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Abstract. Rank-width is defined by Seymour and the author to inves-
tigate clique-width; they show that graphs have bounded rank-width if
and only if they have bounded clique-width. It is known that many hard
graph problems have polynomial-time algorithms for graphs of bounded
clique-width, however, requiring a given decomposition corresponding to
clique-width (k-expression); they remove this requirement by construct-
ing an algorithm that either outputs a rank-decomposition of width at
most f(k) for some function f or confirms rank-width is larger than k in
O(|V |9 log |V |) time for an input graph G = (V, E) and a fixed k. This
can be reformulated in terms of clique-width as an algorithm that either
outputs a (21+f(k)−1)-expression or confirms clique-width is larger than
k in O(|V |9 log |V |) time for fixed k.

In this paper, we develop two separate algorithms of this kind with
faster running time. We construct a O(|V |4)-time algorithm with f(k) =
3k + 1 by constructing a subroutine for the previous algorithm; we may
now avoid using general submodular function minimization algorithms
used by Seymour and the author. Another one is a O(|V |3)-time algo-
rithm with f(k) = 24k by giving a reduction from graphs to binary
matroids; then we use an approximation algorithm for matroid branch-
width by Hliněný.

1 Preliminaries

In this paper, all graphs are simple, undirected, and finite.

Cut-Rank Functions. For a matrix M = (mij : i ∈ R, j ∈ C) over a field F , if
X ⊆ R and Y ⊆ C, let M [X, Y ] denote the submatrix (mij : i ∈ X, j ∈ Y ). For
a graph G, let A(G) be its adjacency matrix over GF(2).

Definition 1. Let G be a graph. For two disjoint subsets X, Y ⊆ V (G), we
define ρ∗G(X, Y ) = rk(A(G)[X, Y ]) where rk is the matrix rank function; and we
define the cut-rank function ρG of G by letting ρG(X) = ρ∗G(X, V (G) \ X) for
X ⊆ V (G).

Both ρ and ρ∗ satisfy submodular inequalities.
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Proposition 2 (Oum and Seymour [1]). Let G be a graph. Let X1, Y1, X2, Y2

be subsets of V (G) such that X1 ∩ Y1 = X2 ∩ Y2 = ∅. Then,

ρ∗G(X1, Y1) + ρ∗G(X2, Y2) ≥ ρ∗G(X1 ∩ X2, Y1 ∪ Y2) + ρ∗G(X1 ∪ X2, Y1 ∩ Y2).

Moreover, if X1, X2 ⊆ V (G), then

ρG(X1) + ρG(X2) ≥ ρG(X1 ∩ X2) + ρG(X1 ∪ X2).

Rank-Width. A subcubic tree is a tree with at least two vertices such that every
vertex is incident with at most three edges. A leaf of a tree is a vertex incident
with exactly one edge. A rank-decomposition of a graph G = (V, E) is a pair
(T,L) of a subcubic tree T and a bijective function L : V → {t : t is a leaf of T}.
(If |V | ≤ 1, then G admits no rank-decomposition.)

For an edge e of T , the connected components of T \ e induce a partition
(X, Y ) of the set of leaves of T . The width of an edge e of a rank-decomposition
(T,L) is ρG(L−1(X)). The width of (T,L) is the maximum width of all edges of
T . The rank-width rwd(G) of G is the minimum width of a rank-decomposition
of G. (If |V | ≤ 1, we define rwd(G) = 0.)

Let cwd(G) be the clique-width of a graph G. Clique-width is defined by
Courcelle and Olariu [2]. In this paper, we do not need its definition if we just
remember the following proposition.

Proposition 3 (Oum and Seymour [1]). For a graph G, rwd(G) ≤ cwd(G)
≤ 2rwd(G)+1 − 1.

Local Complementation. For two sets A and B, let A∆B = (A \ B) ∪ (B \ A).

Definition 4. Let G = (V, E) be a graph and v ∈ V . The graph obtained by
applying local complementation at v to G is

G ∗ v = (V, E∆{xy : xv, yv ∈ E, x 
= y}).
For an edge uv ∈ E, the graph obtained by pivoting uv is defined by G ∧ uv =
G ∗ u ∗ v ∗ u. We say that H is locally equivalent to G if G can be obtained by
applying a sequence of local complementations to G.

A pivoting is well-defined because G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v if u and v are
adjacent [3]. The following observation is fundamental.

Proposition 5 (Oum [3]). Let G′ = G ∗ v. Then for every X ⊆ V (G),

ρG(X) = ρG′(X).

The following lemma will be used in Sect. 2.

Lemma 6 (Oum [3]). Let G be a graph and v ∈ V (G). Suppose that (X1, X2)
and (Y1, Y2) are partitions of V (G) \ {v}. If w is a neighbor of v, then

ρG\v(X1) + ρG∧vw\v(Y1) ≥ ρG(X1 ∩ Y1) + ρG(X2 ∩ Y2) − 1.
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Matroids. Since we will use matroids in Sect. 4, let us review matroid theory.
For general matroid theory, we refer to Oxley’s book [4]. We call M = (E, I) a
matroid if E is a finite set and I is a collection of subsets of E, satisfying

(i) ∅ ∈ I
(ii) If A ∈ I and B ⊆ A, then B ∈ I.
(iii) For every Z ⊆ E, maximal subsets of Z in I all have the same size r(Z).

We call r(Z) the rank of Z.

An element of I is called independent in M. We let E(M) = E. A matroid
M = (E, I) is binary if there exists a matrix N over GF(2) such that E is a
set of column vectors of N and I = {X ⊆ E : X is linearly independent}. The
connectivity function λM of M is λM(X) = r(X) + r(E \ X) − r(E) + 1.

Let G = (V, E) be a bipartite graph with a bipartition V = A ∪ B. Let
Bin(G, A, B) be the binary matroid on V , represented by the A × V matrix

(
IA A(G)[A, B]

)
,

where IA is the A×A identity matrix. If M = Bin(G, A, B), then G is called a
fundamental graph of M.

Branch-Width. A branch-decomposition of a matroid M is a pair (T,L) of a
subcubic tree T and a bijective function L : E(M) → {t : t is a leaf of T}. (If
|E(M)| ≤ 1, then M admits no rank-decomposition.)

For an edge e of T , the connected components of T \ e induce a partition
(X, Y ) of the set of leaves of T . The width of an edge e of a branch-decomposition
(T,L) is λM(L−1(X)). The width of (T,L) is the maximum width of all edges
of T . The branch-width bw(M) of M is the minimum width of a branch-
decomposition of M. (If |V | ≤ 1, we define bw(M) = 1.) Branch-width has
been defined by Robertson and Seymour [5].

The following proposition links branch-width of binary matroids with rank-
width of bipartite graphs.

Proposition 7 (Oum [3]). Let G = (V, E) be a bipartite graph with a bi-
partition V = A ∪ B and let M = Bin(G, A, B). Then for every X ⊆ V ,
λM(X) = ρG(X) + 1.

Corollary 8 (Oum [3]). Let G = (V, E) be a bipartite graph with a bipartition
V = A∪B and let M = Bin(G, A, B). Then the branch-width of M is one more
than the rank-width of G.

2 Approximating Rank-Width Quickly

In this section, we show that, for fixed k, there is a O(n4)-time algorithm that,
with a n-vertex graph, outputs a rank-decomposition of width at most 3k +
1 or confirms that the input graph has rank-width larger than k. Oum and
Seymour [1] use general submodular function minimization algorithms [6] to
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find Z minimizing the cut-rank function ρG(Z) with X ⊆ Z ⊆ V (G) \ Y for
given disjoint subsets X , Y of V (G) such that |X |, |Y | ≤ 3k. If this can be done
in time γ, then we obtain an O(n(n2 + γ))-time algorithm to outputs a rank-
decomposition of width at most 3k + 1 or confirms that the input graph has
rank-width larger than k. In [1], γ is O(n8 log n), and therefore the O(n9 log n)-
time algorithm is obtained.

To obtain a O(n4)-time algorithm, we construct a direct combinatorial al-
gorithm that minimizes the cut-rank function. Jim Geelen suggested the use of
blocking sequences for this problem (private communication, 2005).

We first define blocking sequences, introduced by J. Geelen [7]. Let G be a
graph and A, B be two disjoint subsets of V (G). A sequence v1, v2, . . . , vm of
vertices in V (G) \ (A ∪ B) is called a blocking sequence for (A, B) in G if it
satisfies the following:

(i) ρ∗G(A, B ∪ {v1}) > ρ∗G(A, B).
(ii) ρ∗G(A ∪ {vi}, B ∪ {vi+1}) > ρ∗G(A, B) for all i ∈ {1, 2, . . . , m − 1}.
(iii) ρ∗G(A ∪ {vm}, B) > ρ∗G(A, B).
(iv) No proper subsequence satisfies (i)—(iii).

The following proposition is used in most applications of blocking sequences.

Proposition 9. Let G be a graph and A, B be two disjoint subsets of V (G). The
following are equivalent:

(i) There is no blocking sequence for (A, B) in G.
(ii) There exists Z such that A ⊆ Z ⊆ V (G) \ B and ρG(Z) = ρ∗G(A, B).

Proof. (i)→(ii): We assume that a, b /∈ V (G) \ (A ∪ B) by relabeling. Let k =
ρ∗G(A, B). We construct the auxiliary digraph D = ({a, b}∪ (V (G)\ (A∪B)), E)
from G such that for x, y ∈ V (G) \ (A ∪ B),

i) (a, x) ∈ E if ρ∗G(A, B ∪ {x}) > k,
ii) (x, b) ∈ E if ρ∗G(A ∪ {x}, B) > k,
iii) (x, y) ∈ E if ρ∗G(A ∪ {x}, B ∪ {y}) > k.

Since there is no blocking sequence for (A, B) in G, there is no directed path
from a to b in D. Let J be a set of vertices in V (G) \ (A ∪ B) having a directed
path from a in D. We show that Z = J ∪ A satisfies ρG(Z) = k.

To prove this, we claim that ρ∗G(A ∪ X, B ∪ Y ) = k for all X ⊆ J , Y ⊆
V (G) \ (Z ∪ B). We proceed by induction on |X | + |Y |. If |X | ≤ 1 and |Y | ≤ 1,
then we have ρ∗G(A ∪ X, B ∪ Y ) = k by the construction of J .

If |X | > 1, then for all x ∈ X we have

ρ∗G(A ∪ X, B ∪ Y ) + ρ∗G(A, B ∪ Y ) ≤
ρ∗G(A ∪ (X \ {x}), B ∪ Y ) + ρG(A ∪ {x}, B ∪ Y ) = 2k,

because ρ∗G(A ∪ {x}, B ∪ Y ) = k by induction. So, ρ∗G(A ∪ X, B ∪ Y ) = k.



Approximating Rank-Width and Clique-Width Quickly 53

Similarly if |Y | > 1, then for all y ∈ Y we have ρ∗G(A ∪ X, B ∪ Y ) + ρ∗G(A ∪
X, B) ≤ ρ∗G(A ∪ X, B ∪ (Y \ {y})) + ρG(A ∪ X, B ∪ {y}) = 2k, and therefore
ρ∗G(A ∪ X, B ∪ Y ) = k.

(ii)→(i): Suppose that there is a blocking sequence v1, v2, . . . , vm. Then, vm /∈
Z because ρ∗G(A∪{vm}, B) > ρG(Z). Similarly v1 ∈ Z because ρ∗G(A, B∪{v1}) >
ρG(Z). Therefore there exists i ∈ {1, 2, . . . , m − 1} such that vi ∈ Z but vi+1 /∈
Z. But this is a contradiction, because ρG(Z) < ρ∗G(A ∪ {vi}, B ∪ {vi+1}) ≤
ρ∗G(Z, V (G) \ Z) = ρG(Z). �

Lemma 10. Let G be a graph (V, E) and A, B be two disjoint subsets of V such
that ρ∗G(A, B) = k and |A|, |B| ≤ l. Let n = |V |. There is a polynomial-time
algorithm to either

– obtain a graph G′ locally equivalent to G with ρ∗G′(A, B) > k, or
– obtain a set Z such that A ⊆ Z ⊆ V \ B and ρG(Z) = k.

The running time of this algorithm is O(n3) if l is fixed or O(n4) if l is not fixed.

Proof. If there is no blocking sequence for (A, B) in G, then minA⊆Z⊆V \B ρ(Z) =
k by Proposition 9. In this case, we obtain Z by finding a set of vertices reachable
from A in the auxiliary graph.

Therefore, we may assume that there is a blocking sequence v1, v2, . . . , vm.
We will find another graph G′ locally equivalent to G such that rkG′(A, B) > k.
Since rkG(A ∪ {vm}, B) = k + 1, there is a vertex w ∈ B adjacent to vm.

(1) We claim that v1, v2, . . . , vm−1 is a blocking sequence of (A, B) in G∧vmw
if m > 1.

By applying Lemma 6 for G[A ∪ B ∪ {v1, vm}], a subgraph of G induced on
A ∪ B ∪ {v1, vm}, we have

ρ∗G∧vmw(A, B ∪ {v1}) + ρ∗G(A ∪ {v1}, B)
≥ ρ∗G(A, B ∪ {v1, vm}) + ρ∗G(A ∪ {v1, vm}, B) − 1.

Since ρ∗G(A, B ∪ {v1, vm} ≥ ρ∗G(A, B ∪ {v1}) ≥ k + 1, ρ∗G(A ∪ {v1, vm}, B) ≥
ρ∗G(A∪{vm}, B) ≥ k+1, and ρ∗G(A∪{v1}, B) = k, we obtain that ρ∗G∧vmw(A, B∪
{v1}) ≥ k + 1.

By applying the same inequality we obtain that

ρ∗G∧vmw(A ∪ {vi}, B ∪ {vi+1}) + ρ∗G(A ∪ {vi, vi+1}, B)
≥ ρ∗G(A ∪ {vi}, B ∪ {vi+1, vm}) + ρ∗G(A ∪ {vi, vi+1, vm}, B) − 1 ≥ 2k + 1

for each i ∈ {1, 2, 3, . . . , m−2} and therefore ρ∗G∧vmw(A∪{vi}, B∪{vi+1}) ≥ k+1.
Moreover, ρ∗G∧vmw(A∪{vm−1}, B)+ρ∗G(A∪{vm−1}, B) ≥ ρ∗G(A∪{vm−1}, B∪

{vm}) + ρ∗G(A ∪ {vm−1, vm}, B) − 1 ≥ 2k + 1 and therefore ρ∗G∧vmw

(A ∪ {vm−1}, B) ≥ k + 1.
We prove one lemma to be used later. If X and Y are disjoint subsets of V

such that A ⊆ X , B ⊆ Y , vm /∈ X∪Y and ρ∗G(X, Y ) = k, then ρ∗G∧vmw(X, Y ) =
ρ∗G(X, Y ∪ {vm}) because
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ρ∗G∧vmw(X, Y ) + ρ∗G(X, Y ) ≥ ρ∗G(X, Y ∪ {vm}) + ρ∗G(X ∪ {vm}, Y ) − 1
≥ ρ∗G(X, Y ∪ {vm}) + k = ρ∗G∧vmw(X, Y ∪ {vm}) + ρ∗G(X, Y ).

By letting X = A ∪ {vm−1} and Y = B, we obtain that ρ∗G∧vmw(A ∪
{vm−1}, B) = ρ∗G(A∪{vm−1}, B∪{vm}) ≥ k+1. We also obtain ρ∗G∧vmw(A, B∪
{vi}) = k for each i > 1 by letting X = A, Y = B ∪ {vi}. Similarly we obtain
ρ∗G∧vmw(A ∪ {vi}, B ∪ {vj}) = k for i, j such that 1 ≤ i < i + 1 < j ≤ m − 1.

Therefore, v1, v2, . . . , vm−1 is a blocking sequence for (A, B) in G ∧ vmw.
(2) If m = 1 then we obtain ρ∗G∧v1w(A, B) ≥ k + 1, by applying the previous

lemma with letting X = A and Y = B.
(3) For each k, we claim that we can obtain another graph G′ locally equiva-

lent to G with ρ∗G′(A, B) > k or find Z satisfying A ⊂ Z ⊆ V \B and ρG(Z) = k.
If l is fixed, then we can test an adjacency in the auxiliary graph (defined

in the proof of Proposition 9) in constant time by calculating rank of matrices
of size no bigger than (l + 1) × (l + 1), and therefore it takes O(n2) time to
construct the auxiliary digraph. If l is not fixed, then it takes O(n4) time to
construct the auxiliary digraph for finding a blocking sequence. We first obtain
the diagonalized matrix R obtained by applying elementary row operations to
the matrix M [A, B] in O(n3) time. For each vertex v not in A∪B, we calculate
the rank of M [A∪{v}, B] by using the stored matrix in O(n2) time. Similarly we
calculate the rank of M [A, B ∪ {v}] by storing the matrix obtained by applying
elementary column operations to M [A, B]. To check whether ρ∗G(A ∪ {x}, B ∪
{y}) > k, it is enough to see when ρ∗G(A ∪ {x}, B) = ρ∗G(A, B ∪ {y}) = k. We
first store the rows of the original matrices to each column of R and then we
obtain the linear combination of rows of M [A, B] giving M [{x}, B]. By the same
linear combination, we check whether rows of M [A, {y}] gives M [{x}, {y}]. It
takes O(n2) time for each x, y ∈ V \ (A ∪ B) and therefore we construct the
auxiliary digraph in O(n4) time (if l is not fixed).

To find a blocking sequence, it is enough to find a shortest path in this
digraph and it takes O(n2) time. If there is no blocking sequence, then we find
Z in O(n2) time by choosing all vertices reachable from A by a directed path.

We pick a neighbor of vm in B and obtain G ∧ vmw in O(n2) time. By (1),
G∧vmw has a blocking sequence v1, v2, . . . , vm−1 for (A, B). We apply this kind
of pivoting m times so that in the new graph G′ we have ρ∗G′(A, B) > k. Since
m ≤ n, we obtain G′ in O(n3) time. �


Theorem 11. Let l be a fixed constant. Let G be a graph (V, E) and A, B be
two disjoint subsets of V such that |A|, |B| ≤ l. Then, there is a O(|V |3)-time
algorithm to find Z with A ⊆ Z ⊆ V \ B having the minimum cut-rank.

Proof. We apply the algorithm given by Lemma 10 until it finds a cut. We use
the algorithm at most l times, and so the running time is at most O(|V |3). �


We state the following theorem for the sake of its own interest. We will not
use this for the purpose of approximating rank-width since we have the previous
theorem.
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Theorem 12. Let G be a graph (V, E) and A, B be two disjoint subsets of V .
Then, there is a O(|V |5)-time algorithm to find Z with A ⊆ Z ⊆ V \ B having
the minimum cut-rank.

Proof. We apply the algorithm given by Lemma 10 until it finds a cut. We use
the algorithm at most |V | times, and so the running time is at most O(|V |5). �

Combining with Oum and Seymour [1], we obtain the following.

Theorem 13. For given k, there is an algorithm, for the input graph G =
(V, E), that either concludes that rwd(G) > k or outputs a rank-decomposition
of G of width at most 3k + 1; and its running time is O(|V |4).
Since we can convert the rank-decomposition of width k to a (2k+1−1)-expression
(a decomposition related to clique-width) in O(|V |2) time [1], we obtain the
following corollary.

Corollary 14. For given k, there is an algorithm, for the input graph G =
(V, E), that either concludes that cwd(G) > k or outputs a (23k+2−1)-expression
of G; and its running time is O(|V |4).

3 Graphs to Bipartite Graphs

Courcelle [8] shows that Seese’s conjecture [9] is true if and only if it is true
for bipartite graphs by using a certain graph transformation B from graphs to
bipartite graphs which we describe in the following lemma. He proves that there
exist two functions f1 and f2 such that f1(rwd(G)) ≤ rwd(B(G)) ≤ f2(rwd(G)),
but does not have explicit constructions of f1 and f2. We give a concrete bound
on rank-width. We will use this lemma in Sect. 4.
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Fig. 1. K3 and B(K3)

Lemma 15. Let G = (V, E) be a graph. Let B(G) = (V × {1, 2, 3, 4}, E′) be a
bipartite graph obtained from G as follows:

(i) if v ∈ V and i ∈ {1, 2, 3}, then (v, i) is adjacent to (v, i + 1) in B(G),
(ii) if vw ∈ E, then (v, 1) is adjacent to (w, 4) in B(G).

Then we have 1
4 rwd(G) ≤ rwd(B(G)) ≤ max(2 rwd(G), 1).

Proof. (1) Let us show that rwd(B(G)) ≤ max(2 rwd(G), 1). If rwd(G) = 0,
then rwd(B(G)) = 1. Now we may assume that rwd(G) > 0 and we claim that
rwd(B(G)) ≤ 2 rwd(G). Let (T,L) be a rank-decomposition of G of width k. Let
N be the set of leaves of T . Let T ′ be a tree such that V (T ′) = (V (T )× {0}) ∪
(N × {1, 2, 3, 4, 12, 34}) and
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(i) if vw ∈ E(T ), then (v, 0) is adjacent to (w, 0) in T ′,
(ii) for all v ∈ N , (v, 12) is adjacent to both (v, 1) and (v, 2) in T ′,
(iii) for all v ∈ N , (v, 34) is adjacent to both (v, 3) and (v, 4) in T ′,
(iv) for all v ∈ N , (v, 0) is adjacent to both (v, 12) and (v, 34) in T ′.

Informally speaking, we obtain T ′ from T by replacing each leaf with a rooted bi-
nary tree having four leaves. For each vertex (v, i) of B(G), we define L′((v, i)) =
(L(v), i) ∈ V (T ′). Then (T ′,L′) is a rank-decomposition of B(G).

We claim that the width of (T ′,L′) is at most 2k.
For each edge e = vw ∈ E(T ), let (X, Y ) be a partition of N induced by

the connected components of T \ e. Then, the edge (v, 0)(w, 0) of E(T ′) induces
a partition (X × {1, 2, 3, 4}, Y × {1, 2, 3, 4}) of N × {1, 2, 3, 4}. We observe that
L′−1(X × {1, 2, 3, 4}) = L−1(X) × {1, 2, 3, 4}. It is easy to see that

ρB(G)(L′−1(X × {1, 2, 3, 4}) = 2ρG(L−1(X)) ≤ 2k.

We now consider remaining edges of T ′. Each of them induces a partition
(X, Y ) of leaves of T ′ such that |X | ≤ 2 or |Y | ≤ 2. So, ρB(G)(L′−1(X)) ≤ 2.
Therefore we obtain that the width of (T ′,L′) is at most 2k.

(2) We claim that rwd(G) ≤ 4 rwd(B(G)). Let (T,L) be a rank-decomposi-
tion of B(G) of width k. Let e be an edge of T , and (X, Y ) be a partition of
leaves of T induced by connected components of T \ e.

For four subsets A1, A2, A3, A4 of V , we denote A1|A2|A3|A4 = (A1 ×{1})∪
(A2 × {2}) ∪ (A3 × {3}) ∪ (A4 × {4}) to simplify our notation. Let L−1(X) =
A1|A2|A3|A4. Let Bi = V \ Ai for i ∈ {1, 2, 3, 4}.

It is easy to observe, for each i ∈ {1, 2, 3}, that ρ∗B(G)((Ai × {i}) ∪ (Ai+1 ×
{i + 1}), (Bi × {i})∪ (Bi+1 × {i + 1}) = |Ai ∩Bi+1|+ |Bi ∩Ai+1| = |Ai∆Ai+1|.
Since ρB(G)(A1|A2|A3|A4) = ρ∗B(G)(A1|A2|A3|A4, B1|B2|B3|B4) ≤ k, we have,
for each i ∈ {1, 2, 3},

|Ai∆Ai+1| ≤ ρB(G)(A1|A2|A3|A4) ≤ k.

By adding these inequalities for all i, we obtain that |A1∆A4| ≤ 3k.
We also observe that rk(M [A4, B1]) = ρB(G)(A4 × {4}, B1 × {1}) ≤ k. Let

M be an adjacency matrix of G. Then we have the following bound of ρG(A1):

ρG(A1) = rk(M [A1, B1]) ≤ rk(M [A4 ∪ (A4∆A1), B1])
≤ rk(M [A4, B1]) + rk(M [A4∆A1, B1]) ≤ 4k.

Let T ′ be the minimal subtree of T containing all leaves in L(V × {1}). Let
L′(v) = L((v, 1)) for all vertices v of G. Then (T ′,L′) is a rank-decomposition
of G and its width is at most 4k. �


4 Approximating Rank-Width More Quickly

In this section, we show another algorithm that approximate rank-width as in
Sect. 2, but in O(n3) time with a worse approximation ratio. We take a different
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approach based on a simple observation in Sect. 3. We use the following algorithm
for binary matroids developed by Hliněný [10].

Theorem 16 (Hliněný [10–Theorem 4.12]). For fixed k, there is a O(n3)-
time algorithm that, for a given binary matroid with n elements, obtains a
branch-decomposition of width at most 3k + 1 or confirms that the given ma-
troid has branch-width larger than k + 1. We assume that binary matroids are
given by their matrix representations.

This algorithm can be used to approximate rank-width of a bipartite graph G
because we can run this algorithm for binary matroids having G as a fundamental
graph. By Lemma 15, we obtain a bipartite graph B(G) for each graph G such
that 1

4 rwd(G) ≤ rwd(B(G)) ≤ max(2 rwd(G), 1). Moreover we can construct
B(G) in O(n2) time when n = |V (G)| and transform the rank-decomposition of
B(G) of width m into rank-decomposition of G of width at most 4m in linear
time by the proof of Lemma 15. Therefore, we obtain the following algorithm.

Corollary 17. For fixed k, there is a O(n3)-time algorithm that, for a given
graph with n vertices, obtains a rank-decomposition of width at most 24k or
confirms that the rank-width of the input graph is larger than k.

Proof. Let G = (V, E) be the input graph. We may assume that E(G) 
= ∅. First
we construct B(G) in O(n2) time. We run the algorithm of Theorem 16 with an
input M = Bin(B(G), V × {1, 3}, V × {2, 4}) and a constant 2k.

If it confirms that branch-width of M is larger than 2k + 1, then rank-width
of B(G) is larger than 2k, and therefore the rank-width of G is larger than k.

If it outputs the branch-decomposition of M of width at most 6k + 1, then
the output is a rank-decomposition of B(G) of width at most 6k. This can be
transformed into a rank-decomposition of G of width at most 24k in linear time
by using an argument of Lemma 15. �


5 Discussions

Many applications of clique-width are polynomial-time algorithms to solve graph
problems when inputs are restricted to graphs of bounded clique-width. Most
of them ([11,12,13,14,15]) require k-expression of the input graph as an input
to take an advantage of tree-structures (except Johnson [16]). But by using [1],
we do not need k-expressions as an explicit input, because we can generate a
(21+f(k)−1)-expression in polynomial time and provide it as an input. The result
of this paper will make this preprocessing much faster.

In [17], Courcelle and the author show that there is a O(|V |9 log |V |)-time
algorithm that recognizes graphs of rank-width at most k for an input graph
G = (V, E) and a fixed k; they use an approximation algorithm by Seymour and
the author [1] as a first step, and it is the slowest part of their algorithm. By the
result of this paper, we obtain the following.

Theorem 18. For fixed k, there is a O(n3)-time algorithm to check that the
input graph with n vertices has rank-width at most k.
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But it is still open whether, for fixed k, we can construct a rank-decomposition
of width at most k if there are any in polynomial time.

Acknowledgment. The author would like to thank Jim Geelen for our valuable
discussions.
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