Approximating Rank-Width and Clique-Width Quickly

Sang-il Oum

Princeton University, Princeton NJ 08544, USA*

Abstract. Rank-width is defined by Seymour and the author to investigate clique-width; they show that graphs have bounded rank-width if and only if they have bounded clique-width. It is known that many hard graph problems have polynomial-time algorithms for graphs of bounded clique-width, however, requiring a given decomposition corresponding to clique-width (*k*-expression); they remove this requirement by constructing an algorithm that either outputs a rank-decomposition of width at most f(k) for some function f or confirms rank-width is larger than k in $O(|V|^9 \log |V|)$ time for an input graph G = (V, E) and a fixed k. This can be reformulated in terms of clique-width as an algorithm that either outputs a $(2^{1+f(k)} - 1)$ -expression or confirms clique-width is larger than k in $O(|V|^9 \log |V|)$ time for fixed k.

In this paper, we develop two separate algorithms of this kind with faster running time. We construct a $O(|V|^4)$ -time algorithm with f(k) = 3k + 1 by constructing a subroutine for the previous algorithm; we may now avoid using general submodular function minimization algorithms used by Seymour and the author. Another one is a $O(|V|^3)$ -time algorithm with f(k) = 24k by giving a reduction from graphs to binary matroids; then we use an approximation algorithm for matroid branchwidth by Hliněný.

1 Preliminaries

In this paper, all graphs are simple, undirected, and finite.

Cut-Rank Functions. For a matrix $M = (m_{ij} : i \in R, j \in C)$ over a field F, if $X \subseteq R$ and $Y \subseteq C$, let M[X, Y] denote the submatrix $(m_{ij} : i \in X, j \in Y)$. For a graph G, let A(G) be its adjacency matrix over GF(2).

Definition 1. Let G be a graph. For two disjoint subsets $X, Y \subseteq V(G)$, we define $\rho_G^*(X, Y) = \operatorname{rk}(A(G)[X, Y])$ where rk is the matrix rank function; and we define the cut-rank function ρ_G of G by letting $\rho_G(X) = \rho_G^*(X, V(G) \setminus X)$ for $X \subseteq V(G)$.

Both ρ and ρ^* satisfy submodular inequalities.

^{*} Current address. Georgia Institute of Technology, Atlanta, GA 30332, USA.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 49–58, 2005.

[©] Springer-Verlag Berlin Heidelberg 2005

Proposition 2 (Oum and Seymour [1]). Let G be a graph. Let X_1, Y_1, X_2, Y_2 be subsets of V(G) such that $X_1 \cap Y_1 = X_2 \cap Y_2 = \emptyset$. Then,

$$\rho_G^*(X_1, Y_1) + \rho_G^*(X_2, Y_2) \ge \rho_G^*(X_1 \cap X_2, Y_1 \cup Y_2) + \rho_G^*(X_1 \cup X_2, Y_1 \cap Y_2)$$

Moreover, if $X_1, X_2 \subseteq V(G)$, then

$$\rho_G(X_1) + \rho_G(X_2) \ge \rho_G(X_1 \cap X_2) + \rho_G(X_1 \cup X_2).$$

Rank-Width. A subcubic tree is a tree with at least two vertices such that every vertex is incident with at most three edges. A *leaf* of a tree is a vertex incident with exactly one edge. A *rank-decomposition* of a graph G = (V, E) is a pair (T, \mathcal{L}) of a subcubic tree T and a bijective function $\mathcal{L} : V \to \{t : t \text{ is a leaf of } T\}$. (If $|V| \leq 1$, then G admits no rank-decomposition.)

For an edge e of T, the connected components of $T \setminus e$ induce a partition (X, Y) of the set of leaves of T. The width of an edge e of a rank-decomposition (T, \mathcal{L}) is $\rho_G(\mathcal{L}^{-1}(X))$. The width of (T, \mathcal{L}) is the maximum width of all edges of T. The rank-width $\operatorname{rwd}(G)$ of G is the minimum width of a rank-decomposition of G. (If $|V| \leq 1$, we define $\operatorname{rwd}(G) = 0$.)

Let cwd(G) be the *clique-width* of a graph G. Clique-width is defined by Courcelle and Olariu [2]. In this paper, we do not need its definition if we just remember the following proposition.

Proposition 3 (Oum and Seymour [1]). For a graph G, $rwd(G) \le cwd(G) \le 2^{rwd(G)+1} - 1$.

Local Complementation. For two sets A and B, let $A \Delta B = (A \setminus B) \cup (B \setminus A)$.

Definition 4. Let G = (V, E) be a graph and $v \in V$. The graph obtained by applying local complementation at v to G is

$$G * v = (V, E\Delta\{xy : xv, yv \in E, x \neq y\}).$$

For an edge $uv \in E$, the graph obtained by pivoting uv is defined by $G \wedge uv = G * u * v * u$. We say that H is locally equivalent to G if G can be obtained by applying a sequence of local complementations to G.

A pivoting is well-defined because G * u * v * u = G * v * u * v if u and v are adjacent [3]. The following observation is fundamental.

Proposition 5 (Oum [3]). Let G' = G * v. Then for every $X \subseteq V(G)$,

$$\rho_G(X) = \rho_{G'}(X).$$

The following lemma will be used in Sect. 2.

Lemma 6 (Oum [3]). Let G be a graph and $v \in V(G)$. Suppose that (X_1, X_2) and (Y_1, Y_2) are partitions of $V(G) \setminus \{v\}$. If w is a neighbor of v, then

$$\rho_{G\setminus v}(X_1) + \rho_{G\wedge vw\setminus v}(Y_1) \ge \rho_G(X_1 \cap Y_1) + \rho_G(X_2 \cap Y_2) - 1.$$

Matroids. Since we will use matroids in Sect. 4, let us review matroid theory. For general matroid theory, we refer to Oxley's book [4]. We call $\mathcal{M} = (E, \mathcal{I})$ a *matroid* if E is a finite set and \mathcal{I} is a collection of subsets of E, satisfying

- (i) $\emptyset \in \mathcal{I}$
- (ii) If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$.
- (iii) For every $Z \subseteq E$, maximal subsets of Z in \mathcal{I} all have the same size r(Z). We call r(Z) the rank of Z.

An element of \mathcal{I} is called *independent* in \mathcal{M} . We let $E(\mathcal{M}) = E$. A matroid $\mathcal{M} = (E, \mathcal{I})$ is *binary* if there exists a matrix N over GF(2) such that E is a set of column vectors of N and $\mathcal{I} = \{X \subseteq E : X \text{ is linearly independent}\}$. The *connectivity* function $\lambda_{\mathcal{M}}$ of \mathcal{M} is $\lambda_{\mathcal{M}}(X) = r(X) + r(E \setminus X) - r(E) + 1$.

Let G = (V, E) be a bipartite graph with a bipartition $V = A \cup B$. Let Bin(G, A, B) be the binary matroid on V, represented by the $A \times V$ matrix

$$(I_A A(G)[A,B]),$$

where I_A is the $A \times A$ identity matrix. If $\mathcal{M} = Bin(G, A, B)$, then G is called a fundamental graph of \mathcal{M} .

Branch-Width. A branch-decomposition of a matroid \mathcal{M} is a pair (T, \mathcal{L}) of a subcubic tree T and a bijective function $\mathcal{L} : E(\mathcal{M}) \to \{t : t \text{ is a leaf of } T\}$. (If $|E(\mathcal{M})| \leq 1$, then \mathcal{M} admits no rank-decomposition.)

For an edge e of T, the connected components of $T \setminus e$ induce a partition (X, Y) of the set of leaves of T. The *width* of an edge e of a branch-decomposition (T, \mathcal{L}) is $\lambda_{\mathcal{M}}(\mathcal{L}^{-1}(X))$. The *width* of (T, \mathcal{L}) is the maximum width of all edges of T. The *branch-width* bw (\mathcal{M}) of \mathcal{M} is the minimum width of a branch-decomposition of \mathcal{M} . (If $|V| \leq 1$, we define bw $(\mathcal{M}) = 1$.) Branch-width has been defined by Robertson and Seymour [5].

The following proposition links branch-width of binary matroids with rankwidth of bipartite graphs.

Proposition 7 (Oum [3]). Let G = (V, E) be a bipartite graph with a bipartition $V = A \cup B$ and let $\mathcal{M} = Bin(G, A, B)$. Then for every $X \subseteq V$, $\lambda_{\mathcal{M}}(X) = \rho_G(X) + 1$.

Corollary 8 (Oum [3]). Let G = (V, E) be a bipartite graph with a bipartition $V = A \cup B$ and let $\mathcal{M} = Bin(G, A, B)$. Then the branch-width of \mathcal{M} is one more than the rank-width of G.

2 Approximating Rank-Width Quickly

In this section, we show that, for fixed k, there is a $O(n^4)$ -time algorithm that, with a *n*-vertex graph, outputs a rank-decomposition of width at most 3k + 1 or confirms that the input graph has rank-width larger than k. Our and Seymour [1] use general submodular function minimization algorithms [6] to find Z minimizing the cut-rank function $\rho_G(Z)$ with $X \subseteq Z \subseteq V(G) \setminus Y$ for given disjoint subsets X, Y of V(G) such that $|X|, |Y| \leq 3k$. If this can be done in time γ , then we obtain an $O(n(n^2 + \gamma))$ -time algorithm to outputs a rankdecomposition of width at most 3k + 1 or confirms that the input graph has rank-width larger than k. In [1], γ is $O(n^8 \log n)$, and therefore the $O(n^9 \log n)$ time algorithm is obtained.

To obtain a $O(n^4)$ -time algorithm, we construct a direct combinatorial algorithm that minimizes the cut-rank function. Jim Geelen suggested the use of blocking sequences for this problem (private communication, 2005).

We first define *blocking sequences*, introduced by J. Geelen [7]. Let G be a graph and A, B be two disjoint subsets of V(G). A sequence v_1, v_2, \ldots, v_m of vertices in $V(G) \setminus (A \cup B)$ is called a *blocking sequence* for (A, B) in G if it satisfies the following:

(i) $\rho_G^*(A, B \cup \{v_1\}) > \rho_G^*(A, B).$

- (ii) $\rho_G^*(A \cup \{v_i\}, B \cup \{v_{i+1}\}) > \rho_G^*(A, B)$ for all $i \in \{1, 2, \dots, m-1\}$.
- (iii) $\rho_G^*(A \cup \{v_m\}, B) > \rho_G^*(A, B).$
- (iv) No proper subsequence satisfies (i)—(iii).

The following proposition is used in most applications of blocking sequences.

Proposition 9. Let G be a graph and A, B be two disjoint subsets of V(G). The following are equivalent:

- (i) There is no blocking sequence for (A, B) in G.
- (ii) There exists Z such that $A \subseteq Z \subseteq V(G) \setminus B$ and $\rho_G(Z) = \rho_G^*(A, B)$.

Proof. (i) \rightarrow (ii): We assume that $a, b \notin V(G) \setminus (A \cup B)$ by relabeling. Let $k = \rho_G^*(A, B)$. We construct the *auxiliary digraph* $D = (\{a, b\} \cup (V(G) \setminus (A \cup B)), E)$ from G such that for $x, y \in V(G) \setminus (A \cup B)$,

- i) $(a, x) \in E$ if $\rho_G^*(A, B \cup \{x\}) > k$,
- ii) $(x,b) \in E$ if $\rho_G^*(A \cup \{x\}, B) > k$,
- iii) $(x, y) \in E$ if $\rho_G^*(A \cup \{x\}, B \cup \{y\}) > k$.

Since there is no blocking sequence for (A, B) in G, there is no directed path from a to b in D. Let J be a set of vertices in $V(G) \setminus (A \cup B)$ having a directed path from a in D. We show that $Z = J \cup A$ satisfies $\rho_G(Z) = k$.

To prove this, we claim that $\rho_G^*(A \cup X, B \cup Y) = k$ for all $X \subseteq J, Y \subseteq V(G) \setminus (Z \cup B)$. We proceed by induction on |X| + |Y|. If $|X| \leq 1$ and $|Y| \leq 1$, then we have $\rho_G^*(A \cup X, B \cup Y) = k$ by the construction of J.

If |X| > 1, then for all $x \in X$ we have

$$\rho_G^*(A \cup X, B \cup Y) + \rho_G^*(A, B \cup Y) \le \rho_G^*(A \cup \{X\}), B \cup Y) + \rho_G(A \cup \{x\}, B \cup Y) = 2k,$$

because $\rho_G^*(A \cup \{x\}, B \cup Y) = k$ by induction. So, $\rho_G^*(A \cup X, B \cup Y) = k$.

Similarly if |Y| > 1, then for all $y \in Y$ we have $\rho_G^*(A \cup X, B \cup Y) + \rho_G^*(A \cup X, B) \le \rho_G^*(A \cup X, B \cup (Y \setminus \{y\})) + \rho_G(A \cup X, B \cup \{y\}) = 2k$, and therefore $\rho_G^*(A \cup X, B \cup Y) = k$.

(ii) \rightarrow (i): Suppose that there is a blocking sequence v_1, v_2, \ldots, v_m . Then, $v_m \notin Z$ because $\rho_G^*(A \cup \{v_m\}, B) > \rho_G(Z)$. Similarly $v_1 \in Z$ because $\rho_G^*(A, B \cup \{v_1\}) > \rho_G(Z)$. Therefore there exists $i \in \{1, 2, \ldots, m-1\}$ such that $v_i \in Z$ but $v_{i+1} \notin Z$. But this is a contradiction, because $\rho_G(Z) < \rho_G^*(A \cup \{v_i\}, B \cup \{v_{i+1}\}) \leq \rho_G^*(Z, V(G) \setminus Z) = \rho_G(Z)$.

Lemma 10. Let G be a graph (V, E) and A, B be two disjoint subsets of V such that $\rho_G^*(A, B) = k$ and $|A|, |B| \leq l$. Let n = |V|. There is a polynomial-time algorithm to either

- obtain a graph G' locally equivalent to G with $\rho_{G'}^*(A, B) > k$, or
- obtain a set Z such that $A \subseteq Z \subseteq V \setminus B$ and $\rho_G(Z) = k$.

The running time of this algorithm is $O(n^3)$ if l is fixed or $O(n^4)$ if l is not fixed.

Proof. If there is no blocking sequence for (A, B) in G, then $\min_{A \subseteq Z \subseteq V \setminus B} \rho(Z) = k$ by Proposition 9. In this case, we obtain Z by finding a set of vertices reachable from A in the auxiliary graph.

Therefore, we may assume that there is a blocking sequence v_1, v_2, \ldots, v_m . We will find another graph G' locally equivalent to G such that $\operatorname{rk}_{G'}(A, B) > k$. Since $\operatorname{rk}_G(A \cup \{v_m\}, B) = k + 1$, there is a vertex $w \in B$ adjacent to v_m .

(1) We claim that $v_1, v_2, \ldots, v_{m-1}$ is a blocking sequence of (A, B) in $G \wedge v_m w$ if m > 1.

By applying Lemma 6 for $G[A \cup B \cup \{v_1, v_m\}]$, a subgraph of G induced on $A \cup B \cup \{v_1, v_m\}$, we have

$$\begin{split} \rho^*_{G \wedge v_m w}(A, B \cup \{v_1\}) + \rho^*_G(A \cup \{v_1\}, B) \\ &\geq \rho^*_G(A, B \cup \{v_1, v_m\}) + \rho^*_G(A \cup \{v_1, v_m\}, B) - 1. \end{split}$$

Since $\rho_G^*(A, B \cup \{v_1, v_m\} \ge \rho_G^*(A, B \cup \{v_1\}) \ge k + 1$, $\rho_G^*(A \cup \{v_1, v_m\}, B) \ge \rho_G^*(A \cup \{v_m\}, B) \ge k + 1$, and $\rho_G^*(A \cup \{v_1\}, B) = k$, we obtain that $\rho_{G \wedge v_m w}^*(A, B \cup \{v_1\}) \ge k + 1$.

By applying the same inequality we obtain that

$$\begin{split} \rho^*_{G \wedge v_m w}(A \cup \{v_i\}, B \cup \{v_{i+1}\}) + \rho^*_G(A \cup \{v_i, v_{i+1}\}, B) \\ &\geq \rho^*_G(A \cup \{v_i\}, B \cup \{v_{i+1}, v_m\}) + \rho^*_G(A \cup \{v_i, v_{i+1}, v_m\}, B) - 1 \geq 2k + 1 \end{split}$$

for each $i \in \{1, 2, 3, \dots, m-2\}$ and therefore $\rho_{G \wedge v_m w}^*(A \cup \{v_i\}, B \cup \{v_{i+1}\}) \ge k+1$. Moreover, $\rho_{G \wedge v_m w}^*(A \cup \{v_{m-1}\}, B) + \rho_G^*(A \cup \{v_{m-1}\}, B) \ge \rho_G^*(A \cup \{v_{m-1}\}, B \cup \{v_m\}) + \rho_G^*(A \cup \{v_{m-1}, v_m\}, B) - 1 \ge 2k + 1$ and therefore $\rho_{G \wedge v_m w}^*(A \cup \{v_{m-1}\}, B) \ge k+1$.

We prove one lemma to be used later. If X and Y are disjoint subsets of V such that $A \subseteq X$, $B \subseteq Y$, $v_m \notin X \cup Y$ and $\rho_G^*(X, Y) = k$, then $\rho_{G \wedge v_m w}^*(X, Y) = \rho_G^*(X, Y \cup \{v_m\})$ because

$$\begin{split} \rho_{G \wedge v_m w}^*(X,Y) + \rho_G^*(X,Y) &\geq \rho_G^*(X,Y \cup \{v_m\}) + \rho_G^*(X \cup \{v_m\},Y) - 1 \\ &\geq \rho_G^*(X,Y \cup \{v_m\}) + k = \rho_{G \wedge v_m w}^*(X,Y \cup \{v_m\}) + \rho_G^*(X,Y). \end{split}$$

By letting $X = A \cup \{v_{m-1}\}$ and Y = B, we obtain that $\rho_{G \wedge v_m w}^*(A \cup \{v_{m-1}\}, B) = \rho_G^*(A \cup \{v_{m-1}\}, B \cup \{v_m\}) \ge k+1$. We also obtain $\rho_{G \wedge v_m w}^*(A, B \cup \{v_i\}) = k$ for each i > 1 by letting X = A, $Y = B \cup \{v_i\}$. Similarly we obtain $\rho_{G \wedge v_m w}^*(A \cup \{v_i\}, B \cup \{v_j\}) = k$ for i, j such that $1 \le i < i + 1 < j \le m - 1$.

Therefore, $v_1, v_2, \ldots, v_{m-1}$ is a blocking sequence for (A, B) in $G \wedge v_m w$. (2) If m = 1 then we obtain $\rho^*_{G \wedge v_1 w}(A, B) \ge k+1$, by applying the previous lemma with letting X = A and Y = B.

(3) For each k, we claim that we can obtain another graph G' locally equivalent to G with $\rho_{G'}^*(A, B) > k$ or find Z satisfying $A \subset Z \subseteq V \setminus B$ and $\rho_G(Z) = k$.

If l is fixed, then we can test an adjacency in the auxiliary graph (defined in the proof of Proposition 9) in constant time by calculating rank of matrices of size no bigger than $(l+1) \times (l+1)$, and therefore it takes $O(n^2)$ time to construct the auxiliary digraph. If l is not fixed, then it takes $O(n^4)$ time to construct the auxiliary digraph for finding a blocking sequence. We first obtain the diagonalized matrix R obtained by applying elementary row operations to the matrix M[A, B] in $O(n^3)$ time. For each vertex v not in $A \cup B$, we calculate the rank of $M[A \cup \{v\}, B]$ by using the stored matrix in $O(n^2)$ time. Similarly we calculate the rank of $M[A, B \cup \{v\}]$ by storing the matrix obtained by applying elementary column operations to M[A, B]. To check whether $\rho_G^*(A \cup \{x\}, B \cup$ $\{y\}$ > k, it is enough to see when $\rho_G^*(A \cup \{x\}, B) = \rho_G^*(A, B \cup \{y\}) = k$. We first store the rows of the original matrices to each column of R and then we obtain the linear combination of rows of M[A, B] giving $M[\{x\}, B]$. By the same linear combination, we check whether rows of $M[A, \{y\}]$ gives $M[\{x\}, \{y\}]$. It takes $O(n^2)$ time for each $x, y \in V \setminus (A \cup B)$ and therefore we construct the auxiliary digraph in $O(n^4)$ time (if l is not fixed).

To find a blocking sequence, it is enough to find a shortest path in this digraph and it takes $O(n^2)$ time. If there is no blocking sequence, then we find Z in $O(n^2)$ time by choosing all vertices reachable from A by a directed path.

We pick a neighbor of v_m in B and obtain $G \wedge v_m w$ in $O(n^2)$ time. By (1), $G \wedge v_m w$ has a blocking sequence $v_1, v_2, \ldots, v_{m-1}$ for (A, B). We apply this kind of pivoting m times so that in the new graph G' we have $\rho_{G'}^*(A, B) > k$. Since $m \leq n$, we obtain G' in $O(n^3)$ time.

Theorem 11. Let l be a fixed constant. Let G be a graph (V, E) and A, B be two disjoint subsets of V such that $|A|, |B| \leq l$. Then, there is a $O(|V|^3)$ -time algorithm to find Z with $A \subseteq Z \subseteq V \setminus B$ having the minimum cut-rank.

Proof. We apply the algorithm given by Lemma 10 until it finds a cut. We use the algorithm at most l times, and so the running time is at most $O(|V|^3)$. \Box

We state the following theorem for the sake of its own interest. We will not use this for the purpose of approximating rank-width since we have the previous theorem. **Theorem 12.** Let G be a graph (V, E) and A, B be two disjoint subsets of V. Then, there is a $O(|V|^5)$ -time algorithm to find Z with $A \subseteq Z \subseteq V \setminus B$ having the minimum cut-rank.

Proof. We apply the algorithm given by Lemma 10 until it finds a cut. We use the algorithm at most |V| times, and so the running time is at most $O(|V|^5)$. \Box

Combining with Oum and Seymour [1], we obtain the following.

Theorem 13. For given k, there is an algorithm, for the input graph G = (V, E), that either concludes that rwd(G) > k or outputs a rank-decomposition of G of width at most 3k + 1; and its running time is $O(|V|^4)$.

Since we can convert the rank-decomposition of width k to a $(2^{k+1}-1)$ -expression (a decomposition related to clique-width) in $O(|V|^2)$ time [1], we obtain the following corollary.

Corollary 14. For given k, there is an algorithm, for the input graph G = (V, E), that either concludes that cwd(G) > k or outputs a $(2^{3k+2}-1)$ -expression of G; and its running time is $O(|V|^4)$.

3 Graphs to Bipartite Graphs

Courcelle [8] shows that Seese's conjecture [9] is true if and only if it is true for bipartite graphs by using a certain graph transformation B from graphs to bipartite graphs which we describe in the following lemma. He proves that there exist two functions f_1 and f_2 such that $f_1(\operatorname{rwd}(G)) \leq \operatorname{rwd}(B(G)) \leq f_2(\operatorname{rwd}(G))$, but does not have explicit constructions of f_1 and f_2 . We give a concrete bound on rank-width. We will use this lemma in Sect. 4.

Fig. 1. K_3 and $B(K_3)$

Lemma 15. Let G = (V, E) be a graph. Let $B(G) = (V \times \{1, 2, 3, 4\}, E')$ be a bipartite graph obtained from G as follows:

- (i) if $v \in V$ and $i \in \{1, 2, 3\}$, then (v, i) is adjacent to (v, i + 1) in B(G),
- (ii) if $vw \in E$, then (v, 1) is adjacent to (w, 4) in B(G).

Then we have $\frac{1}{4} \operatorname{rwd}(G) \leq \operatorname{rwd}(B(G)) \leq \max(2 \operatorname{rwd}(G), 1).$

Proof. (1) Let us show that $\operatorname{rwd}(B(G)) \leq \max(2\operatorname{rwd}(G), 1)$. If $\operatorname{rwd}(G) = 0$, then $\operatorname{rwd}(B(G)) = 1$. Now we may assume that $\operatorname{rwd}(G) > 0$ and we claim that $\operatorname{rwd}(B(G)) \leq 2\operatorname{rwd}(G)$. Let (T, \mathcal{L}) be a rank-decomposition of G of width k. Let N be the set of leaves of T. Let T' be a tree such that $V(T') = (V(T) \times \{0\}) \cup (N \times \{1, 2, 3, 4, 12, 34\})$ and

- (i) if $vw \in E(T)$, then (v, 0) is adjacent to (w, 0) in T',
- (ii) for all $v \in N$, (v, 12) is adjacent to both (v, 1) and (v, 2) in T',
- (iii) for all $v \in N$, (v, 34) is adjacent to both (v, 3) and (v, 4) in T',
- (iv) for all $v \in N$, (v, 0) is adjacent to both (v, 12) and (v, 34) in T'.

Informally speaking, we obtain T' from T by replacing each leaf with a rooted binary tree having four leaves. For each vertex (v, i) of B(G), we define $\mathcal{L}'((v, i)) = (\mathcal{L}(v), i) \in V(T')$. Then (T', \mathcal{L}') is a rank-decomposition of B(G).

We claim that the width of (T', \mathcal{L}') is at most 2k.

For each edge $e = vw \in E(T)$, let (X, Y) be a partition of N induced by the connected components of $T \setminus e$. Then, the edge (v, 0)(w, 0) of E(T') induces a partition $(X \times \{1, 2, 3, 4\}, Y \times \{1, 2, 3, 4\})$ of $N \times \{1, 2, 3, 4\}$. We observe that $\mathcal{L}'^{-1}(X \times \{1, 2, 3, 4\}) = \mathcal{L}^{-1}(X) \times \{1, 2, 3, 4\}$. It is easy to see that

$$\rho_{B(G)}(\mathcal{L}'^{-1}(X \times \{1, 2, 3, 4\}) = 2\rho_G(\mathcal{L}^{-1}(X)) \le 2k.$$

We now consider remaining edges of T'. Each of them induces a partition (X, Y) of leaves of T' such that $|X| \leq 2$ or $|Y| \leq 2$. So, $\rho_{B(G)}(\mathcal{L}'^{-1}(X)) \leq 2$. Therefore we obtain that the width of (T', \mathcal{L}') is at most 2k.

(2) We claim that $\operatorname{rwd}(G) \leq 4 \operatorname{rwd}(B(G))$. Let (T, \mathcal{L}) be a rank-decomposition of B(G) of width k. Let e be an edge of T, and (X, Y) be a partition of leaves of T induced by connected components of $T \setminus e$.

For four subsets A_1, A_2, A_3, A_4 of V, we denote $A_1|A_2|A_3|A_4 = (A_1 \times \{1\}) \cup (A_2 \times \{2\}) \cup (A_3 \times \{3\}) \cup (A_4 \times \{4\})$ to simplify our notation. Let $\mathcal{L}^{-1}(X) = A_1|A_2|A_3|A_4$. Let $B_i = V \setminus A_i$ for $i \in \{1, 2, 3, 4\}$.

It is easy to observe, for each $i \in \{1, 2, 3\}$, that $\rho_{B(G)}^*((A_i \times \{i\}) \cup (A_{i+1} \times \{i+1\}), (B_i \times \{i\}) \cup (B_{i+1} \times \{i+1\}) = |A_i \cap B_{i+1}| + |B_i \cap A_{i+1}| = |A_i \Delta A_{i+1}|.$ Since $\rho_{B(G)}(A_1|A_2|A_3|A_4) = \rho_{B(G)}^*(A_1|A_2|A_3|A_4, B_1|B_2|B_3|B_4) \leq k$, we have, for each $i \in \{1, 2, 3\}$,

$$|A_i \Delta A_{i+1}| \le \rho_{B(G)}(A_1 | A_2 | A_3 | A_4) \le k.$$

By adding these inequalities for all *i*, we obtain that $|A_1 \Delta A_4| \leq 3k$.

We also observe that $\operatorname{rk}(M[A_4, B_1]) = \rho_{B(G)}(A_4 \times \{4\}, B_1 \times \{1\}) \leq k$. Let M be an adjacency matrix of G. Then we have the following bound of $\rho_G(A_1)$:

$$\begin{split} \rho_G(A_1) = \operatorname{rk}(M[A_1, B_1]) &\leq \operatorname{rk}(M[A_4 \cup (A_4 \Delta A_1), B_1]) \\ &\leq \operatorname{rk}(M[A_4, B_1]) + \operatorname{rk}(M[A_4 \Delta A_1, B_1]) \leq 4k. \end{split}$$

Let T' be the minimal subtree of T containing all leaves in $\mathcal{L}(V \times \{1\})$. Let $\mathcal{L}'(v) = \mathcal{L}((v, 1))$ for all vertices v of G. Then (T', \mathcal{L}') is a rank-decomposition of G and its width is at most 4k.

4 Approximating Rank-Width More Quickly

In this section, we show another algorithm that approximate rank-width as in Sect. 2, but in $O(n^3)$ time with a worse approximation ratio. We take a different

approach based on a simple observation in Sect. 3. We use the following algorithm for binary matroids developed by Hliněný [10].

Theorem 16 (Hliněný [10–Theorem 4.12]). For fixed k, there is a $O(n^3)$ time algorithm that, for a given binary matroid with n elements, obtains a branch-decomposition of width at most 3k + 1 or confirms that the given matroid has branch-width larger than k + 1. We assume that binary matroids are given by their matrix representations.

This algorithm can be used to approximate rank-width of a bipartite graph G because we can run this algorithm for binary matroids having G as a fundamental graph. By Lemma 15, we obtain a bipartite graph B(G) for each graph G such that $\frac{1}{4} \operatorname{rwd}(G) \leq \operatorname{rwd}(B(G)) \leq \max(2 \operatorname{rwd}(G), 1)$. Moreover we can construct B(G) in $O(n^2)$ time when n = |V(G)| and transform the rank-decomposition of B(G) of width m into rank-decomposition of G of width at most 4m in linear time by the proof of Lemma 15. Therefore, we obtain the following algorithm.

Corollary 17. For fixed k, there is a $O(n^3)$ -time algorithm that, for a given graph with n vertices, obtains a rank-decomposition of width at most 24k or confirms that the rank-width of the input graph is larger than k.

Proof. Let G = (V, E) be the input graph. We may assume that $E(G) \neq \emptyset$. First we construct B(G) in $O(n^2)$ time. We run the algorithm of Theorem 16 with an input $\mathcal{M} = Bin(B(G), V \times \{1, 3\}, V \times \{2, 4\})$ and a constant 2k.

If it confirms that branch-width of \mathcal{M} is larger than 2k + 1, then rank-width of B(G) is larger than 2k, and therefore the rank-width of G is larger than k.

If it outputs the branch-decomposition of \mathcal{M} of width at most 6k + 1, then the output is a rank-decomposition of B(G) of width at most 6k. This can be transformed into a rank-decomposition of G of width at most 24k in linear time by using an argument of Lemma 15. \Box

5 Discussions

Many applications of clique-width are polynomial-time algorithms to solve graph problems when inputs are restricted to graphs of bounded clique-width. Most of them ([11,12,13,14,15]) require k-expression of the input graph as an input to take an advantage of tree-structures (except Johnson [16]). But by using [1], we do not need k-expressions as an explicit input, because we can generate a $(2^{1+f(k)}-1)$ -expression in polynomial time and provide it as an input. The result of this paper will make this preprocessing much faster.

In [17], Courcelle and the author show that there is a $O(|V|^9 \log |V|)$ -time algorithm that recognizes graphs of rank-width at most k for an input graph G = (V, E) and a fixed k; they use an approximation algorithm by Seymour and the author [1] as a first step, and it is the slowest part of their algorithm. By the result of this paper, we obtain the following.

Theorem 18. For fixed k, there is a $O(n^3)$ -time algorithm to check that the input graph with n vertices has rank-width at most k.

But it is still open whether, for fixed k, we can construct a rank-decomposition of width at most k if there are any in polynomial time.

Acknowledgment. The author would like to thank Jim Geelen for our valuable discussions.

References

- 1. Oum, S., Seymour, P.: Approximating clique-width and branch-width. submitted (2004)
- 2. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete Appl. Math. **101** (2000) 77–114
- 3. Oum, S.: Rank-width and vertex-minors. J. Combin. Theory Ser. B (2005) to appear.
- 4. Oxley, J.G.: Matroid theory. Oxford University Press, New York (1992)
- Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52 (1991) 153–190
- Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. Journal of the ACM (JACM) 48 (2001) 761–777
- 7. Geelen, J.F.: Matchings, matroids and unimodular matrices. PhD thesis, University of Waterloo (1995)
- 8. Courcelle, B.: The monadic second-order logic of graphs XV: On a conjecture by D. Seese. submitted (2004)
- 9. Seese, D.: The structure of the models of decidable monadic theories of graphs. Ann. Pure Appl. Logic **53** (1991) 169–195
- 10. Hliněný, P.: A parametrized algorithm for matroid branch-width. submitted (2002)
- 11. Wanke, E.: k-NLC graphs and polynomial algorithms. Discrete Appl. Math. 54 (1994) 251–266
- 12. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. **33** (2000) 125–150
- Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: Graph-theoretic concepts in computer science (Boltenhagen, 2001). Volume 2204 of Lecture Notes in Comput. Sci. Springer, Berlin (2001) 117–128
- 14. Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs with fixed clique-width. Theoret. Comput. Sci. **299** (2003) 719–734
- Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed clique-width. Discrete Appl. Math. 126 (2003) 197–221
- 16. Johnson, J.L.: Polynomial time recognition and optimization algorithms on special classes of graphs. PhD thesis, Vanderbuilt University (2003)
- 17. Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic, and a conjecture by Seese. submitted (2004)