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Abstract. A Roman dominating function of a graph G = (V, E) is a
function f : V → {0, 1, 2} such that every vertex x with f(x) = 0
is adjacent to at least one vertex y with f(y) = 2. The weight of a
Roman dominating function is defined to be f(V ) =

∑
x∈V f(x), and

the minimum weight of a Roman dominating function on a graph G is
called the Roman domination number of G.

In this paper we answer an open problem mentioned in [2] by showing
that the Roman domination number of an interval graph can be com-
puted in linear time. We also show that the Roman domination number of
a cograph can be computed in linear time. Besides, we show that there
are polynomial time algorithms for computing the Roman domination
numbers of AT-free graphs and graphs with a d-octopus.

1 Introduction

Let G = (V, E) be an undirected and simple graph. A Roman dominating func-
tion is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0
is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman
dominating function is f(V ) =

∑
x∈V f(x). The minimum weight of a Roman

dominating function on a graph G is called the Roman domination number of
G and is denoted by γR(G).

Roman domination has been introduced in [2] as a new variety of the classical
domination problem having both historical and mathematical interest, partic-
ularly in the field of server placements [15]. We refer to [2,6,10,11,12,16,17] for
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more background on the historical importance of the Roman domination prob-
lem and various mainly graph-theoretic results not mentioned here.

The complexity of the Roman domination problem when restricted to inter-
val graphs was mentioned as an open problem in [2]. In this paper we show that
there are linear time algorithms to compute the Roman domination number for
interval graphs and cographs. We also show that there are polynomial time al-
gorithms for computing the Roman domination numbers of AT-free graphs and
graphs with a d-octopus. The paper is organized as follows. Section 2 gives some
preliminaries about our problem. The results for interval graphs and cographs
are presented in Sections 3 and 4, respectively. In Section 5, we present polyno-
mial time algorithms for computing the Roman domination numbers of AT-free
graphs and graphs with a d-octopus.

2 Preliminaries

Let G = (V, E) be an undirected and simple graph. For a vertex x of G we
denote by N(x) the neighborhood of x in G and by N [x] = N(x) ∪ {x} the
closed neighborhood of x. The distance dG(x, y) between two vertices x and y is
the length of a shortest path joining these two vertices.

A dominating set D of a graph G = (V, E) is a subset of vertices such that
every vertex of V − D has at least one neighbor in D. The minimum cardinality
of a dominating set of G is said to be the domination number of G, and it
is denoted by γ(G). An independent set in a graph G is a subset of pairwise
non-adjacent vertices.

Now let us summarize some useful facts on Roman domination [2].

Theorem 1 ([2]). γ(G) ≤ γR(G) ≤ 2γ(G).

Lemma 1 ([2].). If G is a graph of order n, then γR(G) = γ(G) if and only if
G = Kn, i.e., G is an independent set with n vertices.

Definition 1. A 2-packing is a set S ⊆ V such that for every pair x, y ∈ S
N [x] ∩ N [y] = ∅. The maximum cardinality of a 2-packing in G is called the
2-packing number of G.

Theorem 2 ([2]). Let f be a minimum weighted Roman dominating function
of a graph G without isolated vertices. Let Vi, i = 0, 1, 2, be the set of vertices x
with f(x) = i. Let f be such that |V1| is the minimum. Then V1 is a 2-packing
and there is no edge between V1 and V2.

Theorem 3 ([2]). For any non-trivial connected graph G,

γR(G) = min{|S| + 2γ(G − S) | S is a 2-packing}.

Remark 1. A 2-packing S can serve as V1 and a dominating set in G − S as V2.
Notice that the weight of a Roman dominating function is |V1| + 2|V2|.
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Definition 2. We call (V1, V2) a Roman pair of a graph G if (V1, V2) is a
solution induced by a minimum weighted Roman dominating function of the
graph G.

We refer the reader to [1,8] for definitions and properties of graph classes not
given in this paper.

3 Roman Domination on Interval Graphs

Throughout this section we assume that G = (V, E) is connected. Clearly, if
G is disconnected then, obviously, γR(G) is the sum of the Roman domination
numbers of its components.

Definition 3. A graph G = (V, E) is an interval graph if there exists a set
{Iv | v ∈ V } of intervals of the real line such that Iu ∩ Iv �= ∅ iff uv ∈ E.

Both Iv and v can be used to represent the vertex v in an interval graph.
Let l(v) and r(v) denote the values of the left and right end points of the in-
terval Iv = [lv, rv], respectively. A model of an interval graph is normalized if
∪v∈V {l(v), r(v)} = {1, 2, . . . , 2n}. In the following we assume that a normalized
model of the graph is part of the input.

Our linear time algorithm to compute the Roman domination number of
an interval graph uses dynamic programming and passes through the interval
collection from left to right to enumerate all the potential optimum solutions
(V1, V2).

3.1 Structure of an Optimum Solution

In this section, we examine the structure of an optimum solution.

Lemma 2. For every interval graph there exists a Roman pair (V1, V2) such that
no interval in V2 is properly contained in another interval.

Lemma 3. If (V1, V2) is a Roman pair, then V2 contains no clique of size 3 or
more.

Proof. Let {i1, i2, i3} ⊆ V2 be a clique of size three. By Lemma 2, there is no
interval which is properly contained in another interval. Without loss of gener-
ality, we assume l(i1) < l(i2) < l(i3) < r(i1) < r(i2) < r(i3). Then we obtain
that N [i2] ⊆ N [i1] ∪ N [i3]. That is, (V1, V2 \ {i2}) is a Roman pair of G which
is a contradiction. �	

Lemma 4. If (V1, V2) is a Roman pair, then the connected components induced
by V2 are paths.

Proof. By Lemma 2, each connected component induced by V2 is a proper inter-
val graph. Hence, it is chordal and it does not contain a claw, i.e., K1,3. Together
with Lemma 3, our lemma holds. �	
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We can use this last result in the following way: in order to find a set V2 of
an optimum solution, we only have to consider certain shortest paths between
some pairs of vertices. Now, we characterize the set V1 of an optimum solution.

Definition 4. Let (V1, V2) be a Roman pair of an interval graph G. Intervals
J ⊆ V1 are consecutive iff between the leftmost and rightmost end points of J
there is no end point of an interval I ∈ V2.

Lemma 5. There exists a Roman pair (V1, V2) with the property that V1 is an
independent set, and there is no subset J ⊆ V1 containing more than two con-
secutive intervals.

Proof. By Theorem 2, we have a Roman pair (V1, V2) with V1 being an indepen-
dent set. Let {a, b, c} ⊆ V1 be a set of three consecutive intervals in V1. Suppose
that l(a) < r(a) < l(b) < r(b) < l(c) < r(c). Since (V1, V2) is of minimum weight,
we have ∀v ∈ N(b), v �∈ V1 and v �∈ V2. Consequently, if v ∈ N(b) there must
exist a w ∈ N(v) such that w ∈ V2. However {a, b, c} are consecutive, there-
fore, we have r(w) < l(a) (or resp. r(c) < l(w)). As a result of v ∈ N(a) (resp.
v ∈ N(c)), there exists a solution with f(v) = 2 and f(a) = f(b) = 0 (resp.
f(b) = f(c) = 0). Consequently if we have a solution with three consecutive
intervals, there exists a solution (V1, V2) of same weight such that V1 contains
no more than two consecutive intervals. �	

3.2 Description of the Algorithm

Previous results show us how to build a potential solution (V1, V2). Indeed, we
have seen that connected components induced by V2 are paths and each of these
paths can be preceded or followed by at most two consecutive intervals of V1.
So, our algorithm goes through the interval collection in a left-right fashion. An
optimum solution, i.e, a solution whose weight is the minimum over all possible
solutions, will be one of the solutions found by the algorithm with minimum value
of |V1|+2|V2|. The algorithm uses dynamic programming in order to intelligently
test every possible solution with respect to the structure established by previous
lemmas.

For any given normalized interval graph G = (V, E) of order n, the algorithm
treats intervals increasingly according to their right end points. Corresponding
to a right end point d (0 ≤ d ≤ 2n) of an interval, we define a sub-solution
(V ′

1 , V ′
2) by

1. V ′
1 , V ′

2 ⊆ {i ∈ V : r(i) ≤ d},
2. (V ′

1 , V ′
2 ) is a solution of minimum weight over all the solutions for the graph

G[S], where S = {v ∈ V : l(v) ≤ d}, such that the interval i with r(i) = d
belongs to V ′

2 .

Clearly, at the beginning of the algorithm no intervals are yet considered and
we define for d = 0 the sub-solution (V ′

1 , V ′
2) = (∅, ∅). Then, for each step, we

start with a current integer d and its corresponding sub-solution (V ′
1 , V ′

2), and
we construct an extension (V ′′

1 , V ′′
2 ) of (V ′

1 , V ′
2) corresponding to a new d′, where

d′ > d. According to previous lemmas, there are three possible cases:
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1. add two intervals i1 and i′1 to V ′
1 and one interval i2 to V ′

2 such that
(V ′′

1 , V ′′
2 ) = (V ′

1 ∪ {i1, i
′
1}, V ′

2 ∪ {i2}) is a sub-solution corresponding to
d′ = r(i2) (see procedure Add-intervals-first-choice),

2. add one interval i1 to V ′
1 and one interval i2 to V ′

2 such that (V ′′
1 , V ′′

2 ) =
(V ′

1 ∪ {i1}, V ′
2 ∪ {i2}) is a sub-solution corresponding to d′ = r(i2) (see

procedure Add-intervals-second-choice),
3. add one interval i2 to V ′

2 such that (V ′′
1 , V ′′

2 ) = (V ′
1 , V ′

2∪{i2}) is a sub-solution
corresponding to d′ = r(i2) (see procedure Add-intervals-third-choice).

The first choice corresponds to adding two consecutive intervals to V ′
1 and

then starting a new path in V ′′
2 . In the second case, we add one interval to V ′

1
and begin a new path in V ′′

2 . In the last case, we add only one interval to V ′
2

which extends an existing path in V ′
2 or begins a new path in V ′′

2 .
Now, we provide another result which will be used in the construction of

some sub-solutions.

Lemma 6. Let d be an integer such that 1 ≤ d ≤ 2n. Suppose we have a sub-
solution (V ′

1 , V ′
2) for the set of all intervals i with l(i) < d. Let i1 and i′1 be such

that r(i1) = min{r(i) : l(i) > d} and r(i′1) = min{r(i) : l(i) > r(i1)}. Let w
be such that r(w) = min{r(i) : l(i) > d ∧ i �= i1 ∧ i �= i′1}. If w ∈ N(i1),
then there exists an optimum solution (V ′′

1 , V ′′
2 ) where i1 and i′1 are not two

consecutive intervals in V ′′
1 .

Proof. By the construction of i1, i′1 and w, we have that d < l(i1), d < l(i′1),
d < l(w) and r(i1) < r(w). Since w ∈ N(i1), then l(w) < r(i1) < r(w). There
are two cases.

1. w ∈ N(i′1). Then there exists an alternative solution with w ∈ V ′′
2 and

i1, i
′
1 �∈ V ′′

1 .
2. w �∈ N(i′1). Then we have r(w) < l(i′1) and there are three sub-cases:

(a) w ∈ V ′′
2 . Then i1 and i′1 are not consecutive.

(b) There exists a v ∈ N(w) such that v ∈ V ′′
2 (w ∈ V ′′

0 ). Then l(v) <
r(w) < r(v) and v ∈ V ′′

2 . If both i1 and i′1 are in V ′′
1 , then i1 and i′1

cannot be consecutive since at least one end of v is between them.
(c) w ∈ V ′′

1 . In this case i1 cannot be in V ′′
1 , thus i1 and i′1 cannot be

consecutive. �	

3.3 Preprocessing Data

In order to achieve a linear-time algorithm, we do some pre-processing so that
when we run the program, the necessary data is available in constant time. In
particular, the following operations must be done in constant time in order to
obtain the claimed time bound.

– find i, j, k such that r(i) = min{r(v) : l(v) > d}, r(j) = min{r(v) : l(v) >
d ∧ v �= i} and r(k) = min{r(v) : l(v) > d ∧ v �= i ∧ v �= j} for a fixed d,

– find i such that r(i) = max{r(v) : v ∈ N [x]} for a fixed x,
– check whether N [x]∩N [y] �= ∅ for two intervals x and y such that r(x) < r(y)

(for this operation we only have to find i such that r(i) = max{r(v) : v ∈
N [x]} and then check whether i ∈ N [y]).
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Sort Intervals According to Their Right End Points (SIRE). The collec-
tion of n intervals is given in a normalized interval model. We sort the intervals

in an array D of size 2n such that D[i] =
{

j if ∃j s.t. r(j) = i,
NIL otherwise. in time O(n)

using bucket sort.

Find Three Intervals with Lowest Right End Points (ILRE). Now, we
use the array D to build another 2-dimensional array MinR which contains for
each value d ∈ {0, 1, . . . , 2n} the first, second, and third interval whose right end
points are the first, second, and third lowest, respectively, and such that their
left end points are greater than d.

Find Intervals with Greatest Right End Points (IGRE). Finally, we
calculate for each interval i ∈ {1, . . . , n} its neighbor which has the greatest
right end point, or the interval i if there is no such a neighbor, in an array
MaxR.

The three procedures SIRE, ILRE and IGRE have been shown in detail in [13],
and each takes O(n) time.

3.4 A Linear-Time Algorithm

Using the structure of an optimum solution described by previous lemmas of
this section and some results stated in section 2 (in particular Theorem 2), we
are ready to present a linear-time algorithm for solving the Roman domination
problem on interval graphs. An optimum solution can be easily constructed by
standard techniques.
Procedure Add-intervals-first-choice(d)
Data: An integer d such that a corresponding sub-solution (V ′

1 , V ′
2) has already

been computed.
Result: An extension of the sub-solution (V ′

1 , V ′
2) constructed using the first case

(add two intervals to V ′
1 and one interval to V ′

2).

i1 ← MinR[d][1]
if i1 �= NIL then

i′1 ← MinR[r(i1)][1]
if i′1 �= NIL then

if MaxR[i1] does not intersect i′1 then
w ← MinR[d][2]
if w = i′1 then w ← MinR[d][3]
if w �= NIL then

if i1 does not intersect w then
i2 ← MaxR[w]
if i1 does not intersect i2 and i′1 does not intersect i2 then

Weight[r(i2)] ← min{Weight[r(i2)], Weight[d] + 4}

else Weight[2n] ← min{Weight[2n], Weight[d] + 2}
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Procedure Add-intervals-second-choice(d)
Data: An integer d such that a corresponding sub-solution (V ′

1 , V ′
2) has already

been computed.
Result: An extension of the sub-solution (V ′

1 , V ′
2) constructed using the second

case (add one interval to V ′
1 and one interval to V ′

2 ).

i1 ← MinR[d][1]
if i1 �= NIL then

w ← MinR[d][2]
if w �= NIL then

i2 ← MaxR[w]
if i1 does not intersect i2 then

Weight[r(i2)] ← min{Weight[r(i2)], Weight[d] + 3}
else Weight[2n] ← min{Weight[2n], Weight[d] + 1}

Procedure Add-intervals-third-choice(d)
Data: An integer d such that a corresponding sub-solution (V ′

1 , V ′
2) has already

been computed.
Result: An extension of the sub-solution (V ′

1 , V ′
2) constructed using the third case

(add one interval to V ′
2 ).

w ← MinR[d][1]
if w �= NIL then

i2 ← MaxR[w]
Weight[r(i2)] ← min{Weight[r(i2)], Weight[d] + 2}

else Weight[2n] ← min{Weight[2n], Weight[d]}

Algorithm Roman-Dom(normalized interval model of a graph G ; γR(G))
Data: An interval graph represented by a normalized model.
Result: The Roman domination number γR of the input interval graph.

Construct the data structures D, MinR and MaxR

for i = 1 to 2n do Weight[i] ← 2n
Weight[0] ← 0
Add-intervals-first-choice(0)
Add-intervals-second-choice(0)
Add-intervals-third-choice(0)
for i = 1 to 2n do

if D[i] �= NIL and Weight[r(D[i])] �= 2n then
Add-intervals-first-choice(r(D[i]))
Add-intervals-second-choice(r(D[i]))
Add-intervals-third-choice(r(D[i]))

return γR(G) = Weight[2n]

Theorem 4. The Roman domination problem can be solved in O(n) time on
any interval graph with a normalized interval model.

Proof. The correctness of the algorithm follows from the lemmas stated in Sub-
sections 3.1 and 3.2

We note that it takes linear time to construct D, MinR and MaxR, and
it takes constant time to process each of the procedures Add-intervals-first-
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choice, Add-intervals-second-choice, and Add-intervals-third-choice.
The complexity of the algorithm Roman-Dom is dominated by the second
for loop. Therefore, the complexity of the algorithm is O(n). �	

4 Roman Domination on Cographs

In this section we describe an algorithm to compute the Roman domination
number of a cograph G. We may assume that G is connected, since otherwise
γR(G) equals the sum of the Roman domination numbers of its components.

If G is connected then G is the join of two graphs G1 and G2. Clearly, any 2-
packing of G consists of at most one vertex since G is P4-free. By Theorem 3 the
Roman domination number of G can be computed by taking the minimum over
all vertices x of 2γ(G − x) + 1 and 2γ(G). It is well-known that the domination
number of a cograph can be computed in linear time. Thus, we can compute the
Roman domination number of G in O(n(m + n)) time, where n and m are the
numbers of the vertices and edges of G respectively. However, we can obtain a
linear time algorithm by using the structure of cotree.

It is well-known that any cograph G can be represented by a cotree T [9]. In
T , each leaf represents a vertex of G and each internal node represents either a
join or a union. For any two vertices u and v, if (u, v) is an edge of G, then the
lowest common ancestor of u and v in T is a join node. Since G is connected,
the root of T is a join node. We may assume that T is a binary tree. For a
node v, let Tv denote the subtree of T rooted at v. Let Gv denote the subgraph
defined by Tv. Now, our algorithm is as follows.

For a cograph G, we traverse its corresponding cotree T from leaves to the
root. Let (V1(Gv), V2(Gv)) be a Roman pair of Gv. Initially, every leaf w is in
V1(Gw) and V2(Gw) is empty, i.e., γR(Gw) = 1. Now let us consider an internal
node u in T , let l (respectively, r) be its left (respectively, right) child. That is,
Gu is the resulting cograph by applying union or join operation on Gl and Gr. If
u is a union node, then (V1(Gu), V2(Gu)) = (V1(Gl) ∪ V1(Gr), V2(Gl) ∪ V2(Gr))
is a Roman pair of Gu. If u is a join node, we do the following. Without loss of
generality, let γR(Gl) ≤ γR(Gr).

1. γR(Gl) = γR(Gr). If at least one of V2(Gl) and V2(Gr) is not empty, say
V2(Gl) �= ∅, then set V1(Gr) = V2(Gr) = ∅. We do this because every vertex
in Gr is dominated by a vertex v ∈ V2(Gl).

If both V2(Gl) and V2(Gr) are empty, then we move any vertex v ∈ V1(Gl)
to V2(Gl). We then set V1(Gr) = V2(Gr) = ∅ for the same reason.

2. γR(Gl) < γR(Gr). If V2(Gl) = ∅, again we move a vertex v ∈ V1(Gl)
to V2(Gl). Since every vertex in Gr is dominated by v, we set V1(Gr) =
V2(Gr) = ∅.

If V2(Gl) �= ∅, then we set V1(Gr) = V2(Gr) = ∅ for the same reason.

In any one of above cases, if 2|V2(Gl)| + |V1(Gl)| > 4, then (i) keep only one
vertex in V2(Gl), (ii) set V1(Gl) = ∅, and (iii) arbitrarily select a vertex in Gr

and add it to V2(Gr). Finally, let Vi(Gu) = Vi(Gl) ∪ Vi(Gr) for i = 1, 2. It is not
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hard to see that γR(G) ≤ 4 for any connected cograph G. We have the following
theorem.

Theorem 5. The Roman domination number of a cograph can be computed in
linear time.

Proof. For the correctness, we show it by induction on the height of T . In the
base case that we consider the height equal to 0. Since every vertex w is an
isolated vertex, γR(Gw) = 1. Thus, ({w}, ∅) is the Roman pair of Gw. Assume
that for any node v in T with height equal to h, we can compute a Roman pair
(V1(Gv), V2(Gv)) for Gv. Now, consider a node u with height h + 1. Let l and r
be its left and right children in T , respectively. If u is a union node, it is easy to
check that (V1(Gl) ∪ V1(Gr), V2(Gl) ∪ V2(Gr)) is a Roman pair of Gu. We now
consider the case that u is a join node. Without loss of generality, we assume
that γR(Gl) ≤ γR(Gr). By the definition, every vertex in Gr is adjacent to any
vertex of Gl. If V2(Gl) is not empty, then every vertex is dominated by a vertex
in V2(Gl). Thus (V1(Gl), V2(Gl)) can Roman dominate Gu. If V2(Gl) is empty,
we can promote a vertex in V1(Gl) to V2(Gl) such that it can dominate Gr. Since
γR(Gl) ≤ γR(Gr), we can obtain a better solution by doing so. However, it will
increase the weight of the Roman dominating function. If |V1(Gl)|+2|V2(Gl)| ≤
4, then (V1(Gl), V2(Gl)) is a Roman pair of Gu. If |V1(Gl)| + 2|V2(Gl)| > 4, we
select a vertex vl from V2(Gl) and arbitrarily select a vertex vr from Gr. Since
vl dominates Gr and vr dominates Gl, (∅, {vl, vr}) is a Roman pair of Gu. This
show the correctness of our algorithm.

For the time complexity, we implement each dominating set using a linked
list with front and tail pointers. Thus the Roman pair of a union node can be
computed in constant time. For a join node, it costs constant time to empty a
set. For the other operations, at most constant number of vertices are updated.
Thus, the overall time complexity is linear. �	
Remark 2. In [2] a graph G is called Roman if γR(G) = 2γ(G). It is proved
that a graph G is Roman if and only if γ(G) ≤ γ(G − S) + |S|

2 for every 2-
packing S in G. It follows that a connected cograph G is Roman if and only if
γ(G) = γ(G−x) for every vertex x. Since, in [2] it is posed as an open problem to
determine Roman graphs other than trees4, it would be of interest to know which
cographs satisfy this equality. Notice that a large subclass of Roman cographs
can be constructed as follows: Take any cograph G and construct a graph H
by replacing every vertex of G by a true twin. It is easy to check that H is a
cograph5, and furthermore for every vertex x in H , γ(H) = γ(H − x).

5 Roman Domination on AT-Free Graphs and Graphs
with a d-Octopus

In this section we study the Roman domination problem on AT-free graphs
and graphs with d-octopus. Our approaches are based on algorithms for the
4 A constructive characterization of Roman trees is given in [10].
5 Any induced P4 would lead to an induced P4 in G.
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domination problem in [7,14]. First we provide some preliminaries on AT -free
graphs and d-octopus.

Definition 5. Three vertices x, y and z of a graph G = (V, E) form an as-
teroidal triple, AT for short, if for any two of the three vertices there is a path
between them that avoids the neighborhood of the third. A graph is said to be
AT-free if it does not contain an AT.

Definition 6. A pair of vertices x and y is a dominating pair of a graph G, if
the vertex set of any path between x and y in G is a dominating set in G.

Theorem 6 ([4]). Any connected AT-free graph has a dominating pair.

Definition 7. A path P = (x = x0, x1, . . . , xd = y) is a dominating shortest
path, DSP for short, of a graph G = (V, E) if

1. P is a shortest path between x and y in G,
2. {x0, x1, . . . , xd} is a dominating set of G.

Corollary 1 ([14]). Every connected AT-free graph has a DSP.

Definition 8. A d-octopus O of a graph G = (V, E) is a subgraph of G such
that

1. the vertices of O is a dominating set of G,
2. there are vertices r, v1, v2, . . . , vd of G, and for each i ∈ {1, . . . , d} there is

a shortest path Pi from r to vi in G such that O is the union of the paths
P1, P2, . . . , Pd.

We call the common end point r of the d shortest paths the root of the d-octopus
O. Note that the paths need not to be disjoint.

Remark 3. A graph with a DSP is a 1-octopus graph.

The following results are Roman domination versions of Lemma 33 in [7] and
Theorem 4 in [14] “replacing D by V2”.

Theorem 7. Let G = (V, E) be a graph with a d-octopus with root x. Let H0,
H1, . . . , Hl be the levels of the BFS-tree with the root x. Then G has a Roman
pair (V1, V2) such that:

∧

i∈{0,1,...,l}

∧

j∈{0,1,...,l−i}

∣
∣
∣
∣
∣
V2 ∩

i+j⋃

s=i

Hs

∣
∣
∣
∣
∣
≤ (j + 5)d − 1. (1)

Theorem 8. Let G = (V, E) be a connected AT-free graph. There is a vertex
x which can be determined in linear time such that if H0, H1, . . . , Hl are the
levels of the BFS-tree with the root x, then G has a Roman pair (V1, V2) such
that:

∧

i∈{0,1,...,l}

∧

j∈{0,1,...,l−i}

∣
∣
∣
∣
∣
V2 ∩

i+j⋃

s=i

Hs

∣
∣
∣
∣
∣
≤ j + 3. (2)
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A Polynomial Time Algorithm:

Our algorithm uses dynamic programming to compute a Roman pair through
the levels of a BFS-tree. A subsolution computed during the execution of the
algorithm is a set S ⊆

⋃i−1
j=0 Hj chosen up to a fixed level i−1 ∈ {1, 2, . . . , l−1}.

Information of any subsolution S that we must store during the execution are
the vertices that belong to the last two current levels (i.e, S ∩ (Hi−2 ∪ Hi−1)).
Consequently, the number of vertices from V2 that a Roman pair (V1, V2) might
have in any three consecutive BFS-levels is important for the complexity of the
algorithm. The previous theorems guarantee that this number is at most 5 for
connected AT-free graphs and at most 7d − 1 for graphs with a d-octopus.

The algorithm rpk(G), where k is a fixed positive integer, computes a Roman
pair of the given connected graph G. If G has a vertex x and a Roman pair
(V1, V2) such that at most k vertices of V2 belong to any three consecutive levels
of the BFS-tree which has x as a root, then rpk(G) outputs a Roman pair for G.

Algorithm rpk(G)
D ← V
val(D) ← |V | /* initialization: every vertex of V is in V1, this is a

trivial Roman dominating set */
forall x ∈ V do

Compute the BFS-level of vertex x
H0 = {x}, H1 = N(x), . . . , Hl = {u ∈ V : dG(x, u) = l}
i ← 1
Initialize the queue A1 to contain an ordered triple (S, S, val(S)) for all
nonempty subsets S of N [x] satisfying |S| ≤ k with val(S) ← 2|S|
Add to the queue A1 the ordered triple (∅, ∅, 1)
while Ai �= ∅ and i < l do

i ← i + 1
forall triples (S, S′, val(S′)) in the queue Ai−1 do

forall U ⊆ Hi with |S ∪ U | ≤ k do
R ← (S ∪ U)\Hi−2

R′ ← S′ ∪ U
val(R′) ← val(S′) + 2|U | + |Hi−1\N [S ∪ U ]|
if there is no triple in Ai with first entry R then

Insert (R,R′, val(R′)) in the queue Ai

if there is a triple (P, P ′, val(P ′)) in Ai such that P = R and
val(R′) < val(P ′) then

Replace (P, P ′, val(P ′)) in Ai by (R, R′, val(R′))

Among all triples (S, S′, val(S′)) in the queue Al, determine one with
minimum value v = val(S′) + |Hl\N [S]|, say (B, B′, val(B′))
if v < val(D) then D ← B′; val(D) ← v

return (V1, V2) = (V \N [D], D)

Theorem 9. Algorithm rpk(G) computes a Roman pair of the given connected
graph G in time O(nk+2) if G has a Roman pair (V1, V2) and a vertex x ∈ V
such that at most k vertices of V2 belong to any three consecutive BFS-levels of x.
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Proof. The correctness can be seen easily and the analysis of the running time
is the same as the Theorem 5 in [14]. �	
Theorem 10. There is an O(n7d+1)-time algorithm to compute Roman pairs
for graphs with a d-octopus. In particular, there is an O(n7)-time algorithm
to calculate Roman pairs for graphs having a DSP and there is an O(n6)-time
algorithm to compute Roman pairs for AT-free graphs.

Proof. By combining Theorems 7 and 9 and using the results in [3,5,14] we
obtain the theorem (see [13] for more details). �	
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