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Preface

The 10th International Conference on Implementation and Application of Au-
tomata (CIAA 2005) was held in the Technopole of Sophia Antipolis, France, on
June 27-29, 2005.

This volume of the Lecture Notes in Computer Science series contains the
notes of the two invited lectures, the 26 papers selected for presentation at the
conference, and the abstracts of the eight posters that were displayed.

The papers and posters were selected amongst 87 submitted papers. The
submissions came from countries in five continents. They show applications of
automata in many fields, including mathematics, linguistics, networks, XML
processing, biology and music. The elderly lady of automata is alive and kicking,
ready to face the new challenges of computer science.

Based on the reviews, the Best Paper Award was given to Markus Lohrey
and Sebastian Maneth for their excellent article on Tree Automata and XPath
on Compressed Trees (see page 225). This award was generously sponsored by
the University of California at Santa Barbara.

We wish to thank all the Program Committee members and the additional
referees for their efforts in refereeing and selecting papers, and maintaining the
high standard of CIAA conferences. We are grateful to all the contributors to
the conference, in particular to the invited speakers, for making CTAA 2005 a
scientific success.

We also thank the Computer Science Department of the Ecole Polytechnique
Universitaire of the University of Nice - Sophia Antipolis for accommodating
CIAA in its buildings and providing the logistical support.

October 2005 J. Farré
I. Litovsky
S. Schmitz
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Languages Recognizable by Quantum Finite
Automata*

Risins Freivalds

Institute of Mathematics and Computer Science,
University of Latvia, Raina bulv. 29, Riga, Latvia
Rusins.Freivalds@mii.lu.lv

Abstract. There are several nonequivalent definitions of quantum finite
automata. Nearly all of them recognize only regular languages but not
all regular languages. On the other hand, for all these definitions there
is a result showing that there is a language [ such that the size of the
quantum automaton recognizing L is essentially smaller than the size of
the minimal deterministic automaton recognizing L.

For most of the definitions of quantum finite automata the problem
to describe the class of the languages recognizable by the quantum au-
tomata is still open. The partial results are surveyed in this paper. More-
over, for the most popular definition of the QFA, the class of languages
recognizable by a QFA is not closed under union or any other binary
Boolean operation where both arguments are significant.

The end of the paper is devoted to unpublished results of the de-
scription of the class of the recognizable languages in terms of the sec-
ond order predicate logics. This research is influenced by the results of
Biichi [1, 2], Elgot [3], Trakhtenbrot [4] (description of regular languages
in terms of MSO), R.Fagin [5, 6] (description of NP in terms of ESO),
von Neumann [7] (quantum logics), Barenco, Bennett et al. [8] (universal
quantum gates).

1 Introduction

A quantum finite automaton (QFA) is a theoretical model for a quantum com-
puter with a finite memory.

If we compare them with their classical (non-quantum) counterparts, QFAs
have both strengths and weaknesses. The strength of QFAs is shown by the
fact that quantum automata can be exponentially more space efficient than
deterministic or probabilistic automata [9]. The weakness of QFAs is caused by
the fact that any quantum process has to be reversible (unitary). This makes
quantum automata unable to recognize some regular languages.

2 Definitions

Quantum finite automata (QFA) were introduced independently by Moore and
Crutchfield [10] and Kondacs and Watrous [11]. They differ in a seemingly small

* Research supported by Grant No.05.1528 from the Latvian Council of Science and
European Commission, contract IST-1999-11234.

J. Farré, 1. Litovsky, and S. Schmitz (Eds.): CTAA 2005, LNCS 3845, pp. 1-14, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 R. Freivalds

detail. The first definition allows the measurement only at the very end of the
computation process. Hence the computation is performed on the quantum in-
formation only. The second definition allows the measurement at every step of
the computation. In the process of the measurement the quantum information
(or rather, a part of it) is transformed into the classical information. The clas-
sical information is not processed in the subsequent steps of the computation.
However, we add the classical probabilities obtained during these many measure-
ments. There is something not 100 percent natural in this definition. We will see
below that this leads to unusual properties of the quantum automata and the
languages recognized by these automata.

To distinguish these quantum automata, we call them, correspondingly, MO-
QFA (measure-once) and MM-QFA (measure-many).

Definition 1. An MM-QFA is a tuple M = (Q; X3 V; qo; Qacce; @re;) where Q is
a finite set of states, X is an input alphabet, V' is a transition function, qyeQ) is
a starting state, and Qqcc € Q and Qre; C Q are sets of accepting and rejecting
states (Qace N Qrej = 0). The states in Quee and Qre;, are called halting states
and the states in Qnon = Q — (Qacc U Qrej) are called non halting states. k and
$ are symbols that do not belong to X. We use k and $ as the left and the right
endmarker, respectively. The working alphabet of M is I' = X U {k; $}.

The state of M can be any superposition of states in Q (i. e., any linear
combination of them with complex coefficients). We use |q) to denote the super-
position consisting of state q only. 12(Q) denotes the linear space consisting of
all superpositions, with la-distance on this linear space.

The transition function V is a mapping from I' x 13(Q) to l2(Q) such that, for
every a€l’, the function Vg : 12(Q) — 12(Q) defined by V,(z) = V(a,x) is a uni-
tary transformation (a linear transformation on l2(Q) that preserves la norm).

The computation of a MM-QFA starts in the superposition |gg). Then trans-
formations corresponding to the left endmarker k, the letters of the input word
x and the right endmarker $ are applied. The transformation corresponding to
a€l’ consists of two steps.

1. First, V, is applied. The new superposition ¢’ is V(1)) where ¢ is the su-
perposition before this step.

2. Then, ¢’ is observed with respect to Eqcc, Erej, Enon Where Eqce = span{|q) :
q€Qucc}, Erej = spani{|q) : ¢€Qrej}, Enon = spani{|q) : ¢€Qnon}. It means
that if the system’s state before the measurement was

V= > e+ Y Bilay+ D wlaw)

qi€Qace Qi €EQrej Ak EQnon

then the measurement accepts 1’ with probability Ya?, rejects with prob-
ability Eﬂf and continues the computation (applies transformations corre-
sponding to next letters) with probability X7 with the system having state

¥ = 2k |qk)-
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We regard these two transformations as reading a letter a. We use V| to
denote the transformation consisting of V, followed by projection to E,,y,. This
is the transformation mapping v to the non-halting part of V,(¢). We use V,,
to denote the product of transformations V, =V, V, ... V] V., where a; is
the i-th letter of the word w. We also use 1, to denote the non-halting part of
QFA’s state after reading the left endmarker x and the word y€X™. From the
notation it follows that ¢, = V. (|q0))-

We will say that an automaton recognizes a language L with probability p
(p > ;) if it accepts any word x€L with probability > p and rejects any word
x¢ L with probability > p.

The MO-QFA differ from MM-QFA only in the additional requirement de-
manding that non-zero amplitudes can be obtained by the accepting and reject-
ing states no earlier than on reading the end-marker of the input word.

A probability distribution {(p;, ¢;)|1 < i < k} on pure states {¢;};—1 with
probabilities 0 < p; <1 (Zf:l(pi) = 1), is called a mixed state or mixture.

A quantum finite automaton with mixed states is a tuple

(Q7 27 d)inita {Té}v Qav Qrv Qnon);

where Q is finite a set of states, X is an input alphabet, ¢;n;; is a initial mixed
state, {Ts} is a set of quantum transformations, which consists of defined se-
quence of measurements and unitary transformations, @, C @, @, C @ and
Qnon C Q are sets of accepting, rejecting and non-halting states.

3 MO-Quantum Finite Automata

Sometimes even MO-QFA can be size-efficient compared with the classical FA.
Theorem 1. [9]

1. For every prime p the language L, = { the length of the input word is a
multiple of p } can be recognized by a MO-QFA with no more than constlogp
states.

2. For every p a deterministic FA recognizing L, needs at least p states.

3. For every p a probabilistic FA with a bounded error recognizing L, needs at
least p states.

4 MM-Quantum Finite Automata

4.1 First Results

The previous work on 1-way quantum finite automata (QFAs) has mainly con-
sidered 3 questions:

1. What is the class of languages recognized by QFAs?

2. What accepting probabilities can be achieved?

3. How does the size of QFAs (the number of states) compare to the size of
deterministic (probabilistic) automata?
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In this paper, we consider the first question. The first results in this direction
were obtained by Kondacs and Watrous [11].

Theorem 2. [11]

1. All languages recognized by 1-way MM-QFAs are reqular.
2. There is a regular language that cannot be recognized by a 1-way MM-QFA
with probability ; + € for any € > 0.

Brodsky and Pippenger [12] generalized the second part of Theorem 2 by
showing that any language satisfying a certain property is not recognizable by
an MM-QFA.

Theorem 3. [12] Let L be a language and M be its minimal automaton (the
smallest DFA recognizing L ). Assume that there is a word x such that M contains
states q1, g2 satisfying:

1. q1 7é q2,

2. If M starts in the state q1 and reads x, it passes to qa,

3. If M starts in the state g2 and reads x, it passes to qa, and

4. There is a word y such that if M starts in qo and reads y, it passes to qi,

then L cannot be recognized by any 1-way quantum finite automaton (Fig.1).

Y
T
:
Fig. 1. Conditions of theorem 3

A language L with the minimal automaton not containing a fragment of
Theorem 3 is called satisfying the partial order condition [13]. [12] conjectured
that any language satisfying the partial order condition is recognizable by a
1-way QFA. In this paper, we disprove this conjecture.

Another direction of research is studying the accepting probabilities of QFAs.

Theorem 4. [9] The language a*b* is recognizable by an MM-QFA with proba-
bility 0.68... but not with probability 7/9 + € for any ¢ > 0.

This shows that the classes of languages recognizable with different probabil-
ities are different. Next results in this direction were obtained by [14] where the
probabilities with which the languages aj ...a}, can be recognized are studied.

There is also a lot of results about the number of states needed for QFA to
recognize different languages. In some cases, it can be exponentially less than
for deterministic or even for probabilistic automata [9, 15]. In other cases, it can
be exponentially bigger than for deterministic automata [16,17].

A good survey on early results on quantum automata is Gruska [18].



Languages Recognizable by Quantum Finite Automata 5

4.2 Necessary Condition

First, we give the new condition which implies that the language is not recogniz-
able by an MM-QFA. Similarly to the previous condition (Theorems 3), it can
be formulated as a condition about the minimal deterministic automaton of a
language. This condition is visualized in Figure 2.

Theorem 5. [19] Let L be a language. Assume that there are words z, y, 21,
2o such that its minimal automaton M contains states qi, q2, q3 satisfying:

Q@ 7 3,
if M starts in the state q1 and reads x, it passes to qo,

if M starts in the state g2 and reads x, it passes to qa,
if M starts in the state q1 and reads y, it passes to qs,
if M starts in the state g3 and reads y, it passes to qs,
for all words t € (x|y)* there exists a word t1 € (x|y)* such that if M starts
in the state qo and reads tty, it passes to qa,
for all words t € (z|y)* there exists a word t1 € (z|y)* such that if M starts
in the state q3 and reads tty, it passes to qs,
8. if M starts in the state qo and reads z1, it passes to an accepting state,
9. if M starts in the state qo and reads z2, it passes to a rejecting state,
10. if M starts in the state q3 and reads z1, it passes to a rejecting state,
11. if M starts in the state q3 and reads zs, it passes to an accepting state.

Then L cannot be recognized by a 1-way MM-QFA.

S LA o do =

=

For languages whose minimal automaton does not contain the construction of
Figure 3, this condition (together with Theorem 3) is necessary and sufficient.

Theorem 6. [19] Let U be the class of languages whose minimal automaton
does not contain "two cycles in a row” (Fig. 3). A language that belongs to U
can be recognized by a 1-way MM-QFA if and only if its minimal deterministic
automaton does not contain the "forbidden construction” from Theorem 8 and
the ”forbidden construction” from Theorem 5.

BON

<1 <2

21 29

Fig. 2. Conditions of theorem 5, conditions 6 and 7 are shown symbolically
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x Y
@ . (&, (o

Fig. 3. Conditions of theorem 6

4.3 Non-closure Under Union

Let L; be the language consisting of all words that start with any number of
letters a and after first letter b (if there is one) there is an odd number of letters a.

This language satisfies the conditions of Theorem 5. (g1, g2 and g3 of Theorem
5 are just ¢1, g2 and ¢3 of G1. x, y, 21 and 2o are b, aba, ab and b.) Hence, it
cannot be recognized by a QFA.

Consider 2 other languages Lo and L3 defined as follows.

Lo consists of all words which start with an even number of letters a and after
first letter b (if there is one) there is an odd number of letters a.

L3 consists of all words which start with an odd number of letters a and after
first letter b (if there is one) there is an odd number of letters a.

It is easy to see that Ly = Lo |J Ls.

These languages (or rather their minimal automata) do not contain any of the
“forbidden constructions” of Theorem 6. Therefore, Ls and L3 can be recognized
by a MM-QFA and we get

Theorem 7. [20] There are two languages Lo and L which are recognizable
by a MM-QFA but the union of them Li = LolJ L3 is not recognizable by a
MM-QFA.

Corollary 1. [20] The class of languages recognizable by a MM-QFA is not
closed under union.

As Ly () Lz = 0 then also L1 = Lo ALs. So the class of languages recognizable
by MM-QFA is not closed under symmetric difference. From this and from the
fact that this class is closed under complement, it easily follows:

Corollary 2. [20] The class of languages recognizable by a MM-QFA is not
closed under any binary boolean operation where both arguments are significant.

Theorem 8. [19] If 2 languages L1 and Lo are recognizable by a MM-QFA with
probabilities p1 and py and pll + 1 <3 then L = Ly |J Ly is also recognizable by

P2
QFA with probability - fpp;_f;lm.

Theorem 9. [19] If 2 languages L1 and Lo are recognizable by a MM-QFA
with probabilities p1 and p2 and p1 > 2/3 and pa > 2/3, then L = Ly |J Lo is
recognizable by QFA with probability ps > 1/2.

4.4 More “Forbidden” Constructions

If we allow the “two cycles in a row” construction, Theorem 6 is not longer true.
More and more complicated “forbidden fragments” that imply non-recognizability
by an MM-QFA are possible.
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Theorem 10. [19] Let L be a language and M be its minimal automaton. If M
contains a fragment of the form shown in Figure 4 where a,b,c,d e, f,g,h,i €

2™ are words and qo, qa; @b, Ges ads daes Qbds Qofs dees def are states of M
and

1. If M reads x € {a,b,c} in the state qo, its state changes to q.

2. If M reads x € {a,b,c} in the state q,, its state again becomes qy.

3. If M reads any string consisting of a, b and ¢ in a state q, (x € {a,b,c}),
it moves to a state from which it can return to the same state q, by reading
some (possibly, different) string consisting of a, b and c.

4. If M reads y € {d,e, f} in the state q, (x € {a,b,c}), it moves to the state
Gy

5. If M reads y € {a,b,c} in a state qqy, its state again becomes ¢y, .

6. If M reads any string consisting of d, e and f in the state gz, it moves
to a state from which it can return to the same state gy by reading some
(possibly, different) string consisting of d, e and f.

7. Reading g in the state qqq, h in the state gy and i in the state q.. leads to
accepting states. Reading h in the state qqe, © in the state qpq, g in the state
qer leads to rejecting states.

then L is not recognizable by an MM-QFA.

Fig. 4. Conditions of theorem 10

! Note: We do not have this constraint (and the next two constraints) for pairs z =
a,y=f,z=0,y=eand z = ¢, y = d for which the state gy is not defined.
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5 Descriptive Complexity

Deterministic finite automata can be regarded as a special type of Turing ma-
chines working real-time. Deterministic finite automata can also be regarded
as a special type of Turing machines working in small space. Hence theory of
finite automata is a part of computational coplexity theory. However, compu-
tational complexity theory was soon followed by descriptive complexity theory.
The origins and the first impressive results of the decsriptive complexity theory
is described by N.Immerman [21, 22].

Computational complexity began with the natural physical notions of time
and space. Given a property, S, an important issue is the computational com-
plexity of checking whether or not an input satisfies S. For a long time, the
notion of complexity referred to the time or space used in the computation. A
mathematician might ask, ”What is the complexity of expressing the property
S?7” Tt should not be surprising that these two questions - that of cheching and
that of expressing - are related. However, it is startling how tied they are when
the second question refers to expressing the property in first-order logic. Many
complexity classes originally defined in terms of time or space resources have pre-
cise definitions in first-order or second-order logic. At first, this was discovered
for finite automata.

In early sixties Biichi [1,2], Elgot [3] and Trakhtenbrot [4] showed how a
logical formula may effectively be transformed into a finite state automaton ac-
cepting the language specified by the formula, and vice versa. It demonstrates
how to relate the specification of a system behaviour (the formula) to a possi-
ble implementation (the behaviour of an automaton) - which underlies modern
checking tools.

The monadic second-order (MSO) logic of one successor is a logical frame-
work that allows one to specify string prperties using quantification over sets of
positions in the string.

Now we consider an example how an automaton can be described by a for-
mula. Let the input word have the length n in the alphabet {a,b}. Then the
considered sets are subsets of the set {1,2,...,n}. P,(z) and Py(x) are, respec-
tively, predicates

P,(x) = {the symbol number z in the input word equals a}

Py(x) = {the symbol number z in the input word equals b}

Now we wish to show how the regular language
{the length of the input word is a multiple of 3}
can be described. We use also individual predicates
S,y) ={y=z+1}

first(z) ={z =1}
last(z) = {z =n}
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We use in our example three set-variables having the following meaning:
X7 = {all the positions i such that ¢ = 1(mod3)}
X = {all the positions i such that i = 2(mod3)}
Xo = {all the positions i such that ¢ = 0(mod3)}
The MSO formula is as follows.
AXG X0 Xo(XiNXy =) A (X1NXy=9) A (X1NXy=9)A
AY(first(x) = Xi(x))A
Ay (S(z,y) A (X1 A Xa(y)) vV (Xa(2) A Xo(y)) V (Xo(z) A Xa(y))A
Az (last(x) = Xo(z)))

It needs to be reminded that Biichi [1] considers description of automata on
infinite strings. On the other hand, up to now quantum automata have been
considered as processing finite words only. Perhaps there is some quantum ma-
chanics based motivation behind this restriction.

As for classical Biichi automata, in the 1970’s there was relatively little inter-
est in these automata. There was some theoretical work on automata with infinite
state spaces such as pushdown tree automata. However, the decision problems
usually became undecidable. Thus, while of some theoretical interest, it did not
appear to have major impact on Computing Science. The situation changed on
1977 when Pnueli’s paper [23] appeared. Pnueli proposed the use of Temporal
Logic for reasoning about continuously operating concurrent programs. Tempo-
ral Logic is atype of modal logic that provides a formalism for describing how the
truth values of assertions vary over time. While there are a variety of different
systems of Temporal Logic, typical temporal operators or modalities include F'p
(”sometimes p”) which is true now provided there is a future moment where p
holds, and Gp (”always p) which is true now provided that p holds at all future
moments. As Pnueli argued, Temporal Logic seems particularly well-suited to
describing correct behaviour of continouosly operating concurrent programs.

Automata provide strictly more expressive power than (ordinary) Temporal
Logic. The property Gop, meaning that at all even moments p holds, is easily
described by an automaton, but not in Temporal Logic. Today Biichi and related
automata are studied both from theoretical and practical viewpoint. The cen-
tral technical use of automata by Biichi - to provide a decision procedure for a
logical theory by reduction to the emptiness problem for the automata - remains
today the main use of such automata in connection with logical theories, such
as Temporal Logic, for reasoning about program correctness.

Many automata classes are now described in terms of logics. For instance,
Engelfriet and Hoogeboom [24] equated 2DGSM, the family of string trans-
ductions realized by deterministic two-way finite state transducers (i.e. finite
state automata equiped with a two-way input tape and a one-way output tape)
and MSOS, the family obtained by restricting monadic second-order definable
graph transductions to strings. Thus, string transductions that are specified in
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MSO logic can be implemented on two-way finite state transducers, and vice
versa.

In 1974 Fagin gave a characterization of nondeterministic polynomial time
(NP) as the set of properties expressible in second-order existential logic. Some
the results arising from this approach include characterizing polynomial time
(P) as the set of properties expressible in first-order logic plus a least fixed point
operator, and showing that the set of first-order inductive definitions for finite
structures is closed under complementation.

It is well known that second-order formulas may be transformed into prenex
form, with all second-order quantifiers in front. Let SO be the set of second-order
expressible properties, and let ESO be the set of second-order properties that
may be written in prenex form with no universal second-order quantifiers.

We consider the following example. Let the structure G = ({1,2,---,n}, E)
represent a graph of n vertices, and E be a single binary relation representing
the edges of the graph. We say that the graph G is 3-colourable (in colors Red,
Yellow, Blue) iff its vertices may be coloured with one of three colours such
that no two adjacent vertices are the same colour. Three colourability is an
NP-complete property. Consider the following ESO-formula « where R, Y, B are
set-variables expressing the set of the vertices coloured correspondingly.

a=@R)FY)EB)((R(x) VY (x) Vv B(z)) A (Vy)(E(z,y) =

~(R(x) A R(y) A=Y () AY(y) A=(B(x) A B(y))))

Observe that a graph G satisfies « iff G is 3-colourable. Fagin [5] proves that all
NP-properties and only these properties are ESO-expressible.

Theorem 11. /5] (ESO) = NP.

Stockmeyer [25] followed this theorem by a nice characterization of the
polynomial-time hierarchy.

Theorem 12. [25] (SO) = PH.

Definition 2. We now define (FO + LFP) to be the set of first-order inductive
definitions. We do this by adding a least fized point operator (LFP) to first-order
logic. If ¢(R*,z1,---,x1) is an R* -positive formula (i.e. R does not occure
within any negation szgns) in (FO + LFP) then (LFPRk o @) is a formula
in (FO + LFP) denoting the least fized point of ¢. We also define IND]f(n)]
to be the sublanguage of (FO + LFP) in which we only include least fized points
of first-order formulas ¢ for which |p| is O[f(n)]. For example, the reflexive,
transitive closure of E is expressible as (LF Prgy3) and is thus in IND|log n)].
Note also that,

(FO + LFP) = U2 IND[n"].

Immerman [26] and Vardi [27] characterized the complexity of (FO + LFP)
as follows,
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Theorem 13. /26, 27] (FO + LFP) = P.

Immerman [28] characterized the complexity of PSPACE similar way,
Theorem 14. [28) PSPACE = U2 FO[2""].

These theorems are most exciting. Indeed, Theorem 13 says that if we add
to first-order logic the power to define new relations by induction, then we can
express exactly the properties that are checkabale in polynomial time. Poly-
nomial time is characterized using only basic logical notions and no mention
of computation. The famous open problems in Theory of Computation turn
out to be equivalent to purely logical problems. For instance, P =?NP is
equivalent to whether or not every second-order expressible property over fi-
nite ordered structures is already expressible in first-order logic using inductive
definitions.

6 Description of Languages Recognized by QFA

We noted in Section 4 (Theorem 2) that QFA recognize only regular languages
but not all regular languages. Hence the logical description of these languages
should be weaker that MSO considered by Biichi. The first intension is to con-
sider "natural” subclasses of MSO. However, Theorem 7 shows that even the
most popular logical operations conjunctions and disjunctions cannot be present
in the logics we are seeking for. The only way out is to consider less standard
logics, like Quantum Logics introduced by von Neumann|7].

Instead of V, A, = we use only unitary operations. However, von Neumann’s
quantum logics turns out to be very far removed from qubits, discrete uni-
tary transformations and all the usual machinery of quantum finite automata.
Next ideas come from fuzzy logics by L.Zadeh [29]. Predicates P,(x) were re-
placed by distributions of probabilities in [29]. Following this line, I constructed
a logic allowing distributions of amplitudes with amplitudes being complex num-
bers [where distribution means that the total of square moduli of these values
equals 1]. Finally, I use a result by D. P. DiVincenzo [30] who proved that two-
bit quantum gates are universal for quantum computation. I use also a result
by A.Barenco et al. [8] where the authors prove that all one-bit quantum gates
(U(2)) and the two-bit exclusive-or gate (that maps Boolean values (z,y) to
(z,z @ y)) is universal in the sense that all unitary operations on arbitrarily
many bits n (U(2")) can be expressed as compositions of these gates. This al-
lows to use in this new logics only a logical operation exclusive-or and arbitrary
rotations of one gbit.

However, I do not describe here the details of this logics because in June
2005 Tlze Dzelme defended in the University of Latvia her Master thesis [31]
containing the theorem 15 (below).

Generalized quantifiers were introduced by Mostowski [32]. This theorem uses
the notion of Lindstrom quantifiers. [We take the definition of these quantifiers
from [33]].
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Consider the classical first-order existential quantifier applied to some
quantifier-free formula ¢ with free variable x, i.e. consider the formula ¥ =
Jz)(x). Given an ordered structure A, we can associate a binary (i.e., 0-1) se-
quence ay with ¢ by evaluating v for every possible value of z from U4 and
then adding O for false and 1 for true to a,. To be more formal: If n is assigned
to x then ayy)—1 iff 1(z) evaluates to true. The formula ¥ evaluates to true in
A if the above defined sequence ay, is such that it has at least one position with
the value 1. It is immediate to give a condition for sequences corresponding to a
universal quantifier (all positions must be 1), or for the 3! quantifier (exactly one
position must be 1), or for modular quantifiers 3= (the number of 1 positions
must be equivalent to 0 mod k).

Thus, it is very natural to define generalized quantifiers by considering ar-
bitrary conditions on binary sequences (which we will call logical acceptance
types). Let us give a formal definition.

Let 7 be a set of s-tuples of binary sequences, i.e., 7 consists of tuples
(a1,--+,as) where for every i(1 < i < s),a; is a mapping from {1,---k} to
{0,1} for some k. We call such a 7 a logical acceptance type. The set of all
s-tuples of finite binary sequences will in the following be denoted by 7(s).

Then we denote the Lindstrom quantifier given by 7 by Q... By QX —FO we
denote the set of formulae built as follows: If ¢, - -, are Xy — FO formulae,
each over r free variables.

Let A be a finite structure over the corresponding signature.. Then A |
Q- T[W1(T), - ,1s(T)] if the tuple (ay,---,as) is in 7, where the sequences a;
are defined as follows: For 1 < n < |[UA|",a;(n) = 1 if and only if A = ;(T)
where n is the rank of @ on the order of r-tuples over A(1 < i < s). Q,X,—FO is
defined analogously. We write Q% X9 for Mod(Q%X?) and Q2 IT? for Mod(Q2IIY).

Given a Lindstrom quantifier @, define QF to be the set of first-order for-
mulae in prenex normal form that starts with one quantifier @, followed by
arbitrary first-order formulae.

Second-order Lindstrém quantifiers are defined as follows. Let 7 € 7(s) be a
logical acceptance type as above. By QX — SO we denote the set of formulae
built as follows: If 1, -+, 15 are Xy — SO formulae, each over g free predicates
R = Ri,Ry,-+, Ry, then Q, R[1(R), -, 1bs(R)] is a Q, X% — SO formula.
The semantics of such a formula is defined as follows: Let r the sum of arities
of all predicate symbols in T. Then we can identify one possible assigment of

over a set Uy with its characteristic sequence ‘B which is a binary string of
length |UA4|".

Based on the lexicographical ordering of these strings, we define an ordering
on assignments of . Let now A be a finite structure over the corresponding
signature. Then A = QTI_%)[%(T%)), o ',%(ﬁ)] if the tuple (ai,---,as) is in T,
where the sequences a; are defined as follows: For 1 < n < |[U4|",a;(n) = 1 if
and only if A | ¢;() where n is the rank of T in the above-sketched order
of assignements of ﬁ(l < i < s). Analogously to the first-order case, we can
also define QI — SO. We use @ — FO and Q, — SO as abbreviations for
Q-Xy— SO and QX — SO, resp.
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Theorem 15. [31] A language can be recognized by a MO-QFA if and only if
this language can be described by a second-order Lindstrom quantifier formula
corresponding to group languages.
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Abstract. This survey paper reviews the means that allow to go from
one representation of the languages to the other and how, and to what ex-
tend, one can keep them small. Some emphasis is put on the comparison
between the expressions that can be computed from a given automaton
and on the construction of the derived term automaton of an expression.

1 Plato’s Cave

Formal language theory, especially that part which consists in the study of the
so-called regular or recognisable languages, is a model instance of Plato’s myth
of the cavern. The real objects are the languages — or the power series — po-
tentially infinite and what we, poor computer scientists bound to manipulate
finite objects, can only see are the expressions that denote, or the automata that
recognize them. Hopefully, these expressions and automata are fairly faithful de-
scriptions of the languages (or of the series) they stand for and all the more
effective that one can take advantage of this double light.

BA)

S5

Reg A D RecA

Reg A C RecA

Fig. 1. The ¢ and ¥ algorithms

It is the idea I have tried to illustrate with Figure 1 in the case of Kleene’s
Theorem. Kleene’s Theorem states the equality of two classes of languages: the
class of recognisable languages, that is those languages recognised by a finite
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automaton, and the class of regular languages, that is those languages denoted
by a regular expression. A closer look at the proof allows to argue that Kleene’s
Theorem is indeed the combination of two classes of algorithms: one that trans-
form an automaton into an expression and one that build an automaton from an
expression. In this setting, the real languages — or series — almost disappear:
only exist their symbolic (and finitary) representations.

In this talk, mostly a survey, I review the means that allow to go from one
representation of the languages to the other and how, and to what extend, one
can keep them small.

The first section presents the classical methods of computing an expression
from an automaton and of computing an automaton from an expression. We
discuss the relationships between the different expressions obtained from a given
automaton and the ways of reaching a compact one. In the second section, I
classify the methods that build an automaton from an expression and describe
with more details the one which is probably the lesser known: Antimirov’s con-
struction of derived term automaton.

As a conclusion, I mention the problem of finding an algorithm that is inverse
to those which compute an expression from an automaton, hence taming the
combinatorial explosion induced by the latter ones, and sketch a first attempt
to solve it.

2 The & Algorithms

We use mostly classical notation ([1,2]). In particular we denote an automaton
as A=(Q,A,E I, T) where I and T are subsets of the set Q of states, and E
is the set of transitions labeled by letters of the alphabet A, or equivalently as
A= {(I,E,T) where FE is the square matrix of dimension @ whose entry (p, q)
is the set of letters that label the transitions from p to ¢, and where I and T
are Boolean vectors of dimension ). The language accepted by A is denoted by
L(A) and with the latter notation, L(A) =1 -FE*-T.

A “® algorithms”, computes an expression for L(A) and thus amounts to
compute expressions for the entries of the star of the matrix £. We shall con-
sider this problem both from a theoretical and from an experimental point of
view.

2.1 A Theoretical Point of View

There are (at least) four methods or algorithms for computing a regular expres-
sion that denotes L(A):

1. Tterative computation of E*: known as McNaughton—Yamada algorithm after
their seminal paper ([3]) and probably the most popular among textbooks
on automata theory. Called algorithm MN'Y here.

2. Direct computation of the entries of E*: the so-called state elimination
method ([4,5]) looks more elementary and is indeed the easiest for hand
computation as well as for computer implementation (cf. Figure 2).
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3. Computation of E* - T as a solution of a system of linear equations. Based
on Arden’s Lemma, it also allows to consider E* - T as a fixed point.

4. Recursive computation of E*: based on Arden’s Lemma as well, this algo-
rithm appeared first in Conway’s book ([6]) conjugates mathematical ele-
gance and computational inefficiency.

G+ K,L H;
Fig. 2. One step in the state elimination method

The first three algorithms rely on a total order w on @, the fourth on a recur-
sive division 7 of the same set Q. All these algorithms, and for each algorithm
all orders on @ will give by definition equivalent, but likely distinct, expressions.
It is thus a natural problem that to compare these expressions; but this raise
the question: ‘what does it mean to compare expressions’? A possible answer —
the one we choose here — consists in the characterisation of which of the basic
identities are necessary to transform one into another. We thus first begin with
a presentation of those identities which roughly follows that that Krob ([7]) gave
of Conway’s system ([6]).

Trivial and natural identities

E+0=0+E=E, E-0=0-E=0, E-1=1-E=E
(E+F)+G=E+(F+G) , (E-F)-G=E-(F-G)
E-(F+G=E-F+E-G, (E+F)-G=E-G+F-G

E+F=F+E C
Aperiodic identities
E*=1+E-E*, E*=1+FE*-E (U
(E+F)*=FE"-(F-E")", (E4+F)"=(E"-F)* E (S)
(E-F)*=1+E-(F-E)"-F (P
Cyclic identities
E* = E<"-(E")* (2),

Idempotency identities

E+E = E (I) (E")”

E* )
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The State Elimination and Equation Solution Methods

Proposition 1 ([8]). The state elimination method and the solution (by
Gaussian elimination) of a system of linear equations taken from an automaton
give the same regular expression (assuming that the same order in elimination
is used in both cases).

Proof. For p and ¢ in @, the set of words which are the label of a computation
which goes from p to a final state of A is written: L, = {f ] deT p % t}

and we write FE,, for the set of labels of transitions which go from p to ¢ and
the symbol 6, g for a subset R of @, which is 14 if p is in R and () if not. The
system of equations associated with A is written:

L(A) =)L, =Y bprLy (1)

pel PER
YpeQ  L,= Z EpogLy+6pr (2)
q€Q

After the elimination of a certain number of unknowns L, — we write @’ for the
set of indices of those which have not been eliminated — we obtain a system of
the form:

LA) =Y GyL,+H (3)
PEQ

Vpe Q' L,= Z FpqLq+ Kp (4)
q€eQ

We can make a generalised automaton B’ corresponding to such a system, whose
set of states is Q' U {i,t}, where ¢ and ¢t do not belong to @’, and such that,
for all p and ¢ in Q": (i) the transition from p to ¢ is labelled F, ,; (ii) the
transition from p to ¢ is labelled K,;(iii) the transition from ¢ to p is labelled G;
and(iv) the transition from ¢ to t is labelled H.
Note that this definition applied to the system (1)—(2) characterises the automa-
ton constructed in the first phase of the state elimination method applied to A.
The elimination in the system (3)—(4) of the unknown L, by substitutions
and the application of Arden’s Lemma give the system:

L(A) = Z [GT + Gp F;,pFPxT] Ly + [H + Gy F;,pKP] ()
TEQ \p

VreQ \p L= Z [Frq+ FrpFy Frgl Lo+ [Kr 4+ Frp Fy Ky (6)
q€Q \p

whose coefficients are exactly the transition labels of the generalised automaton
obtained by removing the state p from B’.

Thus, since the starting points correspond and since each step maintains
the correspondence, the expression obtained for L(A) by the state elimination
method is the same as that obtained by the solution of the system (1)—(2).
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More precisely, we can say that the state elimination method reproduces in the
automaton A the computations corresponding to the solution of the system.

The State Elimination and MNY Algorithms, Identical Orders
The order w fixes the operation of the state elimination method whose result
is a rational expression over A*, written! Ep ;o (A, w). For greater precision,
we write the result of this algorithm Eppe(A,w, (p,q)) when we take p as the
initial state and ¢ as the final state.

On the other hand, we will write My ny (A,w) for the matrix of rational
expressions obtained when we apply the McNaughton—Yamada algorithm to the
automaton A whose states are ordered by w. It then follows that:

Proposition 2 ([8]). Let A= (Q, A, E,I,T) an automaton over A*. For every
(total) order w on Q and all p and q in Q, we have:
(U) Muny (A w)] = Epmc(Aw, (p,q))-

p,q

Proof. To prove this result we will show a correspondence between the operations
performed by the two algorithms. The difficulty, if it can be called that, is that
we have to compare two objects whose form and mode of construction are rather
different: on one hand a @ x ) matrix obtained by successive transformations,
from which we choose one entry, and on the other an expression obtained by
repeated modification of an automaton, hence of a matrix, but one whose size
decreases at each step.

In the following, A and w are fixed and remain implicit. The automaton A
has n states, identified with the integers from 1 to n; the two algorithms per-
form n steps starting in a situation called ‘step 0’, the kth step of the state elim-
ination method consisting of the removal of state k, and that of algorithm MNY
consisting of calculating the labels of paths that do not include nodes (strictly)
greater than k. We write:

E®)(r, s)

for the label of the transition from r to s in the automaton obtained from A

(and w) at the kth step of the state elimination method; necessarily, in this

notation, k+ 1< r and k+ 1< s (abbreviated to k+ 1 < r,s). We write:
Mk

T,8

for the entry r, s of the nxn matrix computed by the kth step of algorithm MN'Y.
At step 0, the automaton A has not been modified and we have:

Vr,s, 1<r,s<n M,(}B =EO(r,s), (7)
which will be the base case of the inductions to come. Algorithm MN'Y is written:

VE, 0<k<n,Vrs, 1<r,s<n
— k—1 k—1)7% k-1
Mgk) = M(fﬁs b + I\/l(JC ). [M/(c,k )] ~M§C’S ). (8)

S T T

! A reminder that this algorithm is due to J. Brzozowski and E. McCluskey ([9]).
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The state elimination algorithm is written:

VE, 0<k<n,Vr,s, k<r,s<n
E® (r,s) = E* D (r,s) + E*D(r k) - [E®D (k, B)]* - E®D(k,5)  (9)

Hence we conclude, for given r and s and by induction on k:
Vr,s, 1<r,s<n, Yk, 0 <k <min(r,s) MSS) = E®(r,5) (10)

We see in fact (as there is even so something to see) that if k¥ < min(r, s) then

all integer triples (I, u,v) such that Mq(fy)v occurs in the computation of Mg@ by

the (recursive) use of (8), are such that | < min(u, v).

Suppose now that we have p and g, also fixed, such that 1 < p < ¢ < n (the
other cases are dealt with similarly). We call the initial and final states added
to A in the first phase of the state elimination method ¢ and t respectively;
¢ and t are not integers between 1 and n. The transition from ¢ to p and that
from g to t are labelled 14 . Now let us consider step p of each algorithm. For

every state s, p < s, M,(ffg is given by (8):

M

(»
D,

D= M MY MG T MY

and E®) (i, s) by:
E®) (i, s) = [E?"V(p,p)]" - EPV(p, s)
and hence, by (10):

Vs, p<s<n (U) MP) = EP) (i 5). (11)

p,$

Next we consider the steps following p (and row p of the matrices M(k)). For
all k, p <k, and all s, kK <s < n, |\/|§,’f3 is always computed by (8) and E®*) (i, s)
by:

E® (i,s) = E* V(i 8) + EF V(i k) - [E* D (k, k)" - E®*D(k,s).  (12)

From (11), and based on an observation analogous to the previous one, we con-
clude from the term-by-term correspondence of (8) and (12) that:

Vk,p<k,Vs,p<s<n (U) M) = EW (G, s). (13)

The analysis of step ¢ gives a similar, and symmetric, result to that which we
have just obtained from the analysis of step p: for all r, ¢ < r, we have:

-1 —1 —1)71* —1

Mg,g = Mg?q )+ Mg?q - [Mt(z?q T Mt(z?q :

and E@(r,t) = EOV(r,q) - [E7V(q, )"
and hence

vr,g<r<n (U M@ = E@(r,1). (14)
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The steps following ¢ give rise to an equation symmetric to (13) (for column ¢
of the matrices M(*)):

Vk,q<k,Vr,q<r<n (U) MSZ)EE(}“)(T,t). (15)
Finally, from:
_ k—1 k—1)7x k—1)
Mg = M5+ M M i
and  EM® (1) = EF V(i ¢) + E* DG k) - [ER D (k, B)]* - EF D (k, 1)

Equations (10), (13) and (15) together allow us to conclude, by induction on k,
that:
Vi, q<k<n (U) M = E®(i,1). (16)

When we reach k = n in this equation we obtain the identity we want.

The State Elimination and MNY Algorithms, Distinct Orders
Having compared the state elimination and MN Yalgorithms under the same
order, that is the same execution conditions, we can compare the results of these
algorithms for different execution conditions.

Theorem 1 (Conway [6], Krob [7]). Let A= (Q,A,E,I,T) be an automa-
ton over A*. The expressions denoting L(A) computed by the McNaughton—
Yamada algorithm, like those computed by the state elimination method or the
solution of a system of equations, are all equivalent modulo (S) and (P), i.e.,
for all orders w and w' on Q and all p and q in Q:

(S)A (P) Myvy (A w)] =  [Muny(Aw)]

(S)A(P) Ezmc(Aw,(p,q) = Epmc(A W, (p.q).

Proof. The previous proposition allows us to show the property for expressions
computed by the state elimination method, which is easier to deal with (remem-
bering that (P) ‘contains’ (U)). Furthermore, we can go from an order w to any
other order w’, a permutation of @, by a series of transpositions.

We therefore arrive at the situation illustrated in Figure 3 (left) and need
to show that the expressions obtained by the state elimination method when
we first remove the state r and then ' are equivalent to those obtained from
removing first 7' and then r, modulo (S) A (P).

The removal of state r gives the expressions in Figure 3 (right). The removal
of state 1’ gives the expression:

E=KL'H+(KL'G+K)[G'L*G+ LN (G'L*H + H') ,

p,q

which using (S) (and the natural identities) becomes:
E=KL'H+KL'G[L"G'L*G]"L""G'L"H
+K' [L"G'L*G]"L"G'L*H+ KL*G [L"G'L*G]" L""H’
+K'[L"G'L*G]"L"H .
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We write:
K'[I"G'L'G]"L"H =K'L"H' + K'L""G'L* [GL"G'L*|"GL"H’
by using (P) then, by ‘switching the brackets’ (using the identity (XY)*X =
X (Y X)* which is also a consequence of (P)), we obtain:
E=KL"H
+KL'G[L"G'L*G]"L"G'L*H+ K'L""G' [L*GL"G'|" L'H
+KL'G [L"G'L*G]"L""H'+ K'L"G' [L*GL"G'|" L*GL"H'
+K'L""H'
an expression that is perfectly symmetric in the letters with and without ticks,

which shows that we would have obtained the same result if we had started by
removing r’ then r.

GLG+L
KL G+ K GLH+H
p q
KL H

Fig. 3. First step of two in the state elimination method

Remark 1. Tt is known that the @-algorithms described above are valid for au-
tomata with multiplicity. It is thus not surprising that the idempotency identities
are not used to pass from an expression to another one. On the other hand, it
is also known ([6]) that an infinite number of identities (among which the cyclic
identities (Z),, for all prime numbers n) are necessary to derive all possible
equivalence among epressions. Taking this into account, the above results show
that all expressions computed from a given automaton can be considered as
‘close’ since only the two identities (S) and (P) are necessary to derive one from
another.

The State Elimination and the Recursive Methods

Finally, it remains to compare the matrices obtained by the algorithm MN'Y and
the recursive algorithm. A simple two state automaton is sufficient for observing
that there is no hope for a global comparison of the entries of the two matrices.
We can however state the following conjecture.

Conjecture 1. For every recursive division 7 of @ and for every pair (p,q) of
states, there exists an ordering w’ of ) such that

(U) Cpa = EW,pa).
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2.2 An Experimental Point of View

It is easily seen that the size of a regular expression E computed from an au-
tomaton A may be exponential in the number of states of A. A complete graph
shows that this combinatorial explosion is unavoidable.

But most of the interesting automata are not complete graph. Basic examples
show how different the size of expressions computed from a same automaton can
be: in Figure 4, E; is obtained by eliminating the states in the order 1-2-3
whereas E; is obtained with the reverse order 3-2-1.

Ei=a +a b(ba b) ba + a b(ba b) a(b+ a(ba b) a) a(ba b) ba
Ex = (a+ b(ab a) b)

Fig. 4. Two results of the state elimination method

Finding the ordering of states that yields the shortest expression for a given
automaton is probably a hard combinatorial problem. On the other hand, it is
not too difficult to design heuristics which do not imply heavy computations and
prove to be pretty efficient.

In order to create as few transitions as possible at a given step (c¢f. Figure 2),
one associates to every state ¢ an index which is the product of the in-degree of
q by its out-degree (once the possible loop on ¢ is discarded); one then choose to
eliminate among those states with smallest index a state without loop, if any;
the index is then recomputed at each step.

This rather naive heuristic had been implemented in VAUCANSON ([10]). Del-
gado and Morais ([11]) have proposed a heuristic which is based on the same
principle, but in which the length of the expressions that label the transitions
is also taken into account in the computation of the index. This other heuristic
has also been implemented in the newer version of VAUCANSON ([12]). First ex-
periments show that it might be better (on a first set of “random” automata,
it outperforms the naive one in 55% of the cases). More experiments on much
larger sets of automata need certainly to be done: the proof of a heuristic is in
the computing.

3 The ¥ Algorithms

We call “¥ algorithm” an algorithm that is given a regular expression E and
computes an automaton which accepts the language denoted by E. As for the @
algorithms, there is no much mystery left in this question. But not all aspects
are equally well-known.
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3.1 A Theoretical Point of View

Although there are numerous ways to present them, there are two main distinct
constructions of an automaton from a regular expression: the standard automa-
ton and the derived term automaton. Automata are compared via morphisms.

The Standard Automaton
We say that an automaton is standard if it has only one initial state and if this
initial state is not the end of any transition (and if the automaton is accessi-
ble). We call standard automaton of an expression E the automaton Sg build
by induction on the depth of E, starting from the (unique possible) standard
automata for 0, 1, and every letter a in A, and with the “natural” constructions
for the union, product and star: ¢f. Figures 5 and 6. Of course, any standard
automaton is not, in general, the standard automaton of an expression.

Let us denote by ¢(E) the literal length of the expression E — that is the
number of occurrences of letters in E.

Proposition 3 (Glushkov [13]). The standard automaton Sg of the expres-
sion E has £(E) + 1 states.

Fig. 6. Construction of the standard automaton for the star

The ‘standard automaton of an expression’ is usually attributed to Glushkov
[13] and hence often called Glushkov’s automaton. It is also called position au-
tomaton of E as the original method of construction somehow starts from the
occurrences of letters in E, taken as states, and then computes the transitions —
also by induction on the depth of E. A characteristic feature of Sg is that it is
small in terms of the ‘input’ E: linear for the states, quadratic for the transitions
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and it is so because it is non deterministic. In [3], McNaughton and Yamada al-
ready had the idea of using the positions of letters in the expression in order to
define an automaton but they computed directly? its determinised version and
thus lost any property on the size of the result. The mode of construction given
here is adapted from [14]; it is well suited to the generalisation to automata with
multiplicity ([14,8,15]).

Another method for building an automaton from an expression was given by
Thompson ([16]). It amounts to recursive connection via spontaneous transitions
(i.e. e-moves) of ‘atomic’ automata that recognise letters and it was designed
for a direct array implementation. It is folklore that the backward closure (i.e.
suppression of spontaneous transitions by following first the spontaneous transi-
tions and then a transition labeled with a letter) in the Thompson’s automaton
of E yields the standard automaton of E. Hence the former can be seen as an
‘extended version’ of the latter and falls in the same category.

The Derived Term Automaton

A second class of algorithms is based on the definition of the derivation of an
expression. First introduced by Brzozowski [17], the definition of derivation has
been slightly, but smartly, modified by Antimirov [18] and yields a non deter-
ministic automaton Ag which we propose to call the derived term automaton of
the expression E. This automaton Ag is smaller than or equal to the standard
automaton Sg. The automaton of derived expressions computed in [17] is the
determinised automaton of Ag.

An algebraic characterization of regular languages is that every regular lan-
guage has a finite number of left quotients. The purpose of “Brozozowski” deriv-
atives was to lift that characterization at the level of expressions [17]. Antimirov
“partial derivatives” achieve the same lifting in an indirect but more efficient
way. To an expression E that denotes a language L is associated a finite set 7°
of expressions — which we call derived terms of E — such that any left quotient
of L is a union of some of the languages denoted by the expressions in 7T [18].

The notion of derived terms is indeed better understood when expressed in the
larger framework of power series — languages being series with coefficients in the
Boolean semiring — and of expressions with multiplicity (cf. [15]). A series s is
rational — i.e. denoted by a regular expression E — iff it is contained in a finitely
generated module (of series) U which is closed under left quotient. The derived
terms of E are then expressions that denote a set of generators of U. The follow-
ing definitions give a procedure for computing the derived terms of an expression.

Definition 1 (Brozozowski—Antimirov [18]). Let E be a regular expression
on A and let a be a letter in A. The B-derivative® of E with respect to a, de-
noted aaa E, is a set of regular expressions on A, recursively defined by:

2 Probably because in those early times, an automaton had to be deterministic.

3 We call it “B-derivative” and not simply “derivative” for two reasons. First in order
to avoid confusion with the derivation defined by Brzozowski, and second because
the formulae depend on the semiring of multiplicities and can be defined for other
semirings (cf. [15]).
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—9,
Va,be A - { Z;hembse_ a
88 (E+F) = 88 F (17)
M [ } FUcE)aaaF (18)
[ } (19)

The induction implied by (17 — 19) should be interpreted by distributing
derivation and product over union:

(fa[UEi :UéfaEi, [UE] =JE-F).

i€l i€l i€l i€l

Definition 2. Let E be a reqular expression on A and g a non empty word of A*,
i.e. g = fa with a in A. The B-derivative of E with respect to g, denoted aag E, is
the set of regular expressions on A, recursively defined by formulae (17) — (19)
and by:
0 o (0
VfeAT Vae A E= E). 20

/ “ dfa da (a f ) (20)
We shall call derived term of E the expression E itself or any of the expressions
which belongs to a set E for some g in AT,

Theorem 2 (Antimirov [18]). The number of derived terms of an expres-
sion E is finite and smaller than or equal to £(E) + 1.

Remark 2. Contrary to the derivation defined by Brzozowski [17], the result of
the B-derivation of an expression is not one expression but a set of expressions.
As a result, it overcomes another drawback of its predecessor. The number of
Brzozowski derivatives of an expression is not finite directly but only modulo
the identities (A), (C) and (I) described above. The computation of the derived
terms does not involve any identity.

Definition 3. The derived term automaton of an expression E is the finite au-
tomaton Ag whose states are the derived terms of E and whose transitions are
defined by:

(i) if K and K’ are derived terms of E and if a is a letter of A, (K,a,K’) is
a transition of Ag if and only if K' belongs to aaa K;
(i) the initial state of Ag is E;
(iii) a derived term K is a final state of Ag if and only if c(K) = 1;
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We write E1 =a +a bHi1+a bF1Gi H;
with H; = (ba b) ba , F1 = (ba b) a,
and G1 = (b+a(ba b) a) a.

The successive derivations of E; with res-
pect to a and b give 7 derived terms:

E1 itself, a ., H1 , X1 =a bH1 y
Y1:a bFlGlHl, 21:F1G1H17

and T1 = G1 H1 .

Fig. 7. The derived terms of E; and its derived term automaton

Figure 7 shows the derived terms of the expression E; computed at Figure 4
and the corresponding derived term automaton.

The two classes of algorithms are not without relationships between them. A
first one was given by Berry—Sethi who showed that the Brzozowski derivation
applied on a “ linearized” version of an expression gives the standard automaton
of that expression [19,20]. A more interesting one is established by means of
morphisms of automata that we should define first.

Morphisms of Automata

Let A=(Q,A,E,I,T) and B= (R, A, F,J,U) be two B-automata. A (surjec-
tive) map ¢: @ — R induces (or is) a morphism from A onto Bif (p,a,q) € E
implies (¢(p),a,¢(q)) € F and this morphism is a (B)-quotient if moreover
(r,a,s) € F and p € ¢ !(r) implies that there exists ¢ in ¢~!(s) such that
(p,a,q) € E. Every automaton has a unique minimal quotient.

Theorem 3 (Champarnaud—Ziadi [21]). For any expression E, the derived
term automaton Ag is a quotient of the standard automaton Sg.

This result implies in particular the bound of Theorem 2 on the number of
derived terms. It is to be noted also that if the derived term automaton is a
quotient of the standard automaton, it is nmot its minimal quotient. Theorem 3
has been generalised to expressions with multiplicity but this generalisation re-
quires special care in the definition of the derived terms in the case where the
multiplicity semiring is not a positive semiring ([15]).

3.2 An Experimental Point of View

The effective computation of the standard automaton of an expression has been
the subject of many works. If the actual efficiency of the computation depends
unpon the implementation, it is known that the construction of Sg is of quadratic
complexity (with respect to £(E)) ([22]).

The determination of the complexity of the computation of the derived term
automaton if an expression E is more difficult. The key property, proven in [21],
is that every derived term of E is a product of subexpressions of E.

Proposition 4 (Champarnaud—Ziadi [21]). For every expression E, the de-
rived term automaton Ag can be computed with a quadratic complexity (with
respect to ¢(E)).
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The Champarnaud-Ziadi algorithm has been transformed in order to be valid
for automata with multiplicity and it has been implemented in VAUCANSON (cf.
[12] in this volume).

It appears that Ag is particularly ‘economical’ — sizewize and by comparison
with Sg — when E is obtained by a & algorithm from a finite automaton. We
come back to his fact in the conclusion. However, it seems that, even in this
case, the computation of Sg followed by a quotient is far more efficient than the
direct computation of Ag. Other constructions have been proposed recently that
yield automata which are smaller than the standard automaton ([23-25]). Their
proper relationships with the derived term automaton, and the efficiency of their
computation are still to be worked out by extensive experimentations (cf. [26]).

4 Can Expressions and Automata Code for Each Other?

We have seen that a $-algorithm is likely to generate, from an automaton A, an
expression with a literal length which is exponential in the number of states of
A and that a W-algorithm is likely to build, from an expression E, an automaton
whose number of states is (rougly) equal to the literal length of E. These two
facts together imply that there is little hope to find algorithms which are inverse
of each other in these general families. However, the standard automaton of
an expression on one hand, and an expression computed, for instance, by the
state elimination method on the other hand, are of such particular form that the
problem is certainly to be tackled.

In [27], Caron and Ziadi have described an algorithm, say ©, which decides
whether or not an automaton A is the standard automaton of an expression E;
and if the answer is positive, ©® moreover computes an expression which is al-
most E, namely the star normal form of E as defined by Briiggemann-Klein
[22]. Even if © is not properly a &-type algorithm since it does not compute an
expression for every automaton, it holds:

For any star normal form regular expression E, ©O(¥;(E)) = E.

The problem of finding an algorithm that is inverse of a #-algorithm has been
addressed in a recent joint paper of mine and Sylvain Lombardy ([28]). We give
there a partial solution to that problem in the following way.

There are two main ingredients in the construction of an algorithm (2 that
gives back an automaton A from an expression that has been computed from .A.
The first one is a sligthly modified derivation which, roughly speaking, ‘breaks’
the sums at the upper level. As a result, in particular, the corresponding derived
term automaton may have more than one initial state. The second step is to take
the minimal co-quotient of this new derived term automaton. [The minimal co-
quotient is the transposed of the minimal quotient of the transposed automaton.
This {2 is not an inverse of a $-algorithm as described above but of a ¢'-algorithm
which consists in performing first a partial linearisation A of the automaton A4
and then a normal @-algorithm. We then have (c¢f. [28] for more details):

For any automaton A, Q2(&'(A))=A.
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Reducing the amount of information that one has to bring in with the lineari-

sation A is the subject of ongoing research work.

Fig. 8. The © and {2 algorithms
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Abstract. There has been several attempts over the years to solve the
bisimulation minimization problem for finite automata. One of the most
famous algorithms is the one suggested by Paige and Tarjan. The algo-
rithm has a complexity of O(mlogn) where m is the number of edges
and n is the number of states in the automaton. A bottleneck in the ap-
plication of the algorithm is often the number of labels which may appear
on the edges of the automaton. In this paper we adapt the Paige-Tarjan
algorithm to the case where the labels are symbolically represented using
Binary Decision Diagrams (BDDs). We show that our algorithm has an
overall complexity of O(£-m - logn) where £ is the size of the alphabet.
This means that our algorithm will have the same worst case behavior as
other algorithms. However, as shown by our prototype implementation,
we get a vast improvement in performance due to the compact represen-
tation provided by the BDDs.

1 Introduction

Several algorithms have been proposed in the literature for solving the coarsest
refinement problem: given a finite state automaton and an initial partitioning of
the set of states, find the coarsest stable refinement of the given partitioning.
The problem is equivalent to the minimization of non-deterministic automata
modulo bisimulation, and consequently also gives an algorithm for minimizing
deterministic automata modulo language equivalence. Minimization is relevant in
many areas of computer science such as concurrency theory, formal verification,
set theory, etc. For instance, in formal verification, several existing tools use
minimization with respect to bisimulation in order to reduce the size of the
state space to be analyzed [1-3]. Also, bisimulation is of particular interest in
reqular model checking. This is a framework which has recently been extensively
studied for verification of systems with infinite state spaces (see e.g.[4]).

The idea of regular model checking is to represent the state space of a system
using regular languages. Most regular model checking algorithms rely heavily on
efficient methods for checking bisimulation [5].

There has been several attempts over the years to solve the coarsest refinement
problem. In [6] Hopcroft presents an algorithm for minimization of a determinis-
tic automaton in O(nlogn) time. The algorithm relies on a “negative strategy”:
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start from the initial partitioning and perform a number of iterations. During
each iteration choose a block (equivalence class) B, and split all the blocks
which violate the stability condition with respect to B. The main ingredient is
the choice of the blocks which are used in the splitting (the so called “process
the smaller half strategy”). The paper [7] solves the problem for the special case
of deterministic and unlabeled automata in linear time, using a “positive strat-
egy”: start with blocks which are singletons, and perform a number of iterations,
where one or more blocks are merged during each iteration. Paige and Tarjan [8]
generalized the algorithm of Hopcroft to the case of non-deterministic automata.
The key idea is to employ counters which give the number of edges from states to
blocks. This makes it possible to avoid partitioning with respect to large blocks.
The algorithm runs in O(mlogn) time where m is the number of edges and n
is the number of states in the automaton.

Many applications give rise to automata with large alphabets. For instance,
transition systems generated by verification tools such as SPIN [9] usually have
very large alphabets [10]. Also, the bottle-neck in applications of regular model
checking is often the size of the alphabet in the automata which arise during
the analysis [5,4]. Therefore, this paper adapts the Paige-Tarjan algorithm [8]
to consider automata which have large alphabets. To deal with the size of the
alphabet, we use a symbolic representation of labels on the edges of the au-
tomaton. More precisely, for states ¢ and r, we characterize the set of symbols
on which the automaton can move from ¢ to r. This characterization is given
through a Binary Decision Diagram (BDD) [11]. The main task then is to adapt
each step of the Paige-Tarjan algorithm which operates on explicit representa-
tion of the transition relation into a symbolic one which operates on BDDs. To
achieve that, we use Algebraic Decision Diagrams (ADDs) [12] to give a compact
representation of the counters. Also, we show that each BDD or ADD operation
can be performed in O(¢) time where ¢ is the size of the alphabet. We show that
this implies an overall complexity of O(¢-m -logn) of our algorithm. In other
words, the algorithm will have the same worst case behavior as other algorithms.
However, as shown by our prototype implementation, we often get a great im-
provement in performance due to the compact representation provided by the
BDDs and ADDs.

Related Work. The algorithm of [8] operates on an explicit representation of
the (unlabeled) automaton. For automata with large alphabets, we report a big
improvement compared to [8] using our prototype (see Section 7).

Fernandez [13] presents an algorithm with complexity O(mlogn) in the case
of labeled automata, the algorithm operates on an explicit representation of the
automaton, where each edge is labeled with one symbol. In our case, an edge is
labeled with a BDD which characterizes a set of symbols. Therefore the worst
case complexity of our algorithm is the same as the one reported in [13]. More
precisely, we can replace each edge, labeled with a BDD B, by a set of edges
each carrying one symbol whose encoding satisfies B.

Bouali and De Simone [14] present a symbolic approach to the problem. The
whole automaton and the computed blocks are encoded using BDDs. Such a full
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symbolic representation is in contrast with our approach where we only encode
the alphabet symbolically, while we maintain an explicit representation of the
set of states and of the blocks. The authors of [14] do not perform a complexity
analysis. However, they mention that they do not gain a drastic improvement
compared to the classical algorithm. This indicates that, at least in the case of
a large alphabet, it is more efficient to avoid a fully symbolic representation.

The work in [10] combines the negative and positive approaches to bisim-
ulation (described above) in the non-symbolic case. The authors also propose
a symbolic algorithm for unlabeled automata, where each block is represented
as a BDD. They show that their algorithm performs O(n) symbolic steps. No
experimental results are reported for the symbolic algorithm.

In [15] Klarlund presents an algorithm where the whole automaton (rather
than only the alphabet) is represented symbolically. However, this algorithm can
only be applied in the case of deterministic automata.

In [16] Fisler and Vardi compare symbolic versions of the Paige-Tarjan al-
gorithm and algorithms described in the two papers [17] and [18]. The latter
two papers aim at adapting minimization to the context of the on-the-fly model
checking. The paper argues both theoretically and based on experimental data
that the Paige-Tarjan algorithm performs better than both.

Outline. In the next two Sections we give preliminaries on automata, equiva-
lence relations, BDDs, and ADDs. In Section 4 we describe our algorithm which
consists of performing a number of iterations; and analyze its correctness and
complexity. In Section 5 we describe the data structures we use in the imple-
mentation of the algorithm. Section 6 describes the steps performed during each
iteration. We report on the results we obtain through running our prototype in
Section 7. Finally, we give some conclusions and directions for future research in
Section 8.

2 Preliminaries

In this section, we give some preliminaries of automata and equivalence relations.
Throughout this paper, we will work with a non-deterministic automaton, NFA
which is a triple (Q, X, A) where

— @Q is a finite set of states, with |Q] =n

— X is a finite set of symbols, with |X| = ¢.

— Ais afunction A : QxQ — 2%¥. An edge is a pair (¢, ) such that A(q,r) # 0.
We say that ¢ and r are respectively the source and the target of the edge
(g,7). We let m be the number of edges.

In other words, we consider an automaton with n states and m edges. Each
edge is labeled with a set of symbols from an alphabet of size £. Without loss of
generality, we assume that each state is the source of at least one edge; which
implies m > n. The automaton can change state from ¢ to r on the symbols
A(g, 7). We write ¢ — r to denote that a € A(g,r) and ¢ — 7 to denote that
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A(g,r) is not empty. We use (¢ — 7) to denote the set {a : a € A(g,r)}, and
use Pre(r) to denote the set {q : (¢ — r) # 0}. An element of Pre(r) is said
to be a predecessor of r. For a state ¢ € Q and a set R C Q, we use (¢ — R) to
denote the set | J,cz(¢ — 7), and Pre(R) to denote the set | J,. ., Pre(r).

We consider equivalence relations on Q. For an equivalence relation ~, we let
(Q/ =) be the set of equivalence classes, henceforth called blocks of ~. For ¢ € Q,
a € X, and B € (Q/ =), we define count(q)(B)(a) to be the size of the set
{r : r€B and ¢ - r}.

For two equivalence relations ~ and ~’, we say that ~ is coarser than ~' if
~'C~. Alternatively, we say that ~’ is a refinement of ~. Notice that each block
of ~ is the union of a number of blocks of ~'.

An equivalence relation ~ is stable with respect to an equivalence relation
~' if whenever ¢ ~ r then (¢ — B) = (r — B) for each B € (Q/ ~).
Equivalently, if ¢ ~ r and ¢ — ¢, then there is an r; such that r — 7 and
g1 ~' r1. In other words, equivalent states in ~ make moves on the same set of
symbols to blocks in ~'. We say that ~ is stable if it is stable with respect to
itself. The coarsest refinement problem is defined as follows:

Instance. An equivalence relation ~;,;.
Task. Find the coarsest stable refinement of ~;,;;.

3 BDDs and ADDs

In this section we recall some preliminaries of BDDs and ADDs, and introduce
concepts which we will use in our algorithm.

We assume familiarity with Binary Decision Diagrams (BDDs) (see e.g. [11,
19, 20]) Algebraic Decision Diagrams (ADDs) [12] are extensions of BDDs in the
sense that the leaves of an ADD are labeled with natural numbers (rather than
only 0 and 1 as is the case with BDDs).

BDDs. We encode each symbol of the alphabet X' by a finite binary word.
Furthermore, we encode sets of symbols of X by Boolean expressions which
are represented by BDDs. To do that, we use a set V of BDD wariables where
|V| = [log, (|X)] (recall that ¢ = |X|). The variable v; represents the i*" posi-
tion in the encoding of a word (see the example below). A Boolean expression
over V represents the set of symbols whose encodings satisfy the expression.
Consequently, each BDD characterizes a set of symbols. In fact, each path from
the root to a leaf of a BDD, represents a set of symbols, namely the set of sym-
bols satisfying the path. Sometimes, we identify a BDD with the set of symbols
it represents. For instance, given a BDD B and a symbol a € X', we use a € B
to denote that a belongs to the set characterized by B. Also, we use B(a) to
denote the truth value of the formula a € B. In our algorithm, we use BDDs to
represent the function A in the definition of an automaton (see Section 2). More
precisely, for each g, r € Q, we represent A(g,r) by a BDD B such that a € B iff
a € A(q,r). We write A(g,r) = B to denote that the set of symbols in A(g,r) is
characterized by B.
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Operations on BDDs. The classical algorithm for computing a binary oper-
ation such as conjunction and disjunction on two BDDs is of time complexity
O(2%) where k is the number of variables which appear in the two input BDDs
(see e.g. [11,19, 20] for a description of the algorithm). In our case the value of k
is bounded by |V|. Since |V| = [log, (| X])] it follows that these operations can
performed in O(¢) time.

ADDs. In a similar fashion to BDDs, we use an ADD to encode a multiset of
symbolsin Y. Also in the case of ADDs, a path from the root to a leaf characterizes
a set of symbols. For an ADD A, the paths from the root to the leaf labeled i,
characterizes the set of symbols which occur ¢ times in the multiset represented by
A. We use A(a) to denote the number of occurrences a in the multiset represented
by A. By the symbol set of A we mean the set {a : A(a) > 0}. We perform the
following operations on ADDs:

— Addition: Ay + As is an ADD A such that A(a) = Aj(a) + Az(a) for each
a. We define the subtraction A; — As of two ADDs in a similar manner.

— Comparison: Ay @ Az returns a BDD B such that B(a) is true iff A;(a) =
AQ (a)

— BDD conversion: A is a BDD which characterizes the symbol set of A.

Using a similar reasoning to BDDs, all the above operations can be performed
in time O(¢). Sometimes, we mix BDDs and ADDs in the above operations. In
such a case we interpret a BDD B as an ADD where B(a) = 1 iff a € B. For
instance, given an ADD A and a BDD B then (A + B)(a) is equal to A(a) in
case a ¢ B , and is equal to A(a) + 1 otherwise.

Example. We consider the alphabet {a, b, ¢, d, e, f}. We use the encoding a: 000,
b: 001, ¢: 010, d: 011, e: 100, f: 101. A dashed line in Figure 1 represents the
false branch while the filled line represent the true branch of the BDD (ADD).
Figure 1 a) shows a BDD characterizing the set {a, b, e}, while Figure 1 b) shows
an ADD A with A(e) =3, A(a) = A(f) =2, A(d) =1, and A(b) = A(c) = 0.

Fig. 1. Example of a BDD and an ADD
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4 Algorithm

In this section, we describe our algorithm which consists of performing a number
of iterations. Each step of the iteration is described in detail in Section 6. Given
an initial equivalence ~;,;;, the iterations generate two sequences of equivalences
of the forms ~g, ~1,~9,... >~ and =y, =,%,, ..., 2, respectively. We define
~o to be ~;,; and =y to be Q x Q. We derive ~;; and =;;; from ~; and
=, as follows. Let B; € (Q/ ~;) and S; € (Q/ =) be such that! B; C S; and
|B;| < lSQ"'l. We define ~;;1 such that ¢ ~;; r iff the following three conditions
are satisfied:

- q =T

—(q— By) = (r — By).
count(q)(B;)(a) count(r)(B;)(a)

_ - iff = for each a € X.
count(q)(S;)(a) count(r)(S;)(a)

We define 2,47 such that ¢ =;;; r iff the following two conditions are satis-
fied:

—q=T.
—QEBiiHTEBi.

The iteration continues until we reach the termination point n at which we have
~; = 2. In the next Section, we describe the data structures which we use to
represent the equivalences ~; and =;; and in Section 6 we show how we can
implement each step to maintain the above invariants.

Now, we proceed to prove some properties of the generated equivalences. The
following lemma shows that ~; is a refinement of 22;. This implies that, up to
the termination point, we will be able to pick B; € (Q/ ~;) and S; € (Q/ =)
such that B; C S; and |B;| < |S211|_

Lemma 1. ~; C 2, for all i.

Next, we show partial correctness of the algorithm (Theorem 1). To do that, we
show two auxiliary lemmas.

Lemma 2. ~; is stable with respect to =;, for all i.

/

Lemma 3. For any stable refinement ~' of ~;..:, it is the case that ~' C ~;

for each i.

By definition we know that each ~; (and in particular ~;) is a refinement of
~.nit- From Lemma 2 and the fact that ~;=2%; we know that ~; is stable. This,
together with Lemma 3 implies the following.

L As we will show below (Lemma 1), ~; is a refinement of 2¢; and therefore such B;
and S; exist.
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Theorem 1. ~; is the coarsest stable refinement of ~ -

Termination of the algorithm can be shown as follows: We know that, as long as
the algorithm has not terminated we have B; C S; and consequently ;1 C 2.
By finiteness of Q it follows that after at most ¢ = |Q| — 1 steps we reach a point
where there are no B, € (Q/ ~) and S; € (Q/ =) such that B, C S; and
1B < 131, This implies o, = =,

Theorem 2. There is at <n — 1 such that ~; = =.

Finally, we consider complexity of the algorithm.
Lemma 4. For each ¢ € Q and i < j if ¢ € B; N B then |B;| < “z"'l.

In Section 6 we will show that each iteration ¢ can be performed in time

O e-[1Bil+ ) [Pre(q)l

q€B;
From this and Lemma 4, we get the following.

Theorem 3. The algorithm has complezity O (£ -m -logn).

5 Data Structures

In this section we describe the data structures used in the representation of
the equivalences ~; and 2; (see Section 4). Also, we use a number of auxiliary
data structures which allow efficient implementation of each iteration in the
algorithm.

Each state is represented by a record which we identify with the state itself.

We maintain three lists of blocks:

— (@ which corresponds to blocks in ~;. Each state points to the block in @
containing it. Each block in @ is equipped with a natural number which
indicates its size.

— X which corresponds to the blocks in 2¢;. A block of X is simple if contains
a single block of @, and is compound otherwise.

— C which is a sublist of X containing only the compound blocks in X.

The elements of the above lists are doubly linked. This allows deletion of elements
in constant time. Each block in @ or X is represented by a record which we will
identify with the block itself. Each block S in @ contains:

— a natural number which is equal to the size of the block.
— a pointer to a doubly linked list of its elements.
— a pointer to the block of X containing it.
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Each block in X contains:

— a pointer to a doubly linked list of the blocks of @) contained in it.

— a pointer to a list of pairs: the first element of the pair is a state ¢ such that
q has an edge to a state in S; the second element is an ADD A, sy which
encodes count(q)(S), i.e., A(g,s)(a) = count(q)(S)(a) for each a € ¥.

A state r has the following pointers to

— all pairs of the form (g, B) where A(q,r) = B.
— the block in @ which it belongs to.

We shall also use a number of lists which will create and then destroy after
each iteration step. These lists are implemented as hash tables, which means
that searching for an element in the list can be assumed to take constant time.

6 Refinement Steps

In this section we describe how to implement each iteration of the algorithm of
Section 4, so that an iteration takes O (€~ (|Bi\ + 2 4eB, Pre(q)|>> time. An

iteration consists of six steps as follows.

Step 1. This step chooses two blocks? B and S. Remove a block S from C.
Examine the first two blocks in S. Let B be the smaller one. If they are equal
in size, then B can be arbitrarily chosen to be anyone of them. This step can be
performed in constant time.

Step 2. This step is to maintain the invariant that ¢ 2,4, r implies that ¢ € B
iff r € B. Remove B from S and create a new block S’ in X. The block S’ is
simple and contains B as its only block. If S is still compound, put it back into
C'. This step can be performed in constant time.

Step 3. Create a new list L, implemented as a hash table. Each element of L is
a record containing a pointer to a state ¢ and an ADD which we call Ay, ,). The
ADD Ay, characterizes count(q)(B), i.e., it gives, for each a € X, the number
of edges from ¢ which go to states in B and whose symbol sets include a. We
create L by scanning the elements of B. For each r € B and each edge (g, r) we
add ¢ to L with Ay, = B where B = A(q, 7). If ¢ already is in L we modify the
value of Ay, to be Ap(q) + B, i.e., we update Ay, according to the symbols
in the set A(q, 7).

Since L is a hash table, searching for a state ¢ in L takes constant time.
Performing addition on ADDs takes O(¢) time (Section 2).

Step 4. We partition each block of () with respect to B. This will maintain the
invariant that ¢ ~; r implies (¢ — B) = (r — B). We create a new block
Dg for each block D of Q and BDD B such that there is a state ¢ € B with

2 These blocks correspond to B; and S; chosen during the it" iteration (Section 4).
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q in L and Ap,) = B. Intuitively, the block Ds will contain all states which
originally belonged to D and which have edges to B on the same set of symbols
(namely the set of symbols characterized by B). To perform this operation, each
block D in @) will maintain a list Lp, implemented as a hash table. Each element
of Lp is a pair, where the first element is a BDD and the second element is a
pointer to a block. We traverse the list L created in step 3 above. For each state
q in L, we consider the block D in @ to which g currently belongs. We remove
q from D. We find the entry in Lp with a BDD equal to Ay ). We insert g in
the corresponding block.

In the second phase of step 4, we add the newly created blocks to @. If a block
D has become empty we remove it from Q. If the block in X which contains B
or one of the newly created blocks has become compound, we insert it in C.

Computing Ay, takes time O(f) (see Section 3). Since Lp is a hash table,
searching the table takes constant time. Removing ¢ from D and inserting it
in the new block takes constant time. Moving and checking emptiness of block
takes constant time.

Step 5. We partition each block of @) with respect to S — B. This will keep the
invariant that ¢ ~; r implies

count(q)(Bi)(a) count(r)
iff =
Si a T)

(Bi)(a)
)(a) count(r)(S;

(5i)(a)

This step is similar to Step 4 above. The only difference is the manner in which
we insert a state in the list Lp. When considering a state g in L, belonging to
(say) block D, we compute B = Ar,4) @ Ag(q) - The position of ¢ in Lp will be
determined by the BDD B (rather by the BDD Ay, as was the case in Step 4).
Intuitively, the BDD B characterizes the set of symbols through which the state
q moves to S — B. This means that, states which will end up in the same block
will move to S — B on the same set of symbols, and hence the above mentioned
invariant will be maintained.

count(q)(

Step 6. Since B was removed from S, the value of count(q)(S)(a) may have
been reduced (in case ¢ has an edge to B labeled with a). This step updates the
value of count(q)(S)(a) accordingly. Recall that L contains all states which have
edges to B. We scan the list L, and for each state ¢, we replace the current value
A of Ag(q) by A— Ap(q) (takes O(f)). If A becomes empty we discard the pair
q and its associated ADD Ag,) from the list pointed to by S. Finally, we make
B point to the list L.

Observe that the time spent on an iteration is O (¢) per scanned edge and

state of B, which gives a total time of O (€~ (|Bi\ + 2 4B, \Pre(q)|>>.

7 Experiments

There is no official set of benchmarks for testing algorithms that compute bisim-
ulation equivalence [10]. Therefore, we have implemented a procedure for ran-
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domly generating non-deterministic automata. In the procedure, we can change
a number of parameters which decide the shape of the generated automata. Such
parameters include the number of states, the size of the alphabet, the density of
edges between two states, the probability that a certain symbol is included in
the symbol set between two states, and the size of such a set.

In Table 1 we compare the execution times of our implementation of the al-
gorithm and a non-symbolic version of the Paige-Tarjan algorithm. To make
the comparison meaningful we have implemented both versions of the algorithm
in the same code, using the same data structures and the same procedures.
As evident from the table, the symbolic version is almost insensitive to the
size of the alphabet, while the non-symbolic version exhibits an exponential in-
crease in time until we reach a point where it takes too long time (more than
24 hours). The above experiments are conducted with the number of states
being equal to 20. We get a similar behaviour pattern when increasing the
number of states. We have tested our prototype on automata with up to 200
states.

We have also compared our implementation with The Concurrency Work-
Bench (CWB) [21] and The Concurrency WorkBench of The New Century
(CWB-NC) [2]. The results are presented in Table 2. CWB uses minimization
techniques based on the Kanellakis and Smolka algorithm [22], while CWB-NC
uses the Paige-Tarjan algorithm. Both tools show similar behaviour to the non-
symbolic version of our code.

Table 1. Comparing the symbolic and the non-symbolic versions of the algorithm on
automata with 20 states. The execution time is measured in seconds. Larger numbers
of states give similar behaviours.

Symbols in alphabet 22 2% 25 27 29 2!0 9oll 912 910 980 9100 9120
Non-symbolic 3.99 4.55 4.81 7.18 32.9 120.7 557.7 1955 — — — -
Symbolic 0.05 0.08 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.11 0.12

Table 2. The execution time for our implementation of the algorithm and minimization
in CWB and CWB-NC. The automata have 150 states and 250 transitions. Execution
time is measured in seconds.

Symbols in alphabet 22 2° 219 2!1 912 925 910 950 980 9100 9li5

Symbolic 4.69 6.05 6.52 6.60 6.60 6.69 6.84 7.66 8.43 10.15 12.46
CWB 0.13 0.68 10.60 18.50 28.44 - - -
CWB-NC 031032 - - - - - = = -

In Figure 2 we keep the size of alphabet intact while we increase the proba-
bility that a symbol is included in the symbol set of an edge. We observe that
while our algorithm copes well with large alphabets, its efficiency decreases with
symbol density.



Minimization of Non-deterministic Automata with Large Alphabets 41

Time.
°
>

0 . . . . . . . . .
2N0} 210} 2N20)  2Y(30)  2M40} 250}  2M60}  2M70)  2Y{80)  2N90}
Number of symbols in alphabet

Fig. 2. Increasing the symbol density, while keeping the size of the alphabet fixed. The
automata have 150 states and 250 transitions.

8 Conclusions and Future Work

We have presented a version of the Paige-Tarjan algorithm where the edge rela-
tion for labeled automata is represented symbolically using BDDs. For automata
with large alphabets, our experiments indicate that the algorithm behaves better
than algorithms which operate on an explicit representation of the automaton.
One direction for future research, is to consider Boolean encodings of the
alphabet which are not canonical (as is the case with BDDs) and then use SAT
solvers to perform the necessary operations on the symbolic encoding. It is well-
known that SAT solvers outperform BDDs in certain applications, and it could
be interesting to find out whether this is the case for minimization of automata.
Also, we intend to consider similar algorithms for checking simulation relations.
This is relevant, for instance, in the context of regular model checking, where
several classes of acceleration techniques rely on computing simulations [4].
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Abstract. The aim of this paper is to investigate sequential models
to describe two-dimensional languages. The intent is to add more capa-
bilities to 4NFA in order to encompass a wider class of languages. We
show that any (tiling) recognizable language can be simulated by a ANFA
with an extra queue whose size is bounded by the minimum of the two
dimensions of a picture; and that 2NFA (i.e. automata moving only in
two directions) with an analogous queue are sufficient when the alphabet
is unary. A special class of recognizable languages can be simulated also
by 4-way pushdown automata with a stack of size bounded by the sum of
the two dimensions of the picture. Such a class is also characterized by a
recursive definition involving the operations of union, intersection and a
new diagonal overlapping operation applied to languages recognized by
2NFA.

1 Introduction

Two-dimensional (2D) languages are the generalization of string languages to two
dimensions. Their elements are two-dimensional strings or pictures, i.e. rectan-
gular arrays of symbols taken in a finite alphabet. Many approaches have been
presented in the literature in order to generalize formal one-dimensional (1D)
language theory to two dimensions. In [6] all the attempts made in this direction
till 90’s are collected and compared. Furthermore an unifying point of view is
presented: the family of picture languages called REC is proposed as the candi-
date to be “the” generalization of the class of regular one-dimensional languages.
Indeed REC family is well characterized from very different points of view and
thus inherits several properties from the class of regular 1D languages.

Some recent papers study REC family from the point of view of regular expres-
sions [1, 2, 14], other ones look for recognizability in terms of grammars [4, 14]. In
this paper we are more extensively concerned with simulation of REC by some
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proper kind of automata. Historically a first attempt to recognize 2D languages
by means of automata was done in 1967 by M. Blum and C. Hewitt (cf. [3])
who defined 4-way automata. A deterministic (non-deterministic) four-way au-
tomaton, denoted by 4DFA (4NFA), is defined as an extension of the two-way
automaton for strings by allowing it to move in four directions: left, right, up,
down. The families of picture languages recognized by some 4DFA and 4NFA
are denoted by L(4DFA) and L(4NFA) respectively. We will use this notation
for any other type of automata: if M is an automaton of a certain type, then
L(M) is the family of languages accepted by automata as M. Unlike the one-
dimensional case, £L(4DFA) is strictly included in £L(4NFA) (cf. [3]). Both families
L(4DFA) and L(4NFA) are closed under Boolean union and intersection opera-
tions and under rotation. The family £(4DFA) is also closed under complement,
while £(4NFA) is not [11]. On the other hand, £L(4DFA) and L(4NFA) are not
closed under row and column concatenation, and their closure operations [8].
Some restricted versions of 4NFA have been studied, as 3NFA ([12]) and 2NFA
([2]). Even if 4NFA are a direct generalization of classical (one-way or two-way)
finite automata for 1D string languages, unfortunately they define only a proper
subclass of REC.

Another device to recognize 2D languages was introduced in 1977 by K. In-
oue and A. Nakamura [7] and was called two-way on-line tesselation acceptor
(20TA). Informally the 20TA is an infinite array of identical finite-state au-
tomata in a two dimensional space. The deterministic version is denoted by
2DOTA and is less powerful than 20TA. The 20TA have the worth to recognize
exactly REC family. Other devices that generalize their 1D counterpart are al-
ternating finite automata (AFA) defined in [9], alternating pushdown automata
(APDA), alternating counter automata (ACA) [15] (see also [13]). Such mod-
els, together with 20TA’s one, have a major feature of being somehow parallel
devices.

In this paper we are interested in recognizability of 2D languages by finite
sequential automata. We start from 4NFA and add extra capability in order
to encompass a wider class of languages, still keeping a sequential structure. In
particular we consider 4NFA equipped with bounded stack or queue and compare
them with REC family or some other families inside REC. A particular attention
is devoted to the case of an unary alphabet. Observe that studying 2D languages
on a one-letter alphabet means to study the “shape” of pictures, ignoring their
“content” . The family of recognizable languages over a unary alphabet is denoted
REC(1).

In particular we show that any language in REC can be simulated by a 4JNFA
equipped with a queue of size bounded by the minimal dimension of the input
picture (denoted 4NQA). Unfortunately the 4NQA are powerful enough to define
also some non-recognizable language. The model of 4ANQA can be simplified when
we restrict to an unary alphabet. A 2NQA (a 4NQA that can move only in two
directions) is sufficient to simulate any recognizable unary language. Moreover
we show that with some strong restrictions this model exactly characterizes
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REC(1). Our simulation follows some basic ideas for analogous simulations of
REC family (see [6]).

We then consider 4NFA equipped with a stack. If the size of the stack is
bounded by the minimal of the dimensions of the picture (as for ANQA) it seems
that several recognizable languages would be not accepted. Indeed we could not
keep in memory a row or a column indifferently. Furthermore, using a stack
instead of a queue, when we pop the stack, some necessary information could
get lost. Hence we consider 4NFA equipped with a stack of size bounded by
the sum of the dimensions of the picture and call them 4-way pushdown au-
tomata (ANPDA). When restricted to one-row pictures, 4ANPDA are equivalent
to two-way pushdown automata on strings. Since two-way pushdown automata
on strings recognize also context-free (string) languages, ANPDA recognize lan-
guages not in REC. Nevertheless we show that 4ANPDA are able to recognize
a quite large family inside REC, here called £L(2DOTAp). This is the class of
languages that are either recognized by 2DOTA or the rotation of a language rec-
ognized by 2DOTA. Furthermore, every example provided in the literature of a
language in REC but not in £(2DOTA) is a rotation of a language in £L(2DOTA).
We use a characterization of L(2DOTA) by 2AFA in [10]. The class £(2DOTAp)
is also characterized by a recursive definition: a language in £(2DOTAp) can be
obtained from some languages accepted by 2NFA by iterating their union, inter-
section and diagonal overlapping. The diagonal overlapping is a new operation
on pictures and picture languages here defined; in the unary alphabet case it is
strictly linked to the diagonal concatenation as defined in [1,2].

The paper is organized as follows. In Section 2 we briefly recall some prelimi-
nary definitions and results later used in the paper. Section 3 contains the main
results about 4NQA. Section 4 is devoted to 4ANPDA and the class £L(2DOTAp).
Section 5 draws some conclusions.

2 Preliminaries

In this section we recall some terminology for two-dimensional languages. For all
definitions and classical results refer to [6]. Deterministic and non-deterministic
4-way automata (4DFA and 4NFA| resp.) are a generalization of 2-way (one-
dimensional) finite automata where the reading head can move in four directions:
Left, Right, Up and Down. When the head can move only in two directions,
right and down, we obtain deterministic and non-deterministic 2-way automata
(2DFA and 2NFA| resp.). The definition of two-dimensional on-line tessellation
acceptor, denoted by 20TA is in [7]. If M is an automaton of a certain type,
then £(M) will denote the family of languages accepted by automata as M.
Let X be a finite alphabet. A two-dimensional string (or a picture) over X
is a two-dimensional rectangular array of elements of Y. The set of all two-
dimensional strings over X' is denoted by X** and a two-dimensional language
over X is a subset of X**. Given a picture p € X**, let p; ; denote the symbol
in p with coordinates (i, j), let ¢1(p) denote the number of rows of p and ¢2(p)
denote the number of columns of p. The pair (¢1(p), ¢2(p)) of dimensions of p is
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called the size of the picture p. The set of all two-dimensional strings over X' of
size (n,m) is denoted by X™*™. For any picture p of size (n,m), we consider
picture p of size (n+2, m+2) obtained by surrounding p with a special boundary
symbol # & X.

A tiling system for a language L over X' with local alphabet I" is a pair (O, )
where O is a set of tiles, that is pictures of dimension (2,2) over I' U {#}, and
7 : I'U{} — X is an alphabetic mapping. Then, we say that a language L C X**
is recognizable by tiling system (O, x) if L = w(L') and L' is the set of all pictures
p such that the sub-pictures of p are all in ©. The family of two-dimensional
languages recognizable by tiling systems is denoted by REC(X'), briefly REC
when the alphabet can be omitted, and by REC(1) when a one-letter alphabet
is dealt with. Note that one-row languages in REC exactly correspond to regular
string languages.

3 Four-Way Queue Automata

In this section we define 4-way queue automata (4NQA) as 4NFA equipped
with a queue bounded by the minimum of the input’s dimensions and the class
L(4NQA) of languages accepted by 4NQA. We show that REC family is strictly
contained in L(4NQA). In the one-letter alphabet case REC(1) can be simulated
by a weaker model: 2NQA, that is ANQA that can move only right and down.
A restrictive extra condition allows to recognize exactly REC(1).

Informally, a 4-way non-deterministic queue automaton A, referred as JNQA,
is a 4NFA supplied with a queue (“first in, first out” memory) over some alphabet
. Its computation depends on the transition function §: at each step, given the
actual state, the symbol read in the actual position and the symbol at the head
of the queue, the automaton A, according to §, non-deterministically, dequeues
or not the symbol from the head of the queue, enqueues or not a symbol onto
the tail of the queue, changes state and moves by one position in one direction
(Left, Right, Up or Down) or stands in the actual position (no move). As usual,
a 4NQA recognizes a picture p if, starting in the top-left corner of p in the
initial state, it non-deterministically can reach an accepting state. Moreover
during a computation of a 4NQA, the maximal length of the queue is never
greater than min{¢1(p), l2(p)} +1. A 2-way non-deterministic queue automaton,
referred to as 2NQA is a 4NQA that can move right and down, but not up or
left.

Ezxample 1. Let L be the language of pictures that are the column concatenation
of two identical squares. More formally L = {p | £1(p) = n > 1,¢2(p) = 2n and
p(4,7) = p(i,j+n) V1 <4,j < n}. The language L is accepted by a 4NQA that
compares the i-th column with the n + i-th one, for any i = 1,---,n, as follows.
It enqueues the content of the i-th column in the queue while moving down, then
moves to n + i-th column following the diagonal, and moving down it dequeues
if the symbol at the head of the queue matches the one in the cell. Note that
this 4ANQA for L acts deterministically.
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Proposition 1. The family REC is strictly contained in L(4NQA).

Proof. Let L € REC(X), let (O, ) be a tiling system over the alphabet I" for
L and let L’ be the underlying local language. L is recognized by a 4NQA A,
with queue alphabet © and states ¢, with = € I', that operates as follows on
p € X**, with n = ¢1(p) and m = la(p). A guesses | = min{n, m} and let us
suppose, w.l.o.g., n < m. A scans p column by column, from top to bottom in
the attempt to find, non-deterministically, a picture p’ € L’ that corresponds to
p in L'. For this, the transition function of A is designed so that when A enters
in the j-th column (j > 1) of p, then the queue contains the guessed sequence
of tiles covering the (j — 2)-th and (j — 1)-th column of p’. So A using the state,
these tiles and the symbols of the j-th column, can guess the tiles covering the
(j —1)-th and j-th column of p’ and can push them in the queue. For example, if
A is reading p; ;, then, actually, the symbol at the top of the queue is the guessed

/ /
tile t; = V512 Pimli=1 for 7 and the state is qp,_, .- Now the automaton A
Pij—2 Pij B

/ /
can guess the tile to = P;';qu p;;l’j for ;z;’ (if at least one such tile exists in
i,j—1 i

O otherwise A halts Withoué acceptiilg). Then A dequeues t1, enqueues to, goes
down in the state ap, and repeats this procedure. When A reaches the bottom
of the j-th column, it moves right to the (j 4+ 1)-th column and then up to top
position of the column without changing the queue. If the construction of ﬁ’ can
be completed then A accepts the picture p.

The inclusion is strict since language L in Example 1 is in £(4NQA), but it
is not in REC (see [6]). |

Remark 1. Bounding the queue of a 4NQA by the minimum of the dimensions
of a picture has an important byproduct. When 4NQA are restricted to one-row
languages, they are equivalent to 2-way automata on strings with unitary size
queue that recognize only regular languages (the queue symbol can be simulated
by the states).

In the case of an unary alphabet, Proposition 1 can be specified and gives the
following result.

Proposition 2. Let |X| = 1. The family REC(1) is contained in L(2NQA).

Proof. Let L € REC(1), (©,7), I', L’ and n be as in Proposition 1. The 2NQA,
A, that recognizes L is similar to the 4NQA constructed in Proposition 1. The
only difference is that, since |X| = 1, it is no more necessary to scan all the
positions of the picture p. Therefore, A works in this way: first it fills up the
queue moving downwards in the first column. When it reaches the bottom, it
moves to the right, then remaining in the bottom position of the second column,
it updates the queue for n+ 1 times in order to obtain in the queue the sequence
of guessed tiles for the first two columns of p. Then A moves again to the right
and repeats the cycle on the next column. If it reaches the bottom-right corner
of p then it accepts (see Example 2). O
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Ezample 2. The language L of squares over an unary alphabet X = {a}, that is
L ={pe{a}*™ | li(p) = Ll2(p)}, can be easily recognized by a simple 2NFA that
follows the diagonal and accepts when it founds the corner. Moreover a tiling
system (O, ) over the alphabet I" = {0, 1,4} for L is the one containing all the
(2,2) sub-pictures of a square with 1 on the diagonal and 0 elsewhere, surrounded
by #. The simulation of such a tiling system following the proof of Proposition
2 provides a 2NQA A that on a square picture of size (4,4) acts as follows.
The states of A are ¢, where x is the symbol in I" that has been guessed to be
in the considered position. A moving downwards in the first column, enqueues
£4 £1 20 20 40
§17 407 407 407 g ¢
right (at the bottom of the second column) in state ¢y and without moving, it

fg .
1vath

the following tiles, one at each position: Then it moves

dequeues and enqueues since it is the only tile of the form

g1 10’ (
~ € I') and enters state qo. Now, it alternates a dequeue and an enqueue of the
1 10 $0 01 §0 00 H0 00
gO0701740700 780700 ¢4 g4

At the end of these updates A moves right in state gy, acting in a similar way
for the following columns.

following tiles, respectively:

Remark 2. Note that in Proposition 2, the automaton A that recognizes L is very
particular: it scans only the first column and the last row of the input picture
p, going downwards in the first column and right in the last row; it enqueues
one symbol (without dequeueing) only when it moves down (i.e. only when it
scans the first column); it leaves the j-th column (with j > 2) only after having
updated the queue (with one symbol enqueued and one dequeued) exactly n+ 1
times where n is the number of rows in p.
We will call such a special type of 2NQA a restricted 2NQA.

Proposition 3. Let |X| =1 and L C X**. If L is accepted by a restricted 2NQA
then L eREC(1).

Proof. Let A be a restricted 2NQA that recognizes L. We construct a tiling
system (©,7) on a local alphabet I'. The idea is to construct, given a picture
p = (n,m) € X** a picture p’ € I'** which can “describe” the computation of
the automaton A on p and such that p = 7(p’). For this, we set I' = Q x & X Q,
where (Q is the set of states of A and @ is its queue alphabet. Moreover, we define
the set of tiles @ so that the j-th column of p’ can depict a sequence of steps
of the computation of A on p, beginning with the step in which A enters for
the first time in that column and ending with the step in which A leaves that
column. R
More exactly, define the set @ so that if, for a fixed column j of p’, for

i =1,...,n we have p; | = (¢, Pi; q;,), then q1; = g2, = ... = qn, is the
state in which A reaches the position (n, ), qu, for i = 1...n, is the sequence
of the states of A when it remains in the column j and P;,, for i = 1,...,n,

is the symbol that A enqueues when it is in the state qz/'71,j' In this way, the
sequence P ;, P ,, ..., P, , represents the queue when A leaves the column j.
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The symbol ¢1,, = ... = ¢y, is needed to know if two columns can be adjacent:
if A leaves the j-th column in the state ¢, then it must enter in the (3 + 1)-th
column in the same state (i.e. q;w =Qn 41 .- =q1541)- m]

4 Four-Way Pushdown Automata and the Class
L(2DOTAp)

In this section we define 4-way pushdown automata (4NPDA) as 4NFA equipped
with a stack bounded by the sum of the dimensions of a picture. This device
is able to simulate the class £L(2DOTAp) of languages either recognized by a
2DOTA or whose rotation is recognized by a 2DOTA. Moreover a language in
this class can be recursively defined applying union, intersection and diagonal
overlapping to some languages in £(2NFA). The diagonal overlapping is a new
operation on pictures and picture languages here introduced.

Informally, a 4-way non-deterministic pushdown automaton, referred to as
4NPDA, works as a classical two-way pushdown automaton on strings, with the
only difference that it can now move in four directions: Left, Right, Up, and
Down (since it scans 2D pictures). A ANPDA recognizes a picture p if, starting
in the top-left corner of p in the initial state, it non-deterministically can reach
an accepting state and, during this computation, the maximal length of the
stack is never greater than ¢1(p) + l2(p). A 2-way non-deterministic pushdown
automaton, referred to as 2NPDA is a ANPDA that can move right and down,
but not up or left.

Remark 3. When 4NPDA are restricted to one-row languages, that is languages
contained in X'*™, they are equivalent to 2-way pushdown automata with a
stack of length up to the length of the input string. Since two-way pushdown
automata on strings recognize also non-regular (string) languages, 4NPDA rec-
ognize languages not in REC.

On the other hand, it seems that 4-way automata equipped with a stack
of length up to the minimal dimension are not able to recognize several 2D
languages in REC.

Let us recall that a two-dimensional alternating automaton (here denoted
4AFA) ([9,13]) is a generalization of ANFA where a state can be either existential
or universal. A computation that meets an universal (existential, resp.) state
accepts if every (at least one, resp.) path from that state is accepting. A two-
way two-dimensional alternating automaton (here denoted 2AFA) is a 4AFA
that can move rigth and down only.

Ezxample 3. Let L C X** be the language of squares whose last row is equal to
the last column. More formally L = {p € X** | {1(p) = {2(p) =n and for any i=
1,---,n, p(n,i) = p(i,n)}. A 2AFA recognizing L is the following. The initial
state qo is an existential state and the transitions from ¢g for any o € X are
given by: 6(¢o, o) = {(gc, no move), (g, no move) | a € X'}. The state g. deter-
ministically accepts if we are in the bottom-right corner. The transitions from an
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universal state g, are given by: 6(¢a,0) = {(¢ur, R), (¢upn, D), (gD, n0 move)}.
State q,r deterministically checks whether at the right end of the row there is
an a symbol and accepts in this case. In an anologous way, state g,p determin-
istically checks whether at the bottom of the column there is an a symbol and
accepts in this case. State ¢p moves one cell in diagonal and enters ¢q.

Proposition 4. The family L(2AFA) is contained in L(4NPDA).

Proof. Let L € L(2AFA) and let A be a 2AFA for L. For the sake of simplicity,
suppose that A at each step moves rigth or down. A 4ANPDA P that simulates
A is the following. When .4 reaches an universal state ¢ in position (i, j), then P
has to check if all the possible paths of the computation tree, starting from ¢ in
position (i, j), are accepting. So P fills its stack with some triples (g, d, k), where
q is the state, d € {Rigth, Down} is the direction and k is a number indicating
which path is actually checked. When P has completed an accepting path ¢ of
A, it can return in position (4, ) by popping his stack, and thus check the next
path. Note that, since A can move only right and down, P’s stack contains at
most ¢1(p) + ¢2(p) symbols, where p is the input picture. O

Consider now the family £(2DOTAp) of all languages in £(2DOTA) and all their
rotations.

Corollary 1. The family L(2DOTAp) is contained in L(4NPDA).

Proof. If L € £L(2DOTA) then it is the 180° rotation of a language L’ € L(2AFA)
([10]) and L' is accepted by a 4NPDA A (Proposition 4). Hence L is accepted
by a ANPDA that starts by reaching the bottom-right corner and then continues
with a reversed copy of A. Moreover L(4NPDA) is closed under rotation since,
in a similar way as before, any rotation of a language accepted by a 4ANPDA
is also accepted by a 4NPDA that first deterministically reaches some corner.
Observe that in any case the sum of the dimensions is the same and so the size
of the stack. O

Let us now introduce the operation of diagonal overlapping. Given a picture p,
let us denote for any 1 <7 < i/ < /1(p) and 1 < j < 5 < la(p), by p[(¢,7), (@', 5")]
the sub-picture of p with top-left corner in position (i, j) and bottom-right corner
in position (¢/,5') (as in [8]).

Definition 1. Let p,q € Y™ two pictures such that pg (p) eo(p) = q1,1- The
diagonal overlapping of p with q, denoted p(ov)q, is the language of words z €
X with 04(2) = li(p) + 01(q) — 1, £a(2) = La(p) + l2(q) — 1 and such that
2(1,1), (44(p), fa(p)] = p and [(02(p), La(p)), (61 (2), £a(2)] = a.

Moreover for Ly, Lo C X** the diagonal overlapping of Ly with Lo, denoted
Li(ov)La, is the language Lq1(ov)La = {p(ov)q | p € L1,q € Lo}.

Remark 4. Consider an unary alphabet. The diagonal concatenation of p =
(n,m) and ¢ = (n’,m’), as defined in [1, 2], is the picture of size (n+n', m+m’).
Hence, in the case of an unary alphabet, the descriptional power of the diago-
nal overlapping is the same as that of the diagonal concatenation. The diagonal
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overlapping of p with ¢ is the diagonal concatenation of p with a picture obtained
from ¢ by erasing one row and one column.

Now we set the recursive definition of 2-way recursive languages. Observe that
in the case of an unary alphabet, the class £(2NFA) has been characterized in
[1,2] as both the family of rational relations and the family of languages obtained
from finite languages using union, diagonal concatenation and its closure.

Definition 2. Let L. C X**. L is a 2-way recursive language if there exist
X1,..,Xn, N, Y, C X L=V, such that, Vi=1,... h, X; € L(2NFA)
and, Vj = 1,...,k, Y; can be obtained applying to some languages in the set
{X1,...,Xp,Y1,..., Y} a finite number of U, N and (ov) operations where any
(ov) operation has a language in {X1,...,Xp} as its first parameter and a lan-
guage in {Y1,..., Yy} as its second parameter.

Ezxample 4. Let L be the language defined in Example 3. L is a 2-way recursive
language. Indeed L = XM U, 5, Lo where for every 0 € ¥, L, = L, N L]/ N
(£*2(ov)L) with Li, = {p € Z** [py () = 0}, and Ly = {p € Z**[py, ()1 =
o}. Remark that Y11 ¥22 [/ and LY are all in £(2NFA).

Proposition 5. L € L(2AFA) if and only if L is a 2-way recursive language.

Proof. Let A be a 2AFA accepting L, ¢ its transition function and qq its starting
state. Set nx = ) .y [0(qo, 0)|. First suppose qo is an existential state. If nsy > 1
then L is the union of ny languages in L(2AFA), following the ny possible
choices for the transitions. If ny = 1 and 6(¢,,0) = (¢1,R) (= (q1, D), resp.)
then L = Lj 2(ov)L1, (L = L2 1(ov)Lq, resp.) where Lo = {p € X2 | p1; =
O’} S £(2NFA), L2’1 = {p e 21 | P11 = O’} S £(2NFA), and L1 € £(2AFA) is
the language recognized by A with initial state g;. When ¢g is a universal state
an analogous proof holds with intersection instead of union. For the sake of
brevity, we omit some details about border conditions and no mowve transitions.

Vice versa, let L be a 2-way recursive language. The proof is by induction. If
L € L(2NFA) then L € L(2AFA) since a 2AFA is a generalization of a 2NFA.
If L = L;ULy and Ly, Ly are 2-way recursive then by inductive hypothesis,
for i = 1,2, L; is accepted by a 2AFA A; with initial state ¢;. Then we can
define a 2AFA A joining A; and Ay with a new initial existential state ¢o and
6(q0,0) = {(q1,no move), (g2, no move)}. The proof is analogous when L =
LiN Ly and Ly, Lo are 2-way recursive, with the only difference that ¢g is now a
universal state. Finally, suppose L = Li(ov)Ly where L1 € L(2NFA) and Ly is
a 2-way recursive language. W.l.o.g. suppose that the 2NFA A; recognizing L,
always accepts in the bottom-right corner of a picture. By inductive hypothesis,
Lo is accepted by a 2AFA Ay with initial state go2. So we can obtain a 2AFA
accepting L by simulating first A, (viewed as a 2AFA that can guess the bottom
border) and then starting .42 each time .4; on some position would enter an
accepting state if the position would be a bottom-right corner. Remark that the
construction is possible since it works basically connecting initial states of 2AFA
unless in the case of (ov) operations. O
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Corollary 2. L € L(2D0OTAp) if and only if L is the rotation of a 2-way re-
cursive language.

Proof. The proof easily follows from Proposition 5 and a result in [10] stating
that L € £L(2AFA) iff it is the 180° rotation of a language in £(2DOTA). O

Example 5. Consider again the language L defined in Example 3. The simulation
of the 2AFA recognizing L given in Example 3, that follows the proof of Propo-
sition 5, leads to the definition of L as a 2-way recursive language presented in
Example 4. Remark that L is in £(2AFA), but its reverse is not (see [10]).

5 Some Conclusions

In order to represent tiling recognizable two-dimensional languages (REC family)
by a sequential device, we have considered 4NFA with some added capabilities.
Following the theory of formal (one-dimensional) languages, we considered ex-
tra capability consisting of some bounded queue or stack and established some
partial results about their relationship with the REC family. The considered
models seem not able to describe exactly this family. This is the case also when
different limitations on the size of the extra memory are imposed. Moreover,
the result cannot be improved also restricting to the deterministic counterparts
of the considered models. Indeed, REC family is intrinsically non-deterministic
and the deterministic versions of 4ANQA and 4NPDA are already able enough
to recognize languages not in REC (see Example 1 that can be also adapted
to a ANPDA). Further steps will be to design some model that is conceptually
different from the ones for one-dimensional case.

Acknowledgements. We want to greatly thank Dora Giammarresi for helpful
discussions and comments.
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Abstract. This paper investigates the compositional properties of reu-
sable software components defined with explicit dependencies and be-
havioural contracts expressing rely-guarantee specifications in the form of
communication traces. In this setting, connection of components through
their matching ports is indeed compositional and yields a new component
or composite that respects its constituents’ contracts. Thus the behav-
iour of the composite is computed from the behaviours of its constituents
and is known to conform to the contracts without any new proof.

1 Introduction

Components and composition are the embodiment of a very old problem solving
strategy: Divide et Impera. In the broad field of engineering, this decomposition
strategy aims at identifying, given a large problem, how known solutions can be
composed to solve the problem. This practice alleviates the burden of complex
engineering as known solutions are reused and domain-specific only parts need
adhoc solutions. Component software [1] emerged from object-oriented program-
ming as a way to apply compositional engineering to the construction of complex
software. The main achievement of the field has been the production of distrib-
uted component frameworks such as CORBA Component Model (Ccm) [2], J2EE
and .NET. These frameworks provide technical solutions to software engineers
at the implementation and detailed design levels but they are not adequate for
reasoning and verifying systems and components interactions.

What is needed is then component models and methods that lend themselves
to formal compositional reasoning. Architectural Description Languages (ADL
[3]) have pioneered the field while trying to give precise meanings to the notion
of software architecture and providing tools to reason about it. One achieved
work is SOFA [4], an ADL and framework that allows decomposition of frames
or systems’ interfaces into components, interfaces and connectors specified with
regular languages over messages, down to primitive components. System behav-
iour can then be inferred using languages’ composition rules. As this work is
mostly aimed towards providing adaptable softwares, it gives a formal definition
of substitutability that is based on language inclusion. One problem with this
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approach is that correct behaviour should be re-proved at each (de)composition
step as it is changed by connectors’ specifications. Similar works based on process
algebras (e.g. [5-7]) are quite successful at modelling complex behaviours, in-
cluding reflective behaviours and encoding of structural evolutions of systems.
This complexity is of course at the price of the complexity of proofs and the
undecidability of most properties.

Some questions that should be addressed by such models are: Given a certain
assembly of components, what properties can be inferred from their composition
as a system? Is it possible to find a system that has defined expected properties?
Is a particular component substitutable with another component without break-
ing the whole system? Is it possible to preserve properties through composition?
In terms of formal languages theory, all these questions can be reduced to the
use of synchronization products of languages and the well-known problem of re-
constructing a language from its projections onto sub-alphabets. An overview of
the problem of composition in the setting of finite state automata is studied in
[8], where compositionality of automata depends on the composition rules used.
In this paper, we consider some classical form of trace-based specification given
in terms of regular languages. And we show that we obtain “good composition
properties” using an encoding of the topology of a set of connected components
in the alphabet. More precisely, we are stating and proving some desirable prop-
erties of a composite (set of components seen as a component) that are preserved
by composition: The behaviour of the composite respects the contract of the ser-
vices it provides and uses, and any client using its services will not be blocked
by misbehaving clients using other services. A full version of this work including
proofs is available as technical report [9].

Composition and decomposition of systems are widely studied in the litera-
ture in several settings. Composition of formal specification gives rise in [10] to
two different notions of invariants: Erxistential invariants guarantee preservation
of a property through composition with any other component, while universal
properties require composition with components holding the same property to
be kept through composition. In [11], specifications are given in terms of TLA
formulas and the specification of a complete system is a conjunction of compo-
nent specifications. Then, Composition and Decomposition theorems allow to
prove large systems by reasoning about their components. In more “practical”
models, like ArchJava for example [12], there exists some kind of “consistency
by construction” but often reduced to some syntactical or typing properties.
What we obtain here is some kind of “compositional behavioural typing rela-
tion” similar to the compositional typing relations in the Pi-calculus, which from
our knowledge does not exist in other formalisms.

Paper Overview. Section 2 introduces the model, notations, and specification
we use, Section 3 describes the composition itself, deals with the consistency
of a set of composed components called a system, and defines a notion of com-
posite extracted from a system, Section 4 concludes the paper and gives some
perspectives of this work.
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2 Component Model and Specifications

2.1 Component Model

The component model we use is an abstraction of the CORBA Component Model,
simple enough to fit a large number of used models. A component is an opaque
object communicating through ports. A port may be synchronous, then com-
munication is by method calls, or asynchronous, then messages are structured
events. Furthermore, a port may represent a service provided by the compo-
nent or required by the component from its environment. Synchronous ports are
typed by interfaces: A provided synchronous port is called a facet; a required
one is called a receptacle. Provided and required asynchronous ports are called
respectively sinks and sources. Components do not operate in isolation; they
must be connected through their ports to operate, that is to exchange messages.
Throughout this article, we focus on the simpler case where the connections of
components are established at deployment time and do not change until the
system stops.

We consider behavioural specifications of services, and we emphasize the fact
that all the components that offer a specific service should be similar from
a client’s viewpoint (especially in open systems). Services usage is observable
through messages exchanged between various components, so the specifications
are given in terms of communication traces, which are sequences of messages. An
asynchronous event is modelled by a message sent between two objects, whereas
a method call is modelled by two events: a message from the caller to the callee
representing the call of the method, and a message from the callee to the caller
representing the return of the method call. As we consider distributed systems,
each element of the system, a component for example, only knows about its own
communications, so its specification is a language (set of traces) whose words
(traces) are sequences of messages sent or received by this element. So the lan-
guage defines a contract between the specified element and its potential user(s).
In the case of interfaces, this contract relates calls made by the client to returns
produced by a component providing this interface. In the case of components,
this contract allows relating messages received/produced on provided ports to
messages on required ports. This is a very low level form of rely-guarantee speci-
fication that can be derived from a lot of known models based on state machines,
predicates on traces, ...

Observable events are messages exchanged by elements of the system (e.g. a
call to a method m). A distinctive feature of our model is the form of the alpha-
bet: A letter representing an event includes sender’s and receiver’s identity and
the names of the ports through which the communication occurs. It is an essen-
tial aspect of our formalism that allows us to take into account the configuration
resulting from a system configuration. While the specification is abstract and
deals with models of components, the semantics of composition deals with iden-
tified instances of components and ports through proper renaming (alphabetic
morphisms). These requirements lead to the following definition of the event
alphabet:
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Definition 1 (Event alphabet). An event alphabet is composed of letters of
the form (c1,p1, c2, P2, k,n) where:

— 1 15 a component and py is the name of a required port of this component,

— co 15 a component and po is the name of a provided port of this component,

— k is the “kind”: method call (call), return from method call (return),
or asynchronous event (event),

— n is the name of the method or the event.

2.2 Definitions — Notations

A projection Ily : X* — Y™ is an alphabetical morphism such that Y C X and
IIy(z) = z if x € Y and € otherwise. The prefix-closure of a language L denoted
by pf(L) is pf(L) = {u | Jv such that wv € L}, L is said to be prefix-closed if
L=pf(L).

We use in the following two particular products on languages. The shuffle
product of Ly and Lo denoted Ly L Ly is defined as:

Liwi Ly = U {urviugva . . URVy, | U = UiUs .. U,V = V1V .. UL
u€Ly,vEL>

For languages L1 C X¥, Lo C X5, the synchronization product of L1 and Lo on
21 and XYy denoted Ly My, 5, Lo is defined as:
L4 EmE Ly = {u S (El U 22)* | H21 (’U,) € Lhﬂxz(u) S LQ}
1,42

We use this definition given by Duboc in [13] instead of De Simone’s one [14]
since it gives an associative operation:

Limys, s, Lomys, 5, Ly = (L1 My, 2, Lo) My us,. 5, L
- Ll I_I_‘El,EQLng (L2 ’_I_IEQ,E;; L3)'

We also use some notations to simplify the writing. Let £ be an event alphabet.
For short, we denote

Ic.p) = I{(c1 ,p1,ca,p2.kin) €€ (c1,p1)=(c,p)V (c2,p2)=(c,p) }

Let € and &’ be event alphabets. We denote by hgll’)'.'.'jﬁz the strictly alphabetical
morphism:

gy € — &
(Clapla C2, P2, k7 ’I’L) — (Cllvpllv 0/27p/27 ka ’fl) with
¢y = B; if e1 = a; and ¢} = ¢, otherwise,
p) = G if p1 = o; and p| = p; otherwise,
ch = B; if c2 = a; and ¢}, = ¢y otherwise,
ph = 0 if p2 = a; and ply = po otherwise.
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2.3 Specifications

The specifications are given in terms of communication traces. More precisely,
each element of the system is specified by a regular language whose elements are
valid communication traces of this element (traces where the context and the
element both respect the specification). Each trace corresponds to an observation
of the system, thus, specifications are prefix-closed languages to take into account
observations at any time. In execution traces, it is clear that method calls must
preceede the corresponding returns, even if we allow some concurrency inside
components. Thus we consider for specification purposes well-formed languages.
A language L over an event alphabet £ is said to be well-formed if L is prefix-
closed and

LCpf(( LLI ((z,y,2,t, call,n)(x,y, 2,t,return,n))*)
(z,y,2,t,call n)e€
(z,y,2,t, event, n)*).
(z,y,2,t,event,n)e&

An interface specification is a contract offered by an interface to its clients, more
precisely, this is a contract on the interface as a type: Each port typed by the
interface should offer this contract to its clients. Components are also defined as
types: each instance of a component must respect the component specification.
Thus, to write specifications we use variables as components identities, these
variables will be instantiated with the identities of component instances for a
particular system configuration.

Definition 2 (Connection variables). In an event, the variables v1 and 01
(resp. vo and g2) denote the identity of a component and the name of one of its
required (resp. provided) port.

Definition 3 (Interface). An interface specification I is a pair [[meth, Lz]]
where meth is a set of method names, L1 a regular prefiz-closed language of
a(I)* with a(I) = {(y1, 01,72, 02, k,n) | n € meth Ak € {call, return}} and
L7 is included in

pf(( U ((71, 01,72, 02, call,n)(y1, 01,72, 02, Teturn,n)))").
(v1,01,72,02,calln)ca(l)

A component specification describes the behaviour of its instances (i.e. pieces
of software that offer ports), thus, we first have to define ports.

Definition 4 (Port). A port is a tuple (n,t,g) where n is the port name, t its
type (an interface or an asynchronous event type) and g its kind (receptacle,
facet, source or sink).

The event alphabet of a component is the set of events it can send or receive
through its ports. So, it is built from the alphabets of the types of its ports.
But when we specify a particular component we use a variable v to denote
an instance of this component. In the event of the alphabets of required (resp.
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provided) ports, v replaces 71 (resp. 72) and the effective name of the port
in this component replace g1 (resp. g2). Note that this allows us to deal with
components having several ports of the same type.

Definition 5 (Component specification). A component specification C is
defined by C = [[P, L]] with:

— P a set of ports whose names are pairwise distinct,
— L a regqular well-formed language over a(C) which is the union of:
o h2f, (a(I)) for each (f,1, facet) € P,

e hY", (a(I)) for each (r,I,receptacle) € P,
o {(7,8,72, 02, event,n)} for each (s,n, source) of P,
)

o {(v1,01,7, 8, event,n)} for each (s,n, sink) of P,
where ~y is the variable that represents any instance of this component.

The specification of a particular component instance is then obtained by in-
stantiation of the variable v with the actual identity of the component instance.

Definition 6 (Component instance). 4 component instance of C = [[P, L]
whose name is c is ¢ = (P, h5 (L)), its alphabet is a(c) = hS(a(C)).

A component provides and uses ports. We expect such a piece of code to abide
by the specification of its ports, so we first describe three basic properties that
a component must respect to be consistent.

For a receptacle, we want messages emitted by an element (most of the time a
component) through a receptacle to be accepted by the specification of its type
(interface).

Definition 7. A language L over an event alphabet £ is consistent for the re-
ceptacle (r,I, receptacle) of v (denoted by L -, (r,I, receptacle)) if:

) (£) © Ry, (L1).
A component that offers a sink must be able to receive events at any time,

which is expressed by the following definition (remember that we are interested
in prefix-closed languages):

Definition 8. A language L over an event alphabet £ is consistent for the sink
(s, S, sink) of v (denoted by L+, (s, S, sink)) if:

(U € ‘C) = (u(’Yla 01,75 S, event? S) € ‘C)

A component that offers a facet has to respect its specification. We require
another property which is of great importance in the setting of open distributed
systems: At each time, a facet must be available independently of the external
events not controlled by the component (as calls received on the other facets)
in order all the components offering the same service to be equivalent from the
viewpoint of a client.
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Definition 9. A language L over an event alphabet £ is consistent for the facet
(f,I, facet) of v (denoted by L\, (f,I, facet)) if:

W33, (L1) € Iy ) (L) (1)
and
Yu € L,V € € such that I, p)(u)x € Y7, (L), (2)

v such that uwvr € L and ¥(p, T, g) with g € { facet, sink}, [y ,)(v) = ¢

Part (1) says that the behaviour of an element must conform to the specifica-
tion of a facet it “offers”: An element must accept all specified calls and returns
are completely specified by calls. Part (2) indicates that at each time, each event
valid for the facet specification should be accessible independently of events not
controlled by the component, that is events on other facets or sinks.

The three previous definitions lead us to define a consistent component.

Definition 10 (Consistent component). A component C = [[P, L]] is con-
sistent if for each (n,t,g) of P such that g belongs to {receptacle, facet, sink}:

LF, (n,t,9).

An instance of a consistent component is said to be consistent.

3 Component Composition

3.1 Connecting Components

In this subsection, we describe how to compose components to obtain systems,
that is to say sets of inter-connected components.

Definition 11 (Connection). A connection is a tuple (c1,p1,c2,p2) where ¢q
and cg are component instances, p1 is the name of a required port of c1 and ps
is the name of a provided port of co such that py and ps are of the same type.
For X a set of connections, we denote the set of elements of X by:

elem(X) = {(c,p) | I(c,p,c',p") € X or3(,p',c,p) € X}.

The event alphabet has been designed to embed the structure of the system in
languages. Thus, when connecting components, we instantiate the connection
variables to register the connections in the language. This allows us to deal with
several instances of the same component as the names of the ports allow us to
deal with components having several ports of the same type.

Definition 12 (Connection morphism). Let £ be an event alphabet and X
a set of connections. Then the connection morphism hx is defined by:

hx : &€ — &
(Cvpu 727927]{57”) — (Capv Clvplvkan) ’Lf (Cvpu clap/) €X
(71791,07P,k7n) — (Clvplvcupvkan) ’Lf (Clvplacvp) €X
x —— x otherwise.
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Definition 13 (System). A system S = (B, X) is built from a set of consistent
component instances B = {c1,...,c,} and a set of connections X over B. The
alphabet of S, denoted by a(S) is:

a(S)= |J hx(ale)).

1<i<n

The behaviour of S is deduced from the behaviour of its components and from the
connections, it is: Lp,x = Ls = hx(Le,) mf(m)’a(cz) T mi{(cn—l))a(cn) hx(Le,),
with ”—')2{,3 the synchronization product on the alphabets hx (X) and hx(Z).

Notice that as the synchronization product of well-formed languages is well-
formed, the language of a system is well-formed. The creation of systems from
components allows us to build sub-systems. Then, it is interesting to be able to
compose systems in a “compositional” way.

Definition 14 (External connections). Let S1 = (B, X1), S2 = (Ba, X2) be
two systems such that By N By = 0. Then, a connection set X is said external
for these systems if and only if:

elem(X) Nelem(X1) =
and elem(X) Nelem(Xz)
and V(ci,p1,co,p2) € X, {c1,c2} N By #0

0
=0
A {01,(}2} ﬂBQ 75 @

Definition 15 (Composition of two systems). Let S1 = (B, X1) and Sy =
(Ba, X5) be two systems such that By N Bz = () and X be an external connection
set for these systems. Then the composition of the systems by X, denoted by S =
S1 OxSQ, is the system S = <B1UBQ, X4 UXQUX> (with Lg = £B1UBQ,X1UX2UX)-

The next proposition states that it is possible to hierarchically compute the
system languages, which is a basic required property of component systems.

Proposition 1. Let S; = (B1,X1) and Sz = (B2, X3) be two systems with
Bi1 N By = (. Then, the system S = S1 ox So with X an external connection set
for S1 and Ss is such that

X
Lg=hx(L m hx(Ls,).
s =hx( sl)a(sl))a(sz) x(Ls,)

We can now notice two interesting properties of the composition operation.
Proposition 2. The composition (o) of systems is commutative.

Proposition 3. Let S; = (B, X1), So = (Ba, X2) and S3 = (B3, X3) be sys-
tems such that By, By and Bs are pairwise disjoint. Let Y1 be external for S1
and So, Yo be external for Sy and Ss, and Ys be external for Sy and Ss such that
elem(Y1) Nelem(Ys) = elem(Y1) Nelem(Ys) = elem(Y2) Nelem(Ys) = 0, then:

(Sl OY1 SQ) OYQUYg S3 - Sl OY1UY3 (SQ OY2 SS)
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The problem is now to show that the connections preserve consistency of compo-
nents. As the components we connect are consistent, the connections are proved
to work: any message sent by a component on a connection respect the specifi-
cation of its partner on this connection. But as we use synchronization products
to compute the language of a system, it is not obvious that all the components
are still consistent for the non-connected ports: for example it could happen that
the trace language of the system does not contain any call to a method m which
is supposed to be provided by a component.

3.2 System Consistency

Now, we show that a system is consistent with regard to the behavioural typing:
all its components are still consistent after connection. Using the properties of
component languages, it is straigthforward to show that for receptacles and sinks.

Notation 1. Let P be a set of ports and X a set of connections. We denote by
P\ X the set of ports of P whose name does not belong to elem(X) and PN X
the set of ports of P whose name belongs to elem(X).

Proposition 4. Let S = (B, X) be a system. Then, we have:

Ve = (P, L.) € B,Y(r,I, receptacle) € P\ X,Lgt. (r,I, receptacle)
Ve = (P, L.) € B,V(si,Si,sink) € P\ X, Lg . (si, Si, sink) ‘

To show a similar property in the case of facet, we have to require another
property from the systems we consider. We will consider “loop-free” systems that
we call DAG (Directed Acyclic Graph). One of the consistency properties imposes
that a component is always able to provide a service it offers independently from
actions depending on other clients. This can only be ensured if we forbid cyclic
connections: a simple example of this problem is a component ¢ that provides
two facets f1 and fo, and requires a receptacle r. If we connect r to f; and if f;
and fo use services of r to provide their own services then a call on f5 can lead
to a deadlock. This restriction on the system expresses the idea that “ones does
not require a service one provides”.

Definition 16. A system S = (B, X) is said to be a DAG if and only if the
graph G = (B, E) is a DAG where E C B x B is defined by: V(c;,cj) € B x B,
((Ci,(}j) S E) <~ (El(ci,pi,cj,pj) € X)

Proposition 5. Let S = (B, X) be a system with B = {c1,...,c,}. Then, we
have
Ve= (P L.) € B,V(f,I, facet) € P\ X,Ls . (f,I, facet).

Sketch of Proof. We add to Definition 16 the definition of the height of a com-
ponent instance ¢ of B: it is the length of the longest path in G whose origin is
¢ and is denoted by height(c). Then we show the proposition by induction on
the height of components of the system using the fact that in a DAG system, if
there exists a connection (¢, p,c’,p’), then height(c) > height(c).
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As conclusion of this section, a DAG system has been shown to be consistent
for its non connected ports.

3.3 Composites

We are now able to define a composite as an abstraction of a component system.
The abstraction operation hides the internal structure of a system, shows it as
a unique component, and renames the external ports in order port names to be
unique for a given composite. Let us remark that the composite is here seen as
an instance of component. This allows hierarchical reasoning about systems.

Definition 17 (Composite). A composite is the abstraction of a DAG com-
ponent system. Let S = (B, X) be a DAG with B = {c1,...,c,}, we can extract
from S a composite c

¢ = abstract(S) = (P, L.)
such that P ={(¢; p,T,G) | 3e; = (P;, L;) € B with (p,T,G) € P\ X}
and Le.=h(Ls),

with h. the abstraction morphism

he @ a(S) — he(a(S)) = alc)
(y1,01,¢i,p, k,n) — (71, 01,¢, ¢ p,k,n) for each ¢; and each p,
(¢ciy 0, Y2, 02, k,m) — (¢, ¢; D, V2, 02, k,n) for each ¢; and each p,
T —— € otherwise.

Proposition 6. A composite is an instance of a consistent component.

Sketch of Proof. Once again, it is straigthforward to show that a composite is
consistent for its sinks. To show that a composite is consistent for its facets and
for its receptacles, we need to introduce a property of the operations we use on
languages: For S = (B, X), a component ¢ of B, a non-connected port p of ¢, an
identity v of a composite, and an interface I, we have:

ha (RSP, (L)) = h2C,P(Lr) with i € {1,2} (1)

Vi, Qi »04
hy o Il py = II ) © hay. (2)

v.¢ P
Thus, we get the proposition using:

— (1) and (2),

— the fact that the system abstracted to get the composite is consistent,

— the fact that the synchronization product of well-formed languages is well-
formed.

This proposition allows us to directly use composite as components without any
proof of their consistency: The model ensures the consistency.
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4 Conclusion

The main result of this paper is that our formal model for component-oriented
systems is fully compositional: A composite built from components is itself a
component that can be used in further composition. The obvious advantage of
this property is that when designing systems from components, nothing needs to
be re-proved on the system: It is guaranteed to behave according to the specifica-
tion of its facets and its receptacles. Of course, this property needs to be proved
for atomic components, which is the subject of other work on formal testing [15].

From this starting point, there are numerous tracks that can be followed. A
first extension would be to consider systems that are not DAGs: a lot of “real”
systems are DAGs, in particular the ones without asynchronous events, anyway
some of them may not be. Thus, we should consider systems that are not DAGs.
The compositional property we have shown in this paper is not true in general.
So, we will have to determine the class of systems for which the property re-
mains true or to add proof obligations in the other cases. One other important
issue that is not addressed in this paper is substitutability of components. This
issue is tied to the notion of behavioural subtyping introduced in the context
of object-oriented programming [16]: a notion of behavioural subtyping of com-
ponents could be inferred from a classical one for facets. The closely related
topic of components’ adaptations has been studied in [17,18] but mostly from
the point-of-view of object-oriented programming languages and design. Another
important aspect that is not dealt with in this paper is the possible dynamic
evolution of connections. We have currently a specification tool that may be used
to analyze and design softwares but not yet to control component systems. There
are approaches [19, 20] that explicitly model lifecycle of components (mostly ob-
jects) thus providing a way to reason on changes in the structure of the system.
Such considerations will introduce new reasoning problems in our model.
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Abstract. Strong retiming equivalence is the join of two basic equiva-
lence relations of synchronous schemes: strong equivalence and retiming
equivalence, which play an important role in the optimization of syn-
chronous systems. Each of these equivalences is characterized separately
in an algebraic/category theoretic framework, and the characterization
is carried over to the join of them. Tree-reducible schemes are introduced
to facilitate the proof that strong retiming equivalence is decidable.

1 Introduction

The concept of a synchronous system arises naturally from that of a systolic sys-
tem, which has turned out to be one of the most attractive tools in massive par-
allel computing. During the past few decades, a large number of systolic systems
have been designed, many of them manufactured. Transformation methodologies
for the design and optimization of systolic systems have been developed, but a
rigorous mathematical foundation has not been provided until recently [1,2, 3].

The present paper aims at providing an algebraic/category theoretic charac-
terization of retiming equivalence and strong equivalence of synchronous systems,
by which a decision algorithm can be obtained for the join of these two basic
equivalences. The reader is referred to [4] for the category theoretic, and to [5]
for the universal algebraic terminology used.

As introduced in [6], a synchronous system is partitioned into functional ele-
ments (combinational logic) and registers (clocked memory). Such a system can
be described by an edge-weighted directed graph G, called a communication
graph, in which the vertices represent functional elements and the edges corre-
spond to interconnections between the functional elements. The weight of each
edge in G is a non-negative integer, which indicates the length of a queue of
registers placed along the interconnection between the two functional elements
corresponding to the endpoints of the edge. The external interface is represented
in G by a distinguished vertex, called the host.

In a synchronous system, every functional element has a fixed primitive op-
eration associated with it. These operations are designed to manipulate some
simple data (e.g. signals) in the usual algebraic sense. The registers and func-
tional elements are organized by a common clock, which renders the follow-
ing step-by-step behavior to the system. A configuration of the system is an
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assignment of data to each register. With each clock tick, the current configu-
ration is mapped into a new one in such a way that every functional element
performs the primitive operation associated with it. The operands (result) of the
operation performed by each functional element are taken from (is forwarded to)
the nearest registers lying on the interconnections arriving at (leading out of)
the functional element. At the same time, data are advanced one register in the
queue of registers along each interconnection. If there is no register along an
interconnection, then data are always propagated through that interconnection
during a single clock cycle. This phenomenon is called rippling. To avoid circular
rippling of data within the system, it is assumed that every oriented cycle in the
graph of the system contains at least one edge having strictly positive weight.
Synchronous systems are analogous to sequential circuits, and can naturally
be viewed as structural Mealy automata [7]. The states of the automaton rep-
resented by a system S are the configurations of S, which are structured in as
many components as the number of registers in S. The transition function of the
automaton is also structured with regard to the state, input, and output compo-
nents, and it is specified as the combinational logic determined by the intercon-
nected functional elements in S. See [2, 8] for an analysis of the algebraic proper-
ties of such automata as morphisms in an appropriate strict monoidal category.

2 Synchronous Schemes

The simple communication graph model of synchronous systems, as presented
in the introduction, has two major shortcomings.

1. The operations performed by the functional elements are not necessarily
commutative, therefore the edges arriving at each functional element must
be ordered.

2. Representing the external interface by one vertex (the host) gives the false
impression that the input to the system depends on the output in the same
clock cycle. Also, cycles of the communication graph going through the host
vertex need not contain edges with a strictly positive weight.

Addressing these two shortcomings, synchronous systems have been redefined
in [9] as follows. A synchronous scheme over a ranked alphabet X' = {X,|n > 0}
is a finite directed graph F' having the following additional structure.

1. Each vertex v is labeled by either a symbol in X, or one of the symbols in

{icj | j € [ql} U{oci | i € [p]},

where p and ¢ are fixed non-negative integers, and [n] = {1,...,n}. If the
label of v is in Y/, then v is called a box. Boxes represent functional elements
in synchronous systems, and their label indicates the operation associated
with them already at the syntactical level. Vertices labeled by the symbols
{ic; | 1 < j < q} and {oc; | 1 < i < p} are unique, and they are called input
and output channels, respectively. We shall assume that each label, not only
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those in X, has a fixed rank associated with it, so that rank(oc;) = 1 and
rank(ic;) = 0. Then, for each vertex v, the in-degree of v (that is, the
number of edges arriving at v) must equal the rank of the symbol labeling
v. Furthermore, the outdegree of each output channel is zero.

2. The edges arriving at each vertex v labeled by a symbol of rank n are ordered,
which order is captured by saying that these edges enter v at the 1st, ...,
n-th input port. The notation v —; v indicates that the edge arriving at the
ith input port of v originates from vertex wu.

3. Each edge e is assigned a non-negative integer weight w(e). This weight
specifies the number of registers placed along the interconnection represented
by e. It is required that in each oriented cycle of F' there exists at least one
edge e with w(e) > 0. This requirement will be referred to as the exclusion
of circular rippling.

Notice that the edges leading out of a vertex u are not ordered. The suggested
meaning is that the same value originating from the (single) output port of u is
fanned out into several directions in each clock cycle.

A synchronous system is a triple S = (X, F,T), where F' is a synchronous X-
scheme (SX-scheme, for short), and (X, 7) is a X-algebra. If F' is an SX-scheme
having p output and ¢ input channels, then we shall write F' : p — . Isomor-
phism of SX-schemes is defined in a straightforward manner as graph isomor-
phism preserving all labels and weights. In the sequel, we shall not distinguish
between isomorphic schemes. Let Ff* denote the directed graph obtained from
F by reversing the direction of each edge in it. When forgetting the weight of the
edges, FT becomes a flowchart scheme (also known as Elgot scheme [10, 11]).
This flowchart will be denoted by fi(F).

3 Retiming Synchronous Schemes

Let F' be an SXY-scheme and u be a box in F' labeled by o € X, such that
all the edges eq,...,e, arriving at the input ports of u have positive weights.
Retiming u then means subtracting 1 from w(e;) for each i € [n], and adding 1
to the weight of each edge leading out of u. Elementary retiming is the binary
relation p on the set of SX-schemes by which FpF’ if F’ results from F' by retim-
ing a single box in it. Retiming equivalence is the smallest equivalence relation
containing p.

A retiming count vector for scheme F' is an assignment R of integers to all of
its boxes. Extend R to all vertices of F' by fixing R(v) = 0 for each i/o channel.
We say that R is legal if for every edge e : w — v in F, w(e)+ R(u) — R(v) > 0. If
R is legal, then it takes F into a scheme F’ that has the same underlying graph
structure as F, but the weight w’(e) of each edge e : v — v is w(e) + R(u) — R(v).
It is clear by this definition that if R is legal for F', then —R is legal for F’, and
—R takes F’ back to F'.

Proposition 1. Synchronous schemes F and F' are retiming equivalent iff
there exists a legal retiming count vector R taking F into F'.
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Retiming is a fundamental tool in the optimization of synchronous systems. It
allows the registers of a system to be rearranged in order to achieve a more favor-
able pattern of them inside the scheme of the system. For example, it might be
possible to shift the registers around in such a way that the resulting scheme be-
comes systolic in the sense that each edge has a strictly positive weight. The obvi-
ous advantage of dealing with a systolic system rather than an ordinary synchro-
nous one is that the clock period (i.e. the length of a clock cycle) can be chosen
as small as the maximum amount of time required to perform a single operation
in X. Even when the total number of registers in the scheme is too small to allow
such a transformation, it is possible to first slow the system down by multiplying
each weight with the same suitably large positive integer k, and then apply retim-
ing on the resulting scheme to obtain a systolic arrangement. The cost of slow-
down is a factor of k regarding the clock period, which might be well worth con-
sidering if rippling occurs in the system on very long paths. See [6] for the details.

As to the impact of retiming on the behavior of synchronous systems, it turns
out that the damage caused by rearranging the registers is relatively minor. The
systems before and after the retiming can simulate each other in the following
sense.

Definition 1. System S1 can simulate system Sy if, for every sufficiently old
configuration co of Sa, there exists a configuration c¢1 of S1 such that S1 and
So exhibit the same behavior when started from configurations c¢1 and co, re-
spectively. Systems S1 and So are simulation equivalent if they can simulate
each other. SX-schemes Fy and Fsy are simulation equivalent if the systems
S1 = (X, F1,7) and Sy = (X, F3,T) are such under all interpretations I.

The fact that retiming equivalence of synchronous schemes implies simulation
equivalence is commonly known as the “Retiming Lemma”, and it was first
proved in [6].

Retiming, as a phenomenon, has been considered earlier in a different graph
theoretic context. It has been extensively studied in a model called marked graph
[12]. Marked graphs are essentially Petri nets in which all places have in- and out-
degree 1. In that context, retiming count vectors are called firing count vectors,
and the framework for their study is linear algebra relying on the incidence
matrix of the underlying graph. The only conceptual difference between firing
marked graphs and retiming synchronous schemes is that in the latter model
we do not allow a fixed set of vertices, namely the i/o channels, to be retimed.
The reason is that the retiming of these vertices would not be consistent with
simulation equivalence. This restriction is minor, however, so that all important
results on marked graphs can easily be adopted for synchronous schemes with
appropriate modifications.

4 Basic Constructions on Schemes

As we have noted earlier, synchronous schemes have an underlying flowchart
structure, which will be in the focus of the constructions that follow. To avoid
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confusing terminological changes, we shall consider flowchart schemes simply as
unweighted synchronous schemes, in which the exclusion of circular rippling does
not apply. On the other hand, for the sake of a uniform treatment, all edges will
be reversed in synchronous schemes.

The term FX-scheme will be used as a shorthand for X-flowchart scheme. An
FX-scheme F' is called accessible if every box of F' can be reached from at least
one output channel by a directed path. Every FX-scheme can be made accessible
simply by deleting its inaccessible boxes, therefore we shall assume from now on
that our schemes are all accessible.

The following constructions are concerned with the so called vertical structure
of F X-schemes, which is the category Fly, constructed as the coproduct (disjoint
union) of the categories Flx(n,p), n,p € N.

— For each (n,p) € N x N, Flx(n,p) has as objects all accessible F X-schemes
n — p.
— A morphism F' — F’ between FX-schemes F,F’ : n — p is a mapping «a
from the set of vertices of F into that of F’ which preserves:
a) the labeling of the vertices;
b) the edges, so that if u —; v holds in F, then a(u) —; a(v) holds in F”.
— Composition of morphisms is defined in Fly(n,p) as that of mappings, and
the identity morphisms are the identity maps.

It is straightforward to check that the above data indeed determine a category,
which is a preorder [4]. In other words, given two objects F' and F”, there exists
at most one morphism F — F’ in Flyx. Morphisms in Flx represent reductions
of FX-schemes, and inverse morphisms are called unfoldings. Unfolding a scheme
F thus means blowing it up into a scheme F’ such that F’ — F holds.

There is also a horizontal structure of schemes over the set N as objects, in
which schemes themselves are the morphisms n — p. In that category, composi-
tion is defined as serial composition of schemes. The interested reader is referred
to [2,13] for the description of the 2-category of schemes and their behaviors.
Another interesting and more general approach is outlined in [8]. In the present
discussion, however, we do not need the horizontal part of this 2-category, and
therefore this part will be omitted.

Sometimes it is useful to consider an FX-scheme F' : n — p as a separate
partial algebraic structure over the set of vertices of F' different from the output
channels. In this structure there are n constants, namely the vertices adjacent to
the output channels. Furthermore, for each o € ¥, there are ¢ unary operations
(0,i), i € [q] if ¢ > 1, and one unary operation (c,0) if ¢ = 0. If ¢ > 1, then
the operation (o, 1) is defined on vertex u of F' iff u is labeled by o, and in that
case (o,1)(u) is the unique vertex v for which v —; v. The operation (c,0) is
interpreted as if there was a loop around each vertex labeled by the constant
symbol o, that is, (0,0) is an appropriate restriction of the identity function.
No operation is defined on the input channels. In this algebraic setting, F' being
accessible means that, with the possible exception of the input channels, F' is
generated by its constants.
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By the above algebraic formalism, a morphism « : F' — F’ becomes a strong
homomorphism of partial algebras [5], which preserves the given sequence of in-
put channels. A strong congruence relation of F' by which the input channels form
singleton groups is called a scheme congruence of F. Clearly, every scheme mor-
phism « : ' — F’ induces a scheme congruence on I, which will be denoted by
- By the homomorphism theorem, if « is onto, then F/0, = F’ where the iso-
morphism and the quotient scheme F'/6,, are meant in the usual algebraic sense.

Let F be a synchronous scheme. The relation of having the same strong behav-
ior is defined on the vertices of F as the largest scheme congruence pp in F. The
congruence fip gives rise to a minimal scheme F/up in the usual way (cf. [10]),
and schemes Fy, F» are said to be strong equivalent if Fy/up, = Fo/ur,. Clearly,
two FX-schemes belong to the same connected component of Fly iff they reduce
to the same minimal scheme, which is a terminal object in the given component.

By the standard definition in graph theory, a directed walk in graph G is an
alternating sequence of vertices and edges, which starts and ends with a vertex,
and in which each edge points from the vertex immediately preceding it to the
vertex immediately following it. Let F' be an FX-scheme, and a = vge; . .. ey,
be a directed walk in F. By the pattern of o we mean the sequence p(a) =
00%1 .. .90y, Where oj, 0 < j < n, is the label of vertex v; and 7; identifies
the output of v;_; where e; originates from. In general, a pattern of walks is
a sequence p = ool ... 10, such that o; € XU {icglk > 1} U {o¢|l > 1} and
1 <i; <rank(oj—1). We say that pattern p is viable for vertex u if there exists
a directed walk « in F' starting from u such that p = p(«). In this case, end(u,p)
denotes the last vertex of a. It is easy to see that, for every two vertices u and
v of F, uppv is equivalent to saying that an arbitrary pattern p is viable for u
iff p is viable for v.

The category Fly is known to have all pushouts [4]. The pushout object of
a pair of morphisms o : F — G and 8 : F — H is the scheme F/(6, U 03),
where 6, LI 63 is the join (least upper bound) of 6, and 63. Constructing the
coproduct of two schemes belonging to the same connected component of Fly
is a similar simple exercise. It is also easy to see that the category Flyx has
all pullbacks and finite products of schemes belonging to the same connected
component. The construction of pullbacks and products is analogous to that of
their counterparts in the category Set of all sets and mappings.

5 Tree-Reducible Schemes

Let G = (V(G), E(G)) be an arbitrary directed graph. Recall that a subset
S C V(G) is strongly connected if for every u,v € S there exists a directed
path in G from u to v going through vertices of S only. A strong component is
an (inclusionwise) maximal strongly connected subset. For two vertices u,v €
V(G), we say that v is reachable from u, notation reach(u,v), if there exists a
directed path from u to v in G. The closure of a set S C V(G) is then the set
S ={v € V(G) | reach(u,v) and u € S}. With a slight ambiguity, the notation
S will also be used for the subgraph of G spanned by S.
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Definition 2. An FX-scheme F' : n — p is tree-reducible if the graph obtained
from F by deleting its input channels (together with all adjacent edges) and
shrinking every strong component to one vertex consists of n disjoint trees.

Let F}, denote the subgraph of F' determined by its boxes. By Definition 2,
if F' is tree-reducible, then every strong component S of Fj has a unique entry
edge by which it can be reached starting from some output channel.

There is an apparent similarity between reducible and tree-reducible flowchart
schemes. Recall from [14] that an FX-scheme F' is reducible if every strongly
connected subset of vertices in F' has a unique entry vertex. Definition 2 above
requires the existence of a unique entry edge, although for strong components
of F' only. Eventually, the classes of reducible and tree-reducible schemes are
incomparable.

Every FX-scheme F can be unfolded into a tree-reducible scheme in the fol-
lowing way. Recursively, in a top-down manner, whenever a strong component S
of F is found that has k > 2 entry edges, take k identical copies of S and redirect
each entry edge of S into its “own” copy of S. The straightforward details of this
procedure are left to the reader. The resulting tree-reducible FX-scheme will be
denoted by tr(F'). The unfolding determines a morphism ¢p : tr(F) — F in the
category Flx. The function ¢r itself is called tree unfolding.

Lemma 1. Let a : F — G be a morphism in Fly. If F is tree-reducible, then
a factors through vq and an appropriate morphism tr(a) : F' — tr(GQ).

Lemma 1 has a number of important consequences regarding the full subcat-
egory TFly of Fly determined by tree-reducible schemes.

Corollary 1. Tree unfolding defines a right adjoint for the inclusion functor
TFlyx — Flx.

Proof. Indeed, by Lemma 1, there is a one-to-one correspondence between mor-
phisms F' — G in Fly and morphisms F' — {r(G) in TFly, provided that F' is
tree-reducible. Thus, TFly is a coreflexive subcategory of Fly;.

The adjunction established in this way implies the following statement by a
general category theoretical argument.

Corollary 2. The category TFlyx has all pullbacks and pushouts. Every con-
nected component of TFlyx has finite products, coproducts, and a terminal ob-
ject. The pushouts and coproducts are the same as they are in Fly, whereas
the pullbacks, products, and terminal objects are obtained by tree-unfolding the
corresponding objects in Fly.

Recall from [5] that in any algebra A, the principal congruence relation of A
induced by a pair (a, b) of its elements is the smallest congruence 6(a, b) joining a
with b. If u and v are two boxes of some FX-scheme F' such that reach(u,v) and
uppv, then the principal scheme congruence 6(u,v) of F is called an elementary
contraction.
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Definition 3. A scheme congruence 0 of a tree-reducible FX -scheme F' is tree-
preserving if the scheme F/0 is also tree-reducible.

As the main result of this section, we now present a theorem characterizing
tree-preserving scheme congruences.

Theorem 1. A scheme congruence of a tree-reducible FX'-scheme F' is tree-pre-
serving iff it is the join of elementary contractions.

Now we turn to defining the category Syny of synchronous X-schemes. The
objects of this category are all accessible SX-schemes (synchronous Y-schemes,
that is). A morphism F — F’ in Syny, is a morphism fI(F) — fi(F’) in Flg
that preserves the weight of the edges. (Recall that fI(F) is the the flowchart
scheme determined by F'). Accordingly, a scheme congruence of F is one of fi(F')
that is compatible with the weight function. An SX¥-scheme S is tree-reducible
if fI(F') is such. The full subcategory of tree-reducible SX-schemes is denoted by
TSynjy.

There is a simple way to characterize synchronous schemes as ordinary flow-
chart schemes, so that the constructions of Sections 4 and 5 can be lifted into
the categories Syny and TSynjy. Introducing a new symbol V, let Yy denote
the extension of X' by V as a unary operation symbol. For obvious reasons,
vertices labeled by V will be called registers in schemes. With each S}-scheme
F', we then associate the FXg-scheme fig (F'), which is obtained from fI(F') by
subdividing every edge e in it by n registers, where n is the weight of e. In this
manner, Syny. can be identified with an appropriate subcategory of Fly . Any
scheme congruence of an SX-scheme F, too, can be specified as the restriction
of an appropriate scheme congruence of flg(F') to its non-register vertices.

Let FIOE denote the disjoint union of those connected components of Flyx
the schemes in which obey the exclusion of circular rippling, and do not contain
cycles consisting of registers only. If F' is a scheme in FIOE such that some
registers in F' have an in-degree greater than one, then unfold F' into a scheme
reg(F) that does not have such registers, has the same (X)-boxes as F, and
satisfies the condition that, along every path connecting two boxes, the total
number of registers is the same as it is in F. It is easy to see that the unfolding
reg defines a right adjoint for the inclusion functor Syny. — FIOE . Thus, Syn .
is a coreflexive subcategory of FIOE . By this observation, the lifting of all results
in Sections 4 and 5 from Fly, and TFly to Syny, and TSyn . follows the general
category theoretical argument already applied under Corollaries 1 and 2.

6 Deciding Strong Retiming Equivalence

In this section we study the relation of strong retiming equivalence on the set of
SX-schemes. We shall use the preorders Flyx and Synjy, simply as binary rela-
tions over the sets Flx and Syn s of all accessible F X -schemes and SX-schemes,
respectively. In both cases, this preorder will be denoted by —s. Concerning
retiming, —, will stand for the partial order induced on Syns by non-negative
legal retiming count vectors. Note that if ' —,. F’, then fi(F) = fi(F’).
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Definition 4. The relation of strong retiming equivalence on the set Syny is
the smallest equivalence relation containing —, and — .

Strong retiming equivalence will be denoted by ~. The relations of retiming
equivalence and strong equivalence, as introduced already in Sections 3 and 4,
will be denoted ~,. and ~y, respectively.

The practical importance of retiming equivalence has been pointed out in
Section 3. The role of strong equivalence in the optimization of synchronous
systems is self-explanatory: reduction of schemes means reduction in the size of
systems. As to the behavior of schemes, if we assume that the initial configura-
tion in all systems is a standard one by which each register is assigned the same
distinguished datum 1, then strong equivalent schemes have the exact same
input-output behavior under all interpretations. See [1] for the details. Simula-
tion equivalence, however, in the sense of Definition 1, is guaranteed only for
a subset of strongly equivalent schemes. This subset of ~; was identified in [3]
as finitary strong equivalence, and it was proved that simulation equivalence is
the smallest equivalence relation containing ~, and finitary strong equivalence.
With only a slight generalization of the concept “behavior”, however, it can be
achieved that simulation equivalence coincide with strong retiming equivalence.
This issue will be dealt with in a forthcoming paper.

It is well-known from the literature that strong equivalence of schemes is
decidable. In order to decide if F' ~4 F’, one must construct the minimal schemes
for F and F’, and see if they are isomorphic. Regarding retiming equivalence,
Murata’s [12] similar result on marked graphs can be adopted to prove that ~.,.,
too, is decidable. Our aim is to prove that the join of these two relations remains
decidable. As a first step, we are going to prove the equation

~N=<—g (] ~p O _)s’ (1)

which will help us to decide the relation ~. Equation (1) says that if two acces-
sible S¥-schemes F; and Fy are strong retiming equivalent, then they can be
unfolded into appropriate schemes F] and Fj that are already retiming equiva-
lent. We could use (1) to decide Fy ~ F» only if we knew the extent to which Fy
and F» must be unfolded in order to obtain a suitable pair Fy, Fy. Our goal is
to provide an upper bound for the extent of this unfolding, and we shall indeed
find one when the scope of (1) is restricted to tree-reducible SX-schemes.

Lemma 2. ~, 0 «;C«, 0 ~.

Proof. Let F, F' and U be SX-schemes such that F' ~, U and F' —, U. Then
there exists a legal retiming count vector R : FF — U and a scheme morphism
a: F' — U. Since fi(U) = fi(F), F can be unfolded into a scheme U’ for which
AU = fi(F") and « : U" — F. For every vertex v of U’, define R’ (v) = R(a(v)).
It is now easy to check that the retiming R’ takes U’ to F'.

Corollary 3. ~=«4 0 ~, 0 —,.

Proof. 1t is sufficient to prove that the relation p =«; o ~, o — is transitive.
To this end observe that —5 o «—;C«—; o —, because the category Syny, has
all pullbacks. Thus, we have
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(—SONTO—>SO(—SONT.O—)SQ(—SONTO(—SO—)SON,',,O—>S_
Hence by Lemma 2,

POP Cée—gO0 g0~ 0~ 0 —50—g=p.

Repeating the proofs of Lemma 2 and Corollary 3 in the subset T'Syny of
tree-reducible SX-schemes, we obtain the following result.

Corollary 4. ~=tro +—, 0 ~, 0 —, otr— L,

where the relation — is restricted to the subset of tree-reducible schemes.

Theorem 2. Let F and F' be tree-reducible SX-schemes such that F ~, F’, and
assume that 0 is a tree-preserving scheme congruence of F. Then F/0 ~, F' /0,
provided that 0 is a scheme congruence of F', too.

Proof. We have seen under Theorem 1 that 6 is tree-preserving iff it is the join
of elementary contractions. Hence, by the second isomorphism theorem, we can
assume that 8 = 6(u,v), where u and v are two distinct internal vertices of F'
having the same strong behavior and satisfying the condition reach(u,v).

In our argument we shall make use of the following characterization of the
congruence 0(u, v). Define the relation £ on the set of boxes of F' by: a&b if there
exists a pattern p of walks in fI(F') such that a = end(z1,p) and b = end(z2, p),
where {z1,22} C {u,v}. Then 6(u,v) = £, i.e., the transitive closure of &.

Let R : F — F’ be a legal retiming count vector that preserves the congruence
6. We shall prove that if a£b holds for any two vertices a, b of F, then R(a) = R(b).
Since § = ¢, this immediately implies R(a) = R(b) whenever a = b (6). Thus,
an appropriate retiming count vector R/6 : F/8 — F'/8 is readily obtained by
defining R/60 (af) = R(a) for each group af of the congruence 6.

Let us assume that ab. Then there exists a pattern p of walks for which a =
end(z1,p) and b = end(za,p), where z1, 22 € {u,v}. Without loss of generality
we can assume that z; = v and zo = v. Since u and v have the same strong
behavior in both F' and F’, we have

R(a) — R(u) = R(b) — R(v). (2)

Let pg be the pattern of an arbitrary path leading from v to v, and consider the
patterns po, p2(= popo), - - -, ph for all k > 1. The number of boxes being finite in
F'| there must be two non-negative integers k£ < [ and an internal vertex z such
that

z = end(u,pf) = end(u, ph).

While keeping the pattern p = po fixed, apply (2) iteratively by choosing for u
and v the vertices end(u,p}) and end(u,p5™), 0 < i < I. Adding up the last
(I — k) of the corresponding equations, we obtain that

R(z) = R(z) = (I = k) - (R(u) — R(v)),

from which R(u) = R(v) follows immediately. The required equation R(a) =
R(b) can then be derived again from (2).

Theorem 3. The relation of strong retiming equivalence is decidable.
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Proof. Let G and G’ be SX-schemes. By Corollary 4, G ~ G’ iff there exist
some tree-reducible schemes F' and F’ such that F —g tr(G), F' —, tr(G")
and F' ~, F’'. See Fig. 1a. Then, in the category TSynjy, there are morphisms
F — tr(G) and F' — tr(G"), which determine two morphisms fl(F) — fi(tr(G))
and fI(F") (= fi(F)) — fi(tr(G")) in TFly. Let ¢ and ¢’ denote the scheme
congruences of fI(F) induced by these two morphisms.

F o, F A(F)=A(F)
tr(G) tr(G)  f(tr(G)) Atr(G))
a) b)

Fig. 1. The proof of Theorem 3 in a diagram

Now construct the product of fi(tr(G)) and fi(tr(G')) as a tree-reducible FX-
scheme H. Since H is a product, there exists a morphism fi(F) — H that makes
the diagram of Fig. 1b commute. For the scheme congruence 6 induced by this
morphism, we thus have § C ¢ and 6 C ¢’. On the other hand, ¢ and ¢ are also
SX-scheme congruences of F' and F’, for which F/¢ = tr(G) and F'/¢' = tr(G").
It follows that 6, too, is an SX-scheme congruence of both F' and F’. Theorem 2
then implies that

H=F/0~, F'/0=H
See again the diagram of Fig. la.

According to the argument above, one can decide strong retiming equivalence
of G and G’ by the following algorithm.

Step 1. See if fI(G) ~5 fi(G"). If not, then G and G’ are not strong retiming
equivalent. Otherwise goto Step 2.

Step 2. Construct the schemes H and H’, which are the unfoldings of G and G’
to the extent determined by the product of fi(¢r(G)) and fi(tr(G’)) in TFly,
and test whether H and H' are retiming equivalent.

The schemes G and G’ are strong retiming equivalent iff the result of the test
performed in Step 2 is positive.

7 Conclusion

We have worked out an algebraic/category theoretic framework to characterize
two basic equivalence relations of synchronous schemes: strong equivalence and
retiming equivalence. On the basis of this characterization we have proved that
strong retiming equivalence, the join of these two equivalences, is decidable. As
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part of this proof, we have given a characterization of tree-reducible flowchart
schemes and tree-preserving scheme congruences, which is an interesting result
by itself.

In order to prove that strong retiming equivalence (~) is decidable, we first
showed that G ~ G’ iff G and G’ can be unfolded into some schemes F' and
I’ that are already retiming equivalent. Our second observation was that if G
and G’ are tree-reducible, then the schemes F and F’ can be chosen “minimal”
in the sense that their common underlying flowchart scheme is the product of
fi(G) and fI(G') in the category TF1y of tree-reducible X-flowchart schemes. The
decidability of ~ then followed from some known results on flowchart schemes
and marked graphs.
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Abstract. A prefix-free language is a prime if it cannot be decomposed
into a concatenation of two prefix-free languages. We show that we can
check in polynomial time if a language generated by a simple context-
free grammar is a prime. Our algorithm computes a canonical represen-
tation of a simple language, converting its arbitrary simple grammar into
Prime Normal Form (PNF); a simple grammar is in PNF if all its non-
terminals define primes. We also improve the complexity of testing the
equivalence of simple grammars. The best previously known algorithm
for this problem worked in O(n'?) time. We improve it to O(n” log? n)
and O(n® polylog v) deterministic time, and O(n* polylog n) randomized
time, where n is the total size of the grammars involved, and v is the
length of a shortest string derivable from a nonterminal, maximized over
all nonterminals. Our improvement is based on a version of Caucal’s
algorithm from [1].

1 Introduction

An important question in language theory is, given a class of languages, find
a canonical representation of any language of this class. Such a representation
often permits to solve various decidability problems related to a given class
of languages, such as equivalence of languages, non-emptiness, etc. Most often
the canonical representation of the language is given by a special form of its
grammar, called a normal form. In this paper, we give an algorithm converting a
simple grammar into its equivalent, unique representation in a form of so-called
Prime Normal Form (PNF). The canonical form of simple grammar was studied
by Courcelle, c.f. [2]. The crucial question that our algorithm is confronted with,
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is whether a simple language is prime, i.e., not decomposable into a concatenation
of two non-trivial prefix-free languages.

In general, the canonical representation of any type of language may be
substantially larger than its original grammar. This is also the case for sim-
ple languages. Hence verifying the equivalence of simple languages by means of
canonical representations may be inefficient. The equivalence problem for sim-
ple context-free grammars is a classical question in formal language theory. It
is a nontrivial problem, since the inclusion problem for simple languages is un-
decidable. A. Korenjak and J. Hopcroft, see [3, 4], proved that the equivalence
problem is decidable and they gave the first, doubly exponential time algorithm
solving it. Their result was improved by D. Caucal to O(n3v(G)) time, see [1].
The parameter n is the size of the simple grammar and v(G) is the length of
a shortest string derived from a nonterminal, maximized over all nonterminals.
Caucal’s algorithm is exponential since v(G) can be exponential with respect to
n. Y. Hirshfeld, M. Jerrum, and F. Moller gave the first polynomial O(n'?) time
algorithm for this problem in [5]. We call it the HIM algorithm.

In the second part of the paper we design an algorithm based on a version
of Caucal’s algorithm, that has a better complexity than HJM. More precisely,
our algorithm works in time O(n”log?n). On the other hand a variation of our
algorithm works in time O(n® polylog (v(G))), thus beating the complexity of
Caucal’s algorithm, e.g., for v(G) € 2(n?). Similarly as the HIM algorithm, we
apply the techniques used in the algorithmic theory of compressed strings, based
on Lempel-Ziv string encoding. The idea of such an encoding is that, instead of
representing a string explicitly, we design a context-free grammar generating
the string as a one-word language. As the combinatorial complexity of such
a grammar can be significantly smaller than the length of the word, it may be
considered as a succinct representation of the word. Such encodings were recently
considered by researchers, mainly in the context of efficient pattern matching.
There is one problem in this field which is of particular interest to us — the
compressed first mismatch problem (First-MP). Given two strings encoded by
a grammar, First-MP looks for the position of the first symbol at which the
strings differ. Polynomial time algorithms for computing First-MP were given
independently in [5] and [6], in very disjoint settings. More powerful algorithms
were given in [7], where a more complicated problem of fully compressed string-
matching was solved. For the purpose of this paper, we will use the result from
[8], which we adopted to obtain a faster algorithm.

Simple languages are applied by IDT Canada to perform packet classification
at wire speed. Classes of packets are described with the aid of simple languages,
and their recognition is made by a so-called Concatenation State Machine, an
efficient version of a stateless pushdown automaton. As shown in [9], there is a
one-to-one correspondence between Concatenation State Machines and simple
grammars. In order to store large sets of classification policies in memory, it
is necessary to reuse their common parts. A natural way to do this consists in
decomposing simple languages into primes, each of which is stored in memory
only once. When a new classification policy is added to memory, we verify if
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its prime factors are already stored in the data base. The algorithms described
in this paper are used to decompose classification policies into primes and to
identify primes for reuse.

2 Simple Languages

A context-free grammar G = (X, N, P) is composed of a finite set X' of terminals,
a finite set N of nonterminals disjoint from X, and a finite set P C N x (NUX)*
of production rules. For every 3,7 € (NUX)*,if (A, «) € P, then Ay — Bavy. A
derivation 35 is a finite sequence (g, a1, ..., a,) such that § = ag, v = an,
and o;—1 — «; for i € [1,n].

For every sequence of nonterminals a € N* of a grammar G = (X, N, P),

we denote by La(«) the set of terminal strings derivable from a, i.e., Lg(a) def

{w e X* | aSw}. Often, if G is known from the context, we will write L(a)
instead of Lg ().

A grammar G = (X, N, P) is in Greibach normal form if for every production
rule (A — «a) € P, we have o € ¥YN*. A grammar G = (X, N, P) is a simple
contezt-free grammar (simple grammar) if G is a Greibach normal form grammar
and such that whenever A — a o and A — a s, for asame a € X, then oy = as.

A language L C X* is a simple language (also called s-language) if L = {e}
(where ¢ denotes the empty word) or if there exists a simple grammar G =
(X, N, P) such that Lg(A) = L, for some A € N. The definition implies that
every nonterminal of a simple grammar defines a simple language. Since simple
languages are prefix codes and are closed by concatenation, the family of simple
languages under concatenation constitutes a free monoid with {¢} as unit. Thus,
every non-trivial simple language L (i.e. L # {e} and L # (}) admits a unique
decomposition into prime (i.e. undecomposable, non-trivial) simple languages,
L=PP;...P,.

3 Prime Normal Form for Simple Grammars

In this section we give an algorithm converting any simple grammar to its canon-
ical representation called Prime Normal Form. A simple grammar is in Prime
Normal Form (PNF) if each of its nonterminals represents a prime. We will use
the following algebraic notation for left and right division in the free monoid
of prefix codes. If L = Ly Lo for some prefix codes L, Ly, Lo, then by L;lL we
denote Lo and by LL; I we denote Li. We call Ly a left divider and L a right
divider of L.

Let L be a prefix code and L = P; P, ... P, be its decomposition into primes.
Prime P,, will be called final prime of L, and it will be denoted by f(L). In
particular, if L is a prime, then f(L) = L.

Lemma 1. Let G = (X, N, P) be a simple grammar. For every X € N, there
exists Y € N, such that f(L(X)) = L(Y).
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Proof. Let w € L(X)f(L(X))"!, and X = wa be the leftmost derivation in G,
with o € N*. Since L(a) = f(L(X)) and L(«) is a prime, « consists of a single
nonterminal, i.e., « € N. a

Let wpag — ... — w; @ — ... — Wnay, be the leftmost derivation X = w, with
wop=¢, a0 =X, w, =w, ap, =¢, w; € X* and o; € N*, for i € [0,n]. We are
interested in the subsequence 7(X,w) = Yy, Y1,...,Y; of ag, a1, ..., ay, which
consists of those elements of ap,...,a, that are single nonterminals. E.g., for
the leftmost derivation of abedef € L(X):

X —-aYY - abY — abcY — abedY Z — abede Z — abede f
we have 7(X,abedef) = X,Y,Y, Z.

Definition 1. Let G = (X, N, P) be a simple grammar. We define relation D
over N U{e} as follows. (X,Y) € D if and only if:

— there exists a rule (X — aaY’) in P for some a € X and « € N*, or
— Y = ¢ and there exists a rule (X — a) in P for some a € X.

Relation D can be seen as a digraph (N U {e},D,¢) with sink €. In a digraph
with a sink, vertex v is called a d-articulation point of vertex u if and only if
v is present on every path from u to the sink. It was shown in [10] that the
order of first (or last) occurrences of the d-articulation points of a vertex v is
the same in all paths from v to the sink. Thus, it is natural to represent the
set of all d-articulation points for a given vertex v as an ordered list of vertices,
(up, u1, - .., up), where ug = v and u,, is the sink.

In [10], it was shown that a prefix code L is prime if and only if the initial
state v; of the minimal deterministic automaton for L does not have any d-
articulation point except sink and vy itself. Moreover, the list of d-articulation
points (v1,va,...,v,) corresponds to the prime decomposition of L, the factors
being the languages defined by automata having v; as the initial state and v;11
as the final state (with all outgoing transitions of the final state removed), for
i € [1,n), respectively.

Lemma 2. For every path w from X to ¢ in D there exists a word w € L(X),
such that m = w(X,w). Conversely, for every w € L(X), n(X,w) defines a path
from X to e in D.

We say that a grammar G = (X, N, P) is reduced if there is no two different

nonterminals defining the same language, i.e., for all X, Y € N, if L(X) = L(Y)
def

then X =Y. By Lemma 1, the set of nonterminals F(X) = {Y e N | L(Y) =
f(L(X))} is nonempty. If the underlying grammar is reduced then F'(X) consists
of a single nonterminal which, by convenient abuse of notation, will be denoted

by f(X).

Theorem 1. Let G = (X, N, P) be a reduced simple grammar. For every X €
N, L(X) is prime if and only if X does not have d-articulation points in D
except sink and X itself. Moreover, if Y € N is a d-articulation point of X then
L(Y) is a right divider of L(X).
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Proof. By Lemma 1, since G is reduced, every derivation starting in X is of form
X 5w’ f(X) S w. Thus, for every w € L(X), n(X,w) contains f(X), i.e., f(X)
is a d-articulation point of X in D.

Let Y be a d-articulation point of X in D. By Lemma 2, every derivation
starting in X passes by Y, thus Y is a d-articulation point for X in the (infinite)
deterministic automaton for X, which implies that L(Y) is a right divider of
L(X), cf. [11]. O

Theorem 2. Given a reduced simple grammar G = (X, N, P), we can find f(X)
for all X € N in linear time.

Proof. By Theorem 1, the non-terminal f(X) is exactly the second last d-
articulation point for X in D. Calculating f(X) for all X € N can be done
in linear time, by using an algorithm for finding dominators in flow graphs,
cf. [12]. |

The algorithm for transforming a simple grammar G = (X, N, P) into PNF,
called PNF(G, S), is presented in Figure 1.

Input: Simple grammar G = (X, N, P) and S € N™.
Output: Simple grammar G’ in PNF and S’ € N*, such that Lg(S) = Lo/ (S").

1. Reduce G.

Find redundant nonterminals by checking if L(X) = L(Y), for all X,Y € N.

Each redundant nonterminal is substituted in P and in S, and removed from N.
2. For every X € N, find f(X) € N.

Construct the digraph D and find the second-last d-articulation point for X.

If for every X € N, X = f(X), then return (G, 5).
3. Construct a new grammar G’ = (X, N, P’) and new S":

Define morphism h : N +— N* as: h(X) & {if(X) i)fthXer;viJsce(sz)

Set S” to h(S), and P’ as follows, for a € X, X, Y € N, a € N*:

(a) If (X — aa) € P and X = f(X), then (X — ah(a)) is in P'.

(b) If (X — aaf(X)) € P and X # f(X), then (X — ah()) is in P'.

(c) If (X —aaY) € P, X # f(X)and Y # f(X), then (X — ah(a)Y) is in P'.
4. Set G to G', S to S’ and go to 1.

Fig. 1. Algorithm PNF(G, S)

We present an example of the execution of the algorithm. The input con-
sists of a simple grammar G = {(X — adA),(X — YY), (Y — aY), (Y —
bBA),(A — a),(B — aXA),(B — b)}, and a simple language represented as a
word S = X A over nonterminals of G. We obtain the grammar in PNF while
keeping track of the decomposition of S. For each iteration, we give the value of
S, the grammar G, the digraph D (solid lines), the d-articulation tree (dotted
lines), and the values f(z) for z € {X,Y, A, B} and h(z) for x € {X,Y, A, B, S}.



Prime Normal Form and Equivalence of Simple Grammars 83

R v f(2) h(z)
X — aAA +bYY if j iﬁﬁ
Iteration 1: Y =aY +bBA
A—a A A A
o B B B
B=aXA+D S _ XAA
¢ van v f(2) h(z)
X = ad +bYAY if )Eg ;{B
Iteration 2: Y =aY + bB
A—q A A A
o B B B
B =aXAA+D S _ XAA
¢ v f(z) h(z)
X = aA + bYBAY B é )é )é
Iteration 3: Y =aY + b
A—q A A A
o B B B
B =aXAA+b S _ XAA

Theorem 3. The algorithm PNF(G,S) correctly computes a PNF simple gram-
mar G' and S’ such that Lg(S) = La/(57).

Proof. Step 1 does not change the semantics of any nonterminal, so it reduces
G to an equivalent simple grammar. Step 2 effectively finds final primes for all
nonterminals. Step 3 transforms the grammar G into G’ by right-factorizing
every non-prime nonterminal X by f(X): If X is prime then Lg(X) = La/(X),
otherwise Lg(X) = Lo/ (X f(X)). Every production (X — «a) € P is rewritten
accordingly into a corresponding production (X — () € P’. Hence, for all
X € N, Lg(X) = Lg/(h(X)). Thus morphism h converts grammar G together
with S to a grammar G’ with S = h(S) such that Lg(S) = Lg/(S). Every
iteration of the program cuts the length of non-prime nonterminals, in terms of
their prime decomposition, by one. Thus, the total number of iterations equals
the maximum length of the prime decompositions of nonterminals of the initial
grammar. Hence the algorithm terminates. By the exit condition from Step 2,
each nonterminal is prime, hence G is in PNF. O

Both steps, 2 and 3, of the algorithm may be computed in linear time, hence
the complexity of each iteration of the main loop is dominated by grammar
reduction from step 1.

The polynomial time algorithm from Section 6, repeated O(n?) times may be
used to perform the grammar reduction. However, for grammar G = {(4; —
aAsAs), (A2 — aA3zA3),...,(An_1 — aALA,), (A, — a)}, language Lg(Aq)
has an exponential number of primes with respect to the size of G. Hence the
number of iterations of the main loop of PNF(G,S) may be exponential and so
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may be the size of the resulting PNF grammar. Since simple languages constitute
a free monoid, the PNF form is unique.

Corollary 1. Fvery simple language L can be represented by a PNF simple
grammar G = (X, N, P) and a starting word S € N*, such that Lg(S) = L. Such
a representation is unique. The problem of constructing the PNF representation
of L given by a stimple grammar is decidable. The PNF representation may be of
exponential size with respect to the size of the original grammar.

4 First Mismatch-Pair Problem

Our approach to transform Caucal’s algorithm for the equivalence problem of
simple grammar, cf. [1], into a polynomial time one (with respect to the size of
the input grammar) is to use compressed representations of sequences of nonter-
minals, instead of using explicit representations.

We will use the terminology of acyclic morphisms because it is more conve-
nient in presenting our algorithms. It is basically equivalent to the representation
of a single word by a context-free grammar generating exactly one word, or to a
“straight line program”.

A morphism over a monoid M is an application H : M +— M such that
H(1py) = 1y and H(z -y) = H(z) - H(y), for all z,y € M. A morphism
H : M — M is fully defined by providing the values for the generators of M.
Thus, a morphism H over a finitely generated free monoid N* is usually defined
by providing H : N — N*. A morphism H : N — N7 is said to be acyclic
if we can order elements of IV in such a way that for each A € N, we have:
H(A) = A or A > B for each symbol B occurring in the string H(A). For an
acyclic morphism H over N* we denote HIN| by H*, since HINIT1 = HINI,
If H*(«) = w then we say that (H,«) is a compressed representation of w.
The size of w can be exponential with respect to the size of its compressed
representation.

Let G = (X, N, P) be a simple grammar. We say that an acyclic morphism
H : N — N7 is self-proving in G if for each A € N we have:

—If A— aa then H(A) — af and H*(«) = H*(8); and
— If H(A) — af3 then A — aa and H* (o) = H*(S).

The concept of self-proving relations was introduced by Courcelle, c.f [13].
The idea of Courcelle and the following Lemma are reformulated in the terms
of acyclic morphisms and given here for completeness.

Lemma 3. If H is an acyclic morphism self-proving in G = (X, N, P), then
La(x) = Lg(H(x)), for every x € N*.

The crucial tool in the polynomial-time algorithms is the compressed first
mismatch-pair problem, First-MP:
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Input: an acyclic morphism H : N — N7T and two strings =,y € N*;
Output:
— First-MP(z,y, H) = nil, if H*(z) = H*(y);
— First-MP(z,y, H) = failure, if one of H*(x), H*(y) is a proper
prefix of the other;
— First-MP(z,y,H) = (A,B) € N x N, where (A, B) is the first
mismatch pair, i.e., the first symbols occurring at the same po-
sition in H*(z) and in H*(y), respectively, which are different.

We say that a morphism H is binary if |[H(A)| < 2 for each A € N. The
following fact can be shown using the algorithm from [8].

Lemma 4. Assume that given acyclic morphism H : N +— N7 is binary and
that the length of x andy is at most O(|N|), then we can solve First-MP(x,y, H)
in time O(k% - h%), where k = |N| and h = min{k > 0 | H* = H*"'} is the
depth of the morphism.

5 The Equivalence Algorithm

Conceptually it is easier to deal with grammars in binary Greibach Normal
Form (denoted GNF2). This means that each side of the production is of the
form (A — aa), where a € ¥ and « € {e} UN U N2,

Lemma 5. For each simple grammar G of total size n (the total number of
symbols describing G) there is an equivalent simple grammar G' in GNF2 with
only O(n) nonterminal symbols. G' can be constructed from G in O(n) time.

The total size of a grammar in GNF2 is of a same order as the size of V. Hence
by the size of a grammar G = (X, N, P), we mean n = |N|.

All known algorithms for the equivalence problem for simple grammars are
based on the possibility of computing the quotient of one prefix language by
another, assuming that the quotient exists and the languages are given as two
nonterminals of a simple grammar.

More precisely, let A and B be two nonterminals of a simple grammar G =
(¥, N, P), such that L(A) = L(B) - L, for some language L C X*. The language
L can be derived from A by a leftmost derivation following any word w from
L(B), i.e., A5 wry, for v € N*, and L(v) = L.

Let ||A]| denote the length of the shortest word derivable from A.

Lemma 6. Let G be a simple grammar of size n. We can compute the lengths
of shortest words derivable from all nonterminals of G in time O(nlogn).

Proof. Finding ||A|| for all A € N corresponds to the single-source shortest paths
problem in an and/or graph, which, using Dijkstra algorithm, can be solved in
time O(nlogn). O

Lemma 7. Let A and B be two nonterminals of a simple grammar G= (X, N, P)
such that L(A) = L(B) - L, for some L C X*. We can compute v € N* such
that L(y) = L in time O(n). It is guaranteed that |y| < n.
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Proof. Consider the parse tree for the derivation of a shortest word w from A.
The idea is to find a path down the tree which cuts off left of this path subtrees
~ generating prefix of w of length ||B||. Since w is a shortest word, no path of
the parse tree contains two occurrences of the same nonterminal hence the depth
of the tree is at most n. Therefore |y| < n and computing the value takes O(n)
time. g

The result of the algorithm for finding the quotient of A by B as described in
the proof of Lemma 7 will be denoted by quot(A, B). The algorithm will give a
result for any pair of nonterminals A and B, as long as ||A|| > || B||. Notice that
L(A) = L(B quot(A, B)) only if L(B) is a left divider of L(A).

Lemma 3 is the starting point for the design of the algorithm EFQUIVA-
LENCE. Assume that we fix a linear order A; < As... < A, of nonterminals,
such that whenever ¢ < j, we have ||4;|| < ||4;]]. The idea of the algorithm is
to construct a self-proving morphism H or, in the process of its construction, to
discover a failure which contradicts L(A) = L(B). The main point of the algo-
rithm is to keep pairs of long strings in compressed form. We keep only strings of
linear length, their explicit representations are determined by the morphism H.
Each time a new rule is generated by setting H(A) = B~y, where v = quot(A, B),
we create pairs («, §) such that A — a« and By — a3, for every letter a of the
terminal alphabet. We keep the generated pairs in set . To each pair we apply
operation First-MP, which “eliminates” the next nonterminal, or finds that we
have a pair of identical strings, such pairs are removed from . By doing that,
the algorithm is checking locally for the proof of the nonequivalence of A and
B. If the nonequivalence is not discovered and there is nothing to process, i.e.,
Q is empty, the algorithm returns the value TRUE, meaning L(A) = L(B).

The algorithm FQUIVALENCE is presented in Fig. 2. For technical reasons
(to simplify the description of the algorithm) we assume that First-MP(x,y, H)
gives ordered pairs in the sense that if First-MP(x,y, H) = (A, B) then A > B.
For a« € Nt and a € ¥, by a-% we denote that there is a 3 € N* such that
a — af, and by a A that there is not. We write (a, 8) =(a’, ') to say that
a—aa and 8 —af.

Lemma 8. The algorithm is correct. The algorithm makes O(n) iterations.

Proof. In each iteration, either a pair of strings is removed from @), or a nonter-
minal is “eliminated” and no more than |X| pairs of strings are inserted into Q.
The crucial property is that whenever H(A) = B, then the nonterminals in By
are of smaller rank than A, ensuring that H is acyclic. Note also that First-MP
returns a pair (A, B) such that H(A) = A, therefore a nonterminal can only be
“eliminated” once. After at most n — 1 eliminations, First-MP will either find
that H*(61) = H*(f2) and remove the pair from Q or return failure. Thus, the
maximum number of iterations is O(n).

Correctness follows from Lemma 3. O

Corollary 2. The algorithm FEQUIVALENCE(X,Y,G) works in time
O(n F(n)), where n is the size of G, and F(n) is the complexity of the First
Mismatch-Pair Problem.
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Input: Simple grammar G = (X, N, P) and nonterminals X,Y € Nj;
Output: TRUE if Lg(X) = Lg(Y), FALSE otherwise.

Initialization:
Q = {(X,V)}
for each A € N do H[A] := A;
while @ is not empty do
(81, B2) := an element of Q;
switch (First-MP(f1, B2, H)) do
case nil : remove (01, [2) from Q;
case failure : return FALSE;
case (A, B)
~ := quot(A, B);
H[A] := Br; /* The nonterminal A is “eliminated” */
for each a € ¥ do
if (A, By) %(81,82) then insert (31, 82) into Q;
if (A% and B %) or (A4 and B-%) then return FALSE;
return TRUE;

Fig. 2. Algorithm EQUIVALENCE (X,Y,G)

Lemma 9. FEvery instance of First-MP(«, 3, H) in EQUIVALENCE (X,Y,G)
can be solved in time:

1. O(nSlog®n) and
2. O(n* polylog v(G)).

where n is the size of G, and v(G) is the length of a shortest string derivable
from a nonterminal, maximized over all nonterminals.

Proof. In the proof we use twice Lemma 4.

1. Assume H is an acyclic morphism over N, where n = |N| such that |H (A4)| <

n for each A. Then we can construct a morphism Hy such that H; = H*,
over a set of k < n? nonterminals and with depth h = O(nlogn).
The transformation of the morphism can be done similarly to a balanced
transformation into a Chomsky normal form. If H(A) = B1Bs...B, then
we introduce n — 2 new auxiliary nonterminals to change it into a balanced
binary tree generating B1Bs ... B, from A. We need O(n) new nontermi-
nals per each original one, altogether the number of nonterminals increases to
O(n?),i.e., k is in O(n?). However the depth is changed only logarithmically.
Observe that on each top down path in generation we have at most n orig-
inal nonterminals, all of them should be different, and at most O(nlogn)
auxiliary nonterminals, i.e., h is in O(nlogn). Now, point 1 follows from
Lemma 4.

2. We can use the technique from [14] which transforms each grammar gen-
erating a single word u into a grammar of depth O(log |u|) by introducing
O(npolylogn) new nonterminals. Then Lemma 4 can be applied. a
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The series of lemmas gives directly the following theorem, due to the fact that
after binarization of the morphism the number of variables grows quadratically
and the depth only grows by a logarithmic factor.

Theorem 4. The algorithm EQUIVALENCE (X,Y,G) deciding on the equiv-
alence of two nonterminals X and Y in a simple grammar G, works in time
O(n"log?n) and O(n® polylogv(G)), where n is the size of G, and v(G) is the
length of a shortest string derivable from a monterminal, maximized over all
nonterminals.

6 Randomized Algorithm for First-MP

We reduce equality of two compressed texts H*(A) and H*(B), to equality of
two polynomials of degree at most max(|H*(A)|, |[H*(B)]). It is essential that the
uncompressed lengths of strings H*(A) and H*(B) is only singly exponential. It
follows from the construction of the operation quot which involves only shortest
strings derivable from nonterminals of the grammar G.

Lemma 10 (Randomized Equality Testing). We can check if H*(A) =
H*(B) in O(npolylogn) randomized time.

Lemma 11. The first mismatch-pair problem can be solved by a randomized
algorithm in time O(n? polylogn).

Proof. We can check the equality of two prefixes of H*(A) and H*(B) at the
same time as the equality of H*(A) and H*(B). This can be done by changing H
into H’ which generates only corresponding segments. We omit the details. Then
Lemma 10 can be applied. If we can compute the equality of prefixes then we can
do a binary search to compute the first mismatch. We have to add as a coefficient
the number of iterations in the binary search. This number is logarithmic with
respect to the lengths of uncompressed strings, hence it is O(n), since the lengths
are only singly exponential. This completes the proof. a

Theorem 5. We can solve the equivalence problem for simple grammars by a
randomized algorithm in O(n* polylogn) time.

7 Conclusion

We have given an algorithm converting any simple grammar to its canonical
representation called Prime Normal Form. We also improved the complexity
of the best existing algorithm verifying equivalence of simple languages. This
result may be used to reduce simple grammars, which is the most expensive step
of the PNF algorithm. Despite this improvement, this algorithm still works in
exponential time in the worst case, since its output may be of exponential size.
However, this theoretical limitation does not seem to occur in practice in the
context of network packet filtering and classification.

One interesting open problem is to propose a canonical representation of
a simple grammar, and an algorithm computing it, such that the size of this
representation is polynomial in the size of the original grammar.
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Abstract. We present a fast incremental algorithm for constructing
minimal DFCA for a given language. Since it was shown that the DFCA
for a language L can have less states than the DFA for L, this technique
seems to be the best choice for incrementally building the automaton for
a large language, especially when the number of states in the DFCA is
significantly less than the number of states in the corresponding minimal
DFA. We have implemented the proposed algorithm and have tested it
against the best known DFCA minimization technique.

1 Introduction

We have witnessed in recent years a growing interest in the design of incremental
algorithms for finite automata [1-10]. The reason behind the (renewed) interest
for such incremental algorithms used for building a minimal Deterministic Finite
Automata (DFA) for a given dictionary (finite language) comes from the obser-
vation that such an incremental algorithm could have much smaller memory
requirements than a “global” minimization algorithm with little or no increase
in the time complexity of the overall minimization process.

The small memory requirements for incremental algorithms (as opposed to
“classical” minimization techniques) come from the fact that the DFA for a finite
language is built word-by-word and minimized as words are inserted into the
DFA. In this way the state complexity (and thus the memory requirements) of the
incrementally built DFA could remain small as compared to the state complexity
of a trie built for the whole dictionary as a first step and then minimizing the
trie into a small DFA using a fast algorithm such as Hopcroft’s which requires
O(n log(n)) time and O(n) space.

In the current paper we continue the research work in the incremental algo-
rithms area, with the observation that for finite languages there is the recently
defined concept of Deterministic Finite Cover Automata (DFCA) [11]. To con-
serve even more memory during the intermediate steps of the construction of the
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automaton we will devise an incremental algorithm for DFCA. We have proved
in [12] that when transforming an NFA into a DFA and also into a DFCA the
DFA can have exponentially more states than the DFCA; thus, there is a large
class of languages for which the DFCA is the desirable representation as op-
posed to the DFA. For the recent results and properties of DFCA we refer the
reader to [11,13,14,12,15,16, 17]. We note that a Hopcroft-type algorithm (with
O(n log(n)) time and O(n) space complexities) for the minimization of DFCA
was described in [15], but no incremental algorithms for DFCA are known. An-
other advantage of incremental solutions, beside efficiency, is maintenance, since
the technique for increasing the number of words in the dictionary is already
built-in. We fill this gap by describing an incremental algorithm for DFCA in
the current paper. We have implemented in the Grail+ package [18] both the al-
gorithm from [15] and the incremental algorithm proposed in the current paper;
the preliminary tests suggest that the incremental algorithm is far superior with
respect to the memory requirements as opposed to the Hopcroft-like algorithm,
while no noticeable slow-down was observed for the languages tested.

The presented algorithm has complexity O(kn) in time and O(n?) in space
for adding a word of size k into a DFCA with n states. The time complexity is
considered linear in literature in such a case (see [5]) due to the fact that the
size of a word from the language is usually much smaller than the size of the au-
tomaton accepting the language. Thus, we provide a fast incremental algorithm
(having the same time complexity as the known incremental algorithms for DFA
described in [10]), but with a small increase in the memory requirements. This
increase is small since, in practice, the complexity n is usually of logarithmical
order of the complexity (trie size) of non-incremental algorithms. We will give
an example of a language containing 2™ words for which the Hopcroft-like al-
gorithm for DFCA requires O(2") space, whereas our algorithm requires O(n?)
space.

For more information on incremental algorithms for DFA we refer the reader
to [1,2,3,4,5,7,8,9,10]. It is worth noting that the paper [3] could be very inter-
esting as it provides a comparison between the major algorithms (incremental/
non-incremental) for the DFA, the comparison being performed using various
dictionaries.

2 Preliminaries

We assume the reader is familiar with the basic notations of formal languages and
finite automata, cf. e.g. [19,20,21]. The cardinality of a finite set A is denoted
with #A, the set of words over a finite alphabet Y is denoted X*, and the empty
word is A. The length of a word w € X* is denoted |w|. The set of words over X
of length at most (respectively, at least) n is denoted X<" (respectively X=").

For a DFA D = (X,Q, qo,6, F), we can always assume, without loss of gen-
erality, that @ = {0,1,...,n — 1} and ¢y = 0; we will use this every time is
convenient for simplifying our notations. If L is a finite language, we denote by
[ the maximum among the length of words in L.
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Definition 1. A language L' over X is called a cover language for the finite
language L if L' N X< = L. A deterministic finite cover automaton (DFCA) for
L is a deterministic finite automaton (DFA) A, such that the language accepted
by A is a cover language of L.

Definition 2. Let z,y € X*. We define the following similarity relation by:
x ~p y if for all z € X* such that vz,yz € !, xvz € L iff yz € L, and we write
Ty if v~y does not hold.

Definition 3. Let A = (Q,X,6,0,F) be a DFA (or a DFCA). We define, for
each state q¢ € Q, level(q) = min{|w| | 6(0,w) = q}.

Definition 4. Let A = (Q, X, 6,0, F) be a DFCA for L. We consider two states
p, ¢ € Q and m = max{level(p),level(q)}. We say that p is similar with q in
A, denoted by p ~4 q, if for every w € X7 §(p,w) € F iff §(q,w) € F. We
say that two states are dissimilar if they are not similar.

The following theorem gives the procedure to “merge” two similar states.

Theorem 1. Let A = (Q,X,6,s,F) be a DFCA of L. Suppose that for p,q €
Q, p ~aq, p# q and level(p) < level(q). Then we can construct a« DFCA,
A =(Q,X,8,s, F'), for L such that Q' = Q —{q}, F' = F —{q}, and for each
t€Q anda € X we have

: (t,a) i o(t,a) £
(O R s

We say that ¢ is merged into p if we can apply the above theorem for p and g¢.

Definition 5. A DFCA A for a finite language is a minimal DFCA if and only
if any two different states of A are dissimilar.

Theorem 2. Any minimal DFCA of L has the same number of states.

We refer the reader to [11] for the proofs of the above results.

3 Adding a Word to the Language of a DFCA

In this section we will give the algorithm for adding a word to the language
accepted by a minimal DFCA while keeping the new DFCA minimal. For better
readability, we will set the notations for the subsequent results: L C X* is a finite
language over an alphabet X' and [ is the length of the longest word(s) in L. We
also consider C' = (X, Qc¢, éc, 0, Fc) a minimal DFCA for L (L = L(C) N X<,
where Qo = {0,1,...,n—1}. Let w € X*, w = wy ... wg, w; € X, 1 < i <k
be the new word to be added to the language L; thus, we want to construct the
minimal DFCA A recognizing the language L U {w}.
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The minimal DFA accepting {w} is denoted W = (¥, Qw, 0, b, Fi), where

Qw ={0,1,....,k+1},
Ow(t,wip1) =i+ 1, forall 0 <i < k,
bw(i,a) =k+1, foral0 <i<kand a#w;, ori=k+1,
Fy = {k}.

Let us denote by s; = 6¢(0,w1 ... w;), and sp = 0. We will consider and
construct different algorithms for two cases: kK <[ or k > [.

3.1 Adding a Word Shorter Than the Longest Word in the DFCA,
i.e., Case k <1

We consider now the case where the newly added word w has length less than
or equal to [. We will first modify the cover automaton C' such that the new
automaton A will accept a cover language for L U {w}. The construction is the
standard Cartesian product between two automata [19]. We observe that the
automaton W has a particular shape (a “line”), making many of the states in
the Cartesian product unreachable.

Before giving the actual construction we note that the states of the form
(p, k+1) with p € Q¢ from the Cartesian product will have the same transitions
as in the automaton C. Moreover, such a state is final in A if and only if p € Fp.
Another crucial observation is that for each (p, ) of the new automaton where i
is not the sink state of W (i.e. i # k4 1), p = s;. Due to the particular shape of
the automaton W and the fact that C is deterministic, we have that the number
of such states (p,i) is equal to the number of different prefixes for w. We now
know that the number of states that can be reachable from the start state (0,0)
can be at most #Q¢ +k+ 1: #Q¢ states of the form (p,k+1) and at most k+1
states of the form (p,i) with ¢ # k + 1. Thus, the original automaton C' can be
“embedded” in the new automaton with its states becoming the states (p, k + 1)
in the Cartesian product. It should be clear that the following construction is
equivalent to the standard Cartesian product between C' and W.

We now construct the DFA A = (X,Q4,64,04,Fa), with Q4 = Qc U Qw;
each state ¢ € Q¢ is denoted in Q4 by (¢,k + 1) and each state i € Qw is
denoted by (s;,4). The initial state is (sg,0) = (0,0), the set of final states is
Fa={(q,8) | ¢ € Fc or s = k}, and the transition function §4 is given by the
the following formula:

) _ J (sit1,1+1) ifi <k, p=s;, and wiy1 = a
8al(p,), @) = { (6c(p,a),k + 1) otherwise.

We can now use a standard breadth first search (BFS) algorithm to com-
pute/update the levels of the states in @ 4, as well as detecting any unreachable
states of the form (p, k + 1).

The next step is to minimize this DFCA; we are now interested in detecting
all the similarities in the automaton A. To do this we will use the notions level
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and gap of the states; level was defined in Section 2, while the gap between each
pair of states will be a matrix called the “gap” table [16]. We define the gap
between two states p and ¢ (in the automaton C) as the length of the shortest
word z € X* that distinguishes p from ¢:

gapc(p, q) = min({|z| | éc(p,2) € Fo and éc(q,2) & Fc}
U{lz| | 6c(p, z) & Fc and éc(q, z) € Fc}).

The gap in the automaton A is defined similarly.

Remark 1. The level for reachable states (p, ) is at least the level of the state p,
for all values of 7, since we do not introduce any “shortcuts”. For a state (p,i) €
Qa, if © < k, then levela((p,i)) = ¢ and if i« = k + 1, we have levels((p,i)) >
levelc(p).

We shall call from now on the states (p, k+1), “original states” and the states
(8i,1), “cloned” states (see also [2,10]).

If x € X* is not a prefix of w, we have 64((0,0),z) = (6¢(0,z),k+1). On the
other hand, if z is a prefix of w, i.e., x = wy ... w;, we have 64((0,0),z) = (s;,1%).

Lemma 1. If levela(si, k + 1) = levelc(s;), we have levela(siy1,k + 1) =
levelo(sit1)-

Proof. Let us assume that levela((s;, k + 1)) = levela(s;). We distinguish two
cases: either levelc(s;y1) = levelo(s;) + 1 or levelo(siy1) < levelo(s;) + 1.

In the first case levelc(si41) < levela(sit1,k + 1) < levela(s;,k+1)+1=
levelo(s;) + 1 = levelg(si+1), thus we have that levelg(si+1) = levela((Sit1,
kE+1)).

The second case means that there is u € X* such that 6c(0,u) = siy1,
|u| < levelo(s;)+1, u # wy ... w;wit1, and without the loss of generality we can
choose u the shortest with these properties. Therefore, §4((0,0),u) = (s;41, k+1)
and we have levelc(s;1) < levela(sit1,k+ 1) < |u| = levelc(Sit1)- a

The following lemma shows that for each cloned state the level will increase
only for the cloned state or only for the original state, but not for both.

Lemma 2. For every 0 < i < k we have the following properties:

if level o(ss, k + 1) > levelc(s;), then level o(s;,1) = levelc(s;);
if level A(84,1) > levelo(s;), then level o(s;, k + 1) = levelc(s;).

Proof. For i = 0, the lemma is true, since level(sp,0) = 0. Let us now consider
i > 0, then levela(s;, 1) > levelc(s;) and level s(s;, k + 1) > levelc(s;).
If both inequalities are strict, from the first inequality it immediately follows
that 8¢(0,w; ... w;) = s; and 6¢(0,u) = s;, for some u € X <%
If all these u are prefixes of w, then (s;, k + 1) is unreachable. Therefore, there
is one that is not a prefix of w. We can consider without loss of generality that
u is the shortest prefix with these properties.

Since 64((0,0),u) = (6c(0,u),k + 1) = (s;,k + 1), it follows that
levela(si, k + 1) < levelc(s;), a contradiction. O
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Corollary 1. There are at most k + 1 states (s;,1), (si,k+ 1), 1 <i <k for
which we have that level o((s;,1)) > levela(s;) orlevela((si, k+1)) > levelc(s;).

Remark 2. The gap between two “original” states is the same in A as it is in C,
Le., gapa((p, k +1),q(k + 1)) = gapc(p, q)-

Remark 3. Using the definition of similarity, we have that two states (p,i) and
(g, ) are similar in A if gap((p, 1), (¢, J)) + max{level s ((p, 1)), level((¢, 7))} > L.

The following result drastically reduces the number of possible similarities in
the automaton A; we will see that we need to check for similarities only between
states considered in Lemma 2 and the other states in A.

Lemma 3. The states (p,k+1) and (q,k+1) are dissimilar if level s(p, k+1) =
levelc(p) and levela(q, k + 1) = levela(q).

Proof. Assume they are similar. Therefore, using the definitions of similarity and
gap, we have that gapa((p,k+1), (g, k+1)) + max(levela(p, k+1),levela(q, k+
1)) > I. Since the states did not change their levels (levela(p, k+ 1) = levelc(p)
and levela(q,k + 1) = levelc(g)) and the function gap does not change for
pairs of states with k + 1 on the second component, we have that gapc(p, q) +
max(levelc(p), levelc(q)) > I, which means p ~¢ ¢, contradicting our assump-
tion of minimality for C. |

Following the result in Lemma 3, our algorithm needs to identify only the
similarities between the states of the type (s;,) or (s;,k + 1) and all the other
states in the automaton (including similarities between these states).

To achieve this goal we will store in memory all the computed values of gap
between any two states (from the previous step) and after adding the new word
to the language, use this information at the current step to compute/update the
similarities between any states.

Let us count how many similarities between “old states” may occur. Any two
states ¢ and p are dissimilar in C, but the states (p,k + 1) and (¢, k + 1), may
become similar. This can happen only if at least one of them changes its level
and gapA((pa k+ ]-)7 (q7 k+ 1)) + max{levelA((n k+ 1))7 levelA((Q7 k+ 1))} >,
i.e., only when one of them, say p, is equal to s;, for some 0 < i < k, according
to Corollary 1.

Looking only at the gapa((si,k + 1),(q,k + 1)) and at the new level(s) for
(si,k + 1) and (g, k + 1), one can decide immediately whether (p,k + 1) ~4
(¢,k + 1) or not. To compute the (new) levels in A we need to do this just for
states (s;, k + 1), which takes at most O(n) steps. To decide all the similarities
between states of the type (s;,k + 1) and (g, k + 1), one needs exactly n checks
for each state (s;, k + 1), thus in total O(kn) such comparisons.

We now proceed to detect similarities between the states of the form (s;, %)
with ¢ < k and the rest of the states. We start with the last final state newly
introduced, the state (s, k). It is obvious that (sg, k) is of level k and that using
a transition labelled with a letter a € X, the state (sg, k) will go into a state
of the form (p,k + 1): 64((sk,k),a) = (p,k + 1). To compute the gap between
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(sk, k) and any “old state”, assuming that we have the gap table for all pairs of
old states (see Remark 2), we use the following lemma.

Lemma 4. For all q € Fo, we have that
ga'pA((sk7 k)a (Q7 k + 1)) =1+ ggg{gapC(éC(sk7 a)a 60((]7 a’))} .
For all g € Qc — F¢, we have then that gapa((sk, k), (¢, k+1)) =0.

Proof. Since the gap between states with k + 1 on the second component is not
changed as observed in Remark 2, and (6¢(sk,a),6c(q,a)) € Qo x {k+ 1}, by
the definition of gap we obtain:

gapA((sk7 k)’ (Q7 k+ 1)) =1+ ggg{gapfl(éz‘l((sh k)’ a)v 6A((Q7 k+ 1)’ a))}
= 1+ min{gapc(éc sk, a), 6c(p, a))}-

The second part of the lemma is obvious. a

Once the gap between (si, k) and all the original states is computed, then
the gap between the state (sx_1,k — 1) and all the old states plus (sg, k) can
be computed using a similar observation to Lemma 4. Denote by Sy, = {(s;,1) |
i>m}U{(p,k+1)|p€ Qc}, where 1 <m < k.

Lemma 5. Assume that the gapa was computed between all pairs of states in
Sm- Then one can compute the gapa for all pairs of states from Sp—1.

Proof. Since S,,, C S,,—1, we already have most of the values of gap4 computed;
we only need to determine gapa for (s,,—1,m — 1) and all the states from S,,.
We notice that in one step the states (spy,—1,m — 1) and (p,j) € Sy, will go in
states from Sy, i.e., 64((sm—1,m —1),a),64((p,J),a) € Sm, for all a € X, thus
the gapa for S;,—1 can be computed. O

The exact formula to “extend” the gaps from S, to S,,—1 is given by the
following lemma.

Lemma 6. For any state ¢ € Q¢ and for any 0 < i < k we have:

Zf (Siai
1)) =0;
if (siyi) € Fa and (q,k + 1) € Fa, then the gap can be computed as follows:
gapa((si,i), (¢, k+1)) =1+ ggg{gapA(éA((Si; i),a),0a((¢; k +1), a))} =

min({gapa((si+1,i + 1), (0c(q, wi), k + 1))} U {gapc(dc(si,a),6c(q,a)) | a €
X —{wit}).

We can have a small speedup for the gap computation in the implementa-
tion of the algorithm by noticing that gapa((si, i), (p,k + 1)) = gapc(s;,p) if
gapc(si,p) <k —iforall0<i<k—1.

Lemma 4 and Lemma 6 suggest the work of the algorithm. We first compute
the gap between (s, k) and the old states; we now have the gap computed

€ Fa and (q,k +1) € Qa — Fa or vice versa, then gapa((s;,i),(q,k +
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between all the states in Sj. At the second step we can compute the gap between
(sk—1,k—1) and the states from Sy obtaining gap for Si_1. At the next step we
can compute the gap between (sx_2,k — 2) and states from Si_; using values
of gap computed for Si_; obtaining gap for Si_s. The process can be iterated
up until we have computed all the gap function for Sy, which is actually the gap
for all pairs of states in Q4.

Once the gap matrix is fully computed, the similarities between any two
states p,q € @4 can be determined easily by checking the levels of p, g and the
gapa(p, q) using Remark 3. We do this just for the “cloned” states and “original”
states that change their levels, since all the other pairs of states are dissimilar
by Lemma 3.

The Incremental Algorithm: We give now a sketch for the incremental algorithm
proposed; a more detailed pseudocode can be found in the appendix along with
the C++ source code (implementation in the Grail+ package).

Input C, gapc, w, k, I
Output A, gapa
Build A as, described in subsection 3.1
Do a breath first search to compute levela(p,i) for all (p,i) € Qa.
For all ¢ € Q¢
Compute gapa((sk,k),(¢,k+1)) (cf. Lemma 4)
For i=k-1 down to O
For all g € Q¢
Compute gapa((s;,i),(¢,k+1)) (cf. Lemma 6)
For all q € F¢
Compute similarity for the pairs (sy, k), (¢,k+1).
For i=k-1 down to O
For j=k+1 down to ¢+1
Compute similarity for the pairs (s;,k+1),(s;,k+1),
For i=k-1 down to O
For all g € Q¢
Compute similarity for the pairs (s;i),(¢,k+1).
Reduce the automaton by merging similar states.

The algorithm has been implemented in Grail+ and was tested against the
algorithm presented in [15]. The source code of the implementation as well as
the Grail4 updated version will be made available by e-mail request and also at
the address http://www.latech.edu/~apaun/cover.html. The test language
chosen was Ly = {w | |w| = k} since it was expected that this language will pro-
vide good compression results for the DFCA. We obtained the following results’
that show an excellent performance of our method for the chosen test language.
He have been running both algorithms on the same computer (CPU: Pentium

! It is worth mentioning that the words were inserted incrementally in the standard
lexicographical order to the cover automaton. We do not believe that this fact had
a significant influence on the time/space efficiency of the proposed algorithm.
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4 3.4 GHz; Memory: 1GB DDR400; OS: Linux 2.6.8.1 kernel (Slackware 10.0)).
In the table we give the name of the algorithm, the maximum number of states
in the memory during the execution of the algorithm, the maximum memory
space needed, and the time required for the algorithm to finish (for the Kérner
algorithm we give the time required without and then with the trie building).

Algorithm States Memory req. Time/time with trie 1 Alphabet size
Korner 3905 70k 1.512s/1.961s 5 )
Incremnt. 18 1.8k 0.461s 5 5
Korner 19530 1.4M 40.52s8/52.706s 6 5
Incremnt. 21 2.2k 3.196s 6 5)
Korner 97655 7.0M 24min 49.26s/34min 6.944s 7 5
Incremnt. 24 2.7k 22.420s 7 5)

3.2 Adding a Word of Length |w| =k > 1

We start the discussion in this case by noting that if there exists x € L, such
that | < |zu| < k and 6¢(0,2) = 6¢(0,xu) = p (where p € Q¢), then we need to
“split” the state p, otherwise the word zu of length less than or equal to & will
be also considered in the new cover language. In other words, to make sure that
no other words are in the language accepted by the new DFCA A, all loops in
C must be expanded to chains of length at least [. However, any chain of length
greater than [ should go in a “sink” state with the last transition of that chain
because we accept only one word of length greater than [. We will construct the
new automaton as having the level encoded in the state; thus, the states will be
of the form (p,¢), where p € Q¢ and level 4((p, 7)) = i (the level information will
be attached to each state by construction).
We construct the following DFCA: A = (X, Qa,04,(n,0), Fa), where:

bc(p,a),i+1) ifi <l

bc(si,a),i+1) ifi <l, p=n and w41 # a,
n,i+1) if p=n and w1 = a,
n,k+1) in all other cases.

(
5a((p.i),a) = E
(

Fa={(¢.8) | g€ Fo,s <1} U{(n,k)} U{(n,i)|s; € Fc}.
Of course, Qa4 C Q¢ x {0,1,...,k+1}.

Lemma 7. The DFA A constructed above is accepting L(A) = L U {w}.

Proof. Let x € L: if x is not a prefix of w, then §4((n,0),z) = (6¢(0,z), |z]).
Since = € L, we have that 6c(0,z) € F¢, thus by the definition of Fs and
because |z| < I, we also have that (6¢(0, ), |x|) € Fa. This means that if x is
not a prefix of w then = € L(A).

If = is a prefix of w, i.e., x = wy ... w; we also have that 64((n,0),z) =
(n,|z]) = (n,3). But (n,i) € F4 if and only if s; € Fg, which is true if
x = wi...w;. Therefore, L C L(A). We also have that w € L(A), since
64((n,0),w) = (n,k) € Fa.
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We will now prove that L(A) C L U {w}: in other words, for the automaton
A, if z € L(A) then z € LU {w}. Let € L(A), i.e, §a((n,0),z) € Fa. We
distinguish two cases: when x is not a prefix of w and when z is a prefix of w.

In the first case, §4((n,0),x) = (6¢(0, x), |x|), which implies by the definition
of F4 that |z| <. But since 6¢(0,z) € F¢ and |z| <1, it follows that z € L.

In the second case, = is a prefix of w, so §4((n,0), x) = (n, |z|). Since x € L(A),
(n,|z|) needs to be final in A, thus either |z| = i where s; € F¢ or |z| = k. In
other words, z is a prefix of w that isin L or z = w, i.e., z € LU {w}. |

We now describe the properties of the automaton A: we can easily see that
levelo(p,1)) > levelc(p) for all possible values of p and i. Also, one can note
that the state (n,k 4 1) is a sink state and levela((n,k+ 1)) =1+ 1.

Since this automaton has a particular form, we can speed up the process of
completing the gap table for the new automaton by giving some formulas for
particular pairs of states.

Remark 4. 1. All states (p,1), with p € F¢ are final and they are equivalent to
(n, k). Therefore, they can be merged together; the gap between these states is
E+1.

2. The sink state (n,k + 1), is similar with all non-final states which cannot
reach a final state with a word of length at most & — 1 — 1.

3. The gap between the sink state and (n, k) (final state) is 0.

Using the above remarks and a technique similar to the one in [22] we can
now compute the gap function for all states of A. For our algorithm we only need
to compute the gap function for the sink state (n,k + 1) and all other states.
This is done using a BFS traversal for each final state of the graph associated
with the new DFA while considering the arrows reversed.

Once we have the gap computed for the sink state and all other states we can
proceed to the next step.
Let us compute gapa((p,i), (g, j) for states p,q € Q¢, and 7,5 < L.

Remark 5. 1f gapc(p, q) + max(i, j) <1, gapa((p i), (a.4)) = gapc(p, q)-

For the states with higher levels, i.e., gap(p, ¢)+max(i, j) > [, one can compute
the gapa table using the technique for computing gap for a (not necessarily
minimal) DFA as in [16].

For computing the gap function between the states (n,7) and all other states
we use the same technique used in Lemma 6. Due to the space limitations, we
leave the details of updating the gap function to the reader.

The minimization algorithm for this case is basically the same as for the case
|w| <1, with the following differences:

1. the initial construction has to embed the level in the name of the state, and
we do this up to level [;

2. we first compute the gap between the sink state (n,k 4+ 1) and all other
states;

3. the “old” states having several levels will inherit the gap table from C as
described in Remark 5;
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4. the next steps are the same as in [16], computing the gap function for the
“newly introduced” states, using a formula as given below:

0, if s; € Foc andp ¢ Fc or s; ¢ Fo and p € Fo

gapA((n’i)’ (p,j)) =41+ min{gapA(6A<(n7i)aa)véA((puj)aa)) ‘}Cll € E}a
otherwise.

Due to the space limitations, we leave the details of updating the gap function
and the details (e.g., pseudocode) of the algorithm to the reader.

Remark 6. The time complexity for adding a word of length k£ greater than [
increases significantly, since each time we “expand” the DFCA for [ to a DFA
for L U {w} we can have an explosion in the number of states. This behavior is
expected mostly in the case when n is much smaller than k.

To avoid such explosions, the best choice is to start the incremental algorithm
with the longest word in the language. When this cannot be done due to specific
restrictions imposed by the problem/language considered, one should try to add
it as soon as possible.

4 Final Remarks

Our incremental algorithm described in section 3.1 is fast, but it was observed
(see e.g.[10]) that such an incremental algorithm could be modified to run even
faster if one can perform a preprocessing (which is in fact sorting) of the input
set of strings. We already have good results in this direction and submission
of another paper describing an incremental algorithm for sorted input data is
expected. The string subtraction has a similar algorithm to the string addition.
We also devised a string subtraction algorithm, but due to the space limita-
tion of the contribution we have not included it. We also plan to conduct more
experiments using real dictionaries and compare the difference in the memory re-
quirements between our incremental algorithms and other DFCA minimization
algorithms. It is also worth noting that the string addition algorithm for the case
when |w| > [ can produce a high number of states, thus it is now efficient to first
scan the words in the language and find the longest word (requires O(n) time),
and then to start the algorithm with the longest word in L. The discussion for
the case |w| > [ is valuable if one needs the ability to update (maybe later) the
language; for example, adding a new word to a spellchecker should permit also
the addition of longer words. It is open whether a faster algorithm for the case
|w| > I can be devised, or whether one can design an incremental algorithm of
linear space for the string addition into the language of a DFCA.
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A The Pseudocode for the Algorithm

Input: A DFCA C = (X,Q,0,6, F') for the language L with the length of the
largest word [. We also have as input the new word to be introduced w with
|w| <1, and the precomputed arrays level and gap which store the levels of the
states and the gaps between states, respectively.

Output: A DFCA A = (X,Q’,0',8', F’) for the language L U {w} with the
arrays level and gap updated.

if we Lorif |lw| > return /* do nothing in these cases™/
let k = |w|
create k + 1 new states with the labels n,n+1,....n+k—1,n+k
create the arrays old of size k 4+ 1 and merged of size n + k + 1 initialized with
0. 0ld[0] =0
for i=1 to k do old[i] = §(old[i — 1], w][i])
new =n
for i=0to k—1 do

for all a € X' do §(new, a) = é(old[i],a)

d(new, wli]) = new + 1; new = new + 1
for all a € X do 6(n + k,a) = 6(old[k], a)
Apply the Breadth First algorithm starting in n and compute/update the levels
of all states old[i] with 0 < ¢ < k. If such a state p becomes unreachable, then
merged[p] =1
for j=0 to n — 1 do /*we compute the gaps between old states and n + k*/

if j ¢ F then gap[n + k,j] = 0; gap[j,n+ k] =0

else min =1+1
for all a € X' do
currentgap = gaplé(j,a), 6(old[k], a)]
if min > currentgap then min = currentgap
gap[n + k, j| = min + 1; gaplj,n + k] = min + 1

for i =n+k —1 down to n do

for j =0 ton —1 do /*find the gaps between ¢ and the old states*/

min=I+1
for all a € X' do
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currentgap = gapl6(j,a), 6(i, a)]
if min > currentgap then min = currentgap
gapli, j| = min + 1; gaplj,i] = min + 1
for j =i+ 1ton+k do /*find the gaps between the new states*/
gap[ia .7} = min(gap[old[i—n],j], gap[é(ia w[i _n])v 6(]7 w[l_n)} + 1)
/* We have the gap matrix completely computed, thus the similarities between
the new states and the old states can now be detected */
for 7=0 to k do
if old[j] # i and merged[i] + merged[j] == 0 then
lev = max(level[old[j]], level[i])
if gaplold[j],i] 4+ lev > | then merge(i, old[j])
for ¢ =n + k dow to n do
for j =i —1 down to 0 do
if merged[j] == 0 then lev = maz(level[i], level[j])
if gapli, j] + lev > I then merge(i,j)
/* We now delete the rows and columns from the matrix gap for the states that
were deleted (either merged or unreachable)*/
swap(0,n) /* the new start state n is swapped with the old start state*/
i=1j=n+k
while 7 < 5 do
while merged|[j] == 1 do j = j — 1 /*j points to the last state that does
not disappear*/
while merged[i] == 0 do ¢ = i + 1 /* i points to the first state that
disappears */
swap(i,j) /* we update the gap level and merged arrays*/
i=i+1; j=j-1
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Abstract. The class of unbounded unions of regular pattern languages
with bounded constant segments is identifiable from positive data in the
limit [1]. Otherwise, no efficient algorithm that performs the inference of
this class of languages is known. We propose a solution to this problem
using the existing connexion between the positive variety of languages
of dot depth 1/2, £LJ " [2] and the class of unbounded union of pattern
languages RPT L.

1 Introduction

Pattern languages have been introduced by Angluin in [3], where she has shown
that they are identifiable from positive data. They have been used for machine
discovery of protein motifs from amino acid sequences in [4].

A pattern is a word on the alphabet X' U X, where X' is a finite alphabet (of
constant symbols) and X is a disjoint countable alphabet (of variables). Given
a pattern p, the language L(p) is defined as the set of words on X' obtained by
replacing the variables in p by constant words.

The class of pattern languages is efficiently identifiable from positive data in
the limit [3]. From the point of view of applications, the use of only one pattern is
not enough flexible and it would be more interesting to use several patterns. The
problem for doing so is that the class of pattern languages is not closed under
union. If we consider the closure under union of the class of pattern languages
PtL we obtain a class (unbounded unions of pattern languages) that is not
identifiable from positive samples, as any word w € X* is also a pattern such that
L(w) = {w} and, consequently, the class of unions of pattern languages contains
every finite language and also some infinite languages. The same problem still
remains when we consider the union of regular pattern languages RP "L, that is,
patterns in which any variable occurs at most once in the pattern. Shinohara and
Arimura [1] have considered an interesting restriction of the class of unbounded
unions of regular pattern languages, for any k > 0 they consider the class of
unions of pattern in which the length of the constant segments is bounded by k
(unbounded union of regular pattern languages with bounded constant segments
(RP}L)). In other words, a language belongs to RP* L if and only if it belongs
to 7'\’,772'[, for some k > 0. For any k, RPi is identifiable from positive data in the
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limit [1]. The proof given by Shinohara and Arimura uses a theorem of Higman
on well-quasi ordering. Nevertheless, they do not give an efficient algorithm to
identify any class RP;C.

In this work we propose an efficient algorithm for the inference of RP@*E
using a relation between RPTL and the positive variety of languages LJ ' [2],
also known as languages of dot-depth 1/2.

We show here that, for any k > 0, RP} L € LJ}, ;. From this fact and from
the relation LI = J* x LI [5] the problem of the inference of RP} L from
positive data can be solved in an easy way through the scheme of inference of
languages in varieties of the form V x LI proposed in [6] and [7]. So, we give an
efficient algorithm to learn languages from R”PZ[,.

2 Preliminaries

In this section we will describe some facts about formal languages in order to
make the notation understandable to the reader. For further details about the
definitions, the reader is referred to [8].

Let X be a finite alphabet and let X* be the free monoid generated by X with
concatenation as the binary operation and € as neutral element, and let X be
the free semigroup generated by X with concatenation as the binary operation.
Any subset L C X* is called language, we will refer to its elements as words and
the length of a word will be denoted as |z|. Let X* (resp. X<F) be the set of
word of length & (resp. less than or equal to k) on X*.

Given z € X* if x = uvw with u,v,w € X*, then u (resp. w) is called prefix
(resp. suffiz) of x, whereas v is called a segment of z. The set of prefixes (resp.
suffixes) of a word = will be denoted as Pr(x) (resp. Suf(z)). We will also denote
by Pri(z) the prefix of length k of x (resp. by Sufi(z) the suffix of length k of
x). Given x,y € X*, we say that x = aras---ay, with a; € X, i =1,2,...,nis
a subword of y, and we denote this relationship by = | y if y = zpa121a2 - - - ap2n,
with z; € X* for i =0,1,...,n.

A Nondeterministic Finite Automaton (NFA) is defined as a quintuple A =
(Q, X, 6,Q0, F) where @ is a finite set of states, X is a finite alphabet, Qo C Q is
the set of initial states, F' C @ is the set of final states and 6 is a partial function
from @ x X into P(Q), which can be extended to a function from P(Q) x X
into P(Q) by establishing 6(Q",a) = U,cq 6(¢,a) for any Q' C Q and a € X It
can also be extended to a function from P(Q) x X* into P(Q) by establishing
6(Q",¢) = Q' and 6(Q',za) = 6(6(Q',x),a), for every Q' C @, v € X* and
a € X. If in the previous definition we take Qo = {qo} with ¢o € @ and § as a
function from @ x X* into @), we obtain the definition of Deterministic Finite
Automaton (DFA).

A word z is accepted by an automaton A if §((Qo),z) N F # 0. The set of
words accepted by A is denoted by L(A).

A sequential machine is a sextuple A = (Q, X, A, 6, \, F) where @, X and 6
are defined in the same way as in a DFA, A is the output alphabet and the
output function A is a function that maps @) x X into A*, which can be extended
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to @ x X* by establishing A(q, €) = ¢, and A(q, za) = A(q, x)A(6(q, x), a), for every
geQ,x e X*andac X.

We use the model of learning called identification in the limit [9]. An algorithm
A identifies a class of languages H in the limit if and only if for any L € H,
on input of any presentation of L, the infinite sequence of output languages
obtained by A converges to L.

2.1 Formal Languages

A language is of level 1/2 in the Straubing-Thérien hierarchy if it is a finite union
of languages of the form X*a;X*axX* - X*a, X", where aq, ..., a, € X. The
family of languages of level 1/2 in the Straubing-Thérien’s hierarchy forms the
positive variety J+ corresponding to the variety of ordered monoids J* [5].

The languages of dot-depth 1/2 are finite unions of languages of the form
ug X ur X* - - up—1 X*ug, where k > 0 and ug, ..., ur € X*. The family of lan-
guages of dot-depth 1/2 forms the positive variety LJ ™+ corresponding to the
variety of ordered semigroups LJ T [5].

The next theoretical result comes from [5] and characterizes some subclasses
of LTT.

Given some words u1, U2, ..., u, of the same length, we define
L(uy,...,uy) ={u € X% |uy,...,u, occur in this order as segments of u}
If we set u = uqug - - - up, € (X%)* with u; € X* fori € {1,...,n}, we also denote

L(ui,...,u,) by L(u).

Theorem 1. [5] Let L be a language of X7 . The following conditions are equiv-
alent.

(1) L is of dot-depth 1/2,

(2) L is a finite union of languages of the form {u}, with |u| < k—1 or pX*N
L(uy, ..., u,) N X*s, where, for somek >1,p,s € X and uy, ..., u, is
a sequence of words of Y.

For a given k > 0, we will denote by £J} the languages defined in (2).

It is known that LJ* = J* % LI and that LI} = J* « LI, [5].

LI is the variety of locally trivial finite semigroups. For any k& > 0 the variety
of languages corresponding to LI, consists of languages of the form XX*Y U Z
with X, Y C X* and Z C ¥<* some other definition can be found in [10].

2.2 Pattern Languages

Let X be a set of constant symbols containing at least two symbols, and X be
a countable set of variable symbols. We assume that X N X = (). A pattern p is
a word on (X' U X)*. Note that we consider the empty word e. We denote by P
the set of all patterns. The length of a pattern p € P, will be denoted by |[p|.
A substitution p is a homomorphism from patterns to patterns that maps every
constant to itself. For a pattern p and a substitution p. We say that a pattern
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q is a generalization of p, or p is an instance of ¢, and we denote that fact by
p = g, if there is a substitution p such that p(q) = p.

The language defined by a pattern p € P is the set L(p) = {w € X* | w < p}.
We denote by PL the class of all pattern languages.

In this paper, we are specially concerned about a subclass of P. A pattern
p € P is regular, if each variable appears at most once in p, i. e. for any x € X,
the number of occurrences of = in p |pl, < 1. A regular pattern language is a
pattern language defined by a regular pattern. We denote by RP the set of all
regular patters, and by RPL the set of all regular patterns languages.

We are also concerned with unions of languages defined by patterns. By PT
we denote the class of all nonempty finite subsets of P. Analogously, by RPT
we denote the class of all nonempty finite subsets of RP, and by RP'L the
corresponding class of languages.

The next proposition shows that the class of unions of pattern languages is
exactly the positive variety £J .

Proposition 1. The class of unions of reqular pattern languages RPTL is the
positive variety of languages LT ™.

Proof. By the definition of £LJ ", it suffices to see that for any pattern p, L(p) =
ug X *ur X* - - - up—1 X *ug, for some k > 0 and ug, ..., ur € X*, and that for any
language L in this form, there exists a pattern p, such that L(p) = L.

Finally we are interested in unions of bounded pattern languages. Given an
integer £k > 0 a k-bounded pattern is a pattern that has at most £ constant
consecutive symbols. We will denote the set of all these patterns as Py, and as
in the previous cases we will denote by RPy and RPyL, the sets of k-bounded
regular patterns and k-bounded regular pattern languages. From the definition of
bounded pattern we obtain the definition of union of k-bounded regular pattern
and k-bounded regular pattern languages, that will be denoted by R’P,j' and
RP; L respectively.

3 Inferring J+

In this section we describe an algorithm for the inference of languages that
belongs to J .

Given a sample S = {x1,x2,...,x,} we can associate a language L s+5 € J+
as follows

Ls+s={x € X" | there exists i € {1,...,n} such that z; | z}.
Proposition 2. Ls+g is the smallest language in J* that contains S.

Proof. If K € J* and w € K, any word z such that w | x belongs to K. If
furthermore S C K, K contains all words x such that z; | « for some z; € S.
And then, Ls+s C K.

Algorithm 1 yields a NF A by constructing for every word x; an automaton
that accepts all words which have z; as subwords, we order S and check the



108 A. Cano and P. Garcia

acceptance of any word before constructing the automaton in order to save
automaton size.

For the study of the convergence of Algorithm 1 we have that for any alphabet
X and any language L € J+(X*), L can be written as (J;;.,, X*ai1 X* ...
X* a;,, X*. Then, if we use as input of the algorithm the set S = {aj1---
A1y -5 Gm,1 " Gmon,, }, We have that L 7+g = L, and the result follows from
Proposition 2.

The time complexity of Algorithm 1is N-X. Let S = {z1,z2,...,2,} and let
N = |z1|+|z2|+- - -+]|zn|. As for any i € {1,...,n} The J* Inference Algorithm
constructs an automaton whose number of states is |z;| + 1, having every state
at most | X| transitions, the complexity of the algorithm is N - X. Nevertheless,
if we consider an implementation where the construction of transitions is linear,
the overall algorithm complexity would be linear with the size of the input
data.

Algorithm 1. 7' Inference
Input: S set of words over X
Output: NFA A = (Q, X, 6,Qo, F), such that L(A) = Ly+g
Method:
Q=0;6=0;F=0;Qo=0
Order S by decreasing length as: S = {z1,z2,...,Zm}
For z; =aia2...a, €S Do
If 6(Qo,z)NEF =0 Then
Q=QU {(i,O), (iv 1)7 R (lvn)}
For j=0 To n—1 Do
6= 60 ((i,7), a5, (i, + 1))
For ce X\{a;}
6=06U ((i,j)7cv (Z,J))
For ce ¥
6=06U((i,n),c, (i,n))
Qo =QoU{(i,0)}
F=FuU{(i,n)}
Return (A)

4 Inferring LJ T

We recall the following definitions and theorems that will lead us in the inference
process. We follow a similar scheme to the scheme used in [6, 7].

Theorem 2 (Ginzburg and Rose, see [11]). Let 7 : X* — I'* be the se-
quential function realized by the transducer T = (P, X, T,61,,po, F) and let
A = (Q,I,62,q0.F") be an automaton such that L = L(A). The language
7=Y(L) C I* is recognized by the cascade product Aot = (Q x P, A, 8, [qo, po], F’
x F'), with the transition function defined as 6([q, pl, a) = (82(q, A(p,a)), 61(p, a)).

We define now the transduction 73 p, for £ and £ C Xk=1 that will be used
in the sequel.
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Definition 1. For k > 0 and a finite set of word F C k=1 Let ThF =
(Q,X,B,6,\ qo, FUX<F1) be a sequential machine defined as Q = Uf;OlZi,
po=¢,B= U;:ll k=150 U XF and for every p € Q and a € A, the transition
and output functions are respectively defined as:

_ [ pa iflp| <k —1
5@”“‘{n4umnfm=k—1‘md

[l ifp| < k-1
M“@‘{m fll=k—1"

The sequential machine 7 r , for a given & > 0 and a word z € X, outputs a
word 7 p(x) whose symbols are the segments of length k (considering as initial
segments *~1a; | #*"2ajas | --- | fa1 - ax_2 being w = ay - - - a, € Prefiz(z))
of z, in order, and the last segment of length k—1 belong to F'. Examples of 73
for the values k = 2 with F' = {a} and k = 3 with F = {aa, bb} for X = {a, b}
can be seen in Figure 1.

a/aaa

a/aa

b/bbb

Fig. 1. Transducers 72 g,3 and 73 £4q,553

In order to use 7 r in some algebraic proofs, we define the morphism h from
B* into (X*)* for any word b € B* by setting

b if be Xk
h(b) = { 1 otherwise

Now, we describe the algorithm 2 in order to infer languages from £J z This
algorithm will use some of the above elements.
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Given a word z, we can associate to this word a language L, JHey I LT
as follows,

I = if ‘.73‘ <k
LT} T\ Pri_1(2) 2% 0 L(h(m(x))) N Z*Sufr_1(x) if |z| > k.

Given a sample S = {z1,22,...,2,}, we can extend the previous definition
by associating the language Lﬁj,js e LT as follows

x € Ly+g < there exists i, such that x € Ly 7+ 5.

Proposition 3. LLJ;S is the smallest language in EJZ' that contains S.

Proof. It suffices to show that the result holds for S = {z} for some z € X*.
The result is trivial if |z] < k.

If S € Land L € LJ; then for any i € {1,...,n} there exists y; with
Tk, k=1 (yi) ‘ Th, sk—1 (z;) and PT}C,1($Z‘)E*QL(h(Tk7Ek—1 (y:)))NEZ*Sufr_1(x;) C
L. So, for any i € {1,...,n}, Lﬁjj{xi} C L. And then, LLJ;S CL.

The algorithm 2 tries to calculate Lﬁj:{ii} for any z; in S. We order S and

check the acceptance of any word before constructing the automaton. To see that
the algorithm calculates Lﬁj:{m} for any wx;, it suffices to see that if |z;| < k—1,

x; is accepted by the definition of the cascade product and by the fact that the
transduction is filled by the symbols # on the left. If |z;| > k, the language of the
automaton contains L(u1, ..., u,) by the definition of the transducer 74 g, fur-
ther more since the transduction is filled by the symbols # on the left this implies
that the prefix of all words belonging to the language accepted by the automaton
is exactly Pri(x). Finally, by choosing F' = Suf;_1(x), the suffix of all all word
belonging to the language accepted by the automaton is exactly Sufr_1(x).

Algorithm 2. LJ;F Inference
Input: S set of words over X and k a positive integer
Output: NFA A = (Q, X, 6, Qo, F), consistent with S such that L(A) =L
Method:
Q=0;6=0;F=0;Qo=10
Order S by decreasing length as: S = {z1,z2,...,2m}
For 1 <i<m Do
If 6(Qo,z)NEF =0 Then

A =(Q,%X.,5,Q0,F)=J" Inference(ty,sus,_,(x)(Ti))

A=AUA o7 sup_(a)

Return (A )

+
L3 . s

The convergence of Algorithm 2 is a direct consequence of Proposition 3.

The time complexity of Algorithm 2 is N * | X|**1. Let S = {z1,22,..., 2.}
and let N = |x1| + |z2| + - - - + |2 |. The size of the transducer 7 r is of order
|XF| but computing 74 g (z;) for i € {1,...,n}, is of order |z;|. Since the only
remaining steps to be done by the algorithm are: to apply the Algorithm 2 and to
calculate the cascade product, the complexity of the Algorithm 2 is N % | Z|F+1.
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5 Inferring Finite Unions of Pattern Languages with
Constant Segments

In this section we show that we can infer k-bounded pattern languages by using
the inference algorithm used to learn £J 1 languages.

In order to do so, we define a new product of automata and transducers. This
product is in some sense the inverse of the cascade product.

Definition 2. Let A= (Q1,X,6,qo, F) be a finite deterministic automaton, and
let 7=(Q2, X, 6, \ po, F') be a sequential transducer. We define the product
Aot = (Q1 X Q2, I,6", (qo, po), F' x ') with 6" ((¢,p),b) = (¢, p") if &' (p,a) =P,
Ap,a) =b and 6(q,a) =¢'.

The next proposition gives us the meaning of this operation.

Proposition 4. Given o« DFA A = (Q1,X,6,q0,F) and a finite transducer
T = (QQa E7F7 6/7 Aap07F/)7 L<AOT) = T(L<A))

Proof. Let w € 7(L(A)), then there exists x € L(A) such that 7(z) = w. Then,
we have 8'(po,a) = f/, Mpo,z) = w and 6(q,z) = f, for some f € F and f' € F.
And so, 8" ((q0,p0),w) = (f, f') € F x F’, that is w € L(AoT).

Conversely, Let w € L(Aot), this implies that 6”((go,po),w) = (f, f’) for
some f € F and f' € F’', and there exists x € X* such that 6'(pg,a) = [,
Apo,z) = w and §(q,x) = f. And so, 7(x) = w and z € L(A). And so,
x € T(L(A)).

Note that if there does not exist p € P and a,b € A such that A(p,a) = A(p,b)
we have that Aot is a deterministic automaton.

Theorem 3. ’RPEZ' is included in EJZ‘H. Furthermore, any language belong-
ing to ’RPEZ' can be obtained as a finite union of languages belonging to EJ;_H.

Proof. Tt suffices to prove the theorem for patterns of the form wgzriu; ---
Up—1Tnln, since the class of languages £J " is closed under finite union. Since
p € RPy, we have that |u;| <k for 1 <i <n.

We now give a process to obtain the pattern language L(p) of the form
ugX*uy + - - Up—1 2 uy from languages belonging to LI+,

Since p is a regular pattern we know that there exists an automaton .4, such
that L(p) = L(A,).

Now let 7441 sx—1 be the transducer defined in Definition 1, then by Propo-
sition 4 we know that L(Ao7y 1 sr) = Tp1 sr (L(A)).

Let B = JS' #5737 U X%, and let as denote by h the morphism from B*
into (X*)* introduced in Definition 1.

We denote by P the set of acyclic paths of Aoy s+ going from the initial
state to some final state. Note that this set is finite. We claim that
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L(p) = U eX* N LX) N X"y

XeP
|z|=k,up€ Pre(z)
lyl=k,un€Suf(y)

U {zel®)|lz] <k}

The result is clearly true for any w € X* with |w| < k. So, let us suppose
|w| > k.

Let w € L(p), we know that 74,1 s (w) € L(AoTy41, X¥), which means that
there exists X € P such that X | 744 s (w), and then, if we take 2 = Pry(w)
and y = Sufr(w), we have that w € xX* N L(h(X)) N Z*y.

In the other direction let w € 2X* N L(h(X)) N X*y for some z,y € ¥ and
X € P. By Proposition 4 and the definition of P, there exists a word z € X*
such that 711 sx(2) = X and z € L(p). Since z € L(p) and p is k& bounded we
have that vovy - - vy, | R(X) with |v;] = k and v; = x;uy; for some x;,y; € X*
with 0 <4 < n. Then 7 s (2)|741, o (w) and vovy - - - vy | A(Ty4q 2x(2)), and
so, necessarily w € L(p).

This theorem implies that k-bounded regular pattern languages can be iden-
tified by the LJ zﬂ Inference Algorithm in the limit.
The following example shows the behavior of the previous algorithm.

Ezxample 1. Let p1 = axayb and ps = bxb be 1-bounded patterns. Figure 2 shows
the automaton that accepts L(p1) U L(pz).

The automaton constructed in Theorem 3 in order to obtain the words on X2
required to learn the pattern is shown in Figure 3.

This shows that the sequences (aa,ab), (ab,ba,ab), (bb) and (ba,ab) are
enough to describe L(p1)UL(p2). By (aa, ab) we obtain aX* N L(aa, ab)NX*b, by
(ab, ba, ab) we obtain aX*NL(ab, ba, ab)NX*b, by (bb) we obtain bX*NL(bb)NI*b
and (ba, ab) we obtain bX* N L(ba,ab) N X*b. Note that they are the only paths
without cycles from the initial to the final states.

Fig. 2. Automaton accepting L(p1 U p2) for the patterns p; = azayb and ps = bxb
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Fig.4. The automaton obtained for the J' inference algorithm for the samples
{(#a, aa, ad), (fa, ab, ba, ab), (fa, ab, ba, ab, ba, ab), (b, bb), (1b, bb, bb), (4b, ba, ab)}

Otherwise, (aa, ab), (ab,ba, ab), (bb) and (ba, ab) also gives a characteristic set
for the inference of L(p1)UL(p2). Let us consider the set S = {aab, abab, ababab,
bb, bab, bbb}, note that this set contains the characteristic set {aab, abab, bb,
bab}. By appliying the J* Inference Algorithm to the set 7 5 (S) we obtain the
automaton shown in Figure 4.

Finally, Figure 5 shows the automaton obtained from the algorithm used to
learn LJ 3‘ We can verify that the minimal automaton obtained for the automa-
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Fig. 5. The automaton obtained for the £J; inference algorithm for the samples
S = {aab, abab, ababab, bb, bbb, bab}

ton shown in Figure 5 is exactly the automaton shown in Figure 2 that accepts
the language L(p1) U L(p2).

6 Conclusions

In this article we give an efficient inference algorithm for the positive varieties of
languages J+ and £LJ . The algorithm for £J " is done by using the algorithm
for 7+ and the cascade product.

By using this algorithm and some new and old theoretical results, we solve the
open problem of given an efficient algorithm to infer unbounded unions of regular
pattern languages with bounded constant segments proposed in [1]. This shows
the that study of the algebraic theory of automata can give us some knowledge
in order to perform new algorithms to be applied in practice.
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Abstract. This paper presents some features of the VAUCANSON plat-
form. We describe some original algorithms on weighted automata and
transducers (computation of the quotient, conversion of a regular ex-
pression into a weighted automaton, and composition). We explain how
complex declarations due to the generic programming are masked from
the user and finally we present a proposal for an XML format that allows
implicit descriptions for simple types of automata.

1 Introduction

At CTAA’03, we had announced our project VAUCANSON, a software platform
for computing with automata and transducers (see [1]). We have made some
demonstration of the possibilities of VAUCANSON at CTAA’04. We would like to
report now on how some features of VAUCANSON have been implemented at the
light of the first years of experiments. This applies to the algorithms as well as
to the programming facilities that had to be incorporated within VAUCANSON.

We first describe three of the algorithms implemented in VAUCANSON: those
which generalize to automata with multiplicity the Hopcroft algorithm of mini-
mization, the construction of the derived term automaton of a regular expression
and the composition of (sub-)normalized transducers.

We then explain how we have overcome the intrinsic difficulty of generic static
programming. And we finally introduce the last version of an XML format to
describe automata, implemented as input-output in VAUCANSON. In particular,
VAUCANSON is complemented with a model of a graphical interface, which relies
on the XML format to interact with the VAUCANSON library.

The description of the algorithms is complemented with the results of some
benchmarks of the last version of VAUCANSON 1. All the tests have been run on
a server installed at ENST, a bi-Xeon 3.2 GHz with 4 Go of RAM.

2  On the Algorithms

The VAUCANSON platform provides the most usual algorithms on automata:
determinization, minimization, product, Thompson automaton of an expression,
! Downloadable at http://vaucanson.lrde.epita.fr.

J. Farré, 1. Litovsky, and S. Schmitz (Eds.): CTAA 2005, LNCS 3845, pp. 116-128, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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standard automaton, e-transitions removal, etc. Each of these algorithms has
been written such that it can be applied to the largest range of automata. For
instance, product or e-transitions removal are generic and can be applied to
automata with any multiplicity.

As an example, let us mention the automaton A, , drawn below, that had
been used in [1] for benchmarking the determinization and that will serve as the
basis of other tests in this paper.

On the latest version of VAUCANSON the
determinization test gives the following result
for Az (the minimal deterministic automaton
equivalent to A, has 2" states).

Platform time (seconds) space (MB)

FSM 60 447
VAUCANSON 105 1709

We focus now on three algorithms that are extensions for automata with
multiplicities of more or less well-known algorithms: a minimization algorithm
adapted from Hopcroft algorithm, a rather sophisticated algorithm for building
an expression, adapted from a method due to Champarnaud and Ziadi [2], and
finally an algorithm for the composition of transducers with multiplicity.

2.1 Minimal Quotient

Definition of the Minimal Quotient. The notion of minimal quotient (or K-
covering) is the generalization to weighted automata of the minimal automaton
for DFA’s. It consists in computing a (smaller) automaton by merging states
which have the “same” outgoing transitions. (cf. [3,4]).

More formally, this definition is equivalent to the following one (straightfor-
ward from [5]). Let A = (I, E,T) be an automaton characterized by its initial
vector I, its transition matrix F and its final vector 7. The minimal quotient
of B is the (unique) smallest automaton B = (J, F,U) such that:

J=IK, KF=FEK, and KU=T,

where K is an amalgamation matrix (i.e. with one and only one non-zero coef-
ficient, equal to 1, on every row). It is quite obvious that the minimal quotient
of A is equivalent to A.

Algorithm for the Minimal Quotient. The minimal quotient of a DFA can be
computed either by the Moore algorithm or by the Hopcroft algorithm [6].2
These both algorithms consist in refining a partition over states (initialized w.r.t.
the terminal states) but they are different: given a class P and a letter a, the
Moore algorithm consists in considering the classes of successors of P by a and

2 The Brzozowski algorithm is not a computation of quotient, even if it gives the same
result on DFAs.
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splitting P, whereas the Hopcroft algorithm consists in considering the classes
of predecessors of P by a and splitting them. Therefore, the Hopcroft algorithm
can more directly be extended to NFAs or weighted automata:

1. Computation of a backward transition table: for every state ¢ and every
letter a, the list of pairs (p,w) is stored, for all transitions from p to ¢
labelled by a with multiplicity w. The current implementation of automata
in VAUCANSON already provides this table.

2. The algorithm is initialized by sorting states with respect to their terminal
function. This provides the initial partition that has to be refined to be a
right congruence. For every part P and every letter a, the pair (P, a) is
inserted into a queue [.

3. While [ is not empty, the front of [, a pair (P, a) is poped up; for every part
which has successors by a in P, the part @ is splitted such that two states ¢
and ¢’ remain in the same part if and only if the sum of weights of their
outgoing transitions labelled by a that arrive in P are equal. If new parts
are created, they are inserted into [ (paired with every letter).

4. An automaton whose states are the parts is then created. The terminal
function of the part is the (common) terminal function of each of its states,
the initial function is the sum, and the multiplicity of (P, a, @) is the sum,
for any state p of P of the multiplicities of transitions (p,a,q) for every ¢

in Q.

Comparison with the Classical Hopcroft Algorithm. The principle of the algo-
rithm is the same as the principle of the minimization algorithm: a backward
transition table is computed and a partition is refined by considering predeces-
sors of each part. Nevertheless, the existence of multiplicities has a number of
outcomes in every step of the algorithm.

First, the transition table does not contain lists of states, but lists of states
paired with weights.

In step 2, the initial partition has as many parts as the terminal function has
values. In step 3, it is not sufficient to know wether a state ¢ has a successor
in P but which is the multiplicity from ¢ to P. Moreover, one add to [ every
subpart obtained from @) whereas in the Hopcroft algorithm the smallest among
both subparts is inserted, which is crucial to reach the nlogn complexity in the
classical case. The complexity of that generalized Hopcroft algorithm is therefore
more likely to be quadratic.

Minimizing Deterministic Automata. Minimization of DFAs is a special case of
computing the quotient and we have first tested implementations in this case
to allow comparison with other platforms. It has been shown in [7] that the
de Brujin graph, B, is the worst case for Hopcroft minimization algorithm,
since it can lead to n2" steps in the main loop of the algorithm: let A = {a, b}
be the alphabet; the states of B,, are labelled by words of length n over A, that
gives 27 states. The state a™ is initial, for every x,y in A, every word w in A?~!
there is a transition from zw to wy labelled by y and zw is final if and only if
x = a. We also test minimization on the the determinized automaton of A,,.
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Four procedures are tested; the one proposed by FSM (unknown algorithm),
and two algorithms proposed by VAUCANSON: Moore and Hopcroft.?

Input Bi2 Bir det(Ai2) det(Ai7)
FSM 0.048 1.791 0.065 2.829
Moore 0.271 37.11 0.470 146.77
Hop. 0.074 45.599 0.338 1752.33

Test of the Generalized Quotient. Let Cy be the Z-automaton of Figure 1 that
maps every word w on {a, b}?, seen as a binary number, on its value w. For every
positive integer n, let C,,4+1 be the automaton recursively defined as the product
of C1 by C,,. C,, maps every words w on w". In the following tests, we compute
C',, which has 2" states and then the minimal quotient V,, of C,, which has n+1
states.

2a + 2b a+b 2a+2b 4a+4b 8a + 8b
8 8 8 3b 4b 4b &
(a) The automaton C ) The quotlent of Cd

Fig. 1. The automata C),

n 8 9 10 11 12
Cn edges 6817 20195 60073 179195 535537
V, edges 45 55 66 78 91
Time 0.036 0.112 0.340 0.999 3.161

2.2 Automaton of Derived Terms

The VAUCANSON platform provides several algorithms to convert any regular
expression (with multiplicity) into a (weighted) finite automaton. We present
here the algorithm that constructs the derived term automaton Ag of an expres-
sion E [8,5]. This automaton is rather small: it has been proven that Ag is a
quotient of the standard (or position, or Glushkov) automaton of E [2,5].

We have implemented the algorithm and the data structure proposed by
Champarnaud and Ziadi [2] for the computation of derived terms, together with
the necessary improvement in order to deal with multiplicity in expressions. The
main point proven in [2] is that every derived term of a regular expression E is
a product of subexpressions of E. Therefore, each derived term is represented
by a list of nodes in the tree of the regular expression E. Moreover, this tree
is equipped with some “links” that help to perform the derivation: for every
x-node n, there is a link from the child of n to n itself, and for every --node,
there is a link from the left child of n to its right child.

3 The Brzozowski algorithm that consists in applying a co-determinization followed
by a determinization does not succeed in reasonable time on these inputs.
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Two basic functions are c(E) and first(E, a). The function c(E) gives the weight
of the empty word in the series described by E and first(E, a) returns a set of
pairs weight/position recursively defined by:

first(0,a) =0, firsi(l,a) =0,

_ [ (1k,y) with y position of a in E, if a = b,
vbed  first(ba) = { () otherwise
first(kE, a) U{ (kz,y) | (z,y) € first(E,a)}, first(Ek,a) = first(E,a),
first(E + F,a) = first(E, a) Uﬁrst(F, a), first(E-F, a) = first(E,a) U first(c(E)F,a),
first(E ,a) = first(c(E) E,a), if ¢(E) is defined in K.

These functions are easily computed on the tree of the regular expression.
The computation of the derivatives of E with respect to a consists, for every
position x in first(E,a), to go up to the root of the tree of E and collect the
destinations of the links starting from the nodes on that path.

Ezample 1. Let E; = (5F1) with F; = ((2ab) + ((3b) - (4(ab)*)))*.

The derived terms of E; are:

Ky=10b-Fq,

Ky = (4 (ab)*) - Fy,

Ks = Fy,

Ky = (b-(ab)")-Fy, and
Ks = (ab)* - Fy

For instance Ky = 8K @ 4Ky. The automaton Ag, .

’aa

The tree of E; is equipped with links. The coding for E; itself is [.

One computes first(I,a) = {(10,VI)} and I:5.
going up from VI, one get: \‘

> =
o _ .
) Ey = 10[VII, ). -
Finally, we get the same automaton with the v 2/ \VI 7.
following coding for derived terms: | /
v IX: 3. XI:4
.. "
Ko =[] Ky =[VII,II Ky =[X1I,1I w/a V\H , X\ ot XI\I
Ky =[II] Ky=[XV,XII,II] Ks=[XII,II| RO |
XIIT
For instance, XIV(aXV b

first((XI,I1],a)= {(4, XIV),(8,VI)} R
and 2 [X1,11)=A[XV,XI1,11)@8[VII, II].

Test on the Derived Terms. A set of expressions is provided by the elimination
algorithm applied on A;5 with random orderings on states. The automaton of
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derived terms Ag of every expression E is computed, and also the quotient Vg of
the standard (Glushkov) automaton of the expression E. One thousand expres-
sions are generated this way and classified w.r.t. their litteral length [g— which
is the size of Sg. We present here means for four significant classes.

Derived term Ag Standard Sg
Class le Ag states time Ve states time
1 110 24 0.123 24 0.012
7 410 53 0.470 51 0.050
14 1035 66 1.169 60 0.138
20 7821 90 13.412 78 1.418

2.3 Composition of Transducers with Multiplicity

A most fundamental result in the theory of transducers is Elgot and Mezei’s
Composition Theorem ([9]): The composition of two finite transducers is realized
by a finite transducer. The same result holds true for weighted transducers — up
to some definition problems which will not be considered here. The proof is, or
can be translated into, an algorithm for the construction of the transducer that
realizes the composition. And there are two main proofs for the Composition
Theorem.

The first proof follows from Kleene-Schiitzenberger characterization of ratio-
nal relations from A* into B* as recognizable series on A* with multiplicity
in Rat B*. Transducers are thus representations of A* by matrices with entries
in Rat B* and representations can be composed in a natural way: this yields a
representation for the composition of transducers [10]. This proof has the advan-
tage that it generalizes directly to weighted transducers: they are representations
by matrices with entries in KRat B* if K is the multiplicity semiring. It is thus
perfectly “generic” i.e. independent from the type of considered transducers and
hence fits well with the architecture of VAUCANSON. It is the one we have first
implemented. Besides its genericity, this algorithm has a serious drawback: as it
deals with real-time transducers, the transition “outputs” may be regular expres-
sions and the composition requires the computation of the image (by the second
transducer) of all these expressions, a computation that may prove to be costly.

The other proof, certainly better known, relies on the realization of rational
relations by projections and intersection with rational (regular) languages (see
[11,12]). We have also implemented another composition algorithm which follows
more closely this classical proof and which works directly on transducers seen as
labeled graphs.

Let us first sketch quickly an algorithm that corresponds to that proof in the
unweighted case. In spite of its simplicity, it has not been described so often;
it can be seen as a simplified version of the algorithm for the weighted case of
[13,14] which we shall mention again later. It can be also found in [15].

We consider two normalized transducers 7 = (Q, A* x B*, E,I,T) and U =
(R,B* x C*,F,J,U) , that is transitions of 7 are labeled in A x 1 orin 1 x B
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and those of U are labeled in B x 1 or in 1 x C. The proof of the Composition
Theorem as presented in [12] is equivalent to the construction of the transducer

TxU=(QxR,A xC*" G, IxJTxU)

by the following rules.

(i) If (p,(a,1),q) € E then for all r € R ((p, ), (a,1), (g, )) eqG.
(i) 1f (1, (1,0),5) € F then for all ¢ € Q ((g,7), (1,0), (g,5)) € G
(iii) If (p,(1,b),q) € E and (r,(b,1),s) € F then ((p,r),(1,1),(g,s)) € G.

A next possible step is to eliminate the transitions with label (1,1) by means
of a classical closure algorithm.

(L,v) (1, u)

U, 50

(=,1) (v, 1)

(1,0) (1,u)

(a,1)

Fig. 2. Composition Theorem on Boolean transducers

This construction can easily be extended to transducers which we shall call
sub-normalized and which are such that transitions are labeled in A x B\ (1,1)
where A = AU{1}. It amounts to replace (iii) by (iii") If (p, (x,b),q) € E with
z € Aand (r,(by),s) € F with y € C then ((p,7), (z,y),(g,8)) €G.

In this form, it contains as a particular case the composition of letter-to-letter
transducers.

It is known that this construction is not correct if multiplicities are to be
taken into account. Let us say that two paths in 7 >x U are equivalent if they
correspond to the same pair of paths in 7 and U. For instance, there is one
path labeled (aa,y) in 7; and one path labeled (y,u) in U;; and there are two
equivalent paths labeled (aa,w) in 77 >1U;. Hence, 7 <t U does not realize the
composition of the weighted relations realized by 7" and U.

In [11], the Composition Theorem is proved for weighted transductions (at
least for those with weights taken in a complete positive and commutative semi-
ring, which allows to dispose of the question of definition). In this proof, the
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multiplicity, that is the selection among the equivalent paths, is taken care of,
so to speak, by the intersection with a certain local language T

As we already mentioned, a construction of a weighted transducer that realizes
the composition of two weighted transductions is given in [13,14]. It amounts
first to mark the transitions which, in the above construction, have a label one
component of which is the empty word, and then to choose a filter, that is
a language on the alphabet of marks which retains one path in every set of
equivalent paths. Besides implementing a proof of the Composition Theorem,
this construction has the advantage of being well-suited to the lazy evaluation
of the composition, that is the implementation of an algorithm that does not
compute the composed transducer but the output of it on any input word (with
the same number of steps as if the composed transducer had been computed).
On the other hand, it is easy to verify that the language T" in Eilenberg’s proof
plays the role of a filter.

(a,1)

Fig. 3. A composition that preserves multiplicity

We have implemented a construction on transducers that corresponds to this
filter T' and as it is chosen beforehand we avoid the introduction of marked
transductions. We replace them by a preliminary operation on the transducers
and the intersection with T is then realized by the deletion of certain states in
the product. The construction on 7 and U can be described as follows:

(a) Split the states of 7 and their outgoing transitions in such a way they are
labeled either in (A x 1) — black states — or in A x B (or the state is final)
— white states; the incoming transitions are duplicated on split states. This
is transducer 7”.

(b) Split the states of & and their incoming transitions in such a way they are
labeled either in (1 x C') — black states — or in B x C (or the state is initial)
— white states; the outgoing transitions are duplicated on split states. This
is transducer U’.



124 T. Claveirole et al.

(c) Apply the preceeding algorithm [steps (i), (ii) and (iii’)] to 7’ and U’ in
order to build 77/ > f’.

(d) Delete the black-black states (every state in 7/ b U’ is a pair of states).

(e) Trim and eliminate the transitions with label (1,1) by classical closure.

Figure 3 shows the construction applied to 7; and U .

Composition Algorithm. We consider the rewriting rule ab™ — ba™. This trans-
formation is achieved by the composition of a left sequential transducer by a right
sequential transducer, respectively performing rewriting from right to left and
left to right. The composition has been implemented using both the composition
of representations and the composition of sub-normalized transducers.

Algorithm n Nb. states ~ Nb. transitions Time
Sub-normalized 20 30084 40356 0.551
transducer 40 232564 305506 4.849
Representation 20 441 882 2.042
40 1681 3362 36.195

3 Coping with Generic Static Programming

Genericity in Vaucanson. In order to ensure maximal genericity of the func-
tions and algorithms written in the VAUCANSON library, most of the objects that
come into the definiton of automata are parameterizable. For instance and to
quote a few, one can, but also one has to, define the type of the following entities:

— the alphabet, i.e. the type of “letters”: characters, pairs of characters, etc.

— the multiplicity, which involves both the domain (B, Z,Q, R for instance) and
also the semiring operations considered on these domains: usual + and X,
or min and 4+, or max and +, etc.

— the transition label type such as letter, polynomial, (rational) series, etc.

As already advocated in [1], the use of C++ static genericity is one of the
characteristic features of VAUCANSON. Algorithms are written once, and the
assurance is given that they will work for all kinds of automata (concerning the
above parameters). In order to achieve efficiency, the use of “classical” virtual
methods and abstract classes is avoided. Instead, static mechanisms similar to
those described by [16] and [17] are used. The combination of genericity for
such a wide range of types and the use of such methods for static mechanism
have a heavy counterpart: programming becomes pretty tough, even for most
advanced users. The solution to this drawback which threatened the usability of
VAUCANSON came through the writing of “context headers”.

Context Headers. The VAUCANSON platform now provides a set of context
headers, each of them contains all the needed declarations for a classical type of
automata such as Boolean automata, automata with multiplicity in Z, max-plus
or min-plus automata, or transducers.
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The objective is achieved to some extend. The wide range of functions imple-
mented in the VAUCANSON library may be used with a minimal amount of decla-
rations when applied to classical types of automata. On the other hand, advanced
users may also use their own definitions to take the most of the genericity in VAU-
CANSON. On the developer’s side, genericity is kept and algorithms are written
once and specializable in various ways (regarding the automaton type, a partic-
ular implementation, etc). By offering predefined types to the user, VAUCANSON
provides services which are in fact context-sensitive, as the new_rat_exp() or
thompson_of () functions for instance.

The Future of Context Headers. As explained in [1], the “type” of an entity
in VAUCANSON does not refer only to the type of a variable but also to how this
variable is implemented. The present headers refer to the general implementation
of automata and do not thus insure the best possible efficiency.

Moreover, the writing of a context header is a tedious process, and every user’s
wish or need cannot be fulfilled by a library of headers: the possible combinations
of types are potentially infinite.

A more elegant solution that we plan to implement in a near future will be to
provide a kind of parameterized context, for which only the most usual parameters
are fixed. As an example, an automaton with “numerical” multiplicity would be
defined by a header weighted_automaton which will have as parameters the
type of the letters of the alphabet and the type of the weight: int, float,
etc.

4 The XML Exchange Format for Automata

At CTAA’04, the VAUCANSON group presented an XML description format for
automata. This format was elaborated both as a proposal for an exchange format
within the community of automata users and as an input-output standard in
order to allow communications between VAUCANSON and other softwares dealing
with automata®. We shall present a new proposal at CIAA’05, and the XML
format proposed will be described there. We describe here only the main features
of this new format, their motivation, and the way VAUCANSON handles it.

4.1 The XML Proposal

Quick Review of the Format. The description of automata is structured
in two parts. The <type> tag provides automaton type definition, like Boolean
automaton, or weighted ones with the ability to specify weight type, alphabet
specification, etc. The <content> tag provides the definition of the automaton
“structure”. The visual representation of automata involves a very large amount
of informations. The <geometry> data corresponds to the embedding of the
automaton in a plane (with informations such as state coordinates or edge type
for a transition). The <drawing> data contains the definition of attributes that

4 VAUCANSON supports as well the FSM format for loading and saving automata.



126 T. Claveirole et al.

characterize the actual drawing of the graph (such as label position or state
color for instance). Most of them are indeed implicit and provided by drawing
programs; the format only provides the possibility to make them explicit at every
level of the description.

From DTD to XSD. The most important difference with our previous pro-
posal is the change from a DTD (Document Type Definition) describing the tags
for automata representation to an XSD Schema.

This change is indeed a consequence of the same simplification policy which
lead us to the definition of context headers: it is desirable to keep the description
of automata simple when describing widely used structures, while giving the
possibility to describe the most complex ones.

For XML, this simplification amounts to have default types, in order to omit
<type> tag when describing common Boolean automata or transducers.

The problem then arises when describing an automaton or a transducer, the
default values for the <type> tag must of course be different. This is not possible
with a DTD description. The use of a XSD overcomes this difficulty, since it
is possible to define different properties for a same element, according to the
embracing context. Is is so possible to locally alter the behavior of a tag, and
make it context-sensitive. With this feature, default values for the <type> tag
are achieved, whether it is a child of <transducer> or of <automaton>.

It is of course possible to redefine only the tag where default values are in-
appropriate, inside the <type> tag. For instance, in order to define a weighted
automaton on Z, it is sufficient to write a <semiring> tag as a child of <type>,
with set attribute set to Z.

4.2 Implementation in Vaucanson

In order to implement support of proposed XML format in VAUCANSON, two
main objectives need to be achieved: maintenance easiness in case of format
modification or extension and routines availability to access state geometric co-
ordinates specified in the XML document.

Parsing the XML Document. To parse the XML document and create the
associated tree, we use the Apache Xerces C++ parser [18]. Xerces is a validating
XML parser, and handles well DTD document validation or XSD validation.

Building the Automaton. When reading and interpreting data, the pro-
gram faces a totally dynamic content. It doesn’t know, a priori, tag proper-
ties it will read. We face the problem of knowledge of the treatment type, not
data type. In order to solve this problem, we use the Factory Method design
pattern [19].

Factory Method is a creational pattern. It encourages the user to create a
common interface for handled objects (in this case tags), while the exact type
of the object is chosen by a subclass according to the context. The main routine
deals with abstraction since it knows how to manipulate tags, but doesn’t know
about data it is dealing with.
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Abstract. In this paper, a deterministic recognition algorithm for the
class of tree languages accepted by (nondeterministic) linear pushdown
tree automata (L-PDTAs) is proposed. L-PDTAs accept an important
class of tree languages since the class of their yield languages coincides
with the class of yield languages generated by tree adjoining grammars
(TAGs). The proposed algorithm is obtained by combining a bottom-
up parsing procedure on trees with the CKY (Cocke-Kasami-Younger)
algorithm. The running time of the algorithm is O(n4), where n is the
number of nodes of an input tree.

1 Introduction

Nondeterminism plays a very important role in the design of automata, with
which we can reduce the number of states and rules of automata. Of course,
nondeterminism is not realistic, so we need to consider a systematic way of
constructing efficient deterministic recognition algorithms which simulate non-
determinism. It is easy for finite automata because it is a well-known fact that
any (nondeterministic) finite automaton can be converted into an equivalent
deterministic finite automaton, and we can obtain a deterministic linear time
recognition algorithm from it. The same condition holds for finite tree automata
because it is known that (nondeterministic) top-down tree automata, (nondeter-
ministic) bottom-up tree automata, and deterministic bottom-up tree automata
are convertible between each other [1,2]. However, when we take automata with
a pushdown stack, the condition will be complicated. Fortunately, for pushdown
finite automata, we have the CKY (Cocke-Kasami-Younger) algorithm, whose
running time is the cube of the length of an input string. On the other hand, the
construction of an efficient deterministic recognition algorithm for trees accepted
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by a pushdown tree automaton (PDTA) [3] seems difficult because PDTAs have
the capability of duplicating their pushdown stack. The fact that the class of
yield languages of PDTAs coincides with the class of indexed languages is indi-
rect evidence that the construction of the algorithm might be difficult since the
emptiness problem and the uniform membership problem of indexed languages
are exponential time complete [4]. However, there exists a restricted version of
PDTAs which accepts an interesting class of tree languages.

In this paper, linear PDTAs (L-PDTAs) are considered, and a deterministic
recognition algorithm for trees accepted by an L-PDTA is proposed. L-PDTAs
are top-down tree automata with a pushdown stack that are disallowed to dupli-
cate their pushdown stack. It is known that the class of tree languages accepted
by L-PDTAs coincides with that generated by linear, monadic context-free tree
grammars (LM-CFTGs) [5,6], and the class of their yield languages coincides
with the class of yield languages generated by tree adjoining grammars (TAGs)
[5]. TAGs [7,8,9,10,11,12,13] are a formalism for tree structures which have
been widely studied and related to natural languages. The deterministic recog-
nition algorithm presented in this paper is the combination of the CKY algorithm
and a bottom-up parsing procedure on trees. It is shown that the algorithm de-
termines whether an input tree can be accepted by a given L-PDTA in O(n?)
time, where n is the number of nodes of an input tree.

2 Preliminaries

In this section, terms, definitions, and former results which will be used in the
rest of this paper are introduced.

Let N be the set of all natural numbers, and let Ay be the set of all positive
integers. The concatenation operator is denoted by ‘- ’. For an alphabet X', the
set of strings over X' is denoted by X*, and the empty string is denoted by .

2.1 Ranked Alphabets and Trees

A ranked alphabet is a finite set of symbols in which each symbol is associated
with a natural number, called the rank of a symbol. Let X' be a ranked alphabet.
For a € X, the rank of a is denoted by rank(a). For n > 0, let X, = {a € X |
rank(a) = n}.

A set D is a tree domain if D is a nonempty finite subset of (V)
the following conditions:

e Foranyde D, ifd',d" € (N;)* and d =d'-d”, then d’ € D.
e Foranydc Dandi,j € N,,ifi<jandd-j€ D, thend-ic D.

*

satisfying

Let D be a tree domain, and let d € D. Elements in D are called nodes. A node
d' is a child of d if there exists i € N such that d’ = d-i. A node is called a leaf
if it has no child. The node A is called the root. A node that is neither a leaf nor
the root is called an internal node.

Let X be a ranked alphabet. A tree over X' is a function « : D — X where
D is a tree domain. The set of trees over X is denoted by T’s;. The domain of a
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tree a is denoted by D,. For d € D, a(d) is called the label of d. The subtree
ofvatdis a/d={(d',a) € Ny)*x X |(d-d,a) € a}.

A path is a sequence of nodes dyd; - - - d,, such that n > 0, do,dy,...,d, € D
and for 0 <i<n—1, d;y1 is a child of d;.

The expression of a tree over X' is defined to be a string over elements of X,
parentheses and commas. For a € T, if a(\) = b, max{i € N.|i € Do} =n
and for each 1 < ¢ < n, the expression of «/i is «;, then the expression of

a is b(ag, e, ..., ay). Note that n is the number of the children of the root.
For b € Xy, trees are written as b instead of b(). When the expression of o
is b(aq, aa,...,ay), it is written that @ = b(a1,ae,...,a,), i.e., each tree is

identified with its expression.

Let X be a ranked alphabet, and let I be a set that is disjoint from X. T'x;(1)
is defined to be Ty where X U I is the ranked alphabet obtained from X by
adding all elements in I as symbols of rank 0.

Let X = {z1,xa,...} be the fixed countable set of variables. Let Xy = () and
forn > 1, let X,, = {z1,22,...,2,}. 21 is situationally denoted by z.

Let a, 8 € Ty, and let d € D,. We define a(d — ) = {(d';a) | (d',a) € «
and d is not a prefix of d'} U {(d-d",b)|(d",b) € B}, i.e., the tree a(d «— () is
the result of replacing «/d by S.

Let € be the special symbol that can be contained in Xy. The yield of a tree
is a function from T's; into X* defined as follows. For v € T, (1) if « = a €
(Xo — {e}), then yield(o) = a, (1’) if @ = ¢, then yield(a) = X and (2) if
a=alar,qs,...,ap) for some a € X, and a1, as, ..., a, € Tx, then yield(a) =
yield(aq) - yield(ag) - -+ - - yield(a,). For L C Ty, the yield language of L is the
set yield(L) = {yield(«) | @ € L}.

2.2 Pushdown Tree Automata

Pushdown tree automata (PDTAs) [3] were introduced by I. Guessarian in order
to formalize the class of tree languages generated by context-free tree grammars
(CFTGs) [14]. A PDTA can be seen as the combination of an ordinary pushdown
finite automaton [15] and a top-down tree automaton [2]. In [3], a variety of
PDTAs were introduced, and it was shown that all of them accept the same
class of tree languages. The definition of a PDTA in this paper can be described
as “a restricted PDTA accepting by empty store” in terms of [3].

Definition 1. A pushdown tree automaton (PDTA) is a six-tuple M = (Q, X, I,
qo, Zo, R), where @ is a finite set of states, X is a ranked alphabet, called the
input alphabet, I' is a ranked alphabet such that I" = I3UI7, called the pushdown
alphabet, qo € @Q is the initial state, Zg € Iy is the start symbol, and R is a finite
set of rules of one of the following forms:

Read rule :
(i) g(a,A) —» a with a € Xy, g€ Q and A € I
(11) q(b($1,$2,...7$n)7B) - b((]1($1a771)7QQ($2;7T2)7«-«7Qn($m7Tn)) with
n>1,beX,, ¢q,q9,...,q, € Q, B€ I and m1,m9,...,m, € [TIoU
IT



132 A. Fujiyoshi and I. Kawaharada

e-rule :
(iii) q(z, 4) — ¢'(z,7) with ,¢’ € Q, A€ I and 7 € I Ty
(iv) ¢(z,B) — ¢/(z,7) with q,¢' € Q, B€ It and w € ITIo U I}

An instantaneous description of M is a triple g(a,7) € Q X T x I'TTj. Let
ID be the set of all instantaneous descriptions of M. A configuration of M is an
element of T's;(ID). The move relation |k of M is the relation defined as follows.
For any configurations ¢, ¢ € Tx(ID), ¢ I ¢ if there exists a node d € D, that
satisfies one of the following conditions:

e A type (i) rule ¢(a,A) — aisin R, ¢/d = q(a, A), and ¢’ = ¢(d — a).

o A type (ii) rule q(b(x1,x2,...,2,),B) —  blq1(z1,m),q(x2,m2),. ..,
Gn(Tn,mn)) isin R, ¢/d = q(b(a1, e, ..., ay), Bp) for some aq, s, ..., ayp €
Ty and p € I'T1, and ¢ = ¢(d — b(q1(a1, 7)), g2(2, 7)), ..., qnlan, ™))
where for each 1 < i < n, if m; € I'f'Ty, then 7, = m;, and if m; € I, then
T, = mWip.

e A type (iii) rule g¢(z, A) — ¢'(x,7) isin R, ¢/d = q(o, A) and « € T, and
cd =c{d — ¢ (a,)).

e A type (iv) rule ¢(z, B) — ¢'(x,7) is in R, ¢/d = q(«, Bp) for some « € Tx
and p € I'fTy, and ¢ = ¢(d — ¢(a, 7)) where if 7 € I'T1}, then «' = T,
and if 7 € I'f, then 7’ = mp.

A computation is a finite sequence of configurations ¢y ¢y - - - ¢, such thatn > 1,
c1,¢0, ..., ¢n € Ts(ID) and ¢1 k55 o b5 --- | ¢,. When there exists a compu-
tation cicz - - - ¢, we write ¢; I, ¢,. The tree language accepted by M is the set

*
T(M)={aeTs|qa,Z) b, a}.

Linear PDTAs (L-PDTAs) [5] are PDTAs that don’t have the capability of
duplicating their pushdown stack. The class of tree languages accepted by L-
PDTASs coincides with that generated by linear, monadic context-free tree gram-
mars (LM-CFTGs) [5,6], and the class of their yield languages coincides with
the class of yield languages generated by tree adjoining grammars (TAGs) [5].

Definition 2. Let M = (Q, X, I, qo, Zo, R) be a PDTA. M is linearif it satisfies
the following conditions:

e For each type (ii) rule q(b(w1,x2,...,2n), B) — b(q1(21,71), g2(x2, m2), . . -,
Gn(Tp,mp)) In Ry {i |1 <i<nandm eIy} =1
e For each type (iv) rule ¢(z,B) — ¢/(z,7) in R, w € I}.

Example 1. The following M is an L-PDTA that accepts a tree language whose
yield language is Ly = {ww | w € {a,b}T}. M = (Q, X, T, q0, Zo, R), where
Q = {CIO7(J1,CI27(1A7(1B}7 Y =2U 227 Yo = {aab}v Yoy = {d}7 Iy = {20}7
IN = {N, A, B}, and R counsists of the following rules:

qo(z, Zo) — q1(x, NZo), qi(d(z1,72),N) — d(qa(z1, Z0), q1(x2, NA)),
( ($17m2)7N) - d(QB(thO)uq (1‘27NB)) QI(%N) - q2(1'7)\),
q@(d(z1,22), A) — d(q2(x1,A), qa(22, Z0)), qala, Zo) — a,



Deterministic Recognition of Trees Accepted by a Linear PDTA 133

gy, Z
P o540
A q,-NZ,

— |

942, q9,,NAZ,

—

452, q,,NBAZ,
95,2, q,,NBBAZ ..., &
q,,BBAZ, &~

N

q,,BAZ, q;,Z,

=

P :.~-"‘I2,AZO PR
2q,.Z,

AN

Q — QU —_ —_Q —_x— &,
o~

o

Fig. 1. An example of a tree accepted by M

q@2(d(z1,22), B) — d(q2(x1, A), g (22, Z0)), qB(b, Zo) — b,
qQ(va) - CIA(%)\); and CI2(37;B) - (JB(%)\)

In Fig. 1, a tree in T'(M) and the movement of M for the tree are illustrated.

The recognition algorithm introduced in this paper is based on the CKY
algorithm. Thus we need to be able to convert the rules of an L-PDTA into simple
ones, which are analogous to productions of a context-free grammar (CFG) in
Chomsky normal form [15].

Lemma 1. For any L-PDTA M, we can construct an L-PDTA M’ = (Q, X, I, q,
Zy, R) such that T(M) =T (M'), @ = {q}, and R consists of rules of one of the
following forms:

(i) g(a,A) — a witha € Xy, g€ Q and A € I

(i) q(b(x1,x2,...,2n), A) — blq(z1,C1),q(z2,C2),...,q(zy,Cp)) with n > 1,
be Xy, qeQ, Ae Tl and C,Cs,...,Ch € Ty U{A} such that [{i |1 <
i<mnand C;=A}| =1

(iii) ¢(x,A) — q(z, BC) with g€ Q, A,C € Iy and B € I

(iv) g(z,A) — q(z,BC) with ¢ € Q, A,B,C € I}

Proof. From the L-PDTA M, we can construct an LM-CFTG that generates
T(M) (by Lemma 6.4 in [5]). It is known that any LM-CFTG can be converted
into an equivalent LM-CFTG whose productions are one of the following forms:

.A—a

A(aj) — b(C’l, .. .,Ci_l,x,0i+1, .. ,On)
. A— B(C)

A(z) — B(C(x))

Ll
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Here, uppercase characters are nonterminals, and lowercase characters are ter-
minals. The above-mentioned fact is slightly different from the content of the
normal form theorem introduced in [5], but it is easy to obtain this normal form
in the same way as the construction of Chomsky normal form of CFGs. Thus an
LM-CFTG with simple productions that generates T'(M) can be obtained. Ac-
cording to the construction method presented in the proof of Lemma 6.3 in [5],
we can construct an L-PDTA M’ that satisfies the above condition and accepts
T(M). O

An L-PDTA satisfying the condition of Lemma 1 is said to be in simple form.

Ezxample 2. The following M’ is an L-PDTA in simple form that is equivalent
to M in Example 1. M’ = ({¢}, X, I, q, S, R), where X = Xy U X5, Xy = {a, b},
22 = {d}7 FO = {S7A7‘B}7 Fl = {07D17D27-D37D47E17E27E37E4}7 and R

consists of the following rules:
a(x,8) = q(z, D14), q(z,5) — q(z, E1A), q(z,Er) — q(z,D:1C),
S) —

q
q(mv EQB)7 q((E, EQ) - q(mv DQC)v

q(z,8) — q(z, D2B), q(x,

q(ax, C) - q(x, DlDS)a Q(x’ O) . Q<x7E3D3)7 Q(vaS) - Q(x’ ch)a
q(xv ) - q(x D2D4) ('7; O) - q(x,E4D4), Q($7E4) - Q(x’DQC)a
q(d(z1,2), D1) — d(q(z1, A),q(z2,N), q(a,A) — a,

q(d(z1,22), D2) — d(q(z1, B), q(w2, 7)), q(a,B) — b,

q(d(z1,z2), 3) d(q(z1, ), q(z2, A)), and

q(d(w1,22), Ds) — d(q(21,A), q(x2, B)).

In Fig. 2, a tree in T'(M') and the movement of M’ for the tree are illustrated.

e o7 9.8
-*' q,.EA
€ ™a g Dc4

L/‘l'

o

AN
i
)

/

Fig. 2. An example of a tree accepted by M
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3 Recognition Algorithms

Our goal is to present a recognition algorithm which determines whether an input
tree is accepted by a given L-PDTA. For the purpose of easier understanding,
however, an algorithm in a special case will be presented first. Then the algorithm
will be extended for general L-PDTAs.

3.1 A Recognition Algorithm for L-PDTAs with a Monadic Input
Alphabet

To explain the utilization of the CKY algorithm for the recognition of trees, we
consider the special case where the input alphabet of an L-PDTA, X' is monadic.
In this case, the movement of the recognition algorithm is clear because the shape
of any tree in T is like a string.

Let ¥ = Xy U Xy, and let M = ({q}, ¥, I,q,Zo, R) be a PDTA in simple
form. By the following function, CKY(«, Zy) returns true if and only if an input
tree a € T'x is accepted by M.

CKY:

input: a tree a € T’y and a pushdown symbol A € I’

output: true or false
begin
1 Let m be the number of nodes in «.
2 Let V be an m x m matrix.
3 Suppose that a = ai(az(--- (ap)--+)) with a1, az,...,am € X.
4 for i:=1tom do begin
5 Vii:={A € I'|[q(a;, A) — a; or q(a;(x), A)— a;(q(z, ) is in R}
6 for j :=2 to i do begin
7 Viejt1,5 =10
8 for k:=1toj—1do
9 Viejrrji=Vijr;U{A €T | BEVi i1k,

C € Vi_jti+k,j—k, and q(z, A) — q(z, BC) is in R}
end

end
10 if A € Vi, then return true else return false
end

On line 5, V; 1 is set to be all pushdown symbols that can be poped out when
the automaton reads a;. If X is not monadic, the construction of the set V; ; is
not so easy. Thus we need a bottom-up parsing procedure on an input tree in
the general case.

3.2 A Recognition Algorithm for General L-PDTAs

We present a recognition algorithm for trees accepted by a general L-PDTA. Let
M = ({q}, X, I, q, Zo, R) be a L-PDTA in simple form. This algorithm consists
of three parts: Parse-Tree, Parse and CKY. The function Parse-Tree takes an
input and initializes global variables. Then the main procedure Parse is invoked.
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Parse is defined recursively and checks the input tree in a bottom-up way. In
Parse, the function CKY is invoked.

The function Parse-Tree takes a tree o as input and returns accept if and
only if @ € L(G). This function prepares a set Uy.; as a global variable for each
node d of o and each i-th child of d.

Parse-Tree:
input: a tree o € T's;
output: accept or reject

begin
1 for each node d € D, do begin
2 Let n be the number of children of d.
3 fori:=1tondoUy; =0
end

4 Parse(a, \)
5 if CKY (o, \, Zy) = true then return accept else return reject
end

The procedure Parse takes a tree and a node as input. The node shows the
location in the tree being processed. The purpose of this procedure is to complete
the set Uy.; for each node d of o and each i-th child of d. Intuitively speaking, the
set Ug.; will store pushdown symbols that can be poped out when the automaton
reads the label of the node d and passes the content of its pushdown stack to
the i-th child of d. As this procedure works in a bottom-up way, the set Uy.; will
be completed from the leaves to the root.

Parse:
input: a tree o € T's, and a node d € D,,
begin
1 Let b € X be the symbol such that a(d) = b.
2 Let n be the number of children of d.
3 if n # 0 then begin
4 for i := 1 to n do Parse(a, d-i)
5 for each type (ii) rule q(b(z1, 2, ..., x,), A) — b(q(x1,Ch),. ..,
q(zi-1,Ci-1),q(xi; A), (i1, Civ1), -+, (70, Cpn)) in R
with 017...7C’i,170i+17...70n eIy do
6 ifvje{l,...,i—1,i+1,...,n}, CKY(c,dj,Cj) = true
then Uy.; := Uy, U{A}
end
end

The function CKY takes a tree a, a node d € D, and a pushdown symbol
A as input. In CKY, the algorithm traverses every node in the subtree «/d in
the order of depth-first search. Intuitive speaking, when the algorithm reaches a
leaf node, it checks whether the path from the root to the leaf can be accepted
by M with A as the start symbol. Note that some elements of the matrix V are
reused. See Fig. 3.
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a/d matrix V; ;

depth />\ 1
1

Fig. 3. Traversal of every node in the subtree a/d

CKY:
input: a tree a € Ty, a node d € D, and a pushdown symbol A € I’
output: true or false

begin

1 Let m be the number of nodes in the subtree «/d.
2 Let V be an m x m matrix.
3 W:==90
4 for each node d' € D, /4 in the order of depth-first search do begin
) if d’ is not the root of a/d then begin
6 i:=|d|
7 Viii=Uqaq
8 for j :=2 to i do begin
9 Viejir =10
10 for k:=1toj—1do
11 Vieji1,j = Viejy1, U{A €T | BE€ Viojiik,
C e Vi_jii+kj—k, and q(z, A) — gq(z, BC) is in R}
end

end
12 if d’ is a leaf then begin
13 i=|d|+1
14 Vii:={A€TIlq(a,A)— aisin R and a(d-d') = a}
15 for j :=2 to i do begin
16 Vi_]‘+17j = @
17 for k:=1toj—1do
18 Vieji1,j = Viejy1, U{A €T | BE€ Viojiik,

C e Vijtitk,j—k, and g(z,A) — g(z, BC) is in R}
end

19 W .=Wu Vl,i

end

end
20 if A € W then return true else return false
end

137
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Fig. 4. The content of the matrix V when d = 2-2-2-1-1

Ezxample 3. Suppose that we take the automaton M’ in Example 2 and input
to the algorithmthe the tree illustrated in Fig. 2 (call it «). Imagine that during
the process of Parse-Tree(«), Parse(a, A) has been completed and CKY(a, A, S)
is being processed. In Fig. 4, the content of the matrix V' when d’ = 2-2-2-1-1
is illustrated. Because S € Vi 6, CKY(a, A, S) returns true. Thus Parse-Tree(o)
returns accept.

For the recognition algorithm for general L-PDTAs, we have the following results:

Theorem 1. For any o € Tx, oo € T(M) if and only if Parse-Tree(c) returns
accept.

Proof. To show the correctness of the theorem, we prove that the following
statement holds for any A € Ny, a € Ty and d € D,,.

q(a/d, A) Ij*f a/d it CKY (a,d, A) = true after invoking Parse(a, d).

We prove the “only if” part by induction on the length of computation. Basis.
If g(a/d, A) k5 a/d, then a/d = a for some a € . Parse(a,d) does nothing.
Because ¢(a,A) — a is in R, A will be in Vj ;. Therefore CKY («,d, A) re-
turns true. I.S. For k > 2, assume that the statement holds if the length of
the computation is less than k. Suppose that g(a/d, A) ’;t a/d is a computa-
tion of length k. Then there exists a path dids---d,, such that dy = d, dy,
is a leaf, and for 1 < i < m — 1, the read rule applied to d; is of the form
q(bi(z1, 22, .. xn,), Ai) — bi(q(x1,Ci1)y o q(@hys A)s ooy @(@n,, Cipy)  with
b; = a(di) € En“ A; € Ih,d;-h; = di+1, and Ci,h ey Ci,hiflv Ci’hi+17 ey Ci,me
Iy and the read rule applied to d,, is of the form ¢(by,, Am) — by with
by = a(dy) € Yo and A, € I. Intuitively speaking, this path consists of
nodes which received the content of pushdown stack from its parent. And the
following computation is possible. ¢(a/d, A) |7*1 qlaj/d, A1 Ay -+ Ayy) ljt a/d. Be-
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cause ¢(a/d;-j,C; ;) ’;t afd;-jfor 1 <i<m—1and 1< j<n,;, the induction
hypothesis can be used. We know that for 1 < i < m—1and 1 < j < ny,
CKY (o, d;-j,C; ;) = true after invoking Parse(a,d;-j). Thus after invoking
Parse(a,d), A; € Ug,,for 1 < i < m — 1. Because R contains e-rules which
generate the string of stack symbols A1 A5 --- A, from A, A will be in Vi 4.
Therefore CKY («, d, A) returns true.

The “if” part is proved by induction on the number of nodes in the subtree
a/d as follows. Basis. When a/d = a for some a € Xy, the statement clearly
holds. I.S. For k > 2, assume that the statement holds if the number of nodes
in the subtree a/d is less than k. Suppose that the number of nodes in the
subtree «/d is k and CKY (a,d, A) = true after invoking Parse(a,d). Then
these exist a path dids---d,, and a string of stack symbols A;As--- A4, €
I'f Iy such that dy = d, dp, is a leaf, A; € Uy, for 1 < i < m — 1 and
q(a/d, A) ’;t q(afd, AyAy--- Ay). For 1 <4 < m — 1, since A; € Ug,,,, a read
rule q(bi(z1, @2, ..., Tn, ), Ai) = bi(q(z1,Ci1), -, q(Thy, A, - - -, @(@ny, Ci ) With
b; = a(di) € En“ 1<h; < n;, and Ci,h .. .,Ci,hi,l,Ci,hiJrh .. «aCi,m € I such
that CKY (o, d;-j,C; ;) = true after invoking Parse(c,d;-j), is in R. By the
induction hypothesis, g(c/d;-j, C;. ;) ’;t afdi-jforl <i<m—1land1<j<n,.
Therefore g(a/d, A1 Ay -+ Ay) Ij*j a/d.

By the statement, for any « € T's;, ¢, Zp) ’f; a if and only if CKY («, A\, Zp)
returns true after invoking Parse(a, ). Therefore the theorem holds. O

Theorem 2. The recognition algorithm for general L-PDTAs runs in O(n%)
time, where n is the number of nodes of an input tree.

Proof. Leta € Tx beatreewith nnodes. When ais inputted to the algorithm, the
funtion CK'Y will be invoked O(n) times. The time needed to compute the function
CKYis O(n?). Therefore the total time needed to finish the algorithmis O(n*). O

4 Conclusion

In this paper, an O(n?*) time recognition algorithm for trees accepted by an
L-PDTA was presented. We expect that the time complexity of the algorithm
can be improved to O(n?). Algorithms with O(n*) or O(n?) time complexity
might be a little slow in actual applications. However, we expect that there exist
faster recognition algorithms for deterministic L-PDTAs. For future work, the
development of a recognition algorithm for general PDTAs should be pursued
because it might be used for many applications such as the recognition of RNA
secondary structures.
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Shorter Regular Expressions from Finite-State
Automata*
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Abstract. We consider the use of state elimination to construct shorter
regular expressions from finite-state automata. Although state elimina-
tion is an intuitive method for computing regular expressions from finite-
state automata, the resulting regular expressions are often very long and
complicated. We examine the minimization of finite-state automata to
obtain shorter expressions first. Then, we introduce vertical chopping
based on bridge states and horizontal chopping based on the structural
properties of given finite-state automata. We prove that we should not
eliminate bridge states until we eliminate all non-bridge states to obtain
shorter regular expressions. In addition, we suggest heuristics for state
elimination that lead to shorter regular expressions based on vertical
chopping and horizontal chopping.

Note that we have omitted almost all proofs in this preliminary
version.

1 Introduction

It is well known that the family of languages defined by finite-state automata
(FAs) is the same as the family of languages described by regular expressions [1].
This result is proved by showing that we can construct FAs from regular expres-
sions and that we can compute regular expressions from FAs.

There are a number of FA constructions; for example, the Thompson construc-
tion [2], the position construction [3,4] and the follow construction [5]. These
constructions are inductive and, therefore, preserve the structural properties of
regular expressions. For instance, the size of a Thompson automaton is bounded
by the size of a given regular expression [6] and the number of states in a position
automaton is the number of character appearances in the corresponding regular
expression plus one [7].

When converting FAs into regular expressions, we can use either linear equa-
tions [8] or state elimination [9]. We consider state elimination. State elimination
was already in use in the 1960’s, in particular by Brzozowski and McCluskey,
Jr. [9] and was carefully formulated by Wood [10]. The idea behind state elimina-
tion is simple. We keep removing states, except the start and the final states for
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© Springer-Verlag Berlin Heidelberg 2006



142 Y .-S. Han and D. Wood

N __alab)*(aa*b+ab)

Fig. 1. An example of state elimination. The dotted states are being removed.

a given FA, while maintaining the transition information of the automaton until
there are no more states to eliminate. We illustrate state elimination in Fig. 1.

In Section 2, we define some basic notions. In Section 3, we describe state
elimination and suggest two ways to obtain smaller finite-state automata. Then,
we introduce vertical chopping and horizontal chopping of a given FA in Sec-
tions 4 and 5. Furthermore, we show that we should not eliminate bridge states,
which are defined in Section 4, until we eliminate all non-bridge states to ob-
tain a shorter regular expression. Finally, we suggest some heuristics for state
elimination that lead to shorter regular expressions.

2 Preliminaries

Let X denote a finite alphabet of characters and X* denote the set of all strings
over X. A language over Y is any subset of X*. The character () denotes the
empty language and the character A\ denotes the null string.

A finite-state automaton A is specified by a tuple (Q, X, 6, s, F'), where @ is
a finite set of states, X is an input alphabet, 6 C Q x X' x @ is a (finite) set of
transitions, s € @ is the start state and F' C @ is a set of final states. Let |Q| be
the number of states in @ and |6] be the number of transitions in 6. Then, the
size of A is |A| = |Q] + |6]. Given a transition (p,a, q) in ¢, where p,q € Q and
a € X, we say p has an out-transition and ¢ has an in-transition. Furthermore,
p is a source state of ¢ and ¢ is a target state of p. A string x in X* is accepted
by A if there is a labeled path from s to a final state in F' that spells out . Thus,
the language L(A) of a finite-state automaton A is the set of all strings spelled
out by paths from s to a final state in F'. We define A to be non-returning if
the start state of A does not have any in-transitions and A to be non-exiting if
a final state of A does not have any out-transitions. We assume that A has only
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useful states: that is, each state appears on some path from the start state to
some final state.

3 State Elimination

We define the state elimination of ¢ € Q \ {s,f} in A to be the bypassing
of state ¢, ¢’s in-transitions, ¢’s out-transitions and ¢’s self-looping transition
with equivalent expression transition sequences. For each in-transition (p;, v, q),
1 < i < m, for some m > 1, for each out-transition (g, ~,r;), 1 < j < n, for some
n > 1, and for the self-looping transition (g, 3, ¢) in 6, construct a new transition
(pi, o - % - v5,75). If there exists transition (p,v,r) in 6 for some expression v,
then we merge two transitions to give the bypass transition (p, (o - 8% -7;)+v, 7).
We then remove ¢ and all transitions into and out of ¢ in 6. We denote the
resulting automaton by A, = (Q \ {¢}, X, &4, s, F'). State elimination maintains
the language accepted by a given automaton while removing states. Note that
we have regular expressions instead of single characters on a transition of A,.
We say that a finite-state automaton with regular expressions on transitions is
an ezpression automaton (EA) [9,11].

Given an FA A = (Q, X, 6, s, F') that is not non-returning and not non-exiting,
we transform A into a new FA A’ such that L(A") = L(A) and A’ is non-returning
and non-exiting by introducing a new start state s’ and a new final state [’ as

follows: A" = (QU{s’, f'}, 2,6 U{(s', X, )} U{(fi, M, [)) | fi € F}, 8, f').

Lemma 1. Let A= (Q, X, 4, s, f) be a non-returning and non-exiting expression
automaton with at least three states and q be a state in Q\{s, f}. Then, L(A4,) =
L(A) and Ay is non-returning and non-eziting.

Once we eliminate all states in @\ {s, f} for A that is non-returning and non-
exiting, we obtain an expression automaton Ag\ (s, 5y = ({5, f}, X, (s, E, f), s, f),
where E is the corresponding regular expression for A.

One problem with state elimination is that it may increase the size of labels
on transitions exponentially while removing states for a given automaton. For
example in Fig. 2, if we remove ¢ from the automaton A, then we have to
introduce O(mn) duplicate strings as new transition labels.

xl\xﬁ <1 m,n
| U my
Li=1g=1

Fig. 2. An example of state elimination that produce many duplicate strings
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b d

Fig. 3. An example of different regular expressions by different removal sequences for
a given finite-state automaton. E1 = (aa + b)(a + ¢b) (cd + d) is the output of state
elimination in p — r — ¢ order and E> = (aa + b)a c¢(ba ¢) (ba d+ d) + (aa + b)a d
is the output of state elimination in p — g — r order, where L(E1) = L(E»).

Another problem with state elimination is that different removal sequences
result in different regular expressions. Although we cannot always avoid expo-
nential blow-up, we can still obtain shorter regular expressions by choosing a
better removal sequence. Fig. 3 illustrates this idea.

Recently, Delgado and Morais [12] investigated heuristics for computing a
shorter regular expression from a given finite-state automaton A. They define
the weight of a state ¢ in A. Given a transition ¢t = (p, «, ¢), the weight of ¢ is
the total number of character appearances in «. Then, the weight of a state ¢
in A, which we call state weight, is defined as the sum of in-transition weights +
the sum of out-transition weights + the loop weight. Then, they remove a state
that has the lightest weight based on state weight. Although this heuristic is
better than random selection, it is straightforward to give examples in which the
greedy choice does not lead to shorter regular expressions.

Assume that we have an algorithm to compute an optimal removal sequence
for a given automaton A. Then, if we have a smaller automaton A’ such that
L(A) = L(A’), then we can compute the optimal removal sequence more rapidly
and the removal sequence will lead to a shorter regular expression.

We define two states p and ¢ in an FA A = (Q, X, 6, s, F) to be equivalent if
the following conditions hold: 1) p € F' if and only if ¢ € F and 2) (p,a,t) € § if
and only if (¢, a,t) € 6, where t € @ and a € X. If we have two equivalent states,
then we remove one of them, say p, and redirect all in-transitions of p into g.
This does not change the language of A but it does reduce the size of A.

Lemma 2. If two source states of a current state q are equivalent, then we need
fewer new transitions when eliminating q after merging the two states.

Now we consider the target states of the current state t € @ of an FA A =
(Q, X, 6, s, F). Assume that ¢t has two target states p and g and two out-transitions
of ¢ have the same character; namely, (¢, a,p) € 6 if and only if (¢, a, q) € §, where
a € X, and p and ¢ have no other in-transitions except from ¢ as shown in Fig. 4.
Then, we delete p and attach all out-transitions of p to ¢ so that all out-transitions
are from gq.

Lemma 3. If the current state t, in an FA A = (Q, X, 6,s,F), has two target
states that are reachable only from t via the same transition label, then we need
fewer new transitions when removing q after merging the two states.
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0) )
® (0

a b b

Fig. 4. Note that state ¢ has the same out-transitions to two target states p and q. We
make all out-transitions of p leave from ¢ and remove p.

Ilie et al. [13] adopted these ideas to minimize NFAs and designed anO(m log n)
time algorithm using O(m + n) space that discovers equivalent states for a given
FA A, where n is the number of states and m is the number of transitions of
A. Note that the nondeterministic finite-state automaton (NFA) minimization
problem in general is known to be PSPACE-complete [14].

4 Vertical Chopping

Assume that we have a finite-state automaton A that cannot be minimized any
further by using equivalent states. Then, we have to compute a removal sequence
for A. One question arising from Fig. 3 is why does removing the middle state at
the last step lead to a shorter regular expression than when removing it at the
second to last step. We observe that the middle state in Fig. 3 has some helpful
properties.

Definition 1. We define a state b in a DFA A to be a bridge state if it satisfies
the following three conditions:

1. State b is neither a start nor a final state.

2. For each string w € L(A), its path in A must pass through b at least once.

3. Once w’s path passes through state b for the first time, the path can never
pass through any states that have been wisited before apart from state b.

Note that we can decompose A into two subautomata A; and As such that
L(A) = L(A;) - L(As) from the first and the second requirements. However, we
may have several duplicate states and transitions in both A; and Ay without
the third requirement. Then, it does not give a smaller subautomaton in the
worst-case. Fig. 5 illustrates this phenomenon.

The third requirement guarantees that if we partition A at a bridge state b
into A; and As, then all out-transitions of b appear only in As. Therefore, A;
and As have only b as a common state between them. Fig. 6 gives an example
of bridge states.

Assume that there is only one final state in A. If there is more than one final
state, then we introduce a new final state f’ and connect all final states to f’
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QOO E-0-6—0
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Fig. 5. State 3 satisfies both the first and second conditions in Definition 1 and, there-
fore, we can partition A into two subautomata A; and Ag, where L(A) = L(A1)-L(Az2).
However, A2 has the same size as A, where state 3 is now the start state of As.

Fig. 7. An example of vertical chopping of the automaton in Fig. 6 at state 7

by null transitions. Given an FA A = (Q, X, 6, s, f) and a bridge state b € @, we
partition A into two subautomata A; and As as follows: A; = (Q1, X, 61, ,b)
and Ay = (Qa2, X, 062,b, ), where @1 is a subset of states of A that appear on
some path from s and b without visiting b twice in A4, Q2 = Q \ Q1 U {b}, 62
is a subset of transitions of A that appear on some path from b to f in A and
61 =6\ 62. Fig. 7 illustrates partitioning at a bridge state.

Lemma 4. Given an FA A, let Ay and As be subautomata of A that are parti-
tioned at a bridge state of A. Then, L(A) = L(A;) - L(As2).

Note that if states p and ¢ are bridge states in A, then ¢ is still a bridge
state in one of the resulting subautomata after the partitioning of A at p. For
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example, as shown in Fig. 6, state 1 is a bridge state of A and is a bridge state of
Ajq, shown in Fig. 7, after chopping at state 7. Let B = {b1,ba,...,bx} be a set
of bridge states in A, where k is the total number of bridge states in A. Then,
B\ {b;} is the set of bridge states of A; and As after chopping A at state b;.

We say a path in A is simple if it does not have any cycles. Then, from the
second requirement of bridge states in Definition 1, we establish the following
statement.

Lemma 5. Let P be a simple path from s to f in A. Then, only the states in
P can be bridge states of A.

Since A is essentially a directed graph, we can compute all bridge states for
A using Depth-First Search (DFS) based on Lemma 5.

Theorem 1. We can compute a set of bridge states for a given automaton A =
(@, X,6,s, f) in O(|Q| + 16|) time using DFS.

Now we demonstrate how bridge states can help to compute a shorter regular
expression from a given automaton A. Note that we use state elimination for
computing regular expressions. As we have mentioned previously, the removal
sequence for state elimination is crucial when we wish to compute a shorter
regular expression.

Lemma 6. If all states in a given automaton A = (Q,X,0,s, f) are bridge
states, then state elimination results in the same regqular expression whatever the
removal sequence of states of A we use.

Fig. 8. An example of an FA whose states are all bridge states. Note that state elimi-
nation always gives ac bbb cb a no matter which removal sequence we use.

Now we answer the question arising in Fig. 3. We assume that there are no
three consecutive bridge states in A. If there are, then we delete the middle bridge
state by state elimination. Given an expression automaton 4 = (Q, X, 4, s, f), let
C(A) be the total number of character appearances in transitions of A; that is,

C(A) = Z leij|, for each (g;,eij,q;) € 6, where ¢;,q; € Q.

(]

For example, if Ais ({s, f}, %, (s, E, f), s, f), which is the final expression au-
tomaton of state elimination for computing a corresponding regular expression,
then C(A) = |E|.
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Theorem 2. Given an expression automaton A = (Q,X,6,s, f) and a set B
of bridge states of A, the optimal removal sequence must eliminate all states in
Q@ \ B before eliminating any bridge states.

Proof (sketch of proof). Without loss of generality, we assume that we have an
optimal removal sequence OPT of state eliminations for A that eliminates a
bridge state b first. We prove that there is a shorter regular expression using a
different removal sequence and, therefore, OPT is not an optimal sequence.

Since we assume that there are no three consecutive bridge states in A, either
a target state or a source state of b must not be a bridge state. Let us assume that
a target state is not a bridge state. Let A; be the resulting expression automaton
after the state elimination of b. Then, C(A) < C(A4p) by Fig. 2. Let ¢ be the next
state to be eliminated after b by OPT. We consider two cases: Case 1 is when ¢
is a target or a source state of b and Case 2 is when ¢ is neither a target state
nor a source state of b.

1. If ¢ is a target or a source state of b. Assume that ¢ is a target state of b. In Ay,
q has at least the same number of in-transitions compared to g in A and each
in-transition of ¢ in A has a longer expression than the regular expression
of the corresponding in-transitions of ¢ in A. Therefore, C(A4,) < C(App).
Moreover, a target state of p in A, has longer expressions of in-transitions
than the corresponding expression of in-transitions in A,.

2. If q is neither a target nor a source state of b. The state elimination of ¢
produces the same new expressions in both A and Ap. Then, since C(4) <
C(Ayp), we conclude that C(A,) < C(App).

Let Appr be the expression automaton computed by OPT and A’ be the
corresponding expression automaton that we construct by eliminating the same
state as OPT does except for b. Then, by the same argument, it is always true
that C(A”) < C(Aopr). Once OPT completes state elimination, then C(A4’) <
C(Aopr) and A’ has three states s, f and b. Note that C(Appr) is the size of
the regular expression computed by OPT.

Now we eliminate b from A’ and denote the resulting expression automaton by
A} Note that C(A}) = C(A’) is the size of the corresponding regular expression
that we have computed. Since C(A4;}) = C(A") < C(Aopr), we have computed a
regular expression that is shorter than the regular expression computed by OPT
— a contradiction. Therefore, the optimal removal sequence must eliminate all
non-bridge states before eliminating any bridge states. a

Theorem 2 suggests that given an automaton A, we identify all bridge states of
A, chop A into several subautomata using bridge states, compute corresponding
regular expressions for each subautomaton and catenate the resulting regular
expressions to give a regular expression for A. Note that each subautomaton is
disjoint from every other subautomaton except for bridge states. Thus, vertical

chopping is a divide-and-conquer approach based on the structural properties
of A.
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5 Horizontal Chopping

Now we have an automaton A without any bridge states and, therefore, we can
assume that there is only one start state and one final state in A. Although
we cannot avoid computing a removal sequence for A, we can sometimes avoid
examining all removal sequences of A to compute such a sequence. For example,
we can partition A, shown in Fig. 9, into two subautomata A, and A; and
compute corresponding regular expressions e,, and e; for A, and A;, respectively.
Then, a regular expression for A is e, + e;, which does not increase the number
of character appearances.

a

/\
/\ " /C C

’

Fig. 9. An example of horizontal chopping for a given automaton without bridge states

99@

Another interesting observation is as follows. Assume that an optimal removal
sequence is 5 — 3 — 4 — 6 — 2 for the given FA in Fig. 9. Then, a removal
sequence, 3 — 4 — 6 — 5 — 2 gives the same regular expression as before since
state elimination of a state in the upper subautomaton does not affect expressions
in the lower subautomaton. It implies that sometimes when we compute an optimal
removal sequence for a given FA A, we can compute optimal removal sequences
for subautomata and combine them. This approach is also a divide-and-conquer
approach. Since we partition A horizontally, we call it horizontal chopping.

For horizontal chopping of a given FA A = (Q, X, 6, s, f), we have to identify
subautomata of A such that all subautomata are disjoint from each other except
sand f. Our algorithm is based on DF'S. When exploring A, we maintain a group
index for each state of A. First, we assign a different group index for each child of
sin A. Assume p is the current state with group index i and ¢ is the next state
to visit in DFS. If ¢ does not have a group index, (then it must have been visited
for the first time) ¢ inherits the group index 4 from p. Otherwise, g already has a
group index j and we combine two group indices ¢ and j and regard them as the
same group. We continue to explore until we have visited all states in A.

Fig. 10 illustrates how DFS identifies groups from a given automaton. Note
that when we visit state ¢ from state p, we merge group 1 and group 2 into a
single group.
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Fig. 10. An example of DFS that identify groups. The label outside a state is its group
index. Note that group 1 and group 2 belong to the same group because of gq. Therefore,
there are two disjoint subautomata that we can use horizontal chopping.

Theorem 3. Given a finite-state automaton A = (Q, X, 6, s, f), we can discover
all subautomata that are disjoint from each other except s and f in O(|Q| + 16])
time using DFS.

Moreover, once we partition A horizontally, some states become bridge states
of subautomata. For example, state 2 is a bridge state of A, and states 3, 4 and
6 are bridge states of A; in Fig. 9. Note that these states are not bridge states of
A. Therefore, we can compute bridge states for each subautomaton and perform
vertical chopping if there are bridge states; then, again we can repeat horizon-
tal chopping. We continue chopping until no further chopping is possible, and,
then compute a removal sequence. Note that state elimination using horizontal
chopping and vertical chopping works well for FAs that preserve the structural
properties of corresponding regular expressions. For example, for each catena-
tion operation of a given regular expression that is not enclosed by a Kleene
star, there is a bridge state in the corresponding Thompson automaton and po-
sition automaton. Similarly, for each union operation that is not enclosed by a
Kleene star, we can find a horizontal chopping in the corresponding Thompson
automaton. On the other hand, we might not be able to perform any vertical
chopping or horizontal chopping in the worst-case. However, then it implies that
such an FA is already complex and barely preserves any structural properties of
the possible regular expressions. In this case, we can only choose brute force.

6 Conclusions

There are several FA constructions from regular expressions and each construc-
tion has different properties [7,6,3,5,4,2]. On the other hand, there are only
two main methods to compute a regular expression from a given FA; namely,
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linear equations [8] and state elimination [9]. State elimination is an intuitive
construction: we compute a regular expression by removing states in a given
automaton while maintaining expressions in transitions. The resulting regular
expression obtained by state elimination depends on the removal sequence of
states. If we choose a good removal sequence, then we obtain a shorter regular
expression. On the other hand, we have to try all possible sequences to find the
optimal sequence, which is undesirable since there are O(m!) sequences, where
m is the number of states. Moreover, state elimination blows up the sizes of
regular expressions in transitions. These observations attract us to investigate
state elimination for reducing the size of regular expressions and computing a
better removal sequence that ensures to have a shorter regular expression.

We have examined NFA minimization to reduce the number of character
appearances based on state equivalence. Furthermore, we have investigated the
properties of bridge states of an FA and showed that bridge states must be
eliminated after eliminating all non-bridge states in A in order to have a shorter
regular expression. We can perform vertical chopping of A using bridge states.
We have also discovered that we can use horizontal chopping that ensures to
compute a state removal sequence of A quickly: once we partition A horizontally,
then we can repeat vertical chopping for each subautomaton. We have designed
two algorithms for identifying vertical chopping and horizontal chopping of A
based on DFS. Both algorithms have a linear running time in the size of A. The
combination of vertical chopping and horizontal chopping suggests a divide-and-
conquer heuristic for computing a better removal sequence of states of A.
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Abstract. We implement a rule-based system for algorithmic compo-
sition. This system, that we call Willow, resides in the TREEBAG envi-
ronment and consists of a sequence of formal devices, familiar from the
field of tree grammars and tree transducers. Since these devices are well
studied, we can apply known results to derive the descriptive complexity
of the system as a whole.

1 Introduction

In music theory, it is widely believed that music is syntax — to a large extent or
even in its entirety (see [1] for quotations and references supporting this claim). If
this is true, it should be possible to describe some of the basic aspects of musical
composition by means of grammars and automata. Here, we describe a first
attempt in this direction, a system named Willow, and draw some conclusions
regarding the descriptional complexity of the generated tunes.

It is conventional to represent syntax by means of a tree structure (e.g. as a
parse or derivation tree). For the first two bars of the sonata in C-major KV545
by Mozart, the representation could look as shown in Figure 1. The generation
and transformation of trees such as the one in the figure is studied within the
theory of tree grammars and tree transducers, the latter being formal automata
that transform input trees into output trees. Parts of this theory have been im-
plemented in TREEBAG [2], a system that we use in order to implement Willow.

In Figure 2, we see the set-up. The components of Willow, mainly a regular
tree grammar and a number of top-down tree transducers (an ignorant trans-
ducer is a special kind of top-down tree transducer), are arranged in the fashion
of an assembly line. At the very beginning of the line, the regular tree grammar
generates an initial tree representing a metre, i.e. a rhythmic pattern. The tree is
then transformed step by step by some twelve tree transducers, each of them be-
stowing a specific musical property on the generated piece. For example, the last
top-down tree transducer along the assembly line, namely ACCOMPANIMENT,
adds an accompaniment to an otherwise already finished tune. Because of lim-
ited space, the components cannot be described in detail here, but their names
indicate their purpose. The algebra visible in Figure 2 was added for technical
reasons and does not partake in the generation process.

J. Farré, 1. Litovsky, and S. Schmitz (Eds.): CTAA 2005, LNCS 3845, pp. 153-162, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. Above, the first two bars of the sonata in C-major KV545 by Mozart, and
below, the same piece represented by a tree

One benefit of Willow is that, since the workers are separate entities, they can
be replaced one at a time. Say for example that one worker, perhaps Mr Jazz-
transducer, assigns chords mimicking Lillian Hardin, but that the user prefers
pop. Then the user could simply substitute Mr Justin-transducer for Mr Jazz-
transducer and have things her way. Similarly Mr Walz could substitute Mr
March, Ms Guitar Mrs Piano, and Lady Choir old Sir Solo. Another benefit
is that the generated music could take the réle of raw material for a human
composer. A computer executing the system could generate an endless supply
of themes and tunes, without hesitation or embarrassment. It would then be
up to the composer to pick and choose among the material as she pleases, and
hopefully there will be some parts that appeal to her. These parts could then be
fed into the next step in the construction line; the computer could for example
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Fig. 2. Willow is implemented in TREEBAG and consists of a regular tree grammar, a
number of top-down tree transducers, a free-term algebra, and a score display

suggest an accompaniment or a decoration. Again the human composer would
be able to provide the computer with guidance and feedback.

One of the principles that have guided the design of Willow is that every
component should be firmly rooted in music theory. Although we shall not discuss
music theory in detail here, it is useful to know the following basic facts. Most
tunes are based on a set of chords; tuples of tones that are sounded together (or
nearly so). For tunes written in a major scale, there is an associated set of seven
chords called the triads of the major scale. In analytic notation, these chords are
referred to as I, 41, I11, IV, V, vi, and vii°.

A chord progression is a sequence of chords. Though the chords in a chord
progression can be any triads in the scale, depending on the genre, some pro-
gressions are more likely than others. E.g. pop music often contains the chord
progression shown as (a) in Figure 4, while the progression i, V, I is associated
with jazz, and I, IV, I, V with blues. A common feature of these progressions is
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that they tend to start at the tonic (I), search their way towards the dominant
(V) while creating tension, and then fall back to the tonic, resolving the tension.
This cycle of increasing and decreasing tension is called a phrase. In fact, the
relaxation of tension at the end of the phrase is so important that it has been
given a name; the chord progression that ends a phrase is called a cadence.

The paper is structured as follows. The next section recalls briefly some basic
notations of the theory of tree grammars and tree transducers. Sections 3 and
4 attempt to give the reader an impression of how Willow generates a tune,
by discussing the components CHORD and CADENCE, respectively. The paper is
then concluded by a brief discussion of descriptional complexity. A full length
version of this paper [1], together with a TREEBAG worksheet for Willow, can
be downloaded at [3]. It is unfortunate (and obvious) that samples of the music
that Willows produces cannot not be included in this paper. To compensate for
this, we direct the reader to a collection of generated audio files, also available
at [3]. For an introduction to music theory, see for example [4]. For preliminaries
concerning tree grammars and tree transducers, see [5], [6] or Appendix A of
[2]. Related work includes [7], [8], [9], [10], and [11], although none of these use
devices from formal language theory, with the exception of [10], which uses
L-systems.

2 Tree Transducers

Let us now recall the notations of tree language theory we shall use in order to
generate music. Let X be a signature, i.e., a finite union X' = (J;_, Y#) where
each X¥) is a finite set of symbols of rank k. Let S be any set, then the set of
trees over X indexed by S, denoted by Tx(S), is defined inductively as follows;
SUX® C Tg(S) and for k > 1, f € X and t1,...,t, € Tx(S), the tree
flt1...tx] belongs to Tx(S). The set Tx of trees over X' is Tx (). A subset of
Ty is called a tree language.

Let X = {x1,22,...} be a set of special symbols, so-called variables, all of
rank zero, that is disjoint with every signature in this paper. When we only
wish to talk about a subset {z1,...,z;} of X, we refer to the subset as Xj. If
t € Ty(X) for some arbitrary signature X, then we denote by ¢[ty,...,tx] the
tree that results when each occurrence of x; in ¢ is replaced by t;, i € [k].

A top-down tree transducer (or simply, td transducer) is a quintuple ¢td =
(X,2.Q,R,q), where X is an input signature, X’ is an output signature, Q is
a signature of states of rank 1, such that QN(XUX") = (), R is a finite set of rules,
and o € @ is the initial state. Every rule in R has the form ¢[f[z1,...,z]] — t,
where k €N, ¢ € Q, f € ¥® and t € Tx (Q(Xy)). To improve legibility, we
henceforth write g f[tq,. .., tx], rather than ¢[f[tq,...,tx]], when ¢ € Q.

For trees s, € Tx (Q(Tyx)), there is a transduction step s +—q s’ by a rule
qflx1,...,zx] = t € Rif s = sofg f[t1,.-.,tx]] for some tree sy containing z;
exactly once, and s’ = so[t[t1, ..., tx]]. We denote the transitive closure of 4
by g and say that there is a transduction from s to s’ if s Eog S Finally,
td(s) = {s' € Tx | qo[s] =t s'}-
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Lettd = (X, X', Q, R, qo) be atd transducer. We call td a linear td transducer if,
in every rule, each variable occurs at most once in its right-hand side. A td trans-
ducer that is not linear is copying. If there is at least one rule r in R whose left-
hand side contains a variable that does not occur in the right-hand side, we say
that td is deleting. Furthermore, if, for all ¢ € Q and f € X there is a rule
qflx1,...,z5] — t € R, td is total. If there is at most one such rule for all ¢ € Q
and f € ¥®) then it is deterministic. A td transducer is partial if it is not total.

3 Chord Progressions

Recall that Willow’s assembly line consists of a regular tree grammar that gener-
ates an initial tree, and a sequence of twelve td transducers that add an attribute
each, thereby contributing to the final representation of a tune. We shall not dis-
cuss regular tree grammars in this paper, but the reader may consult [5] to learn
more about this device. Out of the twelve td transducers, only CHORD and
CADENCE will be described in detail.

The td transducer CHORD assigns chords to the lower nodes of the tree, using
states to represent chord transitions. The assignment is done in such a way that
when the assigned chords are read from left to right, they appear in accordance
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o— o o
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Fig. 3. The td transducer CHORD assigns a chord progression common to pop music
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Fig. 4. A chord progression common to pop (a), augmented with sinks (b)

with the chord progression (a) of Figure 4. It is not desirable that all chords are
assigned to nodes at the same level, as this would correspond to a tune where
the chord changes every n-th note, giving a dull and monotonic impression. In
an attempt to attack this problem, we have made CHORD nondeterministic; as
soon as a state represents an allowed transition (i.e. an edge between two nodes
in the graph of Figure 4), there is one applicable rule which terminates, and
one or more applicable rules which continue to elaborate the progression. If a
state does not represent an allowed transition (i.e. I=V'), then no applicable
terminating rule exists. A selection of CHORD’s rules follows:

{ I=I o[zy,z2] — o[I=V z1, V=1 20] Movwe from I to I, passing through V.
I=V o[zy,z2] — o[I=IV 21,IV=V 23] Mowve from I to V, passing through IV.
I=1V o[z1,x2] — o[I=IV x1,IV=IV x3] When moving from I to IV, linger on IV...
I=1IV o[z, x2] — I or assign I to the current node.

V=V olzy,x2] — o[V=1z1, IV 22 Movwe from V to V, passing through I.

}

The transformation of an input tree is shown in Figure 3. Notice that, as our
initial state is I=-1I, the first chord of the tune is I. The last chord is however
not I. This is unfortunate, because it would be useful if we could specify the
destination, as well as the start, of the progression. One remedy is to augment
the progression graph with sinks. Compare the original progression (a) with
the augmented version (b), both given in Figure 4. When some sink, suppose
I, occurs in a derivation, it will always be preceded by I. When the derivation
terminates, the I will disappear, leaving the I behind. So if we want our generated
tune to both begin and end with an I, and have a number of different chords in
the middle, it suffices if we choose as our initial state the state I=1.

This particular version of CHORD assigns a chord progression common to
pop, but a corresponding td transducer can be built for many other genres.
To facilitate this construction, we implemented the perl script progression.pl
(available at [3]). The script takes as input a plain text description of a progres-
sion graph and outputs the corresponding, nondeterministic, td transducer.

The technique described in this section is also used by Willow to assign other
musical properties whose variations can be expressed as graphs. Examples of
this kind are the melodic arc, which is not allowed to leap more than four half
tones, and the tempo, which is also to be changed incrementally.
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4 Adding a Cadence Using Non-determinism

As mentioned in the introduction, the chord progression that ends a phrase is
called a cadence. The td transducer CADENCE takes the last two tones of a
piece and turns them into a cadence. For this, it is, of course, necessary to find
the last two tones in the given tree representation of the piece. This cannot
be accomplished by a deterministic td transducer in the general case; there
are decisions that must be made early in the transduction, but in accordance
with information that can only be obtained towards the end. A nondeterministic
partial td transducer, on the other hand, can guess by making a nondeterministic
choice. If the guess is erroneous, then the transduction will fail to terminate and
no output tree will be produced; but if the guess is correct, the objective is
accomplished and the last two notes of the output tree turned into a cadence.
For this purpose, we construct a nondeterministic partial td transducer td =
(X, 2",Q, R, qs), the components of which are as follows.

S={ @10y = xy{d,"} Q={ ¢5,94:41:9p }
R = { gs © [mh 1’2] — O[qp T1,4s mg] Search for the parent of the last note,
gs © [331, 332} — O[qd T1,qt 332] or guess that we have found it.
qd © [xr1,22] — O[qp 1, qd T2] Stay to the right while looking for the
second to last note.
qad — d[]] Place the d marker for ‘dominant’.
a4 — t[J] If state q. encounters anything but a
leaf, the transduction fails.
qp © [z1,22] — O[qp T1,4qp b2y Copy the rest of the tree to the output.
Gpd— }

One possible transduction is shown in Figure 5. At the very first step, td
guesses nondeterministically that it has found the parent of the last note. Clearly,
this is not the case. After a number of transduction steps the rightmost tree of
the figure has been reached. At this point the transduction must abort, because
there are no rules with left-hand side ¢ o [z1, 22]. However, this type of dead-end
transductions is automatically detected and avoided in TREEBAG. An alternative
transduction is shown in Figure 6. Here, the td transducer waits a number of
steps before guessing that it has found the sought parent. This time it is correct,
so the transduction succeeds in turning the last two notes into a cadence and
terminating.

qs o o
| /N /N
° qd qt o qt
o/ \o c‘: c‘: J/ \d c‘:
/N /N /N /N I/ \
J J o J J J o J J o J
/\ /\ /\

g Jd g

Fig. 5. The transduction fails because of an incorrect earlier guess
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Fig. 6. After a series of correct guesses the nondeterministic td transducer terminates

5 Descriptional Complexity

It was stated in the introduction that an ignorant transducer is a special kind of
td transducer, and before we consider the major topic of this section, we should
elaborate on what we mean, in this particular case, by “special”’. The trans-
ducers that form Willow are each responsible for one distinct attribute of the
finished piece. In other words, rather than completely rebuilding its input tree, a
particular transducer contributes by affixing a few labels to the input tree, which
is then passed on to the next transducer in the assembly line. The implication
is that if the transducers were to be defined using traditional notation, most of
their rules would take the following form:

Qf[tla"'7tl] _)f[qt177qtl]

That is, but for a few exceptions, the rules would dictate that the current node
of the input tree should be left untouched, and that the transducer shall continue
to work on the subtrees with no change of internal state. E.g. the definition file
for SCALE would require more than 3000 rules, out of which less than 300 would
cause any change in the input tree whatsoever. To be able to describe the td
transducers more concisely, we use the idea of an ignorant transducer. As with a
partial td transducer, the definition of an ignorant transducer need not be total,
but when an ignorant transducer encounters a state and symbol combination
for which it has no appropriate rule, rather than aborting the computation, it
keeps the irksome node (i.e. copies it to the output) and continues to work on its
subtrees. Hence, an ignorant transducer is a weaker version of the td transducer,
as we no longer can express transductions that are partial.

Let us now discuss the descriptive complexity of Willow. The simplicity of
its components is probably one of the most appealing properties of Willow. We
will now apply results concerning composition of transductions, to show that
much of this simplicity is retained when it is the system as a whole that is under
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consideration. Denote the composition of td transducers tds and tds by tds otdy,
Le., tdy o tdy = Uy gyq, (1) td2(t'). We make use of the following result by Baker.

Theorem 1. [12] The composition tds o tdy of td transductions tdy and tds is
a td transduction if

1) tdy is deterministic or tdy is linear, and
2) tdy is total or tde is nondeleting.

If, in addition, both tdy and tds are linear, deterministic, total, or nondeleting,
then tdy o tdy has the respective property as well.

The td transducers that constitute Willow are all nondeleting, which means
that the second requirement of Theorem 1 is always met. Recall that regular tree
languages are closed under linear td transductions. As a consequence, we can
combine the apparatus of AB FORM, CHORD PROGRESSION, and TEMPO in a
single regular tree grammar. Applying Theorem 1, we can collapse the sequence
consisting of the remaining twelve td transducers by iteratively replacing pairs
of them with a single td transducer. Moreover, it is well known that the class
of all regular tree languages is closed under linear td transductions. Hence, we
can collapse the first three components into a regular tree grammar. We reach
a point when the system has been reduced to a regular tree grammar and two
td transducers (see Table 1), and cannot be simplified further using Theorem 1.
In [13], a type of tree grammar called tree grammar with branching synchroni-
sation and nested tables of depth n (branching grammar of depth n, for short)
has been introduced, and it has been shown that the class BST,, of tree lan-
guages generated is equal to the closure of the regular tree languages under n
tree transducers. Hence, we conclude with the following theorem.

Theorem 2. Willow generates a tree language in BSTs.

Table 1. The constituents of Willow, ordered as they occur in the generation process.
The abbreviations lin., and det. stand for linear and deterministic, respectively.

Component Device Lin. Det. Collapses to
AB FORM rtg n/a no
CHORD PROGRESSION td yes no reg. tree grammar
TEMPO td yes no
VOICES td no yes
Frip td yes yes
MELODIC ARC td yes no

copy. nondet. td
ARRANGE td yes no
CADENCE td yes no
ANFANG td yes no
AABA FORM td no yes
SCALE td yes yes copy. nondet. td
ANALYSIS td yes yes

ACCOMPANIMENT td yes yes
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6 Limitations and Future Work

The tunes produced by Willow are all in major scales, on the ABAA form,
and there are no extrinsic tones or decorations. The accompaniment follows a
repetitive pattern governed by chord progression and tempo, and cadences are
exceedingly simple. The actual implementation provided works fairly well, but
needs further testing to become completely reliable.

A user can regulate the generation process to some degree by selecting, or
designing, the td transducers, and setting the order in which they are to be
applied. We would like to extend this interaction in order to make it possible to
input a theme, e.g. by means of a digital keyboard, and have the system weave
a cannon or a fugue around it.

At present, the generated trees are interpreted by the component SCOREDIS-
PLAY in a deterministic, but rather ad hoc, manner. This disagrees with the
general design of TREEBAG — algebras interpret trees, while displays visualise
(or in this case, perform) the results. This makes an algebra for evaluating trees
as musical pieces an important future aim.

Acknowledgements. The author wishes to thank the anonymous referees for
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Abstract. We look at a l-membrane catalytic P system with evolu-
tion rules of the form Ca — Cv or a — v, where C is a catalyst, a
is a noncatalyst symbol, and v is a (possibly null) string representing
a multiset of noncatalyst symbols. (Note that we are only interested in
the multiplicities of the symbols.) A catalytic system can be regarded
as a language acceptor in the following sense. Given an input alphabet
X consisting of noncatalyst symbols, the system starts with an initial
configuration wz, where w is a fixed string of catalysts and noncatalysts
not containing any symbol in z, and z = a*...a,* for some nonnegative
integers ni, ..., nk, with {ai,...,ax} C X. At each step, a maximal mul-
tiset of rules is nondeterministically selected and applied in parallel to
the current configuration to derive the next configuration (note that the
next configuration is not unique, in general). The string z is accepted if
the system eventually halts.

It is known that a 1-membrane catalytic system is universal in the
sense that any unary recursively enumerable language can be accepted
by a 1-membrane catalytic system (even by purely catalytic systems, i.e.,
when all rules are of the form Ca — Cwv). A catalytic system is said to
be deterministic if at each step, there is a unique maximally parallel
multiset of rules applicable. It has been an open problem whether de-
terministic systems of this kind are universal. We answer this question
negatively: We show that the membership problem for deterministic cat-
alytic systems is decidable. In fact, we show that the Parikh map of the
language (C a;...a;) accepted by any deterministic catalytic system is
a simple semilinear set which can be effectively constructed. Since non-
deterministic 1-membrane catalytic system acceptors (with 2 catalysts)
are universal, our result gives the first example of a variant of P systems
for which the nondeterministic version is universal, but the deterministic
version is not.

We also show that for a deterministic 1-membrane catalytic system us-
ing only rules of type Ca — Cv, the set of reachable configurations from

* The research of Oscar H. Ibarra was supported in part by NSF Grants CCR-0208595,
CCF-0430945, 11S-0451097 and CCF-0524136. The research of Hsu-Chun Yen was
supported in part by NSC Grant 93-2213-E-002-003, Taiwan.

** Corresponding author.

J. Farré, 1. Litovsky, and S. Schmitz (Eds.): CTAA 2005, LNCS 3845, pp. 163-175, 2006.
© Springer-Verlag Berlin Heidelberg 2006



164 O.H. Ibarra and H.-C. Yen

a given initial configuration is an effective semilinear set. The application
of rules of type a — v, however, is sufficient to render the reachability set
non-semilinear. Our results generalize to multi-membrane deterministic
catalytic systems. We also consider deterministic catalytic systems which
allow rules to be prioritized and investigate three classes of such systems,
depending on how priority in the application of the rules is interpreted.
For these three prioritized systems, we obtain contrasting results: two
are universal and one only accepts semilinear sets.

Keywords: Membrane computing, deterministic catalytic system, de-
terministic versus nondeterministic, symport/antiport system, counter
machine, semilinear set, priority.

1 Introduction

There has been a great deal of research activities in the area of membrane com-
puting (a branch of natural computing) initiated by Gheorghe Paun in a seminal
paper [1] over six years ago (see also [2]). Membrane computing identifies an un-
conventional computing model, namely a P system, from natural phenomena of
cell evolutions and chemical reactions. Due to the built-in nature of maximal par-
allelism inherent in the model, P systems have a great potential for implementing
massively parallel systems in an efficient way that would allow us to solve cur-
rently intractable problems once future bio-technology (or silicon-technology)
gives way to a practical bio-realization (or chip-realization).

A P system is a computing model, which abstracts from the way the living cells
process chemical compounds in their compartmental structure. Thus, regions
defined by a membrane structure contain objects that evolve according to given
rules. The objects can be described by symbols or by strings of symbols, in
such a way that multisets of objects are placed in regions of the membrane
structure. The membranes themselves are organized as a tree structure (this
can be represented by a Venn diagram) where one membrane may contain other
membranes. By using the rules in a nondeterministic, maximally parallel manner,
transitions between the system configurations can be obtained. A sequence of
transitions shows how the system is evolving. Various ways of controlling the
transfer of objects from a region to another and applying the rules, as well
as possibilities to dissolve, divide or create membranes have been studied. P
systems were introduced with the goal to abstract a new computing model from
the structure and the functioning of the living cell (as a branch of the general
effort of Natural Computing — to explore new models, ideas, paradigms from the
way nature computes). Membrane computing has been quite successful: many
models have been introduced, most of them Turing complete and/or able to
solve computationally intractable problems (NP-complete, PSPACE-complete)
in a feasible time (polynomial), by trading space for time. (See the P system
website at http://psystems.disco.unimib/it for a large collection of papers in the
area, and in particular the monograph [3].)
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In the standard semantics of P systems [2, 3, 4], each evolution step of a system
‘P is a result of applying all the rules in P in a maximally parallel manner. More
precisely, starting from the initial configuration, w, the system goes through a
sequence of configurations, where each configuration is derived from the directly
preceding configuration in one step by the application of a multiset of rules,
which are chosen nondeterministically. For example, a catalytic rule Ca — Cv
in membrane m is applicable if there is a catalyst C' and an object (symbol) a
in the preceding configuration in membrane m. The result of applying this rule
is the evolution of v from a. If there is another occurrence of C' and another
occurrence of a, then the same rule or another rule with Ca on the left hand
side can be applied. Thus, in general, the number of times a particular rule is
applied at anyone step can be unbounded. We require that the application of the
rules is maximal: all objects, from all membranes, which can be the subject of
local evolution rules have to evolve simultaneously. Configuration z is reachable
(from the starting configuration) if it appears in some execution sequence; z is
halting if no rule is applicable on z.

Two popular models of P systems are the catalytic system [2] and the sym-
port/antiport system [5]. An interesting subclass of the latter was studied in [6]
— each system is deterministic in the sense that the computation path of the
system is unique, i.e., at each step of the computation, the maximal multiset of
rules that is applicable is unique. It was shown in [6] that any recursively enu-
merable unary language L C 0* can be accepted by a deterministic 1-membrane
symport/antiport system. Thus, for symport/antiport systems, the determinis-
tic and nondeterministic versions are equivalent and they are universal. It also
follows from the construction in [7] that for another model of P systems, called
communicating P systems, the deterministic and nondeterministic versions are
equivalent as both can accept any unary recursively enumerable language. How-
ever, the deterministic-versus-nondeterministic question was left open in [6] for
the class of catalytic systems (these systems have rules of the form Ca — Cv
or a — v), where the proofs of universality involve a high degree of parallelism
[7,8]. For a discussion of this open question and its importance, see [9,10]. We
answer this question negatively in this paper. Since nondeterministic catalytic
systems are universal, our result also gives the first example of a variant of P
systems for which the nondeterministic version is universal, but the deterministic
version is not.

For a catalytic system serving as a language acceptor, the system starts with
an initial configuration wz, where w is a fixed string of catalysts and noncatalysts
not containing any symbol in z, and z = af'*...a}* for some nonnegative integers
N1y .oy Ny, With {aq,...,ax} a distinguished subset of noncatalyst symbols (the
input alphabet). At each step, a maximal multiset of rules are nondeterministi-
cally selected and applied in parallel to the current configuration to derive the
next configuration (note that the next configuration is not unique, in general).
The string z is accepted if the system eventually halts. Unlike nondeterministic
l-membrane catalytic system acceptors (with 2 catalysts) which are universal,
we are able to show using a graph-theoretic approach that the Parikh map of the
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language (C aj...a}) accepted by any deterministic catalytic system is a simple
semilinear set which can also be effectively constructed. Our result gives the
first example of a variant of P systems for which the nondeterministic version
is universal, but the deterministic version is not. For deterministic 1-membrane
catalytic systems using only rules of type Ca — Cwv, we show the set of reach-
able configurations from a given initial configuration to be effective semilinear.
In contrast, the reachability set is no longer semilinear in general if rules of type
a — v are also used. Our result generalizes to multi-membrane catalytic systems.

We also consider deterministic catalytic systems which allow rules to be pri-
oritized. Three such systems, namely, statically prioritized, strongly prioritized
and weakly prioritized catalytic systems, are investigated. For statically priori-
tized systems, rules are divided into different priority groups, and if a rule in
a higher priority group is applicable, then no rules from a lower priority group
can be used. For both strongly prioritized and weakly prioritized systems, the
underlying priority relation is a strict partial order (i.e., irreflexive, asymmet-
ric, and transitive). Under the semantics of strong priority, if a rule with higher
priority is used, then no rule of a lower priority can be used even if the two
rules do not compete for objects. This notion of strong priority coincides with
the semantics of the priority relation used in [2]. For weakly prioritized systems,
a rule is applicable if it cannot be replaced by a higher priority one. For these
three prioritized systems, we obtain contrasting results by showing that deter-
ministic strongly and weakly prioritized catalytic systems are universal, whereas
statically prioritized systems only accept semilinear sets.

Due to page limitation, some proofs are omitted. Complete proofs
will appear later in an expanded (journal) version of this paper.

2 Nonuniversality of Deterministic Catalytic Systems

Consider a catalytic system (CS, for short) in which all rules are of the form:
Ca — Cv or a — v, where C is a catalyst, a is a noncatalyst symbol, and v is a
(possibly null) string of noncatalyst symbols. (Note that we are only interested
in the multiplicities of the symbols.) Unless stated otherwise, we assume that
catalytic systems operate under the maximally parallel mode, i.e., at each step
the maximal multiset of rules is applied. A CS is said to be deterministic if at
each step, there is a unique maximally parallel multiset of rules applicable. A
CS is referred to as a purely CS if only rules of the form Ca — Cv are used.

Given two configurations ¢ and ¢, we write ¢ 5, ¢ to denote that applying

the multiset S at ¢ yields ¢/, and S is a maximally applicable multiset of rules

at ¢. We also write ¢ ~*5°* ¢ to denote the reachability of ¢’ from ¢ through

applying sequence S; - - - Sy, of multisets of rules (or ¢ = ¢ if the actual sequence
is irrelevant). Given a configuration ¢ , we write #. to denote the Parikh map
of ¢, and #.(x) the number of occurrences of symbol x in ¢, where x is either a
catalytic or a noncatalytic symbol.

Next we recall the definition of a semilinear set [11]. Let N be the set of
nonnegative integers and k be a positive integer. A subset R of N* is a linear
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set if there exist vectors vg,v1, ..., v; in N¥ such that R = {v | v = vo +myv; +
<+ + myvy, m; € N}. The vectors vy (referred to as the constant vector) and
v1,09,...,v; (referred to as the periods) are called the generators of the linear
set R. The set R C N¥* is semilinear if it is a finite union of linear sets. The
empty set is a trivial semilinear set. Every finite subset of N* is semilinear — it
is a finite union of linear sets whose generators are constant vectors. It is also
clear that the semilinear sets are closed under (finite) union. It is also known
that they are closed under complementation and intersection.

2.1 Deterministic Purely Catalytic Systems

We first consider deterministic purely CSs, i.e., all rules are of the form Ca — Cw.
Due to the nature of determinism as well as the number of catalysts being
bounded, an infinite computation of a deterministic purely CS is ‘periodic’ in
the sense stated in the following theorem.

Theorem 1. Given a deterministic purely CS P and an initial configuration cg,
the following three statements are equivalent:

1. P does not halt;
2. there exist ¢ and ¢ with #. > #. such that co — ¢ — ¢';
Ty Ty (S1++-Sk)¥
3. the computation of P is of the form co ' 5y 5k) , where Ty, ..., T\, S1,
...y Sk are multisets of rules. (That is, following a finite prefix the computa-
tion is ‘periodic’ with Sy - -- Sk repeating forever.)

Proof. To proceed, we require the following claims whose proofs are omitted due
to space limitation:

(Claim 1) Suppose ¢ A gand & , where ¢, c’,d,d are configurations
and H and H' are two multisets of rules. If rule Ca — Cv is in H' — H, then

#c(a) < #. (a).

. . . H H. Hi
(Claim 2) Given a computation ¢; — ¢ = ---¢i_1 — ¢ and a con-
figuration ¢} with #. > #,, then there exist multisets H7,..., H; ; and

. . H H. H;_, ..
configurations cb, ..., c; such that (i) ¢f = ¢4 = ---¢j_, = ¢, (i) H; C

HJ, V1 <5 <i— 1, and (ifi) #e, < #e,,Vj,1<j <i.

(Claim 3) If ¢ HiHe 2y Hey > He and co Hi-He c3, then it must be

Hy---H Hy---H Hy---H
the case that ¢; = % ¢g = 5F gg... THETE

forever.

¢+, 1.e., Hy--- Hy repeats

We are now in a position to prove our theorem. We first show (1) = (2).
Assume that P does not terminate. Let ¢ — ¢4 — -+ — ¢ — ---(l € N)
be an infinite computation. According to Higman’s and Konig’s lemmas (see
[12]), there exist i < j such that #., < #.,; hence, (2) holds. Now we establish

1 Hy,

(2) = (3). Let Hy--- Hj be the sequence of rule sets such that ¢; g ¢
and #., < #¢,. According to Claim 2, there are rule sets H{, HS--- H; and
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. Hy-H Hl.--H} H?...H? Ht...H!
configurations c¢j,, t > 1, such that ¢; "' " ¢; '— "¢j = Fej e "

J1
¢j, - - - Furthermore, for all 1 <! <k and 1 <1, Hlt C Hl“'l, and #Cjt < #Cth.
Since the number of catalytic symbols (which bounds the degree of maximal
parallelism) is a constant, for all 1 < [ < k there must be an ¢; such that
H' = H"*' = H"*? = .... Choose ' to be the maximum among all ¢;, such that

.t H} - Hf ! ]
HY = H for all 1 < < k. Now we have ¢; — " ey e =Y e
l l Tt Jt 41 Jt +2

By letting S; = Hlt ,1 <1<k, Claim 3 guarantees that Sy - - - Sy repeat forever
at c;j, . Therefore. (3) holds. (3) = (1) is trivial. This completes the proof of
the theorem. 0

From (3) of Theorem 1, we immediately have:

Corollary 1. Given a deterministic purely CS P and an initial configuration
co, the reachability set {#.| co — c} is semilinear.

Corollary 2. Given a deterministic purely CS P and an initial configuration
co, the problem of determining whether P halts is decidable.

Now consider the case when CSs serve as language acceptors. Consider a CS
P with initial configuration wof*...o* , where noncatalytic symbols oy, ..., 0}, are
distinguished input symbols not in w, and w is a fixed string (independent of
ni,...,ng) not containing symbol o, ...,0r. The word of'...op* is accepted if
P halts. It is known [7] that even for &k = 1, any unary RE language can be
accepted by the a purely CS operating in a nondeterministic manner. Hence,
nondeterministic purely CSs are universal. Surprisingly, however, deterministic
purely CSs are not universal as the following result indicates.

Theorem 2. Deterministic purely catalytic systems are not universal.

2.2 Deterministic Catalytic Systems

Now we consider the full class of deterministic CSs, where the rules are of the
form Ca — Cv or a — wv. Intuitively, what makes the reachability set of a
deterministic purely C'S ‘simpler’ is that any infinite computation of such a
system is periodic in the sense described in (3) of Theorem 1. Such a periodic
behavior is partly due to the fact that the maximum degree of parallelism during
the course of the computation of a deterministic purely CS is bounded by the
number of catalytic symbols in the initial configuration. Note, however, that the
degree of parallelism becomes unbounded if the CS uses rules of type a — v. In
fact, the semilinearity result no longer holds for the full class of deterministic
CSs as the following example indicates. It is interesting to note that the degree
of parallelism in this example is unbounded.

Example 1: Consider a CS with only one rule a3 — aja; and initial config-
uration a;. Then the Parikh map of the set of all reachable configurations is
{2"|n > 1}, which is clearly not semilinear. o

Although the reachability set of a deterministic (not necessarily purely) CS
is not semilinear in general, being deterministic does make the computational



On Deterministic Catalytic Systems 169

power of the model weaker than its nondeterministic counterpart. In what fol-
lows, we propose a graph-theoretic approach for reasoning about the behaviors
of deterministic CSs.

Consider a deterministic CS P, in which {C1,...,Cx} is the set of catalytic
symbols, and X' = {ay, ..., a;, } is the set of noncatalytic symbols. Let ¢y be the
initial configuration which contains (possibly multiple copies of) C;, V1 < i < k.
Two rules 1 and 72 are said to be in conflict if one of the following holds:

—r1: Ciay — Cywy, r9: Cjar — Cjws, and either wy # wo or i # j
= r1: Ciay — Ciwr, 121 ap — wa,
—Triiap — wy, To:ap — wa, and wy # wsy

In each of the above, rules 1 and o compete for the same noncatalyst a;. (In
this case, a; is said to be involved in two conflicting rules.) At any point in
time, a deterministic CS can never enable a rule that is in conflict with another
rule. Under the unprioritized mode, conflicting rules can be removed without
affecting the computation of the CS, regardless of the initial configuration. Note
that rules Cia; — Ciw; and Cias — Chiws are not conflicting rules, and in
fact, the absence of a; (resp. as) makes Cras — Ciws (resp., Chra1 — Crwi)
applicable.

In what follows, we employ a graph-theoretic approach to reasoning about the
behaviors of deterministic CSs. We construct a directed labelled graph Gp ., =
(V, E), called the ezecution graph, such that V = X and E={(a;,q;), | 3 a rule
r of the form Cia; — Cyw or a; — w, such that a; in w, and a; is not involved
in any conflicting rules}. (The subscript r is the label of edge (a;,a;). We also
write a; — a;.) A careful examination of Gp , reveals an important property:
for each node a;, the outgoing edges of a; (if they exist) are of the same label.

To set the stage for the non-universality result of deterministic CSs, we require
the following lemma:

Lemma 1. Consider a deterministic CS P with {C1, ...,Cx} and {a1, ...,am} as
the sets of catalysts and noncatalysts, respectively. Let cy be the initial configu-
ration. Then:

1. P does not halt on co iff there is a reachable loop from some node a;, with
#eo (aio) >0 n GP,co-

2. Let cy be a configuration such that (Vv 1 < i < k, #.,(Ci) = #¢,(Ci))
and (V1 € j < m, (Henla) > 0 — #o (a5) = 1) A (#ega5) = 0 —>
#c,(a;) =0)). Then P halts on co iff P halts on cj.

3. The problem of determining whether P halts on cq is decidable in polynomial
time.

Deterministic CSs also have the following monotonic property regarding non-
terminating computations.

Lemma 2. Given a deterministic CS P, if P does not halt from configuration
¢, then P does not halt from any configuration ¢’ such that #. > #..

Hence, we have the following result.
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Theorem 3. For a deterministic CS'P and a fized stringw, the set L ={o}"*...0}.*
| P halts onwo'" ...o.* } is effective semilinear. In fact, L is either empty, or of the
form of*...o*, wheren; =% or 0,1 <i < k.

We immediately have the following, which strengthens Theorem 2:
Corollary 3. Deterministic catalytic systems are not universal.

In contrast, it is known that nondeterministic 1-membrane CSs are universal
[8] (see also [13]) even operating under the 3-Max-Parallel mode. The univer-
sality result holds for either purely CSs with three catalysts, or CSs with two
catalysts. In fact, to simulate a Turing machine M the 1-membrane CS need no
more than k noncatalysts for some fized k, independent of M, as [13] shows.

Consider the following extension of CS:

— multi-membrane CSs, where each rule in a membrane looks like: Ca — Cv
or a — v, where the symbols in v have designated target membranes speci-
fying where they are to be moved. The catalyst C' remains in the membrane
containing the rule. In this case w represents the configurations ws, ...w,, in
the m membranes.

It turns out that our results obtained thus far can be extended to multi-membrane
CSs. Hence, deterministic multi-membrane CSs are not universal. Theorem 1 and
Corollary 1 (characterizing semilinear reachability sets) also hold for determinis-
tic purely catalytic multi-membrane CSs (i.e., without a — v type of rules). The
proofs are similar to that for the 1-membrane case.

3 Prioritized Deterministic Catalytic Systems

Now let us look at catalytic systems which allow rules to be prioritized according
to the following two types of priority relations. Let R be the set of rules of a CS.
For a priority relation p over R, we write p(r1) < p(re) (or simply r1 < ro, if
p is understood) to denote that (r1,72) € p, meaning that ro takes precedence
over r1. p is said to be of

— Type A: if p is irreflexive, asymmetric, transitive, and the complement of
p,1e, p=A{(r,r") | =((r,r") € p)A=((r',7) € p)}, is an equivalence relation.
Clearly, p induces equivalence classes (21, {25, ..., {2, for some k, such that
V1<i<j<k Vrer epr)<p(). The subscript i of £2; can
be thought of as the priority level of rules in §2;. For r € (2;, we also write
p(r) = i. (The interested reader is referred to [14] for an example of applying
this notion of a priority relation to reasoning about concurrent systems.)

— Type B: if p is an irreflexive, asymmetric, and transitive relation. That is,
p is a strict partial order.

Example 2: Consider a strict partial order p over R = {ry,...,r¢}: (r5 >
rg > 1o >11); (rg >14 >1T2 >11); (r5s >r4); and (rg > r3). Then p =
{(rs,76), (r6,75), (r3,74), (Ta,m3)} U{(rs,7) | 1 < i < 6}, which is an equivalence
relation. Hence, p is of type A. Furthermore, p partitions R into the following
equivalence classes 21 = {r1}, 2o = {ra}, 25 = {rs,ra}, 24 = {rs, 76}, such that
for 1 <7 < j <4, rules in §2; have a lower priority than those in £2;. O
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3.1 Systems w.r.t. Type A Priority Relation

Let P be a deterministic CS, ¢ and ¢’ be two configurations, and H be a mul-
tiset of rules. With respect to a priority relation p of type A (with p inducing
equivalence classes (21, {2, ..., ),

1. (static priority): ¢’ is said to follow ¢ through the application of H under the

statically prioritized mode, written as c ﬂ,t c, if H is the maximal multiset
satisfying the following:

(i) ¥ ry,r; € H, p(r;) = p(r;) (i-e., 7 and r; are in the same (2;, for some

),

(i) =3 r, r & H, r is applicable in ¢ and p(r) > p(r’) for some rule v’ € H.
In words, H is the maximal multiset of rules such that if a rule in a higher
priority group is applicable, then no rules from a lower priority group can
be used.

We first show the following result which characterizes the computations of
non-halting CSs.

Lemma 3. Given a deterministic purely CS P operating under the statically
prioritized mode, and an initial configuration co, P does not halt iff there exist
¢ and ¢ with #. > #. such that cg - ¢ -, .

At this point, we do not know whether the reachability set of a deterministic
statically prioritized purely CS is semilinear or not. Lemma 3, in conjunction
with Higman’s and Koénig’s lemmas, is sufficient to yield the decidability of the
halting problem for such prioritized CSs. Hence, we have the following, whose
proof parallels that of Theorem 2.

Theorem 4. Deterministic purely catalytic systems under the statically priori-
tized mode are not universal.

We now consider the full class of deterministic statically prioritized CSs with
both catalytic and noncatalytic rules. It turns out that the graph-theoretic ap-
proach employed in Section 2.2 remains valid for this new class of CSs.

Let p be the underlying priority relation of type A. Given a deterministic
statically prioritized CS P and an initial configuration ¢y, we construct a directed
labelled graph G%)CO = (V, E), where V is the set of noncatalytic symbols, and
E={(ai,a;), | 3 a rule r of the form Cia; — Cyw or a; — w, such that a;
in w, and no rule v of equal or higher priority level (i.e., p(r’) > p(r)) is in
conflict with r}. It is important to explain why F constructed above does not
leave out edges corresponding to applicable rules. Suppose r is a rule in conflict
with another rule of equal priority level in p. P being deterministic prohibits r
from being enabled; hence, r can be dropped without affecting the computation
of P. Similarly, if r is in conflict with a rule r’ of higher priority level, then r can
never be applied since r and 7’ become enabled simultaneously, and only the one
of the higher priority level prevails. Again, r plays no role in P’s computation in
this case. It is therefore clear that like the execution graph in the unprioritized
case, G%;’CO also enjoys the property that for each node in V, the outgoing edges
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of the node are uniquely labelled. What makes this property critical is that if
a noncatalyst a; is in the current configuration of P, the only way to prevent
the unique rule associated with a; (in the execution graph) from being applied
indefinitely is for P to apply rules of higher priority level forever, implying P to
be non-halting. Therefore, it becomes fairly easy to see that P is non-halting iff
G%;’CO has a reachable loop from some node whose corresponding symbol appears
in ¢g. In view of this key observation, Lemmas 1, 2 and Theorem 3 also hold for
deterministic statically prioritized CSs. Hence, we have:

Theorem 5. For a deterministic statically prioritized CS P and a fized string
w, the set L ={o}"...op* | P halts on woi"...op*} is effective semilinear. In fact,
L is either empty, or of the form of"...o}*, where n; =% or 0, 1 <i < k.

3.2 Systems w.r.t. Type B Priority Relation

Again, let P be a deterministic CS, ¢ and ¢’ be two configurations, and H be a
multiset of rules. With respect to a priority relation p of type B, the following
two notions of priority are considered.

1. (Strong priority): ¢’ is said to follow ¢ through the application of H under the

strongly prioritized mode, written as ¢ gs c, if H is the maximal multiset

satisfying the following:

(a) Yruler; € H, = 3 ry & H such that p(r1) < p(re) and (H —{r1}) U{r2}
is still applicable,

(b) Vri,r2 € H, =(p(r1) < p(r2))

In words, if a rule with higher priority is used, then no rule of a lower priority

can be used, even if the two rules do not compete for objects. Note that this

priority notion coincides with the one used in [2].

2. (Weak priority): ¢ is said to follow ¢ through the application of H under the
weakly prioritized mode, written as c ﬂw c, if H is the maximal multiset
satisfying the following:

Vrulery € H, - 3 ry ¢ H such that p(r1) < p(re) and (H —{r1})U{r2}
is still applicable.
In words, none of the rules in H can be replaced by a higher priority one.

We use the following simple example to illustrate the difference between the
above two notions of priority.

Example 3: Consider a deterministic CS P with the following rules:

Rule rq : Cby — Cby; Rule ry : Cay — Cas; Rule r3 : Da; — Dasg;
Rule r4 : EFci — Eco; Rule r5 : F'ey — Fes; Rule 76 : Gdi — Dda;
(Priority relation): p(r1) > p(r2) > p(r3); p(ra) > p(rs)

Then

CDEFGa1b161d1 {n ,2),7‘5}3 CDEFGClleCQdQ
CDEFGaibicyd, U4 0 DEFGasbycads
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Note that under the weak priority semantics, the application of r; makes r3
applicable, since ro (competing for the catalyst C' with r1) is ‘disabled’ by 7.
Under the strong priority semantics, however, the application of r; disables r3
(since p(rs) < p(r1)) even though these two rules do not compete for objects. O

In contrast to Theorem 2 (also Theorem 3) that deterministic unprioritized
CSs are not universal, allowing strongly or weakly prioritized rules boosts the
computational power as the following result shows.

Theorem 6. Deterministic purely CSs under the weakly prioritized (or strongly
prioritized) mode are universal.

Proof. (Sketch) The proof involves the construction of a purely CS that simulates
a given deterministic k-counter machine which starts with one counter having
value n and the other counters empty. We only consider the case k = 2, the
generalization for any &k being straightforward.

Let M be a deterministic two-counter machine. Each of M’s transitions is of
one of the following forms:

— (Increment) s : ¢ + +,goto s’ (on state s, increment counter ¢ by one and
move to state s');

— (Test-for-zero/Decrement) s : if ¢ = 0, goto s1 else ¢— —,goto s3 (on
state s, if counter c is zero, go to state s;; otherwise, decrement counter c
by one and move to state ss.

We show how to construct a deterministic purely CS P under the either the
strongly or the weakly prioritized mode such that starting with one counter
empty and the other counter having value n, M halts iff P halts on the initial
configuration w(o1)™, where w is a string of catalytic and noncatalytic symbols
not including the symbol 0;. Let the two counters of M be ¢; and cs.

At any instant, the configuration of P is of the form C;Cy D1 D2s(01)™ (02)™2t,
where C1, Dy (resp., Ca, D) are catalysts associated with the simulation of M’s
transitions operating on counter c; (resp., c2), s represents the current state of
M, ny and ng keep track of the values of counters ¢; and ca, respectively, and ¢
is a noncatalyst whose purpose will be explained later.

We are now in a position to see how the two types of M’s transitions are simu-
lated. Without loss of generality, we assume the operations to be simulated operate
on counter ¢; the cases on counter ¢y are similar. Let C1 Co D1 D2s(01)™ (02)™2t2 be
the current configuration.

e Transition s : ¢; + +,goto s’ (assuming that from s, the next transition

operates on counter c;.)
P utilizes the following rules:

r1:Cis — Cigsor;  ro:Cigs — Cigl; 13 : Cigl, — Ci8'ta;

hll . Cgtg — Cztlz; h/2 : Czté — Cgtlzl; hg : Cgtg — CQ.
Note that symmetrically we also have rules hy : Cit1 — Cit); he : Cit] —
Cit! hs : Cit! — Cy. If the next transition to be executed on state s’
operates on counter ¢z, then rule r3 becomes Cy ¢}, — C1s't.
Using the above rules, incrementing counter c¢; is simulated through the
following sequence:
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ClcleDQS(Ol)nl (02)n2t2
{rl,hl} 0102D1D2q3(01)n1+1(0 )n2t/
r2,hy
{ 22 }w C1C2 D1 Dag(01)™ (02)n2t

{Tglf }w 0102D1D28 (01)n1+1(02)n2t27
It will be seen later that the length of the above sequence (i.e., three steps)
is exactly the same as that of simulating a test-for-zero/decrement.
Transition s : if c; =0, goto s1 else ¢ — —,goto s2
P has the following rules, in addition to the hj,h} and h% defined above.
Assume that from s; and so, M’s transitions operate on counter ci; the
other cases are similar.

fi:Cis — Cigs,b; f2:Cior — Ch; f3:Cigsy, — Cigs,;
fa: Digs, — D151 ta;  fs : Digs, — Disg ta;  fo 1 D1b — Did; fr:
Cid — Chy;

The priority relation has

fi > fa > f3; {h1,ha,h3} > fo; fr > f2a > f3; fo > {fa, f5};
{Tla r2, TS} > f2’

Care has to be taken regarding fs, which decrements counter c;. Priority
relation {ry,r2,r3} > fa is to prevent fp from being falsely applied when
simulating an ‘increment’. Note that f3 and f5 are conflicting rules. The
simulation involves the following sequence:

R TN .
C1C2D1D2s(01)™ (02)™ to =t w C1C2D1D2gs,b(01)™ (02)"2t)
{f%&’hz}w C1C2D1Dsqs,d(01)™ 1 (02)"215,

7.0 .
{fs 7, 3}w C103D1Dasy(01)™ 1 (02)"2ty, provided ng > 0;
or

w C1C2D1D2qs, d(02)"? s,
w 6'16'2D1D281(02)nztg7 provided n; = 0;

{fs’fe’ 2}
{fa,f7,h3}
=

In the second step of the above sequence, the application of fg disables f5,
allowing f3 to be applied if counter c; is zero. In the third step, the use of f;
disables both fo and f3, while allowing either f; or f; to be applied.

Clearly, M halts iff P terminates. It is also obvious that P is deterministic. It
is easy to observe that the above argument works for deterministic purely CSs

under both the strongly prioritized and the weakly prioritized modes. O
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Abstract. The most general models of restarting automata make use
of auxiliary symbols in their rewrite operations. Here we put restrictions
on the way in which restarting automata use auxiliary symbols, and we
investigate the influence of these restrictions on their expressive power. In
fact, we consider two types of restrictions. First, we consider the number
of auxiliary symbols in the tape alphabet of a restarting automaton as a
measure of its descriptional complexity. Secondly, we consider the number
of occurrences of auxiliary symbols on the tape as a dynamic complexity
measure. We establish some lower and upper bounds with respect to
these complexity measures concerning the ability of restarting automata
to recognize the (deterministic) context-free languages and some of their
subclasses.

1 Introduction

The restarting automaton was introduced by Jancar et al. as a formal tool to
model the analysis by reduction, which is a technique used in linguistics to ana-
lyze sentences of natural languages [1]. It consists of a stepwise simplification of a
given sentence so that the syntactical correctness or incorrectness of the sentence
is not affected. It is applied primarily in languages that have a free word-order.
Already several programs used in Czech and German (corpus) linguistics are
based on the idea of restarting automata [2, 3].

A (two-way) restarting automaton, RLWW-automaton for short, is a device M
that consists of a finite-state control, a flexible tape containing a word delimited
by sentinels, and a read/write window of a fixed size. This window is moved
along the tape by move-right and move-left operations until the control decides
(nondeterministically) that the content of the window should be rewritten by
some shorter string. In fact, the new string may contain auxiliary symbols that
do not belong to the input alphabet. After the rewrite operation, M can continue

* This work was supported by a grant from the Deutsche Forschungsgemeinschaft. It
was performed while Tomasz Jurdzinski was visiting the University of Kassel.

J. Farré, 1. Litovsky, and S. Schmitz (Eds.): CTAA 2005, LNCS 3845, pp. 176-187, 2006.
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to move its window until it either halts and accepts, or halts and rejects, or
restarts, that is, it places its window over the left end of the tape, reenters the
initial state, and continues with the computation. Thus, each computation of M
can be described through a sequence of cycles.

Also various restricted versions of the restarting automaton have been consid-
ered. A one-way restarting automaton, RRWW-automaton for short, does not use
any move-left operations. If, in addition, it is required to perform a restart step
immediately after executing a rewrite operation, then it is an RWW-automaton.

Many well-known classes of formal languages have been characterized in terms
of restricted variants of the restarting automaton. For example, the deterministic
R(R)WW-automaton characterizes the class of Church-Rosser languages [4, 5] of
McNaughton et al. [6], the monotone R(R)WW-automaton characterizes the class
CFL of context-free languages [7], and various types of deterministic monotone
R(R)WW-automata characterize the class DCFL of deterministic context-free lan-
guages [7].

Here we place some restrictions on the way in which restarting automata
make use of auxiliary symbols. This direction of research is motivated by the fact
that originally the analysis by reduction does not involve the use of auxiliary
symbols. On the other hand, the expressive power of restarting automata without
auxiliary symbols is relatively weak, as not even all context-free languages can
be recognized by them [7]. Thus, we introduce an intermediate level, at which
auxiliary symbols can be used only in a restricted way. Actually, we consider
two types of restrictions. First we consider the number of auxiliary symbols in
the tape alphabet as a measure of the descriptional complexity of the restarting
automaton, and secondly we interpret the number of occurrences of auxiliary
symbols on the tape as a dynamic complexity measure. We analyze the influence
of these restrictions on the ability of various types of restarting automata to
recognize certain well-studied classes of formal languages.

In Section 2 we give the necessary definitions in short. In Section 3 we in-
vestigate the expressive power of deterministic restarting automata that use
auxiliary symbols in a restricted way only. Then, in Section 4, we study how
many auxiliary symbols (in the alphabet or on the tape) are needed by nonde-
terministic RWW-automata to accept any context-free language, and we show
that all k-linear languages (k > 2) are accepted by RLWW-automata with only
two occurrences of a single auxiliary symbol. In addition, for £ = 2 we improve
upon this result by showing that a single occurrence of a single auxiliary symbol
suffices. Because of the page limit not all proofs are given in the paper. For a
complete and detailed presentation we refer to the technical report [8].

Notation. Throughout the paper € will denote the empty word, and for ¢,j € N,
[i,j]:={leN[i<l<j}.

2 Definitions

Here we describe in short the type of restarting automaton we will be dealing
with. More details can be found in [9].
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A two-way restarting automaton, RLWW-automaton for short, is a nondeter-
ministic machine that is described by an 8-tuple M = (Q, X, I,¢,$,qo, k, 6),
where @) is a finite set of states, X' is a finite input alphabet, and I" is a finite
tape alphabet containing Y. The symbols ¢,$ & I" serve as markers for the left
and right border of the work space, respectively, which cannot be removed from
the tape. Further, go € @ is the initial state, k > 1 is the size of the read-write
window, and § is the transition relation that associates to a pair (¢, u) consisting
of a state ¢ and a possible content u of the read/write window a finite set of
possible transition steps. There are five types of transition steps:

1. A move-right step (MVR) causes M to shift the read/write window one po-
sition to the right and to change the state. However, the read/write window
cannot move across the right sentinel $.

2. A move-left step (MVL) causes M to shift the read/write window one position
to the left and to change the state. However, the read/write window cannot
move across the left sentinel ¢.

3. A rewrite step causes M to replace the content u of the read/write window
by a shorter string v, thereby shortening the tape, and to change the state.
Further, the read/write window is placed immediately to the right of the
string v.

4. A restart step causes M to place its read/write window over the left end of
the tape, so that the first symbol it sees is the left sentinel ¢, and to reenter
the initial state qq.

5. An accept step causes M to halt and accept.

If 6(qg,u) = 0 for some pair (q,u), then M necessarily halts, and we say
that M rejects in this situation. Further, the transition relation must satisfy the
additional requirement that within each computation of M, rewrite steps and
restart steps occur alternatingly with a rewrite step coming first.

A configuration of M is a string aqf where ¢ is a state, and either o = ¢
and B € {¢}- I - {$} ora € {¢} - I'* and B € I'* - {$}; here ¢ represents the
current state, a3 is the current content of the tape, and it is understood that the
window contains the first k symbols of § or all of 3 when |3| < k. A restarting
configuration is of the form go¢w$, where qo is the initial state and w € I'*; if
w € X*, then go¢w$ is an initial configuration. Thus, initial configurations are
a particular type of restarting configurations.

In general, the automaton M is nondeterministic, that is, there can be two
or more instructions with the same left-hand side (¢, u). If that is not the case,
the automaton is deterministic.

Each computation of a two-way restarting automaton M consists of certain
phases. A phase, called a cycle, starts in a restarting configuration, the win-
dow moves along the tape performing MVR and MVL operations and a single
rewrite operation until a restart operation is performed and thus a new restart-
ing configuration is reached. If no further restart operation is performed, any
finite computation necessarily finishes in a halting configuration — such a phase
is called a tail. During a tail at most one rewrite operation may be executed.
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An input w € X* is accepted by M, if there is a computation which, starting
with the initial configuration go¢w$, finishes by executing an accept instruction.
By L(M) we denote the language consisting of all words accepted by M; we say
that M recognizes (accepts) the language L(M).

Various subclasses of RLWW-automata have been studied. They are obtained
by combining two types of restrictions:

(a) Restrictions on the movement of the read/write window (expressed by the
first part of the class name): RL- denotes no restriction, RR- means that no
MVL operations are available, R- means that no MVL operations are available
and that each rewrite step is immediately followed by a restart.

(b) Restrictions on the rewrite-instructions (expressed by the second part of
the class name): -WW denotes no restriction, -W means that no auxiliary
symbols are available (that is, I' = X)), - means that no auxiliary symbols
are available and that each rewrite step is simply a deletion (that is, if
(¢',v) € 6(q,u) is a rewrite instruction of M, then v is obtained from u by
deleting some symbols).

By det-RLWW we denote the class of deterministic RLWW-automata, and
analogously for the other types of restarting automata. Further, for each type
X of automata, we denote the class of languages that are accepted by automata
from that class by L£(X).

Finally, we define some new complexity measures for restarting automata
with auxiliary symbols. For each type X of restarting automata with auxiliary
symbols, and integers i, j € N, aux(j,)-X, a-aux(j, 7)-X, and g-aux(j, 7)-X denote
the class of restarting automata M of type X for which the number of auxiliary
symbols in the tape alphabet does not exceed the number ¢ and,

— for aux: the number of occurrences of auxiliary symbols in any configuration
during any computation of M starting from an initial configuration is not
larger than j;

— for a-aux: the number of occurrences of auxiliary symbols in any configuration
during any accepting computation of M starting from an initial configuration
is not larger than j;

— for g-aux: for each x € L(M), there exists an accepting computation of M
such that the number of occurrences of auxiliary symbols in any configuration
during that computation is not larger than j.

In some cases we may replace the constant j by a non-constant function, which
is used to measure the number of occurrences of auxiliary symbols on the tape
as a function of the length of the input.

As our main interest concerns those classes with only a single auxiliary sym-
bol in the alphabet, we introduce the notation aux(j)-X as a shorthand for
aux(j, 1)-X.

Observe that, for each type X € {RL, RR, R, det-RL, det-RR, det-R}, XW and
aux(0)-XWW denote essentially the same class of automata.
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Proposition 1. The following relationships hold for each i € N and each func-
tionj : N—N:

1. L(Y-aux(j,7)-RLWW) = L(Y-aux(j,7)-RRWW) for each type Y € {a-, g-}.
2. L(aux(j,i)-RLWW) C L(aux(2j,1)-RRWW).

Proof. (1) For each RLWW-automaton M, there exists an RRWW-automaton M’
such that M and M’ use the same tape alphabet, they recognize the same lan-
guage, and in each accepting computation M’ executes exactly the same rewrite
steps as M does in the corresponding computation [10]. More precisely, in each
cycle of a computation M’ guesses crossing tables for M and simultaneously ver-
ifies that its guesses are correct. In the affirmative M’ has successfully simulated
the corresponding cycle of M; otherwise M’ has made a mistake, and therefore
it terminates the simulation and halts without accepting. Thus, as long as M’
simulates the computation of M correctly, both automata will always have the
same number of occurrences of auxiliary symbols on their tapes.

(2) When M’ makes an incorrect guess, then this can result in the introduction
of at most j additional occurrences of auxiliary symbols, as M’ only applies
rewrite operations of M. Hence, in this case M’ may have up to 27 occurrences
of auxiliary symbols on its tape. a

3 Deterministic Restarting Automata

In [11] a non-context-free language L;, is presented such that L;. € L(det-RW).
On the other hand, there exist context-free languages which are not even recog-
nized by RRW-automata [7]. Thus, we have the following results.

Corollary 1.

(a) DCFL € L(aux(0)-det-RWW).
(b) The classes CFL and L(aux(0)-det-RWW) are incomparable under inclusion.

It is known that auxiliary symbols increase the expressive power of determin-
istic RWW-automata [7]. Here, we show that already a single occurrence of a
single auxiliary symbol has that effect.

Proposition 2. The language Lpow = {a®" | n € N} belongs to the class
L(aux(1)-det-RWW).

Proof. A det-RWW-automaton M for the language L., works as follows, where
A is the only auxiliary symbol :

1. Tt accepts an input of the form a, aa or aaaa immediately.
2. If the tape content does not contain an occurrence of the symbol A, then a
rewrite step of the form aaaa$ — Aaa$ is applied.
3. If the tape content does contain an occurrence of A, then
— M rejects, if the tape content has a prefix of the form ¢a’A for some
integer ¢ < 4;
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— M applies a rewrite step of the form ¢a*A — ¢a?, if the tape content
has a prefix of the form ¢a*4;

— M applies a rewrite step of the form a*4 — Aa?, if the tape content has
a prefix of the form ¢a’A for some integer i > 4.

It follows easily that L(M) = Lpoyw, and that no configuration of M that is
reachable from an initial configuration ever contains more than a single occur-
rence of the auxiliary symbol A. O

Using the pumping lemma for restarting automata [10], it can be shown easily
that Ly is not accepted by any RLW-automaton. Thus, we obtain the following
proper inclusions.

Corollary 2. For each type X € {det-R(R)WW, det-RLWW, R(R)WW, RLWW},
L(aux(0)-X) € L(aux(1)-X).

As shown in [9] (Section 5), det-RL-automata even accept some languages
that are not growing context-sensitive. Hence, we see that the language class
L(aux(0)-det-RLWW) is not included in the class GCSL of growing context-
sensitive languages. As GCSL includes the class of Church-Rosser languages,
which coincides with the class £(det-RRWW), we obtain the following conse-
quences.

Corollary 3. For each i € Ny and each function j : N — N,
L(aux(0)-det-RLWW) ¢ L(aux(j,)-det-RRWW) C L(aux(j, i)-det-RLWW).

Currently we do not know whether all context-free languages can be accepted
by det-RLWW-automata. However, we can at least show that this is impossible
when the number of occurrences of auxiliary symbols is restricted too much.

Proposition 3. The language Lya2 := { wwRovf | w,v € {0,1}*} is not ac-
cepted by any deterministic RLWW-automaton that uses only o(n/ log® n) occur-
rences of auxiliary symbols.

The proof of this proposition, which is based on Kolmogorov complexity, is
quite involved. It can be found in [8]. This result yields the following lower bound
result.

Corollary 4. If CFL is contained in the language class L(aux(j,1)-det-RLWW)
for some function j and some integer i, then j(n) € o(n/log® n).

It is currently not even known whether the deterministic RLWW-automaton is
at all less expressive than the nondeterministic RLWW-automaton. However, as
the language Lyq;2 is 2-linear, and as the class of 2-linear languages is included in
aux(1)-RLWW (see Theorem 4), we have at least the following separation result.

Corollary 5. For each function j(n) € o(n/log® n) and each integer i > 0,

L(aux(j,1)-det-RLWW) C L(aux(j,¢)-RLWW).
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4 Nondeterministic Restarting Automata

Here we investigate the complexity of context-free languages with respect to
the number of auxiliary symbols used. As already R-automata can accept some
languages that are not even growing context-sensitive [12], while some context-
free languages cannot be accepted by RRW-automata [7], we have the following
basic fact.

Corollary 6. The language classes L(aux(0)-X) and CFL are incomparable un-
der set inclusion for each type X € {RLWW, RRWW, RWW}.

However, each context-free language can be accepted by an RWW-automaton
that has only a single auxiliary letter.

Theorem 1. CFL is included in L(aux(n,1)-RWW).

Proof. Let G be a context-free grammar in Chomsky normal form with the set
N of nonterminals, let m := [N|, and let L be the set of all sentential forms that
can be derived in G.

For cach o € L, we consider a derivation tree for a. If « is sufficiently long,
then there exists a subtree with at least 4m (and at most 8m) leaves. The
RWW-automaton guesses a subword of « which corresponds to such a subtree
and replaces it by the encoding of the nonterminal appearing at the root of
that subtree.

In order to use this technique when there is only one auxiliary symbol in the
alphabet, we encode the i-th nonterminal of G by Aa’A, where A is the only
auxiliary symbol of the RWW-automaton considered and a is a fixed terminal
symbol. As each rewrite step shortens the sentential form by at least 4m — 1
symbols, the rewrite steps remain length-reducing even when the above encoding
for nonterminals of G is being used. O

If only the accepting computations with the smallest number of occurrences
of auxiliary symbols are taken into account, then a technique of Hemaspaandra
et al. for space efficient computations [13, 14] can be used to derive the following
result.

Theorem 2. CFL is included in L(g-aux(logn, 1)-RWW).

For the rest of the paper we restrict our attention to a particular class of
context-free languages. A language L is called k-linear [15] if there is a context-
free grammar G = (N, X, P, S) for L that contains a starting rule of the form
S — S1...5; such that S does not occur in any other rule of G, and S; is
the starting symbol of a linear subgrammar G; = (N;, X, P;, S;) for each i €
{1,...,k}. Further, N; " N; = () for each i # j, and S; does not occur on the
righthand side of any rule of G; (1 < ¢ < k). Thus, L is the concatenation
Ly-Ly-... Ly of the linear languages L; := L(G;) (1 <14 < k). By k-LIN we
denote the class of k-linear languages.

Theorem 3. J, .y k-LIN € L(aux(2)-RLWW).
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Proof. The computation of an RLWW-automaton M can be described trans-
parently by a finite set of meta-instructions of the form (Ey,u — v, E2) and
(E, Accept), where E7, Es, and FE are regular languages, which are called the reg-
ular constraints of the meta-instruction. In a restarting configuration of the form
go¢w$, M nondeterministically chooses a meta-instruction. If (E1,u — v, E3) is
chosen, then M halts and rejects, if w does not admit a factorization of the form
w = wiuwsy such that ¢w; € E; and we$ € Ey. Otherwise, one such factoriza-
tion is chosen nondeterministically and the restarting configuration go¢w;vws$
is reached. If (E, Accept) is chosen, then M halts and accepts, if ¢w$ € E,
otherwise, it halts and rejects.

Let L be a k-linear language, and let G be a k-linear grammar that gener-
ates L. First, we describe the idea of accepting L using only two occurrences of
auxiliary symbols on the tape, but without restricting the number of auxiliary
symbols in the alphabet.

For an input word z we first guess a GGi-derivation S; =* z; for a prefix x;
of x such that x = z1...2k, z; € L(G;) for i € [1,k], in a bottom-up fashion.
We start by choosing a production X — a for X € N; and o € X*. That is,
we perform a rewrite step a — X. Then we simulate consecutive steps of the
derivation in reverse order by applying meta-instructions

(¢, aXB — Y, 5%9)

for X,Y € Ny, a, B € X*, corresponding to productions Y — a X of G;.
When a tape content of the form Syy is reached, where y € X*, we begin
to simulate a Ga-derivation for Ly = L(G2) by first executing the last step in
a derivation of xo € Ly. Thereafter, the tape contains two auxiliary symbols:
S1 € Ny and X € Ns. This means that we have already found a prefix z; € L4
and started to simulate a Gs-derivation for x5 € Ls. So we can remove S7.
Further, we process consecutive factors analogously. In general, we can describe
this behaviour by the following meta-instructions, where u,y,v € X*, i € [1,k]:

¢X*u— X, 2*8) for (X —u) € P,

¢X* uXy — Y, 2*§) for XY € N;, (Y - uXy) € P,
(¢S X% u— X, X*8) for X € Niy1,(X — u) € Piyq,
(¢, S; — g, E*XE*S;) for X € Ni+17

(¢.Sk3, Accept).

However, this schema does not guarantee that the automaton is length-reducing,
for example, a production X — y where |y| < 1 can be applied. Further, our
aim is to use only one auxiliary symbol in the alphabet.

Without loss of generality we can assume that the grammar does neither
contain any productions of the form X — Y for |[Y| <1 and X ¢ {S1,..., Sk}
nor of the form S; — X for ¢ € [1,k] and X € N. Further, we can assume that
X contains at least two symbols, say 0 and 1 (as context-free languages over a
one-letter alphabet are regular). In order to apply the above strategy using only
one auxiliary symbol, an occurrence of this auxiliary symbol will be followed by
a binary encoding (of a fixed length) of the actual nonterminal of G. In order to
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make the resulting rewrite operations length-reducing, ‘short’ factors x; will not
be processed separately and for the remaining ‘long’ factors, we simulate several
derivation steps by a single rewrite operation. In this way we will have sufficient
space for the encodings.

Let p := 2 - max([log |N|], [logk]), and let X1,..., X|n| be the nonterminals
of G. For each occurrence of the only auxiliary symbol A of M on the tape, the p
symbols following A will be interpreted as follows: the first p/2 symbols encode
the number i of the nonterminal X;, and the next p/2 symbols encode j, the
index of the last factor z; processed previously. For X; € N, we use bin(X;) to
denote the (p/2)-bit encoding of 4, and for ¢ € [1, k], bin(¢) denotes the (p/2)-bit
encoding of 7.

Finally, let 7 := max{ |a| | (X — a) € P }+p. The automaton M will proceed
according to the following strategy:

1. If the tape does not contain any occurrences of the auxiliary symbol, and
if the length of the tape content is not longer than k - r, then M decides
whether the input belongs to L in a tail computation.

2. If the tape does not contain any occurrences of the auxiliary symbol, but the
length of the tape content exceeds the number k-7, then M guesses a minimal
index j such that |z;| > r. Next M guesses a derivation X =}, u such that
p+l<|ul<r,ue X* and X € N, M finds an occurrence of the factor u
within the tape content, and executes the rewrite step u — Abin(X)bin(0).

3. To simulate a derivation step in a single factor, M has a meta-instruction of
the form

(¢ X, uAbin(Y)bin(j)v — Abin(X)bin(j), X*$)

for each production X — uYwv, where X, Y € N, and i > j > 0.
4. To finish the derivation of a factor x;, M has a meta-instruction of the form

(¢, yuAbin(Y)bin(j — 1)v — Abin(S;)bin(z), X*$)

for each y = xjxj41 ... 2;—1 such that z; € L; and |z;| < r for [ € [j,i — 1],
and for each production S; — uYv.

5. To start the processing of a new factor, M guesses the next value j > i such
that |z;| > r, where 7 is the index of the previously processed factor. Next
M chooses a derivation X =¢, u such that p+1 < |u| < r, X € Nj;, finds
the factor u on the tape, and executes the meta-instruction

(¢ Abin(S;)bin(i) X*, u — Abin(X)bin(z), X*$).
6. In order to remove an occurrence of the auxiliary symbol which is not needed
anymore from the tape (together with the encoding of the nonterminal which
follows this symbol), M uses the meta-instructions

(¢, Abin(S;)bin(i) — e, X" Abin(X)bin(:) X*$)

for X € Ny, j > 1.
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7. Finally, for each y = z;xj41...2,—1 and y = x;41 ... 2% such that z; € L,
and |z;| <r for 1 € [j,k] — {i}, i € [1,k], M has the meta-instruction

(¢yAbin(S;)bin(j — 1)y’$, Accept).

The above meta-instructions define a length-reducing RLWW-automaton which
recognizes L(G) and which uses at most two occurrences of the single auxiliary
symbol A. 0O

From the proof above we obtain the following consequence.

Corollary 7. LIN C £L(aux(1)-RLWW).

Actually, this result can be extended as follows, improving on Theorem 3 at
least for the case k = 2.

Theorem 4. 2-LIN C L(aux(1)-RLWW).

Proof. Let G = (N, X, P,S) be a 2-linear grammar with starting production
S — 5159 and linear subgrammars G; = (N;, X, P;, S;) for i = 1,2. We describe
a restarting automaton M for L := L(G) that never has more than a single
occurrence of an auxiliary symbol on its tape, but that uses many different
auxiliary symbols. Then we will point out how to get rid of all but one auxiliary
symbol by employing an appropriate encoding.

In the following description we will make use of a constant ¢ € N that we will
specify later. Given an input word of length below 2c¢ + 2, M accepts or rejects
immediately in a tail computation. For an input x satisfying |z| > 2¢+2, M must
determine whether x has a factorization * = x125 such that 7 € L(G;) and
xo2 € L(G3). As a first step towards this aim, M chooses nondeterministically
one of the cases (i) |z1],|z2| > ¢, (ii) |z1] < ¢ (and so |z2| > ¢), or (iii) |x2| < ¢
(and so |z1] > ¢).

In cases (ii) and (iii) M guesses a G;-derivation of z; from S; in reverse order
for the factor x; satisfying |z;| > ¢ using only a single occurrence of an auxiliary
symbol on the tape, verifying that the remaining factor z;, j # 4, belongs to
L(G;) in the final step.

Finally, in case (i) M works as follows. First, it guesses a Gy-derivation for
21 in reverse order. Thereafter, M simulates a Ga-derivation

So = S0X110 = SpS1X27r1T0
=% 5081 ... Sm—-1XmTm—1...T1T0
= S0S1---Sm—-1SmTm—1-..-T170

of 9 = 5081 ...8m_1SmTm—1...717r9 from Sy, where X;_1 — s;_1X;r;_1 is the
i-th step of this derivation for 1 < ¢ < m, Xg := So, and X,, — s,, is the
last step. As M must remember the position of the nonterminal X; within the
current content of the tape, it uses a finite number of symbols at the suffix of
the tape content to indicate where the encoding of this nonterminal is located.
Unfortunately, M cannot apply any rewrite step to the suffix as long as i < j,
where j is the minimal value for which r; # €. Therefore, the initial part of
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length j of the Ga-derivation is treated separately. Eventually, the restarting
configuration go¢ X;S; ... Sm—18mTm—1 - ..7;$ is reached.

If s; # € and r; # €, then the simulation of the derivation step X; — s; X 417;
will require more than one rewrite step of M. Therefore, we use a fixed number of
input symbols that follow directly after the auxiliary symbol and a fixed number
of input symbols that are adjacent to the right sentinel $ to encode information
about the derivation step to be simulated and to coordinate the rewrite steps.

As this requires some extra space for the encodings, M will simulate at least ¢
steps of the Ga-derivation at once, using several cycles. The matter is complicated
by the fact that we have to distinguish between those parts of the Ga-derivation
where the factors r; are empty and those parts, where these factors are non-empty.

The automaton M accepts the language L, but it is not length-reducing, and
furthermore, it uses many different auxiliary symbols. Fortunately, we can trans-
form it into a length-reducing automaton with only a single auxiliary symbol in
its alphabet by using an appropriate encoding. The size of the constant c¢ is de-
termined as part of this encoding. The details can be found in [8]. O

5 Conclusions and Open Problems

We have seen that two occurrences of a single auxiliary symbol suffice to accept
every k-linear language, and that for k = 2, already a single occurrence suffices.
On the other hand, we have seen that a bounded number of occurrences of auxil-
iary symbols does not suffice to accept all context-free languages by deterministic
RLWW-automata. However, many problems concerning the new measures remain
open. For example, is there an infinite hierarchy with respect to the number of
auxiliary symbols in the tape alphabet? Or is it possible to show that a single
auxiliary symbol is always sufficient by using appropriate encodings? What can
be said in general on the number of occurrences of auxiliary symbols on the
tape? Is there an infinite hierarchy with respect to the number of occurrences
of auxiliary symbols? Other interesting questions concern the context-free lan-
guages. For example, is there a constant d such that each context-free language
is accepted by a nondeterministic RLWW-automaton that uses at most d occur-
rences of auxiliary symbols? Recall that each deterministic context-free language
is accepted by a monotone det-R-automaton [7], that is, for these languages no
auxiliary symbols are required at all.

Acknowledgement. The authors thank Frantisek Mraz and Martin Platek
from Charles University, Prague, for many fruitful discussions on restarting au-
tomata in general and on the topic of this paper in particular.
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Abstract. Weighted finite-state machines with n tapes describe n-ary
rational string relations. The join n-ary relation is very important in
applications. It is shown how to compute it via a more simple opera-
tion, the auto-intersection. Join and auto-intersection generally do not
preserve rationality. We define a class of triples (A,4,7) such that the
auto-intersection of the machine A on tapes i and j can be computed
by a delay-based algorithm. We point out how to extend this class and
hope that it is sufficient for many practical applications.

1 Introduction

Multi-tape finite-state machines (FSMs) [1, 5] are a natural generalization of the
familiar finite-state acceptors (one tape) and transducers (two tapes). Multi-tape
machines have been used in the morphology of Semitic languages, to synchronize
the vowels, consonants, and templatic pattern into a surface form [3, 6].

The n-ary relation defined by a (weighted) n-tape FSM is a (weighted) rational
relation. Finite relations are defined by acyclic FSMs, and are well-studied since
they can be viewed as relational databases whose fields are strings [7]. E.g., a
two-column database can be represented by an acyclic finite-state transducer.

Unfortunately, one pays a price for generalizing to multi-column databases
with infinitely many rows, as defined by cyclic FSMs. Cyclic FSMs are closed
under the rational operations, but not under all relational operations, as finite
databases are. For example, transducers are not closed under intersection [1].

In this paper we consider a practically useful generalization of transducer
intersection, multi-tape join, which is analogous to matural join of databases.
More precisely, we study an equivalent but simpler problem, auto-intersection.

J. Farré, 1. Litovsky, and S. Schmitz (Eds.): CTAA 2005, LNCS 3845, pp. 188-198, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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The emptiness or rationality of the result is generally undecidable [7]. Therefore
we define a simple class © of triples (A, 4, j) such that the auto-intersection of
the machine A w.r.t. tapes ¢ and j is rational. Our auto-intersection algorithm
for this class is based on the notion of delay [8,9]. We focus on the case of an
auto-intersection w.r.t. two tapes, which is sufficient to explain the basic ideas
and problems, and we briefly discuss the general case. We conclude by pointing
out possible extensions of the class ©.

Weighted n-ary relations and their machines are introduced in Section 2. Join
and auto-intersection operations are presented in Section 3. A class of compilable
auto-intersections and the associated algorithm are defined in Section 4.

2 Definitions

We recall some definitions about n-ary weighted relations and their machines,
following the usual definitions for multi-tape automata [2,10], with semiring
weights added just as for acceptors and transducers [11,12]. See [7] for details.

Weighted n-Ary Relations: A weighted n-ary relation is a function from
(X*)™ to K, for a given finite alphabet X and a given weight semiring K =
(K,®,®,0,1). A relation assigns a weight to any n-tuple of strings. A weight of
0 can be interpreted as meaning that the tuple is not in the relation.! We are
especially interested in rational (or regular) n-ary relations, i.e. relations that
can be encoded by n-tape weighted finite-state machines, which we now define.
We adopt the convention that variable names referring to n-tuples of strings
include a superscript (™. Thus we write s rather than s for a tuple of strings
(s1,-..8n). We also use this convention for the names of objects that contain
n-tuples of strings, such as n-tape machines and their transitions and paths.

Multi-tape Weighted Finite-State Machines: An n-tape weighted finite-
state machine (WFSM or n-WFSM) A(™ is defined by a six-tuple A =
(X,Q,K,E™ X, 0), with ¥ being a finite alphabet, @ a finite set of states,
K=(K,®,®,0,1) the semiring of weights, E(™ C (Q x (X*)" x K x Q) a finite
set of weighted m-tape transitions, A\ : @ — K a function that assigns initial
weights to states, and g : Q — K a function that assigns final weights to states.
We say that g € Q is an initial state if A(¢) # 0, and a final state if o(q) # 0.
Any transition (™ € E(™ has the form e(™ = (p, ("™ w,n). We refer to
these four components as the transition’s source state p(e(”)) € @, its label
{(e™) e (Z*)™, its weight w(e(™) €K, and its target state n(e(™)e Q. We refer
by E(q) to the set of out-going transitions of a state ¢€Q (with E(q) CE™).

Y”eg”) e e,(fn) where

A path v of length k > 0 is a sequence of transitions e
n(e™) :p(egi)l) for all i€ [1, k—1]. The path’s label £(y(™) is the element-wise

concatenation of the labels of its transitions. The path’s weight w(y(™)) is

1 Tt is convenient to define the support of an arbitrary weighted relation ’R<"), as being
the set of tuples to which the relation gives non-0 weight.
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The path is said to be successful, and to accept its label, if w(y(™) # 0.
We denote by 'y the set of all successful paths of A and by I'ywm)(s(™)
the set of successful paths (if any) that accept the n-tuple of strings s(™). Now,
the machine A(™ defines a weighted n-ary relation R(A™) : (¥*)" — K that
assigns to each n-tuple, s the total weight of all paths accepting it:

def

Rae (s™) w(y™) (2)

'Y(H)GFA(n) (S(H))

3 Operations

We now describe some central operations on n-ary weighted relations and their
n-WFSMs [13]. The auto-intersection operation is introduced, with the aim of
simplifying the computation of the join operation. Our notation is inspired by
relational databases. For mathematical details of simple operations see [7].

Simple Operations: The set of n-ary weighted rational relations can be con-
structed as the closure of the elementary n-ary weighted relations (those whose
support consists of at most one tuple) under the basic rational operations of
union, concatenation and Kleene closure. These rational operations can be im-
plemented by simple constructions on the corresponding nondeterministic n-tape
WPFSMs [14]. These n-tape constructions and their semiring-weighted versions
are exactly the same as for acceptors and transducers, since they are indifferent
to the n-tuple transition labels.

The projection operator m(;, . j v, with ji,...jm € [1,n], maps an n-ary re-
lation to an m-ary one by retaining in each tuple components specified by the
indices j1,...Jm and placing them in the specified order. Indices may occur in
any order, possibly with repeats. Thus the tapes can be permuted or duplicated:
T(2,1y inverts a 2-ary relation. The complementary projection operator mg; ;1
removes the tapes j1, ... Jjm» and preserves the order of other tapes.

Join Operation: Our join operator differs from database join in that database
columns are named, whereas our tapes are numbered. Since tapes must explicitly
be selected by number, join is neither associative nor commutative.

For any distinct iy, ...4, €[1,n] and any distinct j1,...j. € [1,m], we define
a join operator My; —;,  ; —; 1. It combines an n-ary and an m-ary relation into
an (n +m — r)-ary relation defined as follows:?

2 For example the tuples (abc,def,e) and (def,ghi,e,jkl) combine in the join
Mygo=1,3=33 and yield the tuple (abc, def, €, ghi, jkl), with a weight equal to the prod-
uct of their weights.
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n m def n n m m
(Rg ) N{h:jl,-..ir:jr} Ré >) ((ula cerUpy Sty e e S7n—T>) = Rg )(u( )) ® R; )(/U( )) (3)
v(™) being the unique tuple s. t. ¢, ;3 (™) = s~ and (Vk € [1,7]) vj, = us,.
The intersection of two n-ary relations is the n-ary relation defined by the join
operator Mgj_j o—9 . n—pn}. Examples of single-tape join (where r = 1) are the
join Mg _qy (the intersection of two acceptors) and the join Mrp—) that can be

used to express transducer composition. The cross product x, as in Rﬁ") x Ré””,
can be expressed as Xy, the join of no tapes (r = 0). Our main concern in this
paper is multi-tape join (r > 1).

Some practical applications require the multi-tape join operation, for example:
probabilistic normalization of n-WFSMs conditioned on r tapes,® or searching
for cognates [16]. Unfortunately, rational relations are not closed under arbitrary
joins [7]. The join operation is so useful that it is helpful to have a partial
algorithm: hence our motivation for studying auto-intersection.

Auto-intersection: For any distinct i1, j1, ... ir,jr € [1,n], we define an auto-
intersection operator o(; —; i,—j,,...i,—j.}- 1t maps a relation R™ to a subset
of that relation, preserving tuples s(™) whose elements are equal in pairs as
specified, but removing other tuples from the support of the relation.* The formal

definition is:

of | R™((s R if (Vk ,])si, =55,
(O izt (R™)) <<s1,...sn>>d=f{ (o1 o)) (el Tl (4)

0 otherwise
It is easy to check that auto-intersecting a relation is different from joining
the relation with its own projections. Actually, join and auto-intersection are
related by the following equalities:

R Wiy oinminy RS = Tnjinin} (U{i1:n+j1«,~»ir:n+jr-}( Ry < Ry™ ) ) ()

U{ilzjl,..i,.:j,,.}(R(”)) = RM™ M =1 122, =21 jr=2r} | (T1y (Z7) XXy 1y (X7) (6)
~ -

~
T times

Thus, for any class of difficult join instances whose results are non-rational
or have undecidable properties [7], there is a corresponding class of difficult
auto-intersection instances, and vice-versa. Conversely, a partial solution to one
problem would yield a partial solution to the other.

The case r = 1 is single-pair auto-intersection. An auto-intersection on mul-
tiple pairs of tapes (r > 1) can be defined in terms of multiple single-pair auto-
intersections:

Ofismiinms} (R 0y (o (R ) (1)
3 This is a straightforward generalization of J. Eisner’s construction for probabilistic

normalization of transducers (n = 2) conditioned on one tape (r = 1) [15].

4 The requirement that the 2r indices be distinct mirrors the similar requirement on
join and is needed for (6) to hold. But it can be evaded by duplicating tapes: the

illegal operation oq1=22-33(R) can be computed as m{33(0{1=2,3=43(7 1,2,2.3 (R)))-
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Nonetheless, it may be wise to compute o3, —j, i, —;} all at once rather than
one tape pair at a time. The reason is that even when o; —;, . ;. —;1 is rational,
a finite-state strategy for computing it via (7) could fail by encountering non-
rational intermediate results. For example, consider applying o(2—34—5} to the
rational 5-ary relation {(a’t’/,c!, ¢, z,y) | i,7 € N}. The final result is rational
(the empty relation), but the intermediate result after applying just oo—3; would
be the non-rational relation {(a’b?, ¢, ¢*, z,y) | i € N}.

4 Single-Pair Auto-intersection

As indicated by (5), a join can be computed via an auto-intersection, which
can be decomposed as a sequence of single-pair auto-intersections as in (7). We
therefore focus on the single-pair case, which is sufficient to explain the basic
ideas and problems. As a consequence of Post’s Correspondence Problem, there
exists no fully general algorithm for auto-intersection [7]. We show that it is
however possible to compile the auto-intersection o(;—;1(A) for a limited class
of triples (A, i, j) whose definition is based on the notion of delay.

By delay we mean the difference of length of two strings of an n-tuple:®
S0y (8M) = |si|—|s;| (with i,5 € [1,n]). The delay of a path 7 is determined
from its respective labels on tapes i and j: ¢; jy(7) = [€:(7)|—€;(7)]-

For any Rgn)7 its autointersection R(") = J{i:j}(Rgn)) assigns a weight 0 to
each string tuple s(™ such that s; # s;. For simplicity, our auto-intersection
construction will ensure this by never creating any successful paths + for which
Li(y) # ¢;(7). One consequence is that all successful paths of our constructed
A = a{i:j}(Agn)), where Ag”) expresses Rg”), will have a delay equal to 0:
VY € Dy, i(y) =4;(7) = |G| =140 = 64,5 (7) =0.

To be more specific, let 10 C FAgn) be the set of successful paths of A§”> with

a delay of 0. Then our construction will “copy” an appropriate subset of I'°
into the constructed A, Note that ¥y = v172 -y, € T'°, S0y () =
d¢igy(v) = 0.

4.1 Bounded Delay Auto-intersection

We now focus temporarily on n-WFSMs such as Ag") in Figure 1, whose cycles
all have a positive delay with respect to the tapes i, of the single-pair auto-
intersection.

Such an n-WFSM might contain paths with arbitrarily large delay. How-
ever, if we consider only its paths v € I'?, it turns out that they must have
bounded delay. That is, that there is a bound 67;% (Agn)) for the WEFSM such
that |3 ;) (v1)] < 07 (A for any prefix v, of any v € I'°.

In this section, we outline how to compute the bound 672 (Ag”)). Then, while
the algorithm of the next section (4.2) is copying paths from Agn), it can avoid

5 We use the notion of delay similarly as in the synchronization of transducers [8,9].



A Class of Rational n-WFSM Auto-intersections 193
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a a a a

Fig. 1. An example n-WFSM A(ln), having four acyclic factors ap and three cycles ¢y,
with positive delay

C2

0\¢$$% L) WVAN \y

Fig. 2. Hypothetical monitoring of the delay of successively longer prefixes v of one
path « through A(ln) whose total delay 0 ; ; () =0. Global extrema are marked. By
assumption, each of the cycles ci1, c2, cs has positive delay.

extending any prefix whose delay’s absolute value exceeds 67} (Agn)). (Such a
prefix is useless because it will not extend into a path in I'°, let alone a path
with £;(7) = £;(7).)

If we plotted the delay for successively longer prefixes v; of a given path
v € I'° as ~; ranges from € to v, we would obtain a curve that begins and ends
with delay 6,; jy(71) =0, as shown in Figure 2. How can we bound the maximum
5(1,;’)(71) and minimum 5(1,;’)(71) along this curve?

A lower bound is given by 5@% (Agn)) < 0, defined as the minimum delay of
any acyclic path that begins at an initial state of A(ln). Why? Since v € I'V is a
successful path, any prefix v; of 7 can be regarded as an acyclic path of this sort
with zero or more cycles inserted. But these cycles can only increase the total
delay (by the assumption that their delay is positive), so d; jy(71) > 6LR (A(” ).

An upper bound is given by 8@%(4’”) > 0, defined as the negation of the
minimum delay of any acyclic path that ends at a final state of Agn). By sym-
metry, that minimum delay is a lower bound on the delay of any suffiz 2 of .
But if we factor v = 7172, we have 6 ;y(71) + 05y (72) = 045 (y) = 0, since
v € I'°. Tt follows that 5@5(14@) is an upper bound on the delay of ;.

The minimum SLR (A(n)) is finite because there are only finitely many acyclic

paths from initial states to consider. 5RL ) (A(n)) is similar. Exhaustively consid-

ering all these acyclic paths by backtrackmg, as illustrated in Figure 3, takes
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Co Co

dir OrL

(a)

Fig. 3. Monitoring the delay on all acyclic paths of A(ln), exploring (a) forward from ini-
tial states and (b) backward from final states. In (b), the sign of the delay is negated.
Global extrema are marked. Gaps denote points where the search algorithm back-
tracked to avoid completing a cycle. Dashed arrows lead from a choice point to alter-
native paths that are explored after backtracking.

exponential time in the worst case.® However, that is presumably unavoidable
since the decision problem associated with finding 5<Lif}> (A{™) is NP-complete
(by a trivial reduction from Hamiltonian Path).

Visually, all acyclic prefix paths are represented in Figure 3a, so a given acyclic
prefix path must fall entirely above the minimum of Figure 3a. A possibly cyclic
prefix path as in Figure 2 can only be higher still, since all cycles have positive
delay. A visual argument can also be made from Figure 3b.

These prefix-delay bounds, d(; ;(71) € [[5<L21j> (Ag”)),égf;)(Ag"))]], in fact ap-
ply whenever ~; is a prefix of a v € I'Y that traverses no cycle of negative
delay. If on the other hand ~ traverses no cycle of positive delay, we have
similarly 8¢ ;y(71) € [[5571){)(145")),5{;% (A)], where these bounds are found
by c0n51der1ng maximum rather than minimum delays. In either case, we see
that

By ()] < 5725 (A7) )
o e (555 (AP, 1655, (AT 5 (A 1855, (491 (9)

Definition of the Class: Let © be the class of all the triples <A§n)7 i,7) such
that Agn) does not contain a path traversing both a cycle with positive delay
and a cycle with negative delay (with respect to tapes i and j). The Algorithm
AUTOINTERSECTSINGLEPAIR (see Section 4.2) computes the auto-intersection
A = O’{i:j}(Agn)) for any triple in @, thanks to the property that it has a
delay not exceeding the limit 6737 (Ag")) defined in (9).

5 In practice, one would first trim A(ln) to remove edges and states that do not appear
on any successful path. This may reduce the problem size, without affecting the
defined relation or its auto-intersection.
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a:a/wy a:a/w a:a/w
a:e/w,
a:e/w, aew,
=0 (e O s a0
@Q &V:(s,s)@ g=(0 @ N 02
=(a,e =
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E=(ee) &=(ba,ab) E=(ae)
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(a) @/pl (b) &V:é.a@ El(za.m@ P

Fig. 4. (a) An n-WFSM A§2> and (b) its auto-intersection A :0{1:2}(A<12)) (dashed
parts are not constructed)

4.2 Algorithm for Bounded Delay Auto-intersection

We take first the example of the n-WFSM AEQ) of Figure 4a. The triple <A(12), 1,2)

is obviously in the class ©. The delay of the auto-intersection A(?) = Of1=2} (AgQ))

is bounded by 7%, (Ag2)) = 1. The support ((a:a U a:€)* (ba:ab)* €:a) of AgQ)
is equal to { (a"*7(ba)", a’(ab)a) | i,5,h € N }.

To construct the auto-intersection,” we copy states and transitions one by one
from A§2) (Figure 4a) to A (Figure 4b), starting with the initial states. We
assign to each state ¢ of A®) two variables: v[g) = q1 is the associated state of
Ag2), and £[g] = (s, u) gives the “leftover strings” of the path read while reaching
q: s has been read on tape ¢ but not yet on tape j, and vice-versa for u. (Thus
the delay accumulated so far is |s| — |u|. In practice either s or u will be €.)

In our example, we start at the initial state ¢ = 0, with v[0] = 0 and
£[0] = (g,&). Then, we copy the three outgoing transitions of ¢; =0, with their
original labels and weights, as well as creating their respective target states with
appropriate v and £. If a target state has already been created with this v and
£, we reuse it. If not, we create it and proceed to copy its outgoing transitions.

The target state of a transition e has an £[n(e)] that is obtained from the
&[p(e)] of its source state, concatenated with the relevant components of its label

" Our construction bears resemblance to known transducer synchronization proce-
dures. The algorithm of Frougny and Sakarovitch [8] and Mohri’s algorithm [9] can,
however, not cope with n-FSMs having unbounded delay, such as the one in Fig-
ure 4a. Furthermore, they generate synchronized n-FSMs, which is not necessarily
what one is aiming for. The algorithm [8] is based on a K-covering of the transducer.
Our algorithm is based on a general reachability-driven construction, as [9], but the
labeling of the transitions is quite different since our algorithm performs a copy of
the original labeling, and we also construct only such paths whose delay does not
exceed some limit that we are able to determine.
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AUTOINTERSECTSINGLEPAIR(Agn),i,j, ) — Al

1 AW (N 2, Q— @, K= K1, EM— @, A, p)

2 Stack — ¢

3 for Vg1 € {Q1: Maq1) # 0} do

4 GETPUSHSTATE(q1, (¢,¢))

5  while Stack # ¢ do

6 q < pop(Stack)

7 a1 — vlg]

8 (s,u) — €[q

9 for Ve; € E(¢q1) do

10 (s',u") < CREATELEFTOVERSTRINGS( 5 - 7(; (£(e1)), u- (5 (£(e1)))
11 if (s'=evau'=e) A (I(|s'] =[] < o7 (A1)
12 then ¢’ — GETPUSHSTATE( n(e1), (s',u))

13 E — EU{ <q7£(61)7w(61)7q/> }

14 return A™

CREATELEFTOVERSTRINGS($,4) — (8/,u/) :
15z « longestCommonPrefiz(3, )
16 return (714,271 q)

GETPUSHSTATE(q1, (s',u')) — ¢ :
17 if JgeQ:v[g=a A &q=(su)

18 then ¢ «— ¢

19 else ¢’ « createNewState( )
20 vld] — a1

21 €lg'] — (s, u)

22 if ss=enu=¢
23 then A(¢") — A(q1)
24 p(qd') < plq1)
25 else A(¢') — 0

26 p(q') <0

27 Q—QU{d}

28 push(Stack, q")

29 return ¢’

Fig. 5. The main algorithm AUTOINTERSECTSINGLEPAIR. It relies on a prior compu-
tation of 6" (A™).

£(e). The longest common prefix of s and u in ¢[n(e)] = (s,u) is then removed.
For example, for the cyclic transition e on ¢=5 (a copy of that on ¢; = 1), the
leftover strings of the target are &[n(e)] = (ab, ab) 1 ({a, e)(ba, ab)) = (a, ). Also,
v[n(e)] = 1. This implies that n(e) =p(e) because they have the same £ and v.
In Figure 4b, new state ¢ = 2 and its incoming transition are not created
because here the delay of 2 (determined from ¢[g]) has an absolute value that

exceeds 62’13§> (A§2)) = 1, which means that any path to new state ¢=2 cannot be
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in A®). State ¢=4 and its incoming transitions are not created either, because
both leftover strings in £[4] are non-empty, which means that any path traversing
g=4 has different strings on tape 1 and 2 and can therefore not be in A®). State
g = 6 is non-final, although ¢; = 2 = v[6] is final, because £[6] is not (e,¢e),
which means that any path ending in ¢ =6 has different strings on tape 1 and
2. As expected, the support ((a:a)* aie (a:a)* (ba:ab)* e:a) of the constructed
auto-intersection A is equal to { (a™*!(ba)", a’t7+ (ba)) | i,5,h € N }.

Algorithm: The formal algorithm AUTOINTERSECTSINGLEPAIR in Figure 5
finds the auto-intersection, provided only that 52‘;2‘; (Agn)) is indeed an upper
bound on the absolute value of the delay of any prefix 7; of any successful path

v in Agn) such that £;(y) = £; (7).

We have seen how to find such a bound when <Agn),i,j> is in the class O.
Such a bound may also exist in other cases. Even when such a bound is not
known or does not exist, one could impose one arbitrarily, in order to obtain an
approximate auto-intersection.

The loop at line 5 must terminate, since a finite state set () will be constructed
for A™ and each state is pushed only once. @ is finite because distinct states
g € Q must have distinct values for v[q] and/or {[g]. The number of values of
v[g]=q1 is limited by |Q1| (the number of states of A;), and the number of values
of &[q] = (s,u) both by [X1| and 477 because either s or u is empty and the

smax.
other string is not longer than 62’1‘.35. As aresult, |Q] < 2|Q1] |21||21’|:1 -1

5 Conclusion

We conclude with two enhancements of the auto-intersection construction. Both
attempt to remove cycles of A that prevent (A, 1, j) from falling in ©.

First, one can eliminate paths 7 such that ¢;(vy) not only differs from ¢;(vy), but
differs from £;() for all 4 such that A(v') # 0, or vice-versa. Given (A(™ i, j),
define Agl) to be the projection m; (A() 8 Define Agl) similarly, and put A’(") =

(A(n) N{i:l} AEI)) N{j:l} AZ(-I).Q Now O {i=j} (A) can be found as O {i=j} (A/),
which helps if (A’,4, j) falls in 6.

The second point is related to the generalization (7) for auto-intersection on
multiple pairs of tapes. Given a problem oy;—;, ;- }(4), we nondeterministi-
cally select a pair (5, jr) (if any) such that (A, ip, jn) € ©, and use our method
to compute A" = oy;, —;,1(A). We now attempt to continue in the same way by
8 More precisely, AED should define a “neutrally weighted” version of the projected

language, in which non-0 string weights have been changed to 1. To obtain this,

replace all 0 and non-0 weights in the weighted acceptor 7 ; (A™) with FALSE and

TRUE respectively to get an ordinary unweighted acceptor over the Boolean semiring;

determinize this by standard methods; and then replace all FALSE and TRUE weights

with 0 and 1 respectively.
9 These single-tape joins are guaranteed to succeed (for commutative semirings): they
can be computed similarly to transducer composition.
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auto-intersecting A’ on the remaining r — 1 tapes. Note that A’ may have fewer
cycles than A, so we may have (A’ iy ,jn ) € O even if (A,ip ,jn ) & O.
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Abstract. This paper addresses the problem of generating determin-
istic w-automata for formulas of linear temporal logic, which can be
solved by applying well-known algorithms to construct a nondetermin-
istic Biichi automaton for the given formula on which we then apply a
determinization algorithm. We study here in detail Safra’s determiniza-
tion algorithm, present several heuristics that attempt to decrease the
size of the resulting automata and report on experimental results.

1 Introduction

Automata on infinite words, in particular w-automata and the related w-regular
languages, play a crucial role in logic, for verification purposes and in other
areas, see e.g. [1,2]. In the context of model checking, to check if a system satis-
fies a given specification, both the system and specification can be regarded as
w-automata, allowing to perform operations like union and intersection or check-
ing for language emptiness with graph algorithms on the automata. As it is often
easier for the users of a model checker to specify the properties that they want
to verify using a formula in a suitable logic, e.g. linear time logic (LTL), an algo-
rithm for translating formulas to corresponding w-automata is needed. For LTL
formulas, traditionally a conversion to nondeterministic Biichi automata (NBA)
is used. Despite a worst case exponential blowup in the size of the formula, in
practice the formulas tend to be small and due to good optimizing tools the
resulting NBA are of a manageable size for many interesting formulas. For stan-
dard model checking, the nondeterminism of the Biichi automaton does not pose
a problem. However, for some applications, such as the verification of Markov
decision processes [3,4, 5], the quantitative analysis relies on the representation
of the formula by deterministic w-automata. As deterministic Biichi automata
are not as expressive as NBA, it is necessary to use deterministic automata with
more complex acceptance types, such as Rabin and Streett automata. Safra [6, 7
proposed an algorithm for the determinization of NBA. In the worst case, Safra’s
construction yields an exponential blowup, which was shown to be optimal up to
a constant factor in the exponent [8,9]. The transformation from LTL formulas
to deterministic Rabin automata (DRA) via NBA and Safra’s algorithm leads to
a worst case double exponential blowup, which roughly meets the lower bound
established by Kupferman and Vardi [10].

J. Farré, 1. Litovsky, and S. Schmitz (Eds.): CTAA 2005, LNCS 3845, pp. 199-212, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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The purpose of this paper is to study the question whether using Safra’s con-
struction to generate deterministic w-automata for LTL formulas is feasible in
practice. We present a series of heuristic optimization methods. Some of them
can be understood as refinements of Safra’s algorithm, while others operate on
the resulting automata or on the formula level. Although an exponential blowup
is unavoidable in the worst-case, our empirical studies using our tool [tl2dstar
show that for many LTL formulas (benchmark formulas from [11, 12, 13] and ran-
domly chosen formulas), the resulting deterministic w-automata have reasonable
size, in many cases of the same magnitude as NBA.

Organization of the Paper. Section 2 recalls the definitions of the relevant
automata types. Section 3 summarizes the main steps of Safra’s determinization
algorithm and presents several heuristics to improve the Safra algorithm. In Sec-
tion 4, we present techniques to reduce the automaton size that are independent
of the chosen determinization algorithm. Section 5 explains the main features of
our tool [t[2dstar and reports on experimental studies with a series of benchmark
examples. Section 6 concludes the paper.

2 w-Automata

Throughout the paper, we assume some familiarity with formal languages, finite
automata and w-automata. We briefly recall the basic concepts and explain our
notations concerning w-automata with Buchi, Rabin and Streett acceptance. For
further details see e.g. [1,2]. At a few places, we will also need LTL formulas.
Due to the length restrictions we skip an explanation of LTL and refer to [14, 15].

A nondeterministic w-automaton over a nonempty, finite alphabet X is a tu-
ple A = (Q, X, 6,qo, Acc) where Q is a finite state space, 6 : Q x X — 29 the
transition function and gy € @ the initial state. The last component Acc denotes
the acceptance condition of A. For Biichi automata, Acc is a set of accepting
states, Acc = F for some F C @. For Rabin or Streett automata, Acc is a set
{(L1,U1),..., (L, Up)} of pairst (L,,U,) consisting of sets L,,U, C Q. A is
called deterministic if |§(¢q,a)] = 1 for all g € Q and a € X'. We write NBA, NRA,
NSA, DBA, DRA and DSA to denote the nondeterministic or deterministic ver-
sion of Biichi, Rabin or Streett automata, respectively. |A| denotes the number
of states in A (i.e., | A| = |Q|). The extended transition relation § : Q x X* — 2¢
is defined by 6(q,€) = {g} and 6(g, az) = U 44,0 6(p, %) for a € Y and z € L.

Given an infinite word p = ajas ... over X, a run for p in A denotes any finite
or infinite state-sequence ™ = qq, q1, ... where gy € Qo and q; € §(q;i—1,a;), 1 =
1,2,... and such that 7 is either infinite or 7 = qo, ..., q; where 6(g;,a;1+1) = 0.
We write inf(7) to denote the set of states that occur infinitely often in 7. An
infinite run 7 is called accepting with respect to the Biichi acceptance condition
F if F is visited infinitely often in 7, i.e., if inf(7) N F # (). For the Rabin ac-
ceptance condition {(L1,U1),...,(L,,Uy)}, m is called accepting if there exists

1 Another common notation uses pairs (En,F,) in reversed order, i.e. E, = U, and
F, =L,
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an index n € {1,...,7} such that inf(7) N U, = 0 and inf(7) N L,, # (. For the
Streett acceptance condition {(L1,U1), ..., (Ly, U,)}, 7 is called accepting if, for
all indices n € {1,...,r}, inf(7r) N L, = 0 or inf(x) N U,, # 0. Any finite run
is non-accepting. The accepted language L£(A) of an NBA (DBA, NRA, DRA,
NSA, DSA) A is the set of all infinite words o € X that have an accepting run
in A. As Streett acceptance is dual to Rabin acceptance, a DRA A regarded as a
DSA recognizes exactly the complement language of A. It is well known that the
classes of languages accepted by an NBA, NRA, DRA, NSA and DSA agree ex-
actly with the class of w-regular languages, while DBA are strictly less expressive.

3 Heuristics to Improve Safra’s Construction

We will first recall the main steps of Safra’s algorithm to convert an NBA A into
an equivalent DRA A’ and then present several techniques that can decrease the
size of the resulting DRA, and thus can also lead to a speedup of the construction.
In the sequel, let A = (Q, X, 8, qo, F') be the NBA to be determinized.

Safra’s Algorithm. Safra’s idea [6,7] was to use multiple powerset construc-
tions in parallel to track the runs originating in accepting states in addition
to the classical powerset construction, which allows to detect which runs are
finite and need to be rejected. These different powersets are organized in a tree-
structure called Safra trees, which become the states in the DRA. A Safra tree
consist of nodes that have a name, which allows us to refer to them and keep
track of their existence over multiple trees, and a label, a set of states from the
original NBA associated with this node. In addition, each node has a boolean
flag. The transition function of the DRA will transform a Safra tree to its suc-
cessor by separately applying the powerset construction to the labels of every
node of the tree. The initial tree (i.e., initial state in the DRA) will have only
a root node with {go} as its powerset, therefore the label of the root node in
all trees will correspond to the standard powerset construction. As we want to
keep track of runs originating from accepting states, we create a new child for
every node that contains an accepting state in its label. The label of the newly
branched child consists of all the accepting states from the parent’s label. If at
a future point this node has an empty label (the runs it tracked were finite),
we can remove the node and record in the acceptance condition that these runs
should be rejected. As there is no limit on the branching of new nodes, the trees
can grow infinitely large. To get finite trees, both height and width of the trees
have to be bounded. The width can be limited by the observation that it is not
necessary that a state appears in the labels of multiple siblings. To have a well
defined rule which sibling is chosen to keep such a state, Safra proposes ordering
the siblings by "age”, with the state only kept in the oldest sibling. After this
simplification, the labels of sibling nodes are disjoint. To bound the height, we
notice that the union of the labels of the children of a node in a Safra tree is
always a subset of the label of the parent node, as they track a subset of runs
that the parent tracks. When a parent and one of its child have exactly the same
labels, they both redundantly track the same runs and we can remove the child
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node. We set a flag in the parent node to note this event, as it guarantees that
all runs tracked by the parent have visited at least one accepting state since the
last time the node was flagged. This will be used by the acceptance condition
to detect accepting cycles. The same reduction is used when the states of the
parent’s label are distributed over multiple children. After this step, the parent’s
label is a proper superset of the union of the child labels, limiting the height. In
fact, any proper Safra tree has at most || nodes (up to |2Q| temporarily during
construction).

Formally, a Safra tree is an ordered tree T with node-set N C {0,1,...,2|Q|—
1} augmented with a marking function marked : N — {true,false}, and a
labeling function label : N — 2@\ {#} such that the label of a parent node is a
proper superset of the union of the labels of the children and the labels of sibling
nodes are disjoint. A DRA A" = (Q', X, 8, q}, Acc), equivalent to the original
NBA A, is obtained as follows. @’ is the set of all Safra trees. The initial state
qf is the unique Safra tree with only one node, named 0, labeled with {go} and
unmarked. The transition function §’ transforms a Safra tree T into its successor
8'(T, a) by the following procedure:?

1. Unmark. Set marked(n) = false for all nodes n in T'.

2. Branch accepting. For every node n in T with label(n) N F # (), create a
new, unmarked node as the youngest child of n labeled with label(n) N F. The
new node is named with an unused name from {0,1,...,2|Q| — 1}.

3. Powerset. For every node n, replace label(n) with U ¢ qpe1(n) 6(¢; @)-

4. Normalize siblings. For every two sibling nodes such that they share a state
q € @ in their labels, remove ¢ from the label of the youngest node and all
its children.

5. Remove empty. Remove all nodes with empty labels.

6. Mark. For every node whose label equals the union of the labels of its chil-
dren, remove all descendants of this node and mark it.

The acceptance condition is Acc = {(L,,U,) : 0 < n < 2|Q|} where L, is the set
of all Safra trees with node n marked and U,, the set of all Safra trees without
node n. This construction ensures that £(A) = £(A’) and |A’| = 20(QI1eelQ]),
To decrease the size of the resulting DRA, we present four methods that can be
integrated in the algorithm.

I. True-Loops on Accepting States. An NBA state ¢ is said to have a true-
self-loop if ¢ € 6(q,a) for all symbols a € X. Let AccTrueLoop be the set of
accepting states of the NBA A with a true-self-loop. That is, AccTrueLoop =
{¢ € F:q € 6(qa)for alla € X}. Clearly, any run that eventually enters
AccTrueLoop can be modified to an accepting run. Thus, we may abort Safra’s
construction any time the label of the root node of a Safra tree T' contains a
state ¢ € AccTrueLoop. In this case, we put §'(T,a) = T for all @ € X and make
T accepting in the sense that we insert the acceptance pair ({T'},0).

2 Clearly, in practice it suffices to just generate the Safra trees as states of the DRA
that are actually reachable from the initial Safra tree ¢y and the acceptance condition
can be easily simplified by removing never accepting or redundant pairs.
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This simple heuristic is very useful, as without it, Safra’s construction tends
to generate many different Safra trees unnecessarily tracking alternative runs,
even though an accepting run (an NBA state in AccTrueLoop) has already been
found.

II. All Successors Are Accepting. If all NBA states ¢ in the label of a node
n (of a Safra tree) have only successors that are accepting in NBA A then a
single powerset construction is sufficient as we only have to track if all runs from
q are finite; the infinite runs from ¢ are all accepting as no non-accepting state
in the NBA can be reached. Safra’s construction handles this special case well
by default. If label(n) C F then node n will be marked and has no children (a
child with label(n) is branched in step 2 and deleted in step 6, marking n). If
all successors of label(n) are also in F' then node n will stay marked and have
no children in subsequent trees or it will be deleted when the runs it tracks are
finite. A possibility for optimization remains, as it takes an additional step in
the beginning for Safra’s construction to fall into the pattern described above.
Let g be a state in A and succ*(q) = J,c5, 6(¢, ) the set of all states reachable
from q. We define succAce = {q € F : succ*(q) C F'}. If after the construction
of a new tree with Safra’s algorithm, the label of a node n of the Safra tree has
only states that are members of succAcc and is not marked, it can be marked
(and the tree will thus be placed into L,, of the acceptance condition). This can
be done in an additional step:

7. Additional marking. For any unmarked node n with label(n) C succAcc
remove all children of n and mark n.

Calculating succAcc can be done in linear time in the size of A:

1. Calculate the strongly connected components (SCCs) of A.
2. In backward topological ordering, visit the SCCs and check:
(i) If all states in the current SCC are accepting and all SCCs that are
successors of the current SCC are marked, then mark the current SCC.
(ii) If the current SCC contains only a single non-accepting state ¢ that has
no edge leading back to itself and all SCCs reachable from ¢ are marked,
then mark the current SCC {q}.

Then, succAcc consists of all states in marked SCCs. Step 2(ii) treats non-
accepting NBA states ¢ € Q\ F with 6(g,a) C succAcc as if they were accepting.

III. Naming the Nodes in Safra Trees. New nodes in Safra trees are only
created in step 2 (Branch accepting) of Safra’s construction. As we can choose
any unused name, we have significant freedom in choosing the name for the
new node. As the set of Safra trees that are created during Safra’s construction
becomes the set of states in the DRA, we are interested in having the smallest
number of different Safra trees. One way to keep the number of different Safra
trees low is to try to name new nodes in a way that the resulting tree matches
an already existing tree, thus adding no additional state to the DRA. To do this,
we mark the new nodes and then search for a matching tree among the already
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existing trees. If no matching tree is found, the new nodes are named as normal
and a new state in the DRA is created for the tree. This can be implemented by
calculating the Safra trees the normal way, naming new nodes temporary with
a special symbol, e.g. . We simultaneously have to keep track of the names of
nodes deleted during steps 4, 5 and 6 of Safra’s construction, as they are still in
use in step 2 where the new nodes are named and can therefore not be reused. It
is clear that nodes that are created and then directly deleted again do not have
to be tracked, as we can pretend to have named them with a convenient name
that is unused.

Let T, be a Safra tree after the steps of Safra’s construction, with new nodes
marked with ™’ and deleted C {0,1,...,2|Q|—1} the set of names of the deleted
nodes. Possible candidates for a match must have the same structure as Ti.
Formally, we define structural equality as an equivalence on Safra trees with
T1 =struct 12 iff 71 and T» agree up to the names of the nodes. That is, there is a
isomorphism f : T; — T5, which means a bijection from the node set of T3 to the
node set of T, that preserves the labels, markings and topological structure. An
already constructed Safra tree T' and a newly constructed tree T, match if the
following three conditions are met: (i) T' =gtruct Tk, (ii) for all nodes n named *’
in T, the corresponding node f(n) in T is not named with a name from deleted
and (iii) for all nodes n not named *’ in T}, the corresponding node f(n) in T
has the same name as the node in T,. One way to keep track of the trees that
are possible candidates for matching is to partition the already existing trees by
structural equality. This can be implemented, for example, by a hash map that
allows for efficient access to all trees that are structural equal to T.

IV. Reordering. Safra’s construction assumes a strict ordering of the sibling
nodes in Safra trees, used in step 4 to reestablish the requirement on Safra trees
that siblings have disjoint labels. The strict ordering is not necessary in all cases
and can sometimes be relaxed. In our tool [ti2dstar we used a technique that
attempts to collapse Safra trees that differ only in the ordering of ”independent”
nodes. We skip further explanations here as this approach could only yield a
minor reduction in our experiments.

4 Other Techniques

The following techniques attempt to decrease the size of a deterministic w-
automaton (DRA or DSA) for a given LTL-formula ¢. These methods are inde-
pendent from the chosen algorithm to generate a deterministic automaton from
© as they operate on a given DRA/DSA or on the formula level.

Rabin or Streett Automata. Some applications need a translation from LTL
formulas to deterministic w-automata, but do not particularly care if the automa-
ton is a Rabin or a Streett automaton. It is well known that for some languages
Streett automata can be exponentially more compact than Rabin automata, and
vice versa, so this flexibility can have huge benefits. The switch from an DSA
to an equivalent DRA (or vice versa) is computationally hard. If we start with
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an LTL formula ¢ then we may exploit the duality of Rabin and Streett ac-
ceptance and construct a DRA for -y, yielding a DSA for ¢. Already for small
formulas this simple trick can be very useful as illustrated in the following table.
The first two columns contain the number of states using the standard Safra’s
construction, the last two columns the number of states when the optimization
techniques suggested here were used.

DRA DSA DRA DSA
Formula (opt.) (opt.)
(O¢a) — (O0b) 61 7 12 7
((B0a) — (d0b)) A ((B0c) — (O0d)) 67051 298 18526 49

In the sequel, we concentrate on techniques that attempt to decrease the size
of a DRA for a given LTL formula ¢. By duality, analogue techniques are also
applicable to DSA.

Bisimulation Quotient. One of the standard algorithms for minimization of
deterministic finite automata is to calculate the quotient automaton that arises
by identifying all states accepting the same language. We now adapt this idea
to DRA by taking into account the acceptance signature of the runs. Let A =
(Q, %, 6,q0, Acc) be an DRA where Acc = {(L,,Uy) : n=1,...,r}. Let acc(q)
denote the acceptance signature of state ¢, that is, the pair (I, Iyy) where I, =
{n:q€ L,} and Iy = {n: ¢ € U,}. Bisimulation equivalence = on Q is defined
by g = p iff acc(6(q, z)) = acc(6(p, z)) for all z € X*. Clearly, ¢ = p implies that
the set of infinite words that have an accepting run starting in ¢ agrees with the
set of infinite words that have an accepting run starting in p. In the classification
of [16], the above equivalence on the states of a DRA can be viewed as a notion
of direct bisimulation for Rabin automata. In fact, an alternative, but equivalent
coinductive definition of = could be given in the typical bisimulation-style.

Let [q) = {p € Q : p = ¢} be the bisimulation equivalence class of state
g. For S C @, let S/= = {[g] : ¢ € S}. The quotient automaton A/= =
(Q, X,¢,q, ), also a DRA, has the state space Q = @)/ =, initial state ¢}, = [qo]
and the acceptance condition Acc’ = {(L1/=,U1/=),...,(L,/=,U-/=)}. The
transition relation is given by 6’([g],a) = [6(g,a)]. It is easy to see that 6 is
well-defined and that the accepted languages of A and A/= coincide (see [17]).
To calculate the quotient automaton, we may apply the standard partitioning-
splitter technique [18].

Union of DRA. If the starting point of the construction of a DRA is an LTL
formula, rather than an NBA, then for formulas ¢ = ¢1 V @2 whose outermost
operator is disjunction, we may avoid the construction of an NBA for ¢ by first
constructing two DRA A; and Ay for the subformulas ¢; and ¢y and finally
composing these two DRA into a DRA via a union-operator (implemented as a
simple product construction on the two DRAs). The generated union DRA might
be smaller than a DRA generated for the whole formula, as the subformulas are
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shorter and probably simpler, which can lead to smaller NBA and DRA for the
subformulas.

(Co-)Safety Formulas and Deterministic Automata. Safety properties
are languages L C X“ that can be characterized via their bad prefixes. That is,
L is a safety property iff any word z € X% \ L has a finite prefix x such that
none of the words zz’ belongs to L. Co-safety properties are the duals of safety
properties. Any safety and co-safety w-regular languages can be represented by
a DBA. For a certain type of LTL formulas that represent safety and co-safety
languages, a corresponding DBA can be generated directly, i.e., without using
Safra’s construction [19,20]. As any DBA can be viewed as DRA or DSA, these
algorithms (which are implemented in the scheck-tool [20]) yield an alternative
to our construction for certain (co-)safety formulas.

5 Experimental Results

Safra’s construction and the optimizations described in the previous sections
were implemented in the tool lt/2dstar (LTL to deterministic Streett and Rabin
automata) which is available via http://www.1lt1l2dstar.de/. Another imple-
mentation of Safra’s algorithm [21] represented Safra trees with BDDs and used
a partly implicit calculation of successors. In our tool, we use explicit data struc-
tures for the Safra trees and calculate each successor tree separately, using hash
maps to efficiently find similar trees and match them to their respective state in
the deterministic automaton.
The basic building blocks available for the construction of DRA/DSA are:

— Safra: the generation of a DRA for an LTL formula ¢ by creating an NBA
with an external LTL-to-NBA translator and then applying Safra’s con-
struction on the NBA. Additionally, the procedure can be started with the
negated formula —p to obtain a DSA for ¢. If both a DRA and a DSA are
generated then the smaller one is returned.

— scheck: If the formula is syntactically (co-)safe then an DBA (which can be
viewed as a DRA or DSA) is constructed with the external tool scheck [20].

— union: If the formula has the form (1 V 2 then we may construct DRA for
1 and (o and return the union of the two automata.?

These blocks can be combined such that the smallest of the generated automata
(DRA or DSA obtained with Safra and scheck or union, if applicable) is returned.
As long as we do not use optimizations which operate on the automaton after
it is fully generated, we can abort an alternative construction as soon as the
size of the generated automaton is superior to the already existing automaton.
If, however, we use the bisimulation quotienting technique, we cannot abort
directly, as the quotient might ultimately be smaller than the smallest automaton
obtained so far. For efficiency reasons, we suggest an heuristic approach with a

3 The dual opportunity to apply an intersection-operator for DSA if ¢ = @1 A @2 is
covered by considering —¢ = —p1 V 2.
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maxgrowth factor a. If the smallest automaton computed so far has N states
then the size limit of alternative computations is /N which allows the possibility
of a subsequent reduction of the current automaton via quotienting to Clx of its
original size. Limiting the construction of the automata like this is obviously
sensitive to the order in which the different constructions are carried out. As
a heuristic for a good ordering, we used the sizes of the NBA for the relevant
formulas (the original formula ¢ and its negation) and start the construction
with the smallest NBA.

In the context of his diploma thesis, the first author performed a series of
experiments to investigate the gain of the proposed heuristics. Here, we sum-
marize the main results and refer to [17] for further details. Our experiments
were performed with the 39 benchmark formulas of [11,12], 55 formulas? based
on patterns from [13] and sets of 100 and 1000 random LTL formulas generated
with the test bench Ibtt [22]. The chosen LTL-to-NBA translator® was It{2ba [27].
All experiments were conducted on a Pentium-M 1.5 GHz with 512 MB RAM,
running Linux.

Table 1 compares our suggested heuristics (including generating either a DRA
or DSA, depending on which one is smaller) to the standard Safra construction
(generating only DRA). X(|A|) denotes the total number of states of the gen-
erated automata, while X'(¢) is the total running time. Despite the additional
computations required for the generation of multiple automata and the bisim-
ulation technique (with maxgrowth factor o = 10), the overall running time of
our approach is roughly the same (or faster) as for simply using the unoptimized
Safra’s algorithm.

Table 1. Overall effect of the proposed heuristics as implemented in [t/2dstar

[11,12] Patterns 100 random 1000 random
Z(AD) @) 2(AD)  X@)  Z(A) () 2(A) 2(@)
Standard Safra (DRA) 1320 1.02 s 341121 358.98 s 1625 0.66 s 43375 12.58 s
ltl2dstar (DRA/DSA) 268 1.04s 6399 73.83 s 474149 s 4480 14.91 s
Size reduction  -79.7 % -98.1 % -70.8 % -89.7 %

We will now consider the performance of the proposed heuristics separately.

Ezxperiments with the On-the-Fly Techniques. Table 2 illustrates the prac-
tical performance of the effect of the heuristics explained in Section 3 for Safra’s
construction. The first row shows the total sizes of the generated DRA where all
on-the-fly optimizations were used. The second row shows the absolute differ-
ence to the standard Safra’s construction without the on-the-fly techniques. To

* http://patterns.projects.cis.ksu.edu/documentation /patterns/1tl.shtml

® For a comparison with other LTL-to-NBA translators, such as Modella [23], SPIN
[24,25] and LTL—NBA [26] in the context of subsequent determinization, we refer
to [17].
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Table 2. Results for the on-the-fly heuristics

[11,12] Patterns 100 random 1000 random

Y(|.A]) with all opt. 926 246455 642 6743

No optimization 4394 +94666 4983 +36632

No ’Trueloop detection” +195 41467 +651 +26254

No ’All successors accepting’” +113 +95 +38 +400
No ’Node renaming’  +40 492687 +8 +90

No 'Reordering’ 416 +0 +8 +31

X(t) (no opt.) 0.48 s 358.50 s 0.70 s 12.89 s

X(t) (all opt.) 0.39s 270.14 s 0.56 s 5.57 s

assess the individual impact of each heuristic I-IV, a run was carried out with
just this heuristic disabled. (In all cases, the methods that are not on-the-fly,
like quotienting and the union construction, were disabled.)

The effectiveness of all the on-the-fly heuristics combined was highest for the
random formulas, where they resulted in a reduction by around 60% for the 100
and 84% for the 1000 random formulas. This is mostly due to the ”true-loop
detection”, followed by ”all successors accepting”. For the formulas from [11]
and [12], the overall reduction is lower (around 30%) and ”all successors accept-
ing” plays a bigger role than for the random formulas. The pattern formulas,
while also having an overall reduction of around 30%, exhibit a completely dif-
ferent behavior. Here, the "node renaming” is almost exclusively responsible for
the overall reduction. It seems that "node renaming” works better for bigger
automata, which can be explained by the fact that a single tree that can be
matched early in the construction can result in a huge reduction of states, as an
incompatible naming generated by our default ”first free name”-strategy would
result in the duplication (also with different names) of many of the successor
states. The bigger the automaton gets, the more states would be duplicated, so
"node renaming” has a bigger effect. In all cases, the reordering heuristic does
not have a big effect. Another interesting point is the computation time (shown
in the last two rows). With all on-the-fly optimizations enabled, the running time
was shorter (around 20-50%) than with the on-the-fly heuristics disabled. Thus,
the benefit of handling fewer states far outweighs the additional effort needed to
carry out the optimizations.

Ezxperiments with the Heuristics Suggested in Section j. We already
mentioned that the difference between DRA- and DSA-sizes can be enormous
which motivates the flexibility in using Rabin or Streett automata. In fact, it
turned out that the minimum sizes of the deterministic automaton obtained by
constructing both an DRA and an DSA are often rather close to NBA. Table 3
shows a comparison between the automata sizes of DRA, DSA and NBA for the
pattern formulas.
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Table 4. Results for the bisimulation quotient technique

[11,12] Patterns 100 random 1000 random

Z(A) X@) (A - X)) 2(A]) 2() Z(A]) - (@)

No opt., no bisim. 1320 0.5 s 341121 362.5s 1625 0.7s 43375129 s
No opt., with bisim. -636 0.5 s-217780 373.1 s  -631 0.7 s -29990 12.9 s

No bisimulation 860 0.4 s 246435 272.8 s 638 0.7s 6701 7.1s
With bisimulation -474 0.4 s-142792 281.1s -1320.7s -1383 7.2s

To evaluate the performance of the bisimulation technique, we compare the
difference in the size of the original DRA and their bisimulation quotients (See
Table 4). It turns out that our simple equivalence provides a surprisingly big
reduction in the size of the automata at a very moderate cost (less than 3%
increase in running time). For the pattern formulas, the effect is highest, with
reductions by around 60%. For the formulas from [11] and [12] the reductions are
around 50%. For these two formula sets, building the quotient automaton works
roughly as well when the other heuristics are enabled, leading to a combined
reduction of around 70%! For the random formulas, the quotient-technique de-
creases the already reduced automata by an additional 20%, which improves the
(already high) reduction from the on-the-fly optimizations for the 1000 formulas
to an impressive 90%.

For the 20%-30% of the non-random benchmark formulas that have the re-
quired form, the union construction yields a reduction of ca. 10%-25%. For the
30%-60% of the formulas that are syntactically (co-)safe and thus valid input
for scheck, a reduction of around 20%, for the pattern formulas of around 50%,
is achieved. For a small number of formulas, the automata generated directly
using Safra’s construction are slightly smaller than those generated using one of
the special constructions.

6 Conclusion

We have considered Safra’s construction in the context of translating LTL formu-
las to deterministic Rabin or Streett automata and suggested several heuristics to
decrease the automaton-size. With various tests, we evaluated the performance
of its implementation in the tool ltl2dstar and the effect of our heuristics. In sum-
mary, for many formulas, Safra’s construction (with the presented heuristics) is
usable in practice and results in deterministic w-automata with acceptable sizes
The proposed heuristics turned out to have a big impact in practice (overall re-
ductions of 70% and more) and contribute a great deal to the practical feasibility
of using Safra’s construction for LTL formulas. Perhaps surprisingly, the simple
quotient technique (via a variant of direct bisimulation) performed extremely
well in practice on the DRA and DSA: we observed an overall reduction of more
than 50% with a negligible increase of running time.

We concentrated on Safra’s construction; for a comparison with an alternative
construction by Muller/Schupp [28] see [29] in this volume. A comparison with
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the construction by Emerson and Sistla [30] would be interesting as well. The
observation that the bisimulation technique leads to significant reductions in-
dicates that Safra’s construction produces many bisimulation equivalent states.
It might be possible to avoid the creation of these redundant states in the first
place. Although our rather strong notion of (direct) bisimulation for DRA (or
DSA) turned out to be very useful, weaker notions of bisimulation equivalence
might yield a better reduction. In fact, for Biichi automata, several other, more
advanced notions like fair or delayed (bi)simulation have been proposed (e.g.
[16]). If similar approaches can work for deterministic Rabin or Streett automata
remains to be seen. Further improvements might be possible by using the tech-
niques of [31] and [32] for the subset of DRA that are Biichi-type.
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Abstract. Number Decision Diagrams (NDD) are finite automata rep-
resenting sets of integer vectors and have recently been proposed as an
efficient data structure for representing sets definable in Presburger arith-
metic. In this context, some work has been done in order to generate
formulas or sets of generators from the NDDs. Taking another step in
this direction, this paper present algorithms that takes as input an NDD
and computes the affine hull over Q or over Z of the set represented by
the NDD, i.e., the smallest set defined by a conjunction of equations or
by a conjunction of equations and congruence relations that includes the
set represented by the NDD. Our algorithms run in time O(|Q|- |X7|-n)
and O(|Q|*-|Z7|-n®) respectively, where n is the number of components
of the vectors represented by the NDD, and |Q| and X are the number
of states and the alphabet of the NDD. On a prototype implementation,
the computations of affine hulls of NDDs with more than 100000 states
are done in seconds.

1 Introduction

It has been known for a long time that finite automata can be used for rep-
resenting sets of integer vectors (see [1]). In particular, sets definable in Pres-
burger arithmetic, i.e., first-order logic over the integers with addition and the
order relation, can be represented by finite automata. Many applications rely
on Presburger arithmetic, including integer programming problems, compiler
optimization techniques, program analysis tools and model-checking.

There exist different equivalent representations of Presburger definable sets
(see [1]), including formulas, semi-linear sets and finite automata, and different
approaches have been developed for handling Presburger definable sets. Finite
automata have recently been investigated as an efficient data structure for repre-
senting Presburger definable sets in practical applications [2, 3]. Finite automata
present two main advantages, there is a canonical representation and efficient
procedures exist for set operations and inclusion tests. However, simple arith-
metic operations, such as affine transformation, can be costly if performed on
automata. Therefore, it may appear efficient to handle both automaton and for-
mula representations of the set and perform the operations on the most appro-
priate representation. Also, having access to a simple formula representation of

J. Farré, 1. Litovsky, and S. Schmitz (Eds.): CTAA 2005, LNCS 3845, pp. 213-224, 2006.
© Springer-Verlag Berlin Heidelberg 2006



214 L. Latour

the sets can shed light on the sometimes hidden relationships between variables,
or give a useful broad view of the set. It also provides a link to theorem provers.

Working with both automata and formulas implies being able to move from
one representation to the other. While generating automata from formulas is
now well understood [4], the issue of generating formulas from automata has
only been dealt with more recently. Algorithm for restricted classes of sets ap-
peared in [5], [6] and [7], and a solution for the general case has been presented
in [8]. In this paper, we approach the problem of extracting information from
automata differently, and instead of generating a formula matching exactly the
set represented, we compute the affine hull over Q and over Z, i.e., the smallest
affine space over QQ or affine module over Z that includes the set represented by
the automaton. The main interests are that the computations are fast (linear
if arithmetic operations are performed in constant time), and affine spaces and
affine modules are easily dealt with since they can be represented by n equations
and congruence relations or by n generators together with an element of the set,
where n is the number of vector components. Furthermore, for a number of ap-
plications, affine hulls already provide useful information. For example, in the
context of verification, one could simplify a model by removing some variables
via the equations and congruence relations. Finally, the algorithms presented
in this paper could be integrated in a more general algorithm computating ex-
act formulas for sets represented by automata, as it is done in [6] where affine
hulls are computed in order to identify the left-hand sides (i.e. the vector of
coefficients) of the inequations occurring in the formula.

An algorithm computing the affine hull over Q of sets of positive vectors
represented by finite automata (with a least significant digit first encoding) has
been already presented in [9]. The time complexity of this algorithm is O(|Q)] -
| X7 -n?), where |Q] is the number of states, n is the number of components in the
vectors of the represented set and X7 is the alphabet of the automaton. Also, a
finite automaton representing sets of integer vectors can be viewed as a program,
the states being the control locations and the transitions being affine assignments
based on the fact that adding a digit d as suffix to an encoding of a number z
is equivalent to multiply z by the encoding basis and adding d (when using
a most significant digit first encoding scheme). Therefore, some results in the
field of static analysis of program can be applied, and in particular, the method
proposed in [10] for computing affine relations among variables in a program
can be used with minor adaptations for computing the affine hull over Q of sets
represented by finite automata. The time complexity is then O(|Q| - |X7| - n3).
In this paper, we present a more efficient algorithm whose time complexity is
O(|Q| - 12| -n), and O(|Q| - |X™"| - n?) if a minimal set of generators is required.

Regarding the affine hull over Z, nothing has been done directly on sets rep-
resented by finite automata. In the context of static analysis, an algorithm for
computing the affine and congruence relations satisfied in a control point of
an affine programs has been presented in [11]. Although the computation is
proved to be finite, there is no bound on the number of operations required.
More recently, [12] describes a polynomial time algorithm for computing affine
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relations over Z,,, i.e. integer arithmetic modulo m, satisfied by the variables at a
given control location. In this paper, we give the first polynomial time algorithm
for computing the affine hull over Z of sets represented by finite automata. The
exact time complexity of our algorithm is O(|Q|? - |X"|-n?). Note that our algo-
rithm for computing affine hulls over Q is part of our algorithm for computing
the affine hulls over Z.

This paper is organized as follows. In Section 2, we recall basic properties
regarding automata theory as well as linear algebra. In Section 3, we show how
finite automata can represent sets of integer vectors. In Section 4, we present
an efficient representation for generators of vector spaces, Z-modules and Z,,-
modules. In Sections 5 and 6, we present our algorithms for computing affine
hulls over Q and over Z respectively. Some experimental results are provided in
Section 7, and we conclude in Section 8. The proofs of the results presented in
this paper are given in [13].

2 Preliminaries

We start with some preliminaries from linear algebra and automata theory. In
what follows, for any finite set S, the number of elements in S will be denoted
by |S5].

2.1 Finite Automata

An alphabet is a finite nonempty set of symbols. A word over an alphabet Y is a
finite sequence of symbols taken from Y. The symbol € denotes the empty word,
i.e., the word containing no symbol. The length of a word w, denoted by |w|, is
the number of symbols in w. A language over X' is a set of words over X', and
27* denotes the set of all words over .

A deterministic finite automaton (DFA) A is a quintuple (Q, X, 6, Sinit, QF),
where @ is a finite set of states, X' is the input alphabet, § : Q@ x X — @ is the
transition function, s;,; is the initial state and Qr C @ is the set of final states.

Function § is extended to words: 8(s, €)= {s} and é(s, uw) =/, €6(s.u) 6(s',w).
If s = 6(s,u) for 5,8’ € Q and v € X, then we say that there is a transition
from s to s’ labeled by u. By extension, there is a path from s to s’ labeled by w
if ' = §(s, w). The language of A, denoted by L(A) is the set of words labeling
paths from the initial state to a final state. The set of words labeling paths from
a state s to a state sz in A is denoted as La(s; — s2).

The DFA A = (Q, X, 6, Sinit, Qr) is reduced if for all words w # ¢ labeling a
path rooted at s, there exists a word v € X* such that wv € L(A).

2.2 Basics on Linear Algebra

The following definitions and results can be found in elementary linear algebra
textbooks.

As usual, Q, Z and N denote the sets of rational numbers, integers and nat-
urals, and Z,, = Z/(mZ), i.e., the equivalence classes of Z modulo m. In the
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following, D will denote any set among Q, N, Z and Z,,. In the case of Z,,, any
addition or multiplication of elements in Z,, correspond to addition or multipli-
cation in Z modulo m so that the result is in {0,...,m — 1}. The set of vectors
with n components in D is denoted D™. The i-component of a vector z is writ-
ten x[i]. The superscript - denotes transposition. For any set S C D", vector
a € D™ and scalar v € D, we denote by a + S and vS the sets {a +z | z € S}
and {yz | x € S} respectively.

For m, n € N, m,n > 1, D™*"™ is the set of m X n-matrices with entry in D.
For a matrix A € D™*" the row index set of 4 is {1,...,m} and the column
index set is {1,...,n}, and the entry located in the ith row and jth column is
written A[i, j]. The ith row of A is denoted A[i, ] and similarly, the jth column
is denoted A[*, j]. Let S C D™. The D-linear hull of S, denoted linp(S), and the
D-affine hull of S, denoted affp(.9), are defined as follows.

linD(S) = {Z s ‘ A € D, x; € S}, (1)
=1

affp(S) = {>_ Aizi | A €D,z € 8,3 A =1} (2)
=1 =1

Ezample 1. Let S = {(1,0),(1,2),(1,4)}. affg(S) = {(1,k) | k¥ € Q} and
affz(S) = {(1,2x k) | k € Z}.

The vectors z1,...,x, € D" are linearly independent over D iff Z;LZI ojzy =0
with a; € D implies that a; = 0 for j = 1,...,n. If the vectors are not linearly
independent, they are linearly dependent over D. A set of vectors G is free over
D iff the vectors in G are linearly independent over D. A set G C D" D-generates
aset S C D™ iff linp(G) = S. If in addition, G is free over D, then G is a D-basis
of S.

A subset M C D" of vectors with entries in D is a D-module iff M # () and
M = linp(M). A subset S C D" is a D-affine module iff S = a + M, where
a € D™ and M is a D-module.

Proposition 1. Let S C D". The set linp(S) (resp. affp(S)) is the smallest
D-module (resp. D-affine module) containing S. The D-module M such that
affp(S) = a+ M for some a € D™ is unique.

Proposition 2. Any D-module S C D™ has a D-basis, and all D-basis of S have
the same number of elements d < n called the dimension of S.

Since Q is a field, Q-modules and Q-affine modules have more properties than
their counterparts over the rings Z and Z,, (except if m is prime, in which case
Zpm, is also a field). Consequently, Q@-modules and Q-affine modules have specific
names and are called vector space and affine space respectively. For example,
one property displayed by vector spaces but not by Z-modules is the fact that
for any vector space V', any set S of linearly independent vectors in V' can be
extended to form a basis of V.
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2.3 Size and Complexity

We define the size of numbers as follows. The size of an integer number a € Z
is1ifa=0, and 1+ |log|a|| otherwise. The size of a rational a/b where a € Z,
b e N\ {0} and ged(a,b) =11is 1if a =0 and |1 + log|a| + log ||| otherwise.

In order to reason about the complexity of the algorithms presented in this
paper, we assume that direct memory accesses are performed in constant time
and that arithmetic operations are perform in unit time.

3 Automata-Based Representation of Integer Vector Sets

In this section, we explain how automata can represent sets of integer vectors.
The main idea consists in establishing a mapping between vectors and words.
Our encoding scheme of vectors is based on the positional expression of num-
bers (most significant digit first) with a signed-complement system for negative
integers.

Given an encoding basis v € N, with r > 1, an r-encoding of an integer
a 6 Z is a word w over X, such that if w = upup_1...up where each u; €

—{0 -1}, up =0ifa >0andu, =r—1ifa <0, and a =
; t Zp o i

In order to encode a vector z € Z™, one simply reads synchronously one digit
from the encodings of all its components, provided that these encodings share the
same length. This requirement can always be met by prefixing the encoding by a
sequence of copies of the leading digit of the initial encoding. So, an r-encoding
of an integer vector z € Z" is a word w over X7, such that if w = upup_1,... %o
where each u; € (X7, up € (0,7 — 1)", and for each j € {1,...,n}, we have
zjl=—rP. U ] D By ul[ i|r.

The fact that w is an r-encoding of z is denoted by (w), = z. Also, we simply
write 0 for the symbol (0,...,0) € X7.

Based on the definition of the encoding scheme, for all encodings u € (X7)*
and words v € (XZ7)*, we have (uv), = rI"l{(u), 4+ (0v),.

Let S C Z™. If the language L(S) containing all the encodings of all the vectors
in S is regular, then any DFA A accepting L(S5), i.e. such that L(A) = L(S),
is a Number Decision Diagram (NDD), and we say that A represents S. In this
paper, we use the following notations. We denote by S 4s,,.,—s) the set of vectors
whose encoding labels paths from s;,;; to s in the NDD A, and by S4 the set
represented by the NDD A. The encoding scheme that we use here is the same
as the one proposed in [1] and extended to Z in [2].

It is known (see [1]) that the sets definable in the first order theory (Z, +, <, V;.)
correspond exactly to the sets that can be represented by finite-state automata
using the r-encoding scheme that has just been discussed. Note that (Z, +, <, V}.)
is the first-order logic over the integers with addition and the ordering relation,
with an additional predicate V,.(x,y) returning true if y is the greatest power of r
dividing = and false otherwise.

In the remaining of this paper, r-encodings are simply called encodings since
we will always use the same encoding basis r.



218 L. Latour

4 Triangular Sets

The algorithms presented in this paper manipulate intensively vector spaces, Z-
modules and Z,,-modules. In order to have more efficient procedures, we main-
tain sets of generators in a particular form: the triangular form [12]. For a non-
zero vector x, we call ¢ the leading index of x and x[i] the leading entry of x if
zli] # 0 and z[j] = 0 for j € {1,...,i — 1}. A set of non-zero vectors T is tri-
angular iff the leading entries of all vectors in T' are positive and for all distinct
vectors z, ' € T, the leading indices of x and ' are distinct. Intuitively, a set is
triangular if the vectors are the rows of a echelon matrix A with no zero-row, i.e.
each row of A has a non-zero element and if A[i, k] and A[j, k'] are the first non-
zero element of the ith and jth rows respectively with j > 4, then ¥’ > k. Note
that a triangular set of integer vectors is a set of linearly independent vectors
over Q and Z.

There exist efficient procedures for generating an integer basis in triangular
form of a vector space or of a Z-module given a set of integer generators.

Proposition 3. There exists an algorithm GetTriangQBasis which, given a finite
set G CZ™ as input, generates a triangular set G C Z™ such that

- linQ(G) = linQ(G),

— the sizes of the components of vectors in G are bounded by n - (k + logn)
where k is the bound on the component size of vectors in G, and

— the time complezity of GetTriangQBasis is O(|G| - n?).

Proposition 4. There exists an algorithm GetTriangZBasis which, given a finite
set G CZ™ as input, generates a triangular set G C Z"™ such that

- llnz(G) = lil’lz(G),

— the sizes of the components of vectors in G are bounded by k - n - log(y/n),
where k is the bound on the component size of vectors in G, and

— the time complezity of GetTriangZBasis is O(|G| - k - n3 - log(v/n)).

Note that computing a basis is more difficult over Z than over Q since a set
of linearly independent vectors over Z cannot be extended to form a basis as it
is the case over Q.

Proposition 5. Given a triangular set T C Z™ and a vector xg € Z", there
exists an algorithm that generates a set of congruences and a set of equations
such that

— the solutions of the system of equations (resp. equations and congruences)
are exactly the elements in xo + ling(T") (resp. xo + ling(T)).

— the coefficient sizes appearing in the congruences and in the equations are
bounded by O(nlogn + nk), k being a bound on the size of the numbers in
the vectors in T and xg.

Proposition 6. There exists an algorithm UpdateTriangZm, which, given a
stricly positive integer m, a triangular set T C Z, and a vector x € Z7,, gener-
ates a triangular set T' C Z7, such that
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— ling  (T') =ling, (T U {z}).
— The time complezity of UpdateTriangZm is O(n? - q).

Proposition 7. The length of any sequence of triangular sets Ty, ..., T, C Z},
such that for all i € {1,...,k — 1} T;41 = UpdateTriangZm(m, T}, z;) for some
x; € 77, is bounded by nlogm.

5 Affine Hulls over Q

In this section, we present an algorithm which takes as input a reduced NDD A =
(Q, X1, 6, Sinit, Qr) and generates the affine hull over Q of the set represented
by A.

We briefly present the algorithm based on [10], and then present a more
efficient algorithm which takes advantage of the special affine transformation
corresponding to transitions in NDDs. In addition, this more efficient version
is also part of the more sophisticated algorithm for computing the affine hull
over Z.

The idea of the algorithm based on [10] is to explore the paths of A rooted at
the initial state s;,;+ and to compute for each state s a vector x5 and a triangular
set of vectors G such that zs € S (s, —s) and zs +ling(Gy) C aﬁ’@(SA(SWHS)).
When handling a path labeled by w from s;,;; to s, the algorithm applies the
following recursive procedure.

— If x, has not yet been set, one sets x5 equal to (w), and we propagate w
from s, that is, we apply the procedure to all paths from s;,;; to s’ labeled
by wu with u € X such that 6(s,u) = s'.

— Otherwise, if (w), € x5 + ling(Gs), then we do not propagate w. If on the
other hand, (w), & zs + ling(Gs), one has to add (w), — zs to G, and to
propagate w from s.

Since for each s, one sets at most once x5 and one adds at most n vectors to G,
the number of iterations is bounded, and at some point, no more path needs to
be explored. It can be proved that at this point, zs+1ing(Gs) = affg(S.a(s,.—s))
for all states s. Finally, one has to take the union of the affine hulls corresponding
to final states and again, take the affine hull over Q of this set.

We can improve the algorithm presented above. The main property is ex-
pressed in the following lemma.

Lemma 8. Let s,5' € Q with 6(s,v) = s’ for some v, and let V,V, C Q" be
vector spaces such that affg(Sa) = zr +V and affq(S4(s,,—s)) = 2"+ Vs for
some xp,x’ € Z". For all 1,73 € Sy(s,,—s), We have 11 —x2 € Vs C V.

Thanks to the previous property, we note that in the algorithm sketched
above, if (w), — x; is added to G, then (w), — x5 can be added to all G, where
s’ is reachable from s. We deduce that it is not necessary to compute at each
individual state s one basis G5 and one element x5 such that zs + ling(Gs) =
ling (S (s, —s)- One only needs to consider one element x, per state and one
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basis G for the whole NDD. Also, from each state, one has to propagate only one
path. Indeed, if w1, ws € La(Sini — $) and (w1), — (wa), is added to G, then
for v € X, (wyv), — (wav), € ling(G). Finally, in the above description, we did
not specify the order with which one consider the propagated paths. Adopting
a breadth first search approach allows us to manipulate smaller numbers.

Our algorithm QAffineHull takes a reduced NDD as input and works as follows.

1. Initially, the set G is empty. Also, for each state, one stores a vector x5 € Z"
which is initially set to L.

2. It considers paths of increasing length originating from s;,;:, starting with
all paths of length 1, and at the kth iteration, it handles paths of length &
that have been propagated so far. When handling a path labeled by w from
Sinit tO 8, there are two possibilities.

— Ifzs = L, o, is set to (w),, and one will consider at the next iteration
the paths labeled by wu for all u € X with §(s,u) = s’ for some s'.
— If x5 # L, then we add (w), — z, to G.

3. When all states have been visited once, we pick one final state sp € Qp
and we add to G all vectors s — x5, where s € Qp. Then, the algorithm
terminates and it returns G as well as the vector x,,..

Theorem 9. Let l,in < |Q| be the smallest positive integer such that for all

states s € @, there exists an encoding ws such that 5(sim-t, ws) = s with |ws| <
Imin- Let xp € Z" and G C Z™ such that (G, zp) = QAffineHull(A4). We have

— oy +ling(G) = affg(Sa),

Gl <1Q[- 27,

— The time complezity of QAffineHull is O(|Q] - | X7| - n),
The size of the numbers in G are bounded by O(lyin)-

Finally, according to Proposition 3, we can compute a triangular set G of
at most n generators from the set G computed via the algorithm QAffineHull.
The sizes of the numbers in G are then bounded by O(n - (|Q| + logn)) and the
time complexity for the call GetTriangQBasis(G) is O(|Q| - |27 |-n?). In addition,
thanks to Proposition 5, we can compute a system of linear equations a;z = 0,
i=|G|+1,...,nsuch that z € zp +ling(G) & \,_ g 41, ai(z —2r) = 0.

6 Affine Hulls over Z

In this section, we give an algorithm for computing the affine hull in Z™ of the
set represented by a reduced NDD A = (Q, X7, 6, Sinit, QF).

Note first that in general, if (G, zr) = QAffineHull(A), the set zp + ling(G)
is not equal to affz(S4). This stems from the fact that Lemma 8 does not hold
in the integer case because it does not consider the factor r*! of the affine
transformations corresponding to the path from s; to so. Taking this factor into
consideration leads to the following lemma.
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Lemma 10. Let s € Q with 5(5,1}) € QF for some v, and let M C Z" be the
Z-module such that affz(S4) = xp + M for some xp € Z™. For all 1,19 €
S A(sis—s)» we have r1°1 - (z1 —25) € M.

Based on the above lemma, we can extend Theorem 9 and prove the following
property regarding the output of algorithm QAffineHull.

Lemma 11. Let dyin be the smallest positive integer such that for all states
s € Q, there exists an encoding w, such that 5(8,105) € Qr with |ws| < dmin-
Let M,G C Z"™ and zp € Z" such that affz(S4) = xp + M and (G,zp) =
QAffineHull (A).

— forall s € Q, for all x1,22 € Sas,,,—s), T1 — T2 € ling(G), and,
— for all g € G, riming € M.

We now turn on the actual computation of affz(S4). A first approach, similar
to what is done in [10] for the affine hull over Q, is to compute a finite G for each
state s such that if z, € S (s, —s), then z, +1inz(Gs) C affz(S 4(s,—s))- This
can be done by keeping a basis of G4 and considering paths of increasing length
until reaching a fixpoint at which for all states s, for all w € La(sipmi — $),
(w), € x5 + ling(Gy). The problems with this approach are that numbers in
the basis of G5 can grow exponentially, and secondly, there is no bound on the
length of the paths before reaching the fixpoint. Based on Lemma 11, those two
problems can be solved in the following way. Let Gy, M C Z™ and zp € Z" such
that (Gpre, zr) = QAffineHull(A), and affg(S4) = zr + M. Since for all states
sand x5 € Sa(s,y—s) (W)r — T € ling(Gpre), (w)r — x4 is a linear combination
over Z of vectors in G pye, for any Z-basis G pre of ling (G pre ), the decomposition of
(w), —xs with respect to Gpre is unique. Also, since for all g € Gppe, rdming € M,
this also holds for vectors g € Gpre, and adding any combination of rdming to
any (w), — s does not change the affine hull over Z. So, once the decomposition
of (w), — x5 with respect to Gpre has been performed, we can work in Z, .
i.e. work in integer arithmetic modulo r®mi»

Based on the above considerations, our algorithm ZAffineHull takes a reduced
NDD as input and works as follows.

min )

1. Via the algorithm QAffineHull, one computes a set Gy and a vector zp.
Then, one computes a basis Gpre of ling(Gpre) and set p = |Gpre|. Then for
each state s, one associates a triangular set I's C Zf 4y, initially empty.

2. One considers paths of increasing length originating from s;,;;, starting with
all paths of length 1. Given the label w of a path from s;,;; to s, the procedure
works as follows.

— If z, = L, then z; is set to (w), and one propagates w from s, that is,
for all uw € X7 with 6(s,u) = s’ for some s’ € @, one handles the path
labeled by wu at the next iteration.

— If z; # 1, then one decomposes (w), — x5 into a linear combina-
tion > 9:€G e Vi which is always possible with v; € Z. Let ¢ € ZP
with c[i] = v mod rdmi» and c[i] € {0,...,r%in — 1} and let I} =
UpdateTriangZm(r, dmin, s, ¢). There are 2 possibilities.
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o If I # I's, then I is set to I', and one propagates w from s.

e Otherwise, one does nothing and w is not propagated.
3. One updates a triangular set I" C ZIT’ a4, initially empty, via UpdateTri-

angZm with all vectors c € Iy for all s € Qp.

4. Finally one generates the set G C Z" by adding the vectors g € Z" such
that g = ZgieGW c[i] - gi for some ¢ € I, g = rming; for some g; € G pre, OF
g = x5 — xp for some final state s € Q. Then, one returns G together with
TE.

Theorem 12. Let lyin, dmin < |Q] be the smallest positive integers such that
for all states s € Q, there exist encodings wy, wq such that S(Sim‘t, wy) = s with
|wi| < lmin and 6(s,wq) = sp for some sp € Qp with |wq| < dmin. Let zp € 7,
G C Z" such that (G, zr) = ZAffineHull(A). We have

— TF + llnz(G) = affz(SA),

— |G| < |Q] + 2n and the size of numbers in G are bounded by O(n - log(y/n) -
lmin + dmin))

— the time complexity of ZAffineHull is O(|Q|-| 27| (log(v/n) - lmin + d2,;,,) - 1%).

Note that if (G,zp) = ZAffineHull(A), then by applying the function
GetTriangZBasis to G, we can generate a basis G of ling(G) in time O(|Q|- (Inin +
dmin) -n°) and the size of the numbers in G are bounded by O((Imin + dmin) - 7>).
Also, thanks to Proposition 5, from G and x, we can generate a set of equations
and congruence relations describing affz(S4).

7 Experimental Results

The algorithms presented in this paper have been implemented within the LASH
library'. Note that the algorithms have been slightly modified in order to use
the serial encoding as presented in [14], which significantly decreases the running
time. By using the serial encoding, we simplify the transition relation at the ex-
pense of additional states. As a rule of thumb, the number of states is multiplied
by the number of components of the represented vectors, and the number of tran-
sition can be exponentially decreased. As encoding basis, we have taken r = 2.
The time and memory used for the computation of the algorithms QAffineHull
and ZAffineHull in a prototype implementation running on a pentium-M at 1,5
GHz are given in the table below. The computations include the generation of a
triangular set G such that zr +ling(G) = affg(S4) or zr +1ing(G) = affz(S4).
The columns indicate successively the set on which the computation is per-
formed, the number of components of the vectors in the set, the number of
states in the corresponding NDD (with alphabet X5), the values of Iy, and
dmin (see Theorems 9 and 12), and finally, the time and memory requirement
for the computation of QAffineHull and ZAffineHull successively. Note that all

sets Si,...,S512 are defined by a boolean combination of several equations, in-
equations and congruence relations. In addition, S, ..., S¢ are Z-affine modules
which is not the case of S7, ..., S12.

! Available at http://www.montefiore.ulg.ac.be/ boigelot/research/lash/
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A QAffineHull ZAffineHull
Set n Nb. States lmin dmin Time (sec.) Mem (Mb) Time (sec.) Mem (Mb)
S1 7 64874 12 1.0 6.1 3.5 46.7

15 1.6 10.4 4.6 64.5
27 3.3 274 22.5 162.1
4 3.3 22.5 10.8 123.4

S2 6 115727
S3 6 287713
Ss 6 215685

3

2

6

4
Ss 10 281135 4 5 3.1 31.4 119.9 379.3
Se 11 112754 2 5 2.3 13.1 10.9 183.4
S7 7 279598 4 7 4.3 29.2 63.2 203.8
Sg 7 42067 5 10 0.8 4.3 6.4 30.6
So 6 54186 5 5 1.2 5.4 6.6 30.8
S10 7 50580 5 6 0.7 5.1 7.2 36.7
S11 6 52177 4 8 0.9 4.9 4.2 29.3
S12 6 44920 6 7 1.0 4.4 4.5 25.4

In the above table, we note that in the sets considered, the values of [,;, and
dmin are small compared to |@Q|, even more so if one uses the serialized encoding.
There exist sets for which the values of l,,;, and dpi, have the same magnitude as
|Q|. For example, the NDDs representing the sets 2 = 0 mod 2* in base 2 have
k states and lnin ~ dmin ~ k. Our intuition is that whenever the characteristics
numbers of a set (i.e., the maximal value for finite set, the coefficient of the
inequation in a quantifier-free Presburger formula, ...) are small then, l,,;, and
dmin are also small and our algorithms perform very well.

8 Conclusion

In this paper, we have presented two algorithms, QAffineHull and ZAffineHull,
that take a reduced NDD A as input and compute the affine hull over Q and
over Z respectively of the set represented by A. More precisely, they generate
a pair (G,zp) with a finite set G C Z™ and xp € Z" such that zp + ling(G)
(resp. xp + ling(G)) is the affine hull over Q (resp. Z) of the set represented
by A. The size of the numbers manipulated in QAfineHull (resp. ZAffineHull)
are bounded by O(|Q]) (resp. O(nlog(y/n) - |@Q])) and the time complexity is
o(Q] - |X"| - n) (vesp. O(|QI? - | X7 - n3)). The algorithms perform very well
for NDDs such that the distances from the initial state to each state and the
distances from each state to an accepting state are small, as we have shown in
a prototype implementation.
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Abstract. The complexity of various membership problems for tree au-
tomata on compressed trees is analyzed. Two compressed representations
are considered: dags, which allow to share identical subtrees in a tree,
and straight-line context-free tree grammars, which moreover allow to
share identical intermediate parts of a tree. Several completeness results
for the classes NL, P, and PSPACE are obtained. Finally, the complex-
ity of the XPath evaluation problem on trees that are compressed via
straight-line context-free tree grammars is investigated.

1 Introduction

During the last decade, the massive increase in the volume of data has motivated
the investigation of algorithms on compressed data, like for instance compressed
strings, trees, or pictures. The general goal is to develop algorithms that directly
work on compressed data without prior decompression. Considerable amount of
work has been done concerning algorithms on compressed strings, see e.g. [1, 2].
In this paper we investigate the computational complexity of algorithmic prob-
lems on compressed trees. Trees serve as a fundamental data structure in many
fields of computer science, e.g. term rewriting, model checking, XML, etc. In
fact, in each of these domains, compressed trees in form of dags (directed acyclic
graphs), which allow to share identical subtrees in a tree, are used as a key for
obtaining more efficient algorithms, see for instance [3] (term graph rewriting),
[4] (model checking with BDDs), and [5,6] (querying compressed XML docu-
ments). Recently, straight-line context-free tree grammars (SL cf tree grammars)
were proposed as another compressed representation of trees in the context of
XML [7]. Whereas a dag can be seen as a regular tree grammar [8] that gener-
ates exactly one tree, an SL cf tree grammar is a context-free tree grammar [8]
that generates exactly one tree. SL cf tree grammars allow to share identical
intermediate parts in a tree. This results in better compression rates in compar-
ison to dags: in the theoretical optimum, SL cf tree grammars lead to doubly
exponential compression rates, whereas dags only allow singly exponential com-
pression rates. In [9], a practical algorithm (BPLEX) for generating a small SL
cf tree grammar that produces a given input tree is presented. Experiments with
existing XML benchmark data show that BPLEX results in significantly better
compression rates than dag-based compression algorithms.

J. Farré, 1. Litovsky, and S. Schmitz (Eds.): CTAA 2005, LNCS 3845, pp. 225-237, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In Section 3 we study the problem of evaluating compressed trees via tree
automata [8,10]. Tree automata play a fundamental role in many applications
where trees have to be processed in a systematic way. In the context of XML,
for instance, tree automata are used to type check documents against an XML
type [11,12]. These applications motivate the investigation of general decision
problems for tree automata like emptiness, equivalence, and intersection non-
emptiness. Several complexity results are known for these problems, see e.g. [8].
Membership problems for tree automata were investigated in [13] for ranked
trees (see Table 1 for the results of [13]) and [14] for unranked trees from the
perspective of computational complexity. Here we extend this line of research by
investigating the computational complexity of membership problems for various
classes of tree automata on compressed trees (dags and SL cf tree grammars).
For deterministic/nondeterministic top-down/bottom-up tree automata we ana-
lyze the fixed membership problem (where the tree automaton is not part of the
input) as well as the uniform membership problem (where the tree automaton is
also part of the input). Moreover, we consider subclasses of SL cf tree grammars
that allow more efficient algorithms for evaluating tree automata. In particular,
linearity and the restriction that for some constant k, every production of the SL
cf tree grammar contains at most k parameters (variables) lead to better com-
plexity bounds. For all cases, we present upper and lower bounds which vary from
NL (nondeterministic logspace) to PSPACE (polynomial space). Our results are
collected in Table 1. We also briefly consider the parameterized complexity [15]
of membership problems for tree automata.

In Section 4 we consider the problem of evaluating core XPath expressions
over compressed trees. XPath is a widely used language for selecting nodes in
XML documents and is the core of many modern XML technologies. The query
problem for XPath asks whether a given node in a given (unranked) tree is
selected by a given XPath expression. For uncompressed trees, the complexity of
this problem is intensively studied in [16, 17]. For input trees that are represented
as dags, XPath evaluation was investigated in [5,6]. In [6] it was shown that the
evaluation problem for core XPath (the navigational part of XPath) over dag-
compressed trees is PSPACE-complete. Here, we extend this result to linear SL cf
tree grammars (Theorem 9). This is remarkable, since linear SL cf tree grammars
lead to (provably) better compression rates than dags, which is also confirmed
by our experimental results for the BPLEX-algorithm (which produces linear SL
cf tree grammars) from [9].

Proofs that are omitted in the main part of this paper will appear in the full
version.

2 Preliminaries

For background in complexity theory see [18]. The set of all finite strings over a
(not necessarily finite) alphabet X' is X*. The empty string is €. The length of
a string u is |u|. We write u < v for u,v € X* if u is a prefix of v. The reflexive
and transitive closure of a binary relation — is denoted by —.
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Trees, Dags, and SL cf Tree Grammars. A ranked alphabet is a pair
(F,arity), where F is a finite set of function symbols and arity : F — N assigns
to each o € F its arity (or rank). Let F; = {a € F | arity(a) = i}. Function
symbols in Fy are called constants. In examples we use symbols a € Fy, h € Fq,
and f € Fo. Mostly we omit the function arity in the description of a ranked
alphabet. An F-labeled tree t (or ground term over F) is a pair t = (domy, A¢),
where (i) dom; C N* is finite, (ii) A; : dom; — F, (iii) if v < w € domy, then
also v € domy, and (iv) if v € dom; and M\ (v) € F,, then vi € dom, if and
only if 1 < ¢ < n. Note that the edge relation of the tree ¢ can be defined as
{(v,vi) € dom; x domy, | v € N*,i € N}. The size of ¢ is |t| = |dom|. With an
F-labeled tree t we associate a term in the usual way: If A\i(¢) = a € F;, then
this term is a(t1,...,%;), where ¢; is the term that corresponds to the subtree
of t rooted at the node j € N. The set of all F-labeled trees is T(F). Let us
fix a countable set X of variables. The set of all F-labeled trees with variables
from X is T'(F, X). Formally, we consider variables as new constants and define
T(F,X)=T(FUX). Atreet € T(F, X) is linear, if every variable x € X’ occurs
at most once in t. A term rewriting system, briefly TRS, over a ranked alphabet
F is a finite set R C (T(F, X))\ X) x T(F,X) such that for all (s,t) € R, every
variable that occurs in t also occurs in s. The one-step rewrite relation —x over
T(F,X) is defined as usual, see for instance [19].

Dags (directed acyclic graphs) are a popular compressed representation of
trees that allows to share identical subtrees. An F-labeled dag is a triple D =
(Vb, Ap, Ep) where (i) Vp is a finite set of nodes, (ii) Ap : Vp — F labels each
node with a symbol from F, (iii) Ep C Vp x N x Vp (i.e. edges are directed
and labeled with natural numbers), (iv) every v € Vp contains precisely one i-
labeled outgoing edge for every 1 < i < arity(Ap(v)), and (v) (Vp, Ep) is acyclic
and contains precisely one node rootp € Vp without incoming edges. The size
of D is |D| = |Vp|. A root-path in D is a path vy,i1,v2,42- - ,v, in the graph
(Vp, Ep), ie., vy € Vp (1 <k <n) and (vg, ik, vk+1) € Ep (1 < k < n) that
moreover starts in the root node, i.e., v1 = rootp. Such a path can be identified
with the label-sequence i1is - -i,_1 € N*. An F-labeled dag D over F can be
unfolded into an F-labeled tree eval(D): domey.i(p) is the set of all root-paths
in D (viewed as a subset of N*), and if the root-path p € N* ends in the node
v € Vp, then we set Aevai(p)(p) = Ap(v). Clearly the size of eval(D) is bounded
exponentially in |D].

Ezample 1. For the dag D on the right we have eval(D) = /S\x
g9(f(h(a), h(a)), f(h(a), h(a)), h(a)). Moreover, the size 9 5y /2'h—1>a
of D is 4. We have domeyai( p) ={e,1,2,3,11,12,21,22, 31, \1\> f _/14
111,121,211, 221}

Recently, a compressed representation of trees, which generalizes dags, was in-
troduced: straight-line context-free tree grammars (SL cf tree grammars) [7]. An
SL cf tree grammar is a tuple G = (F, N, S, P), where (i) N U F is a ranked
alphabet, (ii) N is the set of nonterminals, (iii) F is the set of terminals, (iv)
S € N is the start nonterminal and has rank 0, (v) P (the set of productions)
is a TRS over N U F that contains for every A € N exactly one rule of the
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form A(x1,...,2,) — ta, where n = arity(A) and z1,...,x, are pairwise dif-
ferent variables, and (vi) the relation {(A,B) € N x N | B occursin t4} is
acyclic. These conditions ensure that for every A € N of rank n there is a
unique tree evalg(A)(z1,...,2,) € T(F,{x1,...,2,}) with A(zy,...,z,) =p
evalg(A)(z1,...,2,). Let eval(G) = evalg(S) € T(F). Thus, an SL cf tree
grammar is a context free tree grammar [8] that generates exactly one tree.
Alternatively, an SL cf tree grammar is a recursive program scheme [20] that
generates a finite tree. The size of G is |G| = > 4 [ta]. We say that G is an
SL cf tree grammar with k parameters (k > 0) if arity(A) < k for every A € N.
The SL cf tree grammar G is linear if for every production A(z1,...,x,) — ta
in P the tree t4 is linear.

SL cf tree grammars generalize string generating straight-line programs [2] in
a natural way from strings to trees. The following example shows that SL cf tree
grammars may lead to doubly exponential compression rates; thus, they can be
exponentially more succinct than dags: Let the (non-linear) SL cf tree grammar
G, consist of the following productions: S — Ag(a), A;i(z) — Aip1(Ai+1(x)) for
0 <i<mn,and Ay(z) — f(x,x). Then eval(G,) is a complete binary tree of
height 2", Thus, |eval(G,,)| € O(2%"). Note that G,, has only one parameter. On
the other hand, it is easy to prove by induction over the number of productions
that linear SL cf tree grammars can only achieve exponential compression rates.
But linear SL cf tree grammars are still more succinct than dags: The tree
h(h(---h(a)---)) with 2™ many occurrences of h can be generated by a linear
SL cf tree grammar of size O(n), which is not possible with dags.

An SL cf tree grammar G = (F, N, S, P) with 0 parameters (i.e., arity(4) =0
for every nonterminal A € N) can be easily transformed in logspace into an
F-labeled dag that generates the same tree: we take the disjoint union of all
right-hand sides of productions from P, where the root of the right-hand side
for the nonterminal A gets the additional label A. Then we merge for every
nonterminal A all nodes with label A. Note that since arity(A) = 0 for every
A € N, nonterminals can only occur as leafs in right-hand sides of G. Thus, this
merging process results in a dag. For instance, the SL cf tree grammar with the
productions S — ¢g(A4,A,B),A — f(B,B),B — h(a) corresponds to the dag
from Example 1. Vice versa, from an F-labeled dag we can construct in logspace
an equivalent SL cf tree grammar with 0 parameters by taking the nodes of the
dag as nonterminals. Thus, dags can be seen as special SL cf tree grammars.
This justifies our choice to denote with eval both the evaluation function for
dags and unrestricted SL cf tree grammars.

Tree Automata. A (nondeterministic) top-down tree automaton, briefly TDTA,
is a tuple A = (@, F, qo, R), where @ is a finite set of states, Q U F is a ranked
alphabet with arity(q) = 1 for all ¢ € @, go € @ is the initial state, and R is a
TRS such that all rules have the form g(a(x1,...,2,)) — a(qi(z1), - ., qn(zn)),
where ¢,q1,...,q, € Q, x1,...,T, are pairwise different variables, and o € F
has rank n. A is a deterministic TDTA if no two rules in R have the same left-
hand side. The tree language that is accepted by a TDTA A is T(A) = {t €

T(F) | q(t) Sr t}. A (nondeterministic) bottom-up tree automaton, briefly
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BUTA, is a tuple A = (Q,F,Qy,R), where @ and F are as above, @y C Q
is the set of final states, and R is a TRS such that all rules have the form
alqgr(z1), -, qu(zn)) — qla(zy,...,z,)), where ¢,q1,...,qn € Q, T1,...,2p
are pairwise different variables, and a € F has rank n. A is a deterministic
BUTA if no two rules in R have the same left-hand side. The tree language
that is accepted by a BUTA Ais T(A) = {t e T(F) | 3¢ € Q; : t g q(t)}.
It is straight-forward to transform a nondeterministic BUTA into an equivalent
nondeterministic TDTA and vice versa, and a logspace transducer is able to to
do these transformations. Thus, in the following we do not distinguish between
nondeterministic BUTA and nondeterministic TDTA, and we call them simply
tree automata (TA). A subset of T'(F) is recognizable if it is accepted by a TA.
Using a powerset construction, every recognizable tree language can be also ac-
cepted by a deterministic BUTA, but this involves an exponential blowup in the
number of states. For deterministic TDTA the situation is different; they only
recognize a proper subclass of the recognizable tree languages. The size | 4] of a
TA is the sum of the sizes of all left and right hand sides of rules. Let G be a class
of SL cf tree grammars (e.g., the class of all dags). The membership problem for
the fixed TA A and the class G is the following decision problem:

INPUT: G € G
QUESTION: Does eval(G) € T(.A) hold?

For a class C of tree automata, the uniform membership problem for C and the
class G is the following decision problem:

INPUT: GeGand AcC
QUESTION: Does eval(G) € T(.A) hold?

The upper part of Table 1 collects the complexity results that were obtained in
[13] for uncompressed trees. The statement that for instance the membership
problem for TA is NC'-complete means that for every fixed TA the membership
problem is in NC! and that there exists a fixed TA for which the membership
problem is NC'-hard. More details on tree automata can be found in [8,10].

3 Membership Problems for Dags and SL CF Tree
Grammars

The time bounds in the following theorem are based on dynamic programming.
Note that only the number k of parameters appears in the exponent. The idea
of the proof is to run the tree automaton A bottom up on the right-hand sides
of G’s productions. For the parameters we have to assume at most n* different
possibilities of states of A which (a determinized simulation of) A maps to a
state of A.

Theorem 1. For a given TA A with n states and a linear SL cf tree grammar
G with k parameters we can check in time O(nF1 - |G| |A|) whether eval(G) €
T(A).
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Table 1. Complexity results for (uniform) membership problems

det. TDTA det. BUTA TA
fixed NC'-complete
uncompressed trees [13]
uniform L-complete LOGDCFL, LOGCFL-
p L-hard complete
fixed
dags NL-complete P-complete
uniform
lin. SL +fixed number para. fixed P-complete
uniform
fixed
SL + fixed number para.
uniform P-complete PSPACE-
complete
fixed
unrestricted SL xe P-complete PSPACE-complete
uniform

For a given deterministic BUTA A with n states and a given SL cf tree
grammar with k parameters we can check in time O(n* - |G| - |A|) whether

eval(G) € T(A).

Recall that a dag can be seen as a (linear) SL cf tree grammar without parame-
ters. Thus, Theorem 1 can be also applied to dags in order to obtain a polynomial
time algorithm for the uniform membership problem for TA and dags. Using a
straightforward reduction from the P-complete monotone circuit-value problem,
we obtain:

Theorem 2. There exists a fixed deterministic BUTA A such that the member-
ship problem for A and dags is P-hard.

Remark 1. By Theorem 1 and 2, the (uniform) membership problem for (deter-
ministic) BUTA on dags is P-complete. This result may appear surprising when
compared with a recent result from [21]: the membership problem for so called
dag automata is NP-complete. But in contrast to our approach, a dag automa-
ton operates directly on a dag, whereas we consider ordinary tree automata that
run on the unfolded dag. This makes a crucial difference for the complexity of
the membership problem.

By the next theorem, a deterministic TDTA can be evaluated on a dag in NL
(nondeterministic logspace). The crucial fact is that a deterministic TDTA A
accepts a tree t if and only if the path language of ¢ (which is, roughly speaking,
the set of all words labeling a maximal path in the tree t) is included in some
regular string language L [10], where L is accepted by a finite automaton B that
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is logspace constructible from 4. Now we just guess a path in the input dag and
simulate B on this path. The NL lower bound is obtained by a reduction from
the graph accessibility problem for dags.

Theorem 3. The uniform membership problem for deterministic TDTA and
dags is in NL. Moreover, there exists a fixed deterministic TDTA such that the
membership problem for A and dags is NL-hard.

By combining the statements in Theorem 1-3 we obtain the results for dags in
Table 1.

SL cf tree grammars allow higher compression rates than dags. This makes
computational problems harder when input trees are represented via SL cf tree
grammars. The following result reflects this phenomenon. The PSPACE lower
bound can be shown by a reduction from QSAT (quantified boolean satisfiabil-
ity), see e.g. [18].

Theorem 4. The uniform membership problem for TA and SL cf tree grammars
is in PSPACE. Moreover, there ezists a fized deterministic BUTA such that the
membership problem for A and SL cf tree grammars is PSPACE-hard.

Only for deterministic TDTA we obtain more efficient algorithms in the context
of unrestricted SL cf tree grammars. The polynomial time upper bound in the
next theorem is again based on the concept of the path language of a tree. For
an SL cf tree grammar G, the path language of eval(G) can be generated by a
small context-free string grammar. The lower bound follows from a result of [22]
about string straight-line programs.

Theorem 5. The uniform membership problem for deterministic TDTA and SL
cf tree grammars is in P. Moreover, there is a fixed deterministic TDTA such
that the membership problem for A and linear SL cf tree grammars with only
one parameter is P-hard.

From Theorem 1 and 5 (resp. Theorem 4 and 5) we obtain the complexity results
for linear SL cf tree grammars with a fixed number of parameters (resp. unre-
stricted SL cf tree grammars) in Table 1, see lin. SL + fixed number para. (resp.
unrestricted SL). The following result completes our characterization presented
in Table 1.

Theorem 6. The uniform membership problem for TA and (non-linear) SL cf
tree grammars with only one parameter is PSPACE-hard.

Proof. We prove the theorem by a reduction from QSAT [18]. Let us take a
quantified boolean formula ¢ = Q121 - - - Qnxy, @, where @; € {V,3} and ¢ is a
boolean formula with variables from X = {z1,...,z,}. W.lo.g. we may assume
that in ¢ the negation operator — only occurs directly in front of variables. Let
X = {-z | z € X}. We define an SL cf tree grammar G as follows: The set
of terminals contains the binary function symbol f, a unary function symbol ¢;
for every x; € X, and a constant a. The set of nonterminals contains the start
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nonterminal .S, and for every subformula « of 1 it contains a nonterminal A, of
arity 1. The productions of G are:

S — Ay(a) Aaly) — f(Ap(ti(y)), Ap(y)) if a € {Va;3, 35}
Auly) my ifae XUX  Au(y) — f(As(y), Ay(y) ifae{BAY,BVA}

An occurrence of the symbol ¢; on a path in the tree eval(G) indicates that the
variable z; is set to true. Note that from a nonterminal A, where o begins with
a quantification Jx; or Vz; we first generate a branching node (labeled with the
binary symbol f). Moreover, the left branch gets in addition the unary symbol
t;, which indicates that x; is set to true. The absence of ¢; in the right branch
indicates that xz; is set to false.

We define a nondeterministic TDTA A as follows: The state set of A contains
all subformulas of ¢ plus an additional state gq. The initial state of A is the whole
formula 1. The set R of transition rules of A consists of the following rules:

a(f(y, 2)) — fla(y),q(2))
a(ti(y)) — ti(a(y)) for all i
q(a) —a
a(f(y,2)) — f(By), q(z)) if « = Fz;3 for some i
a(f(y,z)) — flq(y), B(z)) if o = Fz; 5 for some ¢
a(f(y,z)) — f(B(y), B(z)) if v = Va;3 for some i
a(f(y,2)) — f(B(y),q(z)) if =V~ for some 7y
a(f(y,2)) — f(q(y),v(2)) if @ =BV~ for some 3
o (5, ) — F(B)A)) iTa= G Ay
a(ti(y)) — ti(a(y)) if @ € (XUX)\ {zs, i}
alti(y)) — ti(q(y)) if o =
afa) —a ifae X

Figure 1 shows the tree eval(G) for the true quantified boolean formula V13 :
(x1 A —xe) V (-1 A x2), where in addition every node is labeled with a state of
the automaton 4 such that the overall labeling is an accepting run.

By the first three rules for state ¢, q(t) —>x t for every ground tree ¢t. Thus, if
we reach the state ¢, then the corresponding subtree is accepted. If the current
state a is an existential subformula Jz;3, then we guess nondeterministically one
of the two subtrees of the current f-labeled node (i.e., we choose an assignment
for z;) and verify 8 in that subtree. The other subtree is accepted by sending ¢
to that subtree. Similarly, if the current state « is a universal subformula Vz; 3,
then we verify § in both subtrees, i.e., for both assignments for x;. The rules for
a = [ V~yand a = A~y can be interpreted similarly. Note that by construction
of G and A, if the current state « is of the form Jz;53, Va;6, BV v, or B A7,
then the current tree node in eval(G) is an f-labeled node. On the other hand, if
the current state is from X U X, then the current tree node in eval(G) is labeled
with a symbol ¢; or the constant a. If the current state is a variable x;, then we
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search for the symbol ¢; in the chain of ¢;-labeled nodes below the current node.
We accept by going into the state ¢ as soon as we find ¢;: x;(¢;(y)) — t:(q(y)) If
we do not find ¢; and end up in the constant a, then we block; note that there is
no rule of form z;(a) — a. On the other hand, if the current state is a negated
variable —z;, then we verify that there is no ¢; in the chain of ¢;-labeled nodes
below the current node. Thus, we block as soon as we find ¢;; note that there
is no rule with left-hand side —u:z( i(y)). On the other hand, if we finally reach
the constant a in state —x;, then we accept via the rule —z;(a) — a. From the
previous discussion, it is not hard to see that the formula v is true if and only
if eval(G) € L(A). |

From Theorem 1 and Theorems 4-6 we obtain the results for SL cf tree grammars
with a fixed number of parameters in Table 1.

We end this sections with two results concerning the parameterized complexity
of membership problems for tree automata. Parameterized complexity [15] is a
branch of complexity theory with the goal to understand which input parts of a
hard (e.g. NP-hard) problem are responsible for the combinatorial explosion. A
parameterized problem is a decision problem where the input is a pair (k,z) €
N x X*. The first input component k is called the input parameter (it may
also consist of several natural numbers). A typical example of a parameterized
problem is the parameterized version of the clique problem, where the input is
a pair (k,G), G is an undirected graph, and it is asked whether G has a clique
of size k. A parameterized problem (with input (k,z)) is in the class FPT (fixed
parameter tractable), if the problem can be solved in time f(k) - |z|°. Here ¢ is
a fixed constant and f is an arbitrary (e.g., exponential) computable function
on N. This means that the non-polynomial part of the algorithm is restricted to
the parameter k.

Theorem 7. The following parameterized problem is in FPT:

INPUT: An SL cf tree grammar G with k parameters and a TA A with n
states.
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INPUT PARAMETER: (k,n)
QUESTION: eval(G) € T(A)?

Proof. We first transform A into a deterministic BUTA with at most 2™ states.
Then we apply Theorem 1 which gives us a running time of 2" - |G| - |A|. O

In recent years, a structural theory of parameterized complexity with the aim
of showing that certain problems are unlikely to belong to FPT was developed.
Underlying this theory is the notion of parameterized reductions [15]: A parame-
terized reduction from a parameterized problem A (with input (k,z) € N x X2*)
to a parameterized problem B (with input (¢,y) € N x I'*) is a mapping
f:NxX* — N x I' such that: (i) for all (k,z) € N x X2* (k,z) € A if and
only if f(k,x) € B, (ii) f(k,z) is computable in time g(k) - || for some com-
putable function g and some constant ¢, and (iii) for some computable function
h, if f(k,xz) = (£,y), then £ < h(k). A parameterized problem A is fpt-reducible
to a parameterized problem B if there exists a parameterized reduction from
A to B. One of the classes in the upper part of the parameterized complexity
spectrum is the class AW[P]. For the purpose of this paper it is not necessary
to present the quite technical definition of AW[P]. Roughly speaking, AW[P] re-
sults from taking the closure (w.r.t. fpt-reducibility) of a parameterized version
of the PSPACE-complete QSAT problem. Problems that are AW[P]-hard are
very unlikely to be in FPT.

Theorem 8. The following problem is AW/[PJ-hard w.r.t. fpt-reducibility:

INPUT: A deterministic BUTA A and an SL cf tree grammar G with k
parameters

INPUT PARAMETER: k

QUESTION: eval(G) € T(A)?

The theorem can be shown by a parameterized reduction from the following
problem pFOMC (parameterized first-order model-checking), which is AW[P]-
hard w.r.t. fpt-reducibility [23]:

INPUT: A directed graph H = (V, E) and a sentence ¢ of first-order logic
(built up from the atomic formulas z = y and E(xz,y) (for variables = and y)
using boolean connectives and quantification over nodes of H).

INPUT PARAMETER: The number of different variables that are used in ¢

QUESTION: Is ¢ true in the graph H?

4 XPath Evaluation

In this section, we consider XML-trees that are compressed via SL cf tree gram-
mars and study the node selecting language XPath over such trees. For more
background on XPath see [16,17]. We restrict our attention to linear SL cf
tree grammars. Skeletons of XML documents are usually modeled as rooted un-
ranked labeled trees. Analogously to Section 2, an unranked tree with labels from
an (unranked) alphabet X can be defined as a pair ¢t = (domy, A\;), where (i)
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dom; C N* is finite, (ii) A; : dom; — F, (iii) if v < w € domy, then also
v € domy, and (iv) if vi € domy then also vj € dom; for every 1 < j < 4. For
the purpose of this section, it is more suitable to view such an unranked tree
t = (domy, \¢) as a relational structure ¢t = (domy, child, next-sibling, (Qa)acs),
where Q, = A; ' (a) C domy, child = {(v, vi) € dom; xdom, | v € N*,i € N}, and
next-sibling = {(vi,v(i+1)) € dom; x dom; | v € N*,¢ € N}. Thus, child(u, v) is
the child-relation in ¢ and next-sibling(u, v) if and only if v is the right sibling of
u. From the basic tree relations child and next-sibling further tree relations that
are called XPath-azes can be defined. For instance let descendant := child* (the
reflexive and transitive closure of child) and following-sibling := next-sibling™.
For the definition of the other XPath axes see for instance [16]. In the following
we consider the four XPath axes child, descendant, next-sibling, and following-
sibling; handling of other axes is straightforward and needs no further ideas.

The node selection language core XPath [16] can be seen as the tree naviga-
tional core of XPath. Its syntax is given by the following EBNF; here, x is an
XPath-axis and a € X U {*} (where * is a new symbol):

corexpath ::= locationpath | /locationpath
locationpath ::= locationstep (/ locationstep)*
locationstep ::= x ::a | x :: a [pred]
pred ::= (pred and pred) | (pred or pred) | not(pred) | locationpath

Let Q. be the unary predicate that is true for every node of a tree t. We define the
semantics of core XPath by translating a given tree ¢ = (dom, child, next-sibling,
(Qa)acx) and a given expression m € L(corexpath) (resp. e € L(pred)) into a
binary relation S[m,t] C dom; x domy (resp. a unary relation Efe,t] C domy).
Let 7,71, m2 € L(locationpath), e, e, es € L(pred), and let x be an XPath axes
(recall that € is the root of a tree).

S[x :: ale], t] :== {(z,y) € dom; x domy | (z,y) € X,y € Qu,y € Ele, ]}

dom¢ x {z € dom; | (¢, ) € S[r,t]}

{(z,y) € dom; x dom, | Iz : (x,2) € S[m1,t],(2,y) € S[ma, ]}
Elex, t] N Eles, t]

)
S
ﬁ

~

i

={z edomy | Jy: (z,y) € S[n,t]}

Recall that by definition SL cf tree grammars generate ranked trees. In order
to generate XML skeletons, i.e., unranked trees, with SL cf tree grammars, we
encode unranked trees by binary trees (and hence ranked trees) using a standard
encoding: For an unranked tree t = (domy, child, next-sibling, (Q,)acx) define
the binary encoding bin(¢) = (domy, child1, child2, (Qq)ecx), where (i) (u,v) €
childl if and only if (u,v) € child and there does not exist w € dom; with (w,v) €
next-sibling (i.e., v is the left-most child of v), and (ii) child2 = next-sibling. Note
that ¢ and bin(¢) have the same set of nodes. The following theorem is our main
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result in this section. PSPACE-hardness follows from the corresponding result
for dags [6].

Theorem 9. The following problem is PSPACE-complete:

INPUT: A linear SL cf tree grammar G generating a binary tree with eval(G)=
bin(t) for some (unique) unranked tree t, two nodes u,v of eval(G), and a core
XPath expression m € L(corexpath).

QUESTION: (u,v) € S[m,t]?

For the proof of the PSPACE upper bound in Theorem 9 we first translate a given
XPath expression into a first-order formula that uses the XPath axes as atomic
predicates. We then show that such a first-order formula can be evaluated on
eval(G) for a given linear SL cf tree grammar by an alternating Turing machine
[18] that works in polynomial time with respect to the size of the formula and
the size of the grammar. For this it is crucial that nodes of eval(G) can be
represented in polynomial space (with respect to the size of G) and hence can
be guessed in polynomial time. This does not hold for non-linear SL cf tree
grammars which can generate trees of doubly exponential size. Finally, one can
use the fact that PSPACE is precisely the class of all problems that can be solved
on an alternating Turing machine in polynomial time, cf. [18].

5 Open Problems and Conclusions

An interesting class of SL cf tree grammars that is missing in our present com-
plexity analysis of tree automata is the class of linear SL cf tree grammar (with
an unbounded number of parameters in contrast to Theorem 1). The results in
this paper leave a gap from P to PSPACE for the uniform membership problem
for TA and linear SL cf tree grammars (with an unbounded number of para-
meters). Our algorithm BPLEX from [9] outputs linear SL cf tree grammars.
Note that BPLEX, even when bounding the number of parameters by a small
constant (like 2 or 3), clearly outperforms compression by dags. The results
presented here show that with respect to tree automata membership problems
and XPath evaluation, exactly the same complexity bounds hold for linear SL
cf tree grammars with a bounded number of parameter as for dags [5,6]. This
motivates us to believe that linear SL cf tree grammars are better suited than
dags as memory efficient representations of XML documents. Precise trade-offs
between the representations have to be determined in practice; we are currently
implementing our ideas as part of BPLEX. For the XPath evaluation problem,
the complexity for non-linear SL cf tree grammars remains open. We conjecture
that the PSPACE upper bound from Theorem 9 cannot be generalized to the
non-linear case.
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Abstract. It is known that Linear Temporal Logic (LTL) has the same
expressive power as alternating 1-weak automata (A1IW automata, also
called alternating linear automata or very weak alternating automata).
A translation of LTL formulae into a language equivalent A1W automata
has been introduced in [1]. The inverse translation has been developed
independently in [2] and [3]. In the first part of the paper we show that
the latter translation wastes temporal operators and we propose some
improvements of this translation. The second part of the paper draws a
direct connection between fragments of the Until-Release hierarchy [4]
and alternation depth of nonaccepting and accepting states in A1IW
automata. We also indicate some corollaries and applications of these
results.

1 Introduction

The study of connections between temporal logics and automata proved to be
very fruitful. The best example is the translation of linear temporal logic (LTL)
formulae into nondeterministic Biichi automata [5, 6], which is one of the cor-
nerstones of the automata-based model checking of LTL properties [7].

It is known for a long time that nondeterministic Biichi automata are more
expressive than LTL [8]. Only a few years ago, the alternating 1-weak Biichi
automata (or A1W automata for short, also known as alternating linear automata
or very weak alternating automata) have been identified as the type of automata
with the same expressive power as LTL. Muller, Saoudi, and Schupp [1] have
introduced a translation of LTL formulae into equivalent A1W automata. The
translation of A1W automata into equivalent LTL formulae has been presented
independently by Rohde [2], and Liéding and Thomas [3].

The LTL—A1W translation has been recently used to build new and more
efficient algorithms translating LTL formulae into nondeterministic Biichi au-
tomata [9,10]. Another application of this translation arises in connection with
verification algorithms working directly on alternating automata (for pointers
see [11]). The growing popularity of A1W automata is hindered by the fact that
it is often hard to see what language is recognized by an automaton. Here is the
point where the AW —LTL translation can help as LTL formulae are easy to un-
derstand, especially if they contain only few occurrences of temporal operators.

J. Farré, 1. Litovsky, and S. Schmitz (Eds.): CTAA 2005, LNCS 3845, pp. 238-249, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Unfortunately, the “standard” A1TW—LTL translation does not provide optimal
results as it wastes next operators. For example, the automaton corresponding
to the formula a U (bA (b U ¢)) is translated into formula a U (bAX(bU ¢)). In this
paper we propose an improved AlIW—LTL translation reducing the number of
next operators in the resulting formula. Our improved translation also prefers
the use of less expressive and easy-to-read unary temporal operators eventually
or globally instead of binary operator until. We prove that for an ATW automa-
ton produced by the standard translation of an LTL formula ¢ our translation
provides a formula with the same (or even lower) nesting depths of until, next,
and eventually operators comparing to these nesting depths in ¢.

The improved translation also allows to define classes of AW automata with
the same expressive power as LTL fragments with temporal operators until, next,
and eventually, where the nesting depth of each operator can be bounded. Sev-
eral interesting and previously studied LTL fragments fit into this general pattern,
namely fragments of the until hierarchy [12, 13], fragments without eventually op-
erator and with bounded nesting depth(s) of next or until or both operators studied
in [14, 15], and the fragment without until operator known as restricted LTL [16].

The second part of this paper presents connections between A1W automata
and some LTL fragments that are not covered by the pattern above, namely
fragments of the until-release (alternating) hierarchy [4] and fragments of the
hierarchy of temporal properties [17,18]. In particular, we show that alternation
of until and release operators in a formula corresponds to alternation of nonac-
cepting and accepting states in an equivalent ATW automaton. Some corollaries
of this correspondence are presented as well.

The paper is structured as follows. In Section 2 we recall the definitions of
LTL and alternating 1-weak automata together with standard translations be-
tween these formalisms. Section 3 provides an improved version of AIW—LTL
translation and indicates some applications. Section 4 is devoted to the connec-
tion between A1TW automata and the until-release hierarchy. Section 5 sums up
presented results and mentions some topics for future research. All proofs are
omitted due to the space limitations; they can be found in the full version of
this paper [19].

2 Preliminaries

2.1 Linear Temporal Logic (LTL)

The syntax of LTL is given by the abstract syntax equation

pu=T lal] 0| @rAps | Xo | Fo | ¢1Ugps,

where T stands for true and a ranges over a countable set A = {a,b,¢,...} of
letters. We also use L to abbreviate =T, Gy to abbreviate =F—p, and ¢ R
to abbreviate =(—¢ U —1). The temporal operators X, F, U, G,R are called next,
eventually, until, globally, and release, respectively. Let us note that Fy can be
equivalently defined as an abbreviation for T U .
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We define the semantics of LTL in terms of languages over infinite words.
An alphabet is a finite set X C A. A word over alphabet X is an infinite sequence
w=w(0)w(w(2)... € ¥ of letters from X. For every i € Ny, by w; we denote
the suffix of w of the form w(i)w(i + )w(i +2)....

The wvalidity of an LTL formula ¢ for w € X is defined as follows:

wkET

wEa iff  a=w(0)

w = g iff whe

wEpr Ape it wE e AwE e
w = Xe it w Ep

w = Fo iff FieNy:w; =¢

wEeiUp iff FeNg:rwEep AVO<j<i:w;FE=er

Given an alphabet ¥, an LTL formula ¢ defines the language L¥(¢) = {w €
¢ w = ¢}

Now we define a notation for LTL fragments given by bounds on nesting
depths of temporal operators. Let O € {X,F,U} be a temporal operator. The
nesting depth of O in a formula @, written O-depth(y), is defined in the following
way, where Z and Z’ range over unary and binary (temporal as well as boolean)
operators respectively.

O-depth(T)
O-depth(a)

O-depth(Z p)

0
0

O-depth(p +1 ifZ=0
{O depth(p otherwise

y _ maux{O—de]()th(c,ol)7 O-depth(p2)} +1 i Z'=0
O-depth(p1 2" ¢2) = { max{O-depth(p1), O-depth(p2)} otherwise

For all m,n,k € Ny U {oo}, we set
LTL(U™, X", F¥) = {¢ | U-depth(p) < m, X-depth(p) < n, F-depth(p) < k}.

We abuse this fragment notation by omitting the upper indices equal to oc.

Moreover, we usually omit the whole operator if its index is 0. For example, by
LTL(X",F) we mean the fragment LTL(U%, X", F>).

2.2 Alternating 1-Weak Biichi Automata (A1W)

The transition function of an alternating automaton assigns to each state and
letter a positive boolean formula over states. The set of positive boolean formulae
over set ) (denoted BT (Q)) consists of formulae T (true), L (false), all elements
of @, and boolean combinations over () built with A and V. A subset S of @ is
a model of ¢ € BT(Q) iff o is satisfied by the valuation assigning true just to
states in S. A set S is a minimal model of ¢ (denoted S | ¢) iff S is a model
of ¢ and no proper subset of S is a model of .

An alternating Bichi automaton is a tuple A = (X, Q, qo, 6, F'), where X' is a
finite alphabet, @) is a finite set of states, gy € @ is an initial state, 6 : Q@ x X —
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BT(Q) is a transition function, and F' C @ is a set of accepting states. By A(p)
we denote the automaton A with initial state p € @ instead of qg.

A run of an alternating automaton is a (potentially infinite) tree. A tree is
a set T C N§ such that if zc € T', where x € Njj and ¢ € Ny, then also z € T" and
xd € T for all 0 < ¢ < c. A Q-labeled tree is a pair (T, r) where T is a tree and
r: T — @ is a labeling function. A run of an automaton A = (X, Q, qo, 6, F)
over word w € X¥ is a Q-labeled tree (T,7) such that r(¢) = qo and for each
x € T the set S = {r(zc) | ¢ € Ng,xzc € T} satisfies S |= 6(r(x), w(|z])). A run
(T, r) is accepting iff for each infinite path 7 in T' it holds that Inf(mw) N F # 0,
where Inf(7) is the set of all labels (i.e. states) appearing infinitely often on .
An automaton A accepts a word w € X¢ iff there exists an accepting run of A
over w. A language of all words accepted by an automaton A is denoted by L(A).

Let Succ(p) denote the set Suce(p) ={q|Ja € 2,5 CQ:SU{q} E é(p,a)}
of all possible successors of p, and Succ’(p) = Succ(p) ~ {p}. An automaton
is called 1-weak if there exists an ordering < on the set of states @ such that
q € Succ’(p) implies ¢ < p. In the following we use A1W automaton or simply
automaton meaning ‘alternating l-weak Biichi automaton’. Further, instead of
S = 6(a, p) we write p = S and say that an automaton has a transition leading
from p to S under a. A state p of an automaton has a loop whenever p € Succ(p).

Fig. 1. The automaton accepting the language a b{a,b,c} ¢*

An AIW automaton A = (X, Q, qo, 6, F') can be drawn as a graph; nodes are
the states and every transition p = S is depicted as a branching edge labelled
with a and leading from node p to the nodes in S. Edges that are not leading to
any node correspond to the cases when S is the empty set. Initial and accept-
ing states are indicated in the standard way. For example, Figure 1 depicts an
automaton accepting the language a*b{a, b, c}*c*.

2.3 LTL—AI1W Translation [1,11]

In this subsection we treat every (sub)formula of the form Fg as an abbreviation
for T U.

Let ¢ be an LTL formula and X' be an alphabet. The formula can be translated
into an automaton A satisfying L(A4) = L¥(y), where A = (X, Q, gy, 6, F') and
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A A

Fig. 2. Part of an automaton translated into the formula ¢, = (a A Xpq) U (b A Xer)

— the states Q@ = {qy, ¢-y | ¥ is a subformula of ¢} correspond to the subfor-
mulae of ¢ and their negations,
— the transition function ¢ is defined inductively as:

6(QT7 ) =T
6(qa,b) =T ifa=0, 6(qa,b) = L otherwise
(Qﬁwa Cl) = 6((]1,/)’ a)
(qw/\l” ) = 6((]11)’ a) A 5((],,, a)
6(axy, @) = qy
6(qypup,a) = 6(qp,a) V (6(qy, a) A qyup)

where « denotes the positive boolean formula dual to a defined by induction
on the structure of « as:

T=1 G~y = qy BAYy=BNAYy
1=T qQp = gy BVy=pBVy

— the set of accepting states is ' = {g-(yup) | % U p is a subformula of ¢}.

We use the notation A* () for the automaton given by the translation of an
LTL formula ¢ with respect to an alphabet 3.

For example, the translation applied on the formula ¢ = (aUb) A FGe and
the alphabet X' = {a, b, ¢} produces the automaton depicted on Figure 1, where
P, q1, 92, g3 stand for q,, qaub, GrGe; GGe, Tespectively.

2.4 A1W-—LTL Translation [2, 3]

Let A = (X,Q,qo, 6, F) be an A1W automaton. For each p € Q) we define an LTL
formula ¢, such that L*(¢,) = L(A(p)) (in particular L* (g, ) = L(A)). The
definition proceeds by induction respecting the ordering of states; the formula
0 employs formulae of the form ¢, where ¢ € Succ’(p). This is the point where
the 1-weakness of the automaton is used. To illustrate the inductive step of
the translation, let us consider the situation depicted on Figure 2. The formula
corresponding to state p is ¢, = (a A Xpg) U (b A Xepy).

Before we give a formal definition of ¢, we introduce some auxiliary formulae.
Let a € X be a letter and S C @ be a set of states.

0(a,S) =an J\ Xeq ap=\/ 0(a,5~{p}) Bp="\ 0(a,5)
qeS pLS p —
peS p&gS
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Fig. 3. An automaton for the formula aU (b A (bUc¢)) and alphabet {a,b,c}

The formula 6(a, S) represent a situation where the automaton makes a transition
under a into the set of states S. Formulae o, and 3, correspond to all transitions
leading from state p; «;, covers transitions with a loop while (3, covers the others.
The definition of ¢, then depends on whether p is an accepting state or not.

ap U B, ifpg F
e (apUBp) V Goy, ifpeF

Given an automaton A with an initial state o, we set (A) = @q, -

3 Improved A1W—LTL Translation

The weak point of the AIW—LTL translation presented above is that for each
successor ¢ € Succ’(p) of a state p the formula p,, contains a subformula X¢, even
if the X operator is not needed. This is illustrated by the automaton A in Figure 3
produced by translating formula a U (bA(bU ¢)) with respect to alphabet {a, b, c}.
The reverse translation provides an equivalent formula p(A4) =a U (bAX(DU c)).

Let p 2 S be a transition and X C S. We now formulate conditions that
are sufficient to omit the X operator in front of ¢, (for every ¢ € X) in the
subformula of ,, corresponding to the transition p £ 8.

Definition 1. Let p % S be a transition of an automaton A. A set X C S~ {p}
is said to be X-free for p % S if the following conditions hold.

1. For each q € X there is S;, C S such that q 5 Sy
2. Let Y C X and for each q € Y let S;, C Q be a set satisfying q 4 S, and
q ¢ Sy Then there exists a set S" C (S \Y)U quy Sy, satisfying p 487,

Figure 4 illustrates the conditions for X-freeness. Please note that it can be
the case that p € S. Further, in the first condition it can be the case that ¢ € S

It is easy to see that the empty set is X-free for every transition. Further,
every subset of an X-free set for a transition is X-free for the transition as well.
On the other hand, Figure 5 demonstrates that a union of two X-free sets need
not be X-free.

Let Xfree be an arbitrary but fixed function assigning to each transition p = S
a set that is X-free for p = S. We now introduce an improved A1W—LTL trans-
lation. Roughly speaking, the translation omits the X operators in front of sub-
formulae which correspond to the states in X-free sets given by the function Xfree.
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Fig. 5. The sets {1}, {g2} are X-free for p % {q1,¢2} while the set {g1,q2} is not

The improved AIW—LTL translation exhibits similar structure as the origi-
nal one. Instead of formulae of the form 6(a, S) representing a transition under a
leading from an arbitrary state p to S, we define a specialized formula ¢} (a, S)

for each transition p = S.

0,(a,8) =a A A Xgp, A N &
q € S~ Xfree(p = S) q € Xfree(p=>S)
qFp
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ay=\/ 0(a,59) g,=\/ 0,(a,9)
p>S p>S
pES p&S

In the following definition of a formula ¢;, we identify some cases when U can be
replaced by “weaker” operators F or G. To this end we define two special types of
states. A state p is of the F-type if there is a transition p % {p} for every a € X.
A state p is of the G-type if every transition of the form p = S satisfies p € S.

8, if p & Suce(p)
L if p € Suce(p), p € F, p is of G-type
F5, if p € Succ(p), p € F, p is of F-type and not of G-type
90; =4 a,Upg, if p € Succ(p), p € F, p is neither of F-type nor of G-type
T if p € Suce(p), p € F, p is of F-type
Gay, if p € Succ(p), p € F, p is of G-type and not of F-type
(ap UB,) V Gay, if p € Succ(p), p € F, p is neither of F-type nor of G-type

By ¢**¢(A) we denote the formula ¢} given by the improved translation using
the function Xfree. The following Theorems 1 and 2 say that the translation is
correct and that it does not waste temporal operators.

Theorem 1. Let A be an A1W automaton over alphabet X. Let Xfree be a func-
tion assigning an X-free set to each transition of A. Then L(A) = L* (¢*fe¢(A)).

Theorem 1 is proved by induction with respect to ordering of states in the
automaton A. The theorem is a direct corollary of the following lemma.

Lemma 1. Let p % S be a transition of an A1W automaton A such that for
each q € Succ'(p) the equivalence p, <= ¢, holds. Then 0(a,S \ {p}) =
0,(a,S). Further, 0,(a,S) = B,V a;,. Moreover, if p ¢ S then 0,(a,S) = B,.

Theorem 2. For each formula ¢ € LTL(U™, X" F¥) and each alphabet X there
exists a function Xfree such that (A (p)) € LTL(U™, X" F).

The function Xfree can be effectively constructed from the transition relation
of the automaton. For further details about the construction and for full proofs
see [19].

The improved translation enables us to study relations between fragments of
the form LTL(U™, X" F¥) and classes of A1W automata. In particular, we can
provide alternative definitions of language classes corresponding to some previ-
ously studied LTL fragments, namely fragments of the form LTL(U* X, F) con-
stituting the so-called until hierarchy [12, 13], fragments of the form LTL(U, X"),
LTL(U™,X), or LTL(U™, X") studied in [14,15], and the fragments LTL(X, F)
also called restricted LTL [16]. Due to the lack of space we mention only the
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alternative definition of languages definable in LTL(X, F). The other cases are a
bit more complicated and can be found in [19].

Lemma 2. A language is definable by a formula of LTL(X,F) if and only if
there exists an A1W automaton recognizing the language such that every state
with a loop is of F-type or G-type.

4 Until-Release Hierarchy and A1W Automata

The until-release hierarchy of LTL formulae has been introduced in [4]. Tt is
based on alternation depth of U and R operators. Therefore it is also called
alternating hierarchy. This hierarchy has a strong connection to the hierarchy of
temporal properties introduced by Manna and Pnueli [17,18]. Moreover, there
is a relation between classes of until-release hierarchy and complexity of their
model checking problem (see [4]).

Definition 2. The classes UR;,RU; of the Until-Release hierarchy are defined
inductively.

— The classes URg and RUg are both identical to LTL(X).

— The class UR;+1 is the least set containing RU; and closed under the appli-
cation of operators \,V, X, and U.

— The class RU; 11 is the least set containing UR; and closed under the appli-
cation of operators N\,V, X, and R.

Let us note that the hierarchy collapses on the third level with respect to its
expressive power. More precisely, each language is definable by LTL if and only if
it is definable by a positive boolean combination of URs and RUs formulae. These
formulae are contained in URs as well as in RUs. In the following we identify
a fragment of the alternating hierarchy with the set of languages defined by
formulae of this fragment.

We now define the alternation depth of nonaccepting and accepting states in
the graph of an A1W automaton. We also define classes of languages recognized
by automata with a given alternation depth.

Definition 3. Let A = (X,Q,qo,6, F) be an A1W automaton. For each i € Ny
we inductively define sets of states o; and m; as follows.

— 0y 1s the smallest set of states satisfying
o {p|pé&F and Succ(p) =0} C o and
e if p & F and Succ(p) C o then p € o,
— mo 1s the smallest set of states satisfying
o {p|pe€F and Succ(p) =0} C mp and
e if p € F and Succ(p) C mo then p € mo,
— 041 15 the smallest set of states satisfying
e g, Um; C 0,41 and
o ifp & F and Succ'(p) C oi11 then p € o441,
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— i1 15 the smallest set of states satisfying
e g, Um; C mip1 and
e ifpe F and Succ'(p) C w41 then p € miq1.

We also define functions oa,m4 : Q@ — Ny as
oa(p) =min{i|p € 0;} and wa(p) =min{i|p € m}.
Finally, for each i € Ny we define sets X; and II; as

Y ={L(A) | A= (X,Q,q,6,F) is an AIW automaton and ca(qo) < i},
I, ={L(A) | A=(X,Q,q,6, F) is an AIW automaton and mwa(qo) < i}.

The following theorem says that a language is definable by a formula of UR;
if and only if it is recognized by an A1W automaton with alternation depth
of nonaccepting and accepting states at most i. An analogous statement holds
for RU; and alternation depth of accepting and nonaccepting states. It is worth
mentioning that the proof of the following theorem is not as simple as one can
think when looking at the definition of a formula ¢, in the standard A1W—LTL
translation. See [19] for details.

Theorem 3. For each i € Ny it holds that UR; = X; and RU; = II;.

The theorem allows us to transform the results proved for the until-release hi-
erarchy in [4] into statements about our hierarchy of X; and IT; classes. This is
exemplified by the two following corollaries. For definitions of language classes
mentioned in the latter corollary (safety, guarantee, obligation,...) we refer
to [17,18].

Corollary 1. The hierarchy of X; and II; classes collapses on the third level,
te. XMy =1I3 =3, =1I; fO?” all i > 3.

Corollary 2. A language definable in LTL is in safety, guarantee, obligation,
response, persistence, or reactiwity class iff it is in Iy, X1, [IoN Xy, Il5, Xy, or
113 N XYs, respectively.

5 Summary and Future Work

The paper presents two main results. The first is the improved translation of
A1W automata into LTL formulae that are language equivalent. The second
result is a new automata-based definition of classes in the until-release hierar-
chy [4]. We also provide some corollaries of these results and indicate further
applications.

Besides the presented results our research brought several topics for future
work. For example, we would like to know whether there are some more general
or/and simpler conditions for a set to be X-free (see Definition 1). Another inter-
esting question is the relation between the sizes of LTL formulae and equivalent
A1W automata. Both standard and improved AIW—LTL translations can be
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modified to produce formulae that can be represented by directed acyclic graphs
of linear size with respect to the size of the original automata. However, we con-
jecture that AIW automata can be exponentially more succinct than LTL if we
stick with the standard representation of LTL formulae.
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Abstract. We use automata-theoretic approach to analyze properties of
Fibonacci words. The directed acyclic subword graph (dawg) is a useful
deterministic automaton accepting all suffixes of the word. We show that
dawg’s of Fibonacci words have particularly simple structure. The sim-
ple structure of paths in these graphs gives simplified alternative proofs
and new interpretation of several known properties of Fibonacci words.
The structure of lengths of paths in the compacted subword graph corre-
sponds to a number-theoretic characterization of occurrences of subwords
in terms of Zeckendorff Fibonacci number system. Using the structural
properties of dawg’s it can be easily shown that for a string w we can
check if w is a subword of a Fibonacci word in time O(|w|) and O(1)
space. Compact dawg’s of Fibonacci words show a very regular structure
of their suffix trees and show how the suffix tree for the Fibonacci word
grows (extending the leaves in a very simple way) into the suffix tree for
the next Fibonacci word.

1 Introduction

Fibonacci words form a famous family of words, due to many interesting prop-
erties related to text algorithms and combinatorics on words, see [1,2]. In par-
ticular Fibonacci words have ©@(nlogn) positioned squares and they have lin-
ear number of runs: maximal periodic subsegments (z is said to be periodic iff
period(x) < |z|/2). The structure of runs in general strings is rather mysterious,
and the structure of runs in Fibonacci words helps to understand this structure.
In this sense Fibonacci words are very representative. A very good source for
properties of these words is for example the book [2]. We rediscover/discover
several known/unknown properties of Fibonacci words in a novel way: analyzing
the automaton for the set of subwords. Let F), be the n-th Fibonacci word, where

Fo =a, F1 :ab, Fn+1 = Fn 'Fn—l

Denote by @,, the n-th Fibonacci number, where |F,| = ®,,. Define also the
infinite Fibonacci word Foo = Fo(1,2,3,4,...), such that each F,, is a prefix
of F. Hence

* Research supported by the grants 4T11C04425 and CCR-0313219.

J. Farré, 1. Litovsky, and S. Schmitz (Eds.): CTAA 2005, LNCS 3845, pp. 250-261, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Foo = abaababaabaababaababaabaababaabaababaababaabaababaababaabaababaab. . .

By an occurrence of u in Fo, we mean a position ¢ such that Foo[i+1...i4|u|] =
u. Denote by first-occ(u) the first occurrence of u in Foo, and by occ(u) the set
of all occurrences. The structure of lengths of paths in the dawg’s of Fibonacci
words is closely related to the Fibonacci number system. This system consists
in representing a number as a sum of Fibonacci numbers, in such a way that
no two consecutive Fibonacci numbers are used. The sum of zero number of
integers equals zero. The corresponding representation of the number is called
Z-representation.

Theorem 1. [Zeckendorff Theorem, [3]]

FEvery nonnegative integer is uniquely represented in the Fibonacci number sys-
tem. Every number F,, < k < F,4+1 — 1 contains F,, as the largest term in its
Z-representation.

Define the dual Fibonacci system. In this system each positive integer x is repre-
sented as a sum of different Fibonacci numbers, however we require that if @; is
not taken then @, is taken in the sum, whenever any Fibonacci number after
@, is taken. It follows directly from Zeckendorff’s Theorem that:

Lemma 1. Every integer k > 0 is uniquely represented in the dual Fibonacci
number system.

If X is a set of integers then define:
Xoj={z+j5 : zeX}

Denote by g; (the i-th truncated Fibonacci word) the word F; with the last two
letters removed. Using the dawg’s we show that for each nonempty subword u
of Foo we have:

occ(u) = oce(g;) @ first-oce(u),

where g; is the shortest truncated Fibonacci word containing wu.

Let Z, be the set of nonnegative integers which do not use Fibonacci numbers
Dy, D1, ...,P,_1 in their Fibonacci representation. It follows directly from the
structure of the dawg that:

occ(gny1) = oce(F,) = Z, for n > 1 and oce(Fy) = oce(Fy), oce(Fy) = 21

The sorted set Z¢[0], Z[1], Zx[2], . . . is closely related to Fibonacci words, denote
by Dy, the displacement structure of Zj:

D = (Zk[1] — Zx[0], Zk[2] — Zk[1], Zk[3] — Zk[2], 2k[4] — 2k[3], ... ).

The following fact is very useful in the analysis of the structure of runs in F.
It shows that the dsiplacement sequence is isomorphic to F.
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Lemma 2. D, = hip(Fs), where hi(a) = Pk, hi(b) = Pp_1.

It follows easily from the structure of the dawg’s that every run in F, (except
aa, (ab)?) is of the form (F;)¥g;_1, where k € {2,3}. A similar analysis of the
structure of runs of squares has been already done by Iliopoulos, Moore, and
Smyth in [4]. However their proofs were syntactic, and here we present different
graph-theoretic proofs, based on the structure of the dawg of F, and on a
natural number-theoretic interpretation of the sets of lengths of its paths.

2 The Structure of Subword Graphs

We construct the infinite labelled graph G, The nodes of G, are all integers
i > 0, the edges are constructed as follows:

i —1) 7= fori > 0, B, — 22 @iy — 1, for odd i,

and @, — 2% $;+1 — 1, for even i.

The graph G is, in a certain sense, a subword graph of the infinite Fibonacci
word F. The initial segments of this graph are dawg’s of finite Fibonacci words.
Denote by finite-paths(Gs, ) the set of all finite words spelled by the paths of G,
originating at 0, and by finite-subwords(F,,) the set of all finite sub-words of
Foo- The following fact follows from Theorem 6, which wil be proved later.

Theorem 2. finite-paths(Goo) = finite-subwords(Foo).

We say that a path is an a-path if it is an infinite path in G, which starts at
0, and chooses the edge labelled a whenever there is a choice. Similarly define
b-path. Denote by a-path(G,) the infinite word spelled by the a-path, similarly
define b-path(Go.). The b-path(Go) can be treated as the infinite lexicograph-
ically maximal pseudo-suffiz of Fo, (each prefix of b-path(G) is a prefix of
maximal suffix of some finite Fibonacci word).

Theorem 3. a-path(Goo) = a-Foo, b-path(Ge) = b Foo.

The edges of the form (i,i + 1) are called main edges. The suffixes of Fo are
infinite words resulting by cutting off a finite prefix of F..

Theorem 4. a-path(Goo) and b-path(Go) are not suffizes of Fuo.
The infinite string corresponding to a path ™ of Goo is a suffix of Foo iff almost
all edges of m (all but a finite number) are main edges.

The nodes of outdegree greater than one are called fork nodes. We say that a
path starting from 0 is a fork-path iff it ends at a fork node in G.,. The next
theorem follows from the structure of the compacted infinite dawg G.,. However
we introduce later the compacted dawg’s in terms of finite words.

Theorem 5. For each k > 1 there is exactly one fork-path of length k in G.
This fork-path corresponds to the representation of k in the dual Fibonacci num-
ber system.
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For each @py1—2 < k < Dpyo — 2 there is a path of length k from the source
to the fork node @10 —2 .

Proof. Tt is easy to see that each path of total length k from the source to
a fork node in the compacted version of G.,, see Figure 4, corresponds to a
representation of a number k in the dual Fibonacci system, the example of
representing k£ = 60 is shown in Figure 4.

If we have paths of length £ —1 then only a path ending at a fork node generates
two paths of length k. The theorem and Lemma 1 implies directly in a novel
way the following well known Sturmian property of F...

Corollary 1. There are exactly k + 1 different subwords of length k in F.

Let G, be the subgraph of G, induced by the nodes [0...®,], see Figure 1.
Denote by dawg(w) the acyclic directed subword graph of a word w, see for
example [1, 5, 2] for the definition. We assume that the nodes on the main branch
of such a graph are consecutive integers starting with 0.

Theorem 6. For each n > 1 dawg(F,) = G, and paths(G,) = suffizes(F},).

Proof. The thesis follows from the on-line construction of dawg(F,), see [1]. It
is enough to show that no extra nodes outside the main branch are created. If
dwag(F,) = G, then the next |F,,_1| — 2 symbols do not create new nodes or
new edges since g, is a prefix and suffix of g,41, which consequently has the
period |F,,_1|. One extra edge is created from |F,,| — 2 to |F,,+1 — 1| because the
next read symbol terminates the period |F,,—1|. We omit the details.

We refer the reader to [1] for the definition of the critical factorization point.
The starting position of a lexicographically maximal suffix, maximized over all
possible orders of the alphabet, is the critical factorization point. This implies
the following fact:

Theorem 7. &, — min{ |a-path(G,)|, |b-path(G,)| } is the critical factorization
point of the n-th Fibonacci word.

This gives alternative proof, see [6], of the following fact.

Corollary 2. &,_1 — 1 is a critical factorization point of F,.

Fig. 1. The subword graph dawg(Fs), the fork nodes (of outdegree 2) are drawn as
squares. The arrows show the ends of prefixes which are Fibonacci words.
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Each dawg(F,,) can be compactly described in O(n) space, see Figure 2 for the
first compaction, in which each chain (a sequence of nodes of indegree and out-
degree one) is represented by a single edge. We can further compact dawg(F},).
Let us remove all nodes except fork nodes, the source and the sink. Call remain-
ing nods essential. Then for each edge outgoing from an essential node replace
it by an edge going to the next essential node, with label representing the word
"spelled” by the compressed path, see Figure 3. The resulting compacted sub-
word graph is denoted by cdawg(F,,).

g=a & =aba g y = abaaba g 5= abaababaaba 8 = abaababaabaababaaba

Fig. 2. The structure of dawg(Fy), of 12th Fibonacci word (of length 89). The dashed
edges correspond to chains.

ab g abg, ab g ab &g

mm ba Fg
ba ba

ba g5 bags ba g,

Fig. 3. The power of compaction: cdawg(Fi1) of the Fibonacci word of length 233.
Observe that all labels (but one) are reverses of Fibonacci words.

By O(1) space we mean constant number of nonnegative integers not greater
than n.

Theorem 8. We can test if a word w is a subword of a Fibonacci word in time
O(Jw|) and O(1) space.

Proof. Tt is easy to see that we can test if a specified subword of w is a Fibonacci
word in linear time and O(1) space. Then we can traverse G without remembering
it explicitly. In some places we have to test if a subword of w is a Fibonacci word.

Define fin(u) = occ(u) @ |u| and first-fin(u) = min(fin(u)).
Lemma 3. (A) For each pair of nonempty words u,w we have:
first-fin(u) = first-fin(w) < oce(u) = oce(w).

(B) For each nonempty subword u of Fs we have
occ(u) = occ(gi) @ first-occ(u), where g; is the shortest truncated Fibonacci
word containing u.
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8 21 55
m 34 55

2 5 13 34
8
e e, @
~_2 7 *

60=2+3+8+13+34

3

Fig. 4. We consider only fork nodes and put the lengths of the edges as the lengths
of compacted paths. The representation of £ = 60 in the dual Fibonacci system corre-
sponds to a path (vo, va, vs, vs, ve, vs). It illustrates the fact that for each k exactly
one word corresponds to a path from the source to a fork node.

Example. The shortest truncated Fibonacci word containing aa, as well as F3 =
abaab is g4 = abaaba. We have occ(F3) = oce(gq) = {0,5,8,13,18,21,26,29,. ..},
and first-occ(aa) = 2, hence

occ(aa) = oce(F3) @2 = oce(ge) ®2 = {2,7,10,15,20,23,28,31,...}.
The structure of the graph G implies easily several number-theoretic properties

of the Fibonacci words. It follows from Lemma 3 and the structure of the graph
g, see Figure 4, that:

Theorem 9.

1. occ(gn+1) = occ(F,) = Z, form>1

2. occ(Fy) = oce(Fy), oce(Fy) = 2.

3. For each subword u ¢ {Fy, F1} of Foo we have occ(u) = Z; ® first-occ(u),
where g; is the smallest truncated Fibonacci word containing u as a subword.

Proof. The subword u "moves” to the right by starting at first-occ(u) in G and
making shortcuts. Each shortcut corresponds to taking a Fibonacci number, no
two consecutive Fibonacci numbers are taken.

We investigate also the structure of the set
FIN(k) = {first-fin(u) : uis of size k }

The structure of this set easily follows from the way how paths of length £ — 1
are extended into paths of length k. Only fork nodes ¢ € FIN(k — 1) generate
two elements of FIN (k), each other node ¢ in FIN(k — 1) generates a single
element ¢ + 1 in FIN(k), see Figure 5. We have:

FIN(k+1) = FIN(k)®1U{®;y1 — 1} where &; — 2 € FIN(k)

This implies directly the following fact.
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Fig. 5. The structure of nodes of G which are endpoints of all k + 1 different strings
of length k. The end-positions of Fibonacci prefixes are indicated by vertical arrows.

Lemma 4. The set FIN (k) consists of a single interval or of two disjoint in-
tervals.

FIN@, -1) = [®,—1...2-&, —1];

We say that a subword w of F is a right special subword, iff wa and wb are
subwords of F,. Such subwords are responsible for the increase of the number
of subwords with respect to their length. These are the words corresponding to
paths to fork nodes, they are considered for example in [7]. It is easy to see from
the structure of G that right special subwords are exactly suffixes of ¢g;’s. On the
other hand each suffix of g; is a reverse of a prefix of F,,. Let w® denote the
reverse of w. We gave a new proof of another property of Fu:

a word w is a right special factor of Fn, iff w® is a prefix of Fuo.

3 The Structure of Runs in Fibonacci Words

We say that a run w is a p-run iff period(w) = p. The run is short if |w| <
3-period(w). The structure of runs has been already investigated in [8, 4]. Every
occurrence of a subword in F, implies an occurrence of some word g; starting at
the same position. Hence the runs correspond to adjacent occurrences or overlaps
of words g;. Consequently we have the following fact.
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Lemma 5. [8] Every run of Foo is of one of two types:

(Short runs) w = Fy - Fi, - gx—1, or (Long runs) w = Fy, - Fj, - Fj, - gr—1.

Denote by rep(z) the repetition order of the string (finite or infinite) z as
rep(xz) = sup {Jw|/period(w) : w € finite-subwords(x)}.

The maximal repetitions correspond to long runs in F.. This implies the fol-
lowing fact (already shown in [8]).

Corollary 3. [8] rep(Fuoo) = 2+ ¢, where ¢ = 1+2‘/5 is the golden ratio.

It follows from the structure of runs that there is no subword aaa in F. Using
the displacement sequence Dy, due to its recursive Fibonacci-like structure, we

can easily show the following (already shown using different methods) properties
of Fibonacci words.

Corollary 4. There are no subwords in Fay of type x*, where x is nonempty.
For n > k, the number of occurrences of Fy in F,, is F,,_; — odd(n — k), where
odd(x) = 1 if x is an odd integer, and odd(x) = 0 otherwise.

—
abaababaabaab abaababa abaababaabaab abaababaabaab abaababa abaababaabaab abaababa abaababaabaab

W abaababaabaab abaababaabaab abaababa abaababaabaab abaababa abaababaabaab

Wabaababa abaababaabaab abaababaabaab abaababa abaababaabaab abaababa abaal @ab

o} ' o~ ' PN
aba}ababaabaab Wwwaab abaababaabaab abaababa abaababaabaab abaababa abaababaabaab

t

NN NN N

NSNS N N -
abaababa@ Wgababa@ @@\aab abaababa eQaa/baWb abaababa ab\aa/b@@gab

?fb\b b. b/b\/b\b b. b/b\/b\/b\b bfb\fb\?b bfb\fb\fb\b b. bfb\/b\b b, b@?g
aadmaawaaaa@@aaaaa aba abaababagbaab abaababaabgabgbaabaa

% N s e Y N
abag/bgtﬁabagb abaababa aba@)abaaba@ gjbg@)abaabag@a\@@gaaba aba@@abae@ abaababa abaababaabaab

Fig. 6. The structure of runs in the Fibonacci word Fi1. The arrows show endpoints
of Fibonacci prefixes. F11 has 65 runs. The 21 1-runs of aa are not shown in the figure.
The runs are distributed as follows: there are 12 2-runs, 13 3-runs, 8 5-runs, 5 8-runs,
3 13-runs, 2 21-runs and 1 34-run.
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All runs correspond to occurrences of g;’s. However Z; is the set of all occurrences
of g;. The crucial role in understanding the structure of runs in Fj, plays the
Displacement Lemma (Lemma 2). We know that the displacement sequence
is isomorphic to Fibonacci sequence, hence we can easily compute number of
different types of runs by computing numbers of a’s and b’s in prefix segments of
Foo- Using Lemma 2 we can describe the structure of runs in F,,, see Figure 6.

Theorem 10. [Structure of Runs] The Fibonacci word F,, has: F,,_3 $o-
runs; Fr_q4 — 1 @1-runs, and Fp,_;_o Pr-runs for 2 <k <n —2.

This gives alternative (compared with [9]) proof for the number of all runs.
Corollary 5. [9] F,, has 2+ F,_2 — 3 runs.

We say that a square zz is primitive iff x is a primitive word, similarly de-
fine primitive cubes. The run F;F;g;—1 contains |g;—1| primitive squares and
F;F;F;g;—1 contains ®; + |g;—1| primitive squares. The short runs correspond to
bab in F and long runs correspond to aa in F. Due to the Fibonacci-like
struc