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Abstract. Rank-width is defined by Seymour and the author to inves-
tigate clique-width; they show that graphs have bounded rank-width if
and only if they have bounded clique-width. It is known that many hard
graph problems have polynomial-time algorithms for graphs of bounded
clique-width, however, requiring a given decomposition corresponding to
clique-width (k-expression); they remove this requirement by construct-
ing an algorithm that either outputs a rank-decomposition of width at
most f(k) for some function f or confirms rank-width is larger than k in
O(|V|?log |[V]) time for an input graph G = (V, E) and a fixed k. This
can be reformulated in terms of clique-width as an algorithm that either
outputs a (2'+F ) _ 1)-expression or confirms clique-width is larger than
kin O(JV|° log |V]) time for fixed k.

In this paper, we develop two separate algorithms of this kind with
faster running time. We construct a O(|V'|*)-time algorithm with f(k) =
3k + 1 by constructing a subroutine for the previous algorithm; we may
now avoid using general submodular function minimization algorithms
used by Seymour and the author. Another one is a O(|V|*)-time algo-
rithm with f(k) = 24k by giving a reduction from graphs to binary
matroids; then we use an approximation algorithm for matroid branch-
width by Hlinény.

1 Preliminaries
In this paper, all graphs are simple, undirected, and finite.

Cut-Rank Functions. For a matrix M = (m,; : 4 € R,j € C) over a field F, if
X CRandY C C, let M[X,Y] denote the submatrix (m;; : i € X,j € Y). For
a graph G, let A(G) be its adjacency matrix over GF(2).

Definition 1. Let G be a graph. For two disjoint subsets X, Y C V(G), we
define p&(X,Y) = rk(A(G)[X,Y]) where rk is the matriz rank function; and we
define the cut-rank function pg of G by letting pa(X) = p&(X, V(G) \ X) for
X CV(Q).

Both p and p* satisfy submodular inequalities.
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Proposition 2 (Oum and Seymour [1]). Let G be a graph. Let X1,Y1, Xo,Y>
be subsets of V(G) such that X1 NYy = XoNYa = 0. Then,

pG(X1, Y1) 4 pi (X2, Ya) > pe (X1 N Xo, Y1 UYs) + pi (X1 U Xo, Y1 NYs).
Moreover, if X1,Xo C V(G), then
pc(X1) + pa(X2) 2 pa(X1 N Xa) + pa (X1 U Xa).

Rank-Width. A subcubic tree is a tree with at least two vertices such that every
vertex is incident with at most three edges. A leaf of a tree is a vertex incident
with exactly one edge. A rank-decomposition of a graph G = (V, E) is a pair
(T, L) of a subcubic tree T' and a bijective function £ : V' — {t : ¢ is a leaf of T'}.
(If |V| <1, then G admits no rank-decomposition.)

For an edge e of T, the connected components of T\ e induce a partition
(X,Y) of the set of leaves of T'. The width of an edge e of a rank-decomposition
(T, L) is pc(L71(X)). The width of (T, L) is the maximum width of all edges of
T. The rank-width rwd(G) of G is the minimum width of a rank-decomposition
of G. (If |V| <1, we define rwd(G) = 0.)

Let cwd(G) be the clique-width of a graph G. Clique-width is defined by
Courcelle and Olariu [2]. In this paper, we do not need its definition if we just
remember the following proposition.

Proposition 3 (Oum and Seymour [1]). For a graph G, rwd(G) < cwd(G)
< 2rwd(G)+1 1.

Local Complementation. For two sets A and B, let AAB = (A\ B)U (B\ A).

Definition 4. Let G = (V,E) be a graph and v € V. The graph obtained by
applying local complementation at v to G is

Gxv=(V,EA{zy: zv,yv € E,x # y}).

For an edge uv € E, the graph obtained by pivoting wv is defined by G A uv =
G*uxv*u. We say that H is locally equivalent to G if G can be obtained by
applying a sequence of local complementations to G.

A pivoting is well-defined because G *x u * v xu = G *xv *u xv if u and v are
adjacent [3]. The following observation is fundamental.

Proposition 5 (Oum [3]). Let G' = G xv. Then for every X C V(G),
pc(X) = per(X).
The following lemma will be used in Sect. 2

Lemma 6 (Oum [3]). Let G be a graph and v € V(G). Suppose that (X1, X2)
and (Y1,Y2) are partitions of V(G) \ {v}. If w is a neighbor of v, then

pG\U(Xl) + pG/\vw\v(Yl) > pG(Xl N Yl) + ,OG(XQ N Yg) — 1.
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Matroids. Since we will use matroids in Sect. l, let us review matroid theory.
For general matroid theory, we refer to Oxley’s book [4]. We call M = (E,Z) a
matroid if F is a finite set and 7 is a collection of subsets of E, satisfying

(i ez
(ii) f AeZ and B C A, then B € 7.
(iii) For every Z C E, maximal subsets of Z in Z all have the same size r(Z).
We call 7(Z) the rank of Z.

An element of 7 is called independent in M. We let E(M) = E. A matroid
M = (E,T) is binary if there exists a matrix N over GF(2) such that F is a
set of column vectors of N and Z = {X C E : X is linearly independent}. The
connectiwity function A of M is Ay(X) =r(X) +r(E\X) —r(E) + 1.

Let G = (V,E) be a bipartite graph with a bipartition V' = A U B. Let
Bin(G, A, B) be the binary matroid on V, represented by the A x V matrix

(Ia A(G)[A, B])

where I4 is the A x A identity matrix. If M = Bin(G, A, B), then G is called a
fundamental graph of M.

Branch-Width. A branch-decomposition of a matroid M is a pair (T, L) of a
subcubic tree T and a bijective function £ : E(M) — {t : t is a leaf of T'}. (If
|[E(M)| <1, then M admits no rank-decomposition.)

For an edge e of T, the connected components of T\ e induce a partition
(X,Y) of the set of leaves of T'. The width of an edge e of a branch-decomposition
(T, L) is Apm(L7H(X)). The width of (T, L) is the maximum width of all edges
of T. The branch-width bw(M) of M is the minimum width of a branch-
decomposition of M. (If |V| < 1, we define bw(M) = 1.) Branch-width has
been defined by Robertson and Seymour [5].

The following proposition links branch-width of binary matroids with rank-
width of bipartite graphs.

Proposition 7 (Oum [3]). Let G = (V,E) be a bipartite graph with a bi-
partition V.= AU B and let M = Bin(G, A, B). Then for every X C V,
IMm(X) =pa(X)+ 1.

Corollary 8 (Oum [3]). Let G = (V, E) be a bipartite graph with a bipartition
V = AUB and let M = Bin(G, A, B). Then the branch-width of M is one more
than the rank-width of G.

2 Approximating Rank-Width Quickly

In this section, we show that, for fixed k, there is a O(n*)-time algorithm that,
with a n-vertex graph, outputs a rank-decomposition of width at most 3k +
1 or confirms that the input graph has rank-width larger than k. Oum and
Seymour [I] use general submodular function minimization algorithms [6] to
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find Z minimizing the cut-rank function pg(Z) with X € Z C V(G) \ Y for
given disjoint subsets X, Y of V(G) such that |X|, |Y| < 3k. If this can be done
in time «, then we obtain an O(n(n? + v))-time algorithm to outputs a rank-
decomposition of width at most 3k + 1 or confirms that the input graph has
rank-width larger than k. In [I], v is O(n®logn), and therefore the O(n® logn)-
time algorithm is obtained.

To obtain a O(n?)-time algorithm, we construct a direct combinatorial al-
gorithm that minimizes the cut-rank function. Jim Geelen suggested the use of
blocking sequences for this problem (private communication, 2005).

We first define blocking sequences, introduced by J. Geelen [7]. Let G be a
graph and A, B be two disjoint subsets of V(G). A sequence v1,va, ..., Uy, of
vertices in V(G) \ (A U B) is called a blocking sequence for (A, B) in G if it
satisfies the following:

(i) p&(AU{vi}, BU{vig1}) > p5(A, B) for alli e {1,2,...,m — 1}
(i) pt(A U {om}, B) > pis(A, B).
(iv) No proper subsequence satisfies (1)—(iii).

The following proposition is used in most applications of blocking sequences.

Proposition 9. Let G be a graph and A, B be two disjoint subsets of V(G). The
following are equivalent:

(i) There is no blocking sequence for (A, B) in G.
(ii) There exists Z such that AC Z C V(G)\ B and pc(Z) = p&(A, B).

Proof. (1)—(ii): We assume that a,b ¢ V(G) \ (AU B) by relabeling. Let k =
p& (A, B). We construct the auziliary digraph D = ({a,b}U(V(G)\ (AUB)), E)
from G such that for z,y € V(G) \ (AU B),

i) (a,z) € E if p,(A,BU{z}) >k,
ii) (z,b) € Eif p&,(AU{z}, B) >k,
iii) (x,y) € Eif pi(AU{z}, BU{y}) > k.

Since there is no blocking sequence for (A, B) in G, there is no directed path
from a to b in D. Let J be a set of vertices in V(G) \ (AU B) having a directed
path from a in D. We show that Z = J U A satisfies pg(Z) = k.

To prove this, we claim that pL,(AUX,BUY) =k forall X C J, Y C
V(G)\ (Z U B). We proceed by induction on |X|+ |Y]. If |X| <1 and |Y]| <1,
then we have p&(AU X, BUY) = k by the construction of J.

If | X| > 1, then for all x € X we have

pa(AUX, BUY) + p&(A,BUY) <
pe(AU (X \{z}), BUY) + pa(AU{z}, BUY) =2k,

because pg (AU {z}, BUY) =k by induction. So, p&(AUX,BUY) = k.
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Similarly if |Y| > 1, then for all y € Y we have p5, (AU X, BUY) + p&(AU
X,B) < ps(AUX,BU (Y \{y})) + pc(AU X,BU {y}) = 2k, and therefore
P(AUX,BUY) = k.

(ii)—(i): Suppose that there is a blocking sequence vy, va, . . ., Up,. Then, vy, ¢
Z because p(AU{vm }, B) > pe(Z). Similarly v1 € Z because pf (A, BU{v1}) >
pc(Z). Therefore there exists i € {1,2,...,m — 1} such that v; € Z but vy ¢
Z. But this is a contradiction, because pg(Z) < p&(A U {v;}, BU{vi41}) <
pe(Z.V(G)\ 2) = pa(2). 0

Lemma 10. Let G be a graph (V, E) and A, B be two disjoint subsets of V' such
that pt(A,B) = k and |A|,|B| < l. Let n = |V|. There is a polynomial-time
algorithm to either

— obtain a graph G’ locally equivalent to G with pf./(A, B) > k, or
— obtain a set Z such that AC Z CV \ B and pg(Z) = k.

The running time of this algorithm is O(n®) if | is fived or O(n*) if | is not fized.

Proof. If there is no blocking sequence for (A, B) in G, then minc zcv\p p(2) =
k by Proposition[ In this case, we obtain Z by finding a set of vertices reachable
from A in the auxiliary graph.

Therefore, we may assume that there is a blocking sequence vy, va, ..., Um.
We will find another graph G’ locally equivalent to G such that rke/ (A, B) > k.
Since rkg(A U {vnm}, B) = k + 1, there is a vertex w € B adjacent to vy,.

(1) We claim that vq,va, ..., vm—1 is a blocking sequence of (A, B) in G Avpw
if m> 1.

By applying Lemma [6 for G[A U B U {v1,v,,}], a subgraph of G induced on
AU BU{v1,vpn}, we have

PGnvw(As BU{01}) + p5(AU {01}, B)
> pE(A,B U {U1,Um}) + p*G(A U {U17UM}7B) -1

Since p& (A, B U {vi,vm} > p&(A,BU{n}) > k+1, pL(AU{v,vm},B) >
pe(AU{vm}, B) > k+1, and pg;(AU{v1 }, B) = k, we obtain that pg,,, (4, BU
{vi}) > k+1.

By applying the same inequality we obtain that

PGrvmw(AU{vi}t, BU{vis1}) + po(AU{vi, vipa }, B)
> va(A U {Ui}aB U {vi+1avm}) + va(A U {vianJrlavm}vB) -1>2k+1

foreachi € {1,2,3,...,m—2} and therefore pg ., ,,(AU{v;}, BU{vit1}) > k+1.
Moreover, pg ., o (AU{Vm—1}, B)+p5(AU{vm—1}, B) > pG(AU{vy -1}, BU
{vm}) + pg(A U {vm-1,9m},B) — 1 > 2k + 1 and therefore pf,, .,
(A U {vm—1}7 B) Z k + 1.
We prove one lemma to be used later. If X and Y are disjoint subsets of V'
such that AC X, BCY, vy, ¢ XUY and p5(X,Y) =k, then p5 ., (X, Y) =
p&(X,Y U{vp}) because '
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p*G/\vmw(Xv Y) + p*G(va) 2 p*G(XaY U {Um}) + p*G(X U {vm}vy) -1
2 pe(X, Y U{vm}) + k= pgnp,o (XY Ufvm}) + pg(X,Y).

By letting X = AU {v,-1} and Y = B, we obtain that pg,,, ,(4U
{vm-1}, B) = p&(AU{vm-1}, BU{vm}) > k+1. We also obtain pg ,,, (4, BU
{vi}) = k for each i > 1 by letting X = A, Y = B U {v;}. Similarly we obtain
Pnv,w(AU{vi}, BU{v;}) =k for i, j such that 1 <i<i+1<j<m-—1.

Therefore, V1,02, ..., Um—1 is a blocking sequence for (A, B) in G A v w.

(2) If m = 1 then we obtain pg,,, ., (A, B) > k+1, by applying the previous
lemma with letting X = A and Y = B.

(3) For each k, we claim that we can obtain another graph G’ locally equiva-
lent to G with pf,, (A, B) > k or find Z satisfying A C Z C V\ B and pe(Z) = k.

If [ is fixed, then we can test an adjacency in the auxiliary graph (defined
in the proof of Proposition [@)) in constant time by calculating rank of matrices
of size no bigger than (I + 1) x (I + 1), and therefore it takes O(n?) time to
construct the auxiliary digraph. If [ is not fixed, then it takes O(n?) time to
construct the auxiliary digraph for finding a blocking sequence. We first obtain
the diagonalized matrix R obtained by applying elementary row operations to
the matrix M[A, B] in O(n?) time. For each vertex v not in AU B, we calculate
the rank of M[AU{v}, B] by using the stored matrix in O(n?) time. Similarly we
calculate the rank of M[A, B U {v}] by storing the matrix obtained by applying
elementary column operations to M[A, B]. To check whether p5 (AU {z}, BU
{y}) > Ek, it is enough to see when p§ (AU {z}, B) = p&(A, BU{y}) = k. We
first store the rows of the original matrices to each column of R and then we
obtain the linear combination of rows of M[A, B] giving M[{z}, B]. By the same
linear combination, we check whether rows of M[A, {y}] gives M[{z},{y}]. It
takes O(n?) time for each x,y € V \ (AU B) and therefore we construct the
auxiliary digraph in O(n?) time (if [ is not fixed).

To find a blocking sequence, it is enough to find a shortest path in this
digraph and it takes O(n?) time. If there is no blocking sequence, then we find
Z in O(n?) time by choosing all vertices reachable from A by a directed path.

We pick a neighbor of v, in B and obtain G A v, w in O(n?) time. By (1),
G Avmw has a blocking sequence vy, va, . . ., U1 for (A4, B). We apply this kind
of pivoting m times so that in the new graph G’ we have pf., (A, B) > k. Since
m < n, we obtain G’ in O(n?) time. O

Theorem 11. Let | be a fized constant. Let G be a graph (V,E) and A, B be
two disjoint subsets of V such that |A|,|B| < I. Then, there is a O(|V|*)-time
algorithm to find Z with A C Z C V' \ B having the minimum cut-rank.

Proof. We apply the algorithm given by Lemma [0 until it finds a cut. We use
the algorithm at most [ times, and so the running time is at most O(|V[3). O

We state the following theorem for the sake of its own interest. We will not
use this for the purpose of approximating rank-width since we have the previous
theorem.
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Theorem 12. Let G be a graph (V, E) and A, B be two disjoint subsets of V.
Then, there is a O(|V|?)-time algorithm to find Z with A C Z C V \ B having
the minimum cut-rank.

Proof. We apply the algorithm given by Lemma [0 until it finds a cut. We use
the algorithm at most |V| times, and so the running time is at most O(|[V'[?). O

Combining with Oum and Seymour [I], we obtain the following.

Theorem 13. For given k, there is an algorithm, for the input graph G =
(V,E), that either concludes that rwd(G) > k or outputs a rank-decomposition
of G of width at most 3k + 1; and its running time is O(|V'|*).

Since we can convert the rank-decomposition of width k to a (2871 —1)-expression
(a decomposition related to clique-width) in O(]V'|?) time [I], we obtain the
following corollary.

Corollary 14. For given k, there is an algorithm, for the input graph G =
(V, E), that either concludes that cwd(G) > k or outputs a (23*+2 —1)-ezpression
of G; and its running time is O(|V']*).

3 Graphs to Bipartite Graphs

Courcelle [§] shows that Seese’s conjecture [9] is true if and only if it is true
for bipartite graphs by using a certain graph transformation B from graphs to
bipartite graphs which we describe in the following lemma. He proves that there
exist two functions fi and f2 such that fi(rwd(G)) < rwd(B(G)) < f2(rwd(G)),
but does not have explicit constructions of fi; and fo. We give a concrete bound
on rank-width. We will use this lemma in Sect. [l

.

Fig. 1. K3 and B(K3)

Lemma 15. Let G = (V, E) be a graph. Let B(G) = (V x {1,2,3,4},E’) be a
bipartite graph obtained from G as follows:

(1) ifveV and i€ {1,2,3}, then (v,i) is adjacent to (v,i+ 1) in B(G),
(ii) if vw € E, then (v,1) is adjacent to (w,4) in B(G).

Then we have ; rwd(G) < rwd(B(G)) < max(2rwd(G),1).

Proof. (1) Let us show that rwd(B(G)) < max(2rwd(G),1). If rwd(G) = 0,
then rwd(B(G)) = 1. Now we may assume that rwd(G) > 0 and we claim that
rwd(B(G)) < 2rwd(G). Let (T, £) be a rank-decomposition of G of width k. Let
N be the set of leaves of T. Let T” be a tree such that V(T") = (V(T) x {0}) U
(N x {1,2,3,4,12,34}) and
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(i) if vw € E(T), then (v,0) is adjacent to (w,0) in T”,

(ii) for all v € N, (v,12) is adjacent to both (v,1) and (v,2) in T”,
(iii) for all v € N, (v, 34) is adjacent to both (v,3) and (v,4) in T”,
(iv) for all v € N, (v,0) is adjacent to both (v,12) and (v,34) in T".

Informally speaking, we obtain T” from T by replacing each leaf with a rooted bi-
nary tree having four leaves. For each vertex (v, i) of B(G), we define £'((v,4)) =
(L(v),i) € V(T"). Then (T, L') is a rank-decomposition of B(G).

We claim that the width of (77, £’) is at most 2k.

For each edge e = vw € E(T), let (X,Y) be a partition of N induced by
the connected components of T'\ e. Then, the edge (v,0)(w,0) of E(T") induces
a partition (X x {1,2,3,4},Y x {1,2,3,4}) of N x {1,2,3,4}. We observe that
L7HX x{1,2,3,4}) = L71(X) x {1,2,3,4}. It is easy to see that

P (L1 X x {1,2,3,4}) = 2pa (L7 (X)) < 2k.

We now consider remaining edges of T’. Each of them induces a partition
(X,Y) of leaves of T" such that [X| < 2 or [Y]| < 2. So, ppc) (L1 (X)) < 2.
Therefore we obtain that the width of (77, L) is at most 2k.

(2) We claim that rwd(G) < 4rwd(B(G)). Let (T, L) be a rank-decomposi-
tion of B(G) of width k. Let e be an edge of T', and (X,Y’) be a partition of
leaves of T' induced by connected components of T'\ e.

For four subsets A;, Aa, A3, A4 of V', we denote A;|As|As|Ay = (A1 x {1})U
(A2 x {2}) U (43 x {3}) U (A4 x {4}) to simplify our notation. Let £L71(X) =
Al‘A2|A3‘A4. Let B, =V \ A; for i e {1,2,3,4}

It is easy to observe, for each i € {1,2,3}, that pj ) ((Ai x {i}) U (Aig1 x
{i+1}), (B x {i}) U(Biga x {i +1}) = [Ai N Biga | + [Bi N Ay | = [AiAAia].
Since pB(G)(A1|A2‘A3‘A4) = pE(G)(Al‘A2|A3|A4,B1|BQ‘B3‘B4) S k, we have,
for each i € {1,2,3},

|AiAAi1] < pp(a)(A1|Az|As|Ag) < k.

By adding these inequalities for all i, we obtain that |4; AA4| < 3k.
We also observe that rk(M[A4, B1]) = pp(a)(As x {4}, By x {1}) < k. Let
M be an adjacency matrix of G. Then we have the following bound of pg(A1):

pg(Al) = I‘k(M[Al, Bl]) < I‘k(M[A;; @] (A4AA1), Bﬂ)
< 1k(M[Ay, Br]) + tk(M[As AAy, By]) < 4k.

Let T" be the minimal subtree of T' containing all leaves in £(V x {1}). Let
L'(v) = L((v,1)) for all vertices v of G. Then (7", L’) is a rank-decomposition
of G and its width is at most 4k. O

4 Approximating Rank-Width More Quickly

In this section, we show another algorithm that approximate rank-width as in
Sect. 2 but in O(n?) time with a worse approximation ratio. We take a different
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approach based on a simple observation in Sect. [l We use the following algorithm
for binary matroids developed by Hlinény [10].

Theorem 16 (Hlinény [10-Theorem 4.12]). For fized k, there is a O(n?)-
time algorithm that, for a given binary matroid with n elements, obtains a
branch-decomposition of width at most 3k + 1 or confirms that the given ma-
troid has branch-width larger than k 4+ 1. We assume that binary matroids are
given by their matrix representations.

This algorithm can be used to approximate rank-width of a bipartite graph G
because we can run this algorithm for binary matroids having G as a fundamental
graph. By Lemma [T5] we obtain a bipartite graph B(G) for each graph G such
that } rwd(G) < rwd(B(G)) < max(2rwd(G),1). Moreover we can construct
B(G) in O(n?) time when n = |V (G)| and transform the rank-decomposition of
B(G) of width m into rank-decomposition of G of width at most 4m in linear
time by the proof of Lemma Therefore, we obtain the following algorithm.

Corollary 17. For fived k, there is a O(n?)-time algorithm that, for a given
graph with n wvertices, obtains a rank-decomposition of width at most 24k or
confirms that the rank-width of the input graph is larger than k.

Proof. Let G = (V, E) be the input graph. We may assume that F(G) # (. First
we construct B(G) in O(n?) time. We run the algorithm of Theorem [[€ with an
input M = Bin(B(G),V x {1,3},V x {2,4}) and a constant 2k.

If it confirms that branch-width of M is larger than 2k + 1, then rank-width
of B(QG) is larger than 2k, and therefore the rank-width of G is larger than k.

If it outputs the branch-decomposition of M of width at most 6k + 1, then
the output is a rank-decomposition of B(G) of width at most 6k. This can be
transformed into a rank-decomposition of G of width at most 24k in linear time
by using an argument of Lemma O

5 Discussions

Many applications of clique-width are polynomial-time algorithms to solve graph
problems when inputs are restricted to graphs of bounded clique-width. Most
of them ([IIIT2/T3IT4ITE]) require k-expression of the input graph as an input
to take an advantage of tree-structures (except Johnson [16]). But by using [I],
we do not need k-expressions as an explicit input, because we can generate a
(21+f (k) — 1)-expression in polynomial time and provide it as an input. The result
of this paper will make this preprocessing much faster.

In [17], Courcelle and the author show that there is a O(|V|log |V|)-time
algorithm that recognizes graphs of rank-width at most k for an input graph
G = (V, E) and a fixed k; they use an approximation algorithm by Seymour and
the author [I] as a first step, and it is the slowest part of their algorithm. By the
result of this paper, we obtain the following.

Theorem 18. For fized k, there is a O(n®)-time algorithm to check that the
input graph with n vertices has rank-width at most k.
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But it is still open whether, for fixed k, we can construct a rank-decomposition
of width at most k if there are any in polynomial time.

Acknowledgment. The author would like to thank Jim Geelen for our valuable
discussions.
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