with
distances used in the area of musicology (Δ, Γ) [8]. Those distances were not
known at the time of publication of [4] and as a consequence, the number of
problems described by this classification has risen from 192 to 336. Together,
these criteria allow us to classify conveniently all pattern matching problems.

On 2D Pattern Matching by Finite Automata 331

seQuence String

One

Sequence of

Care

Don’t care

Full pattern
One

Finite
Infinite

E

2

Sub−pattern

5

3

41

6

Γ+Δ

T

R

Γ

D

Δ

Criterion 1 2 3 4 5 6

S F O E C O
Q S F R D S

I T
Abbrev. D

G(Δ)
L(Γ)

H(Γ + Δ)

Fig. 1. Updated classification of one-dimensional pattern matching problems

Example 1. A common problem in text editors is to find a mistyped word. This
involves using approximate string matching of one pattern using the Levenshtein
distance. This problem can be simply referred to as an SFODCO problem.

One can use the notion of a family of pattern matching problems. In this
case symbol “?” is used instead of a particular letter. For example SFF???
describes the family of all problems concerning full pattern matching of multiple
strings.

2 Generic Algorithm

Reusing finite automata from 1D pattern matching into 2D pattern matching
has several advantages: the same formal method of modelling pattern matching
algorithms in both cases and a description of all problems using a unified view.
Furthermore, automata process a text in a time proportional to the text’s length,
for fixed alphabet A in linear time. (Otherwise the time complexity should be
multiplied by a log |A| factor.) There are known simulation methods of NFA [9,
10,11], and for some types of problems there are known algorithms constructing
appropriate DFA directly, some of them even in linear time [2].

The idea of solving multidimensional pattern matching problems using PMA
is simple: multiple automata should be used passing their results among them,
reducing the dimension of the problem by one in each step. In the last step
classical pattern matching can be used. (A preliminary version of Alg. 1 along
with some of our ideas presented below has appeared in [7].)

3 2D Exact Pattern Matching

Let pattern array PA be viewed as a sequence of strings. Without loss of gen-
erality let these strings be its columns. To locate columns of the pattern array
within columns of the text array requires searching for several strings. They are
contained in set of strings PS and its cardinality may be less than the number of
columns of PA, which can be used to reduce the state complexity of the match-
ing automaton. Testing for identical columns in PA can be done in O(|PA|) time
by a trie construction algorithm (the trie construction algorithm is given in [2]
or [6]).

332 J. Žd’́arek and B. Melichar

Algorithm 1. A generic algorithm of the 2D pattern matching using pattern
matching automata
Method:
1: Dictionary matching automaton M(PS) (of type SFF?CO, see Tab. 1) is

constructed.
2: Automaton M(PS) is applied to each column of TA and new array TA′ is

generated.
3: For further matching a one-dimensional representation of the pattern array

PA should be computed (representing string R).
4: String matching automaton M ′ (SFO?CO) searching for R with at most k

errors is built; k = 0 in case of the exact matching (SFOECO).
5: Automaton M ′ locates string R inside the rows of TA′, reporting eventual

(1D) occurrences of R in TA′ and therefore also 2D occurrences of PA in the
original TA.

3.1 A Finite Automata Model of 2D Exact Pattern Matching

Let m be the number of columns and let m′ be the number of rows of pattern
array PA, and let md be the number of distinct columns of PA, md ≤ m. In the
following text all steps of Alg. 1 will be implemented describing the idea of 2D
exact pattern matching using pattern matching automata.

According to step 1 of Alg. 1, the M(PS) automaton of type SFF?CO should
be used. For the purposes of 2D exact pattern matching it is a dictionary match-
ing automaton (SFFECO), because the location of the exact occurrences of the
individual patterns should be found (Alg. 1, step 2).

SFFECO automaton M(PS) = (Q, A, δ, {q0}, F), accepts a language L(M),
L(M) = A∗P , where P ∈ PS . The construction of automaton M(PS) for search-
ing for set PS , PS = {P1, P2, . . . , Pmd

}, consists of a trie construction of md

patterns and adding a selfloop at its initial state q0. The construction of NFA
M(PS) is given in [3].

A deterministic version of M(PS) and how it works over TA is given in
Sec. 3.2.

The Representing String. In step 3 of Alg. 1 construction of the representing
string R of pattern array PA is required. String R represents the original 2D
pattern array in such a way that every column becomes its representing symbol
in R. This representing string is a result of linear reduction, and it is a one-
dimensional representation of a 2D entity in symbols of a new alphabet. Here
these symbols are labels of final states of M(PS).

Example 2. Let PA ∈ A3×3, PA =
a b a
c a c
c d c

and let columns PA[1] = PA[3] = acc

and PA[2] = bad be accepted by states f1 and f2, respectively, and let f1, f2 ∈ F
be final states of automaton M(PS). Then the representing string R of PA in
rows of TA′ will be 121.

On 2D Pattern Matching by Finite Automata 333

Searching for 2D Exact Occurrences Using the Exact Pattern Match-
ing Automaton. After application of M(PS) on every column of TA the text
array TA′ is prepared for application of some one-dimensional pattern matching
method, e.g. PMA for exact pattern matching.

In this step automaton M ′ of type SFO??O will be used for matching in the
rows of TA′. For the purposes of 2D exact pattern matching this is the simplest
automaton, the SFOECO automaton.

SFOECO automaton M ′ is constructed over the alphabet F∪{0}, i.e. over the
set of final state labels of automaton M(PS), united with at least one symbol that
represents the rest of the states of M(PS) (recall the idea of a reduced alphabet).
In detail, M ′ = (Q′, F ∪ {0}, δ′, {q′0}, F ′) and accepts language L(M) = (F ∪
{0})∗R, where R ∈ Fm, F = {s1, s2, . . . , smd

}, |F | = md = |PS |, and m is the
length of the rows of PA.

NFA M ′ searches for pattern R of length m in each row of TA′ individually
(Alg. 1, step 5). M ′ searches for occurrences of R and therefore it can report also
2D occurrences of PA, because at the moment R is found it has been verified
that all columns of PA are found in the appropriate place and order.

3.2 Deterministic Finite Automata for 2D Exact Pattern Matching

The Bird and Baker algorithm uses for the 2D exact pattern matching the
well known algorithms of Aho-Corasick and Knuth-Morris-Pratt [12], and their
method works in linear time. This fact is a strong motivation for us to achieve
linear time with our method, too.

Our model of 2D exact pattern matching requires two finite automata: the
M(PS) automaton for preprocessing of TA is the SFFECO automaton; the M ′

automaton for searching for string R is the SFOECO automaton.
These automata have a neat structure, so they are useful as a model, but

they are also nondeterministic. There is no problem with this fact, as these
NFA’s can be either simulated or determinised before use. However, in order
to achieve linear time complexity for 2D exact pattern matching using our
method, direct constructions of equivalent deterministic finite automata should
be used. Indeed, this is possible in this case (see [2]): DFA M(PS) can be
constructed as a linear dictionary-matching automaton with time complexity
O(log |A||PA|) = O(mm′), supposing alphabet A is fixed. Its space complexity
is O(log |A||PA|) = O(mm′),

Elements of TA′ are computed as follows: let M(PS) = (Q, A, δ, q0, F) be
DFA, q ∈ Q, q is the active state after reading a symbol from the element
TA[i, j], then TA′[i, j] = q ; q ∈ Q, ∀i, j 1 ≤ i ≤ n, 1 ≤ j ≤ n′ .

DFA M ′ can be constructed as a linear string-matching automaton with time
and space complexity O(|R|) = O(m).
Theorem 1. The presented method of 2D exact pattern matching using the di-
rect construction of DFA’s has asymptotic time complexity O (|TA|).
(Proof omitted.)
This time complexity is the same as in the Bird and Baker solution, i.e. it is
linear with the size of a given text array.

334 J. Žd’́arek and B. Melichar

The space complexity is designated as O (|TA|), and it depends on the space
for temporary data (and on the sizes of the pattern matching automata, which
are smaller).

3.3 Optimized 2D Exact Pattern Matching

The new text array TA′ has the same size as TA, and because we are dealing
with pictures, it is clear that its size can be very large. Hence a significant saving
can be achieved if we could avoid using it.

We can use some natural properties of finite automata to reduce the space
complexity of 2D exact pattern matching. To be able to restart a run of a de-
terministic finite automaton only its transition function, active state and cur-
rent position in the input text are required. Automaton M(PS) matches in
all columns of TA individually, so O(n) extra space is needed to store all ac-
tive states of M(PS) in each row of TA. Once one row of TA′ is computed by
M(PS), it is possible to do matching in it using automaton M ′ to find possible
2D occurrences. Then the space of the row can be reused, efficiently eliminating
the need to store the whole array TA′.

Theorem 2. Two-dimensional exact pattern matching by finite automata has
asymptotic space complexity O (|PA|+ n).

Proof. The space complexity of automata M(PS) and M ′, O(|PA|) and O (m),
respectively, remains unchanged. Since M(PS) treats each column and M ′ each
row individually, to be able to restart the preprocessing phase it is required to
store the active states of M(PS) only. The extra space required is O(n), the
number of columns of TA.

Steps 2 and 5 of Alg. 1 are now “interleaved”, therefore both automata should
be stored in memory at the same time. The asymptotic space complexity of the
2D exact pattern matching is then O(|PA|) +O(m) +O(n) = O(|PA|+ n). ��

Note 1. To save some processing time, it is sufficient to start matching for 2D
occurrences (Alg. 1, step 5) in row TA′[x, m′], 1 ≤ x ≤ n, where the topmost
occurrences may be located.

4 2D Approximate Pattern Matching

In this section a new automata-based method of 2D approximate pattern match-
ing using a 2D Hamming distance is introduced. The 2D Hamming distance (2D
matching with mismatches) D2H is analogous to the Hamming distance DH in
1D matching [3,13].

DH(v, w) between two strings v, w ∈ A∗, |v| = |w| is the minimum number
of edit operations replace (change of symbol), needed to convert string v to w.
Distance D2H(P, R) between two arrays P and R is the minimum number of
edit operations replace needed to convert array P to R, P, R ∈ A∗∗, |P | = |R|.

In 2D exact matching a simple dimensional reduction was sufficient to do the
task, but here more information about each prefix is needed: not only that some

On 2D Pattern Matching by Finite Automata 335

prefix of one or more strings of PS can end at the actual element, but that there
can be a certain number of (1D) mismatches in it.

Let us refer again to the generic algorithm. First, an approximate dictionary
matching automaton M(PS) for the approximate matching of a set of strings
using the Hamming distance should be built (SFFRCO). M(PS) accepts a lan-
guage L(M) = A∗Hk(PS), where

Hk(PS) = {X ; X ∈ A∗, DH(X, P) ≤ min(k, m′ − 1) ∧ P ∈ PS}, (1)

k is a given number of allowed 2D mismatches in the 2D occurrence of pattern
array PA and m′ is the length of the columns of PA (supposing we start the
processing vertically).

Since M(PS) searches for a set of strings, it consists of SFORCO sub-
automata for approximate pattern matching using the Hamming distance.
(SFORCO automata and their usage are discussed for example in [3].)

The reason why the distance min(k, m′ − 1) in formula (1) should be used is
that the SFORCO sub-automaton for pattern of length m′ can find its occur-
rences with at most m′−1 mismatches in every column of TA, while k ≤ mm′−1.

The final states of M(PS) indicate which one of the (1D) patterns was found,
and the amount of mismatches found in a particular occurrence within the
columns of TA.

Let M(PS) = (Q, A, δ, I, F) be the SFFRCO automaton for the approximate
matching of a set of patterns using the Hamming distance.

Proposition 1. SFFRCO automaton M(PS) may have after each reading of
the input symbol and executing all subsequent transitions

1. at most md final states active,
2. among these active final states at most one final state indicating the exact

occurrence of pattern Pi of PS in the text array,
3. at most md active final states, indicating occurrences of md different patterns

with l mismatches, 0 < l ≤ k′, where k′ = min(k, |P | − 1), P ∈ PS.
(Proof omitted.)

As a consequence of Proposition 1, symbols of a secondary alphabet will have
|PS | parts, each "log2(k

′ +1)# bits long, representing the number of mismatches
found (k′) and one “no match” situation in each string of PS .

Let M(PS) = (Q, A, δ, I, F), q ∈ Q be the active state after reading the
symbol from element TA[i, j]. Let an ordered couple (s, x) be the label of a
final state of M(PS), where s is a string identification (number of its matching
SFORCO), to which a final state belongs, and x is the number of mismatches
found in it. Let (�∈ Q be a special symbol not among the labels of states.

Then it holds for ∀i, j, s 1 ≤ i ≤ n, 1 ≤ j ≤ n′, 1 ≤ s ≤ |PS |:

TA′[i, j, s] =
{

x ; q active, q ∈ F, q = (s, x),
(; sth sub-automaton has no active final state. (2)

336 J. Žd’́arek and B. Melichar

Let ls be the number of mismatches for each pattern number s and k′ =
min(k, |Ps| − 1), Ps ∈ PS . Every element of TA′ provides the following informa-
tion about the potential occurrence of a column of PA ending at a particular
element in the original array TA:

1. exact match, ls = 0,
2. approximate match with ls mismatches, 0 < ls ≤ k′,
3. no match, TA′[i, j, s] = ((ls > k′ mismatches found).

String R, representing the original pattern array PA in the rows of TA′, should
be constructed from “s” parts of (s, x) labels of final states, which are the same
in each SFORCO sub-automaton Ms of M(PS).

Searching for 2D Approximate Occurrences Using the 2D Hamming
Distance. Here the SFOLCO automaton should be used, which is a PMA able
to match pattern R using Γ distance. It will search for the representing string
R and also count the numbers of errors found in each column of a possible
2D occurrence. According to [8], let A′ be an ordered alphabet and a, b be two
symbols of alphabet A′, then Γ distance DΓ (v, w) between two strings v, w ∈ A∗,
|v| = |w|, is

∑|v|
i=1 |v[i]− w[i]|.

Let F in this section denote the set of final states of finite automaton M(PS)
and let secondary alphabet A′ be set F extended with a special symbol “(”:
A′ = F ∪ {(}. Symbols of alphabet A′ denote the number of errors found at a
given element of TA in the particular pattern from PS . Symbol (represents the
“no match” situation, where the number of errors in a particular string at the
given element is greater than the number of mismatches k′ allowed in it.

Let M ′ be M ′ = (Q′, A′, δ′, {q′0,0}, F ′), δ′ is a mapping Q′ × (A′)m '→ P(Q′),
where Q′ are states of M ′ and m = |PS |. The active final state of M ′ indicates
that an approximate 2D occurrence of PA in TA has been found. Furthermore, it
shows the total number of 2D mismatches found in a particular 2D occurrence,
up to the given maximum k.

Symbols of A′ are ordered using the second part x of the (s, x) couple, i.e. the
number of mismatches found in string Ps ∈ PS . Let the distances between two
symbols, final state labels of M(PS), be defined as follows:

|(s, x)− (t, y)| =
{
|x− y| ; s = t, if (x ∨ y) = (, then (= m′

m′ ; s �= t .
(3)

Example 3. To illustrate formula (3) let us compare symbols: |(1, 0)−(1, 3)| = 3,
|(2, 3)− (5, 0)| = m′, |(1, 0)− (1,()| = m′, |(3,()− (3,()| = 0.

These comparisons are used in the error counting in TA′. If symbol (i, j) is
found in a position where (i, 0) is expected, then

l =
{

j ; j �= (,
m′ ; j = (.

(4)

l mismatches is added to the current value of err , if err + l ≤ k. Let err be the
current value of mismatches found in a particular occurrence of the representing

On 2D Pattern Matching by Finite Automata 337

string. If j = (, k ≥ m′ errors are allowed and err +m′ ≤ k, m′ mismatches are
added to the current value, because a column of PA of length m′ was not found
at its expected position.

Let k be the number of mismatches allowed, k < |Pi|, Pi ∈ PS . In this case
the number of 2D mismatches in any occurrence is lower than the length of the
columns of PA. Then the SFOLCO automaton has a slightly simpler form than
in the general case, as it allows at most |Pi|−1 = k′ mismatches while searching
for the representing string.

A slightly more complicated case is when k ≥ m′ is given. This means that the
number of 2D errors is greater than the number of mismatches that M(PS) is
able to find in one dimension. To be able to count 2D errors by one-dimensional
means, (transitions are introduced in automaton M ′, representing m′ = |R|
errors, R ∈ PS . Hence each state may have at most m′ + 1 outgoing transitions,
only initial state q′0,0 has more, because of the selfloop.

Construction of the SFOLCO automaton M ′ is shown in Alg. 2.

Algorithm 2. Construction of NFA for the approximate pattern matching of
string R over the set of identifiers of final states of NFA M(PS)
Input: Pattern R over the set of final states of M(PS), |R| = m, and m′ be the length
of patterns in set PS . The maximum number of 2D errors allowed k, k ≤ mm′.
Output: NFA M ′, M ′ = (Q′, A′, δ′, {q′

0,0}, F ′), accepting language L(M ′) =
A′∗Γ (R) = {wx; w, x ∈ A′∗, DΓ (x,R) ≤ k}.
Sets Q′, F ′ and mapping δ′ are constructed in the following way:
Method:
Q′ ← {q′

0,0} { the initial state }
for i ← 0 to k

first ← |i−1|
m′ + 1 { “depth” of the first non-initial state in the ith row }

for j ← first to m
Q′ ← Q′ ∪ {q′

j,i} { add a new state }
if j = m then

F ′ ← F ′ ∪ {q′
j,i} { add a new final state }

Assign an alias q′
j,i ← i. { the number of errors found }

end
if j = 1 then

if i < m′ then δ′ q′
j−1,0, (R[j], i) ← q′

j,i

else δ′ q′
j−1,0, (R[j], �) ← q′

j,i { if i = m′ }
else

x ← max(0, i − m′)
if j = first then last ← i (mod m′)

else last ← min(i, m′)
for l ← 0 to last

if (i ≥ m′) ∧ (l = 0) then δ′ q′
j−1,x, (R[j], �) ← q′

j,i

else δ′ q′
j−1,x+l, (R[j], i − x − l) ← q′

j,i

end
end

end end
δ′(q′

0,0, a) ← δ′(q′
0,0, a) ∪ {q′

0,0}, ∀a ∈ A′ { the selfloop of the initial state }

338 J. Žd’́arek and B. Melichar

4.1 Practical 2D Pattern Matching Using the 2D Hamming
Distance

Our model of this type of 2D approximate pattern matching requires two PMA:
SFFRCO and SFOLCO. These are nondeterministic and there are no known
direct methods for constructing their deterministic versions (in contrast to 2D
exact matching).

In such a situation we can either transform NFA to DFA using the standard
subset construction [14] or simulate a run of the NFA. The former method may
result in quite high space complexity, hence in the rest of this section the latter
method is used: a simulation of a run of M(PS) and M ′.

For the simulation of the run of M(PS) we use dynamic programming for
pattern matching using the Hamming distance [3,9,15]. This method for string
matching computes matrix D of size (m + 1) × (n + 1) for a pattern of length
m and a text of length n. Each element of D usually contains the edit distance
between the string ending at a current position in text T and the prefix of
pattern P . The advantages of this method are that it is very simple and can be
implemented memory-efficiently, and for a pattern of length m it requires only
O(m) space. It works in time O(mn) for a text of length n, and this complexity is
independent of the number of errors. Ukkonen [15] improved the expected time of
the standard dynamic programming for approximate string matching to O(nk′),
by computing only the zone of the dynamic programming matrix consisting of
the prefix of each column ending with the last k′ in the column, where k′ is the
maximum number of mismatches in the occurrence. This improvement does not
help much in our case, because for 2D approximate matching we usually need
more than m errors to be allowed and then we have k′ = m− 1.

From the construction of M(PS) we see that there is at most md sub-automata
for the approximate pattern matching of md ≤ m strings of PA. These sub-
automata can be simulated by the dynamic programming in time O(mm′nn′),
which is independent of the number of 2D errors.

Automaton M ′ has a special structure and can be easily simulated in time
O(mnn′ −mm′n). Its simulation algorithm has appeared in [7].

Theorem 3. The described realization of our method of 2D approximate pattern
matching with finite automata using the 2D Hamming distance has asymptotic
time complexity O(|TA||PA|). (Proof omitted.)

Proposition 2. The space complexity of the basic version of 2D approximate
pattern matching using the 2D Hamming distance presented above is O (m|TA|).
(Proof omitted.)

4.2 Optimized 2D Approximate Pattern Matching Using the 2D
Hamming Distance

According to the idea from Sec. 3.3, in order to reduce the space complexity
we have to be able to restart a run of finite automaton M(PS) in columns
of TA. We use dynamic programming to simulate sub-automata of M(PS), so
O(mm′)space is needed to store the current state of the dynamic programming

On 2D Pattern Matching by Finite Automata 339

(state of M(PS)) in each row of TA. Once one row of TA′ is computed, it is
possible to do the matching in it using the simulation algorithm of automaton
M ′ to find possible 2D occurrences. Then the space of the row can be reused,
effectively eliminating the need to store the whole array TA′.

Theorem 4. The space complexity of the optimized version of 2D approximate
pattern matching using the 2D Hamming distance is O (n|PA|).
Proof. Once again following steps of Alg. 1: (1-2) We have n columns of TA,
and in each of them there run md, md ≤ m, dynamic programming simulations
of M(PS) sub-automata in O(mm′) space each, that is O(mm′n). To store the
results of simulation in each column O(m) space is needed, that is O(mn). (3)
We also have to store an assignment of PA columns to the sub-automata of
M(PS) in the representing string with the space complexity O(m). (4-5) The
simulation algorithm of M ′ has asymptotic space complexity O(m).

Since steps 2 and 5 of Alg. 1 are interleaved, all space requirements should be
summed up and the resulting asymptotic space complexity is O (mm′n + mn
+2m) = O (n|PA|). ��

5 Conclusion

The main contribution of this work is a general finite automata based approach to
modelling of two-dimensional pattern matching problems. Based on the generic
algorithm, two particular methods have been presented, one for 2D exact pattern
matching and one for 2D approximate pattern matching using the 2D Hamming
distance. In practice these are the most important kinds of 2D pattern matching,
because most of the pictures stored in and by computers are rectangular in shape.
However, there are two-dimensional edit distances, like R, C, L, RC [16], and we
wish to find suitable automata models for them, too.

Beside automata based models we have dealt with issues in implementing
them. In general it is impossible to use a simulation of nondeterministic models
and obtain linear time complexity. Yet, there exist direct construction methods
of equivalent deterministic pattern matching automata, and with the use of these
our method is able to work in linear time, too. Moreover, we have shown a way
to reduce the space needed to the size of only one row of the text array.

Then we presented the model of two-dimensional approximate pattern match-
ing using the 2D Hamming distance. It has no known direct deterministic im-
plementation, but it is possible to simulate its pattern matching automata.

The main point of our work is that it reuses a great deal of pattern match-
ing automata in a new area of application. We offer a systematic approach for
describing two-dimensional pattern matching.

References

1. Amir, A.: Theoretical issues of searching aerial photographs: a bird’s eye view. In
Baĺık, M., Holub, J., Šimánek, M., eds.: Proceedings of the Prague Stringology Con-
ference 2004, Czech Technical University in Prague, Czech Republic (2004) 1–23

340 J. Žd’́arek and B. Melichar

2. Crochemore, M., Hancart, C.: Automata for matching patterns. In Rozenberg,
G., Salomaa, A., eds.: Handbook of Formal Languages. Springer-Verlag, Berlin
(1997) 399–462

3. Melichar, B.: Approximate string matching by finite automata. In Hlaváč, V.,
Šára, R., eds.: Computer Analysis of Images and Patterns. Number 970 in Lecture
Notes in Computer Science, Springer-Verlag, Berlin (1995) 342–349

4. Melichar, B., Holub, J.: 6D classification of pattern matching problems. In
Holub, J., ed.: Proceedings of the Prague Stringology Club Workshop ’97, Czech
Technical University in Prague, Czech Republic (1997) 24–32

5. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Handbook of
Formal Languages. Volume III (Beyond Words). Springer-Verlag, Heidelberg
(1997) 216–267

6. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic
search. Commun. ACM 18 (1975) 333–340

7. Žd’́arek, J., Melichar, B.: Finite automata and two-dimensional pattern matching.
In Heričko, M., Rozman, I., Jurič, M.B., Rajkovič, V., Urbančič, T., Bernik, M.,
Bučar, M., Brodnik, A., eds.: Proceedings of the 7th International Multiconference
Information Society IS’2004. Volume D., Ljubljana, Slovenia, Institut “Jožef
Stefan” (2004) 185–188

8. Cambouropoulos, E., Crochemore, M., Iliopoulos, C.S., Mouchard, L., Pinzon,
Y.J.: Algorithms for computing approximate repetitions in musical sequences. In
Raman, R., Simpson, J., eds.: Proceedings of the 10th Australasian Workshop On
Combinatorial Algorithms, Perth, WA, Australia (1999) 129–144

9. Sellers, P.H.: The theory and computation of evolutionary distances: Pattern
recognition. J. Algorithms 1 (1980) 359–373

10. Wu, S., Manber, U.: Fast text searching: allowing errors. Commun. ACM 35
(1992) 83–91

11. Holub, J.: Simulation of nondeterministic finite automata in pattern matching.
Dissertation thesis, Czech Technical University in Prague, Czech Republic (2000)

12. Knuth, D.E., Morris, Jr, J.H., Pratt, V.R.: Fast pattern matching in strings.
SIAM J. Comput. 6 (1977) 323–350

13. Hamming, R.W.: Error detecting and error correcting codes. The Bell System
Technical Journal 29 (1950) 147–160

14. Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages and
computations. Addison-Wesley, Reading, MA (1979)

15. Ukkonen, E.: Finding approximate patterns in strings. J. Algorithms 6 (1985)
132–137

16. Baeza-Yates, R.A., Navarro, G.: New models and algorithms for multidimensional
approximate pattern matching. J. Discret. Algorithms 1 (2000) 21–49

Incremental and Semi-incremental Construction

of Pseudo-Minimal Automata

Jan Daciuk1,�, Denis Maurel2, and Agata Savary2

1 Gdańsk University of Technology, Poland
jandac@eti.pg.gda.pl

2 Université François Rabelais, Tours, France
{denis.maurel, agata.savary}@univ-tours.fr

Pseudo-minimal automata ([1],[2]) are minimal acyclic automata that have a
proper element (a transition or a state) for each word belonging to the language
of the automaton. That proper element is not shared with any other word, and
it can be used for implementing a function on words belonging to the language.
For instance, dynamic perfect hashing (e.g. a mapping from n unique words to
n consecutive numbers, such that addition of new elements does not change the
order of the previous elements) can be implemented using a pseudo-minimal
automaton ([3]).

The only existing algorithm for the construction of pseudo-minimal automata
([1]) requires the input data to be sorted in an unusual way (in reverse lexico-
graphic order). We propose three other algorithms that can use lexicographically
sorted data, unsorted data, or data sorted on decreasing length. All these algo-
rithms result from slight modifications of known algorithms for the incremental
and semi-incremental construction of minimal deterministic acyclic automata
([4], [5]). They are based on the following property: in a pseudo-minimal au-
tomaton, there is no path on which a divergent state (i.e. a state with more than
one outgoing transition) follows a convergent state (i.e. a state with more than
one incoming transition).

In a minimal deterministic acyclic automaton, there may be no two different
equivalent states, i.e. states having the same right language (set of words spelled
out on all paths from the given state to any final state). That is not the case for
a pseudo-minimal automaton, in which each state q such that

|−→L (q)| > 1 (1)

may have an equivalent state somewhere in the automaton (where −→L (q) is the
right language of q). The modifications introduced to the abovementioned algo-
rithms rely on the verification of condition (1).

In the original algorithms for sorted (case 1) and unsorted data (case 2), cf.
[4], as well as for data sorted on decreasing length (case 3), cf. [5], each time we
add a new word to the automaton, we perform a local minimization of a path
corresponding to one or more word suffixes (the suffix of the previously added
word in case 1, or the suffix of the current word in case 2, and the suffixes of
several previously added words in case 3). This suffix minimization is done by
� Invited professor at the University of Tours, October through November 2004.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 341–342, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

342 J. Daciuk, D. Maurel, and A. Savary

checking, for every suffix’ state, if that state has an equivalent state already in
the automaton. If an equivalence is discovered both states are merged.

In order for the automaton to be pseudo-minimal instead of minimal, the
local minimization has to be modified so that merging of states happens only
if states are equivalent and condition (1) is not met. As in cases 1 and 2, the
local minimization happens recusively backwards (starting from a final state),
and the cardinality of the right language is easy to track on the fly. However,
in case 3, the information about condition (1) has to be stored explicitly. After
the addition of a new word and before the local minimization, all states from
the start state to the newly created divergent state (if any) are marked as not
verifying condition (1).

We have performed a correctness proof of the three algorithms we have pro-
posed. The complexity of each of them is linear with regard to the number of
symbols in the input data, provided that the operations on the so-called register
(data structure containing a single representative state of each equivalence class
of the automaton under construction) can be carried out in constant time. In
incremental algorithms, all through the construction process, the intermediate
automaton remains pseudo-minimal, i.e. the computation space usage of the
whole algorithm is optimal.

We have perfomed experiments on 3 word lists extracted from English, French
and Polish natural language corpora. Lists contained only unique words. For
the algorithm for unsorted data, words came in the order they appeared in
corpora. For other algorithms, they were sorted appropriately. The comparison
of construction speed was done with respect to the first stage of the algorithm
by [1] (its first stage produces a pseudo-minimal automaton while the whole
algorithm produces a minimal automaton).

The results show that the three new algorithms proposed here are slower (up
to 2.4 times for English, up to 3.7 times for French and up to 3 times for Polish)
than the original algorithm by [1]. However, that algorithm requires unusual
sorting of input data, which can not always be done (e.g. for the sake of disk
space, or because of the nature of dynamic perfect hashing).

References

1. Revuz, D.: Dictionnaires et lexiques: méthodes et algorithmes. PhD thesis, Institut
Blaise Pascal, Paris, France (1991) LITP 91.44.

2. Maurel, D.: Pseudo-minimal transducer. Theoretical Computer Science (2000) 129–
139

3. Daciuk, J., Maurel, D., Savary, A.: Dynamic perfect hashing with finite-state au-
tomata. In: Proceedings of Intelligent Information Systems. New Trends in In-
telligent Information Processing and Web Mining. Advances in Soft Computing,
Springer (2005)

4. Daciuk, J., Mihov, S., Watson, B., Watson, R.: Incremental construction of minimal
acyclic finite state automata. Computational Linguistics 26 (2000) 3–16

5. Watson, B.: A fast new (semi-incremental) algorithm for the construction of minimal
acyclic DFAs. In: Third Workshop on Implementing Automata, Rouen, France,
Lecture Notes in Computer Science, Springer (1998) 91–98

Is Learning RFSAs Better Than Learning DFAs?

Pedro Garćıa1, José Ruiz1, Antonio Cano1, and Gloria Alvarez2

1 Universidad Politécnica de Valencia. Valencia, Spain
2 Pontificia Universidad Javeriana - Seccional Cali. Cali, Colombia

{pgarcia, jruiz, acano, galvarez}@dsic.upv.es

Abstract. Inference of RFSAs has been recently presented [1] as an
alternative to inference of DFAs if the target language has been obtained
by a random generation of NFAs. We propose in this paper the algorithm
RPNI2, which is a variation of the previous RPNI, that also outputs
DFAs as hypothesis. The experiments done using the same data as in [1]
show that RPNI2 has an error rate very similar to the rate obtained in
the inference of RFSAs, but the size of the hypothesis is substantially
smaller.

1 Description of the Algorithms RPNI and RPNI2

The RPNI (Regular Positive and Negative Inference) algorithm can be found in
[2]. Definitions and previous works concerning RFSAs and DeLeTe2 algorithm
can be found in [1] and in some other previous works of the same authors.

The RPNI (Regular Positive and Negative Inference) algorithm [2] is used
for inference of regular languages. It receives a sample of the target language
as input and it outputs, in polynomial time, a DFA consistent with the input.
This algorithm converges to the minimal automaton of the target language in
the limit (i.e. when it has received a characteristic sample as input).

RPNI works merging every state of the Prefix Tree Moore Machine of the
sample with the previous ones in lexicographical order and propagates the merges
done to keep a deterministic automaton under the condition that it does not
accept a negative sample.

Merging states can be seen as a process of enlarging the learning sample, as
states that have undefined output in the tree, may now be defined if they can
be merged with a state whose output belongs to {0, 1}.

The main idea of the variation of RPNI that we propose in this paper and
we call RPNI2 is the following: If two states p and q can not be merged we try
to establish the possible inclusion relation between them (We say that q ≺ q′

if no word w exists such that δ(q, w) is a final state whereas δ(q′, w) is not),
which will sometimes permit us to define the output associated to some states
that were previously undefined (if q ≺ q′, then if q is final and q′ is undefined,
q′ can be set as final, otherwise if q′ is not final and q is undefined, q can be set
as final). Except for this variation, RPNI2 works exactly as previous RPNI does
and it converges to the minimal DFA of the target language.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 343–344, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

344 P. Garćıa et al.

2 Results

The aim of the experiments is to compare RPNI2 with DeLeTe2. We have used
the samples provided in http://www.grappa.univlille3.fr/∼lemay/. These
samples are generated from 20 state (on average) NFAs, which correspond to
120 state (on average) DFAs.

The table shown below reports the recognition rate and the average size (the
number of states of the hypothesis). The error rate of the new algorithm RPNI2
is better than the former RPNI but slightly worse than DeLeTe2. The opposite
happens with the description complexity (i.e. number of states) of the output hy-
pothesis. The results obtained by RPNI2 are then better than those of DeLeTe2.

RPNI RPNI2 DeLeTe2
Iden. Recognition Average Recognition Average Recognition Average

rate size rate size rate size

er 50 76.36% 9.63 80.03% 16.32 81.68% 32.43
er 100 80.61% 14.16 88.68% 19.24 91.72% 30.73
er 150 84.46% 15.43 90.61% 26.16 92.29% 60.96
er 200 91.06% 13.3 93.38% 27.37 95.71% 47.73

nfa 50 64.8% 14.3 66.43% 30.64 69.80% 71.26
nfa 100 68.25% 21.83 72.79% 53.14 74.82% 149.13
nfa 150 71.21% 28.13 75.69% 71.87 77.14% 218.26
nfa 200 71.74% 33.43 77.25% 88.95 79.42% 271.3

3 Conclusions

Although the experiments are still preliminary, it seems that the slightly better
results obtained by DeLeTe2 with respect to RPNI2 do not compensate the fact
that the size of the representations obtained by RPNI2 are clearly smaller. A
more exhaustive set of experiments should be done in future works.

References

1. Denis, F. Lemay, A., Terlutte, A.: Learning regular languages using rfsas. Theoret-
ical Computer Science 313 (2004) 267–294

2. Oncina, J., Garćıa, P.: Inferring regular languages in polynomial updated time. In
Pattern Recognition and Image Analysys (1992)

Learning Stochastic Finite Automata for Musical

Style Recognition�

Colin de la Higuera, Frédéric Piat, and Frédéric Tantini

EURISE, Université de Saint-Etienne, 23 rue du Docteur Paul Michelon,
42023 Saint-Etienne, France

{cdlh, piat, tantini}@univ-st-etienne.fr

Abstract. We use stochastic deterministic finite automata to model
musical styles: a same automaton can be used to classify new melodies
but also to generate them. Through grammatical inference these au-
tomata are learned and new pieces of music can be parsed. We show
that this works by proposing promising classification results.

In music, notes are grouped (played sequentially or simultaneously in the case
of chords) to instantiate classes (e.g. the sequence of notes C-E-G-C instantiates
the C Major scale because it contains its more important notes, a scale being an
ordered subset of the 12 notes used in western music). Further, there exists rules
of well-formedness and typical sequences in the structure of musical passages,
which vary according to musical styles, just like a verb can be in the middle or at
the end of a sentence depending on the language. This suggests that tools used
for language modeling such as formal language theory and grammatical inference
could be of great help for the analysis and understanding of music [1, 2].

Grammatical inference is concerned with finding grammars or automata cor-
responding to strings, sentences or other structured data. The inferred grammar
is supposed to generate the language from which the data has been extracted.
Techniques can be empirical or provable. There is a variety of problems depend-
ing on whether the data is clean or noisy, or if there is additional knowledge
about the distribution of the strings, about some partial rules or if we are given
counter-examples [3, 4].

We have followed in this work the lines of previous work by Cruz and Vidal
[2]: music can be encoded in a simple way through the pitch and the length of the
notes of a melody. Obviously this encoding does not take into account polyphony
or even the characteristics of the instruments. A melody will therefore be a string
and from a set of melodies/strings it will be possible to infer a grammatical
representation of the language corresponding to the musical style. Because of the
characteristics of the task and the good performances obtained in other settings
(speech for example) we have chosen to represent the languages by stochastic
deterministic finite automata (Sdfa). We used algorithm Mdi [5] to learn these
automata, and ideas from grammatical inference [6] to adapt the algorithm.
� This work was supported in part by the IST Programme of the European Commu-

nity, under the Pascal Network of Excellence, IST-2002-506778. This publication
only reflects the authors’ views.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 345–346, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

346 C. de la Higuera, F. Piat, and F. Tantini

We used a dataset by [2] made up of 100 pieces for each of the 4 styles
“Gregorian”,“Jig”,“Reel” and “Scarlatti”. These are clearly different from each
other except for jigs and reels which are subtypes of Celtic folklore, and share a
lot of tonal and melodic patterns in spite of different rhythmic structures. This
should give us insight about the capacity of automata to differentiate classes on
the basis of principally one dimension (durations) and on the nature of confusions
(between remote vs. styles related on one dimension).

Melody lengths range from 61 to 1825 notes (mean= 550). We used a 10-fold
cross-validation to generate the confusion matrices presented in Table 1, allowing
direct comparison between typed and non-typed automata performances.

Table 1. Confusion matrix of musical style classification by non-typed and typed
automata

reel scarlat jig greg recall reel scarlat jig greg recall

Reel 98 0 1 1 98 95 0 1 4 95
Scarlatti 6 90 4 0 90 5 93 2 0 93
Gig 0 1 99 0 99 0 1 99 0 99
Gregorian 2 0 0 98 98 2 0 0 98 98
Total 106 91 104 99 96.25 102 94 102 102 96.25
Precision 92.45 98.90 95.19 98.99 96.38 93.14 98.94 97.06 96.08 96.30

Acknowledgement. The authors are grateful to Pedro Cruz for his benchmarks
and for many ideas used in this work. They also thank Thierry Murgue and
Franck Thollard for help with Mdi and parsers.

References

1. Narmour, E.: The analysis and cognition of melodic complexity: The implication-
realization model. Chicago: University of Chicago Press (1992)

2. Cruz, P., Vidal, E.: Learning regular grammars to model musical style: Comparing
different coding schemes. In Honavar, V., Slutski, G., eds.: Grammatical Inference,
Proceedings of ICGI ’98. Number 1433 in LNAI, Berlin, Heidelberg, Springer-Verlag
(1998) 211–222

3. Sakakibara, Y.: Recent advances of grammatical inference. Theoretical Computer
Science 185 (1997) 15–45

4. de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recog-
nition (2005) To appear.

5. Thollard, F., Dupont, P., de la Higuera, C.: Probabilistic DFA inference using
Kullback-Leibler divergence and minimality. In: Proc. 17th International Conf. on
Machine Learning, Morgan Kaufmann, San Francisco, CA (2000) 975–982

6. Kermorvant, C., de la Higuera, C.: Learning languages with help. In Adriaans,
P., Fernau, H., van Zaannen, M., eds.: Grammatical Inference: Algorithms and Ap-
plications, Proceedings of ICGI ’02. Volume 2484 of LNAI., Berlin, Heidelberg,
Springer-Verlag (2002) 161–173

Simulation of Soliton Circuits

Miklós Krész

Department of Computer Science, Juhász Gyula Teacher Training College,
University of Szeged, Szeged, Hungary

kresz@jgytf.u-szeged.hu

Soliton circuits are among the most promising alternatives for molecular elec-
tronic devices based on the design of molecular level conventional digital circuits.
In order to capture the logical and computational aspects of these circuits, a
mathematical model called soliton automaton was introduced by Dassow and
Jürgensen in 1990.

The underlying object of a soliton automaton is a so called soliton graph,
which is a finite undirected graph allowed to have loops and multiple edges.
In order for the graph to act as an automaton, it must have a perfect internal
matching, which is a matching covering all vertices with degree at least 2. Such
vertices are called internal , while external vertices are ones with degree 1.

Let G be a soliton graph, fixed for our present discussion. The graph G defines
an automaton A(G), the states of which are the perfect internal matchings of G.
With a slight ambiguity, we shall also say that “M is a state of G”, rather than
“M is a state of A(G)”. Inputs to A(G) are pairs of external vertices of G. In
state M , a possible transition on input (v1, v2) is carried out by switching along
an alternating walk – called soliton walk – connecting v1 with v2. In that case
the above transition is expressed by M ′ ∈ δ(M, (v1, v2)), where M ′ denotes the
induced state and δ denotes the transition function of A(G).

From practical point of view it is a fundamental question to develop a simula-
tion method for soliton circuits. Translating the above problem to the language
of soliton automata, we consider the following task.

Automaton Construction Problem (ACP): Given a soliton graph G. Con-
struct the automaton A(G) associated with G.

In order to give a solution for ACP, first we must design a method determining
the set S(G) of states of G, then an algorithm for constructing the transition
function is needed.

The first problem can be solved by adopting an extension of the method
suggested by Itai, Rodeh and Tanimoto for bipartite graphs with perfect match-
ings. Working out the technical details of this method, after a careful complexity
analysis the following result is obtained.

Theorem 1. Let G be a soliton graph, m = |E(G)| and k = |S(G)|. Then S(G)
can be constructed in O(k ·m) time.

Now we are left to provide a method constructing the transition function of
A(G). The basic step solving this problem is to determine the set of input pairs
(v, w) for any states M1, M2 ∈ S(G) such that M2 ∈ δ(M1, (v, w).

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 347–348, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

348 M. Krész

First consider the case of M1 �= M2. In that situation we can capitalize the
characterization of the structure of the symmetric difference N(M1, M2) of M1
and M2. Making use this result, our problem can be reduced to testing the
accessibility of alternating cycles in N(M1, M2) by M1-alternating paths starting
from v. Therefore, applying an efficient alternating path procedure, we obtain
the following.

Theorem 2. Let M1 and M2 be distinct states of A(G), m = |E(G)| and let
l denote the number of external vertices. Then the set of input pairs (v, w) for
which M2 ∈ δ(M1, (v, w)) can be constructed in O(l ·m) time.

Having solved the problem of transitions between distinct states, now we turn
to self-transitions, i.e. transitions from a state to itself. Self-transitions can be
characterized with the help of the so-called soliton trails, i.e. external alternating
walks returning to themselves only in the last step. A trail is a c-trail (l-trail)
if it closes up an even-length (respectively, odd-length) cycle. An M -alternating
double soliton c-trail from external vertex v is a pair of M -alternating soliton
c-trails (α1, α2) from v such that the cycles of α1 and α2 are either the same or
disjoint.

Now for an arbitrary external vertex v and state M of G, construct the graph
G[M, v] determined by the edges traversed by an M -alternating path or an M -
alternating soliton trail starting from v. Then the key point for our algorithm is
the following result.

Theorem 3. For any state M of soliton automaton A(G) and for any external
vertex v of G, M ∈ δ(M, (v, v)) iff one of the following conditions holds:

(a) G[M, v] is a non-bipartite graph.
(b) G[M, v] is a bipartite graph containing an M -alternating double soliton
c-trail from v.

(c) G[M, v] is a bipartite graph not containing an M -alternating even-length
cycle.

Now making use of the above theorem we can give a method deciding for
any state M and external vertex v of G if M ∈ δ(M, (v, v)) holds. For this goal
we need to design efficient procedures for constructing G[M, v] and for searching
alternating cycles with certain properties in G[M, v]. Using standard algorithmic
techniques such as depth-first search and breadth-first search with respect to
alternating paths, an algorithm is worked out with a complexity proportional to
the number of vertices and edges.

Our closing result summarizes the preceding observations.

Theorem 4. Let G be a soliton graph with n = |V (G)|, m = |E(G)|, k = |S(G)|
and l denoting the number of external vertices. Then ACP can be solved in
O((k + n) · (k · l ·m)) time.

Acyclic Automata with Easy-to-Find Short

Regular Expressions�

José João Morais, Nelma Moreira, and Rogério Reis

DCC-FC & LIACC, Universidade do Porto,
R. do Campo Alegre 823, 4150 Porto, Portugal
jjoao@netcabo.pt, {nam, rvr}@ncc.up.pt

Abstract. Computing short regular expressions equivalent to a given
finite automaton is a hard task. We present a class of acyclic automata for
which it is easy-to-find a regular expression that has linear size. We call
those automata UDR. A UDR automaton is characterized by properties
of its underlying digraph. We give a characterisation theorem and an
efficient algorithm to determine if an acyclic automaton is UDR, that
can be adapted to compute an equivalent short regular expression.

Computing a regular expression from a given finite automaton can be achieved
by well-known algorithms based on Kleene’s theorem. However the resulting
regular expression depends on the order in which the automaton’s states are
considered in the conversion. In particular, this is the case if the algorithm is
based on the state elimination technique. Consider the following automaton:

q1

q2

q3

q4

a,d

b

c
d

e

If we remove the state q2 and then the state q3, we obtain the regular expression
(a + d)d + ((a + d)c + b)e. But if we remove first q3 and then q2, we obtain the
regular expression be + (a + d)(ce + d). If our goal is to obtain a short regular
expression, the order in which we consider the automaton states is of great impor-
tance. Moreover, obtaining a minimal regular expression equivalent to a given au-
tomaton is PSPACE-complete, and remains NP-complete for acyclic automata.
In this work we present a characterisation of acyclic automata for which it is easy
to find an order of state removal such that the resulting regular expressions have
size linear in the number of the automata transitions. Given a nondeterminis-
tic finite automaton (NFA) A = (Q, Σ, δ, q0, F), its underlying digraph is D =
(Q, E) such that E = {(q, q′) | q, q′ ∈ Q and ∃a ∈ Σ ∪ {ε} such that (q, a, q′) ∈
δ}. An automaton is useful if in its underlying digraph, every state is in a path
from the initial state to a final state. An automaton is acyclic if its underlying
digraph is acyclic. We will consider only useful acyclic automata with one final
state. We say that two digraphs are homeomorphic if both can be obtained from
the same digraph by a sequence of subdivisions of arcs. Let consider the di-
graph R→ = ({q1, q2, q3, q4}, {(q1, q2), (q1, q3), (q2, q3), (q2, q4), (q3, q4)}). A useful
� Work partially funded by Fundação para a Ciência e Tecnologia and Program POSI.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 349–350, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

350 J.J. Morais, N. Moreira, and R. Reis

acyclic NFA with one final state is UDR (Unique for the Distributivity Rule) if
its underlying digraph does not contain a subgraph homeomorphic to R→. The
underlying digraph is a UDR digraph. The NFA represented above is not UDR,
as its underlying digraph is R→. If an automaton is not UDR, there are at least
two states such that the order chosen to eliminate them leads to two different
regular expressions, one that results from the application of a distributivity rule
to the other. This is not the case for UDR automata. We have:1

Theorem 1. Let D = (Q, E, i, f) be a UDR digraph and |Q| > 2. Then D has
at least a vertex q such that its indegree and its outdegree are 1 (i.e. q(1; 1)).

Theorem 2. Let A = (Q, Σ, i, δ, f) be a useful acyclic NFA. We can obtain a
regular expression equivalent to A using the state elimination algorithm in such
way that in each step we remove a state q with q(1; 1) if and only if A is UDR.
Moreover, that regular expression has size linear in the size of A.

The following algorithm determines if an acyclic digraph is UDR in O(n2 log n).
If an automaton is UDR, the algorithm udrp can be adapted to compute an
equivalent regular expression with size linear in the size of the automaton.

� �
udrp {

%AdjT(v):list of vertices adjacent to v

%AdjF(v):list of vertices adjacent from v

%label(u,v):for each edge (u,v), a list of vertices vn with

% |AdjF(vn)|> 1 that precedes v in a path from i

% ← assignment

% == strictly identical (\== not identical)

% ?= unifiable , = unification a la Prolog

for v1 in Q topological order do
nf ← |AdjF(v1)|
while nf > 1 do

max ← max{|label(v,v1)|:v ∈ AdjF(v1)}
lmax ← {v ∈ AdjF(v1):| label(v,v1)| = max}
vi ← first(lmax)
if v in lmax -{vi} and (label(v,v1) \== label(vi ,v1))

and (label(v,v1) ?= label(vi ,v1)) then
vp ← last(label(vi ,v1))
outdegree(vp) ← outdegree(vp) - 1
label(v,v1) = label(vi,v1)
if outdegree(vp) == 1 then

label(v,v1) ← butlast(label(v,v1))
nf ← nf - 1

else return 0 % is not UDR

if v1 == i then lp ← nil
else lp = label(first(AdjF(v1)),v1)
for v2 in AdjT(v1) do

if outdegree(v1) �= 1 then label(v1 ,v2) ← lp.v1
else label(v1 ,v2) = lp

return 1 % is UDR }	

1 For the proofs see http://www.dcc.fc.up.pt/Pubs/TR05/dcc-2005-03.ps.gz.

On the Equivalence Problem for Programs with

Mode Switching

Rimma I. Podlovchenko, Dmitry M. Rusakov, and Vladimir A. Zakharov

Lomonosov Moscow State University,
Moscow State University, Vorobyovy Gory, Moscow, 119992, Russia

rip@vvv.srcc.msu.su, zakh@cs.msu.su

Abstract. We study a formal model of imperative sequential programs
and focus on the equivalence problem for some class of programs with
mode switching whose runs can be divided into two stages. In the first
stage a program selects an appropriate mode of computation. Several
modes may be tried (switched) in turn before making the ultimate choice.
Every time when the next mode is put to a test, the program brings data
to some predefined state. In the second stage of the run, once a definite
mode is fixed, the final result of computation is produced. We develop a
new technique for simulating the behavior of such programs by means of
finite automata and demonstrate that the equivalence problem for pro-
grams with mode switching is decidable within a polynomial space. By
revealing a close relationships between the equivalence problem for this
class of programs and the intersection emptiness problem for determin-
istic finite automata we show that the the former is PSPACE-complete.

We give a complete solution to the equivalence problem for propositional se-
quential programs (PSPs for short) with mode switching. PSPs provide a model
of computation which is particularly adapted to the analysis of imperative se-
quential programs. PSPs with mode switching are used to simulate a behavior
of some programs whose runs can be divided into two stages. In the first stage
a program selects an appropriate mode of computation. Several modes may be
tried in turn before the ultimate choice will be fixed. Every time when the next
mode is put to a test, the program brings the data back to some predefined state
corresponding to this mode. In the second stage, once a definitive mode is fixed,
the final result of computation is generated.

PSPs with mode switching may be thought of as finite automata operating
on free semigroups with right zeros [1]. In [1, 2] the equivalence problem for such
automata was proved to be decidable, but the decision techniques used in both
papers are very much sophisticated and does not enable to estimate the com-
plexity of the problem. By revealing close relationships between the equivalence
problem for PSPs with mode switching and the Intersection Emptiness Prob-
lem [3] for deterministic finite state automata we introduce a straightforward
equivalence-checking procedure and demonstrate that the equivalence problem
for PSPs with mode switching is PSPACE-complete. This result was obtained in
the framework of our research aimed at developing efficient equivalence-checking
procedures for abstract models of programs [4, 5].

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 351–352, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

352 R.I. Podlovchenko, D.M. Rusakov, and V.A. Zakharov

The syntax of PSPs is defined as follows. Let A and P be two finite alpha-
bets whose elements are called basic statements and basic predicates respectively.
Basic statements stand for assignment statements in imperative programs. We
assume that the set A is partitioned into two subsets A0 (ordinary actions)
and A1 (mode switches). Basic predicates stand for elementary built-in rela-
tions on program data; they may be evaluated by 0 (false) or 1 (true). A tuple
〈δ1, . . . , δk〉 of truth-values of all basic predicates is called a condition. The set
of all conditions is denoted by C.

A PSP is a finite transition system π = 〈V, entry, exit, T , B〉, where

• V is a set of program points ;
• entry and exit are the initial and the terminal points respectively;
• T : (V − {exit})× C → V is a (total) transition function;
• B: (V − {exit})→ A is a (total) binding function.

The semantics of PSPs with mode switching is defined as follows. Let μ : A∗ →
C be an evaluation function which gives an interpretation of basic predicates. A
run of π on μ is a sequence of pairs r(π, μ) = (v0, s0), (v1, s1), . . . , (vi, si), . . . ,
where vi, i ≥ 0, are program points and si are words from A∗ such that

1. v0 = entry, s0 = λ (empty word);
2. for every i, i ≥ 0, we have vi+1 = T (vi, μ(si)), and si+1 is either a word

siB(vi) in case of B(vi) ∈ A0 (this means that an ordinary action facilitates a
progress of program computation), or a single letter B(vi) in case of B(vi) ∈
A1 (this means that a mode switch abandons any previous intermediate
result of computation and brings data into some distinguished state);

3. the sequence r(π, μ) either is infinite (the run loops and yields no results),
or ends with a pair (exit, sn) (the run terminates and gives a result sn).

We denote by [r(π, μ)] the result of the run r(π, μ) assuming that the result is
undefined when r(π, μ) loops. PSPs π1 and π2 are said to be equivalent (π1 ∼ π2
in symbols) iff [r(π1, μ)] = [r(π2, μ)] holds for every evaluation function μ. The
equivalence problem for PSPs is to check, given a pair of PSPs π1 and π2, whether
π1 ∼ π2 holds.

Theorem 1. The equivalence problem for PSPs with mode switching is
PSPACE-complete.

References

1. Letichevsky, A.A.: Functional equivalence of discrete transducers. Cybernetics
(1970) 14–28.

2. Lisovik, L.P.: Hard sets and semilinear reservoir method with applications. Lecture
Notes in Computer Science, 1099 (1996) 219–231.

3. Kozen, D.: Lower bounds for natural proof systems. In: 18th Annual Symposium
on Foundation of Computer Science (FOCS), IEEE, (1977) 254–266.

4. Podlovchenko, R.I., Zakharov, V.A.: On the polynomial-time algorithm deciding
the commutative equivalence of program schemes. Reports of the Russian Academy
of Science, 362 (1998)

5. Zakharov, V.A.: The equivalence problem for computational models: decidable and
undecidable cases. Lecture Notes in Computer Science, 2055 (2001) 133–153.

Automata and AB-Categorial Grammars

Isabelle Tellier

GRAppA & Inria Futurs, Lille (MOSTRARE project),
Université Charles de Gaulle- Lille 3, 59653 Villeneuve d’Ascq, France

isabelle.tellier@univ-lille3.fr

1 Introduction

AB-categorial grammars (CGs in the following) is a lexicalized formalism having
the expressive power of ε-free context-free languages [1]. It has a long common
history with natural language [2]. Here, we first relate unidirectional CGs to
a special case of recursive transition networks [3]. We then illustrate how the
structures produced by a CG can be generated by a pair of recursive automata.

2 Automata for Unidirectional Categorial Grammars

Definition 1. Let B be a set of basic categories among which is the axiom
S ∈ B. Cat(B) is the smallest set including B and every A/B and B\A, for
any A, B in Cat(B). A CG G ⊂ Σ × Cat(B) is a finite relation between a vo-
cabulary Σ and Cat(B). In CGs, the syntactic rules are reduces to two rewriting
schemes: FA (Forward Application): A/B B → A and BA (Backward Applica-
tion): B B\A→ A. The language generated by a CG is the set of strings in Σ∗

corresponding to a string in (Cat(B))∗ which reduces to S. Unidirectional CGs
make an exclusive use of / (or of \). They can produce every ε-free CF language.

Example 1. The classical unidirectional CGs recognizing anbn, n ≥ 1 are: GFA =
{〈a, S/B〉, 〈a, (S/B)/S〉, 〈b, B〉} and GBA = {〈a, A〉, 〈b, A\S〉, 〈b, S\(A\S)〉}.
They can respectively be represented by the “recursive automata” given in
Figure 1.

S/B (S/B)/S

S B F
S/B b

(S/B)/S

a

a

S\(A\S) A\S

I A S

b

a A\S

b
S\(A\S)

Fig. 1. Two recusive automata both recognizing anbn, n ≥ 1

In these automata (seee [4] for details), the transitions labelled by a state
refer to state languages : for unidirectional CGs making only use of / (resp. of \),

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 353–355, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

354 I. Tellier

the language LFA(Q) (resp. LBA(Q)) is the set of strings produced by starting
in Q and reaching the state F (resp. by starting in I and reaching the state Q).

3 Automata for AB-Categorial Grammars

Now, to produce the same structures as a CG, it is enough to consider two mutu-
ally recursive automata: one for FA rules, the other for BA rules. ∀Q ∈ Cat(B):
L(Q) = LFA(Q) ∪ LBA(Q). This generative model improves the readability of a
CG. A promising application domain is grammatical inference [4].

Example 2. Let B = {S, T , CN} (where T stands for “term” and CN for “com-
mon noun”), Σ = {John, runs, loves, a, cat} and G = {〈John, T 〉, 〈loves,
(T \S)/T 〉, 〈loves, T\(S/T)〉, 〈runs, T \S〉, 〈cat, CN〉, 〈a, (S/(T \S))/CN〉, 〈a,
((S/T)\S)/CN〉}.

S
BA

T
John

T\S
runs

S
BA

S/T
BA

T
John

T\(S/T)
loves

(S/T)\S
FA

((S/T)\S)/CN
a

CN
cat

Fig. 2. Syntactic Parse Trees Produced by the Categorial Grammar G

T

S T\S F

(S/T)\S NC T\(S/T)

S/(T\S)

S/T

S/(T\S)

loves
John

runs

a

a

cat
loves

T\S (S/(T\S))/NC ((S/T)\S)/NC

I (T\S)/T S/T

NC T S

cat
John

T\S

runs

loves

(S/T)\S

a
a

loves

Fig. 3. A Pair of Mutually Recursive Automata Representing G

Automata and AB-Categorial Grammars 355

References

1. Bar Hillel, Y., Gaifman, C., Shamir, E.: On Categorial and Phrase Structure Gram-
mars. Bulletin of the Research Council of Israel 9F (1960)

2. Oehrle, R.T., Bach, E., Wheeler, D.: Categorial Grammars and Natural Language
Structures. D. Reidel Publishing Company, Dordrecht (1988)

3. Woods, W.A.: Transition network grammars for natural language analysis. Com-
munication of the ACM 13 10 (1970) 591–606

4. Tellier, I.: When Categorial Grammars meet Regular Grammatical Inference. In:
proceedings of LACL 2005. LNAI 3492 (2005) 317–332

On a Class of Bijective Binary Transducers with

Finitary Description Despite Infinite State Set�

Michael Vielhaber and Mónica del Pilar Canales Ch.

Instituto de Matemáticas, Universidad Austral de Chile Casilla 567,Valdivia
{monicadelpilar, vielhaber}@gmail.com

Abstract. We show that an infinite isometry f on {0, 1}ω, i.e. com-
putable by an infinite transducer Tf , can be represented finitarily, pro-
vided the isometry [σ, f] := σ−1◦f−1 ◦σ◦f , the shift commutator of f , is
finite, i.e. has a finite transducer T[σ,f]. We can describe all states of Tf as
words over Q[σ,f] and, using the nextstate and output functions of T[σ,f],
obtain linear time algorithms for Tf (in the length of the word in Q∗

[σ,f]

describing the state in Qf). The task of determining state equivalence
within the first n input symbols or N = 2n+1 − 1 states is polynomial in
the number N of states, if the shift commutator is finite.

Definitions. Let A = {0, 1}, a, b ∈ Aω with a = (a1, a2, . . .). Let the 2–adic
distance be d(a, a) = 0 and otherwise d(a, b) = 2−k, if ai = bi for i < k, ak �= bk.

A selfmap f on Aω is called an isometry if ∀a, b ∈ Aω : d(a, b) = d(f(a), f(b)).
A synchronous invertible binary transducer is a 5–tuple T = (Q, A, i, ρ, τ)

(state set, alphabet, initial state, transition, and output) where τ : Q → A, τ(q) =
τ ′(q, 0) with τ ′: Q×A→ A, bi = τ ′(q, ai), and τ ′

q := τ ′(q, ·) : A→ A is bijective,
hence bi = τ(q) + ai mod 2. If |Qf | < ∞, Tf and f are called finite.

Let σ(a) = (a2, a3, . . .) be the one–sided shift on Aω, and for α ∈ A, σ−1
α (a) =

(α, a1, a2, . . .). Let the shift commutator of an isometry f on Aω be [σ, f](a) =
σ−1

α ◦ f−1 ◦ σ ◦ f(a), where α := f(a)1 is the symbol shifted out by σ.
(References and more details in [1])

Proposition 1. Let F be some isometry with f = [σ, F]. Then we can compute
F by iterating f : F (a)n =

(
F ◦ (σ ◦ f)n−1

)
(a)1 =

(
f ◦ (σ ◦ f)n−1

)
(a)1.

Proof. F ◦(σ◦f)n−1 = F ◦(F−1◦σ◦F)n−1 = σn−1◦F and F (b)1 = α = f(b)1. ��
Algorithm. Let f be an isometry computable by Tf = (Qf , A, if , ρf , τf) with
|Qf | <∞. We construct a transducer TF as follows:

(i) State space QF : the hull of iF under ρF , a subset of Q∗
f .

(ii) Initial state iF := if (as a one letter word in Q∗
f).

(iii) Nextstate function ρF : QF × A → QF , ρF (w1w2 . . . wn, α1) := z1z2 . . .
znzn+1, where wi, zi ∈ Qf , w1w2 . . . wn ∈ QF ⊂ Q∗

f , α1 ∈ {0, 1} and iteratively
zi := ρf (wi, αi), αi+1 := αi + τf (wi), i = 1, . . . , n, zn+1 := if .

We extend ρF to QF ×A∗ by ρF (q, a1 . . .an) := ρF (ρF (q, a1), a2 . . . an).
(iv) Output function τF : QF → A, τF (w1 . . . wn) :=

∑n
i=1 τf (wi) mod 2.

� Supported by FONDECYT 1040975, CONICYT. Partly supported by DID–UACh.

J. Farré, I. Litovsky, and S. Schmitz (Eds.): CIAA 2005, LNCS 3845, pp. 356–357, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On a Class of Bijective Binary Transducers 357

Theorem 2. (i) The isometries f and F computed by the transducers in the
Algorithm are related by f = [σ, F] that is TF computes F = [σ, •]−1(f).

(ii) An input word s ∈ A∗ goes to a state ρf (if , s) with |ρf (if , s)| ≤ |s|+ 1.
(iii) The nextstate and output functions ρF and τF are computable in O(|w|)

bit operations, where |w| is the length of the word w ∈ Q∗
f describing the state.

Proof. (i) We simulate F by running n = 1, 2, . . . copies of f , starting a new
transducer Tf for every input symbol. From Proposition 1, we have F (a)n =
(f (n) ◦ σ ◦ f (n−1) . . . ◦ σ ◦ f (1))(a)1, where superscripts distinguish the copies of
Tf . Comparing with the definition of ρF , the symbol wi ∈ Qf stores the state of
the transducer for f (i), which is updated to zi = ρf (wi, αi). The σ are accounted
for by starting each copy of f one step later. Hence z1z2 . . . zn+1 is the updated
state after all n copies have advanced and a new f (n+1) just started in zn+1 = if .

We obtain αi from the input symbol an = α1 and the copies 1 to i− 1 of Tf

according to αi = α1 + τf (w1) + . . . + τf (wi−1). Thus, the output at position n
is αn+1 = α1 +

∑n
i=1 τf (wi) = an + τF (w1 . . . wn) as required.

(ii) By definition, ρF (if , s1s2 . . . sn) is an (n + 1)–letter word over Qf .
(iii) For each symbol in w, a constant time is needed for ρf and τf , hence TF

proceeds in O(|w|) time with calculating ρF , τF . ��
State Equivalence. Let two states v, w ∈ QF ⊂ Q∗

f be equivalent, if and only
if for all s ∈ A∗, τF (ρF (v, s)) = τF (ρF (w, s)).

Theorem 3. (i) State equivalence can be determined in O(q|v|+|w|) bit opera-
tions, where v, w are the words defining the two states.

(ii) For inputs up to length n, TF uses N := 2n+1−1 states, and their reduced
set of inequivalent states can be determined in O(N2+2·log2 q) bit operations.

(For related work in Model Checking compare with [2])

Proof. (i) For all s ∈ A∗, let q(s) = ρF (v, s), r(s) = ρF (w, s), let α
(s)
1 = β

(s)
1 = s1,

α
(s)
i+1 = α

(s)
i + τf (q(s)

i), β(s)
i+1 = β

(s)
i + τf (r(s)

i), and k = |v|+ 1, l = |w| + 1.
Let s∗ be a shortest word with τF (q(s∗)) �= τF (r(s∗)). For all s with |s| < |s∗|,

the suffixes of q(s), r(s) satisfy q
(s)
k...k+|s| = r

(s)
l...l+|s| = ρ(if , t) for a t with |t| = |s|,

ti = α
(s1...si)
k = β

(s1...si)
l , 1 ≤ i ≤ |s|. These αk and βl are the same since

otherwise some α
(s1...si)
k+i �= β

(s1...si)
l+i , contradicting the minimality of |s∗|.

Hence for s∗, τF already differs on the first k, resp. l symbols, and it suffices
to compare τF on the hulls of v and w in at most q|v|+|w| steps.

(ii) By Theorem 2(ii), |v|, |w| ≤ n + 1. Checking
(
N
2

)
stateword pairs needs(

N
2

)
·O(q|v|+|w|) ≤ N2 ·O(q2 log2 N) = O(N2+2 log2 q) steps. ��

References

1. del P. Canales, M., Vielhaber, M.: Isometries of binary formal power series and their
shift commutators. Electronic Colloq. on Comput. Compl TR04–057 (2004)

2. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking.
Proc. 12th CAV, LNCS 1855 (2000)

Author Index

Abdulla, Parosh Aziz 31
Alvarez, Gloria 343
Anselmo, Marcella 43

Baier, Christel 199
Bailly, Arnaud 54
Bartha, Miklós 66
Bastien, Cédric 78

Câmpeanu, Cezar 90
Canales Ch., Mónica del Pilar 356
Cano, Antonio 104, 343
Champarnaud, Jean-Marc 188
Claveirole, Thomas 116
Clerbout, Mireille 54
Czyzowicz, Jurek 78

Daciuk, Jan 341
de la Higuera, Colin 345
Deneux, Johann 31

Eisner, Jason 188

Fraczak, Wojciech 78
Freivalds, Rūsiņš 1
Fujiyoshi, Akio 129

Garćıa, Pedro 104, 343
Guingne, Franck 188

Högberg, Johanna 153
Han, Yo-Sub 141
Hosoya, Haruo 294

Ibarra, Oscar H. 163

Jurdziński, Tomasz 176

Kaati, Lisa 31
Kawaharada, Ikuo 129
Kempe, André 188

Klein, Joachim 199
Krész, Miklós 347

Latour, Louis 213
Lohrey, Markus 225
Lombardy, Sylvain 116

Madonia, Maria 43
Maneth, Sebastian 225
Maurel, Denis 341
Melichar, Bořivoj 329
Morais, José Joäo 349
Moreira, Nelma 349

Nicart, Florent 188
Nilsson, Marcus 31
Nykänen, Matti 307

O’Connor, Sarah 116
Otero, Juan 319
Otto, Friedrich 176

Păun, Andrei 90
Pelánek, Radek 238
Piat, Frédéric 345
Podlovchenko, Rimma I. 351
Pouchet, Louis-Noël 116

Reis, Rogério 349
Ruiz, José 343
Rusakov, Dmitry M. 351
Rytter, Wojciech 78, 250

Sakarovitch, Jacques 15, 116
Savary, Agata 341
Schulte Althoff, Christoph 262
Shankar, Priti 282
Shcherbak, Tamara 273
Simplot-Ryl, Isabelle 54
Smith, Jason R. 90
Strejček, Jan 238
Subramanian, Hariharan 282
Suda, Tadahiro 294

Tamm, Hellis 307
Tantini, Frédéric 345

360 Author Index

Tellier, Isabelle 353
Thomas, Wolfgang 262

Ukkonen, Esko 307

Vielhaber, Michael 356
Vilares, Jesús 319
Vilares, Manuel 319

Wallmeier, Nico 262
Wood, Derick 141

Yen, Hsu-Chun 163

Zakharov, Vladimir A. 351
Žd’árek, Jan 329

	Frontmatter
	Invited Lectures
	Languages Recognizable by Quantum Finite Automata
	The Language, the Expression, and the (Small) Automaton

	Technical Contributions
	Minimization of Non-deterministic Automata with Large Alphabets
	Simulating Two-Dimensional Recognizability by Pushdown and Queue Automata
	Component Composition Preserving Behavioural Contracts Based on Communication Traces
	Strong Retiming Equivalence of Synchronous Schemes
	Prime Normal Form and Equivalence of Simple Grammars
	An Incremental Algorithm for Constructing Minimal Deterministic Finite Cover Automata
	Finite Automata and Unions of Regular Patterns with Bounded Constant Segments
	Inside Vaucanson
	Deterministic Recognition of Trees Accepted by a Linear Pushdown Tree Automaton
	Shorter Regular Expressions from Finite-State Automata
	Wind in the Willows -- Generating Music by Means of Tree Transducers
	On Deterministic Catalytic Systems
	Restricting the Use of Auxiliary Symbols for Restarting Automata
	A Class of Rational {\itshape n}-WFSM Auto-intersections
	Experiments with Deterministic ω-Automata for Formulas of Linear Temporal Logic
	Computing Affine Hulls over ${\mathbb Q}$ and ${\mathbb Z}$ from Sets Represented by Number Decision Diagrams
	Tree Automata and XPath on Compressed Trees
	Deeper Connections Between LTL and Alternating Automata
	The Structure of Subword Graphs and Suffix Trees of Fibonacci Words
	Observations on Determinization of B\"{u}chi Automata
	The Interval Rank of Monotonic Automata
	Compressing XML Documents Using Recursive Finite State Automata
	Non-backtracking Top-Down Algorithm for Checking Tree Automata Containment
	Size Reduction of Multitape Automata
	Robust Spelling Correction
	On Two-Dimensional Pattern Matching by Finite Automata

	Poster Abstracts
	Incremental and Semi-incremental Construction of Pseudo-Minimal Automata
	Is Learning RFSAs Better Than Learning DFAs?
	Learning Stochastic Finite Automata for Musical Style Recognition
	Simulation of Soliton Circuits
	Acyclic Automata with Easy-to-Find Short Regular Expressions
	On the Equivalence Problem for Programs with Mode Switching
	Automata and AB-Categorial Grammars
	On a Class of Bijective Binary Transducers with Finitary Description Despite Infinite State Set

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

