Minimizing NLC-Width is NP-Complete (Extended Abstract)

Frank Gurski and Egon Wanke

Heinrich-Heine-University Düsseldorf, Institute of Computer Science, D-40225 Düsseldorf, Germany {gurski-wg, wanke-wg}@acs.uni-duesseldorf.de

Abstract. We show that a graph has tree-width at most $4k-1$ if its line graph has NLC-width or clique-width at most k , and that an incidence graph has tree-width at most k if its line graph has NLC-width or cliquewidth at most k . In [9] it is shown that a line graph has NLC-width at most $k + 2$ and clique-width at most $2k + 2$ if the root graph has treewidth k . Using these bounds we show by a reduction from tree-width minimization that NLC-width minimization is NP-complete.

1 [I](#page-11-0)ntroduction

The clique-width of a graph is defined by a composition mechanism for vertexlabeled graphs [7]. The operations are the vertex disjoint union, the addition of edges between vertices controlled by a label pair, and the relabeling of vertices. The clique-width of a graph G is the minimum number of labels needed to define it. The NLC-width of a graph is defined by a composition mechanism similar to that for clique-width [19]. Every graph of clique-width at most k has NLC-width at most k and every graph of NLC-width at most k has clique-width at most $2k$ [12]. The only essential difference between the composition mechanisms of cliquewidth bounded graphs and NLC-width bounded graphs is the addition of edges. In an NLC-width composition the addition of edges is combined with the union operation. This union operation applied to two graphs G and J is controlled by a set S of label pairs such that for every pair $(a, b) \in S$ all vertices of G labeled by a will be connected with all vertices of J labeled by b. Both concepts are useful, bec[au](#page-11-1)se it is sometimes much more comfortable to use NLC-width expressions instead of clique-width expressions and vice versa, respectively.

Clique-width and NLC-width bounded graphs are particularly interesting from an algorithmic point of view. A lot of NP-complete graph problems can be solved in polynomial time for graphs of bounded clique-width. For example, all graph properties ex[pre](#page-10-0)ssible in monadic second order logic with quantifications over vertices and vertex sets $(MSO₁-logic)$ are decidable in linear time on cliquewidth bounded graphs [6] if a corresponding decomposition for the graph is given as an input. The $MSO₁$ -logic has been extended by counting mechanisms which allow the expressibility of optimization problems concerning maximal or minimal vertex sets $[6]$. All graph problems expressible in extended MSO₁-logic can be

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 69–80, 2005.

c Springer-Verlag Berlin Heidelberg 2005

solved in polynomial time on cliq[ue-](#page-11-2)width bounded graphs. Furthermore, there are a lot of NP-c[om](#page-11-3)plete graph problems which are not expressible in extended MSO1-logic (like [H](#page-11-4)amiltonicity, various partition problems, and bounded degree subgraph problems) but which can also be solved in polynomial time on cliquewidth bounded graphs [19,8,14,9].

The recognition problem for graphs of clique-width or NLC-width at most k for fixed integers k is [st](#page-1-0)ill open for $k > 4$ and $k > 3$, respectively. Cliquewidth of at most 3 is decidable in [po](#page-1-1)lynomial time [4]. NLC-width of at most 2 is decidable in polynomial time [13]. Cliqu[e-](#page-11-5)width of at most 2 and NLCwidth 1 is decidable in linear time [5]. In this paper we show that NLC-width minimization is NP-complete, which was open up to now.

The paper is organized as follows. In Section 2, we recall the definitions of clique-width, NLC-width, and tree-width. In Section 3, we show that a graph has tree-width at most $4k-1$ if its line graph¹ has NLC-width or clique-width at most k. In Section 4, we show that an incidence graph² has tree-width at most k if its line graph has NLC-width or clique-width at most k . In [9] it is shown that a line graph has NLC-width at most $k + 2$ and clique-width at most $2k + 2$ if the root graph has tree-width k . This in connection with the result of Section 4 is used to show by a reduction from tree-width minimization that minimizing NLC-width is NP-complete.

2 Preliminaries

Let $[k] := \{1, \ldots, k\}$ be the set of all integers between 1 and k. We work with finite undirected vertex labeled *graphs* $G = (V_G, E_G, \text{lab}_G)$, where V_G is a finite set of *vertices* labeled by some mapping $\text{lab}_G : V_G \to [k]$ and $E_G \subseteq \{\{u, v\}\}\$ $u, v \in V_G$, $u \neq v$ is a finite set of *edges*. The labeled graph consisting of a single vertex labeled by $a \in [k]$ is denoted by \bullet_a .

The notion of clique-width is defined by Courcelle and Olariu in [7].

Definition 1 (Clique-width, [7]). *Let* k *be some positive integer. The class CW*^k *of labeled graphs is recursively defined as follows.*

- *1. The single vertex graph* \bullet_a *for some* $a \in [k]$ *is in CW_k*.
- 2. Let $G = (V_G, E_G, lab_G) \in CW_k$ and $J = (V_J, E_J, lab_J) \in CW_k$ be two vertex *disjoint labeled graphs. Then* $G \oplus J := (V', E', \text{lab}')$ *defined by* $V' := V_G \cup V_J$, $E' := E_G \cup E_J$ *, and*

$$
lab'(u) := \begin{cases} lab_G(u) & \text{if } u \in V_G \\ lab_J(u) & \text{if } u \in V_J \end{cases}
$$

is in CW_k *.*

The line graph $L(G)$ of a graph G has a vertex for every edge of G and an edge between two vertices if the corresponding edges of G are adjacent [20].

² The incidence graph $I(G)$ of a graph G is the graph we get if we replace every edge $\{u, v\}$ of G by a new vertex w and two edges $\{u, w\}$, $\{w, v\}$.

3. Let $a, b \in [k]$ *be two distinct integers and* $G = (V_G, E_G, lab_G) \in CW_k$ *be a labeled graph then*

 (a) $\rho_{a\rightarrow b}(G) := (V_G, E_G, lab')$ *defined by*

$$
lab'(u) := \begin{cases} lab_G(u) & \text{if } lab_G(u) \neq a \\ b & \text{if } lab_G(u) = a \end{cases}
$$

is in CW^k *and*

 (b) $\eta_{a,b}(G) := (V_G, E', lab_G)$ $\eta_{a,b}(G) := (V_G, E', lab_G)$ $\eta_{a,b}(G) := (V_G, E', lab_G)$ *defined by*

$$
E' := E_G \cup \{ \{u, v\} \mid u, v \in V_G, u \neq v, \ lab(u) = a, \ lab(v) = b \}
$$

is in CW_k *.*

The notion of NLC-width³ is defined by Wanke in [19].

Definition 2 (NLC-width, [19]). *Let* k *be some positive integer. The class NLC*^k *of labeled graphs is recursively defined as follows.*

- *1. The single vertex graph* \bullet_a *for some* $a \in [k]$ *is in NLC*_k*.*
- 2. Let $G = (V_G, E_G, lab_G) \in NLC_k$ and $R : [k] \rightarrow [k]$ be a function, then $\circ_R(G) := (V_G, E_G, \, lab') \, \text{defined by } \text{lab'}(u) := R(\text{lab}_G(u)) \, \text{is in } NLC_k.$
- *3. Let* $G = (V_G, E_G, lab_G) \in NLC_k$ and $J = (V_J, E_J, lab_J) \in NLC_k$ be two *vertex disjoint labeled graphs and* $S \subseteq [k]^2$ *be a set of label pairs, then graph* $G \times_S J := (V', E', lab') \text{ defined by } V' := V_G \cup V_J,$

$$
E' := E_G \cup E_J \cup \{ \{u, v\} \mid u \in V_G, \ v \in V_J, \ (lab_G(u), lab_J(v)) \in S \},\
$$

and

$$
lab'(u) := \begin{cases} lab_G(u) & \text{if } u \in V_G \\ lab_J(u) & \text{if } u \in V_J \end{cases}
$$

 $is in NLC_k.$

The *clique-width* (*NLC-width*) of a labeled graph G is the least integer k such that $G \in CW_k$ ($G \in NLC_k$, respectively). An expression built with the operations $\bullet_a, \oplus, \rho_{a\rightarrow b}, \eta_{a,b}$ for integers $a, b \in [k]$ is called a *clique-width* k-*expression*. An expression built with t[he o](#page-11-7)perations $\bullet_a, \times_S, \circ_R$ for $a \in [k], S \subseteq [k]^2$, and $R : [k] \to [k]$ is called an *NLC-width* k-*expression*. Every clique-width expression [\(N](#page-11-8)LC-width expression) has by its recursive definition a tree structure which we call the *clique-width expression tree* (*NLC-width expression tree*, respectively). A vertex labeled graph G has *linear clique-width* (*linear NLC-width*) at most k if it can be defined by a clique-width k-expression (NLC-width k-expression, respectively) in that at least one argument of every operation \oplus (every operation \times _S, respectively) is a single labeled vertex \bullet _a [11].

The notion of tree-width and path-width is defined by Robertson and Seymour in [18] and [17], respectively.

³ The abbreviation NLC results from the *node label controlled* embedding mechanism originally defined for graph grammars.

Definition 3 (Tree-width and path-width, [18,17]). *A* tree decomposition *of a graph* $G = (V_G, E_G)$ *is a pair* (X, T) *where* $T = (V_T, E_T)$ *is a tree and* $\mathcal{X} = \{X_u \mid u \in V_T\}$ *is a family of subsets* $X_u \subseteq V_G$ *one for each node* u of T *such that*

- *1.* ∪_{*u*∈*V_T*} $X_u = V_G$,
- 2. for every edge $\{v_1, v_2\} \in E_G$, there is some node $u \in V_T$ such that $v_1 \in X_u$ *and* $v_2 \in X_u$ *, and*
- *3. for every vertex* $v \in V_G$ *the subgraph of* T *induced by the nodes* $u \in V_T$ *with* $v \in X_u$ *is connected.*

The width *of a tree decomposition* $(X = \{X_u \mid u \in V_T\}, T = (V_T, E_T))$ *is* $\max_{u \in V_T} |X_u| - 1$. A tree decomposition (X, T) is called a path decomposition *if* T *is a path. The* tree-width *(*path-width*) of [a](#page-11-9) [g](#page-11-9)raph* G *is the smallest integer* k *such that there is a tree decomposition (a path decomposition, respectively)* (X, T) *for G of width k*.

The *line graph* L(G) of a graph G has a vertex for every edge of G and an edge between two vertices if the corresponding edges in G have a common vertex [20]. Graph G is called the *root graph* of L(G). For any line graph with at least 4 edges the root graph is unique and can be found in linear time [15].

The *incidence graph* $I(G) = (V_{I(G)}, E_{I(G)})$ of a graph $G = (V_G, E_G)$ is the graph with vertex set $V_{I(G)} = V_G \cup E_G$ and edge set $E_{I(G)} = \{ \{u, e\} \mid u \in$ $V_G, e \in E_G, u \in e$. The incidence graph of G is the graph we get, if we replace e[ve](#page-10-1)ry edge $\{u, v\}$ of G by a new vertex w and two edges $\{u, w\}$, $\{w, v\}$.

3 Line Graphs of Bounded NLC-Width

r

Tree-width bounded graphs can also be defined by a merging procedure of socalled *terminal graphs*, which are also called *sourced graphs*. This is a well-known property of tree-width bounded graphs, see also [2]. We will define terminal graphs with edge labels, because this will allow us to define in an easy way the edge labeled root graphs of vertex labeled line graphs.

Let k, l be two positive integers. An *l*-labeled k-terminal graph is a system

$$
G = (V_G, E_G, P_G, \mathrm{lab}_G),
$$

where (V_G, E_G) is a graph, $P_G = (u_1, \ldots, u_k)$ is a sequence of $k \geq 0$ distinct vertices of V_G , and $\text{lab}_G : E_G \to [l]$ is an edge labeling. The vertices in sequence P_G are called *terminal vertices* or *terminals* for short. The vertex u_i , $1 \le i \le k$, is the *i*-th *terminal* of G. The other vertices in $V_G - P_G$ are called *inner vertices*. The class $TM_{k,l}$ of *l*-labeled *k*-terminal graphs is recursively defined as follows.

- 1. The terminal graph $\overline{\bullet} \cdots \overline{\bullet}$, $1 \le r \le k$, consisting of r terminals is in TM_{k,l}.
- 2. The terminal graph $\bullet \stackrel{a}{\bullet} \bullet$, $a \in [l]$, consisting of two terminals u, v and an edge $\{u, v\}$ labeled by a is in TM_{k,l} for $k \geq 2$.
- 3. Let $G = (V_G, E_G, P_G, \text{lab}_G) \in \text{TM}_{k,l}, P = (u_1, \ldots, u_r), \text{ and } f : [r] \to [r],$ be a bijection. Then the *l*-labeled *r*-terminal graph $G|^{f} = (V_G, E_G, P', \text{lab}_G)$ with $P' = (u_{f(1)}, \ldots, u_{f(r)})$ is in TM_{k,l}.
- 4. Let $G = (V_G, E_G, P_G, \text{lab}_G) \in \text{TM}_{k,l}, P = (u_1, \ldots, u_r),$ and $s \in [r]$. Integer s is also called a *decrement*. Then the l-labeled $(r - s)$ -terminal graph $G|_s =$ $(V_G, E_G, P', \text{lab}_G)$ with $P' = (u_1, \ldots, u_{r-s})$ is in TM_{k,l}.
- 5. Let $G = (V_G, E_G, P_G, \text{lab}_G) \in \text{TM}_{k,l}$ and $R : [l] \rightarrow [l]$ be a *relabeling mapping*. Then the terminal graph $\circ_R(G) = (V_G, E_G, P_G, \text{lab}')$ with $\text{lab}'(e) =$ $R(\text{lab}_G(e))$ for all $e \in E_G$ is in TM_{k,l}.
- 6. Let $H = (V_H, E_H, P_H, \text{lab}_H) \in \text{TM}_{k,l}, J = (V_J, E_J, P_J, \text{lab}_J) \in \text{TM}_{k,l}, \text{and}$ $|P_H| \leq |P_J|$. Then terminal graph $H \times J$ defined as follows is in TM_{k,l}.
	- (a) Take the disjoint union of $(V_H, E_H, \mathrm{lab}_H)$ and $(V_J, E_J, \mathrm{lab}_J)$, and identify the *i*-th terminal from H with the *i*-th terminal from J .
	- (b) An edge e from $H \times J$ is labeled by $\mathrm{lab}_{H \times J}(e) = \mathrm{lab}_{H}(e)$ if it is from H and by $lab_{H\times J}(e) = lab_{J}(e)$ if it is from J.
	- (c) The *i*-th terminal of $H \times J$ $H \times J$ is the *i*-th terminal of J.
	- (d) Multiple edges are eliminated by removing the corresponding edges from H.

r

An expression built with the operations $\overbrace{\cdots}$, $\bullet \stackrel{a}{\bullet}$, $|^{f}, |_{s}, \circ_{R},$ and \times is called a *terminal* k, l -*expression*. The terminal graph defined by a terminal k, l expression X is denoted by val (X) . It is easy to see that $TM_{k+1,1}$ defines exactly the set of graphs of tree-width at most k , see [10].

Let $G = (V_G, E_G, P_G, \text{lab}_G)$ be an edge labeled terminal graph, $\mathcal{G} = (V_G, E_G, \text{lab}_G)$ lab_G) be a vertex labeled graph, and $\pi : E_G \to V_G$ be a bijection such that 1.) for every $e_1, e_2 \in E_G$, e_1 and e_2 have a common vertex if and only if $\pi(e_1)$ and $\pi(e_2)$ are adjacent in G, and 2.) for every $e \in E_G$, $\text{lab}_G(e) = \text{lab}_G(\pi(e))$. Then G is called the *labeled line graph* of G, and G is called a *labeled terminal root graph* for G.

The next theorem shows a very tight connection between the tree-width of a graph and the NLC-width of its line graph.

Theorem 1. *If a line graph has NLC-width at most* k*, then its root graph has tree-width at most* $4k - 1$ *.*

Proof Sketch. Let us first observe what happens if we insert edges between two vertex labeled line graphs by an NLC-width operation. Let $G = (V_G, E_G, \text{lab}_G)$ be an edge labeled graph with at least two edges. Let $\mathcal{G} = (V_{\mathcal{G}}, E_{\mathcal{G}}, \text{lab}_{\mathcal{G}}) \in \text{NLC}_k$ be the vertex labeled line graph of G defined by some bijection $\pi : E_G \to V_G$.

Every induced subgraph of G defines by bijection π a unique subgraph of G in that every vertex is incident with at least one edge. Assume $\mathcal{G} = \mathcal{H} \times_S \mathcal{J}$ for some $S \subseteq [k]^2$ and two non-empty vertex labeled graphs H and J. Since H and $\mathcal J$ are induced subgraphs of $\mathcal G$, we know that they are line graphs of two subgraphs H and J of G. Since H and J are vertex disjoint, we know that H and J are edge disjoint. Since $\mathcal H$ and $\mathcal J$ have at least one vertex, we know that H and J have at least one edge. Assume further that every pair $(a, b) \in S$ defines

Fig. 1. An NLC-width composition $\mathcal{H} \times \{ (1,2) \}$ J of two vertex labeled line graphs \mathcal{H} and $\mathcal J$. The labels at the edges of H, J , and G represent the labels of the corresponding vertices of H , \mathcal{J} , and \mathcal{G} specified by bijection π .

at least one edge between a vertex of H and a vertex of J . If S is nonempty, then in G at least one edge of H has a common vertex with at least one edge of J .

We now show that G can be defined by a vertex disjoint union of H and J and then identifying at most $4k$ vertices from H with at most $4k$ vertices from J. A simple example of such a composition $\mathcal{H} \times_S \mathcal{J}$ is shown in Figure 1.

For a label $a \in [k]$ let G_a , H_a , and J_a be the subgraphs of G, H, and J, respectively, defined by the edges e (and their end vertices) labeled by a . Let $(a, b) \in S$ be a pair of S. Then the operation \times_S connects every vertex of H labeled by a with every vertex of $\mathcal J$ labeled by b. Thus, in root graph G every edge of H_a has a common vertex with every edge of J_b . Let $e = \{u, v\}$ be any edge of H_a . Then every edge of J_b either contains vertex u or vertex v. If J_b has three or more edges, then at least two of them must have a common vertex. By the same argumentation, if H_a has three or more edges then at least two of them must have a common ver[te](#page-6-0)x. Thus, H_a and J_b J_b have at most two connected components. If H_a has two connected components, then all edges of every connected component have exactly one common vertex, because an edge of J_b can only contain one vertex from every of the two connected components of H_a . If H_a is connected then it contains no simple path with 6 vertices and no simple cycle with 3 or 5 vertices.

This observation leeds to a case distinction which divides all subgraphs H_a , $a \in [k]$, of H into 8 distinct types as illustrated in Figure 2. Type 8 of Figure 2 represents all graphs that have neither a vertex u such that all edges are incident with u nor two non-adjacent vertices u, v such that every edge is incident with u or v.

Fig. 2. Eight types for the subgraphs H_a and J_b of H and J, respectively. The specific vertices are framed by squares.

Graphs of Type 1, 2, 3, and 5 have one connected component. Graphs of Type 4 and 6 have two connected components. Graphs of Type 7 have one or two connected components. Every graph of Type 1 to 7 has at most 4 *specific* vertices of which some can be in both graphs, in H_a and in J_b . In Figure 2, these specific vertices are framed by squares.

Since the edges of G are labeled by at most k labels, it follows that at most 4k vertices of H are contained in J. That is, at most 4k vertices of H and at most $4k$ vertices of J have to be identified to define G from a vertex disjoint union of H and J. Graph G itself has also at most $4k$ vertices which can be identified with other vertices during further composition steps.

This allows us to define for an arbitrary NLC-width k -expression X that defines a line graph a mapping σ that associates for every subexpression X' of X a terminal $4k$, k-expression $\sigma(X')$ such that $val(\sigma(X'))$ is the edge labeled terminal root graph of $val(X')$.

- 1. If $X = \bullet_a$ for some $a \in [k]$ then let $\sigma(X) = \bullet \stackrel{a}{\bullet} \bullet$.
- 2. If $X = \circ_R(X')$ for some relabeling $R : [k] \to [k]$ then let $\sigma(X) = \circ_R(\sigma(X'))$. 3. If $X = X_1 \times_S X_2$ for some $S \subseteq [k]^2$ then $\sigma(X)$ $\sigma(X)$ [c](#page-11-10)an be defined by

$$
\sigma(X) = ((\sigma(X_1) \times (\sigma(X_2) \times \overbrace{\bullet \cdots \bullet})|^{f_1})|^{f_2})|_{s}
$$

with two bijections f_1, f_2 , a decrement s, and some $r \leq 4k$. $\sigma(X)$ can be defined as above with some $r \leq 4k$, although not all terminals of

 $val(\sigma(X_1))$ need to be identified with terminals of $val(\sigma(X_2))$ via $val(\bullet \cdots \bullet),$ r or vice versa, for the complete proof of this non trivial fact see $[10]$.

Since the NLC-width of a graph is always less than or equal to its clique-width [12], Theorem 1 also holds for l[ine](#page-4-0) graphs of clique-width at most k .

Corollary 1. *If a line graph has clique-width at most* k*, then its root graph has tree-width at most* $4k - 1$ *.*

4 Line Graphs of Incidence Graphs

The next theorem improves the bound of Theorem 1 for line graphs of incidence graphs.

Theorem 2. *If the line graph of an incidence graph has NLC-width at most* k*, then its root graph has tree-width at most* k*.*

Proof Sketch. Let us now observe what happens if we insert edges between two vertex labeled line graphs by an NLC-width operation $\mathcal{G} = \mathcal{H} \times_S \mathcal{J}$, $S \subseteq [k]^2$ if the root graphs G, H G, H , and J of \mathcal{G}, \mathcal{H} , and \mathcal{J} , respectively, are incidence graphs. Let again G_a , $a \in [k]$, be the terminal subgraph of a terminal graph G defined by the edges (and their end vertices) labeled by a.

Since any incidence graph (and also any subgraph of an incidence graph) has no cycle of length < 6 and that every edge of an incidence graph (and also any edge of a subgraph of an incidence graph) has one end vertex of degree at most 2, every subgraph G_a , $a \in [k]$, of G can be divided into four types as illustrated in Figure 3, see [10]. Type 4 of Figure 3 represents all incidence graphs with two non-adjacent vertices u, v and an edge not incident with u or v. If G_a is of Type 4, then no vertex of G_a needs to be a terminal of G .

Fig. 3. Four types for the subgraphs G_a of a terminal incidence graph G . The specific vertices are framed by squares.

The same argumentation as in the proof of Theorem 1 now shows that for an arbitrary NLC-width k -expression X that defines a line graph of an incidence graph there is a mapping σ that associates for every subexpression X' of X a terminal $2k, k$ -expression $\sigma(X')$ such that val $(\sigma(X'))$ is the edge labeled terminal root graph of $val(X')$.

We next transform $\sigma(X)$ into a terminal $2k$, k-expression Y such that every subexpression defines a connected terminal graph. This is possible, because the

final root graph $\sigma(X)$ is connected, see [10]. Now every subexpression Y' of Y is of the form

- 1. $Y' = \bullet^a \bullet$ for some $a \in [k],$
- 2. $Y' = Y_1'|^f$ for some bijection f,
- 3. $Y' = Y_1'|_s$ for some decrement s,
- 4. $Y' = \circ_R(Y_1')$ for some relabeling R, or r
- 5. $Y' = ((Y'_1 \times (Y'_2 \times$ $\left\{\left.\left.\left.\cdots\right.\right|\right|^{f_1})\right|^{f_2}\right|_s$ for bijections f_1, f_2 , some $r \leq 2k$, and a decrement s.

These subexpressions define connected terminal graphs. For every of these subexpressions Y' there is an NLC-width k[-e](#page-7-0)xpression X' such that $val(Y')$ is the edge labeled root graph of the vertex labeled line graph $val(X')$.

Now we will show that Y can be transformed [in](#page-7-0)to an equivalent terminal $k+1, k$ -expression. Let Y' be a subexpressions of Y of the form stated above and let $G = val(Y')$. Let again G_a f[or](#page-11-10) [s](#page-11-10)ome $a \in [k]$ be the terminal subgraph of G defined by the edges (and their end vertices) labeled by a.

- 1. If all subgraphs G_a , $a \in [k]$, of G are of Type 1 of Figure 3, then G has at most k edges. Since G is connected, it has at most $k + 1$ terminals.
- 2. If all subgraphs G_a , $a \in [k]$, of G are of Type 1, 2, or 4 of Figure 3, and at least one of these subgraphs is of Type 2 or 4, then G has at least one inner vertex. In this case G has at most k terminals, see [10].
- 3. If some subgraph G_a , $a \in [k]$, of G is of Type 3, then two vertices u_a, v_a of G_a are terminals of G. If u_a, v_a are not adjacent in the root graph val (Y) we can remove them from the terminal vertex list. Otherwise we know that during any further composition these two vertices will get incident only with the missing edge $\{u_a, v_a\}$. We now modify the expression as follows.

A subgraph of Type 3 can only be created in the following two cases. (a) Let

$$
G = \circ_R(H)
$$

be a graph such that G has a subgraph G_a , $a \in [k]$ of Type 3, but H has no subgraph of Type 3. Then H is connected and at least one inner vertex, and thus H has at most k terminals. We insert the edge between u_a and v_a now by

$$
G = (((\bullet \stackrel{a}{\bullet} \bullet \times \circ_R (H)|^{f_1})|^{f_2})|_s)|^{f_3}
$$

with three bijections f_1, f_2, f_3 and a decrement $s = 2$. The decrement $s = 2$ removes the two vertices u_a, v_a from the terminal vertex list. (This can be done for all subgraphs G_a , $a \in [k]$, of G of Type 3 step by step.) (b) Let

$$
G=(H\times (J\times \overbrace{\bullet\cdots\bullet}^r)|_{f_1})|_{f_2}
$$

be a graph such that G has a subgraph G_a of Type 3, but H and J have no subgraphs of Type 3. Then H and J are connected and have at least

one inner vertex, thus H and J have at most k terminals. Let u_a from H and v_a from J. We insert the edge between u_a, v_a of G_a by

$$
G=((H|^{f_3}\times((J|^{f_2}\times(\bullet \stackrel{a}{\bullet} \bullet \times \stackrel{r'}{\bullet \cdots \bullet})|^{f_1})|_{s_1}\times\stackrel{r}{\bullet \cdots \bullet})|^{f_4})|_{s_2})|^{f_5}
$$

with bijections f_1, f_2, f_3, f_4, f_5 and decrements $s_1 = 1, s_2 = 1$. If J has k' terminals then $r' = k' + 1$. Let u_a be from H and v_a be from J. One end vertex of edge $\bullet \stackrel{a}{\bullet} \bullet$ will be identified with the terminal v_a of J. Decrement $s_1 = 1$ will remove this vertex from the terminal vertex list. The other end vertex of edge $\bullet \stackrel{a}{\bullet} \bullet$ will then be identified with u_a from H. The final restriction $s_2 = 1$ will remove this vertex from the terminal vertex list. (This can be done for all subgraphs G_a , $a \in [k]$, of G of Type 3 step by step in the same way.)

In both cases, the composition step which originally inserts the edge between u_a and v_a will be omitted.

Now the resulting composition is set up with terminal graphs that have at most $k + 1$ terminals.

Since the NLC-width of a graph is always less than or equal to its clique-width [12], Theorem 2 also holds for line graphs of incidence graphs of clique-width at most k.

Corollary [2.](#page-11-11) *If the line [gr](#page-4-0)[ap](#page-7-1)h of an in[cid](#page-7-2)[en](#page-9-0)ce graph has clique-width at most* k*, then its root graph has tree-width at most* k*.*

5 The NP-Completeness of NLC-Width Minimization

Since a graph G has tree-width k if and only if its incidence graph $I(G)$ has tree-width k , see for example [16], Theorem 1, 2, Corollary 1, 2 and the results of [10] together now imply the following bounds.

Inequality (5.) can be used to show that NLC-width minimization is NPcomplete.

Theorem 3. *Given a graph* G *and an integer* k*, the problem to decide whether* G *has NLC-width at most* k *is NP-complete.*

Proof. The problem to decide whether a given graph has NLC-width at most k is obviously in [N](#page-11-12)P.

For a graph $G = (V, E)$ and some integer $r > 1$ let G^r be the graph G in that every vertex [u](#page-10-2) is replaced by a clique C_u with r vertices and every edge $\{u, v\}$ is replaced by all edges between the vertices of C_u and C_v . That is, $G^r = (V_r, E_r)$ has vertex set $V_r = \{u_{i,j} \mid u_i \in V, j \in \{1, \ldots, r\}\}\$ and edge set

$$
E_r = \{ \{u_{i,j}, u_{i',j'}\} \mid j, j' = 1, \ldots, r \text{ and } i = i' \vee \{u_i, u_{i'}\} \in E) \}.
$$

Bodlaender et al. have shown in [3], that G has tree-width k if and only if G^r has tree-[wid](#page-7-1)th $r(k + 1) - 1$.

[Ar](#page-11-5)nborg et al. have shown in [1] that tree-width minimization is NP-complete. That is, given a graph G and an integer k , the problem to decide whether G has tree-width at most k , is NP-complete.

For a given graph G , we first construct the graph $G³$, then the incidence graph $I(G^3)$, and then the line graph $L(I(G^3))$. This can be done in polynomial time. If G has tree-width k, then G^3 has tree-width $3k + 2$, and $I(G^3)$ has treewidth $3k + 2$. By Theorem 2 graph $L(I(G^3))$ has NLC-width at least $3k + 2$ $\left\lfloor \frac{\text{NLC-width}(L(I(G^3))) - 2}{3} \right\rfloor$. Thus, a graph G has tree-width at most k if and only if and by Theorem 3 of [9] NLC-width at most $3k + 4$. That is, tree-width (G) = $\bar{L}(I(G))$ has NL[C-w](#page-11-10)idth at most $3k + 4$ which completes our proof.

In [3] it is also shown that there is no polynomial time approximation algorithm for tree-width with constant difference guarantee, unless $P = NP$, and that for every ϵ , $0 < \epsilon < 1$, there is no polynomial time algorithm that computes for a given graph G a tree decomposition of width k such that k – tree-width $(G) \leq$ $|V_G|^\epsilon$, unless P = NP. Inequality (5.) can be used again to show similar results for NLC-width approximation, see [10].

Corollary 3.

- *1. For every positive integer* c *there is no polynomial time approximation algorithm that computes for a given graph* G *an NLC-width* k*-expression such that* $k - NLC$ -width $(G) \leq c$, unless $P = NP$.
- 2. For every ϵ , $0 < \epsilon < \frac{1}{2}$, there is no polynomial time approximation algorithm *that computes for a given graph* G *an NLC-width* k*-expression such that* $k - NLC$ -width $(G) \leq |V_G|^{\epsilon}$, unless $P = NP$.

References

- 1. S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a k-tree. *SIAM Journal of Algebraic and Discrete Methods*, 8(2):227–284, 1987.
- 2. S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph reduction. *Journal of the ACM*, 40(5):1134–1164, 1993.
- 3. H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth, pathwidth, frontsize, and shortest elimination tree. *Journal of Algorithms*, 18(2):238–255, 1995.
- 4. D.G. Corneil, M. Habib, J.M. Lanlignel, B. Reed, and U. Rotics. Polynomial time recognition of clique-width at most three graphs. In *Proceedings of Latin American Symposium on Theoretical Informatics*, volume 1776 of *LNCS*, pages 126–134. Springer-Verlag, 2000.
- 5. D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for cographs. *SIAM Journal on Computing*, 14(4):926–934, 1985.
- 6. B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique-width. *Theory of Computing Systems*, 33(2):125–150, 2000.
- 7. B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. *Discrete Applied Mathematics*, 101:77–114, 2000.
- 8. W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In *Proceedings of Graph-Theoretical Concepts in Computer Science*, volume 2204 of *LNCS*, pages 117–128. Springer-Verlag, 2001.
- 9. F. Gurski and E. Wanke. Vertex disjoint paths on clique-width bounded graphs (Extended abstract). In *Proceedings of Latin American Symposium on Theoretical Informatics*, volume 2976 of *LNCS*, pages 119–128. Springer-Verlag, 2004.
- 10. F. Gurski and E. Wanke. Line graphs of bounded clique-width. Manuscript, available at "http://www.acs.uni-duesseldorf.de/∼gurski", submitted, 2005.
- 11. F. Gurski and E. Wanke. On the relationship between NLC-width and linear NLC-width. Manuscript, accepted for Theoretical Computer Science, 2005.
- 12. O. Johansson. Clique-decomposition, NLC-decomposition, and modular decomposition - relationships and results for random graphs. *Congressus Numerantium*, 132:39–60, 1998.
- 13. O. Johansson. NLC₂-decomposition in polynomial time. *International Journal of Foundations of Computer Science*, 11(3):373–395, 2000.
- 14. D. Kobler and U. Rotics. Edge dominating set and colorings on graphs with fixed clique-width. *Discrete Applied Mathematics*, 126(2-3):197–221, 2003.
- 15. P.G.H. Lehot. An optimal algorithm to detect a line graph and output its root graph. *Journal of the ACM*, 21(4):569–575, 1974.
- 16. V. Lozin and D. Rautenbach. The tree- and clique-width of bipartite graphs in special classes. Technical Report RRR 33-2004, Rutgers University, 2004.
- 17. N. Robertson and P.D. Seymour. Graph minors I. Excluding a forest. *Journal of Combinatorial Theory, Series B*, 35:39–61, 1983.
- 18. N. Robertson and P.D. Seymour. Graph minors II. Algorithmic aspects of tree width. *Journal of Algorithms*, 7:309–322, 1986.
- 19. E. Wanke. k-NLC graphs and polynomial algorithms. *Discrete Applied Mathematics*, 54:251–266, 1994.
- 20. H. Whitney. Congruent graphs and the connectivity of graphs. *American Journal of Mathematics*, 54:150–168, 1932.