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Abstract. A c-tree is a tree such that each vertex has a color c ∈
{c1, c2, · · · , cm}. In this paper we give a simple algorithm to generate
all c-trees with at most n vertices and diameter d, without repetition.
Our algorithm generates each c-tree in constant time. By using the algo-
rithm for each diameter 2, 3, · · · , n − 1, we can generate all c-trees with
n vertices.

1 Introduction

It is useful to have the complete list of graphs for a particular class. One can use
such a list to search for a counter-example to some conjecture, to find the best
graph among all candidate graphs, or to experimentally measure the average
performance of an algorithm over all possible input graphs.

Many algorithms to generate a particular class of graphs are already known
[B80, LN01, LR99, M98, N02, R78, W86]. Many excellent textbooks have been
published on the subject [G93, KS98, W89].

Algorithms to generate all trees with n vertices without repetition are already
known. The algorithm [LR99, W86, NU03] generates each tree in O(1) time on
average, and the algorithm [NU04] generates each tree in O(1) time.

Let C = {c1 = a, c2 = b, c3 = c, · · · , cm} be a set of colors. A c-tree is a tree
such that each vertex has a color c ∈ C.

In this paper we give a simple algorithm to generate, without repetition, all
c-trees with at most n vertices and diameter d. Our algorithm generates each
c-tree in constant time. It does not output each c-tree entirely, but outputs the
difference from the preceding c-tree. Our algorithm is based on our algorithm in
[NU03], and completely different from [W86].

The main idea of our algorithm is first to define a simple relation among
the c-trees, that is “a family tree” of c-trees (see Fig. 1), then outputs c-trees
by traversing the family tree. The family tree, denoted by Tn,d,m, is the (huge)
tree such that the vertices of Tn,d,m correspond to the c-trees with at most n
vertices and diameter d, and each edge corresponds to some relation between
two c-trees. We give a formal definition in Section 4. By traversing the family
tree we can generate all c-trees corresponding to the vertices of the family tree
without repetition.
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Fig. 1. The family tree T7,4,3 sharing c-spine (a, b, b, a, b)
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We have designed several generation algorithms based on the family trees
[N02, NU03]. In this paper we first extend the method for c-trees.

Our algorithm has an application for a problem in tree mining. Many tree
mining algorithms based on systematic enumeration of subtrees are already
known. See a survey paper [C05]. Given a huge size of XML data, we wish to
discover frequent patterns in the data. The frequent “patterns” are candidates
for new “knowledge” [A03]. We can model XML data as a tree, where each data
object is represented by a node with a label (=color), and each relationship be-
tween data objects by an edge. If we restrict patterns to frequent occurrences
of the same colored subtrees, then we can solve the problem by (1) generating
every c-tree, (2) then count the occurrences of each c-tree as a subgraph in the
given XML tree, (3) then output the frequently occurred c-trees. By using our
algorithm to generate every c-tree based on the family tree, we can efficiently
prune rarely occurred c-trees, since in the family tree every “child” c-tree con-
tains its “parent” c-tree as a subtree, so if the occurrence of a c-tree T is rare
then the occurrence of any “descendant” c-tree of T is also rare. Thus we need
not count the occurrences of each descendant rare c-tree of T .

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 assigns a unique ordered c-tree H for each c-tree T , by choosing the
root of T and the ordering of each child vertices. Section 4 introduces the family
tree. Section 5 generates all c-paths, which are colored paths. Section 6 presents
our algorithm to generate all c-trees for the even diameter case. In Section 7 we
sketch our algorithm for the odd diameter case. Finally Section 8 is a conclusion.

2 Preliminaries

In this section we give some definitions.
Let G be a connected graph with n vertices. An edge connecting vertices x

and y is denoted by (x, y). A path is a sequence of distinct vertices (v0, v1, · · · , vk)
such that (vi−1, vi) is an edge for i = 1, 2, · · · , k. The length of a path is the
number of edges in the path. The distance between a pair of vertices u and v
is the minimum length of a path between u and v. The diameter of G is the
maximum distance between two vertices in G.

A tree is a connected graph without cycles. A rooted tree is a tree with one
vertex r chosen as its root . A c-tree is a tree such that each vertex has a color
c ∈ {c1, c2, · · · , cm}. For each vertex v in a rooted tree, let UP (v) be the unique
path from v to the root r. If UP (v) has exactly k edges then we say that the
depth of v is k, and write dep(v) = k. The parent of v �= r is its neighbor on
UP (v), and the ancestors of v �= r are the vertices on UP (v) except v. The
parent of the root r and the ancestors of r are not defined. We say that if v is
the parent of u then u is a child of v, and if v is an ancestor of u then u is a
descendant of v. A leaf is a vertex that has no child.

An ordered tree is a rooted tree with left-to-right ordering specified for the
children of each vertex. We denote by T (v) the ordered subtree of an ordered
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Fig. 2. The dc sequences

tree T consisting of a vertex v and all descendants of v with preserving the
left-to-right ordering for the children of each vertex.

Let T be an ordered c-tree with n vertices, and (v1, v2, · · · , vn) be the list of
the vertices of T in preorder [A95]. Let dep(vi) be the depth of vi and c(vi) be the
color of vi for i = 1, 2, · · · , n. Then, the sequence L(T ) = (dep(v1), c(v1), dep(v2),
c(v2), · · · , dep(vn), c(vn)) is called the dc-sequence of T . Some examples are shown
in Fig. 2. Note that those trees in Fig. 2 are isomorphic as unordered c-trees,
but non-isomorphic as ordered c-trees.

Let T1 and T2 be two ordered c-trees, and L(T1)=(a1, b1, a2, b2, · · · , an, bn) and
L(T2)=(x1, y1, x2, y2, · · · , xz, yz) be their dc-sequences. If there is some j such that
ai =xi and bi =yi for each i=1, 2, · · · , j−1 (possibly j = 1) and either (i) aj > xj ,
(ii) aj = xj and bj > yj, or (iii) n > z = j − 1, then we say that L(T1) is heavier
than L(T2), and write L(T1) > L(T2). For example, in Fig. 2, (a)<(b)<(c).

3 The Left-Heavy Embeddings

In Section 3–6, we only consider the case where the diameter is even.
Let T be a c-tree with diameter 2k, and (v0, v1, · · · , v2k) be a path in T having

length 2k. One can observe that T may have many such paths, but the vertex
vk, called the center of T , is unique [W01–p72]. We assign to T the rooted c-tree
R derived from T by choosing vk as the root. Then we assign to R a unique
ordered c-tree H as follows.

Given a rooted c-treeR, since we can choosemany left-to-right orderings for the
children of each vertex, we can observe thatRcorresponds to many non-isomorphic
ordered c-trees. Let H be the ordered c-tree corresponding to R that has the heav-
iest dc sequence L(H). Then we say that H is the left-heavy embedding of R. For
example, the ordered c-tree in Fig. 2(c) is the left-heavy embedding of a rooted
c-tree, however the ordered c-trees in Fig. 2(a) and (b) are not, since the one in
Fig. 2(c) is heavier. We assign the ordered c-tree H to R.

Given a c-tree T , we have assigned to T a unique distinct rooted c-tree R,
and then we have assigned to R a unique distinct ordered c-tree H , which is
the left-heavy embedding of R. Note that T, R and H have the same diameter
2k. Let Sn,2k,m be the set of all left-heavy embeddings of c-trees with at most
n vertices and diameter 2k. If we generate all ordered c-trees in Sn,2k,m, then
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it also means the generation of all c-trees with at most n vertices and diameter
2k. We are going to generate all ordered c-trees in Sn,2k,m.

We have the following lemma.

Lemma 1. An ordered c-tree H is the left-heavy embedding of a rooted c-tree if
and only if for every pair of consecutive child vertices v1 and v2, they appear in
this order in the left-to-right ordering, L(T (v1)) ≥ L(T (v2)) holds.

Proof. By contradiction. ��
In the rest of the paper the condition “L(T (v1)) ≥ L(T (v2)) for each consec-

utive child vertices v1 and v2”, is called the left-heavy condition.

4 The Family Tree of c-Trees Sharing a c-Spine

Let H be a left-heavy embedding in Sn,2k,m with root r. Let pk be the first leaf
of H at depth k in preorder, and PL = (r = p0, p1, · · · , pk) be the path between
r = p0 and pk. We say that PL is the left spine of H . Let H

′
be the ordered

tree derived from H by removing T (p1), that is the subtree rooted at p1. We can
observe that H

′
is also a left-heavy embedding. Let qk be the first leaf in H

′
at

depth k in preorder, and PR = (r = q0, q1, · · · , qk) be the path between r = q0

and qk. We say that PR is the right spine of H . We call PL ∪ PR the spine of
H . We can observe that PL ∪PR corresponds to a path with 2k edges. Since the
diameter of H is 2k, such pk and qk always exist.

An left-heavy embedding H in Sn,2k,m is trivial if it consists of only PL∪PR.
Observe that any non-trivial H ∈ Sn,2k,m has at least three leaves, so we can
choose one leaf except pk and qk.

Assume H ∈ Sn,2k,m is non-trivial. The last leaf x of H in preorder except
pk and qk is called the removable vertex of H . Let P (H) be the ordered c-tree
derived from H by removing x.

Now we consider whether the left-heavy condition still holds in P (H) or not.
We have the following seven cases, depending on the location of x in H . Let
r1, r2, · · · , rd(r) be the children of r. Assume that they appear in this order in
the left-to-right ordering of them. Also assume that pk in PL is a descendant of
ry and qk in PR is a descendant of rz. See Fig. 3.

Case 1: x ∈ T (ri) for some i > z.
Then the left-heavy condition still holds in P (H), since we remove the right-

most leaf, so a “right” subtree may loose some weight, but it never destroys the
left-heavy condition.
Case 2: x ∈ T (rz), and x succeeds qk in preorder.

Then the left-heavy condition still holds in P (H). Similar to Case 1.
Case 3: x ∈ T (rz), and x precedes qk in preorder.

Now there is no leaf x satisfying Case 1 or 2.
Let qj on PR be the ancestor of x having maximum depth, and qj = q

′
j , q

′
j+1,

q
′
j+2, · · · , q

′
s = x be the path between qj and x. See Fig. 4. Note that by the
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definition of PR, the depth of any descendant of q
′
j+1 is at most k−1. (Otherwise,

q
′
j+1 has a descendant at depth k, and PR must pass through q

′
j+1. Now PR is the

path between r and the leftmost descendant of q
′
j+1 at depth k, a contradiction.)

We have the following two subcases.
Case 3(a): T (q

′
j+1) is not a path.

Then the left-heavy condition still holds in P (H). See Fig. 4(a), where the
set of color is {c1 = a, c2 = b, c3 = c}. Let t be the first leaf of T (q

′
j+1) in

preorder. Note that the dc sequence of the path from q
′
j+1 to t is heavier than

the dc sequence of the path from qj+1 to qk, since the left-heavy condition holds
in H .
Case 3(b): T (q

′
j+1) is a path.

Then we have two subcases.
If c(q

′
j+1) = c(qj+1), c(q

′
j+2) = c(qj+2), · · · c(q′

s−1) = c(qs−1) holds then
the left-heavy condition destroyed in P (H), since L(T (qj+1)) is heavier than
L(T (q

′
j+1)) in P (H). See Fig. 4(c). In this case, by swapping the order of q

′
j+1

and qj+1, the left-heavy condition again holds. We re-define the resulting ordered
c-tree as P (H).

Otherwise the left-heavy condition still holds in P (H). See Fig. 4(b).
Case 4: x ∈ T (ri) for some i, y < i < z.

Now rz−1 is the ancestor of x at depth one, and there is no leaf x satisfying
Case 1, 2 or 3.
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Case 4(a): T (rz−1) is not a path.
Then the left-heavy condition still holds in P (H). (Similar to Case 3(a).)

Case 4(b): T (rz−1) is a path.
Similar to Case 3(b). We have two subcases as follows.
Let q

′
0 = r, q

′
1, q

′
2, · · · , q

′
s = x be the path between r and x.

If c(q
′
1) = c(q1), c(q

′
2) = c(q2), · · · , c(q′

s−1) = c(qs−1) holds, then the left-
heavy condition destroyed in P (H), since L(T (q1)) is heavier than L(T (q

′
1)) in

P (H). In this case, by swapping the order of q
′
1 = rz−1 and q1 = rz , the left-

heavy condition again holds. We re-define the resulting ordered c-tree as P (H).
Case 5: x ∈ T (ry), and x succeeds pk in preorder.

Then the left-heavy condition still holds in P (H). Similar to Case 1 and 2.
Case 6: x ∈ T (ry), and x precedes pk in preorder.

Similar to Case 3.
Case 7: x ∈ T (ri) for some i < y.

Similar to Case 4.

Since we never remove pk and qk, the spine always remains as it was. Note
that P (H) is left-heavy unless Case 3(b), 4(b) or 6(b) occurs, and even if Case
3(b), 4(b) or 6(b) occurs, by a possible modification, the resulting P (H) is left-
heavy.

Now we have the following lemma.

Lemma 2. For any non-trivial H ∈ Sn,2k,m, P (H) is also in Sn,2k,m (after
possible modification in Case 3(b), 4(b) or 6(b)).

Given an ordered c-tree H in Sn,2k,m, by repeatedly removing the removable
vertex, we can have the unique sequence H, P (H), P (P (H)), · · · of ordered c-
trees in Sn,2k,m, which eventually ends with the trivial ordered c-tree H1. By
merging these sequences we can have the family tree of Sn,2k,m, denoted by
Tn,2k,m, such that the vertices of Tn,2k,m correspond to the c-trees in Sn,2k,m

having the same c-spine, and each edge corresponds to each relation between
some H and P (H). For instance, T7,4,3 with c-spine (a, b, b, a, b) is shown in
Fig. 1.

We say that P (H) is the parent tree of H and H is a child tree of P (H). We
also say P (H) is a Type i child of H if Case i occurs to find P (H) from H .

5 Algorithm for c-Paths

A c-path is a path such that each vertex has a color c ∈ {c1, c2, · · · , cm}. Given
an integer 2k, one can generate every c-path with length 2k in constant time for
each on average[RS00]. The detail is not mentioned in [RS00], but we can design
a naive recursive algorithm as follows.

Let S2k,m be the set of all c-path with length 2k. Let (v0, v1, · · · , v2k) be a
c-path with edge (vi−1, vi) for 1 ≤ i ≤ 2k. Let (c(v0), c(v1), · · · , c(v2k)) be the
sequence of colors. Given a c-path, since we can choose the direction of the path
we have two such sequences of colors, each one is the reverse of the other. Assume
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S1 and S2 be the two sequence of colors for a c-path. We say a sequence S1 is a
forward sequence if S1 is lexicographically larger than or equal to S2.

If we generate all forward sequences with length 2k+1 over alphabet {c1, c2,
· · · , cm}, then they correspond to all c-paths in S2k,m.

Each forward sequence (x0, x1, · · · , x2k) with length 2k + 1 is one of the
following two types.

Type 1: x0 > x2k.
Then subsequence (x1, x2, · · · , x2k−1) is any sequence.

Type 2: x0 = x2k.
Then subsequence (x1, x2, · · · , x2k−1) is any forward sequence corresponds to

a c-path in S2k−1,m.

Based on the recursive structure above we can generate every c-path in con-
stant time for each on average.

6 Algorithm for c-Trees

In this section we give an algorithm to construct Tn,2k,m.
Using the algorithm in [RS00] or Section 5, we can generate every c-path in

constant time for each. During the generation above, at the time we generate
each c-path Pc, we wish to generate all c-trees in Sn,2k,m sharing the c-spine Pc.

All we need to do is, given a c-tree H having the c-spine Pc, to generate
all “child” c-trees of H . Then in a recursive manner we can generate all c-trees
in Tn,2k,m sharing the c-spine Pc. Now we are going to give an algorithm to
generate all child c-trees of a given ordered c-tree.

Let H be an ordered c-tree in Sn,2k,m. We have eight cases depending on the
location of the removable vertex x in H as follows.

Again let r1, r2, · · · , rd(r) be the children of the root r. Assume they appear
in this order in the left-to-right ordering of them. Let PL = (p0 = r, p1, · · · , pk),
and PR = (q0 = r, q1, · · · , qk). Also assume that pk in PL is a descendant of ry

and qk in PR is a descendant of rz. See Fig. 3.

Case 0: H is trivial, that means H has only two leaves pk and qk.
Case 1: x ∈ T (ri) for some i > z.
Case 2: x ∈ T (rz), and x succeeds qk in preorder.
Case 3: x ∈ T (rz), and x precedes qk in preorder.
Case 4: x ∈ T (ri) for some i, y < i < z.
Case 5: x ∈ T (ry), and x succeeds pk in preorder.
Case 6: x ∈ T (ry), and x precedes pk in preorder.
Case 7: x ∈ T (ri) for some i < y.

For each case we can generate all child c-trees of H . In this paper we only
explain for Case 2 and Case 3, since other cases are similar.
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Case 2: x ∈ T (cz), and x succeeds qk in preorder.
If H has a child c-tree Hc with Type 4, 5, 6 or 7, then P (Hc) �= H , a

contradiction. Thus H has no child c-tree with Type 4, 5, 6 or 7.
Then consider for child c-trees with Type 1, 2 and 3.

Case 2(1): Child c-trees with Type 1.
Let H1[i] be the c-tree derived from H by adding the rightmost child leaf of

r with color ci. Assume that rz has color cj . The child c-trees of H with Type
1 are H1[0], H1[1], · · · , H1[j]. Note that H1[j + 1] is not left heavy.

Case 2(2): Child c-trees with Type 2.
We need some definitions here.
Let P = (u0 = r, u1, · · · , udep(x) = x) be the path between r = u0 and x. Let

uy on PR be the ancestor of x having maximum depth. Thus P and PR share
the subpath u0 = q0, u1 = q1, · · · , uy = qy). Let si+1 be the child vertex of ui

preceding ui+1 (if such si+1 exists), for 0 ≤ i ≤ dep(x).
We say that H is active at depth i if (i)ui has two or more child vertices, and

(ii)L(H(ui+1)) is a prefix of L(H(si+1)). Intuitively, if H is active at depth i,
then we are copying subtree H(ui+1) from H(si+1). We say the copy-depth of H
is d if H is active at depth d but not active at any depth in {0, 1, · · · , d−1}. If H
is not active at any depth, then we say the copy-depth of H is dep(x). Assume
that H is active at depth d.

Let H2[i, j] be the c-tree derived from H by adding the rightmost child leaf
s to uj with color ci. Thus uj+1 precede the new vertex s in H2[i, j], if j + 1 ≤
dep(x). Any child c-tree of H with Type 2 is H2[i, j] for some i, j, however
not all of them are child c-trees of H with Type 2. We need to check each
carefully.

For j = 0, 1, · · · , d − 1, if c(uj+1) ≥ ci then H2[i, j] is a child c-tree of H ,
and otherwise H2[i, j] is not a child c-tree of H , since it is not left heavy. The
copy-depth of each derived c-tree is j if ci equal to c(uj+1), and is j+1 otherwise.

Then consider for j = d, d + 1, · · · , dep(x). Let nR be the number of vertices
in the subtree H(uj+1) rooted at uj+1, and t be the (nR + 1)-th vertex in the
subtree H(sj+1) rooted at sj+1. Assume t has a color c�.

If j > dep(t) then H2[i, j] is not a child c-tree of H , since it is not left heavy.
If j = dep(t) but � < i then H2[i, j] is not a child c-tree of H , since it is not left
heavy. If j = dep(t) and � = i then H2[i, j] is a child c-tree of H . The copy-depth
of the derived c-tree is again d. If j = dep(t) and � > i then H2[i, j] is a child
c-tree of H . The copy-depth of each derived c-tree is j if ci equal to c(sj+1),
and is j + 1 otherwise. If j < dep(t) then H2[i, j] is a child c-tree of H for any
i. The copy-depth of each derived c-tree is j if ci equal to c(sj+1), and is j + 1
otherwise.

Case 2(3): Child c-trees with Type 3.
In this case we need to check the reverse of Case 3(b) in Section 4. Thus a

c-tree with Type 2 may have a child c-tree with Type 3.
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Define P = (u0 = r, u1, · · · , udep(x) = x), uy, � as in Case 2(2).
If H has only one leaf succeeding qk in preorder, H(uy+1) is a path, H(qy+1)

is a path, and L(H(uy+1)) is a prefix of L(H(qy+1)), then, for each i > �,
H2[i, dep(x)] is a child c-tree with Type 3, after swapping the order of uy+1 and
qy+1.

Case 3: x ∈ T (cz), and x precedes qk in preorder.
If H has a child c-tree Hc with Type 4, 5, 6 or 7, then P (Hc) �= H , a

contradiction. Thus H has no child c-tree with Type 4, 5, 6 or 7.
Then consider for child c-trees with Type 1, 2 and 3.

Case 3(1): Child c-trees with Type 1.
Omitted. Similar to Case 2(1).

Case 3(2): Child c-trees with Type 2.
Omitted. Similar to Case 2(2).

Case 3(3): Child c-trees with Type 3.
Let P = (u0 = r, u1, · · · , udep(x) = x) be the path between r = u0 and x. Let

uy on PR be the ancestor of x having maximum depth. Let si+1 be the child
vertex of ui preceding ui+1 (if such si+1exists), for 0 ≤ i ≤ dep(x).

We say that H is active at depth i if (i)ui has two or more child vertices, and
(ii)L(H(ui+1)) is a prefix of L(H(si+1)). We say the copy-depth of H is d if H
is active at depth d but not active at any depth in {0, 1, · · · , d − 1}. If H is not
active at any depth, then we say the copy-depth of H is dep(x). Assume that H
is active at depth d.

For j ≥ y, let H3[i, j] be the c-tree derived from H by adding the new child
leaf s to uj succeeding uj+1 with color ci.

Any child c-tree of H with Type 3 is H3[i, j] for some i, j, however not all of
them are child c-trees of H with Type 3.

For j = y, if s ≤ i < t, where cs = c(uj+1) and ct = c(qj+1), then H2[i, j] is
a child c-tree of H .

For j = y + 1, y + 2, · · · , d − 1, if c(uj+1) ≥ i then H3[i, j] is a child c-tree
of H , and otherwise H3[i, j] is not a child c-tree of H , since it is not left heavy.
The copy-depth of each derived c-tree is j if ci equal to c(uj+1), and is j + 1
otherwise.

Then consider for j = d, d + 1, · · · , dep(x). Let nR be the number of vertices
in the subtree H(uj+1) rooted at uj+1, and t be the (nR + 1)-th vertex in the
subtree H(sj+1) rooted at sj+1. Assume t has a color c�.

If j > dep(t) then H3[i, j] is not a child c-tree of H , since it is not left heavy.
If j = dep(t) but � < i then H3[i, j] is not a child c-tree of H , since it is not left
heavy. If j = dep(t) and � = i then H3[i, j] is a child c-tree of H . The copy-depth
of the derived c-tree is again d. If j = dep(t) and � > i then H3[i, j] is a child
c-tree of H . The copy-depth of each derived c-tree is j if ci equal to c(sj+1),
and is j + 1 otherwise. If j < dep(t) then H3[i, j] is a child c-tree of H for any
i. The copy-depth of each derived c-tree is j if ci equal to c(sj+1), and is j + 1
otherwise.
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Based on the case analysis above, we have the following theorem.

Theorem 1. One can generate all c-trees in O(f(n)) time and O(n) space,
where f(n) is the number of nonisomorphic c-trees with at most n vertices and
diameter 2k.

Proof. Since we traverse the family tree Tn,2k,m and output each ordered c-tree
at each corresponding vertex of Tn,2k,m, we can generate all c-trees in Sn,2k,m.

We maintain the last two occurrences of each depth in two arrays of length
k. We record the update of the arrays and restore the arrays if return occur.
Thus we can find ui in constant time for each i.

We also maintain the current copy-depth d and the vertex next to be copied.
Other parts of the algorithm need only constant time of computation for each

edge of Tn,2k,m.
Thus the algorithm runs in O(f(n)) time. Note that the algorithm does not

output each tree entirely, but the difference from the preceding tree.
For each recursive call we need a constant amount of space, and the depth

of the recursive call is bounded by n. Thus the algorithm uses O(n) space. ��

7 The Odd Diameter Case

In this section we sketch the case where the diameter is odd.
It is known that a tree with odd diameter 2k+1 may have many paths of length

2k + 1, but all of them share a unique edge, called the center of T [W01–p72].
Intuitively, by treating the edge as the root, we can define the family tree

Tn,2k+1,m in a similar manner to the even diameter case. The detail is omitted.

8 Conclusion

In this paper we gave a simple algorithm to generate all c-trees with at most n
vertices and diameter d. The algorithm generates each c-tree in constant time
on average.

By slightly modifying the algorithm as shown below [NU03, NU04] we can
improve the worst case running time. Since we traverse at most three edges to
generate next c-tree, the algorithm generates each c-tree in constant time.

Procedure find-all-children(T , depth)
{ T is the current c-tree, and depth is the depth of the recursive call.}
begin

01 if depth is even
02 then Output T { before outputting its child c-trees.}
03 Generate child c-trees T1, T2, · · · , Tx by the method in Section 6 and 7, and
04 recursively call find-all-children for each child c-tree.
05 if depth is odd
06 then Output T { after outputting its child c-trees.}

end
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