
Minimizing NLC-Width is NP-Complete

(Extended Abstract)

Frank Gurski and Egon Wanke

Heinrich-Heine-University Düsseldorf,
Institute of Computer Science, D-40225 Düsseldorf, Germany

{gurski-wg, wanke-wg}@acs.uni-duesseldorf.de

Abstract. We show that a graph has tree-width at most 4k−1 if its line
graph has NLC-width or clique-width at most k, and that an incidence
graph has tree-width at most k if its line graph has NLC-width or clique-
width at most k. In [9] it is shown that a line graph has NLC-width at
most k + 2 and clique-width at most 2k + 2 if the root graph has tree-
width k. Using these bounds we show by a reduction from tree-width
minimization that NLC-width minimization is NP-complete.

1 Introduction

The clique-width of a graph is defined by a composition mechanism for vertex-
labeled graphs [7]. The operations are the vertex disjoint union, the addition of
edges between vertices controlled by a label pair, and the relabeling of vertices.
The clique-width of a graph G is the minimum number of labels needed to define
it. The NLC-width of a graph is defined by a composition mechanism similar to
that for clique-width [19]. Every graph of clique-width at most k has NLC-width
at most k and every graph of NLC-width at most k has clique-width at most 2k
[12]. The only essential difference between the composition mechanisms of clique-
width bounded graphs and NLC-width bounded graphs is the addition of edges.
In an NLC-width composition the addition of edges is combined with the union
operation. This union operation applied to two graphs G and J is controlled by a
set S of label pairs such that for every pair (a, b) ∈ S all vertices of G labeled by
a will be connected with all vertices of J labeled by b. Both concepts are useful,
because it is sometimes much more comfortable to use NLC-width expressions
instead of clique-width expressions and vice versa, respectively.

Clique-width and NLC-width bounded graphs are particularly interesting
from an algorithmic point of view. A lot of NP-complete graph problems can be
solved in polynomial time for graphs of bounded clique-width. For example, all
graph properties expressible in monadic second order logic with quantifications
over vertices and vertex sets (MSO1-logic) are decidable in linear time on clique-
width bounded graphs [6] if a corresponding decomposition for the graph is given
as an input. The MSO1-logic has been extended by counting mechanisms which
allow the expressibility of optimization problems concerning maximal or minimal
vertex sets [6]. All graph problems expressible in extended MSO1-logic can be

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 69–80, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

70 F. Gurski and E. Wanke

solved in polynomial time on clique-width bounded graphs. Furthermore, there
are a lot of NP-complete graph problems which are not expressible in extended
MSO1-logic (like Hamiltonicity, various partition problems, and bounded degree
subgraph problems) but which can also be solved in polynomial time on clique-
width bounded graphs [19,8,14,9].

The recognition problem for graphs of clique-width or NLC-width at most
k for fixed integers k is still open for k ≥ 4 and k ≥ 3, respectively. Clique-
width of at most 3 is decidable in polynomial time [4]. NLC-width of at most
2 is decidable in polynomial time [13]. Clique-width of at most 2 and NLC-
width 1 is decidable in linear time [5]. In this paper we show that NLC-width
minimization is NP-complete, which was open up to now.

The paper is organized as follows. In Section 2, we recall the definitions of
clique-width, NLC-width, and tree-width. In Section 3, we show that a graph
has tree-width at most 4k−1 if its line graph1 has NLC-width or clique-width at
most k. In Section 4, we show that an incidence graph2 has tree-width at most
k if its line graph has NLC-width or clique-width at most k. In [9] it is shown
that a line graph has NLC-width at most k + 2 and clique-width at most 2k + 2
if the root graph has tree-width k. This in connection with the result of Section
4 is used to show by a reduction from tree-width minimization that minimizing
NLC-width is NP-complete.

2 Preliminaries

Let [k] := {1, . . . , k} be the set of all integers between 1 and k. We work with
finite undirected vertex labeled graphs G = (VG, EG, labG), where VG is a finite
set of vertices labeled by some mapping labG : VG → [k] and EG ⊆ {{u, v} |
u, v ∈ VG, u �= v} is a finite set of edges. The labeled graph consisting of a single
vertex labeled by a ∈ [k] is denoted by •a.

The notion of clique-width is defined by Courcelle and Olariu in [7].

Definition 1 (Clique-width, [7]). Let k be some positive integer. The class
CWk of labeled graphs is recursively defined as follows.

1. The single vertex graph •a for some a ∈ [k] is in CWk.
2. Let G = (VG, EG, labG) ∈ CWk and J = (VJ , EJ , labJ) ∈ CWk be two vertex

disjoint labeled graphs. Then G⊕J := (V ′, E′, lab′) defined by V ′ := VG∪VJ ,
E′ := EG ∪ EJ , and

lab′(u) :=
{

labG(u) if u ∈ VG

labJ(u) if u ∈ VJ

is in CWk.
1 The line graph L(G) of a graph G has a vertex for every edge of G and an edge

between two vertices if the corresponding edges of G are adjacent [20].
2 The incidence graph I(G) of a graph G is the graph we get if we replace every edge
{u, v} of G by a new vertex w and two edges {u, w}, {w, v}.

Minimizing NLC-Width is NP-Complete 71

3. Let a, b ∈ [k] be two distinct integers and G = (VG, EG, labG) ∈ CWk be a
labeled graph then
(a) ρa→b(G) := (VG, EG, lab′) defined by

lab′(u) :=
{

labG(u) if labG(u) �= a
b if labG(u) = a

is in CWk and
(b) ηa,b(G) := (VG, E′, labG) defined by

E′ := EG ∪ {{u, v} | u, v ∈ VG, u �= v, lab(u) = a, lab(v) = b}
is in CWk.

The notion of NLC-width3 is defined by Wanke in [19].

Definition 2 (NLC-width, [19]). Let k be some positive integer. The class
NLCk of labeled graphs is recursively defined as follows.

1. The single vertex graph •a for some a ∈ [k] is in NLCk.
2. Let G = (VG, EG, labG) ∈ NLCk and R : [k] → [k] be a function, then

◦R(G) := (VG, EG, lab′) defined by lab′(u) := R(labG(u)) is in NLCk.
3. Let G = (VG, EG, labG) ∈ NLCk and J = (VJ , EJ , labJ) ∈ NLCk be two

vertex disjoint labeled graphs and S ⊆ [k]2 be a set of label pairs, then graph
G ×S J := (V ′, E′, lab′) defined by V ′ := VG ∪ VJ ,

E′ := EG ∪ EJ ∪ {{u, v} | u ∈ VG, v ∈ VJ , (labG(u), labJ(v)) ∈ S},
and

lab′(u) :=
{

labG(u) if u ∈ VG

labJ(u) if u ∈ VJ

is in NLCk.

The clique-width (NLC-width) of a labeled graph G is the least integer k such
that G ∈ CWk (G ∈ NLCk, respectively). An expression built with the opera-
tions •a,⊕, ρa→b, ηa,b for integers a, b ∈ [k] is called a clique-width k-expression.
An expression built with the operations •a,×S , ◦R for a ∈ [k], S ⊆ [k]2, and
R : [k] → [k] is called an NLC-width k-expression. Every clique-width expression
(NLC-width expression) has by its recursive definition a tree structure which we
call the clique-width expression tree (NLC-width expression tree, respectively).
A vertex labeled graph G has linear clique-width (linear NLC-width) at most
k if it can be defined by a clique-width k-expression (NLC-width k-expression,
respectively) in that at least one argument of every operation ⊕ (every operation
×S , respectively) is a single labeled vertex •a [11].

The notion of tree-width and path-width is defined by Robertson and Sey-
mour in [18] and [17], respectively.
3 The abbreviation NLC results from the node label controlled embedding mechanism

originally defined for graph grammars.

72 F. Gurski and E. Wanke

Definition 3 (Tree-width and path-width, [18,17]). A tree decomposition
of a graph G = (VG, EG) is a pair (X , T) where T = (VT , ET) is a tree and
X = {Xu | u ∈ VT } is a family of subsets Xu ⊆ VG one for each node u of T
such that

1. ∪u∈VT Xu = VG,
2. for every edge {v1, v2} ∈ EG, there is some node u ∈ VT such that v1 ∈ Xu

and v2 ∈ Xu, and
3. for every vertex v ∈ VG the subgraph of T induced by the nodes u ∈ VT with

v ∈ Xu is connected.

The width of a tree decomposition (X = {Xu | u ∈ VT }, T = (VT , ET)) is
maxu∈VT |Xu| − 1. A tree decomposition (X , T) is called a path decomposition
if T is a path. The tree-width (path-width) of a graph G is the smallest integer
k such that there is a tree decomposition (a path decomposition, respectively)
(X , T) for G of width k.

The line graph L(G) of a graph G has a vertex for every edge of G and an
edge between two vertices if the corresponding edges in G have a common vertex
[20]. Graph G is called the root graph of L(G). For any line graph with at least
4 edges the root graph is unique and can be found in linear time [15].

The incidence graph I(G) = (VI(G), EI(G)) of a graph G = (VG, EG) is the
graph with vertex set VI(G) = VG ∪ EG and edge set EI(G) = {{u, e} | u ∈
VG, e ∈ EG, u ∈ e}. The incidence graph of G is the graph we get, if we replace
every edge {u, v} of G by a new vertex w and two edges {u, w}, {w, v}.

3 Line Graphs of Bounded NLC-Width

Tree-width bounded graphs can also be defined by a merging procedure of so-
called terminal graphs, which are also called sourced graphs. This is a well-known
property of tree-width bounded graphs, see also [2]. We will define terminal
graphs with edge labels, because this will allow us to define in an easy way the
edge labeled root graphs of vertex labeled line graphs.

Let k, l be two positive integers. An l-labeled k-terminal graph is a system

G = (VG, EG, PG, labG),

where (VG, EG) is a graph, PG = (u1, . . . , uk) is a sequence of k ≥ 0 distinct
vertices of VG, and labG : EG → [l] is an edge labeling. The vertices in sequence
PG are called terminal vertices or terminals for short. The vertex ui, 1 ≤ i ≤ k,
is the i-th terminal of G. The other vertices in VG −PG are called inner vertices.
The class TMk,l of l-labeled k-terminal graphs is recursively defined as follows.

1. The terminal graph
r︷ ︸︸ ︷• · · · •, 1 ≤ r ≤ k, consisting of r terminals is in TMk,l.

2. The terminal graph • a •, a ∈ [l], consisting of two terminals u, v and an
edge {u, v} labeled by a is in TMk,l for k ≥ 2.

Minimizing NLC-Width is NP-Complete 73

3. Let G = (VG, EG, PG, labG) ∈ TMk,l, P = (u1, . . . , ur), and f : [r] → [r],
be a bijection. Then the l-labeled r-terminal graph G|f = (VG, EG, P ′, labG)
with P ′ = (uf(1), . . . , uf(r)) is in TMk,l.

4. Let G = (VG, EG, PG, labG) ∈ TMk,l, P = (u1, . . . , ur), and s ∈ [r]. Integer
s is also called a decrement. Then the l-labeled (r− s)-terminal graph G|s =
(VG, EG, P ′, labG) with P ′ = (u1, . . . , ur−s) is in TMk,l.

5. Let G = (VG, EG, PG, labG) ∈ TMk,l and R : [l] → [l] be a relabeling map-
ping. Then the terminal graph ◦R(G) = (VG, EG, PG, lab′) with lab′(e) =
R(labG(e)) for all e ∈ EG is in TMk,l.

6. Let H = (VH , EH , PH , labH) ∈ TMk,l, J = (VJ , EJ , PJ , labJ) ∈ TMk,l, and
|PH | ≤ |PJ |. Then terminal graph H × J defined as follows is in TMk,l.
(a) Take the disjoint union of (VH , EH , labH) and (VJ , EJ , labJ), and iden-

tify the i-th terminal from H with the i-th terminal from J .
(b) An edge e from H × J is labeled by labH×J (e) = labH(e) if it is from H

and by labH×J (e) = labJ (e) if it is from J .
(c) The i-th terminal of H × J is the i-th terminal of J .
(d) Multiple edges are eliminated by removing the corresponding edges

from H .

An expression built with the operations
r︷ ︸︸ ︷• · · · •, • a •, |f , |s, ◦R, and × is

called a terminal k, l-expression. The terminal graph defined by a terminal k, l-
expression X is denoted by val(X). It is easy to see that TMk+1,1 defines exactly
the set of graphs of tree-width at most k, see [10].

Let G = (VG, EG, PG, labG) be an edge labeled terminal graph, G = (VG , EG ,
labG) be a vertex labeled graph, and π : EG → VG be a bijection such that 1.)
for every e1, e2 ∈ EG, e1 and e2 have a common vertex if and only if π(e1) and
π(e2) are adjacent in G, and 2.) for every e ∈ EG, labG(e) = labG(π(e)). Then G
is called the labeled line graph of G, and G is called a labeled terminal root graph
for G.

The next theorem shows a very tight connection between the tree-width of a
graph and the NLC-width of its line graph.

Theorem 1. If a line graph has NLC-width at most k, then its root graph has
tree-width at most 4k − 1.

Proof Sketch. Let us first observe what happens if we insert edges between two
vertex labeled line graphs by an NLC-width operation. Let G = (VG, EG, labG)
be an edge labeled graph with at least two edges. Let G = (VG , EG , labG) ∈ NLCk

be the vertex labeled line graph of G defined by some bijection π : EG → VG .
Every induced subgraph of G defines by bijection π a unique subgraph of G

in that every vertex is incident with at least one edge. Assume G = H ×S J
for some S ⊆ [k]2 and two non-empty vertex labeled graphs H and J . Since H
and J are induced subgraphs of G, we know that they are line graphs of two
subgraphs H and J of G. Since H and J are vertex disjoint, we know that H
and J are edge disjoint. Since H and J have at least one vertex, we know that H
and J have at least one edge. Assume further that every pair (a, b) ∈ S defines

74 F. Gurski and E. Wanke

3 1

1

42
4

3

4

3 3

2 2
1

4

1 13

2
4

3

4

3

2 2

3

1

4

1

1 13

2
4

3

4

3

2 2

3
4

1

13

2
4

3

4

3

2

3

1

2

H J G

H J G = H×{(1,2)} J

Fig. 1. An NLC-width composition H ×{(1,2)} J of two vertex labeled line graphs H
and J . The labels at the edges of H , J , and G represent the labels of the corresponding

vertices of H, J , and G specified by bijection π.

at least one edge between a vertex of H and a vertex of J . If S is nonempty, then
in G at least one edge of H has a common vertex with at least one edge of J .

We now show that G can be defined by a vertex disjoint union of H and J
and then identifying at most 4k vertices from H with at most 4k vertices from
J . A simple example of such a composition H×S J is shown in Figure 1.

For a label a ∈ [k] let Ga, Ha, and Ja be the subgraphs of G, H , and J ,
respectively, defined by the edges e (and their end vertices) labeled by a. Let
(a, b) ∈ S be a pair of S. Then the operation ×S connects every vertex of H
labeled by a with every vertex of J labeled by b. Thus, in root graph G every
edge of Ha has a common vertex with every edge of Jb. Let e = {u, v} be
any edge of Ha. Then every edge of Jb either contains vertex u or vertex v. If
Jb has three or more edges, then at least two of them must have a common
vertex. By the same argumentation, if Ha has three or more edges then at least
two of them must have a common vertex. Thus, Ha and Jb have at most two
connected components. If Ha has two connected components, then all edges of
every connected component have exactly one common vertex, because an edge
of Jb can only contain one vertex from every of the two connected components
of Ha. If Ha is connected then it contains no simple path with 6 vertices and no
simple cycle with 3 or 5 vertices.

This observation leeds to a case distinction which divides all subgraphs Ha,
a ∈ [k], of H into 8 distinct types as illustrated in Figure 2. Type 8 of Figure 2
represents all graphs that have neither a vertex u such that all edges are incident
with u nor two non-adjacent vertices u, v such that every edge is incident with
u or v.

Minimizing NLC-Width is NP-Complete 75

...

...

,

T T T T

T

T 321 4 5

6

... ...

T7

, ,

...

,

...

T8

>1 >1>1>1

>2

Fig. 2. Eight types for the subgraphs Ha and Jb of H and J , respectively. The specific

vertices are framed by squares.

Graphs of Type 1, 2, 3, and 5 have one connected component. Graphs of
Type 4 and 6 have two connected components. Graphs of Type 7 have one or
two connected components. Every graph of Type 1 to 7 has at most 4 specific
vertices of which some can be in both graphs, in Ha and in Jb. In Figure 2, these
specific vertices are framed by squares.

Since the edges of G are labeled by at most k labels, it follows that at most
4k vertices of H are contained in J . That is, at most 4k vertices of H and at
most 4k vertices of J have to be identified to define G from a vertex disjoint
union of H and J . Graph G itself has also at most 4k vertices which can be
identified with other vertices during further composition steps.

This allows us to define for an arbitrary NLC-width k-expression X that
defines a line graph a mapping σ that associates for every subexpression X ′ of
X a terminal 4k, k-expression σ(X ′) such that val(σ(X ′)) is the edge labeled
terminal root graph of val(X ′).

1. If X = •a for some a ∈ [k] then let σ(X) = • a •.
2. If X = ◦R(X ′) for some relabeling R : [k] → [k] then let σ(X) = ◦R(σ(X ′)).
3. If X = X1 ×S X2 for some S ⊆ [k]2 then σ(X) can be defined by

σ(X) = ((σ(X1) × (σ(X2) ×
r︷ ︸︸ ︷• · · · •)|f1)|f2)|s

with two bijections f1, f2, a decrement s, and some r ≤ 4k.
σ(X) can be defined as above with some r ≤ 4k, although not all terminals of

val(σ(X1)) need to be identified with terminals of val(σ(X2)) via val(
r︷ ︸︸ ︷• · · · •),

or vice versa, for the complete proof of this non trivial fact see [10]. �

76 F. Gurski and E. Wanke

Since the NLC-width of a graph is always less than or equal to its clique-width
[12], Theorem 1 also holds for line graphs of clique-width at most k.

Corollary 1. If a line graph has clique-width at most k, then its root graph has
tree-width at most 4k − 1.

4 Line Graphs of Incidence Graphs

The next theorem improves the bound of Theorem 1 for line graphs of incidence
graphs.

Theorem 2. If the line graph of an incidence graph has NLC-width at most k,
then its root graph has tree-width at most k.

Proof Sketch. Let us now observe what happens if we insert edges between two
vertex labeled line graphs by an NLC-width operation G = H×S J , S ⊆ [k]2 if
the root graphs G, H , and J of G, H, and J , respectively, are incidence graphs.
Let again Ga, a ∈ [k], be the terminal subgraph of a terminal graph G defined
by the edges (and their end vertices) labeled by a.

Since any incidence graph (and also any subgraph of an incidence graph) has
no cycle of length < 6 and that every edge of an incidence graph (and also any
edge of a subgraph of an incidence graph) has one end vertex of degree at most
2, every subgraph Ga, a ∈ [k], of G can be divided into four types as illustrated
in Figure 3, see [10]. Type 4 of Figure 3 represents all incidence graphs with two
non-adjacent vertices u, v and an edge not incident with u or v. If Ga is of Type
4, then no vertex of Ga needs to be a terminal of G.

T4T1 T2 T3

...>0 >0 >0

,
...

,

Fig. 3. Four types for the subgraphs Ga of a terminal incidence graph G. The specific

vertices are framed by squares.

The same argumentation as in the proof of Theorem 1 now shows that for an
arbitrary NLC-width k-expression X that defines a line graph of an incidence
graph there is a mapping σ that associates for every subexpression X ′ of X a
terminal 2k, k-expression σ(X ′) such that val(σ(X ′)) is the edge labeled terminal
root graph of val(X ′).

We next transform σ(X) into a terminal 2k, k-expression Y such that every
subexpression defines a connected terminal graph. This is possible, because the

Minimizing NLC-Width is NP-Complete 77

final root graph σ(X) is connected, see [10]. Now every subexpression Y ′ of Y
is of the form

1. Y ′ = • a • for some a ∈ [k],
2. Y ′ = Y ′

1 |f for some bijection f ,
3. Y ′ = Y ′

1 |s for some decrement s,
4. Y ′ = ◦R(Y ′

1) for some relabeling R, or

5. Y ′ = ((Y ′
1 × (Y ′

2 ×
r︷ ︸︸ ︷• · · · •)|f1)|f2)|s for bijections f1, f2, some r ≤ 2k, and a

decrement s.

These subexpressions define connected terminal graphs. For every of these
subexpressions Y ′ there is an NLC-width k-expression X ′ such that val(Y ′) is
the edge labeled root graph of the vertex labeled line graph val(X ′).

Now we will show that Y can be transformed into an equivalent terminal
k + 1, k-expression. Let Y ′ be a subexpressions of Y of the form stated above
and let G = val(Y ′). Let again Ga for some a ∈ [k] be the terminal subgraph of
G defined by the edges (and their end vertices) labeled by a.

1. If all subgraphs Ga, a ∈ [k], of G are of Type 1 of Figure 3, then G has at
most k edges. Since G is connected, it has at most k + 1 terminals.

2. If all subgraphs Ga, a ∈ [k], of G are of Type 1, 2, or 4 of Figure 3, and at
least one of these subgraphs is of Type 2 or 4, then G has at least one inner
vertex. In this case G has at most k terminals, see [10].

3. If some subgraph Ga, a ∈ [k], of G is of Type 3, then two vertices ua, va of
Ga are terminals of G. If ua, va are not adjacent in the root graph val(Y)
we can remove them from the terminal vertex list. Otherwise we know that
during any further composition these two vertices will get incident only with
the missing edge {ua, va}. We now modify the expression as follows.
A subgraph of Type 3 can only be created in the following two cases.
(a) Let

G = ◦R(H)

be a graph such that G has a subgraph Ga, a ∈ [k] of Type 3, but H
has no subgraph of Type 3. Then H is connected and at least one inner
vertex, and thus H has at most k terminals. We insert the edge between
ua and va now by

G = (((• a • × ◦R (H)|f1)|f2)|s)|f3

with three bijections f1, f2, f3 and a decrement s = 2. The decrement
s = 2 removes the two vertices ua, va from the terminal vertex list. (This
can be done for all subgraphs Ga, a ∈ [k], of G of Type 3 step by step.)

(b) Let

G = (H × (J ×
r︷ ︸︸ ︷• · · · •)|f1)|f2

be a graph such that G has a subgraph Ga of Type 3, but H and J have
no subgraphs of Type 3. Then H and J are connected and have at least

78 F. Gurski and E. Wanke

one inner vertex, thus H and J have at most k terminals. Let ua from
H and va from J . We insert the edge between ua, va of Ga by

G = ((H |f3 × ((J |f2 × (• a • ×
r′︷ ︸︸ ︷• · · · •)|f1)|s1 ×

r︷ ︸︸ ︷• · · · •)|f4)|s2)|f5

with bijections f1, f2, f3, f4, f5 and decrements s1 = 1, s2 = 1. If J has
k′ terminals then r′ = k′ + 1. Let ua be from H and va be from J . One
end vertex of edge • a • will be identified with the terminal va of J .
Decrement s1 = 1 will remove this vertex from the terminal vertex list.
The other end vertex of edge • a • will then be identified with ua from
H . The final restriction s2 = 1 will remove this vertex from the terminal
vertex list. (This can be done for all subgraphs Ga, a ∈ [k], of G of Type
3 step by step in the same way.)

In both cases, the composition step which originally inserts the edge between
ua and va will be omitted.

Now the resulting composition is set up with terminal graphs that have at
most k + 1 terminals. �

Since the NLC-width of a graph is always less than or equal to its clique-width
[12], Theorem 2 also holds for line graphs of incidence graphs of clique-width at
most k.

Corollary 2. If the line graph of an incidence graph has clique-width at most
k, then its root graph has tree-width at most k.

5 The NP-Completeness of NLC-Width Minimization

Since a graph G has tree-width k if and only if its incidence graph I(G) has
tree-width k, see for example [16], Theorem 1, 2, Corollary 1, 2 and the results
of [10] together now imply the following bounds.

(1.) tree-width(G)+1
4 ≤ NLC-width(L(G)) ≤ tree-width(G) + 2

(2.) tree-width(G)+1
4 ≤ clique-width(L(G)) ≤ 2 · tree-width(G) + 2

(3.) path-width(G)+1
4 ≤ linear-NLC-width(L(G)) ≤ 2 · path-width(G)

(4.) path-width(G)+1
4 ≤ linear-clique-width(L(G)) ≤ 2 · path-width(G) + 1

(5.) tree-width(G) ≤ NLC-width(L(I(G))) ≤ tree-width(G) + 2
(6.) tree-width(G) ≤ clique-width(L(I(G))) ≤ 2 · tree-width(G) + 2

(7.) path-width(G)+1
2 ≤ linear-NLC-width(L(I(G))) ≤ 2 · path-width(G) + 2

(8.) path-width(G)+1
2 ≤ linear-clique-width(L(I(G))) ≤ 2 · path-width(G) + 3

Inequality (5.) can be used to show that NLC-width minimization is NP-
complete.

Minimizing NLC-Width is NP-Complete 79

Theorem 3. Given a graph G and an integer k, the problem to decide whether
G has NLC-width at most k is NP-complete.

Proof. The problem to decide whether a given graph has NLC-width at most k
is obviously in NP.

For a graph G = (V, E) and some integer r > 1 let Gr be the graph G in that
every vertex u is replaced by a clique Cu with r vertices and every edge {u, v} is
replaced by all edges between the vertices of Cu and Cv. That is, Gr = (Vr , Er)
has vertex set Vr = {ui,j | ui ∈ V, j ∈ {1, . . . , r}} and edge set

Er = {{ui,j, ui′,j′} | j, j′ = 1, . . . , r and i = i′ ∨ {ui, ui′} ∈ E)}.
Bodlaender et al. have shown in [3], that G has tree-width k if and only if Gr

has tree-width r(k + 1) − 1.
Arnborg et al. have shown in [1] that tree-width minimization is NP-complete.

That is, given a graph G and an integer k, the problem to decide whether G has
tree-width at most k, is NP-complete.

For a given graph G, we first construct the graph G3, then the incidence
graph I(G3), and then the line graph L(I(G3)). This can be done in polynomial
time. If G has tree-width k, then G3 has tree-width 3k + 2, and I(G3) has tree-
width 3k + 2. By Theorem 2 graph L(I(G3)) has NLC-width at least 3k + 2
and by Theorem 3 of [9] NLC-width at most 3k + 4. That is, tree-width(G) =⌊

NLC-width(L(I(G3)))−2
3

⌋
. Thus, a graph G has tree-width at most k if and only if

L(I(G)) has NLC-width at most 3k + 4 which completes our proof. ��
In [3] it is also shown that there is no polynomial time approximation algo-

rithm for tree-width with constant difference guarantee, unless P = NP, and that
for every ε, 0 < ε < 1, there is no polynomial time algorithm that computes for
a given graph G a tree decomposition of width k such that k − tree-width(G) ≤
|VG|ε, unless P = NP. Inequality (5.) can be used again to show similar results
for NLC-width approximation, see [10].

Corollary 3.

1. For every positive integer c there is no polynomial time approximation algo-
rithm that computes for a given graph G an NLC-width k-expression such
that k − NLC-width(G) ≤ c, unless P = NP.

2. For every ε, 0 < ε < 1
2 , there is no polynomial time approximation algorithm

that computes for a given graph G an NLC-width k-expression such that
k − NLC-width(G) ≤ |VG|ε, unless P = NP.

References

1. S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM Journal of Algebraic and Discrete Methods, 8(2):227–284, 1987.

2. S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of
graph reduction. Journal of the ACM, 40(5):1134–1164, 1993.

80 F. Gurski and E. Wanke

3. H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algo-
rithms, 18(2):238–255, 1995.

4. D.G. Corneil, M. Habib, J.M. Lanlignel, B. Reed, and U. Rotics. Polynomial
time recognition of clique-width at most three graphs. In Proceedings of Latin
American Symposium on Theoretical Informatics, volume 1776 of LNCS, pages
126–134. Springer-Verlag, 2000.

5. D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for
cographs. SIAM Journal on Computing, 14(4):926–934, 1985.

6. B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems,
33(2):125–150, 2000.

7. B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101:77–114, 2000.

8. W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems
on clique-width bounded graphs in polynomial time. In Proceedings of Graph-
Theoretical Concepts in Computer Science, volume 2204 of LNCS, pages 117–128.
Springer-Verlag, 2001.

9. F. Gurski and E. Wanke. Vertex disjoint paths on clique-width bounded graphs
(Extended abstract). In Proceedings of Latin American Symposium on Theoretical
Informatics, volume 2976 of LNCS, pages 119–128. Springer-Verlag, 2004.

10. F. Gurski and E. Wanke. Line graphs of bounded clique-width. Manuscript,
available at “http://www.acs.uni-duesseldorf.de/∼gurski”, submitted, 2005.

11. F. Gurski and E. Wanke. On the relationship between NLC-width and linear
NLC-width. Manuscript, accepted for Theoretical Computer Science, 2005.

12. Ö. Johansson. Clique-decomposition, NLC-decomposition, and modular decompo-
sition - relationships and results for random graphs. Congressus Numerantium,
132:39–60, 1998.

13. Ö. Johansson. NLC2-decomposition in polynomial time. International Journal of
Foundations of Computer Science, 11(3):373–395, 2000.

14. D. Kobler and U. Rotics. Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Applied Mathematics, 126(2-3):197–221, 2003.

15. P.G.H. Lehot. An optimal algorithm to detect a line graph and output its root
graph. Journal of the ACM, 21(4):569–575, 1974.

16. V. Lozin and D. Rautenbach. The tree- and clique-width of bipartite graphs in
special classes. Technical Report RRR 33-2004, Rutgers University, 2004.

17. N. Robertson and P.D. Seymour. Graph minors I. Excluding a forest. Journal of
Combinatorial Theory, Series B, 35:39–61, 1983.

18. N. Robertson and P.D. Seymour. Graph minors II. Algorithmic aspects of tree
width. Journal of Algorithms, 7:309–322, 1986.

19. E. Wanke. k-NLC graphs and polynomial algorithms. Discrete Applied Mathemat-
ics, 54:251–266, 1994.

20. H. Whitney. Congruent graphs and the connectivity of graphs. American Journal
of Mathematics, 54:150–168, 1932.

	Introduction
	Preliminaries
	Line Graphs of Bounded NLC-Width
	Line Graphs of Incidence Graphs
	The NP-Completeness of NLC-Width Minimization

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

