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Malostranské nám. 2/25, 118 00, Prague, Czech Republic
fiala@kam.mff.cuni.cz

2 Department of Computer Science, University of Durham,
Science Laboratories, South Road,

Durham DH1 3LE, England
daniel.paulusma@durham.ac.uk

3 Department of Informatics, University of Bergen,
N-5020 Bergen, Norway

telle@ii.uib.no

Abstract. Degree refinement matrices have tight connections to graph
homomorphisms that locally, on the neighborhoods of a vertex and its
image, are constrained to three types: bijective, injective or surjective.
If graph G has a homomorphism of given type to graph H , then we
say that the degree refinement matrix of G is smaller than that of H .
This way we obtain three partial orders. We present algorithms that
will determine whether two matrices are comparable in these orders. For
the bijective constraint no two distinct matrices are comparable. For the
injective constraint we give a PSPACE algorithm, which we also apply to
disprove a conjecture on the equivalence between the matrix orders and
universal cover inclusion. For the surjective constraint we obtain some
partial complexity results.

1 Introduction

Graph homomorphisms, originally obtained as a generalization of graph col-
oring, have a great deal of applications in computer science and other fields.
Beyond these computational aspects they impose an interesting structure on
the class of graphs, with many important categorical properties, see e.g. the
recent monograph [6]. We focus our attention on graph homomorphisms with
local constraints. Originally arising in topological graph theory, these homomor-
phisms were required to act as a bijection on the neighborhood of each vertex [2].
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We consider further local constraints, namely local injectivity or local surjectiv-
ity. Both these kinds of homomorphisms have already been studied due to their
applications in models of telecommunication [4] and in social science [3,8].

In related work [5] we have shown that these locally constrained homomor-
phisms impose an algebraic structure on the class of connected finite graphs.
We also extended a necessary condition for the existence of a locally bijective
homomorphism between two graphs [7] to a similar but much more sophisti-
cated statement for locally injective or surjective homomorphisms. An important
role in this characterization was predicated to matrices that describe the degree
structure of a graph, the so-called degree refinement matrices. We gave a char-
acterization of these matrices, and showed that both locally injective and locally
surjective graph homomorphisms impose partial orders on degree refinement
matrices [5].

New Results

In this paper we continue this work and turn our attention away from categor-
ical questions to focus instead on the following computational questions: Given
two degree matrices, are they comparable in the partial orders imposed by local
injectivity or surjectivity? It is not obvious that these questions are decidable,
and indeed for local surjectivity we must leave this as a major open problem.
However, for local injectivity we manage to show an upper bound on the size of
the smallest graphs that can possibly justify a positive answer and use this to
provide a PSPACE algorithm. The existence of a locally bijective homomorphism
between two graphs is conditioned by the equivalence of their degree refinement
matrices, which can also be expressed as an isomorphism between their universal
covers [7]. For the other two kinds of locally constrained homomorphisms this
naturally raises the question, and conjecture, of a similar tight relationship be-
tween matrix comparison in the partial order and inclusion of universal covers.
However, we apply our PSPACE algorithm to disprove this enticing conjecture.
For the surjective constraint we obtain some partial results on the complexity of
matrix comparison.

2 Preliminaries

Graphs considered in this paper are simple, i.e. with no loops and multiple
edges, connected and, if not stated otherwise, they are also finite. We denote the
class of such graphs by C. For any vertex u ∈ VG the symbol N(u) denotes the
neighborhood of u, i.e. the set of all vertices adjacent to u. A k-regular graph is a
graph, where all vertices have k neighbors (i.e. are of degree k). A (k, l)-regular
bipartite graph is a bipartite graph where vertices of one class of the bi-partition
are of degree k and the remaining vertices are of degree l. A graph G is a subgraph
of a graph H if VG ⊆ VH and EG ⊆ EH . This is denoted by G ⊆ H .

A degree partition of a graph G is a partition of the vertex set VG into blocks
B = {B1, . . . , Bk} such that whenever two vertices u and v belong to the same
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block Bi, then for any j ∈ {1, . . . , k} we have |NG(u)∩Bj | = |NG(v)∩Bj | = mi,j .
The k × k matrix M such that (M)i,j = mi,j is a degree matrix. A graph G
can allow several degree matrices. The matrix that corresponds to the partition
with the smallest number of blocks and where these blocks follow the so-called
canonical ordering (just some ordering to provide uniqueness) is called its degree
refinement matrix. It is denoted by drm(G) for a graph G and computed in
polynomial time by a simple stepwise refinement starting from an initial partition
by vertex degrees with blocks ordered by increasing degrees. The refinement of
the partition continues until any two nodes in the same block have the same
number of neighbors in any other block, see e.g. [5]. (See Fig. 1 for an example.)
We denote the class of degree refinement matrices of graphs in C by M.

A graph homomorphism is an edge-preserving mapping f : VG → VH , i.e.
(f(u), f(v)) is an edge of H whenever (u, v) ∈ EG. A homomorphism f : G → H
may be further confined to adhere to some local constraints, as in the following
definition.

Definition 1. We call a graph homomorphism f : G → H locally bijective,
locally injective or locally surjective if for every vertex u ∈ VG the restriction
of f to N(u) is a bijection, injection or surjection between N(u) and N(f(u)),
respectively. We denote it as f : G B−→ H or f : G I−→ H or f : G S−→ H,
respectively.

For each of the three types of local constraints ∗ = B (bijective), ∗ = I (injective)
or ∗ = S (surjective), we will in this paper focus on the following three relations
on the class of degree refinement matrices M:

M
∗−→ N ⇐⇒ exist G, H ∈ C : drm(G) = M, drm(H) = N and G

∗−→ H

In [5] we showed that all three relations (M, B−→), (M, I−→) and (M, S−→) are
partial orders. Note that (M, B−→) is in fact a trivial order, since in [7] it has
been shown that drm(G) = drm(H) is a necessary condition for G B−→ H .

For a graph G ∈ C the universal cover TG is defined in [1] as the only (possibly
infinite) tree that allows TG

B−→ G. The vertices of TG can be represented as
walks in G starting in a fixed vertex u that do not traverse the same edge
in two consecutive steps. Edges in TG connect those walks that differ in the
presence of the last edge. The mapping TG

B−→ G sending a walk in VTG to its
last vertex is a locally bijective homomorphism. Universal covers are in one-to-
one correspondence with degree refinement matrices, hence for M ∈ M we can
define TM = TG for any G with drm(G) = M .

Proposition 1 ([5]). The relation M I−→ N holds if and only if there exist
graphs G with drm(G) = M and H with drm(H) = N such that G ⊆ H.

We use the following relationship between degree refinement matrices and uni-
versal covers.

Proposition 2 ([5]). For any degree refinement matrices M, N ∈ M it holds
that if M I−→ N then TM ⊆ TN , and if M S−→ N then TN ⊆ TM .
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For computational complexity purposes 〈X〉 denotes the size of the instance X
(graph, matrix, etc.) in usual binary encoding of numbers. Formally we represent
vertices of a graph G by numbers {1, 2, . . . , |VG|} and its edges as a list of its ver-
tices. A graph with m edges on n vertices hence requires space 〈G〉 = Θ(m log n).
For an integral-valued k× l matrix A let a∗ = 2+max{|Ai,j | | 1 ≤ i ≤ k and 1 ≤
j ≤ l}. Then the size of A is given by 〈A〉 = Θ(kl log a∗).

We will need the following technical lemma for our PSPACE algorithm.

Lemma 1. Let A be an integral-valued k× l matrix with l > k. If Ax = 0 allows
a nontrivial nonnegative solution, then it allows a nontrivial nonnegative integer
solution x with at most k + 1 nonzero entries and with 〈xi〉 = O(k log(ka∗)) for
each entry xi.

Proof. If a solution x with more than k + 1 positive coefficients exists, then the
columns corresponding to k+1 of these variables are linearly dependent. Let the
coefficients of such a linear combination form a vector x′. Obviously Ax′ = 0,
but the entries of x′ may not be necessarily nonnegative.

Without loss of generality we assume that at least one of the entries in x′ is
positive. Then, for a suitable value α = −min{xi

x′
i
| x′

i > 0} the vector x + αx′

is also a nontrivial nonnegative solution with more zero entries than x.
Repeating this trimming iteratively we obtain a nontrivial nonnegative solu-

tion with at most k + 1 nonzero entries. As the other entries are zero, we may
restrict the matrix A to columns corresponding to nonzero entries of the solution.
It may happen that the rank of the modified matrix decreases. Then we reduce
the number of rows until the remaining ones become linearly independent. By
repeating the above process we finally get an k′ × (k′ + 1) matrix B of rank
k′ ≤ k, such that By = 0 allows a nontrivial nonnegative solution y. Such y can
be extended to a solution x of the original system by inserting zero entries.

Without loss of generality we assume that the first k′ columns of B are
linearly independent, and we arrange them in a regular matrix R. Then its
inverse can be expressed as R−1 = adj(R)

det(R) , where adj(R) is the adjoint matrix of

R. By the determinant expansion we have that det(R) ≤ k′!(a∗)k′ ≤ k!(a∗)k ≤
kk(a∗)k. Then we find that 〈det(R)〉 = O(k log(ka∗)). Each element of adj(R) is
a determinant of a minor of R and hence is smaller than (k − 1)k−1(a∗)k−1.

Now consider the integral valued matrix B′ = det(R) · R−1B. Then

• y is a solution of B′y = 0 if and only if By = 0.
• The first k′ columns of B′ form the matrix det(R) · Ik′ .
• In the last column the entries z1, . . . , zl, are all negative (if det(R) > 0) or

all positive (otherwise).

If det(R) > 0 then y = (−z1, . . . ,−zk′ , det(R)) is a nonnegative nontrivial
integral solution to By = 0. In the other case we swap the sign and choose
y = (z1, . . . , zk′ ,− det(R)). As each zi ≤ ka∗ maxij(adj(R)ij) ≤ kk(a∗)k, we
obtain 〈zi〉 = O(k log(ka∗)), which concludes the proof. ��
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3 Matrix Comparison Via Local Injectivity

In this section we consider the problem of deciding whether for given degree
refinement matrices M and N the comparison M I−→ N holds.

Observe that according to the definition of the order (M, I−→), there is no ob-
vious bound on the sizes of graphs G and H with M and N as degree refinement
matrices that should justify the comparison M I−→ N .

The main result of this paper is the following theorem:

Theorem 1. Let M, N be degree refinement matrices of order k and l. If M I−→
N , then there exist a graph G of size (klm∗)O(k2l2) and a graph H of size
(klm∗n∗)O(k2l2) such that G I−→ H, drm(G) = M and drm(H) = N .

Proof. Throughout this proof we assume that indices i, j, r, s used later always
belong to feasible intervals 1 ≤ i, r ≤ k and 1 ≤ j, s ≤ l. For clarity we often
abbreviate pairs of sub-/super-scripts i, j by ij, so in this notation, ij does not
mean multiplication.

The main idea of the construction is as follows. Assume that M I−→ N holds.
Then by Proposition 1 there exist a graph H and a subgraph G ⊆ H witnessing
M I−→ N . Let {U1, . . . , Uk} be the degree partition of G and {V1, . . . , Vl} the one
for H . We further partition VG ⊆ VH as follows. For each pair of indices r and
s we define the set

Wrs = {v | v ∈ Ur ∩ Vs},
and for some vertex w ∈ Wrs we can write a vector describing the distribution
of neighbors of w in the classes W11, . . . , Wkl.

We first show that for given M and N the set T containing all such vectors is
finite. Then, with help of T , we design a set of equations that allows a solution
if and only if the desired graphs G and H exist. As the size of T is bounded, we
can establish the desired bounds on the size of G and H .

Let prs be a vector of length kl whose entries are positive integers and are
indexed by pairs ij. If the vector prs further satisfies

l∑

j=1

prs
ij = mri for all 1 ≤ i ≤ k, (1)

k∑

i=1

prs
ij ≤ nsj for all 1 ≤ j ≤ l, (2)

then we call prs an injective distribution row for indices r and s. Note that for
given matrices M and N and any feasible choice of r, s the number of all different
injective distribution rows for r and s is finite. We denote the set of all injective
distribution rows for indices r and s by

T (r, s) = {prs(1), . . . ,prs(t(rs))}.
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Due to (1), the number of distribution rows for every prs is bounded by

t(r, s) ≤ (
m∗+l−1

m∗
)k

= O((m∗ + 1)kl). The total number of distribution rows is
then

t0 =
∑

r,s

t(r, s) = O(kl(m∗ + 1)kl).

Now consider a set of t0 variables wrs(t) for all feasible r, s and all 1 ≤ t ≤
t(r, s). We claim that the existence of a nontrivial nonnegative solution of the
following homogeneous system of k2l2 equations in t0 variables:

t(r,s)∑

t=1

prs
ij

(t)wrs(t) =
t(i,j)∑

t′=1

pij(t′)
rs wij(t′) 1 ≤ i, r ≤ k, 1 ≤ j, s ≤ l (3)

is a necessary and sufficient condition for the existence of finite graphs G and H
witnessing M I−→ N .

Necessity: For given G and H we assume without loss of generality that G ⊆ H .
Firstly determine the sets Wrs, and for each vertex u ∈ Wrs ⊆ VG compute
the distribution vector of its neighbors p(u) = (|N(u)∩W11|, . . . , |N(u)∩Wkl|).
Then the vector w with entries wrs(t) = |{u : p(u) = prs(t)}| is a nontrivial
solution of (3), since in each equation both sides are equal to the number of
edges connecting sets Wrs and Wij .

Sufficiency: Assume that the system (3) has a nontrivial nonnegative solu-
tion. By appropriate scaling we obtain a nonnegative integer solution w =
(w11(1), . . . , wkl(t(k,l))) with each wrr(t) is even.

We first build a multigraph G0 upon t0 sets of vertices W 11(1), . . . , W kl(t(k,l)),
where |W rs(t)| = wrs(t) (some sets may be empty) as follows: Denote W rs =
W rs(1) ∪ · · · ∪ W rs(t(r,s)).

Our choice of even values wrr(t) allows us to build an arbitrary p
rr(t)
rr -regular

multigraph on each set W rr(t).
As w satisfies (3), we can easily build a bipartite multigraph between any

pair of different sets W rs and W ij such that the number of edges between them
is equal to

∑t(r,s)
t=1 prs

ij
(t)wrs(t) =

∑t(i,j)
t′=1 p

ij(t′)
rs wij(t′).

For any vertex u in W rs(t) with more than p
rs(t)
ij neighbors in W ij there exists

a vertex u∗ in some W ij(t∗) with less than p
rs(t∗)
ij neighbors, and vice versa. Now

we remove an edge between u and some neighbor v ∈ W ij and add the edge
(u′, v). We repeat this procedure until all vertices of W rs have the right number
of neighbors in W ij . Then we do the same for vertices in W ij .

This way we have constructed a bipartite multigraph between W rs and W ij

such that each vertex of each W rs(t) is incident with exactly p
rs(t)
ij edges and

each vertex of each W ij(t′) is incident with exactly p
ij(t′)
rs edges.

It may happen in some instances that multiple edges are unavoidable. In that
case let d ≤ m∗ be the maximal edge multiplicity in G0. We obtain the graph G
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by taking d copies of the multigraph G0 and replace each collection of d parallel
edges of multiplicity d′ ≤ d by a simple d′-regular bipartite graph.

Due to the construction, it is straightforward to check that vertices from sets
that share the same index r form the r-th block of the degree partition of G and
that drm(G) = M .

For the construction of H we first distribute the vertices of G into sets
V ′

1 , . . . , V ′
l , where

V ′
s =

k⋃

r=1

t(r,s)⋃

t=1

W rs(t).

Since N is a degree refinement matrix, the following homogeneous system
whose equations represent the number of edges between two different blocks in
N has nontrivial solutions:

nsjvs = njsvj 1 ≤ j, s ≤ l (4)

Then we form sets V1, . . . , Vl by further inserting new vertices into V ′
1 , . . . , V ′

l

until for each s, j : |Vs|nsj = |Vj |njs and |Vs| > 0 is even.
Next we build a multigraph H0 by constructing an (nsj , njs)-regular bipartite

multigraph between any two sets Vs and Vj , and an njj -regular multigraph on
each Vj . In case multiple edges cannot be avoided we take sufficient copies of H0

and make the appropriate reparations. So we perform these steps in the same
way as before, however without removing any edges between vertices in (any
copy of) G.

Clearly, G is a subgraph of the resulting graph H and H has N as its degree
refinement matrix.

To conclude the proof of the theorem we discuss the size of G and H . Note
that all coefficients p

rs(t)
ij of system (3) are at most m∗. Then, by Lemma 1, we

find a nontrivial nonnegative integer solution w whose entry sizes are bounded
by O(k2l2 log(klm∗)).

We can use the entries of 2w∗ for the sizes of the blocks in the multigraph
G0. Since we take at most m∗ copies of G0 to obtain our final graph G, we find
that 〈G〉 = (klm∗)O(k2l2).

Analogously, the size of each entry of a solution v of system 4 is bounded by
O(l2 log(ln∗)). Since multigraph H0 must contain graph G, we use the entries
of 〈G〉 for the block sizes of H0. We need at most n∗ copies of H0 for graph H .
Hence, each block size |Vi| can be chosen within the upper bound 〈G〉 · (ln∗)O(l2)

implying that 〈H〉 = (klm∗n∗)O(k2l2). ��
We can now settle the first computational complexity result for the following

matrix comparison problem:

Matrix Injectivity (MI)
Instance: Degree refinement matrices M and N .
Question: Does M I−→ N hold?

Corollary 1. The MI problem is decidable in polynomial space.
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Proof. The proof of Theorem 1 showed that M I−→ N if and only if system (3)
has a nontrivial nonnegative solution. Then by Lemma 1 there exists a nontrivial
nonnegative integral solution with at most k2l2 + 1 nonzero entries, which are
each bounded in size by O(k2l2 log(klm∗)).

So we only have to consider vectors of this form. As the size of any such
vector is polynomial, we can by brute force sequentially list them all, and test
their feasibility for (3). Note that any restriction of (3) to polynomially many
columns can be generated in PSPACE as well. ��

As we have discussed in the introduction, the matrix order (M, I−→) was
considered as a nontrivial necessary condition for the decision problem whether
G I−→ H . As the size of M and N should vary from being independent in the
size of the given graphs to be of approximately the same size of G, H , even
the exponential time-complexity of the MI problem might be plausible as a
precomputation for some instances.

We apply Theorem 1 to disprove the following interesting conjecture on the
equivalence between comparison of degree matrices in I−→ and inclusion of uni-
versal covers.

Conjecture 1. For any two degree refinement matrices M and N the following
equivalence holds: M I−→ N ⇐⇒ TM ⊆ TN .

We note here that the affirmative answer for the only if implication was
already shown in Proposition 2. The following example acts both as an example
for the application of Theorem1, and as an counterexample of Conjecture 1.

Corollary 2. There exist matrices M and N such that TM ⊆ TN , but M � I−→ N .

Proof. We first construct graphs G and H such that H S−→ G. Denote M =
drm(G) and N = drm(H). Then according to Proposition 2 we get that TM ⊆
TN . We will now show that the MI problem for matrices M and N has a negative
answer.

G

4

1

3 3’

2

53′

43′

11

31

21

103134 62 124

144

72 93

82

H

113

Fig. 1. Graphs G and H , vertices of H are labeled by uf(u) for a f : H S−→ G
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The graphs G and H together with a mapping f : H S−→ G are depicted in
Fig. 1.

The graph G has 4 classes in its degree refinement and H has 14 classes.
Then N is the adjacency matrix of H and the degree refinement matrix of G is

M =

⎛

⎜⎜⎝

0 1 2 1
1 0 2 0
1 1 0 0
1 0 0 0

⎞

⎟⎟⎠ .

Note that N is the adjacency matrix of H . In order to obtain a contradic-
tion suppose TM

I−→ TN holds. By Proposition 1 there exist a graph G′ with
drm(G′) = M and a graph H ′ with drm(H ′) = N such that G′ ⊆ H ′. Let
{U1, . . . , Uk} be the degree partition of G′ and {V1, . . . , Vl} the one for H ′. We
define the sets Wrs as in proof of Theorem 1.

As we have seen in the proof of Theorem 1 the pair (G′, H ′) corresponds with
a nontrivial solution of (3). Below we will show, however, that (3) only allows
the trivial solution. For simplicity reasons we will first restrict the length of the
injective distribution rows.

A vertex in class U1 has four neighbors in G′. A vertex in class V4 has three
neighbors in H ′. This means that a vertex of U1 can never be in V4, i.e., W1,4 is
empty. Hence the set T (1, 4) is empty. By the same argument we find that the
sets T (r, s) with (r, s) = (1, 5), . . . , (1, 14), (2, 9), . . . , (2, 14), (3, 12), . . . , (3, 14)
are empty.

A vertex in U2 has a neighbor of degree four in G′. A vertex in V1 does not
have a neighbor of degree four in H ′. Hence the set T (2, 1) is empty. By the same
argument we exclude pairs (2, 2), (2, 3), (3, 1), (3.2), (3, 3), (4, 1), (4, 2), (4, 3).

Any vertex in U4 has degree one in G′. Suppose u ∈ U4 belongs to V4. So it
does not have degree one in H ′. Let v ∈ U1 be the (only) neighbor of u in G′.
Then v has degree four in G′ and must belong to V1 ∪ V2 ∪ V3. The other three
neighbors of v all have degree greater than one in G′. However, one of these three
remaining neighbors of v must have degree one in H ′. Hence, the set T (4, 4) is
empty. In the same way we may exclude pairs (4, 4), . . . , (4, 11).

Every vertex in W2,4 needs a neighbor in W3,1 or W3,2. These sets are empty,
since both T (3, 1) and T (3, 2) are empty. Hence T (2, 4) is empty, and conse-
quently, by a similar argument, T (3, 6) is empty. Furthermore, T (2, 4) = ∅ im-
plies that a vertex in W1,2 does not have neighbor in W3,7. Since every vertex
in W3,7 must have a neighbor in W1,2, the latter implies T (3, 7) = ∅, and conse-
quently T (2, 5) = ∅ and T (3, 8) = ∅.

Only the pairs (3, 4) and (3, 5) allow two distribution rows, the other pairs
all allow one. So we have reduced the total number of feasible distribution rows
to 4 · 14 − 20 − 9 − 8 − 5 + 2 = 16.

The equation (3) for p, q = 1, 1 and i, j = 2, 6 gives w1,1 = w2,6. Analogously,
w1,1 = w3,4(1) while w2,6 = w3,4(1)+w3,4(2). Hence w3,4(2) = 0. Further w3,4(2) =
w1,2 = w3,10 = w2,6, and w1,2 = w2,7 = w3,11 = w1,3. Consequently, w1,1 =
w1,2 = w1,3 = 0.



124 J. Fiala, D. Paulusma, and J.A. Telle

Table 1. The distribution rows for M (only nonzero entries are shown)

i 1 1 1 2 2 2 3 3 3 3 3 4 4 4
j 1 2 3 6 7 8 4 5 9 10 11 12 13 14

p1,1 1 1 1 1
p1,2 1 1 1 1
p1,3 1 1 1 1

p2,6 1 1 1
p2,7 1 1 1
p2,8 1 1 1

p3,4(1) 1 1

p3,4(2) 1 1

p3,5(1) 1 1

p3,5(2) 1 1
p3,9 1 1
p3,10 1 1
p3,11 1 1

p4,12 1
p4,13 1
p4,14 1

It can be further shown that (3) allows only trivial solution via values of
wr,s. However, at this moment we can already claim that no witnesses G, H for
M I−→ N exist, since it is impossible to map vertices from the first class of degree
partition of G on any vertex of H . ��

4 Matrix Comparison Via Local Surjectivity

In this section we are interested in the following matrix comparison problem:

Matrix Surjectivity (MS)
Instance: A degree refinement matrix M and a degree refinement matrix N .
Question: Does M S−→ N hold?

We were not able to answer the decidability of this problem. However, we can
show some partial results.

Proposition 3. Let G be a graph with drm(G) of order k and H be a graph on l
vertices such that G S−→ H. Then there exists a graph G′ with drm(G′) = drm(G)
such that G′ S−→ H and 〈G′〉 = (klm∗)O(k2l2).

Proof. Let f : VG → VH be a locally surjective homomorphism from G to H .
Let {U1, . . . , Uk} be the degree partition of G and let {v1, . . . , vl} be the vertex
set of H . We further partition VG as follows. For each pair of indices r and s we
define the set

Wrs = {u | u ∈ Ur and f(u) = vs},
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and for some vertex w ∈ Wrs we can write a vector describing the distribution
of neighbors of w in the classes W11, . . . , Wkl.

Let prs be a vector of length kl whose entries are positive integers and are
indexed by pairs ij. If the vector prs further satisfies

l∑

j=1

prs
ij = mri for all 1 ≤ i ≤ k, (5)

(vs, vj) ∈ EH ⇒
k∑

i=1

prs
ij ≥ 1 for all 1 ≤ j ≤ l. (6)

(vs, vj) /∈ EH ⇒
k∑

i=1

prs
ij = 0 for all 1 ≤ j ≤ l. (7)

then we call prs a surjective distribution row for indices r and s. The number
of surjective distribution rows is bounded.

We now involve the system of equations (3). We claim that the existence of a
nontrivial nonnegative solution of (3) is a necessary and sufficient condition for
the existence of a finite graph G′ with drm(G′) = M and G S−→ H . The proof
of this claim and the bound on the size of G′ is using the same arguments as in
the proof of Theorem 1. ��
Now we consider the following decision problem.

Matrix Graph Surjectivity (MGS)
Instance: A degree refinement matrix M and a graph H .
Question: Does there exist a graph G with drm(G) = M such that G S−→ H
holds?

Corollary 3. The MGS problem problem is decidable in polynomial space.

Proof. We can use Proposition 3 and proceed with a proof analogous to the one
in Corollary 1. ��

We can use Corollary 3 to answer decidability of the MS problem for instances
(M, N), where N is the degree refinement matrix of a unique graph H . The
proposition below shows that this is only the case if H is a tree.

Proposition 4. A matrix N is a degree refinement matrix of a unique graph H
if and only if N is the degree refinement matrix of a tree.

Proof. Suppose N is the degree refinement matrix of a tree T . Then the universal
cover TN is isomorphic to T itself. Since all graphs that contain a cycle have an
infinite universal cover, there can not be another graph H with drm(H) = N .

In order to prove the reverse statement let H be the only graph that has N
as a degree refinement matrix. Suppose H is not a tree. Then H contains an
edge e = (u, v) such that the graph H − e is still connected. We take a copy H ′
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of H . Let e′ = (u′v′) be the copy of e. We remove e in H and e′ in H ′, and we
add the edges (u, v′) and (u′, v). The resulting graph H∗ has the same degree
refinement matrix as H and is connected. ��

We can also use Corollary 3 to answer decidability of the MS problem for
instances (M, N), where the l × l degree refinement matrix N is the adjacency
matrix of a graph H . This can be seen as follows. Suppose M S−→ N holds with
witnesses G and H ′. Since N is an adjacency matrix of graph H , the rows of N
are in one-to-one correspondence with vertices of H , i.e., we can say that vertex
vi ∈ VH corresponds to row i. Then the function that maps all vertices of H ′ that
belong to block Vi ⊆ VH′ to vi for 1 ≤ i ≤ l is a locally bijective homomorphism
from H ′ to H . The mappings H ′ B−→ H and G S−→ H ′ imply G S−→ H . So we can
restrict ourselves to graph H .

In general, even if we construct a graph G with respect to feasible block sizes,
there is no evident rule how to limit the size of some plausible graph H and how
to define the locally surjective mapping G S−→ H . We leave the general question
on decidability of the MS as an open problem.
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