Dieter Kratsch (Ed.)

Graph-Theoretic
Concepts
in Computer Science

31st International Workshop, WG 2005
Metz, France, June 2005
Revised Selected Papers

LNCS 3787

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3787

Dieter Kratsch (Ed.)

Graph-Theoretic
Concepts
in Computer Science

31st International Workshop, WG 2005
Metz, France, June 23-25, 2005
Revised Selected Papers

@ Springer

Volume Editor

Dieter Kratsch

Université Paul Verlaine, Metz

Laboratoire d’Informatique Théorique et Appliquée
UFR MIM Département Informatique

57045 Metz Cedex 01, France

E-mail: kratsch@univ-metz.fr

Library of Congress Control Number: 2005937593

CR Subject Classification (1998): F.2, G.2, G.1.6, G.1.2, E.1,1.3.5

ISSN 0302-9743
ISBN-10 3-540-31000-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31000-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11604686 06/3142 543210

Preface

The 31st International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2005) was held on the campus “Ile du Saulcy” of the Univer-
sity Paul Verlaine-Metz in France. The workshop was organized by the Labo-
ratoire d’Informatique Théorique et Appliquée (LITA) and it took place June
23 — 25 2005. The 94 participants of WG 2005 came from universities and re-
search institutes of 18 different countries.

The WG 2005 workshop continues the series of 30 previous WG workshops.
Since 1975, WG has taken place 20 times in Germany, four times in The Nether-
lands, two times in Austria as well as once in Italy, in Slovakia, in Switzerland and
in Czech Republic, and has now been held for the first time in France. The work-
shop aims at uniting theory and practice by demonstrating how graph-theoretic
concepts can be applied to various areas in computer science, or by extracting
new problems from applications. The goal is to present recent research results
and to identify and explore directions of future research. The talks were given
in the “Petit Théatre”. They showed how recent research results from algorith-
mic graph theory can be used in computer science and which graph-theoretic
questions arise from new developments in computer science. There were two
fascinating invited lectures by Georg Gottlob (Vienna, Austria) and Gregory
Kucherov (Nancy, France).

The number of submitted papers was an all-time record of 125. In a careful
reviewing process with four reports per submission, the Program Committee
selected 38 papers for presentation at the workshop. The Program Committee
decided to accept more papers than usual due to the quality of the submissions.
Nevertheless, a number of good submissions had to be rejected.

With much pleasure, I thank all those who contributed to the great succes of
WG 2005: the authors who submitted their work to the workshop, the speak-
ers, the Program Committee members and the referees. I am indebted to the
members of the Local Organization Committee: Michaél Rao, Mathieu Liedloff
and Damien Aignel. Without their engagement and the help of various students
during the meeting, WG 2005 could not have been such a great success.

Special thanks go to the sponsoring organizations: GDR du CNRS: Algorith-
mique, Langage et Programmation, GDR du CNRS: Architecture, Réseaux et
Systémes, Parallélisme, Laboratoire d’Informatique Théorique et Appliquée de
I’Université Paul Verlaine-Metz, UFR MIM de I'Université Paul Verlaine-Metz,
Université Paul Verlaine-Metz, Conseil Général de la Moselle, Conseil Régional
de Lorraine, Communauté d’Agglomération Metz Métropole (CA2M).

Metz, September 2005 Dieter Kratsch

Organization

Organization

The Tradition of WG

1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005

U. Pape - Berlin, Germany

H. Noltemeier - Gottingen, Germany

J. Miihlbacher - Linz, Austria

M. Nagl, H. J. Schneider - Castle Feuerstein, Germany
U. Pape - Berlin, Germany

H. Noltemeier - Bad Honnef, Germany

J. Miihlbacher - Linz, Austria

H. J. Schneider, H. Géttler - Neuenkirchen, Germany
M. Nagl, J. Perl - Haus Ohrbeck, Germany

U. Pape - Berlin, Germany

H. Noltemeier - Castle Schwanberg, Germany

G. Tinhofer, G. Schmidt - Bernried, Germany

H. Géttler, H. J. Schneider - Kloster Banz/Staffelstein, Germany
J. van Leeuwen - Amsterdam, The Netherlands

M. Nagl - Castle Rolduc, The Netherlands

R. Mohring - Berlin, Germany

G. Schmidt, R. Berghammer - Fischbachau, Germany
E. W. Mayr - Wiesbaden-Naurod, Germany

J. van Leeuwen - Utrecht, The Netherlands

G. Tinhofer, E. W. Mayr, G. Schmidt - Herrsching, Germany
M. Nagl - Aachen, Germany

G. Ausiello, A. Marchetti-Spaccamela - Como, Italy
R. Mohring - Berlin, Germany

J. Hromkovié¢ - Smolenice, Slovak Republic

P. Widmayer - Ascona, Switzerland

D. Wagner - Konstanz, Germany

A. Brandstadt - Boltenhagen near Rostock, Germany
L. Kucera - Cesky Krumlov, Czech Republic

H. L. Bodlaender - Elspeet, The Netherlands

J. Hromkovié, M. Nagl - Bad Honnef, Germany

D. Kratsch - Metz, France

VII

VIII Organization

Program Committee

Hans Bodlaender
Andreas Brandstadt
Bruno Courcelle
Camil Demetrescu
Joseph Diaz

Fedor Fomin

Pierre Fraigniaud
Martin C. Golumbic
Michel Habib
Michael Kaufmann
Jan Kratochvil
Dieter Kratsch
Ernst W. Mayr
Haiko Miiller

Takao Nishizeki
Jeremy Spinrad
Ondrej Sykora

Utrecht, The Netherlands
Rostock, Germany
Bordeaux, France
Rome, Italy

Barcelona, Spain
Bergen, Norway

Paris, France

Haifa, Israel
Montpellier, France
Tibingen, Germany
Prague, Czech Republic
Metz, France (Chair)
Munich, Germany
Leeds, UK

Tohoku, Japan
Nashville, USA
Loughborough, UK

Bernhard Westfechtel Bayreuth, Germany

Additional Reviewers

Luca Allulli, Takao Asano, Yasuhito Asano, Rolf Backofen, Vincenzo Boni-
faci, Ulrik Brandes, Hajo Broersma, Luciana Salete Buriol, Frederique Carrere,
Dmytro Chibisov, Miroslav Chlebik, Janka Chlebikova, Bogdan Chlebus, Pier
Francesco Cortese, Jean-Michel Couvreur, Christophe Crespelle, Paolo Detti,
Guido Diepen, Stefan Dobrev, Debora Donato, Frederic Dorn, Feodor Dra-
gan, Zdenek Dvorak, Stefan Eckhardt, Eran E. Edirisinghe, Jack Edmonds,
Jens Ernst, Elaine Eschen, Irene Finocchi, Paolo Franciosa, Toshihiro Fujito,
Cyril Gavoille, Fanica Gavril, Markus Geyer, Emilio Di Giacomo, Emeric Gioan,
Wayne Goddard, Petr Golovach, Martin Golumbic, Jens Gramm, Fabrizio Gran-
doni, Sylvain Gravier, Jan Griebsch, Alexander Grigoriev, Irith Hartman, Pinar
Heggernes, Hongmei He, Stefan Hougardy, Takehiro Ito, Klaus Jansen, Haim
Kaplan, Jan Kara, Ton Kloks, Martin Knor, Petr Kolman, Jean-Claude Konig,
Ephraim Korach, Arie M. C. A. Koster, Sven Kosub, Vaclav Koubek, Dan Kral,
Rastislav Kralovic, Ludek Kucera, Ago Kuusik, Mathieu Latapy, Luigi Laura,
Emmanuelle Lebhar, Erik Jan van Leeuwen, Katharina Lehmann, Hoang-Oanh
Le, Van Bang Le, Vadim Levit, Moshe Lewenstein, Marina Lipshteyn, Xuan
Liu, Vadim Lozin, Moritz G. Maaf}, Johann Makowsky, Claudia Malvenuto, Jan
Manuch, Martin Mares, Maurice Margenstern, Yuki Matsuo, Ross McConnell,
Terry McKee, Daniel Meister, Werner Meixner, Yves Metivier, Kazuyuki Miura,
Takaaki Mizuki, Jaroslav Nesetril, Nicolas Nisse, Lhouari Nourine, Johannes
Nowak, Gabriel Oksa, Richard Ostertag, Christophe Paul, Uri N. Peled, David
Peleg, Jeann-Guy Penaud, Tain Phillips, Ely Porat, Andrzej Proskurowski, Artem

Organization X

Pyatkin, Tomasz Radzik, Michael Rao, Andre Raspaud, Antoine Rauzy, Vlady
Ravelomanana, Dror Rawitz, Christian Retore, Andrea Ribichini, Frances Rosa-
mond, Udi Rotics, Adrian Rusu, Wojciech Rytter, Ana M. Salagean, Fabiano
Sarracco, Guido Schéfer, Maria Serna, Oriol Serra, Jiri Sgall, Farhad Shahrokhi,
Ayumi Shinohara, Riste Skrekovksi, Christian Sloper, Eric Sopena, R. Sritharan,
Ladislav Stacho, Alexei Stepanov, Michal Stern, Lorna Stewart, Hanjo Téubig,
Jan Arne Telle, Dimitrios M. Thilikos, Ioan Todinca, Lubomir Torok, Ann Trenk,
Zsolt Tuza, Peter Ullrich, Walter Unger, Pavel Valtr, Wenceslas Fernandez de la
Vega, Andrea Vitaletti, Margit Voigt, Imrich Vrto, Sebastian Wernicke, Gerhard
Woeginger, David Wood, Xiao Zhou

Table of Contents

Invited Lectures

Hypertree Decompositions: Structure, Algorithms, and Applications
Georg Gottlob, Martin Grohe, Nysret Musliv, Marko Samer,
Francesco Scarcello

Combinatorial Search on Graphs Motivated by Bioinformatics
Applications: A Brief Survey
Mathilde Bouvel, Viadimir Grebinski, Gregory Kucherov

Regular Papers

Domination Search on Graphs with Low Dominating-Target-Number
Divesh Aggarwal, Shashank K. Mehta, Jitender S. Deogun

Fully Dynamic Algorithm for Recognition and Modular Decomposition
of Permutation Graphs
Christophe Crespelle, Christophe Paul

Approximating Rank-Width and Clique-Width Quickly
Sang-il QUM ...

Computing the Tutte Polynomial on Graphs of Bounded Clique-Width
Omer Giménez, Petr Hlinény, Marc Noy........

Minimizing NLC-Width is NP-Complete
Frank Gurski, Egon Wanke

Channel Assignment and Improper Choosability of Graphs
Frédéric Havet, Jean-Sébastien Sereni

Computing Treewidth and Minimum Fill-In for Permutation Graphs in
Linear Time
Daniel Meister

Roman Domination over Some Graph Classes
Mathieu Liedloff, Ton Kloks, Jiping Liu, Sheng-Lung Peng

XII Table of Contents

Algorithms for Comparability of Matrices in Partial Orders Imposed
by Graph Homomorphisms
Jiri Fiala, Daniél Paulusma, Jan Arne Telle

Network Discovery and Verification
Zuzana Beerliova, Felix Eberhard, Thomas FErlebach,
Alezander Hall, Michael Hoffmann, Matis Mihaldk,
L. Shankar Ram

Complete Graph Drawings Up to Triangle Mutations
Emeric Gioan

Collective Tree 1-Spanners for Interval Graphs
Derek G. Corneil, Feodor F. Dragan, Ekkehard Kdhler,
Chenyu Yan e e

On Stable Cutsets in Claw-Free Graphs and Planar Graphs
Van Bang Le, Raffaele Mosca, Haiko Mdller

Induced Subgraphs of Bounded Degree and Bounded Treewidth
Prosengit Bose, Vida Dujmovié, David R. Wood

Optimal Broadcast Domination of Arbitrary Graphs in Polynomial Time
Pinar Heggernes, Daniel Lokshtanov

Ultimate Generalizations of LexBFS and LEX M
Anne Berry, Richard Krueger, Genevieve Simonet

Adding an Edge in a Cograph
Stavros D. Nikolopoulos, Leonidas Palios.

The Computational Complexity of Delay Management
Michael Gatto, Riko Jacob, Leon Peeters, Anita Schobel

Acyclic Choosability of Graphs with Small Maximum Degree
Daniel Gonalves, Mickal Montassier.,

Generating Colored Trees
Shin-ichi Nakano, Takeaki Uno 0.,

Optimal Hypergraph Tree-Realization
Ephraim Korach, Margarita Razgon

Table of Contents XIII

Fixed-Parameter Algorithms for Protein Similarity Search Under
mRNA Structure Constraints
Guillaume Blin, Guillaume Fertin, Danny Hermelin,
Stéphane Vialette 271

On the Fixed-Parameter Enumerability of Cluster Editing
Peter Damaschke 283

Locally Consistent Constraint Satisfaction Problems with Binary
Constraints
Manuel Bodirsky, Daniel Krdl’ 295

On Randomized Broadcasting in Star Graphs
Robert Elsdsser, Thomas Sauerwaldc.... 307

Finding Disjoint Paths on Directed Acyclic Graphs
Torsten TROlEY 319

Approximation Algorithms for the Bi-criteria Weighted MAX-CUT
Problem
Eric Angel, FEvripidis Bampis, Laurent Gourvés 331

Approximation Algorithms for the Weighted Independent Set Problem
Akihisa Kako, Takao Ono, Tomio Hirata, Magnis M. Halldorsson ... 341

Approximation Algorithms for Unit Disk Graphs
Erik Jan van Leeuweno i 351

Computation of Chromatic Polynomials Using Triangulations
and Clique Trees R
Pascal Berthomé, Sylvain Lebresne, Kim Nguyén................... 362

Computing Branchwidth Via Efficient Triangulations and Blocks
Fedor Fomin, Frédéric Mazoit, loan Todinca 374

Algorithms Based on the Treewidth of Sparse Graphs
Joachim Kneis, Daniel Molle, Stefan Richter,
Peter Rossmanith 385

Extending the Tractability Border for Closest Leaf Powers
Michael Dom, Jiong Guo, Falk Hiiffner, Rolf Niedermeier 397

Bounding the Misclassification Error in Spectral Partitioning in the
Planted Partition Model
Joachim Giesen, Dieter Mitsche i iieienenenn . 409

X1V Table of Contents

Algebraic Operations on PQ Trees and Modular Decomposition Trees
Ross M. McConnell, Fabien de Montgolfier........................

Linear-Time Counting Algorithms for Independent Sets in Chordal
Graphs
Yoshio Okamoto, Takeaki Uno, Ryuhei Uehara

Faster Dynamic Algorithms for Chordal Graphs, and an Application
to Phylogeny
Anne Berry, Alain Sigayret, Jeremy Spinrad

Recognizing HHDS-Free Graphs
Stavros D. Nikolopoulos, Leonidas Palios.

Author Index

Hypertree Decompositions:
Structure, Algorithms, and Applications*

Georg Gottlob', Martin Grohe?, Nysret Musliu?,
Marko Samer?, and Francesco Scarcello®

nstitut fiir Informationssysteme, TU Wien, Vienna, Austria
2 Institut fiir Informatik, Humboldt-Universitit, Berlin, Germany
SDELS., University of Calabria, Rende (CS), Italy

Abstract. We review the concepts of hypertree decomposition and hypertree
width from a graph theoretical perspective and report on a number of recent re-
sults related to these concepts. We also show — as a new result — that computing
hypertree decompositions is fixed-parameter intractable.

1 Hypertree Decompositions: Definition and Basics

This paper reports about the recently introduced concept of hypertree decomposition
and the associated notion of hypertree-width. The latter is a cyclicity measure for hyper-
graphs, and constitutes a hypergraph invariant as it is preserved under hypergraph iso-
morphisms. Many interesting NP-hard problems are polynomially solvable for classes
of instances associated with hypergraphs of bounded width. This is also true for other
hypergraph invariants such as treewidth, cutset-width, and so on. However, the advan-
tage of hypertree-width with respect to other known hypergraph invariants is that it is
more general and covers larger classes of instances of bounded width. The main con-
cepts of hypertree decomposition and hypertree-width are introduced in the present
section. A normal form for hypertree decompositions is described in Section 2. Sec-
tion 3 describes the Robbers and Marshals game which characterizes hypertree-width.
In Section 4 we use this game to explain why the problem of checking whether the
hypertree-width of a hypergraph is < k is feasible in polynomial time for each con-
stant k. However, in Section 5 we show that this problem is fixed-parameter intractable
with respect to k. In Section 6 we compare hypertree-width to other relevant hyper-
graph invariants. In Section 7 we discuss heuristics for computing hypertree decom-
positions. In Section 8 we show how hypertree decompositions can be beneficially
applied for solving constraint satisfaction problems (CSPs). Finally, in Section 9 we
list some open problems left for future research. Due to space limitations this paper is
rather short, and most proofs are missing. A more thorough treatment can be found in
[13,16,2,1,15,17], most of which are available at the Hypertree Decomposition Home-
page at http://si.deis.unical.it/~frank/Hypertrees.

* This paper was supported by the Austrian Science Fund (FWF) project: Nr. P17222-N04,
Complementary Approaches to Constraint Satisfaction. Correspondence to: Georg Gottlob,
Institut fiir Informationssysteme, TU Wien, Favoritenstr. 9-11/184-2, A-1040 Wien, Austria,
E-mail: gottlob@acm.org.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 1-15, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 G. Gottlob et al.

A hypergraphis apair H = (V(H), E(H)), consisting of a nonempty set V (H) of
vertices, and a set E(H) of subsets of V (H), the hyperedges of H. We only consider
finite hypergraphs. Graphs are hypergraphs in which all hyperedges have two elements.

For a hypergraph H and a set X C V (H), the subhypergraph induced by X is the
hypergraph H[X] = (X,{eNX |e€ E(H)}). Welet H \ X := H[V(H) \ X]. The
primal graph of a hypergraph H is the graph

H = (V(H),{{v,w} | v # w, there exists an e € E(H) such that {v, w} C e}).

A hypergraph H is connected if H is connected. A set C C V(H) is connected (in H)
if the induced subhypergraph H [C] is connected, and a connected component of H is a
maximal connected subset of V' (H). A sequence of nodes of V(H) is a path of H if it
is a path of H.

A tree decomposition of a hypergraph H is a tuple (T, x), where T'=(V(T), E(T))
is a tree and x : V(T) — 2V () is a function associating a set of vertices x(t) C
V' (H) to each vertex ¢ of the decomposition tree 7', such that for each e € E(H) there
isanodet € V(T) such that e C x(t), and for each v € V(H) the set {t € V(T |
v € x(t)} is connected in 7.

We assume the tree 7" in a tree decomposition to be rooted. For every node ¢, T
denotes the rooted subtree of 7" with root ¢t. For each such subtree Ty, let x(73) =
UUEV(Tt) x(v).

The width of a tree decomposition (7', x) is max { |x(¢)| — 1| ¢t € V(T)}, and the
tree-width of H is the minimum of the widths of all tree decompositions of H.

Observe that (7',) is a tree decomposition of H if and only if it is a tree decompo-
sition of H. Thus a hypergraph has the same tree-width as its primal graph.

Let H be a hypergraph. A generalized hypertree decomposition of H is a triple
(T, x, \), where (T,) is a tree decomposition of H and \ : V(T) — 2F(1) ig a
function associating a set of hyperedges A\(t) C E(H) to each vertex t of the decom-
position tree T', such that for every t € V(T') we have x(t) C |JA(t). The width of a
generalized hypertree decomposition (T, x, A) is min{|\(¢)| | t € V(T)}, and the gen-
eralized hypertree-width ghw(H) of H is the minimum of the widths of all generalized
hypertree decompositions of H.

A hypertree decomposition of H is a generalized hypertree decomposition (7', x, \)
that satisfies the following special condition: (| A\(t)) N x(T:) C x(¢) for all t €
V(T'). The hypertree-width hw(H) of H is the minimum of the widths of all hypertree
decompositions of H.

Example 1. Figure 1 shows a hypergraph H (consisting of 15 hyperedges and 19 ver-
tices) and a tree decomposition of H. A generalized hypertree decomposition and a
hypertree decomposition of H are illustrated in Figure 2. The left set within each rect-
angle represents the A-labels and the right set represents the x-labels. The generalized
hypertree decomposition violates the special condition, because vertex 13 disappears
from node with A-label {110, h14} and it appears again in a subtree rooted at this node.
The generalized hypertree-width of H is 2, whereas its hypertree-width is 3.

Hypertree Decompositions: Structure, Algorithms, and Applications 3

[123456] [1112171819]
[345678 1 [1216171819]
[56789 | [1215161819 |
[7910] [[121314151819]

Fig. 1. A hypergraph H (left) and a tree decomposition of H (right)

T TG RIREREAT] [(nioh12hi4} {12,13,14,15,16,17,18,19) |
[hih2y (123456 | [{h9hl5} {1L12,17,18,19} | [montsy (1 1112,17,1819) |
[{h2,h3} (345678 | [(h10h14} {12,16,17,18,19} | [{h2,h3} {1,345,67.8) |
[mahsy (567891 | [(h9,h13] {12,15,16,18,19; | [mansy (567890 [thiy (123}]
[{he} {7.9.10} | [{h10,h12} {12,13,14,15,18,19} | {h6} {7,9,10}

Fig. 2. Generalized hypertree decomposition (left) and hypertree decomposition (right) of H

Example 2. Let H be a the hypergraph with V(H) = {1,...,n} and
E(H) = {{v,w} | v,w € V(H) withv # w} U {V(H)}.

Hence H is the hypergraph obtained from a complete graph with n vertices by adding
a hyperedge that contains all vertices. It is easy to see that hw(H) = 1 and tw(H) =
n — 1. Moreover, even the treewidth of the bipartite incidence graph of H isn — 1.

The structure of many problems can be described by hypergraphs (see also Sec-
tion 8). Let us informally define a hypergraph decomposition as a method of dividing
hypergraphs into different parts so that the solution of certain problems whose structure
is best described by hypergraphs can be obtained by a polynomial divide-and-conquer
algorithm that suitably exploits this division. The width of such a decomposition is the
size of the largest indecomposable part of this division.

The importance of hypergraph decompositions (be it tree decompositions, hypertree
decompositions, or several others) lies in the fact that many problems can be polynomially
solved if their associated hypergraph has a low width for the chosen decomposition (see
Section 8). The problem is thus to find decompositions that have the following properties:

1. They should be as general as possible, i.e., so that the classes of hypergraphs of
bounded width are as large as possible. A criterion for comparing the generality of
decomposition methods will be given in Section 6.

2. They should be polynomially computable. More precisely, for each fixed constant
k, we want to be able to check in polynomial time whether a decomposition of
width k of an input hypergraph exists.

4 G. Gottlob et al.

3. Hypergraph decompositions of bounded width should lead to the polynomial solu-
tion of the underlying problem (e.g. of constraint satisfaction problems as described
in Section 8). Typically, we expect that for a decomposition of a certain type, the
class of problems whose associated hypergraph has width bounded by k can be
solved in time O(n®®)).

Several decomposition methods satisfy properties 2 and 3, in particular the method of
hypertree decomposition. Hypertree decompositions also satisfy Property 1. By results
of [15] and [2], which will be briefly reviewed in Section 6, the method of hypertree de-
compositions is — so far — the most general method satisfying all three of the above criteria.

2 A Normal Form for Hypertree Decompositions

Let H = (V(H), E(H)) be a hypergraph, and let V' C V(H) be a set of vertices and
a,b € V(H). Then a is [V']-adjacent to b if there exists an edge h € E(H) such that
{a,b} C h\ V. A [V]-path 7 from a to b is a sequence a = ag, a1, as,...,ar = b of
vertices such that a; is [V']-adjacent to a;1, foreach ¢ € [0, — 1]. Aset W C V(H)
of vertices is [V]-connected if, for all a,b € W, there is a [V]-path from a to b. A
[V 1-componentis a maximal [V']-connected non-empty set of vertices W C V(H)\ V.
For any set C of vertices, let edges(C) = {h € E(H) | hNC # 0}.

Let HD = (T, x, A) be a generalized hypertree decomposition for H. For any vertex
v € V(T), we will often use v as a synonym of x(v). In particular, [v]-component
denotes [x(v)]-component; the term [v]-path is a synonym of [x(v)]-path; and so on.
We introduce a normal form for generalized hypertree decompositions, and thus also
for hypertree decompositions.

Definition 1 ([13]). A generalized hypertree decomposition HD = (T, x, A) of a hy-
pergraph H is in normal form (NF) if, for each vertex r € V(T'), and for each child s
of r, all the following conditions hold:

1. there is (exactly) one [r]-component C, such that x(Ts) = Cy U (x(s) N x(r));
2. x(s) N C,. # 0, where C,. is the [r]-component satisfying Condition 1;

3. (UAB) nx(r) € x(s).

Intuitively, each subtree rooted at a child node s of some node r of a normal form
decomposition tree serves to decompose precisely one [r]-component.

Theorem 1 ([13]). For each k-width hypertree decomposition of a hypergraph H there
exists a k-width hypertree decomposition of H in normal form.

3 Robbers and Marshals

In [29], graphs G of treewidth k are characterized by the so called Robber-and-Cops
game where k + 1 cops have a winning strategy for capturing a robber on G. Cops can
control vertices of a graph and can fly at each move to arbitrary vertices, say, by using
a helicopter. The robber can move (at infinite speed) along paths of G, and will try to

Hypertree Decompositions: Structure, Algorithms, and Applications 5

escape the approaching helicopter(s), but cannot go over vertices controlled by a cop. It
is, moreover, shown that a winning strategy for the cops exists, iff the cops can capture
the robber in a monotone way, i.e., never returning to a vertex that a cop has previously
vacated, which implies that the moving area of the robber is monotonic shrinking. For
more detailed descriptions of the game, see [29] or [16].

In order to provide a similarly natural characterization for hypertree-width, a new
game, the Robber and Marshals game (R&Ms game), was defined in [16]. A marshal is
more powerful than a cop. While a cop can control a single vertex of a hypergraph
only, a marshal controls an entire hyperedge. In the R&Ms game, the robber moves on
vertices along a path of H (i.e., a path of the primal graph H) just as in the robber and
cops game, but now marshals instead of cops are chasing the robber. During a move
of the marshals from the set of hyperedges F to the set of hyperedges E’, the robber
cannot pass through the vertices in B = (|J E)N(|J E’), where, for a set of hyperedges
F, |J F denotes the union of all hyperedges in F. Intuitively, the vertices in B are those
not released by the marshals during the move.

In this game, the set of all marshals is considered to be one player and the robber
the other player. The marshals objective is thus to move a marshal (via helicopter) on
a hyperedge containing the vertex occupied by the robber. The robber tries to elude
capture. As for the robber and cops game, we distinguish between a general (not neces-
sarily monotone) and a monotone version of the R&Ms game. In the monotone version
of the game, the marshals have to make sure, that in each step the robber’s escape space,
i.e., the component in which the robber can freely move around, decreases. The (mono-
tone) marshal-width of a hypergraph H, mw(H) (and mon-mw(H), respectively), is
the least number k£ of marshals that have a (monotone) winning strategy in the robber
and £ marshals game played on H (see [1,16] for more precise definitions).

Clearly, for each hypergraph H, mw(H) < mon-mw(H). However, unlike for
the robber and cops game, the marshal width and the monotone marshal width differ.
Adler [1] proved that for each constant k there is a hypergraph H such that
mon-mw(H) —mw(H) = k.

In [16] it is shown that there is a one-to-one correspondence between the winning
strategies for k marshals in the monotone game and the normal-form hypertree decom-
positions of width at most k.

Theorem 2 ([16]). A hypergraph H has k-bounded hypertree-width if and only if k
marshals have a winning strategy for the monotone R&Ms game played on H.

4 Computing Hypertree Decompositions

For each constant k it can be decided in polynomial time whether a given hypergraph
H has a k-bounded hypertree decomposition. In this section we briefly sketch the al-
gorithm k-decomp which solves this problem in logarithmic space via alternating
computations.

The algorithm is best understood via the monotone R&Ms game. A typical game
situation is depicted in Figure 3, where we assume that the marshals are at some instant
in position R, i.e., occupy a set R of k hyperedges, and that the robber is in a component
C'r corresponding to this position of the marshals, i.e., in an [|J R]-component Cg. In

6 G. Gottlob et al.

[
F—<—X S

Fig. 3. Marshals moving from position R to position S

the next move, the marshals must chase the robber within C'z. They move to a new
position S C E(H) determined by at most & hyperedges. This move is a correct move
in the game iff the following conditions are satisfied: (a) the robber cannot escape from
component C'r during or after the move of the marshals, and (b) the escape space of the
robber is effectively shrinking.

Condition (a) is mathematically expressed through the statement

(a) VP € edges(Cgr), (PN UR) C US.

In fact, since Cg is an [|J R]-component, all ways out of it pass through the set of
vertices | J R of R. Thus, if there is a way out of Cg, there must be an edge P of
edges(Cr) leading from Cg into R. However, by the above condition (a), the robber
cannot enter R through this edge P, because the set P N |J R of vertices of P that are
in R are also in S and remain thus off-limits for the robber both during and after the
move of the marshals.

Assuming that condition (a) is satisfied, it is easy to see that to make sure that the
escape space has shrunk after the move of the marshals, it suffices to require that the new
marshal position S covers at least one vertex of the former escape space C'r, formally:

) (Us)nCr 0.

In fact, Condition (a) already guarantees that the escape space cannot become larger.
Condition (b) requires that some vertex of the former escape space be covered by the
marshals after the move, and thus the escape space must shrink. Notice that the original
escape space Cpr, after the move of the marshals from R to S may be split into several
[ST-components Cy, Ca, ..., C;, . ..

Figure 4 shows (a high-level description of) the algorithm k- decomp. This algorithm
tries to construct a winning strategy for k£ marshals to win the R&Ms game on an input
hypergraph H. Such a winning strategy is constructed in an alternating fashion by the
procedure k-decomposable(Cr, R) which has as parameters a marshals position R (i.e.
asetof < k hyperedges of H), and an [|J R]-component Cr which is the current escape
space where the robber is to be chased. The procedure guesses (as an existential computa-
tion) in Step 1 a marshals position .S, and checks in Steps 2.a and 2.b, whether this position
is correct according to the above discussed conditions (a) and (b), respectively. The algo-
rithm then determines (in Step 3) the new components determined by the S-position of
the marshals and recursively checks if the k£ marshals have a winning strategy for each of

Hypertree Decompositions: Structure, Algorithms, and Applications 7

ALTERNATING ALGORITHM k-decomp
Input: A non-empty Hypergraph H = (V(H), E(H)).
Result: “Accept”, if H has k-bounded hypertree-width; “Reject”, otherwise.

Procedure k-decomposable(Cr: SetOfVertices, R: SetOfHyperedges)
begin
1) Guessaset S C E(H) of k elements at most;
2) Check that all the following conditions hold:
2.a) VP € edges(Cr), (PN|JR) CUS and
2b) (US)NCr #0
3) If the check above fails Then Halt and Reject; Else
LetC:={C CV(H) | Cisa [\JSl-component and C C Cr};
4) 1If, for each C € C, k-decomposable(C, S)
Then Accept
Else Reject
end;

begin(* MAIN *)
Accept if k-decomposable(V (H), 0)
end.

Fig. 4. A non-deterministic algorithm deciding k-bounded hypertree-width

these components C by calling k-decomposable(C, S). The algorithm accepts if this is
the case and rejects otherwise. This part is clearly a universal computation.

The algorithm is initialized (MAIN program) by the call k-decomposable(V (H),)
where V(H) is the initial escape space consisting of the entire vertex set of H, and
where the initial marshals position is the empty set, i.e., where no hyperedge is occupied
by a marshal. The correctness of the algorithm follows easily from the characterization
of hypertree-width through the R&Ms game (Theorem 2). A direct proof (not involving
the R&Ms game) is given in [16].

A position U of k marshals can be stored as k pointers to (or indices of) hyper-
edges of H, and, each [| J U]-component can be identified through a single vertex. Thus
the workspace required at the global level of the initial and each recursive activation
of k-decomp is logarithmic in the size of the input hypergraph H. Thus k-decomp
can be implemented on an alternating Turing machine using logarithmic workspace,
which proves that the associated decision problem is solvable in polynomial time. Ac-
tually, a witness of a successful computation corresponds to a hypertree decomposition
in NF, thus k-decomp can actually be implemented on a logspace ATM having poly-
nomially bounded tree-size, cf. [27], and therefore deciding whether hw(H) < k for a
hypergraph H is actually in the low complexity class LOGCFL. This is the class of all
problems that are logspace-reducible to a context-free language. LOGCFL is a subclass
of the class AC! of highly parallelizable problems.

Theorem 3 ([13]). Deciding whether a hypergraph H has k-bounded hypertree-width
is in LOGCFL.

8 G. Gottlob et al.

From an accepting computation of the algorithm of Figure 4 we can efficiently ex-
tract a NF hypertree decomposition. Since an accepting computation tree of a bounded-
treesize logspace ATM can be computed in (the functional version of) LOGCFL [12],
we obtain the following:

Theorem 4 ([13]). Computing a k-bounded hypertree decomposition (if any) of a hy-
pergraph H is in LYOGCFL o in functional LOGCFL.

As for sequential algorithms, a polynomial time algorithm opt -k-decomp which,
for a fixed k, decides whether a hypergraph has k-bounded hypertree-width and, in
this case, computes an optimal, i.e., smallest width hypertree decomposition in normal
form is described in [14]. The opt-k-decomp algorithm is obtained by “uprolling”
k-decomp in a sequential bottom-up fashion using polynomial space for storing inter-
mediate results while pruning non-optimal partial decompositions. As for many other
decomposition methods, the running time of this algorithm to find the hypergraph de-
composition is exponential in the parameter k. More precisely, opt -k-decomp runs
in O(m?Fv?) time, where m and v are the number of edges and the number of vertices
of H, respectively.

In the next section we will show that the constant & in the exponent of the runtime
for computing a hypertree decomposition can most likely not be eliminated.

5 Complexity of Hypertree-Width Computation

In this section we show that determining whether hw(H) < k is NP-complete and ac-
tually fixed-parameter intractable (FP-intractable) with respect to the parameter k. It
follows that, unless some unexpected collapse of FP classes occurs, we cannot eliminate
the parameter &k from the exponent of the runtime of any algorithm deciding whether a
hypergraph H has hypertree-width k, or computing (if possible) a hypertree decompo-
sition of width k of H.

The theory of fixed-parameter tractability or intractability is extensively described
in [8]. A problem P is fixed-parameter tractable (FP-tractable) w.r.t. parameter k if
there exists a function f and a constant ¢ such that P can be solved in time O(f(k)n®),
where n is the input size and where f(k) depends only on %k and c is a fixed con-
stant independent of k. To prove that a problem is not fixed-parameter tractable (FP-
intractable) one usually reduces another problem, known to be FP-intractable, to it via
a parametric reduction (see [8]). Such a reduction involves a standard polynomial time
reduction f between problem instances, and a mapping g between the parameters.

There is a hierarchy W[1], W[2], W[3], ..., the so called W-hierarchy, of classes
of parameterized problems that are conjectured to be FP-intractable. A well-known
FP-intractable problem at the second level W[2] of this hierarchy is the SET COVER
problem. An instance of SET COVER consists of a hypergraph H = (V, E) and an
integer kK < |E|. The problem is to decide whether there exists a set K C F of k
hyperedges covering V' (H), i.e., such that | ., e = V(I). The parameter here is k.
By FP-reducing SET COVER to the problem of checking whether hw(H) < k, we can
prove that the latter is W[2]-hard as well. Given that SET COVER (for non-constant
parameter k) is NP-hard, the same transformation gives us as a side result that checking
whether hw(H) < k is NP-hard in case k is not constant.

Hypertree Decompositions: Structure, Algorithms, and Applications 9

Theorem 5. The problem of deciding whether for a hypergraph H, hw(H) < k is
NP-complete and W(2]-hard wrt. parameter k. The same complexity results hold for
determining whether ghw(H) < k.

Proof. We state the proof for hypertree-width (hw). First note that the problem is ob-
viously in NP. To show that it is NP-complete and TV [2]-hard, it suffices to FP-reduce
SET COVER to it. Consider an instance I of SET COVER given by a hypergraph
H = (V, E) and an integer k < |E|. Let us define a new hypergraph H' = (V' E') as
follows: V' =V x {1,...,2k + 1},

E = {{(v,9),(w,§)} | (v,4),(w,j) e V'}U{ex{1,2,...,2k+ 1} | e € E}.

We claim that H has a set cover of size < k iff H' has hypertree-width < k.

The “only if” part is almost trivial to see. Indeed, if there exists a set cover K of
size k of H, then a hypertree decomposition of width & of H’ is constituted by a tree T'
consisting of a single node ¢ such that x(t) = V' and A(¢t) = {e x {1,2,...,2k + 1} |
e€ K}.

To see the “if” part of the claim, assume there exists a hypertree decomposition
(T, x, A) of width k of H'. Then, by construction of H’, there must exist a decomposi-
tion vertex ¢ of T" such that x(¢t) = V’. In fact, H' contains as subhypergraph the clique
obtained by pairwise relating all vertices of V/, and thus any tree decomposition of £’
must contain a block containing all vertices of V. Let

S={ecE|ex{1,2,....2k+1} € A(t)}.

Then | S| < |A(¢)| < k. We will next show that for each v € V' there exists some e € S
such that v € e, thus S is a set cover of size < k of H.

Assume thus that there exists a v € V' such that there is no e € .S for which v € e.
Then the elements (v, 1), (v,2), ..., (v,2k+1) of V' = x(t) must be covered by edges
in A(¢) of the form {v’, w’} where v',w’ € V. But for covering 2k+1 elements by such
pairs, at least £ + 1 such pairs would be necessary, which contradicts our assumption
that [\(t)| < k.

The reduction from H to H' is computable in time O(k - |H|) and is thus an FP-
reduction.

The same arguments apply if we use the notion of generalized hypertree-width
(ghw) instead of hypertree-width (hw). In fact, we have nowhere in this proof made
use of the special condition which distinguishes hw from ghw. a

6 Comparing Hypertree-Width to Other Hypergraph Invariants

A hypergraph invariant f is (at least) as good as invariant g, if there exists a constant
¢ such that whenever for a hypergraph H, g(H) = k, then f(H) < ¢ - k. We say that f
strongly dominates g if f is at least as good as g and there is a class H of hypergraphs
for which f is bounded (i.e., 3kVH € H : f(H) < k), but g is unbounded. We say
that two invariants f and g are equivalent if each is as good as the other one.

We start by discussing some hypergraph invariants that are generalizations of so-
phisticated graph invariants, and then report some results on comparing invariants used

10 G. Gottlob et al.

in Constraint Satisfaction, Artificial Intelligence and Database Theory to hypertree-
width.

Hyperlinkedness. Let H be a hypergraph, M C E(H) and C C V(H). C is M-big,
if it intersects more than half of the edges of M, that is, [{e € M | eNC # 0}| > “;’“ :
Note that if S C E(H), then H \ |J.S has at most one M-big connected component.
Let k£ > 0 be an integer. A set M C E(H) is k-hyperlinked, if for any set S C E(H)
with |S| < k, H \ |J S has an M-big component. The largest k for which H contains
a k-hyperlinked set is called hyperlinkedness of H, hlink(H). Hyperlinkedness is an
adaptation of the linkedness of a graph [25] to the setting of hypergraphs.

Brambles. Let H be a hypergraph. Sets X1, Xo C V(H) touch if X1 N Xo # () or
there exists an e € E(H) such thate N X7 #) and e N Xy # 0. A bramble of H
is a set B of pairwise touching connected subsets of V' (H). This is defined in analogy
to brambles of graphs [25]. The hyper-order of a bramble B is the least integer k such
that there exists a set R C E(H) with |R| = kand |JRN X # 0 for all X € B. The
hyperbramble number hbramble-no(H) of H is the maximum of the hyper-orders of
all brambles of H.

Theorem 6 ([2]). For each hypergraph H, hlink(H) < hbramble-no(H) < mw(H)
< ghw(H) < mon-mw(H) = hw(H) < 3 - hlink(H) + 1.

Corollary 1. The hypergraph invariants hlink, hbramble-no, mw, ghw, mon-mw,
and hw are all equivalent.

Of particular interest is the result that the generalized hypertree-width ghw(H) of
a hypergraph H is at most a factor 3 smaller than the hypertree-width hw(H). This
is important, because while it is currently an open problem whether ghw(H) < k
is decidable in polynomial time for constants k, the notion of generalized hypertree-
width is by many considered the best possible measure of cyclicity of a hypergraph. For
example, Cohen, Jeavons, and Gyssens [4] recently introduced a general framework
for hypergraph decomposition in the context of which they introduced the concept of
an acyclic guarded cover as their most general considered decomposition guaranteeing
tractability of the underlying problems (i.e., satisfying the above Condition 3). It turns
out, however, that an acyclic guarded cover can be equivalently defined as the set of
nodes of a generalized hypertree decomposition, and that the corresponding notion of
width precisely coincides with the notion of generalized hypertree-width. This provides
further evidence of the naturalness and importance of this notion.

The following hypergraph invariants were considered in Al, and, in particular, in
the area of constraint processing.

Biconnected Components (short: BICOMP) [9]. Any graph G = (V, E) can be de-
composed into a pair (7T, x), where T is a tree, and the labeling function x associates
to each vertex of 7" a biconnected component of G. The biconnected width of a hyper-
graph H, denoted by BICOMP-width(H), is the maximum number of vertices over the
biconnected components of the primal graph of H.

Cycle Cutset and Hypercutset (short: CUTSET) [5]. A cycle cutset of a hypergraph
H is aset S C V(H) such that the subhypergraph of H induced by V(H) — S is

Hypertree Decompositions: Structure, Algorithms, and Applications 11

acyclic. The CUTSET-width of H is the minimum cardinality over all its possible cycle
cutsets. A generalization of this is the method of hypercutsets, short HYPERCUTSET (for
a definition, see [15]).

Tree Clustering (short: TCLUSTER) [7]. The tree clustering method is based on a tri-
angulation algorithm which transforms the primal graph G = (V, E) of any hypergraph
H into a chordal graph G’. The maximal cliques of G’ are then used to build the hyper-
edges of an acyclic hypergraph H’. The tree-clustering width (short: TCLUSTER width)
of H is 1 if H is an acyclic hypergraph; otherwise it is equal to the maximum cardinality
over the cliques of the chordal graph G'.

The Hinge Method (HINGE) [19,18]. This is an interesting decomposition method
generalizing acyclic hypergraphs. For space reasons, we omit a formal definition. Com-
puting the HINGE-width of a hypergraph is feasible in polynomial time [19,18]. One
can also combine the methods HINGE and TCLUSTER, yielding the more general method
HINGETCLUSTER.

Theorem 7 ([15]). Hypertree-width strongly dominates treewidth, BICOMP-width,
CUTSET-width, HYPERCUTSET-width, TCLUSTER-width, HINGE-width, and
HINGETCEUSTER yidth.

7 Heuristics for Hypertree Decomposition

Recall that the algorithm opt-k-decomp decides, for a fixed k, whether a given hy-
pergraph has k-bounded hypertree-width and, if so, computes a hypertree decomposi-
tion of minimal width. Although opt-k-decomp runs in polynomial time, it is too
slow and needs a huge amount of space when applied to large hypergraphs. Therefore,
recent research focuses on heuristic approaches for the construction of hypertree de-
compositions. Of particular interest is the application of well-known heuristics from
other areas to hypertree decomposition.

Recall that a hypertree decomposition is in principle the same as a tree decompo-
sition satisfying two additional conditions. The first one leads from a tree decompo-
sition to a generalized hypertree decomposition and says that for every ¢t € V(T) it
holds that x(¢) C |J A(t), and the second one is the special condition leading from a
generalized hypertree decomposition to a hypertree decomposition. Note that the spe-
cial condition was introduced in order to be able to prove the polynomial runtime
of opt-k-decomp. Hence, the special condition can be ignored when considering
heuristic algorithms, and thus, one actually aims at computing generalized hypertree
decompositions by using heuristics.

So, when constructing hypertree decompositions via tree decomposition heuristics,
there is only one additional condition we have to satisfy. This condition forces the A-
labels to cover the y-labels. A natural approach to obtain a hypertree decomposition
from a tree decomposition is therefore to implement this condition in a straight-forward
way by set covering, i.e., to use set covering algorithms in order to compute the A-labels
of the hypertree decomposition based on the x-labels given by the tree decomposition.
In this way, it is possible to use tree decomposition heuristics (together with set covering
heuristics) for the heuristic construction of hypertree decompositions.

12 G. Gottlob et al.

This approach was firstly applied by McMahan [23] who obtained surprisingly good
results within a small amount of time. McMahan used Bucket Elimination [6] in com-
bination with several variable ordering heuristics. Obviously, to construct hypertree
decompositions in this way, any underlying tree decomposition method can be used.
Moreover, also branch decomposition heuristics are applicable [28], since every branch
decomposition of width k can be transformed into a tree decomposition of width at
most 3k/2 [26].

Another approach for heuristic hypertree decomposition is dual to the above ones
in the sense that we obtain a hypertree where the A-labels are given and appropriate
x-labels have to be set. This can be easily achieved by building a tree decomposition of
the dual graph. The dual graph of a hypergraph is obtained by creating a vertex for each
hyperedge and connecting two vertices if the corresponding hyperedges have a common
vertex. This dual graph, however, has too many edges for our purposes, i.e., the resulting
hypertree-width would be higher than necessary. Moreover, a hypertree decomposition
resulting from this procedure is always a query decomposition [13] whose width is
always larger than or equal to the hypertree-width of a hypergraph. However, by using
pre- and post-processing heuristics, it is possible to overcome both problems.

Finally, let us mention a further heuristic approach. It is based on hypergraph clus-
tering resp. hypergraph partitioning. There exist several heuristics in the literature for
building clusters of strongly connected hyperedges in a hypergraph such that there are as
less hyperedges as possible between the clusters. By using such methods, it is possible
to construct a hypertree decomposition in such a way that the clusters are recursively
partitioned and in each step a special hyperedge is added [21]. During this process,
for each cluster a hypertree-node is created whose A-labels are exactly the hyperedges
separating the subclusters of the current cluster. Afterwards, it is possible to connect
these hypertree-nodes in such a way that the resulting hypertree is indeed a hypertree
decomposition of the hypergraph (cf. [21]).

8 Applications

There are many problems in various domains of Computer Science whose underly-
ing structure is best described as a hypergraph and that are efficiently solvable if this
structure is acyclic. We next show that, for most of them, the notion of (generalized)
hypertree-width provides a technique for solving efficiently large classes of instances
that were believed to be intractable, according to previous known methods.

A very important example of such problems is the NP-hard Constraint Satisfaction
Problem (CSP), which is an important goal of Al research. Constraint satisfaction is a
central issue of problem solving and has an impressive spectrum of applications [24].
A constraint (S;, R;) consists of a constraint scope S;, i.e., a list of variables, and an
associated constraint relation r; containing the legal combinations of values. A CSP
consists of a set {(S1,71), (S2,72), ..., (Sq,74)} of constraints whose variables may
overlap. A solution to a CSP consists of an assignment of values to all variables such
that all constraints are simultaneously satisfied. By solving a CSP we mean determining
whether the problem has a solution at all (i.e., checking for constraint satisfiability),
and, if so, compute one solution.

Hypertree Decompositions: Structure, Algorithms, and Applications 13

Example 3. Consider the CSP I consisting of constraints {CY{,...,C§} where, for
each constraint C{, the constraint relation r{ encodes some required property for the
variables occurring together in the corresponding scope 57, and the constraint scopes
are the following: S{(3, 4, 5, 6, 7, 8); S5(12, 16, 17, 18, 19); S§(7, 9, 10); S¢(1, 11,
17,19); S¢(1, 2, 3, 4, 5, 6); Sg(5, 6, 7, 8,9); S¥(12, 15, 16, 18, 19); S§(12, 13, 14,
15,18, 19); S§(11, 12, 17, 18, 19).

The constraint hypergraph of a CSP I is the hypergraph H (I) whose vertices are
the variables of the CSP and whose hyperedges are the sets of all those variables which
occur together in a constraint scope. It is well known that CSPs with acyclic constraint
hypergraphs are polynomially solvable [5]. For instance, our example CSP instance I
is acyclic, as its hypergraph has a join tree. In fact, it is easy to check that the tree shown
in Figure 1 (on the right) is a join tree of hypergraph H (I¢). Intuitively, the efficient be-
havior of acyclic instances is due to the fact that they can be evaluated by processing any
of their join trees bottom-up by performing upward semijoins (in database lingo) [30].
That is, starting from the leaves, for each vertex v of the tree, we may filter out of its
parent p(v) the tuples of values from p(v)’s constraint relation that do not match with
any tuple in the relation of v. At the end, if the relation in the root is not empty, we know
that the given instance has a solution. This procedure takes O(nm log m) time, where
m is the size of the largest relation and n is the number of constraints. Note that we do
not distinguish here among join tree vertices and constraints, because join tree vertices
correspond to hyperedges and hence to constraints (assuming, w.l.o.g., that there is no
pair of constraints with exactly the same scopes). Recall that in general even computing
small outputs, e.g. just one solution, requires exponential time (unless P = NP) [3],
indeed the typical worst case cost for CSP algorithms is O(m"~! logm).

The idea behind CSP algorithms based on generalized hypertree decompositions is
to transform a CSP I into an equivalent acyclic CSP I’, by organizing its scopes into
a polynomial number of clusters that may suitably be arranged as a tree. Consider a
generalized hypertree decomposition of H (I) and some vertex v of this decomposition.
We can combine the constraints in A(v) in a unique constraint over the only variables
listed in x(v). Building this fresh constraint takes O(m/*(")=1logm) time. It is easy
to see that, after this phase, we get a new CSP instance I’, which is acyclic and solution
equivalent to the original instance /. Therefore, we can eventually solve this instance
in time O(n’m®~!logm), where w is the decomposition-width and n’ is the number
of vertices in the decomposition tree, which is bounded by the number of hypergraph
vertices (CSP variables). Note that, for classes of CSPs having small (bounded) width,
solving these problems by exploiting hypertree decompositions may lead to a tremen-
dous speed-up. Indeed, hypertrees with the smallest width say to us precisely the best
way of combining together constraints of I, in order to obtain a nice acyclic equivalent
instance to be solved efficiently.

Example 4. Consider a CSP instance ¢ with the following constraint scopes:
S1(1,2,3); S2(1, 4, 5,6); S5(3,4, 7, 8); Sa(5, 7); S5(6, 8,9); S6(7, 9, 10); S7(5, 9);
Ss(1, 11); So(11, 12, 18); S10(12, 13, 19); S11(13, 14); S12(14, 15, 18); S13(15, 16,
19); S14(16, 17, 18); S15(1, 17, 19);

14 G. Gottlob et al.

The associated hypergraph H (I¢) is shown in Figure 1. The generalized hypertree-
width of this hypergraph is 2 and a decomposition having this (optimal) width is shown
in Figure 1, on the left. Following the “instructions” encoded in this decomposition, we
build exactly the acyclic instance I in Example 3. Then, by exploiting hypertrees, we
know that 7¢ may be solved in O(9m logm) time, in the worst case, which is clearly
quite good, if compared with the traditional worst case O(m!* logm).

Though we focused on constraint satisfiability, all the above considerations immedi-
ately apply to a large number of important problems that, as CSP, are efficiently solvable
if their hypergraph structure is acyclic. We just mention here a few examples, such as the
game theory problem of computing pure Nash equilibria in graphical games [10], and
various database problems, e.g., the problem of conjunctive query containment [20], or
the problem of evaluating Boolean conjunctive queries over a relational database [22]
(for a discussion of this and other equivalent problems, see [11]).

9 Open Problems and Future Research

We believe that hypertree decompositions and hypertree-width are interesting concepts
deserving further investigations. The following problems are of particular interest: (1) Is
it possible to check whether ghw(H) < k in polynomial time for each constant k?
(2) Are there other hypergraph invariants (and associated decompositions) that fulfill the
three criteria given in Section 1 and that strongly generalize hypertree-width? (3) Can
we find a deterministic algorithm for computing a k-width hypertree decomposition
whose worst case runtime is significantly better than n?*? (4) Is it possible to find
some heuristic method for computing “good” hypertree decompositions for an over-
whelmingly large number of realistic examples stemming from various applications?

References

1. 1. Adler. Marshals, monotone marshals, and hypertree width. Journal of Graph Theory 47,
pages 275-296, 2004.

2. 1. Adler, G. Gottlob, and M. Grohe. Hypertree-width and related hypergraph invariants.
Manuscript, submitted for publication, available from the authors.

3. A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational
databases. In Proc. STOC’77, pages 77-90, 1977.

4. D. A. Cohen, P. G. Jeavons, and M. Gyssens. A unified theory of structural tractability for
constraint satisfaction and spread cut decomposition. In Proc. IJCAI’05, pages 7277, 2005.

5. R. Dechter. Constraint networks. In Encyclopedia of Artificial Intelligence, second edition,
Wiley & Sons, pages 276--285, 1992.

6. R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction problems. Arti-
ficial Intelligence 34(1), pages 1-38, 1987.

7. R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelligence 38(3),
pages 353-366, 1989.

8. R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer, 1999.

9. E. C. Freuder. A sufficient condition for backtrack—bounded search. Journal of the ACM
32(4), pages 755-761, 1985.

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

Hypertree Decompositions: Structure, Algorithms, and Applications 15

G. Gottlob, G. Greco, and F. Scarcello. Pure Nash equilibria: Hard and easy games. Journal
of Artificial Intelligence Research (JAIR), 2005. To appear. Preliminary version in: Proc.
TARK’03,2003.

G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive queries. Jour-
nal of the ACM 48(3), pages 431-498, 2001. Preliminary version in: Proc. FOCS’98, 1998.
G. Gottlob, N. Leone, and F. Scarcello. Computing LOGCFL certificates. Theoretical Com-
puter Science 270(1-2), pages 761-777, 2002. Preliminary version in: Proc. ICALP’99, 1999.
G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable queries.
Journal of Computer and System Sciences (JCSS) 64(3), pages 579-627, 2002. Preliminary
version in: Proc. PODS’99, 1999.

G. Gottlob, N. Leone, and F. Scarcello. On tractable queries and constraints. In Proc.
DEXA’99, pages 1-15, 1999.

G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP decomposition meth-
ods. Artificial Intelligence 124(2), pages 243-282, 2000. Preliminary version in: Proc. 1J-
CAI’99, 1999.

G. Gottlob, N. Leone, and F. Scarcello. Robbers, marshals, and guards: Game-theoretic and
logical characterizations of hypertree width. In Proc. PODS’01, pages 195-206, 2001.

G. Gottlob and R. Pichler. Hypergraphs in model checking: Acyclicity and hypertree-width
versus clique-width. Siam Journal of Computing 33(2), pages 351-378, 2004.

M. Gyssens, P. G. Jeavons, and D. A. Cohen. Decomposing constraint satisfaction problems
using database techniques. Artificial Intelligence 66, pages 57-89, 1994.

M. Gyssens, and J. Paredaens. A decomposition methodology for cyclic databases. In Ad-
vances in Database Theory, vol. 2, pages 85-122, 1984.

Ph. G. Kolaitis and M. Y. Vardi. Conjunctive-query containment and constraint satisfaction.
Journal of Computer and System Sciences (JCSS) 61, pages 302-332, 2000.

T. Korimort. Constraint satisfaction problems — Heuristic decomposition. PhD thesis, Vienna
University of Technology, April 2003.

D. Maier. The theory of relational databases. Computer Science Press, 1986.

B. McMahan. Bucket eliminiation and hypertree decompositions. Implementation report,
Institute of Information Systems (DBAI), TU Vienna, 2004.

J. Pearson and P. G. Jeavons. A survey of tractable constraint satisfaction problems. Technical
report CSD-TR-97-15, Royal Halloway University of London, 1997.

B. Reed. Tree width and tangles: A new connectivity measure and some applications. In
Surveys in Combinatorics, volume 241 of LNS, pages 8§7-162. Cambridge University Press,
1997.

N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to tree-decomposition. Jour-
nal of Combinatorial Theory, Series B 52, pages 153-190, 1991.

W. L. Ruzzo. Tree-size bounded alternation. Journal of Computer and System Sciences
(JCSS) 21(2), pages 218-235, 1980.

M. Samer. Hypertree-decomposition via branch-decomposition. In Proc. IJCAI'0S5,
pages 1535-1536, 2005.

P. D. Seymour and R. Thomas. Graph searching and a min-max theorem for tree-width.
Journal of Combinatorial Theory, Series B 58, pages 22-33, 1993.

M. Yannakakis. Algorithms for acyclic database schemes. In Proc. VLDB’81, pages 82-94,
1981.

Combinatorial Search on Graphs Motivated by
Bioinformatics Applications: A Brief Survey

Mathilde Bouvel!, Vladimir Grebinski?, and Gregory Kucherov?

! Département d’Informatique, Ecole Normale Supérieure de Cachan, 94235, France
2 CompuGene Inc., Jamesburg, NJ 08831, USA
3 INRIA/LORIA, 615, rue du Jardin Botanique, B.P. 101, 54602,
Villers-les-Nancy, France
Gregory.Kucherov@loria.fr

Abstract. The goal of this paper is to present a brief survey of a collec-
tion of methods and results from the area of combinatorial search [1,8]
focusing on graph reconstruction using queries of different type. The
study is motivated by applications to genome sequencing.

1 Introduction

1.1 Generic Problem and Bioinformatics Application

Assume we have a set of labeled chemicals and some pairs of chemicals can react.
Assume we have an experimental tool to detect if a reaction occurs when mixing
two or several chemicals together, or a tool that allows us to count how many
reacting pairs there are in the mixture. Our goal is to recover all pairs of reacting
chemicals with as few experiments as possible.

One important application area for such problems is bioinformatics. For ex-
ample, obtaining a whole genomic sequence is a crucial first step in the study of
an organism. A common practical approach to genome sequencing is to obtain a
number of short and possibly overlapping reads from the genomic sequence, that
are then assembled into contigs — contiguous fragments that cover the genome
with possible gaps. The problem is then to determine the relative placement of
contigs on the genome, i.e. to reconstruct their original order. This step is a
accomplished by testing the adjacency of contigs using a so-called Polymerase
Chain Reaction (PCR). Nowadays, PCR is one of the most ubiquitous tools in
molecular biology and can be performed very cheaply, efficiently and almost au-
tomatically (see e.g. [2]). It is based on the idea that any region of the genome
can be described by a pair of primers that can be thought of as short nucleotide
sequences bounding this region. If the primers are proximate (within several
thousands of nucleotides in practice), the region that they delimit is amplified
into a huge number of copies, which can be observed experimentally. Therefore,
by picking primer sequences from both ends of each contig, we can reliably test
if they are adjacent on the original DNA, under the assumption that the gaps
between contigs are of bounded size.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 16-27, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Combinatorial Search on Graphs Motivated by Bioinformatics Applications 17

While the basic PCR allows one to test one pair of primers at a time, the
multiplex PCR presents an extension that uses several primers simultaneously
to determine amplified regions. Since several regions can be amplified simulta-
neously, this approach can also provide an information of how many pairs of
primers resulted in an amplification.

In all cases, a very important question in practice is how many reactions are
needed in the worst case and how quickly we can perform all of them. Ideally,
we want to implement as few reactions as possible and run them in parallel. In
this paper we survey some of the results related to such and similar problems.

1.2 Mathematical Formulation and Main Definitions

If chemicals are represented as vertices of a non-oriented graph and a reaction
as an edge, we come up with a problem of reconstructing an unknown graph
of a given class of graphs. Note that we might also consider that a reaction
is triggered by more than two chemicals, which would result in a hypergraph
reconstruction problem.

The multiplex PCR problem can lead to two different mathematical formal-
izations. If the objects (“chemicals”) we are dealing with are contigs (i.e. primers
coming from both ends of a contig are always tested together), the underlying
problem is to reconstruct a Hamiltonian path or a Hamiltonian cycle! on K,
(the complete graph with n vertices, where n is the number of contigs) [11]. If
we are dealing with primers, we face the problem of reconstructing a matching
on K, (where n is the number of primers).

Graph Reconstruction Problem. Different kinds of combinatorial search problems
on graphs have been considered in the literature (see [1]): identifying an unknown
edge or vertex in a given graph, reconstructing a hidden graph of a given class,
verifying a property of a hidden graph, and some others. Our interest here will
be the following graph reconstruction problem:

Problem 1. Given a class of graphs G = U, Gy, , where G,, contains all the graphs
of G on the set of vertices V. ={1,...,n}, we want to reconstruct a hidden graph
G € G, for a given n, making as few queries as possible. A query is a subset of
V', and the answer we obtain provides us with information about the edges in the
subgraph of G induced by the queried subset. This information depends on the
model under consideration.

In the particular case when only two vertices of V' can be tested at a time,
the query just checks if a specific edge exists in G, and the model is called a
two-vertex model.

Boolean and Quantitative Models. One type of query is: “For @@ C V, is there
at least one edge in the subgraph of G induced by Q7?”. The possible answers
being true or false, this query model is called boolean.

! Depending on whether the genome is linear or circular.

18 M. Bouvel, V. Grebinski, and G. Kucherov

A natural extension of this model admits queries of the following form: “For
Q CV, how many edges does the subgraph of G induced by @ contain?”. This
query model is called quantitative (or additive) since the answer to a query is
an integer ranging between 0 and the number of edges of a G.

In both cases, the complexity of a problem is defined as the minimum number
of queries required to reconstruct a graph of G,, in the worst case. The complexity
depends on n but can also made dependent on other parameters (see [4] for
example).

We will be generally interested in finding upper and lower bounds on the
complexity of a problem. The information theory provides a simple and powerful
method to estimate the lower bound: at least log, |G, | queries must be made in
order to identify a graph from G,, where d is the maximal number of distinct
answers provided by a query.

Adaptive and Nonadaptive Algorithms. Two main kinds of algorithms must be
distinguished in the area of combinatorial search: in adaptive algorithms, every
query potentially depends on the answers obtained to previous queries while in
nonadaptive algorithms, all queries are independent of each other. A nonadaptive
algorithm can be described as a family of subsets of V' (queries) or as an vertex-
query incidence matrix M (M; ; = 1 iff vertex j appears in query i, M, ; = 0
otherwise).

Nonadaptive algorithms can be seen as 1-round algorithms, i.e. those in which
all queries can be made in parallel. From this perspective, adaptive algorithms
are multi-round (have an unlimited number of rounds). Intermediate case of
s-round algorithms composed of s successive nonadaptive stages will also be
considered.

In this paper, we present a short survey of different known results on graph
reconstruction. From the application perspective, our main motivation is on
reconstructing Hamiltonian cycles but we also consider other graph classes such
as matchings, stars, cliques, graphs with bounded vertex degree, and others. Two
main query models will be considered: the boolean model (Section 2) and the
quantitative model (Section 3). For each graph class, we will be interested in the
complexity of reconstruction using different types of algorithms.

2 Boolean Model

2.1 Hamiltonian Cycles

Assume we have to reconstruct an unknown Hamiltonian cycle in the complete
graph K. Under the boolean model, the information theory yields the lower
bound log, (ngl)! = 2(nlogyn) as there are (ngl)! Hamiltonian cycles on n
vertices. The following theorem states that this bound can be reached under

particular conditions.

Theorem 1. The 2(nlogyn) lower bound on the complexity of Hamiltonian
cycle reconstruction can be reached by an adaptive algorithm.

Combinatorial Search on Graphs Motivated by Bioinformatics Applications 19

Note first that if we are restricted to the two-vertex model, any reconstruction
algorithm requires £2(n?) queries, as shown in [1].

An adaptive algorithm reconstructing a Hamiltonian cycle H with 2nlog, n
queries has been described in [11]. An interesting fact is that under the boolean
model, this complexity cannot be achieved by a nonadaptive algorithm. As
showed in [5], £2(n?) queries are necessary for a nonadaptive algorithm to re-
construct a Hamiltonian cycle. The result of [5] is actually more general, and
establishes that §2(n?) queries are necessary for a nonadaptive algorithm to re-
construct a graph in one of the following classes: matchings, perfect match-
ings, graphs isomorphic to a fixed bounded degree graph with 2(n) edges,
graphs consisting in the disjoint union of a clique of size n — 3 and a single
edge.

This example illustrates the case when adaptive algorithms are strictly more
powerful than nonadaptive algorithms.

2.2 Matchings

A matching is a graph such that each vertex has degree 0 or 1. As mentioned
above, any nonadaptive algorithm reconstructing a matching requires a quadratic
number of queries. More precisely, at least 145?3 (g) nonadaptive queries are nec-
essary to reconstruct a matching on K,, [5]. The authors of [5] also prove the
upper bound (3 + o(1))(}) using a construction based on the Wilson theorem
[22] on the decomposition of complete graphs into subgraphs isomorphic to a
given graph.

As the enumeration of matchings is an open question, it is difficult to compute
the exact information-theoretic lower bound. However, we can easily compute the
number of perfect matchings? of K, to be SLE Jn-!t n)y This provides a lower bound
on the number of general matchings, and im}ilies the following information-

theoretic lower bound on the reconstruction of matchings: log, (zl’z‘JmL "Jr) =
Lz

(1+0(1)) - (3 loggn). Even though this bound has been computed for perfect
matchings only, it is possible to built an adaptive algorithm reconstructing gen-
eral matchings and achieving this bound within a constant factor.

The algorithm works in two steps. The first one is adaptive and partitions
the set of vertices into V3 W V5 such that no two vertices in the same V; are
adjacent in the matching. This can be done in n queries by processing vertices
one-by-one. The second step can be made nonadaptive. It finds for every v € V
the adjacent vertex to v (if it exists) in V5 using a group testing algorithm to find
one “counterfeit coin” among n (see Section 3.1). This group testing problem
can be solved within [log, n] nonadaptive queries, yielding a total complexity
of (1+0(1)) - (nlogyn) for the entire algorithm. Note that the same algorithm
applied to the reconstruction of perfect matchings has an optimal asymptotic
complexity (1 +o(1)) - (} logyn).

2 A perfect matching is a graph such that the degree of all vertices except possibly
one is 1.

20 M. Bouvel, V. Grebinski, and G. Kucherov

2.3 Stars and Cliques

The reconstruction of stars and cliques on n vertices has been studied in [4].
Following that paper, we define Sy to be the set of all stars with a center,
k leaves and n — k — 1 isolated vertices, and Cj to be the set of all cliques
with k vertices and n — k isolated vertices. S = UyZ) Sy and C' = UF_,Cy, are
respectively the set of all stars and all cliques on n vertices, with an arbitrary
number of isolated vertices.

We now examine the information-theoretic lower bound for reconstructing
stars and cliques under the boolean model. To estimate the cardinality of 5,
recall that a star of S; (for £ > 2) is defined by a center chosen among the
n vertices and k leaves chosen among the n — 1 remaining vertices. So |S| =

ryn (N + "("2_1) +1=n-(2""1-1)— "("2_1) + 1. Consequently, we
get the lower bound log, |S| = (1 + o(1)) - n for the complexity of the star
reconstruction problem. For cliques, it is clear that |C] = >_}_ (Z) = 2" and
the information theoretic lower bound is then log, |C| = (1 4 o(1)) - n.

For both stars and cliques, the £2(n) bound can be achieved by the following
algorithm composed of two nonadaptive rounds. At the first round, find a starting
vertex from which it becomes easy to reconstruct the whole graph: the center
of the star or a vertex that belongs to the clique. Finding the center of the star
is done through n nonadaptive queries V' \ {i} for 1 < i < n. To find a vertex
of the clique, we simply ask the queries Q; = {1,...,i} for 2 < i < n. At the
second round (nonadaptive as well), finish the reconstruction by determining the
neighbors of the starting vertex. Each round requires a linear number of queries.

While cliques and stars can be easily reconstructed in two nonadaptive
rounds, the situation changes if we are restricted to fully nonadaptive (1-round)
algorithms. To reconstruct a star of S with a nonadaptive algorithm, it is nec-
essary, in the worst case, to query each of the (g) pairs of vertices {u,v} [4],
i.e. the most naive algorithm turns out to be the optimal one in the worst case.
In contrast, for cliques, only 2(nlogn) nonadaptive queries are needed, and [4]
showed the existence of a nonadaptive algorithm reconstructing a clique of C'
with O(nlog®n) queries.

3 Quantitative Model

We now turn to the quantitative model, much less studied in the literature. We
show that under this model, nonadaptive algorithms get all their power and
often allow to achieve (or to approach) the lower bound. This is due to powerful
combinatorial constructions of (0, 1)-matrices verifying certain properties.

3.1 Hamiltonian Cycles

We start again with our initial problem of reconstructing a Hamiltonian cycle
on n vertices. As under the quantitative model there are n + 1 possible answers

to each query Q C V, the information-theoretic lower bound is log,,, ; (n—!

(1+0(1) - n. ’

Combinatorial Search on Graphs Motivated by Bioinformatics Applications 21

Theorem 2. Under the quantitative model, there exists an algorithm recon-
structing a Hamiltonian cycle in O(n) queries.

One such algorithm has been presented in [11] and is composed of two steps:
an adaptive preparatory step followed by a nonadaptive reconstruction step?.
We now describe this algorithm.

First Stage. The goal of the first stage is to reduce the problem to the re-
construction of bipartite graphs. By processing all the vertices successively, we
transform the Hamiltonian cycle H into a tripartite graph, i.e. we partition the
set of vertices V into 3 subsets V; W V5 W V3 such that two vertices in the same
subset are not adjacent in H. As each vertex has exactly two neighbors, this
transformation can be done in at most 2n queries. We are now dealing with the
problem of reconstruction of a tripartite graph that we view as three bipartite
graphs.

Second Stage. The second stage reconstructs each of the three bipartite graphs
in O(n) nonadaptive queries. This crucial step is based on two auxiliary con-
structions.

First Subproblem. Consider a bipartite graph (C7, Cy; E') with vertex degree
bounded by a constant (2 in our case). Assume that we want to determine the
degrees of all vertices of Cy by querying subsets of C together with the whole
set Cy. This problem is equivalent to the reconstruction of an unknown vector
v=(v1,...,0,) with v; € {0,...,d—1} (d = 3 in our case) by querying sums of
the form Z?Zl €vi, € € {0,1}. A nonadaptive algorithm solving this problem
corresponds to a (0,1)-matrix M of dimension k& x n (k as small as possible)
such that for vectors v € {0,...,d — 1}", all products Mwv are distinct. We call
such matrix a d-detecting matriz.

The information-theoretic lower bound for k is log(y_1),4+1 d" = (1 +o(1)) -
(logT; n)

For the particular case d = 2, this lower bound can be improved to (240(1))-
(10; ,.), as it was shown in [9] (another proof using Kolmogorov complexity can

be found in [16]). On the other hand, it has been shown in [17,6] that this
bound can be achieved. A decade later, Lindstrom [21] gave a tricky effective
construction of a 2-detecting matrix with (2 + o(1)) - (..’ ,) rows using the
Mobius function.

In our case, d = 3 and a 3-detecting matrix with (4+o0(1))-(log, ,,) Tows can be
effectively constructed as an extension of the Lindstrom construction. Further-
more, for an arbitrary constant d, a d-detecting matrix with (2+0(1))(logd-, ")

logn
rows can be effectively constructed, and this is also a lower bound [11].

Second Subproblem. Consider a bipartite graph (C1, Ca; E') and a vertex i €
C1. We want to determine the vertices of Cs adjacent to i by querying ¢ together

3 As it will follow from Section 3.4, Hamiltonian cycles can be reconstructed in O(n)
fully nonadaptive queries. The two-step construction presented here is for explana-
tory purposes.

22 M. Bouvel, V. Grebinski, and G. Kucherov

with subsets of C5. In the case of Hamiltonian cycle, there are exactly two such
vertices, but to be more general, we assume that their number is bounded by a
constant d. The problem can be viewed as a problem of discovering d counterfeit
coins (neighbors of i) among n coins (vertices Cz) and is well-known in the area
of group testing [8]. We want to solve it in a nonadaptive way (for reasons that
will be clear later) using queries of type “how many counterfeit coins does a
given subset contain?”.

The case of finding one counterfeit among n can be solved by an optimal non-
adaptive set of queries); = {j| the i-th bit of j is 1} for 1 < i < [log, n]. How-
ever, already for two coins the situation gets more complicated: the information-
theoretic lower bound is log, (g) ~ 1.26 - logy, n while the best known upper
bound for adaptive algorithms is 1.44 - log, n. For nonadaptive algorithms, the
best known lower and upper bounds are respectively g -log, n and 2-log, n [18,20].

For the general problem of finding nonadaptively d counterfeit coins among n,
we need to construct a (0, 1)-matrix A of dimension k x n (k as small as possible)
such that for vectors v € {0, 1}™ having at most d 1’s, all products Av are distinct.
We call such a matrix a d-separating matriz. Known upper and lower bounds for the
number of rows in a d-separating matrix are respectively (4+o0(1))- (1O”gl 4 logn) [11]

and (24 0(1)) - (102 4 logn) [3]. Both are proved using probabilistic arguments, and
thus the upper bound is non-constructive. The best known explicite nonadaptive
construction uses BCH error-correcting codes and uses O(d log, n) queries. Note

also that no better properly adaptive algorithm is known.

Combining the Subproblems. The two techniques presented above (d-detect-
ing and d-separating matrices) allow us to solve the problem of reconstruction
of a bipartite graph (C1,Cs; E) with the degree of each vertex in C;7 bounded
by a constant d. Using d-separating matrices, the adjacent vertices of each i €
C7 can be obtained by querying ¢ against Py, ..., P, C Cs, where Pi,..., P,
do not depend on i. For each P;, we can determine the degree of each i €
Cy in P; by querying P; against Si,...,S¢ C C) using d-detecting matrices.
Again, S1,...,5; do not depend on P;. Thus, querying all pairs S, U P; is
sufficient to reconstruct the whole graph. The resulting number of queries is
(2+o(1))(logd, .z,) (4 + 0(1>>(1chld logn) = (8 + o(1))dn.
This proves the following

Theorem 3. A (one-sided) d-bounded degree bipartite graph can be recon-
structed within (84 0(1))-dn nonadaptive queries. This matches the lower bound

up to a constant factor.

Turning back to our initial motivation (Theorem 2), a Hamiltonian cycle can
(4Toog(: 31)'” = O(n) queries asymptotically
by a two-stage algorithm. This matches the lower bound up to a constant factor.

be reconstructed within 2n+3-2log, n-

3.2 Matchings

As in Section 2.2, consider the lower bound on the number of matchings

n!
2t8). 13!
on n vertices. Note that as the number of edges in a matching on n vertices is

Combinatorial Search on Graphs Motivated by Bioinformatics Applications 23

at most |4 |, the maximal number of distinct answers to a query is || + 1.
Consequently, we can compute an information-theoretic lower bound on the
complexity of the matching reconstruction problem under the quantitative model
tobelogiyypy (g7 ,),) = A +o()- 5.

It is possible to reach this bound, up to a constant factor, by a fully non-
adaptive algorithm. This will follow from Section 3.4 where we describe a general
nonadaptive algorithm for reconstructing graphs of vertex degree bounded by d
within O(dn) queries.

3.3 Stars and Cliques

Recall from Section 2.3 that the number of stars and cliques on n vertices are
respectively |S| = n - (2771 —1) — "("2_1) + 1 and |C| = 2™. The information-
theoretic lower bound for reconstructing stars under the quantitative model is
then log,, (n (2n1—1)— by 1) = (1+0(1))(

is logn<,;1>+1(2”) = (é +o0(1)) - (logzn).

There exist adaptive algorithms that achieve these bounds within a con-
stant factor. Here we give only a very high-level description of them. Similar
to Section 2.3, the algorithms are divided into two main steps, the first one is
adaptive and the second one nonadaptive. At the first step, we find, in a loga-
rithmic number of adaptive queries, either the center of the star, or one vertex of
the clique. (This can be done using binary search.) (2 + o(1)),,," ,, nonadaptive
queries are then sufficient to reconstruct the neighbors of the vertex found in
the first stage, using 2-detecting matrices introduced in the first subproblem of
Section 3.1 (see [19,13]). For stars, this construction applies immediately and for
cliques, we need to transform each query answer from &k + k(k — 1)/2 to k which
is done non-ambiguously.

log, ,,) and that for cliques

3.4 Bounded Degree Graphs

Theorem 3 states that a (one-sided) d-bounded degree bipartite graph can be
reconstructed through O(dn) nonadaptive queries. We now want to use this
technique to reconstruct general bounded degree graphs [13]. The idea is to
consider a bipartite representation of a graph defined as follows. Given a graph
G = (V, E), the bipartite representation of G is G’ = (V4, Va; E’), where V4 and
V, are two disjoint copies of V, E C Vj x Vo, and (i,5) € E implies (i,j) € E’
and (j,4) € E'. Note that any edge of G produces two edges in G’. Moreover, if
G is d-bounded degree then G’ is d-bounded degree too.

We want to query the binary representation through the following queries:
“Given X C V5 and Y C V5, how many edges are there in G’ connecting ver-
tices of X to vertices of Y 7 7. We define the corresponding query function
P (X,Y) = |E'N(X xY)|. A query p (X,Y) can be expressed through quan-
titative queries to the initial graph G, i.e. through the query function pg(X) =
|[EN(X x X)|, for X C V. Using elementary set-theoretic considerations, it can be
shown that ¢/ (X,Y) = p((X\Y)U(Y'\X))—2u(X\Y) —2u(Y\X)+u(X)+u(Y).

24 M. Bouvel, V. Grebinski, and G. Kucherov

By Theorem 3, the binary representation G’ can be reconstructed by O(dn)
nonadaptive queries p/(X,Y). From the observation above, it follows that G’
can be reconstructed by O(dn) nonadaptive queries p(X).

Theorem 4. A d-bounded degree graph can be reconstructed within O(dn) non-
adaptive queries. This is an asymptotically tight bound.

3.5 General Graphs

Under the quantitative model, the information-theoretic lower bound for recon-
structing general graphs is loan(nz_l) 9"y = (1+o(1))- logzn. A better lower
bound (5 +o(1))- log 1
trices (see Section 3.1). As it was shown in [13], this bound can be achieved up to
a constant factor using again the bipartite representation of a graph introduced
in the previous section.

Consider the bipartite representation G’ = (V1,Va; E’) of a general graph
G = (V,E). For each vertex ¢ € Vi, reconstruct its adjacent vertices among
{1,...,i—1} C Vo with (240(1))- 10g2i queries of the form p/({i}, W), W C V3,
using 2-detecting matrices. Observe that p/({i}, W) = p(W U {i}) — u(W \ {i})
which allows us to express each query u/({v}}, W) through two queries to the
original graph G.

The overall complexity of this method for the reconstruction of a general
graph is then Y. ,(2+ o(1)) =(2+0(1)) "* This is within the factor

i
" log, i log, n*
of four from the known lower bound for nonadaptive algorithms.

can be obtained using lower bounds for d-detecting ma-

Theorem 5. A general graph can be reconstructed within (2 + o(1)) non-

2
IOTgL2 n
adaptive queries. This matches the lower bound up to a constant factor.

3.6 k-Degenerate Graphs and Trees

The general technique used to reconstruct bounded degree graphs (Section 3.4)
can be further extended to reconstruct more general k-degenerate graphs. An
intuitive definition of k-degenerate graphs is as follows: G is k-degenerate if
there exists a vertex v of G with vertex degree less than or equal to k£ such
that G'\ {v} has the same property. More formally, a graph G is k-degenerate if
vertices V' can be ordered (v1,va,- - ,v,) such that degg, (v;) < k, where G is
the subgraph of G induced by the vertices {v;, vj+1, - ,vn . For example, trees
are 1-degenerate as there exists a leaf of vertex degree 1 and after deleting it
the graph is still a tree. Another example is provided by planar graphs that are
5-degenerate: there is always a vertex of degree at most 5 and deleting it keeps
the graph planar.

Let us first compute the information-theoretic lower bound for the recon-
struction of k-degenerate graphs. The number of edges in a k-degenerate graph
is clearly less than nk. To obtain a lower bound on the number of k-degenerate

Combinatorial Search on Graphs Motivated by Bioinformatics Applications 25

graphs, we fix some order on vertices and count number of possibilities to con-

nect vg4t t0 Vgtey1,- -, Upn. Since all such choices can be made independently for
. k
all vy, -+, Up_k, we have N(n+1,k) > [T, .1 (;) > (:')k . The corresponding

information-theoretic lower bound is then
nk(logn —logk — 1)

1 N 1, k) >
08 N(n +1,k) > logn + log k

In the case k < n® for some a < 1, this bound can be simplified into 2(nk). For
n sufficiently large, we can prove that this bound is tight, meaning that there
exists an algorithm that reconstructs a graph in the class of k-degenerate graphs
with O(nk) queries.

Theorem 6. k-degenerate graphs on n vertices can be reconstructed by a non-
adaptive algorithm using O(nk) queries, and this bound is tight.

As in the case of bounded degree graphs (Section 3.4), the algorithm uses the
bipartite representation of k-degenerate graphs and the same general technique
of reconstructing bipartite graphs. While the bipartite representation here is not
of bounded vertex degree, the sum of degrees of all vertices from one side is
bounded by nk. Therefore, instead of using d-detecting matrices (first subprob-
lem in Section 3.1), we consider matrices that solve a more general combinatorial
search problem, namely the reconstruction of d-bounded weight vectors which are
vectors with the sum of entries bounded by d. Formally, define the class of d-
bounded weight vectors by A(n,d) = {(v1,...,v,)|v; € Nand Y7, v; < d}.
A nonadaptive algorithm reconstructing d-bounded weight vectors is specified
by an object-query incidence matrix M such that M - vy # M - vo for all
v1,v2 € A(n,d), v1 # ve. It has been shown in [10] that there exists such a
4min(n,d) log <01 maz(n,d)

min(n,d)))
log min(n,d)+Cs2 +Cs 10g d’ for

matrix with the number of rows k(n, d) <
some constants Cy, Co and Cj.

Consider now the bipartite representation G’ = (V1, Va; E’) of a k-degenerate
graph G. Assume we are given two families {Q;}72; and {P;}L_, that solve the
d-bounded weight vector reconstruction problem for d = k and d = 2nk re-

spectively. From the bound on k(n,d) above, it follows that m = (’)(k‘igi;‘)

and | = (’)(n%ggs) when n — oo. It can be shown that the set of queries

{1 (P, QJ)}g;llm reconstructs k-degenerate graphs. The proof, given in [10],
combines the ideas of Section 3.1 with an iterative procedure of computing the
answers of queries p/(P;, @;) that would be obtained after deleting all edges in-
cident to a vertex of degree at most k (by definition of k-degenerate graphs, such
a vertex always exists).

The overall complexity of the algorithm is m - I = O(nk), which proves
Theorem 6.

4 Conclusions and Open Problems

Through examples of Hamiltonian cycles, matchings, stars and cliques, the quan-
titative model has been shown to be more powerful than the boolean model. The

26 M. Bouvel, V. Grebinski, and G. Kucherov

following table illustrates this difference and provides lower and upper bounds
(for adaptive and nonadaptive algorithms) for the two-vertex, boolean and quan-
titative models, for the case of Hamiltonian cycle that has been our main ap-
plicative motivation.

lower bound adaptive nonadaptive

two-vertex model 2(n?) O(n?) O(n?)
boolean model 2(nlogn) O(nlogn) 2(n?)
quantitative model — 2(n) O(n) O(n)

Another important conclusion is that nonadaptive algorithms fully benefit
from the quantitative model, and vice versa. Not only the quantitative model
allows faster reconstruction algorithms, but also these algorithms can be made
nonadaptive, or “almost nonadaptive” (having an important nonadaptive com-
ponent). Interestingly, under the quantitative model, nonadaptive algorithms
often reach the asymptotic lower bound and no properly adaptive algorithm is
known to outperform nonadaptive algorithms. This contrasts with the boolean
model, where nonadaptive algorithms are usually strictly less powerful than
adaptive ones.

The power of nonadaptive algorithms under the quantitative model is due to
powerful combinatorial constructions of d-detecting and d-separating matrices
(Section 3.4) and their generalizations (Section 3.6).

As far as open questions are concerned, we would like to mention two of
them here. One concerns an important technical point: the upper bound for d-
separating matrices (Section 3.4). The tight upper bound O(1ogd logn) has been
proved by a probabilistic nonconstructive argument, and finding an effective
construction of d-separating matrices with O(1ngl 4 logn) rows remains an impor-
tant open question. Another question is of more general nature: how far can we
go with optimal nonadaptive reconstruction under the quantitative model? For
example, can we reconstruct in O(dn) queries any graph with O(dn) edges?

To conclude, we get back to the applicative side of our study and mention
that many other bioinformatics applications give rise to combinatorial search
problems. Such applications include screening clone libraries [15], the FISH (Flu-
orescent In Situ Hybridization) method for chromosome identification [12], de-
termination of exon-intron boundaries in genes [7], probe selection for DNA
chips [14], and others. Thus, those applications provide a rich source for new
interesting developments of combinatorial search methods in future.

References

1. M. Aigner. Combinatorial Search. John Wiley and Sons, 1988.

2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
Biology of the Cell. Garland Science, 1994.

3. N. Alon. Separating matrices. Private communication, May 1997.

Combinatorial Search on Graphs Motivated by Bioinformatics Applications 27

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

N. Alon and V. Asodi. Learning a hidden subgraph. In Automata, Languages
and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland,
July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes in Computer Science,
pages 110-121. Springer, 2004.

. N. Alon, R. Beigel, S. Kasif, S. Rudich, and B. Sudakov. Learning a hidden match-

ing. In Proceedings of the 43rd Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2002, Vancouver, BC, Canada, 16—-19 November 2002, pages
197-206. IEEE Computer Society Press, 2002.

. D.G. Cantor and W.H. Mills. Determination of a subset from certain combinatorial

properties. Can. J. Math, 18:42-48, 1966.

. F. Cicalese, P. Damaschke, and U. Vaccaro. Optimal group testing algorithms with

interval queries and their application to splice site detection. In Proc. of the Int.
Workshop on Bioinformatics Research and Applications (IWBRA 2005), volume
3515 of Lectures Notes in Computer Science, pages 1029-1037. Springer, 2005.

. D. Du and F. Hwang. Combinatorial group testing and its applications, volume 3.

Series on applied Mathematics, 1993.

. P. Erdés and A. Rényi. Asymmetric graphs. Acta Math. Acad. Sci. Hung. Acad.

Sci., 14:295-315, 1963.

V. Grebinski. On the power of additive combinatorial search model. In Proc.
of Computing and Combinatorics, 4th Annual International Conference, CO-
COON’98, Taipei, Taiwan, August 12-14, 1998, volume 1449 of Lecture Notes in
Computer Science, pages 194-203. Springer, 1998.

V. Grebinski and G. Kucherov. Reconstructing a hamiltonian cycle by querying
the graph: Application to DNA physical mapping. Discrete Applied Mathematics,
88:147-165, 1998.

V. Grebinski and G. Kucherov. Reconstructing set partitions. In Proceedings of
the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’99 (Bal-
timore, Maryland, January 17-19, 1999), pages 915-916. ACM, SIAM, 1999.

V. Grebinski and G. Kucherov. Optimal reconstruction of graphs under the addi-
tive model. Algorithmica, 28:104-124, 2000.

G.W Klau, S. Rahmann, A. Schliep, M. Vingron, and K. Reinert. Optimal robust
non-unique probe selection using integer linear programming. Bioinformatics, 20
(suppl. 1):1186-1193, 2004.

E. Knill and S. Muthukrishnan. Group testing problems in experimental molecular
biology. Technical Report LAUR-95-1503, Los Alamos National Laboratory, March
1995.

M. Li and P. M. B. Vitanyi. Kolmogorov complexity arguments in combinatorics.
J. Comb. Theory Series A, 66(2):226-236, 1994.

B. Lindstrom. On a combinatorial problem in number theory. Canad. Math. Bull,
8:477-490, 1965.

B. Lindstrém. Determination of two vectors from the sum. J. Comb. Theory,
6:402-407, 1969.

B. Lindstrém. On Mobius functions and a problem in combinatorial number theory.
Canad. Math. Bull., 14(4):513-516, 1971.

B. Lindstrém. On b2 sequences of vectors. Journal of Number Theory, 4:261-265,
1972.

B. Lindstrom. Determining subsets by unramified experiments. In editor J.N. Sri-
vastava, editor, A Survey of Statistical Designs and Linear Models, pages 407-418.
North Holland, Amsterdam, 1975.

R. M. Wilson. Decomposition of complete graphs into subgraphs isomorphic to a
given graph. In Congressus Numerantium XV, pages 647659, 1975.

Domination Search on Graphs with Low
Dominating-Target-Number

Divesh Aggarwal®, Shashank K. Mehta''*, and Jitender S. Deogun?

! Indian Institute of Technology, Kanpur - 208016, India
{cdubey, skmehta}@cse.iitk.ac.in
2 University of Nebraska-Lincoln, Lincoln, NE 68588-0115, USA
deogun@cse.unl.edu

Abstract. We settle two conjectures on domination-search, a game pro-
posed by Fomin et.al. [1], one in affirmative and the other in negative.
The two results presented here are (1) domination search number can be
greater than domination-target number, (2) domination search number
for asteroidal-triple-free graphs is at most 2.

1 Introduction

Domination search is a game proposed by Fomin et.al. [1] which is a variant of
node-search-game, see [2]. It is also a graph variant of polygonal search problem,
[3,4,5,6,7]. It is a problem of sweeping out a mobile fugitive out of a graph (think
of a house where vertices are rooms) with k guards. A guard at a node can check
its node and all nodes adjacent to it. The fugitive can move in zero time from
node z to y if there is a path between the nodes which does not pass through
the nodes under any guard’s watch. In each step one guard can move from its
current node to any other vertex. During the move this guard is absent from the
graph and fugitive can take the advantage. Search is successful if after a finite
number of moves entire graph is cleared of the fugitive.

We present a formal definition of domination-search game differently from the
original but it is equivalent to that. Here N[X] denotes the closed neighborhood
of the vertex set X. The search algorithm with &k guards on a graph G = (V, E)
places k guards on k vertices initially. D(0) denotes these vertices. In each move
one guard is moved from it current position (vertex) to a new position. D(7)
denotes the set of vertices where the guards are placed after ¢ moves. Formally,
the search is a sequence of k-sets: D(0), D(1),..., D(M), where D(i—1)ND(7) is
denoted by S(i) and has cardinality k—1 for all ¢ > 0. A vertex is said to clear if
it was in the neighborhood of some guard in some previous move and since then
no path has been established between this vertex and a contaminated (fugitive
may potentially be on it) vertex without passing through the neighborhood
of a guard in the current position. We define vertex sets U, (i) (set of clear
vertices after ¢ moves) for 0 < ¢ < M and Uy(i) (clear set during move-i) for
1 <4 < M. These sets are recursively defined by the following equations. U, (0)

* Partly supported by Ministry of Human Resource Development, Government of India
under grant no. MHRD/CS/20030320.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 28-37, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Domination Search on Graphs with Low Dominating-Target-Number 29

is the closed neighborhood of D(0), i.e., N[D(0)]. U, (i) = Ua(i)UN[D(i)— S(4)],
and Uy(i) is the set {v € Uy(i — 1) : every path from v to any vertex in V —
U, (i —1) passes through N[S(i)]}. Finally, U,(M) = V. The domination search
number of a graph G is the smallest k& for which such a sequence exists. It is
denoted by ds(G).

Domination-search number is found to be strongly related with another
graph-parameter, dominating-target number denoted by dt(G). A vertex sub-
set, T, of a graph is said to be a dominating-target [8] if every connected sub-
graph which contains 7', dominates the entire graph. The cardinality of the
smallest dominating-target is called the dominating-target number, denoted by
dt(G). Fomin et.al. [1] have shown that for arbitrary connected graph ds(G) <
2 - dt(G) + 3. But they have found that this is perhaps not a tight bound and
conjectured that ds(G) < dt(G).

In their work Fomin et.al. have also studied ds(G) of graphs of small dominat-
ing-target number. These include cocomparability graphs; AT-free graphs
[9,10,11,12]; and DP graphs [13,14]. These graph classes are defined as follows.
An asteroidal-triple is a set of three vertices such that there is a path between
any two vertices without entering the neighborhood of the third. A graph is said
to be AT-free if it contains no asteroidal-triple. The family of graphs having
dominating target number equal to two is denoted by DP. Their results include
(i) ds(G) < 4 for the DP graphs; (ii) ds(G) of cocomparability graphs is 2; (iii)
ds(G) < 2 for AT-free claw-free graphs; and (iv) ds(G) < 3 for AT-free graphs.
They also conjecture that ds(G) < 2 for AT-free graphs.

In this work we will show that there exists a DP graph for which domination-
search number is greater than 2. This settle the conjecture “ds(G) < dt(G)” in
negative. We also present a domination search algorithm for AT-free graphs
with ds(G) < 2 which settles the second conjecture in affirmative. The paper is
organized as follows. Section 2 presents a DP graph and shows that it cannot
be searched with two guards. Section 3 describes a partial ordering on graphs
which plays an important role in developing the domination-search algorithm
for AT-free graphs, presented in Section 4.

2 Lower Bound for DP Graphs

In this section we will establish that domination search cannot be performed
on all weak dominating pair graphs (family of graphs with dominating target
number being 2) with 2 guards. This will settle the conjecture 23 of [1], “ds(G) <
dt(G)”, in negative.

The open neighborhood of a vertex x, N(z), in a graph is the set of vertices
adjacent to z. The closed neighborhood, N[z] is N(x) U {z}. If N[z] is not a
graph separator then z is called an extreme vertex. The set of all extreme vertices
of a graph is denoted by L.

Consider the graph Go=(V, E) in figure 1. Observe that L={vg, v1, va, v3, v4,
vs, Vg, V10, V11, V12 }. Therefore only non-extreme vertices in Gy are vy, vg and v7.
There are two connected components in the induced subgraph on V — NJuvs],

30 D. Aggarwal, S.K. Mehta, and J.S. Deogun

vl v5 v9

v2 v6 v10

v0 v8
v4

v12

v3 vll
v7

Fig.1. A dominating pair graph with ds(G) > 2

denote them C7? and C3°. Due to the symmetry in vs,vs and vz, V — NJvg]
and V' — N[v7] also have two components: C7°, C5° and C]7, C37 respectively.
Cy? = C}° = C}" is the single vertex v12. The second components of each case
is given in figure 2 which are indeed isomorphic.

Let us assume that a domination search algorithm for G exists which re-
quires two guards. Let it be expressed by the sequence A : D(0) = (p1(0), p2(0)),
D(1) = (p1(1),p2(1)), ..., D(M) = (p1(M), p2(M)). Pair p1(i), p2(i) denote the
vertices where guards are placed after ¢ moves. {p1(i—1),p2(i—1)}N{p1(3), p2(4)}
is a singleton denoted by S(i). For notational convenience we will denote the el-
ement in S(i) by S(¢) as well without ambiguity. By Uy (i) we denote the set
of vertices which are clear (uncontaminated) in the graph during the i-th move
when there is only one guard on the graph (at S(7)). After the move when there
are two guards on the graph the set of clear vertices is denoted by U, (7). With-
out loss of generality we assume that this sequence is minimal in the sense that
no step of the algorithm is redundant, i.e., no proper subsequence of A is a
valid domination search. The graph does not have a dominating set of size two
therefore M must be greater than zero.

Proposition 1. S(i) ¢ L for all 1 <i< M.

Proof. Assume S(i) € L. If Uy(i) was equal to V then there would have been no
need for the i-th move. So there is at least one contaminated vertex just before
this move. During this move there is only one guard on the graph, at S(i). Since
the induced graph on V' — N[S(i)] is connected, entire set V — N[S(i)] will get
contaminated. So the set of clear vertices after this move will be N[p1(i)] U
Nlp2(4)]. This state can be achieved at the start of the search by placing the
guards at p; (¢) and pa (7). Therefore we can replace A by A’ : (p1(z), p2(4)), (p1(i+
1),p2(i+1)),..., (p1(M), p2(M)) which will also perform the domination search.
This violates the minimality condition of A.

Due to symmetry between vs,vg, and vy we may assume that S(1) = vs
without loss of generality. Suppose S(i) = vs for 1 < i < ig. During these moves
only one guard is moving to clear the parts of V' — N|uvs]. No single vertex in

Domination Search on Graphs with Low Dominating-Target-Number 31

vl \A

v0 v0), 9

Vie——o vie — e w0
\ \ ve
V5

V6o vl
¢, Cy C

Fig. 2. Components C3°, C3°,C57

the graph dominates entire C5° so a single guard cannot clear it completely.
Therefore during each move upto i entire C5° will be contaminated. In other
words Ug(i) N C5° = () for 1 < i < 4. As a consequence U, (i) for 1 < i < iy
cannot be equal to V. This indicates that the search cannot terminate if S(7)
remains unchanged at vs.

Let us suppose S(ig + 1) # vs. Then S(ip + 1) must be either vg or v7. Due
to symmetry, we can assume S(ip + 1) = vg with no loss in generality. In the
move iy one guard stays fixed at vs and the the other guard moves to vg. As
discussed above Uy(ig) does not contain any vertex of C3°. U, (ig) = Uy(ig) U
N[vg] which does not contain vg. So U, (ip) does not contain vg. Consequently
C5° will be entirely contaminated during move ig + 1 when guard at vg remains
fixed. Suppose S(i) = vg for ig + 1 < i < ¢;. As argued above during all these
moves U (i) N C5¢ =) for i + 1 < ¢ < 4;. So the search cannot terminate with
i1-th move. Once again we may replace vg by vs or v7 as the value of S(7) but
repeating the argument we conclude that the search will never end. We have
following result.

Theorem 1. Domination search on graph of figure 1 requires at least 3 guards.

This graph has dominating target number 2 because {v4, v12} is a dominating
pair in it. So we establish that dt(Go) < ds(Go).

Corollary 1. The conjecture ds(G) < dt(G), proposed in [1], for all connected
graphs G is incorrect.

3 A Partial Ordering on Graphs

The domination search algorithm for asteroidal-triple-free graphs proposed in
the following section uses two guards. The selection of the successive positions
to station the guards is determined based on a partial ordering on the vertices
which is described in this section.

Let G = (V, E) be an arbitrary graph and « be any vertex in it. Define relation
=, on V as follows. u >, v if (i) v and v are not adjacent and (ii) every path

32 D. Aggarwal, S.K. Mehta, and J.S. Deogun

from u to x is intercepted by v, i.e., at least one vertex on each path from u to x
belongs to N[v]. Observe that condition (ii) can be equivalently stated as: every
induced path from u to z is intercepted by v. This relation is reflexive. Define an
equivalence relation ~, on V as follows. u ~, v if there exist uy,uo,...ux such
that u =4 U1 >z Ug =45 ... UL =z vand v =, ug >z ...u1 > u. The equivalence
classes, z-classes, induced by ~, will be denoted by [u], representing the class
containing u. The z-class containing x is obviously a singleton.

Observation 2. Let uy,us € [u],. Then for any induced path from uy to x:
u1a1a2 . .. am (=), us2 is adjacent to a; and to no other a;.

We extend >, to the class, using the same symbol: [u], >, [v]; if there exists
u' € [u], and v € [v], such that v’ =, v'. The above observation leads to the
following result.

Observation 3. [u], >, [v]g iff for every v’ € [u], and v’ € [v], either (u/,v")
is an edge or u’ =, v'.

Consider two distinct classes [u], and [v], such that [u]; >4 [v].. Let ' € [u],
and v € [v], such that v’ >, v'. Let u” € [u], such that u” >, «'. Assume that
u” =, v is not true. From the previous result «” must be adjacent to v’. Since
[v]. is distinct from [u],, there is a path, P, from v’ to 2 which misses u’. Now we
have a path P’ = u”v'.P. We have u” >, v’ and v’ =, v’ so ' is not adjacent
to v and v’. Thus entire P’ misses u’. This violates u” =, u’. So u” =, v' must
be true. If we have a chain u®) >, v(*=1 4/ =, u/ then iterative application
of the above argument will imply that u®) >, o/. From the definition of the
x-classes we have the following observation.

Observation 4. Let [u], and [v]; be distinct classes such that [uly >z [v]s-
Each vertex of [v], is either adjacent to all vertices of [u], or to none.

Proposition 2. The relation =, on the equivalence classes is a partial ordering.

Proof. The reflexivity and anti-symmetry are due to the definitions of >, and
~z. Next we show the transitivity.

Let [u]z =5 [v]z and [v]y >4 [w]z. Our goal is to show that [u]y >4 [w]g. If
the classes [u]., [v]z, and [w], are not all distinct, then the claim is true from
reflexivity and anti-symmetry. So assume that all three are distinct.

There are v’ in [u],, v" and v” in [v], and w’ € [w], such that u’ >, v" and
v" =, w'. From Observation 4 we also have v’ >w’. Let P be an arbitrary path
from v’ to z. Since it is intercepted by v’, there is a path P’ from v’ to z in
which all vertices, except perhaps v/, are from P. w’ intercepts P’ but it is not
adjacent to v’ so w’ intercepts P. Since P was randomly chosen, w’ intercepts
all paths from v’ to z.

Finally we prove that w’ is not adjacent to u'. From our assumption that
[v], is distinct from [w], it follows from anti-symmetry that there is a path P”
from w’ to x missing v’. If v/ is adjacent to w’, then we have a path from u’ to
w’ then follow the path P” to x. As v is not adjacent to either ' or w’ so this
path is not intercepted by v’. This contradicts the fact that u’ =, v'.

Domination Search on Graphs with Low Dominating-Target-Number 33

Let z be an arbitrary vertex of G and G’ be the induced subgraph on vertex
subset V’. Any vertex y of V' will be called z-minimal in G’ if [y], is minimal
among all the z-classes which have non-empty intersection with V.

4 Domination Search on Asteroidal-Triple-Free Graphs

In this section we present a domination-search algorithm for AT-free graphs. We
begin with some useful properties of this family.

Lemma 1. Let G = (V, E) be a connected AT-free graph and x a vertex in it. C
is a connected component of the induced graph on V — N|z]. Then any z-minimal
vertex in C intercepts all paths from any vertex in C to any vertex outside C'.

Proof. Let y € C is z-minimal. It is sufficient to show that any path from any
vertex in C' to any vertex in N[x] passes through Ny].

We will first show that any path from any vertex in C' to x is intercepted by
y. Let z be an arbitrary vertex in C. If [y], and [z], are related, then [z]g >4 [y]s
because [y], is minimal by choice. Then by the definition, y is either adjacent to
z or all paths from z to « pass through Ny].

In the second case [y], and [z], are unrelated. So either (i) y and z are
adjacent to each other or (ii) there exists a path from z to x not intercepted by
y and a path from y to x not intercepted by z. Thus in case (ii) {z,y, z} form
an asteroidal triple. This is not possible in AT-free graphs so z must be adjacent
to y. This establishes that all paths from z to x pass through N{y].

Finally we consider arbitrary vertex w in N|z]. Consider arbitrary path, P,
from z to w. If it passes through z, then we already have seen that it must pass
through the neighborhood N[y]. Assume that P does not contain z. Extend the
path to x: P/ = P.x. It is a path from z to 2. Thus P’ passes through N[y]. y is
outside N[z| so x is not in Ny]. Therefore some vertex of P must be in N[y].

Corollary 2. Let G = (V, E) be a connected AT-free graph and x a vertex in it.
C' is a connected component of the induced graph on V — Nz]|. Let y € C is x-
minimal in C. Then each connected component of the induced graph on V — Ny]
1s entirely contained either in C or in V — C.

It has been established that connected AT-free graphs have a pair of vertices,
poles, such that every path between them dominates the entire graph, [9,10]. We
shall use labels p; and ps for the poles.

Let G = (V, E) be a graph and x be a vertex in it. If y € V — NJ[z], then
the connected component containing y in the induced graph over V — Nz| will
be denoted by C?(y) and the open neighborhood N(C?(y)) will be denoted by
S*(y). C*(y) is defined if and only if y is not adjacent to x. A component C*(y)
will be called deep if at least one vertex of the component is not adjacent to
any vertex of N[z]. If a component is not deep, then it will be termed shallow.
C*(p1) and C*(p2) will be called principal components of z, if defined. All other
components of V' — Nz] will be termed secondary.

34 D. Aggarwal, S.K. Mehta, and J.S. Deogun

Lemma 2. Let G = (V, E) be a connected AT-free graph and x € V.. Then every
deep component of the induced graph on V — N[x] must contain exactly one pole.

Proof. Suppose C*(y) contains no polar vertex. Assume that z € C*(y) such
that N[z] is fully contained in C*(y). Then there exists a path between p; and
p2 which does not enter C*(y). This implies that the path will miss z which is
impossible. Thus C*(y) must be a shallow component.

In case C”(y) contains both poles, then there exists a path between the poles
which does not enter N[z|. This path will miss x. Again impossible for an AT-free
graph.

Proposition 3. Let G = (V, E) be a connected AT-free graph with verter x in
it. Let C be a secondary component in the induced subgraph on V. — N|x]. Then
each vertex of C dominates at least one of p1, p2, S*(p1), and S*(p2).

Proof. In a connected AT-free graph G = (V, E), = is a vertex such that both
its principal components are defined, i.e., neither pole is in Nz]. Let C be a
secondary component of V — N|z] and z be a vertex in C. Suppose there exists
u € S%(p1) and v € S*(p2) such that z is adjacent to neither of these vertices.
We can build a path from p; to pa: p1...uxv...py where u,z, and v are the
only vertices of the path from N[z]. z cannot be adjacent to any vertex of this
path other than u,z, and v. But by choice none of the three is adjacent to z so
this path misses z. This is impossible.

If every vertex in a secondary component C' dominates S*(ps) (when ps is
not adjacent to z) or dominates py (when py is adjacent to) then C will be
called a po-sided component.

Proposition 4. Let G = (V, E) be a connected AT-free graph with non-adjacent
poles. Let x be either p1 or a vertex for which both principal components are
defined. Let y € C*(p2) be an x-minimal vertex. If z is a vertex of C*(pa) which
dominates SY(x), then z is also x-minimal.

Proof. SY(x) is a graph separator which contains at least one vertex of each
edge connecting C” (p2) with V — C*(p3) because all paths between the two pass
through N[y]. Therefore each component of the induced graph on V' — S¥(z) is
either completely contained in C*(p2) or in V' — C*(p3). Thus every path from
C®(p2) to V. — C®(p2) must touch SY(x). If N[z] contains SY(x) then all such
path also touch N|z]. Therefore z also z-minimal.

Let z and y be vertices in a graph. Then by |C®(y)| we denote the cardinality
of C*(y) if y is not adjacent to z. If the two vertices are adjacent, then |C*(y)|
is defined to be zero.

Lemma 3. Let G be a connected AT-free graph and x a vertex which is not
adjacent to pa. Further x is either p1 or not adjacent to p1. Let y be x-minimal
in C%(py) but different from pa, |C¥(p2)| > |C¥ (p2)| for all z-minimal y', and
pa does not dominate SY(p1). Then any secondary component of V — Ny| having
non-empty intersection with C*(p2), is pa-sided.

Domination Search on Graphs with Low Dominating-Target-Number 35

Proof. We consider two cases: pa ¢ N[y] and p2 € N(y) since y # po.

(a) p2 ¢ NJy]. Suppose C is a secondary component of induced graph on
V — NJy] such that C' N C®(p2) is non-empty. Assume that C' is not po-sided.
Therefore there is a vertex z in C such that it does not dominate SY(p2). From
Corollary 2 we know that entire C is contained in C®(p2) so z belongs to C*(pa).
From Proposition 3 z dominates SY(p1).

Next we show that z does not dominate SY(x). Assume the contrary. From
Proposition 4 it is an z-minimal vertex of C*(p2). Since C¥(p2) N N|z] is empty,
C#(p2) will contain CY(p2). In addition, by choice, z does not dominate SY(p2)
so there is a path from y to ps not intercepted by z. Thus y is also contained
in C*(pz). This implies that |C*(p2)| > |C¥(p2)|.- But Due to the choice of y,
|C#(p2)| can never be larger than |CY(p2)|.

Now we will show that {z, z, p2} is an asteroidal triple. Since ps and z belong
to C%(p2) so there is a path between z and ps not passing through N{z].

To show that there is path between z and x which misses ps observe that
p2 does not dominate S¥(p1) so there exists a vertex u in SY(p;) which is not
adjacent to p but adjacent to z since the latter dominates S¥(p;). Consider two
cases. In the first case © € C¥(p1). Consider the path zu.P where P joins u to x
and is confined to C¥(p1). This path misses ps. In case © ¢ CY(p1) N[z] contains
S¥(p1) since N[z] separates p; from y. Thus x is adjacent to v and zuz is a path
that misses ps.

Finally it needs to be shown that there is a path between z and ps not
intercepted by z. We have seen that z does not dominate SY(z) so there is a
vertex v in it which is not adjacent to z. Also there is a vertex w in S¥(p2) not
adjacent to z since by choice z does not dominate SY(p2). So there is a path
zvyw.P where P is a path from w to ps contained in C¥(p3). This path is not
intercepted by z. Consequently the entire path, from x to ps misses z. Thus
{z, z,pa} form an asteroidal set which is not possible.

(b) p € N(y). Again C is a secondary component of y such that C' N C*(p) is
non-empty. Assume C is not contained in N [ps]. Therefore there is a vertex z in C
such that itisnot adjacent to ps. From Corollary 2 we know that entire C'is contained
in C*(ps) so z belongs to C*(p3). From Proposition 3 z dominates S¥(p1).

We will again show that z does not dominate S¥(x). Assume the contrary.
From Proposition 4 it is an z-minimal vertex of C*(p3). |C¥(p2)| = 0 but C*(p2)
contains at least ps so again |C#(p2)| > |C¥(p2)|. But Due to the choice of y,
|C#(p2)| can never be larger than |CY(p2)|.

Similar to the proof of part (a) we can show that {x, z, p2} is an asteroidal
triple.

Lemma 4. G = (V, E) is a connected AT-free graph andy is a vertex in it which
is not adjacent to pole py. Pole pa dominates SY(p1). Then {u,p2} dominates
V — C¥Y(p1) where u is any vertex in CY(p1).

Proof. Consider a path pou.P where P is a path to p; confined to C¥(p;1). Each
vertex of V' is dominated by this path. Since vertices of V —(C¥(p1)USY(p1)) are

36 D. Aggarwal, S.K. Mehta, and J.S. Deogun

not adjacent to any vertex beyond u, {u,p2} dominate them. Further vertices of
SY(py) are in the neighborhood of ps. So {u,p2} dominate V' — C¥(py).

Algorithm: Domination search on a connected AT-free graph.
1. If the poles are adjacent (so {p1,p2} is a dominating set) then put the two
guards at the poles and exit;
2. Place a guard at pi;

3. Place the second guard at any vertex in SP*(p2);
4. Relieve the second guard;
C1: Vertices of V — C?'(p2) are cleared

5. T = p1;

6. While (p2 is not adjacent to z) Do

7. { Let vertex u in C*(p2) is z-minimal with maximum |C*(p2)|;
8. Y = U;

9. If po dominates SY(p1) then
10. { Place the free guard at ps and relieve the guard at z;

C2: C?(p1) being a subset of V — C?(p2) remains
clear and N[p;] is also now cleared.

11. Place the free guard at any vertex in SY(p1);
C3: Entire V is clear.

12. Exit;
}
13. Else
C4: p; does not dominate SY(p1) so y # po.
14. { Place the free guard at y;
15. Relieve the guard from x;
C5: All the vertices of V — C“(p2) remain clear.
In addition Ny is also cleared.
16. if p2 is not adjacent to y
17. { Place the free guard at any vertex of SY(pz2) and relieve
it;}
18. else { Place the free guard at ps }
C6: if p» is not adjacent to y, then V — CY(p2)
is clear else entire V is cleared.
19. T =y,

CT7: If x is not adjacent to p2 then vertices
of V —C%(p2) are cleared else all of V is cleared.

C8: Entire V is cleared.
20. Exit.

Theorem 5. The domination-search number of AT-free graphs is at most 2.

Proof. The algorithm described above performs domination search for any AT-free
graph with 2 guards. We prove the correctness of the algorithm by justifying the in-
variants mentioned in the comments.

C1: In line-2 Np1] is cleared. From Proposition 3, line-3 clears all secondary com-
ponents of p1. No recontamination of these components occur in line-4 since the first
guard is still present at p;.

Domination Search on Graphs with Low Dominating-Target-Number 37

C2: From Corollary 2 CY(p1) is either entirely contained in C”(p2) or in V —C7(p2).

Due to Lemma 2 p; cannot be in C*(p2) so C¥(p1) must be contained in V' — C%(p2).
There is a guard at p2 and p2 dominates SY(p1) so C¥(p1) remains clear.

C3: Due to Lemma 4.
C4: Self explanatory.
C5: Due to Corollary 2.
C6: Due to Lemma 3.
C7: Trivial.

C8: Trivial.

The algorithm is monotonic (there is no recontamination and at least one more

vertex is cleared in each pass of the loop), due to C5, as long as the condition of line-9
is not true. When the condition is true the algorithm terminates after executing lines

10,

11, and 12. Therefore the algorithm always terminates.

References

10.

11.

12.

13.

14.

. Fomin, F.V., Kratsch, D., Muller, H.: On the domination search number. Discrete

Applied Mathematics 127 (2003) 565-580

Bienstock, D.: Graph searching, path-width, tree-width and related problems (a
survey). Discrete Mathematics and Theoretical Computer Science 5 (1991) 33-49
Suzuki, I., Yamashita, M.: Searching for a mobile intruder in a polygonal region.
SIAM Journal of Computing 21 (1992) 863-888

Guibas, L., Latombe, J., Lavalle, S., Lin, D., Motwani, R.: A visibility based
pursuit evasion problem. International Journal of Computational Geometry and
Applications 9 (1999) 471-493

Lavalle, S., B.H.Simov, Slutzki, G.: An algorithm for searching a polygonal region
with flash light. In: Proceedings of the 16th annual symposium on computational
geometry. (2000) 260-269

Crass, D., Suzuki, I., Yamashita, M.: Searching for a mobile intruder in a corridor-
the open edge variant of the polygon search problem. International Journal of
Computational Geometry and Applications 5 (1995) 397412

J.H.Lee, Park, S., Chwa, K.: Searching a polygonal room with one door by a 1-
searcher. International Journal of Computational Geometry and Applications 10
(2000) 201220

Kloks, T., Kratsch, D., Muller, H.: On the structure of graphs with bounded
asteroidal number. Graphs and Combinatorics 17 (2001) 295-306

D.G.Corneil, Olariu, S., Stewart, L.: Asteroidal triple-free graphs. SIAM Journal
of Discrete Mathematics 10 (1997) 399430

D.G.Corneil, Olariu, S., Stewart, L.: Linear time algorithms for dominating pairs
in asteroidal triple-free graphs. SIAM Journal of Computing 28 (1999) 1284-1297
Kloks, T., Kratsch, D., Muller, H.: Approximating the bandwidth of asteroidal
triple-free graphs. Journal of Algorithms 32 (1999) 41-57

Brandstadt, A., Le, V., Spinrad, J. SIAM Monograph on Discrete Mathematics
and Applications. Society for Industrial and Applied Mathematics (1999)
Deogun, J.S., Kratsch, D.: Dominating pair graphs. SIAM Journal of Discrete
Mathematics 15 (2002) 353-366

Przulj, N., Corneil, D.G., Kohler, E.: Hereditary dominating pair graphs. Discrete
Applied Mathematics 134 (2004) 239-261

Fully Dynamic Algorithm for Recognition
and Modular Decomposition
of Permutation Graphs

Christophe Crespelle and Christophe Paul

CNRS - Département Informatique, LIRMM, Montpellier
{crespell, paul}@lirmm.fr

Abstract. This paper considers the problem of maintaining a compact
representation (O(n) space) of permutation graphs under vertex and edge
modifications (insertion or deletion). That representation allows us to
answer adjacency queries in O(1) time. The approach is based on a fully
dynamic modular decomposition algorithm for permutation graphs that
works in O(n) time per edge and vertex modification. We thereby obtain
a fully dynamic algorithm for the recognition of permutation graphs.

1 Introduction

The dynamic recognition and representation problem (see e.g. [10]) for a family
F of graphs aims to maintain a characteristic representation of dynamically
changing graphs as long as the modified graph belongs to F. The input of the
problem is a graph G € F with its representation and a series of modifications.
Any modification is of the following: inserting or deleting a vertex (along with
the edges incident to it), inserting or deleting an edge. Several authors have
considered the dynamic recognition and representation problem for various graph
families. [8] devised a fully dynamic recognition algorithm for chordal graphs
which handles edge operations in O(n) time. For proper interval graphs [7], each
update can be supported in O(d + logn) time where d is the number of edges
involved in the operation. Cographs, a subfamily of permutation graphs, have
been considered in [10] where any modification (edge or vertex) is supported in
O(d) time, where d is the number of edges involved in the modification. This
latter result has recently been generalised to directed cographs in [3].

This paper deals with the family of permutation graphs. Our algorithm main-
tains an O(n) space canonical representation based on modular decomposition
which enables us to answer adjacency queries in O(1) time. It should be noted
that in [9] a purely incremental algorithm is presented for computing the mod-
ular decomposition tree of any graph. It runs in O(n) time per vertex insertion.
Unfortunately, it is based on a partial representation of the graph compromising
the possibility of any vertex deletion. Therefore such an algorithm cannot be
applied for efficient fully dynamic recognition of permutation graphs. Our algo-
rithm also performs in O(n) time per operation, but supports insertion as well
as deletion of vertices and edges. Let us note that a modification of the input

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 38-48, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Fully Dynamic Algorithm for Recognition and Modular Decomposition 39

graph may lead to O(n) changes in the modular decomposition tree. Therefore
our algorithm does not present any complexity extra cost in the maintain of the
modular decomposition tree.

2 Preliminaries

2.1 Modular Decomposition

Theory of modular decomposition of graphs has been widely developed since
Gallai first introduced it in [5]. Here, we give some known definitions and results
that we use in the following. Let G = (V, E) be a graph. The neighbourhood
of a vertex x € V is denoted N(z) and its non-neighbourhood N(z). A subset
S C V of vertices is uniform w.r.t. to vertex x € V\ Sif S C N(z) or S C N(z)
(otherwise S is mized). A module of a graph G = (V, E) is a subset of vertices
M C V which is uniform w.r.t. any vertex z € V \ M. It also follows from
definition that V' and {z},z € V are modules of G, namely the trivial modules.
A graph is prime if all its modules are trivial. A module M is strong if it does not
overlap any module M’, that is MNM’' =0 or M C M’ or M’ C M. Therefore,
the inclusion order of the strong modules of a graph defines a tree, called the
modular decomposition tree T'. The leaves of T' correspond to the singleton vertex
sets of G (L, stands for {x}) and its root is the whole vertex set of G. In the
following, a node p of the modular decomposition tree could be identified with
the strong module P = V(p) it represents. Denoting 7T}, the subtree of T" rooted
at p, P is the set of leaves of T,. C(p) is the set of children in T of p.

Thanks to the well-known modular decomposition theorem (see [1] for ref-
erences), any non-leaf node p of the modular decomposition tree is labelled as
follows: parallel if G[P] is not connected; series if G[P] is not connected; and
prime otherwise (the three cases are disjoint). The label of node p is denoted
label(p). The series and parallel nodes are also called degenerate nodes. We call
maximal strong modules of a graph G = (V, F) the strong modules of G maximal
wrt. inclusion and distinct from V. It is well known that the children p; ... pg
of p (i.e. the maximal strong modules of G[P]) are respectively in the paral-
lel case, the connected components of G[P], in the series case the co-connected
components of G (i.e. the connected components of G[P]) and in the prime case,
the maximal modules of G[P] distinct from P. Given a graph G, we denote
MSEM(G) the set of maximal strong modules of G.

Given a set F of disjoint modules, let FF C V be a set of vertices such that
for any M € F, |[F N M| = 1. The quotient graph G/F is the subgraph induced
by the vertices of (V' \ UprezM)UF. From the modular decomposition theorem,
the quotient G/MSM(G) of G by the set of its maximal strong modules is
either a stable (parallel case) or a clique (series case) or a prime graph. If with
each prime node p of the modular decomposition tree T', we associate a repre-
sentation of the quotient G[P]/MSM(G[P]), then adjacency queries between
any pair of vertices x,y can be answered by a search in 7" and in the quotient
graphs.

40 C. Crespelle and C. Paul

2.2 Permutation Graphs

If w is a linear order on the vertices, m(z) denotes the rank of vertex x in 7
while 771(4) is the vertex at rank i. Permutation graphs are those graphs for
which there exists a pair (m1,m2) of linear order on the vertex set such that x
and y are adjacent iff 71 (z) < m1(y) and ma(y) < m2(x). For a graph G, such
a pair R = (w1, m2) is a realiser of G. If 7o denotes the reverse order of 7y,
then R = (71, 7m2) is a realiser of G. For a complete introduction to permutation
graphs, one can see [6]. It is known that, if G is a prime graph, then its realiser
is unique up to reversal and exchange! (the reader should refer to [1] for more
details on permutation graphs). Moreover, a graph G is a permutation graph
iff the quotient graphs associated with the prime nodes of its modular decom-
position tree are permutation graphs. It follows that associating the modular
decomposition tree T with the realiser of each of its prime nodes provides an
O(n) space canonical representation of a permutation graph G, called hereafter
the full modular representation of G.

Since the full modular representation contains a realiser for each prime node
of T, it is well known that a realiser of the whole graph G can be retrieved in
O(n) time by a simple search of T. As our dynamic algorithm works in O(n)
time per operation, a realiser of G can be maintained without any extra cost.
That guarantees the possibility of answering at any time adjacency queries in
O(1) time.

An interval of a linear order m on V is a set of consecutive elements of V'
in m. Given a pair (m,m2) of linear orders, a common interval is a set I that
is an interval of 71 and of ms. Recently, [11] proposed an O(n + K) algorithm
computing all common intervals of a pair of linear orders, K being the number
of common intervals. A common interval is strong if it does not overlap any
other common interval. Clearly common intervals of a realiser R = (71, m2) of a
permutation graph G are modules of G. The converse is false, but:

Proposition 1. [4] The strong modules of a permutation graph G = (V, E) are
ezxactly the strong common intervals of any of its realiser R.

2.3 Dynamic Arc Operations

Unfortunately an edge modification may imply O(n) changes in the modular de-
composition tree. As we propose an O(n) time algorithm for the vertex insertion
and for the vertex deletion operations, inserting or deleting an edge e incident
to vertex x will be handled by first removing x and then re-inserting x with the
updated neighbourhood.

3 Vertex Deletion

Let G’ = G —x be the graph resulting from the deletion of a vertex x in the graph
G. Since the family of permutation graphs is hereditary, removing x reduces to

I That is (m2,m1), (m1,m2) and (w2, 71) are considered as the same realiser as (71, m2).

Fully Dynamic Algorithm for Recognition and Modular Decomposition 41

compute the full modular representation of G’ from the one of G. We shall
distinguish the case where p, the parent node of = in T, is a prime node from
the case where p is a degenerate node.

Degenerate Case. This is the easy case to handle. If x has at least two siblings,
then the leaf L, is removed from 7. Assume z has only one sibling say ¢s. If ¢o
is a leaf, L, and p are removed from T and g2 becomes a child of ¢; replacing p
(i.e. if gy is a prime node, then g2 takes the place of p in the associated realiser).
Assume g5 is a non-leaf node. If ¢; and ¢o are both series nodes or both parallel
nodes, then L., p and ¢2 are removed from T and the children of g are made
children of ¢;. Otherwise L, and p are removed from T and ¢» becomes a child
of ¢ replacing p. Such an update of the full modular representation can be done
in O(|C(g2)|) = O(n) since it leaves unchanged the quotient graphs of the prime
nodes.

Prime Case. The removal of x may create some modules in G'[P’] (where
P’ = P\ {z}). We show it can be tested in O(n) time. Moreover if G'[P’] is not
a prime graph, the updated full modular representation can be computed within
the same complexity.

Lemma 1. Let G = (V, E) be a prime permutation graph and x be a vertex.
The non trivial strong modules of G' = G — x can be partitioned in two families
(possibly empty) totally ordered by inclusion.

This is a consequence of Proposition 1 which implies that if R = (w1, m2)
is the realiser of G, then for any strong module M’ of G, I = M’ U {z} is an
interval of m; or ma. Therefore G’ contains O(n) strong modules. Moreover, as
there is at most two non-trivial maximal strong modules, the root of the modular
decomposition tree 7" of G’ has at most two non-leaf children, and each internal
nodes of 7' have at most one non-leaf child. The next lemma complete the
information about degenerate internal nodes of T”.

Lemma 2. Let G = (V, E) be a prime permutation graph and x be a vertex.
Every degenerate node of the modular decomposition tree of G' = G — x has at
most two children which are leaves.

It follows that the number of modules (not necessarily strong) of G’ is O(n)
so there is also O(n) common intervals of the realiser R’ of G’. Therefore ap-
plying [11]’s algorithm will cost O(n) time to find the common intervals of R’.
From that algorithm the two families of strong common intervals (or equiva-
lently modules) can be retrieved in O(n) time. Moreover from Lemma 2 given a
common interval it is possible to find its label (series, parallel or prime) in O(1)
time. As the realiser of each prime node of T” can be easily extracted from R,
the full modular representation of G’ can be computed in O(n).

Theorem 1. Updating the full modular representation of a permutation graph
under vertex deletion costs O(n) time.

42 C. Crespelle and C. Paul
4 Vertex Insertion

Given a graph G = (V, E), a vertex ¢ V and a subset N(z) C V, let us define
G' = G + z as the graph on vertex set V' U {z} with edge set EU {{z,y} | y €
N(z)}). Each node p of the modular decomposition tree T of G is assigned a
type w.r.t. « : linked (resp. notlinked) if P = V(p) is uniform w.r.t. z and
P C N(z) (resp. P C N(x)), and mized otherwise. C;(p) (resp. Cpi(p)) stands
for the set of children of p which are typed linked (resp. notlinked) and C,(p)
for the set of children of p which are typed mized. For ¢t € {m,[,nl}, we denote

Fp = U V()

feCi(p)

4.1 Modular Decomposition Tree of G + x

Insertion Node. To compute the modular decomposition tree T” of G’ = G+,
we can restrict our attention to a subtree Tj, of T rooted at a certain node ¢,
called the insertion node. ¢ is such that Tj, contains all the modifications implied
by the insertion of x. Moreover, in T”, x will be inserted as a child or a grand-
child of node ¢’ representing set @’ = Q U {z}. The discussion bellow gives the
definition of ¢ and shows that inserting x in G reduces to insert z in G[Q)].

Definition 1. A node p of T is a proper node iff either p is uniform wrt. x, or
p is a mized node with a unique mized child f such that F U {x} is a module of
G'[P U{x}]. Otherwise p is a non-proper node.

From Definition 1, any mixed node p has at least one non-proper descendant.
Indeed p always enjoys a mixed descendant having only uniform children. It
follows that if any node of T' is proper, then the vertex set is uniform w.r.t. x.
That is x is either a universal vertex or an isolated vertex. Therefore inserting
x preserves the property of being a permutation graph and the full modular
representation is easy to update. That case will not be considered anymore in
the following.

Definition 2. The insertion node q is the lca of non-proper nodes of T'.

Lemma 3. The insertion node q is such that Q' = Q U {z} is a strong module
of G =G +zx.

Since @ is a strong module of G and Q' = Q U {x} is a strong module of
G' = G+, then G'/{Q'} = G/{Q}. That is the changes implied by the insertion
of x are located in T,. Moreover, the permutation graphs family is hereditary
and closed under substitution, it follows that:

Lemma 4. G' = G + z is a permutation graph iff G'|Q'] = GIQ] + = is a
permutation graph.

From Lemma 4 and the discussion above, we conclude that inserting x in G
reduces to insert = in G[Q)].

Fully Dynamic Algorithm for Recognition and Modular Decomposition 43

Modular Decomposition Tree of G’[Q’]. As the insertion node ¢ is non-
proper, it can either be: 1) a degenerate node with no mixed child but with
uniform children of both types (i.e. linked and notlinked); or 2) a degenerate
node with at least one mixed child; or 3) a prime node with no mixed child but
a child being a twin of x in the quotient of ¢; or 4) a prime node with no child
being a twin of z in the quotient of ¢. In cases 1) and 3), ¢ is said to be cut (and
uncut in cases 2) and 4)).

The case where the insertion node is a cut degenerate node (case 1) above) is
similar to the case, considered by [2], of maintaining the modular decomposition
tree of a cograph under vertex insertion. If ¢ is a series (resp. parallel) node,
the root ¢ of T}, is a series (resp. parallel) node. The children of ¢" are those
children of ¢ typed linked (resp. notlinked) and a new parallel node ¢j. The
children of ¢j are {z} and the remaining children of g, i.e. those typed notlinked
(resp. linked).

The case where the insertion node is a cut prime node (case 3) above) is
quite easy to deal with. In the children of ¢, the twin f of x is replaced by a new
degenerate node ¢ (i.e. ¢ takes the place of f in the realiser of ¢). The label of
q1 is series if f is typed linked, and parallel if f is typed notlinked. x and f are
made children of ¢;.

label(q) = series label(q') = series

A\ C; (q) label(ql) = prime

Fig. 1. Updating the modular decomposition tree when the insertion node is a series
node. The modules M ... M are the maximal uniform modules of G[Qs].

Let us now consider the case where the insertion node ¢ is uncut. Let us define
the vertex set () as the set Q if ¢ is a prime node and as the set Fy,, (¢)UFy,;(q) (resp.
F.(q)UFi(q)) if ¢ a series node (resp. parallel node). The modular decomposition
tree T, of G'[Q'] is organised as follows. If ¢ is a prime node, then ¢’ represents
the nodes of Q) = Qs U {z}. If ¢ is degenerate, then ¢’ is degenerate and has the
same label than ¢. If ¢ is a series (resp. parallel) node, then the set of children of
q is {¢.} UCi(q) (resp. {¢.} UCni(q)) where ¢, is a new node representing vertices
of Q’,. Theorem 2 states on the modular decomposition of G'[Q’].

Theorem 2. Let x be a vertex to be inserted in a graph G. If the insertion node
q of the modular decomposition tree T of G is uncut, then G'[Q%] is connected
and co-connected. And the mazimal strong modules of G'[Q%] are {x} and the
mazimal uniform (w.r.t. x) modules of G[Qs].

44 C. Crespelle and C. Paul

Notice that the modular decomposition tree of G'[M], where M is a maximal
uniform module of G[Q], is the part of T restricted to M. Therefore the whole
modular decomposition tree T’ of G’ follows from discussion above.

4.2 Dynamic Characterisation of Permutation Graphs

As we ask G’ to be a permutation graph, the mixed nodes of T, cannot be spread
anywhere in the tree. Lemma 5 claims that there are at most two branches of
mixed nodes in Tj; beginning at g. These two branches correspond to the two
families of Lemma 1.

Lemma 5. If G’ is a permutation graph then the insertion node q has at most
two mized children and any node p # q of T, has at most one mized child.

Unfortunately, Lemma 5 is not a sufficient condition for G’ being a permuta-
tion graph. Theorem 3 gives necessary and sufficient conditions. Given a graph
G=(V,E),SCVandy e V\S,wedenote G—yS = (V, E\{{y,z} |z € S}).
If p is a node of T, then set P’ = PU{z}. Since the maximal strong modules of
G[P] are uniform wrt. z in G'[P’| —xF,,,(p), they are modules of G'[P']—z F,, (p).
We denote

G'p = (G'[P'] = 2F(p))/(MSM(GIP]) U {{z}}).

Theorem 3. Let x be a vertex to be inserted in a permutation graph G. Then
G' = G+ x is a permutation graph iff either the insertion node q of the modular
decomposition tree T' of G is cut; or if q is uncut then:

1. q satisfies one of the following conditions : .
(a) q has two mized children f1 and f2, and G'y is a permutation graph
admitting a realiser R = (w1, m2) such that x and fi are consecutive in
1, and T and fo are consecutive in .
(b) q has a unique mized child fi, and G’y is a permutation graph admitting
a realiser R = (w1, m2) such that x and f1 are consecutive in 1.
(¢) q has mo mized child and CElI = G'[P]/(MSM(G[P]) U {{z}}) is a
permutation graph.
2. and any node p # q of T, satisfies one of the two following conditions :
(a) p has a unique mized child fy, and (?7,, is a permutation graph admitting
a realiser R = (w1, m2) such that and f1 are consecutive in 71, and x
1s the first element of mo.

(b) p has no mized child, and @p s a permutation graph admitting a realiser
R = (m1,m2) such that x is the first element of 7.

Due to space limitation, we only prove that the above conditions are sufficient.

Proof. <: We first show by induction that any node p of T, different from ¢
is such that G'[P’] is a permutation graph admitting a realiser R such that x
is the first element of my. If p is a leaf of Ty, it trivially satisfies the inductive

Fully Dynamic Algorithm for Recognition and Modular Decomposition 45

hypothesis. Let p # g be a node of T, such that its children satisfy the inductive
hypothesis. If p has a unique mixed child fi, it satisfies condition 2a of Theorem
3. According to the inductive hypothesis, G'[F]] is a permutation graph and
admits a realiser Ry = (71, 72) such that x is the first element of 75. To obtain
a realiser of G'[P']/(MSM(G[P]) \ {F1}) such that x is the first element of g,

the realiser R = (71, m2) of G’ is modified as follows: in 7y, substitute 7 for the
interval {z, f1}; and in 72 substitute, 72 restricted to F; for f;. Composing the
resulting realiser with the realisers of the (G[F]) sec(p)\{,}, We obtain a realiser
of G'[P’] which satisfies the inductive hypothesis. The case where p has no mixed
child follows as a particular case of the previous one. This ends the induction.
If ¢ has two mixed children f; and fs, it satisfies condition 1a of Theorem
3. By the previous induction G’[F}] and G’[F}] are permutation graphs. They
respectively admit a realiser R; = (71, 72) and R2 = (01, 02) such that x is the
first element of 72 and o5. In the realiser R = (w1, m2) of C?q, if fo occurs after fi
in 79, we reverse both orders of Ry, and if fo occurs before fi in 71, we reverse
both orders of R2. To obtain a realiser of G'[Q']/(MSM(GIQ)) \ {F1, F2}),
R is modified as follows: in 7y, substitute 71 for the interval {z, f1}, and o9
restricted to Fy for fo; and in o, substitute oq for the interval {z, fo}, and
79 restricted to Fy for fi;. Composing the resulting realiser with the realisers
of the (G[V(f)]) fecp)\f1,f.>» We obtain a realiser of G'[Q']. We therefore prove
that G'[Q’] is a permutation graph. By Lemma 4 we can conclude that G is a
permutation graph. The cases where p has a single or no mixed child follow as
a particular cases of the above discussion. O

4.3 Algorithm and Complexity

Data-Structure. The realiser R = (w1,) associated with a prime node p
of the modular decomposition tree will be stored in two doubly linked lists
representing the two linear orders m; and ms. Each cell of a list represents a child
¢ of p. There are two symmetric pointers between ¢ and the cell. Moreover each
cell contains its rank in the list (namely 71 (c) or m2(c)).

Routine InsPrime. As a prime permutation graph G has a unique realiser
R = (71, 7m2), G + x is a permutation graph iff can be inserted in R. Routine
InsPrime performs, if possible, that insertion.

Lemma 6. Let R = (w1, m2) be the realiser of a prime permutation graph G and
x ¢V avertex to be inserted. G + x is a permutation graph iff N(z) and N(x)
can be respectively partitioned into N1(x), Nao(x) and N1(x), No(x) such that:

Yu, € N1(.’L‘) UNl(JJ),U1 S Nz(l‘) U Ng(l‘),U1 <7, V1
Yug € NQ(.’L‘) UNl(l‘),Ug S Nl(l‘) UNQ(JJ),UQ <7y V2

An initial common interval of a realiser R = (7, m2) is a common interval of
R containing both 717 *(1) and 75 *(1). In order to find the partitions of N(z) and
N (z) satisfying Lemma 6, Routine InsPrime makes use of the next corollary.

46 C. Crespelle and C. Paul

Corollary 1. If Ni(z) # & (resp. Ni(z) # &) then N1(x) is an initial common
interval of R[N (z)] (resp. R[N (x)]), the restriction of R to N(z) (resp. N(z)).

Notice that an initial common interval of R[N (z)] defines a partition Ny (z),
Ny(z) of N(z) (and similarly for N(z)). The number of initial common intervals
of a realiser is O(n).

Routine InsPrime computes in O(n) time the sets of initial common inter-
vals of R[N (z)] and of R[N (x)]. Then, it checks if there exists a pair of partitions
Ni(x), Na(z) and Nq(x), No(z) satisfying Lemma 6. Testing a given pair of par-
titions can be done in O(1) time by comparing the ranks of the last elements
of Ny (resp. Na) and Ny in m (resp. m2) with ranks of the first elements of N
(resp. N1) and Na. Scanning 1, a pair of partitions satisfying the condition of
Lemma 6 can be found in O(n) time.

Notice that G’ = G 4 & may not be prime. If it is the case, then z has a twin
vertex in G (i.e. a vertex y s.t. N(y) \ {z} = N(z)\ {y}). As {z,y} is therefore
a strong module of G’, by Proposition 1, x and y are consecutive in both linear
orders of the realiser of G'. It follows that testing the existence of a twin can be
done in O(1) time if 2 has been inserted.

To summarise, if G + x is a permutation graph, then in O(n) time, Routine
InsPrime returns a pair of doubly linked lists, the realiser of G+ x, and outputs
the twin of x if it exists. Notice that the ranks of the cells are not maintained in
these lists.

The Typing Routine. In a bottom-up process, each node p of T receives a
type (linked, notlinked or mized). A leaf L, of T is typed linked if y € N(z)
and notlinked otherwise. The type of an inner node p of T' depends on the types
of its children. If the children of p all have the same type, p inherits that type,
otherwise p is typed mized. Since the number of nodes in T is O(n), the typing
routine runs in O(n) time.

Finding the Insertion Node g. The purpose of this step is to find the inser-
tion node ¢, in the case where the root r of T' is typed mixed. By Lemma 2, ¢
is the lca of the non-proper nodes of T'. Any node p of the unique path between
r and q is mized and proper if p # ¢. Since, by Definition 1, any proper mixed
node has a unique mixed child, finding the insertion node can be done by a
top-down search of the modular decomposition tree 1. The search stops when
the current node p is non-proper, which can be tested as follows. If p is a series
node (resp. parallel node), then p is proper iff all its children but one are typed
linked (resp. notlinked) and the remaining child is mized. If p is a prime node,
p is proper iff x has a twin in the quotient of p, which can be checked by Routine
InsPrime. In both cases, testing whether p is a proper node can be done in
O(|C(p)|). As T contains O(n) nodes, the search finds the insertion node ¢ in
O(n) time.

Maintaining the Full Modular Representation. We now determine if
G'[Q'] is a permutation graph or not, and in the positive, update its full modular

Fully Dynamic Algorithm for Recognition and Modular Decomposition 47

representation (i.e. its modular decomposition tree and the realisers of the prime
nodes).

If the insertion node ¢ has more than two mixed children, from Lemma 5,
G'[Q’] is not a permutation graph: the algorithm stops. If ¢ is cut, from earlier
discussion G'[Q’] is always a permutation graph (see Section 4.1). In that case,
the realisers of the prime nodes are not modified. Therefore T(;, can be computed
in O(|C(q)]) as described in Section 4.1. When ¢ is uncut, the nodes of Tj, have
to fulfil the conditions stated in Theorem 3. To simplify the presentation, let us
present our algorithm as three-step process. But notice in practice these three
steps can be merged into a single one.

— For each node p of T}, we check whether p fulfils the condition of Theorem 3.
If p is a degenerate node having the right number of mixed children (0, 1 or 2
depending on p = ¢), then CNJ; always enjoys a realiser satisfying Theorem 3
(see Figure 2). If p is prime, using Routine InsPrime, we insert x in the
realiser associated to p by making z adjacent to C;(p) and non-adjacent to
Cn(p) U Cri(p). There may be two different positions to insert x (only if has
a twin vertex). We then test if at least one of the possible positions fulfils
the conditions of Theorem 3 which simply consists in testing the position
of z in the realiser returned by InsPrime (extremity in an order and/or
consecutiveness with the mixed children). That can be done in O(1). Since
we handle only the quotients of the nodes p of T}, each of which being
processed in O(|C(p)|) time, this first steps runs in O(n) time.

— Theorem 2 states that the maximal strong modules of G'[Q’] are {z} and
the maximal uniform modules of G[Qs]. These maximal uniform modules
can be found in O(n) time by a search in T, since M is a maximal uniform
module iff there exists a mixed node p descendant of the insertion node ¢
such that either p is degenerate and M = Fj(p) or M = F,;(p); or p is prime
and M is the vertex set of some uniform child of p. By Theorem 2, these
modules will be represented by the children nodes of the new prime node ¢.,.
Recall that the modular decomposition tree of G'[M] is inherited from the
modular decomposition tree T' of G.

— The last step computes the realiser Ry of the quotient of G’[Q%] by its
maximal strong modules. Notice that in the intermediate realisers computed
along the process, the ranks of the cells in the lists are not maintained.

To that aim, we applied the bottom-up process, described in the proof
of Theorem 3, on the modular decomposition tree 7" where each maximal
uniform module has first been contracted into a single vertex (i.e. replaced

1 Ci(p v fi (Cni(p))

2 z (Culp)) N G(p

Fig. 2. The unique realiser of G‘; (if p is a series node) that fulfils condition 2a of
Theorem 3. For a parallel node p, C,;(p) and C;(p) has to be exchanged in ms.

48

C. Crespelle and C. Paul

by a leaf in the tree T'). For a prime mixed node p, the realiser of é; is given

by Routine InsPrime. For a degenerate node p, the realiser of é; is the one
depicted in Figure 2. As the realisers are encoded by pairs of doubly linked
lists, the substitution operation used in the proof of Theorem 3 can be done
in O(1) time. It follows that the realiser Rs can be computed in O(n) time.
Finally to maintain the data-structure, a scan of the lists of R allows to get
the ranks of the cells.

Theorem 4. Updating the full modular representation of a permutation graph
under vertex insertion costs O(n) time.

References

1.

10.

11.

A. Brandstadt, V.B. Le, and J.P. Spinrad. Graph Classes: a Survey. SIAM Mono-
graphs on Discrete Mathematics and Applications. Society for Industrial and Ap-
plied Mathematics, 1999.

. D.G. Corneil, Y. Perl, and L.K. Stewart. A linear time recognition algorithm for

cographs. SIAM Journal on Computing, 14(4):926-934, 1985.

. C. Crespelle and C. Paul. Fully-dynamic recognition algorithm and certificate

for directed cographs. In 30th Int. Workshop on Graph Theoretical Concepts in
Computer Science (WG04), number 3353 in Lecture Notes in Computer Science,
pages 93-104, 2004.

. F. de Montgolfier. Décomposition modulaire des graphes - Théorie, extensions et

algorithmes. PhD thesis, Université de Montpellier 2, France, 2003.

. Tibor Gallai. Transitiv orientierbare graphen. Acta Math. Acad. Sci. Hungar.,

18:25-66, 1967.

. Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. Aca-

demic Press, New York, 1980.

. P. Hell, R. Shamir, and R. Sharan. A fully dynamic algorithm for recognizing and

representing proper interval graphs. SIAM Journal on Computing, 31(1):289-305,
2002.

. L. Ibarra. Fully dynamic algorithms for chordal graphs. In 10th ACM-SIAM

Annual Symposium on Discrete Algorithm (SODA’03), pages 923-924, 1999.

. J.H. Muller and J.P. Spinrad. Incremental modular decomposition algorithm. Jour-

nal of the Association for Computing Machinery, 36(1):1-19, 1989.

R. Shamir and R. Sharan. A fully dynamic algorithm for modular decomposi-
tion and recognition of cographs. Discrete Applied Mathematics, 136(2-3):329-340,
2004.

Takeaki Uno and Mutsunori Yagiura. Fast algorithms to enumerate all common
intervals of two permutations. Algorithmica, 26(2):290-309, 2000.

Approximating Rank-Width
and Clique-Width Quickly

Sang-il Oum

Princeton University, Princeton NJ 08544, USA*

Abstract. Rank-width is defined by Seymour and the author to inves-
tigate clique-width; they show that graphs have bounded rank-width if
and only if they have bounded clique-width. It is known that many hard
graph problems have polynomial-time algorithms for graphs of bounded
clique-width, however, requiring a given decomposition corresponding to
clique-width (k-expression); they remove this requirement by construct-
ing an algorithm that either outputs a rank-decomposition of width at
most f(k) for some function f or confirms rank-width is larger than k in
O(|V|?log |[V]) time for an input graph G = (V, E) and a fixed k. This
can be reformulated in terms of clique-width as an algorithm that either
outputs a (2'+f) _ 1)-expression or confirms clique-width is larger than
kin O(]V|° log |V]) time for fixed k.

In this paper, we develop two separate algorithms of this kind with
faster running time. We construct a O(|V |*)-time algorithm with f(k) =
3k + 1 by constructing a subroutine for the previous algorithm; we may
now avoid using general submodular function minimization algorithms
used by Seymour and the author. Another one is a O(|V|*)-time algo-
rithm with f(k) = 24k by giving a reduction from graphs to binary
matroids; then we use an approximation algorithm for matroid branch-
width by Hlinény.

1 Preliminaries
In this paper, all graphs are simple, undirected, and finite.

Cut-Rank Functions. For a matrix M = (m,; : 4 € R,j € C) over a field F, if
X CRand Y C C, let M[X,Y] denote the submatrix (m;; : i € X,j € Y). For
a graph G, let A(G) be its adjacency matrix over GF(2).

Definition 1. Let G be a graph. For two disjoint subsets X, Y C V(G), we
define p&(X,Y) = rk(A(G)[X,Y]) where rk is the matriz rank function; and we
define the cut-rank function pg of G by letting pa(X) = p&(X, V(G) \ X) for
X CV(G).

Both p and p* satisfy submodular inequalities.
* Current address. Georgia Institute of Technology, Atlanta, GA 30332, USA.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 49-58, 2005.
© Springer-Verlag Berlin Heidelberg 2005

50 S. Oum

Proposition 2 (Oum and Seymour [1]). Let G be a graph. Let X1,Y1, Xo,Y>
be subsets of V(G) such that X1 NYy = XoNYa = 0. Then,

pG(X1, Y1) 4 pi (X2, Ya) > p (X1 N Xo, Y1 UYs) + pi (X1 U Xo, Y1 NYs).
Moreover, if X1,Xs C V(G), then
pc(X1) + pa(X2) 2 pa(X1 N Xa) + pa (X1 U Xs).

Rank-Width. A subcubic tree is a tree with at least two vertices such that every
vertex is incident with at most three edges. A leaf of a tree is a vertex incident
with exactly one edge. A rank-decomposition of a graph G = (V, E) is a pair
(T, L) of a subcubic tree T' and a bijective function £ : V' — {t : ¢ is a leaf of T'}.
(If |V| <1, then G admits no rank-decomposition.)

For an edge e of T, the connected components of T\ e induce a partition
(X,Y) of the set of leaves of T'. The width of an edge e of a rank-decomposition
(T, L) is pc(L71(X)). The width of (T, L) is the maximum width of all edges of
T. The rank-width rwd(G) of G is the minimum width of a rank-decomposition
of G. (If |V| <1, we define rwd(G) = 0.)

Let cwd(G) be the clique-width of a graph G. Clique-width is defined by
Courcelle and Olariu [2]. In this paper, we do not need its definition if we just
remember the following proposition.

Proposition 3 (Oum and Seymour [1]). For a graph G, rwd(G) < cwd(G)
< 2rwd(G)+1 1.

Local Complementation. For two sets A and B, let AAB = (A\ B)U (B\ A).

Definition 4. Let G = (V,E) be a graph and v € V. The graph obtained by
applying local complementation at v to G is

Gxv=(V,EA{zy: zv,yv € E,x # y}).

For an edge uv € E, the graph obtained by pivoting wv is defined by G A uv =
G*uxv*u. We say that H is locally equivalent to G if G can be obtained by
applying a sequence of local complementations to G.

A pivoting is well-defined because G *x u * v xu = G *xv *u x v if u and v are
adjacent [3]. The following observation is fundamental.

Proposition 5 (Oum [3]). Let G' = G xv. Then for every X C V(G),
pc(X) = par(X).
The following lemma will be used in Sect. 2.

Lemma 6 (Oum [3]). Let G be a graph and v € V(G). Suppose that (X1, X2)
and (Y1,Y2) are partitions of V(G) \ {v}. If w is a neighbor of v, then

pG\U(Xl) + pG/\vw\v(Yl) > pG(Xl N Yl) + ,OG(XQ N Yg) — 1.

Approximating Rank-Width and Clique-Width Quickly 51

Matroids. Since we will use matroids in Sect. 4, let us review matroid theory.
For general matroid theory, we refer to Oxley’s book [4]. We call M = (E,Z) a
matroid if E is a finite set and 7 is a collection of subsets of E, satisfying

(i 0eZ
(ii) f AeZ and B C A, then B € 7.
(iii) For every Z C E, maximal subsets of Z in Z all have the same size r(Z).
We call 7(Z) the rank of Z.

An element of 7 is called independent in M. We let E(M) = E. A matroid
M = (E,T) is binary if there exists a matrix N over GF(2) such that F is a
set of column vectors of N and Z = {X C E : X is linearly independent}. The
connectiwity function A of M is Ay(X) =r(X) +r(E\ X) —r(E) + 1.

Let G = (V,E) be a bipartite graph with a bipartition V' = A U B. Let
Bin(G, A, B) be the binary matroid on V', represented by the A x V matrix

(Ia A(G)[A, B])

where I4 is the A x A identity matrix. If M = Bin(G, A, B), then G is called a
fundamental graph of M.

Branch-Width. A branch-decomposition of a matroid M is a pair (T, L) of a
subcubic tree T and a bijective function £ : E(M) — {t : t is a leaf of T'}. (If
|[E(M)] <1, then M admits no rank-decomposition.)

For an edge e of T, the connected components of T\ e induce a partition
(X,Y) of the set of leaves of T'. The width of an edge e of a branch-decomposition
(T, L) is Apm(L7H(X)). The width of (T, L) is the maximum width of all edges
of T. The branch-width bw(M) of M is the minimum width of a branch-
decomposition of M. (If |V| < 1, we define bw(M) = 1.) Branch-width has
been defined by Robertson and Seymour [5].

The following proposition links branch-width of binary matroids with rank-
width of bipartite graphs.

Proposition 7 (Oum [3]). Let G = (V,E) be a bipartite graph with a bi-
partition V.= AU B and let M = Bin(G, A, B). Then for every X C V,
Im(X) =pa(X)+1.

Corollary 8 (Oum [3]). Let G = (V, E) be a bipartite graph with a bipartition
V = AUB and let M = Bin(G, A, B). Then the branch-width of M is one more
than the rank-width of G.

2 Approximating Rank-Width Quickly

In this section, we show that, for fixed k, there is a O(n*)-time algorithm that,
with a n-vertex graph, outputs a rank-decomposition of width at most 3k +
1 or confirms that the input graph has rank-width larger than k. Oum and
Seymour [1] use general submodular function minimization algorithms [6] to

52 S. Oum

find Z minimizing the cut-rank function pg(Z) with X € Z C V(G) \ Y for
given disjoint subsets X, Y of V(G) such that |X|, |Y| < 3k. If this can be done
in time «y, then we obtain an O(n(n? + v))-time algorithm to outputs a rank-
decomposition of width at most 3k + 1 or confirms that the input graph has
rank-width larger than k. In [1], v is O(n®logn), and therefore the O(n® logn)-
time algorithm is obtained.

To obtain a O(n?)-time algorithm, we construct a direct combinatorial al-
gorithm that minimizes the cut-rank function. Jim Geelen suggested the use of
blocking sequences for this problem (private communication, 2005).

We first define blocking sequences, introduced by J. Geelen [7]. Let G be a
graph and A, B be two disjoint subsets of V(G). A sequence v1,va, ..., Uy, of
vertices in V(G) \ (A U B) is called a blocking sequence for (A, B) in G if it
satisfies the following:

(i) p&(AU{vi}, BU{vit1}) > p5(A, B) for alli e {1,2,...,m — 1}
(i) pt(A U {om}, B) > pis(A, B).
(iv) No proper subsequence satisfies (1)—(iii).

The following proposition is used in most applications of blocking sequences.

Proposition 9. Let G be a graph and A, B be two disjoint subsets of V(G). The
following are equivalent:

(i) There is no blocking sequence for (A, B) in G.
(ii) There exists Z such that AC Z C V(G)\ B and pc(Z) = p&(A, B).

Proof. (1)—(ii): We assume that a,b ¢ V(G) \ (AU B) by relabeling. Let k =
p& (A, B). We construct the auziliary digraph D = ({a,b}U(V(G)\ (AUB)), E)
from G such that for z,y € V(G) \ (AU B),

i) (a,z) € E if p,(A,BU{z}) >k,
ii) (z,b) € Eif p&,(AU{z}, B) >k,
iii) (x,y) € Eif pi(AU{z}, BU{y}) > k.

Since there is no blocking sequence for (A, B) in G, there is no directed path
from a to b in D. Let J be a set of vertices in V(G) \ (AU B) having a directed
path from a in D. We show that Z = J U A satisfies pg(Z) = k.

To prove this, we claim that pL,(AUX,BUY) =k forall X C J, Y C
V(G)\ (Z U B). We proceed by induction on |X|+|Y]. If |X| <1 and |Y]| <1,
then we have p&(AU X, BUY) = k by the construction of J.

If | X| > 1, then for all x € X we have

pa(AUX, BUY) + p&(A,BUY) <
pe(AU (X \{z}), BUY) + pa(AU{z}, BUY) =2k,

because pg (AU {z}, BUY) =k by induction. So, p(AUX,BUY) = k.

Approximating Rank-Width and Clique-Width Quickly 53

Similarly if |Y| > 1, then for all y € Y we have p5,(AUX,BUY) + p&(AU
X,B) < ps(AUX,BU (Y \{y})) + pc(AU X,BU {y}) = 2k, and therefore
P(AUX,BUY) = k.

(ii)—(i): Suppose that there is a blocking sequence v1, v, . . ., vy,. Then, v, ¢
Z because p&(AU{vm }, B) > pc(Z). Similarly v € Z because pf (A, BU{v1}) >
pc(Z). Therefore there exists i € {1,2,...,m — 1} such that v; € Z but vy ¢
Z. But this is a contradiction, because pg(Z) < p&(A U {v;}, BU{vi41}) <
pe(Z.V(G)\ 2) = pa(2). 0

Lemma 10. Let G be a graph (V, E) and A, B be two disjoint subsets of V' such
that pt(A,B) = k and |A|,|B| < l. Let n = |V|. There is a polynomial-time
algorithm to either

— obtain a graph G’ locally equivalent to G with pf./ (A, B) >k, or
— obtain a set Z such that AC Z CV \ B and pg(Z) = k.

The running time of this algorithm is O(n®) if | is fived or O(n*) if | is not fized.

Proof. If there is no blocking sequence for (A, B) in G, then minc zcv\p p(2) =
k by Proposition 9. In this case, we obtain Z by finding a set of vertices reachable
from A in the auxiliary graph.

Therefore, we may assume that there is a blocking sequence vy, va, ..., Um.
We will find another graph G’ locally equivalent to G such that rke/ (A, B) > k.
Since rkg(A U {vm}, B) = k + 1, there is a vertex w € B adjacent to vy,.

(1) We claim that v1,va, ..., vm—1 is a blocking sequence of (A, B) in G Avpw
if m> 1.

By applying Lemma 6 for G[AU B U {v1,v,,}], a subgraph of G induced on
AU B U {v1,vpn}, we have

PGnvw(As BU{01}) + p5(AU {01}, B)
> pE(A,B U {U1,Um}) + p*G(A U {U17UM}7B) -1

Since p&(A, B U {vi,vm} > p&(A,BU{n}) > k+1, pL(AU{v,vm},B) >
pe(AU{vm}, B) > k+1, and pg;(AU{v1 }, B) = k, we obtain that pg,,, (4, BU
{vi}) > k+1.

By applying the same inequality we obtain that

Pervmw(AU{vi}t, BU{vis1}) + po(AU{vi, vipa }, B)
> va(A U {Ui}aB U {vi+1avm}) + va(A U {vianJrlavm}vB) -1>2k+1

foreachi € {1,2,3,...,m—2} and therefore pg, ., ,(AU{v;}, BU{vit1}) > k+1.
Moreover, pg ., o (AU{vm—1}, B)+pG(AU{vm—1}, B) > pG(AU{vy -1}, BU
{vm}) + pg(A U {vm—1,9m},B) — 1 > 2k + 1 and therefore pf,, .,
(A U {vm—1}7 B) Z k + 1.
We prove one lemma to be used later. If X and Y are disjoint subsets of V'
such that AC X, BCY, vy, ¢ XUY and p5(X,Y) =k, then p5 ., (X, Y) =
p&(X,Y U{vn}) because '

54 S. Oum

p*G/\vmw(Xv Y) + p*G(va) 2 p*G(XaY U {Um}) + p*G(X U {vm}vy) -1
> pe(X, Y U{vm}) + k= pgnp, (XY Ufvm}) + pa(X,Y).

By letting X = AU {v,-1} and Y = B, we obtain that pg,,, ,(4U
{vm-1}, B) = p&(AU{vm-1}, BU{vm}) > k+1. We also obtain pg ,,, (4, BU
{vi}) = k for each i > 1 by letting X = A, Y = B U {v;}. Similarly we obtain
Pnv,w(AU{vi}, BU{v;}) =k for i, jsuch that 1 <i<i+1<j<m-—1.

Therefore, V1,02, ..., U;m—1 is a blocking sequence for (A, B) in G A v w.

(2) If m = 1 then we obtain pg,,, ., (A, B) > k+1, by applying the previous
lemma with letting X = A and Y = B.

(3) For each k, we claim that we can obtain another graph G’ locally equiva-
lent to G with pf,, (A, B) > k or find Z satisfying A C Z C V\ B and pe(Z) = k.

If [is fixed, then we can test an adjacency in the auxiliary graph (defined
in the proof of Proposition 9) in constant time by calculating rank of matrices
of size no bigger than (I + 1) x (I + 1), and therefore it takes O(n?) time to
construct the auxiliary digraph. If [is not fixed, then it takes O(n?) time to
construct the auxiliary digraph for finding a blocking sequence. We first obtain
the diagonalized matrix R obtained by applying elementary row operations to
the matrix M[A, B] in O(n?) time. For each vertex v not in AU B, we calculate
the rank of M[AU{v}, B] by using the stored matrix in O(n?) time. Similarly we
calculate the rank of M[A, B U {v}] by storing the matrix obtained by applying
elementary column operations to M[A, B]. To check whether p5 (AU {z}, BU
{y}) > k, it is enough to see when p¥ (AU {z}, B) = p&(A, BU{y}) = k. We
first store the rows of the original matrices to each column of R and then we
obtain the linear combination of rows of M[A, B] giving M[{z}, B]. By the same
linear combination, we check whether rows of M[A, {y}] gives M[{z},{y}]. It
takes O(n?) time for each x,y € V \ (AU B) and therefore we construct the
auxiliary digraph in O(n?) time (if [is not fixed).

To find a blocking sequence, it is enough to find a shortest path in this
digraph and it takes O(n?) time. If there is no blocking sequence, then we find
Z in O(n?) time by choosing all vertices reachable from A by a directed path.

We pick a neighbor of v, in B and obtain G A v, w in O(n?) time. By (1),
G Avmw has a blocking sequence vy, va, . . ., Uy—1 for (A4, B). We apply this kind
of pivoting m times so that in the new graph G’ we have pf, (A, B) > k. Since
m < n, we obtain G’ in O(n?) time. O

Theorem 11. Let | be a fized constant. Let G be a graph (V,E) and A, B be
two disjoint subsets of V such that |A|,|B| < I. Then, there is a O(|V|3)-time
algorithm to find Z with A C Z C V' \ B having the minimum cut-rank.

Proof. We apply the algorithm given by Lemma 10 until it finds a cut. We use
the algorithm at most [times, and so the running time is at most O(|V[3). O

We state the following theorem for the sake of its own interest. We will not
use this for the purpose of approximating rank-width since we have the previous
theorem.

Approximating Rank-Width and Clique-Width Quickly 55

Theorem 12. Let G be a graph (V, E) and A, B be two disjoint subsets of V.
Then, there is a O(|V|?)-time algorithm to find Z with A C Z C V \ B having
the minimum cut-rank.

Proof. We apply the algorithm given by Lemma 10 until it finds a cut. We use
the algorithm at most |V| times, and so the running time is at most O(|[V'[?). O

Combining with Oum and Seymour [1], we obtain the following.

Theorem 13. For given k, there is an algorithm, for the input graph G =
(V,E), that either concludes that rwd(G) > k or outputs a rank-decomposition
of G of width at most 3k + 1; and its running time is O(|V'|*).

Since we can convert the rank-decomposition of width k to a (2871 —1)-expression
(a decomposition related to clique-width) in O(]V'|?) time [1], we obtain the
following corollary.

Corollary 14. For given k, there is an algorithm, for the input graph G =
(V, E), that either concludes that cwd(G) > k or outputs a (23*+2 —1)-ezpression
of G; and its running time is O(|V']*).

3 Graphs to Bipartite Graphs

Courcelle [8] shows that Seese’s conjecture [9] is true if and only if it is true
for bipartite graphs by using a certain graph transformation B from graphs to
bipartite graphs which we describe in the following lemma. He proves that there
exist two functions fi and f2 such that fi(rwd(G)) < rwd(B(G)) < f2(rwd(G)),
but does not have explicit constructions of fi; and fo. We give a concrete bound
on rank-width. We will use this lemma in Sect. 4.

N

Fig. 1. K3 and B(K3)

Lemma 15. Let G = (V, E) be a graph. Let B(G) = (V x {1,2,3,4}, E’) be a
bipartite graph obtained from G as follows:

(i) ifveV and i€ {1,2,3}, then (v,i) is adjacent to (v,i+ 1) in B(G),
(ii) of vw € E, then (v,1) is adjacent to (w,4) in B(G).

Then we have rwd(G) < rwd(B(G)) < max(2rwd(G),1).

Proof. (1) Let us show that rwd(B(G)) < max(2rwd(G),1). If rwd(G) = 0,
then rwd(B(G)) = 1. Now we may assume that rwd(G) > 0 and we claim that
rwd(B(G)) < 2rwd(G). Let (T, £) be a rank-decomposition of G of width k. Let
N be the set of leaves of T. Let T” be a tree such that V(T") = (V(T) x {0}) U
(N x {1,2,3,4,12,34}) and

56 S. Oum

(i) if vw € E(T), then (v,0) is adjacent to (w,0) in T”,

(ii) for all v € N, (v,12) is adjacent to both (v,1) and (v,2) in T”,
(iii) for all v € N, (v, 34) is adjacent to both (v,3) and (v,4) in T”,
(iv) for all v € N, (v,0) is adjacent to both (v,12) and (v,34) in T".

Informally speaking, we obtain T” from T by replacing each leaf with a rooted bi-
nary tree having four leaves. For each vertex (v, i) of B(G), we define £'((v,4)) =
(L(v),i) € V(T"). Then (T, L') is a rank-decomposition of B(G).

We claim that the width of (77, £’) is at most 2k.

For each edge e = vw € E(T), let (X,Y) be a partition of N induced by
the connected components of T'\ e. Then, the edge (v,0)(w,0) of E(T") induces
a partition (X x {1,2,3,4},Y x {1,2,3,4}) of N x {1,2,3,4}. We observe that
L7HX x{1,2,3,4}) = L71(X) x {1,2,3,4}. It is easy to see that

P (L1 X x {1,2,3,4}) = 2pa (L7 (X)) < 2k.

We now consider remaining edges of T’. Each of them induces a partition
(X,Y) of leaves of T" such that |X| < 2 or [Y]| < 2. So, ppc) (L1 (X)) < 2.
Therefore we obtain that the width of (77, L) is at most 2k.

(2) We claim that rwd(G) < 4rwd(B(G)). Let (T, L) be a rank-decomposi-
tion of B(G) of width k. Let e be an edge of T', and (X,Y’) be a partition of
leaves of T' induced by connected components of T'\ e.

For four subsets A;, Aa, A3, Ay of V', we denote A;|As|As|Ay = (A1 x {1})U
(A2 x {2}) U (43 x {3}) U (A4 x {4}) to simplify our notation. Let £L71(X) =
Al‘A2|A3‘A4. Let B, =V \ A; for i e {1,2,3,4}

It is easy to observe, for each i € {1,2,3}, that pj) ((Ai x {i}) U (Aigr x
{i+1}), (B x {i}) U(Biga x {i +1}) = [Ai N Biga | + [Bi N Ay | = [AiAAia].
Since pB(G)(A1|A2‘A3‘A4) = pE(G)(Al‘A2|A3|A4,B1|BQ‘B3‘B4) S k, we have,
for each i € {1,2,3},

|AiAAi1] < pp(a)(A1|Az|A3|Ag) < k.

By adding these inequalities for all i, we obtain that |4; AA4| < 3k.
We also observe that rk(M[A4, B1]) = pp(a)(As x {4}, By x {1}) < k. Let
M be an adjacency matrix of G. Then we have the following bound of pg(A41):

pg(Al) = I‘k(M[Al, Bl]) < I‘k(M[A;; @] (A4AA1), Bﬂ)
< 1k(M[Ay, Br)) + tk(M[As AAy, By]) < 4k.

Let T" be the minimal subtree of T' containing all leaves in £(V x {1}). Let
L'(v) = L((v,1)) for all vertices v of G. Then (17", L’) is a rank-decomposition
of G and its width is at most 4k. O

4 Approximating Rank-Width More Quickly

In this section, we show another algorithm that approximate rank-width as in
Sect. 2, but in O(n?) time with a worse approximation ratio. We take a different

Approximating Rank-Width and Clique-Width Quickly 57

approach based on a simple observation in Sect. 3. We use the following algorithm
for binary matroids developed by Hlinény [10].

Theorem 16 (Hlinény [10-Theorem 4.12]). For fized k, there is a O(n?)-
time algorithm that, for a given binary matroid with n elements, obtains a
branch-decomposition of width at most 3k + 1 or confirms that the given ma-
troid has branch-width larger than k + 1. We assume that binary matroids are
given by their matriz representations.

This algorithm can be used to approximate rank-width of a bipartite graph G
because we can run this algorithm for binary matroids having G as a fundamental
graph. By Lemma 15, we obtain a bipartite graph B(G) for each graph G such
that ; rwd(G) < rwd(B(G)) < max(2rwd(G),1). Moreover we can construct
B(G) in O(n?) time when n = |V (G)| and transform the rank-decomposition of
B(G) of width m into rank-decomposition of G of width at most 4m in linear
time by the proof of Lemma 15. Therefore, we obtain the following algorithm.

Corollary 17. For fived k, there is a O(n?)-time algorithm that, for a given
graph with n wvertices, obtains a rank-decomposition of width at most 24k or
confirms that the rank-width of the input graph is larger than k.

Proof. Let G = (V, E) be the input graph. We may assume that F(G) # (). First
we construct B(G) in O(n?) time. We run the algorithm of Theorem 16 with an
input M = Bin(B(G),V x {1,3},V x {2,4}) and a constant 2k.

If it confirms that branch-width of M is larger than 2k + 1, then rank-width
of B(G) is larger than 2k, and therefore the rank-width of G is larger than k.

If it outputs the branch-decomposition of M of width at most 6k + 1, then
the output is a rank-decomposition of B(G) of width at most 6k. This can be
transformed into a rank-decomposition of G of width at most 24k in linear time
by using an argument of Lemma 15. O

5 Discussions

Many applications of clique-width are polynomial-time algorithms to solve graph
problems when inputs are restricted to graphs of bounded clique-width. Most
of them ([11,12,13,14,15]) require k-expression of the input graph as an input
to take an advantage of tree-structures (except Johnson [16]). But by using [1],
we do not need k-expressions as an explicit input, because we can generate a
(21+f (k) — 1)-expression in polynomial time and provide it as an input. The result
of this paper will make this preprocessing much faster.

In [17], Courcelle and the author show that there is a O(|V|log |V|)-time
algorithm that recognizes graphs of rank-width at most k for an input graph
G = (V, E) and a fixed k; they use an approximation algorithm by Seymour and
the author [1] as a first step, and it is the slowest part of their algorithm. By the
result of this paper, we obtain the following.

Theorem 18. For fized k, there is a O(n®)-time algorithm to check that the
input graph with n vertices has rank-width at most k.

58

S. Oum

But it is still open whether, for fixed k, we can construct a rank-decomposition
of width at most k if there are any in polynomial time.

Acknowledgment. The author would like to thank Jim Geelen for our valuable
discussions.

References

10.
11.

12.

13.

14.

15.

16.

17.

. Oum, S., Seymour, P.: Approximating clique-width and branch-width. submitted

(2004)

Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101 (2000) 77-114

Oum, S.: Rank-width and vertex-minors. J. Combin. Theory Ser. B (2005) to
appear.

Oxley, J.G.: Matroid theory. Oxford University Press, New York (1992)
Robertson, N., Seymour, P.: Graph minors. X. Obstructions to tree-decomposition.
J. Combin. Theory Ser. B 52 (1991) 153-190

Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial al-
gorithm for minimizing submodular functions. Journal of the ACM (JACM) 48
(2001) 761-777

Geelen, J.F.: Matchings, matroids and unimodular matrices. PhD thesis, University
of Waterloo (1995)

Courcelle, B.: The monadic second-order logic of graphs XV: On a conjecture by
D. Seese. submitted (2004)

Seese, D.: The structure of the models of decidable monadic theories of graphs.
Ann. Pure Appl. Logic 53 (1991) 169-195

Hlinény, P.: A parametrized algorithm for matroid branch-width. submitted (2002)
Wanke, E.: k-NLC graphs and polynomial algorithms. Discrete Appl. Math. 54
(1994) 251-266

Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique-width. Theory Comput. Syst. 33 (2000) 125-150
Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on
clique-width bounded graphs in polynomial time. In: Graph-theoretic concepts in
computer science (Boltenhagen, 2001). Volume 2204 of Lecture Notes in Comput.
Sci. Springer, Berlin (2001) 117-128

Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs
with fixed clique-width. Theoret. Comput. Sci. 299 (2003) 719-734

Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Appl. Math. 126 (2003) 197221

Johnson, J.L.: Polynomial time recognition and optimization algorithms on special
classes of graphs. PhD thesis, Vanderbuilt University (2003)

Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic, and a conjec-
ture by Seese. submitted (2004)

Computing the Tutte Polynomial on Graphs
of Bounded Clique-Width

nénes S,
Omer Giménez'*, Petr Hlinény?**, and Marc Noy!-***

! Department of Applied Mathematics, Technical University of Catalonia,
Jordi Girona 1-3, 08034 Barcelona, Spain
{omer.gimenez, marc.noy}@upc.edu
2 Department of Computer Science, FEI, Technical University of Ostrava,

17. listopadu 15, 708 33 Ostrava, Czech Republic
petr.hlinenyQ@vsb.cz

Abstract. The Tutte polynomial is a notoriously hard graph invariant,
and efficient algorithms for it are known only for a few special graph
classes, like for those of bounded tree-width. The notion of clique-width
extends the definition of cograhs (graphs without induced P;), and it
is a more general notion than that of tree-width. We show a subex-
ponential algorithm (running in time exp O(n*?)) for computing the
Tutte polynomial on cographs. The algorithm can be extended to a
subexponential algorithm computing the Tutte polynomial on on all
graphs of bounded clique-width. In fact, our algorithm computes the
more general U-polynomial.

Keywords: Tutte polynomial, cographs, clique-width, subexponential
algorithm, U polynomial.

2000 Math Subjects Classification: 05C85, 68R10.

1 Introduction

The Tutte polynomial T'(G;z,y) of a graph G is a powerful invariant with many
applications, not only in graph theory but also in other fields such as knot
theory and statistical physics. One important feature of the Tutte polynomial is
that by evaluating T'(G;x,y) at special points in the plane one obtains several
parameters of G. For example, T'(G;1,1) is the number of spanning trees of G
and T'(G; 2, 1) is the number of forests (that is, spanning acyclic subgraphs) of G.

A question that has received much attention is whether the evaluation of
T(G;x,y) at a particular point of the (x,y) plane can be done in polynomial

* Supported by Beca Fundacié Crédit Andorra and Project BFM2001-2340.

** Supported by Czech research grant GACR 201/05/050 and partly by the
program “Information Society” of the Czech Academy of Sciences, project
No. 1ET101940420.

*** Supported by Project BEM2001-2340.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 59-68, 2005.
© Springer-Verlag Berlin Heidelberg 2005

60 O. Giménez, P. Hlinény, and M. Noy

time. Jaeger, Vertigan and Welsh [8] showed that evaluating the Tutte polyno-
mial of a graph is #P-hard at every point except those lying on the hyperbola
(x —1)(y — 1) = 1 and eight special points, including at (1,1) which gives the
number of spanning trees. In each of the exceptional cases the evaluation can be
done in polynomial time. On the other hand, the Tutte polynomial can be com-
puted in polynomial time for graphs of bounded tree-width. This was obtained
independently by Andrzejak [2] and Noble [11]. Recently Hlinény [7] has ob-
tained the same result for matroids of bounded branch-width representable over
a fixed finite field, which is a substantial generalization of the previous results.
See [5] for additional references on this subject.

In this paper we study the problem of computing the Tutte polynomial for
cographs and, more generally, for graphs of bounded clique-width. A graph has
clique-width < k if it can be constructed using k labels and the following four
operations: 1) create a new vertex with label i; 2) take the disjoint union of
several labeled graphs; 3) add all edges between vertices of label i and label j;
and 4) relabel all vertices with label i to have label j. An expression defining
a graph G built from the above four operations using k labels is a k-expression
for G. A cograph is a graph of clique-width at most two; equivalently, it is a
graph containing no induced path Py on four vertices.

Although a class of graphs with bounded tree-width has also bounded clique-
width, the converse is not true. For instance, complete graphs have clique-width
two. It is well-known that all problems expressible in monadic second order logic
of incidence graphs become polynomial time solvable when restricted to graphs of
bounded tree-width. For bounded clique-width less is true: all problems become
polynomial time solvable if they are expressible in monadic second-order logic
using quantifiers on vertices but not on edges (adjacency graphs) [3].

Our main results are as follows:

Theorem 1.1. The Tutte polynomial of a cograph with n vertices can be com-
puted in time exp (O(n2/3)).

Theorem 1.2. Let G be a graph with n vertices of clique-width k along with a
k-expression for G as an input. Then the Tutte polynomial of G can be computed
in time exp (O(nt~1/(k+2))),

Theorem 1.2 is not likely to hold for the class of all graphs, since it would
imply the existence of a subexponential algorithm for 3-coloring, hence also for
3-SAT; that is considered highly unlike in the Computer Science community.
Of course, the main open question is whether there exists a polynomial time
algorithm for computing the Tutte polynomial of graphs of bounded clique-
width. We discuss this issue in the last section.

In fact, our algorithms compute not only the Tutte polynomial, but the so-
called U polynomial (see [12]), which is a stronger polynomial invariant. More-
over, we may skip the requirement of having a k-expression for G as an input in
Theorem 1.2, if we do not care about an asymptotic behaviour in the exponent:
Just to prove a subexponential upper bound we may use the approximation
algorithm for clique-width by Oum and Seymour [13,14].

Computing the Tutte Polynomial on Graphs of Bounded Clique-Width 61

Since our algorithms are quite complicated, for an illustration, we first present
in Section 2 a simplified algorithm computing the number of forests in a cograph,
that is, evaluating T'(G;2,1) for graphs of clique-width < 2. (This is #P-hard
on all graphs [8].) In Section 3 we extend the algorithm to the computation of
the full Tutte polynomial on cographs. Finally, our main result, Theorem 1.2 is
proved in details in the long version [6].

2 Forests in Cographs

The class of cographs is defined recursively as follows:

1. A single vertex is a cograph.
2. A disjoint union of two cographs is a cograph.
3. A complete union of two cographs is a cograph.

Here a complete union of two graphs G & H means the operation of taking a
disjoint union GU H, and adding all edges between V(G) and V(H). A cograph
G can be represented by a tree, whose internal nodes correspond to operations
2) and 3) above, and whose leaves correspond to single vertices. We call such a
tree an expression for G.

For example, all cliques are cographs, and the complement of a cograph
is a cograph again. Cographs have long history of theoretical and algorithmic
research. In particular, they are known to be exactly the graphs without induced
paths on four vertices (Py-free).

Let us call a signature a multiset of positive integers. The size ||| of a signa-
ture e is the sum of all elements in «, respecting repetition in the multiset. A sig-
nature « of size n is represented by the characteristic vector & = (ay,as, ..., a,),
where there are a; > 0 elements ¢ in o, and Z?Zl i-a; = n. (On the other hand,
the cardinality of o is |a| = 3" | a;, as usual.) An important fact we need is:

Recall that ©(f) is a usual shortcut for all functions having the same asymp-
totic growth rate as f.

Lemma 2.1. There are 220V distinct signatures of size n.

Proof. Each signature actually corresponds to a partition of n into an unordered
sum of positive integers. It is well-known [10-Chapter 15] that there are 20(vn)
of those.

We call a double-signature a multiset of ordered pairs of non-negative integers,
excluding the pair (0,0). The size || 3| of a double-signature 3 is the sum of all
(x +y) for (z,y) € B, respecting repetition in the multiset. We, moreover, need
to prove:

Lemma 2.2. There are exp ((9(712/3)) distinct double-signatures of size n.
Lemma 2.2 is a particular case of Lemma 5.1, which is proved in [6].

Lemma 2.3. A double-signature 3 of size n has at most exp (O(nz/?’)) different
submultisets (i.e. of different characteristic vectors).

Proof. Just count all double-signatures of size < n.

62 O. Giménez, P. Hlinény, and M. Noy

2.1 Forest Signature Table

Let us now consider a graph G and a forest U C G. The signature o of U is
the multiset of sizes of the connected components of U. (Obviously, @ has size
|V (G)] if U spans all the vertices.) We call a (spanning) forest signature table of
the graph G a vector T' (realized as an array T[...]); such that T records, for
each signature a of size |V (G)|, the number of spanning forests U C G having
signature a (as T'[a]). For simplicity we usually skip the word “spanning” if it
is clear from the context. We are going to compute the forest signature table
of a cograph G recursively along the way G has been constructed. For that we
describe two algorithms.

Let us denote by X the set of all signatures of size |V(G)|. It is important
to keep in mind that signatures are considered as multisets, which concerns also
set operations. For instance, a multiset union v @ & is obtained as the sum of
the characteristic vectors of v and &, and a multiset difference ~ \ § is defined
by the non-negative difference of those.

Algorithm 2.4. Combining the spanning forest signature tables of graphs F
and G into the one of the disjoint union H = FUG.

Input: Graphs F,G, and their forest signature tables T'p, Tq.
Output: The forest signature table Ty of H = FUG.

create empty table Ty of forest signatures of size |V (H)|;
for all signatures ap € Xp, ag € Xg do

set a@ = ap Wag (a multiset union);

add TH[Ot] += TF[aF] -Tg[ag];
done.

The running time of this algorithm is proportional to the number of pairs of
signatures (ap, ag), which is exp (O(n?*?)), where n = |V(H)|; this is due to
Lemma 2.2 and the fact that we have the O() expression in the exponent.

The second algorithm is, on the other hand, much more complicated. It
involves double-signatures in the following meaning: Consider a graph H with
vertices partitioned into two parts V(H) = V3 U V,, and a forest U C H. The
double-signature of U (wrt. V1, V2) is the multiset of pairs (|V(C)N V4], [V(C)N
V4|) over all connected components C' of U.

The idea behind the algorithm is to obtain the double-signatures (for V; =
V(F) and V2 = V(G)) of the spanning forests in H = F @& G from the signatures
of the spanning forests in ' and G. For every pair of forests Ur C F and Ug C G,
the algorithm iteratively counts the different ways in which each component of
Ug can be joined to components of Ur. During the process, double signatures
are needed to distinguish between former vertices of F' and of G in already
joined components. In fact, the algorithm works with pairs of signatures ar and
ag, that is, with whole classes of forests instead of particular forests. We also
remark that a submultiset is considered among all possible selections of repeated
elements, like if they were pairwise distinct.

Computing the Tutte Polynomial on Graphs of Bounded Clique-Width 63

Algorithm 2.5. Combining the spanning forest signature tables of graphs F
and G into the one of the complete union H = F ® G.

Input: Graphs F,G, and their forest signature tables T'p, Tg.
Output: The forest signature table Ty of H = F & G.

create empty table Ty of forest signatures of size |V (H)|;
for all signatures ap € Xp, ag € Xg do

set z = |V(F)|;

create empty table X of forest double-signatures of size z;

// Imagine particular forests Ur C F', Ug C G of signature ar,ag,
// and a selected component C' C Ug of size c.

set X [double-signature {(a,0) : a € ap}| = 1;
for each ¢ € ag (with repetition) do
create empty table X' of forest double-signatures of size z + c;
for all double signatures 3 of size z s.t. X[3] >0 do
(1) for all submultisets v C B (with repetition) do

set di =31, ey Tr 42 = D0y U
set double-signature 8’ = (B\ v) W {(d1,d2 +¢)};

*) add X'[8]+= X[8]- T[s.y)en ot
done
done
set X=X', 2=2z+4c¢; dispose X';
done

for all double-signatures B of size |V (H)| do
set signature oy = {z+vy: (z,y) € B};
add TH[ao} += X[ﬁ} 'TF[OLF] ~Tg[ag};
done
done.

Proof of Algorithm 2.5. We now explain the algorithm, and show its correctness.
It is better understandable if one imagines particular forests (representatives)
Ur C F and Ug C G in the place of the signatures ar and ag chosen in the
first for cycle. Then one may routinely verify that all subsequent computations
depend only on the forest signatures ap, ag (not on the particular forests), and
hence it is correct to finally multiply the computed values in X by the numbers
TF[OLF} . Tg[ag].

In the tables X, X’ we iteratively compute the numbers of all span-
ning forests in H that result by adding some edges between the forests Up
and Ug(stored by their double signatures). We consider an arbitrary order
C1,C5,...,Cy on the connected components of Ug. For i = 1,2,... k, we take
the component C;, and count all possible ways how to connect C; by selected
edges to a subset (1) of components of each of the previously constructed forests
on V(FUC; U...UC;_1) which are recorded in the table X. The other ends

64 O. Giménez, P. Hlinény, and M. Noy

of those selected edges are considered only among vertices in V(F'). (Recall that
the complete union H = F @ G has added all edges between V(F') and V(C;).)
We then record (*) numbers of all the new forests on V(FUC; U...UC;) in a
new table X’ that will play the role of X in the next iteration.

Saying precisely, after finishing iteration i = 1,2,...,k described in the
previous paragraph, each entry X'[3] equals the number of all forests U’ of
signature B spanning V(F U C; U ... U (;) such that U’ | V(F) = Up and
U TV(G) = Ug | Cy U...UC;. That follows easily by an induction from the
previous arguments. At the end we count each spanning forest U C H such that
UV (F)=Up and U|V(G) = Ug exactly once. Finally, the double-signatures
in the table X partition the vertices into V(F') and V(G), but that is no longer
needed. So we “simplify” them — we record the resulting numbers only by the
(single) forest signatures in the resulting table T'y.

2.2 Time Analysis

Lemma 2.6. A modified implementation of Algorithm 2.5 runs in time
exp (O(n??)) where n = |V (H)|.

Proof. Since we have O() in the exponent, it is enough to verify that each of
the for cycles in Algorithm 2.5 is iterated at most exp (O(n*?)) times. That
follows from Lemma 2.1 for the first cycle, and it is clear for the second cycle.
For the third nested cycle it follows from Lemma 2.2.

A problem may occur in the fourth nested cycle for all submultisets v C 3’
if 3 consists, say, of n/2 copies of the element 2. Then there are up to exp (@(n))
submultisets v to consider. Fortunately, the results of the subsequent computa-
tion depend only on the characteristic vector of vv. Hence it is enough to consider
(much less of) pairwise different submultisets v C 8 (cf. Lemma 2.3), and then
multiply the resulting number by all possible choices (combinations) of repeated
elements of v from 3. Formally, the program line () now reads

for all different submultisets v C 3 do,
and the line (*) reads
add X'[8]+= X[8]- [] e]] <u5(x,y)>)
. pry (7, 9)
Y)EY (z,y)€(B)

where (o) denotes the ordinary set formed by elements of a multiset a, and 1,2
is the repetition of an element z in a. The statement is proved.

We remark that the improvement discussed in the proof of previous
Lemma 2.6 have been fully incorporated in the subsequent algorithms.

Theorem 2.7. The number of spanning forests in an n-vertex cograph can be
computed in time exp (O(n*?)).

Computing the Tutte Polynomial on Graphs of Bounded Clique-Width 65

Proof. Consider a cograph G and a tree expression defining it. The forest signa-
ture table of a single vertex is trivial, and by Algorithms 2.4 and 2.5 (Lemma 2.6),
the forest signature tables of a union or a complete union of two cographs can
be computed in time claimed. Finally, knowing the forest signature table T' of
@G, the number of all spanning forests of GG is computed by adding up the entries
of T.

3 The Tutte Polynomial of a Cograph

The Tutte polynomial can be defined in a number of equivalent ways. For our
purposes, given a graph G = (V, E) we define the Tutte polynomial as

T(Giay) = 3 (o = 1707y — pIF=r),
FCE

where r(F) = |V| — k(F) and k(F) is the number of connected components
of the spanning subgraph induced by the edge-subset F'. It is clear that know-
ing T(G;z,y) is the same as knowing, for every i and j, how many spanning
subgraphs with the edge set F' in G are there with |F| =4 and k(F) = j.

Consider a spanning subgraph W C G determined on V(W) = V(G) by an
arbitrary subset F' C E(G), F = E(W). The sizes of the connected components
of W define a signature of size |V(G)|. In the (spanning) subgraph signature
table S of G, for each signature « of size |V(G)| and each number of edges
f€40,1,2,...,|E(G)|}, we record the number S|e, f] of all spanning subgraphs
of G having f edges and having component sizes according to the signature a.. We
shortly denote by - [; the multiset formed by all the i-th coordinates (repetitions
accounted for) of the elements of a double-signature ~.

In order to prove Theorem 1.1 we need analogues of Algorithms 2.4 and 2.5
for computing subgraph signature tables. The algorithm for disjoint unions is
again straightforward and we omit it; the one for complete unions comes next.

Algorithm 3.1. A modification of Algorithm 2.5 for computing the (spanning)
subgraph signature table of the complete union H = F & G.

Besides adding edge number as the second index to the signature tables, the only
other major difference of this algorithm from Algorithm 2.5 is that the single
line (*) is replaced with another for cycle calling a procedure CellSel of further
Algorithm 3.2.

Input: Graphs F,G, and their subgraph signature tables Sg, S¢q.
Output: The subgraph signature table Sy of H =F & G.

create empty table Sy of subgraph signatures of size |V (H)|;
for allap € Xp, and ep =0,1,...,|E(F)| s.t. Splar,er] >0 do
for all ag € Yg, andeqg =0,..., ‘E(G)‘ s.t. Sg[ag,eg] >0 do
set z = |V(F)|;
create empty table Y of subgraph double-signatures of size z;

66 O. Giménez, P. Hlinény, and M. Noy

set Y[double—signature {(a,0) : a € ar}, eF] =1;
for each ¢ € ag (with repetition) do
create empty table Y’ of subgraph double-sign. of size z + c;
for all B of size z, and e s.t. Y[3,¢e] >0 do
for all different submultisets v C 3 do

set r=] (Mﬁ($7y)>;

e Hr(@Y)

set di = |7 =X ey 2= 7El=2 e ¥
set double-signature 3’ = (B8\v)W{(dy,ds+¢)};
for f=I|v],|v|+1,...,c-di do

set multiset D =c-(y1) = {cz: (z,y) € v};

call Algorithm 3.2: p = CellSel(D, f);

add Y'[B,e+ fl+= Y|[B,e] -7 p;

done
done
done
set Y=Y, 2=2+c¢; dispose Y’;
done

for all double-sign. B of size |V (H)|, and f, s.t. Y[3, f] > 0 do
set signature a9 = {x+y: (z,y) € B};
add Splao, f +ecl+= Y[B, f]- Srlar,er] - Sclag, eal;
done
done
done.

Proof of Algorithm 3.1. This algorithm is similar to the improved version of
Algorithm 2.5 (cf. Lemma 2.6), and so we only sketch the proof here. The main
new difficulty lies in counting the different ways in which a connected component
of ¢ vertices in ag can be connected with f edges to the selected components of
signatures (z,y) € . Recall that when counting forests we had no such difficulty,
since we joined the component of aeg to each component of v with exactly one
edge; thus we used exactly f = |vy| edges chosen in H(m’y) e~ cz different ways.
The procedure ’Cel1Sel(D, f) counts this for spanning subgraphs, and we defer
the explanation to Algorithm 3.2.

Finally, notice that the edge numbers in tables Y, Y’ do not account for the
edges from E(G), since we do not know how many edges has each one of the
components of a. Those edges are summed up at the end, when obtaining the
signatures for H from the double-signatures stored in Y.

Algorithm 3.2. Computing the number of cellular selections: We are selecting
¢ elements from the union C; U Ce U ...U Cy, where C; for i = 1,2,...,k are
pairwise disjoint cells of sizes d; = |Cy|, and we require that some element is
selected from every cell.

Computing the Tutte Polynomial on Graphs of Bounded Clique-Width 67

Input: A multiset D = {dy,da,...,dy} of cell sizes, and a number /.
Output: The number CellSel(D,?) of all such possible selections.

create table u[l..k][1..¢], filled with O;

for j=1,2,...,d do set u[l][j]= (%);

set z = dj;
for i =2,3,...,k do
add z+= d;;
for j=4,i+1,...,min(¢,z) do
for s=1,2,...,min(j — (i — 1), d;) do
add wfi][j] += wu[i —1][j - s]- (%);
done
done
done

return wlk][{].

Proof of Algorithm 3.2. Let u; ; = u[i][j] be the number of cellular selections of
j elements chosen among the first ¢ cells. These numbers satisfy the recurrence

relation
-
d;
Ui = D Uit 5
s=1

where r is the maximum number of elements than can be selected from the i-th
cell to obtain a total of j elements. Since the i-th cell has d; elements available,
and the i — 1 previous cells contributed at least one element each to the resulting
J elements, it follows that » = min{j — (i — 1), d;}.

Algorithm 3.2 just applies the previous recurrence in a correct order, and
avoids useless computations like with values of j too small or too large. It runs
in O(k(?) steps.

Proof of Theorem 1.1. As in Theorem 2.7, the subgraph signature table S of
a cograph can be computed in time proportional to the number of all possible
double-signatures of size n, i.e. in exp (O(n?/3)). Then, summing the entries of
S, we compute the numbers of spanning subgraphs with a given number of edges
and a number of components. As we have remarked previously, these numbers
give (efficiently) the Tutte polynomial.

The U polynomial of an n-vertex graph G is defined in [12] as

ny anl... y_l)lF‘l_T'(F‘)7
FCE
where n1, . .., ny are the vertex sizes of the components of the spanning subgraph
(V,F). If we let 1 = -+ =z, = & — 1 in the expression above, we recover the

Tutte polynomial T'(G; z,y) up to a power of 2 — 1. It is clear that the subgraph
signature table of a graph is precisely equivalent to the U polynomial, hence
in the statement of Theorem 1.1 we can replace “U polynomial” for “Tutte
polynomial”.

68 O. Giménez, P. Hlinény, and M. Noy

4 Concluding Remarks

We have shown that the Tutte and U polynomials can be computed in subexpo-
nential time for cographs, and more generally for graphs with bounded clique-
width [6]. Such a result is very unlikely to hold for all graphs. Of course, the
important question of whether the Tutte polynomial can be computed in polyno-
mial time, or the problem is #P-hard even for graphs of bounded clique-width,
remains open. (The U polynomial is obviously not computable in polynomial
time due to its size.)

On the other hand, the chromatic polynomial for graphs of bounded clique-
width can be computed in polynomial time (although not FPT). This follows
by adapting the algorithm in [9] for computing the chromatic number, keeping
track also of the number of r-colorings for r = 1,...,n, where n is the number
of vertices. To our knowledge, that is possibly the only currently known natural
example of graph classes other than chordal graphs, where the chromatic poly-
nomial can be computed in polynomial time, but the complexity of computing
the Tutte polynomial is undecided.

References

1. G.E. Andrews, The theory of partitions, Cambridge U. Press, Cambridge, 1984.

2. A. Andrzejak, An Algorithm for the Tutte Polynomials of Graphs of Bounded
Treewidth, Discrete Math. 190 (1998), 39-54.

3. B. Courcelle, J.A. Makowsky, U. Rotics, Linear Time Solvable Optimization Prob-
lems on Graphs of Bounded Clique-Width, Theory Comput. Systems 33 (2000),
125-150.

4. B. Courcelle, S. Olariu, Upper bounds to the clique width of graphs, Discrete Appl.
Math. 101 (2000), 77-114.

5. O. Giménez, M. Noy, On the complexity of computing the Tutte polynomial of
bicircular matroids, Combin. Probab. Computing, to appear.

6. O. Giménez, P. Hlinény, M. Noy, Computing the Tutte Polynomial on graphs of
Bounded Clique- Width, manuscript, 2005.

7. P. Hlinény, The Tutte Polynomial for Matroids of Bounded Branch- Width, Combin.
Probab. Computing, to appear (2005).

8. F. Jaeger, D.L. Vertigan, D.J.A. Welsh, On the Computational Complezity of the
Jones and Tutte Polynomials, Math. Proc. Camb. Phil. Soc. 108 (1990), 35-53.

9. D. Kobler, U. Rotics, Edge dominating set and colorings on graphs with fized clique-
width, Discrete Applied Math. 126 (2003), 197-221.

10. J.H. van Lint, R.M. Wilson, A Course in Combinatorics, Cambridge University
Press, Cambridge, 1992.

11. S.D. Noble, Ewvaluating the Tutte Polynomial for Graphs of Bounded Tree-Width,
Combin. Probab. Computing 7 (1998), 307-321.

12. S.D. Noble, D.J.A. Welsh, A weighted graph polynomial from chromatic invariants
of knots, Ann. Inst. Fourier (Grenoble) 49 (1999), 1057-1087.

13. Sang-Il Oum, P.D. Seymour, Approximating Clique-width and Branch-width, sub-
mitted, 2004.

14. Sang-I1 Oum, Approximating Rank-width and Clique-width Quickly, In: WG 2005,
Proccedings, Lecture Notes in Computer Science, to appear (2005).

Minimizing NLC-Width is NP-Complete
(Extended Abstract)

Frank Gurski and Egon Wanke

Heinrich-Heine-University Diisseldorf,
Institute of Computer Science, D-40225 Diisseldorf, Germany
{gurski-wg, wanke-wg}@acs.uni-duesseldorf.de

Abstract. We show that a graph has tree-width at most 4k —1 if its line
graph has NLC-width or clique-width at most k, and that an incidence
graph has tree-width at most k if its line graph has NLC-width or clique-
width at most k. In [9] it is shown that a line graph has NLC-width at
most k + 2 and clique-width at most 2k + 2 if the root graph has tree-
width k. Using these bounds we show by a reduction from tree-width
minimization that NLC-width minimization is NP-complete.

1 Introduction

The clique-width of a graph is defined by a composition mechanism for vertex-
labeled graphs [7]. The operations are the vertex disjoint union, the addition of
edges between vertices controlled by a label pair, and the relabeling of vertices.
The clique-width of a graph G is the minimum number of labels needed to define
it. The NLC-width of a graph is defined by a composition mechanism similar to
that for clique-width [19]. Every graph of clique-width at most k& has NLC-width
at most k£ and every graph of NLC-width at most k£ has clique-width at most 2k
[12]. The only essential difference between the composition mechanisms of clique-
width bounded graphs and NLC-width bounded graphs is the addition of edges.
In an NLC-width composition the addition of edges is combined with the union
operation. This union operation applied to two graphs G and J is controlled by a
set S of label pairs such that for every pair (a,b) € S all vertices of G labeled by
a will be connected with all vertices of J labeled by b. Both concepts are useful,
because it is sometimes much more comfortable to use NLC-width expressions
instead of clique-width expressions and vice versa, respectively.

Clique-width and NLC-width bounded graphs are particularly interesting
from an algorithmic point of view. A lot of NP-complete graph problems can be
solved in polynomial time for graphs of bounded clique-width. For example, all
graph properties expressible in monadic second order logic with quantifications
over vertices and vertex sets (MSQOj-logic) are decidable in linear time on clique-
width bounded graphs [6] if a corresponding decomposition for the graph is given
as an input. The MSO;-logic has been extended by counting mechanisms which
allow the expressibility of optimization problems concerning maximal or minimal
vertex sets [6]. All graph problems expressible in extended MSO;-logic can be

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 69-80, 2005.
© Springer-Verlag Berlin Heidelberg 2005

70 F. Gurski and E. Wanke

solved in polynomial time on clique-width bounded graphs. Furthermore, there
are a lot of NP-complete graph problems which are not expressible in extended
MSO;-logic (like Hamiltonicity, various partition problems, and bounded degree
subgraph problems) but which can also be solved in polynomial time on clique-
width bounded graphs [19,8,14,9].

The recognition problem for graphs of clique-width or NLC-width at most
k for fixed integers k is still open for k£ > 4 and k& > 3, respectively. Clique-
width of at most 3 is decidable in polynomial time [4]. NLC-width of at most
2 is decidable in polynomial time [13]. Clique-width of at most 2 and NLC-
width 1 is decidable in linear time [5]. In this paper we show that NLC-width
minimization is NP-complete, which was open up to now.

The paper is organized as follows. In Section 2, we recall the definitions of
clique-width, NLC-width, and tree-width. In Section 3, we show that a graph
has tree-width at most 4k — 1 if its line graph! has NLC-width or clique-width at
most k. In Section 4, we show that an incidence graph? has tree-width at most
k if its line graph has NLC-width or clique-width at most k. In [9] it is shown
that a line graph has NLC-width at most k 4+ 2 and clique-width at most 2k + 2
if the root graph has tree-width k. This in connection with the result of Section
4 is used to show by a reduction from tree-width minimization that minimizing
NLC-width is NP-complete.

2 Preliminaries

Let [k] :== {1,...,k} be the set of all integers between 1 and k. We work with
finite undirected vertex labeled graphs G = (Vg, Eg,labg), where Vi is a finite
set of vertices labeled by some mapping labg : Vo — [k] and Eg C {{u,v} |
u,v € Vg, u # v} is a finite set of edges. The labeled graph consisting of a single
vertex labeled by a € [k] is denoted by e,.

The notion of clique-width is defined by Courcelle and Olariu in [7].

Definition 1 (Clique-width, [7]). Let k be some positive integer. The class
CWiy, of labeled graphs is recursively defined as follows.

1. The single vertex graph e, for some a € [k] is in CWj.

2. Let G = (Vg, Eg, labg) € CWy, and J = (V;, Ey,laby) € CWy, be two vertex
disjoint labeled graphs. Then G®J := (V' E’, lab) defined by V' := VgUVj,
E' :=EgUEj, and

/ [labg(u) if u e V,
lab(u) = { labf(u) if u e Vf

is in CWj,.

! The line graph L(G) of a graph G has a vertex for every edge of G' and an edge
between two vertices if the corresponding edges of G are adjacent [20].

2 The incidence graph I(G) of a graph G is the graph we get if we replace every edge
{u,v} of G by a new vertex w and two edges {u, w}, {w,v}.

Minimizing NLC-Width is NP-Complete 71

3. Let a,b € [k] be two distinct integers and G = (Vg, Eg, labg) € CWy, be a
labeled graph then
(a) pa—b(GQ) := Vg, Eg,lab’) defined by

/ | labg(u) if labg(u) # a
lab(u) = {b ¢ z‘flabg(u):a

is in CWy and
(b) Map(G) = (Vg, E', labg) defined by

E':= EqgU{{u,v} | u,v € Vg, u#wv, labu) =a, lab(v) = b}
s in CWy.
The notion of NLC-width? is defined by Wanke in [19].

Definition 2 (NLC-width, [19]). Let k be some positive integer. The class
NLCy, of labeled graphs is recursively defined as follows.

1. The single vertex graph e, for some a € [k] is in NLCj,.

2. Let G = (Vg,Eq,labg) € NLCy, and R : [k] — [k] be a function, then
or(G) = (Vg, Eg, lab') defined by lab' (u) := R(labg(u)) is in NLC.

3. Let G = (Vg, Eg,labg) € NLCy, and J = (Vy,Ey,laby) € NLCy, be two
vertex disjoint labeled graphs and S C [k]? be a set of label pairs, then graph
G xsJ:= (V' E' lab) defined by V' := Vg UVj,

E':=EqUE;U{{u,v} |ue Vg, veVy, (labg(u),labs(v)) € S},

" tabe () if
/ o abg(u) if u € Vg
lab(u) = {labJ(u) ifueVy

is in NLC}.

The clique-width (NLC-width) of a labeled graph G is the least integer k such
that G € CWy, (G € NLCy, respectively). An expression built with the opera-
tions e, @, Pa—b, Na,p for integers a, b € [k] is called a clique-width k-expression.
An expression built with the operations e,, xg,0p for a € [k], S C [k], and
R : [k] — [k] is called an NLC-width k-expression. Every clique-width expression
(NLC-width expression) has by its recursive definition a tree structure which we
call the cligue-width expression tree (NLC-width expression tree, respectively).
A vertex labeled graph G has linear clique-width (linear NLC-width) at most
k if it can be defined by a clique-width k-expression (NLC-width k-expression,
respectively) in that at least one argument of every operation @ (every operation
X g, respectively) is a single labeled vertex e, [11].

The notion of tree-width and path-width is defined by Robertson and Sey-
mour in [18] and [17], respectively.

3 The abbreviation NLC results from the node label controlled embedding mechanism
originally defined for graph grammars.

72 F. Gurski and E. Wanke

Definition 3 (Tree-width and path-width, [18,17]). A tree decomposition
of a graph G = (Vg,Eq) is a pair (X,T) where T = (Vp,Er) is a tree and
X ={Xu.| u € Vr} is a family of subsets X,, C Vi one for each node u of T
such that

1. Uyev, Xy = Vg,

2. for every edge {v1,v2} € Eg, there is some node u € Vr such that v1 € X,
and vo € Xy, and

3. for every vertex v € Vg the subgraph of T induced by the nodes w € Vi with
v € X, is connected.

The width of a tree decomposition (X = {X, | v € Vp}, T = (Vp,Er)) is
maxXyevy | Xu| — 1. A tree decomposition (X,T) is called a path decomposition
if T is a path. The tree-width (path-width) of a graph G is the smallest integer

k such that there is a tree decomposition (a path decomposition, respectively)
(X,T) for G of width k.

The line graph L(G) of a graph G has a vertex for every edge of G and an
edge between two vertices if the corresponding edges in G have a common vertex
[20]. Graph G is called the root graph of L(G). For any line graph with at least
4 edges the root graph is unique and can be found in linear time [15].

The incidence graph 1(G) = (Vi(g), Er(q)) of a graph G = (Vg, Eg) is the
graph with vertex set V;g) = Vg U Eg and edge set Ejg) = {{u,e} | u €
Vi, e € Eg, u € e}. The incidence graph of G is the graph we get, if we replace
every edge {u,v} of G by a new vertex w and two edges {u,w}, {w,v}.

3 Line Graphs of Bounded NLC-Width

Tree-width bounded graphs can also be defined by a merging procedure of so-
called terminal graphs, which are also called sourced graphs. This is a well-known
property of tree-width bounded graphs, see also [2]. We will define terminal
graphs with edge labels, because this will allow us to define in an easy way the
edge labeled root graphs of vertex labeled line graphs.

Let k,1 be two positive integers. An [-labeled k-terminal graph is a system

G= (VG7EG7PG7labG)7

where (Vg, Eq) is a graph, P = (u1,...,ur) is a sequence of k > 0 distinct
vertices of Vi, and labg : Eg — [I] is an edge labeling. The vertices in sequence
Pg are called terminal vertices or terminals for short. The vertex u;, 1 < i <k,
is the i-th terminal of G. The other vertices in Vg — Pg are called inner vertices.
The class TMy,; of I-labeled k-terminal graphs is recursively defined as follows.

.

1. The terminal graph e - e, 1 < r <k, consisting of 7 terminals is in TMy,;.

2. The terminal graph e “ e, a € [l], consisting of two terminals u,v and an
edge {u,v} labeled by a is in TMy,; for k > 2.

Minimizing NLC-Width is NP-Complete 73

3. Let G = (Vg,Eg,Pg,labg) S TMkJ, P = (ul,...,ur), and f : [’I“] — [T},
be a bijection. Then the [-labeled r-terminal graph G|f = (Vg, Eg, P’,labg)
with P/ = (uf(1)7 . 7uf(r)> is in TMy ;.

4. Let G = (Vg, Eq, Pg,labg) € TMy;, P = (u1,...,u,), and s € [r]. Integer
s is also called a decrement. Then the [-labeled (r — s)-terminal graph G|s =
(Va, Eg, P',labg) with P’ = (u1,. .., up—s) is in TMy .

5. Let G = (Vg, Eg, Pa,labg) € TMy; and R : [I] — [I] be a relabeling map-
ping. Then the terminal graph og(G) = (Vg, Eg, Pa,lab’) with lab’(e) =
R(labg(e)) for all e € Eg is in TM ;.

6. Let H = (VH,EH,PH,labH) S TM}CJ, J = (VJ,EJ,PJ,labJ) S TMkJ, and
|Prr| < |Pjy|. Then terminal graph H x J defined as follows is in TMj ;.

(a) Take the disjoint union of (Vir, Ex,laby) and (Vy, Ej,laby), and iden-

tify the i-th terminal from H with the i-th terminal from J.
(b) An edge e from H x J is labeled by labpx j(e) = labg(e) if it is from H
and by labg j(e) = labs(e) if it is from J.
(¢) The i-th terminal of H X J is the i-th terminal of J.
(d) Multiple edges are eliminated by removing the corresponding edges
from H.
-

An expression built with the operations ® -Au:, e %o |f |, or, and x is
called a terminal k,l-expression. The terminal graph defined by a terminal k&, [-
expression X is denoted by val(X). It is easy to see that TMy41 1 defines exactly
the set of graphs of tree-width at most k, see [10].

Let G = (Vg, Eg, Pa,labg) be an edge labeled terminal graph, G = (Vg, Eg,
labg) be a vertex labeled graph, and 7 : Eg — Vg be a bijection such that 1.)
for every e1,es € Eg, e1 and es have a common vertex if and only if 7(e;) and
m(e2) are adjacent in G, and 2.) for every e € Eg, labg(e) = labg(m(e)). Then G
is called the labeled line graph of G, and G is called a labeled terminal root graph
for G.

The next theorem shows a very tight connection between the tree-width of a
graph and the NLC-width of its line graph.

Theorem 1. If a line graph has NLC-width at most k, then its root graph has
tree-width at most 4k — 1.

Proof Sketch. Let us first observe what happens if we insert edges between two
vertex labeled line graphs by an NLC-width operation. Let G = (Viz, Eg, labg)
be an edge labeled graph with at least two edges. Let G = (Vg, Eg,labg) € NLCj,
be the vertex labeled line graph of G defined by some bijection 7 : Eg — Vg.
Every induced subgraph of G defines by bijection 7 a unique subgraph of G
in that every vertex is incident with at least one edge. Assume G = H xg J
for some S C [k]? and two non-empty vertex labeled graphs H and J. Since H
and J are induced subgraphs of G, we know that they are line graphs of two
subgraphs H and J of G. Since H and J are vertex disjoint, we know that H
and J are edge disjoint. Since ‘H and 7 have at least one vertex, we know that H
and J have at least one edge. Assume further that every pair (a,b) € S defines

74 F. Gurski and E. Wanke

H J G=Hxya2nJ

Fig. 1. An NLC-width composition H X ((1,2); J of two vertex labeled line graphs H
and J. The labels at the edges of H, J, and G represent the labels of the corresponding
vertices of H, J, and G specified by bijection .

at least one edge between a vertex of H and a vertex of 7. If S is nonempty, then
in G at least one edge of H has a common vertex with at least one edge of J.

We now show that G can be defined by a vertex disjoint union of H and J
and then identifying at most 4k vertices from H with at most 4k vertices from
J. A simple example of such a composition H xg J is shown in Figure 1.

For a label a € [k] let G, H,, and J, be the subgraphs of G, H, and J,
respectively, defined by the edges e (and their end vertices) labeled by a. Let
(a,b) € S be a pair of S. Then the operation xg connects every vertex of H
labeled by a with every vertex of J labeled by b. Thus, in root graph G every
edge of H, has a common vertex with every edge of J,. Let e = {u,v} be
any edge of H,. Then every edge of J, either contains vertex u or vertex v. If
Jy has three or more edges, then at least two of them must have a common
vertex. By the same argumentation, if H, has three or more edges then at least
two of them must have a common vertex. Thus, H, and .J, have at most two
connected components. If H, has two connected components, then all edges of
every connected component have exactly one common vertex, because an edge
of J, can only contain one vertex from every of the two connected components
of H,. If H, is connected then it contains no simple path with 6 vertices and no
simple cycle with 3 or 5 vertices.

This observation leeds to a case distinction which divides all subgraphs H,,
a € [k], of H into 8 distinct types as illustrated in Figure 2. Type 8 of Figure 2
represents all graphs that have neither a vertex u such that all edges are incident
with v nor two non-adjacent vertices u, v such that every edge is incident with
U or v.

Minimizing NLC-Width is NP-Complete 75

PP IINK

TI T2 T3 T4 T5
S >1 >1 S
Ry 3 Ry ..:““ 3 I>.
! ' e—e
T, | T, | T,

Fig. 2. Eight types for the subgraphs H, and J, of H and J, respectively. The specific
vertices are framed by squares.

Graphs of Type 1, 2, 3, and 5 have one connected component. Graphs of
Type 4 and 6 have two connected components. Graphs of Type 7 have one or
two connected components. Every graph of Type 1 to 7 has at most 4 specific
vertices of which some can be in both graphs, in H, and in Jp. In Figure 2, these
specific vertices are framed by squares.

Since the edges of G are labeled by at most k labels, it follows that at most
4k vertices of H are contained in J. That is, at most 4k vertices of H and at
most 4k vertices of J have to be identified to define G from a vertex disjoint
union of H and J. Graph G itself has also at most 4k vertices which can be
identified with other vertices during further composition steps.

This allows us to define for an arbitrary NLC-width k-expression X that
defines a line graph a mapping o that associates for every subexpression X’ of
X a terminal 4k, k-expression o(X’) such that val(o(X’)) is the edge labeled
terminal root graph of val(X").

1. If X = e, for some a € [k] then let o(X) =o ¢ o.
2. If X = op(X’) for some relabeling R : [k] — [k] then let 0(X) = or(c(X")).
3. If X = X; xg X for some S C [k]? then o(X) can be defined by

r
PR

o(X) = ((0(X1) x (0(X2) x &= §)[1)|)]

with two bijections f1, f2, a decrement s, and some r < 4k.

0(X) can be defined as above with some r < 4k, although not all terminals of
T

val(o(X1)) need to be identified with terminals of val(o(X5)) via val(e = 9,

or vice versa, for the complete proof of this non trivial fact see [10]. O

76 F. Gurski and E. Wanke

Since the NLC-width of a graph is always less than or equal to its clique-width
[12], Theorem 1 also holds for line graphs of clique-width at most k.

Corollary 1. If a line graph has clique-width at most k, then its root graph has
tree-width at most 4k — 1.

4 Line Graphs of Incidence Graphs

The next theorem improves the bound of Theorem 1 for line graphs of incidence
graphs.

Theorem 2. If the line graph of an incidence graph has NLC-width at most k,
then its root graph has tree-width at most k.

Proof Sketch. Let us now observe what happens if we insert edges between two
vertex labeled line graphs by an NLC-width operation G = H x5 J, S C [k]? if
the root graphs G, H, and J of G, H, and J, respectively, are incidence graphs.
Let again G, a € [k], be the terminal subgraph of a terminal graph G defined
by the edges (and their end vertices) labeled by a.

Since any incidence graph (and also any subgraph of an incidence graph) has
no cycle of length < 6 and that every edge of an incidence graph (and also any
edge of a subgraph of an incidence graph) has one end vertex of degree at most
2, every subgraph G, a € [k], of G can be divided into four types as illustrated
in Figure 3, see [10]. Type 4 of Figure 3 represents all incidence graphs with two
non-adjacent vertices u, v and an edge not incident with u or v. If G is of Type
4, then no vertex of G, needs to be a terminal of G.

R e

T;

-~

T

Fig. 3. Four types for the subgraphs G, of a terminal incidence graph G. The specific
vertices are framed by squares.

The same argumentation as in the proof of Theorem 1 now shows that for an
arbitrary NLC-width k-expression X that defines a line graph of an incidence
graph there is a mapping o that associates for every subexpression X’ of X a
terminal 2k, k-expression o(X’) such that val(o(X")) is the edge labeled terminal
root graph of val(X").

We next transform o(X) into a terminal 2k, k-expression Y such that every
subexpression defines a connected terminal graph. This is possible, because the

Minimizing NLC-Width is NP-Complete 7

final root graph o(X) is connected, see [10]. Now every subexpression Y’ of Y
is of the form

=W N =

Y’ =e @ o for some a € [k],

. Y" =Y/|! for some bijection f,

. Y’ =Y/|s for some decrement s,

. Y’ = op(Y{) for some relabeling R, or
T

Y= (Y] x (Vg x ;-{\-?)\fl)\f"’ﬂs for bijections f1, fa, some r < 2k, and a

decrement s.

These subexpressions define connected terminal graphs. For every of these

subexpressions Y there is an NLC-width k-expression X’ such that val(Y”) is
the edge labeled root graph of the vertex labeled line graph val(X’).

Now we will show that Y can be transformed into an equivalent terminal

k + 1, k-expression. Let Y’ be a subexpressions of Y of the form stated above
and let G = val(Y”). Let again G, for some a € [k] be the terminal subgraph of
G defined by the edges (and their end vertices) labeled by a.

1.

2.

If all subgraphs G, a € [k], of G are of Type 1 of Figure 3, then G has at
most k edges. Since GG is connected, it has at most k£ + 1 terminals.
If all subgraphs G, a € [k], of G are of Type 1, 2, or 4 of Figure 3, and at
least one of these subgraphs is of Type 2 or 4, then G has at least one inner
vertex. In this case G has at most &k terminals, see [10].
If some subgraph G, a € [k], of G is of Type 3, then two vertices ug, v, of
G, are terminals of G. If u,,v, are not adjacent in the root graph val(Y)
we can remove them from the terminal vertex list. Otherwise we know that
during any further composition these two vertices will get incident only with
the missing edge {uq, v, }. We now modify the expression as follows.
A subgraph of Type 3 can only be created in the following two cases.
(a) Let

G = OR(H)

be a graph such that G has a subgraph G,, a € [k] of Type 3, but H
has no subgraph of Type 3. Then H is connected and at least one inner
vertex, and thus H has at most k terminals. We insert the edge between
Uy and v, now by

G=(((e" oxon (H)M"))

with three bijections fi, f2, f3 and a decrement s = 2. The decrement
s = 2 removes the two vertices uq, v, from the terminal vertex list. (This
can be done for all subgraphs G,, a € [k], of G of Type 3 step by step.)
(b) Let
-
)
G=(Hx(Jxe &)l

be a graph such that G has a subgraph G, of Type 3, but H and J have
no subgraphs of Type 3. Then H and J are connected and have at least

78 F. Gurski and E. Wanke

one inner vertex, thus H and J have at most k terminals. Let u, from
H and v, from J. We insert the edge between u,, v, of G, by

r r
a ,A ,A
o

G = ((HIP x (P2 x (o7 o x8 @) 71)[5, x €729) [T,)| 2

with bijections f1, fo, f3, f4, f5 and decrements s; = 1,9 = 1. If J has
k' terminals then ' = k' + 1. Let u, be from H and v, be from J. One
end vertex of edge e ® o will be identified with the terminal v, of J.
Decrement s; = 1 will remove this vertex from the terminal vertex list.
The other end vertex of edge e ¢ e will then be identified with u, from
H. The final restriction so = 1 will remove this vertex from the terminal
vertex list. (This can be done for all subgraphs G, a € [k], of G of Type
3 step by step in the same way.)

In both cases, the composition step which originally inserts the edge between

u, and v, will be omitted.

Now the resulting composition is set up with terminal graphs that have at
most k + 1 terminals. a

Since the NLC-width of a graph is always less than or equal to its clique-width
[12], Theorem 2 also holds for line graphs of incidence graphs of clique-width at
most k.

Corollary 2. If the line graph of an incidence graph has clique-width at most
k, then its root graph has tree-width at most k.

5 The NP-Completeness of NLC-Width Minimization

Since a graph G has tree-width k if and only if its incidence graph I(G) has
tree-width k, see for example [16], Theorem 1, 2, Corollary 1, 2 and the results
of [10] together now imply the following bounds.

tree- W1dth(G)+1

(1.) < NLC-width(L(G)) < tree-width(G) + 2
(2.) e Wldth(G)H < clique-width(L(G)) < 2-tree-width(G) + 2
(3.) Path- W‘dth(G”l < linear-NLC-width(L(G)) < 2 - path-width(G)
(4. path- Wldth(GHl < linear-clique-width(L(G)) < 2-path-width(G) + 1
(5.) tree- w1dth(G) < NLC-width(L(I(G))) < tree-width(G) + 2
(6.) tree-width(G) < clique-width(L(I(G))) < 2-tree-width(G) + 2
(7.) PRI < Jinear-NLC-width(L(1(G))) < 2 - path-width(G) + 2
(8.) Path- Wldth(G)“ < linear-clique-width(L(I(G))) < 2 - path-width(G) + 3

Inequality (5.) can be used to show that NLC-width minimization is NP-
complete.

Minimizing NLC-Width is NP-Complete 79

Theorem 3. Given a graph G and an integer k, the problem to decide whether
G has NLC-width at most k is NP-complete.

Proof. The problem to decide whether a given graph has NLC-width at most k
is obviously in NP.

For a graph G = (V, E) and some integer r > 1 let G be the graph G in that
every vertex u is replaced by a clique C,, with r vertices and every edge {u, v} is
replaced by all edges between the vertices of C,, and C,. That is, G" = (V;., E,.)
has vertex set V;. = {u;; | u; € V,j € {1,...,r}} and edge set

E, = {{uij,uij} | 7,7 =1,...,rand i =i’V {u;,uy} € E)}.

Bodlaender et al. have shown in [3], that G has tree-width k if and only if G”
has tree-width r(k + 1) — 1.

Arnborg et al. have shown in [1] that tree-width minimization is NP-complete.
That is, given a graph G and an integer k, the problem to decide whether G has
tree-width at most k, is NP-complete.

For a given graph G, we first construct the graph G2, then the incidence
graph I(G?), and then the line graph L(I(G?)). This can be done in polynomial
time. If G has tree-width k, then G® has tree-width 3k + 2, and I(G®) has tree-
width 3k + 2. By Theorem 2 graph L(I(G®)) has NLC-width at least 3k + 2

and by Theorem 3 of [9] NLC-width at most 3k + 4. That is, tree-width(G) =

NLC'Width(gL(I(G%))*QJ . Thus, a graph G has tree-width at most k if and only if

L(I(G)) has NLC-width at most 3k + 4 which completes our proof. |

In [3] it is also shown that there is no polynomial time approximation algo-
rithm for tree-width with constant difference guarantee, unless P = NP, and that
for every €, 0 < € < 1, there is no polynomial time algorithm that computes for
a given graph G a tree decomposition of width k such that k — tree-width(G) <
|V €, unless P = NP. Inequality (5.) can be used again to show similar results
for NLC-width approximation, see [10].

Corollary 3.

1. For every positive integer c there is no polynomial time approrimation algo-
rithm that computes for a given graph G an NLC-width k-expression such
that k — NLC-width(G) < ¢, unless P = NP.

2. For everye, 0 <e< é, there is no polynomial time approzimation algorithm
that computes for a given graph G an NLC-width k-expression such that
k — NLC-width(G) < |Vg|¢, unless P = NP.

References

1. S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM Journal of Algebraic and Discrete Methods, 8(2):227-284, 1987.

2. S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of
graph reduction. Journal of the ACM, 40(5):1134-1164, 1993.

80

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

F. Gurski and E. Wanke

H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algo-
rithms, 18(2):238-255, 1995.

. D.G. Corneil, M. Habib, J.M. Lanlignel, B. Reed, and U. Rotics. Polynomial

time recognition of clique-width at most three graphs. In Proceedings of Latin
American Symposium on Theoretical Informatics, volume 1776 of LNCS, pages
126-134. Springer-Verlag, 2000.

D.G. Corneil, Y. Perl, and L.K. Stewart. A linear recognition algorithm for
cographs. SIAM Journal on Computing, 14(4):926-934, 1985.

B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems,
33(2):125-150, 2000.

B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs. Discrete
Applied Mathematics, 101:77-114, 2000.

W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems
on clique-width bounded graphs in polynomial time. In Proceedings of Graph-
Theoretical Concepts in Computer Science, volume 2204 of LNCS, pages 117-128.
Springer-Verlag, 2001.

F. Gurski and E. Wanke. Vertex disjoint paths on clique-width bounded graphs
(Extended abstract). In Proceedings of Latin American Symposium on Theoretical
Informatics, volume 2976 of LNCS, pages 119-128. Springer-Verlag, 2004.

F. Gurski and E. Wanke. Line graphs of bounded clique-width. Manuscript,
available at “http://www.acs.uni-duesseldorf.de/~gurski”, submitted, 2005.

F. Gurski and E. Wanke. On the relationship between NLC-width and linear
NLC-width. Manuscript, accepted for Theoretical Computer Science, 2005.

O. Johansson. Clique-decomposition, NLC-decomposition, and modular decompo-
sition - relationships and results for random graphs. Congressus Numerantium,
132:39-60, 1998.

0. Johansson. NLCs-decomposition in polynomial time. International Journal of
Foundations of Computer Science, 11(3):373-395, 2000.

D. Kobler and U. Rotics. Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Applied Mathematics, 126(2-3):197-221, 2003.

P.G.H. Lehot. An optimal algorithm to detect a line graph and output its root
graph. Journal of the ACM, 21(4):569-575, 1974.

V. Lozin and D. Rautenbach. The tree- and clique-width of bipartite graphs in
special classes. Technical Report RRR 33-2004, Rutgers University, 2004.

N. Robertson and P.D. Seymour. Graph minors I. Excluding a forest. Journal of
Combinatorial Theory, Series B, 35:39-61, 1983.

N. Robertson and P.D. Seymour. Graph minors II. Algorithmic aspects of tree
width. Journal of Algorithms, 7:309-322, 1986.

E. Wanke. k-NLC graphs and polynomial algorithms. Discrete Applied Mathemat-
ics, 54:251-266, 1994.

H. Whitney. Congruent graphs and the connectivity of graphs. American Journal
of Mathematics, 54:150-168, 1932.

Channel Assignment and Improper
Choosability of Graphs

Frédéric Havet and Jean-Sébastien Sereni

MASCOTTE, I3S-CNRS/INRIA /UNSA, 2004 Route des Lucioles, BP93
F-06902, Sophia-Antipolis Cedex, France
{fhavet, sereni}@sophia.inria.fr

Abstract. We model a problem proposed by Alcatel, a satellite build-
ing company, using improper colourings of graphs. The relation between
improper colourings and maximum average degree is underlined, which
contributes to generalise and improve previous known results about im-
proper colourings of planar graphs.

1 Introduction

In this paper, we investigate the following problem proposed by Alcatel, a satel-
lite building company. A satellite sends information to receivers on earth, each
of which is listening on a frequency. Technically it is impossible to focus the
signal sent by the satellite exactly on receiver. So part of the signal is spread
in an area around it creating noise for the other receivers displayed in this area
and listening on the same frequency. A receiver is able to distinguish the signal
directed to it from the extraneous noises it picks up if the sum of the noises does
not become too big, i.e. does not exceed a certain threshold 7. The problem
is to assign frequency to the receivers in such a way that each receiver gets its
dedicated signal properly. We investigate this problem in the fundamental case
where the noise area at a receiver does not depend on the frequency and where
the “noise relation” is symmetric that is if a receiver u is in the noise area of a
receiver v then v is in the noise area of u. Moreover the intensity I of the noise
created by a signal is independent of the frequency and the receiver. Hence to
distinguish its signal from noises, a receiver must be in the noise area of at most
k= “;J receivers listening signals on the same frequency.

We model this problem in a graph colouring problem. We define a noise
graph: the vertices are the receivers and we put an edge between u and v if u is in
the noise area of v (and v in the noise area of u). The frequencies are represented
by colours. So assigning frequencies to receivers is equivalent to k-improper
colouring the noise graph. Indeed the impropriety of a vertex v of a graph G un-
der the colouring ¢, denoted by img, (v), is the number of neighbours of v coloured
c(v). A colouring is k-improper if all the vertices have impropriety at most k
under it. Note that 0-improper colouring is the usual notion of proper colouring.

Due to some practical reasons (as, for instance, the specific environment of
a receiver), the colour of each vertex v must be chosen among a list of colours

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 81-90, 2005.
© Springer-Verlag Berlin Heidelberg 2005

82 F. Havet and J.-S. Sereni

L(v) (that represents the frequencies allowed for that receiver). Formally, given a
graph G, an [-list-assignment L of G is an function which assigns to each vertex
of G a list of at least [colours. An L-colouring of G is a vertex colouring in which
each vertex v is assigned a colour of the list L(v). G is k-improper L-colourable if
there exists a k-improper L-colouring of G. G is said to be k-improper [-choosable
if such a colouring exists for any [-list-assignment.

Improper choosability of planar graphs has been widely studied. In particular,
any planar graph is known to be 0-improper 5-choosable [8] and 2-improper 3-
choosable [3,6]. It is conjectured that any planar graph is 1-improper 4-choosable.
Skrekovski [7] studied k-improper 2-choosability of planar graphs in relation
with their girth (the girth of a graph G is the size of a smallest cycle of G).
Denoting by gr the smallest integer such that every planar graph of girth at
least gy is k-improper 2-choosable, he proved 6 < g1 < 9,5 < g0 < 7,5 <
gs < 6 and Vk > 4,gr = 5. In this paper, we study improper colourings of
(not necessarily planar) graphs in relation with their density. Not only does this
approach generalise and improve the results of [7] concerning planar graphs, but
it also has practical interest since the noise graphs modelling Alcatel’s networks
have bounded density.

The average degree of a graph G, denoted by Ad(G), is the sum of the degree
of each vertex divided by the number of vertices. The mazximum average degree
of G, denoted by Mad(G), is the maximum of the average degree of each of its
subgraphs (including G). If G is not a forest, the heart of G, denoted by h(G),
is the biggest subgraph of G in which every vertex has degree at least 2. It can
be obtained by consecutive removing of vertices of degree 1.

Proposition 1. If G is not a forest, then Mad(G) = Mad(h(G)).

Proof. As h(G) is a subgraph of G, Mad(G) > Mad(h(G)). Let H be a subgraph
of G such that Mad(G) = Ad(H). Then H is not a forest since otherwise we
would have Mad(G) < 2 and G would be a forest. So h(H) is defined and it is a
subgraph of h(G). Moreover, h(H) has minimum degree at least 2, so adding to
it vertices of degree 1 cannot increase its average degree: let H' be a supergraph
obtained from h(H) by adding k& > 1 vertices of degree 1. We assume that h(H)
has n vertices. Then

n x Ad(h(H)) + 2k

2%k — k x Ad(h(H))
N < Ad(h(H))

Ad(H') =
d(H’) n+k -

= Ad(h(H)) +

since Ad(h(H)) = 2. So Mad(h(G)) = Ad(h(H)) = Ad(H) = Mad(G).

Let M(k,l) be the greatest real such that every graph of maximum aver-
age degree less than M(k, 1) is k-improper [-choosable. Obviously, M (k1,1) <
M (k2,1) if k1 < ko. We have that M(k,1) = 2kkj22 since a graph is k-improper
1-choosable if and only if it has maximum degree at most k (and a graph of
maximum degree at least k + 1 contains the star Siy1 as a subgraph, so it has
maximum average degree at least Qkk:';). If [> 2, first note that any tree is
O-improper 2-choosable. Furthermore, for any & > 0, a graph G which is not a

Channel Assignment and Improper Choosability of Graphs 83

forest is k-improper 2-choosable if and only if its heart is. Hence, we shall restrict
the study to graphs with minimum degree at least 2.
In the following section, we show:

Theorem 1. For all k > 0, all graphs of maximum average degree less than

4kkf24 are k-improper 2-choosable.

4k* 4+ 6k +4 2k + 4

Th 2. Forallk>1, M(k,2) < —4- .
corem 2. Forallk 21, M(k,2) < 1 o 4o k2 42k +2

We then generalise Theorem 1:

Theorem 3. For alll > 2 and all k > 0, all graphs of maximum average degree

+2R) e k-improper l-choosable.

less than Ik

Corollary 1. For any fized I, lim M (k1) =2l.
k—4o00

Using Euler’s formula, one can show that if G is a planar graph with minimum
degree at least 2 and girth at least g, then Mad(G) < g2f2. So Theorem 1
immediately implies:

Corollary 2. Let G be a planar graph of girth g.

1. If g > 8 then G is 1-improper 2-choosable, so g1 < 8.
2. If g > 6 then G is 2-improper 2-choosable, so gz < g2 < 6.
3. If g > 5 then G is 4-improper 2-choosable, so g, <5 for k > 4.

Some proofs are omitted or just sketched. The detailed proofs are presented
in [4].

2 Improper 2-Choosability

2.1 Lower Bound for M (k,2)

In this subsection, we shall prove Theorem 1. Note that if £ = 0 then Theorem 1
holds trivially. Indeed a graph with maximum average degree less than 2 contains
no cycle and so it is a forest. Hence it is 2-choosable. Furthermore M (0,2) < 2
since an odd cycle is not 2-colourable, so M (0,2) = 2. For bigger values of k, we
will need the following preliminary definitions and results:

Definition 1. If v € V(G) then dg(v) denotes the degree of v in the graph G.
For all positive integer p, a vertex of degree equal to (resp. at most, resp. at least)
p is called a p-vertex (resp. (< p)-vertex, resp. (> p)-vertex). For S C V(G) (resp.
E C E(QG)) we denote by G—S (resp. G— E) the induced subgraph of G obtained
by removing the vertices (resp. edges) of S (resp. E) from V(G) (resp. E(G)). If
S={v} and E={uv}, we shall note G—v=G— S and G—uv=G — E. The union
(resp. intersection) of the graphs G and Gs is the graph G = G; U G2 (resp.
G =G1 N Gy) such that V(G) =V (G1) UV(G2) (resp. V(G)=V(G1) NV(G2))
and E(G)=E(G1)U E(G2) (resp. E(G)=E(G1) N E(G2)). Let D be a digraph

84 F. Havet and J.-S. Sereni

and u one of its vertices. An outneighbour (resp. inneighbour) of w in D is a
vertex v of D such that there exists an arc from u to v (resp. from v to u) in
D. The outdegree (resp. indegree) of u in D, denoted by df,(u) (vesp. dp,(u)), is
the number of outneighbours (resp. inneighbours) of u in D. The degree of u is
dp(u) = dp(u) +d},(u); it is the degree of u in the underlying undirected graph.

A graph is said to be (k, 2)-minimal if it is not k-improper 2-choosable but
each of its proper subgraphs is.

The idea of the proof of Theorem 1 is to consider a (k,2)-minimal graph and
apply a discharging procedure, the rule of which is to discharge ki2 along the
arcs of a discharging digraph which is obtained using the following process:
1. Orient each edge uv where v is a 2-vertex from u to v.
2. If k£ > 3, orient each edge uv where v is a 3-vertex from u to v.
3. While there is an unoriented edge uv where v an i-vertex with outdegree
i—1forsome k+2<i< 32k + 2, we orient it from u to v.

The digraph D induced by the oriented edges is called a discharging digraph
of G.

The aim of the next lemmata is to establish some properties of such a dis-
charging digraph.

Lemma 1 (Skrekovski [7]). Let k > 1 and let G be a (k,2)-minimal graph.
Then G has minimum degree at least 2 and two (< k + 1)-vertices are not
adjacent.

Definition 2. If u and v are two vertices of a digraph D, a (u,v)-dipath is a
directed path from u to v. The outsection of u in D, denoted AE (u), is the set
of vertices v such that there is a (u,v)-dipath in D.

An arborescence is an oriented tree in which every path is directed from a
vertex called the root. Note that in an arborescence every vertex except the root
has indegree 1. The leaves of the arborescence are the vertices of outdegree 0.
A vertex which is neither a leaf nor the root is an internal vertex. A quasi-
arborescence is a directed graph obtained from an arborescence by identifying
some leaves.

Lemma 2. Let D be a discharging digraph of a (k,2)-minimal graph, and k > 1.

— D has no 2-circuit since by Lemma 1 two (< k + 1)-vertices cannot be adja-
cent. So it has no circuit at all.

— If k <2, only vertices of degree 2 or k + 2 have indegree more than zero.

— FEvery 2-vertex has indegree 2 in D and if k > 3, every 3-vertex has inde-
gree 3.

— For every verter u, AJDr(u) 18 a quasi-arborescence whose leaves have degree
2 (resp. 2 or 3) in G if k < 2 (resp. k > 3). In particular, the indegree of
the leaves in A (u) is at most 2 (resp. 3).

Definition 3. A quasi-arborescence is a (k, 2)-quasi-arborescence if and only if
every vertex has outdegree at most max{2,2k — 1} and every leaf has indegree
at most min{k, 3}.

Channel Assignment and Improper Choosability of Graphs 85

Lemma 3. Let k > 2. Let Q be a (k,2)-quasi-arborescence rooted at u and L a
2-list-assignment of Q. Then any L-colouring of the leaves can be extended to a
k-improper L-colouring of D such that u has impropriety at most k — 1.

Proof. By induction on the number of vertices of @), the result being trivially
true if |[V(Q)| = 1.

Suppose now that [V(Q)| > 1 and the result holds for smaller k-quasi-
arborescences. Let v1,...,vs be the outneighbours of u in . Note that @ — u
is the union of s (k,2)-quasi-arborescences Q;, 1 < i < s rooted at v; that are
disjoint except possibly on their leaves.

Let ¢ be an L-colouring of the leaves of). Then by induction it can be
extended to a k-improper L-colouring of each of the @Q; so that im(v;) < k — 1.
Since a leaf of @ has indegree at most min{k,3} and img(z) = img,(x) for
every vertex of @); which is not a leaf, then the union of these colourings is a
k-improper L-colouring of @ such that im(v;) <k —1,1<i <s.

Now, one of the two colours of L(u), say «, is assigned to at most k — 1
neighbours of u since s < 2k — 1. Thus setting c¢(u) = a, we obtain the desired
colouring.

Obviously, the above result cannot be extended for k = 1 because it is hope-
less to extend every L-colouring of the leaves in a colouring such that the root
has impropriety 0. However, the following weaker result holds:

Lemma 4. Let Q be a (1,2)-quasi-arborescence rooted at w, L a 2-list-
assignment of Q with L(u) = {«, B} and ¢ an L-colouring of S, the set of leaves
of Q with indegree 1. One of the following holds:

(i) ¢ can be extended to a 1-improper L-colouring of Q such that im(u) = 0;
(ii) ¢ can be extended to two different 1-improper L-colourings of Q c¢1 and ca
such that c1(v) = ca(v) if v # u.

Lemma 5. Let k > 3. Let D be a discharging digraph of a (k,2)-minimal
graph G.

(i) Every i-vertex with 4 <i <k + 1 has outdegree zero.
(i) Ewery i-vertex with k+ 2 <1 < 2k + 1 has outdegree less than i.

Proof. (i) Suppose, for a contradiction, that v is a vertex contradicting the
assertion and let u be an outneighbour of v. Note that u is a (< 3 + 2)-
vertex by definition of a discharging digraph.

Let L be a 2-list-assignment of G. Let S be the set of leaves of A} (u). By
minimality, let ¢ be a k-improper L-colouring of G — A}, (u).

A} (u) is a (k,2)-quasi-arborescence: since u is dominated by v in D, u
has outdegree less than 32k + 1, and so at most 2k — 1. Thus, by Lemma 3, we
can extend ¢ to G — vu so that im(u) < k — 1. Since the leaves have degree
at most 3 < k, the impropriety of the leaves is at most 3 < k. So we obtain
a k-improper L-colouring of G — uwv.

If ¢(u) # ¢(v) or img—_yy(v) < k —1 then ¢ is a k-improper L-colouring of
G. Otherwise all the k4 1 neighbours of v are coloured by the same colour so

86 F. Havet and J.-S. Sereni

recolouring v with its other allowed colour yields a k-improper L-colouring
of G.

Hence G is k-improper 2-choosable which is a contradiction.

(ii) Suppose, for a contradiction, that v is an i-vertex contradicting the assertion.

Let L be 2-list-assignment of G and ¢ a k-improper L-colouring of G — v.
There is a colour of L(v), say «, that is assigned to at most k neighbours of
v. Let vy, ..., vs be these neighbours.

Let G' = G - Uj-, A} (vj). And set ¢/ = ¢ for every vertex of G’ and
every leaf of the A} (v;). By Lemma 3 applied to each Af(v;) (which are
disjoint except possibly on their leaves), we can extend ¢’ into a k-improper
L-colouring of G — v so that im(v;) < k—1for 1 < j < s. Now by definition
of ¢/, the only neighbours of v that may be assigned « by ¢ are those of
{v1,...,vs}. Hence setting ¢'(v) = a, the L-colouring ¢’ is k-improper.

Hence G is k-improper 2-choosable which is a contradiction.

Analogously, one can prove the following two lemmata:
Lemma 6. Let D be a discharging digraph of a (2,2)-minimal graph G.

(i) The outdegree of a 3-vertex is zero.
(i) If v is an i-vertex with i € {4,5} then its outdegree is less than i.

Lemma 7. Let D be a discharging digraph of a (1,2)-minimal graph G. There
s mo 3-vertex with outdegree 3 in D.

Proof (of Theorem 1). Let G be a (k,2)-minimal graph and D a discharging

digraph of G. We start with a charge w(v) = d(v) on each vertex and we apply the

following discharging rule: every vertex gives _’f_g to each of its outneighbours.
Let us examine the new charge w’(v) of a vertex v, regarding its degree:

— If v is a 2-vertex then it has indegree 2 so its new charge is w'(v) = 2+ 2% =

k+2

4k+4
k42 °

— If v is a 3-vertex and k > 3, then it has indegree 3 so its new charge is
w'(v) =343 x K, =00 > AL I v is a 3-vertex and k = 2 then it
has outdegree 0 by Lemma 6 and indegree 0 by the construction and hence
w'(v) = 3.

- If4 <d(v) <k+1, (k> 3), then by Lemma 5 (i), v has outdegree 0 so its
charge is d(v) > 4 > 4FH1

k42
— If k+2 < d(v) < 3 +2 then either v has outdegree at most d(v)—2 and so its
new charge is at least d(v) — (d(v) —2) x ki2 = deg) + kaQ > 2+ kaQ = 4kkf24,

or by Lemmata 5-7, it has outdegree d(v) — 1. In this case, by definition of
a discharging digraph, v has indegree 1 so its new charge is:
d(v) = (d(v) = 1) x . Jy + 5, = d(v) = (d(v) = 2) x [, > FE
— If ‘32k +2 <d(v) <2k+1, (k > 2), then by Lemmata 5 and 6, v has outdegree
ko _ 2d(v) k
at most d(v) — 1. So w'(v) > d(v) — (d(v) — 1) X = a2 T e >

k+2 k+2
3k+4+k _ 4k+4
k+2 T k42

Channel Assignment and Improper Choosability of Graphs 87

— If d(v) > 2k + 2, then w'(v) > d(v)(1 — F,) = 3" > 4t

Hence Mad(@) 2 1}y ey d00) = i Toey w/) 2 45

2.2 Upper Bound for M (k,2)

Let us fix k > 1. In this subsection, we shall construct a family of graphs (GF),>1
such that for all n > 1:

— G* is not k-improper 2-colourable.
2n(4k? k+4) + 4k k+2
~ Mad(Gh) = n(4k* + 6k + 4) 4 4k* + 6k +
2n(k2 + 2k +2) + (k + 1)2

Hence we will deduce Theorem 2. We denote by Hj the graph composed of two
adjacent vertices u and v also connected by k + 1 internally disjoint paths of
length 2. Take k copies of Hy and create the graph Fj by identifying the vertices
v of each copy. Note that Fj has one vertex of degree k(k + 2), k vertices of
degree k + 2 and k(k + 1) vertices of degree 2. Now we take 2n + 1 copies of Fj,
and we join the vertices v of each copy creating a cycle of size 2n + 1. At last
we make a subdivision of all the edges of the cycle but one so as to obtain the
graph GE.

Lemma 8. G¥ is not k-improper 2-colourable.

As it is easily seen, the maximum average degree of G is its average degree,
which is equal to MF.

3 Improper [-Choosability, [> 2

3.1 Lower Bound for M(k,I)

In this subsection, we shall prove Theorem 3. The result of the theorem is trivial
if k = 0 since a graph of maximum average degree less than [is (I—1)-degenerate
(i.e. each of its subgraphs has a vertex of degree at most [— 1). Hence it is I-
choosable. For bigger values of k, we will need some preliminary results.

Definition 4. A graph is said to be (k,l)-minimal if it is not k-improper I-
choosable but each of its proper subgraphs is.

Lemma 9. Let G be a graph, L a list-assignment and ¢ an L-colouring. If a
vertex v has impropriety at least d(v) — |L(v)| + 2 under ¢, then there exists an
L-colouring ¢ of G such that ¢ (u) = c¢(u) if u# v and im. (v) = 0.

We now generalise Lemmata 1, 3 and 4.

Lemma 10. Let k > 1 and let G be a (k,l)-minimal graph. Then G has mini-
mum degree at least I and two (< 1+ k — 1)-vertices are not adjacent.

88 F. Havet and J.-S. Sereni

Definition 5. Let G be a (k,[)-minimal graph. We partially orient G using the
following process:

1. Orient each edge uv where v is a (< [+ k — 1)-vertex from u to v.

2. While there is an i-vertex v with outdegree exactly ¢ — [+ 1 and indegree 0
forsomel+k <i<l+k+ ’l“, we orient one of its unoriented incident edges
uv from u to v.

The digraph D induced by the oriented edges is called a discharging digraph of
G. Note that only vertices of degree less than [+ k +]l“ can have indegree more
than zero, and for ¢+ <[+ k — 1, every i-vertex has indegree exactly ¢ in D.

A quasi-arborescence rooted at w is a (k,1)-quasi-arborescence if and only if
every vertex has outdegree at most max{2,2k — 1} and every leaf has indegree
at most I +k — 1.

Lemma 11. Let k > 2 and let Q be a (k,l)-quasi-arborescence rooted at u. Let
L be a list-assignment of Q such that |L(v)| > max{1,dq(v) —k+1} if v is a leaf
and |L(v)| > 2 otherwise. We denote by S the set of leaves that have indegree at
least k + 1 in @ (and hence a colour-list of size at least 2). Any L-colouring of
the leaves extends in an L-colouring of Q) such that:

—im(u) <k-—1.
- Yo ¢ S,im(v) <k.

Furthermore, possibly by recolouring some vertices of S, this L-colouring of G
can be made k-improper.

The above result cannot be extended for k = 1. However the following result
holds:

Lemma 12. Let Q be a (1,1)-quasi-arborescence rooted at u and L any list-
assignment of Q such that |L(v)] > 2 if v is not a leaf, and |L(v)| > dg(v)
otherwise. We denote by S the set of leaves with indegree at least 2. Let ¢ be an
L-colouring of the leaves. One of the followings holds:

(i) ¢ can be extended to an L-colouring of Q such that im(u) = 0 and im(v) <1
ifvégS;

(i) ¢ can be extended to two different L-colourings of @ c¢1 and ca such that
c1(v) = c2(v) if v #u and im®i(v) <1 ifv ¢ S.

Furthermore, possibly by recolouring vertices of S, all these L-colourings can be
made 1-improper.
Moreover, if |L(u)| > 3 then (i) holds.

Using these results, we can say more about the structure of a discharging digraph.
The following lemma generalises Lemma 2.

Lemma 13. Let D be a discharging digraph of a (k,l)-minimal graph G.

(i) Every vertex u with l+k < d(u) < 14+2k—1 has outdegree at most d(u)—1+1.
In particular, D is acyclic.

Channel Assignment and Improper Choosability of Graphs 89

(ii) For every vertex u with indegree 1, A} (u) is a (k,l)-quasi-arborescence. In
particular, the indegree of the leaves in AJDr(u) is at most I +k — 1.

Proof (of Theorem 3). Let G be a (k,l)-minimal graph and D a discharging
digraph of G. We start with a charge w(v) = d(v) on each vertex and we apply
the following discharging rule: every vertex gives l_{f , to each of its outneighbours.
One can check that, by using Lemma 13, the new charge of every vertex is at
least | + lfk.

3.2 Upper Bound for M (k,1)

In this subsection we shall construct for all [> 2 and all £ > 1, a graph Gf
which is not k-improper I-colourable. So its maximum average degree will give
an upper bound for M (k,1). To construct G5, take k + 1 copies of Hj, (defined
in Subsection 2.2) and identify their vertex v. We define Gf, [> 3, inductively.
First we create the graph M, l’“ by taking k copies of Gf_l and adding a vertex w

which we join to every other vertices. Then we take I — 1 copies M", ..., M1
of Mlk and we join all the vertices wn,...,w;—1 (so that they form a complete
graph of size [— 1). Now, we add k + 2 vertices 2o, 21, ..., 2k+1 each joined to

each of the w;, 1 <i <[—1. Last we add the edges zpz; for 1 <i < k+ 1.

Lemma 14. For all l > 2 and all k > 1, the graph Gf is not k-improper [-
colourable.

Proposition 2. Mad(GY) tends to 2 as k tends to infinity.

Proof. 1t is clear that the maximum average degree of Gf is its average degree.

i)!
ny satisfies: n§ = k2 +3k+3 and VI > 3,nf = (k xnf_, +1)x (I —1) + k+ 2.
In particular, as a polynomial in k, nf ~ (I — 1)!k!.

Let sf denotes the sum of the degrees of the vertices in Gf. sf satisfies:
sk =4k? +10k+6 and sf = (1 —1)(k x sf_| +2kxnf | +1+k)+ ((+1)k+2Lif
[> 3. Hence it is a polynomial in k of degree I. Furthermore, denoting by cf its
dominant coefficient, we have: c§ = 4 and VI > 3,cf = (I—1) xcf_ | +2kx (I-1).
Thus ¢} = 2I!. So s ~ 2l!k!.

Hence the limit of Mad(G¥) as k tends to infinity is 2(17”1)! =2l.

!
-1,
The number of vertices of Gf is n}' = 21 + (I + 1)k + Z ((l) k'. Indeed
=2

Corollary 1 immediately follows from Theorem 3 and Proposition 2.

References

1. Appel, K. and Haken, W.: Every planar map is four colourable, Part I: Discharging.
Nlinois J. Math. 21 (1977) 429-490.

2. Appel, K. and Haken, W. and Koch, J.: Every planar map is four colourable, Part
IT: Reducibility. Illinois J. Math. 21 (1977) 491-567.

90 F. Havet and J.-S. Sereni

3. Eaton, N. and Hull, T.: Defective list colorings of planar graphs. Bull. Inst. Combin.
Appl. 25 (1999) 79-87.

4. Havet, F. and Sereni, J.-S.: Improper choosability and maximum average de-
gree. Internal Report INRIA RR-5164, ftp://ftp.inria.fr/INRIA /publication/publi-
ps-gz/RR/RR-5164.ps.gz, (2004).

5. Lih, K.-W. and Song, Z. and Wang, W. and Zhang, K.: A Note on List Improper
Coloring Planar Graphs. Appl. Math. Let. 14 (2001) 269-273.

6. Skrekovski, R.: List improper colouring of planar graphs. Comb. Prob. Comp. 8
(1999) 293-299.

7. Skrekovski, R.: List improper colorings of planar graphs with prescribed girth. Dis-
crete Math. 214 (2000) 221-233.

8. Thomassen, C.: Every planar graph is 5-choosable. J. Comb. Theory B 62 (1994)
180-181.

Computing Treewidth and Minimum Fill-in for
Permutation Graphs in Linear Time

Daniel Meister

Bayerische Julius-Maximilians-Universitaet Wuerzburg,
97074 Wuerzburg, Germany
meister@informatik.uni-wuerzburg.de

Abstract. A chordal graph H is a triangulation of a graph G, if H is
obtained by adding edges to G. If no proper subgraph of H is a tri-
angulation of G, then H is a minimal triangulation of G. A potential
maximal clique of G is a set of vertices that induces a maximal clique in
a minimal triangulation of G. We will characterise the potential maximal
cliques of permutation graphs and give a characterisation of minimal tri-
angulations of permutation graphs in terms of sets of potential maximal
cliques. This results in linear-time algorithms for computing treewidth
and minimum fill-in for permutation graphs.

1 Introduction

Treewidth and minimum fill-in are among the most interesting graph parameters.
The treewidth of a graph is a measure for the treelikeness of a graph. By the
minimum fill-in, the degree of chordality can be measured in a certain sense.
Both parameters can be formulated as embedding problems into chordal graphs
where, in the case of treewidth, the clique number, in the case of minimum
fill-in, the number of edges is to be minimized. Treewidth plays a big role in
algorithm design, since many hard problems can be solved efficiently for graphs of
bounded treewidth. Minimum fill-in has applications in matrix elimination [13].
The decision problems TREEWIDTH and MINIMUM FILL-IN are NP-complete
even for co-bipartite graphs [1], [15].

A triangulation of a graph G is a chordal graph H where G and H have the
same vertex set and G is a subgraph of H. H is called a minimal triangulation
of G, if no proper subgraph of H is a triangulation of G. Minimal triangula-
tions were first studied by Rose, Tarjan, Lueker [14]. Since then, the study of
minimal triangulations has attracted a considerable community of researchers.
An explanation seem to be the following observations: The treewidth of a graph
equals the smallest clique size minus 1 among its minimal triangulations, and
the minimum fill-in of a graph is the smallest number of additional edges among
its minimal triangulations. So, treewidth and minimum fill-in become special
problems on minimal triangulations.

An early interesting result about minimal triangulations of special graph
classes was the result by Bodlaender and Mohring that every minimal triangu-
lation of a cograph is a cograph [4]. Since chordal cographs are interval graphs,

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 91-102, 2005.
© Springer-Verlag Berlin Heidelberg 2005

92 D. Meister

minimal triangulations of cographs are interval graphs. This result was improved
by Bodlaender, Kloks, Kratsch and extended to permutation graphs in the sense
that every minimal triangulation of a permutation graph is an interval graph [2].
A first endpoint in this series was set by Mohring’s theorem for AT-free graphs:
every minimal triangulation of an AT-free graph is an interval graph [10], which
was extended by Parra and Scheffler to a complete characterisation of AT-free
graphs [12].

The works of Bodlaender, Kloks, Kratsch and Bodlaender, Kloks, Kratsch,
Miiller resulted in O(tw(G) - ng)- and O(n?)-time algorithms for treewidth and
minimum fill-in for permutation graphs, respectively, [2], [3]. For both problems
on permutation graphs we will give linear-time algorithms, which improve the
stated time bounds. The main part of this paper is dedicated to characterising
the minimal triangulations of a permutation graph in an appropriate manner.
The central idea is to consider the potential maximal cliques. The notion of a po-
tential maximal clique of a graph was introduced by Bouchitté and Todinca [5].
A potential mazimal clique of a graph is a set of vertices that is a maximal clique
in a minimal triangulation of the graph. We will show that the set of potential
maximal cliques of a permutation graph can be generated in linear time. We will
define the potential maximal cliques graph of a permutation graph, which is a
directed graph containing an arc for every potential maximal clique, and show
that a maximal path of the potential maximal cliques graph corresponds exactly
to a minimal triangulation. Adding weights to vertices and arcs, treewidth and
minimum fill-in can be solved in linear time by simply exploiting the obtained
and so-called weighted potential maximal cliques graph. Our approach to solve
treewidth and minimum fill-in can be understood as an improvement of the ap-
proach used in [2] and [3], which is based on the fact that the weighted potential
maximal cliques graph has less vertices than the auxiliary graph in [2] and [3]
and can be generated in linear time.

The paper is organized as follows. Section 2 contains basic definitions and
results. In Section 3, we will consider minimal separators and identify special
scanlines as appropriate representations. In Section 4, we will characterise the
potential maximal cliques of a permutation graph and define the potential maxi-
mal cliques graph. We will show the correspondence between the minimal trian-
gulations of a permutation graph and the maximal paths in its potential maximal
cliques graph. Finally, in Section 5, we will conclude by obtaining linear-time al-
gorithms for computing treewidth and minimum fill-in for permutation graphs.
Proofs may be omitted or sketched due to space restrictions.

2 Preliminaries

We will consider only simple and finite graphs that may be directed or undi-
rected. For a directed graph G’ = (V, A), V denotes the set of vertices, and A
denotes the set of arcs. Arcs are denoted as (u,v), which means that u is start
vertex and v is end vertex. For an undirected graph G = (V, E), V and E denote
the sets of vertices and edges, respectively. Since we mostly deal with undirected

Computing Treewidth and Minimum Fill-in for Permutation Graphs 93

graphs, most of the following definitions are for undirected graphs. An edge is
denoted as uv, which means that vertices v and v are adjacent. For S C V', the
subgraph of G induced by S is denoted as G[S]; we write G\ S instead of G[V'\ S].
G U F for a set F' of edges is short for (V,EUF); G—e =q4et (V, E \ {€}), and
G\ F =4et (V, E\ F). The neighbourhood of a vertex u € V', denoted by Ng(u),
is the set of vertices adjacent to u in G; Ng[u] =qet Ng(u) U{u}. For A C V,
the neighbourhood of A is Ng(A) =def Uyec 4 Na(v) \ A. For further definitions,
we also refer to [7]. A path of length k in G is a sequence (xg,...,z) of k+1
different vertices of G where x;_1 and z; are adjacent for every i € {1,...,k}; a
similar definition holds for G’. A path (x1,...,xx) of G is a cycle of length k if
x12 € E. A chordin a cycle C of G is an edge of G between two non-consecutive
vertices in C; a chord is unique in C if it is the only edge in G that is a chord
in C. C is chordless if there is no edge in G that is a chord in C. G is chordal
if there is no chordless cycle of length at least 4 in G. An interval graph on n
vertices is the intersection graph of a family of n closed intervals of the real line.
Interval graphs are chordal. A triple u, v, w of pairwise non-adjacent vertices of
G is an asteroidal triple, AT for short, if there is a path between any two of them
not containing a neighbour of the third. G is AT-free if G does not contain three
vertices that form an AT. Interval graphs are exactly the chordal graphs that
are AT-free [9].

Permutation Graphs. Let [n], n > 1, denote the set of the numbers 1,2, ..., n.
Let m : [n] — [n] be a bijection. We also say that = is a permutation sequence
over [n]. The graph G(m) has vertex set [n], and two vertices u,v € [n], u # v,
are adjacent if and only if (u — v)(7~!(u) — 7~ 1(v)) < 0. A permutation graph
over [n] is a graph G() for some permutation sequence 7 over [n]. A graph G is
a permutation graph if there is n > 1 such that G is isomorphic to a permutation
graph over [n]. Permutation graphs can be represented by permutation diagrams;
we refer the reader to [7] for more details about permutation diagrams. Since
we often use the permutation diagram representation, we identify line segments
and the corresponding vertices of the graph. This will never cause confusion.

Separators and Triangulations. Let G = (V, E) be a graph. A graph H =
(W, F) is a triangulation of G if H is chordal, V. =W and E C F. H is a minimal
triangulation of G if there is no triangulation of G that is a proper subgraph
of H.

Theorem 1 ([14]). Let G = (V,E) and H = G U F be graphs where H is
chordal and ENF = 0. Then, H is a minimal triangulation of G if and only if,
for every e € F, e is unique chord in a cycle of length 4 in H.

Let S C V. Wecall S a ¢, d-separator of G for two non-adjacent vertices ¢, d €
V if ¢ and d are in different connected components of G\ S. S is a minimal
¢, d-separator of G if there is no c,d-separator S’ such that S’ C S. S is a
minimal separator of G if S is a minimal ¢, d-separator for some non-adjacent
vertices ¢,d € V. A connected component C of G\ S is S-full if every vertex of S
has a neighbour in C; S-full components of G are S-full connected components

94 D. Meister

of G\ S. Then, S is a minimal separator of G if and only if G has two S-full
components [7]. S is a minimal ¢, d-separator of G if and only if ¢ and d are in
different S-full components of G. Two minimal separators S; and S of G cross
if there are two connected components in G \ S7 that contain vertices from So.
The crossing relation is symmetric [12].

Theorem 2 ([12]). Let G = (V, E) be a graph.

1. Let S be a mazimal set of pairwise non-crossing minimal separators of G.
Graph H is obtained from G by making all separators in S into cliques.
Then, H is a minimal triangulation of G.

2. Let H be a minimal triangulation of G and let S be the set of minimal
separators of H. Then, S is a maximal set of pairwise non-crossing minimal
separators of G and H originates from G by completing into cliques the
separators in S.

Theorem 3 ([8]). Let G = (V, E) be a graph and let H be a minimal triangu-
lation of G.

1. For every pair ¢, d of non-adjacent vertices of H, every minimal ¢, d-separator
in H is a minimal ¢, d-separator in G.

2. For every minimal separator S of H and every connected component C' in
H\ S, V(C) induces a connected component in G\ S.

Minimal triangulations can characterise graph classes.

Theorem 4 ([10], [12]). A graph G is AT-free if and only if every minimal
triangulation of G is AT-free, i.e., an interval graph.

Let Aq,..., A be the maximal cliques of an interval graph G. A consecutive
clique arrangement for G is a sequence Ar(yy,. .., Az for m a permutation over
[k] such that, for every vertex u in G, the maximal cliques containing u appear
consecutively in the sequence. A graph is an interval graph if and only if it has
a consecutive clique arrangement [6].

Theorem 5 ([8]). Let G = (V, E) be an interval graph with consecutive clique
arrangement As, ..., Ap. The sets A; N A;11, i € [k—1], are exactly the minimal
separators of G.

3 Special Scanlines

Minimal separators of permutation graphs can be represented efficiently in the
permutation diagram. For this purpose, Bodlaender, Kloks, Kratsch introduced
scanlines [2], which play a central role in our subsequent studies.

Definition 1. Let G = G(w) be a permutation graph over [n]. A scanline of G
is a pair (a,e) where a,e € {0.5, 1.5,.. .,n+0.5}.

Computing Treewidth and Minimum Fill-in for Permutation Graphs 95

Let G = G(w) be a permutation graph over [n], and let ® be its permutation
diagram. Let s = (a,e) and s’ = (@, €’) be scanlines of G. We say that s < s’ if
and only if a < o’ and e < €’; s < ¢ if and only if s < s’ and s # s'. By int(s)
we mean the set of vertices # € [n] such that (a — z)(e — 77 1(z)) < 0. In the
world of permutation diagrams, s can be thought of as a line segment and int(s)
is the set of vertices intersecting with s. We say that a vertex x is to the left of
s in ® if it does not intersect with s and is smaller than a. Similarly, we define
what it means to be to the right of s. It is easy to see that int(s) is a separator
of G if there are vertices to the left and right of s. For C1,Cy C [n], s is between
C7 and Cs, if every vertex of Cy is to the left of s and every vertex of Cs is to
the right of s, or if every vertex of C5 is to the left of s and every vertex of Cy is
to the right of s. A scanline s is special if int(s) is a minimal separator in G and
s is between C'; and Cy where C; and Cy induce S-full components of G. Such
scanlines have been used by Parra and Scheffler to represent minimal separators
of d-trapezoid graphs [11]. The following lemma is an extension of a result by
Bodlaender, Kloks, Kratsch and can be proved similarly.

Lemma 1 ([2]). Let G = G(7) be a permutation graph over [n]. Let C1,Cy CV
induce connected subgraphs of G. If Ng[C1] N Cy = (, then there is a special
scanline s between Cy and Co such that S =g4ef int(s) is a minimal u, v-separator
in G for some vertices u € Cy and v € Cy. In particular, if S is a minimal

u, v-separator for u,v € V, then there is a special scanline s of G between {u}
and {v} such that int(s) = S.

The enclosure of scanline s = (a,e) where a,e € {1.5,...,n—0.5} is the
set en(s) =gef {a—0.5,a+0.5, 7(e—0.5), m(e+0.5)}. So, the enclosure may contain
two, three or four vertices.

Lemma 2. Let G = G(w) be a permutation graph over [n]. A scanline s of G is
special if and only if en(s) Nint(s) = 0.

Proof. Let s = (a+0.5,e+0.5) be a scanline, a,e € [n—1], and S =qef int(s). If
en(s) NS =0, then a and 7(e) belong to one connected component Cy of G\ S
and a+1 and 7(e+1) belong to another connected component Cy of G\ S. Since
every vertex in S has neighbours in C and Csy, C; and Cs are S-full components
of G and s is a special scanline. Now, let u € en(s) N.S. Then, u cannot have
a neighbour in the connected components of G \ S to the left or the right of s,
hence s is not a special scanline.

Corollary 1. Let G = G(w) be a permutation graph over [n], and let m be the
number of edges of G. Then, G has at most min{n+m, (g) —m} special scanlines,
and they can be listed in linear time.

Proof. Every special scanline s = (a+0.5, e+0.5) can be defined by {a, w(e)} and
{a,m(e+1)}. In the former case, these sets can be of cardinality 1 or 2, and if
it contains two vertices these vertices are adjacent. Thus, G contains at most
n + m special scanlines. In the latter case, the set always contains two non-
adjacent vertices. So, G contains at most (g) — m special scanlines. For listing

96 D. Meister

the special scanlines, check for every vertex x € [n] and every edge uwv, u < v,
whether (z40.5,7=1(2)4+0.5) and (v+0.5, 7~ 1(u)+0.5) are special scanlines by
applying Lemma 2.

Motivated by Theorem 2, the crossing relation of minimal separators is of
great importance when studying minimal triangulations.

Definition 2. Two scanlines s1 and sz of a permutation graph G = G(w) in-
tersect if and only if neither s; < sy nor ss < s1.

Lemma 3. Let G = G(w) be a permutation graph. Let s1 and sy be special
scanlines of G, and let S1 =qef int(s1) and Sa =ger int(s2).

1. If s1 and s do not intersect then Sy and Ss are non-crossing.
2. If s1 and sy intersect then S1 and Sy cross.

Proof. Let s; and so do not intersect. We assume s; < so. Let C1, ..., Cy be the
connected components of G\ S, £ > 2, where the vertices in C; are smaller than
the vertices in C;11 for all ¢ € [¢—1]. Suppose S1 and Sy cross. There is r > 1
such that sy intersects with vertices from C, and C,;;. Note that the vertices
in en(sg) that are to the right of sy are not contained in int(s;) = Si, so that
there is a path between a vertex from C, and a vertex from C,11, and C, and
Cr41 are not different connected components of G\ S;. Hence, S; and S3 do
not cross. For the converse, let s; and sy intersect. Observe that the vertices of
en(s1) belong to two connected components of G \ S1, and one vertex from each
of these components belongs to S5. Hence, Sy crosses S .

4 Potential Maximal Cliques and Minimal Triangulations

Bouchitté and Todinca introduced the notion of potential maximal cliques [5].

Definition 3. Let G = (V, E) be a graph. A set C C 'V of vertices is a potential
maximal clique of G if and only if there is a minimal triangulation H of G
such that C is a maximal clique in H.

Let G = G(m) be a permutation graph over [n]. For the following considera-
tions, Sp =get (0.5,0.5) and s =4er (n+0.5,n40.5) are also special scanlines of
G. Let s1 and sz be two special scanlines of G such that s; < s2. By G[s1, 2]
we denote the subgraph of G induced by the vertices that intersect with s; or
so or that lie between s; and so, i.e., to the right of s; and to the left of ss.
With G[s1, s2] we associate the permutation diagram of G reduced to ounly the
vertices of G[s1, s2]. The scanlines s; and s9 are neighbours if there is no special
scanline s’ of G such that s1 < 8’ < s5. We say that sy is a left neighbour of so
and sz is a right neighbour of s1. By N.<(s) we denote the set of left neighbours
of special scanline s of G.

Lemma 4. Let G = (V,E) = G(w) be a permutation graph over [n]. Let s1, so
and sy, sb be special scanlines of G where s; € N (s2) and sy € NS(sh). Let
S1 =det int(s1) and Sz =gef int(s2), and let C =4er V(G]s1, $2]). Then:

Computing Treewidth and Minimum Fill-in for Permutation Graphs 97

I.UEC\(SlLJSz) — Ng[u]:C
2.ue S \S2andv e Sy\S = weE
3. C=V(G[s},s5]) = s} =s1 and s5 = so.

Proof. Let u,v € C such that uv € E. Let u € C'\ (S1US2). If v € C'\ (S1US2),
there is a special scanline between v and v by Lemma 1 that does not intersect
with neither s; nor so. If v € S, there is a vertex in the enclosure of s; that is
to the left of s; and adjacent to v such that there is a special scanline between
{v,w} and {u} by Lemma 1, and this scanline does not intersect with neither s;
nor ss. The case v € Sy is similar to v € S7. If u € 51\ S2 and v € Sy \ S1, let
x and z be the vertices of the enclosures of s; and s2, respectively, that do not
belong to C' and that are adjacent to u and v, respectively, such that there is a
special scanline between {u,x} and {v, z} by Lemma 1, that is between s; and
So. Since s1 and s are neighbours there cannot be a special scanline between
s1 and so. Finally, for claim 3, observe that s| does not intersect with neither
s1 nor sg, since otherwise C" =qer V(G[s], s5]) would contain vertices from the
enclosure of s1 or se. Analogously, s5 does not intersect with neither s; nor ss.
So, {s1,8], 82,85} is a set of pairwise non-intersecting special scanlines. Since
C" must contain a vertex to the right of s; that belongs to the enclosure of s1,
s1 < sh; similarly, s] < s, and this is only possible if s} = s; and s5 = s5.

Let s1 and sy be special scanlines of G where s € N<(s2). A vertex « € [n]
is an inner vertex of G[s1, s2] if © € V(G[s1, s2]) and = ¢ int(s1) U int(sz2). Inner
vertices play a special role in our study, since Ng[z] = V(G]s1, s2]) by Lemma 4.
For a potential maximal clique C of G, we say that x € C' is an inner vertex of
Cif Ng[x} =C.

Lemma 5. Let G = G(7) be a permutation graph over [n]. Let s1, s2, s be special
scanlines of G where s1 € N=(s2) and Gls1, 2] contains an inner vertex . If

s intersects with sy or s, then x € int(s). In particular, if © is inner vertex in

Glsh, 5] for s and s special scanlines of G, s§ € N=(sh), then s) = s1 and
/

82 = S9.

Proof. Observe that x is to the right of s; and to the left of ss. Let s intersect
with s1. Two non-adjacent vertices of the enclosure of s belong to int(s;), and
by Lemma 4, they are neighbours of . Then, = belongs to int(s). Similarly,

belongs to int(s), if s intersects with so. If 2 is inner vertex also in G[s], sb], then
V(G[s), s5]) = Nglz] = V(G[s1, s2]) and s1 = s] and sg = s5 by Lemma 4.

Lemma 6. Let G = (V, E) be a graph, and let H be a minimal triangulation of
G. Let u € V such that there is only one mazimal clique C' in H containing u.
Then, u is an inner vertex of C.

Proof. Note that all neighbours of u are contained in C' and that u cannot be
endpoint of an additional edge.

Theorem 6. Let G = G(m) be a permutation graph over [n]. C C [n] is a
potential mazimal clique of G if and only if there are special scanlines s1 and so
of G such that s1 € N=(s2) and C = V(G[s1, s2]).

98 D. Meister

Proof. First, we prove the “only if” part. Let H be a minimal triangulation
of G, and let C' C V induce a maximal clique in H. By Theorem 4, H is an
interval graph. Let Ay,..., Ax, kK > 1, be a consecutive clique arrangement for
H.If k =1, then G is complete, and C' = V(G[so,s?]). Let k > 2. Let C' = A;
for 1 < i < k, and let S1 =ger Ai—1 N A; and Sy =qger A; N A;11; we assume
Ao =det Ak11 =det 0. By Theorems 5 and 3, S; and S are minimal separators
of G. Let C have an inner vertex. Let S =gor S1 U Sa, and let C" =g40¢ C'\ S.
Remember that Ng[u] = C for each u € C" due to Lemma 6. Let

a1 =gef max{z < minC’ : z € [n] \ C} U{0}

ag =def min{z > maxC’ : z € [n]\ C} U {n+1}

e1 =def max{i < minw 1(C’) :i € [n] \ 7 1(C)} U {0}

€2 =dof min{i > max7 (C) :i € [n] \ 7 1 (C)} U {n+1},

and let s1 =qet (a1—|—0.5,61—|—0.5) and S9 =gef (a2—0.5,eg—0.5). Every vertex in
C" is to the right of s; and to the left of sy by definition of ai,as, e, ez, hence
between s; and sa. Observe that a1+1,...,a2—1 and 7(e1+1),...,m(ea—1) are
vertices of C. Then, s; and sy are special scanlines of G. Furthermore, every
vertex in S has a neighbour to the left of s; or to the right of sq, since between
s1 and s there are only vertices of C. Hence, S C int(s;)Uint(sz2). Suppose there
is x € (int(s1) Uint(s2)) \ S. By the aforesaid, = € int(s1) N int(s2) and must
be a neighbour of u € C’, hence z € C and x € S, which is a contradiction. So,
int(s1) Uint(s2) = S, and V(G[s1, s2]) = C. Finally, suppose there is a special
scanline s of G such that s; < s < s3. Then, s must have a common endpoint
with s1 and s2, and C' contains two vertices u, v that are non-adjacent in G. By
Theorems 2 and 5, there is a minimal separator S” = A;NA;4+1 in G that contains
u and v. Let s’ be a special scanline of G such that S’ = int(s’). It holds that
s’ cannot intersect with s; or so. If s’ intersects with both scanlines, a vertex to
the left of s; would be adjacent to the vertices in C’ in H, which is not possible.
If s’ intersects with either s; or ss, it must have a common endpoint with the
other scanline, and again, the vertices from C’ would be adjacent in H with a
vertex to the left of s; or to the right of so. Hence, s’ has a common endpoint
with s; and sy and intersects with s. But then, C’ C S’, which contradicts the
assumption about C. So, s1 € N=(s2).

Now, let C = S;USs. Then, 1 < i < k. Let u € C\ S1, v € 4,1\ S
and w € C'\ Sz, ¢ € Aj41 \ S2. We assume v < u; if u < v we use Ag,..., Ay
as consecutive clique arrangement for H and the same vertices with their new
meanings. It holds that v, w,u, z induce a Py in H and uw € E. First, we show
that w < z. If x < v then S; is an x, u-separator of G, which is not possible by
Theorem 3. If v < x then Sy is a w, v-separator of G, which is also not possible.
Hence w < x. Due to Theorem 3, C'\ S; is contained in a connected component
of G\ S1 induced by D;. Let a3 =ger min(D;) and e; =gef min7~*(D;) and
81 =det (a1—0.5,€1—0.5). Observe that a; and 7(e;) are to the right of s;. Since
a1—1 ¢ Dy and w(e1—1) € D1 and a1—1,7(e1—1) &€ S1 C C, a1—1 and w(e1—1)
are to the left of s1, hence s is a special scanline. Let D} induce the connected
component of G \ S; containing v. Since every vertex in S; has a neighbour in

Computing Treewidth and Minimum Fill-in for Permutation Graphs 99

D, and D, S1 =int(s1). By a similar construction using So, define Dy and D),
and s3 =qef (a2+0.5, e2+0.5), where az =qer max(Dz) and ey =gef max m—(Dy).
It holds that Sy = int(s2). Since u < w or 7= (u) < 771 (w), a1 < az or e1 < e,
and since S; and Ss are non-crossing minimal separators, s; < sy by Lemma 3.
Hence, C C V(G[s1, s2]). Suppose there is z € V(G][s1,s2]) \ C. Since z ¢ C,
z€ A U---UA;_q1orz € Ajp1 U---UAg. In the former case, S1 is a z,u-
separator, in the latter case, S is a w, z-separator, hence, z is not contained
in Dy or Dy, so that z < a1 or az < z. Finally, suppose there is a special
scanline s of G such that s; < s < sy. For every pair of vertices a,b € C, if
a € 51\ S2 and b € Sy\ S1, then ab € E. So, s1 and s2 have a common endpoint.
If a; = ag + 1, then there is j € {e1,...,e2—1} such that 7w(e1),...,m(j) € S2
and w(j+1),...,m(e2) € S1. If e; = ea+1, then thereis j € {aj,...,a2—1} such
that ay,...,7 € So and j41,...,a2 € S1. But then, there cannot be a special
scanline s such that s; < s < s9, and s1 € N~ (s2).

For the “if” part, let s; and so be special scanlines such that s; € N=(s2),
and let C' =g4et V(G[s1, s2]). There are u,v € C such that u ¢ int(s;) and
v € int(s2); w and v may be identical. Let G’ emerge from G by completing
int(s1) and int(sz) into cliques. Due to Lemma 4, C' induces a clique in G’. Since
no vertex to the left of s; is adjacent to u and no vertex to the right of ss is
adjacent to v, C is a maximal clique in G’. Obtain H’ from G’ by making every
connected component of G\ C complete. C induces a maximal clique in H'. H' is
a triangulation of G’. There is a subgraph H of H' that is a minimal triangulation
of G’. C induces a maximal clique in H. Since every minimal triangulation of
G’ is a minimal triangulation of G, C' is a potential maximal clique of G.

Corollary 2. A permutation graph on n > 1 wvertices and with m edges has
O(n + m) potential mazximal cliques.

Proof. Let G = G(w) be a permutation graph over [n]. A potential maximal
clique G[s1, s2] of G has an inner vertex or s; and s2 have a common endpoint.
Due to Lemma 5, G has at most n potential maximal cliques with inner vertices.
Let s be a special scanline of G. Then, s has at most two right neighbours that
share an endpoint with s.

The potential mazimal cliques graph of a permutation graph G() is a directed
graph that is denoted by PC(w) and defined as follows: PC(7) has a vertex for
every special scanline of G(7), and there is an arc from vertex u to vertex v, if
Sy € N=(sy), where s, and s, denote the special scanlines the vertices v and v
are labelled with, respectively. Hence, there is a 1-1 correspondence between the
potential maximal cliques of G(7) and the arcs in PC(w).

Lemma 7. Let G = G(w) be a permutation graph over [n].

1. The potential maximal cliques graph PC(m) of G can be computed in linear

time.
2. PC(r) is acyclic, and a topological ordering can be computed in linear time.
3. Vertex sequence (xo,...,xx), k > 0, is a maximal path in PC(w) if and only

if

100 D. Meister

— 80,81,---,S8k—1,5¢ are the labels of xo, ..., zk, respectively

— {80,581, .-, 8k—1,8"} is a mazimal set of pairwise non-intersecting special
scanlines of G.

Proof. For claims 1 and 2, remember that the special scanlines of G can be
listed in linear time. We add the scanlines to the permutation diagram of G,
delete the line segments corresponding to vertices of G and obtain a represen-
tation from which we can derive PC(w) in linear time. Ordering the scanlines
according to their lower endpoints (respecting the order by the upper endpoints)
gives a topological ordering. For claim 3, let (xq,...,x;) be a maximal path in
PC(w). Obviously, the labels of zp and xy are sy and s?, respectively, since
sp < s < s for every special scanline s of G. Let s1,...,s,—1 be the labels
of z1,...,x_1, respectively. By definition of PC(w), {so, s1,-..,Sk—1,80} is a
maximal set of pairwise non-intersecting special scanlines of G. Conversely, let
S =def {S0,-.-,5k} be a maximal set of pairwise non-intersecting special scan-
lines of G where sg < -+ < sg. Then, s;_1 € N=(s;) for i € [k], and sg = sp and
s = sP. This, however, uniquely defines a maximal path in PC(r).

Theorem 7. Let G = G(w) be a permutation graph over [n]. An interval
graph H over [n] is a minimal triangulation of G if and only if there is a mazimal
path (xq,...,x) in PC(w) such that As,..., Ay is a consecutive clique arrange-
ment for H where A; =get V(G[Si—1,8:]) and the special scanlines s;—1 and s;
are the labels of x;—1 and z; in PC(w) fori € [k].

Proof. Let (xo,...,x,) be a maximal path in PC(rw), and let sq,..., sk be the
labels of xq,...,xy, respectively. By Lemma 7, so = sp and s = s_. Let
A; =det V(G]8i—1,8;]) for i € [k], and let H be the interval graph defined by the
consecutive clique arrangement A, ..., Ax. Note that A; N A;41 = int(s;) for
i € [k—1]. Let u,v € [n] be vertices in H, u < v. Let uv € E. There is a largest
J € [k] such that u or v is to the right of s;_;. Since neither u nor v is to the
right of s;, u,v € A;. So, H is a triangulation of G. If uv € E(H) \ E, there is
j € [k—1] such that u,v € A; N A;11, since otherwise u and v are adjacent in G
by Lemma 4. Then, uv is the unique chord in a cycle of length 4 in H. Hence,
H is a minimal triangulation of G by Theorem 1.

Now, let H be a minimal triangulation of G, and let A1, ..., Ay be a consec-
utive clique arrangement for H. Let Sg =ger Sk =det O and S; =qer A; N Aji1,
i € [k—1]. By Theorem 5, S1,...,Sk_1 are the minimal separators of H, and by

Theorem 2, {Si,...,Sk_1} is a maximal set of pairwise non-crossing minimal
separators of GG. Since Ap,..., A, are potential maximal cliques of G, there
are special scanlines si,s},s2,...,s), of G such that A; = V(Gls;,s]]) and

s;i € N=(s;) for ¢ € [k]. Suppose there are 4,5 € [k], i < j, such that s; or
s’ intersects with s; or s;. Due to Lemma 5, A; and A; do not contain inner
vertices. So, 1 <1 < j < kand A; =S;-1US; and A; = 5;_1US;. By the proof
of Theorem 6, {int(s;),int(s})} = {Si-1,5:} and {int(s;), int(s})} = {S;-1, 9}
So, by Theorem 2 and Lemma 3, s;, s, s;, s;- are pairwise non-intersecting, and
S =det {51,...,5;} is a set of pairwise non-intersecting special scanlines of G.

There is a maximal set S’ of pairwise non-intersecting special scanlines of G

Computing Treewidth and Minimum Fill-in for Permutation Graphs 101

such that S C §" and Cs =qef {A1,...,Ar} C Cs where Cgs denotes the set of
potential maximal cliques of G defined on the path of PC(7) determined by S’
By the first part of this proof, Css defines a minimal triangulation H' of G, and
since Cs C Cg/, H is a subgraph of H'. Then, H and H' are equal, and Cs and
Cs’ are equal, and the theorem holds.

5 Treewidth and Minimum Fill-In

Let G = (V, E) be a graph. Treewidth and minimum fill-in can be defined as
follows:

tw(G) =qef min{w(H) : H is a minimal triangulation of G} —1
mfi(G) =qef min{|E(H)| — |E(G)| : H is a minimal triangulation of G} .

In the same manner the pathwidth and interval completion problems can be
defined by replacing “minimal triangulation” by “triangulation that is an inter-
val graph”. Since minimal triangulations of AT-free graphs are interval graphs,
treewidth and pathwidth as well as chordal completion (minimum fill-in) and
interval completion describe the same problems on AT-free graphs.

Our algorithms work on the weighted potential maximal cliques graph. Let
G = G(w) be a permutation graph. The weighted potential maximal cliques
graph of G is the potential maximal cliques graph of G where the vertices are
assigned the numbers of vertices of the corresponding minimal separators and
the arcs are assigned the numbers of vertices of the corresponding potential
maximal cliques.

Theorem 8. Let G = G(w) be a permutation graph. The weighted potential
maximal cliqgues graph of G can be computed in linear time.

Treewidth and minimum fill-in can be solved on the weighted potential maxi-
mal cliques graph by finding shortest paths.

Theorem 9. Treewidth and minimum fill-in for permutation graphs can be com-
puted in linear time.

Proof. Let G = G(m) be a permutation graph over [n]. In linear time, the
weighted potential maximal cliques graph of G can be computed. By Theorem 7,
the treewidth of G is realised on a maximal path of the weighted potential maxi-
mal cliques graph of G with the least maximal arc weight. For computing the
minimum fill-in, consider the following observation. Let Ay, ..., Ay be a consec-
utive clique arrangement for an interval graph H. For every i € [k]:

[B(H[AoU- --UA))|+ | E(H[A-1 NA)| = |E(H[AoU- - -UA_1])| + | E(H[AD)],

where Ay =qer 0. Since H[A;—1 N A;] and H[A;] are complete graphs and the
numbers of vertices of these graphs are known as weights, it is easy to determine
the numbers of edges. In linear time, a path on which the smallest number of
edges among the minimal triangulations of G is realised can be found.

102 D. Meister

Acknowledgements. I thank anonymous referees for suggestions concerning
the presentation of the material.

References

1. ST. ARNBORG, D.G. CORNEIL, A. PROSKUROWSKI, Complezity of finding embed-
dings in a k-tree, SIAM Journal on Algebraic and Discrete Methods 8, pp. 277284,
1987.

2. H.L. BODLAENDER, T. KLOKS, D. KRATSCH, Treewidth and Pathwidth of Per-
mutation Graphs, STAM Journal on Discrete Mathematics 8, No. 4, pp. 606616,
1995.

3. H.L. BODLAENDER, T. KrLoks, D. KraTscH, H. MULLER, Treewidth and mini-
mum fill-in on d-trapezoid graphs, Journal of Graph Algorithms and Applications 2,
No. 3, pp. 1-23, 1998.

4. H.L. BODLAENDER, R.H. MOHRING, The pathwidth and treewidth of cographs,
STAM Journal on Discrete Mathematics 6, pp. 181-188, 1993.

5. V. BOUCHITTE, I. TODINCA, Treewidth and Minimum Fill-in: Grouping the Min-
imal Separators, SIAM Journal on Computing 31, pp. 212-232, 2001.

6. D.R. FULKERSON, O.A. GRrOss, Incidence matrices and interval graphs, Pacific
Journal of Mathematics 15, pp. 835-855, 1965.

7. M.CH. GovrLuMmBIC, Algorithmic Graph Theory and Perfect Graphs, Academic
Press, New York, 1980.

8. T. Kroks, D. KRATSCH, J. SPINRAD, On trecwidth and minimum fill-in of aster-
oidal triple-free graphs, Theoretical Computer Science 175, pp. 309-335, 1997.

9. C.G. LEKKERKERKER, J.CH. BOLAND, Representation of finite graphs by a set of
intervals on the real line, Fundamenta Mathematicae 51, pp. 45-64, 1962.

10. R.H. MOHRING, Triangulating graphs without asteroidal triples, Discrete Applied
Mathematics 64, pp. 281-287, 1996.

11. A. PARRA, P. SCHEFFLER, How to Use the Minimal Separators of a Graph for
its Chordal Triangulation, Proceedings of the 22nd International Colloquium on
Automata, Languages and Programming, ICALP95, Lecture Notes in Computer
Science 944, pp. 123-134, Springer-Verlag, 1995.

12. A. PARRA, P. SCHEFFLER, Characterizations and algorithmic applications of
chordal graph embeddings, Discrete Applied Mathematics 79, pp. 171-188, 1997.

13. D.J. ROSE, Triangulated Graphs and the Elimination Process, Journal of Mathe-
matical Analysis and Applications 32, pp. 597-609, 1970.

14. D.J. RosE, R.E. TARJAN, G.S. LUEKER, Algorithmic aspects of vertex elimination
on graphs, SIAM Jounal on Computing 5, pp. 266-283, 1976.

15. M. YANNAKAKIS, Computing the minimum fill-in is NP-complete, STAM Journal
on Algebraic and Discrete Methods 2, pp. 77-79, 1981.

Roman Domination over Some Graph Classes*

Mathieu Liedloff', Ton Kloks, Jiping Liu?, and Sheng-Lung Peng?

! Université Paul Verlaine - Metz,
Laboratoire d’Informatique Théorique et Appliquée,
57045 Metz Cedex 01, France
liedloff@sciences.univ-metz.fr
2 Department of Mathematics and Computer Science,
The university of Lethbridge,

Alberta, T1K 3M4, Canada
liu@cs.uleth.ca
3 Department of Computer Science and Information Engineering,
National Dong Hwa University,

Hualien, Taiwan, R.O.C
lung@csie.ndhu.edu.tw

Abstract. A Roman dominating function of a graph G = (V, E) is a
function f : V. — {0,1,2} such that every vertex = with f(z) = 0
is adjacent to at least one vertex y with f(y) = 2. The weight of a
Roman dominating function is defined to be f(V) = > . f(z), and
the minimum weight of a Roman dominating function on a graph G is
called the Roman domination number of G.

In this paper we answer an open problem mentioned in [2] by showing
that the Roman domination number of an interval graph can be com-
puted in linear time. We also show that the Roman domination number of
a cograph can be computed in linear time. Besides, we show that there
are polynomial time algorithms for computing the Roman domination
numbers of AT-free graphs and graphs with a d-octopus.

1 Introduction

Let G = (V, E) be an undirected and simple graph. A Roman dominating func-
tion is a function f : V — {0,1,2} such that every vertex x with f(z) = 0
is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman
dominating function is f(V) = > . f(z). The minimum weight of a Roman
dominating function on a graph G is called the Roman domination number of
G and is denoted by 1r(G).

Roman domination has been introduced in [2] as a new variety of the classical
domination problem having both historical and mathematical interest, partic-
ularly in the field of server placements [15]. We refer to [2,6,10,11,12,16,17] for

* The second and the third authors were partially supported by NSERC of Canada.
The second author was supported also by the National Science Council of Taiwan
under grant NSC 93-2811-M-002-004. The first author is the corresponding author.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 103-114, 2005.
© Springer-Verlag Berlin Heidelberg 2005

104 M. Liedloff et al.

more background on the historical importance of the Roman domination prob-
lem and various mainly graph-theoretic results not mentioned here.

The complexity of the Roman domination problem when restricted to inter-
val graphs was mentioned as an open problem in [2]. In this paper we show that
there are linear time algorithms to compute the Roman domination number for
interval graphs and cographs. We also show that there are polynomial time al-
gorithms for computing the Roman domination numbers of AT-free graphs and
graphs with a d-octopus. The paper is organized as follows. Section 2 gives some
preliminaries about our problem. The results for interval graphs and cographs
are presented in Sections 3 and 4, respectively. In Section 5, we present polyno-
mial time algorithms for computing the Roman domination numbers of AT-free
graphs and graphs with a d-octopus.

2 Preliminaries

Let G = (V,E) be an undirected and simple graph. For a vertex z of G we
denote by N(x) the neighborhood of z in G and by N[z] = N(z) U {z} the
closed neighborhood of . The distance dg(x,y) between two vertices and y is
the length of a shortest path joining these two vertices.

A dominating set D of a graph G = (V, E) is a subset of vertices such that
every vertex of V — D has at least one neighbor in D. The minimum cardinality
of a dominating set of GG is said to be the domination number of G, and it
is denoted by v(G). An independent set in a graph G is a subset of pairwise
non-adjacent vertices.

Now let us summarize some useful facts on Roman domination [2].
Theorem 1 ([2]). 7(G) < w(G) < 2v(G).

Lemma 1 ([2].). If G is a graph of order n, then yr(G) = ¥(G) if and only if
G =K, i.e., G is an independent set with n vertices.

Definition 1. A 2-packing is a set S C V such that for every pair z,y € S
Nz] N Ny] = @. The mazimum cardinality of a 2-packing in G is called the
2-packing number of G.

Theorem 2 ([2]). Let f be a minimum weighted Roman dominating function
of a graph G without isolated vertices. Let V;, i = 0,1,2, be the set of vertices x
with f(x) = i. Let f be such that |V1]| is the minimum. Then Vi is a 2-packing
and there is no edge between Vi and V3.

Theorem 3 ([2]). For any non-trivial connected graph G,
YR(G) = min{|S| +2v(G — S) | S is a 2-packing}.

Remark 1. A 2-packing S can serve as V7 and a dominating set in G — S as V5.
Notice that the weight of a Roman dominating function is [Vi|+ 2|V3|.

Roman Domination over Some Graph Classes 105

Definition 2. We call (V1,V2) a Roman pair of a graph G if (V1,Va2) is a
solution induced by a minimum weighted Roman dominating function of the
graph G.

We refer the reader to [1,8] for definitions and properties of graph classes not
given in this paper.

3 Roman Domination on Interval Graphs

Throughout this section we assume that G = (V| E) is connected. Clearly, if
G is disconnected then, obviously, 7r(G) is the sum of the Roman domination
numbers of its components.

Definition 3. A graph G = (V,E) is an interval graph if there exists a set
{I, | v € V} of intervals of the real line such that I, NI, # & iff uv € E.

Both I, and v can be used to represent the vertex v in an interval graph.
Let [(v) and r(v) denote the values of the left and right end points of the in-
terval I, = [l,, 7], respectively. A model of an interval graph is normalized if
Upev {l(v),r(v)} ={1,2,...,2n}. In the following we assume that a normalized
model of the graph is part of the input.

Our linear time algorithm to compute the Roman domination number of
an interval graph uses dynamic programming and passes through the interval
collection from left to right to enumerate all the potential optimum solutions
(V1, Va).

3.1 Structure of an Optimum Solution
In this section, we examine the structure of an optimum solution.

Lemma 2. For every interval graph there exists a Roman pair (V1,Va) such that
no interval in Vo is properly contained in another interval.

Lemma 3. If (V4,V3) is a Roman pair, then Va contains no clique of size 3 or
more.

Proof. Let {i1, i, i3} C Vi be a clique of size three. By Lemma 2, there is no
interval which is properly contained in another interval. Without loss of gener-
ality, we assume [(i1) < I(i2) < l(i3) < r(i1) < r(i2) < r(i3). Then we obtain
that Niz] C N[i1] U N[iz]. That is, (V1, V2 \ {i2}) is a Roman pair of G which
is a contradiction. O

Lemma 4. If (V1,V3) is a Roman pair, then the connected components induced
by Vo are paths.

Proof. By Lemma 2, each connected component induced by V5 is a proper inter-
val graph. Hence, it is chordal and it does not contain a claw, i.e., K1 3. Together
with Lemma 3, our lemma holds. a

106 M. Liedloff et al.

We can use this last result in the following way: in order to find a set V5 of
an optimum solution, we only have to consider certain shortest paths between
some pairs of vertices. Now, we characterize the set V; of an optimum solution.

Definition 4. Let (V1,V2) be a Roman pair of an interval graph G. Intervals
J C Vi are consecutive iff between the leftmost and rightmost end points of J
there is mo end point of an interval I € V5.

Lemma 5. There exists a Roman pair (Vi,Va) with the property that Vi is an
independent set, and there is no subset J C Vi containing more than two con-
secutive intervals.

Proof. By Theorem 2, we have a Roman pair (V4, V2) with V4 being an indepen-
dent set. Let {a,b,c} C V] be a set of three consecutive intervals in V. Suppose
that [(a) < r(a) < 1(b) < r(b) <l(c) < r(c). Since (V1, V2) is of minimum weight,
we have Yo € N(b), v € V1 and v € V5. Consequently, if v € N(b) there must
exist a w € N(v) such that w € V,. However {a,b,c} are consecutive, there-
fore, we have r(w) < l(a) (or resp. r(c) < l(w)). As a result of v € N(a) (resp.
v € N(c)), there exists a solution with f(v) = 2 and f(a) = f(b) = 0 (resp.
f(b) = f(c) = 0). Consequently if we have a solution with three consecutive
intervals, there exists a solution (V7,V3) of same weight such that V7 contains
no more than two consecutive intervals. O

3.2 Description of the Algorithm

Previous results show us how to build a potential solution (V1,V2). Indeed, we
have seen that connected components induced by V5 are paths and each of these
paths can be preceded or followed by at most two consecutive intervals of V.
So, our algorithm goes through the interval collection in a left-right fashion. An
optimum solution, i.e, a solution whose weight is the minimum over all possible
solutions, will be one of the solutions found by the algorithm with minimum value
of |V1]42|Vz|. The algorithm uses dynamic programming in order to intelligently
test every possible solution with respect to the structure established by previous
lemmas.

For any given normalized interval graph G = (V| E) of order n, the algorithm
treats intervals increasingly according to their right end points. Corresponding
to a right end point d (0 < d < 2n) of an interval, we define a sub-solution
(V{,V3) by

1. V],V C{ieV:r() <d},

2. (V{,V3) is a solution of minimum weight over all the solutions for the graph
G[S], where S = {v € V : l(v) < d}, such that the interval ¢ with r(i) = d
belongs to V3.

Clearly, at the beginning of the algorithm no intervals are yet considered and
we define for d = 0 the sub-solution (V{,Vy) = (&, &). Then, for each step, we
start with a current integer d and its corresponding sub-solution (V/, V), and
we construct an extension (V/', VJ') of (V/,VJ) corresponding to a new d’, where
d’ > d. According to previous lemmas, there are three possible cases:

Roman Domination over Some Graph Classes 107

1. add two intervals ¢; and i} to V] and one interval iy to Vi such that
(Vv = (V] U {é1,41}, V5 U {ia}) is a sub-solution corresponding to
d' = r(ia) (see procedure Add-intervals-first-choice),

2. add one interval i; to V/ and one interval i to V3 such that (V/', V') =
(VY U {i1}, V5 U {iz}) is a sub-solution corresponding to d' = r(iz) (see
procedure Add-intervals-second-choice),

3. add one interval is to V3 such that (V{’, V5") = (V{, VgU{i2}) is a sub-solution
corresponding to d’ = r(iz) (see procedure Add-intervals-third-choice).

The first choice corresponds to adding two consecutive intervals to V{ and
then starting a new path in V3’. In the second case, we add one interval to V/
and begin a new path in V4’. In the last case, we add only one interval to V3
which extends an existing path in V; or begins a new path in V3’.

Now, we provide another result which will be used in the construction of
some sub-solutions.

Lemma 6. Let d be an integer such that 1 < d < 2n. Suppose we have a sub-
solution (V{,V3) for the set of all intervals ¢ with 1(i) < d. Let i1 and i} be such
that r(i1) = min{r(i) : 1(¢) > d} and r(i}) = min{r() : 1(i) > r(i1)}. Let w
be such that r(w) = min{r(i) : I(i) > d AN i # i1 AN i # i} Ifw e N(ip),
then there exists an optimum solution (V{', V') where i1 and i} are not two
consecutive intervals in V{'.

Proof. By the construction of i1, #f and w, we have that d < I(i1), d < (),
d < l(w) and r(i1) < r(w). Since w € N(i1), then I(w) < r(iy) < r(w). There
are two cases.

1. w € N(i}). Then there exists an alternative solution with w € V3’ and

i ¢V

2. w ¢ N(i}). Then we have r(w) < [(i]) and there are three sub-cases:

(a) w € V4. Then iy and ¢} are not consecutive.

(b) There exists a v € N(w) such that v € V5’ (w € V). Then l(v) <
r(w) < r(v) and v € V§'. If both 41 and i} are in V{’, then 4, and)
cannot be consecutive since at least one end of v is between them.

(¢) w € V. In this case i; cannot be in V{’, thus 41 and ¢} cannot be
consecutive. d

3.3 Preprocessing Data

In order to achieve a linear-time algorithm, we do some pre-processing so that
when we run the program, the necessary data is available in constant time. In
particular, the following operations must be done in constant time in order to
obtain the claimed time bound.

— find 4, j, k such that r(¢) = min{r(v) : I(v) > d}, r(j) = min{r(v) : [(v) >
d N v#i}yand r(k) =min{r(v): l(v) >d AN v#i A v # j} for a fixed d,

— find 4 such that r(7) = max{r(v) : v € N[z]} for a fixed z,

— check whether N[z]NN[y] # @ for two intervals x and y such that r(z) < r(y)
(for this operation we only have to find ¢ such that r(i) = max{r(v) : v €
N[z]} and then check whether i € Ny]).

108 M. Liedloff et al.

Sort Intervals According to Their Right End Points (SIRE). The collec-
tion of n intervals is given in a normalized interval model. We sort the intervals
joif 3j st.r(j) =1,

NIL otherwise. in time O(n)

in an array D of size 2n such that D[i] = {

using bucket sort.

Find Three Intervals with Lowest Right End Points (ILRE). Now, we
use the array D to build another 2-dimensional array MinR which contains for
each value d € {0,1,...,2n} the first, second, and third interval whose right end
points are the first, second, and third lowest, respectively, and such that their
left end points are greater than d.

Find Intervals with Greatest Right End Points (IGRE). Finally, we
calculate for each interval ¢ € {1,...,n} its neighbor which has the greatest

right end point, or the interval ¢ if there is no such a neighbor, in an array
MazR.

The three procedures SIRE, ILRE and IGRE have been shown in detail in [13],
and each takes O(n) time.

3.4 A Linear-Time Algorithm

Using the structure of an optimum solution described by previous lemmas of
this section and some results stated in section 2 (in particular Theorem 2), we
are ready to present a linear-time algorithm for solving the Roman domination
problem on interval graphs. An optimum solution can be easily constructed by
standard techniques.
Procedure Add-intervals-first-choice(d)
Data: An integer d such that a corresponding sub-solution (V{,V3) has already

been computed.
Result: An extension of the sub-solution (V{,V3) constructed using the first case

(add two intervals to V{ and one interval to V3).

i1 «— MinR[d][1]
if i1 # NIL then
i — MinR[r(i1)][1]
if i} # NIL then
if MaxR[i1] does not intersect i; then
w «— MinR[d][2]
if w=1) then w « MinR[d][3]
if w # NIL then
if i1 does not intersect w then
12 «— MazR[w]
if i1 does not intersect ia and iy does not intersect i> then
Weight[r(iz)] « min{Weight[r(i2)], Weight[d] + 4}

else Weight[2n] — min{Weight[2n], W eight[d] + 2}

Roman Domination over Some Graph Classes 109

Procedure Add-intervals-second-choice(d)
Data: An integer d such that a corresponding sub-solution (V7, V3) has already
been computed.
Result: An extension of the sub-solution (V{,V5) constructed using the second
case (add one interval to V{ and one interval to V).

i1 — MinRI[d][1]
if i1 # NIL then
w «— MinR[d][2]
if w # NIL then
ig — MazR[w]
if i1 does not intersect i then
Weight[r(iz)] < min{Weight[r(i2)], Weight[d] + 3}

else Weight[2n] < min{Weight[2n], Weight[d] + 1}

Procedure Add-intervals-third-choice(d)
Data: An integer d such that a corresponding sub-solution (V{,V3) has already
been computed.
Result: An extension of the sub-solution (V{,V3) constructed using the third case
(add one interval to V).

w «— MinR[d][1]
if w # NIL then

ig — MazR[w]

Weight[r(iz)] « min{Weight[r(i2)], Weight[d] + 2}
else Weight[2n] — min{Weight[2n], Weight[d]}

Algorithm Roman-Dom(normalized interval model of a graph G ; v(G))

Data: An interval graph represented by a normalized model.

Result: The Roman domination number g of the input interval graph.
Construct the data structures D, MinR and MazR

for i =1 to 2n do Weight[i] < 2n

Weight[0] < 0

Add-intervals-first-choice(0)

Add-intervals-second-choice (0)

Add-intervals-third-choice(0)

for i =1 to 2n do

if D[i] # NIL and Weight[r(D[i])] # 2n then

Add-intervals-first-choice(r(D][i]))
Add-intervals-second-choice (r(DJi]))
Add-intervals-third-choice (r(D]i]))

return 1r(G) = Weight[2n|

Theorem 4. The Roman domination problem can be solved in O(n) time on
any interval graph with a normalized interval model.

Proof. The correctness of the algorithm follows from the lemmas stated in Sub-
sections 3.1 and 3.2

We note that it takes linear time to construct D, MinR and MaxzR, and
it takes constant time to process each of the procedures Add-intervals-first-

110 M. Liedloff et al.

choice, Add-intervals-second-choice, and Add-intervals-third-choice.
The complexity of the algorithm Roman-Dom is dominated by the second
for loop. Therefore, the complexity of the algorithm is O(n). O

4 Roman Domination on Cographs

In this section we describe an algorithm to compute the Roman domination
number of a cograph G. We may assume that G is connected, since otherwise
YR(G) equals the sum of the Roman domination numbers of its components.

If G is connected then G is the join of two graphs G; and Gs. Clearly, any 2-
packing of G consists of at most one vertex since G is Py-free. By Theorem 3 the
Roman domination number of G can be computed by taking the minimum over
all vertices x of 2y(G — x) + 1 and 2v(G). It is well-known that the domination
number of a cograph can be computed in linear time. Thus, we can compute the
Roman domination number of G in O(n(m + n)) time, where n and m are the
numbers of the vertices and edges of G respectively. However, we can obtain a
linear time algorithm by using the structure of cotree.

It is well-known that any cograph G can be represented by a cotree 7 [9]. In
T, each leaf represents a vertex of G and each internal node represents either a
join or a union. For any two vertices u and v, if (u,v) is an edge of G, then the
lowest common ancestor of w and v in 7 is a join node. Since G is connected,
the root of 7 is a join node. We may assume that 7 is a binary tree. For a
node v, let 7, denote the subtree of 7 rooted at v. Let G, denote the subgraph
defined by 7,. Now, our algorithm is as follows.

For a cograph G, we traverse its corresponding cotree 7 from leaves to the
root. Let (V1(Gy), V2(G,)) be a Roman pair of G,,. Initially, every leaf w is in
V1(Gy) and Va(Gy,) is empty, i.e., 7r(Gy) = 1. Now let us consider an internal
node u in 7, let [(respectively, r) be its left (respectively, right) child. That is,
G, is the resulting cograph by applying union or join operation on GG; and G,.. If
w is a union node, then (V1 (Gy,), Va(G.)) = (Vi(G)) UVA(G,), Va(Gi) U Va(G,))
is a Roman pair of G,. If u is a join node, we do the following. Without loss of
generality, let 7r(G1) < w(G:).

1. w(G1) = 1r(G,). If at least one of Vo(G;) and V2(G,) is not empty, say
Va(G) # 0, then set Vi (G,) = V2(G,) = 0. We do this because every vertex
in G, is dominated by a vertex v € V2(G)).

If both V2 (G;) and Va(G,) are empty, then we move any vertex v € Vi(G))
to Vo(Gy). We then set Vi (G,) = Va(G,) = 0 for the same reason.

2. wr(G)) < w(G,). If Vo(G;) = 0, again we move a vertex v € V4(G))
to Va(Gy). Since every vertex in G, is dominated by v, we set V1 (G,) =
Va(Gr) = 0.

If Vo(Gy) # 0, then we set V1(G,) = Va(G,) = 0 for the same reason.

In any one of above cases, if 2|V2(G;)| + [V1(G;)| > 4, then (i) keep only one
vertex in V2(Gy), (ii) set Vi(G;) = 0, and (iii) arbitrarily select a vertex in G,
and add it to Vo(G,). Finally, let V;(G,,) = Vi(G;) UV;(G,) for i = 1,2. It is not

Roman Domination over Some Graph Classes 111

hard to see that yr(G) < 4 for any connected cograph G. We have the following
theorem.

Theorem 5. The Roman domination number of a cograph can be computed in
linear time.

Proof. For the correctness, we show it by induction on the height of 7. In the
base case that we consider the height equal to 0. Since every vertex w is an
isolated vertex, yr(Gy) = 1. Thus, ({w},0) is the Roman pair of G,,. Assume
that for any node v in 7 with height equal to h, we can compute a Roman pair
(V1(Gy), Va(Gy)) for G,. Now, consider a node u with height h + 1. Let [and r
be its left and right children in 7, respectively. If u is a union node, it is easy to
check that (V1(G;) U Vi(G,), Va(G)) U Va(G,)) is a Roman pair of G,,. We now
consider the case that u is a join node. Without loss of generality, we assume
that vr(G;) < yr(G,). By the definition, every vertex in G, is adjacent to any
vertex of G;. If Vo(G)) is not empty, then every vertex is dominated by a vertex
in V2(Gy). Thus (V1(Gi), V2(G;)) can Roman dominate G,,. If V2(G)) is empty,
we can promote a vertex in V1 (G}) to Vo(G)) such that it can dominate G,.. Since
Ww(G1) < w(G,), we can obtain a better solution by doing so. However, it will
increase the weight of the Roman dominating function. If |V1(G)|+ 2|Va(Gi)| <
4, then (V1 (Gi), V2(Gy)) is a Roman pair of Gy,. If [V1(G))| + 2|Va(G))| > 4, we
select a vertex v; from V5(G)) and arbitrarily select a vertex v, from G,. Since
v; dominates G, and v, dominates Gy, (0, {v;,v,}) is a Roman pair of G,. This
show the correctness of our algorithm.

For the time complexity, we implement each dominating set using a linked
list with front and tail pointers. Thus the Roman pair of a union node can be
computed in constant time. For a join node, it costs constant time to empty a
set. For the other operations, at most constant number of vertices are updated.
Thus, the overall time complexity is linear. O

Remark 2. In [2] a graph G is called Roman if r(G) = 2v(G). It is proved
that a graph G is Roman if and only if v(G) < v(G — S) + lgl for every 2-
packing S in G. It follows that a connected cograph G is Roman if and only if
¥(G) = v(G—x) for every vertex x. Since, in [2] it is posed as an open problem to
determine Roman graphs other than trees?, it would be of interest to know which
cographs satisfy this equality. Notice that a large subclass of Roman cographs
can be constructed as follows: Take any cograph G and construct a graph H
by replacing every vertex of G by a true twin. It is easy to check that H is a
cograph®, and furthermore for every vertex = in H, y(H) = v(H — z).

5 Roman Domination on AT-Free Graphs and Graphs
with a d-Octopus

In this section we study the Roman domination problem on AT-free graphs
and graphs with d-octopus. Our approaches are based on algorithms for the

* A constructive characterization of Roman trees is given in [10].
5 Any induced P, would lead to an induced P4 in G.

112 M. Liedloff et al.

domination problem in [7,14]. First we provide some preliminaries on AT-free
graphs and d-octopus.

Definition 5. Three vertices x, y and z of a graph G = (V, E) form an as-
teroidal triple, AT for short, if for any two of the three vertices there is a path
between them that avoids the neighborhood of the third. A graph is said to be
AT-free if it does not contain an AT.

Definition 6. A pair of vertices x and y is a dominating pair of a graph G, if
the vertex set of any path between x and y in G is a dominating set in G.

Theorem 6 ([4]). Any connected AT-free graph has a dominating pair.

Definition 7. A path P = (x = xzg,21,...,24 = y) s a dominating shortest
path, DSP for short, of a graph G = (V, E) if

1. P is a shortest path between x and y in G,
2. {xo,x1,...,24} is a dominating set of G.

Corollary 1 ([14]). Every connected AT-free graph has a DSP.

Definition 8. A d-octopus O of a graph G = (V, E) is a subgraph of G such
that

1. the vertices of O is a dominating set of G,

2. there are vertices r,v1,va,...,vq4 of G, and for each i € {1,...,d} there is
a shortest path P; from r to v; in G such that O is the union of the paths
P, P,... Py

We call the common end point r of the d shortest paths the root of the d-octopus
O. Note that the paths need not to be disjoint.

Remark 3. A graph with a DSP is a 1-octopus graph.

The following results are Roman domination versions of Lemma 33 in [7] and
Theorem 4 in [14] “replacing D by V2”.

Theorem 7. Let G = (V, E) be a graph with a d-octopus with root x. Let Hy,
H,, ..., H; be the levels of the BFS-tree with the root x. Then G has a Roman
pair (V1,Va) such that:

A A

1€{0, 1,00} GE{0, 1.1~}

i+j
Ve | J A,

s=1

<(j+5)d—1. (1)

Theorem 8. Let G = (V, E) be a connected AT-free graph. There is a vertex
x which can be determined in linear time such that if Hy, Hy, ..., H; are the
levels of the BFS-tree with the root z, then G has a Roman pair (Vi,Va2) such
that:

147
A N |venlJH|<ji+3. (2)
i€{0,1,...,l} j€{0,1,....l—3} s=i

Roman Domination over Some Graph Classes 113

A Polynomial Time Algorithm:

Our algorithm uses dynamic programming to compute a Roman pair through
the levels of a BFS-tree. A subsolution computed during the execution of the
algorithm is a set S C U};}) H, chosen up to a fixed level i —1 € {1,2,...,1—1}.
Information of any subsolution S that we must store during the execution are
the vertices that belong to the last two current levels (i.e, SN (H;—2 U H;i_1)).
Consequently, the number of vertices from Va2 that a Roman pair (V1, Va) might
have in any three consecutive BFS-levels is important for the complexity of the
algorithm. The previous theorems guarantee that this number is at most 5 for
connected AT-free graphs and at most 7d — 1 for graphs with a d-octopus.

The algorithm rpy (G), where k is a fixed positive integer, computes a Roman
pair of the given connected graph G. If G has a vertex x and a Roman pair
(V4, V2) such that at most k vertices of V5 belong to any three consecutive levels
of the BFS-tree which has x as a root, then rp(G) outputs a Roman pair for G.

Algorithm rp(G)

D <V
val(D) « |V| /* initialization: every vertex of V is in Vi, this is a
trivial Roman dominating set */

forall z € V do
Compute the BFS-level of vertex =

Ho={z}, HH=N(z), ..., HH={u eV :da(z,u) =1}
7+ 1
Initialize the queue A; to contain an ordered triple (S, .S, val(S)) for all
nonempty subsets S of N[z| satisfying |S| < k with val(S) « 2|95]
Add to the queue A; the ordered triple (&, @,1)
while A; # @ and i <l do
t—1i+1
forall triples (S, S’,val(S")) in the queue A;—1 do
forall U C H; with |[SUU| < k do
R (SUU)\Hi_s
R «— S'UU
val(R') «— val(S") + 2|U| + |Hi—1\N[S U U]|
if there is no triple in A; with first entry R then
Insert (R, R',val(R’)) in the queue A;
if there is a triple (P, P',val(P")) in A; such that P = R and
val(R') < val(P') then
Replace (P, P/, val(P")) in A; by (R, R',val(R'))

Among all triples (S, 5", val(S")) in the queue A;, determine one with
minimum value v = val(S") + |H\N[S]|, say (B, B’,val(B"))
if v <wval(D) then D « B’; val(D) « v

return (V1,V2) = (VA\N[D], D)

Theorem 9. Algorithm rpi(G) computes a Roman pair of the given connected
graph G in time O(n**2) if G has a Roman pair (V1,V2) and a vertex x € V
such that at most k vertices of Vo belong to any three consecutive BFS-levels of x.

114 M. Liedloff et al.

Proof. The correctness can be seen easily and the analysis of the running time
is the same as the Theorem 5 in [14]. |

Theorem 10. There is an O(n"@*1)-time algorithm to compute Roman pairs
for graphs with a d-octopus. In particular, there is an O(n")-time algorithm
to calculate Roman pairs for graphs having a DSP and there is an O(nS)-time
algorithm to compute Roman pairs for AT-free graphs.

Proof. By combining Theorems 7 and 9 and using the results in [3,5,14] we
obtain the theorem (see [13] for more details). O

Acknowledgement. We would like to thank Dieter Kratsch for his helpful
comments and advices.

References

1. Bréandstadt, A., V. Le, and J. P. Spinrad, Graph classes: A survey, STAM Monogr.
Discrete Math. Appl., Philadelphia, 1999.

2. Cockayne, E. J., P. A. Jr. Dreyer, S. M. Hedetniemi, and S. T. Hedetniemi, Roman
domination in graphs, Discrete Math. 278, (2004), pp. 11-22.

3. Corneil, D. G.; S. Olariu, and L. Stewart, Linear time algorithms for dominating
pairs in asteroidal triple-free graphs, SIAM J. Comput. 28, (1999), pp. 1284-1297.

4. Corneil, D. G., S. Olariu, and L. Stewart, Asteroidal triple-free graphs, SIAM J.
Discrete Math. 10, (1997), pp. 399-430.

5. Deogun, J. S. and D. Kratsch, Diametral path graphs, Proceedings of WG’95,
LNCS 1017, (1995), pp. 344-357.

6. Fernau, H., Roman domination: a parameterized perspective, Manuscript.

7. Fomin, F. V., D. Kratsch, and H. Miiller, Algorithms for graphs with small octopus,
Discrete Appl. Math. 134, (2004), pp. 105-128.

8. Golumbic, M. C., Algorithmic graph theory and perfect graphs, Academic Press,
New York, 1980.

9. Habib, M. and C. Paul, A simple linear time algorithm for cograph recognition,
Discrete Appl. Math. 145, (2005), pp. 183-197.

10. Henning, M. A.; A characterization of Roman trees, Discuss. Math. Graph Theory
22, (2002), pp. 225-234.

11. Henning, M, A., Defending the Roman empire from multiple attacks, Discrete
Math. 271, (2003), pp. 101-115.

12. Henning, M. A. and S. T. Hedetniemi, Defending the Roman empire-A new strat-
egy, Discrete Math. 266, (2003), pp. 239-251.

13. Kloks, T., M. Liedloff, J. Liu and S. L. Peng, Roman domination in some spe-
cial classes of graphs, Technical Report TR-MA-04-01, Nov. 2004, University of
Lethbridge, Alberta, Canada.

14. Kratsch, D., Domination and total domination on asteroidal triple-free graphs,
Discrete Appl. Math. 99, (2000), pp. 111-123.

15. Pagourtzis, A., P. Penna, K. Schlude, K. Steinhfel, D. S. Taylor and P. Widmayer,
Server placements, Roman domination and other dominating set variants, IFIP
TCS Conference Proceedings 271, (2002), pp. 280-291.

16. ReVelle, C. S. and K. E. Rosing, Defenders imperium Romanum: A classical prob-
lem in military strategy, Amer. Math. Monthly 107, (2000), pp. 585-594.

17. Stewart, 1., Defend the Roman empire! Sci. Amer. 281, (1999), pp. 136-139.

Algorithms for Comparability of Matrices
in Partial Orders Imposed by Graph
Homomorphisms

Jif{ Fiala!, Daniél Paulusma?, and Jan Arne Telle?

! Charles University, Faculty of Mathematics and Physics,
DIMATTIA and Institute for Theoretical Computer Science (ITI)*,
Malostranské ndm. 2/25, 118 00, Prague, Czech Republic
fiala@kam.mff.cuni.cz
2 Department of Computer Science, University of Durham,
Science Laboratories, South Road,

Durham DH1 3LE, England
daniel.paulusma@durham.ac.uk
3 Department of Informatics, University of Bergen,
N-5020 Bergen, Norway
telle@ii.uib.no

Abstract. Degree refinement matrices have tight connections to graph
homomorphisms that locally, on the neighborhoods of a vertex and its
image, are constrained to three types: bijective, injective or surjective.
If graph G has a homomorphism of given type to graph H, then we
say that the degree refinement matrix of G is smaller than that of H.
This way we obtain three partial orders. We present algorithms that
will determine whether two matrices are comparable in these orders. For
the bijective constraint no two distinct matrices are comparable. For the
injective constraint we give a PSPACE algorithm, which we also apply to
disprove a conjecture on the equivalence between the matrix orders and
universal cover inclusion. For the surjective constraint we obtain some
partial complexity results.

1 Introduction

Graph homomorphisms, originally obtained as a generalization of graph col-
oring, have a great deal of applications in computer science and other fields.
Beyond these computational aspects they impose an interesting structure on
the class of graphs, with many important categorical properties, see e.g. the
recent monograph [6]. We focus our attention on graph homomorphisms with
local constraints. Originally arising in topological graph theory, these homomor-
phisms were required to act as a bijection on the neighborhood of each vertex [2].

* Supported by the Ministry of Education of the Czech Republic as project
1M0021620808.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 115-126, 2005.
© Springer-Verlag Berlin Heidelberg 2005

116 J. Fiala, D. Paulusma, and J.A. Telle

We consider further local constraints, namely local injectivity or local surjectiv-
ity. Both these kinds of homomorphisms have already been studied due to their
applications in models of telecommunication [4] and in social science [3,8].

In related work [5] we have shown that these locally constrained homomor-
phisms impose an algebraic structure on the class of connected finite graphs.
We also extended a necessary condition for the existence of a locally bijective
homomorphism between two graphs [7] to a similar but much more sophisti-
cated statement for locally injective or surjective homomorphisms. An important
role in this characterization was predicated to matrices that describe the degree
structure of a graph, the so-called degree refinement matrices. We gave a char-
acterization of these matrices, and showed that both locally injective and locally
surjective graph homomorphisms impose partial orders on degree refinement
matrices [5].

New Results

In this paper we continue this work and turn our attention away from categor-
ical questions to focus instead on the following computational questions: Given
two degree matrices, are they comparable in the partial orders imposed by local
injectivity or surjectivity? It is not obvious that these questions are decidable,
and indeed for local surjectivity we must leave this as a major open problem.
However, for local injectivity we manage to show an upper bound on the size of
the smallest graphs that can possibly justify a positive answer and use this to
provide a PSPACE algorithm. The existence of a locally bijective homomorphism
between two graphs is conditioned by the equivalence of their degree refinement
matrices, which can also be expressed as an isomorphism between their universal
covers [7]. For the other two kinds of locally constrained homomorphisms this
naturally raises the question, and conjecture, of a similar tight relationship be-
tween matrix comparison in the partial order and inclusion of universal covers.
However, we apply our PSPACE algorithm to disprove this enticing conjecture.
For the surjective constraint we obtain some partial results on the complexity of
matrix comparison.

2 Preliminaries

Graphs considered in this paper are simple, i.e. with no loops and multiple
edges, connected and, if not stated otherwise, they are also finite. We denote the
class of such graphs by C. For any vertex u € Vi the symbol N(u) denotes the
neighborhood of u, i.e. the set of all vertices adjacent to u. A k-regular graph is a
graph, where all vertices have k neighbors (i.e. are of degree k). A (k,l)-regular
bipartite graph is a bipartite graph where vertices of one class of the bi-partition
are of degree k and the remaining vertices are of degree [. A graph G is a subgraph
of a graph H if Vg C Vg and Eg¢ C Ey. This is denoted by G C H.

A degree partition of a graph G is a partition of the vertex set Vi into blocks
B ={B,..., By} such that whenever two vertices u and v belong to the same

Algorithms for Comparability of Matrices in Partial Orders Imposed 117

block B;, then for any j € {1,...,k} wehave |[Ng(u)NBj| = |[Ng(v)NB;| = m; ;.
The k x k matrix M such that (M);; = m,; is a degree matriz. A graph G
can allow several degree matrices. The matrix that corresponds to the partition
with the smallest number of blocks and where these blocks follow the so-called
canonical ordering (just some ordering to provide uniqueness) is called its degree
refinement matriz. It is denoted by drm(G) for a graph G and computed in
polynomial time by a simple stepwise refinement starting from an initial partition
by vertex degrees with blocks ordered by increasing degrees. The refinement of
the partition continues until any two nodes in the same block have the same
number of neighbors in any other block, see e.g. [5]. (See Fig. 1 for an example.)
We denote the class of degree refinement matrices of graphs in C by M.

A graph homomorphism is an edge-preserving mapping f : Vg — Vg, i.e.
(f(u), f(v)) is an edge of H whenever (u,v) € Eg. A homomorphism f: G — H
may be further confined to adhere to some local constraints, as in the following
definition.

Definition 1. We call a graph homomorphism f : G — H locally bijective,
locally injective or locally surjective if for every vertexr u € Vi the restriction
of f to N(u) is a bijection, injection or surjection between N(u) and N(f(u)),
respectively. We denote it as f : G 2 H or f : G & H or f : G = H,
respectively.

For each of the three types of local constraints * = B (bijective), x = I (injective)
or x = S (surjective), we will in this paper focus on the following three relations
on the class of degree refinement matrices M:

M5 N = exist G,HeC:dm(G)=M, dm(H)=N and G = H

In [5] we showed that all three relations (M, =5), (M, =) and (M, =) are
partial orders. Note that (M, =) is in fact a trivial order, since in [7] it has
been shown that drm(G) = drm(H) is a necessary condition for G 2+ H.

For a graph G € C the universal cover T¢; is defined in [1] as the only (possibly
infinite) tree that allows Tg £, G. The vertices of Tz can be represented as
walks in G starting in a fixed vertex u that do not traverse the same edge
in two consecutive steps. Edges in T connect those walks that differ in the
presence of the last edge. The mapping T = G sending a walk in V7, to its
last vertex is a locally bijective homomorphism. Universal covers are in one-to-
one correspondence with degree refinement matrices, hence for M € M we can
define Tyy = T for any G with drm(G) = M.

Proposition 1 ([5]). The relation M - N holds if and only if there exist
graphs G with drm(G) = M and H with drm(H) = N such that G C H.

We use the following relationship between degree refinement matrices and uni-
versal covers.

Proposition 2 ([5]). For any degree refinement matrices M, N € M it holds
that if M 5 N then Ty C T, and if M = N then Ty C Tay.

118 J. Fiala, D. Paulusma, and J.A. Telle

For computational complexity purposes (X) denotes the size of the instance X
(graph, matrix, etc.) in usual binary encoding of numbers. Formally we represent
vertices of a graph G by numbers {1,2,...,|Vg|} and its edges as a list of its ver-
tices. A graph with m edges on n vertices hence requires space (G) = ©(mlogn).
For an integral-valued k x [matrix A let a* = 2+ max{|4;;| |1 <i<kand 1<
j <1}. Then the size of A is given by (A) = O(klloga*).

We will need the following technical lemma for our PSPACE algorithm.

Lemma 1. Let A be an integral-valued k x I matriz with | > k. If Ax = 0 allows
a nontrivial nonnegative solution, then it allows a nontrivial nonnegative integer
solution x with at most k + 1 nonzero entries and with (x;) = O(klog(ka*)) for
each entry x;.

Proof. If a solution x with more than k + 1 positive coefficients exists, then the
columns corresponding to k+1 of these variables are linearly dependent. Let the
coefficients of such a linear combination form a vector x’. Obviously Ax’ = 0,
but the entries of x’ may not be necessarily nonnegative.

Without loss of generality we assume that at least one of the entries in x’ is
positive. Then, for a suitable value @ = —min{7; | z; > 0} the vector x + ax’

is also a nontrivial nonnegative solution with more zero entries than x.
Repeating this trimming iteratively we obtain a nontrivial nonnegative solu-
tion with at most k& 4+ 1 nonzero entries. As the other entries are zero, we may
restrict the matrix A to columns corresponding to nonzero entries of the solution.
It may happen that the rank of the modified matrix decreases. Then we reduce
the number of rows until the remaining ones become linearly independent. By
repeating the above process we finally get an k¥’ x (k' + 1) matrix B of rank
k" < k, such that By = 0 allows a nontrivial nonnegative solution y. Such y can
be extended to a solution x of the original system by inserting zero entries.
Without loss of generality we assume that the first k' columns of B are
linearly independent, and we arrange them in a regular matrix R. Then its

inverse can be expressed as R™! = Zﬁgg , where adj(R) is the adjoint matrix of

R. By the determinant expansion we have that det(R) < k'!(a*)¥ < E!(a*)* <

k*(a*)k. Then we find that (det(R)) = O(klog(ka*)). Each element of adj(R) is

a determinant of a minor of R and hence is smaller than (k — 1)*=1(a*)*~1.
Now consider the integral valued matrix B’ = det(R) - R~'B. Then

e y is a solution of B’y = 0 if and only if By = 0.

o The first &’ columns of B’ form the matrix det(R) - I.

e In the last column the entries z1, ..., z;, are all negative (if det(R) > 0) or
all positive (otherwise).

If det(R) > 0 then y = (—#1,..., —21,det(R)) is a nonnegative nontrivial
integral solution to By = 0. In the other case we swap the sign and choose
y = (21,..., 21, —det(R)). As each z; < ka*max;;(adj(R);;) < k*(a*)*, we
obtain (z;) = O(klog(ka*)), which concludes the proof. O

Algorithms for Comparability of Matrices in Partial Orders Imposed 119

3 Matrix Comparison Via Local Injectivity

In this section we consider the problem of deciding whether for given degree
refinement matrices M and N the comparison M < N holds.

Observe that according to the definition of the order (M,), there is no ob-
vious bound on the sizes of graphs G and H with M and N as degree refinement
matrices that should justify the comparison M & N.

The main result of this paper is the following theorem:

Theorem 1. Let M, N be degree refinement matriczeg of order k and l. If M &
N, then there exist a graph G of size (klm*)°*) and a graph H of size
(klm*n*)o(k212) such that G - H, drm(G) = M and drm(H) = N.

Proof. Throughout this proof we assume that indices i, j,7, s used later always
belong to feasible intervals 1 < 4,7 < k and 1 < j,s < [. For clarity we often
abbreviate pairs of sub-/super-scripts i, j by ij, so in this notation, ij does not
mean multiplication.

The main idea of the construction is as follows. Assume that M < N holds.
Then by Proposition 1 there exist a graph H and a subgraph G C H witnessing
M 5 N. Let {Uy,...,Ux} be the degree partition of G and {Vi,...,V;} the one
for H. We further partition Vg C Vi as follows. For each pair of indices r and
s we define the set

Wes ={v|velU.NVy},

and for some vertex w € W,.; we can write a vector describing the distribution
of neighbors of w in the classes Wi1,..., Wy;.

We first show that for given M and N the set T containing all such vectors is
finite. Then, with help of T', we design a set of equations that allows a solution
if and only if the desired graphs G and H exist. As the size of T' is bounded, we
can establish the desired bounds on the size of G and H.

Let p™® be a vector of length kl whose entries are positive integers and are
indexed by pairs 7j. If the vector p"® further satisfies

l
S =my foralll <i<k, (1)
7j=1

k
Spp<ng foralll<j<l, (2)
=1

then we call p™® an injective distribution row for indices r and s. Note that for
given matrices M and N and any feasible choice of r, s the number of all different
injective distribution rows for r and s is finite. We denote the set of all injective
distribution rows for indices r and s by

T(?”, 8) _ {prs(l)’ o 7prs(t(rs))}.

120 J. Fiala, D. Paulusma, and J.A. Telle

Due to (1), the number of distribution rows for every p™ is bounded by
m* -1\ F % kl C . . .
t(r,s) < (™57 = O((m* + 1)"). The total number of distribution rows is
then
to =Y t(r,s) = O(kl(m" + 1)*).

7,8

Now consider a set of to variables w"*®) for all feasible r, s and all 1 < ¢t <
t(r,s). We claim that the existence of a nontrivial nonnegative solution of the
following homogeneous system of k%[? equations in tq variables:

t(r,s) t(i,5)
S Owrs® = 30 i) 1 <ir <k 1<js<l (3)
t=1 t'=1

is a necessary and sufficient condition for the existence of finite graphs G and H
witnessing M = N.

Necessity: For given G and H we assume without loss of generality that G C H.
Firstly determine the sets W,s, and for each vertex u € W,y C Vi compute
the distribution vector of its neighbors p(u) = (|NV(u) "Wh1], ..., |N(u) "W).
Then the vector w with entries w™®) = [{u : p(u) = p"*®}| is a nontrivial
solution of (3), since in each equation both sides are equal to the number of
edges connecting sets W, and W;;.

Sufficiency: Assume that the system (3) has a nontrivial nonnegative solu-
tion. By appropriate scaling we obtain a nonnegative integer solution w =

(w W R EED)Y with each w™™®) is even.
We first build a multigraph G upon tq sets of vertices W1 Wkitk.D)
where [W7®)| =) (some sets may be empty) as follows: Denote W’ =

Wwrs) ...y Wrstns)

Our choice of even values w'"®) allows us to build an arbitrary pr,
multigraph on each set W7 (*),

As w satisfies (3), we can easily build a bipartite multigraph between any
pair of different sets W and W such that the number of edges between them
is equal to Zi(:r’ls) pfj‘?(t)w’"s(t) = Zil(lzjl) pijé(t/)wij(tl).

()

(t)—regular

For any vertex u in W"*(*) with more than p:; neighbors in W% there exists

a vertex u* in some W% (") with less than p;;(t*) neighbors, and vice versa. Now
we remove an edge between u and some neighbor v € W% and add the edge
(u',v). We repeat this procedure until all vertices of W”* have the right number
of neighbors in W% . Then we do the same for vertices in W%,

This way we have constructed a bipartite multigraph between W7™* and W
such that each vertex of each W7”*() is incident with exactly p:; ®)
each vertex of each Wi (t) is incident with exactly pijs(t/) edges.

It may happen in some instances that multiple edges are unavoidable. In that

case let d < m* be the maximal edge multiplicity in Gy. We obtain the graph G

edges and

Algorithms for Comparability of Matrices in Partial Orders Imposed 121

by taking d copies of the multigraph G and replace each collection of d parallel
edges of multiplicity d’ < d by a simple d’-regular bipartite graph.

Due to the construction, it is straightforward to check that vertices from sets
that share the same index r form the r-th block of the degree partition of G and
that drm(G) = M.

For the construction of H we first distribute the vertices of G into sets
Vi,...,V/, where

k t(r,s)
Vvsl _ U U Wrs(t).
r=1 t=1

Since N is a degree refinement matrix, the following homogeneous system
whose equations represent the number of edges between two different blocks in
N has nontrivial solutions:

NgjUs = NjsU; 1<4,8<1 (4)

Then we form sets Vi,..., V] by further inserting new vertices into V{,...,V/
until for each s, j : |Vi|ns; = |Vj|n;js and |Vi| > 0 is even.

Next we build a multigraph Hy by constructing an (n;, n,s)-regular bipartite
multigraph between any two sets Vs and Vj, and an n;j;-regular multigraph on
each Vj. In case multiple edges cannot be avoided we take sufficient copies of Hy
and make the appropriate reparations. So we perform these steps in the same
way as before, however without removing any edges between vertices in (any
copy of) G.

Clearly, G is a subgraph of the resulting graph H and H has N as its degree
refinement matrix.

To conclude the proof of the theorem we discuss the size of G and H. Note
that all coefficients p:; ®© of system (3) are at most m*. Then, by Lemma 1, we
find a nontrivial nonnegative integer solution w whose entry sizes are bounded
by O(k?1? log(kim*)).

We can use the entries of 2w* for the sizes of the blocks in the multigraph
G. Since we take at most m* copies of Gy to obtain our final graph G, we find
that (G) = (klm*)O** 1)

Analogously, the size of each entry of a solution v of system 4 is bounded by
O(I*1og(In*)). Since multigraph Hy must contain graph G, we use the entries
of (G) for the block sizes of Hy. We need at most n* copies of Hy for graph H.
Hence, each block size |V;| can be chosen within the upper bound (G) - (In*)°()
implying that (H) = (klm*n*)o(kQIQ). O

We can now settle the first computational complexity result for the following
matrix comparison problem:

Matrix INJECTIVITY (MI)
Instance: Degree refinement matrices M and N.
Question: Does M+ N hold?

Corollary 1. The MI problem is decidable in polynomial space.

122 J. Fiala, D. Paulusma, and J.A. Telle

Proof. The proof of Theorem 1 showed that M - N if and only if system (3)
has a nontrivial nonnegative solution. Then by Lemma 1 there exists a nontrivial
nonnegative integral solution with at most k2/2 4+ 1 nonzero entries, which are
each bounded in size by O(k?1? log(klm™)).

So we only have to consider vectors of this form. As the size of any such
vector is polynomial, we can by brute force sequentially list them all, and test
their feasibility for (3). Note that any restriction of (3) to polynomially many
columns can be generated in PSPACE as well. O

As we have discussed in the introduction, the matrix order (M, %) was
considered as a nontrivial necessary condition for the decision problem whether
G L H. As the size of M and N should vary from being independent in the
size of the given graphs to be of approximately the same size of G, H, even
the exponential time-complexity of the MI problem might be plausible as a
precomputation for some instances.

We apply Theorem 1 to disprove the following interesting conjecture on the
equivalence between comparison of degree matrices in - and inclusion of uni-
versal covers.

Congecture 1. For any two degree refinement matrices M and N the following
equivalence holds: M L N <« Ty C Ty.

We note here that the affirmative answer for the only if implication was
already shown in Proposition 2. The following example acts both as an example
for the application of Theoreml, and as an counterexample of Conjecture 1.

Corollary 2. There exist matrices M and N such that Ty C T, but M # N.

Proof. We first construct graphs G and H such that H = G. Denote M =
drm(G) and N = drm(H). Then according to Proposition 2 we get that Ty C
T'n. We will now show that the MI problem for matrices M and N has a negative
answer.

G
2

3 3’
1
4

134 103 62 124

Fig. 1. Graphs G and H, vertices of H are labeled by uy(,) for a f: H =G

Algorithms for Comparability of Matrices in Partial Orders Imposed 123

The graphs G and H together with a mapping f : H =5 G are depicted in
Fig. 1.

The graph G has 4 classes in its degree refinement and H has 14 classes.
Then N is the adjacency matrix of H and the degree refinement matrix of G is

0121
1020
1100
1000

Note that N is the adjacency matrix of H. In order to obtain a contradic-
tion suppose Tas — Tn holds. By Proposition 1 there exist a graph G’ with
drm(G’) = M and a graph H’ with drm(H’) = N such that G’ C H'. Let
{U1,...,U} be the degree partition of G’ and {V4,...,V;} the one for H'. We
define the sets W, as in proof of Theorem 1.

As we have seen in the proof of Theorem 1 the pair (G’, H') corresponds with
a nontrivial solution of (3). Below we will show, however, that (3) only allows
the trivial solution. For simplicity reasons we will first restrict the length of the
injective distribution rows.

A vertex in class U; has four neighbors in G’. A vertex in class V; has three
neighbors in H’. This means that a vertex of U; can never be in Vj, i.e., Wig is
empty. Hence the set T'(1,4) is empty. By the same argument we find that the
sets T(r,s) with (r,s) = (1,5),...,(1,14),(2,9),...,(2,14), (3,12),...,(3,14)
are empty.

A vertex in Us has a neighbor of degree four in G’. A vertex in V7 does not
have a neighbor of degree four in H'. Hence the set T'(2,1) is empty. By the same
argument we exclude pairs (2,2),(2,3), (3,1),(3.2),(3,3), (4,1), (4,2), (4, 3).

Any vertex in Uy has degree one in G’. Suppose u € Uy belongs to V. So it
does not have degree one in H'. Let v € Uy be the (only) neighbor of u in G'.
Then v has degree four in G’ and must belong to V3 U Vo U V3. The other three
neighbors of v all have degree greater than one in G’. However, one of these three
remaining neighbors of v must have degree one in H’. Hence, the set T'(4,4) is
empty. In the same way we may exclude pairs (4,4),...,(4,11).

Every vertex in W5 4 needs a neighbor in W3 ;1 or W3 5. These sets are empty,
since both T'(3,1) and T(3,2) are empty. Hence T'(2,4) is empty, and conse-
quently, by a similar argument, 7'(3,6) is empty. Furthermore, 7'(2,4) = @ im-
plies that a vertex in Wj > does not have neighbor in W3 7. Since every vertex
in W3 7 must have a neighbor in W 5, the latter implies 7(3,7) =), and conse-
quently 7'(2,5) = () and 7'(3,8) = 0.

Only the pairs (3,4) and (3,5) allow two distribution rows, the other pairs
all allow one. So we have reduced the total number of feasible distribution rows
to4-14-20-9—-8—-5+2=16.

The equation (3) for p,q = 1,1 and 4, j = 2,6 gives w'! = w?%. Analogously,
wh! = w*D) while w0 = w34 43432 Hence w?*?) = 0. Further w**?) =
wh? = w0 = w26 and w'? = w?” 311 — w13, Consequently, wh! =
wh? = w3 = 0.

1

= w

124 J. Fiala, D. Paulusma, and J.A. Telle

Table 1. The distribution rows for M (only nonzero entries are shown)
i 111
j 1 2 3
1,1

2 2
7 8

33 3 3 4 4 4
5 9 10 11 12 13 14
1 1

= o N
— o= s W

1,2 1

1.3 1 1 1 1
261 1 1

2.7 1 1 1

2.8 1 11

3.4(1) 1 1

3,4(2) 1 1

3,5(1) 1 1

3,5(2) 1 1

91 1

3,10 1 1

3,11 1 1
412

4,13 1

%’B’B%"@’E’@’E’U’E

SRR

4,14 1

It can be further shown that (3) allows only trivial solution via values of
w"™*. However, at this moment we can already claim that no witnesses G, H for
M L N exist, since it is impossible to map vertices from the first class of degree
partition of G on any vertex of H. O

4 Matrix Comparison Via Local Surjectivity

In this section we are interested in the following matrix comparison problem:

MATRIX SURJECTIVITY (MS)
Instance: A degree refinement matrix M and a degree refinement matrix N.
Question: Does M =5 N hold?

We were not able to answer the decidability of this problem. However, we can
show some partial results.

Proposition 3. Let G be a graph with drm(G) of order k and H be a graph on 'l
vertices such that G = H. Then there exists a graph G’ with drm(G’) = drm(G)

such that G' = H and (G') = (]{lm*)O(kQZQ)'

Proof. Let f : Vg — Vg be a locally surjective homomorphism from G to H.
Let {Ux,...,Ux} be the degree partition of G and let {v1,...,v;} be the vertex
set of H. We further partition Vi as follows. For each pair of indices r and s we
define the set

Wye = {u ‘ u € U and f(u) = vs}a

Algorithms for Comparability of Matrices in Partial Orders Imposed 125

and for some vertex w € W,.; we can write a vector describing the distribution
of neighbors of w in the classes W11,..., Wy;.

Let p"® be a vector of length kI whose entries are positive integers and are
indexed by pairs 7j. If the vector p" further satisfies

l
prf =My for all 1 <i <k, (5)
j=1
k

(vs,v;) € Eg = prj‘? >1 forall 1 <j<I. (6)
121

(vs,v;) ¢ En = prj‘? =0 forall 1 <j<I. (7)
i=1

then we call p”* a surjective distribution row for indices r and s. The number
of surjective distribution rows is bounded.

We now involve the system of equations (3). We claim that the existence of a
nontrivial nonnegative solution of (3) is a necessary and sufficient condition for
the existence of a finite graph G’ with drm(G’) = M and G = H. The proof
of this claim and the bound on the size of G’ is using the same arguments as in
the proof of Theorem 1. O

Now we consider the following decision problem.

MATRIX GRAPH SURJECTIVITY (MGS)

Instance: A degree refinement matrix M and a graph H.

Question: Does there exist a graph G with drm(G) = M such that G = H
holds?

Corollary 3. The MGS problem problem is decidable in polynomial space.

Proof. We can use Proposition 3 and proceed with a proof analogous to the one
in Corollary 1. O

We can use Corollary 3 to answer decidability of the M'S problem for instances
(M,N), where N is the degree refinement matrix of a unique graph H. The
proposition below shows that this is only the case if H is a tree.

Proposition 4. A matrix N is a degree refinement matrix of a unique graph H
if and only if N is the degree refinement matriz of a tree.

Proof. Suppose N is the degree refinement matrix of a tree T'. Then the universal
cover Ty is isomorphic to T itself. Since all graphs that contain a cycle have an
infinite universal cover, there can not be another graph H with drm(H) = N.
In order to prove the reverse statement let H be the only graph that has N
as a degree refinement matrix. Suppose H is not a tree. Then H contains an
edge e = (u,v) such that the graph H — e is still connected. We take a copy H'

126 J. Fiala, D. Paulusma, and J.A. Telle

of H. Let e/ = (u'v") be the copy of e. We remove e in H and e’ in H', and we
add the edges (u,v’) and (u/,v). The resulting graph H* has the same degree
refinement matrix as H and is connected. a

We can also use Corollary 3 to answer decidability of the MS problem for
instances (M, N), where the [x [degree refinement matrix N is the adjacency
matrix of a graph H. This can be seen as follows. Suppose M =+ N holds with
witnesses G and H'. Since N is an adjacency matrix of graph H, the rows of N
are in one-to-one correspondence with vertices of H, i.e., we can say that vertex
v; € Vi corresponds to row 7. Then the function that maps all vertices of H' that
belong to block V; C Vi to v; for 1 <4 <[is a locally bijective homomorphism
from H' to H. The mappings H' 2+ H and G =+ H' imply G = H. So we can
restrict ourselves to graph H.

In general, even if we construct a graph G with respect to feasible block sizes,
there is no evident rule how to limit the size of some plausible graph H and how
to define the locally surjective mapping G' = H. We leave the general question
on decidability of the M S as an open problem.

References

1. ANGLUIN, D. Local and global properties in networks of processors. In Proceedings
of the 12th ACM Symposium on Theory of Computing (1980), 82-93.

2. Biaas, N. Algebraic Graph Theory. Cambridge University Press, 1974.

3. EVERETT, M. G., AND BORGATTI, S. Role colouring a graph. Math. Soc. Sci. 21,
2 (1991), 183-188.

4. F1ALA, J., AND KRATOCHVIL, J. Partial covers of graphs. Discussiones Mathemat-
icae Graph Theory 22 (2002), 89-99.

5. F1ALA, J., PAULUSMA, D., AND TELLE, J. A. Matrix and graph orders derived from
locally constrained graph homomorphisms. accepted for MFCS 2005.

6. HELL, P., AND NESETRIL, J. Graphs and Homomorphisms. Oxford University
Press, 2004.

7. LEiGHTON, F. T. Finite common coverings of graphs. Journal of Combinatorial
Theory B 33 (1982), 231-238.

8. ROBERTS, F. S., AND SHENG, L. How hard is it to determine if a graph has a 2-role
assignment? Networks 37, 2 (2001), 67-73.

Network Discovery and Verification*

Zuzana Beerliova!, Felix Eberhard!, Thomas Erlebach?, Alexander Hall,
Michael Hoffmann?, Matts Mihaldk?, and L. Shankar Ram?

! Department of Computer Science, ETH Ziirich
{bzuzana, mhall, lshankar}@inf.ethz.ch
2 Department of Computer Science, University of Leicester
{tel17, mh55, mm215}@mcs.le.ac.uk

Abstract. Consider the problem of discovering (or verifying) the edges
and non-edges of a network, modeled as a connected undirected graph,
using a minimum number of queries. A query at a vertex v discovers (or
verifies) all edges and non-edges whose endpoints have different distance
from v. In the network discovery problem, the edges and non-edges are
initially unknown, and the algorithm must select the next query based
only on the results of previous queries. We study the problem using
competitive analysis and give a randomized on-line algorithm with com-
petitive ratio O(y/nlogn) for graphs with n vertices. We also show that
no deterministic algorithm can have competitive ratio better than 3. In
the network verification problem, the graph is known in advance and the
goal is to compute a minimum number of queries that verify all edges
and non-edges. This problem has previously been studied as the prob-
lem of placing landmarks in a graph or determining the metric dimension
of a graph. We show that there is no approximation algorithm for this
problem with ratio o(logn) unless P = N'P.

1 Introduction

In recent years, there has been an increasing interest in the study of networks
whose structure has not been imposed by a central authority but arisen from local
and distributed processes. Prime examples of such networks are the Internet and
unstructured peer-to-peer networks such as Gnutella. For these networks, it is
very difficult and costly to obtain a “map” providing an accurate representation
of all nodes and the links between them. Such maps would be useful for many
purposes, e.g., for studying routing aspects or robustness properties.

In order to create maps of the Internet, a commonly used technique is to
obtain local views of the network from various locations (vantage points) and
combine them into a map that is hopefully a good approximation of the real
network [2,13]. More generally, one can view this technique as an approach for
discovering the topology of an unknown network by using a certain type of
queries—a query corresponds to asking for the local view of the network from

* Research partially supported by the EU within the 6th Framework Programme under
contract 001907 (DELIS).

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 127-138, 2005.
(© Springer-Verlag Berlin Heidelberg 2005

128 7. Beerliova et al.

one specific vantage point. In this paper, we formalize network discovery as
a combinatorial optimization problem whose goal is to minimize the number of
queries required to discover all edges and non-edges of the network. We study the
problem as an on-line problem using competitive analysis. Initially, the network
is unknown to the algorithm. To decide the next query to ask, the algorithm
can only use the knowledge about the network it has gained from the answers
of previously asked queries. In the end, the number of queries asked by the
algorithm is compared to the optimal number of queries sufficient to discover
the network. We consider a query model in which the answer to a query at
a vertex v consists of all edges and non-edges whose endpoints have different
(graph-theoretic) distance from wv.

In the off-line version of the network discovery problem, the network is known
to the algorithm from the beginning. The goal is to compute a minimum number
of queries that suffice to discover the network. Although an algorithm for this
off-line problem would not be useful for network discovery (if the network is
known in advance, there is no need to discover it), it could be employed for
network verification, i.e., for checking whether a given map is accurate. Thus,
we refer to the off-line version of network discovery as network verification. Here,
we are interested in polynomial-time optimal or approximation algorithms.

Motivation. As mentioned above, the motivation for our research comes from
the problem of discovering information about the topology of communication
networks such as the Internet or peer-to-peer networks. The query model that we
study is motivated by the following considerations. First, notice that our query
model can be interpreted in the following way: A query at v yields the shortest-
path subgraph rooted at v, i.e., the set of all edges on shortest paths between
v and any other vertex. To see that this is equivalent to our definition (where
a query yields all edges and non-edges between vertices of different distance
from v), note that an edge connects two vertices of different distance from v if
and only if it lies on a shortest path between v and one of these two vertices.
Furthermore, the shortest-path subgraph rooted at v implicitly confirms the
absence of all edges between vertices of different distance from v.

Real-life scenarios where the shortest-path subgraph rooted at a node of the
network can be determined arise as follows. With traceroute tools, one can deter-
mine the path that packets take in the Internet if they are sent from one’s node
to some destination. If each traceroute experiment returns a random shortest
path to the destination, one could use repeated traceroute experiments to all
destinations to discover all edges of the shortest-path subgraph. Making a query
at v would mean getting access to node v and running repeated traceroute exper-
iments from v to all other nodes. If we assume that the cost of getting access to a
node is much higher than that of running the traceroute-experiments, minimiz-
ing the number of queries is a meaningful goal. Along similar lines, in a network
that routes all packets along arbitrary shortest paths, one could imagine a rout-
ing protocol in which each node stores the shortest-path subgraph rooted at that
node. In this case, reading out the routing table at a node would correspond to
making a query at that node.

Network Discovery and Verification 129

Our model of network discovery is a simplification of reality. In real net-
works, routing is not necessarily along shortest paths, but may be affected by
routing policies, link qualities, or link capacities. Furthermore, routing tables or
traceroute experiments will often reveal only a single path (or at most a few
different paths) to each destination, but not the whole shortest-path subgraph.
Nevertheless, we believe that our model is a good starting point for a theoretical
investigation of fundamental issues arising in network discovery.

Related Work. Graph discovery problems have been studied in distributed
settings where one or several agents move along the edges of the graph (see,
e.g., [3]); the problems arising in such settings appear to require very different
techniques from the ones in our setting.

It turns out, however, that the network verification problem has previously
been considered as the problem of placing landmarks in graphs [9]. Here, the
motivation is to place landmarks in as few vertices of the graph as possible in
such a way that each vertex of the graph is uniquely identified by the vector
of its distances to the landmarks. The smallest number of landmarks that are
required for a given graph G is also called the metric dimension of G [8]. For a
survey of known results, we refer to [5]. Results for the problem variant where
extra constraints are imposed on the set of landmarks (e.g., connectedness or
independence) are surveyed in [11].

The problem of determining whether & landmarks suffice (i.e., of determining
if the metric dimension is at most k) is NP-complete [6]; see [9] for an explicit
proof by reduction from 3-SAT. In [9] it is also shown that the problem of min-
imizing the number of landmarks admits an O(logn)-approximation algorithm
for graphs with n vertices, based on SETCOVER. For trees, they show that the
problem can be solved optimally in polynomial time. Furthermore, they prove
that one landmark is sufficient if and only if G is a path, and discuss properties
of graphs for which 2 landmarks suffice. They also show that if & landmarks
suffice for a graph with n vertices and diameter D, we must have n < DF + k.
For d-dimensional grids they show that d landmarks suffice. For d-dimensional
hypercubes, a special case of d-dimensional grids, it was shown in [12] (using an
earlier result from [10] on a coin weighing problem) that the metric dimension is
asymptotically equal to 2d/log, d. See also [4] for further results on the metric
dimension of Cartesian products of graphs.

Our Results. For network discovery, we give a lower bound showing that no
deterministic on-line algorithm can have competitive ratio better than 3, and we
present a randomized on-line algorithm with competitive ratio O(y/nlogn) for
networks with n nodes. For the network verification problem, we prove that it
cannot be approximated within a factor of o(logn) unless P = AN'P, thus show-
ing that the approximation algorithm from [9] is best possible (up to constant
factors). We also give a useful lower bound formula for the optimal number of
queries of a given graph. The remainder of the paper is structured as follows.
Section 2 gives preliminaries and defines the problems formally. Sections 3 and 4
give our results for network discovery and network verification, respectively. Sec-
tion 5 points to open problems and promising directions for future research.

130 7. Beerliova et al.
2 Preliminaries and Problem Definitions

Throughout this paper, the term network refers to a connected, undirected
graph. For a given graph G = (V, E), we denote the number of nodes by n = |V|
and the number of edges by m = |E|. For two distinct nodes u,v € V, we say
that {u,v} is an edge if {u,v} € E and a non-edge if {u,v} ¢ E. The set of
non-edges of G is denoted by E. We assume that the set V of nodes is known
in advance and that it is the presence or absence of edges that needs to be
discovered or verified.

A query is specified by a vertex v € V and called a query at v. The query at v
is also denoted by v. The answer of a query at v consists of a set E,, of edges and
a set E, of non-edges. These sets are determined as follows. Label every vertex
u € V with its distance (number of edges on a shortest path) from v. We refer
to sets of vertices with the same distance from v as layers. Then E, is the set of
all edges connecting vertices in different layers, and £, is the set of all non-edges
whose endpoints are in different layers. Because the query result can be seen as
a layered graph, we refer to this query model as the layered-graph query model.

A set Q@ C V of queries discovers (all edges and non-edges of) a graph G =
(V,E) if Uyjeq Bq = E and U,cq E, = E. In the off-line case, we also say
“verifies” instead of “discovers”. The network verification problem is to compute,
for a given network G, a smallest set of queries that verifies G. The network
discovery problem is the on-line version of the network verification problem. Its
goal is to compute a smallest set of queries that discovers G. Here, the edges
and non-edges of GG are initially unknown to the algorithm, the queries are made
sequentially, and the next query must always be determined based only on the
answers of previous queries.

We denote by OPT(G), for a given graph G, the cardinality of an optimal
query set for verifying G, and by A(G) the cardinality of the query set produced
by an algorithm A. The quality of an algorithm is measured by the worst possible
ratio A(G)/OPT(G) over all networks G. In the off-line case, an algorithm is
a p-approximation algorithm (and achieves approximation ratio p) if it runs in
polynomial time and satisfies A(G)/OPT(G) < p for all networks G. In the
on-line case, an algorithm is p-competitive (and achieves competitive ratio p)
it A(G)/OPT(G) < p for all networks G. It is weakly p-competitive if A(G) <
p- OPT(G)+ c for some constant c. If the on-line algorithm is randomized, A(G)
is replaced by E[A(G)] in these definitions. We do not require on-line algorithms
to run in polynomial time.

We use LG-ALL-DISCOVERY to refer to the network discovery problem
with the layered-graph query model and the goal of discovering all edges and
non-edges, and we use LG—ALL—VERIFICATION to refer to its off-line version.

3 Network Discovery

We consider the on-line scenario. Clearly, any algorithm that does not repeat
queries has competitive ratio at most n—1, since n—1 queries are always sufficient

Network Discovery and Verification 131

to discover a network. Furthermore, the inapproximability result that we will de-
rive in Section 4 (Theorem 3) shows that we cannot hope for a polynomial-time
on-line algorithm with competitive ratio o(logn); it may still be possible to ob-
tain such a ratio using exponential-time on-line algorithms, however. We present
a lower bound on the competitive ratio of all deterministic on-line algorithms.

Theorem 1. No deterministic on-line algorithm for LG-ALL-DISCOVERY can
have weak competitive ratio 3 — € for any € > 0.

Proof. Let A be any deterministic algorithm for LG-ALL-DISCOVERY. We
first give a simpler proof that A cannot be better than 2-competitive. Con-
sider Fig. 1(a). We refer to the subgraph induced by the vertices labeled r, x, y,
and z as a 2-gadget. Assume that the given graph G consists of a global root g
and k, k > 2, disjoint copies of the 2-gadget, with the r-vertex of each 2-gadget
connected to the global root g. One can easily verify that OPT(G) = k for this
graph, and that the set of all z-vertices of the 2-gadgets constitutes an optimal
query set. On the other hand, algorithm A can be forced to make the first query
at g (as, initially, the vertices are indistinguishable to the algorithm). This will
not discover any information about edges or non-edges between vertices x, y
and z of each 2-gadget. The only queries that can discover this information are
queries at x, y and z. In fact, a query at x or y suffices to discover the edge be-
tween x and y and the non-edges between x and z and between y and z. When
A makes the first query among the vertices in {z,y, 2} of a 2-gadget, we can
force it to make that query at z, since the three vertices are indistinguishable to
the algorithm. The query at z does not discover the edge between x and y. The
algorithm must make a second query in the 2-gadget to discover that edge. In
total, the algorithm must make at least 2k 41 queries. As the construction works
for arbitrary values of k, this shows that no deterministic on-line algorithm can
guarantee weak competitive ratio 2 — ¢ for any constant € > 0.

To get a stronger lower bound of 3, we create a new gadget, called the 3-
gadget, as shown in Fig. 1(b). The 3-gadget is the subgraph induced by all
vertices except ¢ in the figure. We claim that A can be forced to make 6 queries
in each 3-gadget, whereas the optimum query set consists of only 2 vertices in
each 3-gadget (drawn shaded in the figure). If we construct a graph with k,
k > 2, disjoint copies of the 3-gadget, the s-vertex in each of them connected to
the global root ¢ as indicated in the figure, we get a graph G for which we claim
that OPT(G) = 2k and the algorithm A can be forced to make at least 6k + 1
queries. This shows that no deterministic on-line algorithm can guarantee weak
competitive ratio 3 — ¢ for any constant € > 0.

To see that OPT(G) = 2k, let @ be the set of queries consisting of the two
shaded vertices from each copy of the 3-gadget as shown in Fig. 1(b). We claim
that @ discovers G. This can be verified manually as follows: For every vertex
in a 3-gadget II, consider the 3-tuple whose components are the distances from
that vertex to the two query vertices in IT and the distance to an arbitrary query
vertex from () outside II. One finds that each vertex in II has a unique 3-tuple,
showing that all edges and non-edges of II are discovered by). Each non-edge
between two different 3-gadgets is discovered by one of the queries inside these

132 7. Beerliova et al.

Fig. 1. Lower bound constructions

two 3-gadgets. The edges and non-edges between g and each 3-gadget are also
discovered. Hence, OPT(G) < 2k. We have OPT(G) > 2k, because each of the
edges {z,y} and {2/,y'} (see Fig. 1(b)) of a 3-gadget requires a separate query.

To show that A(G) > 6k + 1, we argue as follows. First, we can force A to
make the first query at g. This will not reveal any information about edges within
the same layer of any of the 3-gadgets. We view each 3-gadget as consisting of
s and a left part, a middle part, and a right part. The left part consists of
the left child of s and its four adjacent vertices below (these four vertices are
called bottom vertices, and the left child of s is called the root of that part); the
middle and right part are defined analogously. The three parts of a 3-gadget IT
are indistinguishable to A until it makes its first query inside I7. A query at s
would not discover any new information about I, so we can ignore queries that
A might make at s in the following arguments. When A makes its first query
inside I, we can force this query to be in the middle part, and we can force it to
be at u or v. In both cases, the query does not discover any information about
the edges and non-edges between the bottom vertices of the left part, nor does
it discover any information about the edges and non-edges between the bottom
vertices of the right part, nor does it discover the edge drawn dashed. When A
chooses its second query in I1, it could be in the left part, in the middle part, or
in the right part. Assume that A chooses the left part; since the bottom vertices
of the left part are still indistinguishable to A, we can force A to make the query
either at the root of the left part or at the bottom vertex t. Similarly, in the
right part we can force A to make the query at its root or at ¢’. In the middle
part, A can make the query anywhere. In any case, the second query made by A
does not discover any information about edges and non-edges between vertices
in the set {z,y, 2z} and in the set {a’,y’, 2’}. Similarly as in the case of Fig. 1(a),
for each of these sets we can force A to make the first query at z (at z’) and thus
require a second query at = or y (at 2’ or 3’) to discover everything about these
groups. In total, A must make at least 6 queries in each 3-gadget. O

With the gadget of Fig. 1(a) one can prove easily that no randomized on-line
algorithm for LG-ALL-DISCOVERY can have weak competitive ratio 4/3 — ¢ for
any € > 0; just observe that we can force a randomized algorithm to make the
first query at z with probability at least 1/3. Note that all lower bounds on the

Network Discovery and Verification 133

E —Q; /* discovered edges */
N —0; /* discovered non-edges */
A— (‘2/), /* all pairs of distinct nodes */
/* Phase 1 */
for i =1 to 3vnlnn do
v <« randomly chosen node from V7
(Ey, Ny) « query(v);
E+— FEUE,;
N — N U Ny;
od;
/* Phase 2 */
while FUN # A do
{u,v} < an arbitrary element of A\ (E U N);
(Eu, Nu) — query(u);
(Ev, Ny) < query(v);
E — EUE,UE,;
N «— N U N, U N,;
S« set of nodes from which the (non-)edge {u, v} is discovered,;
foreach z € S\ {u,v} do
(B, N,) — query(a);
E — EU Ey;
N «— N U Ng;
od;
od;

Fig. 2. On-line algorithm for LG-ALL-DISCOVERY

weak competitive ratio also hold for the (standard) competitive ratio where no
additive constant c is allowed.

Theorem 2. There is a randomized on-line algorithm that achieves competitive

ratio O(y/nlogn) for LG-ALL-DISCOVERY.

Proof. The on-line algorithm is shown in Fig. 2. In the first phase, it makes
3vnlnn queries at nodes chosen uniformly at random. In the second phase, as
long as node pairs with unknown status exist, it picks an arbitrary such pair
{u,v} and proceeds as follows. First, it queries u and v in order to determine the
distance of all nodes to u and v. From this it can deduce the set .S of nodes from
which the edge or non-edge between u and v can be discovered; these are simply
the nodes for which the distance to w differs from the distance to v. Then, it
queries all remaining nodes in S.

To analyze the algorithm, it is helpful to view LG-ALL-DISCOVERY as a
HITTINGSET problem. For every edge or non-edge {u, v}, let Sy, be the set of
nodes from which a query discovers {u, v}. The task of the LG-ALL-DISCOVERY
problem translates into the task of computing a subset of V' that hits all sets
Suv- The goal of the first phase is to hit all sets that have size at least vVnlnn
with high probability. If this succeeds, the problem remaining for the second
phase is a HITTINGSET problem where all sets have size at most vVnlnn. The

134 7. Beerliova et al.

algorithm of the second phase repeatedly picks an arbitrary set that is not yet
hit, and includes all its elements in the solution. As the sets have size at most
vnlnn, the number of queries made in the second phase is at most a factor of
vnlnn away from the optimum.

Let us make this analysis precise. Consider a node pair {u, v} for which the set
Suv has size at least vVnInn. In each query of the first phase, the probability that
Sue is not hit is at most 1 — —V"Ti“" =1- % Thus, the probability that Sy, is
) 3vninn

< 6731nn _ 1

n3 "

not hit throughout the first phase is at most (1 — —Vl\/nﬁ"

There are at most (g) sets Sy, of cardinality at least vnlnmn. The probability
that at least one of them is not hit in the first phase is at most (;‘) . n% < %

Now consider the second phase, conditioned on the event that the first phase
has hit all sets S, of size at least vnlInn. In each iteration of the while-loop
of the second phase, the algorithm asks at most v/nlInn queries. Let £ be the
number of iterations. It is clear that the optimum must make at least ¢ queries,
because no two unknown pairs {u,v} considered in different iterations of the
second phase can be resolved by the same query.

Since OPT(G) > 1 and OPT(G) > ¢, the number of queries made by the
algorithm is at most 3vnlnn + (vnlnn = O(y/nlogn) - OPT(G).

With probability at least 1 — %, the first phase succeeds and the algorithm
makes O(y/nlogn)- OPT(G) queries. If the first phase fails, the algorithm makes
at most n queries. This case increases the expected number of queries made by
the algorithm by at most % -n = 1. Thus, the expected number of queries is at

most O(y/nlogn) - OPT(G) + + . n = O(y/nlogn) - OPT(G). O

4 Network Verification

Theorem 3. It is N'P-hard to approximate LG—ALL—-VERIFICATION within
ratio o(logn).

Proof. We prove the inapproximability result using an approximation-preserving
reduction from the test collection problem (TCP):

Problem TCP

Input: ground set S and collection C of subsets of S

Feasible solution: subset C’ C C such that for each two distinct elements x
and y of S, there exists a set C' € C’ such that exactly one of and y is in C.

Objective: minimize the cardinality of C’

In the original application for TCP, S is a set of diseases and C is a collection
of tests. A test C' € C, applied to a patient, will give a positive result if the
patient is infected by a disease in C. If a patient is known to be infected by
exactly one of the diseases in S, the goal of TCP is to compute a minimum
number of tests that together can uniquely identify that disease.

Without loss of generality, we can restrict ourselves to instances of TCP in
which any two elements of the ground set can be separated by at least one of
the sets in C; instances without this property do not have any feasible solutions.

Network Discovery and Verification 135

Halldorsson et al. [7] prove that TCP cannot be approximated with ratio
o(log|S]) unless P = N'P. Their proof uses an approximation-preserving reduc-
tion from SETCOVER; the latter problem was shown NP-hard to approximate
within o(logn), where n is the cardinality of the ground set, by Arora and
Sudan [1]. The proof by Arora and Sudan establishes the inapproximability re-
sult for SETCOVER even for instances in which the size of the ground set and
the number of sets are polynomially related. The reduction from SETCOVER to
TCP maintains this property. Hence, we know that it is NP-hard to approxi-
mate TCP with ratio o(log |S|) even for instances satisfying |C| < |S|¢9 for some
positive constant g.

Let an instance (5,C) of TCP be given. Let npcp = |S| and mrcp = [C|. By
the remark above, we can assume that mpcp = ng(clg,. We construct an instance
G = (V, E) of LG-ALL-VERIFICATION as follows. First, we add nrcp + mrcp
vertices to V: an element vertexr vs for every element s € S and a test vertex
uc for every C' € C. We initially add the following edges to E: Any two element
vertices are joined by an edge, and every test vertex uc is joined to all element
vertices vs with s € C. The idea behind this construction is that queries at
test vertices verify all edges in the clique of element vertices if and only if the
corresponding tests form a test cover. We have to extend the construction slightly
since, in LG—-ALL—-VERIFICATION, the edges and non-edges incident to the test
vertices need to be verified as well. We add h = 2([logmrcp] + 2) auxiliary
vertices wi, ..., w, to take care of this. For each i, 1 < ¢ < h/2, the auxiliary
vertices wo;_1 and wsy; are said to form a pair. In addition, we add one extra
node z. We add the following edges:

— The two auxiliary vertices in each pair are joined by an edge.

— Number the mrcp test vertices arbitrarily from 0 to mpcp — 1. Both aux-
iliary vertices in the i-th pair, 1 < i < h/2 — 2, are joined to those of the
mrcp test vertices whose number has a 1 in the i-th position of its binary
representation.

— Both auxiliary vertices in the last two pairs are joined to all test vertices.

— The extra node z is joined to all other vertices of the graph.

The graph constructed in this way is denoted by G = (V, E). See Fig. 3 for an
illustration. We prove two claims:

Claim 1. Given a solution C’ to the TCP instance (5,C), there is a solution @
of the constructed instance G = (V, E) of LG-ALL—-VERIFICATION satisfying
Q| = [C'| + [log mrcp]| + 2.

Proof (of Claim 1). Let a solution C’ to the TCP instance (5,C) be given. Let @
contain all test vertices corresponding to sets C' € C" as well as the first vertex of
every pair of auxiliary vertices. Obviously, we have |Q| = |C’| 4+ [log mrcp]| + 2.
It is not difficult to verify that @ discovers all edges and non-edges of G. O

Claim 2. Given a solution @ to the constructed instance G = (V, E) of LG~
ALL-VERIFICATION, one can construct in polynomial time a solution C’ of the
original TCP instance (S, C) satisfying |C'| < |Q| — [log mrcp]| — 2.

136 7. Beerliova et al.

element
vertices
Zé
test
vertices
SR auxiliary
1 2 3 4 5 vertices

Fig. 3. Illustration of the construction of the graph G = (V, E) that is an instance
of LG-ALL-VERIFICATION. The auxiliary vertices in pairs 4 and 5 are adjacent to
all test vertices. The auxiliary vertices in pair ¢, 1 < ¢ < 3, are adjacent to the test
vertices whose number has a 1 in position ¢ of the binary representation. For example,
the auxiliary vertices in pair 2 are adjacent to test vertices 2,3,6 and 7.

Proof (of Claim 2). Observe that () must contain at least one vertex from
each pair of auxiliary vertices; otherwise, the edge joining this pair would not
be discovered. The queries at these vertices do not discover any edges between
element vertices (all element vertices are at distance 2 from any auxiliary vertex
because of the extra vertex z). Let Q' be the vertices in @ that are not auxiliary
vertices. We have |Q'| < |Q| — [logmrcp| — 2. Now, Q' is a set of element
vertices and test vertices that, in particular, discovers all edges between element
vertices.

Let Qg be the set of element vertices in Q' and let Q¢ be the set of test vertices
in Q. If Qs is empty, the queries at the vertices in Q¢ discover all edges of the
clique of element vertices. In particular, this means that for any two distinct
element vertices vy and v; in V', there must be a query at a vertex adjacent to
one of vy, v; but not to the other. This shows that the set ' = {C € C | uc € Q'}
is a solution of the original TCP instance of the required size.

Now assume Qg is nonempty. The set of edges between element vertices that
are not discovered by Q¢ is a disjoint union of cliques. The queries in Qg must
discover all edges in these cliques. As the only edges between element vertices
that a query at an element vertex discovers are the edges incident to that vertex,
a clique of size k requires k—1 queries. Assume that there are p cliques and denote
the number of vertices in these cliques by ki,..., k,. Then Qg contains at least

P (k; — 1) vertices. All edges in a clique of size k can always be discovered by
k — 1 queries at test vertices: simply select these queries greedily by choosing,
as long as there is an edge {u,v} in the clique that has not yet been discovered,
any test vertex that is adjacent to one of u,v but not the other. Hence, we can
replace the queries in Qg by at most Y 7| (k; — 1) queries at test vertices and
add these to Q¢, obtaining a set of queries at test vertices that discovers all edges
between element vertices. As in the previous paragraph, this set of test vertices
gives a solution to the original TCP instance of cardinality at most |Q’|. O

Network Discovery and Verification 137

Assume there is an approximation algorithm A for LG—ALL—VERIFICATION
that achieves ratio o(logn), where n = |V/|. Consider the algorithm B for
TCP that, given an instance of TCP, constructs an instance of LG-ALL—
VERIFICATION as described above, applies A to this instance, and transforms the
result into a solution to the TCP instance following Claim 2. Recall that mrcp =
n?&i. We claim that B achieves ratio o(log ntcp) for TCP. Let OPTrcp be the
optimum objective value for the given TCP instance and OPTy,g be the opti-
mum objective value for the constructed instance of LG—ALL—VERIFICATION.
Let Brcp and Arg denote the objective values of the solutions computed by B
and A, respectively. Note that OPTtcp > lognrcp always holds, since nrcp
elements cannot be separated by fewer than lognrcp test sets.

Claims 1 and 2 imply that OPTrcp = OPT1g — [logmrcp]| — 2. We have
OPTic = OPTrcp+ flog mTcp] +2 < OPTrcp +O(log TLTCP) = O(OPTTCP).
Claim 2 implies Brcp < Apg and thus we get Brep < o(logn) - OPTrg =
o(logn) - O(OPTrcp) = o(lognrcp) - O(OPT1cp), where the last equality fol-
lows from n = nrcp + mrep + 2([logmrcp] +2)+1 = n?&i. This shows
Brep < o(lognrcp) - OPTrcp and completes the proof of Theorem 3. 0O

Theorem 4. If a graph G = (V, E) contains a subgraph H of diameter Dy with
ng vertices, then OPT(G) > logp,, 1 nu.

Proof. Imagine the queries being performed sequentially. At any instant, the
unknown edges and non-edges induce disjoint cliques, which we call unknown
groups. Two vertices are in the same unknown group if and only if they were in
the same layer of all queries made so far. Consider the ng vertices of subgraph H.
Initially, all vertices form an unknown group. For each query, the ng vertices of
H will be in at most Dy + 1 consecutive layers of the layered graph returned
by the query. Therefore, after the first query, at least ny/(Dy + 1) vertices of
H will still be in the same unknown group. Similarly, after k queries, at least
ng/(Dg + 1)* vertices of H will be in an unknown group together. If k& queries
suffice to verify all edges and non-edges, the unknown groups must be singletons
in the end. So we must have ng/(Dg + 1)¥ < 1. This proves the theorem. 0O

This theorem implies that a graph containing a clique on k vertices requires
at least log, k queries, and a graph with maximum degree A at least logs(A+1)
queries. For the former, take H to be the clique on k vertices, and for the latter,
take H to be the subgraph induced by a vertex of degree A and its neighbors.

5 Directions for Future Work

In this paper, we have considered network discovery and network verification
problems in the layered-graph query model. The goal was to discover or verify
all edges and non-edges of a network. For network discovery, the major problem
left open by our work is to close the gap between our randomized upper bound
of O(y/nlogn) and the small constant lower bounds.

138 7. Beerliova et al.

The subject of our study is an example of a family of problem settings in
which the goal is to discover or verify information about a graph using queries.
Different problems are obtained if the query model is varied, or if the objective
is changed. Other natural query models are, e.g., that a query at v returns only
the distances from v to all other vertices of the graph; that a query is specified by
two vertices v and v, and returns the set of all edges on shortest paths between
u and v; or that a query returns an arbitrary shortest-path tree rooted at v.
Concerning the objective, the goal could be to discover or verify a certain graph
parameter such as diameter, average path length, or independence number. One
could also relax the requirement and only ask for an approximate answer, e.g.,
one could consider the problem of minimizing the number of queries required to
approximate the average path length within a factor of 1 + . We believe that
the study of such problems could be a fruitful area of research with applications
in the monitoring and analysis of communication networks such as the Internet.

References

1. S. Arora and M. Sudan. Improved low-degree testing and its applications. In Proc.
29th Ann. ACM Symp. on Theory of Computing (STOC’97), pages 485-495, 1997.

2. P. Barford, A. Bestavros, J. Byers, and M. Crovella. On the marginal utility of
deploying measurement infrastructure. In Proc. ACM SIGCOMM Internet Mea-
surement Workshop 2001, November 2001.

3. M. A. Bender and D. K. Slonim. The power of team exploration: Two robots can
learn unlabeled directed graphs. In Proc. 35th Ann. IEEE Symp. on Foundations
of Computer Science (FOCS’94), pages 75-85, 1994.

4. J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, and D. R.
Wood. On the metric dimension of Cartesian products of graphs. Manuscript, 2005.

5. G. Chartrand and P. Zhang. The theory and applications of resolvability in graphs:
A survey. Congr. Numer., 160:47-68, 2003.

6. M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, 1979.

7. B. V. Halldorsson, M. M. Halldérsson, and R. Ravi. On the approximability of
the minimum test collection problem. In Proc. 9th Ann. European Symposium on
Algorithms (ESA’01), LNCS 2161, pages 158-169. Springer-Verlag, 2001.

8. F. Harary and R. Melter. The metric dimension of a graph. Ars Combin., 2:191—
195, 1976.

9. S. Khuller, B. Raghavachari, and A. Rosenfeld. Landmarks in graphs. Discrete
Appl. Math., 70:217-229, 1996.

10. B. Lindstrom. On a combinatory detection problem 1. Magyar Tud. Akad. Mat.
Kutato Int. Kozl., 9:195-207, 1964.

11. V. Saenpholphat and P. Zhang. Conditional resolvability in graphs: A survey. Int.
J. Math. Math. Sci., 38:1997-2017, 2004.

12. A. Sebs and E. Tannier. On metric generators of graphs. Math. Oper. Res.,
29(2):383-393, 2004.

13. L. Subramanian, S. Agarwal, J. Rexford, and R. Katz. Characterizing the Internet
hierarchy from multiple vantage points. In INFOCOM’02, June 2002.

Complete Graph Drawings
Up to Triangle Mutations

Emeric Gioan

LIRMM, CNRS Montpellier

Abstract. The logical structure we introduce here to describe a (topo-
logical) graph drawing, called subsketch, is intermediate between the
map (determining the drawing when it is planar), and the sketch intro-
duced by Courcelle (determining the drawing in general but assuming
we know the order of the crossings on each edge). For a complete graph
drawing, the subsketch is determined, through first order logic formulas,
by the size, a corner of the drawing and the crossings of the edges.

We prove, constructively, that two complete graph drawings have the
same subsketch if and only if they can be transformed into each other
by a sequence of triangle mutations - or triangle switches. This construc-
tion generalizes Ringel’s theorem on uniform pseudoline arrangements.
Moreover, it applies to plane projections of spatial graphs encoded by
rank 4 uniform oriented matroids.

Keywords: Graph drawing, logical structure, triangle switch, mutation,
pseudoline arrangement, oriented matroid, spatial graph visualization.

1 Introduction

Three subjects meet in this paper: first the dynamical structure of geometrical ob-
jects with triangle mutations (or triangle switches), secondly axiomatics of graph
drawings using logical structures as concise as possible, and thirdly the combina-
torial study of visualization of spatial graphs encoded by oriented matroids.

In the whole paper, graph drawing is understood in the sense of topological
graph drawing, that is drawing of which edges are represented by Jordan arcs
(not supposed to be straight), whereas a graph drawing is called geometrical
when its edges are represented by (straight) line segments. We consider graph
drawings of a graph on a plane where two edges cross at most once and where
the unbounded region is defined by the choice of two given adjacent edges called
a corner (equivalently, we could consider drawings on a sphere, but we would
have then to choose a particular point “infinity” so that the region containing it
would be considered as the “unbounded” one).

From an axiomatic point of view, a general setting is introduced by Courcelle
in [2], allowing both logical and geometrical points of view on graph drawings,
and leading to applications of monadic second order logic to graph drawings. In
this setting, a graph drawing is determined by its sketch, that is: its underlying
graph, the circular ordering of the edges at each vertex, the pairs of edges that

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 139-150, 2005.
© Springer-Verlag Berlin Heidelberg 2005

140 E. Gioan

Fig. 1. Triangle mutation (or triangle switch)

cross, and the order of crossings on each edge. If the last data is removed, we
get the subsketch of the graph drawing. Hence the subsketch is intermediate
between the sketch and the so-called map of the drawing (which determines
the drawing if it is planar, see for instance [5]). We prove in Section 3 that,
for a complete graph drawing, the subsketch and other useful information, are
determined through first order logic formulas by its number of vertices, a corner,
and the pairs of edges that cross.

A triangle mutation - or triangle switch - in a graph drawing is passing an
edge over the crossing of two other edges, when no obstruction occurs. This
local transformation is shown on Figure 1. Obviously a triangle mutation does
not change the subsketch. We consider the problem of finding a logical structure
for graphs drawings defined up to a sequence of triangle mutations.

We prove constructively in Section 4 that, for a complete graph drawing, the
subsketch structure plays this part: it determines the drawing, up to a sequence
of triangle mutations and orientation preserving homeomorphisms.

Note that, if one considers a complete graph drawing with an even number of
vertices, all of them being drawn on the same circle, then the pairs of opposite
vertices define a pseudoline arrangement in a neighbourhood of the centre of
the circle, see Figure 2. In fact, the above result generalizes Ringel’s theorem on
uniform pseudoline arrangements [7] (see Section 5.1).

A consequence of the above result - the original purpose of this paper - is
that two projections of complete spatial graphs, defined by finite sets of points in
general position representing the same rank 4 uniform oriented matroid [1], are
equivalent up to homeomorphism and a sequence of mutations. Hence the com-

Fig. 2. Complete graph drawing and pseudoline arrangement

Complete Graph Drawings Up to Triangle Mutations 141

Fig. 3. Two 2-connected graph drawings with same subsketch but no triangle

binatorial structure of the oriented matroid together with the logical structure
of the projected drawing form the two levels of a modelization of perspectives
in spatial graph visualization (see Section 5.2).

In a graph which is not complete, the subsketch is no more sufficient to
determine the drawing up to triangle mutations. In general, additional data
would be necessary. In this paper, it is an open question. As an example Figure 3
below represents two graph drawings with same crossings and same circular
orderings around each edge, but which cannot be tranformed into each other
with triangle mutations, since they simply have no triangle.

NB: All proofs of this paper have been removed or shortened in order to fit the
requested size for papers of this WG05 proceedings. A full version is forthcoming.

2 Preliminaries

In this paper, a graph is always a finite, directed, loop-free, connected graph.
The set of vertices of a graph G is denoted Vi, or simply V', and its set of edges
is denoted Fg, or simply E. The underlying undirected set of edges is denoted
E¢, or simply E. In fact, the direction of an edge will be used only to define an
order of the points on a geometrical representation of this edge. So, for a,b € Vg
and (a,b) € E ¢, we will denote [a,b] = [b,a] € Eg.

A (topological) drawing of a graph G in the real oriented affine plane is a set
of points representing Vi together with a set of drawn edges representing E¢
satisfying the following properties:

D1 - a drawn edge is a Jordan arc (i. e. homeomorphic to a closed segment)
between the two extremities representing the vertices ; a drawn edge contains
no other representation of a vertex of the graph than its extremities.

D2 - two edges having extremities in common (two in the case of multiple
edges) meet only at these extremities ; when two edges with no common ex-
tremity meet, they cross at this intersection point ; two edges with no common
extremity cross at most once.

D3 - no three edges meet at the same point, except if this point is an extremity
of the three edges.

Note that if Jordan arcs were replaced by line segments in axiom D1, we
would define geometrical graph drawings, for which various properties would
become trivial (for instance the two Lemmas in Section 3).

142 E. Gioan

With a drawing D of the graph G various pieces of information are associated,
encoding the drawing at different levels of abstraction. We call drawn element
the topological representation of this element in the given drawing.

First the relation incg C ﬁg x Vg x Vi is defined by (e, z,y) € incg if
and only if the edge e is directed from the vertex x to the vertex y. Then incg
describes the structure of the graph G.

Secondly the relation sigp C Vg x Eg X E¢ is defined by (z,e, f) € sigp if
and only if = is an extremity of e and f, and f is the next edge in the circular
ordering around z in the trigonometric sense of rotation, which is well defined
by definition of a drawing (property D2).

A corner of D is an element (P,,«) € sigp such that the drawn vertex
P is in the topological boundary of the infinite region of the plane delimited
by D, and the intersections of the drawn edges § and « with this boundary
are homeomorphic to line segments (containing P). Note that if the graph is
complete then 3 and « are entirely contained in this boundary.

The set of relations incg, sigp define the map associated with the drawing
D of the graph G. It is well known (see for example [5]) that if D is a drawing
with no edge crossing (except for common extremities), and thus G planar, then
D is determined up to an orientation preserving homeomorphism of the plane
by its map and a corner.

Thirdly, in [2], the relation dcrossp C Ec x E¢ is defined by (e, f) €
dcrossp if and only if the drawn edges e and f have no extremity in common,
the drawn edges e and f have one intersection point and f goes from the left of
e to its right when e is directed from bottom to top. Of course (e, f) € dcrossp
implies (f,e) € derossp. In this paper we do not need directed edges for the
crossing relation, it is sufficient to consider the relation crossp C Eg X Eg,
defined by (e, f) € crossp if and only if the drawn edges e and f have no
extremity in common and the drawn edges e and f have one intersection point.
Of course (e, f) € crossp implies (f,e) € crossp. Then we say that e € E¢ and
f € Eg crossin D.

The set of relations incg, sigp, crossp define the subsketch of the drawing D.

Fourthly, in [2], the relation beforep C Ec x Eg x Eg is defined by
(e, f,g) € beforep if and only if f # g, e and f cross in D, e and g cross
in D, and the intersection point of e and f is before the intersection point of
e and ¢ on the directed drawn edge e. Note that if e crosses f and g then
either beforep(e, f,g) or beforep(e, g, f) but not both. The set of relations
ncg, sigp, dcrossp, be forep define the sketch associated with the drawing D,
as introduced in [2]. By definition of a drawing, the relation be forep induces, for
any edge e, a linear ordering on the elements that cross e. A result of [2] is that
the drawing D is determined up to an orientation preserving homeomorphism
of the plane by its sketch and its corner.

In view of this result, we will assume from now on that drawings are always
given with a certain corner, and are considered up to orientation preserving
homeomorphisms (that is an homeomorphism of the plane which preserves the
orientation of one - or equivalently any - triangle of the plane). Then we can

Complete Graph Drawings Up to Triangle Mutations 143

Fig. 4. Triangle [i, j, k] cut twice by e

identify drawings and sketches, and the following definitions about drawings or
sketches can be made equivalently for one of these two objects, depending on
the point of view: geometrical, or logical. When the context is not ambiguous,
we may omit the suffix p referring to the drawing.

Let D be a drawing of a graph G. We call triangle of D an element (e, f, g) €
FE¢ X Eg x Eg such that e and f cross in D, e and g cross in D, and f and g
cross in D. The order of the elements in the triplet have no importance, and we
denote the triangle [e, f, g].

The segments of a triangle [e, f, g] are the subsets of the drawn elements
e, f, or g which are delimited by the intersection with the two other elements
of the triangle. The interior of a triangle [e, f, g] is the bounded region of the
plane delimited by its segments and containing these segments. A triangle is
contained in another triangle if the two triangles are not equal, they have two
common elements, and the interior of the first one is contained in the interior
of the second one. We say that h € Eq cuts the triangle [e, f,g], resp. culs the
triangle e, f, g] twice, if, geometrically, the drawn element h has a non empty
intersection with at least one, resp. two, segment(s) of [e, f, g]. The following
easy Lemma 1 is illustrated by Figure 4.

Lemma 1. If [i,], k] is a triangle cut twice by e, then one and only one triplet
in { {i,4,e}, {i,k,e}, {j, k, e} } defines a triangle contained in [i, j, k). O

Let D and D’ be two drawings of the graph G with same subsketch. As D and
D’ have the same cross relation, they have same triangles. We say that a triangle
le, f,g] is permuted between D and D’ if the ordering of crossings between its
edges along each of its three edges is different in the two drawings, that is if
beforep(e, f,g) = —beforep: (e, f,g), beforep(f,e,g) = —beforep: (f, e, g), and
beforep(g,e, f) = —beforep/(g,e, f),

We call free a triangle of which interior has an intersection with the drawing
reduced to the segments of the triangle. In particular it is not cut by any element,
but not that the converse is false as show the triangle [e, k,] in the left Figure
4 when j is removed.

Given a drawing D of a graph G and a free triangle [e, f, g] of D, the mutation
of le, f, g] from D is the sketch D’ of G for which all relations are the same as in
D, except that e and f, and resp. e and g, and resp. f and g, are permuted on
the drawn edge ¢, and resp. f, and resp. e. In other words all relations are the

144 E. Gioan

GRS

Fig.5. A sequence of mutations

same in D’ as in D except that the triangle [e, f, g] is permuted between D and
D’. We denote D — D', and call [e, f, g] the mutated triangle from D to D’.

Hence, a triangle [e, f, g], which is free in D, is permuted between D and
its mutation from D. But, of course, a triangle may be permuted between two
drawings D and D’, without being free in D nor in D’.

A sequence of mutations from the sketch of a drawing D is a sequence of
sketches, each one being the mutation of a free triangle from the previous one.
On the example of Figure 5, the triangle containing a vertex cannot be mutated,
but the three other triangles can be mutated triangles in a sequence of mutations.

3 Logical Structure of Complete Graph Drawings

In this section, we prove that, for a complete graph drawing with given number
of vertices and given corner, the cross relation is sufficient to determine, through
first order logic formulas, not only the the sig relation and thus the subsketch
of the drawing, but also an ins relation which states if a vertex of a graph is
inside the triangle formed by three other vertices. This is not true for general
graph drawings (see Figure 3). We shall see that these relations determine also
several other relations and finally determine the sketch of the drawing except
the be fore relations for edges of triangles containing no vertex.

Let D be a graph drawing, with corner (P, 3, «). The vertex P is called vertex at
the corner, and the other extremities of a and 3 are denoted respectively A and B.

For three vertices e, f,g € Vg, we denote [e, f,g] the bounded region of
the plane delimited by the drawn edges [e, f], [f,g] and [g, €], containing these
drawn edges. Thus this region does not contain the vertex at the corner P when
P ¢ {e, f,g}. Not that by definition, such a region is equivalent to a closed ball
up to homeomorphism. The relation insp C Vg X Vg x Vg x Vi is defined by
(x,e, f,g) € insp if and only if = & {e, f, g} and the drawn vertex x is inside
the region [e, f, g].

For the construction of the next theorem, we introduce a relation betp C Vg x
E¢ x Eg x E¢ called between relation for the drawing D, such that (x,e, f,g) €
betp if the edges e, f, g all have extremity x, and f is between e and g in the
circular order of the edges around z (note that the order is essential in the
sentence: f is not between g and e).

The size of a complete graph drawing is the number of vertices of the under-
lying complete graph.

Complete Graph Drawings Up to Triangle Mutations 145

Theorem 1. The subsketch and the inside relation of a complete graph drawing
are determined, through first order logic formulas, by its size, its crossing relation
and its corner.

Proof. The construction is step by step and uses extensively the topological
definition of the corner and properties (D1) (D2) (D3) of a drawing.The proof
is not difficult and is about two pages long. However the ordering of the steps is
important. Briefly: begin with the inside relations for triplets containing P, then
for general triplets, then consider the between relations around P, and then the
between relations around any vertex. O

Since the sig relations are determined, we easily get the following corollary
by using the restrictions to 4 vertices subdrawings.

Corollary 1. Let D be a complete graph drawing. Its dcross relation is deter-
mined with first order logic formulas by its size, crossing relation and corner. 0O

The following results are trivial in the geometrical case. They generalize to
topological graph drawings, quite technically but easily, using Theorem 1 and
the axioms (D1), (D2), (D3), by considering the several possible representations.

Lemma 2. Let D be a complete graph drawing with given size, crossing rela-
tion and corner. Let f and g be two edges such that either f and g have same
extremity, or f and g do not cross. If f and g both cross an edge e, then the
before(e, f, g) relation is determined by first order logic formulas. O

Corollary 2. Let D and D’ be two complete graph drawings with same size,
crossing relation and corner. Then D # D’ if and only if there exists a permuted
triangle between D and D’. O

We say that a drawn triangle T' contains a drawn vertex a, if the drawn
vertex a is inside the bounded region of the plane delimited by drawn edges of T'

Lemma 3. Let D be a complete graph drawing, with given size, crossing relation
and corner. Let T = [e, f, g] be a triangle, and a a vertex of D. The property that
the drawn triangle T contains the drawn verter a is expressible by a first order
logic formula. Moreover, when this property is true for some a, the be fore(e, f,g)
relation is also determined by a first order logic formula. a

Corollary 3. If two complete graph drawings have same size, crossing relation
and corner, then a drawn triangle permuted between the two sketches contains
no drawn vertex of the graph. O

4 Triangle Mutations in Complete Graph Drawings

In the previous Section we saw that two complete graph drawings with same
corner and subsketch have the same be fore relations except for triangles con-
taining no drawn vertex. The aim of this Section is to prove that two complete

146 E. Gioan

graph drawings with same corner have same subsketch if and only if they can be
transformed into each other by a sequence of mutations. The “if” way is obvious
since a mutation does not change the subsketch, the “only if” way is made by
an algorithm.

For a drawing D of a graph GG, and a drawn edge e of D, we denote D — e the
drawing obtained by removing the drawn edge e except the intersection points
with other edges. Note that if G — e is not connected, then an extremity a of e
is isolated in G — e, and by definition is not represented in D — e.

Let G be a complete graph with vertices {a1, ..., a,}, the (undirected) edges
of G are denoted e; ; = [a;,a,], 1 <i < j < n. For adrawing D of G, we denote
D, =D and, for1 <i<n,D; =D —{€n,€it1n,--,€n—1n}. In particular, Dy
is a drawing of the complete graph on n — 1 vertices a1, ..., a,—1. When D is given
with a corner (P, 3, «), we choose to numerate vertices so that P = a1, 8 = [a1, a2]
and a = [ay, as], so that it remains a corner of the considered subdrawings.

Lemma 4. Let 1 < i < n, and let D and D' be two complete graph drawings,
with same size, crossing relation and corner, such that D; = D). Then there
exists a permuted triangle between D;y 1 and Dj |, and a sequence of mutations
from D1 to Dj,, containing only permuted triangles between D;yy and Dj,.

Proof. The proof is about one page long and consists in a sweeping of ¢;. a

Theorem 2. Let D and D’ be two complete graph drawings with same size,
crossing relation and corner. There exists a sequence S(D,D’) of mutations
D =D - pW - D&Y DK = D’ from D to D'. Moreover this
sequence can be chosen such that, for any intermediate sketch D, 1 <0< k—1
the mutated triangle from D@ to DU s contained in a permuted triangle
between D) and D'. It is given by the following algorithm.

Computation of the first triangle T'(D;, D}) from D; to Dj
if n <3 or D; =D} then T(D;,D}) =0
if n>3and1<i<nthenlet T=T(D;_1,D}_,)
if T # () then
if T is free in D; then T(D;, D}) :=T
otherwise T' is cut by e; ,, in D; then there exists (by lemma 1) a unique 7’
contained in T, free in D;, with e; , € T, and T'(D;, D}) :=T"
if T'= () then there exists (by lemma 4) T”, free in D;, with e;,, € T”,
permuted between D; and D, and T'(D;, D}) := T’ (arbitrary choice)

Computation of S(D, D’)

if T(D,D') = 0 then S(D,D') :== D

otherwise D" being obtained by mutation of T'(D, D) from D
S(D,D"):=D — S(D",D")

Proof (sum up). We prove Theorem 2 by induction on n and 1 < i < n, using
the previous algorithms. Recall that D; is a drawing of the complete graph on

Complete Graph Drawings Up to Triangle Mutations 147

n — 1 vertices, hence T'(D;, D7) and S(D1, D}) are built for drawings of K, _;.
Note that, by Corollary 2, for all 1 < i < n, we have D; # D} if and only if there
exists a permuted triangle between D; and D.

The direct computation of S(D;, D)) can be done the following way: first
build S(D; — €in, Di —ein) = S(D;i—1,D;_;). The key point is that any triangle
in this sequence at level ¢ — 1 is contained by induction hypothesis in a triangle
which is permuted between the current sketch and the final one. Hence it cannot
contain a vertex of the graph according to Corollary 3. So free triangles used in
the sequence of mutations at level ¢ — 1 which are not cut by e; ,,, remain free
triangles at level 1.

Then add the mutations built in the algorithm when T # () and T is cut
by e;n using Lemma 1. These added mutations all contain e;,. The sequence
obtained here is denoted S”, and the arrangement obtained from D; by S” is
DY. Then D} | = D}_; and by Lemma 4 there exists a sequence S” from Dj
to D} using only mutations containing e; . Then S = S’ — S is a sequence of
mutations from D; to D;.

At last, T'(D;, D}) is contained in a permuted triangle between D; and D}:
either T'(D;_1, D}_,) = 0 and it is a permuted triangle between D, and Dj, or it
is contained in T'(D;_1, Dj}_;), which is contained in a permuted triangle between
D;_1 and D}_; (by induction hypothesis), and so between D; and D. O

5 Examples and Applications

5.1 Triangle Mutations in Pseudoline Arrangements

A pseudoline arrangement may be defined as a finite set of curves in the affine
plane, each one being homeomorphic to a line, and such that any two pseudo-
lines cross each other exactly once. We will always consider uniform pseudoline
arrangements, i. e. no three pseudolines can meet at the same point. We consider
that a pseudoline arrangement is labelled and given with the circular ordering of
the pseudolines at infinity, and is defined up to an orientation preserving home-
omorphism. Pseudoline arrangements (equivalent to rank 3 oriented matroids)
are well studied objects, see [1] chapter 4. They satisfy simple axiomatics with
the before relation [1], and even first order axiomatics [3].

Here, a pseudoline arrangement can be considered as a structure similar
to a sketch of which inc and sig relations are not useful, of which crossing
relation is trivial (each element crosses each other element once), and determined,
when each pseudoline is directed, by the linear ordering of the crossings on each
pseudoline, that is by a before relation. Hence all definitions about triangles
and mutations can be done exactly the same way in pseudoline arrangements.
So the previous result and algorithm apply naturally: for an arrangement A on
E ={ey,...,en}, we denote A, 1 < k < n, the arrangement on Ey, = {ey, ..., ex}
obtained by restriction from A, and we replace D; with A; and e;,, with e; in
Theorem 2. Note that a similar natural inductive construction for a sequence of
mutations has been used for pseudoline arrangements by Roudneff in [8].

148 E. Gioan

N —

/.,

N
\

Y A

1 2 3 4 5 6 1 2

Fig. 6. Two arrangements with no permuted free triangle

The well known Ringel’s theorem on pseudoline arrangements [7] states that
if A and A’ are two uniform pseudoline arrangements with same number of
elements and same circular ordering at infinity then there exists a sequence of
mutations from A to A’. Hence Theorem 2 gives a slight strengthening of this
theorem, which allows to transform A into A’ avoiding mutations of triangles
not contained in a permuted triangle. Indeed, in the generalization to graph
drawings, we want to avoid mutations of triangles containing drawn vertices.

The very important point is that it is not possible in general to transform a
configuration into another one using only mutations of permuted free triangles,
as it would mean there is always a permuted free triangle between two different
configurations, which is false as shown on the example below. This has been
mentioned in [4] from which Figure 6 is taken and made straight. Note that one
of these two arrangements had already been a significant example for another
problem in [1] Figure 1.11.2.

Ezample. The sequences of triangles built by the previous algorithm applied
to the arrangements of Figure 6 are the following. We separate the two built
subsequences: the first one (S’ in the proof of Theorem 2) built from the previous
level, and the second one when only the last pseudoline has to be moved (S” in
the proof of Theorem 2).

- at level 3: 0 (triangles 123 are the same in both arrangements)

- at level 4: (0) — (234 — 134 — 124) (only 4 has to be moved)

- at level 5: (235 — 234 — 135 — 134 — 125 — 124) — (@) (the first is sufficient)
- at level 6: (356 — 235 — 346 — 234 — 135 — 134 — 125 — 124) — (236 —
126 — 136 — 146 — 156 — 456 — 256 — 356)

This example shows two pseudoline arrangements having all their free trian-
gles (123, 145, 356 and 246) in the same position. Then a sequence of mutations
from one to the other must begin with the mutation of a non permuted trian-
gle. Hence the minimal number of mutations needed in the sequence may be
strictly larger than the number of permuted triangles. For instance in the above

Complete Graph Drawings Up to Triangle Mutations 149

sequence, we used twice the mutation of 356. The problem of building a minimal
sequence of mutations in general is open.

5.2 Visualization of Spatial Graphs Encoded by Oriented Matroids

Consider a set E of n+ 1 points in the 3-dimensional real (or rational) space in
general position, a plane in general position with this configuration, and a € F
the extremal point in F with respect to the plane (i. e. the distance from a to the
plane is maximal). Then the projections, from a to the plane, of the segments
formed by all pairs of vertices is a complete (geometrical) graph drawing on n
vertices (see Figure 7).

Fig. 7. Perspective on a spatial graph

Theorem 3. The rank 4 oriented matroid defined by E determines a corner and
the cross relations of the drawing obtained by projection from the extremal point
a € E. Hence it determines the drawing up to a sequence of triangle mutations.

Proof. With the oriented matroid, we know for each triplet in E, and for each
pair of other points, if these two points are on the same side or the opposite sides
of the plane spanned by the triplet, i. e. we know the relative signs of elements
in a cocircuit defined by the triplet. Then we easily get a corner of the drawing
and its cross relations (but not all the drawing). We end using Theorem 2. O

With theorem 3 we know that if two such configurations of points define the
same oriented matroid up to a bijection of the ground set, then their projections,
from extremal points being in bijection, are the same up to a sequence of triangle
mutations and orientation preserving homeomorphisms.

Note that this application uses mainly particular cases of the constructions
of the paper because: first, the graph drawing obtained by projection is a geo-
metrical graph drawing, that is a drawing with straight edges, and secondly, the
oriented matroid structure may determine directly the inside and map relations
on the drawing.

Note nevertheless that the obtained result is not trivial since it is impossible
in general to transform the first point configuration into the second by an isotopy
of the space preserving the oriented matroid structure (which would have been,

150 E. Gioan

if true, an immediate way to build the required sequence of mutations). This
fact is known in oriented matroid theory [1] as the Universality Theorem of
Mneév, stating that realization spaces of oriented matroid are not connected, and
in fact are birationally equivalent to semi-algebraic varieties. For some other
spatial transformation problems related to spatial graphs, see [6].

Finally, the point a plays the part of a point of view. When a moves in a
region delimited by the planes formed by other points of the configuration, the
oriented matroid data, and the subksetch, are unchanged, but the drawing, and
its sketch, change with a sequence of triangle mutations. When a crosses a plane,
the oriented matroid data changes (a sign changes in some cocircuit). Thus, it is
a certain modelization, using two structural levels, of spatial graph visualization.

References

[1] Bjorner, A., Las Vergnas, M., Sturmfels, B., White, N., Ziegler, G.: Oriented ma-
troids. Cambridge Univertisty Press. Encyclopedia of Mathematics ans its Appli-
cations 46 (1993, 1999)

[2] Courcelle, B.: The monadic second-order logic of graphs XIII: graph drawings with
edge crossings. Th. Comp. Sci. 244 (2000) 63-94

[3] Courcelle, B., Olive, F.: Une axiomatisation au premier ordre des arrangements
de pseudodroites euclidiennes. Annales de I'Institut Fourier (Universit J. Fourier,
Grenoble, France) 49 (1999) 883-903

[4] Felsner, S., Weil, H.: A theorem on higher Bruhat order. Disc. Comp. Geom. 23
(2000) 121-127

[5] Mohar, B., Thomassen, C.: Graphs on surfaces. John Hopkins University Press,
Baltimore, MD (2000).

[6] Ramirez Alfonsin, J.L.: Knots and links in spatial graphs: A Survey. Disc. Math.,
to appear.

[7] Ringel, G.: Uber Geraden in allgemeiner Lage. Elemente der Math. 12 (1957) 75-82

[8] Roudneff, J-P.: Tverberg-type theorems for pseudoconfigurations of points in the
plane. Europ. J. Comb. 9 (1988) 189-198

Collective Tree 1-Spanners for Interval Graphs

Derek G. Corneil', Feodor F. Dragan?, Ekkehard Kohler?, and Chenyu Yan?

! Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
dgc@cs.toronto.edu
2 Department of Computer Science, Kent State University, Kent, Ohio, U.S.A
{dragan, cyan}@cs.kent.edu
3 Institut fiir Mathematik, Technische Universitét Berlin, Berlin, Germany
ekoehler@math.TU-Berlin.DE

Abstract. In this paper we study the existence of a small set 7 of span-
ning trees that collectively “l-span” an interval graph G. In particular,
for any pair of vertices u,v we require a tree T' € 7 such that the dis-
tance between v and v in T is at most one more than their distance in
G. We show that:

— there is no constant size set of collective tree 1-spanners for interval
graphs (even unit interval graphs),

— interval graph G has a set of collective tree l-spanners of size
O(log D), where D is the diameter of G,

— interval graphs have a 1-spanner with fewer than 2n — 2 edges.

Furthermore, at the end of the paper we state other results on collec-
tive tree c-spanners for ¢ > 1 and other more general graph classes.

1 Introduction

A spanning subgraph H of G is called a spanner of G if H provides a “good”
approximation of the distances in G. More formally, for ¢ > 1, H is called an
additive c-spanner of G if for any pair of vertices v and v their distance in H
is at most ¢ plus their distance in G [10]. (A similar definition can be given for
multiplicative c-spanners [1,14,13]; however since we are only concerned with
additive spanners, we will often omit “additive”.) In this paper, we continue
the approach taken in [5,4,7] of studying collective tree spanners. We say that a
graph G(V, E) admits a system of p collective additive tree c-spanners if there is
a system 7 (G) of at most p spanning trees of G such that for any two vertices
u,v of G a spanning tree T' € T (G) exists such that the distance in T between
and v is at most ¢ plus their distance in G. We say that system 7 (G) collectively
c-spans the graph G. Clearly, if G admits a system of u collective additive tree
c-spanners, then G admits an additive c-spanner with at most u x (n — 1) edges
(take the union of all those trees), and if ;4 = 1 then G admits an additive tree
c-spanner. Note also that any graph on n vertices admits a system of at most
n — 1 collective additive tree O-spanners (take n — 1 Breadth-First-Search—trees
(also known as shortest path trees) rooted at different vertices of G).

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 151-162, 2005.
© Springer-Verlag Berlin Heidelberg 2005

152 D.G. Corneil et al.

One of the motivations to introduce this new concept steams from the prob-
lem of designing compact and efficient routing schemes in graphs. In [6,15], a
shortest path routing labeling scheme for trees is described that assigns each
vertex of an n-vertex tree a O(log? n/loglogn)-bit label. Given the label of a
source vertex and the label of a destination, it is possible to compute in constant
time, based solely on these two labels, the neighbor of the source that heads in
the direction of the destination. Clearly, if an n-vertex graph G admits a system
of p collective additive tree r-spanners, then G admits a routing labeling scheme
of deviation (i.e., additive stretch) r with addresses and routing tables of size
O(ulog® n/loglogn) bits per vertex. Once computed by the sender in u time
(by choosing for a given destination an appropriate tree from the collection to
perform routing), headers of messages never change, and the routing decision is
made in constant time per vertex (for details see [4,5]).

Previously, collective tree spanners of particular classes of graphs were con-
sidered in [4,5,7]. Paper [5] showed that any chordal graph, chordal bipartite
graph or cocomparability graph admits a system of at most logyn collective
additive tree 2—spanners. These results were complemented by lower bounds,
which say that any system of collective additive tree 1-spanners must have
2(y/n) spanning trees for some chordal graphs and (2(n) spanning trees for
some chordal bipartite graphs and some cocomparability graphs. Furthermore,
it was shown that any k-chordal graph admits a system of at most logy n collec-
tive additive tree (2| k/2])—spanners and any circular-arc graph admits a system
of two collective additive tree 2—spanners. Paper [4] showed that any AT-free
graph (graph without asteroidal triples) admits a system of two collective ad-
ditive tree 2-spanners, any graph having a dominating shortest path admits a
system of two collective additive tree 3-spanners and a system of five collective
additive tree 2-spanners, and any graph with asteroidal number an(G) admits a
system of an(G)(an(G) — 1)/2 collective additive tree 4-spanners and a system
of an(G)(an(G) — 1) collective additive tree 3-spanners. Collective multiplicative
tree spanners of planar graphs were investigated in [7]. It was shown that any
weighted n—vertex planar graph admits a system of O(y/n) collective multiplica-
tive tree l-spanners (equivalently, additive tree O-spanners) and a system of at
most 2logg o 1 collective multiplicative tree 3-spanners.

In this paper we study collective tree 1-spanners for interval graphs. In Sec-
tion 2, we show that no constant number of trees can collectively 1-span interval
graphs (even unit interval graphs). Surprisingly there is, as shown in Section 4,
an additive 1-spanner that uses fewer than 2n — 2 edges, the number of edges
required for two disjoint spanning trees. In Section 3, we present a polynomial
time algorithm to find a set of O(log D) trees that collectively 1-span a given
interval graph G, where D is the diameter of G. In the final section we briefly
list other results on families of graphs that strictly contain interval graphs. First
we present the definitions used in this paper.

Notation and Definitions: All graphs occurring in this paper are connected,
finite, undirected, loopless and without multiple edges. In a graph G(V, E) (n =
|[V|,m = |E|) the length of a path from a vertex v to a vertex u is the number

Collective Tree 1-Spanners for Interval Graphs 153

(a) (b)

Fig. 1. (a) A house, (b) A domino

of edges in the path. The distance dg(u,v) between the vertices u and v is the
length of a shortest path connecting u and v. The eccentricity ecc(v) of a vertex
v of G is maxyey dg(u,v). The diameter diam(G) of G is max,ev ecc(v). The
ith neighborhood of a vertex v of G is the set N;(v) = {u € V : dg(v,u) = i}.
For a vertex v of G, the sets N(v) = N1(v) and N[v] = N(v) U {v} are called
the open neighborhood and the closed neighborhood of v, respectively. For a set
S CV, by N[S] = U,eg N[v] we denote the closed neighborhood of S and by
N(S) = N[S]\ S the open neighborhood of S. A set D C V is called a dominating
set of a graph G = (V,E) if N[D] =V.

An independent set of three vertices such that each pair is joined by a path
that avoids the neighborhood of the third is called an asteroidal triple (AT).
A graph G is an AT-free graph if it does not contain any asteroidal triples [2].
A graph is chordal if it does not contain any induced cycles of length greater
than 3. A graph is an interval graph if one can associate with each vertex an
interval on the real line such that two vertices are adjacent if and only if the
corresponding intervals have a nonempty intersection. Furthermore, an interval
graph is a unit interval graph if all intervals are of the same length. Unit interval
graphs are equivalent to proper interval graphs where no interval can properly
contain any other interval. It is well known that a graph is an interval graph if
and only if it is both a chordal graph and an AT-free graph [9].

A graph is weakly chordal (also called weakly triangulated) if neither G nor
its complement G contain an induced hole (cycle of size at least 5). A graph G is
house-hole-domino-free (HHD-free) if it does not contain the house, the domino,
and holes as induced subgraphs (see Fig. 1). Clearly, chordal graphs are strictly
contained in both weakly chordal and HHD-free graphs.

2 Lower Bound

Independently McKee [12] and Kratsch et al. [8] showed that no single tree can
c-span a chordal graph for any constant ¢. We now show a similar result for
collectively 1-spanning a unit interval graph.

Theorem 1. No constant number of trees can collectively 1-span a unit interval
graph.

154 D.G. Corneil et al.

Proof. First we will show that two trees do not suffice and then show how to
extend this result to any constant number of trees.

The general “gadget” will be a K3 with two independent universal vertices
x and y (i.e. we have a K5 with the edge xy missing). The vertices of the K3
will be labelled 1, 2, 3. Now make a sufficiently long chain of these gadgets by
identifying the y vertex of a gadget with the x vertex of its right neighbor. It is
straightforward to confirm that this graph G is a unit interval graph. Consider
two trees T and Ts that supposedly collectively 1-span G. By making the chain
sufficiently long, by the “pigeonhole principle”, we are guaranteed that there are
three gadgets in G namely, A, B and C where A is left of B which is left of C'
such that:

— T restricted to A, B and C' is exactly the same spanning tree for all three
gadgets. Exactly the same means from the labelled vertex point of view,

— T5 restricted to A, B and C is also exactly the same spanning tree for all
three gadgets. Note that T) restricted to {A, B,C} is not necessarily the
same as T restricted to {A, B, C'}.

The vertices in A, B and C will be denoted A, B3, C, where, for example,
A, refers to the z-vertex of A. We say that a tree provides a l-approximating
path between two vertices if the distance between the vertices in the tree is at
most 1 more than their distance in G. We now show that in order for T; or 15
to provide such an approximating path, certain edges of G must be present in
the tree.

Claim. Let ¢ be an element of {1,2,3}. If either T7 or T provides a 1-approxi-
mating path between A; and C;, then it must contain the xi and yi edges in all
of A, B and C.

Proof. Without loss of generality, assume that 77 provides the 1-approximating
path between A; and C;,i € {1,2,3}. Such a path requires either A; to be
adjacent to A, and/or C; to be adjacent to C,. Without loss of generality,
assume C; is adjacent to C,; thus since T} when restricted to A, B and C is
exactly the same, A; is adjacent to A, and B; is adjacent to B, as well. We now
show that in all three of A, B and C,i is also adjacent to y. Suppose not; now
in each gadget, the distance between ¢ and y is at least 2 which means that the
tree path between A; and C; must be at least 2 greater than the distance in G
(since in Ty the distance between B, and B, must be at least 3 by following the
edge B, B; and the path between B; and B,). O

From the claim, it is clear that each of 77 and T can provide at most one
path between Ay, Cy or Ay, Cs or A3, C3 and thus at least three trees are required
to l-approximate G.

To generalize this argument, i.e. to show that at least k trees are required,
merely replace the K3 in the gadget by a K. The same use of the claim shows
that k — 1 trees are not enough. O

A straightforward analysis (that will be presented in the journal version of
the paper) shows that the size of the collective tree 1-spanners is 2(v/logn).

Collective Tree 1-Spanners for Interval Graphs 155

3 Upper Bound

In light of 2(1/logn) spanning trees being needed to collectively 1-span an in-
terval graph G, we now show that 2log, (D — 1) 44 spanning trees suffice, where
D is the diameter of G.

Let P be a shortest path of a graph G. If every vertex z of G belongs to
the neighborhood N[P] of P, then we say that P is a dominating shortest path
(DS-path) of G. Tt is known that any AT-free graph has a DS-path which can be
found in linear time [2]. In what follows we will need a slightly stronger result
from [8].

A
S

Fig. 2. (a) Graph G = Go,7, (b) graphs Go,4 and Gu,7, (c) graphs Go,2, G2,4, G4,6 and
G6,7. Graphs G0,1, GLQ, G2,3, G3,4, G4,5 and G5,6 are not shown.

Lemma 1. [2,8] Any AT-free graph G admits a DS-path (xo,x1, -, Tece(ao))
such that for every i = 1,2,---, ecc(xg), every vertex z € N;(xo) is adjacent to
x; or x;_1. Moreover, such a DS-path can be constructed in linear time.

Now let G be an interval graph and let (zo, 1, -, Tece(a)) be such a DS-
path of G described by Lemma 1. The following lemma is important for our
future discussion.

Lemma 2. For any two adjacent vertices uw € N;(zg) and v € N;y1(xp), u,v €
Nlz;] or u,v € N|x;q1]. Moreover, if u # x;, then ux; € E.

156 D.G. Corneil et al.

Proof. If u = x; or v = z;41, then the lemma is trivially true. Hence, we may
assume that v # z; and v # x;41. If uz; ¢ E then, by Lemma 1, ux;,—; € E. If
now vx; € FE, then u,v,z;,xr;—1 give an induced cycle of length 4 in G, which
is impossible for an interval graph. If vx; ¢ E then, by Lemma 1, va; 11 € E.
Then, we obtain either an induced cycle of length 5 or induced cycle of length
4, depending on whether or not ux;41 is in E. So, if u # x;, then ux; must be in
E. If now vx;11 € E but neither ux;41 nor vz; is in F, then x;, u,v, z;4+1 form
an induced cycle of length 4 in G, which is impossible. O

Let ! denote ecc(zo). For any two integers 4, j, 0 < i < j <, we define G, ;
to be the subgraph of G induced by vertices {z;} U Njt1(zo) U- - UN;(zo) (see
Fig. 2 for an illustration). In view of Lemma 1, obviously, G; ; is connected and
G = Gy,;. We use the following procedure to construct a system of local shortest
path trees of G.

PROCEDURE 1. A system of local shortest path trees for an interval
graph G.

Input: An interval graph G, a DS-path (zg,---,2;) and the layering
{xo}, Nl(l‘o), HRN Nl(.’L‘o) of G.
Output: A system of local shortest path trees of G.

Method:
set k:=0; Gy :={Go,}; T :=0;
while G, # () do
set Gry1 :=0; T :=0; T :=0;
for each G; ; € G do
if j =i+ 1 then
construct a shortest path tree of G; ; rooted at x; and put it in 7;
construct a shortest path tree of G; ; rooted at z; and put it in 7;;
else /*if j>i+1%*/
set s := [(j —1i)/2] +i+1;
construct a shortest path tree of G, ; rooted at xs—1 and put it in Tk’;
construct a shortest path tree of G; ; rooted at x5 and put it in 7,’;
set Grt1 = Grp1 U{Gis—1,Gs-1,5};
set T:=TUT/UT/;
set k:=k+1;
return 7.

Note that the while loop in the procedure above will be executed at most
log,(1—1)42 times. Let G; ; be an arbitrary subgraph generated by the procedure
with j > i+ 1. Let also s = [(j —i)/2] + i+ 1 and a € N,(z9),b € N¢(xg) be
two arbitrary vertices in G; ;, where r < t are two integers between 7 and j
inclusive. Let T,,Ts_1 € 7T be the two shortest path trees of G;; rooted at
Zs, Ts—1, respectively. Clearly, both spanning trees span all the vertices of Gj ;
and the subgraphs G; s—1 and Gs_1 ; of G; ; have only one common vertex xs_;.
The following lemmata hold.

Collective Tree 1-Spanners for Interval Graphs 157

Lemma 3. If r=t=s, then dr, (a,b)<dg(a,b)+1 ordr,_,(a,b)<dg(a,b)+ 1.

Proof. Since T and Ts_1 are shortest path trees, using Lemma 1, one can easily
show that dr, (a,b) < 3 or dr,_,(a,b) < 3. So, if ab ¢ E or a,b € N[zs] or
a,b € Nlzs_1], then the lemma holds. If now ab € E and, without loss of
generality, axs,brs_1 € E and bxs,axs—1 ¢ E, then the vertices a,b, xs_1, x4
form an induced cycle of length 4 in G, which is impossible. O

In a similar way one can show the following.

Lemma 4. Ifa and b are vertices of a graph G; ;41 then dr/(a,b) < dg(a,b)+1
or drr(a,b) < dg(a,b) + 1, where T',T" € T are shortest path trees of Giiy1
rooted at x; and x;y1, respectively.

Lemma 5. Ifi <r <s <t <j, thendr,(a,b) <dg,,(a,b)+1 ordr,_,(a,b) <
dGi,j (a, b) +1.

Proof. Using Lemma 1, it is easy to show that dr_ (a,b) < t—r+3ordr,_,(a,b) <
t —r + 3. So, when dg, ;(a,b) >t —r + 2, the lemma clearly holds. Therefore,
we may assume that dg, ;(a,b) ist —r+ 1 or t —r. Let first dg, ;(a,b) =t —1r
and (zr = @,2r41,---,2 = b) be a shortest path between a and b in G, ;.
Consider vertices zs_1 and zs. According to Lemma 2, they both belong to
Nzs] or to N[zs—1]. Without loss of generality, assume zg, 2,1 € N|x;]. Since
T, is a shortest path tree, dr, (zs,a) < s —r and dr,(zs,b) < t — s+ 1. So,
dr,(a,b) < drg(zs,a) +dr, (2s,0) <t —r+1=dg,,(a,b) + 1.

Now assume that dg, (a,b) = t —r + 1. Let z,2,_1 € E be an edge on
the shortest path between a and b in G; ; such that z; € Ng(xo) and z;_1 €
N,_1(x0). Obviously, such an edge must exist, and we have dg, ;(a,b) = dg, ,(a,
25-1) + dg, ; (b, zs) + 1. According to Lemma 2, both z; and z,_1 belong to
Nzs] or to N[zs—1]. Without loss of generality, assume they belong to N[z,].
Then, since T is a shortest path tree of G; j, dr, (xs,a) < 1+dg, ;(2s-1,a) and
dr,(zs,b) <1+ dGi,j (2s,b). Hence, dr, (a,b) <2+ dGi,j (2s,0) + dGi,j (25-1,0) =
1 +dg, ;(a,b). This concludes our proof. |

Lemma 6. Ifdg, (a,b) # dc(a,b), then a € Nii1(xo) or b € Nip1(zo).

Proof. Without loss of generality, assume that a € N,.(z¢),b € N¢(xo) and i+1 <
r <t < j. We claim that there always exists a shortest path PG(a7 b) between a
and b in G such that P%(a,b) N Nj11(xo) = (. If this is not the case, then there
must exist vertices ¢,d € P%(a,b) N Nj(zo) and ¢/,d’ € Nji1(zo) N P%(a,b)
such that cc’ and dd’ are edges of P%(a,b). Obviously, cd ¢ E. According to
Lemma 2(second part), czj,dr; € E. Then, if we replace the part of P%(a,b)
between ¢ and d with the path (¢, z;,d), obviously we will get a shortest path
between a and b that does not intersect Njt1(xo). So, we may assume that
PG((Z, b) N Nj+1(l‘0) = @

If neither @ € N;y1(xp) nor b € Niy1(xo), then i + 1 < r < ¢. Since
da, ;(a,b) # da(a,b), we must be able to find four vertices e, f € Njya(xo) N
PC%(a,b) and ¢/, f' € Niy1(zo) such that ee’ and ff’ are edges of P%(a,b). If

158 D.G. Corneil et al.

e'f' € Eore = f then P(a,b) is in G, , ie., dg, ;(a,b) = dg(a,b). Hence,
one may assume that ¢’ f’ ¢ F and e’ # f’. Then, according to Lemma 2(second
part), €'z;t1, f'x;y1 € E and we can choose another shortest path between a
and b that does not intersect N;(zo) and get dg, ;(a,b) = dg(a,b) again. Thus,
if neither @ € Nj11(zo) nor b € Niy1(xo), then dg, ;(a,b) = dg(a,b). O

J

We are ready to prove the following main lemma of this section.

Lemma 7. For any two vertices a,b € V(QG), there exists a local shortest path
tree T € T such that dr(a,b) < dg(a,b) + 1.

Proof. Let G, ; be a subgraph of G, generated by Procedure 1, which contains
both vertices a and b and has the minimum difference j —i. If j —¢ = 1 then we
are done by Lemma 4. Therefore, in what follows we assume that j > ¢+ 1, and
let s=1[(j—1i)/2] +i+1and a € N.(zg),b € Ne(zp), where i <r <t < j. By
minimality of j — i, r < s <t (if ¢ < s then G; s_1 contains both a and b, and if
r > s then G,_1 ; contains both a and b).

The case i <r < s <t <jwhendg,;(a,b) = dg(a,b) is handled by Lemma
5. Assume now that dg, , (a,b) # dg(a,b). Let P%(a,b) be an arbitrary shortest
path between a and b in G. By Lemma 6, r = ¢ + 1. We claim that dg(a,b) =
t — 7+ 2. Indeed, since dg, ;(a,b) <t —r + 3 (recall that a € N[z;11] U N(xz;)
and b € N[z;] U N(2¢—1) by Lemma 1) and dg, ,(a,b) # da(a,b), we must have
dg(a,b) < t—r+2. On the other hand, if dg(a,b) < t—r+1, then we can easily
show that all the vertices of P%(a,b) are in G, j, and thus dg, ,(a,b) = dc(a,b).

Consider now the local shortest path tree T, € 7 of G;; rooted at w,,
where s = [(j —i)/2] + i+ 1. It is easy to show that dr, (zs,a) < s—7r+2 and
dr, (xs,b) < t—s+1. Combining the two inequalities, we get dr, (a,b) < t—r+3.
Since dg(a,b) =t —r + 2, the lemma holds. |

We can group the local shortest path trees from 7 into at most 2 log,(I—1)+4
spanning trees of G. Consider Procedure 1. At the beginning, Gp; = G and we

»
T

Fig. 3. Spanning trees T and T’ of an interval graph G from Fig. 2

Collective Tree 1-Spanners for Interval Graphs 159

construct only two spanning trees of G, i.e., 7] = {I}}, 7y’ = {T¢'}. In the
second iteration, G is decomposed into two subgraphs Gy s—1 and Gs_1,; where
s = [1/2] + 1. For each of the two subgraphs, the algorithm constructs two local
shortest path trees, i.e., 7} = {I"},T'3}, T}/ = {T"},T"3}. Since Go .1 and
Gs—1, have only vertex zs_1 in common, we conclude 77 := THUT'? and TY =
T”% UT”? are two spanning trees of G (see Fig. 3). In general, during the iteration
k of Procedure 1, for each of the 2¥~! subgraphs Go,ji) Girjas G ; of

k—1
G, we construct two local shortest path trees, i.e., 7] = {T’,lc,T’Z, e ,T’Z IS

k—1
T = {1}, T";, -, T"; }, where T} and T"] are the local shortest path
trees constructed for G;,_, ;. (y=1,---,2871). Again, forany v = 1,---,2F "1 —
1, G4, ,j, and Gj ; ., have only vertex x;, in common. Therefore, T} :=
Ur<y<or—1 T3 and T}/ := U, < <or—1 T"'} are two spanning trees of G. Since the
number of iterations is bounded by « < log, (I —1) 42, in this way we will create
a system ST := {73, 74, 171.17,---,T., Ty} of at most 2« spanning trees of G.
Furthermore, each local shortest path tree from 7 will be contained in one of
the spanning trees from S7 as a subtree. Thus, we proved the following result.

jgk—l_l’

Theorem 2. Any interval graph of diameter D admits a system of 2logy (D —
1)+4 collective additive tree 1-spanners. Moreover, these trees can be constructed
in O(mlog D) total time.

4 Sparse Spanner

Given the result in Theorem 1 that no constant number of trees can collectively
l-span a unit interval graph, it is somewhat surprising that there is a sparse
1-spanner of an interval graph that has fewer than 2n — 2 edges (i.e. the number
of edges in two disjoint spanning trees). To see this, we first present an algorithm
to produce a subgraph H of interval graph G. We then show that H has the
required number of edges and is in fact a 1-spanner of G.

PROCEDURE 2. Construction of a sparse 1l-spanner for an interval
graph G.

Input: An interval graph G, and an interval ordering < of V where for all
x <y <zifxz € E, then xy € E. Let D be the diameter of the graph G.
Output: A sparse 1-spanner H of G.

Method:

let zp be the last vertex in the ordering <; set Eg := (J;

add the edge from xp to its leftmost neighbor to Eg;

for i from D downto 1 do
let x;_1 be the left most neighbor of x;;
add to Fg all edges from x;_1 to vertices to the right of x;—1 up to z;;
if i > 1 then add to Ey all edges in G from xz;_1 to vertices to the left

of ;1.

160 D.G. Corneil et al.

4 7 8 11 15 17 20
1 3 6 9 1 1 1 21
>
2 5 10 13 14 19 22

13 Xs 19 X7

(b)

Fig. 4. (a) Graph G and its interval ordering <. (b) Sparse 1-spanner H with the edges
of P bold.

As an example of Procedure 2, consider Fig. 4(a) where the interval graph of

Fig. 2 is repeated together with an interval numbering. The 1-spanner H is shown

in Fig. 4(b) and the bold edges denote P, the path induced on {z;,0 <14 < D}.
We now show that H is a sparse 1-spanner of G.

Lemma 8. H is a 1-spanner of G with at most 2n — D — 2 edges.
Proof. First we show that H has at most 2n — D — 2 edges. To see this note:

— all vertices to the right of zp_1 have degree 1 in H and there is at least one
vertex here;

— all vertices to the left of xp_1 that are not on P have degree at most 2 in
H (by the interval ordering property);

— there are D — 1 edges joining the P\ {zp} vertices.

Thus the total number of edges in H is at most 1+2(n—(D+1))+D—1=
2n — D — 2, as required.

To see that H is a 1-spanner, consider arbitrary vertices and y where z < y
in the interval ordering. We now show that dy(z,y) < dg(z,y) + 1. This is
clearly true if x is in P, so we assume that x is not in P. Now, suppose x is
between z; and x;41 for i > 0 and y satisfies ; < y < 41, where ¢ < j. (Note
that if ¢ = j, then immediately dy(z,y) < 2.)

Claim. dg(z,y) > j —i.

Proof. Suppose to the contrary that there is a path @ in G of length less than
j — 1. It is easy to see that the number of P vertices strictly between x and y is
j — i and thus some edge uv (where u < v) of @ surrounds two P vertices
and xp+1 (le. u < 2 < Tp41 < v). Since wv € Eg, urk1 € Eq contradicting
xy being the left most neighbor of 4. O

Collective Tree 1-Spanners for Interval Graphs 161

Now suppose dg(z,y) = j — i as witnessed by path @ = (¢ =
Z,q1, - ,¢j—i = y). Using the same argument as in the claim, for each k €
{0,1,---,5 — 1}, gr must lie between x;1 and ;1 x+1. Since x = g is adjacent

to g1, and x;41 is between qo and ¢, we know that z is adjacent to x;11. Now
consider the path in H from x to x;41,---x;,y. This path has length j —¢ + 1.

Thus we may assume that dg(z,y) > j — i. But the path in H from z to
x;, - x4,y has length j — ¢ + 2 and we are finished. O

Thus we have the following result:

Theorem 3. Any interval graph G of diameter D admits a sparse additive 1-
spanner with at most 2n— D —2 edges. Moreover, this spanner can be constructed
in O(n +m) time.

Proof. Given Lemma 4, we only have to establish the time complexity. There
are many linear time interval graph recognition algorithms that can be used to
determine an interval ordering of the given graph (for example see [3]). Using
this ordering, a straightforward implementation of Procedure 2 can be achieved
in linear time. a

Furthermore, in the journal version of the paper we will show that the sparse
spanner returned by Procedure 2 can be used for efficient routing.

5 Concluding Remarks

The most obvious open question in this paper is to tighten the gap between the
lower and upper bounds for the size of a collective tree 1-spanner for interval
graphs.

The results stated in this paper also raise questions about additive c-spanners
for ¢ > 1 for graph classes containing interval graphs. (Recall that interval graphs
have a single tree that 2-spans the graph [11,8].) In the journal version of the
paper, we will present proofs of the following theorems.

Theorem 4. No constant number of trees can collectively additively c-span
chordal graphs for ¢ < 3.

Theorem 5. No constant number of trees can collectively additively c-span
weakly chordal graphs for all constants c.

Theorem 6. Any HHD-free graph admits a system of at most 2logy n collective
additive tree 2-spanners. Moreover, such a set of trees can be constructed in
O(mlogn) time.

For the proof of Theorem 6 we show an auxiliary result of independent in-
terest that any n-vertex HHD-free graph G has a separator S C V such that

— any connected component of G'\ S has no more than n/2 vertices and
— S C (N[z] U NJy]) for some vertices z,y € S.

Moreover, S and such two vertices x and y can be found in linear time.

162 D.G. Corneil et al.

Acknowledgements. DGC wishes to thank the Natural Sciences and Engineer-
ing Research Council of Canada for financial assistance in the support of this
research.

References

1. L.P. CHEW, There are planar graphs almost as good as the complete graph, J. of
Computer and System Sciences, 39 (1989), 205-219.

2. D.G. CORNEIL, S. OLARIU and L. STEWART, Asteroidal Triple—free Graphs, STAM
J. Discrete Math., 10 (1997), 399-430.

3. D.G. CORNEIL, S. OLARIU and L. STEWART, The LBFS structure and recognition
of interval graphs, under revision.

4. F.F. DrRAGAN, C. YAaN and D.G. CORNEIL, Collective Tree Spanners and Routing
in AT-free Related Graphs (Extended Abstract), Proceedings of 30th International
Workshop Graph-Theoretic Concepts in Computer Science (WG ’04), June 2004,
Bad Honnef, Germany, Springer, Lecture Notes in Computer Science 3353, 68-80.

5. F.F. DrRAcAN, C. YAN and I. LomoNosov, Collective tree spanners of graphs,
Proc. of the 9th Scandinavian Workshop on Algorithm Theory (SWAT’04), 8-10
July, 2004, Humlebaek, Denmark, Springer, Lecture Notes in Computer Science
3111, pp. 64-76.

6. P. FrRAIGNIAUD and C. GAVOILLE, Routing in Trees, Proceedings of the 28th Int.
Colloquium on Automata, Languages and Programming (ICALP 2001), Lecture
Notes in Computer Science 2076, 2001, pp. 757-772.

7. A. Gupra, A. KuMAR and R. RAsTOGI, Traveling with a Pez Dispenser (or,
Routing Issues in MPLS), SIAM J. Comput., 34 (2005), pp. 453-474.

8. D. KraTscH, H.-O. L, H. MULLER, E. PRISNER AND D. WAGNER Additive tree
spanners SIAM J. Discrete Math. 17 (2003), 332-340.

9. C. LEKKERKERKER AND J. BOLAND Representation of a finite graph by a set of
intervals on the real line Fund. Math., 51 (1962), 45-64.

10. A.L. LIESTMAN AND T. SHERMER, Additive graph spanners, Networks, 23 (1993),
343-364.

11. M.S. MADANLAL, G. VENKATESAN, and C. PANDU RANGAN, Tree 3-spanners
on interval, permutation and regular bipartite graphs, Inform. Process. Lett., 59
(1996), 97-102.

12. T.A. McKEE, personal communication to E. Prisner, 1995.

13. D. PELEG, and A.A. SCHAFFER, Graph Spanners, J. Graph Theory, 13 (1989),
99-116.

14. D. PELEG AND J.D. ULLMAN, An optimal synchronizer for the hypercube, in Proc.
6th ACM Symposium on Principles of Distributed Computing, Vancouver, 1987,
77-85.

15. M. THORUP and U. Zwick, Compact routing schemes, Proceedings of the 13th
Ann. ACM Symp. on Par. Alg. and Arch. (SPAA 2001), ACM 2001, pp. 1-10.

On Stable Cutsets in Claw-Free Graphs
and Planar Graphs

Van Bang Le', Raffacle Mosca?, and Haiko Miiller?

! nstitut fiir Informatik, Universitdt Rostock, 18051 Rostock, Germany
le@informatik.uni-rostock.de
2 Dipartimento di Scienze, Université degli Studi “G.D’Annunzio”,
Viale Pindaro 42, Pescara 65127, Italy
r.mosca@unich.it
3 School of Computing, University of Leeds, Leeds, 182 9JT, UK
hm@comp.leeds.ac.uk

Abstract. To decide whether a line graph (hence a claw-free graph)
of maximum degree five admits a stable cutset has been proven to be
an NP-complete problem. The same result has been known for K4-free
graphs. Here we show how to decide this problem in polynomial time
for (claw, K4)-free graphs and for a claw-free graph of maximum degree
at most four. As a by-product we prove that the stable cutset problem
is polynomially solvable for claw-free planar graphs, and for planar line
graphs. Now, the computational complexity of the stable cutset problem
restricted to claw-free graphs and claw-free planar graphs is known for
all bounds on the maximum degree.

Moreover, we prove that the stable cutset problem remains NP-
complete for K4-free planar graphs of maximum degree five.

1 Introduction

In a graph, a clique (stable set) is a set of pairwise (non-)adjacent vertices. A
cutset (or separator) of a graph G is a set S of vertices such that G — S is
disconnected. A clique cutset (stable cutset) is a cutset which is also a clique
(stable set).

Clique cutsets are a well-studied kind of separators in the literature, and have
been used in divide-and-conquer algorithms for various graph problems, such as
graph colouring and finding maximum stable sets; see [18,22]. Applications of
clique cutsets in algorithm design use the fact that these cutsets (in arbitrary
graphs) can be found in polynomial time [18,21,22].

The importance of stable cutsets has been demonstrated first in [6,20] in
connection to perfect graphs. Tucker [20] proved that if S is a stable cutset in
G and if no induced cycle of odd length at least five in G has a vertex in S then
the colouring problem on G can be reduced to the same problem on the smaller
subgraphs induced by S and the components of G — S.

Later, the papers [2,3,4,10,13,15] discussed the computational complexity of
the problem STABLE CUTSET (“Does a given graph admit a stable cutset?”).

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 163-174, 2005.
© Springer-Verlag Berlin Heidelberg 2005

164 V.B. Le, R. Mosca, and H. Miiller

Stable cutsets (in line graphs) have been also studied under other notion. A
graph is decomposable (cf. [11]) if its vertices can be coloured red and blue in
such a way that each colour appears on at least one vertex but each vertex v has
at most one neighbour having a different colour from v. In other words, a graph
is decomposable if its vertices can be partitioned into two nonempty parts such
that the edges connecting vertices of different parts form an induced matching,
a matching-cut. It turns out that matching-cuts in a graph correspond to stable
cutsets in its line graphs. Matching-cuts have been studied in [1,5,8,9,15,16,17].
The papers [7,17] point out an application in graph drawing.

The relationship between decomposability and a stable cutset is (cf. [2]): If
L(G) has a stable cutset, then G is decomposable. If G is decomposable and has
minimum degree at least two, then L(G) has a stable cutset.

Chvétal [5] proved that recognising decomposable graphs is NP-complete,
even for graphs with maximum degree four. Thus, in terms of stable cutsets in
line graphs, Chvéatal’s result may be reformulated and improved as follows.

Theorem 1 (Chvatal [5]). STABLE CUTSET is NP-complete, even if the input
1s restricted to line graphs with maximum degree six.

Theorem 2 ([15]). STABLE CUTSET remains NP-complete if restricted to line
graphs with mazimum degree five, and is polynomial solvable for line graphs of
mazimum degree at most four.

Hence, the computational complexity of STABLE CUTSET for line graphs is
completely characterised with respect to maximum degree constraints.

In particular, STABLE CUTSET is NP-complete for claw-free graphs with
maximum degree five. In [15], it is shown that STABLE CUTSET is solvable in
linear time for arbitrary graphs with maximum degree at most three. The com-
plexity of STABLE CUTSET for graphs with maximum degree 4 is still open.

In this paper we will improve the second part of Theorem 2 to the larger class
of claw-free graphs as follows: STABLE CUTSET becomes polynomial for claw-free
graphs of maximum degree at most four. Thus the computational complexity of
STABLE CUTSET for claw-free graphs is completely characterised with respect
to maximum degree constraints.

STABLE CUTSET for K3-free graphs is trivial. In [2] it was shown that STABLE
CuTsET is NP-complete for Ky-free graphs. Our second result is that STABLE
CUTSET can be solved in polynomial time for (claw, K4)-free-graphs. As a by-
product, we will show that STABLE CUTSET is polynomially solvable for claw-free
planar graphs, and in particular for planar line graphs.

Finally, we show that STABLE CUTSET remains NP-complete on planar Ky-
free graphs with maximum degree five.

2 Preliminaries

Let G be a graph. The vertex set and the edge set of G are denoted by V(G) and
E(G), respectively. The neighbourhood of a vertex v in G, denoted by N (v), is

On Stable Cutsets in Claw-Free Graphs and Planar Graphs 165

the set of all vertices in G adjacent to v. Let deg(v) = |N(v)| be the degree of
the vertex v, and A(G) = max{deg(v) | v € V(G)} the maximum degree of G.
For a subset W C V(G), G[W] is the subgraph of G induced by W.

Let scs(G) denote the minimum size of a stable cutset of G. If G has no
stable cutset we write scs(G) = oco.

When discussing the computational complexity of STABLE CUTSET we may
assume that G is connected. Moreover we assume that no vertex v of G has a
stable neighbourhood N (v). Otherwise N (v) or {v} would be a stable cutset in
G, or G has at most two vertices, and we are done. Thus, we have (cf. [15]):

Lemma 1. Ifscs(G) < oo, then scs(G —v) < oo for all v € V(G).

Lemma 2. Let C be a clique cutset in a graph G, |C| = 2. Then scs(G) < oo if
and only if there is a component G[A] of G — C such that scs(G[AU C]) < oo.

Since a clique cutset can be found in polynomial time ([18,21]), and singletons
are stable, Lemma 2 allows us to assume that G has no clique cutset.

3 Rigid Sets

A set R C V is said to be rigid in G = (V| E) if, for every stable set S C V, there
is a connected component G[A4] of G — S with R\ S C A. Rigid sets naturally
come in because G has a stable cutset if and only if V' is not rigid.

Clearly, every clique of G is rigid. Moreover, if () and R are rigid sets such
that @ N R contains a pair of adjacent vertices, then Q U R is rigid. However,
further rigid sets exist, see Fig. 1 for examples.

By definition, a chordal graph has no induced cycle of length four or more.

Lemma 3. Let H = (R, F) be a 2-
connected chordal subgraph of G =
(V,E). Then R is rigid in G.

Fig. 1. Graphs without stable cutset Proof. The base step of the inductive
proof is for complete H. In the induc-

tive step we consider a minimal separator of H and use that it is a clique
in G. a

4 Claw-Free Graphs of Maximum Degree Four

We are going to improve the second part of Theorem 2. We will show that STABLE
CUTSET is polynomial solvable for claw-free graphs with maximum degree four
by reducing the problem to line graphs.

Recall that the line graph L(G) of a graph G has the edges of G as its vertices,
and two distinct edges of G are adjacent in L(G) if they are incident in G. Line
graphs have been characterised in terms for forbidden induced subgraphs as
follows: A graph is a line graph if and only if it does not contain any of the nine
graphs listed in Fig. 2 as an induced subgraph (cf. [12]).

166 V.B. Le, R. Mosca, and H. Miiller

L& <> P

Fig. 2. Forbidden induced subgraphs for line graphs

2

e

Lemma 4. Let G be a claw-free graph without clique cutset and A(G) = 4.

i
(v) Ifscs(G) < oo and G contains an induced Gg then scs(G) < 2.

Theorem 3. Let G be a claw-free graph with A(G) = 4 and without clique
cutset. Assume that G is not a line graph and has at least 9 vertices. Then
scs(G) < oo if and only if scs(G) < 3.

Proof. As G is not a line graph, G must contain one of the nine forbidden induced
subgraphs listed in Fig. 2. As G is claw-free and has maximum degree four, G
therefore must contain one of the graphs Gi,...,Gg in Fig. 2 as an induced
subgraph. Now the Theorem follows from Lemma 4. a

Theorem 4. STABLE CUTSET can be solved in polynomial time for claw-free
graphs with mazimum degree at most four.

Thus the computational complexity of STABLE CUTSET for claw-free graphs
is completely characterised with respect to maximum degree constraints.

5 (Claw, K,)-Free Graphs

This section shows that STABLE CUTSET can be solved efficiently for (claw, K4)-
free graphs by reducing the problem to claw-free graphs with maximum degree
at most four. We observe first:

Lemma 5. The mazimum degree in a (claw, Ky)-free graph is at most five.

Proof. Let v be a vertex of degree at least six in any graph G. By a Ramsey-
argument, G[N(v)] contains either a triangle or the complement thereof. That
is, G contains a K, including v, or there is a claw with central vertex v. a

Let G be a (claw, K4)-free graph on at least 11 vertices that contains neither
clique cutsets nor vertices with stable neighbourhood. We will show that, for all
vertices v of G with deg(v) = 5, G has a stable cutset if and only if G — v has

On Stable Cutsets in Claw-Free Graphs and Planar Graphs 167

a stable cutset. By Theorem 4, STABLE CUTSET is then solvable in polynomial
time for (claw, Ky)-free graphs.

Let v be a vertex of degree five in G. By Lemma 1 it remains to show that
if G — v has a stable cutset then G has a stable cutset.

Assume to the contrary that G has no stable cutset, and consider an inclusion-
minimal stable cutset S in G —v. By the minimality of S, every vertex in S has
at least one neighbour in each connected component of (G — v) — S. Hence
(G — v) — S has exactly two connected components, otherwise there would be a
claw in G. Moreover, 1 < |[N(v) N S| < 2, otherwise S U {v} would be a stable
cutset in G (if N(v) NS = @) or there would be a claw in G (if |[N(v) N S| = 3).

Let A and B induce connected components of (G — v) — S. Then for all
u € SU{v}, N(u)N A and N(u) N B are cliques, each containing one or two
vertices.

If IN(v) N A] =2 = |N(v) N B| then, as G is Ky-free, no vertex in N(v) NS
is adjacent to a vertex in N(v) N A or N(v) N B. But then G admits a claw, a
contradiction. Thus, |[N(v) N A| =1 or |[N(v) N B| = 1, hence |[N(v) N S| = 2.
Let, without loss of generality, N(v) N A = {a1,a2}, N(v) N B = {b}, and
N@w)nS = {s1,s2}.

Recall that a; and as are adjacent. As G is Ky-

a1 A free, we may assume sjas ¢ FE(G). Then sy and
A g ——\%>b as are adjacent (otherwise, v, s1,s2, and as would
an Xséz B

form a claw) and hence sy and a; are nonadjacent,

implying s1a1 € E(G) (otherwise, v, s1, 82, and a4

would form a claw). Finally, s; and s both must

Fig. 3. Minimal stable cut- be adjacent to b (otherwise there would be a claw),

set S in G—wv and the neigh- see also Fig. 3.

bourhood of v in G — v We complete the proof by case analysis accord-
ing to the number of neighbours of s; in A and B.

Theorem 5. STABLE CUTSET is polynomial on (claw, K4)-free graphs.

6 Claw-Free Planar Graphs

In [4], it was shown that every graph with n vertices and 2n — 4 edges contains a
stable cutset (and, by the proof given there, such one can be found in polynomial
time). Consequently one might ask the computational complexity of STABLE
CUTSET in graphs with few edges. A natural candidate in this direction is the
class of planar graphs. In this section we show that STABLE CUTSET can be
solved efficiently for claw-free planar graphs.

It is well-known that planar graphs do not contain a Ks-minor.

Lemma 6. Let G be a graph without clique cutset. If G contains no Ks-minor,
then G = K4 or G is Ky-free.

Proof. We show that G cannot properly contain a K4. Assume the contrary
and consider four pairwise adjacent vertices a,b,c, and d in G. Then H :=

168 V.B. Le, R. Mosca, and H. Miiller

G — {a,b,c,d} is non-empty and connected (otherwise, {a,b,c,d} would be a
clique cutset in G). Moreover, for each vertex v € {a,b,c,d}, N(v) N H # &,
otherwise {a,b,c,d} \ {v} would be a clique cutset in G separating v and H.
Thus, {a}, {b}, {c}, {d}, and H form a Ks-minor, a contradiction. O

Theorem 6. STABLE CUTSET is polynomial on claw-free planar graphs.

Proof. Theorem 6 directly follows from Lemma 6 and Theorem 5 since we may
assume that our graphs do not contain any clique cutset. O

Corollary 1. STABLE CUTSET becomes polynomial on planar line graphs.

7 Planar Graphs of Degree at Most Five

In this section we prove that STABLE CUTSET remains NP-complete when re-
stricted to partial subgraphs of the triangular grid without vertices of degree six.
Since these graphs are Ky-free, this substantially improves the NP-completeness
result in [2]. We use a reduction from a restricted version of planar 3SAT [14].

Let p = /\;n=1 ¢j be the conjunction of clauses. Each clause is the disjunction
of literals. The literals are boolean variables or their negations. By X and C we
denote the set of variables and clauses. For x € X and ¢ € C, x € ¢ means that
x or its negation x is a literal in ¢. We may assume the following restrictions:

— each variable appears (as z or x) in at least three and at most four clauses,
— each clause consists of exactly three literals, and
— the graph G = (V, E) is planar, where V = X UC and E = {zc: z € c}.

Note that these conditions ensure | X| < |C| < 3|X], i.e. [V] is linear in | X|.

7.1 Construction

Let G’ be a partial subgraph of a square grid such that each edge of G corre-
sponds with a path in G’, and the vertices having degree three or four in G’ are
in one-to-one correspondence with the vertices of G. Such an embedding G’ of
G into an n x n-grid, n = O(] X|), can be constructed in quadratic time [19]. For
each e € E let {(e) be the number of horizontal edges on the path representing
e in G'. We compute a f-minimum spanning tree 7' = (V| F') of G. Then each
edge in E'\ F is represented by a path containing a horizontal edge because we
cannot make a cycle of vertical edges only.

Starting from the embedding G’, we construct a reduction graph as follows:

— each vertex in X is replaced by a truth assignment component,
— each vertex in C is replaced by a satisfaction test component, and
— each path corresponding with an edge in FE is replaced by a channel.

Channels consist of three strips. The outer ones are banks and appear as
double lines in the subsequent figures. The inner strip is the water, depicted in

On Stable Cutsets in Claw-Free Graphs and Planar Graphs 169

) I

—(C©) Jz“ © —1 I I
(b) Yy ;[/ v

x} g =] | I

Fig. 4. Planar embedding and channel map

bold. Unlike edges in F, those in F \ F contain a bridge in a horizontal part.
The bridge interrupts the water and connects the two banks.

The water component is still connected because T is connected. Similarly,
the bank component becomes connected via the bridges because all the water is
surrounded by banks.

For example, let X = {u,v,z,y,2} and C = {a,b,c,d,e, f}, where ¢ =
aANbAcNdANeA fand

a=vVaVy b=uVzVy c=uVyVz
d=vVyVz e=vVaVz f=uvaVvz

An grid embedding G’ of the graph G corresponding with ¢ is shown on
the left hand side of Fig. 4. A spanning tree T is indicated by bold edges. The
right-hand side of this figure maps the channels and shows the bridges.

Now we are ready to describe building blocks in more detail. All the vertices
are either bold (water) or double (bank), except four black vertices in the sat-
isfaction test component. Edges are double (if both endpoints are double), bold
(if both endpoints are bold), dotted (a double and a bold endpoint) for the reed
between bank and water, and black (if one endpoint is black). A monochrome
component is a maximal connected set of vertices of the same style (double or
bold). All building blocks have the following properties:

— they are partial subgraphs of the triangular grid,
— they do not contain vertices of degree six (or more), and
— all monochrome components are rigid.

In the entire reduction graph, all double vertices (bank) will form one mono-
chrome component, and all bold vertices (water) will form another one. If this
graph has a stable cutset at all, then it separates bank from water. That is, each
stable cutset will contain exactly one endpoint from each dotted edge.

Horizontal Channel. The horizontal channel is depicted in Fig. 5.

170 V.B. Le, R. Mosca, and H. Miiller

Note that exactly two different stable cutsets
exist which separate the upper monochrome com-
ponent (bank) from the middle one (water). These
cutsets are disjoint. That is, one endpoint of a dot-
YAYAYAYAYAYA ted edge fixes the entire stable cutset. This way the
truth values are propagated through the horizontal
channel.

Fig. 5. Horizontal channel

Vertical Channel. The vertical channel is depicted in Fig. 6.

As in the horizontal channel, exactly two dif-
ferent stable cutsets exist which separate the left
monochrome component (bank) from the middle
one (water). Again, these cutsets are disjoint, and
one endpoint of a dotted edge fixes the entire stable
cutset. The truth values are propagated through the
vertical channel in a similar way.

Fig. 6. Vertical channel
Bends. Two mini-bends are depicted in Fig. 7. At the hart of each bend in the

channel we have one of them, or a reflection thereof.

VAVAVAVAVAN

Fig. 7. Mini-bends

YAYAYAYAYAYA While the vertical part of a mini-bend always
; fits to a vertical channel, this is not the case for the
horizontal part. The gadgets depicted in Fig. 8 and
3 9 their reflections will rectify. Note that all these
YAYAYAYAYAYA building blocks propagate the truth values as the

straight channels do.

Fig. 8. Across

On Stable Cutsets in Claw-Free Graphs and Planar Graphs 171

Fig. 10. Channel with bridge

Channel with Bridge. The bridge is depicted in Fig. 10.
The essential part in the centre resembles the idea of Fig. 8 with interchanged
styles. The rest keeps the monochrome components rigid.

Truth Assignment Component. We give a mini-version with four horizontal
outlets in Fig. 11. For a variable appearing in only three clauses cap one outlet.

The central part is known from Fig. 8, serving four outlets rather than two.
The remaining parts are struts to keep the monochrome parts rigid.

Satisfaction Test Component. A mini-version of this component is given in
Fig. 12. It has three inlets, on the top right, on the left, and bottom right. Let
x, y and z be the literals whose truth values are fed in at these positions.

On the left we first split the y-channel into two, as in Figure 11. What follows
is a strut to keep the water component rigid. The interesting part follows further
to the right. The two black houses really test whether the clause is satisfied.

172 V.B. Le, R. Mosca, and H. Miiller

‘:“VAVAVAVAV% (,\AVAV#VAV#VAVAH ,‘¢VAVAVAVAVAD

VAVAVAVAVAV VAVAVAVAVAVAV VAVAVAVAVAD

Fig. 11. Truth assignment component

AVAVAVAVAVAY'

,AVAVAVAVAY'

N\ \
AVAVAVAN YAVAVAY
VANV 'A YA

AYAVAVAYG

VAVAVAVAV'

Fig. 12. Satisfaction test component

,AV VAVAVAVA,

AYAYA AiiiA

\VAVAVAVAV/

Fig. 13. Negator

The upper house tests z V y, the
lower one y V z. Both houses to-
gether test (x Vy) V (yV z).

Each inlet of the satisfaction
test component is directly con-
nected to an outlet of a truth as-
signment component if the corre-
sponding variable x is a positive lit-
eral in the clause, i.e. x appears un-
negated as . Otherwise (z appears
as negative literal in the clause) we
include the negator from Fig. 13
into the channel.

On Stable Cutsets in Claw-Free Graphs and Planar Graphs 173

7.2 Equivalence

Let a : X — {0,1} be a truth assignment of the variables in ¢ such that a(p) = 1.
We describe a stable cutset in the reduction graph.

The truth assignment component with caps at all four outlets allows exactly
two stable cutsets, which are disjoint. These correspond with the truth values
0 (false) and 1 (true). For each variable 2 € X we choose the stable set in
the truth assignment component that is given by ¢(z). These stable sets are
extended along the channels into the satisfaction test components.

Because a(p) = 1, for each clause there is at least one true literal. If literal =
is true (upper right inlet), we choose two nonadjacent vertices in the four-cycle
of the upper black house, and the bank vertex in the lower house. Whatever
the truth value of the literals y (left inlet) and z (lower right inlet) is, this set
of vertices extends to a stable cutset in the satisfaction test component. If z is
true we swap the roles of upper and lower house. Finally, if y is true we can
choose nonadjacent vertices in the four-cycles of both houses because the stable
cutset enforced by the left inlet contains vertices both in the lower and upper
branch of the component. Since this works in every satisfaction test component,
we constructed a stable cutset of the reduction graph.

Now assume a stable cutset S of the reduction graph R is given. Then there
is a bank component of R — S containing all double vertices not in S, and a
water component of R — S containing all remaining bold vertices. We claim
that S, restricted to the truth assignment components, defines a satisfying truth
assignment a : X — {0, 1} for . Because the channels propagate the truth values
between the truth assignment components and satisfaction test component, it
remains to be shown that for each clause there is a true literal.

Each satisfaction test component contains two adjacent bank vertices incident
with black edges. Clearly at most one of them belongs to S. This vertex separates
its black house from the bank component. The other black house belongs to the
bank component, and is separated from the water component by two nonadjacent
vertices in its four-cycle. One of these vertices is bold. It marks a true literal in
clause corresponding with this satisfaction test component.

8 Conclusion

While it has been shown that deciding whether or not a claw-free graph with
maximum degree five [15], or a graph without 4-clique [2] contains a stable cutset
is an NP-complete problem, we have proved in this paper that it can be decided
in polynomial time whether or not

— a claw-free graph with maximum degree at most four,
— a claw-free graph without 4-clique, or
— a claw-free planar graph

contains a stable cutset.
In contrast, it is NP-complete to decide whether or not a planar graph with
maximum degree five contains a stable cutset. The computational complexity of

174 V.B. Le, R. Mosca, and H. Miiller

the stable cutset problem still remains open for graphs with maximum degree
four, and even for planar graphs with maximum degree at most four.

References

1. P. Bonsma, The complexity of the matching-cut problem for planar graphs and
other graph classes, Proc. WG 2003, LNCS 2880 (2003) 93-105.

2. A. Brandstddt, F. Dragan, V.B. Le, T. Szymczak, On stable cutsets in graphs,
Discr. Appl. Math. 105 (2000) 39-50.

3. G. Chen, R.J. Faudree, M.S. Jacobson, Fragile graphs with small independent cuts,
J. Graph Theory 41 (2002) 327-341.

4. G. Chen, X. Yu, A note on fragile graphs, Discrete Math. 249 (2002) 41-43.

5. V. Chvétal, Recognizing decomposable Graphs, J. Graph Theory 8, (1984) 51-53.

6. D.G. Corneil, J. Fonlupt, Stable set bonding in perfect graphs and parity graphs,
J. Combin. Theory (B) 59 (1993) 1-14.

7. G. di Battista, M. Patrignani, F. Vargiu, A SplitéJPush approach to 3D orthogonal
drawing, J. Graph Algorithms Appl. 1 (2000) 105-133.

8. A.M. Farley, A. Proskurowski, Networks immune to isolated line failures, Networks
12 (1982) 393-403.

9. A.M. Farley, A. Proskurowski, Exztremal graphs with no disconnecting matching,
Congressus Nummerantium 41 (1984) 153-165.

10. T. Feder, P. Hell, S. Klein, R. Motwani, List partitions, SIAM J. Discrete Math.
16 (2003) 449-478.

11. R.L. Graham, On primitive graphs and optimal vertex assigments, Ann. N.Y. Acad.
Seci. 175 (1970) 170-186.

12. R.L. Hemminger, L.W. Beineke, Line graphs and line digraphs, In: Selected Topics
in Graph Theory I, L.W. Beineke, R.T. Wilson, eds., Academic Press, London,
(1978) 271-305.

13. S. Klein, C.M.H. de Figueiredo, The NP-completeness of multi-partite cutset test-
ing, Congressus Numerantium 119 (1996) 217-222.

14. D. Lichtenstein, Planar formulae and their uses, SIAM Journal on Computing 11
(1982) 320-343.

15. V.B. Le, B. Randerath, On stable cutsets in line graphs, Theor. Comput. Sci. 301
(2003) 463-475.

16. A.M. Moshi, Matching cutsets in graphs, J. Graph Theory 13, (1989) 527-536.

17. M. Patrignani, M. Pizzonia, The complexity of the matching-cut problem, Proc.
WG 2001, LNCS 2204 (2001) 284-295.

18. R.E. Tarjan, Decomposition by clique separators, Discr. Math. 55 (1985) 221-232.

19. L. Tollis, G. di Battista, P. Eades, R. Tamassia, Graph drawing. Algorithms for the
visualization of graphs, Prentice Hall, Upper Saddle River, NJ, 1999.

20. A. Tucker, Coloring graphs with stable cutsets, J. Combin. Theory (B) 34 (1983)
258-267.

21. S.H. Whitesides, An algorithm for finding clique cut-sets, Inf. Process. Lett. 12
(1981) 31-32.

22. S.H. Whitesides, An method for solving certain graph recognition and optimization
problems, with applications to perfect graphs, Ann. Discr. Math. 21 (1984) 281-297.

Induced Subgraphs of Bounded Degree
and Bounded Treewidth*

Prosenjit Bose!, Vida Dujmovié¢!, and David R. Wood?

! School of Computer Science,
Carleton University, Ottawa, Canada
{jit, vida}@scs.carleton.ca
2 Departament de Matematica Aplicada 11,
Universitat Politecnica de Catalunya, Barcelona, Spain
david.wood@upc.edu

Abstract. We prove that for all 0 < ¢ < k and d > 2k, every graph G
with treewidth at most k has a ‘large’ induced subgraph H, where H has
treewidth at most ¢ and every vertex in H has degree at most d in G.
The order of H depends on t, k, d, and the order of G. With t = k, we
obtain large sets of bounded degree vertices. With ¢ = 0, we obtain large
independent sets of bounded degree. In both these cases, our bounds on
the order of H are tight. For bounded degree independent sets in trees,
we characterise the extremal graphs. Finally, we prove that an interval
graph with maximum clique size k has a maximum independent set in
which every vertex has degree at most 2k.

1 Introduction

The ‘treewidth’ of a graph has arisen as an important parameter in the Robert-
son/Seymour theory of graph minors and in algorithmic complexity. See Bod-
laender [2] and Reed [7] for surveys on treewidth. The main result of this paper,
proved in Section 5, states that every graph G has a large induced subgraph of
bounded treewidth in which every vertex has bounded degree in G. The order
of the subgraph depends on the treewidth of G, the desired treewidth of the
subgraph, and the desired degree bound. Moreover, we prove that the bound is
best possible in a number of cases.

Before that, in Sections 2 and 3 we consider two relaxations of the main
result, firstly without the treewidth constraint, and then without the degree
constraint. That is, we determine the minimum number of vertices of bounded
degree in a graph of given treewidth (Section 2), and we determine the minimum
number of vertices in an induced subgraph of bounded treewidth, taken over all
graphs of given treewidth (Section 3). This latter result is the first ingredient
in the proof of the main result. The second ingredient is in Section 4, where we

* Research of P. Bose and V. Dujmovié is supported by NSERC. Research of D. Wood
is supported by the Government of Spain grant MEC SB2003-0270, and by the
projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 175-186, 2005.
© Springer-Verlag Berlin Heidelberg 2005

176 P. Bose, V. Dujmovi¢, and D.R. Wood

prove that the subgraph of a k-tree induced by the vertices of bounded degree
has surprisingly small treewidth.

A graph with treewidth 0 has no edges. Thus our results pertain to indepen-
dent sets for which every vertex has bounded degree in G. Here our bounds are
tight, and in the case of trees, we characterise the extremal trees. Furthermore,
by exploiting some structural properties of interval graphs that are of indepen-
dent interest, we prove that every interval graph with no (k + 2)-clique has a
maximum independent set in which every vertex has degree at most 2k. These
results are presented in Section 6.

1.1 Preliminaries

Let G be a graph. All graphs considered are finite, undirected, and simple. The
vertex-set and edge-set of G are denoted by V(G) and E(QG), respectively. The
number of vertices of G is denoted by n = |V(G)|. The subgraph induced by a
set of vertices S C V(G) has vertex set S and edge set {vw € E(G) : v,w € S},
and is denoted by GI[S].

A k-clique (k > 0) is a set of k pairwise adjacent vertices. Let w(G) denote
the maximum number k such that G has a k-clique. A chord of a cycle C is an
edge not in C' whose endpoints are both in C. G is chordal if every cycle on at
least four vertices has a chord. The treewidth of G is the minimum number k
such that G is a subgraph of a chordal graph G’ with w(G’) <k + 1.

A vertex is simplicial if its neighbourhood is a clique. For each vertex v €
V(G), let G'\ v denote the subgraph G[V(G) \ {v}]. The family of graphs called
k-trees (k > 0) are defined recursively as follows. A graph G is a k-tree if either
(a) G is a (k+1)-clique, or (b) G has a simplicial vertex v whose neighbourhood
is a k-clique, and G \ v is a k-tree.

By definition, the graph obtained from a k-tree G by adding a new vertex
v adjacent to each vertex of a k-clique C' is also a k-tree, in which case we
say v is added onto C. For every k-tree G on n vertices, w(G) = k + 1; G has
minimum degree k; and G has kn — ;k‘(k: + 1) edges, and thus G has average
degree 2k — k(k + 1)/n. It is well known that the treewidth of a graph G equals
the minimum number k such that G is a spanning subgraph of a k-tree.

We will express our results using the following notation. Let G be a graph.
Let V4(G) = {v € V(G) : degn(v) < d} denote the set of vertices of G with
degree at most d. Let G4 = G[V4(G)]. A subset of V4(G) is called a degree-d set.
For an integer t > 0, a t-set of G is a set S of vertices of G such that the induced
subgraph G[S] has treewidth at most ¢. Let a’(G) be the maximum number of
vertices in a t-set of G. Let af(G) be the maximum number of vertices in a
degree-d t-set of G. Observe that ofy(G) = a'(Gq).

Let G be a family of graphs. Let af(G) be the minimum of af(G), and let
aly(G) be the minimum of o}(G), taken over all G € G. Let G, be the family of
n-vertex graphs with treewidth k. Note that every graph in G,, has at least k41
vertices. These definitions imply the following. Every graph G € G has o(G) >
af(G) and o' (G) > o!(G). Furthermore, there is at least one graph G for which
al(G) = aly(G), and there is at least one graph G for which o (G) = o(G). Thus

Induced Subgraphs of Bounded Degree and Bounded Treewidth 177

the lower bounds we derive in this paper are universal and the upper bounds are
existential.

As described above, our main result is a lower bound on oy(G,, ;) that is tight
in many cases. Here, lower and upper bounds are ’tight’ if they are equal when
ignoring the terms independent of n. Many of our upper bound constructions
are based on the k-th power of an n-vertex path P¥. This graph has vertex set
{v1,v2,...,v,} and edge set {v;v; : |i — j| < k}. Obviously P¥ is a k-tree.

For t = k, a degree-d t-set in a graph G with treewidth k is simply a set of
vertices with degree at most d. Thus in this case, af(G) = |V4(G)|. At the other
extreme, a graph has treewidth 0 if and only if it has no edges. A set of vertices
I C V(G) is independent if G[I] has no edges. Thus a 0-set of G is simply an
independent set of vertices of G. As is standard, we abbreviate a®(G) by a(G),
a9(G) by aq(G), ete. An independent set I of G is mazimum if |I| > |J| for every
independent set J of G. Thus «(G) is the cardinality of a maximum independent
set of G.

2 Large Subgraphs of Bounded Degree

In this section we prove tig