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Preface

The 31st International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2005) was held on the campus “Ile du Saulcy” of the Univer-
sity Paul Verlaine-Metz in France. The workshop was organized by the Labo-
ratoire d’Informatique Théorique et Appliquée (LITA) and it took place June
23 – 25 2005. The 94 participants of WG 2005 came from universities and re-
search institutes of 18 different countries.

The WG 2005 workshop continues the series of 30 previous WG workshops.
Since 1975, WG has taken place 20 times in Germany, four times in The Nether-
lands, two times in Austria as well as once in Italy, in Slovakia, in Switzerland and
in Czech Republic, and has now been held for the first time in France. The work-
shop aims at uniting theory and practice by demonstrating how graph-theoretic
concepts can be applied to various areas in computer science, or by extracting
new problems from applications. The goal is to present recent research results
and to identify and explore directions of future research. The talks were given
in the “Petit Théatre”. They showed how recent research results from algorith-
mic graph theory can be used in computer science and which graph-theoretic
questions arise from new developments in computer science. There were two
fascinating invited lectures by Georg Gottlob (Vienna, Austria) and Gregory
Kucherov (Nancy, France).

The number of submitted papers was an all-time record of 125. In a careful
reviewing process with four reports per submission, the Program Committee
selected 38 papers for presentation at the workshop. The Program Committee
decided to accept more papers than usual due to the quality of the submissions.
Nevertheless, a number of good submissions had to be rejected.

With much pleasure, I thank all those who contributed to the great succes of
WG 2005: the authors who submitted their work to the workshop, the speak-
ers, the Program Committee members and the referees. I am indebted to the
members of the Local Organization Committee: Michaël Rao, Mathieu Liedloff
and Damien Aignel. Without their engagement and the help of various students
during the meeting, WG 2005 could not have been such a great success.

Special thanks go to the sponsoring organizations: GDR du CNRS: Algorith-
mique, Langage et Programmation, GDR du CNRS: Architecture, Réseaux et
Systémes, Parallélisme, Laboratoire d’Informatique Théorique et Appliquée de
l’Université Paul Verlaine-Metz, UFR MIM de l’Université Paul Verlaine-Metz,
Université Paul Verlaine-Metz, Conseil Général de la Moselle, Conseil Régional
de Lorraine, Communauté d’Agglomération Metz Métropole (CA2M).

Metz, September 2005 Dieter Kratsch
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1998 J. Hromkovič - Smolenice, Slovak Republic

1999 P. Widmayer - Ascona, Switzerland

2000 D. Wagner - Konstanz, Germany
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Hypertree Decompositions:
Structure, Algorithms, and Applications�

Georg Gottlob1, Martin Grohe2, Nysret Musliu1,
Marko Samer1, and Francesco Scarcello3

1 Institut für Informationssysteme, TU Wien, Vienna, Austria
2 Institut für Informatik, Humboldt-Universität, Berlin, Germany

3 D.E.I.S., University of Calabria, Rende (CS), Italy

Abstract. We review the concepts of hypertree decomposition and hypertree
width from a graph theoretical perspective and report on a number of recent re-
sults related to these concepts. We also show – as a new result – that computing
hypertree decompositions is fixed-parameter intractable.

1 Hypertree Decompositions: Definition and Basics

This paper reports about the recently introduced concept of hypertree decomposition
and the associated notion of hypertree-width. The latter is a cyclicity measure for hyper-
graphs, and constitutes a hypergraph invariant as it is preserved under hypergraph iso-
morphisms. Many interesting NP-hard problems are polynomially solvable for classes
of instances associated with hypergraphs of bounded width. This is also true for other
hypergraph invariants such as treewidth, cutset-width, and so on. However, the advan-
tage of hypertree-width with respect to other known hypergraph invariants is that it is
more general and covers larger classes of instances of bounded width. The main con-
cepts of hypertree decomposition and hypertree-width are introduced in the present
section. A normal form for hypertree decompositions is described in Section 2. Sec-
tion 3 describes the Robbers and Marshals game which characterizes hypertree-width.
In Section 4 we use this game to explain why the problem of checking whether the
hypertree-width of a hypergraph is ≤ k is feasible in polynomial time for each con-
stant k. However, in Section 5 we show that this problem is fixed-parameter intractable
with respect to k. In Section 6 we compare hypertree-width to other relevant hyper-
graph invariants. In Section 7 we discuss heuristics for computing hypertree decom-
positions. In Section 8 we show how hypertree decompositions can be beneficially
applied for solving constraint satisfaction problems (CSPs). Finally, in Section 9 we
list some open problems left for future research. Due to space limitations this paper is
rather short, and most proofs are missing. A more thorough treatment can be found in
[13,16,2,1,15,17], most of which are available at the Hypertree Decomposition Home-
page at http://si.deis.unical.it/∼frank/Hypertrees.

� This paper was supported by the Austrian Science Fund (FWF) project: Nr. P17222-N04,
Complementary Approaches to Constraint Satisfaction. Correspondence to: Georg Gottlob,
Institut für Informationssysteme, TU Wien, Favoritenstr. 9-11/184-2, A-1040 Wien, Austria,
E-mail: gottlob@acm.org.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 1–15, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



2 G. Gottlob et al.

A hypergraph is a pair H = (V (H), E(H)), consisting of a nonempty set V (H) of
vertices, and a set E(H) of subsets of V (H), the hyperedges of H . We only consider
finite hypergraphs. Graphs are hypergraphs in which all hyperedges have two elements.

For a hypergraph H and a set X ⊆ V (H), the subhypergraph induced by X is the
hypergraph H [X ] = (X, {e ∩ X | e ∈ E(H)}). We let H \ X := H [V (H) \ X ]. The
primal graph of a hypergraph H is the graph

H = (V (H), {{v, w} | v �= w, there exists an e ∈ E(H) such that {v, w} ⊆ e}).

A hypergraph H is connected if H is connected. A set C ⊆ V (H) is connected (in H)
if the induced subhypergraph H [C] is connected, and a connected component of H is a
maximal connected subset of V (H). A sequence of nodes of V (H) is a path of H if it
is a path of H .

A tree decomposition of a hypergraph H is a tuple (T, χ), where T =(V (T ), E(T ))
is a tree and χ : V (T ) −→ 2V (H) is a function associating a set of vertices χ(t) ⊆
V (H) to each vertex t of the decomposition tree T , such that for each e ∈ E(H) there
is a node t ∈ V (T ) such that e ⊆ χ(t), and for each v ∈ V (H) the set {t ∈ V (T ) |
v ∈ χ(t)} is connected in T .

We assume the tree T in a tree decomposition to be rooted. For every node t, Tt

denotes the rooted subtree of T with root t. For each such subtree Tt, let χ(Tt) =⋃
v∈V (Tt)

χ(v).
The width of a tree decomposition (T, χ) is max

{
|χ(t)| − 1

∣∣ t ∈ V (T )
}

, and the
tree-width of H is the minimum of the widths of all tree decompositions of H .

Observe that (T, χ) is a tree decomposition of H if and only if it is a tree decompo-
sition of H . Thus a hypergraph has the same tree-width as its primal graph.

Let H be a hypergraph. A generalized hypertree decomposition of H is a triple
(T, χ, λ), where (T, χ) is a tree decomposition of H and λ : V (T ) −→ 2E(H) is a
function associating a set of hyperedges λ(t) ⊆ E(H) to each vertex t of the decom-
position tree T , such that for every t ∈ V (T ) we have χ(t) ⊆

⋃
λ(t). The width of a

generalized hypertree decomposition (T, χ, λ) is min{|λ(t)| | t ∈ V (T )}, and the gen-
eralized hypertree-width ghw(H) of H is the minimum of the widths of all generalized
hypertree decompositions of H .

A hypertree decomposition of H is a generalized hypertree decomposition (T, χ, λ)
that satisfies the following special condition: (

⋃
λ(t)) ∩ χ(Tt) ⊆ χ(t) for all t ∈

V (T ). The hypertree-width hw(H) of H is the minimum of the widths of all hypertree
decompositions of H .

Example 1. Figure 1 shows a hypergraph H (consisting of 15 hyperedges and 19 ver-
tices) and a tree decomposition of H . A generalized hypertree decomposition and a
hypertree decomposition of H are illustrated in Figure 2. The left set within each rect-
angle represents the λ-labels and the right set represents the χ-labels. The generalized
hypertree decomposition violates the special condition, because vertex 13 disappears
from node with λ-label {h10, h14} and it appears again in a subtree rooted at this node.
The generalized hypertree-width of H is 2, whereas its hypertree-width is 3.
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Fig. 1. A hypergraph H (left) and a tree decomposition of H (right)
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Fig. 2. Generalized hypertree decomposition (left) and hypertree decomposition (right) of H

Example 2. Let H be a the hypergraph with V (H) = {1, . . . , n} and

E(H) =
{
{v, w}

∣∣ v, w ∈ V (H) with v �= w
}
∪
{
V (H)

}
.

Hence H is the hypergraph obtained from a complete graph with n vertices by adding
a hyperedge that contains all vertices. It is easy to see that hw(H) = 1 and tw(H) =
n − 1. Moreover, even the treewidth of the bipartite incidence graph of H is n − 1.

The structure of many problems can be described by hypergraphs (see also Sec-
tion 8). Let us informally define a hypergraph decomposition as a method of dividing
hypergraphs into different parts so that the solution of certain problems whose structure
is best described by hypergraphs can be obtained by a polynomial divide-and-conquer
algorithm that suitably exploits this division. The width of such a decomposition is the
size of the largest indecomposable part of this division.

The importance of hypergraph decompositions (be it tree decompositions, hypertree
decompositions, or several others) lies in the fact that many problems can be polynomially
solved if their associated hypergraph has a low width for the chosen decomposition (see
Section 8). The problem is thus to find decompositions that have the following properties:

1. They should be as general as possible, i.e., so that the classes of hypergraphs of
bounded width are as large as possible. A criterion for comparing the generality of
decomposition methods will be given in Section 6.

2. They should be polynomially computable. More precisely, for each fixed constant
k, we want to be able to check in polynomial time whether a decomposition of
width k of an input hypergraph exists.
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3. Hypergraph decompositions of bounded width should lead to the polynomial solu-
tion of the underlying problem (e.g. of constraint satisfaction problems as described
in Section 8). Typically, we expect that for a decomposition of a certain type, the
class of problems whose associated hypergraph has width bounded by k can be
solved in time O(nO(k)).

Several decomposition methods satisfy properties 2 and 3, in particular the method of
hypertree decomposition. Hypertree decompositions also satisfy Property 1. By results
of [15] and [2], which will be briefly reviewed in Section 6, the method of hypertree de-
compositions is – so far – the most general method satisfying all three of the above criteria.

2 A Normal Form for Hypertree Decompositions

Let H = (V (H), E(H)) be a hypergraph, and let V ⊆ V (H) be a set of vertices and
a, b ∈ V (H). Then a is [V ]-adjacent to b if there exists an edge h ∈ E(H) such that
{a, b} ⊆ h \ V . A [V ]-path π from a to b is a sequence a = a0, a1, a2, . . . , a� = b of
vertices such that ai is [V ]-adjacent to ai+1, for each i ∈ [0, � − 1]. A set W ⊆ V (H)
of vertices is [V ]-connected if, for all a, b ∈ W , there is a [V ]-path from a to b. A
[V ]-component is a maximal [V ]-connected non-empty set of vertices W ⊆ V (H)\V .
For any set C of vertices, let edges(C) = {h ∈ E(H) | h ∩ C �= ∅}.

Let HD = (T, χ, λ) be a generalized hypertree decomposition for H . For any vertex
v ∈ V (T ), we will often use v as a synonym of χ(v). In particular, [v]-component
denotes [χ(v)]-component; the term [v]-path is a synonym of [χ(v)]-path; and so on.
We introduce a normal form for generalized hypertree decompositions, and thus also
for hypertree decompositions.

Definition 1 ([13]). A generalized hypertree decomposition HD = (T, χ, λ) of a hy-
pergraph H is in normal form (NF) if, for each vertex r ∈ V (T ), and for each child s
of r, all the following conditions hold:

1. there is (exactly) one [r]-component Cr such that χ(Ts) = Cr ∪ (χ(s) ∩ χ(r));
2. χ(s) ∩ Cr �= ∅, where Cr is the [r]-component satisfying Condition 1;
3. (
⋃

λ(s)) ∩ χ(r) ⊆ χ(s).

Intuitively, each subtree rooted at a child node s of some node r of a normal form
decomposition tree serves to decompose precisely one [r]-component.

Theorem 1 ([13]). For each k-width hypertree decomposition of a hypergraph H there
exists a k-width hypertree decomposition of H in normal form.

3 Robbers and Marshals

In [29], graphs G of treewidth k are characterized by the so called Robber-and-Cops
game where k + 1 cops have a winning strategy for capturing a robber on G. Cops can
control vertices of a graph and can fly at each move to arbitrary vertices, say, by using
a helicopter. The robber can move (at infinite speed) along paths of G, and will try to
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escape the approaching helicopter(s), but cannot go over vertices controlled by a cop. It
is, moreover, shown that a winning strategy for the cops exists, iff the cops can capture
the robber in a monotone way, i.e., never returning to a vertex that a cop has previously
vacated, which implies that the moving area of the robber is monotonic shrinking. For
more detailed descriptions of the game, see [29] or [16].

In order to provide a similarly natural characterization for hypertree-width, a new
game, the Robber and Marshals game (R&Ms game), was defined in [16]. A marshal is
more powerful than a cop. While a cop can control a single vertex of a hypergraph H
only, a marshal controls an entire hyperedge. In the R&Ms game, the robber moves on
vertices along a path of H (i.e., a path of the primal graph H) just as in the robber and
cops game, but now marshals instead of cops are chasing the robber. During a move
of the marshals from the set of hyperedges E to the set of hyperedges E′, the robber
cannot pass through the vertices in B = (

⋃
E)∩(

⋃
E′), where, for a set of hyperedges

F ,
⋃

F denotes the union of all hyperedges in F . Intuitively, the vertices in B are those
not released by the marshals during the move.

In this game, the set of all marshals is considered to be one player and the robber
the other player. The marshals objective is thus to move a marshal (via helicopter) on
a hyperedge containing the vertex occupied by the robber. The robber tries to elude
capture. As for the robber and cops game, we distinguish between a general (not neces-
sarily monotone) and a monotone version of the R&Ms game. In the monotone version
of the game, the marshals have to make sure, that in each step the robber’s escape space,
i.e., the component in which the robber can freely move around, decreases. The (mono-
tone) marshal-width of a hypergraph H , mw(H) (and mon-mw(H), respectively), is
the least number k of marshals that have a (monotone) winning strategy in the robber
and k marshals game played on H (see [1,16] for more precise definitions).

Clearly, for each hypergraph H , mw(H) ≤ mon-mw(H). However, unlike for
the robber and cops game, the marshal width and the monotone marshal width differ.
Adler [1] proved that for each constant k there is a hypergraph H such that
mon-mw(H) − mw(H) = k.

In [16] it is shown that there is a one-to-one correspondence between the winning
strategies for k marshals in the monotone game and the normal-form hypertree decom-
positions of width at most k.

Theorem 2 ([16]). A hypergraph H has k-bounded hypertree-width if and only if k
marshals have a winning strategy for the monotone R&Ms game played on H .

4 Computing Hypertree Decompositions

For each constant k it can be decided in polynomial time whether a given hypergraph
H has a k-bounded hypertree decomposition. In this section we briefly sketch the al-
gorithm k-decomp which solves this problem in logarithmic space via alternating
computations.

The algorithm is best understood via the monotone R&Ms game. A typical game
situation is depicted in Figure 3, where we assume that the marshals are at some instant
in position R, i.e., occupy a set R of k hyperedges, and that the robber is in a component
CR corresponding to this position of the marshals, i.e., in an [

⋃
R]-component CR. In
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S

R

C1 Ci

CR
...

Fig. 3. Marshals moving from position R to position S

the next move, the marshals must chase the robber within CR. They move to a new
position S ⊆ E(H) determined by at most k hyperedges. This move is a correct move
in the game iff the following conditions are satisfied: (a) the robber cannot escape from
component CR during or after the move of the marshals, and (b) the escape space of the
robber is effectively shrinking.

Condition (a) is mathematically expressed through the statement

(a) ∀P ∈ edges(CR), (P ∩
⋃

R) ⊆
⋃

S.

In fact, since CR is an [
⋃

R]-component, all ways out of it pass through the set of
vertices

⋃
R of R. Thus, if there is a way out of CR, there must be an edge P of

edges(CR) leading from CR into R. However, by the above condition (a), the robber
cannot enter R through this edge P , because the set P ∩

⋃
R of vertices of P that are

in R are also in S and remain thus off-limits for the robber both during and after the
move of the marshals.

Assuming that condition (a) is satisfied, it is easy to see that to make sure that the
escape space has shrunk after the move of the marshals, it suffices to require that the new
marshal position S covers at least one vertex of the former escape space CR, formally:

(b) (
⋃

S) ∩ CR �= ∅.

In fact, Condition (a) already guarantees that the escape space cannot become larger.
Condition (b) requires that some vertex of the former escape space be covered by the
marshals after the move, and thus the escape space must shrink. Notice that the original
escape space CR, after the move of the marshals from R to S may be split into several
[
⋃

S]-components C1, C2, . . . , Ci, . . .
Figure 4 shows (a high-level description of) thealgorithmk-decomp.This algorithm

tries to construct a winning strategy for k marshals to win the R&Ms game on an input
hypergraph H . Such a winning strategy is constructed in an alternating fashion by the
procedure k-decomposable(CR, R) which has as parameters a marshals position R (i.e.
a set of≤ k hyperedges of H), and an [

⋃
R]-component CR which is the current escape

space where the robber is to be chased. The procedure guesses (as an existential computa-
tion) in Step 1 a marshals position S, and checks in Steps 2.a and 2.b, whether this position
is correct according to the above discussed conditions (a) and (b), respectively. The algo-
rithm then determines (in Step 3) the new components determined by the S-position of
the marshals and recursively checks if the k marshals have a winning strategy for each of
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ALTERNATING ALGORITHM k-decomp
Input: A non-empty Hypergraph H = (V (H),E(H)).
Result: “Accept”, if H has k-bounded hypertree-width; “Reject”, otherwise.

Procedure k-decomposable(CR: SetOfVertices, R: SetOfHyperedges)
begin
1) Guess a set S ⊆ E(H) of k elements at most;
2) Check that all the following conditions hold:

2.a) ∀P ∈ edges(CR), (P ∩
⋃

R) ⊆
⋃

S and
2.b) (

⋃
S) ∩ CR �= ∅

3) If the check above fails Then Halt and Reject; Else
Let C := {C ⊆ V (H) | C is a [

⋃
S]-component and C ⊆ CR};

4) If, for each C ∈ C, k-decomposable(C, S)
Then Accept
Else Reject

end;

begin(* MAIN *)
Accept if k-decomposable(V (H), ∅)

end.

Fig. 4. A non-deterministic algorithm deciding k-bounded hypertree-width

these components C by calling k-decomposable(C, S). The algorithm accepts if this is
the case and rejects otherwise. This part is clearly a universal computation.

The algorithm is initialized (MAIN program) by the call k-decomposable(V (H), ∅)
where V (H) is the initial escape space consisting of the entire vertex set of H , and
where the initial marshals position is the empty set, i.e., where no hyperedge is occupied
by a marshal. The correctness of the algorithm follows easily from the characterization
of hypertree-width through the R&Ms game (Theorem 2). A direct proof (not involving
the R&Ms game) is given in [16].

A position U of k marshals can be stored as k pointers to (or indices of) hyper-
edges of H , and, each [

⋃
U ]-component can be identified through a single vertex. Thus

the workspace required at the global level of the initial and each recursive activation
of k-decomp is logarithmic in the size of the input hypergraph H . Thus k-decomp
can be implemented on an alternating Turing machine using logarithmic workspace,
which proves that the associated decision problem is solvable in polynomial time. Ac-
tually, a witness of a successful computation corresponds to a hypertree decomposition
in NF, thus k-decomp can actually be implemented on a logspace ATM having poly-
nomially bounded tree-size, cf. [27], and therefore deciding whether hw(H) ≤ k for a
hypergraph H is actually in the low complexity class LOGCFL. This is the class of all
problems that are logspace-reducible to a context-free language. LOGCFL is a subclass
of the class AC1 of highly parallelizable problems.

Theorem 3 ([13]). Deciding whether a hypergraph H has k-bounded hypertree-width
is in LOGCFL.
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From an accepting computation of the algorithm of Figure 4 we can efficiently ex-
tract a NF hypertree decomposition. Since an accepting computation tree of a bounded-
treesize logspace ATM can be computed in (the functional version of) LOGCFL [12],
we obtain the following:

Theorem 4 ([13]). Computing a k-bounded hypertree decomposition (if any) of a hy-
pergraph H is in LLOGCFL, i.e., in functional LOGCFL.

As for sequential algorithms, a polynomial time algorithmopt-k-decompwhich,
for a fixed k, decides whether a hypergraph has k-bounded hypertree-width and, in
this case, computes an optimal, i.e., smallest width hypertree decomposition in normal
form is described in [14]. The opt-k-decomp algorithm is obtained by “uprolling”
k-decomp in a sequential bottom-up fashion using polynomial space for storing inter-
mediate results while pruning non-optimal partial decompositions. As for many other
decomposition methods, the running time of this algorithm to find the hypergraph de-
composition is exponential in the parameter k. More precisely, opt-k-decomp runs
in O(m2kv2) time, where m and v are the number of edges and the number of vertices
of H , respectively.

In the next section we will show that the constant k in the exponent of the runtime
for computing a hypertree decomposition can most likely not be eliminated.

5 Complexity of Hypertree-Width Computation

In this section we show that determining whether hw(H) ≤ k is NP-complete and ac-
tually fixed-parameter intractable (FP-intractable) with respect to the parameter k. It
follows that, unless some unexpected collapse of FP classes occurs, we cannot eliminate
the parameter k from the exponent of the runtime of any algorithm deciding whether a
hypergraph H has hypertree-width k, or computing (if possible) a hypertree decompo-
sition of width k of H .

The theory of fixed-parameter tractability or intractability is extensively described
in [8]. A problem P is fixed-parameter tractable (FP-tractable) w.r.t. parameter k if
there exists a function f and a constant c such that P can be solved in time O(f(k)nc),
where n is the input size and where f(k) depends only on k and c is a fixed con-
stant independent of k. To prove that a problem is not fixed-parameter tractable (FP-
intractable) one usually reduces another problem, known to be FP-intractable, to it via
a parametric reduction (see [8]). Such a reduction involves a standard polynomial time
reduction f between problem instances, and a mapping g between the parameters.

There is a hierarchy W[1], W[2], W[3], . . . , the so called W-hierarchy, of classes
of parameterized problems that are conjectured to be FP-intractable. A well-known
FP-intractable problem at the second level W[2] of this hierarchy is the SET COVER
problem. An instance of SET COVER consists of a hypergraph H = (V, E) and an
integer k ≤ |E|. The problem is to decide whether there exists a set K ⊆ E of k
hyperedges covering V (H), i.e., such that

⋃
e∈K e = V (H). The parameter here is k.

By FP-reducing SET COVER to the problem of checking whether hw(H) ≤ k, we can
prove that the latter is W[2]-hard as well. Given that SET COVER (for non-constant
parameter k) is NP-hard, the same transformation gives us as a side result that checking
whether hw(H) ≤ k is NP-hard in case k is not constant.
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Theorem 5. The problem of deciding whether for a hypergraph H , hw(H) ≤ k is
NP-complete and W[2]-hard wrt. parameter k. The same complexity results hold for
determining whether ghw(H) ≤ k.

Proof. We state the proof for hypertree-width (hw). First note that the problem is ob-
viously in NP. To show that it is NP-complete and W [2]-hard, it suffices to FP-reduce
SET COVER to it. Consider an instance I of SET COVER given by a hypergraph
H = (V, E) and an integer k ≤ |E|. Let us define a new hypergraph H ′ = (V ′, E′) as
follows: V ′ = V × {1, . . . , 2k + 1},

E′ =
{
{(v, i), (w, j)}

∣∣ (v, i), (w, j) ∈ V ′} ∪ { e × {1, 2, . . . , 2k + 1}
∣∣ e ∈ E

}
.

We claim that H has a set cover of size ≤ k iff H ′ has hypertree-width ≤ k.
The “only if” part is almost trivial to see. Indeed, if there exists a set cover K of

size k of H , then a hypertree decomposition of width k of H ′ is constituted by a tree T
consisting of a single node t such that χ(t) = V ′ and λ(t) = {e × {1, 2, . . . , 2k + 1} |
e ∈ K}.

To see the “if” part of the claim, assume there exists a hypertree decomposition
(T, χ, λ) of width k of H ′. Then, by construction of H ′, there must exist a decomposi-
tion vertex t of T such that χ(t) = V ′. In fact, H ′ contains as subhypergraph the clique
obtained by pairwise relating all vertices of V ′, and thus any tree decomposition of E′

must contain a block containing all vertices of V ′. Let

S = {e ∈ E | e × {1, 2, . . . , 2k + 1} ∈ λ(t)}.

Then |S| ≤ |λ(t)| ≤ k. We will next show that for each v ∈ V there exists some e ∈ S
such that v ∈ e, thus S is a set cover of size ≤ k of H .

Assume thus that there exists a v ∈ V such that there is no e ∈ S for which v ∈ e.
Then the elements (v, 1), (v, 2), . . . , (v, 2k+1) of V ′ = χ(t) must be covered by edges
in λ(t) of the form {v′, w′} where v′, w′ ∈ V ′. But for covering 2k+1 elements by such
pairs, at least k + 1 such pairs would be necessary, which contradicts our assumption
that |λ(t)| ≤ k.

The reduction from H to H ′ is computable in time O(k · |H |) and is thus an FP-
reduction.

The same arguments apply if we use the notion of generalized hypertree-width
(ghw) instead of hypertree-width (hw). In fact, we have nowhere in this proof made
use of the special condition which distinguishes hw from ghw. �

6 Comparing Hypertree-Width to Other Hypergraph Invariants

A hypergraph invariant f is (at least) as good as invariant g, if there exists a constant
c such that whenever for a hypergraph H , g(H) = k, then f(H) ≤ c · k. We say that f
strongly dominates g if f is at least as good as g and there is a class H of hypergraphs
for which f is bounded (i.e., ∃k ∀H ∈ H : f(H) ≤ k), but g is unbounded. We say
that two invariants f and g are equivalent if each is as good as the other one.

We start by discussing some hypergraph invariants that are generalizations of so-
phisticated graph invariants, and then report some results on comparing invariants used
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in Constraint Satisfaction, Artificial Intelligence and Database Theory to hypertree-
width.

Hyperlinkedness. Let H be a hypergraph, M ⊆ E(H) and C ⊆ V (H). C is M -big,
if it intersects more than half of the edges of M , that is, |{e ∈ M | e∩C �= ∅}

∣∣ > |M|
2 .

Note that if S ⊆ E(H), then H \
⋃

S has at most one M -big connected component.
Let k ≥ 0 be an integer. A set M ⊆ E(H) is k-hyperlinked, if for any set S ⊆ E(H)
with |S| < k, H \

⋃
S has an M -big component. The largest k for which H contains

a k-hyperlinked set is called hyperlinkedness of H , hlink(H). Hyperlinkedness is an
adaptation of the linkedness of a graph [25] to the setting of hypergraphs.

Brambles. Let H be a hypergraph. Sets X1, X2 ⊆ V (H) touch if X1 ∩ X2 �= ∅ or
there exists an e ∈ E(H) such that e ∩ X1 �= ∅ and e ∩ X2 �= ∅. A bramble of H
is a set B of pairwise touching connected subsets of V (H). This is defined in analogy
to brambles of graphs [25]. The hyper-order of a bramble B is the least integer k such
that there exists a set R ⊆ E(H) with |R| = k and

⋃
R ∩ X �= ∅ for all X ∈ B. The

hyperbramble number hbramble-no(H) of H is the maximum of the hyper-orders of
all brambles of H .

Theorem 6 ([2]). For each hypergraph H , hlink(H) ≤ hbramble-no(H) ≤ mw(H)
≤ ghw(H) ≤ mon-mw(H) = hw(H) ≤ 3 · hlink(H) + 1.

Corollary 1. The hypergraph invariants hlink, hbramble-no, mw, ghw, mon-mw,
and hw are all equivalent.

Of particular interest is the result that the generalized hypertree-width ghw(H) of
a hypergraph H is at most a factor 3 smaller than the hypertree-width hw(H). This
is important, because while it is currently an open problem whether ghw(H) ≤ k
is decidable in polynomial time for constants k, the notion of generalized hypertree-
width is by many considered the best possible measure of cyclicity of a hypergraph. For
example, Cohen, Jeavons, and Gyssens [4] recently introduced a general framework
for hypergraph decomposition in the context of which they introduced the concept of
an acyclic guarded cover as their most general considered decomposition guaranteeing
tractability of the underlying problems (i.e., satisfying the above Condition 3). It turns
out, however, that an acyclic guarded cover can be equivalently defined as the set of
nodes of a generalized hypertree decomposition, and that the corresponding notion of
width precisely coincides with the notion of generalized hypertree-width. This provides
further evidence of the naturalness and importance of this notion.

The following hypergraph invariants were considered in AI, and, in particular, in
the area of constraint processing.

Biconnected Components (short: BICOMP) [9]. Any graph G = (V, E) can be de-
composed into a pair 〈T, χ〉, where T is a tree, and the labeling function χ associates
to each vertex of T a biconnected component of G. The biconnected width of a hyper-
graph H , denoted by BICOMP-width(H), is the maximum number of vertices over the
biconnected components of the primal graph of H .

Cycle Cutset and Hypercutset (short: CUTSET) [5]. A cycle cutset of a hypergraph
H is a set S ⊆ V (H) such that the subhypergraph of H induced by V (H) − S is
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acyclic. The CUTSET-width of H is the minimum cardinality over all its possible cycle
cutsets. A generalization of this is the method of hypercutsets, short HYPERCUTSET (for
a definition, see [15]).

Tree Clustering (short: TCLUSTER) [7]. The tree clustering method is based on a tri-
angulation algorithm which transforms the primal graph G = (V, E) of any hypergraph
H into a chordal graph G′. The maximal cliques of G′ are then used to build the hyper-
edges of an acyclic hypergraph H ′. The tree-clustering width (short: TCLUSTER width)
of H is 1 if H is an acyclic hypergraph; otherwise it is equal to the maximum cardinality
over the cliques of the chordal graph G′.

The Hinge Method (HINGE) [19,18]. This is an interesting decomposition method
generalizing acyclic hypergraphs. For space reasons, we omit a formal definition. Com-
puting the HINGE-width of a hypergraph is feasible in polynomial time [19,18]. One
can also combine the methods HINGE and TCLUSTER, yielding the more general method
HINGETCLUSTER.

Theorem 7 ([15]). Hypertree-width strongly dominates treewidth, BICOMP-width,
CUTSET-width, HYPERCUTSET-width, TCLUSTER-width, HINGE-width, and
HINGETCLUSTER-width.

7 Heuristics for Hypertree Decomposition

Recall that the algorithm opt-k-decomp decides, for a fixed k, whether a given hy-
pergraph has k-bounded hypertree-width and, if so, computes a hypertree decomposi-
tion of minimal width. Although opt-k-decomp runs in polynomial time, it is too
slow and needs a huge amount of space when applied to large hypergraphs. Therefore,
recent research focuses on heuristic approaches for the construction of hypertree de-
compositions. Of particular interest is the application of well-known heuristics from
other areas to hypertree decomposition.

Recall that a hypertree decomposition is in principle the same as a tree decompo-
sition satisfying two additional conditions. The first one leads from a tree decompo-
sition to a generalized hypertree decomposition and says that for every t ∈ V (T ) it
holds that χ(t) ⊆

⋃
λ(t), and the second one is the special condition leading from a

generalized hypertree decomposition to a hypertree decomposition. Note that the spe-
cial condition was introduced in order to be able to prove the polynomial runtime
of opt-k-decomp. Hence, the special condition can be ignored when considering
heuristic algorithms, and thus, one actually aims at computing generalized hypertree
decompositions by using heuristics.

So, when constructing hypertree decompositions via tree decomposition heuristics,
there is only one additional condition we have to satisfy. This condition forces the λ-
labels to cover the χ-labels. A natural approach to obtain a hypertree decomposition
from a tree decomposition is therefore to implement this condition in a straight-forward
way by set covering, i.e., to use set covering algorithms in order to compute the λ-labels
of the hypertree decomposition based on the χ-labels given by the tree decomposition.
In this way, it is possible to use tree decomposition heuristics (together with set covering
heuristics) for the heuristic construction of hypertree decompositions.
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This approach was firstly applied by McMahan [23] who obtained surprisingly good
results within a small amount of time. McMahan used Bucket Elimination [6] in com-
bination with several variable ordering heuristics. Obviously, to construct hypertree
decompositions in this way, any underlying tree decomposition method can be used.
Moreover, also branch decomposition heuristics are applicable [28], since every branch
decomposition of width k can be transformed into a tree decomposition of width at
most 3k/2 [26].

Another approach for heuristic hypertree decomposition is dual to the above ones
in the sense that we obtain a hypertree where the λ-labels are given and appropriate
χ-labels have to be set. This can be easily achieved by building a tree decomposition of
the dual graph. The dual graph of a hypergraph is obtained by creating a vertex for each
hyperedge and connecting two vertices if the corresponding hyperedges have a common
vertex. This dual graph, however, has too many edges for our purposes, i.e., the resulting
hypertree-width would be higher than necessary. Moreover, a hypertree decomposition
resulting from this procedure is always a query decomposition [13] whose width is
always larger than or equal to the hypertree-width of a hypergraph. However, by using
pre- and post-processing heuristics, it is possible to overcome both problems.

Finally, let us mention a further heuristic approach. It is based on hypergraph clus-
tering resp. hypergraph partitioning. There exist several heuristics in the literature for
building clusters of strongly connected hyperedges in a hypergraph such that there are as
less hyperedges as possible between the clusters. By using such methods, it is possible
to construct a hypertree decomposition in such a way that the clusters are recursively
partitioned and in each step a special hyperedge is added [21]. During this process,
for each cluster a hypertree-node is created whose λ-labels are exactly the hyperedges
separating the subclusters of the current cluster. Afterwards, it is possible to connect
these hypertree-nodes in such a way that the resulting hypertree is indeed a hypertree
decomposition of the hypergraph (cf. [21]).

8 Applications

There are many problems in various domains of Computer Science whose underly-
ing structure is best described as a hypergraph and that are efficiently solvable if this
structure is acyclic. We next show that, for most of them, the notion of (generalized)
hypertree-width provides a technique for solving efficiently large classes of instances
that were believed to be intractable, according to previous known methods.

A very important example of such problems is the NP-hard Constraint Satisfaction
Problem (CSP), which is an important goal of AI research. Constraint satisfaction is a
central issue of problem solving and has an impressive spectrum of applications [24].
A constraint (Si, Ri) consists of a constraint scope Si, i.e., a list of variables, and an
associated constraint relation ri containing the legal combinations of values. A CSP
consists of a set {(S1, r1), (S2, r2), . . . , (Sq, rq)} of constraints whose variables may
overlap. A solution to a CSP consists of an assignment of values to all variables such
that all constraints are simultaneously satisfied. By solving a CSP we mean determining
whether the problem has a solution at all (i.e., checking for constraint satisfiability),
and, if so, compute one solution.
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Example 3. Consider the CSP Ia consisting of constraints {Ca
1 , . . . , Ca

9 } where, for
each constraint Ca

i , the constraint relation ra
i encodes some required property for the

variables occurring together in the corresponding scope Sa
i , and the constraint scopes

are the following: Sa
1 (3, 4, 5, 6, 7, 8); Sa

2 (12, 16, 17, 18, 19); Sa
3 (7, 9, 10); Sa

4 (1, 11,
17, 19); Sa

5 (1, 2, 3, 4, 5, 6); Sa
6 (5, 6, 7, 8, 9); Sa

7 (12, 15, 16, 18, 19); Sa
8 (12, 13, 14,

15, 18, 19); Sa
9 (11, 12, 17, 18, 19).

The constraint hypergraph of a CSP I is the hypergraph H(I) whose vertices are
the variables of the CSP and whose hyperedges are the sets of all those variables which
occur together in a constraint scope. It is well known that CSPs with acyclic constraint
hypergraphs are polynomially solvable [5]. For instance, our example CSP instance Ia

is acyclic, as its hypergraph has a join tree. In fact, it is easy to check that the tree shown
in Figure 1 (on the right) is a join tree of hypergraph H(Ia). Intuitively, the efficient be-
havior of acyclic instances is due to the fact that they can be evaluated by processing any
of their join trees bottom-up by performing upward semijoins (in database lingo) [30].
That is, starting from the leaves, for each vertex v of the tree, we may filter out of its
parent p(v) the tuples of values from p(v)’s constraint relation that do not match with
any tuple in the relation of v. At the end, if the relation in the root is not empty, we know
that the given instance has a solution. This procedure takes O(nm log m) time, where
m is the size of the largest relation and n is the number of constraints. Note that we do
not distinguish here among join tree vertices and constraints, because join tree vertices
correspond to hyperedges and hence to constraints (assuming, w.l.o.g., that there is no
pair of constraints with exactly the same scopes). Recall that in general even computing
small outputs, e.g. just one solution, requires exponential time (unless P = NP) [3],
indeed the typical worst case cost for CSP algorithms is O(mn−1 log m).

The idea behind CSP algorithms based on generalized hypertree decompositions is
to transform a CSP I into an equivalent acyclic CSP I ′, by organizing its scopes into
a polynomial number of clusters that may suitably be arranged as a tree. Consider a
generalized hypertree decomposition of H(I) and some vertex v of this decomposition.
We can combine the constraints in λ(v) in a unique constraint over the only variables
listed in χ(v). Building this fresh constraint takes O(m|λ(v)|−1 log m) time. It is easy
to see that, after this phase, we get a new CSP instance I ′, which is acyclic and solution
equivalent to the original instance I . Therefore, we can eventually solve this instance
in time O(n′mw−1 log m), where w is the decomposition-width and n′ is the number
of vertices in the decomposition tree, which is bounded by the number of hypergraph
vertices (CSP variables). Note that, for classes of CSPs having small (bounded) width,
solving these problems by exploiting hypertree decompositions may lead to a tremen-
dous speed-up. Indeed, hypertrees with the smallest width say to us precisely the best
way of combining together constraints of I , in order to obtain a nice acyclic equivalent
instance to be solved efficiently.

Example 4. Consider a CSP instance Ic with the following constraint scopes:
S1(1, 2, 3); S2(1, 4, 5, 6); S3(3, 4, 7, 8); S4(5, 7); S5(6, 8, 9); S6(7, 9, 10); S7(5, 9);
S8(1, 11); S9(11, 12, 18); S10(12, 13, 19); S11(13, 14); S12(14, 15, 18); S13(15, 16,
19); S14(16, 17, 18); S15(1, 17, 19);
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The associated hypergraph H(Ic) is shown in Figure 1. The generalized hypertree-
width of this hypergraph is 2 and a decomposition having this (optimal) width is shown
in Figure 1, on the left. Following the “instructions” encoded in this decomposition, we
build exactly the acyclic instance Ia in Example 3. Then, by exploiting hypertrees, we
know that Ic may be solved in O(9m log m) time, in the worst case, which is clearly
quite good, if compared with the traditional worst case O(m14 log m).

Though we focused on constraint satisfiability, all the above considerations immedi-
ately apply to a large number of important problems that, as CSP, are efficiently solvable
if their hypergraph structure is acyclic. We just mention here a few examples, such as the
game theory problem of computing pure Nash equilibria in graphical games [10], and
various database problems, e.g., the problem of conjunctive query containment [20], or
the problem of evaluating Boolean conjunctive queries over a relational database [22]
(for a discussion of this and other equivalent problems, see [11]).

9 Open Problems and Future Research

We believe that hypertree decompositions and hypertree-width are interesting concepts
deserving further investigations. The following problems are of particular interest: (1) Is
it possible to check whether ghw(H) ≤ k in polynomial time for each constant k?
(2) Are there other hypergraph invariants (and associated decompositions) that fulfill the
three criteria given in Section 1 and that strongly generalize hypertree-width? (3) Can
we find a deterministic algorithm for computing a k-width hypertree decomposition
whose worst case runtime is significantly better than n2k? (4) Is it possible to find
some heuristic method for computing “good” hypertree decompositions for an over-
whelmingly large number of realistic examples stemming from various applications?
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Abstract. The goal of this paper is to present a brief survey of a collec-
tion of methods and results from the area of combinatorial search [1,8]
focusing on graph reconstruction using queries of different type. The
study is motivated by applications to genome sequencing.

1 Introduction

1.1 Generic Problem and Bioinformatics Application

Assume we have a set of labeled chemicals and some pairs of chemicals can react.
Assume we have an experimental tool to detect if a reaction occurs when mixing
two or several chemicals together, or a tool that allows us to count how many
reacting pairs there are in the mixture. Our goal is to recover all pairs of reacting
chemicals with as few experiments as possible.

One important application area for such problems is bioinformatics. For ex-
ample, obtaining a whole genomic sequence is a crucial first step in the study of
an organism. A common practical approach to genome sequencing is to obtain a
number of short and possibly overlapping reads from the genomic sequence, that
are then assembled into contigs – contiguous fragments that cover the genome
with possible gaps. The problem is then to determine the relative placement of
contigs on the genome, i.e. to reconstruct their original order. This step is a
accomplished by testing the adjacency of contigs using a so-called Polymerase
Chain Reaction (PCR). Nowadays, PCR is one of the most ubiquitous tools in
molecular biology and can be performed very cheaply, efficiently and almost au-
tomatically (see e.g. [2]). It is based on the idea that any region of the genome
can be described by a pair of primers that can be thought of as short nucleotide
sequences bounding this region. If the primers are proximate (within several
thousands of nucleotides in practice), the region that they delimit is amplified
into a huge number of copies, which can be observed experimentally. Therefore,
by picking primer sequences from both ends of each contig, we can reliably test
if they are adjacent on the original DNA, under the assumption that the gaps
between contigs are of bounded size.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 16–27, 2005.
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While the basic PCR allows one to test one pair of primers at a time, the
multiplex PCR presents an extension that uses several primers simultaneously
to determine amplified regions. Since several regions can be amplified simulta-
neously, this approach can also provide an information of how many pairs of
primers resulted in an amplification.

In all cases, a very important question in practice is how many reactions are
needed in the worst case and how quickly we can perform all of them. Ideally,
we want to implement as few reactions as possible and run them in parallel. In
this paper we survey some of the results related to such and similar problems.

1.2 Mathematical Formulation and Main Definitions

If chemicals are represented as vertices of a non-oriented graph and a reaction
as an edge, we come up with a problem of reconstructing an unknown graph
of a given class of graphs. Note that we might also consider that a reaction
is triggered by more than two chemicals, which would result in a hypergraph
reconstruction problem.

The multiplex PCR problem can lead to two different mathematical formal-
izations. If the objects (“chemicals”) we are dealing with are contigs (i.e. primers
coming from both ends of a contig are always tested together), the underlying
problem is to reconstruct a Hamiltonian path or a Hamiltonian cycle1 on Kn

(the complete graph with n vertices, where n is the number of contigs) [11]. If
we are dealing with primers, we face the problem of reconstructing a matching
on Kn (where n is the number of primers).

Graph Reconstruction Problem. Different kinds of combinatorial search problems
on graphs have been considered in the literature (see [1]): identifying an unknown
edge or vertex in a given graph, reconstructing a hidden graph of a given class,
verifying a property of a hidden graph, and some others. Our interest here will
be the following graph reconstruction problem:

Problem 1. Given a class of graphs G = ∪nGn, where Gn contains all the graphs
of G on the set of vertices V = {1, . . . , n}, we want to reconstruct a hidden graph
G ∈ Gn for a given n, making as few queries as possible. A query is a subset of
V , and the answer we obtain provides us with information about the edges in the
subgraph of G induced by the queried subset. This information depends on the
model under consideration.

In the particular case when only two vertices of V can be tested at a time,
the query just checks if a specific edge exists in G, and the model is called a
two-vertex model.

Boolean and Quantitative Models. One type of query is: “For Q ⊆ V , is there
at least one edge in the subgraph of G induced by Q?”. The possible answers
being true or false, this query model is called boolean.
1 Depending on whether the genome is linear or circular.
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A natural extension of this model admits queries of the following form: “For
Q ⊆ V , how many edges does the subgraph of G induced by Q contain?”. This
query model is called quantitative (or additive) since the answer to a query is
an integer ranging between 0 and the number of edges of a G.

In both cases, the complexity of a problem is defined as the minimum number
of queries required to reconstruct a graph of Gn in the worst case. The complexity
depends on n but can also made dependent on other parameters (see [4] for
example).

We will be generally interested in finding upper and lower bounds on the
complexity of a problem. The information theory provides a simple and powerful
method to estimate the lower bound: at least logd |Gn| queries must be made in
order to identify a graph from Gn, where d is the maximal number of distinct
answers provided by a query.

Adaptive and Nonadaptive Algorithms. Two main kinds of algorithms must be
distinguished in the area of combinatorial search: in adaptive algorithms, every
query potentially depends on the answers obtained to previous queries while in
nonadaptive algorithms, all queries are independent of each other. A nonadaptive
algorithm can be described as a family of subsets of V (queries) or as an vertex-
query incidence matrix M (Mi,j = 1 iff vertex j appears in query i, Mi,j = 0
otherwise).

Nonadaptive algorithms can be seen as 1-round algorithms, i.e. those in which
all queries can be made in parallel. From this perspective, adaptive algorithms
are multi-round (have an unlimited number of rounds). Intermediate case of
s-round algorithms composed of s successive nonadaptive stages will also be
considered.

In this paper, we present a short survey of different known results on graph
reconstruction. From the application perspective, our main motivation is on
reconstructing Hamiltonian cycles but we also consider other graph classes such
as matchings, stars, cliques, graphs with bounded vertex degree, and others. Two
main query models will be considered: the boolean model (Section 2) and the
quantitative model (Section 3). For each graph class, we will be interested in the
complexity of reconstruction using different types of algorithms.

2 Boolean Model

2.1 Hamiltonian Cycles

Assume we have to reconstruct an unknown Hamiltonian cycle in the complete
graph Kn. Under the boolean model, the information theory yields the lower
bound log2

(n−1)!
2 = Ω(n log2 n) as there are (n−1)!

2 Hamiltonian cycles on n
vertices. The following theorem states that this bound can be reached under
particular conditions.

Theorem 1. The Ω(n log2 n) lower bound on the complexity of Hamiltonian
cycle reconstruction can be reached by an adaptive algorithm.



Combinatorial Search on Graphs Motivated by Bioinformatics Applications 19

Note first that if we are restricted to the two-vertex model, any reconstruction
algorithm requires Ω(n2) queries, as shown in [1].

An adaptive algorithm reconstructing a Hamiltonian cycle H with 2n log2 n
queries has been described in [11]. An interesting fact is that under the boolean
model, this complexity cannot be achieved by a nonadaptive algorithm. As
showed in [5], Ω(n2) queries are necessary for a nonadaptive algorithm to re-
construct a Hamiltonian cycle. The result of [5] is actually more general, and
establishes that Ω(n2) queries are necessary for a nonadaptive algorithm to re-
construct a graph in one of the following classes: matchings, perfect match-
ings, graphs isomorphic to a fixed bounded degree graph with Ω(n) edges,
graphs consisting in the disjoint union of a clique of size n − 3 and a single
edge.

This example illustrates the case when adaptive algorithms are strictly more
powerful than nonadaptive algorithms.

2.2 Matchings

A matching is a graph such that each vertex has degree 0 or 1. As mentioned
above, any nonadaptive algorithm reconstructing a matching requires a quadratic
number of queries. More precisely, at least 49

153

(
n
2

)
nonadaptive queries are nec-

essary to reconstruct a matching on Kn [5]. The authors of [5] also prove the
upper bound (1

2 + o(1))
(
n
2

)
using a construction based on the Wilson theorem

[22] on the decomposition of complete graphs into subgraphs isomorphic to a
given graph.

As the enumeration of matchings is an open question, it is difficult to compute
the exact information-theoretic lower bound. However, we can easily compute the
number of perfect matchings2 of Kn to be n!

2� n
2 �·�n

2 �! . This provides a lower bound

on the number of general matchings, and implies the following information-
theoretic lower bound on the reconstruction of matchings: log2

(
n!

2� n
2 �·�n

2 �!

)
=

(1 + o(1)) · (n
2 log2 n). Even though this bound has been computed for perfect

matchings only, it is possible to built an adaptive algorithm reconstructing gen-
eral matchings and achieving this bound within a constant factor.

The algorithm works in two steps. The first one is adaptive and partitions
the set of vertices into V1 � V2 such that no two vertices in the same Vi are
adjacent in the matching. This can be done in n queries by processing vertices
one-by-one. The second step can be made nonadaptive. It finds for every v ∈ V1

the adjacent vertex to v (if it exists) in V2 using a group testing algorithm to find
one “counterfeit coin” among n (see Section 3.1). This group testing problem
can be solved within �log2 n� nonadaptive queries, yielding a total complexity
of (1 + o(1)) · (n log2 n) for the entire algorithm. Note that the same algorithm
applied to the reconstruction of perfect matchings has an optimal asymptotic
complexity (1 + o(1)) · (n

2 log2 n).

2 A perfect matching is a graph such that the degree of all vertices except possibly
one is 1.
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2.3 Stars and Cliques

The reconstruction of stars and cliques on n vertices has been studied in [4].
Following that paper, we define Sk to be the set of all stars with a center,
k leaves and n − k − 1 isolated vertices, and Ck to be the set of all cliques
with k vertices and n − k isolated vertices. S = ∪n−1

k=0Sk and C = ∪n
k=1Ck are

respectively the set of all stars and all cliques on n vertices, with an arbitrary
number of isolated vertices.

We now examine the information-theoretic lower bound for reconstructing
stars and cliques under the boolean model. To estimate the cardinality of S,
recall that a star of Sk (for k ≥ 2) is defined by a center chosen among the
n vertices and k leaves chosen among the n − 1 remaining vertices. So |S| =∑n−1

k=2 n ·
(
n−1

k

)
+ n(n−1)

2 + 1 = n · (2n−1 − 1) − n(n−1)
2 + 1. Consequently, we

get the lower bound log2 |S| = (1 + o(1)) · n for the complexity of the star
reconstruction problem. For cliques, it is clear that |C| =

∑n
k=0

(
n
k

)
= 2n, and

the information theoretic lower bound is then log2 |C| = (1 + o(1)) · n.
For both stars and cliques, the Ω(n) bound can be achieved by the following

algorithm composed of two nonadaptive rounds. At the first round, find a starting
vertex from which it becomes easy to reconstruct the whole graph: the center
of the star or a vertex that belongs to the clique. Finding the center of the star
is done through n nonadaptive queries V \ {i} for 1 ≤ i ≤ n. To find a vertex
of the clique, we simply ask the queries Qi = {1, . . . , i} for 2 ≤ i ≤ n. At the
second round (nonadaptive as well), finish the reconstruction by determining the
neighbors of the starting vertex. Each round requires a linear number of queries.

While cliques and stars can be easily reconstructed in two nonadaptive
rounds, the situation changes if we are restricted to fully nonadaptive (1-round)
algorithms. To reconstruct a star of S with a nonadaptive algorithm, it is nec-
essary, in the worst case, to query each of the

(
n
2

)
pairs of vertices {u, v} [4],

i.e. the most naive algorithm turns out to be the optimal one in the worst case.
In contrast, for cliques, only Ω(n log n) nonadaptive queries are needed, and [4]
showed the existence of a nonadaptive algorithm reconstructing a clique of C
with O(n log2 n) queries.

3 Quantitative Model

We now turn to the quantitative model, much less studied in the literature. We
show that under this model, nonadaptive algorithms get all their power and
often allow to achieve (or to approach) the lower bound. This is due to powerful
combinatorial constructions of (0, 1)-matrices verifying certain properties.

3.1 Hamiltonian Cycles

We start again with our initial problem of reconstructing a Hamiltonian cycle
on n vertices. As under the quantitative model there are n + 1 possible answers
to each query Q ⊆ V , the information-theoretic lower bound is logn+1

(n−1)!
2 =

(1 + o(1)) · n.
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Theorem 2. Under the quantitative model, there exists an algorithm recon-
structing a Hamiltonian cycle in O(n) queries.

One such algorithm has been presented in [11] and is composed of two steps:
an adaptive preparatory step followed by a nonadaptive reconstruction step3.
We now describe this algorithm.

First Stage. The goal of the first stage is to reduce the problem to the re-
construction of bipartite graphs. By processing all the vertices successively, we
transform the Hamiltonian cycle H into a tripartite graph, i.e. we partition the
set of vertices V into 3 subsets V1 � V2 � V3 such that two vertices in the same
subset are not adjacent in H . As each vertex has exactly two neighbors, this
transformation can be done in at most 2n queries. We are now dealing with the
problem of reconstruction of a tripartite graph that we view as three bipartite
graphs.

Second Stage. The second stage reconstructs each of the three bipartite graphs
in O(n) nonadaptive queries. This crucial step is based on two auxiliary con-
structions.

First Subproblem. Consider a bipartite graph (C1, C2; E) with vertex degree
bounded by a constant (2 in our case). Assume that we want to determine the
degrees of all vertices of C1 by querying subsets of C1 together with the whole
set C2. This problem is equivalent to the reconstruction of an unknown vector
v = (v1, . . . , vn) with vi ∈ {0, . . . , d− 1} (d = 3 in our case) by querying sums of
the form

∑n
i=1 εivi, εi ∈ {0, 1}. A nonadaptive algorithm solving this problem

corresponds to a (0, 1)-matrix M of dimension k × n (k as small as possible)
such that for vectors v ∈ {0, . . . , d − 1}n, all products Mv are distinct. We call
such matrix a d-detecting matrix.

The information-theoretic lower bound for k is log(d−1)n+1 dn = (1 + o(1)) ·
( n
logd n ).

For the particular case d = 2, this lower bound can be improved to (2+o(1))·
( n
log2 n ), as it was shown in [9] (another proof using Kolmogorov complexity can

be found in [16]). On the other hand, it has been shown in [17,6] that this
bound can be achieved. A decade later, Lindström [21] gave a tricky effective
construction of a 2-detecting matrix with (2 + o(1)) · ( n

log2 n ) rows using the
Möbius function.

In our case, d = 3 and a 3-detecting matrix with (4+o(1))·( n
log2 n ) rows can be

effectively constructed as an extension of the Lindström construction. Further-
more, for an arbitrary constant d, a d-detecting matrix with (2+o(1))(log d· n

log n )
rows can be effectively constructed, and this is also a lower bound [11].

Second Subproblem. Consider a bipartite graph (C1, C2; E) and a vertex i ∈
C1. We want to determine the vertices of C2 adjacent to i by querying i together
3 As it will follow from Section 3.4, Hamiltonian cycles can be reconstructed in O(n)

fully nonadaptive queries. The two-step construction presented here is for explana-
tory purposes.
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with subsets of C2. In the case of Hamiltonian cycle, there are exactly two such
vertices, but to be more general, we assume that their number is bounded by a
constant d. The problem can be viewed as a problem of discovering d counterfeit
coins (neighbors of i) among n coins (vertices C2) and is well-known in the area
of group testing [8]. We want to solve it in a nonadaptive way (for reasons that
will be clear later) using queries of type “how many counterfeit coins does a
given subset contain?”.

The case of finding one counterfeit among n can be solved by an optimal non-
adaptive set of queries Qi = {j| the i-th bit of j is 1} for 1 ≤ i ≤ �log2 n�. How-
ever, already for two coins the situation gets more complicated: the information-
theoretic lower bound is log3

(
n
2

)
≈ 1.26 · log2 n while the best known upper

bound for adaptive algorithms is 1.44 · log2 n. For nonadaptive algorithms, the
best known lower and upper bounds are respectively 5

3 ·log2 n and 2·log2 n [18,20].
For the general problem of finding nonadaptively d counterfeit coins among n,

we need to construct a (0, 1)-matrix A of dimension k × n (k as small as possible)
such that for vectors v ∈ {0, 1}n having at most d 1’s, all products Av are distinct.
We call such a matrix a d-separatingmatrix. Knownupper and lower bounds for the
number of rows in a d-separatingmatrix are respectively (4+o(1))·( d

log d log n) [11]
and (2+o(1)) · ( d

log d log n) [3]. Both are proved using probabilistic arguments, and
thus the upper bound is non-constructive. The best known explicite nonadaptive
construction uses BCH error-correcting codes and uses O(d log2 n) queries. Note
also that no better properly adaptive algorithm is known.

Combining the Subproblems. The two techniques presented above (d-detect-
ing and d-separating matrices) allow us to solve the problem of reconstruction
of a bipartite graph (C1, C2; E) with the degree of each vertex in C1 bounded
by a constant d. Using d-separating matrices, the adjacent vertices of each i ∈
C1 can be obtained by querying i against P1, . . . , Pm ⊆ C2, where P1, . . . , Pm

do not depend on i. For each Pj , we can determine the degree of each i ∈
C1 in Pj by querying Pj against S1, . . . , S� ⊆ C1 using d-detecting matrices.
Again, S1, . . . , S� do not depend on Pj . Thus, querying all pairs Sk ∪ Pj is
sufficient to reconstruct the whole graph. The resulting number of queries is
(2 + o(1))(log d n

log n )(4 + o(1))( d
log d log n) = (8 + o(1))dn.

This proves the following

Theorem 3. A (one-sided) d-bounded degree bipartite graph can be recon-
structed within (8+o(1)) ·dn nonadaptive queries. This matches the lower bound
up to a constant factor.

Turning back to our initial motivation (Theorem 2), a Hamiltonian cycle can
be reconstructed within 2n+3 ·2 log2 n · (4+o(n))·n

log2 n = O(n) queries asymptotically
by a two-stage algorithm. This matches the lower bound up to a constant factor.

3.2 Matchings

As in Section 2.2, consider the lower bound n!

2� n
2 �·�n

2 �! on the number of matchings

on n vertices. Note that as the number of edges in a matching on n vertices is
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at most �n
2 �, the maximal number of distinct answers to a query is �n

2 � + 1.
Consequently, we can compute an information-theoretic lower bound on the
complexity of the matching reconstruction problem under the quantitative model
to be log�n

2 �+1

(
n!

2� n
2 �·�n

2 �!
)

= (1 + o(1)) · n
2 .

It is possible to reach this bound, up to a constant factor, by a fully non-
adaptive algorithm. This will follow from Section 3.4 where we describe a general
nonadaptive algorithm for reconstructing graphs of vertex degree bounded by d
within O(dn) queries.

3.3 Stars and Cliques

Recall from Section 2.3 that the number of stars and cliques on n vertices are
respectively |S| = n · (2n−1 − 1) − n(n−1)

2 + 1 and |C| = 2n. The information-
theoretic lower bound for reconstructing stars under the quantitative model is
then logn

(
n · (2n−1 − 1)− n(n−1)

2 + 1
)

= (1 + o(1)) · ( n
log2 n ) and that for cliques

is log n(n−1)
2 +1

(2n) = (1
2 + o(1)) · ( n

log2 n ).
There exist adaptive algorithms that achieve these bounds within a con-

stant factor. Here we give only a very high-level description of them. Similar
to Section 2.3, the algorithms are divided into two main steps, the first one is
adaptive and the second one nonadaptive. At the first step, we find, in a loga-
rithmic number of adaptive queries, either the center of the star, or one vertex of
the clique. (This can be done using binary search.) (2 + o(1)) n

log2 n nonadaptive
queries are then sufficient to reconstruct the neighbors of the vertex found in
the first stage, using 2-detecting matrices introduced in the first subproblem of
Section 3.1 (see [19,13]). For stars, this construction applies immediately and for
cliques, we need to transform each query answer from k + k(k − 1)/2 to k which
is done non-ambiguously.

3.4 Bounded Degree Graphs

Theorem 3 states that a (one-sided) d-bounded degree bipartite graph can be
reconstructed through O(dn) nonadaptive queries. We now want to use this
technique to reconstruct general bounded degree graphs [13]. The idea is to
consider a bipartite representation of a graph defined as follows. Given a graph
G = (V, E), the bipartite representation of G is G′ = (V1, V2; E′), where V1 and
V2 are two disjoint copies of V , E ⊆ V1 × V2, and (i, j) ∈ E implies (i, j) ∈ E′

and (j, i) ∈ E′. Note that any edge of G produces two edges in G′. Moreover, if
G is d-bounded degree then G′ is d-bounded degree too.

We want to query the binary representation through the following queries:
“Given X ⊆ V1 and Y ⊆ V2, how many edges are there in G′ connecting ver-
tices of X to vertices of Y ? ”. We define the corresponding query function
μ′

G′(X, Y ) = |E′∩ (X ×Y )|. A query μ′
G′(X, Y ) can be expressed through quan-

titative queries to the initial graph G, i.e. through the query function μG(X) =
|E∩(X×X)|, for X ⊆ V . Using elementary set-theoretic considerations, it can be
shown that μ′(X, Y ) = μ((X\Y )∪(Y \X))−2μ(X\Y )−2μ(Y \X)+μ(X)+μ(Y ).
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By Theorem 3, the binary representation G′ can be reconstructed by O(dn)
nonadaptive queries μ′(X, Y ). From the observation above, it follows that G′

can be reconstructed by O(dn) nonadaptive queries μ(X).

Theorem 4. A d-bounded degree graph can be reconstructed within O(dn) non-
adaptive queries. This is an asymptotically tight bound.

3.5 General Graphs

Under the quantitative model, the information-theoretic lower bound for recon-
structing general graphs is log

1+ n(n−1)
2

2
n(n−1)

2 = (1
4 +o(1))· n2

log2 n . A better lower

bound (1
2 + o(1)) · n2

log2 n can be obtained using lower bounds for d-detecting ma-
trices (see Section 3.1). As it was shown in [13], this bound can be achieved up to
a constant factor using again the bipartite representation of a graph introduced
in the previous section.

Consider the bipartite representation G′ = (V1, V2; E′) of a general graph
G = (V, E). For each vertex i ∈ V1, reconstruct its adjacent vertices among
{1, . . . , i − 1} ⊆ V2 with (2+o(1)) · i

log2 i queries of the form μ′({i}, W ), W ⊆ V2,
using 2-detecting matrices. Observe that μ′({i}, W ) = μ(W ∪ {i})− μ(W \ {i})
which allows us to express each query μ′({v1

i }, W ) through two queries to the
original graph G.

The overall complexity of this method for the reconstruction of a general
graph is then

∑n
i=2(2 + o(1)) · i

log2 i = (2 + o(1)) n2

log2 n . This is within the factor
of four from the known lower bound for nonadaptive algorithms.

Theorem 5. A general graph can be reconstructed within (2 + o(1)) n2

log2 n non-
adaptive queries. This matches the lower bound up to a constant factor.

3.6 k-Degenerate Graphs and Trees

The general technique used to reconstruct bounded degree graphs (Section 3.4)
can be further extended to reconstruct more general k-degenerate graphs. An
intuitive definition of k-degenerate graphs is as follows: G is k-degenerate if
there exists a vertex v of G with vertex degree less than or equal to k such
that G \ {v} has the same property. More formally, a graph G is k-degenerate if
vertices V can be ordered (v1, v2, · · · , vn) such that degGi(vi) ≤ k, where Gi is
the subgraph of G induced by the vertices {vi, vi+1, · · · , vn}. For example, trees
are 1-degenerate as there exists a leaf of vertex degree 1 and after deleting it
the graph is still a tree. Another example is provided by planar graphs that are
5-degenerate: there is always a vertex of degree at most 5 and deleting it keeps
the graph planar.

Let us first compute the information-theoretic lower bound for the recon-
struction of k-degenerate graphs. The number of edges in a k-degenerate graph
is clearly less than nk. To obtain a lower bound on the number of k-degenerate
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graphs, we fix some order on vertices and count number of possibilities to con-
nect vk+t to vk+t+1, · · · , vn. Since all such choices can be made independently for
all v1, · · · , vn−k, we have N(n + 1, k) ≥

∏n
i=k+1

(
i
k

)
≥ (n!)k

knk . The corresponding
information-theoretic lower bound is then

lognk N(n + 1, k) ≥ nk(log n − log k − 1)
log n + log k

.

In the case k ≤ nα for some α < 1, this bound can be simplified into Ω(nk). For
n sufficiently large, we can prove that this bound is tight, meaning that there
exists an algorithm that reconstructs a graph in the class of k-degenerate graphs
with O(nk) queries.

Theorem 6. k-degenerate graphs on n vertices can be reconstructed by a non-
adaptive algorithm using O(nk) queries, and this bound is tight.

As in the case of bounded degree graphs (Section 3.4), the algorithm uses the
bipartite representation of k-degenerate graphs and the same general technique
of reconstructing bipartite graphs. While the bipartite representation here is not
of bounded vertex degree, the sum of degrees of all vertices from one side is
bounded by nk. Therefore, instead of using d-detecting matrices (first subprob-
lem in Section 3.1), we consider matrices that solve a more general combinatorial
search problem, namely the reconstruction of d-bounded weight vectors which are
vectors with the sum of entries bounded by d. Formally, define the class of d-
bounded weight vectors by Λ(n, d) = {(v1, . . . , vn)|vi ∈ N and

∑n
i=1 vi ≤ d}.

A nonadaptive algorithm reconstructing d-bounded weight vectors is specified
by an object-query incidence matrix M such that M · v1 �= M · v2 for all
v1, v2 ∈ Λ(n, d), v1 �= v2. It has been shown in [10] that there exists such a

matrix with the number of rows k(n, d) ≤ 4min(n,d) log
(
C1

max(n,d)
min(n,d)

)
log min(n,d)+C2

+C3 log d, for
some constants C1, C2 and C3.

Consider now the bipartite representation G′ = (V1, V2; E′) of a k-degenerate
graph G. Assume we are given two families {Qj}m

j=1 and {Pi}l
i=1 that solve the

d-bounded weight vector reconstruction problem for d = k and d = 2nk re-
spectively. From the bound on k(n, d) above, it follows that m = O(k log n

log k )
and l = O(n log k

log n ) when n → ∞. It can be shown that the set of queries

{μ′(Pi, Qj)}j=1,...,m
i=1,...,l reconstructs k-degenerate graphs. The proof, given in [10],

combines the ideas of Section 3.1 with an iterative procedure of computing the
answers of queries μ′(Pi, Qj) that would be obtained after deleting all edges in-
cident to a vertex of degree at most k (by definition of k-degenerate graphs, such
a vertex always exists).

The overall complexity of the algorithm is m · l = O(nk), which proves
Theorem 6.

4 Conclusions and Open Problems

Through examples of Hamiltonian cycles, matchings, stars and cliques, the quan-
titative model has been shown to be more powerful than the boolean model. The
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following table illustrates this difference and provides lower and upper bounds
(for adaptive and nonadaptive algorithms) for the two-vertex, boolean and quan-
titative models, for the case of Hamiltonian cycle that has been our main ap-
plicative motivation.

lower bound adaptive nonadaptive
two-vertex model Ω(n2) O(n2) O(n2)
boolean model Ω(n log n) O(n log n) Ω(n2)
quantitative model Ω(n) O(n) O(n)

Another important conclusion is that nonadaptive algorithms fully benefit
from the quantitative model, and vice versa. Not only the quantitative model
allows faster reconstruction algorithms, but also these algorithms can be made
nonadaptive, or “almost nonadaptive” (having an important nonadaptive com-
ponent). Interestingly, under the quantitative model, nonadaptive algorithms
often reach the asymptotic lower bound and no properly adaptive algorithm is
known to outperform nonadaptive algorithms. This contrasts with the boolean
model, where nonadaptive algorithms are usually strictly less powerful than
adaptive ones.

The power of nonadaptive algorithms under the quantitative model is due to
powerful combinatorial constructions of d-detecting and d-separating matrices
(Section 3.4) and their generalizations (Section 3.6).

As far as open questions are concerned, we would like to mention two of
them here. One concerns an important technical point: the upper bound for d-
separating matrices (Section 3.4). The tight upper bound O( d

log d log n) has been
proved by a probabilistic nonconstructive argument, and finding an effective
construction of d-separating matrices with O( d

log d log n) rows remains an impor-
tant open question. Another question is of more general nature: how far can we
go with optimal nonadaptive reconstruction under the quantitative model? For
example, can we reconstruct in O(dn) queries any graph with O(dn) edges?

To conclude, we get back to the applicative side of our study and mention
that many other bioinformatics applications give rise to combinatorial search
problems. Such applications include screening clone libraries [15], the FISH (Flu-
orescent In Situ Hybridization) method for chromosome identification [12], de-
termination of exon-intron boundaries in genes [7], probe selection for DNA
chips [14], and others. Thus, those applications provide a rich source for new
interesting developments of combinatorial search methods in future.
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Abstract. We settle two conjectures on domination-search, a game pro-
posed by Fomin et.al. [1], one in affirmative and the other in negative.
The two results presented here are (1) domination search number can be
greater than domination-target number, (2) domination search number
for asteroidal-triple-free graphs is at most 2.

1 Introduction

Domination search is a game proposed by Fomin et.al. [1] which is a variant of
node-search-game, see [2]. It is also a graph variant of polygonal search problem,
[3,4,5,6,7]. It is a problem of sweeping out a mobile fugitive out of a graph (think
of a house where vertices are rooms) with k guards. A guard at a node can check
its node and all nodes adjacent to it. The fugitive can move in zero time from
node x to y if there is a path between the nodes which does not pass through
the nodes under any guard’s watch. In each step one guard can move from its
current node to any other vertex. During the move this guard is absent from the
graph and fugitive can take the advantage. Search is successful if after a finite
number of moves entire graph is cleared of the fugitive.

We present a formal definition of domination-search game differently from the
original but it is equivalent to that. Here N [X ] denotes the closed neighborhood
of the vertex set X . The search algorithm with k guards on a graph G = (V, E)
places k guards on k vertices initially. D(0) denotes these vertices. In each move
one guard is moved from it current position (vertex) to a new position. D(i)
denotes the set of vertices where the guards are placed after i moves. Formally,
the search is a sequence of k-sets: D(0), D(1), . . . , D(M), where D(i−1)∩D(i) is
denoted by S(i) and has cardinality k−1 for all i > 0. A vertex is said to clear if
it was in the neighborhood of some guard in some previous move and since then
no path has been established between this vertex and a contaminated (fugitive
may potentially be on it) vertex without passing through the neighborhood
of a guard in the current position. We define vertex sets Ua(i) (set of clear
vertices after i moves ) for 0 ≤ i ≤ M and Ud(i) (clear set during move-i) for
1 ≤ i ≤ M . These sets are recursively defined by the following equations. Ua(0)
� Partly supported by Ministry of Human Resource Development, Government of India
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is the closed neighborhood of D(0), i.e., N [D(0)]. Ua(i) = Ud(i)∪N [D(i)−S(i)],
and Ud(i) is the set {v ∈ Ua(i − 1) : every path from v to any vertex in V −
Ua(i−1) passes through N [S(i)]}. Finally, Ua(M) = V . The domination search
number of a graph G is the smallest k for which such a sequence exists. It is
denoted by ds(G).

Domination-search number is found to be strongly related with another
graph-parameter, dominating-target number denoted by dt(G). A vertex sub-
set, T , of a graph is said to be a dominating-target [8] if every connected sub-
graph which contains T , dominates the entire graph. The cardinality of the
smallest dominating-target is called the dominating-target number, denoted by
dt(G). Fomin et.al. [1] have shown that for arbitrary connected graph ds(G) ≤
2 · dt(G) + 3. But they have found that this is perhaps not a tight bound and
conjectured that ds(G) ≤ dt(G).

In their work Fomin et.al. have also studied ds(G) of graphs of small dominat-
ing-target number. These include cocomparability graphs; AT-free graphs
[9,10,11,12]; and DP graphs [13,14]. These graph classes are defined as follows.
An asteroidal-triple is a set of three vertices such that there is a path between
any two vertices without entering the neighborhood of the third. A graph is said
to be AT-free if it contains no asteroidal-triple. The family of graphs having
dominating target number equal to two is denoted by DP. Their results include
(i) ds(G) ≤ 4 for the DP graphs; (ii) ds(G) of cocomparability graphs is 2; (iii)
ds(G) ≤ 2 for AT-free claw-free graphs; and (iv) ds(G) ≤ 3 for AT-free graphs.
They also conjecture that ds(G) ≤ 2 for AT-free graphs.

In this work we will show that there exists a DP graph for which domination-
search number is greater than 2. This settle the conjecture “ds(G) ≤ dt(G)” in
negative. We also present a domination search algorithm for AT-free graphs
with ds(G) ≤ 2 which settles the second conjecture in affirmative. The paper is
organized as follows. Section 2 presents a DP graph and shows that it cannot
be searched with two guards. Section 3 describes a partial ordering on graphs
which plays an important role in developing the domination-search algorithm
for AT-free graphs, presented in Section 4.

2 Lower Bound for DP Graphs

In this section we will establish that domination search cannot be performed
on all weak dominating pair graphs (family of graphs with dominating target
number being 2) with 2 guards. This will settle the conjecture 23 of [1], “ds(G) ≤
dt(G)”, in negative.

The open neighborhood of a vertex x, N(x), in a graph is the set of vertices
adjacent to x. The closed neighborhood, N [x] is N(x) ∪ {x}. If N [x] is not a
graph separator then x is called an extreme vertex. The set of all extreme vertices
of a graph is denoted by L.

Consider the graph G0 =(V, E) in figure 1. Observe that L={v0, v1, v2, v3, v4,
v8, v9, v10, v11, v12}. Therefore only non-extreme vertices in G0 are v5, v6 and v7.
There are two connected components in the induced subgraph on V − N [v5],
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v0

v1

v2

v3

v5

v6

v7

v8

v9

v10

v11

v4
v12

Fig. 1. A dominating pair graph with ds(G) > 2

denote them Cv5
1 and Cv5

2 . Due to the symmetry in v5, v6 and v7, V − N [v6]
and V − N [v7] also have two components: Cv6

1 , Cv6
2 and Cv7

1 , Cv7
2 respectively.

Cv5
1 = Cv6

1 = Cv7
1 is the single vertex v12. The second components of each case

is given in figure 2 which are indeed isomorphic.
Let us assume that a domination search algorithm for G0 exists which re-

quires two guards. Let it be expressed by the sequence A : D(0) = (p1(0), p2(0)),
D(1) = (p1(1), p2(1)), . . . , D(M) = (p1(M), p2(M)). Pair p1(i), p2(i) denote the
vertices where guards are placed after i moves. {p1(i−1), p2(i−1)}∩{p1(i), p2(i)}
is a singleton denoted by S(i). For notational convenience we will denote the el-
ement in S(i) by S(i) as well without ambiguity. By Ud(i) we denote the set
of vertices which are clear (uncontaminated) in the graph during the i-th move
when there is only one guard on the graph (at S(i)). After the move when there
are two guards on the graph the set of clear vertices is denoted by Ua(i). With-
out loss of generality we assume that this sequence is minimal in the sense that
no step of the algorithm is redundant, i.e., no proper subsequence of A is a
valid domination search. The graph does not have a dominating set of size two
therefore M must be greater than zero.

Proposition 1. S(i) /∈ L for all 1 ≤ i ≤ M .

Proof. Assume S(i) ∈ L. If Ud(i) was equal to V then there would have been no
need for the i-th move. So there is at least one contaminated vertex just before
this move. During this move there is only one guard on the graph, at S(i). Since
the induced graph on V − N [S(i)] is connected, entire set V − N [S(i)] will get
contaminated. So the set of clear vertices after this move will be N [p1(i)] ∪
N [p2(i)]. This state can be achieved at the start of the search by placing the
guards at p1(i) and p2(i). Therefore we can replace A by A′ : (p1(i), p2(i)), (p1(i+
1), p2(i+1)), . . . , (p1(M), p2(M)) which will also perform the domination search.
This violates the minimality condition of A.

Due to symmetry between v5, v6, and v7 we may assume that S(1) = v5

without loss of generality. Suppose S(i) = v5 for 1 ≤ i ≤ i0. During these moves
only one guard is moving to clear the parts of V − N [v5]. No single vertex in
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Fig. 2. Components Cv5
2 , Cv6

2 ,Cv7
2

the graph dominates entire Cv5
2 so a single guard cannot clear it completely.

Therefore during each move upto i0 entire Cv5
2 will be contaminated. In other

words Ud(i) ∩ Cv5
2 = ∅ for 1 ≤ i ≤ i0. As a consequence Ua(i) for 1 ≤ i ≤ i0

cannot be equal to V . This indicates that the search cannot terminate if S(i)
remains unchanged at v5.

Let us suppose S(i0 + 1) �= v5. Then S(i0 + 1) must be either v6 or v7. Due
to symmetry, we can assume S(i0 + 1) = v6 with no loss in generality. In the
move i0 one guard stays fixed at v5 and the the other guard moves to v6. As
discussed above Ud(i0) does not contain any vertex of Cv5

2 . Ua(i0) = Ud(i0) ∪
N [v6] which does not contain v0. So Ua(i0) does not contain v0. Consequently
Cv6

2 will be entirely contaminated during move i0 + 1 when guard at v6 remains
fixed. Suppose S(i) = v6 for i0 + 1 ≤ i ≤ i1. As argued above during all these
moves U(i) ∩ Cv6

2 = ∅ for i0 + 1 ≤ i ≤ i1. So the search cannot terminate with
i1-th move. Once again we may replace v6 by v5 or v7 as the value of S(i) but
repeating the argument we conclude that the search will never end. We have
following result.

Theorem 1. Domination search on graph of figure 1 requires at least 3 guards.

This graph has dominating target number 2 because {v4, v12} is a dominating
pair in it. So we establish that dt(G0) < ds(G0).

Corollary 1. The conjecture ds(G) ≤ dt(G), proposed in [1], for all connected
graphs G is incorrect.

3 A Partial Ordering on Graphs

The domination search algorithm for asteroidal-triple-free graphs proposed in
the following section uses two guards. The selection of the successive positions
to station the guards is determined based on a partial ordering on the vertices
which is described in this section.

Let G = (V, E) be an arbitrary graph and x be any vertex in it. Define relation
�x on V as follows. u �x v if (i) u and v are not adjacent and (ii) every path
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from u to x is intercepted by v, i.e., at least one vertex on each path from u to x
belongs to N [v]. Observe that condition (ii) can be equivalently stated as: every
induced path from u to x is intercepted by v. This relation is reflexive. Define an
equivalence relation ∼x on V as follows. u ∼x v if there exist u1, u2, . . .uk such
that u �x u1 �x u2 �x . . . uk �x v and v �x uk �x . . .u1 �x u. The equivalence
classes, x-classes, induced by ∼x will be denoted by [u]x representing the class
containing u. The x-class containing x is obviously a singleton.

Observation 2. Let u1, u2 ∈ [u]x. Then for any induced path from u1 to x:
u1a1a2 . . .am(= x), u2 is adjacent to a1 and to no other ai.

We extend �x to the class, using the same symbol: [u]x �x [v]x if there exists
u′ ∈ [u]x and v′ ∈ [v]x such that u′ �x v′. The above observation leads to the
following result.

Observation 3. [u]x �x [v]x iff for every u′ ∈ [u]x and v′ ∈ [v]x either (u′, v′)
is an edge or u′ �x v′.

Consider two distinct classes [u]x and [v]x such that [u]x �x [v]x. Let u′ ∈ [u]x
and v′ ∈ [v]x such that u′ �x v′. Let u′′ ∈ [u]x such that u′′ �x u′. Assume that
u′′ �x v′ is not true. From the previous result u′′ must be adjacent to v′. Since
[v]x is distinct from [u]x there is a path, P , from v′ to x which misses u′. Now we
have a path P ′ = u′′v′.P . We have u′′ �x u′ and u′ �x v′ so u′ is not adjacent
to u′′ and v′. Thus entire P ′ misses u′. This violates u′′ �x u′. So u′′ �x v′ must
be true. If we have a chain u(k) �x u(k−1) . . . u′′ �x u′ then iterative application
of the above argument will imply that u(k) �x v′. From the definition of the
x-classes we have the following observation.

Observation 4. Let [u]x and [v]x be distinct classes such that [u]x �x [v]x.
Each vertex of [v]x is either adjacent to all vertices of [u]x or to none.

Proposition 2. The relation �x on the equivalence classes is a partial ordering.

Proof. The reflexivity and anti-symmetry are due to the definitions of �x and
∼x. Next we show the transitivity.

Let [u]x �x [v]x and [v]x �x [w]x. Our goal is to show that [u]x �x [w]x. If
the classes [u]x, [v]x, and [w]x are not all distinct, then the claim is true from
reflexivity and anti-symmetry. So assume that all three are distinct.

There are u′ in [u]x, v′ and v′′ in [v]x and w′ ∈ [w]x such that u′ �x v′ and
v′′�x w′. From Observation 4 we also have v′�w′. Let P be an arbitrary path
from u′ to x. Since it is intercepted by v′, there is a path P ′ from v′ to x in
which all vertices, except perhaps v′, are from P . w′ intercepts P ′ but it is not
adjacent to v′ so w′ intercepts P . Since P was randomly chosen, w′ intercepts
all paths from u′ to x.

Finally we prove that w′ is not adjacent to u′. From our assumption that
[v]x is distinct from [w]x it follows from anti-symmetry that there is a path P ′′

from w′ to x missing v′. If u′ is adjacent to w′, then we have a path from u′ to
w′ then follow the path P ′′ to x. As v′ is not adjacent to either u′ or w′ so this
path is not intercepted by v′. This contradicts the fact that u′ �x v′.
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Let x be an arbitrary vertex of G and G′ be the induced subgraph on vertex
subset V ′. Any vertex y of V ′ will be called x-minimal in G′ if [y]x is minimal
among all the x-classes which have non-empty intersection with V ′.

4 Domination Search on Asteroidal-Triple-Free Graphs

In this section we present a domination-search algorithm for AT-free graphs. We
begin with some useful properties of this family.

Lemma 1. Let G = (V, E) be a connected AT-free graph and x a vertex in it. C
is a connected component of the induced graph on V −N [x]. Then any x-minimal
vertex in C intercepts all paths from any vertex in C to any vertex outside C.

Proof. Let y ∈ C is x-minimal. It is sufficient to show that any path from any
vertex in C to any vertex in N [x] passes through N [y].

We will first show that any path from any vertex in C to x is intercepted by
y. Let z be an arbitrary vertex in C. If [y]x and [z]x are related, then [z]x �x [y]x
because [y]x is minimal by choice. Then by the definition, y is either adjacent to
z or all paths from z to x pass through N [y].

In the second case [y]x and [z]x are unrelated. So either (i) y and z are
adjacent to each other or (ii) there exists a path from z to x not intercepted by
y and a path from y to x not intercepted by z. Thus in case (ii) {x, y, z} form
an asteroidal triple. This is not possible in AT-free graphs so z must be adjacent
to y. This establishes that all paths from z to x pass through N [y].

Finally we consider arbitrary vertex w in N [x]. Consider arbitrary path, P ,
from z to w. If it passes through x, then we already have seen that it must pass
through the neighborhood N [y]. Assume that P does not contain x. Extend the
path to x: P ′ = P.x. It is a path from z to x. Thus P ′ passes through N [y]. y is
outside N [x] so x is not in N [y]. Therefore some vertex of P must be in N [y].

Corollary 2. Let G = (V, E) be a connected AT-free graph and x a vertex in it.
C is a connected component of the induced graph on V − N [x]. Let y ∈ C is x-
minimal in C. Then each connected component of the induced graph on V −N [y]
is entirely contained either in C or in V − C.

It has been established that connected AT-free graphs have a pair of vertices,
poles, such that every path between them dominates the entire graph, [9,10]. We
shall use labels p1 and p2 for the poles.

Let G = (V, E) be a graph and x be a vertex in it. If y ∈ V − N [x], then
the connected component containing y in the induced graph over V − N [x] will
be denoted by Cx(y) and the open neighborhood N(Cx(y)) will be denoted by
Sx(y). Cx(y) is defined if and only if y is not adjacent to x. A component Cx(y)
will be called deep if at least one vertex of the component is not adjacent to
any vertex of N [x]. If a component is not deep, then it will be termed shallow.
Cx(p1) and Cx(p2) will be called principal components of x, if defined. All other
components of V − N [x] will be termed secondary.
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Lemma 2. Let G = (V, E) be a connected AT-free graph and x ∈ V . Then every
deep component of the induced graph on V −N [x] must contain exactly one pole.

Proof. Suppose Cx(y) contains no polar vertex. Assume that z ∈ Cx(y) such
that N [z] is fully contained in Cx(y). Then there exists a path between p1 and
p2 which does not enter Cx(y). This implies that the path will miss z which is
impossible. Thus Cx(y) must be a shallow component.

In case Cx(y) contains both poles, then there exists a path between the poles
which does not enter N [x]. This path will miss x. Again impossible for an AT-free
graph.

Proposition 3. Let G = (V, E) be a connected AT-free graph with vertex x in
it. Let C be a secondary component in the induced subgraph on V − N [x]. Then
each vertex of C dominates at least one of p1, p2, Sx(p1), and Sx(p2).

Proof. In a connected AT-free graph G = (V, E), x is a vertex such that both
its principal components are defined, i.e., neither pole is in N [x]. Let C be a
secondary component of V − N [x] and z be a vertex in C. Suppose there exists
u ∈ Sx(p1) and v ∈ Sx(p2) such that z is adjacent to neither of these vertices.
We can build a path from p1 to p2: p1 . . . uxv . . . p2 where u, x, and v are the
only vertices of the path from N [x]. z cannot be adjacent to any vertex of this
path other than u, x, and v. But by choice none of the three is adjacent to z so
this path misses z. This is impossible.

If every vertex in a secondary component C dominates Sx(p2) (when p2 is
not adjacent to x) or dominates p2 (when p2 is adjacent to x) then C will be
called a p2-sided component.

Proposition 4. Let G = (V, E) be a connected AT-free graph with non-adjacent
poles. Let x be either p1 or a vertex for which both principal components are
defined. Let y ∈ Cx(p2) be an x-minimal vertex. If z is a vertex of Cx(p2) which
dominates Sy(x), then z is also x-minimal.

Proof. Sy(x) is a graph separator which contains at least one vertex of each
edge connecting Cx(p2) with V −Cx(p2) because all paths between the two pass
through N [y]. Therefore each component of the induced graph on V − Sy(x) is
either completely contained in Cx(p2) or in V − Cx(p2). Thus every path from
Cx(p2) to V − Cx(p2) must touch Sy(x). If N [z] contains Sy(x) then all such
path also touch N [z]. Therefore z also x-minimal.

Let x and y be vertices in a graph. Then by |Cx(y)| we denote the cardinality
of Cx(y) if y is not adjacent to x. If the two vertices are adjacent, then |Cx(y)|
is defined to be zero.

Lemma 3. Let G be a connected AT-free graph and x a vertex which is not
adjacent to p2. Further x is either p1 or not adjacent to p1. Let y be x-minimal
in Cx(p2) but different from p2, |Cy(p2)| ≥ |Cy′

(p2)| for all x-minimal y′, and
p2 does not dominate Sy(p1). Then any secondary component of V −N [y] having
non-empty intersection with Cx(p2), is p2-sided.
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Proof. We consider two cases: p2 /∈ N [y] and p2 ∈ N(y) since y �= p2.

(a) p2 /∈ N [y]. Suppose C is a secondary component of induced graph on
V − N [y] such that C ∩ Cx(p2) is non-empty. Assume that C is not p2-sided.
Therefore there is a vertex z in C such that it does not dominate Sy(p2). From
Corollary 2 we know that entire C is contained in Cx(p2) so z belongs to Cx(p2).
From Proposition 3 z dominates Sy(p1).

Next we show that z does not dominate Sy(x). Assume the contrary. From
Proposition 4 it is an x-minimal vertex of Cx(p2). Since Cy(p2)∩N [z] is empty,
Cz(p2) will contain Cy(p2). In addition, by choice, z does not dominate Sy(p2)
so there is a path from y to p2 not intercepted by z. Thus y is also contained
in Cz(p2). This implies that |Cz(p2)| > |Cy(p2)|. But Due to the choice of y,
|Cz(p2)| can never be larger than |Cy(p2)|.

Now we will show that {x, z, p2} is an asteroidal triple. Since p2 and z belong
to Cx(p2) so there is a path between z and p2 not passing through N [x].

To show that there is path between z and x which misses p2 observe that
p2 does not dominate Sy(p1) so there exists a vertex u in Sy(p1) which is not
adjacent to p2 but adjacent to z since the latter dominates Sy(p1). Consider two
cases. In the first case x ∈ Cy(p1). Consider the path zu.P where P joins u to x
and is confined to Cy(p1). This path misses p2. In case x /∈ Cy(p1) N [x] contains
Sy(p1) since N [x] separates p1 from y. Thus x is adjacent to u and xuz is a path
that misses p2.

Finally it needs to be shown that there is a path between x and p2 not
intercepted by z. We have seen that z does not dominate Sy(x) so there is a
vertex v in it which is not adjacent to z. Also there is a vertex w in Sy(p2) not
adjacent to z since by choice z does not dominate Sy(p2). So there is a path
xvyw.P where P is a path from w to p2 contained in Cy(p2). This path is not
intercepted by z. Consequently the entire path, from x to p2 misses z. Thus
{x, z, p2} form an asteroidal set which is not possible.

(b) p ∈ N(y). Again C is a secondary component of y such that C ∩ Cx(p2) is
non-empty. Assume C is not contained in N [p2]. Therefore there is a vertex z in C
suchthat it isnotadjacenttop2.FromCorollary2weknowthatentireC is contained
in Cx(p2) so z belongs to Cx(p2). From Proposition 3 z dominates Sy(p1).

We will again show that z does not dominate Sy(x). Assume the contrary.
From Proposition 4 it is an x-minimal vertex of Cx(p2). |Cy(p2)| = 0 but Cz(p2)
contains at least p2 so again |Cz(p2)| > |Cy(p2)|. But Due to the choice of y,
|Cz(p2)| can never be larger than |Cy(p2)|.

Similar to the proof of part (a) we can show that {x, z, p2} is an asteroidal
triple.

Lemma 4. G = (V, E) is a connected AT-free graph and y is a vertex in it which
is not adjacent to pole p1. Pole p2 dominates Sy(p1). Then {u, p2} dominates
V − Cy(p1) where u is any vertex in Cy(p1).

Proof. Consider a path p2u.P where P is a path to p1 confined to Cy(p1). Each
vertex of V is dominated by this path. Since vertices of V −(Cy(p1)∪Sy(p1)) are
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not adjacent to any vertex beyond u, {u, p2} dominate them. Further vertices of
Sy(p1) are in the neighborhood of p2. So {u, p2} dominate V − Cy(p1).

Algorithm: Domination search on a connected AT-free graph.
1. If the poles are adjacent (so {p1, p2} is a dominating set) then put the two

guards at the poles and exit;
2. Place a guard at p1;
3. Place the second guard at any vertex in Sp1(p2);
4. Relieve the second guard;

C1: Vertices of V − Cp1(p2) are cleared
5. x = p1;
6. While (p2 is not adjacent to x) Do
7. { Let vertex u in Cx(p2) is x-minimal with maximum |Cu(p2)|;
8. y = u;
9. If p2 dominates Sy(p1) then

10. { Place the free guard at p2 and relieve the guard at x;
C2: Cy(p1) being a subset of V −Cx(p2) remains
clear and N [p2] is also now cleared.

11. Place the free guard at any vertex in Sy(p1);
C3: Entire V is clear.

12. Exit;
}

13. Else
C4: p2 does not dominate Sy(p1) so y �= p2.

14. { Place the free guard at y;
15. Relieve the guard from x;

C5: All the vertices of V −Cx(p2) remain clear.
In addition N [y] is also cleared.

16. if p2 is not adjacent to y
17. { Place the free guard at any vertex of Sy(p2) and relieve

it;}
18. else { Place the free guard at p2 }

C6: if p2 is not adjacent to y, then V − Cy(p2)
is clear else entire V is cleared.

19. x = y;
}

C7: If x is not adjacent to p2 then vertices
of V −Cx(p2) are cleared else all of V is cleared.

}
C8: Entire V is cleared.

20. Exit.

Theorem 5. The domination-search number of AT-free graphs is at most 2.

Proof. The algorithm described above performs domination search for any AT-free
graph with 2 guards. We prove the correctness of the algorithm by justifying the in-
variants mentioned in the comments.

C1: In line-2 N [p1] is cleared. From Proposition 3, line-3 clears all secondary com-
ponents of p1. No recontamination of these components occur in line-4 since the first
guard is still present at p1.
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C2: From Corollary 2 Cy(p1) is either entirely contained in Cx(p2) or in V −Cx(p2).
Due to Lemma 2 p1 cannot be in Cx(p2) so Cy(p1) must be contained in V − Cx(p2).
There is a guard at p2 and p2 dominates Sy(p1) so Cy(p1) remains clear.

C3: Due to Lemma 4.
C4: Self explanatory.
C5: Due to Corollary 2.
C6: Due to Lemma 3.
C7: Trivial.
C8: Trivial.

The algorithm is monotonic (there is no recontamination and at least one more
vertex is cleared in each pass of the loop), due to C5, as long as the condition of line-9
is not true. When the condition is true the algorithm terminates after executing lines
10, 11, and 12. Therefore the algorithm always terminates.
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Abstract. This paper considers the problem of maintaining a compact
representation (O(n) space) of permutation graphs under vertex and edge
modifications (insertion or deletion). That representation allows us to
answer adjacency queries in O(1) time. The approach is based on a fully
dynamic modular decomposition algorithm for permutation graphs that
works in O(n) time per edge and vertex modification. We thereby obtain
a fully dynamic algorithm for the recognition of permutation graphs.

1 Introduction

The dynamic recognition and representation problem (see e.g. [10]) for a family
F of graphs aims to maintain a characteristic representation of dynamically
changing graphs as long as the modified graph belongs to F . The input of the
problem is a graph G ∈ F with its representation and a series of modifications.
Any modification is of the following: inserting or deleting a vertex (along with
the edges incident to it), inserting or deleting an edge. Several authors have
considered the dynamic recognition and representation problem for various graph
families. [8] devised a fully dynamic recognition algorithm for chordal graphs
which handles edge operations in O(n) time. For proper interval graphs [7], each
update can be supported in O(d + log n) time where d is the number of edges
involved in the operation. Cographs, a subfamily of permutation graphs, have
been considered in [10] where any modification (edge or vertex) is supported in
O(d) time, where d is the number of edges involved in the modification. This
latter result has recently been generalised to directed cographs in [3].

This paper deals with the family of permutation graphs. Our algorithm main-
tains an O(n) space canonical representation based on modular decomposition
which enables us to answer adjacency queries in O(1) time. It should be noted
that in [9] a purely incremental algorithm is presented for computing the mod-
ular decomposition tree of any graph. It runs in O(n) time per vertex insertion.
Unfortunately, it is based on a partial representation of the graph compromising
the possibility of any vertex deletion. Therefore such an algorithm cannot be
applied for efficient fully dynamic recognition of permutation graphs. Our algo-
rithm also performs in O(n) time per operation, but supports insertion as well
as deletion of vertices and edges. Let us note that a modification of the input

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 38–48, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Fully Dynamic Algorithm for Recognition and Modular Decomposition 39

graph may lead to O(n) changes in the modular decomposition tree. Therefore
our algorithm does not present any complexity extra cost in the maintain of the
modular decomposition tree.

2 Preliminaries

2.1 Modular Decomposition

Theory of modular decomposition of graphs has been widely developed since
Gallai first introduced it in [5]. Here, we give some known definitions and results
that we use in the following. Let G = (V, E) be a graph. The neighbourhood
of a vertex x ∈ V is denoted N(x) and its non-neighbourhood N(x). A subset
S � V of vertices is uniform w.r.t. to vertex x ∈ V \S if S ⊆ N(x) or S ⊆ N(x)
(otherwise S is mixed). A module of a graph G = (V, E) is a subset of vertices
M ⊆ V which is uniform w.r.t. any vertex x ∈ V \ M . It also follows from
definition that V and {x}, x ∈ V are modules of G, namely the trivial modules.
A graph is prime if all its modules are trivial. A module M is strong if it does not
overlap any module M ′, that is M ∩M ′ = ∅ or M ⊆ M ′ or M ′ ⊆ M . Therefore,
the inclusion order of the strong modules of a graph defines a tree, called the
modular decomposition tree T . The leaves of T correspond to the singleton vertex
sets of G (Lx stands for {x}) and its root is the whole vertex set of G. In the
following, a node p of the modular decomposition tree could be identified with
the strong module P = V (p) it represents. Denoting Tp the subtree of T rooted
at p, P is the set of leaves of Tp. C(p) is the set of children in T of p.

Thanks to the well-known modular decomposition theorem (see [1] for ref-
erences), any non-leaf node p of the modular decomposition tree is labelled as
follows: parallel if G[P ] is not connected; series if G[P ] is not connected; and
prime otherwise (the three cases are disjoint). The label of node p is denoted
label(p). The series and parallel nodes are also called degenerate nodes. We call
maximal strong modules of a graph G = (V, E) the strong modules of G maximal
wrt. inclusion and distinct from V . It is well known that the children p1 . . . pk

of p (i.e. the maximal strong modules of G[P ]) are respectively in the paral-
lel case, the connected components of G[P ], in the series case the co-connected
components of G (i.e. the connected components of G[P ]) and in the prime case,
the maximal modules of G[P ] distinct from P . Given a graph G, we denote
MSM(G) the set of maximal strong modules of G.

Given a set F of disjoint modules, let F ⊆ V be a set of vertices such that
for any M ∈ F , |F ∩ M | = 1. The quotient graph G/F is the subgraph induced
by the vertices of (V \∪M∈FM)∪F . From the modular decomposition theorem,
the quotient G/MSM(G) of G by the set of its maximal strong modules is
either a stable (parallel case) or a clique (series case) or a prime graph. If with
each prime node p of the modular decomposition tree T , we associate a repre-
sentation of the quotient G[P ]/MSM(G[P ]), then adjacency queries between
any pair of vertices x, y can be answered by a search in T and in the quotient
graphs.
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2.2 Permutation Graphs

If π is a linear order on the vertices, π(x) denotes the rank of vertex x in π
while π−1(i) is the vertex at rank i. Permutation graphs are those graphs for
which there exists a pair (π1, π2) of linear order on the vertex set such that x
and y are adjacent iff π1(x) < π1(y) and π2(y) < π2(x). For a graph G, such
a pair R = (π1, π2) is a realiser of G. If π2 denotes the reverse order of π1,
then R = (π1, π2) is a realiser of G. For a complete introduction to permutation
graphs, one can see [6]. It is known that, if G is a prime graph, then its realiser
is unique up to reversal and exchange1 (the reader should refer to [1] for more
details on permutation graphs). Moreover, a graph G is a permutation graph
iff the quotient graphs associated with the prime nodes of its modular decom-
position tree are permutation graphs. It follows that associating the modular
decomposition tree T with the realiser of each of its prime nodes provides an
O(n) space canonical representation of a permutation graph G, called hereafter
the full modular representation of G.

Since the full modular representation contains a realiser for each prime node
of T , it is well known that a realiser of the whole graph G can be retrieved in
O(n) time by a simple search of T . As our dynamic algorithm works in O(n)
time per operation, a realiser of G can be maintained without any extra cost.
That guarantees the possibility of answering at any time adjacency queries in
O(1) time.

An interval of a linear order π on V is a set of consecutive elements of V
in π. Given a pair (π1, π2) of linear orders, a common interval is a set I that
is an interval of π1 and of π2. Recently, [11] proposed an O(n + K) algorithm
computing all common intervals of a pair of linear orders, K being the number
of common intervals. A common interval is strong if it does not overlap any
other common interval. Clearly common intervals of a realiser R = (π1, π2) of a
permutation graph G are modules of G. The converse is false, but:

Proposition 1. [4] The strong modules of a permutation graph G = (V, E) are
exactly the strong common intervals of any of its realiser R.

2.3 Dynamic Arc Operations

Unfortunately an edge modification may imply O(n) changes in the modular de-
composition tree. As we propose an O(n) time algorithm for the vertex insertion
and for the vertex deletion operations, inserting or deleting an edge e incident
to vertex x will be handled by first removing x and then re-inserting x with the
updated neighbourhood.

3 Vertex Deletion

Let G′ = G−x be the graph resulting from the deletion of a vertex x in the graph
G. Since the family of permutation graphs is hereditary, removing x reduces to
1 That is (π2, π1), (π1, π2) and (π2, π1) are considered as the same realiser as (π1, π2).
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compute the full modular representation of G′ from the one of G. We shall
distinguish the case where p, the parent node of x in T , is a prime node from
the case where p is a degenerate node.

Degenerate Case. This is the easy case to handle. If x has at least two siblings,
then the leaf Lx is removed from T . Assume x has only one sibling say q2. If q2

is a leaf, Lx and p are removed from T and q2 becomes a child of q1 replacing p
(i.e. if q1 is a prime node, then q2 takes the place of p in the associated realiser).
Assume q2 is a non-leaf node. If q1 and q2 are both series nodes or both parallel
nodes, then Lx, p and q2 are removed from T and the children of q2 are made
children of q1. Otherwise Lx and p are removed from T and q2 becomes a child
of q1 replacing p. Such an update of the full modular representation can be done
in O(|C(q2)|) = O(n) since it leaves unchanged the quotient graphs of the prime
nodes.

Prime Case. The removal of x may create some modules in G′[P ′] (where
P ′ = P \ {x}). We show it can be tested in O(n) time. Moreover if G′[P ′] is not
a prime graph, the updated full modular representation can be computed within
the same complexity.

Lemma 1. Let G = (V, E) be a prime permutation graph and x be a vertex.
The non trivial strong modules of G′ = G− x can be partitioned in two families
(possibly empty) totally ordered by inclusion.

This is a consequence of Proposition 1 which implies that if R = (π1, π2)
is the realiser of G, then for any strong module M ′ of G′, I = M ′ ∪ {x} is an
interval of π1 or π2. Therefore G′ contains O(n) strong modules. Moreover, as
there is at most two non-trivial maximal strong modules, the root of the modular
decomposition tree T ′ of G′ has at most two non-leaf children, and each internal
nodes of T ′ have at most one non-leaf child. The next lemma complete the
information about degenerate internal nodes of T ′.

Lemma 2. Let G = (V, E) be a prime permutation graph and x be a vertex.
Every degenerate node of the modular decomposition tree of G′ = G − x has at
most two children which are leaves.

It follows that the number of modules (not necessarily strong) of G′ is O(n)
so there is also O(n) common intervals of the realiser R′ of G′. Therefore ap-
plying [11]’s algorithm will cost O(n) time to find the common intervals of R′.
From that algorithm the two families of strong common intervals (or equiva-
lently modules) can be retrieved in O(n) time. Moreover from Lemma 2 given a
common interval it is possible to find its label (series, parallel or prime) in O(1)
time. As the realiser of each prime node of T ′ can be easily extracted from R,
the full modular representation of G′ can be computed in O(n).

Theorem 1. Updating the full modular representation of a permutation graph
under vertex deletion costs O(n) time.
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4 Vertex Insertion

Given a graph G = (V, E), a vertex x �∈ V and a subset N(x) ⊆ V , let us define
G′ = G + x as the graph on vertex set V ∪ {x} with edge set E ∪ {{x, y} | y ∈
N(x)}). Each node p of the modular decomposition tree T of G is assigned a
type w.r.t. x : linked (resp. notlinked) if P = V (p) is uniform w.r.t. x and
P ⊆ N(x) (resp. P ⊆ N(x)), and mixed otherwise. Cl(p) (resp. Cnl(p)) stands
for the set of children of p which are typed linked (resp. notlinked) and Cm(p)
for the set of children of p which are typed mixed. For t ∈ {m, l, nl}, we denote
Ft(p) =

⋃
f∈Ct(p)

V (f).

4.1 Modular Decomposition Tree of G + x

Insertion Node. To compute the modular decomposition tree T ′ of G′ = G+x,
we can restrict our attention to a subtree Tq of T rooted at a certain node q,
called the insertion node. q is such that Tq contains all the modifications implied
by the insertion of x. Moreover, in T ′, x will be inserted as a child or a grand-
child of node q′ representing set Q′ = Q ∪ {x}. The discussion bellow gives the
definition of q and shows that inserting x in G reduces to insert x in G[Q].

Definition 1. A node p of T is a proper node iff either p is uniform wrt. x, or
p is a mixed node with a unique mixed child f such that F ∪ {x} is a module of
G′[P ∪ {x}]. Otherwise p is a non-proper node.

From Definition 1, any mixed node p has at least one non-proper descendant.
Indeed p always enjoys a mixed descendant having only uniform children. It
follows that if any node of T is proper, then the vertex set is uniform w.r.t. x.
That is x is either a universal vertex or an isolated vertex. Therefore inserting
x preserves the property of being a permutation graph and the full modular
representation is easy to update. That case will not be considered anymore in
the following.

Definition 2. The insertion node q is the lca of non-proper nodes of T .

Lemma 3. The insertion node q is such that Q′ = Q ∪ {x} is a strong module
of G′ = G + x.

Since Q is a strong module of G and Q′ = Q ∪ {x} is a strong module of
G′ = G+x, then G′/{Q′} = G/{Q}. That is the changes implied by the insertion
of x are located in Tq. Moreover, the permutation graphs family is hereditary
and closed under substitution, it follows that:

Lemma 4. G′ = G + x is a permutation graph iff G′[Q′] = G[Q] + x is a
permutation graph.

From Lemma 4 and the discussion above, we conclude that inserting x in G
reduces to insert x in G[Q].
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Modular Decomposition Tree of G′[Q′]. As the insertion node q is non-
proper, it can either be: 1) a degenerate node with no mixed child but with
uniform children of both types (i.e. linked and notlinked); or 2) a degenerate
node with at least one mixed child; or 3) a prime node with no mixed child but
a child being a twin of x in the quotient of q; or 4) a prime node with no child
being a twin of x in the quotient of q. In cases 1) and 3), q is said to be cut (and
uncut in cases 2) and 4)).

The case where the insertion node is a cut degenerate node (case 1) above) is
similar to the case, considered by [2], of maintaining the modular decomposition
tree of a cograph under vertex insertion. If q is a series (resp. parallel) node,
the root q′ of T ′

q′ is a series (resp. parallel) node. The children of q′ are those
children of q typed linked (resp. notlinked) and a new parallel node q′1. The
children of q′1 are {x} and the remaining children of q, i.e. those typed notlinked
(resp. linked).

The case where the insertion node is a cut prime node (case 3) above) is
quite easy to deal with. In the children of q, the twin f of x is replaced by a new
degenerate node q1 (i.e. q1 takes the place of f in the realiser of q). The label of
q1 is series if f is typed linked, and parallel if f is typed notlinked. x and f are
made children of q1.

Cl(q) Cm(q)

label(q) = series label(q′) = series

label(q′s) = prime

LxM1 Mk

Cl(q)

+x

Cnl(q)....

Cnl(q)

Fig. 1. Updating the modular decomposition tree when the insertion node is a series
node. The modules M1 . . . Mk are the maximal uniform modules of G[Qs].

Let us now consider the case where the insertion node q is uncut. Let us define
the vertex set Qs as the set Q if q is a prime node and as the set Fm(q)∪Fnl(q) (resp.
Fm(q)∪Fl(q)) if q a series node (resp. parallel node). The modular decomposition
tree T ′

q′ of G′[Q′] is organised as follows. If q is a prime node, then q′ represents
the nodes of Q′

s = Qs ∪ {x}. If q is degenerate, then q′ is degenerate and has the
same label than q. If q is a series (resp. parallel) node, then the set of children of
q′ is {q′s}∪Cl(q) (resp. {q′s}∪Cnl(q)) where q′s is a new node representing vertices
of Q′

s. Theorem 2 states on the modular decomposition of G′[Q′
s].

Theorem 2. Let x be a vertex to be inserted in a graph G. If the insertion node
q of the modular decomposition tree T of G is uncut, then G′[Q′

s] is connected
and co-connected. And the maximal strong modules of G′[Q′

s] are {x} and the
maximal uniform (w.r.t. x) modules of G[Qs].
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Notice that the modular decomposition tree of G′[M ], where M is a maximal
uniform module of G[Qs], is the part of T restricted to M . Therefore the whole
modular decomposition tree T ′ of G′ follows from discussion above.

4.2 Dynamic Characterisation of Permutation Graphs

As we ask G′ to be a permutation graph, the mixed nodes of Tq cannot be spread
anywhere in the tree. Lemma 5 claims that there are at most two branches of
mixed nodes in Tq beginning at q. These two branches correspond to the two
families of Lemma 1.

Lemma 5. If G′ is a permutation graph then the insertion node q has at most
two mixed children and any node p �= q of Tq has at most one mixed child.

Unfortunately, Lemma 5 is not a sufficient condition for G′ being a permuta-
tion graph. Theorem 3 gives necessary and sufficient conditions. Given a graph
G = (V, E), S � V and y ∈ V \S, we denote G−yS = (V , E \{{y, z} | z ∈ S}).
If p is a node of Tq, then set P ′ = P ∪{x}. Since the maximal strong modules of
G[P ] are uniform wrt. x in G′[P ′]−xFm(p), they are modules of G′[P ′]−xFm(p).
We denote

G̃′
p = (G′[P ′] − xFm(p))/(MSM(G[P ]) ∪ {{x}}).

Theorem 3. Let x be a vertex to be inserted in a permutation graph G. Then
G′ = G+ x is a permutation graph iff either the insertion node q of the modular
decomposition tree T of G is cut; or if q is uncut then:

1. q satisfies one of the following conditions :
(a) q has two mixed children f1 and f2, and G̃′

q is a permutation graph
admitting a realiser R = (π1, π2) such that x and f1 are consecutive in
π1, and x and f2 are consecutive in π2.

(b) q has a unique mixed child f1, and G̃′
q is a permutation graph admitting

a realiser R = (π1, π2) such that x and f1 are consecutive in π1.
(c) q has no mixed child and G̃′

q = G′[P ′]/(MSM(G[P ]) ∪ {{x}}) is a
permutation graph.

2. and any node p �= q of Tq satisfies one of the two following conditions :
(a) p has a unique mixed child f1, and G̃′

p is a permutation graph admitting
a realiser R = (π1, π2) such that x and f1 are consecutive in π1, and x
is the first element of π2.

(b) p has no mixed child, and G̃′
p is a permutation graph admitting a realiser

R = (π1, π2) such that x is the first element of π2.

Due to space limitation, we only prove that the above conditions are sufficient.

Proof. ⇐: We first show by induction that any node p of Tq different from q
is such that G′[P ′] is a permutation graph admitting a realiser R such that x
is the first element of π2. If p is a leaf of Tq, it trivially satisfies the inductive
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hypothesis. Let p �= q be a node of Tq such that its children satisfy the inductive
hypothesis. If p has a unique mixed child f1, it satisfies condition 2a of Theorem
3. According to the inductive hypothesis, G′[F ′

1] is a permutation graph and
admits a realiser R1 = (τ1, τ2) such that x is the first element of τ2. To obtain
a realiser of G′[P ′]/(MSM(G[P ]) \ {F1}) such that x is the first element of π2,
the realiser R = (π1, π2) of G̃′

p is modified as follows: in π1, substitute τ1 for the
interval {x, f1}; and in π2 substitute, τ2 restricted to F1 for f1. Composing the
resulting realiser with the realisers of the (G[F ])f∈C(p)\{f1}, we obtain a realiser
of G′[P ′] which satisfies the inductive hypothesis. The case where p has no mixed
child follows as a particular case of the previous one. This ends the induction.

If q has two mixed children f1 and f2, it satisfies condition 1a of Theorem
3. By the previous induction G′[F ′

1] and G′[F ′
2] are permutation graphs. They

respectively admit a realiser R1 = (τ1, τ2) and R2 = (σ1, σ2) such that x is the
first element of τ2 and σ2. In the realiser R = (π1, π2) of G̃′

q, if f2 occurs after f1

in π2, we reverse both orders of R1, and if f2 occurs before f1 in π1, we reverse
both orders of R2. To obtain a realiser of G′[Q′]/(MSM(G[Q]) \ {F1, F2}),
R is modified as follows: in π1, substitute τ1 for the interval {x, f1}, and σ2

restricted to F2 for f2; and in π2, substitute σ1 for the interval {x, f2}, and
τ2 restricted to F1 for f1. Composing the resulting realiser with the realisers
of the (G[V (f)])f∈C(p)\f1,f2 , we obtain a realiser of G′[Q′]. We therefore prove
that G′[Q′] is a permutation graph. By Lemma 4 we can conclude that G is a
permutation graph. The cases where p has a single or no mixed child follow as
a particular cases of the above discussion. �

4.3 Algorithm and Complexity

Data-Structure. The realiser R = (π1, π2) associated with a prime node p
of the modular decomposition tree will be stored in two doubly linked lists
representing the two linear orders π1 and π2. Each cell of a list represents a child
c of p. There are two symmetric pointers between c and the cell. Moreover each
cell contains its rank in the list (namely π1(c) or π2(c)).

Routine InsPrime. As a prime permutation graph G has a unique realiser
R = (π1, π2), G + x is a permutation graph iff x can be inserted in R. Routine
InsPrime performs, if possible, that insertion.

Lemma 6. Let R = (π1, π2) be the realiser of a prime permutation graph G and
x /∈ V a vertex to be inserted. G + x is a permutation graph iff N(x) and N(x)
can be respectively partitioned into N1(x), N2(x) and N1(x), N 2(x) such that:

∀u1 ∈ N1(x) ∪ N1(x), v1 ∈ N2(x) ∪ N2(x), u1 <π1 v1

∀u2 ∈ N2(x) ∪ N1(x), v2 ∈ N1(x) ∪ N2(x), u2 <π2 v2

An initial common interval of a realiser R = (π1, π2) is a common interval of
R containing both π−1

1 (1) and π−1
2 (1). In order to find the partitions of N(x) and

N(x) satisfying Lemma 6, Routine InsPrime makes use of the next corollary.
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Corollary 1. If N1(x) �= ∅ (resp. N1(x) �= ∅) then N1(x) is an initial common
interval of R[N(x)] (resp. R[N(x)]), the restriction of R to N(x) (resp. N(x)).

Notice that an initial common interval of R[N(x)] defines a partition N1(x),
N2(x) of N(x) (and similarly for N(x)). The number of initial common intervals
of a realiser is O(n).

Routine InsPrime computes in O(n) time the sets of initial common inter-
vals of R[N(x)] and of R[N(x)]. Then, it checks if there exists a pair of partitions
N1(x), N2(x) and N1(x), N 2(x) satisfying Lemma 6. Testing a given pair of par-
titions can be done in O(1) time by comparing the ranks of the last elements
of N1 (resp. N2) and N1 in π1 (resp. π2) with ranks of the first elements of N2

(resp. N1) and N2. Scanning π1, a pair of partitions satisfying the condition of
Lemma 6 can be found in O(n) time.

Notice that G′ = G+x may not be prime. If it is the case, then x has a twin
vertex in G′ (i.e. a vertex y s.t. N(y) \ {x} = N(x) \ {y}). As {x, y} is therefore
a strong module of G′, by Proposition 1, x and y are consecutive in both linear
orders of the realiser of G′. It follows that testing the existence of a twin can be
done in O(1) time if x has been inserted.

To summarise, if G + x is a permutation graph, then in O(n) time, Routine
InsPrime returns a pair of doubly linked lists, the realiser of G+x, and outputs
the twin of x if it exists. Notice that the ranks of the cells are not maintained in
these lists.

The Typing Routine. In a bottom-up process, each node p of T receives a
type (linked, notlinked or mixed). A leaf Ly of T is typed linked if y ∈ N(x)
and notlinked otherwise. The type of an inner node p of T depends on the types
of its children. If the children of p all have the same type, p inherits that type,
otherwise p is typed mixed. Since the number of nodes in T is O(n), the typing
routine runs in O(n) time.

Finding the Insertion Node q. The purpose of this step is to find the inser-
tion node q, in the case where the root r of T is typed mixed. By Lemma 2, q
is the lca of the non-proper nodes of T . Any node p of the unique path between
r and q is mixed and proper if p �= q. Since, by Definition 1, any proper mixed
node has a unique mixed child, finding the insertion node can be done by a
top-down search of the modular decomposition tree T . The search stops when
the current node p is non-proper, which can be tested as follows. If p is a series
node (resp. parallel node), then p is proper iff all its children but one are typed
linked (resp. notlinked) and the remaining child is mixed. If p is a prime node,
p is proper iff x has a twin in the quotient of p, which can be checked by Routine
InsPrime. In both cases, testing whether p is a proper node can be done in
O(|C(p)|). As T contains O(n) nodes, the search finds the insertion node q in
O(n) time.

Maintaining the Full Modular Representation. We now determine if
G′[Q′] is a permutation graph or not, and in the positive, update its full modular
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representation (i.e. its modular decomposition tree and the realisers of the prime
nodes).

If the insertion node q has more than two mixed children, from Lemma 5,
G′[Q′] is not a permutation graph: the algorithm stops. If q is cut, from earlier
discussion G′[Q′] is always a permutation graph (see Section 4.1). In that case,
the realisers of the prime nodes are not modified. Therefore T ′

q′ can be computed
in O(|C(q)|) as described in Section 4.1. When q is uncut, the nodes of Tq have
to fulfil the conditions stated in Theorem 3. To simplify the presentation, let us
present our algorithm as three-step process. But notice in practice these three
steps can be merged into a single one.

– For each node p of Tq, we check whether p fulfils the condition of Theorem 3.
If p is a degenerate node having the right number of mixed children (0, 1 or 2
depending on p = q), then G̃′

p always enjoys a realiser satisfying Theorem 3
(see Figure 2). If p is prime, using Routine InsPrime, we insert x in the
realiser associated to p by making x adjacent to Cl(p) and non-adjacent to
Cm(p)∪ Cnl(p). There may be two different positions to insert x (only if has
a twin vertex). We then test if at least one of the possible positions fulfils
the conditions of Theorem 3 which simply consists in testing the position
of x in the realiser returned by InsPrime (extremity in an order and/or
consecutiveness with the mixed children). That can be done in O(1). Since
we handle only the quotients of the nodes p of Tq, each of which being
processed in O(|C(p)|) time, this first steps runs in O(n) time.

– Theorem 2 states that the maximal strong modules of G′[Q′
s] are {x} and

the maximal uniform modules of G[Qs]. These maximal uniform modules
can be found in O(n) time by a search in Tq since M is a maximal uniform
module iff there exists a mixed node p descendant of the insertion node q
such that either p is degenerate and M = Fl(p) or M = Fnl(p); or p is prime
and M is the vertex set of some uniform child of p. By Theorem 2, these
modules will be represented by the children nodes of the new prime node q′s.
Recall that the modular decomposition tree of G′[M ] is inherited from the
modular decomposition tree T of G.

– The last step computes the realiser Rs of the quotient of G′[Q′
s] by its

maximal strong modules. Notice that in the intermediate realisers computed
along the process, the ranks of the cells in the lists are not maintained.

To that aim, we applied the bottom-up process, described in the proof
of Theorem 3, on the modular decomposition tree T where each maximal
uniform module has first been contracted into a single vertex (i.e. replaced

x f1Cl(p) Cnl(p)

π2 x f1Cnl(p) Cl(p)

π1

Fig. 2. The unique realiser of G̃′
p (if p is a series node) that fulfils condition 2a of

Theorem 3. For a parallel node p, Cnl(p) and Cl(p) has to be exchanged in π2.
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by a leaf in the tree T ). For a prime mixed node p, the realiser of G̃′
p is given

by Routine InsPrime. For a degenerate node p, the realiser of G̃′
p is the one

depicted in Figure 2. As the realisers are encoded by pairs of doubly linked
lists, the substitution operation used in the proof of Theorem 3 can be done
in O(1) time. It follows that the realiser Rs can be computed in O(n) time.
Finally to maintain the data-structure, a scan of the lists of Rs allows to get
the ranks of the cells.

Theorem 4. Updating the full modular representation of a permutation graph
under vertex insertion costs O(n) time.
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Approximating Rank-Width
and Clique-Width Quickly

Sang-il Oum

Princeton University, Princeton NJ 08544, USA�

Abstract. Rank-width is defined by Seymour and the author to inves-
tigate clique-width; they show that graphs have bounded rank-width if
and only if they have bounded clique-width. It is known that many hard
graph problems have polynomial-time algorithms for graphs of bounded
clique-width, however, requiring a given decomposition corresponding to
clique-width (k-expression); they remove this requirement by construct-
ing an algorithm that either outputs a rank-decomposition of width at
most f(k) for some function f or confirms rank-width is larger than k in
O(|V |9 log |V |) time for an input graph G = (V, E) and a fixed k. This
can be reformulated in terms of clique-width as an algorithm that either
outputs a (21+f(k)−1)-expression or confirms clique-width is larger than
k in O(|V |9 log |V |) time for fixed k.

In this paper, we develop two separate algorithms of this kind with
faster running time. We construct a O(|V |4)-time algorithm with f(k) =
3k + 1 by constructing a subroutine for the previous algorithm; we may
now avoid using general submodular function minimization algorithms
used by Seymour and the author. Another one is a O(|V |3)-time algo-
rithm with f(k) = 24k by giving a reduction from graphs to binary
matroids; then we use an approximation algorithm for matroid branch-
width by Hliněný.

1 Preliminaries

In this paper, all graphs are simple, undirected, and finite.

Cut-Rank Functions. For a matrix M = (mij : i ∈ R, j ∈ C) over a field F , if
X ⊆ R and Y ⊆ C, let M [X, Y ] denote the submatrix (mij : i ∈ X, j ∈ Y ). For
a graph G, let A(G) be its adjacency matrix over GF(2).

Definition 1. Let G be a graph. For two disjoint subsets X, Y ⊆ V (G), we
define ρ∗G(X, Y ) = rk(A(G)[X, Y ]) where rk is the matrix rank function; and we
define the cut-rank function ρG of G by letting ρG(X) = ρ∗G(X, V (G) \ X) for
X ⊆ V (G).

Both ρ and ρ∗ satisfy submodular inequalities.
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Proposition 2 (Oum and Seymour [1]). Let G be a graph. Let X1, Y1, X2, Y2

be subsets of V (G) such that X1 ∩ Y1 = X2 ∩ Y2 = ∅. Then,

ρ∗G(X1, Y1) + ρ∗G(X2, Y2) ≥ ρ∗G(X1 ∩ X2, Y1 ∪ Y2) + ρ∗G(X1 ∪ X2, Y1 ∩ Y2).

Moreover, if X1, X2 ⊆ V (G), then

ρG(X1) + ρG(X2) ≥ ρG(X1 ∩ X2) + ρG(X1 ∪ X2).

Rank-Width. A subcubic tree is a tree with at least two vertices such that every
vertex is incident with at most three edges. A leaf of a tree is a vertex incident
with exactly one edge. A rank-decomposition of a graph G = (V, E) is a pair
(T,L) of a subcubic tree T and a bijective function L : V → {t : t is a leaf of T}.
(If |V | ≤ 1, then G admits no rank-decomposition.)

For an edge e of T , the connected components of T \ e induce a partition
(X, Y ) of the set of leaves of T . The width of an edge e of a rank-decomposition
(T,L) is ρG(L−1(X)). The width of (T,L) is the maximum width of all edges of
T . The rank-width rwd(G) of G is the minimum width of a rank-decomposition
of G. (If |V | ≤ 1, we define rwd(G) = 0.)

Let cwd(G) be the clique-width of a graph G. Clique-width is defined by
Courcelle and Olariu [2]. In this paper, we do not need its definition if we just
remember the following proposition.

Proposition 3 (Oum and Seymour [1]). For a graph G, rwd(G) ≤ cwd(G)
≤ 2rwd(G)+1 − 1.

Local Complementation. For two sets A and B, let AΔB = (A \ B) ∪ (B \ A).

Definition 4. Let G = (V, E) be a graph and v ∈ V . The graph obtained by
applying local complementation at v to G is

G ∗ v = (V, EΔ{xy : xv, yv ∈ E, x �= y}).

For an edge uv ∈ E, the graph obtained by pivoting uv is defined by G ∧ uv =
G ∗ u ∗ v ∗ u. We say that H is locally equivalent to G if G can be obtained by
applying a sequence of local complementations to G.

A pivoting is well-defined because G ∗ u ∗ v ∗ u = G ∗ v ∗ u ∗ v if u and v are
adjacent [3]. The following observation is fundamental.

Proposition 5 (Oum [3]). Let G′ = G ∗ v. Then for every X ⊆ V (G),

ρG(X) = ρG′(X).

The following lemma will be used in Sect. 2.

Lemma 6 (Oum [3]). Let G be a graph and v ∈ V (G). Suppose that (X1, X2)
and (Y1, Y2) are partitions of V (G) \ {v}. If w is a neighbor of v, then

ρG\v(X1) + ρG∧vw\v(Y1) ≥ ρG(X1 ∩ Y1) + ρG(X2 ∩ Y2) − 1.
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Matroids. Since we will use matroids in Sect. 4, let us review matroid theory.
For general matroid theory, we refer to Oxley’s book [4]. We call M = (E, I) a
matroid if E is a finite set and I is a collection of subsets of E, satisfying

(i) ∅ ∈ I
(ii) If A ∈ I and B ⊆ A, then B ∈ I.
(iii) For every Z ⊆ E, maximal subsets of Z in I all have the same size r(Z).

We call r(Z) the rank of Z.

An element of I is called independent in M. We let E(M) = E. A matroid
M = (E, I) is binary if there exists a matrix N over GF(2) such that E is a
set of column vectors of N and I = {X ⊆ E : X is linearly independent}. The
connectivity function λM of M is λM(X) = r(X) + r(E \ X) − r(E) + 1.

Let G = (V, E) be a bipartite graph with a bipartition V = A ∪ B. Let
Bin(G, A, B) be the binary matroid on V , represented by the A × V matrix(

IA A(G)[A, B]
)
,

where IA is the A×A identity matrix. If M = Bin(G, A, B), then G is called a
fundamental graph of M.

Branch-Width. A branch-decomposition of a matroid M is a pair (T,L) of a
subcubic tree T and a bijective function L : E(M) → {t : t is a leaf of T}. (If
|E(M)| ≤ 1, then M admits no rank-decomposition.)

For an edge e of T , the connected components of T \ e induce a partition
(X, Y ) of the set of leaves of T . The width of an edge e of a branch-decomposition
(T,L) is λM(L−1(X)). The width of (T,L) is the maximum width of all edges
of T . The branch-width bw(M) of M is the minimum width of a branch-
decomposition of M. (If |V | ≤ 1, we define bw(M) = 1.) Branch-width has
been defined by Robertson and Seymour [5].

The following proposition links branch-width of binary matroids with rank-
width of bipartite graphs.

Proposition 7 (Oum [3]). Let G = (V, E) be a bipartite graph with a bi-
partition V = A ∪ B and let M = Bin(G, A, B). Then for every X ⊆ V ,
λM(X) = ρG(X) + 1.

Corollary 8 (Oum [3]). Let G = (V, E) be a bipartite graph with a bipartition
V = A∪B and let M = Bin(G, A, B). Then the branch-width of M is one more
than the rank-width of G.

2 Approximating Rank-Width Quickly

In this section, we show that, for fixed k, there is a O(n4)-time algorithm that,
with a n-vertex graph, outputs a rank-decomposition of width at most 3k +
1 or confirms that the input graph has rank-width larger than k. Oum and
Seymour [1] use general submodular function minimization algorithms [6] to
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find Z minimizing the cut-rank function ρG(Z) with X ⊆ Z ⊆ V (G) \ Y for
given disjoint subsets X , Y of V (G) such that |X |, |Y | ≤ 3k. If this can be done
in time γ, then we obtain an O(n(n2 + γ))-time algorithm to outputs a rank-
decomposition of width at most 3k + 1 or confirms that the input graph has
rank-width larger than k. In [1], γ is O(n8 log n), and therefore the O(n9 log n)-
time algorithm is obtained.

To obtain a O(n4)-time algorithm, we construct a direct combinatorial al-
gorithm that minimizes the cut-rank function. Jim Geelen suggested the use of
blocking sequences for this problem (private communication, 2005).

We first define blocking sequences, introduced by J. Geelen [7]. Let G be a
graph and A, B be two disjoint subsets of V (G). A sequence v1, v2, . . . , vm of
vertices in V (G) \ (A ∪ B) is called a blocking sequence for (A, B) in G if it
satisfies the following:

(i) ρ∗G(A, B ∪ {v1}) > ρ∗G(A, B).
(ii) ρ∗G(A ∪ {vi}, B ∪ {vi+1}) > ρ∗G(A, B) for all i ∈ {1, 2, . . . , m − 1}.
(iii) ρ∗G(A ∪ {vm}, B) > ρ∗G(A, B).
(iv) No proper subsequence satisfies (i)—(iii).

The following proposition is used in most applications of blocking sequences.

Proposition 9. Let G be a graph and A, B be two disjoint subsets of V (G). The
following are equivalent:

(i) There is no blocking sequence for (A, B) in G.
(ii) There exists Z such that A ⊆ Z ⊆ V (G) \ B and ρG(Z) = ρ∗G(A, B).

Proof. (i)→(ii): We assume that a, b /∈ V (G) \ (A ∪ B) by relabeling. Let k =
ρ∗G(A, B). We construct the auxiliary digraph D = ({a, b}∪ (V (G)\ (A∪B)), E)
from G such that for x, y ∈ V (G) \ (A ∪ B),

i) (a, x) ∈ E if ρ∗G(A, B ∪ {x}) > k,
ii) (x, b) ∈ E if ρ∗G(A ∪ {x}, B) > k,
iii) (x, y) ∈ E if ρ∗G(A ∪ {x}, B ∪ {y}) > k.

Since there is no blocking sequence for (A, B) in G, there is no directed path
from a to b in D. Let J be a set of vertices in V (G) \ (A ∪ B) having a directed
path from a in D. We show that Z = J ∪ A satisfies ρG(Z) = k.

To prove this, we claim that ρ∗G(A ∪ X, B ∪ Y ) = k for all X ⊆ J , Y ⊆
V (G) \ (Z ∪ B). We proceed by induction on |X | + |Y |. If |X | ≤ 1 and |Y | ≤ 1,
then we have ρ∗G(A ∪ X, B ∪ Y ) = k by the construction of J .

If |X | > 1, then for all x ∈ X we have

ρ∗G(A ∪ X, B ∪ Y ) + ρ∗G(A, B ∪ Y ) ≤
ρ∗G(A ∪ (X \ {x}), B ∪ Y ) + ρG(A ∪ {x}, B ∪ Y ) = 2k,

because ρ∗G(A ∪ {x}, B ∪ Y ) = k by induction. So, ρ∗G(A ∪ X, B ∪ Y ) = k.
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Similarly if |Y | > 1, then for all y ∈ Y we have ρ∗G(A ∪ X, B ∪ Y ) + ρ∗G(A ∪
X, B) ≤ ρ∗G(A ∪ X, B ∪ (Y \ {y})) + ρG(A ∪ X, B ∪ {y}) = 2k, and therefore
ρ∗G(A ∪ X, B ∪ Y ) = k.

(ii)→(i): Suppose that there is a blocking sequence v1, v2, . . . , vm. Then, vm /∈
Z because ρ∗G(A∪{vm}, B) > ρG(Z). Similarly v1 ∈ Z because ρ∗G(A, B∪{v1}) >
ρG(Z). Therefore there exists i ∈ {1, 2, . . . , m − 1} such that vi ∈ Z but vi+1 /∈
Z. But this is a contradiction, because ρG(Z) < ρ∗G(A ∪ {vi}, B ∪ {vi+1}) ≤
ρ∗G(Z, V (G) \ Z) = ρG(Z). �

Lemma 10. Let G be a graph (V, E) and A, B be two disjoint subsets of V such
that ρ∗G(A, B) = k and |A|, |B| ≤ l. Let n = |V |. There is a polynomial-time
algorithm to either

– obtain a graph G′ locally equivalent to G with ρ∗G′(A, B) > k, or
– obtain a set Z such that A ⊆ Z ⊆ V \ B and ρG(Z) = k.

The running time of this algorithm is O(n3) if l is fixed or O(n4) if l is not fixed.

Proof. If there is no blocking sequence for (A, B) in G, then minA⊆Z⊆V \B ρ(Z) =
k by Proposition 9. In this case, we obtain Z by finding a set of vertices reachable
from A in the auxiliary graph.

Therefore, we may assume that there is a blocking sequence v1, v2, . . . , vm.
We will find another graph G′ locally equivalent to G such that rkG′(A, B) > k.
Since rkG(A ∪ {vm}, B) = k + 1, there is a vertex w ∈ B adjacent to vm.

(1) We claim that v1, v2, . . . , vm−1 is a blocking sequence of (A, B) in G∧vmw
if m > 1.

By applying Lemma 6 for G[A ∪ B ∪ {v1, vm}], a subgraph of G induced on
A ∪ B ∪ {v1, vm}, we have

ρ∗G∧vmw(A, B ∪ {v1}) + ρ∗G(A ∪ {v1}, B)
≥ ρ∗G(A, B ∪ {v1, vm}) + ρ∗G(A ∪ {v1, vm}, B) − 1.

Since ρ∗G(A, B ∪ {v1, vm} ≥ ρ∗G(A, B ∪ {v1}) ≥ k + 1, ρ∗G(A ∪ {v1, vm}, B) ≥
ρ∗G(A∪{vm}, B) ≥ k+1, and ρ∗G(A∪{v1}, B) = k, we obtain that ρ∗G∧vmw(A, B∪
{v1}) ≥ k + 1.

By applying the same inequality we obtain that

ρ∗G∧vmw(A ∪ {vi}, B ∪ {vi+1}) + ρ∗G(A ∪ {vi, vi+1}, B)
≥ ρ∗G(A ∪ {vi}, B ∪ {vi+1, vm}) + ρ∗G(A ∪ {vi, vi+1, vm}, B) − 1 ≥ 2k + 1

for each i ∈ {1, 2, 3, . . . , m−2} and therefore ρ∗G∧vmw(A∪{vi}, B∪{vi+1}) ≥ k+1.
Moreover, ρ∗G∧vmw(A∪{vm−1}, B)+ρ∗G(A∪{vm−1}, B) ≥ ρ∗G(A∪{vm−1}, B∪

{vm}) + ρ∗G(A ∪ {vm−1, vm}, B) − 1 ≥ 2k + 1 and therefore ρ∗G∧vmw

(A ∪ {vm−1}, B) ≥ k + 1.
We prove one lemma to be used later. If X and Y are disjoint subsets of V

such that A ⊆ X , B ⊆ Y , vm /∈ X∪Y and ρ∗G(X, Y ) = k, then ρ∗G∧vmw(X, Y ) =
ρ∗G(X, Y ∪ {vm}) because
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ρ∗G∧vmw(X, Y ) + ρ∗G(X, Y ) ≥ ρ∗G(X, Y ∪ {vm}) + ρ∗G(X ∪ {vm}, Y ) − 1
≥ ρ∗G(X, Y ∪ {vm}) + k = ρ∗G∧vmw(X, Y ∪ {vm}) + ρ∗G(X, Y ).

By letting X = A ∪ {vm−1} and Y = B, we obtain that ρ∗G∧vmw(A ∪
{vm−1}, B) = ρ∗G(A∪{vm−1}, B∪{vm}) ≥ k+1. We also obtain ρ∗G∧vmw(A, B∪
{vi}) = k for each i > 1 by letting X = A, Y = B ∪ {vi}. Similarly we obtain
ρ∗G∧vmw(A ∪ {vi}, B ∪ {vj}) = k for i, j such that 1 ≤ i < i + 1 < j ≤ m − 1.

Therefore, v1, v2, . . . , vm−1 is a blocking sequence for (A, B) in G ∧ vmw.
(2) If m = 1 then we obtain ρ∗G∧v1w(A, B) ≥ k + 1, by applying the previous

lemma with letting X = A and Y = B.
(3) For each k, we claim that we can obtain another graph G′ locally equiva-

lent to G with ρ∗G′(A, B) > k or find Z satisfying A ⊂ Z ⊆ V \B and ρG(Z) = k.
If l is fixed, then we can test an adjacency in the auxiliary graph (defined

in the proof of Proposition 9) in constant time by calculating rank of matrices
of size no bigger than (l + 1) × (l + 1), and therefore it takes O(n2) time to
construct the auxiliary digraph. If l is not fixed, then it takes O(n4) time to
construct the auxiliary digraph for finding a blocking sequence. We first obtain
the diagonalized matrix R obtained by applying elementary row operations to
the matrix M [A, B] in O(n3) time. For each vertex v not in A∪B, we calculate
the rank of M [A∪{v}, B] by using the stored matrix in O(n2) time. Similarly we
calculate the rank of M [A, B ∪ {v}] by storing the matrix obtained by applying
elementary column operations to M [A, B]. To check whether ρ∗G(A ∪ {x}, B ∪
{y}) > k, it is enough to see when ρ∗G(A ∪ {x}, B) = ρ∗G(A, B ∪ {y}) = k. We
first store the rows of the original matrices to each column of R and then we
obtain the linear combination of rows of M [A, B] giving M [{x}, B]. By the same
linear combination, we check whether rows of M [A, {y}] gives M [{x}, {y}]. It
takes O(n2) time for each x, y ∈ V \ (A ∪ B) and therefore we construct the
auxiliary digraph in O(n4) time (if l is not fixed).

To find a blocking sequence, it is enough to find a shortest path in this
digraph and it takes O(n2) time. If there is no blocking sequence, then we find
Z in O(n2) time by choosing all vertices reachable from A by a directed path.

We pick a neighbor of vm in B and obtain G ∧ vmw in O(n2) time. By (1),
G∧vmw has a blocking sequence v1, v2, . . . , vm−1 for (A, B). We apply this kind
of pivoting m times so that in the new graph G′ we have ρ∗G′(A, B) > k. Since
m ≤ n, we obtain G′ in O(n3) time. �

Theorem 11. Let l be a fixed constant. Let G be a graph (V, E) and A, B be
two disjoint subsets of V such that |A|, |B| ≤ l. Then, there is a O(|V |3)-time
algorithm to find Z with A ⊆ Z ⊆ V \ B having the minimum cut-rank.

Proof. We apply the algorithm given by Lemma 10 until it finds a cut. We use
the algorithm at most l times, and so the running time is at most O(|V |3). �

We state the following theorem for the sake of its own interest. We will not
use this for the purpose of approximating rank-width since we have the previous
theorem.
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Theorem 12. Let G be a graph (V, E) and A, B be two disjoint subsets of V .
Then, there is a O(|V |5)-time algorithm to find Z with A ⊆ Z ⊆ V \ B having
the minimum cut-rank.

Proof. We apply the algorithm given by Lemma 10 until it finds a cut. We use
the algorithm at most |V | times, and so the running time is at most O(|V |5). �

Combining with Oum and Seymour [1], we obtain the following.

Theorem 13. For given k, there is an algorithm, for the input graph G =
(V, E), that either concludes that rwd(G) > k or outputs a rank-decomposition
of G of width at most 3k + 1; and its running time is O(|V |4).
Since we can convert the rank-decomposition of width k to a (2k+1−1)-expression
(a decomposition related to clique-width) in O(|V |2) time [1], we obtain the
following corollary.

Corollary 14. For given k, there is an algorithm, for the input graph G =
(V, E), that either concludes that cwd(G) > k or outputs a (23k+2−1)-expression
of G; and its running time is O(|V |4).

3 Graphs to Bipartite Graphs

Courcelle [8] shows that Seese’s conjecture [9] is true if and only if it is true
for bipartite graphs by using a certain graph transformation B from graphs to
bipartite graphs which we describe in the following lemma. He proves that there
exist two functions f1 and f2 such that f1(rwd(G)) ≤ rwd(B(G)) ≤ f2(rwd(G)),
but does not have explicit constructions of f1 and f2. We give a concrete bound
on rank-width. We will use this lemma in Sect. 4.
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Fig. 1. K3 and B(K3)

Lemma 15. Let G = (V, E) be a graph. Let B(G) = (V × {1, 2, 3, 4}, E′) be a
bipartite graph obtained from G as follows:

(i) if v ∈ V and i ∈ {1, 2, 3}, then (v, i) is adjacent to (v, i + 1) in B(G),
(ii) if vw ∈ E, then (v, 1) is adjacent to (w, 4) in B(G).

Then we have 1
4 rwd(G) ≤ rwd(B(G)) ≤ max(2 rwd(G), 1).

Proof. (1) Let us show that rwd(B(G)) ≤ max(2 rwd(G), 1). If rwd(G) = 0,
then rwd(B(G)) = 1. Now we may assume that rwd(G) > 0 and we claim that
rwd(B(G)) ≤ 2 rwd(G). Let (T,L) be a rank-decomposition of G of width k. Let
N be the set of leaves of T . Let T ′ be a tree such that V (T ′) = (V (T )× {0}) ∪
(N × {1, 2, 3, 4, 12, 34}) and
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(i) if vw ∈ E(T ), then (v, 0) is adjacent to (w, 0) in T ′,
(ii) for all v ∈ N , (v, 12) is adjacent to both (v, 1) and (v, 2) in T ′,
(iii) for all v ∈ N , (v, 34) is adjacent to both (v, 3) and (v, 4) in T ′,
(iv) for all v ∈ N , (v, 0) is adjacent to both (v, 12) and (v, 34) in T ′.

Informally speaking, we obtain T ′ from T by replacing each leaf with a rooted bi-
nary tree having four leaves. For each vertex (v, i) of B(G), we define L′((v, i)) =
(L(v), i) ∈ V (T ′). Then (T ′,L′) is a rank-decomposition of B(G).

We claim that the width of (T ′,L′) is at most 2k.
For each edge e = vw ∈ E(T ), let (X, Y ) be a partition of N induced by

the connected components of T \ e. Then, the edge (v, 0)(w, 0) of E(T ′) induces
a partition (X × {1, 2, 3, 4}, Y × {1, 2, 3, 4}) of N × {1, 2, 3, 4}. We observe that
L′−1(X × {1, 2, 3, 4}) = L−1(X) × {1, 2, 3, 4}. It is easy to see that

ρB(G)(L′−1(X × {1, 2, 3, 4}) = 2ρG(L−1(X)) ≤ 2k.

We now consider remaining edges of T ′. Each of them induces a partition
(X, Y ) of leaves of T ′ such that |X | ≤ 2 or |Y | ≤ 2. So, ρB(G)(L′−1(X)) ≤ 2.
Therefore we obtain that the width of (T ′,L′) is at most 2k.

(2) We claim that rwd(G) ≤ 4 rwd(B(G)). Let (T,L) be a rank-decomposi-
tion of B(G) of width k. Let e be an edge of T , and (X, Y ) be a partition of
leaves of T induced by connected components of T \ e.

For four subsets A1, A2, A3, A4 of V , we denote A1|A2|A3|A4 = (A1 ×{1})∪
(A2 × {2}) ∪ (A3 × {3}) ∪ (A4 × {4}) to simplify our notation. Let L−1(X) =
A1|A2|A3|A4. Let Bi = V \ Ai for i ∈ {1, 2, 3, 4}.

It is easy to observe, for each i ∈ {1, 2, 3}, that ρ∗B(G)((Ai × {i}) ∪ (Ai+1 ×
{i + 1}), (Bi × {i})∪ (Bi+1 × {i + 1}) = |Ai ∩Bi+1|+ |Bi ∩Ai+1| = |AiΔAi+1|.
Since ρB(G)(A1|A2|A3|A4) = ρ∗B(G)(A1|A2|A3|A4, B1|B2|B3|B4) ≤ k, we have,
for each i ∈ {1, 2, 3},

|AiΔAi+1| ≤ ρB(G)(A1|A2|A3|A4) ≤ k.

By adding these inequalities for all i, we obtain that |A1ΔA4| ≤ 3k.
We also observe that rk(M [A4, B1]) = ρB(G)(A4 × {4}, B1 × {1}) ≤ k. Let

M be an adjacency matrix of G. Then we have the following bound of ρG(A1):

ρG(A1) = rk(M [A1, B1]) ≤ rk(M [A4 ∪ (A4ΔA1), B1])
≤ rk(M [A4, B1]) + rk(M [A4ΔA1, B1]) ≤ 4k.

Let T ′ be the minimal subtree of T containing all leaves in L(V × {1}). Let
L′(v) = L((v, 1)) for all vertices v of G. Then (T ′,L′) is a rank-decomposition
of G and its width is at most 4k. �

4 Approximating Rank-Width More Quickly

In this section, we show another algorithm that approximate rank-width as in
Sect. 2, but in O(n3) time with a worse approximation ratio. We take a different
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approach based on a simple observation in Sect. 3. We use the following algorithm
for binary matroids developed by Hliněný [10].

Theorem 16 (Hliněný [10–Theorem 4.12]). For fixed k, there is a O(n3)-
time algorithm that, for a given binary matroid with n elements, obtains a
branch-decomposition of width at most 3k + 1 or confirms that the given ma-
troid has branch-width larger than k + 1. We assume that binary matroids are
given by their matrix representations.

This algorithm can be used to approximate rank-width of a bipartite graph G
because we can run this algorithm for binary matroids having G as a fundamental
graph. By Lemma 15, we obtain a bipartite graph B(G) for each graph G such
that 1

4 rwd(G) ≤ rwd(B(G)) ≤ max(2 rwd(G), 1). Moreover we can construct
B(G) in O(n2) time when n = |V (G)| and transform the rank-decomposition of
B(G) of width m into rank-decomposition of G of width at most 4m in linear
time by the proof of Lemma 15. Therefore, we obtain the following algorithm.

Corollary 17. For fixed k, there is a O(n3)-time algorithm that, for a given
graph with n vertices, obtains a rank-decomposition of width at most 24k or
confirms that the rank-width of the input graph is larger than k.

Proof. Let G = (V, E) be the input graph. We may assume that E(G) �= ∅. First
we construct B(G) in O(n2) time. We run the algorithm of Theorem 16 with an
input M = Bin(B(G), V × {1, 3}, V × {2, 4}) and a constant 2k.

If it confirms that branch-width of M is larger than 2k + 1, then rank-width
of B(G) is larger than 2k, and therefore the rank-width of G is larger than k.

If it outputs the branch-decomposition of M of width at most 6k + 1, then
the output is a rank-decomposition of B(G) of width at most 6k. This can be
transformed into a rank-decomposition of G of width at most 24k in linear time
by using an argument of Lemma 15. �

5 Discussions

Many applications of clique-width are polynomial-time algorithms to solve graph
problems when inputs are restricted to graphs of bounded clique-width. Most
of them ([11,12,13,14,15]) require k-expression of the input graph as an input
to take an advantage of tree-structures (except Johnson [16]). But by using [1],
we do not need k-expressions as an explicit input, because we can generate a
(21+f(k)−1)-expression in polynomial time and provide it as an input. The result
of this paper will make this preprocessing much faster.

In [17], Courcelle and the author show that there is a O(|V |9 log |V |)-time
algorithm that recognizes graphs of rank-width at most k for an input graph
G = (V, E) and a fixed k; they use an approximation algorithm by Seymour and
the author [1] as a first step, and it is the slowest part of their algorithm. By the
result of this paper, we obtain the following.

Theorem 18. For fixed k, there is a O(n3)-time algorithm to check that the
input graph with n vertices has rank-width at most k.



58 S. Oum

But it is still open whether, for fixed k, we can construct a rank-decomposition
of width at most k if there are any in polynomial time.
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Abstract. The Tutte polynomial is a notoriously hard graph invariant,
and efficient algorithms for it are known only for a few special graph
classes, like for those of bounded tree-width. The notion of clique-width
extends the definition of cograhs (graphs without induced P4), and it
is a more general notion than that of tree-width. We show a subex-
ponential algorithm (running in time exp O(n2/3) ) for computing the
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1 Introduction

The Tutte polynomial T (G; x, y) of a graph G is a powerful invariant with many
applications, not only in graph theory but also in other fields such as knot
theory and statistical physics. One important feature of the Tutte polynomial is
that by evaluating T (G; x, y) at special points in the plane one obtains several
parameters of G. For example, T (G; 1, 1) is the number of spanning trees of G
and T (G; 2, 1) is the number of forests (that is, spanning acyclic subgraphs) of G.

A question that has received much attention is whether the evaluation of
T (G; x, y) at a particular point of the (x, y) plane can be done in polynomial
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time. Jaeger, Vertigan and Welsh [8] showed that evaluating the Tutte polyno-
mial of a graph is #P-hard at every point except those lying on the hyperbola
(x − 1)(y − 1) = 1 and eight special points, including at (1, 1) which gives the
number of spanning trees. In each of the exceptional cases the evaluation can be
done in polynomial time. On the other hand, the Tutte polynomial can be com-
puted in polynomial time for graphs of bounded tree-width. This was obtained
independently by Andrzejak [2] and Noble [11]. Recently Hliněný [7] has ob-
tained the same result for matroids of bounded branch-width representable over
a fixed finite field, which is a substantial generalization of the previous results.
See [5] for additional references on this subject.

In this paper we study the problem of computing the Tutte polynomial for
cographs and, more generally, for graphs of bounded clique-width. A graph has
clique-width ≤ k if it can be constructed using k labels and the following four
operations: 1) create a new vertex with label i; 2) take the disjoint union of
several labeled graphs; 3) add all edges between vertices of label i and label j;
and 4) relabel all vertices with label i to have label j. An expression defining
a graph G built from the above four operations using k labels is a k-expression
for G. A cograph is a graph of clique-width at most two; equivalently, it is a
graph containing no induced path P4 on four vertices.

Although a class of graphs with bounded tree-width has also bounded clique-
width, the converse is not true. For instance, complete graphs have clique-width
two. It is well-known that all problems expressible in monadic second order logic
of incidence graphs become polynomial time solvable when restricted to graphs of
bounded tree-width. For bounded clique-width less is true: all problems become
polynomial time solvable if they are expressible in monadic second-order logic
using quantifiers on vertices but not on edges (adjacency graphs) [3].

Our main results are as follows:

Theorem 1.1. The Tutte polynomial of a cograph with n vertices can be com-
puted in time exp

(
O(n2/3)

)
.

Theorem 1.2. Let G be a graph with n vertices of clique-width k along with a
k-expression for G as an input. Then the Tutte polynomial of G can be computed
in time exp

(
O(n1−1/(k+2))

)
.

Theorem 1.2 is not likely to hold for the class of all graphs, since it would
imply the existence of a subexponential algorithm for 3-coloring, hence also for
3-SAT; that is considered highly unlike in the Computer Science community.
Of course, the main open question is whether there exists a polynomial time
algorithm for computing the Tutte polynomial of graphs of bounded clique-
width. We discuss this issue in the last section.

In fact, our algorithms compute not only the Tutte polynomial, but the so-
called U polynomial (see [12]), which is a stronger polynomial invariant. More-
over, we may skip the requirement of having a k-expression for G as an input in
Theorem 1.2, if we do not care about an asymptotic behaviour in the exponent:
Just to prove a subexponential upper bound we may use the approximation
algorithm for clique-width by Oum and Seymour [13,14].
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Since our algorithms are quite complicated, for an illustration, we first present
in Section 2 a simplified algorithm computing the number of forests in a cograph,
that is, evaluating T (G; 2, 1) for graphs of clique-width ≤ 2. (This is #P-hard
on all graphs [8].) In Section 3 we extend the algorithm to the computation of
the full Tutte polynomial on cographs. Finally, our main result, Theorem 1.2 is
proved in details in the long version [6].

2 Forests in Cographs

The class of cographs is defined recursively as follows:

1. A single vertex is a cograph.
2. A disjoint union of two cographs is a cograph.
3. A complete union of two cographs is a cograph.

Here a complete union of two graphs G⊕H means the operation of taking a
disjoint union G ∪̇H , and adding all edges between V (G) and V (H). A cograph
G can be represented by a tree, whose internal nodes correspond to operations
2) and 3) above, and whose leaves correspond to single vertices. We call such a
tree an expression for G.

For example, all cliques are cographs, and the complement of a cograph
is a cograph again. Cographs have long history of theoretical and algorithmic
research. In particular, they are known to be exactly the graphs without induced
paths on four vertices (P4-free).

Let us call a signature a multiset of positive integers. The size ‖α‖ of a signa-
ture α is the sum of all elements in α, respecting repetition in the multiset. A sig-
nature α of size n is represented by the characteristic vector α = (a1, a2, . . . , an),
where there are ai ≥ 0 elements i in α, and

∑n
i=1 i ·ai = n. (On the other hand,

the cardinality of α is |α| =
∑n

i=1 ai, as usual.) An important fact we need is:
Recall that Θ(f) is a usual shortcut for all functions having the same asymp-

totic growth rate as f .

Lemma 2.1. There are 2Θ(
√

n) distinct signatures of size n.

Proof. Each signature actually corresponds to a partition of n into an unordered
sum of positive integers. It is well-known [10–Chapter 15] that there are 2Θ(

√
n)

of those.

We call a double-signature a multiset of ordered pairs of non-negative integers,
excluding the pair (0, 0). The size ‖β‖ of a double-signature β is the sum of all
(x + y) for (x, y) ∈ β, respecting repetition in the multiset. We, moreover, need
to prove:

Lemma 2.2. There are exp
(
Θ(n2/3)

)
distinct double-signatures of size n.

Lemma 2.2 is a particular case of Lemma 5.1, which is proved in [6].

Lemma 2.3. A double-signature β of size n has at most exp
(
O(n2/3)

)
different

submultisets (i.e. of different characteristic vectors).

Proof. Just count all double-signatures of size ≤ n.
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2.1 Forest Signature Table

Let us now consider a graph G and a forest U ⊂ G. The signature α of U is
the multiset of sizes of the connected components of U . (Obviously, α has size
|V (G)| if U spans all the vertices.) We call a (spanning) forest signature table of
the graph G a vector T (realized as an array T [. . .]); such that T records, for
each signature α of size |V (G)|, the number of spanning forests U ⊂ G having
signature α (as T [α]). For simplicity we usually skip the word “spanning” if it
is clear from the context. We are going to compute the forest signature table
of a cograph G recursively along the way G has been constructed. For that we
describe two algorithms.

Let us denote by ΣG the set of all signatures of size |V (G)|. It is important
to keep in mind that signatures are considered as multisets, which concerns also
set operations. For instance, a multiset union γ � δ is obtained as the sum of
the characteristic vectors of γ and δ, and a multiset difference γ \ δ is defined
by the non-negative difference of those.

Algorithm 2.4. Combining the spanning forest signature tables of graphs F
and G into the one of the disjoint union H = F ∪̇G.

Input: Graphs F, G, and their forest signature tables T F , T G.
Output: The forest signature table T H of H = F ∪̇G.

create empty table T H of forest signatures of size |V (H)|;
for all signatures αF ∈ ΣF , αG ∈ ΣG do

set α = αF � αG (a multiset union);

add T H [α] += T F [αF ] · T G[αG];
done.

The running time of this algorithm is proportional to the number of pairs of
signatures (αF , αG), which is exp

(
O(n2/3)

)
, where n = |V (H)|; this is due to

Lemma 2.2 and the fact that we have the O( ) expression in the exponent.
The second algorithm is, on the other hand, much more complicated. It

involves double-signatures in the following meaning: Consider a graph H with
vertices partitioned into two parts V (H) = V1 ∪ V2, and a forest U ⊂ H . The
double-signature of U (wrt. V1, V2) is the multiset of pairs

(
|V (C)∩V1|, |V (C)∩

V2|
)

over all connected components C of U .
The idea behind the algorithm is to obtain the double-signatures (for V1 =

V (F ) and V2 = V (G)) of the spanning forests in H = F ⊕G from the signatures
of the spanning forests in F and G. For every pair of forests UF ⊂ F and UG ⊂ G,
the algorithm iteratively counts the different ways in which each component of
UG can be joined to components of UF . During the process, double signatures
are needed to distinguish between former vertices of F and of G in already
joined components. In fact, the algorithm works with pairs of signatures αF and
αG, that is, with whole classes of forests instead of particular forests. We also
remark that a submultiset is considered among all possible selections of repeated
elements, like if they were pairwise distinct.
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Algorithm 2.5. Combining the spanning forest signature tables of graphs F
and G into the one of the complete union H = F ⊕ G.

Input: Graphs F, G, and their forest signature tables T F , T G.
Output: The forest signature table T H of H = F ⊕ G.

create empty table T H of forest signatures of size |V (H)|;
for all signatures αF ∈ ΣF , αG ∈ ΣG do

set z = |V (F )|;
create empty table X of forest double-signatures of size z;

// Imagine particular forests UF ⊂ F , UG ⊂ G of signature αF , αG,
// and a selected component C ⊂ UG of size c.

set X
[
double-signature {(a, 0) : a ∈ αF }

]
= 1;

for each c ∈ αG (with repetition) do

create empty table X ′ of forest double-signatures of size z + c;

for all double signatures β of size z s.t. X[β] > 0 do

for(†) all submultisets γ ⊆ β (with repetition) do

set d1 =
∑

(x,y)∈γ x, d2 =
∑

(x,y)∈γ y;

set double-signature β′ = (β \ γ) � {(d1, d2 + c)};
add(*) X ′[β′] += X[β] ·

∏
(x,y)∈γ cx;

done

done

set X = X ′, z = z + c; dispose X ′;
done

for all double-signatures β of size |V (H)| do

set signature α0 = {x + y : (x, y) ∈ β};
add T H [α0] += X[β] · T F [αF ] · T G[αG];

done

done.

Proof of Algorithm 2.5. We now explain the algorithm, and show its correctness.
It is better understandable if one imagines particular forests (representatives)
UF ⊂ F and UG ⊂ G in the place of the signatures αF and αG chosen in the
first for cycle. Then one may routinely verify that all subsequent computations
depend only on the forest signatures αF , αG (not on the particular forests), and
hence it is correct to finally multiply the computed values in X by the numbers
T F [αF ] · T G[αG].

In the tables X, X ′ we iteratively compute the numbers of all span-
ning forests in H that result by adding some edges between the forests UF

and UG(stored by their double signatures). We consider an arbitrary order
C1, C2, . . . , Ck on the connected components of UG. For i = 1, 2, . . . , k, we take
the component Ci, and count all possible ways how to connect Ci by selected
edges to a subset (†) of components of each of the previously constructed forests
on V (F ∪ C1 ∪ . . . ∪ Ci−1) which are recorded in the table X . The other ends
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of those selected edges are considered only among vertices in V (F ). (Recall that
the complete union H = F ⊕ G has added all edges between V (F ) and V (Ci).)
We then record (*) numbers of all the new forests on V (F ∪ C1 ∪ . . . ∪ Ci) in a
new table X ′ that will play the role of X in the next iteration.

Saying precisely, after finishing iteration i = 1, 2, . . . , k described in the
previous paragraph, each entry X ′[β] equals the number of all forests U ′ of
signature β spanning V (F ∪ C1 ∪ . . . ∪ Ci) such that U ′ � V (F ) = UF and
U ′ � V (G) = UG � C1 ∪ . . . ∪ Ci. That follows easily by an induction from the
previous arguments. At the end we count each spanning forest U ⊆ H such that
U �V (F ) = UF and U �V (G) = UG exactly once. Finally, the double-signatures
in the table X partition the vertices into V (F ) and V (G), but that is no longer
needed. So we “simplify” them – we record the resulting numbers only by the
(single) forest signatures in the resulting table T H .

2.2 Time Analysis

Lemma 2.6. A modified implementation of Algorithm 2.5 runs in time
exp
(
O(n2/3)

)
where n = |V (H)|.

Proof. Since we have O( ) in the exponent, it is enough to verify that each of
the for cycles in Algorithm 2.5 is iterated at most exp

(
O(n2/3)

)
times. That

follows from Lemma 2.1 for the first cycle, and it is clear for the second cycle.
For the third nested cycle it follows from Lemma 2.2.

A problem may occur in the fourth nested cycle ’for all submultisets γ ⊆ β’
if β consists, say, of n/2 copies of the element 2. Then there are up to exp

(
Θ(n)

)
submultisets γ to consider. Fortunately, the results of the subsequent computa-
tion depend only on the characteristic vector of γ. Hence it is enough to consider
(much less of) pairwise different submultisets γ ⊆ β (cf. Lemma 2.3), and then
multiply the resulting number by all possible choices (combinations) of repeated
elements of γ from β. Formally, the program line (†) now reads

for all different submultisets γ ⊆ β do ,

and the line (*) reads

add X ′[β′] += X[β] ·
∏

(x,y)∈γ

cx ·
∏

(x,y)∈〈β〉

(
μβ(x, y)
μγ(x, y)

)
,

where 〈α〉 denotes the ordinary set formed by elements of a multiset α, and μαz
is the repetition of an element z in α. The statement is proved.

We remark that the improvement discussed in the proof of previous
Lemma 2.6 have been fully incorporated in the subsequent algorithms.

Theorem 2.7. The number of spanning forests in an n-vertex cograph can be
computed in time exp

(
O(n2/3)

)
.
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Proof. Consider a cograph G and a tree expression defining it. The forest signa-
ture table of a single vertex is trivial, and by Algorithms 2.4 and 2.5 (Lemma 2.6),
the forest signature tables of a union or a complete union of two cographs can
be computed in time claimed. Finally, knowing the forest signature table T of
G, the number of all spanning forests of G is computed by adding up the entries
of T .

3 The Tutte Polynomial of a Cograph

The Tutte polynomial can be defined in a number of equivalent ways. For our
purposes, given a graph G = (V, E) we define the Tutte polynomial as

T (G; x, y) =
∑
F⊆E

(x − 1)r(E)−r(F )(y − 1)|F |−r(F ),

where r(F ) = |V | − k(F ) and k(F ) is the number of connected components
of the spanning subgraph induced by the edge-subset F . It is clear that know-
ing T (G; x, y) is the same as knowing, for every i and j, how many spanning
subgraphs with the edge set F in G are there with |F | = i and k(F ) = j.

Consider a spanning subgraph W ⊂ G determined on V (W ) = V (G) by an
arbitrary subset F ⊂ E(G), F = E(W ). The sizes of the connected components
of W define a signature of size |V (G)|. In the (spanning) subgraph signature
table S of G, for each signature α of size |V (G)| and each number of edges
f ∈ {0, 1, 2, . . . , |E(G)|}, we record the number S[α, f ] of all spanning subgraphs
of G having f edges and having component sizes according to the signature α. We
shortly denote by γ �i the multiset formed by all the i-th coordinates (repetitions
accounted for) of the elements of a double-signature γ.

In order to prove Theorem 1.1 we need analogues of Algorithms 2.4 and 2.5
for computing subgraph signature tables. The algorithm for disjoint unions is
again straightforward and we omit it; the one for complete unions comes next.

Algorithm 3.1. A modification of Algorithm 2.5 for computing the (spanning)
subgraph signature table of the complete union H = F ⊕ G.
Besides adding edge number as the second index to the signature tables, the only
other major difference of this algorithm from Algorithm 2.5 is that the single
line (*) is replaced with another for cycle calling a procedure CellSel of further
Algorithm 3.2.

Input: Graphs F, G, and their subgraph signature tables SF , SG.
Output: The subgraph signature table SH of H = F ⊕ G.

create empty table SH of subgraph signatures of size |V (H)|;
for all αF ∈ ΣF , and eF = 0, 1, . . . , |E(F )| s.t. SF [αF , eF ] > 0 do

for all αG ∈ ΣG, and eG = 0, . . . , |E(G)| s.t. SG[αG, eG] > 0 do

set z = |V (F )|;
create empty table Y of subgraph double-signatures of size z;
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set Y
[
double-signature {(a, 0) : a ∈ αF }, eF

]
= 1;

for each c ∈ αG (with repetition) do

create empty table Y ′ of subgraph double-sign. of size z + c;

for all β of size z, and e s.t. Y [β, e] > 0 do

for all different submultisets γ ⊆ β do

set r =
∏

(x,y)∈〈β〉

(
μβ(x, y)
μγ(x, y)

)
;

set d1 = ‖γ �1‖ =
∑

(x,y)∈γ x, d2 = ‖γ �2‖ =
∑

(x,y)∈γ y;

set double-signature β′ = (β \ γ) � {(d1, d2 + c)};
for f = |γ|, |γ| + 1, . . . , c · d1 do

set multiset D = c · (γ �1) = {cx : (x, y) ∈ γ};
call Algorithm 3.2: p = CellSel(D, f);
add Y ′[β′, e + f ] += Y [β, e] · r · p;

done

done

done

set Y = Y ′, z = z + c; dispose Y ′;
done

for all double-sign. β of size |V (H)|, and f , s.t. Y [β, f ] > 0 do

set signature α0 = {x + y : (x, y) ∈ β};
add SH [α0, f + eG] += Y [β, f ] · SF [αF , eF ] · SG[αG, eG];

done

done

done.

Proof of Algorithm 3.1. This algorithm is similar to the improved version of
Algorithm 2.5 (cf. Lemma 2.6), and so we only sketch the proof here. The main
new difficulty lies in counting the different ways in which a connected component
of c vertices in αG can be connected with f edges to the selected components of
signatures (x, y) ∈ γ. Recall that when counting forests we had no such difficulty,
since we joined the component of αG to each component of γ with exactly one
edge; thus we used exactly f = |γ| edges chosen in

∏
(x,y)∈γ cx different ways.

The procedure ’CellSel(D, f)’ counts this for spanning subgraphs, and we defer
the explanation to Algorithm 3.2.

Finally, notice that the edge numbers in tables Y , Y ′ do not account for the
edges from E(G), since we do not know how many edges has each one of the
components of αG. Those edges are summed up at the end, when obtaining the
signatures for H from the double-signatures stored in Y .

Algorithm 3.2. Computing the number of cellular selections: We are selecting
� elements from the union C1 ∪ C2 ∪ . . . ∪ Ck, where Ci for i = 1, 2, . . . , k are
pairwise disjoint cells of sizes di = |Ci|, and we require that some element is
selected from every cell.
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Input: A multiset D = {d1, d2, . . . , dk} of cell sizes, and a number �.
Output: The number CellSel(D, �) of all such possible selections.
create table u[1..k][1..�], filled with 0;
for j = 1, 2, . . . , d1 do set u[1][j] =

(
d1
j

)
;

set z = d1;
for i = 2, 3, . . . , k do

add z += di;

for j = i, i + 1, . . . ,min(�, z) do

for s = 1, 2, . . . ,min
(
j − (i − 1), di

)
do

add u[i][j] += u[i − 1][j − s]·
(
di

s

)
;

done

done

done

return u[k][�].

Proof of Algorithm 3.2. Let ui,j = u[i][j] be the number of cellular selections of
j elements chosen among the first i cells. These numbers satisfy the recurrence
relation

ui,j =
r∑

s=1

ui−1,j−s ·
(

di

s

)
where r is the maximum number of elements than can be selected from the i-th
cell to obtain a total of j elements. Since the i-th cell has di elements available,
and the i−1 previous cells contributed at least one element each to the resulting
j elements, it follows that r = min{j − (i − 1), di}.

Algorithm 3.2 just applies the previous recurrence in a correct order, and
avoids useless computations like with values of j too small or too large. It runs
in O(k�2) steps.

Proof of Theorem 1.1. As in Theorem 2.7, the subgraph signature table S of
a cograph can be computed in time proportional to the number of all possible
double-signatures of size n, i.e. in exp

(
O(n2/3)

)
. Then, summing the entries of

S, we compute the numbers of spanning subgraphs with a given number of edges
and a number of components. As we have remarked previously, these numbers
give (efficiently) the Tutte polynomial.

The U polynomial of an n-vertex graph G is defined in [12] as

U(G;x, y) =
∑
F⊆E

xn1 · · ·xnk
(y − 1)|F |−r(F ),

where n1, . . . , nk are the vertex sizes of the components of the spanning subgraph
(V, F ). If we let x1 = · · · = xn = x − 1 in the expression above, we recover the
Tutte polynomial T (G; x, y) up to a power of x−1. It is clear that the subgraph
signature table of a graph is precisely equivalent to the U polynomial, hence
in the statement of Theorem 1.1 we can replace “U polynomial” for “Tutte
polynomial”.
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4 Concluding Remarks

We have shown that the Tutte and U polynomials can be computed in subexpo-
nential time for cographs, and more generally for graphs with bounded clique-
width [6]. Such a result is very unlikely to hold for all graphs. Of course, the
important question of whether the Tutte polynomial can be computed in polyno-
mial time, or the problem is #P–hard even for graphs of bounded clique-width,
remains open. (The U polynomial is obviously not computable in polynomial
time due to its size.)

On the other hand, the chromatic polynomial for graphs of bounded clique-
width can be computed in polynomial time (although not FPT). This follows
by adapting the algorithm in [9] for computing the chromatic number, keeping
track also of the number of r-colorings for r = 1, . . . , n, where n is the number
of vertices. To our knowledge, that is possibly the only currently known natural
example of graph classes other than chordal graphs, where the chromatic poly-
nomial can be computed in polynomial time, but the complexity of computing
the Tutte polynomial is undecided.
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Abstract. We show that a graph has tree-width at most 4k−1 if its line
graph has NLC-width or clique-width at most k, and that an incidence
graph has tree-width at most k if its line graph has NLC-width or clique-
width at most k. In [9] it is shown that a line graph has NLC-width at
most k + 2 and clique-width at most 2k + 2 if the root graph has tree-
width k. Using these bounds we show by a reduction from tree-width
minimization that NLC-width minimization is NP-complete.

1 Introduction

The clique-width of a graph is defined by a composition mechanism for vertex-
labeled graphs [7]. The operations are the vertex disjoint union, the addition of
edges between vertices controlled by a label pair, and the relabeling of vertices.
The clique-width of a graph G is the minimum number of labels needed to define
it. The NLC-width of a graph is defined by a composition mechanism similar to
that for clique-width [19]. Every graph of clique-width at most k has NLC-width
at most k and every graph of NLC-width at most k has clique-width at most 2k
[12]. The only essential difference between the composition mechanisms of clique-
width bounded graphs and NLC-width bounded graphs is the addition of edges.
In an NLC-width composition the addition of edges is combined with the union
operation. This union operation applied to two graphs G and J is controlled by a
set S of label pairs such that for every pair (a, b) ∈ S all vertices of G labeled by
a will be connected with all vertices of J labeled by b. Both concepts are useful,
because it is sometimes much more comfortable to use NLC-width expressions
instead of clique-width expressions and vice versa, respectively.

Clique-width and NLC-width bounded graphs are particularly interesting
from an algorithmic point of view. A lot of NP-complete graph problems can be
solved in polynomial time for graphs of bounded clique-width. For example, all
graph properties expressible in monadic second order logic with quantifications
over vertices and vertex sets (MSO1-logic) are decidable in linear time on clique-
width bounded graphs [6] if a corresponding decomposition for the graph is given
as an input. The MSO1-logic has been extended by counting mechanisms which
allow the expressibility of optimization problems concerning maximal or minimal
vertex sets [6]. All graph problems expressible in extended MSO1-logic can be
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solved in polynomial time on clique-width bounded graphs. Furthermore, there
are a lot of NP-complete graph problems which are not expressible in extended
MSO1-logic (like Hamiltonicity, various partition problems, and bounded degree
subgraph problems) but which can also be solved in polynomial time on clique-
width bounded graphs [19,8,14,9].

The recognition problem for graphs of clique-width or NLC-width at most
k for fixed integers k is still open for k ≥ 4 and k ≥ 3, respectively. Clique-
width of at most 3 is decidable in polynomial time [4]. NLC-width of at most
2 is decidable in polynomial time [13]. Clique-width of at most 2 and NLC-
width 1 is decidable in linear time [5]. In this paper we show that NLC-width
minimization is NP-complete, which was open up to now.

The paper is organized as follows. In Section 2, we recall the definitions of
clique-width, NLC-width, and tree-width. In Section 3, we show that a graph
has tree-width at most 4k−1 if its line graph1 has NLC-width or clique-width at
most k. In Section 4, we show that an incidence graph2 has tree-width at most
k if its line graph has NLC-width or clique-width at most k. In [9] it is shown
that a line graph has NLC-width at most k + 2 and clique-width at most 2k + 2
if the root graph has tree-width k. This in connection with the result of Section
4 is used to show by a reduction from tree-width minimization that minimizing
NLC-width is NP-complete.

2 Preliminaries

Let [k] := {1, . . . , k} be the set of all integers between 1 and k. We work with
finite undirected vertex labeled graphs G = (VG, EG, labG), where VG is a finite
set of vertices labeled by some mapping labG : VG → [k] and EG ⊆ {{u, v} |
u, v ∈ VG, u �= v} is a finite set of edges. The labeled graph consisting of a single
vertex labeled by a ∈ [k] is denoted by •a.

The notion of clique-width is defined by Courcelle and Olariu in [7].

Definition 1 (Clique-width, [7]). Let k be some positive integer. The class
CWk of labeled graphs is recursively defined as follows.

1. The single vertex graph •a for some a ∈ [k] is in CWk.
2. Let G = (VG, EG, labG) ∈ CWk and J = (VJ , EJ , labJ ) ∈ CWk be two vertex

disjoint labeled graphs. Then G⊕J := (V ′, E′, lab′) defined by V ′ := VG∪VJ ,
E′ := EG ∪ EJ , and

lab′(u) :=
{

labG(u) if u ∈ VG

labJ(u) if u ∈ VJ

is in CWk.
1 The line graph L(G) of a graph G has a vertex for every edge of G and an edge

between two vertices if the corresponding edges of G are adjacent [20].
2 The incidence graph I(G) of a graph G is the graph we get if we replace every edge
{u, v} of G by a new vertex w and two edges {u, w}, {w, v}.
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3. Let a, b ∈ [k] be two distinct integers and G = (VG, EG, labG) ∈ CWk be a
labeled graph then
(a) ρa→b(G) := (VG, EG, lab′) defined by

lab′(u) :=
{

labG(u) if labG(u) �= a
b if labG(u) = a

is in CWk and
(b) ηa,b(G) := (VG, E′, labG) defined by

E′ := EG ∪ {{u, v} | u, v ∈ VG, u �= v, lab(u) = a, lab(v) = b}

is in CWk.

The notion of NLC-width3 is defined by Wanke in [19].

Definition 2 (NLC-width, [19]). Let k be some positive integer. The class
NLCk of labeled graphs is recursively defined as follows.

1. The single vertex graph •a for some a ∈ [k] is in NLCk.
2. Let G = (VG, EG, labG) ∈ NLCk and R : [k] → [k] be a function, then

◦R(G) := (VG, EG, lab′) defined by lab′(u) := R(labG(u)) is in NLCk.
3. Let G = (VG, EG, labG) ∈ NLCk and J = (VJ , EJ , labJ ) ∈ NLCk be two

vertex disjoint labeled graphs and S ⊆ [k]2 be a set of label pairs, then graph
G ×S J := (V ′, E′, lab′) defined by V ′ := VG ∪ VJ ,

E′ := EG ∪ EJ ∪ {{u, v} | u ∈ VG, v ∈ VJ , (labG(u), labJ(v)) ∈ S},

and

lab′(u) :=
{

labG(u) if u ∈ VG

labJ(u) if u ∈ VJ

is in NLCk.

The clique-width (NLC-width) of a labeled graph G is the least integer k such
that G ∈ CWk (G ∈ NLCk, respectively). An expression built with the opera-
tions •a,⊕, ρa→b, ηa,b for integers a, b ∈ [k] is called a clique-width k-expression.
An expression built with the operations •a,×S , ◦R for a ∈ [k], S ⊆ [k]2, and
R : [k] → [k] is called an NLC-width k-expression. Every clique-width expression
(NLC-width expression) has by its recursive definition a tree structure which we
call the clique-width expression tree (NLC-width expression tree, respectively).
A vertex labeled graph G has linear clique-width (linear NLC-width) at most
k if it can be defined by a clique-width k-expression (NLC-width k-expression,
respectively) in that at least one argument of every operation ⊕ (every operation
×S , respectively) is a single labeled vertex •a [11].

The notion of tree-width and path-width is defined by Robertson and Sey-
mour in [18] and [17], respectively.
3 The abbreviation NLC results from the node label controlled embedding mechanism

originally defined for graph grammars.
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Definition 3 (Tree-width and path-width, [18,17]). A tree decomposition
of a graph G = (VG, EG) is a pair (X , T ) where T = (VT , ET ) is a tree and
X = {Xu | u ∈ VT } is a family of subsets Xu ⊆ VG one for each node u of T
such that

1. ∪u∈VT Xu = VG,
2. for every edge {v1, v2} ∈ EG, there is some node u ∈ VT such that v1 ∈ Xu

and v2 ∈ Xu, and
3. for every vertex v ∈ VG the subgraph of T induced by the nodes u ∈ VT with

v ∈ Xu is connected.

The width of a tree decomposition (X = {Xu | u ∈ VT }, T = (VT , ET )) is
maxu∈VT |Xu| − 1. A tree decomposition (X , T ) is called a path decomposition
if T is a path. The tree-width (path-width) of a graph G is the smallest integer
k such that there is a tree decomposition (a path decomposition, respectively)
(X , T ) for G of width k.

The line graph L(G) of a graph G has a vertex for every edge of G and an
edge between two vertices if the corresponding edges in G have a common vertex
[20]. Graph G is called the root graph of L(G). For any line graph with at least
4 edges the root graph is unique and can be found in linear time [15].

The incidence graph I(G) = (VI(G), EI(G)) of a graph G = (VG, EG) is the
graph with vertex set VI(G) = VG ∪ EG and edge set EI(G) = {{u, e} | u ∈
VG, e ∈ EG, u ∈ e}. The incidence graph of G is the graph we get, if we replace
every edge {u, v} of G by a new vertex w and two edges {u, w}, {w, v}.

3 Line Graphs of Bounded NLC-Width

Tree-width bounded graphs can also be defined by a merging procedure of so-
called terminal graphs, which are also called sourced graphs. This is a well-known
property of tree-width bounded graphs, see also [2]. We will define terminal
graphs with edge labels, because this will allow us to define in an easy way the
edge labeled root graphs of vertex labeled line graphs.

Let k, l be two positive integers. An l-labeled k-terminal graph is a system

G = (VG, EG, PG, labG),

where (VG, EG) is a graph, PG = (u1, . . . , uk) is a sequence of k ≥ 0 distinct
vertices of VG, and labG : EG → [l] is an edge labeling. The vertices in sequence
PG are called terminal vertices or terminals for short. The vertex ui, 1 ≤ i ≤ k,
is the i-th terminal of G. The other vertices in VG −PG are called inner vertices.
The class TMk,l of l-labeled k-terminal graphs is recursively defined as follows.

1. The terminal graph
r︷ ︸︸ ︷

• · · · •, 1 ≤ r ≤ k, consisting of r terminals is in TMk,l.
2. The terminal graph • a •, a ∈ [l], consisting of two terminals u, v and an

edge {u, v} labeled by a is in TMk,l for k ≥ 2.
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3. Let G = (VG, EG, PG, labG) ∈ TMk,l, P = (u1, . . . , ur), and f : [r] → [r],
be a bijection. Then the l-labeled r-terminal graph G|f = (VG, EG, P ′, labG)
with P ′ = (uf(1), . . . , uf(r)) is in TMk,l.

4. Let G = (VG, EG, PG, labG) ∈ TMk,l, P = (u1, . . . , ur), and s ∈ [r]. Integer
s is also called a decrement. Then the l-labeled (r− s)-terminal graph G|s =
(VG, EG, P ′, labG) with P ′ = (u1, . . . , ur−s) is in TMk,l.

5. Let G = (VG, EG, PG, labG) ∈ TMk,l and R : [l] → [l] be a relabeling map-
ping. Then the terminal graph ◦R(G) = (VG, EG, PG, lab′) with lab′(e) =
R(labG(e)) for all e ∈ EG is in TMk,l.

6. Let H = (VH , EH , PH , labH) ∈ TMk,l, J = (VJ , EJ , PJ , labJ) ∈ TMk,l, and
|PH | ≤ |PJ |. Then terminal graph H × J defined as follows is in TMk,l.
(a) Take the disjoint union of (VH , EH , labH) and (VJ , EJ , labJ ), and iden-

tify the i-th terminal from H with the i-th terminal from J .
(b) An edge e from H × J is labeled by labH×J (e) = labH(e) if it is from H

and by labH×J (e) = labJ (e) if it is from J .
(c) The i-th terminal of H × J is the i-th terminal of J .
(d) Multiple edges are eliminated by removing the corresponding edges

from H .

An expression built with the operations
r︷ ︸︸ ︷

• · · · •, • a •, |f , |s, ◦R, and × is
called a terminal k, l-expression. The terminal graph defined by a terminal k, l-
expression X is denoted by val(X). It is easy to see that TMk+1,1 defines exactly
the set of graphs of tree-width at most k, see [10].

Let G = (VG, EG, PG, labG) be an edge labeled terminal graph, G = (VG , EG ,
labG) be a vertex labeled graph, and π : EG → VG be a bijection such that 1.)
for every e1, e2 ∈ EG, e1 and e2 have a common vertex if and only if π(e1) and
π(e2) are adjacent in G, and 2.) for every e ∈ EG, labG(e) = labG(π(e)). Then G
is called the labeled line graph of G, and G is called a labeled terminal root graph
for G.

The next theorem shows a very tight connection between the tree-width of a
graph and the NLC-width of its line graph.

Theorem 1. If a line graph has NLC-width at most k, then its root graph has
tree-width at most 4k − 1.

Proof Sketch. Let us first observe what happens if we insert edges between two
vertex labeled line graphs by an NLC-width operation. Let G = (VG, EG, labG)
be an edge labeled graph with at least two edges. Let G = (VG , EG , labG) ∈ NLCk

be the vertex labeled line graph of G defined by some bijection π : EG → VG .
Every induced subgraph of G defines by bijection π a unique subgraph of G

in that every vertex is incident with at least one edge. Assume G = H ×S J
for some S ⊆ [k]2 and two non-empty vertex labeled graphs H and J . Since H
and J are induced subgraphs of G, we know that they are line graphs of two
subgraphs H and J of G. Since H and J are vertex disjoint, we know that H
and J are edge disjoint. Since H and J have at least one vertex, we know that H
and J have at least one edge. Assume further that every pair (a, b) ∈ S defines
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Fig. 1. An NLC-width composition H ×{(1,2)} J of two vertex labeled line graphs H
and J . The labels at the edges of H , J , and G represent the labels of the corresponding
vertices of H, J , and G specified by bijection π.

at least one edge between a vertex of H and a vertex of J . If S is nonempty, then
in G at least one edge of H has a common vertex with at least one edge of J .

We now show that G can be defined by a vertex disjoint union of H and J
and then identifying at most 4k vertices from H with at most 4k vertices from
J . A simple example of such a composition H×S J is shown in Figure 1.

For a label a ∈ [k] let Ga, Ha, and Ja be the subgraphs of G, H , and J ,
respectively, defined by the edges e (and their end vertices) labeled by a. Let
(a, b) ∈ S be a pair of S. Then the operation ×S connects every vertex of H
labeled by a with every vertex of J labeled by b. Thus, in root graph G every
edge of Ha has a common vertex with every edge of Jb. Let e = {u, v} be
any edge of Ha. Then every edge of Jb either contains vertex u or vertex v. If
Jb has three or more edges, then at least two of them must have a common
vertex. By the same argumentation, if Ha has three or more edges then at least
two of them must have a common vertex. Thus, Ha and Jb have at most two
connected components. If Ha has two connected components, then all edges of
every connected component have exactly one common vertex, because an edge
of Jb can only contain one vertex from every of the two connected components
of Ha. If Ha is connected then it contains no simple path with 6 vertices and no
simple cycle with 3 or 5 vertices.

This observation leeds to a case distinction which divides all subgraphs Ha,
a ∈ [k], of H into 8 distinct types as illustrated in Figure 2. Type 8 of Figure 2
represents all graphs that have neither a vertex u such that all edges are incident
with u nor two non-adjacent vertices u, v such that every edge is incident with
u or v.
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Fig. 2. Eight types for the subgraphs Ha and Jb of H and J , respectively. The specific
vertices are framed by squares.

Graphs of Type 1, 2, 3, and 5 have one connected component. Graphs of
Type 4 and 6 have two connected components. Graphs of Type 7 have one or
two connected components. Every graph of Type 1 to 7 has at most 4 specific
vertices of which some can be in both graphs, in Ha and in Jb. In Figure 2, these
specific vertices are framed by squares.

Since the edges of G are labeled by at most k labels, it follows that at most
4k vertices of H are contained in J . That is, at most 4k vertices of H and at
most 4k vertices of J have to be identified to define G from a vertex disjoint
union of H and J . Graph G itself has also at most 4k vertices which can be
identified with other vertices during further composition steps.

This allows us to define for an arbitrary NLC-width k-expression X that
defines a line graph a mapping σ that associates for every subexpression X ′ of
X a terminal 4k, k-expression σ(X ′) such that val(σ(X ′)) is the edge labeled
terminal root graph of val(X ′).

1. If X = •a for some a ∈ [k] then let σ(X) = • a •.
2. If X = ◦R(X ′) for some relabeling R : [k] → [k] then let σ(X) = ◦R(σ(X ′)).
3. If X = X1 ×S X2 for some S ⊆ [k]2 then σ(X) can be defined by

σ(X) = ((σ(X1) × (σ(X2) ×
r︷ ︸︸ ︷

• · · · •)|f1)|f2)|s

with two bijections f1, f2, a decrement s, and some r ≤ 4k.
σ(X) can be defined as above with some r ≤ 4k, although not all terminals of

val(σ(X1)) need to be identified with terminals of val(σ(X2)) via val(
r︷ ︸︸ ︷

• · · · •),
or vice versa, for the complete proof of this non trivial fact see [10]. �
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Since the NLC-width of a graph is always less than or equal to its clique-width
[12], Theorem 1 also holds for line graphs of clique-width at most k.

Corollary 1. If a line graph has clique-width at most k, then its root graph has
tree-width at most 4k − 1.

4 Line Graphs of Incidence Graphs

The next theorem improves the bound of Theorem 1 for line graphs of incidence
graphs.

Theorem 2. If the line graph of an incidence graph has NLC-width at most k,
then its root graph has tree-width at most k.

Proof Sketch. Let us now observe what happens if we insert edges between two
vertex labeled line graphs by an NLC-width operation G = H×S J , S ⊆ [k]2 if
the root graphs G, H , and J of G, H, and J , respectively, are incidence graphs.
Let again Ga, a ∈ [k], be the terminal subgraph of a terminal graph G defined
by the edges (and their end vertices) labeled by a.

Since any incidence graph (and also any subgraph of an incidence graph) has
no cycle of length < 6 and that every edge of an incidence graph (and also any
edge of a subgraph of an incidence graph) has one end vertex of degree at most
2, every subgraph Ga, a ∈ [k], of G can be divided into four types as illustrated
in Figure 3, see [10]. Type 4 of Figure 3 represents all incidence graphs with two
non-adjacent vertices u, v and an edge not incident with u or v. If Ga is of Type
4, then no vertex of Ga needs to be a terminal of G.

T4T1 T2 T3

... ... ...>0 >0 >0

,
...

,

Fig. 3. Four types for the subgraphs Ga of a terminal incidence graph G. The specific
vertices are framed by squares.

The same argumentation as in the proof of Theorem 1 now shows that for an
arbitrary NLC-width k-expression X that defines a line graph of an incidence
graph there is a mapping σ that associates for every subexpression X ′ of X a
terminal 2k, k-expression σ(X ′) such that val(σ(X ′)) is the edge labeled terminal
root graph of val(X ′).

We next transform σ(X) into a terminal 2k, k-expression Y such that every
subexpression defines a connected terminal graph. This is possible, because the
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final root graph σ(X) is connected, see [10]. Now every subexpression Y ′ of Y
is of the form

1. Y ′ = • a • for some a ∈ [k],
2. Y ′ = Y ′

1 |f for some bijection f ,
3. Y ′ = Y ′

1 |s for some decrement s,
4. Y ′ = ◦R(Y ′

1) for some relabeling R, or

5. Y ′ = ((Y ′
1 × (Y ′

2 ×
r︷ ︸︸ ︷

• · · · •)|f1)|f2 )|s for bijections f1, f2, some r ≤ 2k, and a
decrement s.

These subexpressions define connected terminal graphs. For every of these
subexpressions Y ′ there is an NLC-width k-expression X ′ such that val(Y ′) is
the edge labeled root graph of the vertex labeled line graph val(X ′).

Now we will show that Y can be transformed into an equivalent terminal
k + 1, k-expression. Let Y ′ be a subexpressions of Y of the form stated above
and let G = val(Y ′). Let again Ga for some a ∈ [k] be the terminal subgraph of
G defined by the edges (and their end vertices) labeled by a.

1. If all subgraphs Ga, a ∈ [k], of G are of Type 1 of Figure 3, then G has at
most k edges. Since G is connected, it has at most k + 1 terminals.

2. If all subgraphs Ga, a ∈ [k], of G are of Type 1, 2, or 4 of Figure 3, and at
least one of these subgraphs is of Type 2 or 4, then G has at least one inner
vertex. In this case G has at most k terminals, see [10].

3. If some subgraph Ga, a ∈ [k], of G is of Type 3, then two vertices ua, va of
Ga are terminals of G. If ua, va are not adjacent in the root graph val(Y )
we can remove them from the terminal vertex list. Otherwise we know that
during any further composition these two vertices will get incident only with
the missing edge {ua, va}. We now modify the expression as follows.
A subgraph of Type 3 can only be created in the following two cases.
(a) Let

G = ◦R(H)

be a graph such that G has a subgraph Ga, a ∈ [k] of Type 3, but H
has no subgraph of Type 3. Then H is connected and at least one inner
vertex, and thus H has at most k terminals. We insert the edge between
ua and va now by

G = (((• a • × ◦R (H)|f1)|f2)|s)|f3

with three bijections f1, f2, f3 and a decrement s = 2. The decrement
s = 2 removes the two vertices ua, va from the terminal vertex list. (This
can be done for all subgraphs Ga, a ∈ [k], of G of Type 3 step by step.)

(b) Let

G = (H × (J ×
r︷ ︸︸ ︷

• · · · •)|f1)|f2

be a graph such that G has a subgraph Ga of Type 3, but H and J have
no subgraphs of Type 3. Then H and J are connected and have at least
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one inner vertex, thus H and J have at most k terminals. Let ua from
H and va from J . We insert the edge between ua, va of Ga by

G = ((H |f3 × ((J |f2 × (• a • ×
r′︷ ︸︸ ︷

• · · · •)|f1 )|s1 ×
r︷ ︸︸ ︷

• · · · •)|f4)|s2)|f5

with bijections f1, f2, f3, f4, f5 and decrements s1 = 1, s2 = 1. If J has
k′ terminals then r′ = k′ + 1. Let ua be from H and va be from J . One
end vertex of edge • a • will be identified with the terminal va of J .
Decrement s1 = 1 will remove this vertex from the terminal vertex list.
The other end vertex of edge • a • will then be identified with ua from
H . The final restriction s2 = 1 will remove this vertex from the terminal
vertex list. (This can be done for all subgraphs Ga, a ∈ [k], of G of Type
3 step by step in the same way.)

In both cases, the composition step which originally inserts the edge between
ua and va will be omitted.

Now the resulting composition is set up with terminal graphs that have at
most k + 1 terminals. �

Since the NLC-width of a graph is always less than or equal to its clique-width
[12], Theorem 2 also holds for line graphs of incidence graphs of clique-width at
most k.

Corollary 2. If the line graph of an incidence graph has clique-width at most
k, then its root graph has tree-width at most k.

5 The NP-Completeness of NLC-Width Minimization

Since a graph G has tree-width k if and only if its incidence graph I(G) has
tree-width k, see for example [16], Theorem 1, 2, Corollary 1, 2 and the results
of [10] together now imply the following bounds.

(1.) tree-width(G)+1
4 ≤ NLC-width(L(G)) ≤ tree-width(G) + 2

(2.) tree-width(G)+1
4 ≤ clique-width(L(G)) ≤ 2 · tree-width(G) + 2

(3.) path-width(G)+1
4 ≤ linear-NLC-width(L(G)) ≤ 2 · path-width(G)

(4.) path-width(G)+1
4 ≤ linear-clique-width(L(G)) ≤ 2 · path-width(G) + 1

(5.) tree-width(G) ≤ NLC-width(L(I(G))) ≤ tree-width(G) + 2
(6.) tree-width(G) ≤ clique-width(L(I(G))) ≤ 2 · tree-width(G) + 2

(7.) path-width(G)+1
2 ≤ linear-NLC-width(L(I(G))) ≤ 2 · path-width(G) + 2

(8.) path-width(G)+1
2 ≤ linear-clique-width(L(I(G))) ≤ 2 · path-width(G) + 3

Inequality (5.) can be used to show that NLC-width minimization is NP-
complete.
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Theorem 3. Given a graph G and an integer k, the problem to decide whether
G has NLC-width at most k is NP-complete.

Proof. The problem to decide whether a given graph has NLC-width at most k
is obviously in NP.

For a graph G = (V, E) and some integer r > 1 let Gr be the graph G in that
every vertex u is replaced by a clique Cu with r vertices and every edge {u, v} is
replaced by all edges between the vertices of Cu and Cv. That is, Gr = (Vr , Er)
has vertex set Vr = {ui,j | ui ∈ V, j ∈ {1, . . . , r}} and edge set

Er = {{ui,j, ui′,j′} | j, j′ = 1, . . . , r and i = i′ ∨ {ui, ui′} ∈ E)}.

Bodlaender et al. have shown in [3], that G has tree-width k if and only if Gr

has tree-width r(k + 1) − 1.
Arnborg et al. have shown in [1] that tree-width minimization is NP-complete.

That is, given a graph G and an integer k, the problem to decide whether G has
tree-width at most k, is NP-complete.

For a given graph G, we first construct the graph G3, then the incidence
graph I(G3), and then the line graph L(I(G3)). This can be done in polynomial
time. If G has tree-width k, then G3 has tree-width 3k + 2, and I(G3) has tree-
width 3k + 2. By Theorem 2 graph L(I(G3)) has NLC-width at least 3k + 2
and by Theorem 3 of [9] NLC-width at most 3k + 4. That is, tree-width(G) =⌊

NLC-width(L(I(G3)))−2
3

⌋
. Thus, a graph G has tree-width at most k if and only if

L(I(G)) has NLC-width at most 3k + 4 which completes our proof. �

In [3] it is also shown that there is no polynomial time approximation algo-
rithm for tree-width with constant difference guarantee, unless P = NP, and that
for every ε, 0 < ε < 1, there is no polynomial time algorithm that computes for
a given graph G a tree decomposition of width k such that k − tree-width(G) ≤
|VG|ε, unless P = NP. Inequality (5.) can be used again to show similar results
for NLC-width approximation, see [10].

Corollary 3.

1. For every positive integer c there is no polynomial time approximation algo-
rithm that computes for a given graph G an NLC-width k-expression such
that k − NLC-width(G) ≤ c, unless P = NP.

2. For every ε, 0 < ε < 1
2 , there is no polynomial time approximation algorithm

that computes for a given graph G an NLC-width k-expression such that
k − NLC-width(G) ≤ |VG|ε, unless P = NP.
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Abstract. We model a problem proposed by Alcatel, a satellite build-
ing company, using improper colourings of graphs. The relation between
improper colourings and maximum average degree is underlined, which
contributes to generalise and improve previous known results about im-
proper colourings of planar graphs.

1 Introduction

In this paper, we investigate the following problem proposed by Alcatel, a satel-
lite building company. A satellite sends information to receivers on earth, each
of which is listening on a frequency. Technically it is impossible to focus the
signal sent by the satellite exactly on receiver. So part of the signal is spread
in an area around it creating noise for the other receivers displayed in this area
and listening on the same frequency. A receiver is able to distinguish the signal
directed to it from the extraneous noises it picks up if the sum of the noises does
not become too big, i.e. does not exceed a certain threshold T . The problem
is to assign frequency to the receivers in such a way that each receiver gets its
dedicated signal properly. We investigate this problem in the fundamental case
where the noise area at a receiver does not depend on the frequency and where
the “noise relation” is symmetric that is if a receiver u is in the noise area of a
receiver v then v is in the noise area of u. Moreover the intensity I of the noise
created by a signal is independent of the frequency and the receiver. Hence to
distinguish its signal from noises, a receiver must be in the noise area of at most
k =

⌊
T
I

⌋
receivers listening signals on the same frequency.

We model this problem in a graph colouring problem. We define a noise
graph: the vertices are the receivers and we put an edge between u and v if u is in
the noise area of v (and v in the noise area of u). The frequencies are represented
by colours. So assigning frequencies to receivers is equivalent to k-improper
colouring the noise graph. Indeed the impropriety of a vertex v of a graph G un-
der the colouring c, denoted by imc

G(v), is the number of neighbours of v coloured
c(v). A colouring is k-improper if all the vertices have impropriety at most k
under it. Note that 0-improper colouring is the usual notion of proper colouring.

Due to some practical reasons (as, for instance, the specific environment of
a receiver), the colour of each vertex v must be chosen among a list of colours
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L(v) (that represents the frequencies allowed for that receiver). Formally, given a
graph G, an l-list-assignment L of G is an function which assigns to each vertex
of G a list of at least l colours. An L-colouring of G is a vertex colouring in which
each vertex v is assigned a colour of the list L(v). G is k-improper L-colourable if
there exists a k-improper L-colouring of G. G is said to be k-improper l-choosable
if such a colouring exists for any l-list-assignment.

Improper choosability of planar graphs has been widely studied. In particular,
any planar graph is known to be 0-improper 5-choosable [8] and 2-improper 3-
choosable [3,6]. It is conjectured that any planar graph is 1-improper 4-choosable.
Škrekovski [7] studied k-improper 2-choosability of planar graphs in relation
with their girth (the girth of a graph G is the size of a smallest cycle of G).
Denoting by gk the smallest integer such that every planar graph of girth at
least gk is k-improper 2-choosable, he proved 6 ≤ g1 ≤ 9, 5 ≤ g2 ≤ 7, 5 ≤
g3 ≤ 6 and ∀k ≥ 4, gk = 5. In this paper, we study improper colourings of
(not necessarily planar) graphs in relation with their density. Not only does this
approach generalise and improve the results of [7] concerning planar graphs, but
it also has practical interest since the noise graphs modelling Alcatel’s networks
have bounded density.

The average degree of a graph G, denoted by Ad(G), is the sum of the degree
of each vertex divided by the number of vertices. The maximum average degree
of G, denoted by Mad(G), is the maximum of the average degree of each of its
subgraphs (including G). If G is not a forest, the heart of G, denoted by h(G),
is the biggest subgraph of G in which every vertex has degree at least 2. It can
be obtained by consecutive removing of vertices of degree 1.

Proposition 1. If G is not a forest, then Mad(G) = Mad(h(G)).

Proof. As h(G) is a subgraph of G, Mad(G) ≥ Mad(h(G)). Let H be a subgraph
of G such that Mad(G) = Ad(H). Then H is not a forest since otherwise we
would have Mad(G) < 2 and G would be a forest. So h(H) is defined and it is a
subgraph of h(G). Moreover, h(H) has minimum degree at least 2, so adding to
it vertices of degree 1 cannot increase its average degree: let H ′ be a supergraph
obtained from h(H) by adding k ≥ 1 vertices of degree 1. We assume that h(H)
has n vertices. Then

Ad(H ′) =
n × Ad(h(H)) + 2k

n + k
= Ad(h(H)) +

2k − k × Ad(h(H))
n + k

≤ Ad(h(H))

since Ad(h(H)) ≥ 2. So Mad(h(G)) ≥ Ad(h(H)) ≥ Ad(H) = Mad(G).

Let M(k, l) be the greatest real such that every graph of maximum aver-
age degree less than M(k, l) is k-improper l-choosable. Obviously, M(k1, l) ≤
M(k2, l) if k1 ≤ k2. We have that M(k, 1) = 2k+2

k+2 since a graph is k-improper
1-choosable if and only if it has maximum degree at most k (and a graph of
maximum degree at least k + 1 contains the star Sk+1 as a subgraph, so it has
maximum average degree at least 2k+2

k+2 ). If l ≥ 2, first note that any tree is
0-improper 2-choosable. Furthermore, for any k ≥ 0, a graph G which is not a
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forest is k-improper 2-choosable if and only if its heart is. Hence, we shall restrict
the study to graphs with minimum degree at least 2.

In the following section, we show:

Theorem 1. For all k ≥ 0, all graphs of maximum average degree less than
4k+4
k+2 are k-improper 2-choosable.

Theorem 2. For all k ≥ 1, M(k, 2) ≤ 4k2 + 6k + 4
k2 + 2k + 2

= 4 − 2k + 4
k2 + 2k + 2

.

We then generalise Theorem 1:

Theorem 3. For all l ≥ 2 and all k ≥ 0, all graphs of maximum average degree
less than l(l+2k)

l+k are k-improper l-choosable.

Corollary 1. For any fixed l, lim
k→+∞

M(k, l) = 2l.

Using Euler’s formula, one can show that if G is a planar graph with minimum
degree at least 2 and girth at least g, then Mad(G) < 2g

g−2 . So Theorem 1
immediately implies:

Corollary 2. Let G be a planar graph of girth g.

1. If g ≥ 8 then G is 1-improper 2-choosable, so g1 ≤ 8.
2. If g ≥ 6 then G is 2-improper 2-choosable, so g3 ≤ g2 ≤ 6.
3. If g ≥ 5 then G is 4-improper 2-choosable, so gk ≤ 5 for k ≥ 4.

Some proofs are omitted or just sketched. The detailed proofs are presented
in [4].

2 Improper 2-Choosability

2.1 Lower Bound for M(k, 2)

In this subsection, we shall prove Theorem 1. Note that if k = 0 then Theorem 1
holds trivially. Indeed a graph with maximum average degree less than 2 contains
no cycle and so it is a forest. Hence it is 2-choosable. Furthermore M(0, 2) ≤ 2
since an odd cycle is not 2-colourable, so M(0, 2) = 2. For bigger values of k, we
will need the following preliminary definitions and results:

Definition 1. If v ∈ V (G) then dG(v) denotes the degree of v in the graph G.
For all positive integer p, a vertex of degree equal to (resp. at most, resp. at least)
p is called a p-vertex (resp. (≤ p)-vertex, resp. (≥ p)-vertex). For S ⊆ V (G) (resp.
E ⊆ E(G)) we denote by G−S (resp. G−E) the induced subgraph of G obtained
by removing the vertices (resp. edges) of S (resp. E) from V (G) (resp. E(G)). If
S ={v} and E ={uv}, we shall note G−v=G−S and G−uv=G−E. The union
(resp. intersection) of the graphs G1 and G2 is the graph G = G1 ∪ G2 (resp.
G=G1 ∩ G2) such that V (G)=V (G1) ∪ V (G2) (resp. V (G)=V (G1) ∩ V (G2))
and E(G)=E(G1) ∪ E(G2) (resp. E(G)=E(G1) ∩ E(G2)). Let D be a digraph



84 F. Havet and J.-S. Sereni

and u one of its vertices. An outneighbour (resp. inneighbour) of u in D is a
vertex v of D such that there exists an arc from u to v (resp. from v to u) in
D. The outdegree (resp. indegree) of u in D, denoted by d+

D(u) (resp. d−D(u)), is
the number of outneighbours (resp. inneighbours) of u in D. The degree of u is
dD(u) = d−D(u)+d+

D(u); it is the degree of u in the underlying undirected graph.
A graph is said to be (k, 2)-minimal if it is not k-improper 2-choosable but

each of its proper subgraphs is.

The idea of the proof of Theorem 1 is to consider a (k, 2)-minimal graph and
apply a discharging procedure, the rule of which is to discharge k

k+2 along the
arcs of a discharging digraph which is obtained using the following process:

1. Orient each edge uv where v is a 2-vertex from u to v.
2. If k ≥ 3, orient each edge uv where v is a 3-vertex from u to v.
3. While there is an unoriented edge uv where v an i-vertex with outdegree

i − 1 for some k + 2 ≤ i < 3k
2 + 2, we orient it from u to v.

The digraph D induced by the oriented edges is called a discharging digraph
of G.

The aim of the next lemmata is to establish some properties of such a dis-
charging digraph.

Lemma 1 (Škrekovski [7]). Let k ≥ 1 and let G be a (k, 2)-minimal graph.
Then G has minimum degree at least 2 and two (≤ k + 1)-vertices are not
adjacent.

Definition 2. If u and v are two vertices of a digraph D, a (u, v)-dipath is a
directed path from u to v. The outsection of u in D, denoted A+

D(u), is the set
of vertices v such that there is a (u, v)-dipath in D.

An arborescence is an oriented tree in which every path is directed from a
vertex called the root. Note that in an arborescence every vertex except the root
has indegree 1. The leaves of the arborescence are the vertices of outdegree 0.
A vertex which is neither a leaf nor the root is an internal vertex. A quasi-
arborescence is a directed graph obtained from an arborescence by identifying
some leaves.

Lemma 2. Let D be a discharging digraph of a (k, 2)-minimal graph, and k ≥ 1.

– D has no 2-circuit since by Lemma 1 two (≤ k + 1)-vertices cannot be adja-
cent. So it has no circuit at all.

– If k ≤ 2, only vertices of degree 2 or k + 2 have indegree more than zero.
– Every 2-vertex has indegree 2 in D and if k ≥ 3, every 3-vertex has inde-

gree 3.
– For every vertex u, A+

D(u) is a quasi-arborescence whose leaves have degree
2 (resp. 2 or 3) in G if k ≤ 2 (resp. k ≥ 3). In particular, the indegree of
the leaves in A+

D(u) is at most 2 (resp. 3).

Definition 3. A quasi-arborescence is a (k, 2)-quasi-arborescence if and only if
every vertex has outdegree at most max{2, 2k − 1} and every leaf has indegree
at most min{k, 3}.
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Lemma 3. Let k ≥ 2. Let Q be a (k, 2)-quasi-arborescence rooted at u and L a
2-list-assignment of Q. Then any L-colouring of the leaves can be extended to a
k-improper L-colouring of D such that u has impropriety at most k − 1.

Proof. By induction on the number of vertices of Q, the result being trivially
true if |V (Q)| = 1.

Suppose now that |V (Q)| > 1 and the result holds for smaller k-quasi-
arborescences. Let v1, . . . , vs be the outneighbours of u in Q. Note that Q − u
is the union of s (k, 2)-quasi-arborescences Qi, 1 ≤ i ≤ s rooted at vi that are
disjoint except possibly on their leaves.

Let c be an L-colouring of the leaves of Q. Then by induction it can be
extended to a k-improper L-colouring of each of the Qi so that im(vi) ≤ k − 1.
Since a leaf of Q has indegree at most min{k, 3} and imQ(x) = imQi(x) for
every vertex of Qi which is not a leaf, then the union of these colourings is a
k-improper L-colouring of Q such that im(vi) ≤ k − 1, 1 ≤ i ≤ s.

Now, one of the two colours of L(u), say α, is assigned to at most k − 1
neighbours of u since s ≤ 2k − 1. Thus setting c(u) = α, we obtain the desired
colouring.

Obviously, the above result cannot be extended for k = 1 because it is hope-
less to extend every L-colouring of the leaves in a colouring such that the root
has impropriety 0. However, the following weaker result holds:

Lemma 4. Let Q be a (1, 2)-quasi-arborescence rooted at u, L a 2-list-
assignment of Q with L(u) = {α, β} and c an L-colouring of S, the set of leaves
of Q with indegree 1. One of the following holds:

(i) c can be extended to a 1-improper L-colouring of Q such that im(u) = 0;
(ii) c can be extended to two different 1-improper L-colourings of Q c1 and c2

such that c1(v) = c2(v) if v �= u.

Lemma 5. Let k ≥ 3. Let D be a discharging digraph of a (k, 2)-minimal
graph G.

(i) Every i-vertex with 4 ≤ i ≤ k + 1 has outdegree zero.
(ii) Every i-vertex with k + 2 ≤ i ≤ 2k + 1 has outdegree less than i.

Proof. (i) Suppose, for a contradiction, that v is a vertex contradicting the
assertion and let u be an outneighbour of v. Note that u is a (< 3k

2 + 2)-
vertex by definition of a discharging digraph.

Let L be a 2-list-assignment of G. Let S be the set of leaves of A+
D(u). By

minimality, let c be a k-improper L-colouring of G − A+
D(u).

A+
D(u) is a (k, 2)-quasi-arborescence: since u is dominated by v in D, u

has outdegree less than 3k
2 +1, and so at most 2k−1. Thus, by Lemma 3, we

can extend c to G − vu so that im(u) ≤ k − 1. Since the leaves have degree
at most 3 ≤ k, the impropriety of the leaves is at most 3 ≤ k. So we obtain
a k-improper L-colouring of G − uv.

If c(u) �= c(v) or imG−uv(v) ≤ k − 1 then c is a k-improper L-colouring of
G. Otherwise all the k+1 neighbours of v are coloured by the same colour so
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recolouring v with its other allowed colour yields a k-improper L-colouring
of G.

Hence G is k-improper 2-choosable which is a contradiction.
(ii) Suppose, for a contradiction, that v is an i-vertex contradicting the assertion.

Let L be 2-list-assignment of G and c a k-improper L-colouring of G − v.
There is a colour of L(v), say α, that is assigned to at most k neighbours of
v. Let v1, . . . , vs be these neighbours.

Let G′ = G −
⋃s

j=1 A+
D(vj). And set c′ = c for every vertex of G′ and

every leaf of the A+
D(vj). By Lemma 3 applied to each A+

D(vj) (which are
disjoint except possibly on their leaves), we can extend c′ into a k-improper
L-colouring of G− v so that im(vj) ≤ k− 1 for 1 ≤ j ≤ s. Now by definition
of c′, the only neighbours of v that may be assigned α by c′ are those of
{v1, . . . , vs}. Hence setting c′(v) = α, the L-colouring c′ is k-improper.

Hence G is k-improper 2-choosable which is a contradiction.

Analogously, one can prove the following two lemmata:

Lemma 6. Let D be a discharging digraph of a (2, 2)-minimal graph G.

(i) The outdegree of a 3-vertex is zero.
(ii) If v is an i-vertex with i ∈ {4, 5} then its outdegree is less than i.

Lemma 7. Let D be a discharging digraph of a (1, 2)-minimal graph G. There
is no 3-vertex with outdegree 3 in D.

Proof (of Theorem 1). Let G be a (k, 2)-minimal graph and D a discharging
digraph of G. We start with a charge w(v) = d(v) on each vertex and we apply the
following discharging rule: every vertex gives k

k+2 to each of its outneighbours.
Let us examine the new charge w′(v) of a vertex v, regarding its degree:

– If v is a 2-vertex then it has indegree 2 so its new charge is w′(v) = 2+ 2k
k+2 =

4k+4
k+2 .

– If v is a 3-vertex and k ≥ 3, then it has indegree 3 so its new charge is
w′(v) = 3 + 3 × k

k+2 = 6k+6
k+2 > 4k+4

k+2 . If v is a 3-vertex and k = 2 then it
has outdegree 0 by Lemma 6 and indegree 0 by the construction and hence
w′(v) = 3.

– If 4 ≤ d(v) ≤ k + 1, (k ≥ 3), then by Lemma 5 (i), v has outdegree 0 so its
charge is d(v) ≥ 4 > 4k+4

k+2 .
– If k+2 ≤ d(v) < 3k

2 +2 then either v has outdegree at most d(v)−2 and so its
new charge is at least d(v)−(d(v)−2)× k

k+2 = 2d(v)
k+2 + 2k

k+2 ≥ 2+ 2k
k+2 = 4k+4

k+2 ,
or by Lemmata 5-7, it has outdegree d(v) − 1. In this case, by definition of
a discharging digraph, v has indegree 1 so its new charge is:
d(v) − (d(v) − 1) × k

k+2 + k
k+2 = d(v) − (d(v) − 2) × k

k+2 ≥ 4k+4
k+2 .

– If 3k
2 +2 ≤ d(v) ≤ 2k+1, (k ≥ 2), then by Lemmata 5 and 6, v has outdegree

at most d(v) − 1. So w′(v) ≥ d(v) − (d(v) − 1) × k
k+2 = 2d(v)

k+2 + k
k+2 ≥

3k+4+k
k+2 = 4k+4

k+2 .
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– If d(v) ≥ 2k + 2, then w′(v) ≥ d(v)(1 − k
k+2 ) = 2d(v)

k+2 ≥ 4k+4
k+2 .

Hence Mad(G) ≥ 1
|V |
∑

v∈V d(v) = 1
|V |
∑

v∈V w′(v) ≥ 4k+4
k+2 .

2.2 Upper Bound for M(k, 2)

Let us fix k ≥ 1. In this subsection, we shall construct a family of graphs (Gk
n)n≥1

such that for all n ≥ 1:

– Gk
n is not k-improper 2-colourable.

– Mad(Gk
n) =

2n(4k2 + 6k + 4) + 4k2 + 6k + 2
2n(k2 + 2k + 2) + (k + 1)2

.

Hence we will deduce Theorem 2. We denote by Hk the graph composed of two
adjacent vertices u and v also connected by k + 1 internally disjoint paths of
length 2. Take k copies of Hk and create the graph Fk by identifying the vertices
v of each copy. Note that Fk has one vertex of degree k(k + 2), k vertices of
degree k + 2 and k(k + 1) vertices of degree 2. Now we take 2n + 1 copies of Fk

and we join the vertices v of each copy creating a cycle of size 2n + 1. At last
we make a subdivision of all the edges of the cycle but one so as to obtain the
graph Gk

n.

Lemma 8. Gk
n is not k-improper 2-colourable.

As it is easily seen, the maximum average degree of G is its average degree,
which is equal to Mk

n .

3 Improper l-Choosability, l ≥ 2

3.1 Lower Bound for M(k, l)

In this subsection, we shall prove Theorem 3. The result of the theorem is trivial
if k = 0 since a graph of maximum average degree less than l is (l−1)-degenerate
(i.e. each of its subgraphs has a vertex of degree at most l − 1). Hence it is l-
choosable. For bigger values of k, we will need some preliminary results.

Definition 4. A graph is said to be (k, l)-minimal if it is not k-improper l-
choosable but each of its proper subgraphs is.

Lemma 9. Let G be a graph, L a list-assignment and c an L-colouring. If a
vertex v has impropriety at least d(v) − |L(v)| + 2 under c, then there exists an
L-colouring c′ of G such that c′(u) = c(u) if u �= v and imc′(v) = 0.

We now generalise Lemmata 1, 3 and 4.

Lemma 10. Let k ≥ 1 and let G be a (k, l)-minimal graph. Then G has mini-
mum degree at least l and two (≤ l + k − 1)-vertices are not adjacent.
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Definition 5. Let G be a (k, l)-minimal graph. We partially orient G using the
following process:

1. Orient each edge uv where v is a (≤ l + k − 1)-vertex from u to v.
2. While there is an i-vertex v with outdegree exactly i − l + 1 and indegree 0

for some l + k ≤ i < l + k + k
l , we orient one of its unoriented incident edges

uv from u to v.

The digraph D induced by the oriented edges is called a discharging digraph of
G. Note that only vertices of degree less than l + k + k

l can have indegree more
than zero, and for i ≤ l + k − 1, every i-vertex has indegree exactly i in D.

A quasi-arborescence rooted at u is a (k, l)-quasi-arborescence if and only if
every vertex has outdegree at most max{2, 2k − 1} and every leaf has indegree
at most l + k − 1.

Lemma 11. Let k ≥ 2 and let Q be a (k, l)-quasi-arborescence rooted at u. Let
L be a list-assignment of Q such that |L(v)| ≥ max{1, dQ(v)−k+1} if v is a leaf
and |L(v)| ≥ 2 otherwise. We denote by S the set of leaves that have indegree at
least k + 1 in Q (and hence a colour-list of size at least 2). Any L-colouring of
the leaves extends in an L-colouring of Q such that:

– im(u) ≤ k − 1.
– ∀v /∈ S, im(v) ≤ k.

Furthermore, possibly by recolouring some vertices of S, this L-colouring of G
can be made k-improper.

The above result cannot be extended for k = 1. However the following result
holds:

Lemma 12. Let Q be a (1, l)-quasi-arborescence rooted at u and L any list-
assignment of Q such that |L(v)| ≥ 2 if v is not a leaf, and |L(v)| ≥ dQ(v)
otherwise. We denote by S the set of leaves with indegree at least 2. Let c be an
L-colouring of the leaves. One of the followings holds:

(i) c can be extended to an L-colouring of Q such that im(u) = 0 and im(v) ≤ 1
if v /∈ S;

(ii) c can be extended to two different L-colourings of Q c1 and c2 such that
c1(v) = c2(v) if v �= u and imci(v) ≤ 1 if v /∈ S.

Furthermore, possibly by recolouring vertices of S, all these L-colourings can be
made 1-improper.
Moreover, if |L(u)| ≥ 3 then (i) holds.

Using these results, we can say more about the structure of a discharging digraph.
The following lemma generalises Lemma 2.

Lemma 13. Let D be a discharging digraph of a (k, l)-minimal graph G.

(i) Every vertex u with l+k ≤ d(u) ≤ l+2k−1 has outdegree at most d(u)−l+1.
In particular, D is acyclic.
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(ii) For every vertex u with indegree 1, A+
D(u) is a (k, l)-quasi-arborescence. In

particular, the indegree of the leaves in A+
D(u) is at most l + k − 1.

Proof (of Theorem 3). Let G be a (k, l)-minimal graph and D a discharging
digraph of G. We start with a charge w(v) = d(v) on each vertex and we apply
the following discharging rule: every vertex gives k

l+k to each of its outneighbours.
One can check that, by using Lemma 13, the new charge of every vertex is at
least l + lk

l+k .

3.2 Upper Bound for M(k, l)

In this subsection we shall construct for all l ≥ 2 and all k ≥ 1, a graph Gk
l

which is not k-improper l-colourable. So its maximum average degree will give
an upper bound for M(k, l). To construct Gk

2 , take k + 1 copies of Hk (defined
in Subsection 2.2) and identify their vertex v. We define Gk

l , l ≥ 3, inductively.
First we create the graph Mk

l by taking k copies of Gk
l−1 and adding a vertex w

which we join to every other vertices. Then we take l − 1 copies M1, . . . , M l−1

of Mk
l and we join all the vertices w1, . . . , wl−1 (so that they form a complete

graph of size l − 1). Now, we add k + 2 vertices z0, z1, . . . , zk+1 each joined to
each of the wi, 1 ≤ i ≤ l − 1. Last we add the edges z0zi for 1 ≤ i ≤ k + 1.

Lemma 14. For all l ≥ 2 and all k ≥ 1, the graph Gk
l is not k-improper l-

colourable.

Proposition 2. Mad(Gk
l ) tends to 2l as k tends to infinity.

Proof. It is clear that the maximum average degree of Gk
l is its average degree.

The number of vertices of Gk
l is nk

l = 2l + (l + 1)k +
l∑

i=2

(l − 1)!
(l − i)!

ki. Indeed

nk
l satisfies: nk

2 = k2 + 3k + 3 and ∀l ≥ 3, nk
l = (k × nk

l−1 + 1) × (l − 1) + k + 2.
In particular, as a polynomial in k, nk

l ∼ (l − 1)!kl.
Let sk

l denotes the sum of the degrees of the vertices in Gk
l . sk

l satisfies:
sk
2 = 4k2 +10k+6 and sk

l = (l− 1)(k× sk
l−1 + 2k×nk

l−1 + l + k)+ (l+1)k+ 2l if
l ≥ 3. Hence it is a polynomial in k of degree l. Furthermore, denoting by ck

l its
dominant coefficient, we have: ck

2 = 4 and ∀l ≥ 3, ck
l = (l−1)×ck

l−1+2k×(l−1)!.
Thus ck

l = 2l!. So sk
l ∼ 2l!kl.

Hence the limit of Mad(Gk
l ) as k tends to infinity is 2 l!

(l−1)! = 2l.

Corollary 1 immediately follows from Theorem 3 and Proposition 2.
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Abstract. A chordal graph H is a triangulation of a graph G, if H is
obtained by adding edges to G. If no proper subgraph of H is a tri-
angulation of G, then H is a minimal triangulation of G. A potential
maximal clique of G is a set of vertices that induces a maximal clique in
a minimal triangulation of G. We will characterise the potential maximal
cliques of permutation graphs and give a characterisation of minimal tri-
angulations of permutation graphs in terms of sets of potential maximal
cliques. This results in linear-time algorithms for computing treewidth
and minimum fill-in for permutation graphs.

1 Introduction

Treewidth and minimum fill-in are among the most interesting graph parameters.
The treewidth of a graph is a measure for the treelikeness of a graph. By the
minimum fill-in, the degree of chordality can be measured in a certain sense.
Both parameters can be formulated as embedding problems into chordal graphs
where, in the case of treewidth, the clique number, in the case of minimum
fill-in, the number of edges is to be minimized. Treewidth plays a big role in
algorithm design, since many hard problems can be solved efficiently for graphs of
bounded treewidth. Minimum fill-in has applications in matrix elimination [13].
The decision problems Treewidth and Minimum Fill-in are NP-complete
even for co-bipartite graphs [1], [15].

A triangulation of a graph G is a chordal graph H where G and H have the
same vertex set and G is a subgraph of H . H is called a minimal triangulation
of G, if no proper subgraph of H is a triangulation of G. Minimal triangula-
tions were first studied by Rose, Tarjan, Lueker [14]. Since then, the study of
minimal triangulations has attracted a considerable community of researchers.
An explanation seem to be the following observations: The treewidth of a graph
equals the smallest clique size minus 1 among its minimal triangulations, and
the minimum fill-in of a graph is the smallest number of additional edges among
its minimal triangulations. So, treewidth and minimum fill-in become special
problems on minimal triangulations.

An early interesting result about minimal triangulations of special graph
classes was the result by Bodlaender and Möhring that every minimal triangu-
lation of a cograph is a cograph [4]. Since chordal cographs are interval graphs,

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 91–102, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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minimal triangulations of cographs are interval graphs. This result was improved
by Bodlaender, Kloks, Kratsch and extended to permutation graphs in the sense
that every minimal triangulation of a permutation graph is an interval graph [2].
A first endpoint in this series was set by Möhring’s theorem for AT-free graphs:
every minimal triangulation of an AT-free graph is an interval graph [10], which
was extended by Parra and Scheffler to a complete characterisation of AT-free
graphs [12].

The works of Bodlaender, Kloks, Kratsch and Bodlaender, Kloks, Kratsch,
Müller resulted in O(tw(G) · nG)- and O(n2)-time algorithms for treewidth and
minimum fill-in for permutation graphs, respectively, [2], [3]. For both problems
on permutation graphs we will give linear-time algorithms, which improve the
stated time bounds. The main part of this paper is dedicated to characterising
the minimal triangulations of a permutation graph in an appropriate manner.
The central idea is to consider the potential maximal cliques. The notion of a po-
tential maximal clique of a graph was introduced by Bouchitté and Todinca [5].
A potential maximal clique of a graph is a set of vertices that is a maximal clique
in a minimal triangulation of the graph. We will show that the set of potential
maximal cliques of a permutation graph can be generated in linear time. We will
define the potential maximal cliques graph of a permutation graph, which is a
directed graph containing an arc for every potential maximal clique, and show
that a maximal path of the potential maximal cliques graph corresponds exactly
to a minimal triangulation. Adding weights to vertices and arcs, treewidth and
minimum fill-in can be solved in linear time by simply exploiting the obtained
and so-called weighted potential maximal cliques graph. Our approach to solve
treewidth and minimum fill-in can be understood as an improvement of the ap-
proach used in [2] and [3], which is based on the fact that the weighted potential
maximal cliques graph has less vertices than the auxiliary graph in [2] and [3]
and can be generated in linear time.

The paper is organized as follows. Section 2 contains basic definitions and
results. In Section 3, we will consider minimal separators and identify special
scanlines as appropriate representations. In Section 4, we will characterise the
potential maximal cliques of a permutation graph and define the potential maxi-
mal cliques graph. We will show the correspondence between the minimal trian-
gulations of a permutation graph and the maximal paths in its potential maximal
cliques graph. Finally, in Section 5, we will conclude by obtaining linear-time al-
gorithms for computing treewidth and minimum fill-in for permutation graphs.
Proofs may be omitted or sketched due to space restrictions.

2 Preliminaries

We will consider only simple and finite graphs that may be directed or undi-
rected. For a directed graph G′ = (V, A), V denotes the set of vertices, and A
denotes the set of arcs. Arcs are denoted as (u, v), which means that u is start
vertex and v is end vertex. For an undirected graph G = (V, E), V and E denote
the sets of vertices and edges, respectively. Since we mostly deal with undirected
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graphs, most of the following definitions are for undirected graphs. An edge is
denoted as uv, which means that vertices u and v are adjacent. For S ⊆ V , the
subgraph of G induced by S is denoted as G[S]; we write G\S instead of G[V \S].
G ∪ F for a set F of edges is short for (V, E ∪ F ); G−e =def (V, E \ {e}), and
G \ F =def (V, E \ F ). The neighbourhood of a vertex u ∈ V , denoted by NG(u),
is the set of vertices adjacent to u in G; NG[u] =def NG(u) ∪ {u}. For A ⊆ V ,
the neighbourhood of A is NG(A) =def

⋃
v∈A NG(v) \A. For further definitions,

we also refer to [7]. A path of length k in G is a sequence (x0, . . . , xk) of k+1
different vertices of G where xi−1 and xi are adjacent for every i ∈ {1, . . . , k}; a
similar definition holds for G′. A path (x1, . . . , xk) of G is a cycle of length k if
x1xk ∈ E. A chord in a cycle C of G is an edge of G between two non-consecutive
vertices in C; a chord is unique in C if it is the only edge in G that is a chord
in C. C is chordless if there is no edge in G that is a chord in C. G is chordal
if there is no chordless cycle of length at least 4 in G. An interval graph on n
vertices is the intersection graph of a family of n closed intervals of the real line.
Interval graphs are chordal. A triple u, v, w of pairwise non-adjacent vertices of
G is an asteroidal triple, AT for short, if there is a path between any two of them
not containing a neighbour of the third. G is AT-free if G does not contain three
vertices that form an AT. Interval graphs are exactly the chordal graphs that
are AT-free [9].

Permutation Graphs. Let [n], n ≥ 1, denote the set of the numbers 1, 2, . . . , n.
Let π : [n] → [n] be a bijection. We also say that π is a permutation sequence
over [n]. The graph G(π) has vertex set [n], and two vertices u, v ∈ [n], u �= v,
are adjacent if and only if (u − v)(π−1(u) − π−1(v)) < 0. A permutation graph
over [n] is a graph G(π) for some permutation sequence π over [n]. A graph G is
a permutation graph if there is n ≥ 1 such that G is isomorphic to a permutation
graph over [n]. Permutation graphs can be represented by permutation diagrams;
we refer the reader to [7] for more details about permutation diagrams. Since
we often use the permutation diagram representation, we identify line segments
and the corresponding vertices of the graph. This will never cause confusion.

Separators and Triangulations. Let G = (V, E) be a graph. A graph H =
(W, F ) is a triangulation of G if H is chordal, V = W and E ⊆ F . H is a minimal
triangulation of G if there is no triangulation of G that is a proper subgraph
of H .

Theorem 1 ([14]). Let G = (V, E) and H = G ∪ F be graphs where H is
chordal and E ∩ F = ∅. Then, H is a minimal triangulation of G if and only if,
for every e ∈ F , e is unique chord in a cycle of length 4 in H.

Let S ⊆ V . We call S a c, d-separator of G for two non-adjacent vertices c, d ∈
V if c and d are in different connected components of G \ S. S is a minimal
c, d-separator of G if there is no c, d-separator S′ such that S′ ⊂ S. S is a
minimal separator of G if S is a minimal c, d-separator for some non-adjacent
vertices c, d ∈ V . A connected component C of G\S is S-full if every vertex of S
has a neighbour in C; S-full components of G are S-full connected components
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of G \ S. Then, S is a minimal separator of G if and only if G has two S-full
components [7]. S is a minimal c, d-separator of G if and only if c and d are in
different S-full components of G. Two minimal separators S1 and S2 of G cross
if there are two connected components in G \ S1 that contain vertices from S2.
The crossing relation is symmetric [12].

Theorem 2 ([12]). Let G = (V, E) be a graph.

1. Let S be a maximal set of pairwise non-crossing minimal separators of G.
Graph H is obtained from G by making all separators in S into cliques.
Then, H is a minimal triangulation of G.

2. Let H be a minimal triangulation of G and let S be the set of minimal
separators of H. Then, S is a maximal set of pairwise non-crossing minimal
separators of G and H originates from G by completing into cliques the
separators in S.

Theorem 3 ([8]). Let G = (V, E) be a graph and let H be a minimal triangu-
lation of G.

1. For every pair c, d of non-adjacent vertices of H, every minimal c, d-separator
in H is a minimal c, d-separator in G.

2. For every minimal separator S of H and every connected component C in
H \ S, V (C) induces a connected component in G \ S.

Minimal triangulations can characterise graph classes.

Theorem 4 ([10], [12]). A graph G is AT-free if and only if every minimal
triangulation of G is AT-free, i.e., an interval graph.

Let A1, . . . , Ak be the maximal cliques of an interval graph G. A consecutive
clique arrangement for G is a sequence Aπ(1), . . . , Aπ(k) for π a permutation over
[k] such that, for every vertex u in G, the maximal cliques containing u appear
consecutively in the sequence. A graph is an interval graph if and only if it has
a consecutive clique arrangement [6].

Theorem 5 ([8]). Let G = (V, E) be an interval graph with consecutive clique
arrangement A1, . . . , Ak. The sets Ai ∩Ai+1, i ∈ [k−1], are exactly the minimal
separators of G.

3 Special Scanlines

Minimal separators of permutation graphs can be represented efficiently in the
permutation diagram. For this purpose, Bodlaender, Kloks, Kratsch introduced
scanlines [2], which play a central role in our subsequent studies.

Definition 1. Let G = G(π) be a permutation graph over [n]. A scanline of G
is a pair (a, e) where a, e ∈

{
0.5, 1.5, . . . , n+0.5

}
.
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Let G = G(π) be a permutation graph over [n], and let be its permutation
diagram. Let s = (a, e) and s′ = (a′, e′) be scanlines of G. We say that s ≤ s′ if
and only if a ≤ a′ and e ≤ e′; s < s′ if and only if s ≤ s′ and s �= s′. By int(s)
we mean the set of vertices x ∈ [n] such that (a − x)(e − π−1(x)) < 0. In the
world of permutation diagrams, s can be thought of as a line segment and int(s)
is the set of vertices intersecting with s. We say that a vertex x is to the left of
s in if it does not intersect with s and is smaller than a. Similarly, we define
what it means to be to the right of s. It is easy to see that int(s) is a separator
of G if there are vertices to the left and right of s. For C1, C2 ⊆ [n], s is between
C1 and C2, if every vertex of C1 is to the left of s and every vertex of C2 is to
the right of s, or if every vertex of C2 is to the left of s and every vertex of C1 is
to the right of s. A scanline s is special if int(s) is a minimal separator in G and
s is between C1 and C2 where C1 and C2 induce S-full components of G. Such
scanlines have been used by Parra and Scheffler to represent minimal separators
of d-trapezoid graphs [11]. The following lemma is an extension of a result by
Bodlaender, Kloks, Kratsch and can be proved similarly.

Lemma 1 ([2]). Let G = G(π) be a permutation graph over [n]. Let C1, C2 ⊆ V
induce connected subgraphs of G. If NG[C1] ∩ C2 = ∅, then there is a special
scanline s between C1 and C2 such that S =def int(s) is a minimal u, v-separator
in G for some vertices u ∈ C1 and v ∈ C2. In particular, if S is a minimal
u, v-separator for u, v ∈ V , then there is a special scanline s of G between {u}
and {v} such that int(s) = S.

The enclosure of scanline s = (a, e) where a, e ∈ {1.5, . . . , n−0.5} is the
set en(s) =def {a−0.5, a+0.5, π(e−0.5), π(e+0.5)}. So, the enclosure may contain
two, three or four vertices.

Lemma 2. Let G = G(π) be a permutation graph over [n]. A scanline s of G is
special if and only if en(s) ∩ int(s) = ∅.

Proof. Let s = (a+0.5, e+0.5) be a scanline, a, e ∈ [n−1], and S =def int(s). If
en(s) ∩ S = ∅, then a and π(e) belong to one connected component C1 of G \ S
and a+1 and π(e+1) belong to another connected component C2 of G \S. Since
every vertex in S has neighbours in C1 and C2, C1 and C2 are S-full components
of G and s is a special scanline. Now, let u ∈ en(s) ∩ S. Then, u cannot have
a neighbour in the connected components of G \ S to the left or the right of s,
hence s is not a special scanline.

Corollary 1. Let G = G(π) be a permutation graph over [n], and let m be the
number of edges of G. Then, G has at most min{n+m,

(
n
2

)
−m} special scanlines,

and they can be listed in linear time.

Proof. Every special scanline s = (a+0.5, e+0.5) can be defined by {a, π(e)} and
{a, π(e+1)}. In the former case, these sets can be of cardinality 1 or 2, and if
it contains two vertices these vertices are adjacent. Thus, G contains at most
n + m special scanlines. In the latter case, the set always contains two non-
adjacent vertices. So, G contains at most

(
n
2

)
− m special scanlines. For listing
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the special scanlines, check for every vertex x ∈ [n] and every edge uv, u < v,
whether (x+0.5, π−1(x)+0.5) and (v+0.5, π−1(u)+0.5) are special scanlines by
applying Lemma 2.

Motivated by Theorem 2, the crossing relation of minimal separators is of
great importance when studying minimal triangulations.

Definition 2. Two scanlines s1 and s2 of a permutation graph G = G(π) in-
tersect if and only if neither s1 ≤ s2 nor s2 < s1.

Lemma 3. Let G = G(π) be a permutation graph. Let s1 and s2 be special
scanlines of G, and let S1 =def int(s1) and S2 =def int(s2).

1. If s1 and s2 do not intersect then S1 and S2 are non-crossing.
2. If s1 and s2 intersect then S1 and S2 cross.

Proof. Let s1 and s2 do not intersect. We assume s1 < s2. Let C1, . . . , C� be the
connected components of G\S1, � ≥ 2, where the vertices in Ci are smaller than
the vertices in Ci+1 for all i ∈ [�−1]. Suppose S1 and S2 cross. There is r ≥ 1
such that s2 intersects with vertices from Cr and Cr+1. Note that the vertices
in en(s2) that are to the right of s2 are not contained in int(s1) = S1, so that
there is a path between a vertex from Cr and a vertex from Cr+1, and Cr and
Cr+1 are not different connected components of G \ S1. Hence, S1 and S2 do
not cross. For the converse, let s1 and s2 intersect. Observe that the vertices of
en(s1) belong to two connected components of G \S1, and one vertex from each
of these components belongs to S2. Hence, S2 crosses S1.

4 Potential Maximal Cliques and Minimal Triangulations

Bouchitté and Todinca introduced the notion of potential maximal cliques [5].

Definition 3. Let G = (V, E) be a graph. A set C ⊆ V of vertices is a potential
maximal clique of G if and only if there is a minimal triangulation H of G
such that C is a maximal clique in H.

Let G = G(π) be a permutation graph over [n]. For the following considera-
tions, s0 =def (0.5, 0.5) and sn

e =def (n+0.5, n+0.5) are also special scanlines of
G. Let s1 and s2 be two special scanlines of G such that s1 < s2. By G[s1, s2]
we denote the subgraph of G induced by the vertices that intersect with s1 or
s2 or that lie between s1 and s2, i.e., to the right of s1 and to the left of s2.
With G[s1, s2] we associate the permutation diagram of G reduced to only the
vertices of G[s1, s2]. The scanlines s1 and s2 are neighbours if there is no special
scanline s′ of G such that s1 < s′ < s2. We say that s1 is a left neighbour of s2

and s2 is a right neighbour of s1. By N<
π (s) we denote the set of left neighbours

of special scanline s of G.

Lemma 4. Let G = (V, E) = G(π) be a permutation graph over [n]. Let s1, s2

and s′1, s′2 be special scanlines of G where s1 ∈ N<
π (s2) and s′1 ∈ N<

π (s′2). Let
S1 =def int(s1) and S2 =def int(s2), and let C =def V (G[s1, s2]). Then:
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1. u ∈ C \ (S1 ∪ S2) =⇒ NG[u] = C
2. u ∈ S1 \ S2 and v ∈ S2 \ S1 =⇒ uv ∈ E
3. C = V (G[s′1, s

′
2]) =⇒ s′1 = s1 and s′2 = s2.

Proof. Let u, v ∈ C such that uv �∈ E. Let u ∈ C \ (S1∪S2). If v ∈ C \ (S1∪S2),
there is a special scanline between u and v by Lemma 1 that does not intersect
with neither s1 nor s2. If v ∈ S1, there is a vertex in the enclosure of s1 that is
to the left of s1 and adjacent to v such that there is a special scanline between
{v, w} and {u} by Lemma 1, and this scanline does not intersect with neither s1

nor s2. The case v ∈ S2 is similar to v ∈ S1. If u ∈ S1 \ S2 and v ∈ S2 \ S1, let
x and z be the vertices of the enclosures of s1 and s2, respectively, that do not
belong to C and that are adjacent to u and v, respectively, such that there is a
special scanline between {u, x} and {v, z} by Lemma 1, that is between s1 and
s2. Since s1 and s2 are neighbours there cannot be a special scanline between
s1 and s2. Finally, for claim 3, observe that s′1 does not intersect with neither
s1 nor s2, since otherwise C′ =def V (G[s′1, s

′
2]) would contain vertices from the

enclosure of s1 or s2. Analogously, s′2 does not intersect with neither s1 nor s2.
So, {s1, s

′
1, s2, s

′
2} is a set of pairwise non-intersecting special scanlines. Since

C′ must contain a vertex to the right of s1 that belongs to the enclosure of s1,
s1 < s′2; similarly, s′1 < s2, and this is only possible if s′1 = s1 and s′2 = s2.

Let s1 and s2 be special scanlines of G where s1 ∈ N<
π (s2). A vertex x ∈ [n]

is an inner vertex of G[s1, s2] if x ∈ V (G[s1, s2]) and x �∈ int(s1) ∪ int(s2). Inner
vertices play a special role in our study, since NG[x] = V (G[s1, s2]) by Lemma 4.
For a potential maximal clique C of G, we say that x ∈ C is an inner vertex of
C if NG[x] = C.

Lemma 5. Let G = G(π) be a permutation graph over [n]. Let s1, s2, s be special
scanlines of G where s1 ∈ N<

π (s2) and G[s1, s2] contains an inner vertex x. If
s intersects with s1 or s2, then x ∈ int(s). In particular, if x is inner vertex in
G[s′1, s

′
2] for s′1 and s′2 special scanlines of G, s′1 ∈ N<

π (s′2), then s′1 = s1 and
s′2 = s2.

Proof. Observe that x is to the right of s1 and to the left of s2. Let s intersect
with s1. Two non-adjacent vertices of the enclosure of s belong to int(s1), and
by Lemma 4, they are neighbours of x. Then, x belongs to int(s). Similarly, x
belongs to int(s), if s intersects with s2. If x is inner vertex also in G[s′1, s

′
2], then

V (G[s′1, s′2]) = NG[x] = V (G[s1, s2]) and s1 = s′1 and s2 = s′2 by Lemma 4.

Lemma 6. Let G = (V, E) be a graph, and let H be a minimal triangulation of
G. Let u ∈ V such that there is only one maximal clique C in H containing u.
Then, u is an inner vertex of C.

Proof. Note that all neighbours of u are contained in C and that u cannot be
endpoint of an additional edge.

Theorem 6. Let G = G(π) be a permutation graph over [n]. C ⊆ [n] is a
potential maximal clique of G if and only if there are special scanlines s1 and s2

of G such that s1 ∈ N<
π (s2) and C = V (G[s1, s2]).
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Proof. First, we prove the “only if” part. Let H be a minimal triangulation
of G, and let C ⊆ V induce a maximal clique in H . By Theorem 4, H is an
interval graph. Let A1, . . . , Ak, k ≥ 1, be a consecutive clique arrangement for
H . If k = 1, then G is complete, and C = V (G[s0, sn

e ]). Let k ≥ 2. Let C = Ai

for 1 ≤ i ≤ k, and let S1 =def Ai−1 ∩ Ai and S2 =def Ai ∩ Ai+1; we assume
A0 =def Ak+1 =def ∅. By Theorems 5 and 3, S1 and S2 are minimal separators
of G. Let C have an inner vertex. Let S =def S1 ∪ S2, and let C′ =def C \ S.
Remember that NG[u] = C for each u ∈ C′ due to Lemma 6. Let

a1 =def max{x < min C′ : x ∈ [n] \ C} ∪ {0}
a2 =def min{x > maxC′ : x ∈ [n] \ C} ∪ {n+1}
e1 =def max{i < min π−1(C′) : i ∈ [n] \ π−1(C)} ∪ {0}
e2 =def min{i > max π−1(C′) : i ∈ [n] \ π−1(C)} ∪ {n+1} ,

and let s1 =def

(
a1+0.5, e1+0.5

)
and s2 =def

(
a2−0.5, e2−0.5

)
. Every vertex in

C′ is to the right of s1 and to the left of s2 by definition of a1, a2, e1, e2, hence
between s1 and s2. Observe that a1+1, . . . , a2−1 and π(e1+1), . . . , π(e2−1) are
vertices of C. Then, s1 and s2 are special scanlines of G. Furthermore, every
vertex in S has a neighbour to the left of s1 or to the right of s2, since between
s1 and s2 there are only vertices of C. Hence, S ⊆ int(s1)∪int(s2). Suppose there
is x ∈ (int(s1) ∪ int(s2)) \ S. By the aforesaid, x ∈ int(s1) ∩ int(s2) and must
be a neighbour of u ∈ C′, hence x ∈ C and x ∈ S, which is a contradiction. So,
int(s1) ∪ int(s2) = S, and V (G[s1, s2]) = C. Finally, suppose there is a special
scanline s of G such that s1 < s < s2. Then, s must have a common endpoint
with s1 and s2, and C contains two vertices u, v that are non-adjacent in G. By
Theorems 2 and 5, there is a minimal separator S′ = Aj∩Aj+1 in G that contains
u and v. Let s′ be a special scanline of G such that S′ = int(s′). It holds that
s′ cannot intersect with s1 or s2. If s′ intersects with both scanlines, a vertex to
the left of s1 would be adjacent to the vertices in C′ in H , which is not possible.
If s′ intersects with either s1 or s2, it must have a common endpoint with the
other scanline, and again, the vertices from C′ would be adjacent in H with a
vertex to the left of s1 or to the right of s2. Hence, s′ has a common endpoint
with s1 and s2 and intersects with s. But then, C′ ⊆ S′, which contradicts the
assumption about C. So, s1 ∈ N<

π (s2).
Now, let C = S1 ∪ S2. Then, 1 < i < k. Let u ∈ C \ S1, v ∈ Ai−1 \ S1

and w ∈ C \ S2, x ∈ Ai+1 \ S2. We assume v < u; if u < v we use Ak, . . . , A1

as consecutive clique arrangement for H and the same vertices with their new
meanings. It holds that v, w, u, x induce a P4 in H and uw ∈ E. First, we show
that w < x. If x < v then S1 is an x, u-separator of G, which is not possible by
Theorem 3. If v < x then S2 is a w, v-separator of G, which is also not possible.
Hence w < x. Due to Theorem 3, C \ S1 is contained in a connected component
of G \ S1 induced by D1. Let a1 =def min(D1) and e1 =def min π−1(D1) and
s1 =def (a1−0.5, e1−0.5). Observe that a1 and π(e1) are to the right of s1. Since
a1−1 �∈ D1 and π(e1−1) �∈ D1 and a1−1, π(e1−1) �∈ S1 ⊆ C, a1−1 and π(e1−1)
are to the left of s1, hence s1 is a special scanline. Let D′

1 induce the connected
component of G \ S1 containing v. Since every vertex in S1 has a neighbour in
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D1 and D′
1, S1 = int(s1). By a similar construction using S2, define D2 and D′

2

and s2 =def (a2+0.5, e2+0.5), where a2 =def max(D2) and e2 =def max π−1(D2).
It holds that S2 = int(s2). Since u < w or π−1(u) < π−1(w), a1 < a2 or e1 < e2,
and since S1 and S2 are non-crossing minimal separators, s1 < s2 by Lemma 3.
Hence, C ⊆ V (G[s1, s2]). Suppose there is z ∈ V (G[s1, s2]) \ C. Since z �∈ C,
z ∈ A1 ∪ · · · ∪ Ai−1 or z ∈ Ai+1 ∪ · · · ∪ Ak. In the former case, S1 is a z, u-
separator, in the latter case, S2 is a w, z-separator, hence, z is not contained
in D1 or D2, so that z < a1 or a2 < z. Finally, suppose there is a special
scanline s of G such that s1 < s < s2. For every pair of vertices a, b ∈ C, if
a ∈ S1 \S2 and b ∈ S2 \S1, then ab ∈ E. So, s1 and s2 have a common endpoint.
If a1 = a2 + 1, then there is j ∈ {e1, . . . , e2−1} such that π(e1), . . . , π(j) ∈ S2

and π(j+1), . . . , π(e2) ∈ S1. If e1 = e2 +1, then there is j ∈ {a1, . . . , a2−1} such
that a1, . . . , j ∈ S2 and j+1, . . . , a2 ∈ S1. But then, there cannot be a special
scanline s such that s1 < s < s2, and s1 ∈ N<

π (s2).
For the “if” part, let s1 and s2 be special scanlines such that s1 ∈ N<

π (s2),
and let C =def V (G[s1, s2]). There are u, v ∈ C such that u �∈ int(s1) and
v �∈ int(s2); u and v may be identical. Let G′ emerge from G by completing
int(s1) and int(s2) into cliques. Due to Lemma 4, C induces a clique in G′. Since
no vertex to the left of s1 is adjacent to u and no vertex to the right of s2 is
adjacent to v, C is a maximal clique in G′. Obtain H ′ from G′ by making every
connected component of G′\C complete. C induces a maximal clique in H ′. H ′ is
a triangulation of G′. There is a subgraph H of H ′ that is a minimal triangulation
of G′. C induces a maximal clique in H . Since every minimal triangulation of
G′ is a minimal triangulation of G, C is a potential maximal clique of G.

Corollary 2. A permutation graph on n ≥ 1 vertices and with m edges has
O(n + m) potential maximal cliques.

Proof. Let G = G(π) be a permutation graph over [n]. A potential maximal
clique G[s1, s2] of G has an inner vertex or s1 and s2 have a common endpoint.
Due to Lemma 5, G has at most n potential maximal cliques with inner vertices.
Let s be a special scanline of G. Then, s has at most two right neighbours that
share an endpoint with s.

The potential maximal cliques graph of a permutation graph G(π) is a directed
graph that is denoted by PC(π) and defined as follows: PC(π) has a vertex for
every special scanline of G(π), and there is an arc from vertex u to vertex v, if
su ∈ N<

π (sv), where su and sv denote the special scanlines the vertices u and v
are labelled with, respectively. Hence, there is a 1-1 correspondence between the
potential maximal cliques of G(π) and the arcs in PC(π).

Lemma 7. Let G = G(π) be a permutation graph over [n].

1. The potential maximal cliques graph PC(π) of G can be computed in linear
time.

2. PC(π) is acyclic, and a topological ordering can be computed in linear time.
3. Vertex sequence (x0, . . . , xk), k ≥ 0, is a maximal path in PC(π) if and only

if
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– s0, s1, . . . , sk−1, sn
e are the labels of x0, . . . , xk, respectively

– {s0, s1, . . . , sk−1, sn
e } is a maximal set of pairwise non-intersecting special

scanlines of G.

Proof. For claims 1 and 2, remember that the special scanlines of G can be
listed in linear time. We add the scanlines to the permutation diagram of G,
delete the line segments corresponding to vertices of G and obtain a represen-
tation from which we can derive PC(π) in linear time. Ordering the scanlines
according to their lower endpoints (respecting the order by the upper endpoints)
gives a topological ordering. For claim 3, let (x0, . . . , xk) be a maximal path in
PC(π). Obviously, the labels of x0 and xk are s0 and sn

e , respectively, since
s0 < s < sn

e for every special scanline s of G. Let s1, . . . , sk−1 be the labels
of x1, . . . , xk−1, respectively. By definition of PC(π), {s0, s1, . . . , sk−1, sn

e } is a
maximal set of pairwise non-intersecting special scanlines of G. Conversely, let
S =def {s0, . . . , sk} be a maximal set of pairwise non-intersecting special scan-
lines of G where s0 < · · · < sk. Then, si−1 ∈ N<

π (si) for i ∈ [k], and s0 = s0 and
sk = sn

e . This, however, uniquely defines a maximal path in PC(π).

Theorem 7. Let G = G(π) be a permutation graph over [n]. An interval
graph H over [n] is a minimal triangulation of G if and only if there is a maximal
path (x0, . . . , xk) in PC(π) such that A1, . . . , Ak is a consecutive clique arrange-
ment for H where Ai =def V (G[si−1, si]) and the special scanlines si−1 and si

are the labels of xi−1 and xi in PC(π) for i ∈ [k].

Proof. Let (x0, . . . , xk) be a maximal path in PC(π), and let s0, . . . , sk be the
labels of x0, . . . , xk, respectively. By Lemma 7, s0 = s0 and sk = sn

e . Let
Ai =def V (G[si−1, si]) for i ∈ [k], and let H be the interval graph defined by the
consecutive clique arrangement A1, . . . , Ak. Note that Ai ∩ Ai+1 = int(si) for
i ∈ [k−1]. Let u, v ∈ [n] be vertices in H , u < v. Let uv ∈ E. There is a largest
j ∈ [k] such that u or v is to the right of sj−1. Since neither u nor v is to the
right of sj, u, v ∈ Aj . So, H is a triangulation of G. If uv ∈ E(H) \ E, there is
j ∈ [k−1] such that u, v ∈ Aj ∩Aj+1, since otherwise u and v are adjacent in G
by Lemma 4. Then, uv is the unique chord in a cycle of length 4 in H . Hence,
H is a minimal triangulation of G by Theorem 1.

Now, let H be a minimal triangulation of G, and let A1, . . . , Ak be a consec-
utive clique arrangement for H . Let S0 =def Sk =def ∅ and Si =def Ai ∩ Ai+1,
i ∈ [k−1]. By Theorem 5, S1, . . . , Sk−1 are the minimal separators of H , and by
Theorem 2, {S1, . . . , Sk−1} is a maximal set of pairwise non-crossing minimal
separators of G. Since A1, . . . , Ak are potential maximal cliques of G, there
are special scanlines s1, s

′
1, s2, . . . , s

′
k of G such that Ai = V (G[si, s

′
i]) and

si ∈ N<
π (s′i) for i ∈ [k]. Suppose there are i, j ∈ [k], i < j, such that sj or

s′j intersects with si or s′i. Due to Lemma 5, Ai and Aj do not contain inner
vertices. So, 1 < i < j < k and Ai = Si−1 ∪Si and Aj = Sj−1 ∪Sj. By the proof
of Theorem 6, {int(si), int(s′i)} = {Si−1, Si} and {int(sj), int(s′j)} = {Sj−1, Sj}.
So, by Theorem 2 and Lemma 3, si, s

′
i, sj, s

′
j are pairwise non-intersecting, and

S =def {s1, . . . , s
′
k} is a set of pairwise non-intersecting special scanlines of G.

There is a maximal set S′ of pairwise non-intersecting special scanlines of G
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such that S ⊆ S′ and CS =def {A1, . . . , Ak} ⊆ CS′ where CS′ denotes the set of
potential maximal cliques of G defined on the path of PC(π) determined by S′.
By the first part of this proof, CS′ defines a minimal triangulation H ′ of G, and
since CS ⊆ CS′ , H is a subgraph of H ′. Then, H and H ′ are equal, and CS and
CS′ are equal, and the theorem holds.

5 Treewidth and Minimum Fill-In

Let G = (V, E) be a graph. Treewidth and minimum fill-in can be defined as
follows:

tw(G) =def min{ω(H) : H is a minimal triangulation of G} − 1
mfi(G) =def min{|E(H)| − |E(G)| : H is a minimal triangulation of G} .

In the same manner the pathwidth and interval completion problems can be
defined by replacing “minimal triangulation” by “triangulation that is an inter-
val graph”. Since minimal triangulations of AT-free graphs are interval graphs,
treewidth and pathwidth as well as chordal completion (minimum fill-in) and
interval completion describe the same problems on AT-free graphs.

Our algorithms work on the weighted potential maximal cliques graph. Let
G = G(π) be a permutation graph. The weighted potential maximal cliques
graph of G is the potential maximal cliques graph of G where the vertices are
assigned the numbers of vertices of the corresponding minimal separators and
the arcs are assigned the numbers of vertices of the corresponding potential
maximal cliques.

Theorem 8. Let G = G(π) be a permutation graph. The weighted potential
maximal cliques graph of G can be computed in linear time.

Treewidth and minimum fill-in can be solved on the weighted potential maxi-
mal cliques graph by finding shortest paths.

Theorem 9. Treewidth and minimum fill-in for permutation graphs can be com-
puted in linear time.

Proof. Let G = G(π) be a permutation graph over [n]. In linear time, the
weighted potential maximal cliques graph of G can be computed. By Theorem 7,
the treewidth of G is realised on a maximal path of the weighted potential maxi-
mal cliques graph of G with the least maximal arc weight. For computing the
minimum fill-in, consider the following observation. Let A1, . . . , Ak be a consec-
utive clique arrangement for an interval graph H . For every i ∈ [k]:

|E(H [A0∪· · ·∪Ai])|+ |E(H [Ai−1∩Ai])| = |E(H [A0∪· · ·∪Ai−1])|+ |E(H [Ai])| ,

where A0 =def ∅. Since H [Ai−1 ∩ Ai] and H [Ai] are complete graphs and the
numbers of vertices of these graphs are known as weights, it is easy to determine
the numbers of edges. In linear time, a path on which the smallest number of
edges among the minimal triangulations of G is realised can be found.
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Abstract. A Roman dominating function of a graph G = (V, E) is a
function f : V → {0, 1, 2} such that every vertex x with f(x) = 0
is adjacent to at least one vertex y with f(y) = 2. The weight of a
Roman dominating function is defined to be f(V ) =

∑
x∈V f(x), and

the minimum weight of a Roman dominating function on a graph G is
called the Roman domination number of G.

In this paper we answer an open problem mentioned in [2] by showing
that the Roman domination number of an interval graph can be com-
puted in linear time. We also show that the Roman domination number of
a cograph can be computed in linear time. Besides, we show that there
are polynomial time algorithms for computing the Roman domination
numbers of AT-free graphs and graphs with a d-octopus.

1 Introduction

Let G = (V, E) be an undirected and simple graph. A Roman dominating func-
tion is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0
is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman
dominating function is f(V ) =

∑
x∈V f(x). The minimum weight of a Roman

dominating function on a graph G is called the Roman domination number of
G and is denoted by γR(G).

Roman domination has been introduced in [2] as a new variety of the classical
domination problem having both historical and mathematical interest, partic-
ularly in the field of server placements [15]. We refer to [2,6,10,11,12,16,17] for
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more background on the historical importance of the Roman domination prob-
lem and various mainly graph-theoretic results not mentioned here.

The complexity of the Roman domination problem when restricted to inter-
val graphs was mentioned as an open problem in [2]. In this paper we show that
there are linear time algorithms to compute the Roman domination number for
interval graphs and cographs. We also show that there are polynomial time al-
gorithms for computing the Roman domination numbers of AT-free graphs and
graphs with a d-octopus. The paper is organized as follows. Section 2 gives some
preliminaries about our problem. The results for interval graphs and cographs
are presented in Sections 3 and 4, respectively. In Section 5, we present polyno-
mial time algorithms for computing the Roman domination numbers of AT-free
graphs and graphs with a d-octopus.

2 Preliminaries

Let G = (V, E) be an undirected and simple graph. For a vertex x of G we
denote by N(x) the neighborhood of x in G and by N [x] = N(x) ∪ {x} the
closed neighborhood of x. The distance dG(x, y) between two vertices x and y is
the length of a shortest path joining these two vertices.

A dominating set D of a graph G = (V, E) is a subset of vertices such that
every vertex of V −D has at least one neighbor in D. The minimum cardinality
of a dominating set of G is said to be the domination number of G, and it
is denoted by γ(G). An independent set in a graph G is a subset of pairwise
non-adjacent vertices.

Now let us summarize some useful facts on Roman domination [2].

Theorem 1 ([2]). γ(G) ≤ γR(G) ≤ 2γ(G).

Lemma 1 ([2].). If G is a graph of order n, then γR(G) = γ(G) if and only if
G = Kn, i.e., G is an independent set with n vertices.

Definition 1. A 2-packing is a set S ⊆ V such that for every pair x, y ∈ S
N [x] ∩ N [y] = ∅. The maximum cardinality of a 2-packing in G is called the
2-packing number of G.

Theorem 2 ([2]). Let f be a minimum weighted Roman dominating function
of a graph G without isolated vertices. Let Vi, i = 0, 1, 2, be the set of vertices x
with f(x) = i. Let f be such that |V1| is the minimum. Then V1 is a 2-packing
and there is no edge between V1 and V2.

Theorem 3 ([2]). For any non-trivial connected graph G,

γR(G) = min{|S| + 2γ(G − S) | S is a 2-packing}.

Remark 1. A 2-packing S can serve as V1 and a dominating set in G− S as V2.
Notice that the weight of a Roman dominating function is |V1| + 2|V2|.
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Definition 2. We call (V1, V2) a Roman pair of a graph G if (V1, V2) is a
solution induced by a minimum weighted Roman dominating function of the
graph G.

We refer the reader to [1,8] for definitions and properties of graph classes not
given in this paper.

3 Roman Domination on Interval Graphs

Throughout this section we assume that G = (V, E) is connected. Clearly, if
G is disconnected then, obviously, γR(G) is the sum of the Roman domination
numbers of its components.

Definition 3. A graph G = (V, E) is an interval graph if there exists a set
{Iv | v ∈ V } of intervals of the real line such that Iu ∩ Iv �= ∅ iff uv ∈ E.

Both Iv and v can be used to represent the vertex v in an interval graph.
Let l(v) and r(v) denote the values of the left and right end points of the in-
terval Iv = [lv, rv], respectively. A model of an interval graph is normalized if
∪v∈V {l(v), r(v)} = {1, 2, . . . , 2n}. In the following we assume that a normalized
model of the graph is part of the input.

Our linear time algorithm to compute the Roman domination number of
an interval graph uses dynamic programming and passes through the interval
collection from left to right to enumerate all the potential optimum solutions
(V1, V2).

3.1 Structure of an Optimum Solution

In this section, we examine the structure of an optimum solution.

Lemma 2. For every interval graph there exists a Roman pair (V1, V2) such that
no interval in V2 is properly contained in another interval.

Lemma 3. If (V1, V2) is a Roman pair, then V2 contains no clique of size 3 or
more.

Proof. Let {i1, i2, i3} ⊆ V2 be a clique of size three. By Lemma 2, there is no
interval which is properly contained in another interval. Without loss of gener-
ality, we assume l(i1) < l(i2) < l(i3) < r(i1) < r(i2) < r(i3). Then we obtain
that N [i2] ⊆ N [i1] ∪ N [i3]. That is, (V1, V2 \ {i2}) is a Roman pair of G which
is a contradiction. �

Lemma 4. If (V1, V2) is a Roman pair, then the connected components induced
by V2 are paths.

Proof. By Lemma 2, each connected component induced by V2 is a proper inter-
val graph. Hence, it is chordal and it does not contain a claw, i.e., K1,3. Together
with Lemma 3, our lemma holds. �
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We can use this last result in the following way: in order to find a set V2 of
an optimum solution, we only have to consider certain shortest paths between
some pairs of vertices. Now, we characterize the set V1 of an optimum solution.

Definition 4. Let (V1, V2) be a Roman pair of an interval graph G. Intervals
J ⊆ V1 are consecutive iff between the leftmost and rightmost end points of J
there is no end point of an interval I ∈ V2.

Lemma 5. There exists a Roman pair (V1, V2) with the property that V1 is an
independent set, and there is no subset J ⊆ V1 containing more than two con-
secutive intervals.

Proof. By Theorem 2, we have a Roman pair (V1, V2) with V1 being an indepen-
dent set. Let {a, b, c} ⊆ V1 be a set of three consecutive intervals in V1. Suppose
that l(a) < r(a) < l(b) < r(b) < l(c) < r(c). Since (V1, V2) is of minimum weight,
we have ∀v ∈ N(b), v �∈ V1 and v �∈ V2. Consequently, if v ∈ N(b) there must
exist a w ∈ N(v) such that w ∈ V2. However {a, b, c} are consecutive, there-
fore, we have r(w) < l(a) (or resp. r(c) < l(w)). As a result of v ∈ N(a) (resp.
v ∈ N(c)), there exists a solution with f(v) = 2 and f(a) = f(b) = 0 (resp.
f(b) = f(c) = 0). Consequently if we have a solution with three consecutive
intervals, there exists a solution (V1, V2) of same weight such that V1 contains
no more than two consecutive intervals. �

3.2 Description of the Algorithm

Previous results show us how to build a potential solution (V1, V2). Indeed, we
have seen that connected components induced by V2 are paths and each of these
paths can be preceded or followed by at most two consecutive intervals of V1.
So, our algorithm goes through the interval collection in a left-right fashion. An
optimum solution, i.e, a solution whose weight is the minimum over all possible
solutions, will be one of the solutions found by the algorithm with minimum value
of |V1|+2|V2|. The algorithm uses dynamic programming in order to intelligently
test every possible solution with respect to the structure established by previous
lemmas.

For any given normalized interval graph G = (V, E) of order n, the algorithm
treats intervals increasingly according to their right end points. Corresponding
to a right end point d (0 ≤ d ≤ 2n) of an interval, we define a sub-solution
(V ′

1 , V ′
2) by

1. V ′
1 , V ′

2 ⊆ {i ∈ V : r(i) ≤ d},
2. (V ′

1 , V ′
2 ) is a solution of minimum weight over all the solutions for the graph

G[S], where S = {v ∈ V : l(v) ≤ d}, such that the interval i with r(i) = d
belongs to V ′

2 .

Clearly, at the beginning of the algorithm no intervals are yet considered and
we define for d = 0 the sub-solution (V ′

1 , V ′
2) = (∅, ∅). Then, for each step, we

start with a current integer d and its corresponding sub-solution (V ′
1 , V ′

2), and
we construct an extension (V ′′

1 , V ′′
2 ) of (V ′

1 , V ′
2) corresponding to a new d′, where

d′ > d. According to previous lemmas, there are three possible cases:
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1. add two intervals i1 and i′1 to V ′
1 and one interval i2 to V ′

2 such that
(V ′′

1 , V ′′
2 ) = (V ′

1 ∪ {i1, i′1}, V ′
2 ∪ {i2}) is a sub-solution corresponding to

d′ = r(i2) (see procedure Add-intervals-first-choice),
2. add one interval i1 to V ′

1 and one interval i2 to V ′
2 such that (V ′′

1 , V ′′
2 ) =

(V ′
1 ∪ {i1}, V ′

2 ∪ {i2}) is a sub-solution corresponding to d′ = r(i2) (see
procedure Add-intervals-second-choice),

3. add one interval i2 to V ′
2 such that (V ′′

1 , V ′′
2 ) = (V ′

1 , V ′
2∪{i2}) is a sub-solution

corresponding to d′ = r(i2) (see procedure Add-intervals-third-choice).

The first choice corresponds to adding two consecutive intervals to V ′
1 and

then starting a new path in V ′′
2 . In the second case, we add one interval to V ′

1

and begin a new path in V ′′
2 . In the last case, we add only one interval to V ′

2

which extends an existing path in V ′
2 or begins a new path in V ′′

2 .
Now, we provide another result which will be used in the construction of

some sub-solutions.

Lemma 6. Let d be an integer such that 1 ≤ d ≤ 2n. Suppose we have a sub-
solution (V ′

1 , V ′
2) for the set of all intervals i with l(i) < d. Let i1 and i′1 be such

that r(i1) = min{r(i) : l(i) > d} and r(i′1) = min{r(i) : l(i) > r(i1)}. Let w
be such that r(w) = min{r(i) : l(i) > d ∧ i �= i1 ∧ i �= i′1}. If w ∈ N(i1),
then there exists an optimum solution (V ′′

1 , V ′′
2 ) where i1 and i′1 are not two

consecutive intervals in V ′′
1 .

Proof. By the construction of i1, i′1 and w, we have that d < l(i1), d < l(i′1),
d < l(w) and r(i1) < r(w). Since w ∈ N(i1), then l(w) < r(i1) < r(w). There
are two cases.

1. w ∈ N(i′1). Then there exists an alternative solution with w ∈ V ′′
2 and

i1, i
′
1 �∈ V ′′

1 .
2. w �∈ N(i′1). Then we have r(w) < l(i′1) and there are three sub-cases:

(a) w ∈ V ′′
2 . Then i1 and i′1 are not consecutive.

(b) There exists a v ∈ N(w) such that v ∈ V ′′
2 (w ∈ V ′′

0 ). Then l(v) <
r(w) < r(v) and v ∈ V ′′

2 . If both i1 and i′1 are in V ′′
1 , then i1 and i′1

cannot be consecutive since at least one end of v is between them.
(c) w ∈ V ′′

1 . In this case i1 cannot be in V ′′
1 , thus i1 and i′1 cannot be

consecutive. �

3.3 Preprocessing Data

In order to achieve a linear-time algorithm, we do some pre-processing so that
when we run the program, the necessary data is available in constant time. In
particular, the following operations must be done in constant time in order to
obtain the claimed time bound.

– find i, j, k such that r(i) = min{r(v) : l(v) > d}, r(j) = min{r(v) : l(v) >
d ∧ v �= i} and r(k) = min{r(v) : l(v) > d ∧ v �= i ∧ v �= j} for a fixed d,

– find i such that r(i) = max{r(v) : v ∈ N [x]} for a fixed x,
– check whether N [x]∩N [y] �= ∅ for two intervals x and y such that r(x) < r(y)

(for this operation we only have to find i such that r(i) = max{r(v) : v ∈
N [x]} and then check whether i ∈ N [y]).
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Sort Intervals According to Their Right End Points (SIRE). The collec-
tion of n intervals is given in a normalized interval model. We sort the intervals

in an array D of size 2n such that D[i] =
{

j if ∃j s.t. r(j) = i,
NIL otherwise. in time O(n)

using bucket sort.

Find Three Intervals with Lowest Right End Points (ILRE). Now, we
use the array D to build another 2-dimensional array MinR which contains for
each value d ∈ {0, 1, . . . , 2n} the first, second, and third interval whose right end
points are the first, second, and third lowest, respectively, and such that their
left end points are greater than d.

Find Intervals with Greatest Right End Points (IGRE). Finally, we
calculate for each interval i ∈ {1, . . . , n} its neighbor which has the greatest
right end point, or the interval i if there is no such a neighbor, in an array
MaxR.

The three procedures SIRE, ILRE and IGRE have been shown in detail in [13],
and each takes O(n) time.

3.4 A Linear-Time Algorithm

Using the structure of an optimum solution described by previous lemmas of
this section and some results stated in section 2 (in particular Theorem 2), we
are ready to present a linear-time algorithm for solving the Roman domination
problem on interval graphs. An optimum solution can be easily constructed by
standard techniques.
Procedure Add-intervals-first-choice(d)
Data: An integer d such that a corresponding sub-solution (V ′

1 , V ′
2) has already

been computed.
Result: An extension of the sub-solution (V ′

1 , V ′
2) constructed using the first case

(add two intervals to V ′
1 and one interval to V ′

2).

i1 ← MinR[d][1]
if i1 �= NIL then

i′1 ← MinR[r(i1)][1]
if i′1 �= NIL then

if MaxR[i1] does not intersect i′1 then
w ← MinR[d][2]
if w = i′1 then w ← MinR[d][3]
if w �= NIL then

if i1 does not intersect w then
i2 ← MaxR[w]
if i1 does not intersect i2 and i′1 does not intersect i2 then

W eight[r(i2)] ← min{W eight[r(i2)], W eight[d] + 4}

else W eight[2n] ← min{W eight[2n], W eight[d] + 2}
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Procedure Add-intervals-second-choice(d)
Data: An integer d such that a corresponding sub-solution (V ′

1 , V ′
2) has already

been computed.
Result: An extension of the sub-solution (V ′

1 , V ′
2) constructed using the second

case (add one interval to V ′
1 and one interval to V ′

2 ).

i1 ← MinR[d][1]
if i1 �= NIL then

w ← MinR[d][2]
if w �= NIL then

i2 ← MaxR[w]
if i1 does not intersect i2 then

W eight[r(i2)] ← min{W eight[r(i2)], W eight[d] + 3}
else W eight[2n] ← min{W eight[2n], W eight[d] + 1}

Procedure Add-intervals-third-choice(d)
Data: An integer d such that a corresponding sub-solution (V ′

1 , V ′
2) has already

been computed.
Result: An extension of the sub-solution (V ′

1 , V ′
2) constructed using the third case

(add one interval to V ′
2 ).

w ← MinR[d][1]
if w �= NIL then

i2 ← MaxR[w]
W eight[r(i2)] ← min{W eight[r(i2)], W eight[d] + 2}

else W eight[2n] ← min{W eight[2n], W eight[d]}

Algorithm Roman-Dom(normalized interval model of a graph G ; γR(G))
Data: An interval graph represented by a normalized model.
Result: The Roman domination number γR of the input interval graph.

Construct the data structures D, MinR and MaxR

for i = 1 to 2n do W eight[i] ← 2n
W eight[0] ← 0
Add-intervals-first-choice(0)
Add-intervals-second-choice(0)
Add-intervals-third-choice(0)
for i = 1 to 2n do

if D[i] �= NIL and W eight[r(D[i])] �= 2n then
Add-intervals-first-choice(r(D[i]))
Add-intervals-second-choice(r(D[i]))
Add-intervals-third-choice(r(D[i]))

return γR(G) = W eight[2n]

Theorem 4. The Roman domination problem can be solved in O(n) time on
any interval graph with a normalized interval model.

Proof. The correctness of the algorithm follows from the lemmas stated in Sub-
sections 3.1 and 3.2

We note that it takes linear time to construct D, MinR and MaxR, and
it takes constant time to process each of the procedures Add-intervals-first-
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choice, Add-intervals-second-choice, and Add-intervals-third-choice.
The complexity of the algorithm Roman-Dom is dominated by the second
for loop. Therefore, the complexity of the algorithm is O(n). �

4 Roman Domination on Cographs

In this section we describe an algorithm to compute the Roman domination
number of a cograph G. We may assume that G is connected, since otherwise
γR(G) equals the sum of the Roman domination numbers of its components.

If G is connected then G is the join of two graphs G1 and G2. Clearly, any 2-
packing of G consists of at most one vertex since G is P4-free. By Theorem 3 the
Roman domination number of G can be computed by taking the minimum over
all vertices x of 2γ(G− x) + 1 and 2γ(G). It is well-known that the domination
number of a cograph can be computed in linear time. Thus, we can compute the
Roman domination number of G in O(n(m + n)) time, where n and m are the
numbers of the vertices and edges of G respectively. However, we can obtain a
linear time algorithm by using the structure of cotree.

It is well-known that any cograph G can be represented by a cotree T [9]. In
T , each leaf represents a vertex of G and each internal node represents either a
join or a union. For any two vertices u and v, if (u, v) is an edge of G, then the
lowest common ancestor of u and v in T is a join node. Since G is connected,
the root of T is a join node. We may assume that T is a binary tree. For a
node v, let Tv denote the subtree of T rooted at v. Let Gv denote the subgraph
defined by Tv. Now, our algorithm is as follows.

For a cograph G, we traverse its corresponding cotree T from leaves to the
root. Let (V1(Gv), V2(Gv)) be a Roman pair of Gv. Initially, every leaf w is in
V1(Gw) and V2(Gw) is empty, i.e., γR(Gw) = 1. Now let us consider an internal
node u in T , let l (respectively, r) be its left (respectively, right) child. That is,
Gu is the resulting cograph by applying union or join operation on Gl and Gr. If
u is a union node, then (V1(Gu), V2(Gu)) = (V1(Gl)∪ V1(Gr), V2(Gl)∪ V2(Gr))
is a Roman pair of Gu. If u is a join node, we do the following. Without loss of
generality, let γR(Gl) ≤ γR(Gr).

1. γR(Gl) = γR(Gr). If at least one of V2(Gl) and V2(Gr) is not empty, say
V2(Gl) �= ∅, then set V1(Gr) = V2(Gr) = ∅. We do this because every vertex
in Gr is dominated by a vertex v ∈ V2(Gl).

If both V2(Gl) and V2(Gr) are empty, then we move any vertex v ∈ V1(Gl)
to V2(Gl). We then set V1(Gr) = V2(Gr) = ∅ for the same reason.

2. γR(Gl) < γR(Gr). If V2(Gl) = ∅, again we move a vertex v ∈ V1(Gl)
to V2(Gl). Since every vertex in Gr is dominated by v, we set V1(Gr) =
V2(Gr) = ∅.

If V2(Gl) �= ∅, then we set V1(Gr) = V2(Gr) = ∅ for the same reason.

In any one of above cases, if 2|V2(Gl)|+ |V1(Gl)| > 4, then (i) keep only one
vertex in V2(Gl), (ii) set V1(Gl) = ∅, and (iii) arbitrarily select a vertex in Gr

and add it to V2(Gr). Finally, let Vi(Gu) = Vi(Gl)∪ Vi(Gr) for i = 1, 2. It is not
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hard to see that γR(G) ≤ 4 for any connected cograph G. We have the following
theorem.

Theorem 5. The Roman domination number of a cograph can be computed in
linear time.

Proof. For the correctness, we show it by induction on the height of T . In the
base case that we consider the height equal to 0. Since every vertex w is an
isolated vertex, γR(Gw) = 1. Thus, ({w}, ∅) is the Roman pair of Gw. Assume
that for any node v in T with height equal to h, we can compute a Roman pair
(V1(Gv), V2(Gv)) for Gv. Now, consider a node u with height h + 1. Let l and r
be its left and right children in T , respectively. If u is a union node, it is easy to
check that (V1(Gl) ∪ V1(Gr), V2(Gl) ∪ V2(Gr)) is a Roman pair of Gu. We now
consider the case that u is a join node. Without loss of generality, we assume
that γR(Gl) ≤ γR(Gr). By the definition, every vertex in Gr is adjacent to any
vertex of Gl. If V2(Gl) is not empty, then every vertex is dominated by a vertex
in V2(Gl). Thus (V1(Gl), V2(Gl)) can Roman dominate Gu. If V2(Gl) is empty,
we can promote a vertex in V1(Gl) to V2(Gl) such that it can dominate Gr. Since
γR(Gl) ≤ γR(Gr), we can obtain a better solution by doing so. However, it will
increase the weight of the Roman dominating function. If |V1(Gl)|+2|V2(Gl)| ≤
4, then (V1(Gl), V2(Gl)) is a Roman pair of Gu. If |V1(Gl)| + 2|V2(Gl)| > 4, we
select a vertex vl from V2(Gl) and arbitrarily select a vertex vr from Gr. Since
vl dominates Gr and vr dominates Gl, (∅, {vl, vr}) is a Roman pair of Gu. This
show the correctness of our algorithm.

For the time complexity, we implement each dominating set using a linked
list with front and tail pointers. Thus the Roman pair of a union node can be
computed in constant time. For a join node, it costs constant time to empty a
set. For the other operations, at most constant number of vertices are updated.
Thus, the overall time complexity is linear. �
Remark 2. In [2] a graph G is called Roman if γR(G) = 2γ(G). It is proved
that a graph G is Roman if and only if γ(G) ≤ γ(G − S) + |S|

2 for every 2-
packing S in G. It follows that a connected cograph G is Roman if and only if
γ(G) = γ(G−x) for every vertex x. Since, in [2] it is posed as an open problem to
determine Roman graphs other than trees4, it would be of interest to know which
cographs satisfy this equality. Notice that a large subclass of Roman cographs
can be constructed as follows: Take any cograph G and construct a graph H
by replacing every vertex of G by a true twin. It is easy to check that H is a
cograph5, and furthermore for every vertex x in H , γ(H) = γ(H − x).

5 Roman Domination on AT-Free Graphs and Graphs
with a d-Octopus

In this section we study the Roman domination problem on AT-free graphs
and graphs with d-octopus. Our approaches are based on algorithms for the
4 A constructive characterization of Roman trees is given in [10].
5 Any induced P4 would lead to an induced P4 in G.
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domination problem in [7,14]. First we provide some preliminaries on AT -free
graphs and d-octopus.

Definition 5. Three vertices x, y and z of a graph G = (V, E) form an as-
teroidal triple, AT for short, if for any two of the three vertices there is a path
between them that avoids the neighborhood of the third. A graph is said to be
AT-free if it does not contain an AT.

Definition 6. A pair of vertices x and y is a dominating pair of a graph G, if
the vertex set of any path between x and y in G is a dominating set in G.

Theorem 6 ([4]). Any connected AT-free graph has a dominating pair.

Definition 7. A path P = (x = x0, x1, . . . , xd = y) is a dominating shortest
path, DSP for short, of a graph G = (V, E) if

1. P is a shortest path between x and y in G,
2. {x0, x1, . . . , xd} is a dominating set of G.

Corollary 1 ([14]). Every connected AT-free graph has a DSP.

Definition 8. A d-octopus O of a graph G = (V, E) is a subgraph of G such
that

1. the vertices of O is a dominating set of G,
2. there are vertices r, v1, v2, . . . , vd of G, and for each i ∈ {1, . . . , d} there is

a shortest path Pi from r to vi in G such that O is the union of the paths
P1, P2, . . . , Pd.

We call the common end point r of the d shortest paths the root of the d-octopus
O. Note that the paths need not to be disjoint.

Remark 3. A graph with a DSP is a 1-octopus graph.

The following results are Roman domination versions of Lemma 33 in [7] and
Theorem 4 in [14] “replacing D by V2”.

Theorem 7. Let G = (V, E) be a graph with a d-octopus with root x. Let H0,
H1, . . . , Hl be the levels of the BFS-tree with the root x. Then G has a Roman
pair (V1, V2) such that:

∧
i∈{0,1,...,l}

∧
j∈{0,1,...,l−i}

∣∣∣∣∣V2 ∩
i+j⋃
s=i

Hs

∣∣∣∣∣ ≤ (j + 5)d − 1. (1)

Theorem 8. Let G = (V, E) be a connected AT-free graph. There is a vertex
x which can be determined in linear time such that if H0, H1, . . . , Hl are the
levels of the BFS-tree with the root x, then G has a Roman pair (V1, V2) such
that: ∧

i∈{0,1,...,l}

∧
j∈{0,1,...,l−i}

∣∣∣∣∣V2 ∩
i+j⋃
s=i

Hs

∣∣∣∣∣ ≤ j + 3. (2)
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A Polynomial Time Algorithm:

Our algorithm uses dynamic programming to compute a Roman pair through
the levels of a BFS-tree. A subsolution computed during the execution of the
algorithm is a set S ⊆

⋃i−1
j=0 Hj chosen up to a fixed level i−1 ∈ {1, 2, . . . , l−1}.

Information of any subsolution S that we must store during the execution are
the vertices that belong to the last two current levels (i.e, S ∩ (Hi−2 ∪ Hi−1)).
Consequently, the number of vertices from V2 that a Roman pair (V1, V2) might
have in any three consecutive BFS-levels is important for the complexity of the
algorithm. The previous theorems guarantee that this number is at most 5 for
connected AT-free graphs and at most 7d − 1 for graphs with a d-octopus.

The algorithm rpk(G), where k is a fixed positive integer, computes a Roman
pair of the given connected graph G. If G has a vertex x and a Roman pair
(V1, V2) such that at most k vertices of V2 belong to any three consecutive levels
of the BFS-tree which has x as a root, then rpk(G) outputs a Roman pair for G.

Algorithm rpk(G)
D ← V
val(D) ← |V | /* initialization: every vertex of V is in V1, this is a

trivial Roman dominating set */

forall x ∈ V do
Compute the BFS-level of vertex x
H0 = {x}, H1 = N(x), . . . , Hl = {u ∈ V : dG(x,u) = l}
i ← 1
Initialize the queue A1 to contain an ordered triple (S, S, val(S)) for all
nonempty subsets S of N [x] satisfying |S| ≤ k with val(S) ← 2|S|
Add to the queue A1 the ordered triple (∅, ∅, 1)
while Ai �= ∅ and i < l do

i ← i + 1
forall triples (S, S′, val(S′)) in the queue Ai−1 do

forall U ⊆ Hi with |S ∪ U | ≤ k do
R ← (S ∪ U)\Hi−2

R′ ← S′ ∪ U
val(R′) ← val(S′) + 2|U | + |Hi−1\N [S ∪ U ]|
if there is no triple in Ai with first entry R then

Insert (R,R′, val(R′)) in the queue Ai

if there is a triple (P, P ′, val(P ′)) in Ai such that P = R and
val(R′) < val(P ′) then

Replace (P, P ′, val(P ′)) in Ai by (R, R′, val(R′))

Among all triples (S, S′, val(S′)) in the queue Al, determine one with
minimum value v = val(S′) + |Hl\N [S]|, say (B, B′, val(B′))
if v < val(D) then D ← B′; val(D) ← v

return (V1, V2) = (V \N [D], D)

Theorem 9. Algorithm rpk(G) computes a Roman pair of the given connected
graph G in time O(nk+2) if G has a Roman pair (V1, V2) and a vertex x ∈ V
such that at most k vertices of V2 belong to any three consecutive BFS-levels of x.
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Proof. The correctness can be seen easily and the analysis of the running time
is the same as the Theorem 5 in [14]. �
Theorem 10. There is an O(n7d+1)-time algorithm to compute Roman pairs
for graphs with a d-octopus. In particular, there is an O(n7)-time algorithm
to calculate Roman pairs for graphs having a DSP and there is an O(n6)-time
algorithm to compute Roman pairs for AT-free graphs.

Proof. By combining Theorems 7 and 9 and using the results in [3,5,14] we
obtain the theorem (see [13] for more details). �
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Abstract. Degree refinement matrices have tight connections to graph
homomorphisms that locally, on the neighborhoods of a vertex and its
image, are constrained to three types: bijective, injective or surjective.
If graph G has a homomorphism of given type to graph H , then we
say that the degree refinement matrix of G is smaller than that of H .
This way we obtain three partial orders. We present algorithms that
will determine whether two matrices are comparable in these orders. For
the bijective constraint no two distinct matrices are comparable. For the
injective constraint we give a PSPACE algorithm, which we also apply to
disprove a conjecture on the equivalence between the matrix orders and
universal cover inclusion. For the surjective constraint we obtain some
partial complexity results.

1 Introduction

Graph homomorphisms, originally obtained as a generalization of graph col-
oring, have a great deal of applications in computer science and other fields.
Beyond these computational aspects they impose an interesting structure on
the class of graphs, with many important categorical properties, see e.g. the
recent monograph [6]. We focus our attention on graph homomorphisms with
local constraints. Originally arising in topological graph theory, these homomor-
phisms were required to act as a bijection on the neighborhood of each vertex [2].
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We consider further local constraints, namely local injectivity or local surjectiv-
ity. Both these kinds of homomorphisms have already been studied due to their
applications in models of telecommunication [4] and in social science [3,8].

In related work [5] we have shown that these locally constrained homomor-
phisms impose an algebraic structure on the class of connected finite graphs.
We also extended a necessary condition for the existence of a locally bijective
homomorphism between two graphs [7] to a similar but much more sophisti-
cated statement for locally injective or surjective homomorphisms. An important
role in this characterization was predicated to matrices that describe the degree
structure of a graph, the so-called degree refinement matrices. We gave a char-
acterization of these matrices, and showed that both locally injective and locally
surjective graph homomorphisms impose partial orders on degree refinement
matrices [5].

New Results

In this paper we continue this work and turn our attention away from categor-
ical questions to focus instead on the following computational questions: Given
two degree matrices, are they comparable in the partial orders imposed by local
injectivity or surjectivity? It is not obvious that these questions are decidable,
and indeed for local surjectivity we must leave this as a major open problem.
However, for local injectivity we manage to show an upper bound on the size of
the smallest graphs that can possibly justify a positive answer and use this to
provide a PSPACE algorithm. The existence of a locally bijective homomorphism
between two graphs is conditioned by the equivalence of their degree refinement
matrices, which can also be expressed as an isomorphism between their universal
covers [7]. For the other two kinds of locally constrained homomorphisms this
naturally raises the question, and conjecture, of a similar tight relationship be-
tween matrix comparison in the partial order and inclusion of universal covers.
However, we apply our PSPACE algorithm to disprove this enticing conjecture.
For the surjective constraint we obtain some partial results on the complexity of
matrix comparison.

2 Preliminaries

Graphs considered in this paper are simple, i.e. with no loops and multiple
edges, connected and, if not stated otherwise, they are also finite. We denote the
class of such graphs by C. For any vertex u ∈ VG the symbol N(u) denotes the
neighborhood of u, i.e. the set of all vertices adjacent to u. A k-regular graph is a
graph, where all vertices have k neighbors (i.e. are of degree k). A (k, l)-regular
bipartite graph is a bipartite graph where vertices of one class of the bi-partition
are of degree k and the remaining vertices are of degree l. A graph G is a subgraph
of a graph H if VG ⊆ VH and EG ⊆ EH . This is denoted by G ⊆ H .

A degree partition of a graph G is a partition of the vertex set VG into blocks
B = {B1, . . . , Bk} such that whenever two vertices u and v belong to the same
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block Bi, then for any j ∈ {1, . . . , k} we have |NG(u)∩Bj | = |NG(v)∩Bj | = mi,j .
The k × k matrix M such that (M)i,j = mi,j is a degree matrix. A graph G
can allow several degree matrices. The matrix that corresponds to the partition
with the smallest number of blocks and where these blocks follow the so-called
canonical ordering (just some ordering to provide uniqueness) is called its degree
refinement matrix. It is denoted by drm(G) for a graph G and computed in
polynomial time by a simple stepwise refinement starting from an initial partition
by vertex degrees with blocks ordered by increasing degrees. The refinement of
the partition continues until any two nodes in the same block have the same
number of neighbors in any other block, see e.g. [5]. (See Fig. 1 for an example.)
We denote the class of degree refinement matrices of graphs in C by M.

A graph homomorphism is an edge-preserving mapping f : VG → VH , i.e.
(f(u), f(v)) is an edge of H whenever (u, v) ∈ EG. A homomorphism f : G → H
may be further confined to adhere to some local constraints, as in the following
definition.

Definition 1. We call a graph homomorphism f : G → H locally bijective,
locally injective or locally surjective if for every vertex u ∈ VG the restriction
of f to N(u) is a bijection, injection or surjection between N(u) and N(f(u)),
respectively. We denote it as f : G B−→ H or f : G I−→ H or f : G S−→ H,
respectively.

For each of the three types of local constraints ∗ = B (bijective), ∗ = I (injective)
or ∗ = S (surjective), we will in this paper focus on the following three relations
on the class of degree refinement matrices M:

M
∗−→ N ⇐⇒ exist G, H ∈ C : drm(G) = M, drm(H) = N and G

∗−→ H

In [5] we showed that all three relations (M, B−→), (M, I−→) and (M, S−→) are
partial orders. Note that (M, B−→) is in fact a trivial order, since in [7] it has
been shown that drm(G) = drm(H) is a necessary condition for G B−→ H .

For a graph G ∈ C the universal cover TG is defined in [1] as the only (possibly
infinite) tree that allows TG

B−→ G. The vertices of TG can be represented as
walks in G starting in a fixed vertex u that do not traverse the same edge
in two consecutive steps. Edges in TG connect those walks that differ in the
presence of the last edge. The mapping TG

B−→ G sending a walk in VTG to its
last vertex is a locally bijective homomorphism. Universal covers are in one-to-
one correspondence with degree refinement matrices, hence for M ∈ M we can
define TM = TG for any G with drm(G) = M .

Proposition 1 ([5]). The relation M I−→ N holds if and only if there exist
graphs G with drm(G) = M and H with drm(H) = N such that G ⊆ H.

We use the following relationship between degree refinement matrices and uni-
versal covers.

Proposition 2 ([5]). For any degree refinement matrices M, N ∈ M it holds
that if M I−→ N then TM ⊆ TN , and if M S−→ N then TN ⊆ TM .
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For computational complexity purposes 〈X〉 denotes the size of the instance X
(graph, matrix, etc.) in usual binary encoding of numbers. Formally we represent
vertices of a graph G by numbers {1, 2, . . . , |VG|} and its edges as a list of its ver-
tices. A graph with m edges on n vertices hence requires space 〈G〉 = Θ(m log n).
For an integral-valued k× l matrix A let a∗ = 2+max{|Ai,j | | 1 ≤ i ≤ k and 1 ≤
j ≤ l}. Then the size of A is given by 〈A〉 = Θ(kl log a∗).

We will need the following technical lemma for our PSPACE algorithm.

Lemma 1. Let A be an integral-valued k× l matrix with l > k. If Ax = 0 allows
a nontrivial nonnegative solution, then it allows a nontrivial nonnegative integer
solution x with at most k + 1 nonzero entries and with 〈xi〉 = O(k log(ka∗)) for
each entry xi.

Proof. If a solution x with more than k + 1 positive coefficients exists, then the
columns corresponding to k+1 of these variables are linearly dependent. Let the
coefficients of such a linear combination form a vector x′. Obviously Ax′ = 0,
but the entries of x′ may not be necessarily nonnegative.

Without loss of generality we assume that at least one of the entries in x′ is
positive. Then, for a suitable value α = −min{xi

x′
i
| x′

i > 0} the vector x + αx′

is also a nontrivial nonnegative solution with more zero entries than x.
Repeating this trimming iteratively we obtain a nontrivial nonnegative solu-

tion with at most k + 1 nonzero entries. As the other entries are zero, we may
restrict the matrix A to columns corresponding to nonzero entries of the solution.
It may happen that the rank of the modified matrix decreases. Then we reduce
the number of rows until the remaining ones become linearly independent. By
repeating the above process we finally get an k′ × (k′ + 1) matrix B of rank
k′ ≤ k, such that By = 0 allows a nontrivial nonnegative solution y. Such y can
be extended to a solution x of the original system by inserting zero entries.

Without loss of generality we assume that the first k′ columns of B are
linearly independent, and we arrange them in a regular matrix R. Then its
inverse can be expressed as R−1 = adj(R)

det(R) , where adj(R) is the adjoint matrix of

R. By the determinant expansion we have that det(R) ≤ k′!(a∗)k′ ≤ k!(a∗)k ≤
kk(a∗)k. Then we find that 〈det(R)〉 = O(k log(ka∗)). Each element of adj(R) is
a determinant of a minor of R and hence is smaller than (k − 1)k−1(a∗)k−1.

Now consider the integral valued matrix B′ = det(R) · R−1B. Then

• y is a solution of B′y = 0 if and only if By = 0.
• The first k′ columns of B′ form the matrix det(R) · Ik′ .
• In the last column the entries z1, . . . , zl, are all negative (if det(R) > 0) or

all positive (otherwise).

If det(R) > 0 then y = (−z1, . . . ,−zk′ , det(R)) is a nonnegative nontrivial
integral solution to By = 0. In the other case we swap the sign and choose
y = (z1, . . . , zk′ ,− det(R)). As each zi ≤ ka∗ maxij(adj(R)ij) ≤ kk(a∗)k, we
obtain 〈zi〉 = O(k log(ka∗)), which concludes the proof. �



Algorithms for Comparability of Matrices in Partial Orders Imposed 119

3 Matrix Comparison Via Local Injectivity

In this section we consider the problem of deciding whether for given degree
refinement matrices M and N the comparison M I−→ N holds.

Observe that according to the definition of the order (M, I−→), there is no ob-
vious bound on the sizes of graphs G and H with M and N as degree refinement
matrices that should justify the comparison M I−→ N .

The main result of this paper is the following theorem:

Theorem 1. Let M, N be degree refinement matrices of order k and l. If M I−→
N , then there exist a graph G of size (klm∗)O(k2l2) and a graph H of size
(klm∗n∗)O(k2l2) such that G I−→ H, drm(G) = M and drm(H) = N .

Proof. Throughout this proof we assume that indices i, j, r, s used later always
belong to feasible intervals 1 ≤ i, r ≤ k and 1 ≤ j, s ≤ l. For clarity we often
abbreviate pairs of sub-/super-scripts i, j by ij, so in this notation, ij does not
mean multiplication.

The main idea of the construction is as follows. Assume that M I−→ N holds.
Then by Proposition 1 there exist a graph H and a subgraph G ⊆ H witnessing
M I−→ N . Let {U1, . . . , Uk} be the degree partition of G and {V1, . . . , Vl} the one
for H . We further partition VG ⊆ VH as follows. For each pair of indices r and
s we define the set

Wrs = {v | v ∈ Ur ∩ Vs},

and for some vertex w ∈ Wrs we can write a vector describing the distribution
of neighbors of w in the classes W11, . . . , Wkl.

We first show that for given M and N the set T containing all such vectors is
finite. Then, with help of T , we design a set of equations that allows a solution
if and only if the desired graphs G and H exist. As the size of T is bounded, we
can establish the desired bounds on the size of G and H .

Let prs be a vector of length kl whose entries are positive integers and are
indexed by pairs ij. If the vector prs further satisfies

l∑
j=1

prs
ij = mri for all 1 ≤ i ≤ k, (1)

k∑
i=1

prs
ij ≤ nsj for all 1 ≤ j ≤ l, (2)

then we call prs an injective distribution row for indices r and s. Note that for
given matrices M and N and any feasible choice of r, s the number of all different
injective distribution rows for r and s is finite. We denote the set of all injective
distribution rows for indices r and s by

T (r, s) = {prs(1), . . . ,prs(t(rs))}.
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Due to (1), the number of distribution rows for every prs is bounded by

t(r, s) ≤
(
m∗+l−1

m∗
)k

= O((m∗ + 1)kl). The total number of distribution rows is
then

t0 =
∑
r,s

t(r, s) = O(kl(m∗ + 1)kl).

Now consider a set of t0 variables wrs(t) for all feasible r, s and all 1 ≤ t ≤
t(r, s). We claim that the existence of a nontrivial nonnegative solution of the
following homogeneous system of k2l2 equations in t0 variables:

t(r,s)∑
t=1

prs
ij

(t)wrs(t) =
t(i,j)∑
t′=1

pij(t′)
rs wij(t′) 1 ≤ i, r ≤ k, 1 ≤ j, s ≤ l (3)

is a necessary and sufficient condition for the existence of finite graphs G and H
witnessing M I−→ N .

Necessity: For given G and H we assume without loss of generality that G ⊆ H .
Firstly determine the sets Wrs, and for each vertex u ∈ Wrs ⊆ VG compute
the distribution vector of its neighbors p(u) = (|N(u)∩W11|, . . . , |N(u)∩Wkl|).
Then the vector w with entries wrs(t) = |{u : p(u) = prs(t)}| is a nontrivial
solution of (3), since in each equation both sides are equal to the number of
edges connecting sets Wrs and Wij .

Sufficiency: Assume that the system (3) has a nontrivial nonnegative solu-
tion. By appropriate scaling we obtain a nonnegative integer solution w =
(w11(1), . . . , wkl(t(k,l))) with each wrr(t) is even.

We first build a multigraph G0 upon t0 sets of vertices W 11(1), . . . , W kl(t(k,l)),
where |W rs(t)| = wrs(t) (some sets may be empty) as follows: Denote W rs =
W rs(1) ∪ · · · ∪ W rs(t(r,s)).

Our choice of even values wrr(t) allows us to build an arbitrary p
rr(t)
rr -regular

multigraph on each set W rr(t).
As w satisfies (3), we can easily build a bipartite multigraph between any

pair of different sets W rs and W ij such that the number of edges between them
is equal to

∑t(r,s)
t=1 prs

ij
(t)wrs(t) =

∑t(i,j)
t′=1 p

ij(t′)
rs wij(t′).

For any vertex u in W rs(t) with more than p
rs(t)
ij neighbors in W ij there exists

a vertex u∗ in some W ij(t∗) with less than p
rs(t∗)
ij neighbors, and vice versa. Now

we remove an edge between u and some neighbor v ∈ W ij and add the edge
(u′, v). We repeat this procedure until all vertices of W rs have the right number
of neighbors in W ij . Then we do the same for vertices in W ij .

This way we have constructed a bipartite multigraph between W rs and W ij

such that each vertex of each W rs(t) is incident with exactly p
rs(t)
ij edges and

each vertex of each W ij(t′) is incident with exactly p
ij(t′)
rs edges.

It may happen in some instances that multiple edges are unavoidable. In that
case let d ≤ m∗ be the maximal edge multiplicity in G0. We obtain the graph G
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by taking d copies of the multigraph G0 and replace each collection of d parallel
edges of multiplicity d′ ≤ d by a simple d′-regular bipartite graph.

Due to the construction, it is straightforward to check that vertices from sets
that share the same index r form the r-th block of the degree partition of G and
that drm(G) = M .

For the construction of H we first distribute the vertices of G into sets
V ′

1 , . . . , V ′
l , where

V ′
s =

k⋃
r=1

t(r,s)⋃
t=1

W rs(t).

Since N is a degree refinement matrix, the following homogeneous system
whose equations represent the number of edges between two different blocks in
N has nontrivial solutions:

nsjvs = njsvj 1 ≤ j, s ≤ l (4)

Then we form sets V1, . . . , Vl by further inserting new vertices into V ′
1 , . . . , V ′

l

until for each s, j : |Vs|nsj = |Vj |njs and |Vs| > 0 is even.
Next we build a multigraph H0 by constructing an (nsj , njs)-regular bipartite

multigraph between any two sets Vs and Vj , and an njj -regular multigraph on
each Vj . In case multiple edges cannot be avoided we take sufficient copies of H0

and make the appropriate reparations. So we perform these steps in the same
way as before, however without removing any edges between vertices in (any
copy of) G.

Clearly, G is a subgraph of the resulting graph H and H has N as its degree
refinement matrix.

To conclude the proof of the theorem we discuss the size of G and H . Note
that all coefficients p

rs(t)
ij of system (3) are at most m∗. Then, by Lemma 1, we

find a nontrivial nonnegative integer solution w whose entry sizes are bounded
by O(k2l2 log(klm∗)).

We can use the entries of 2w∗ for the sizes of the blocks in the multigraph
G0. Since we take at most m∗ copies of G0 to obtain our final graph G, we find
that 〈G〉 = (klm∗)O(k2l2).

Analogously, the size of each entry of a solution v of system 4 is bounded by
O(l2 log(ln∗)). Since multigraph H0 must contain graph G, we use the entries
of 〈G〉 for the block sizes of H0. We need at most n∗ copies of H0 for graph H .
Hence, each block size |Vi| can be chosen within the upper bound 〈G〉 · (ln∗)O(l2)

implying that 〈H〉 = (klm∗n∗)O(k2l2). �

We can now settle the first computational complexity result for the following
matrix comparison problem:

Matrix Injectivity (MI)
Instance: Degree refinement matrices M and N .
Question: Does M I−→ N hold?

Corollary 1. The MI problem is decidable in polynomial space.
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Proof. The proof of Theorem 1 showed that M I−→ N if and only if system (3)
has a nontrivial nonnegative solution. Then by Lemma 1 there exists a nontrivial
nonnegative integral solution with at most k2l2 + 1 nonzero entries, which are
each bounded in size by O(k2l2 log(klm∗)).

So we only have to consider vectors of this form. As the size of any such
vector is polynomial, we can by brute force sequentially list them all, and test
their feasibility for (3). Note that any restriction of (3) to polynomially many
columns can be generated in PSPACE as well. �

As we have discussed in the introduction, the matrix order (M, I−→) was
considered as a nontrivial necessary condition for the decision problem whether
G I−→ H . As the size of M and N should vary from being independent in the
size of the given graphs to be of approximately the same size of G, H , even
the exponential time-complexity of the MI problem might be plausible as a
precomputation for some instances.

We apply Theorem 1 to disprove the following interesting conjecture on the
equivalence between comparison of degree matrices in I−→ and inclusion of uni-
versal covers.

Conjecture 1. For any two degree refinement matrices M and N the following
equivalence holds: M I−→ N ⇐⇒ TM ⊆ TN .

We note here that the affirmative answer for the only if implication was
already shown in Proposition 2. The following example acts both as an example
for the application of Theorem1, and as an counterexample of Conjecture 1.

Corollary 2. There exist matrices M and N such that TM ⊆ TN , but M � I−→ N .

Proof. We first construct graphs G and H such that H S−→ G. Denote M =
drm(G) and N = drm(H). Then according to Proposition 2 we get that TM ⊆
TN . We will now show that the MI problem for matrices M and N has a negative
answer.

G

4

1

3 3’

2

53′

43′

11

31

21

103134 62 124

144

72 93

82

H

113

Fig. 1. Graphs G and H , vertices of H are labeled by uf(u) for a f : H S−→ G
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The graphs G and H together with a mapping f : H S−→ G are depicted in
Fig. 1.

The graph G has 4 classes in its degree refinement and H has 14 classes.
Then N is the adjacency matrix of H and the degree refinement matrix of G is

M =

⎛⎜⎜⎝
0 1 2 1
1 0 2 0
1 1 0 0
1 0 0 0

⎞⎟⎟⎠ .

Note that N is the adjacency matrix of H . In order to obtain a contradic-
tion suppose TM

I−→ TN holds. By Proposition 1 there exist a graph G′ with
drm(G′) = M and a graph H ′ with drm(H ′) = N such that G′ ⊆ H ′. Let
{U1, . . . , Uk} be the degree partition of G′ and {V1, . . . , Vl} the one for H ′. We
define the sets Wrs as in proof of Theorem 1.

As we have seen in the proof of Theorem 1 the pair (G′, H ′) corresponds with
a nontrivial solution of (3). Below we will show, however, that (3) only allows
the trivial solution. For simplicity reasons we will first restrict the length of the
injective distribution rows.

A vertex in class U1 has four neighbors in G′. A vertex in class V4 has three
neighbors in H ′. This means that a vertex of U1 can never be in V4, i.e., W1,4 is
empty. Hence the set T (1, 4) is empty. By the same argument we find that the
sets T (r, s) with (r, s) = (1, 5), . . . , (1, 14), (2, 9), . . . , (2, 14), (3, 12), . . . , (3, 14)
are empty.

A vertex in U2 has a neighbor of degree four in G′. A vertex in V1 does not
have a neighbor of degree four in H ′. Hence the set T (2, 1) is empty. By the same
argument we exclude pairs (2, 2), (2, 3), (3, 1), (3.2), (3, 3), (4, 1), (4, 2), (4, 3).

Any vertex in U4 has degree one in G′. Suppose u ∈ U4 belongs to V4. So it
does not have degree one in H ′. Let v ∈ U1 be the (only) neighbor of u in G′.
Then v has degree four in G′ and must belong to V1 ∪ V2 ∪ V3. The other three
neighbors of v all have degree greater than one in G′. However, one of these three
remaining neighbors of v must have degree one in H ′. Hence, the set T (4, 4) is
empty. In the same way we may exclude pairs (4, 4), . . . , (4, 11).

Every vertex in W2,4 needs a neighbor in W3,1 or W3,2. These sets are empty,
since both T (3, 1) and T (3, 2) are empty. Hence T (2, 4) is empty, and conse-
quently, by a similar argument, T (3, 6) is empty. Furthermore, T (2, 4) = ∅ im-
plies that a vertex in W1,2 does not have neighbor in W3,7. Since every vertex
in W3,7 must have a neighbor in W1,2, the latter implies T (3, 7) = ∅, and conse-
quently T (2, 5) = ∅ and T (3, 8) = ∅.

Only the pairs (3, 4) and (3, 5) allow two distribution rows, the other pairs
all allow one. So we have reduced the total number of feasible distribution rows
to 4 · 14 − 20 − 9 − 8 − 5 + 2 = 16.

The equation (3) for p, q = 1, 1 and i, j = 2, 6 gives w1,1 = w2,6. Analogously,
w1,1 = w3,4(1) while w2,6 = w3,4(1)+w3,4(2). Hence w3,4(2) = 0. Further w3,4(2) =
w1,2 = w3,10 = w2,6, and w1,2 = w2,7 = w3,11 = w1,3. Consequently, w1,1 =
w1,2 = w1,3 = 0.
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Table 1. The distribution rows for M (only nonzero entries are shown)

i 1 1 1 2 2 2 3 3 3 3 3 4 4 4
j 1 2 3 6 7 8 4 5 9 10 11 12 13 14

p1,1 1 1 1 1
p1,2 1 1 1 1
p1,3 1 1 1 1
p2,6 1 1 1
p2,7 1 1 1
p2,8 1 1 1

p3,4(1) 1 1
p3,4(2) 1 1
p3,5(1) 1 1
p3,5(2) 1 1
p3,9 1 1
p3,10 1 1
p3,11 1 1
p4,12 1
p4,13 1
p4,14 1

It can be further shown that (3) allows only trivial solution via values of
wr,s. However, at this moment we can already claim that no witnesses G, H for
M I−→ N exist, since it is impossible to map vertices from the first class of degree
partition of G on any vertex of H . �

4 Matrix Comparison Via Local Surjectivity

In this section we are interested in the following matrix comparison problem:

Matrix Surjectivity (MS)
Instance: A degree refinement matrix M and a degree refinement matrix N .
Question: Does M S−→ N hold?

We were not able to answer the decidability of this problem. However, we can
show some partial results.

Proposition 3. Let G be a graph with drm(G) of order k and H be a graph on l
vertices such that G S−→ H. Then there exists a graph G′ with drm(G′) = drm(G)
such that G′ S−→ H and 〈G′〉 = (klm∗)O(k2l2).

Proof. Let f : VG → VH be a locally surjective homomorphism from G to H .
Let {U1, . . . , Uk} be the degree partition of G and let {v1, . . . , vl} be the vertex
set of H . We further partition VG as follows. For each pair of indices r and s we
define the set

Wrs = {u | u ∈ Ur and f(u) = vs},
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and for some vertex w ∈ Wrs we can write a vector describing the distribution
of neighbors of w in the classes W11, . . . , Wkl.

Let prs be a vector of length kl whose entries are positive integers and are
indexed by pairs ij. If the vector prs further satisfies

l∑
j=1

prs
ij = mri for all 1 ≤ i ≤ k, (5)

(vs, vj) ∈ EH ⇒
k∑

i=1

prs
ij ≥ 1 for all 1 ≤ j ≤ l. (6)

(vs, vj) /∈ EH ⇒
k∑

i=1

prs
ij = 0 for all 1 ≤ j ≤ l. (7)

then we call prs a surjective distribution row for indices r and s. The number
of surjective distribution rows is bounded.

We now involve the system of equations (3). We claim that the existence of a
nontrivial nonnegative solution of (3) is a necessary and sufficient condition for
the existence of a finite graph G′ with drm(G′) = M and G S−→ H . The proof
of this claim and the bound on the size of G′ is using the same arguments as in
the proof of Theorem 1. �

Now we consider the following decision problem.

Matrix Graph Surjectivity (MGS)
Instance: A degree refinement matrix M and a graph H .
Question: Does there exist a graph G with drm(G) = M such that G S−→ H
holds?

Corollary 3. The MGS problem problem is decidable in polynomial space.

Proof. We can use Proposition 3 and proceed with a proof analogous to the one
in Corollary 1. �

We can use Corollary 3 to answer decidability of the MS problem for instances
(M, N), where N is the degree refinement matrix of a unique graph H . The
proposition below shows that this is only the case if H is a tree.

Proposition 4. A matrix N is a degree refinement matrix of a unique graph H
if and only if N is the degree refinement matrix of a tree.

Proof. Suppose N is the degree refinement matrix of a tree T . Then the universal
cover TN is isomorphic to T itself. Since all graphs that contain a cycle have an
infinite universal cover, there can not be another graph H with drm(H) = N .

In order to prove the reverse statement let H be the only graph that has N
as a degree refinement matrix. Suppose H is not a tree. Then H contains an
edge e = (u, v) such that the graph H − e is still connected. We take a copy H ′
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of H . Let e′ = (u′v′) be the copy of e. We remove e in H and e′ in H ′, and we
add the edges (u, v′) and (u′, v). The resulting graph H∗ has the same degree
refinement matrix as H and is connected. �

We can also use Corollary 3 to answer decidability of the MS problem for
instances (M, N), where the l × l degree refinement matrix N is the adjacency
matrix of a graph H . This can be seen as follows. Suppose M S−→ N holds with
witnesses G and H ′. Since N is an adjacency matrix of graph H , the rows of N
are in one-to-one correspondence with vertices of H , i.e., we can say that vertex
vi ∈ VH corresponds to row i. Then the function that maps all vertices of H ′ that
belong to block Vi ⊆ VH′ to vi for 1 ≤ i ≤ l is a locally bijective homomorphism
from H ′ to H . The mappings H ′ B−→ H and G S−→ H ′ imply G S−→ H . So we can
restrict ourselves to graph H .

In general, even if we construct a graph G with respect to feasible block sizes,
there is no evident rule how to limit the size of some plausible graph H and how
to define the locally surjective mapping G S−→ H . We leave the general question
on decidability of the MS as an open problem.
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Abstract. Consider the problem of discovering (or verifying) the edges
and non-edges of a network, modeled as a connected undirected graph,
using a minimum number of queries. A query at a vertex v discovers (or
verifies) all edges and non-edges whose endpoints have different distance
from v. In the network discovery problem, the edges and non-edges are
initially unknown, and the algorithm must select the next query based
only on the results of previous queries. We study the problem using
competitive analysis and give a randomized on-line algorithm with com-
petitive ratio O(

√
n log n) for graphs with n vertices. We also show that

no deterministic algorithm can have competitive ratio better than 3. In
the network verification problem, the graph is known in advance and the
goal is to compute a minimum number of queries that verify all edges
and non-edges. This problem has previously been studied as the prob-
lem of placing landmarks in a graph or determining the metric dimension
of a graph. We show that there is no approximation algorithm for this
problem with ratio o(log n) unless P = NP.

1 Introduction

In recent years, there has been an increasing interest in the study of networks
whose structure has not been imposed by a central authority but arisen from local
and distributed processes. Prime examples of such networks are the Internet and
unstructured peer-to-peer networks such as Gnutella. For these networks, it is
very difficult and costly to obtain a “map” providing an accurate representation
of all nodes and the links between them. Such maps would be useful for many
purposes, e.g., for studying routing aspects or robustness properties.

In order to create maps of the Internet, a commonly used technique is to
obtain local views of the network from various locations (vantage points) and
combine them into a map that is hopefully a good approximation of the real
network [2,13]. More generally, one can view this technique as an approach for
discovering the topology of an unknown network by using a certain type of
queries—a query corresponds to asking for the local view of the network from
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one specific vantage point. In this paper, we formalize network discovery as
a combinatorial optimization problem whose goal is to minimize the number of
queries required to discover all edges and non-edges of the network. We study the
problem as an on-line problem using competitive analysis. Initially, the network
is unknown to the algorithm. To decide the next query to ask, the algorithm
can only use the knowledge about the network it has gained from the answers
of previously asked queries. In the end, the number of queries asked by the
algorithm is compared to the optimal number of queries sufficient to discover
the network. We consider a query model in which the answer to a query at
a vertex v consists of all edges and non-edges whose endpoints have different
(graph-theoretic) distance from v.

In the off-line version of the network discovery problem, the network is known
to the algorithm from the beginning. The goal is to compute a minimum number
of queries that suffice to discover the network. Although an algorithm for this
off-line problem would not be useful for network discovery (if the network is
known in advance, there is no need to discover it), it could be employed for
network verification, i.e., for checking whether a given map is accurate. Thus,
we refer to the off-line version of network discovery as network verification. Here,
we are interested in polynomial-time optimal or approximation algorithms.

Motivation. As mentioned above, the motivation for our research comes from
the problem of discovering information about the topology of communication
networks such as the Internet or peer-to-peer networks. The query model that we
study is motivated by the following considerations. First, notice that our query
model can be interpreted in the following way: A query at v yields the shortest-
path subgraph rooted at v, i.e., the set of all edges on shortest paths between
v and any other vertex. To see that this is equivalent to our definition (where
a query yields all edges and non-edges between vertices of different distance
from v), note that an edge connects two vertices of different distance from v if
and only if it lies on a shortest path between v and one of these two vertices.
Furthermore, the shortest-path subgraph rooted at v implicitly confirms the
absence of all edges between vertices of different distance from v.

Real-life scenarios where the shortest-path subgraph rooted at a node of the
network can be determined arise as follows. With traceroute tools, one can deter-
mine the path that packets take in the Internet if they are sent from one’s node
to some destination. If each traceroute experiment returns a random shortest
path to the destination, one could use repeated traceroute experiments to all
destinations to discover all edges of the shortest-path subgraph. Making a query
at v would mean getting access to node v and running repeated traceroute exper-
iments from v to all other nodes. If we assume that the cost of getting access to a
node is much higher than that of running the traceroute-experiments, minimiz-
ing the number of queries is a meaningful goal. Along similar lines, in a network
that routes all packets along arbitrary shortest paths, one could imagine a rout-
ing protocol in which each node stores the shortest-path subgraph rooted at that
node. In this case, reading out the routing table at a node would correspond to
making a query at that node.



Network Discovery and Verification 129

Our model of network discovery is a simplification of reality. In real net-
works, routing is not necessarily along shortest paths, but may be affected by
routing policies, link qualities, or link capacities. Furthermore, routing tables or
traceroute experiments will often reveal only a single path (or at most a few
different paths) to each destination, but not the whole shortest-path subgraph.
Nevertheless, we believe that our model is a good starting point for a theoretical
investigation of fundamental issues arising in network discovery.

Related Work. Graph discovery problems have been studied in distributed
settings where one or several agents move along the edges of the graph (see,
e.g., [3]); the problems arising in such settings appear to require very different
techniques from the ones in our setting.

It turns out, however, that the network verification problem has previously
been considered as the problem of placing landmarks in graphs [9]. Here, the
motivation is to place landmarks in as few vertices of the graph as possible in
such a way that each vertex of the graph is uniquely identified by the vector
of its distances to the landmarks. The smallest number of landmarks that are
required for a given graph G is also called the metric dimension of G [8]. For a
survey of known results, we refer to [5]. Results for the problem variant where
extra constraints are imposed on the set of landmarks (e.g., connectedness or
independence) are surveyed in [11].

The problem of determining whether k landmarks suffice (i.e., of determining
if the metric dimension is at most k) is NP-complete [6]; see [9] for an explicit
proof by reduction from 3-SAT. In [9] it is also shown that the problem of min-
imizing the number of landmarks admits an O(log n)-approximation algorithm
for graphs with n vertices, based on SetCover. For trees, they show that the
problem can be solved optimally in polynomial time. Furthermore, they prove
that one landmark is sufficient if and only if G is a path, and discuss properties
of graphs for which 2 landmarks suffice. They also show that if k landmarks
suffice for a graph with n vertices and diameter D, we must have n ≤ Dk + k.
For d-dimensional grids they show that d landmarks suffice. For d-dimensional
hypercubes, a special case of d-dimensional grids, it was shown in [12] (using an
earlier result from [10] on a coin weighing problem) that the metric dimension is
asymptotically equal to 2d/ log2 d. See also [4] for further results on the metric
dimension of Cartesian products of graphs.

Our Results. For network discovery, we give a lower bound showing that no
deterministic on-line algorithm can have competitive ratio better than 3, and we
present a randomized on-line algorithm with competitive ratio O(

√
n log n) for

networks with n nodes. For the network verification problem, we prove that it
cannot be approximated within a factor of o(log n) unless P = NP, thus show-
ing that the approximation algorithm from [9] is best possible (up to constant
factors). We also give a useful lower bound formula for the optimal number of
queries of a given graph. The remainder of the paper is structured as follows.
Section 2 gives preliminaries and defines the problems formally. Sections 3 and 4
give our results for network discovery and network verification, respectively. Sec-
tion 5 points to open problems and promising directions for future research.
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2 Preliminaries and Problem Definitions

Throughout this paper, the term network refers to a connected, undirected
graph. For a given graph G = (V,E), we denote the number of nodes by n = |V |
and the number of edges by m = |E|. For two distinct nodes u, v ∈ V , we say
that {u, v} is an edge if {u, v} ∈ E and a non-edge if {u, v} /∈ E. The set of
non-edges of G is denoted by Ē. We assume that the set V of nodes is known
in advance and that it is the presence or absence of edges that needs to be
discovered or verified.

A query is specified by a vertex v ∈ V and called a query at v. The query at v
is also denoted by v. The answer of a query at v consists of a set Ev of edges and
a set Ēv of non-edges. These sets are determined as follows. Label every vertex
u ∈ V with its distance (number of edges on a shortest path) from v. We refer
to sets of vertices with the same distance from v as layers. Then Ev is the set of
all edges connecting vertices in different layers, and Ēv is the set of all non-edges
whose endpoints are in different layers. Because the query result can be seen as
a layered graph, we refer to this query model as the layered-graph query model.

A set Q ⊆ V of queries discovers (all edges and non-edges of) a graph G =
(V,E) if

⋃
q∈Q Eq = E and

⋃
q∈Q Ēq = Ē. In the off-line case, we also say

“verifies” instead of “discovers”. The network verification problem is to compute,
for a given network G, a smallest set of queries that verifies G. The network
discovery problem is the on-line version of the network verification problem. Its
goal is to compute a smallest set of queries that discovers G. Here, the edges
and non-edges of G are initially unknown to the algorithm, the queries are made
sequentially, and the next query must always be determined based only on the
answers of previous queries.

We denote by OPT (G), for a given graph G, the cardinality of an optimal
query set for verifying G, and by A(G) the cardinality of the query set produced
by an algorithm A. The quality of an algorithm is measured by the worst possible
ratio A(G)/OPT (G) over all networks G. In the off-line case, an algorithm is
a ρ-approximation algorithm (and achieves approximation ratio ρ) if it runs in
polynomial time and satisfies A(G)/OPT (G) ≤ ρ for all networks G. In the
on-line case, an algorithm is ρ-competitive (and achieves competitive ratio ρ)
if A(G)/OPT (G) ≤ ρ for all networks G. It is weakly ρ-competitive if A(G) ≤
ρ ·OPT (G)+c for some constant c. If the on-line algorithm is randomized, A(G)
is replaced by E[A(G)] in these definitions. We do not require on-line algorithms
to run in polynomial time.

We use LG–ALL–Discovery to refer to the network discovery problem
with the layered-graph query model and the goal of discovering all edges and
non-edges, and we use LG–ALL–Verification to refer to its off-line version.

3 Network Discovery

We consider the on-line scenario. Clearly, any algorithm that does not repeat
queries has competitive ratio at most n−1, since n−1 queries are always sufficient
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to discover a network. Furthermore, the inapproximability result that we will de-
rive in Section 4 (Theorem 3) shows that we cannot hope for a polynomial-time
on-line algorithm with competitive ratio o(log n); it may still be possible to ob-
tain such a ratio using exponential-time on-line algorithms, however. We present
a lower bound on the competitive ratio of all deterministic on-line algorithms.

Theorem 1. No deterministic on-line algorithm for LG-ALL-Discovery can
have weak competitive ratio 3 − ε for any ε > 0.

Proof. Let A be any deterministic algorithm for LG–ALL–Discovery. We
first give a simpler proof that A cannot be better than 2-competitive. Con-
sider Fig. 1(a). We refer to the subgraph induced by the vertices labeled r, x, y,
and z as a 2-gadget. Assume that the given graph G consists of a global root g
and k, k ≥ 2, disjoint copies of the 2-gadget, with the r-vertex of each 2-gadget
connected to the global root g. One can easily verify that OPT (G) = k for this
graph, and that the set of all x-vertices of the 2-gadgets constitutes an optimal
query set. On the other hand, algorithm A can be forced to make the first query
at g (as, initially, the vertices are indistinguishable to the algorithm). This will
not discover any information about edges or non-edges between vertices x, y
and z of each 2-gadget. The only queries that can discover this information are
queries at x, y and z. In fact, a query at x or y suffices to discover the edge be-
tween x and y and the non-edges between x and z and between y and z. When
A makes the first query among the vertices in {x, y, z} of a 2-gadget, we can
force it to make that query at z, since the three vertices are indistinguishable to
the algorithm. The query at z does not discover the edge between x and y. The
algorithm must make a second query in the 2-gadget to discover that edge. In
total, the algorithm must make at least 2k+1 queries. As the construction works
for arbitrary values of k, this shows that no deterministic on-line algorithm can
guarantee weak competitive ratio 2 − ε for any constant ε > 0.

To get a stronger lower bound of 3, we create a new gadget, called the 3-
gadget, as shown in Fig. 1(b). The 3-gadget is the subgraph induced by all
vertices except g in the figure. We claim that A can be forced to make 6 queries
in each 3-gadget, whereas the optimum query set consists of only 2 vertices in
each 3-gadget (drawn shaded in the figure). If we construct a graph with k,
k ≥ 2, disjoint copies of the 3-gadget, the s-vertex in each of them connected to
the global root g as indicated in the figure, we get a graph G for which we claim
that OPT (G) = 2k and the algorithm A can be forced to make at least 6k + 1
queries. This shows that no deterministic on-line algorithm can guarantee weak
competitive ratio 3 − ε for any constant ε > 0.

To see that OPT (G) = 2k, let Q be the set of queries consisting of the two
shaded vertices from each copy of the 3-gadget as shown in Fig. 1(b). We claim
that Q discovers G. This can be verified manually as follows: For every vertex
in a 3-gadget Π, consider the 3-tuple whose components are the distances from
that vertex to the two query vertices in Π and the distance to an arbitrary query
vertex from Q outside Π. One finds that each vertex in Π has a unique 3-tuple,
showing that all edges and non-edges of Π are discovered by Q. Each non-edge
between two different 3-gadgets is discovered by one of the queries inside these
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Fig. 1. Lower bound constructions

two 3-gadgets. The edges and non-edges between g and each 3-gadget are also
discovered. Hence, OPT (G) ≤ 2k. We have OPT (G) ≥ 2k, because each of the
edges {x, y} and {x′, y′} (see Fig. 1(b)) of a 3-gadget requires a separate query.

To show that A(G) ≥ 6k + 1, we argue as follows. First, we can force A to
make the first query at g. This will not reveal any information about edges within
the same layer of any of the 3-gadgets. We view each 3-gadget as consisting of
s and a left part, a middle part, and a right part. The left part consists of
the left child of s and its four adjacent vertices below (these four vertices are
called bottom vertices, and the left child of s is called the root of that part); the
middle and right part are defined analogously. The three parts of a 3-gadget Π
are indistinguishable to A until it makes its first query inside Π. A query at s
would not discover any new information about Π, so we can ignore queries that
A might make at s in the following arguments. When A makes its first query
inside Π, we can force this query to be in the middle part, and we can force it to
be at u or v. In both cases, the query does not discover any information about
the edges and non-edges between the bottom vertices of the left part, nor does
it discover any information about the edges and non-edges between the bottom
vertices of the right part, nor does it discover the edge drawn dashed. When A
chooses its second query in Π, it could be in the left part, in the middle part, or
in the right part. Assume that A chooses the left part; since the bottom vertices
of the left part are still indistinguishable to A, we can force A to make the query
either at the root of the left part or at the bottom vertex t. Similarly, in the
right part we can force A to make the query at its root or at t′. In the middle
part, A can make the query anywhere. In any case, the second query made by A
does not discover any information about edges and non-edges between vertices
in the set {x, y, z} and in the set {x′, y′, z′}. Similarly as in the case of Fig. 1(a),
for each of these sets we can force A to make the first query at z (at z′) and thus
require a second query at x or y (at x′ or y′) to discover everything about these
groups. In total, A must make at least 6 queries in each 3-gadget. �

With the gadget of Fig. 1(a) one can prove easily that no randomized on-line
algorithm for LG-ALL-Discovery can have weak competitive ratio 4/3− ε for
any ε > 0; just observe that we can force a randomized algorithm to make the
first query at z with probability at least 1/3. Note that all lower bounds on the
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E ← ∅; /* discovered edges */
N ← ∅; /* discovered non-edges */
A ←

(
V
2

)
; /* all pairs of distinct nodes */

/* Phase 1 */
for i = 1 to 3

√
n ln n do

v ← randomly chosen node from V ;
(Ev, Nv) ← query(v);
E ← E ∪ Ev;
N ← N ∪ Nv;

od;
/* Phase 2 */
while E ∪ N �= A do

{u, v} ← an arbitrary element of A \ (E ∪ N);
(Eu, Nu) ← query(u);
(Ev, Nv) ← query(v);
E ← E ∪ Eu ∪ Ev;
N ← N ∪ Nu ∪ Nv;
S ← set of nodes from which the (non-)edge {u, v} is discovered;
foreach x ∈ S \ {u, v} do

(Ex, Nx) ← query(x);
E ← E ∪ Ex;
N ← N ∪ Nx;

od;
od;

Fig. 2. On-line algorithm for LG-ALL-Discovery

weak competitive ratio also hold for the (standard) competitive ratio where no
additive constant c is allowed.

Theorem 2. There is a randomized on-line algorithm that achieves competitive
ratio O(

√
n log n) for LG-ALL-Discovery.

Proof. The on-line algorithm is shown in Fig. 2. In the first phase, it makes
3
√

n ln n queries at nodes chosen uniformly at random. In the second phase, as
long as node pairs with unknown status exist, it picks an arbitrary such pair
{u, v} and proceeds as follows. First, it queries u and v in order to determine the
distance of all nodes to u and v. From this it can deduce the set S of nodes from
which the edge or non-edge between u and v can be discovered; these are simply
the nodes for which the distance to u differs from the distance to v. Then, it
queries all remaining nodes in S.

To analyze the algorithm, it is helpful to view LG-ALL-Discovery as a
HittingSet problem. For every edge or non-edge {u, v}, let Suv be the set of
nodes from which a query discovers {u, v}. The task of the LG-ALL-Discovery
problem translates into the task of computing a subset of V that hits all sets
Suv. The goal of the first phase is to hit all sets that have size at least

√
n ln n

with high probability. If this succeeds, the problem remaining for the second
phase is a HittingSet problem where all sets have size at most

√
n ln n. The
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algorithm of the second phase repeatedly picks an arbitrary set that is not yet
hit, and includes all its elements in the solution. As the sets have size at most√

n ln n, the number of queries made in the second phase is at most a factor of√
n ln n away from the optimum.

Let us make this analysis precise. Consider a node pair {u, v} for which the set
Suv has size at least

√
n ln n. In each query of the first phase, the probability that

Suv is not hit is at most 1−
√

n ln n
n = 1−

√
ln n√
n

. Thus, the probability that Suv is

not hit throughout the first phase is at most
(
1 −

√
ln n√
n

)3
√

n ln n

≤ e−3 ln n = 1
n3 .

There are at most
(
n
2

)
sets Suv of cardinality at least

√
n lnn. The probability

that at least one of them is not hit in the first phase is at most
(
n
2

)
· 1

n3 ≤ 1
n .

Now consider the second phase, conditioned on the event that the first phase
has hit all sets Suv of size at least

√
n ln n. In each iteration of the while-loop

of the second phase, the algorithm asks at most
√

n ln n queries. Let � be the
number of iterations. It is clear that the optimum must make at least � queries,
because no two unknown pairs {u, v} considered in different iterations of the
second phase can be resolved by the same query.

Since OPT (G) ≥ 1 and OPT (G) ≥ �, the number of queries made by the
algorithm is at most 3

√
n ln n + �

√
n ln n = O(

√
n log n) · OPT (G).

With probability at least 1 − 1
n , the first phase succeeds and the algorithm

makes O(
√

n log n) ·OPT (G) queries. If the first phase fails, the algorithm makes
at most n queries. This case increases the expected number of queries made by
the algorithm by at most 1

n · n = 1. Thus, the expected number of queries is at
most O(

√
n log n) · OPT (G) + 1

n · n = O(
√

n log n) · OPT (G). �

4 Network Verification

Theorem 3. It is NP-hard to approximate LG–ALL–Verification within
ratio o(log n).

Proof. We prove the inapproximability result using an approximation-preserving
reduction from the test collection problem (TCP):

Problem TCP
Input: ground set S and collection C of subsets of S
Feasible solution: subset C′ ⊆ C such that for each two distinct elements x

and y of S, there exists a set C ∈ C′ such that exactly one of x and y is in C.
Objective: minimize the cardinality of C′

In the original application for TCP, S is a set of diseases and C is a collection
of tests. A test C ∈ C, applied to a patient, will give a positive result if the
patient is infected by a disease in C. If a patient is known to be infected by
exactly one of the diseases in S, the goal of TCP is to compute a minimum
number of tests that together can uniquely identify that disease.

Without loss of generality, we can restrict ourselves to instances of TCP in
which any two elements of the ground set can be separated by at least one of
the sets in C; instances without this property do not have any feasible solutions.
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Halldórsson et al. [7] prove that TCP cannot be approximated with ratio
o(log |S|) unless P = NP. Their proof uses an approximation-preserving reduc-
tion from SetCover; the latter problem was shown NP-hard to approximate
within o(log n), where n is the cardinality of the ground set, by Arora and
Sudan [1]. The proof by Arora and Sudan establishes the inapproximability re-
sult for SetCover even for instances in which the size of the ground set and
the number of sets are polynomially related. The reduction from SetCover to
TCP maintains this property. Hence, we know that it is NP-hard to approxi-
mate TCP with ratio o(log |S|) even for instances satisfying |C| ≤ |S|g for some
positive constant g.

Let an instance (S, C) of TCP be given. Let nTCP = |S| and mTCP = |C|. By
the remark above, we can assume that mTCP = n

O(1)
TCP. We construct an instance

G = (V,E) of LG–ALL–Verification as follows. First, we add nTCP + mTCP

vertices to V : an element vertex vs for every element s ∈ S and a test vertex
uC for every C ∈ C. We initially add the following edges to E: Any two element
vertices are joined by an edge, and every test vertex uC is joined to all element
vertices vs with s ∈ C. The idea behind this construction is that queries at
test vertices verify all edges in the clique of element vertices if and only if the
corresponding tests form a test cover. We have to extend the construction slightly
since, in LG–ALL–Verification, the edges and non-edges incident to the test
vertices need to be verified as well. We add h = 2(�log mTCP� + 2) auxiliary
vertices w1, . . . , wh to take care of this. For each i, 1 ≤ i ≤ h/2, the auxiliary
vertices w2i−1 and w2i are said to form a pair. In addition, we add one extra
node z. We add the following edges:

– The two auxiliary vertices in each pair are joined by an edge.
– Number the mTCP test vertices arbitrarily from 0 to mTCP − 1. Both aux-

iliary vertices in the i-th pair, 1 ≤ i ≤ h/2 − 2, are joined to those of the
mTCP test vertices whose number has a 1 in the i-th position of its binary
representation.

– Both auxiliary vertices in the last two pairs are joined to all test vertices.
– The extra node z is joined to all other vertices of the graph.

The graph constructed in this way is denoted by G = (V,E). See Fig. 3 for an
illustration. We prove two claims:

Claim 1. Given a solution C′ to the TCP instance (S, C), there is a solution Q
of the constructed instance G = (V,E) of LG–ALL–Verification satisfying
|Q| = |C′| + �log mTCP� + 2.

Proof (of Claim 1). Let a solution C′ to the TCP instance (S, C) be given. Let Q
contain all test vertices corresponding to sets C ∈ C′ as well as the first vertex of
every pair of auxiliary vertices. Obviously, we have |Q| = |C′|+ �log mTCP�+ 2.
It is not difficult to verify that Q discovers all edges and non-edges of G. �

Claim 2. Given a solution Q to the constructed instance G = (V,E) of LG–
ALL–Verification, one can construct in polynomial time a solution C′ of the
original TCP instance (S, C) satisfying |C′| ≤ |Q| − �log mTCP� − 2.
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Fig. 3. Illustration of the construction of the graph G = (V, E) that is an instance
of LG–ALL–Verification. The auxiliary vertices in pairs 4 and 5 are adjacent to
all test vertices. The auxiliary vertices in pair i, 1 ≤ i ≤ 3, are adjacent to the test
vertices whose number has a 1 in position i of the binary representation. For example,
the auxiliary vertices in pair 2 are adjacent to test vertices 2, 3, 6 and 7.

Proof (of Claim 2). Observe that Q must contain at least one vertex from
each pair of auxiliary vertices; otherwise, the edge joining this pair would not
be discovered. The queries at these vertices do not discover any edges between
element vertices (all element vertices are at distance 2 from any auxiliary vertex
because of the extra vertex z). Let Q′ be the vertices in Q that are not auxiliary
vertices. We have |Q′| ≤ |Q| − �log mTCP� − 2. Now, Q′ is a set of element
vertices and test vertices that, in particular, discovers all edges between element
vertices.

Let QS be the set of element vertices in Q′ and let QC be the set of test vertices
in Q′. If QS is empty, the queries at the vertices in QC discover all edges of the
clique of element vertices. In particular, this means that for any two distinct
element vertices vs and vt in V , there must be a query at a vertex adjacent to
one of vs, vt but not to the other. This shows that the set C′ = {C ∈ C | uC ∈ Q′}
is a solution of the original TCP instance of the required size.

Now assume QS is nonempty. The set of edges between element vertices that
are not discovered by QC is a disjoint union of cliques. The queries in QS must
discover all edges in these cliques. As the only edges between element vertices
that a query at an element vertex discovers are the edges incident to that vertex,
a clique of size k requires k−1 queries. Assume that there are p cliques and denote
the number of vertices in these cliques by k1, . . . , kp. Then QS contains at least∑p

i=1(ki − 1) vertices. All edges in a clique of size k can always be discovered by
k − 1 queries at test vertices: simply select these queries greedily by choosing,
as long as there is an edge {u, v} in the clique that has not yet been discovered,
any test vertex that is adjacent to one of u, v but not the other. Hence, we can
replace the queries in QS by at most

∑p
i=1(ki − 1) queries at test vertices and

add these to QC , obtaining a set of queries at test vertices that discovers all edges
between element vertices. As in the previous paragraph, this set of test vertices
gives a solution to the original TCP instance of cardinality at most |Q′|. �
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Assume there is an approximation algorithm A for LG–ALL–Verification
that achieves ratio o(log n), where n = |V |. Consider the algorithm B for
TCP that, given an instance of TCP, constructs an instance of LG–ALL–
Verification as described above, applies A to this instance, and transforms the
result into a solution to the TCP instance following Claim 2. Recall that mTCP =
n

O(1)
TCP. We claim that B achieves ratio o(log nTCP) for TCP. Let OPTTCP be the

optimum objective value for the given TCP instance and OPTLG be the opti-
mum objective value for the constructed instance of LG–ALL–Verification.
Let BTCP and ALG denote the objective values of the solutions computed by B
and A, respectively. Note that OPTTCP ≥ log nTCP always holds, since nTCP

elements cannot be separated by fewer than log nTCP test sets.
Claims 1 and 2 imply that OPTTCP = OPTLG − �log mTCP� − 2. We have

OPTLG = OPTTCP+�log mTCP�+2 ≤ OPTTCP+O(log nTCP) = O(OPTTCP).
Claim 2 implies BTCP ≤ ALG and thus we get BTCP ≤ o(log n) · OPTLG =
o(log n) · O(OPTTCP) = o(log nTCP) · O(OPTTCP), where the last equality fol-
lows from n = nTCP + mTCP + 2(�log mTCP� + 2) + 1 = n

O(1)
TCP. This shows

BTCP ≤ o(log nTCP) · OPTTCP and completes the proof of Theorem 3. �

Theorem 4. If a graph G = (V,E) contains a subgraph H of diameter DH with
nH vertices, then OPT (G) ≥ logDH+1 nH .

Proof. Imagine the queries being performed sequentially. At any instant, the
unknown edges and non-edges induce disjoint cliques, which we call unknown
groups. Two vertices are in the same unknown group if and only if they were in
the same layer of all queries made so far. Consider the nH vertices of subgraph H.
Initially, all vertices form an unknown group. For each query, the nH vertices of
H will be in at most DH + 1 consecutive layers of the layered graph returned
by the query. Therefore, after the first query, at least nH/(DH + 1) vertices of
H will still be in the same unknown group. Similarly, after k queries, at least
nH/(DH + 1)k vertices of H will be in an unknown group together. If k queries
suffice to verify all edges and non-edges, the unknown groups must be singletons
in the end. So we must have nH/(DH + 1)k ≤ 1. This proves the theorem. �

This theorem implies that a graph containing a clique on k vertices requires
at least log2 k queries, and a graph with maximum degree Δ at least log3(Δ+1)
queries. For the former, take H to be the clique on k vertices, and for the latter,
take H to be the subgraph induced by a vertex of degree Δ and its neighbors.

5 Directions for Future Work

In this paper, we have considered network discovery and network verification
problems in the layered-graph query model. The goal was to discover or verify
all edges and non-edges of a network. For network discovery, the major problem
left open by our work is to close the gap between our randomized upper bound
of O(

√
n log n) and the small constant lower bounds.
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The subject of our study is an example of a family of problem settings in
which the goal is to discover or verify information about a graph using queries.
Different problems are obtained if the query model is varied, or if the objective
is changed. Other natural query models are, e.g., that a query at v returns only
the distances from v to all other vertices of the graph; that a query is specified by
two vertices u and v, and returns the set of all edges on shortest paths between
u and v; or that a query returns an arbitrary shortest-path tree rooted at v.
Concerning the objective, the goal could be to discover or verify a certain graph
parameter such as diameter, average path length, or independence number. One
could also relax the requirement and only ask for an approximate answer, e.g.,
one could consider the problem of minimizing the number of queries required to
approximate the average path length within a factor of 1 + ε. We believe that
the study of such problems could be a fruitful area of research with applications
in the monitoring and analysis of communication networks such as the Internet.
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Complete Graph Drawings
Up to Triangle Mutations

Emeric Gioan

LIRMM, CNRS Montpellier

Abstract. The logical structure we introduce here to describe a (topo-
logical) graph drawing, called subsketch, is intermediate between the
map (determining the drawing when it is planar), and the sketch intro-
duced by Courcelle (determining the drawing in general but assuming
we know the order of the crossings on each edge). For a complete graph
drawing, the subsketch is determined, through first order logic formulas,
by the size, a corner of the drawing and the crossings of the edges.

We prove, constructively, that two complete graph drawings have the
same subsketch if and only if they can be transformed into each other
by a sequence of triangle mutations - or triangle switches. This construc-
tion generalizes Ringel’s theorem on uniform pseudoline arrangements.
Moreover, it applies to plane projections of spatial graphs encoded by
rank 4 uniform oriented matroids.

Keywords: Graph drawing, logical structure, triangle switch, mutation,
pseudoline arrangement, oriented matroid, spatial graph visualization.

1 Introduction

Three subjects meet in this paper: first the dynamical structure of geometrical ob-
jects with triangle mutations (or triangle switches), secondly axiomatics of graph
drawings using logical structures as concise as possible, and thirdly the combina-
torial study of visualization of spatial graphs encoded by oriented matroids.

In the whole paper, graph drawing is understood in the sense of topological
graph drawing, that is drawing of which edges are represented by Jordan arcs
(not supposed to be straight), whereas a graph drawing is called geometrical
when its edges are represented by (straight) line segments. We consider graph
drawings of a graph on a plane where two edges cross at most once and where
the unbounded region is defined by the choice of two given adjacent edges called
a corner (equivalently, we could consider drawings on a sphere, but we would
have then to choose a particular point “infinity” so that the region containing it
would be considered as the “unbounded” one).

From an axiomatic point of view, a general setting is introduced by Courcelle
in [2], allowing both logical and geometrical points of view on graph drawings,
and leading to applications of monadic second order logic to graph drawings. In
this setting, a graph drawing is determined by its sketch, that is: its underlying
graph, the circular ordering of the edges at each vertex, the pairs of edges that

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 139–150, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. Triangle mutation (or triangle switch)

cross, and the order of crossings on each edge. If the last data is removed, we
get the subsketch of the graph drawing. Hence the subsketch is intermediate
between the sketch and the so-called map of the drawing (which determines
the drawing if it is planar, see for instance [5]). We prove in Section 3 that,
for a complete graph drawing, the subsketch and other useful information, are
determined through first order logic formulas by its number of vertices, a corner,
and the pairs of edges that cross.

A triangle mutation - or triangle switch - in a graph drawing is passing an
edge over the crossing of two other edges, when no obstruction occurs. This
local transformation is shown on Figure 1. Obviously a triangle mutation does
not change the subsketch. We consider the problem of finding a logical structure
for graphs drawings defined up to a sequence of triangle mutations.

We prove constructively in Section 4 that, for a complete graph drawing, the
subsketch structure plays this part: it determines the drawing, up to a sequence
of triangle mutations and orientation preserving homeomorphisms.

Note that, if one considers a complete graph drawing with an even number of
vertices, all of them being drawn on the same circle, then the pairs of opposite
vertices define a pseudoline arrangement in a neighbourhood of the centre of
the circle, see Figure 2. In fact, the above result generalizes Ringel’s theorem on
uniform pseudoline arrangements [7] (see Section 5.1).

A consequence of the above result - the original purpose of this paper - is
that two projections of complete spatial graphs, defined by finite sets of points in
general position representing the same rank 4 uniform oriented matroid [1], are
equivalent up to homeomorphism and a sequence of mutations. Hence the com-

Fig. 2. Complete graph drawing and pseudoline arrangement
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Fig. 3. Two 2-connected graph drawings with same subsketch but no triangle

binatorial structure of the oriented matroid together with the logical structure
of the projected drawing form the two levels of a modelization of perspectives
in spatial graph visualization (see Section 5.2).

In a graph which is not complete, the subsketch is no more sufficient to
determine the drawing up to triangle mutations. In general, additional data
would be necessary. In this paper, it is an open question. As an example Figure 3
below represents two graph drawings with same crossings and same circular
orderings around each edge, but which cannot be tranformed into each other
with triangle mutations, since they simply have no triangle.

NB: All proofs of this paper have been removed or shortened in order to fit the
requested size for papers of this WG05 proceedings. A full version is forthcoming.

2 Preliminaries

In this paper, a graph is always a finite, directed, loop-free, connected graph.
The set of vertices of a graph G is denoted VG, or simply V , and its set of edges
is denoted −→

E G, or simply −→
E . The underlying undirected set of edges is denoted

EG, or simply E. In fact, the direction of an edge will be used only to define an
order of the points on a geometrical representation of this edge. So, for a, b ∈ VG

and (a, b) ∈ −→
E G, we will denote [a, b] = [b, a] ∈ EG.

A (topological) drawing of a graph G in the real oriented affine plane is a set
of points representing VG together with a set of drawn edges representing EG

satisfying the following properties:

D1 - a drawn edge is a Jordan arc (i. e. homeomorphic to a closed segment)
between the two extremities representing the vertices ; a drawn edge contains
no other representation of a vertex of the graph than its extremities.

D2 - two edges having extremities in common (two in the case of multiple
edges) meet only at these extremities ; when two edges with no common ex-
tremity meet, they cross at this intersection point ; two edges with no common
extremity cross at most once.

D3 - no three edges meet at the same point, except if this point is an extremity
of the three edges.

Note that if Jordan arcs were replaced by line segments in axiom D1, we
would define geometrical graph drawings, for which various properties would
become trivial (for instance the two Lemmas in Section 3).
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With a drawing D of the graph G various pieces of information are associated,
encoding the drawing at different levels of abstraction. We call drawn element
the topological representation of this element in the given drawing.

First the relation incG ⊆ −→
E G × VG × VG is defined by (e, x, y) ∈ incG if

and only if the edge e is directed from the vertex x to the vertex y. Then incG

describes the structure of the graph G.
Secondly the relation sigD ⊆ VG × EG × EG is defined by (x, e, f) ∈ sigD if

and only if x is an extremity of e and f , and f is the next edge in the circular
ordering around x in the trigonometric sense of rotation, which is well defined
by definition of a drawing (property D2).

A corner of D is an element (P, β, α) ∈ sigD such that the drawn vertex
P is in the topological boundary of the infinite region of the plane delimited
by D, and the intersections of the drawn edges β and α with this boundary
are homeomorphic to line segments (containing P ). Note that if the graph is
complete then β and α are entirely contained in this boundary.

The set of relations incG, sigD define the map associated with the drawing
D of the graph G. It is well known (see for example [5]) that if D is a drawing
with no edge crossing (except for common extremities), and thus G planar, then
D is determined up to an orientation preserving homeomorphism of the plane
by its map and a corner.

Thirdly, in [2], the relation dcrossD ⊆ −→
E G × −→

E G is defined by (e, f) ∈
dcrossD if and only if the drawn edges e and f have no extremity in common,
the drawn edges e and f have one intersection point and f goes from the left of
e to its right when e is directed from bottom to top. Of course (e, f) ∈ dcrossD

implies (f, e) �∈ dcrossD. In this paper we do not need directed edges for the
crossing relation, it is sufficient to consider the relation crossD ⊆ EG × EG,
defined by (e, f) ∈ crossD if and only if the drawn edges e and f have no
extremity in common and the drawn edges e and f have one intersection point.
Of course (e, f) ∈ crossD implies (f, e) ∈ crossD. Then we say that e ∈ EG and
f ∈ EG cross in D.

The set of relations incG, sigD, crossD define the subsketch of the drawing D.
Fourthly, in [2], the relation beforeD ⊆ −→

E G × EG × EG is defined by
(e, f, g) ∈ beforeD if and only if f �= g, e and f cross in D, e and g cross
in D, and the intersection point of e and f is before the intersection point of
e and g on the directed drawn edge e. Note that if e crosses f and g then
either beforeD(e, f, g) or beforeD(e, g, f) but not both. The set of relations
incG, sigD, dcrossD, beforeD define the sketch associated with the drawing D,
as introduced in [2]. By definition of a drawing, the relation beforeD induces, for
any edge e, a linear ordering on the elements that cross e. A result of [2] is that
the drawing D is determined up to an orientation preserving homeomorphism
of the plane by its sketch and its corner.

In view of this result, we will assume from now on that drawings are always
given with a certain corner, and are considered up to orientation preserving
homeomorphisms (that is an homeomorphism of the plane which preserves the
orientation of one - or equivalently any - triangle of the plane). Then we can
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Fig. 4. Triangle [i, j, k] cut twice by e

identify drawings and sketches, and the following definitions about drawings or
sketches can be made equivalently for one of these two objects, depending on
the point of view: geometrical, or logical. When the context is not ambiguous,
we may omit the suffix D referring to the drawing.

Let D be a drawing of a graph G. We call triangle of D an element (e, f, g) ∈
EG × EG × EG such that e and f cross in D, e and g cross in D, and f and g
cross in D. The order of the elements in the triplet have no importance, and we
denote the triangle [e, f, g].

The segments of a triangle [e, f, g] are the subsets of the drawn elements
e, f , or g which are delimited by the intersection with the two other elements
of the triangle. The interior of a triangle [e, f, g] is the bounded region of the
plane delimited by its segments and containing these segments. A triangle is
contained in another triangle if the two triangles are not equal, they have two
common elements, and the interior of the first one is contained in the interior
of the second one. We say that h ∈ EG cuts the triangle [e, f, g], resp. cuts the
triangle [e, f, g] twice, if, geometrically, the drawn element h has a non empty
intersection with at least one, resp. two, segment(s) of [e, f, g]. The following
easy Lemma 1 is illustrated by Figure 4.

Lemma 1. If [i, j, k] is a triangle cut twice by e, then one and only one triplet
in
{
{i, j, e}, {i, k, e}, {j, k, e}

}
defines a triangle contained in [i, j, k]. �

Let D and D′ be two drawings of the graph G with same subsketch. As D and
D′ have the same cross relation, they have same triangles. We say that a triangle
[e, f, g] is permuted between D and D′ if the ordering of crossings between its
edges along each of its three edges is different in the two drawings, that is if
beforeD(e, f, g) = ¬beforeD′(e, f, g), beforeD(f, e, g) = ¬beforeD′(f, e, g), and
beforeD(g, e, f) = ¬beforeD′(g, e, f),

We call free a triangle of which interior has an intersection with the drawing
reduced to the segments of the triangle. In particular it is not cut by any element,
but not that the converse is false as show the triangle [e, k, i] in the left Figure
4 when j is removed.

Given a drawing D of a graph G and a free triangle [e, f, g] of D, the mutation
of [e, f, g] from D is the sketch D′ of G for which all relations are the same as in
D, except that e and f , and resp. e and g, and resp. f and g, are permuted on
the drawn edge g, and resp. f , and resp. e. In other words all relations are the
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Fig. 5. A sequence of mutations

same in D′ as in D except that the triangle [e, f, g] is permuted between D and
D′. We denote D → D′, and call [e, f, g] the mutated triangle from D to D′.

Hence, a triangle [e, f, g], which is free in D, is permuted between D and
its mutation from D. But, of course, a triangle may be permuted between two
drawings D and D′, without being free in D nor in D′.

A sequence of mutations from the sketch of a drawing D is a sequence of
sketches, each one being the mutation of a free triangle from the previous one.
On the example of Figure 5, the triangle containing a vertex cannot be mutated,
but the three other triangles can be mutated triangles in a sequence of mutations.

3 Logical Structure of Complete Graph Drawings

In this section, we prove that, for a complete graph drawing with given number
of vertices and given corner, the cross relation is sufficient to determine, through
first order logic formulas, not only the the sig relation and thus the subsketch
of the drawing, but also an ins relation which states if a vertex of a graph is
inside the triangle formed by three other vertices. This is not true for general
graph drawings (see Figure 3). We shall see that these relations determine also
several other relations and finally determine the sketch of the drawing except
the before relations for edges of triangles containing no vertex.

Let D be a graph drawing, with corner (P, β, α). The vertex P is called vertex at
the corner, and the other extremities of α and β are denoted respectively A and B.

For three vertices e, f, g ∈ VG, we denote [e, f, g] the bounded region of
the plane delimited by the drawn edges [e, f ], [f, g] and [g, e], containing these
drawn edges. Thus this region does not contain the vertex at the corner P when
P �∈ {e, f, g}. Not that by definition, such a region is equivalent to a closed ball
up to homeomorphism. The relation insD ⊆ VG × VG × VG × VG is defined by
(x, e, f, g) ∈ insD if and only if x �∈ {e, f, g} and the drawn vertex x is inside
the region [e, f, g].

For the construction of the next theorem, we introduce a relation betD ⊆ VG×
EG ×EG ×EG called between relation for the drawing D, such that (x, e, f, g) ∈
betD if the edges e, f, g all have extremity x, and f is between e and g in the
circular order of the edges around x (note that the order is essential in the
sentence: f is not between g and e).

The size of a complete graph drawing is the number of vertices of the under-
lying complete graph.
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Theorem 1. The subsketch and the inside relation of a complete graph drawing
are determined, through first order logic formulas, by its size, its crossing relation
and its corner.

Proof. The construction is step by step and uses extensively the topological
definition of the corner and properties (D1) (D2) (D3) of a drawing.The proof
is not difficult and is about two pages long. However the ordering of the steps is
important. Briefly: begin with the inside relations for triplets containing P , then
for general triplets, then consider the between relations around P , and then the
between relations around any vertex. �

Since the sig relations are determined, we easily get the following corollary
by using the restrictions to 4 vertices subdrawings.

Corollary 1. Let D be a complete graph drawing. Its dcross relation is deter-
mined with first order logic formulas by its size, crossing relation and corner. �

The following results are trivial in the geometrical case. They generalize to
topological graph drawings, quite technically but easily, using Theorem 1 and
the axioms (D1), (D2), (D3), by considering the several possible representations.

Lemma 2. Let D be a complete graph drawing with given size, crossing rela-
tion and corner. Let f and g be two edges such that either f and g have same
extremity, or f and g do not cross. If f and g both cross an edge e, then the
before(e, f, g) relation is determined by first order logic formulas. �

Corollary 2. Let D and D′ be two complete graph drawings with same size,
crossing relation and corner. Then D �= D′ if and only if there exists a permuted
triangle between D and D′. �

We say that a drawn triangle T contains a drawn vertex a, if the drawn
vertex a is inside the bounded region of the plane delimited by drawn edges of T

Lemma 3. Let D be a complete graph drawing, with given size, crossing relation
and corner. Let T = [e, f, g] be a triangle, and a a vertex of D. The property that
the drawn triangle T contains the drawn vertex a is expressible by a first order
logic formula. Moreover, when this property is true for some a, the before(e, f, g)
relation is also determined by a first order logic formula. �

Corollary 3. If two complete graph drawings have same size, crossing relation
and corner, then a drawn triangle permuted between the two sketches contains
no drawn vertex of the graph. �

4 Triangle Mutations in Complete Graph Drawings

In the previous Section we saw that two complete graph drawings with same
corner and subsketch have the same before relations except for triangles con-
taining no drawn vertex. The aim of this Section is to prove that two complete
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graph drawings with same corner have same subsketch if and only if they can be
transformed into each other by a sequence of mutations. The “if” way is obvious
since a mutation does not change the subsketch, the “only if” way is made by
an algorithm.

For a drawing D of a graph G, and a drawn edge e of D, we denote D−e the
drawing obtained by removing the drawn edge e except the intersection points
with other edges. Note that if G − e is not connected, then an extremity a of e
is isolated in G − e, and by definition is not represented in D − e.

Let G be a complete graph with vertices {a1, ..., an}, the (undirected) edges
of G are denoted ei,j = [ai, aj ], 1 ≤ i < j ≤ n. For a drawing D of G, we denote
Dn = D and, for 1 ≤ i < n, Di = D − {ei,n, ei+1,n, ..., en−1,n}. In particular, D1

is a drawing of the complete graph on n−1 vertices a1, ..., an−1. When D is given
with a corner (P, β, α), we choose to numerate vertices so that P = a1, β = [a1, a2]
and α = [a1, a3], so that it remains a corner of the considered subdrawings.

Lemma 4. Let 1 ≤ i < n, and let D and D′ be two complete graph drawings,
with same size, crossing relation and corner, such that Di = D′

i. Then there
exists a permuted triangle between Di+1 and D′

i+1, and a sequence of mutations
from Di+1 to D′

i+1 containing only permuted triangles between Di+1 and D′
i+1.

Proof. The proof is about one page long and consists in a sweeping of ei. �

Theorem 2. Let D and D′ be two complete graph drawings with same size,
crossing relation and corner. There exists a sequence S(D, D′) of mutations
D = D(0) → D(1) → ... → D(k−1) → D(k) = D′ from D to D′. Moreover this
sequence can be chosen such that, for any intermediate sketch D(i), 1 ≤ 0 ≤ k−1
the mutated triangle from D(i) to D(i+1) is contained in a permuted triangle
between D(i) and D′. It is given by the following algorithm.

Computation of the first triangle T (Di, D
′
i) from Di to D′

i

if n ≤ 3 or Di = D′
i then T (Di, D

′
i) = ∅

if n > 3 and 1 < i ≤ n then let T = T (Di−1, D
′
i−1)

if T �= ∅ then
if T is free in Di then T (Di, D

′
i) := T

otherwise T is cut by ei,n in Di then there exists (by lemma 1) a unique T ′

contained in T , free in Di, with ei,n ∈ T ′, and T (Di, D
′
i) := T ′

if T = ∅ then there exists (by lemma 4) T ′, free in Di, with ei,n ∈ T ′,
permuted between Di and D′

i, and T (Di, D
′
i) := T ′ (arbitrary choice)

Computation of S(D, D′)
if T (D, D′) = ∅ then S(D, D′) := D
otherwise D′′ being obtained by mutation of T (D, D′) from D

S(D, D′) := D → S(D′′, D′)

Proof (sum up). We prove Theorem 2 by induction on n and 1 < i ≤ n, using
the previous algorithms. Recall that D1 is a drawing of the complete graph on
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n − 1 vertices, hence T (D1, D
′
1) and S(D1, D

′
1) are built for drawings of Kn−1.

Note that, by Corollary 2, for all 1 < i ≤ n, we have Di �= D′
i if and only if there

exists a permuted triangle between Di and D′
i.

The direct computation of S(Di, D
′
i) can be done the following way: first

build S(Di − ei,n, Di − ei,n) = S(Di−1, D
′
i−1). The key point is that any triangle

in this sequence at level i − 1 is contained by induction hypothesis in a triangle
which is permuted between the current sketch and the final one. Hence it cannot
contain a vertex of the graph according to Corollary 3. So free triangles used in
the sequence of mutations at level i − 1 which are not cut by ei,n, remain free
triangles at level i.

Then add the mutations built in the algorithm when T �= ∅ and T is cut
by ei,n using Lemma 1. These added mutations all contain ei,n. The sequence
obtained here is denoted S′′, and the arrangement obtained from Di by S′′ is
D′′

i . Then D′′
i−1 = D′

i−1 and by Lemma 4 there exists a sequence S′′ from D′
i

to D′
i using only mutations containing ei,n. Then S = S′ → S′′ is a sequence of

mutations from Di to D′
i.

At last, T (Di, D
′
i) is contained in a permuted triangle between Di and D′

i:
either T (Di−1, D

′
i−1) = ∅ and it is a permuted triangle between Di and D′

i, or it
is contained in T (Di−1, D

′
i−1), which is contained in a permuted triangle between

Di−1 and D′
i−1 (by induction hypothesis), and so between Di and D′

i. �

5 Examples and Applications

5.1 Triangle Mutations in Pseudoline Arrangements

A pseudoline arrangement may be defined as a finite set of curves in the affine
plane, each one being homeomorphic to a line, and such that any two pseudo-
lines cross each other exactly once. We will always consider uniform pseudoline
arrangements, i. e. no three pseudolines can meet at the same point. We consider
that a pseudoline arrangement is labelled and given with the circular ordering of
the pseudolines at infinity, and is defined up to an orientation preserving home-
omorphism. Pseudoline arrangements (equivalent to rank 3 oriented matroids)
are well studied objects, see [1] chapter 4. They satisfy simple axiomatics with
the before relation [1], and even first order axiomatics [3].

Here, a pseudoline arrangement can be considered as a structure similar
to a sketch of which inc and sig relations are not useful, of which crossing
relation is trivial (each element crosses each other element once), and determined,
when each pseudoline is directed, by the linear ordering of the crossings on each
pseudoline, that is by a before relation. Hence all definitions about triangles
and mutations can be done exactly the same way in pseudoline arrangements.
So the previous result and algorithm apply naturally: for an arrangement A on
E = {e1, ..., en}, we denote Ak, 1 ≤ k ≤ n, the arrangement on Ek = {e1, ..., ek}
obtained by restriction from A, and we replace Di with Ai and ei,n with ei in
Theorem 2. Note that a similar natural inductive construction for a sequence of
mutations has been used for pseudoline arrangements by Roudneff in [8].
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1 2 3 4 5 6

6 5 4 3 2 1

1 2 3 4 5 6

6 5 4 3 2 1

Fig. 6. Two arrangements with no permuted free triangle

The well known Ringel’s theorem on pseudoline arrangements [7] states that
if A and A′ are two uniform pseudoline arrangements with same number of
elements and same circular ordering at infinity then there exists a sequence of
mutations from A to A′. Hence Theorem 2 gives a slight strengthening of this
theorem, which allows to transform A into A′ avoiding mutations of triangles
not contained in a permuted triangle. Indeed, in the generalization to graph
drawings, we want to avoid mutations of triangles containing drawn vertices.

The very important point is that it is not possible in general to transform a
configuration into another one using only mutations of permuted free triangles,
as it would mean there is always a permuted free triangle between two different
configurations, which is false as shown on the example below. This has been
mentioned in [4] from which Figure 6 is taken and made straight. Note that one
of these two arrangements had already been a significant example for another
problem in [1] Figure 1.11.2.

Example. The sequences of triangles built by the previous algorithm applied
to the arrangements of Figure 6 are the following. We separate the two built
subsequences: the first one (S′ in the proof of Theorem 2) built from the previous
level, and the second one when only the last pseudoline has to be moved (S′′ in
the proof of Theorem 2).

- at level 3: ∅ (triangles 123 are the same in both arrangements)
- at level 4: (∅) → (234 → 134 → 124) (only 4 has to be moved)
- at level 5: (235 → 234 → 135 → 134 → 125 → 124) → (∅) (the first is sufficient)
- at level 6: (356 → 235 → 346 → 234 → 135 → 134 → 125 → 124) → (236 →
126 → 136 → 146 → 156 → 456 → 256 → 356)

This example shows two pseudoline arrangements having all their free trian-
gles (123, 145, 356 and 246) in the same position. Then a sequence of mutations
from one to the other must begin with the mutation of a non permuted trian-
gle. Hence the minimal number of mutations needed in the sequence may be
strictly larger than the number of permuted triangles. For instance in the above
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sequence, we used twice the mutation of 356. The problem of building a minimal
sequence of mutations in general is open.

5.2 Visualization of Spatial Graphs Encoded by Oriented Matroids

Consider a set E of n + 1 points in the 3-dimensional real (or rational) space in
general position, a plane in general position with this configuration, and a ∈ E
the extremal point in E with respect to the plane (i. e. the distance from a to the
plane is maximal). Then the projections, from a to the plane, of the segments
formed by all pairs of vertices is a complete (geometrical) graph drawing on n
vertices (see Figure 7).

3

2

1

4

a

+
-

3

2

1

4

a

Fig. 7. Perspective on a spatial graph

Theorem 3. The rank 4 oriented matroid defined by E determines a corner and
the cross relations of the drawing obtained by projection from the extremal point
a ∈ E. Hence it determines the drawing up to a sequence of triangle mutations.

Proof. With the oriented matroid, we know for each triplet in E, and for each
pair of other points, if these two points are on the same side or the opposite sides
of the plane spanned by the triplet, i. e. we know the relative signs of elements
in a cocircuit defined by the triplet. Then we easily get a corner of the drawing
and its cross relations (but not all the drawing). We end using Theorem 2. �

With theorem 3 we know that if two such configurations of points define the
same oriented matroid up to a bijection of the ground set, then their projections,
from extremal points being in bijection, are the same up to a sequence of triangle
mutations and orientation preserving homeomorphisms.

Note that this application uses mainly particular cases of the constructions
of the paper because: first, the graph drawing obtained by projection is a geo-
metrical graph drawing, that is a drawing with straight edges, and secondly, the
oriented matroid structure may determine directly the inside and map relations
on the drawing.

Note nevertheless that the obtained result is not trivial since it is impossible
in general to transform the first point configuration into the second by an isotopy
of the space preserving the oriented matroid structure (which would have been,
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if true, an immediate way to build the required sequence of mutations). This
fact is known in oriented matroid theory [1] as the Universality Theorem of
Mnëv, stating that realization spaces of oriented matroid are not connected, and
in fact are birationally equivalent to semi-algebraic varieties. For some other
spatial transformation problems related to spatial graphs, see [6].

Finally, the point a plays the part of a point of view. When a moves in a
region delimited by the planes formed by other points of the configuration, the
oriented matroid data, and the subksetch, are unchanged, but the drawing, and
its sketch, change with a sequence of triangle mutations. When a crosses a plane,
the oriented matroid data changes (a sign changes in some cocircuit). Thus, it is
a certain modelization, using two structural levels, of spatial graph visualization.
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Abstract. In this paper we study the existence of a small set T of span-
ning trees that collectively “1-span” an interval graph G. In particular,
for any pair of vertices u, v we require a tree T ∈ T such that the dis-
tance between u and v in T is at most one more than their distance in
G. We show that:

– there is no constant size set of collective tree 1-spanners for interval
graphs (even unit interval graphs),

– interval graph G has a set of collective tree 1-spanners of size
O(log D), where D is the diameter of G,

– interval graphs have a 1-spanner with fewer than 2n − 2 edges.

Furthermore, at the end of the paper we state other results on collec-
tive tree c-spanners for c > 1 and other more general graph classes.

1 Introduction

A spanning subgraph H of G is called a spanner of G if H provides a “good”
approximation of the distances in G. More formally, for c ≥ 1, H is called an
additive c-spanner of G if for any pair of vertices u and v their distance in H
is at most c plus their distance in G [10]. (A similar definition can be given for
multiplicative c-spanners [1,14,13]; however since we are only concerned with
additive spanners, we will often omit “additive”.) In this paper, we continue
the approach taken in [5,4,7] of studying collective tree spanners. We say that a
graph G(V, E) admits a system of μ collective additive tree c-spanners if there is
a system T (G) of at most μ spanning trees of G such that for any two vertices
u, v of G a spanning tree T ∈ T (G) exists such that the distance in T between x
and v is at most c plus their distance in G. We say that system T (G) collectively
c-spans the graph G. Clearly, if G admits a system of μ collective additive tree
c-spanners, then G admits an additive c-spanner with at most μ× (n− 1) edges
(take the union of all those trees), and if μ = 1 then G admits an additive tree
c-spanner. Note also that any graph on n vertices admits a system of at most
n − 1 collective additive tree 0-spanners (take n − 1 Breadth-First-Search–trees
(also known as shortest path trees) rooted at different vertices of G).

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 151–162, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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One of the motivations to introduce this new concept steams from the prob-
lem of designing compact and efficient routing schemes in graphs. In [6,15], a
shortest path routing labeling scheme for trees is described that assigns each
vertex of an n-vertex tree a O(log2 n/ log log n)-bit label. Given the label of a
source vertex and the label of a destination, it is possible to compute in constant
time, based solely on these two labels, the neighbor of the source that heads in
the direction of the destination. Clearly, if an n-vertex graph G admits a system
of μ collective additive tree r-spanners, then G admits a routing labeling scheme
of deviation (i.e., additive stretch) r with addresses and routing tables of size
O(μ log2 n/ log log n) bits per vertex. Once computed by the sender in μ time
(by choosing for a given destination an appropriate tree from the collection to
perform routing), headers of messages never change, and the routing decision is
made in constant time per vertex (for details see [4,5]).

Previously, collective tree spanners of particular classes of graphs were con-
sidered in [4,5,7]. Paper [5] showed that any chordal graph, chordal bipartite
graph or cocomparability graph admits a system of at most log2 n collective
additive tree 2–spanners. These results were complemented by lower bounds,
which say that any system of collective additive tree 1–spanners must have
Ω(

√
n) spanning trees for some chordal graphs and Ω(n) spanning trees for

some chordal bipartite graphs and some cocomparability graphs. Furthermore,
it was shown that any k-chordal graph admits a system of at most log2 n collec-
tive additive tree (2�k/2�)–spanners and any circular-arc graph admits a system
of two collective additive tree 2–spanners. Paper [4] showed that any AT-free
graph (graph without asteroidal triples) admits a system of two collective ad-
ditive tree 2-spanners, any graph having a dominating shortest path admits a
system of two collective additive tree 3-spanners and a system of five collective
additive tree 2-spanners, and any graph with asteroidal number an(G) admits a
system of an(G)(an(G) − 1)/2 collective additive tree 4-spanners and a system
of an(G)(an(G)− 1) collective additive tree 3-spanners. Collective multiplicative
tree spanners of planar graphs were investigated in [7]. It was shown that any
weighted n–vertex planar graph admits a system of O(

√
n) collective multiplica-

tive tree 1-spanners (equivalently, additive tree 0-spanners) and a system of at
most 2 log3/2 n collective multiplicative tree 3–spanners.

In this paper we study collective tree 1-spanners for interval graphs. In Sec-
tion 2, we show that no constant number of trees can collectively 1-span interval
graphs (even unit interval graphs). Surprisingly there is, as shown in Section 4,
an additive 1-spanner that uses fewer than 2n − 2 edges, the number of edges
required for two disjoint spanning trees. In Section 3, we present a polynomial
time algorithm to find a set of O(log D) trees that collectively 1-span a given
interval graph G, where D is the diameter of G. In the final section we briefly
list other results on families of graphs that strictly contain interval graphs. First
we present the definitions used in this paper.

Notation and Definitions: All graphs occurring in this paper are connected,
finite, undirected, loopless and without multiple edges. In a graph G(V, E) (n =
|V |, m = |E|) the length of a path from a vertex v to a vertex u is the number
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(a) (b)

Fig. 1. (a) A house, (b) A domino

of edges in the path. The distance dG(u, v) between the vertices u and v is the
length of a shortest path connecting u and v. The eccentricity ecc(v) of a vertex
v of G is maxu∈V dG(u, v). The diameter diam(G) of G is maxv∈V ecc(v). The
ith neighborhood of a vertex v of G is the set Ni(v) = {u ∈ V : dG(v, u) = i}.
For a vertex v of G, the sets N(v) = N1(v) and N [v] = N(v) ∪ {v} are called
the open neighborhood and the closed neighborhood of v, respectively. For a set
S ⊆ V , by N [S] =

⋃
v∈S N [v] we denote the closed neighborhood of S and by

N(S) = N [S]\S the open neighborhood of S. A set D ⊆ V is called a dominating
set of a graph G = (V, E) if N [D] = V .

An independent set of three vertices such that each pair is joined by a path
that avoids the neighborhood of the third is called an asteroidal triple (AT).
A graph G is an AT-free graph if it does not contain any asteroidal triples [2].
A graph is chordal if it does not contain any induced cycles of length greater
than 3. A graph is an interval graph if one can associate with each vertex an
interval on the real line such that two vertices are adjacent if and only if the
corresponding intervals have a nonempty intersection. Furthermore, an interval
graph is a unit interval graph if all intervals are of the same length. Unit interval
graphs are equivalent to proper interval graphs where no interval can properly
contain any other interval. It is well known that a graph is an interval graph if
and only if it is both a chordal graph and an AT-free graph [9].

A graph is weakly chordal (also called weakly triangulated) if neither G nor
its complement G contain an induced hole (cycle of size at least 5). A graph G is
house-hole-domino-free (HHD-free) if it does not contain the house, the domino,
and holes as induced subgraphs (see Fig. 1). Clearly, chordal graphs are strictly
contained in both weakly chordal and HHD-free graphs.

2 Lower Bound

Independently McKee [12] and Kratsch et al. [8] showed that no single tree can
c-span a chordal graph for any constant c. We now show a similar result for
collectively 1-spanning a unit interval graph.

Theorem 1. No constant number of trees can collectively 1-span a unit interval
graph.
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Proof. First we will show that two trees do not suffice and then show how to
extend this result to any constant number of trees.

The general “gadget” will be a K3 with two independent universal vertices
x and y (i.e. we have a K5 with the edge xy missing). The vertices of the K3

will be labelled 1, 2, 3. Now make a sufficiently long chain of these gadgets by
identifying the y vertex of a gadget with the x vertex of its right neighbor. It is
straightforward to confirm that this graph G is a unit interval graph. Consider
two trees T1 and T2 that supposedly collectively 1-span G. By making the chain
sufficiently long, by the “pigeonhole principle”, we are guaranteed that there are
three gadgets in G namely, A, B and C where A is left of B which is left of C
such that:

– T1 restricted to A, B and C is exactly the same spanning tree for all three
gadgets. Exactly the same means from the labelled vertex point of view,

– T2 restricted to A, B and C is also exactly the same spanning tree for all
three gadgets. Note that T1 restricted to {A, B, C} is not necessarily the
same as T2 restricted to {A, B, C}.

The vertices in A, B and C will be denoted Ax, B3, Cy , where, for example,
Ax refers to the x-vertex of A. We say that a tree provides a 1-approximating
path between two vertices if the distance between the vertices in the tree is at
most 1 more than their distance in G. We now show that in order for T1 or T2

to provide such an approximating path, certain edges of G must be present in
the tree.

Claim. Let i be an element of {1, 2, 3}. If either T1 or T2 provides a 1-approxi-
mating path between Ai and Ci, then it must contain the xi and yi edges in all
of A, B and C.

Proof. Without loss of generality, assume that T1 provides the 1-approximating
path between Ai and Ci, i ∈ {1, 2, 3}. Such a path requires either Ai to be
adjacent to Ay and/or Ci to be adjacent to Cx. Without loss of generality,
assume Ci is adjacent to Cx; thus since T1 when restricted to A, B and C is
exactly the same, Ai is adjacent to Ax and Bi is adjacent to Bx as well. We now
show that in all three of A, B and C, i is also adjacent to y. Suppose not; now
in each gadget, the distance between i and y is at least 2 which means that the
tree path between Ai and Ci must be at least 2 greater than the distance in G
(since in T1 the distance between Bx and By must be at least 3 by following the
edge BxBi and the path between Bi and By). �

From the claim, it is clear that each of T1 and T2 can provide at most one
path between A1, C1 or A2, C2 or A3, C3 and thus at least three trees are required
to 1-approximate G.

To generalize this argument, i.e. to show that at least k trees are required,
merely replace the K3 in the gadget by a Kk. The same use of the claim shows
that k − 1 trees are not enough. �

A straightforward analysis (that will be presented in the journal version of
the paper) shows that the size of the collective tree 1-spanners is Ω(

√
log n).
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3 Upper Bound

In light of Ω(
√

log n) spanning trees being needed to collectively 1-span an in-
terval graph G, we now show that 2 log2(D−1)+4 spanning trees suffice, where
D is the diameter of G.

Let P be a shortest path of a graph G. If every vertex z of G belongs to
the neighborhood N [P ] of P , then we say that P is a dominating shortest path
(DS-path) of G. It is known that any AT-free graph has a DS-path which can be
found in linear time [2]. In what follows we will need a slightly stronger result
from [8].

10 2 3 4 5 6 7

(a)

0 1 2 3 4 4 6 75

(b)

0 3 4 4 7221 6 65

(c)

Fig. 2. (a) Graph G = G0,7, (b) graphs G0,4 and G4,7, (c) graphs G0,2, G2,4, G4,6 and
G6,7. Graphs G0,1, G1,2, G2,3, G3,4, G4,5 and G5,6 are not shown.

Lemma 1. [2,8] Any AT-free graph G admits a DS-path (x0, x1, · · · , xecc(x0))
such that for every i = 1, 2, · · · , ecc(x0), every vertex z ∈ Ni(x0) is adjacent to
xi or xi−1. Moreover, such a DS-path can be constructed in linear time.

Now let G be an interval graph and let (x0, x1, · · · , xecc(x0)) be such a DS-
path of G described by Lemma 1. The following lemma is important for our
future discussion.

Lemma 2. For any two adjacent vertices u ∈ Ni(x0) and v ∈ Ni+1(x0), u, v ∈
N [xi] or u, v ∈ N [xi+1]. Moreover, if u �= xi, then uxi ∈ E.
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Proof. If u = xi or v = xi+1, then the lemma is trivially true. Hence, we may
assume that u �= xi and v �= xi+1. If uxi /∈ E then, by Lemma 1, uxi−1 ∈ E. If
now vxi ∈ E, then u, v, xi, xi−1 give an induced cycle of length 4 in G, which
is impossible for an interval graph. If vxi /∈ E then, by Lemma 1, vxi+1 ∈ E.
Then, we obtain either an induced cycle of length 5 or induced cycle of length
4, depending on whether or not uxi+1 is in E. So, if u �= xi, then uxi must be in
E. If now vxi+1 ∈ E but neither uxi+1 nor vxi is in E, then xi, u, v, xi+1 form
an induced cycle of length 4 in G, which is impossible. �

Let l denote ecc(x0). For any two integers i, j, 0 ≤ i < j ≤ l, we define Gi,j

to be the subgraph of G induced by vertices {xi} ∪Ni+1(x0)∪ · · · ∪Nj(x0) (see
Fig. 2 for an illustration). In view of Lemma 1, obviously, Gi,j is connected and
G = G0,l. We use the following procedure to construct a system of local shortest
path trees of G.

PROCEDURE 1. A system of local shortest path trees for an interval
graph G.

Input: An interval graph G, a DS-path (x0, · · · , xl) and the layering
{x0}, N1(x0), · · · , Nl(x0) of G.

Output: A system of local shortest path trees of G.

Method:
set k := 0; Gk := {G0,l}; T := ∅;
while Gk �= ∅ do

set Gk+1 := ∅; T ′
k := ∅; T ′′

k := ∅;
for each Gi,j ∈ Gk do

if j = i + 1 then
construct a shortest path tree of Gi,j rooted at xi and put it in T ′

k ;
construct a shortest path tree of Gi,j rooted at xj and put it in T ′′

k ;
else /* if j > i + 1 */

set s := �(j − i)/2�+ i + 1;
construct a shortest path tree of Gi,j rooted at xs−1 and put it in T ′

k ;
construct a shortest path tree of Gi,j rooted at xs and put it in T ′′

k ;
set Gk+1 := Gk+1 ∪ {Gi,s−1, Gs−1,j};

set T := T ∪ T ′
k ∪ T ′′

k ;
set k := k + 1;

return T .

Note that the while loop in the procedure above will be executed at most
log2(l−1)+2 times. Let Gi,j be an arbitrary subgraph generated by the procedure
with j > i + 1. Let also s = �(j − i)/2� + i + 1 and a ∈ Nr(x0), b ∈ Nt(x0) be
two arbitrary vertices in Gi,j , where r ≤ t are two integers between i and j
inclusive. Let Ts, Ts−1 ∈ T be the two shortest path trees of Gi,j rooted at
xs, xs−1, respectively. Clearly, both spanning trees span all the vertices of Gi,j

and the subgraphs Gi,s−1 and Gs−1,j of Gi,j have only one common vertex xs−1.
The following lemmata hold.
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Lemma 3. If r= t=s, then dTs(a, b)≤dG(a, b) + 1 or dTs−1(a, b)≤dG(a, b) + 1.

Proof. Since Ts and Ts−1 are shortest path trees, using Lemma 1, one can easily
show that dTs(a, b) ≤ 3 or dTs−1(a, b) ≤ 3. So, if ab /∈ E or a, b ∈ N [xs] or
a, b ∈ N [xs−1], then the lemma holds. If now ab ∈ E and, without loss of
generality, axs, bxs−1 ∈ E and bxs, axs−1 /∈ E, then the vertices a, b, xs−1, xs

form an induced cycle of length 4 in G, which is impossible. �
In a similar way one can show the following.

Lemma 4. If a and b are vertices of a graph Gi,i+1 then dT ′(a, b) ≤ dG(a, b)+1
or dT ′′(a, b) ≤ dG(a, b) + 1, where T ′, T ′′ ∈ T are shortest path trees of Gi,i+1

rooted at xi and xi+1, respectively.

Lemma 5. If i ≤ r < s ≤ t ≤ j, then dTs(a, b) ≤ dGi,j (a, b)+ 1 or dTs−1(a, b) ≤
dGi,j (a, b) + 1.

Proof. Using Lemma 1, it is easy to show that dTs(a, b) ≤ t−r+3 or dTs−1(a, b) ≤
t − r + 3. So, when dGi,j (a, b) ≥ t − r + 2, the lemma clearly holds. Therefore,
we may assume that dGi,j (a, b) is t − r + 1 or t − r. Let first dGi,j (a, b) = t − r
and (zr = a, zr+1, · · · , zt = b) be a shortest path between a and b in Gi,j .
Consider vertices zs−1 and zs. According to Lemma 2, they both belong to
N [xs] or to N [xs−1]. Without loss of generality, assume zs, zs−1 ∈ N [xs]. Since
Ts is a shortest path tree, dTs(xs, a) ≤ s − r and dTs(xs, b) ≤ t − s + 1. So,
dTs(a, b) ≤ dTS (xs, a) + dTs(xs, b) ≤ t − r + 1 = dGi,j (a, b) + 1.

Now assume that dGi,j (a, b) = t − r + 1. Let zszs−1 ∈ E be an edge on
the shortest path between a and b in Gi,j such that zs ∈ Ns(x0) and zs−1 ∈
Ns−1(x0). Obviously, such an edge must exist, and we have dGi,j (a, b) = dGi,j (a,
zs−1) + dGi,j (b, zs) + 1. According to Lemma 2, both zs and zs−1 belong to
N [xs] or to N [xs−1]. Without loss of generality, assume they belong to N [xs].
Then, since Ts is a shortest path tree of Gi,j , dTs(xs, a) ≤ 1 + dGi,j (zs−1, a) and
dTs(xs, b) ≤ 1 + dGi,j (zs, b). Hence, dTs(a, b) ≤ 2 + dGi,j (zs, b) + dGi,j (zs−1, a) =
1 + dGi,j (a, b). This concludes our proof. �

Lemma 6. If dGi,j (a, b) �= dG(a, b), then a ∈ Ni+1(x0) or b ∈ Ni+1(x0).

Proof. Without loss of generality, assume that a ∈ Nr(x0), b ∈ Nt(x0) and i+1 ≤
r ≤ t ≤ j. We claim that there always exists a shortest path PG(a, b) between a
and b in G such that PG(a, b)∩Nj+1(x0) = ∅. If this is not the case, then there
must exist vertices c, d ∈ PG(a, b) ∩ Nj(x0) and c′, d′ ∈ Nj+1(x0) ∩ PG(a, b)
such that cc′ and dd′ are edges of PG(a, b). Obviously, cd /∈ E. According to
Lemma 2(second part), cxj , dxj ∈ E. Then, if we replace the part of PG(a, b)
between c and d with the path (c, xj , d), obviously we will get a shortest path
between a and b that does not intersect Nj+1(x0). So, we may assume that
PG(a, b) ∩ Nj+1(x0) = ∅.

If neither a ∈ Ni+1(x0) nor b ∈ Ni+1(x0), then i + 1 < r ≤ t. Since
dGi,j (a, b) �= dG(a, b), we must be able to find four vertices e, f ∈ Ni+2(x0) ∩
PG(a, b) and e′, f ′ ∈ Ni+1(x0) such that ee′ and ff ′ are edges of PG(a, b). If



158 D.G. Corneil et al.

e′f ′ ∈ E or e′ = f ′, then PG(a, b) is in Gi,j , i.e., dGi,j (a, b) = dG(a, b). Hence,
one may assume that e′f ′ /∈ E and e′ �= f ′. Then, according to Lemma 2(second
part), e′xi+1, f

′xi+1 ∈ E and we can choose another shortest path between a
and b that does not intersect Ni(x0) and get dGi,j (a, b) = dG(a, b) again. Thus,
if neither a ∈ Ni+1(x0) nor b ∈ Ni+1(x0), then dGi,j (a, b) = dG(a, b). �

We are ready to prove the following main lemma of this section.

Lemma 7. For any two vertices a, b ∈ V (G), there exists a local shortest path
tree T ∈ T such that dT (a, b) ≤ dG(a, b) + 1.

Proof. Let Gi,j be a subgraph of G, generated by Procedure 1, which contains
both vertices a and b and has the minimum difference j − i. If j − i = 1 then we
are done by Lemma 4. Therefore, in what follows we assume that j > i + 1, and
let s = �(j − i)/2� + i + 1 and a ∈ Nr(x0), b ∈ Nt(x0), where i ≤ r ≤ t ≤ j. By
minimality of j − i, r < s ≤ t (if t < s then Gi,s−1 contains both a and b, and if
r ≥ s then Gs−1,j contains both a and b).

The case i ≤ r < s ≤ t ≤ j when dGi,j (a, b) = dG(a, b) is handled by Lemma
5. Assume now that dGi,j (a, b) �= dG(a, b). Let PG(a, b) be an arbitrary shortest
path between a and b in G. By Lemma 6, r = i + 1. We claim that dG(a, b) =
t − r + 2. Indeed, since dGi,j (a, b) ≤ t − r + 3 (recall that a ∈ N [xi+1] ∪ N(xi)
and b ∈ N [xt] ∪ N(xt−1) by Lemma 1) and dGi,j (a, b) �= dG(a, b), we must have
dG(a, b) ≤ t− r+2. On the other hand, if dG(a, b) ≤ t− r+1, then we can easily
show that all the vertices of PG(a, b) are in Gi,j , and thus dGi,j (a, b) = dG(a, b).

Consider now the local shortest path tree Ts ∈ T of Gi,j rooted at xs,
where s = �(j − i)/2�+ i + 1. It is easy to show that dTs(xs, a) ≤ s − r + 2 and
dTs(xs, b) ≤ t−s+1. Combining the two inequalities, we get dTs(a, b) ≤ t−r+3.
Since dG(a, b) = t − r + 2, the lemma holds. �

We can group the local shortest path trees from T into at most 2 log2(l−1)+4
spanning trees of G. Consider Procedure 1. At the beginning, G0,l = G and we

10 2 3 4 5 6 7

T’1

10 2 3 4 5 6 7

T’’1

Fig. 3. Spanning trees T ′
1 and T ′′

1 of an interval graph G from Fig. 2
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construct only two spanning trees of G, i.e., T ′
0 = {T ′

0}, T ′′
0 = {T ′′

0 }. In the
second iteration, G is decomposed into two subgraphs G0,s−1 and Gs−1,l where
s = �l/2�+ 1. For each of the two subgraphs, the algorithm constructs two local
shortest path trees, i.e., T ′

1 = {T ′1
1, T

′2
1}, T ′′

1 = {T ′′1
1, T

′′2
1}. Since G0,s−1 and

Gs−1,l have only vertex xs−1 in common, we conclude T ′
1 := T ′1

1∪T ′2
1 and T ′′

1 :=
T ′′1

1∪T ′′2
1 are two spanning trees of G (see Fig. 3). In general, during the iteration

k of Procedure 1, for each of the 2k−1 subgraphs G0,j1 , Gj1,j2 , · · · , Gj2k−1−1,j of

G, we construct two local shortest path trees, i.e., T ′
k = {T ′1

k, T ′2
k, · · · , T ′2k−1

k },
T ′′

k = {T ′′1
k, T ′′2

k, · · · , T ′′2k−1

k }, where T ′γ
k and T ′′γ

k are the local shortest path
trees constructed for Gjγ−1,jγ (γ = 1, · · · , 2k−1). Again, for any γ = 1, · · · , 2k−1−
1, Gjγ−1,jγ and Gjγ ,jγ+1 have only vertex xjγ in common. Therefore, T ′

k :=⋃
1≤γ≤2k−1 T ′γ

k and T ′′
k :=

⋃
1≤γ≤2k−1 T ′′γ

k are two spanning trees of G. Since the
number of iterations is bounded by α ≤ log2(l−1)+2, in this way we will create
a system ST := {T ′

0, T
′′
0 , T ′

1.T
′′
1 , · · · , T ′

α, T ′′
α} of at most 2α spanning trees of G.

Furthermore, each local shortest path tree from T will be contained in one of
the spanning trees from ST as a subtree. Thus, we proved the following result.

Theorem 2. Any interval graph of diameter D admits a system of 2 log2(D −
1)+4 collective additive tree 1-spanners. Moreover, these trees can be constructed
in O(m log D) total time.

4 Sparse Spanner

Given the result in Theorem 1 that no constant number of trees can collectively
1-span a unit interval graph, it is somewhat surprising that there is a sparse
1-spanner of an interval graph that has fewer than 2n− 2 edges (i.e. the number
of edges in two disjoint spanning trees). To see this, we first present an algorithm
to produce a subgraph H of interval graph G. We then show that H has the
required number of edges and is in fact a 1-spanner of G.

PROCEDURE 2. Construction of a sparse 1-spanner for an interval
graph G.

Input: An interval graph G, and an interval ordering ≺ of V where for all
x ≺ y ≺ z if xz ∈ E, then xy ∈ E. Let D be the diameter of the graph G.

Output: A sparse 1-spanner H of G.

Method:
let xD be the last vertex in the ordering ≺; set EH := ∅;
add the edge from xD to its leftmost neighbor to EH ;
for i from D downto 1 do

let xi−1 be the left most neighbor of xi;
add to EH all edges from xi−1 to vertices to the right of xi−1 up to xi;
if i > 1 then add to EH all edges in G from xi−1 to vertices to the left

of xi−1.
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x 6

Fig. 4. (a) Graph G and its interval ordering ≺. (b) Sparse 1-spanner H with the edges
of P bold.

As an example of Procedure 2, consider Fig. 4(a) where the interval graph of
Fig. 2 is repeated together with an interval numbering. The 1-spanner H is shown
in Fig. 4(b) and the bold edges denote P , the path induced on {xi, 0 ≤ i ≤ D}.

We now show that H is a sparse 1-spanner of G.

Lemma 8. H is a 1-spanner of G with at most 2n − D − 2 edges.

Proof. First we show that H has at most 2n− D − 2 edges. To see this note:

– all vertices to the right of xD−1 have degree 1 in H and there is at least one
vertex here;

– all vertices to the left of xD−1 that are not on P have degree at most 2 in
H (by the interval ordering property);

– there are D − 1 edges joining the P \ {xD} vertices.

Thus the total number of edges in H is at most 1+ 2(n− (D +1))+D− 1 =
2n − D − 2, as required.

To see that H is a 1-spanner, consider arbitrary vertices x and y where x ≺ y
in the interval ordering. We now show that dH(x, y) ≤ dG(x, y) + 1. This is
clearly true if x is in P , so we assume that x is not in P . Now, suppose x is
between xi and xi+1 for i ≥ 0 and y satisfies xj ≺ y % xj+1, where i < j. (Note
that if i = j, then immediately dH(x, y) ≤ 2.)

Claim. dG(x, y) ≥ j − i.

Proof. Suppose to the contrary that there is a path Q in G of length less than
j − i. It is easy to see that the number of P vertices strictly between x and y is
j − i and thus some edge uv (where u ≺ v) of Q surrounds two P vertices xk

and xk+1 (i.e. u ≺ xk ≺ xk+1 ≺ v). Since uv ∈ EG, uxk+1 ∈ EG contradicting
xk being the left most neighbor of xk+1. �
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Now suppose dG(x, y) = j − i as witnessed by path Q := (q0 =
x, q1, · · · , qj−i = y). Using the same argument as in the claim, for each k ∈
{0, 1, · · · , j − 1}, qk must lie between xi+k and xi+k+1. Since x = q0 is adjacent
to q1, and xi+1 is between q0 and q1, we know that x is adjacent to xi+1. Now
consider the path in H from x to xi+1, · · ·xj , y. This path has length j − i + 1.

Thus we may assume that dG(x, y) > j − i. But the path in H from x to
xi, · · ·xj , y has length j − i + 2 and we are finished. �

Thus we have the following result:

Theorem 3. Any interval graph G of diameter D admits a sparse additive 1-
spanner with at most 2n−D−2 edges. Moreover, this spanner can be constructed
in O(n + m) time.

Proof. Given Lemma 4, we only have to establish the time complexity. There
are many linear time interval graph recognition algorithms that can be used to
determine an interval ordering of the given graph (for example see [3]). Using
this ordering, a straightforward implementation of Procedure 2 can be achieved
in linear time. �

Furthermore, in the journal version of the paper we will show that the sparse
spanner returned by Procedure 2 can be used for efficient routing.

5 Concluding Remarks

The most obvious open question in this paper is to tighten the gap between the
lower and upper bounds for the size of a collective tree 1-spanner for interval
graphs.

The results stated in this paper also raise questions about additive c-spanners
for c > 1 for graph classes containing interval graphs. (Recall that interval graphs
have a single tree that 2-spans the graph [11,8].) In the journal version of the
paper, we will present proofs of the following theorems.

Theorem 4. No constant number of trees can collectively additively c-span
chordal graphs for c ≤ 3.

Theorem 5. No constant number of trees can collectively additively c-span
weakly chordal graphs for all constants c.

Theorem 6. Any HHD-free graph admits a system of at most 2 log2 n collective
additive tree 2-spanners. Moreover, such a set of trees can be constructed in
O(m log n) time.

For the proof of Theorem 6 we show an auxiliary result of independent in-
terest that any n-vertex HHD-free graph G has a separator S ⊆ V such that

– any connected component of G \ S has no more than n/2 vertices and
– S ⊆ (N [x] ∪ N [y]) for some vertices x, y ∈ S.

Moreover, S and such two vertices x and y can be found in linear time.
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Abstract. To decide whether a line graph (hence a claw-free graph)
of maximum degree five admits a stable cutset has been proven to be
an NP-complete problem. The same result has been known for K4-free
graphs. Here we show how to decide this problem in polynomial time
for (claw, K4)-free graphs and for a claw-free graph of maximum degree
at most four. As a by-product we prove that the stable cutset problem
is polynomially solvable for claw-free planar graphs, and for planar line
graphs. Now, the computational complexity of the stable cutset problem
restricted to claw-free graphs and claw-free planar graphs is known for
all bounds on the maximum degree.

Moreover, we prove that the stable cutset problem remains NP-
complete for K4-free planar graphs of maximum degree five.

1 Introduction

In a graph, a clique (stable set) is a set of pairwise (non-)adjacent vertices. A
cutset (or separator) of a graph G is a set S of vertices such that G − S is
disconnected. A clique cutset (stable cutset) is a cutset which is also a clique
(stable set).

Clique cutsets are a well-studied kind of separators in the literature, and have
been used in divide-and-conquer algorithms for various graph problems, such as
graph colouring and finding maximum stable sets; see [18,22]. Applications of
clique cutsets in algorithm design use the fact that these cutsets (in arbitrary
graphs) can be found in polynomial time [18,21,22].

The importance of stable cutsets has been demonstrated first in [6,20] in
connection to perfect graphs. Tucker [20] proved that if S is a stable cutset in
G and if no induced cycle of odd length at least five in G has a vertex in S then
the colouring problem on G can be reduced to the same problem on the smaller
subgraphs induced by S and the components of G − S.

Later, the papers [2,3,4,10,13,15] discussed the computational complexity of
the problem Stable Cutset (“Does a given graph admit a stable cutset?”).

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 163–174, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Stable cutsets (in line graphs) have been also studied under other notion. A
graph is decomposable (cf. [11]) if its vertices can be coloured red and blue in
such a way that each colour appears on at least one vertex but each vertex v has
at most one neighbour having a different colour from v. In other words, a graph
is decomposable if its vertices can be partitioned into two nonempty parts such
that the edges connecting vertices of different parts form an induced matching,
a matching-cut. It turns out that matching-cuts in a graph correspond to stable
cutsets in its line graphs. Matching-cuts have been studied in [1,5,8,9,15,16,17].
The papers [7,17] point out an application in graph drawing.

The relationship between decomposability and a stable cutset is (cf. [2]): If
L(G) has a stable cutset, then G is decomposable. If G is decomposable and has
minimum degree at least two, then L(G) has a stable cutset.

Chvátal [5] proved that recognising decomposable graphs is NP-complete,
even for graphs with maximum degree four. Thus, in terms of stable cutsets in
line graphs, Chvátal’s result may be reformulated and improved as follows.

Theorem 1 (Chvátal [5]). Stable Cutset is NP-complete, even if the input
is restricted to line graphs with maximum degree six.

Theorem 2 ([15]). Stable Cutset remains NP-complete if restricted to line
graphs with maximum degree five, and is polynomial solvable for line graphs of
maximum degree at most four.

Hence, the computational complexity of Stable Cutset for line graphs is
completely characterised with respect to maximum degree constraints.

In particular, Stable Cutset is NP-complete for claw-free graphs with
maximum degree five. In [15], it is shown that Stable Cutset is solvable in
linear time for arbitrary graphs with maximum degree at most three. The com-
plexity of Stable Cutset for graphs with maximum degree 4 is still open.

In this paper we will improve the second part of Theorem 2 to the larger class
of claw-free graphs as follows: Stable Cutset becomes polynomial for claw-free
graphs of maximum degree at most four. Thus the computational complexity of
Stable Cutset for claw-free graphs is completely characterised with respect
to maximum degree constraints.

Stable Cutset for K3-free graphs is trivial. In [2] it was shown that Stable
Cutset is NP-complete for K4-free graphs. Our second result is that Stable
Cutset can be solved in polynomial time for (claw, K4)-free-graphs. As a by-
product, we will show that Stable Cutset is polynomially solvable for claw-free
planar graphs, and in particular for planar line graphs.

Finally, we show that Stable Cutset remains NP-complete on planar K4-
free graphs with maximum degree five.

2 Preliminaries

Let G be a graph. The vertex set and the edge set of G are denoted by V (G) and
E(G), respectively. The neighbourhood of a vertex v in G, denoted by N(v), is
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the set of all vertices in G adjacent to v. Let deg(v) = |N(v)| be the degree of
the vertex v, and Δ(G) = max{deg(v) | v ∈ V (G)} the maximum degree of G.
For a subset W ⊆ V (G), G[W ] is the subgraph of G induced by W .

Let scs(G) denote the minimum size of a stable cutset of G. If G has no
stable cutset we write scs(G) = ∞.

When discussing the computational complexity of Stable Cutset we may
assume that G is connected. Moreover we assume that no vertex v of G has a
stable neighbourhood N(v). Otherwise N(v) or {v} would be a stable cutset in
G, or G has at most two vertices, and we are done. Thus, we have (cf. [15]):

Lemma 1. If scs(G) < ∞, then scs(G − v) < ∞ for all v ∈ V (G).

Lemma 2. Let C be a clique cutset in a graph G, |C| � 2. Then scs(G) < ∞ if
and only if there is a component G[A] of G − C such that scs(G[A ∪ C]) < ∞.

Since a clique cutset can be found in polynomial time ([18,21]), and singletons
are stable, Lemma 2 allows us to assume that G has no clique cutset.

3 Rigid Sets

A set R ⊆ V is said to be rigid in G = (V, E) if, for every stable set S ⊆ V , there
is a connected component G[A] of G − S with R \ S ⊆ A. Rigid sets naturally
come in because G has a stable cutset if and only if V is not rigid.

Clearly, every clique of G is rigid. Moreover, if Q and R are rigid sets such
that Q ∩ R contains a pair of adjacent vertices, then Q ∪ R is rigid. However,
further rigid sets exist, see Fig. 1 for examples.

By definition, a chordal graph has no induced cycle of length four or more.

Fig. 1. Graphs without stable cutset

Lemma 3. Let H = (R, F ) be a 2-
connected chordal subgraph of G =
(V, E). Then R is rigid in G.

Proof. The base step of the inductive
proof is for complete H . In the induc-

tive step we consider a minimal separator of H and use that it is a clique
in G. �

4 Claw-Free Graphs of Maximum Degree Four

We are going to improve the second part of Theorem 2. We will show that Stable
Cutset is polynomial solvable for claw-free graphs with maximum degree four
by reducing the problem to line graphs.

Recall that the line graph L(G) of a graph G has the edges of G as its vertices,
and two distinct edges of G are adjacent in L(G) if they are incident in G. Line
graphs have been characterised in terms for forbidden induced subgraphs as
follows: A graph is a line graph if and only if it does not contain any of the nine
graphs listed in Fig. 2 as an induced subgraph (cf. [12]).
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claw G1 G2

G3 G4 G5
G6

Fig. 2. Forbidden induced subgraphs for line graphs

Lemma 4. Let G be a claw-free graph without clique cutset and Δ(G) = 4.

(i) If G contains an induced G1, then G = G1 or scs(G) � 2.
(ii) If G contains an induced G2, then |V (G)| � 8 or scs(G) � 3.
(iii) If G contains an induced G3, then |V (G)| � 8 or scs(G) � 3.
(iv) If scs(G) < ∞ and G contains an induced G4 or G5, then scs(G) � 3.
(v) If scs(G) < ∞ and G contains an induced G6 then scs(G) � 2.

Theorem 3. Let G be a claw-free graph with Δ(G) = 4 and without clique
cutset. Assume that G is not a line graph and has at least 9 vertices. Then
scs(G) < ∞ if and only if scs(G) � 3.

Proof. As G is not a line graph, G must contain one of the nine forbidden induced
subgraphs listed in Fig. 2. As G is claw-free and has maximum degree four, G
therefore must contain one of the graphs G1, . . . , G6 in Fig. 2 as an induced
subgraph. Now the Theorem follows from Lemma 4. �

Theorem 4. Stable Cutset can be solved in polynomial time for claw-free
graphs with maximum degree at most four.

Thus the computational complexity of Stable Cutset for claw-free graphs
is completely characterised with respect to maximum degree constraints.

5 (Claw, K4)-Free Graphs

This section shows that Stable Cutset can be solved efficiently for (claw, K4)-
free graphs by reducing the problem to claw-free graphs with maximum degree
at most four. We observe first:

Lemma 5. The maximum degree in a (claw, K4)-free graph is at most five.

Proof. Let v be a vertex of degree at least six in any graph G. By a Ramsey-
argument, G[N(v)] contains either a triangle or the complement thereof. That
is, G contains a K4 including v, or there is a claw with central vertex v. �

Let G be a (claw, K4)-free graph on at least 11 vertices that contains neither
clique cutsets nor vertices with stable neighbourhood. We will show that, for all
vertices v of G with deg(v) = 5, G has a stable cutset if and only if G − v has
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a stable cutset. By Theorem 4, Stable Cutset is then solvable in polynomial
time for (claw, K4)-free graphs.

Let v be a vertex of degree five in G. By Lemma 1 it remains to show that
if G − v has a stable cutset then G has a stable cutset.

Assume to the contrary that G has no stable cutset, and consider an inclusion-
minimal stable cutset S in G− v. By the minimality of S, every vertex in S has
at least one neighbour in each connected component of (G − v) − S. Hence
(G− v)− S has exactly two connected components, otherwise there would be a
claw in G. Moreover, 1 � |N(v) ∩ S| � 2, otherwise S ∪ {v} would be a stable
cutset in G (if N(v)∩S = ∅) or there would be a claw in G (if |N(v)∩S| � 3).

Let A and B induce connected components of (G − v) − S. Then for all
u ∈ S ∪ {v}, N(u) ∩ A and N(u) ∩ B are cliques, each containing one or two
vertices.

If |N(v) ∩ A| = 2 = |N(v) ∩ B| then, as G is K4-free, no vertex in N(v) ∩ S
is adjacent to a vertex in N(v) ∩ A or N(v) ∩ B. But then G admits a claw, a
contradiction. Thus, |N(v) ∩ A| = 1 or |N(v) ∩ B| = 1, hence |N(v) ∩ S| = 2.
Let, without loss of generality, N(v) ∩ A = {a1, a2}, N(v) ∩ B = {b}, and
N(v) ∩ S = {s1, s2}.

a1

a2

A
v

s1

s2
S

b
B

Fig. 3. Minimal stable cut-
set S in G−v and the neigh-
bourhood of v in G − v

Recall that a1 and a2 are adjacent. As G is K4-
free, we may assume s1a2 /∈ E(G). Then s2 and
a2 are adjacent (otherwise, v, s1, s2, and a2 would
form a claw) and hence s2 and a1 are nonadjacent,
implying s1a1 ∈ E(G) (otherwise, v, s1, s2, and a1

would form a claw). Finally, s1 and s2 both must
be adjacent to b (otherwise there would be a claw),
see also Fig. 3.

We complete the proof by case analysis accord-
ing to the number of neighbours of si in A and B.

Theorem 5. Stable Cutset is polynomial on (claw, K4)-free graphs.

6 Claw-Free Planar Graphs

In [4], it was shown that every graph with n vertices and 2n−4 edges contains a
stable cutset (and, by the proof given there, such one can be found in polynomial
time). Consequently one might ask the computational complexity of Stable
Cutset in graphs with few edges. A natural candidate in this direction is the
class of planar graphs. In this section we show that Stable Cutset can be
solved efficiently for claw-free planar graphs.

It is well-known that planar graphs do not contain a K5-minor.

Lemma 6. Let G be a graph without clique cutset. If G contains no K5-minor,
then G = K4 or G is K4-free.

Proof. We show that G cannot properly contain a K4. Assume the contrary
and consider four pairwise adjacent vertices a, b, c, and d in G. Then H :=
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G − {a, b, c, d} is non-empty and connected (otherwise, {a, b, c, d} would be a
clique cutset in G). Moreover, for each vertex v ∈ {a, b, c, d}, N(v) ∩ H �= ∅,
otherwise {a, b, c, d} \ {v} would be a clique cutset in G separating v and H .
Thus, {a}, {b}, {c}, {d}, and H form a K5-minor, a contradiction. �

Theorem 6. Stable Cutset is polynomial on claw-free planar graphs.

Proof. Theorem 6 directly follows from Lemma 6 and Theorem 5 since we may
assume that our graphs do not contain any clique cutset. �

Corollary 1. Stable Cutset becomes polynomial on planar line graphs.

7 Planar Graphs of Degree at Most Five

In this section we prove that Stable Cutset remains NP-complete when re-
stricted to partial subgraphs of the triangular grid without vertices of degree six.
Since these graphs are K4-free, this substantially improves the NP-completeness
result in [2]. We use a reduction from a restricted version of planar 3SAT [14].

Let ϕ =
∧m

j=1 cj be the conjunction of clauses. Each clause is the disjunction
of literals. The literals are boolean variables or their negations. By X and C we
denote the set of variables and clauses. For x ∈ X and c ∈ C, x ∈ c means that
x or its negation x is a literal in c. We may assume the following restrictions:

– each variable appears (as x or x) in at least three and at most four clauses,
– each clause consists of exactly three literals, and
– the graph G = (V, E) is planar, where V = X ∪ C and E = {xc : x ∈ c}.

Note that these conditions ensure |X | � |C| � 4
3 |X |, i.e. |V | is linear in |X |.

7.1 Construction

Let G′ be a partial subgraph of a square grid such that each edge of G corre-
sponds with a path in G′, and the vertices having degree three or four in G′ are
in one-to-one correspondence with the vertices of G. Such an embedding G′ of
G into an n×n-grid, n = O(|X |), can be constructed in quadratic time [19]. For
each e ∈ E let �(e) be the number of horizontal edges on the path representing
e in G′. We compute a �-minimum spanning tree T = (V, F ) of G. Then each
edge in E \ F is represented by a path containing a horizontal edge because we
cannot make a cycle of vertical edges only.

Starting from the embedding G′, we construct a reduction graph as follows:

– each vertex in X is replaced by a truth assignment component,
– each vertex in C is replaced by a satisfaction test component, and
– each path corresponding with an edge in E is replaced by a channel.

Channels consist of three strips. The outer ones are banks and appear as
double lines in the subsequent figures. The inner strip is the water, depicted in
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b y
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d v

ez

f

Fig. 4. Planar embedding and channel map

bold. Unlike edges in F , those in E \ F contain a bridge in a horizontal part.
The bridge interrupts the water and connects the two banks.

The water component is still connected because T is connected. Similarly,
the bank component becomes connected via the bridges because all the water is
surrounded by banks.

For example, let X = {u, v, x, y, z} and C = {a, b, c, d, e, f}, where ϕ =
a ∧ b ∧ c ∧ d ∧ e ∧ f and

a = v ∨ x ∨ y b = u ∨ x ∨ y c = u ∨ y ∨ z

d = v ∨ y ∨ z e = v ∨ x ∨ z f = u ∨ x ∨ z

An grid embedding G′ of the graph G corresponding with ϕ is shown on
the left hand side of Fig. 4. A spanning tree T is indicated by bold edges. The
right-hand side of this figure maps the channels and shows the bridges.

Now we are ready to describe building blocks in more detail. All the vertices
are either bold (water) or double (bank), except four black vertices in the sat-
isfaction test component. Edges are double (if both endpoints are double), bold
(if both endpoints are bold), dotted (a double and a bold endpoint) for the reed
between bank and water, and black (if one endpoint is black). A monochrome
component is a maximal connected set of vertices of the same style (double or
bold). All building blocks have the following properties:

– they are partial subgraphs of the triangular grid,
– they do not contain vertices of degree six (or more), and
– all monochrome components are rigid.

In the entire reduction graph, all double vertices (bank) will form one mono-
chrome component, and all bold vertices (water) will form another one. If this
graph has a stable cutset at all, then it separates bank from water. That is, each
stable cutset will contain exactly one endpoint from each dotted edge.

Horizontal Channel. The horizontal channel is depicted in Fig. 5.



170 V.B. Le, R. Mosca, and H. Müller

Fig. 5. Horizontal channel

Note that exactly two different stable cutsets
exist which separate the upper monochrome com-
ponent (bank) from the middle one (water). These
cutsets are disjoint. That is, one endpoint of a dot-
ted edge fixes the entire stable cutset. This way the
truth values are propagated through the horizontal
channel.

Vertical Channel. The vertical channel is depicted in Fig. 6.

Fig. 6. Vertical channel

As in the horizontal channel, exactly two dif-
ferent stable cutsets exist which separate the left
monochrome component (bank) from the middle
one (water). Again, these cutsets are disjoint, and
one endpoint of a dotted edge fixes the entire stable
cutset. The truth values are propagated through the
vertical channel in a similar way.

Bends. Two mini-bends are depicted in Fig. 7. At the hart of each bend in the
channel we have one of them, or a reflection thereof.

Fig. 7. Mini-bends

Fig. 8. Across

While the vertical part of a mini-bend always
fits to a vertical channel, this is not the case for the
horizontal part. The gadgets depicted in Fig. 8 and
9 their reflections will rectify. Note that all these
building blocks propagate the truth values as the
straight channels do.
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Fig. 9. Change of tilt

Fig. 10. Channel with bridge

Channel with Bridge. The bridge is depicted in Fig. 10.
The essential part in the centre resembles the idea of Fig. 8 with interchanged

styles. The rest keeps the monochrome components rigid.

Truth Assignment Component. We give a mini-version with four horizontal
outlets in Fig. 11. For a variable appearing in only three clauses cap one outlet.

The central part is known from Fig. 8, serving four outlets rather than two.
The remaining parts are struts to keep the monochrome parts rigid.

Satisfaction Test Component. A mini-version of this component is given in
Fig. 12. It has three inlets, on the top right, on the left, and bottom right. Let
x, y and z be the literals whose truth values are fed in at these positions.

On the left we first split the y-channel into two, as in Figure 11. What follows
is a strut to keep the water component rigid. The interesting part follows further
to the right. The two black houses really test whether the clause is satisfied.
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Fig. 11. Truth assignment component

Fig. 12. Satisfaction test component

Fig. 13. Negator

The upper house tests x ∨ y, the
lower one y ∨ z. Both houses to-
gether test (x ∨ y) ∨ (y ∨ z).

Each inlet of the satisfaction
test component is directly con-
nected to an outlet of a truth as-
signment component if the corre-
sponding variable x is a positive lit-
eral in the clause, i.e. x appears un-
negated as x. Otherwise (x appears
as negative literal in the clause) we
include the negator from Fig. 13
into the channel.
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7.2 Equivalence

Let a : X → {0, 1} be a truth assignment of the variables in ϕ such that a(ϕ) = 1.
We describe a stable cutset in the reduction graph.

The truth assignment component with caps at all four outlets allows exactly
two stable cutsets, which are disjoint. These correspond with the truth values
0 (false) and 1 (true). For each variable x ∈ X we choose the stable set in
the truth assignment component that is given by ϕ(x). These stable sets are
extended along the channels into the satisfaction test components.

Because a(ϕ) = 1, for each clause there is at least one true literal. If literal x
is true (upper right inlet), we choose two nonadjacent vertices in the four-cycle
of the upper black house, and the bank vertex in the lower house. Whatever
the truth value of the literals y (left inlet) and z (lower right inlet) is, this set
of vertices extends to a stable cutset in the satisfaction test component. If z is
true we swap the roles of upper and lower house. Finally, if y is true we can
choose nonadjacent vertices in the four-cycles of both houses because the stable
cutset enforced by the left inlet contains vertices both in the lower and upper
branch of the component. Since this works in every satisfaction test component,
we constructed a stable cutset of the reduction graph.

Now assume a stable cutset S of the reduction graph R is given. Then there
is a bank component of R − S containing all double vertices not in S, and a
water component of R − S containing all remaining bold vertices. We claim
that S, restricted to the truth assignment components, defines a satisfying truth
assignment a : X → {0, 1} for ϕ. Because the channels propagate the truth values
between the truth assignment components and satisfaction test component, it
remains to be shown that for each clause there is a true literal.

Each satisfaction test component contains two adjacent bank vertices incident
with black edges. Clearly at most one of them belongs to S. This vertex separates
its black house from the bank component. The other black house belongs to the
bank component, and is separated from the water component by two nonadjacent
vertices in its four-cycle. One of these vertices is bold. It marks a true literal in
clause corresponding with this satisfaction test component.

8 Conclusion

While it has been shown that deciding whether or not a claw-free graph with
maximum degree five [15], or a graph without 4-clique [2] contains a stable cutset
is an NP-complete problem, we have proved in this paper that it can be decided
in polynomial time whether or not

– a claw-free graph with maximum degree at most four,
– a claw-free graph without 4-clique, or
– a claw-free planar graph

contains a stable cutset.
In contrast, it is NP-complete to decide whether or not a planar graph with

maximum degree five contains a stable cutset. The computational complexity of
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the stable cutset problem still remains open for graphs with maximum degree
four, and even for planar graphs with maximum degree at most four.
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Abstract. We prove that for all 0 ≤ t ≤ k and d ≥ 2k, every graph G
with treewidth at most k has a ‘large’ induced subgraph H , where H has
treewidth at most t and every vertex in H has degree at most d in G.
The order of H depends on t, k, d, and the order of G. With t = k, we
obtain large sets of bounded degree vertices. With t = 0, we obtain large
independent sets of bounded degree. In both these cases, our bounds on
the order of H are tight. For bounded degree independent sets in trees,
we characterise the extremal graphs. Finally, we prove that an interval
graph with maximum clique size k has a maximum independent set in
which every vertex has degree at most 2k.

1 Introduction

The ‘treewidth’ of a graph has arisen as an important parameter in the Robert-
son/Seymour theory of graph minors and in algorithmic complexity. See Bod-
laender [2] and Reed [7] for surveys on treewidth. The main result of this paper,
proved in Section 5, states that every graph G has a large induced subgraph of
bounded treewidth in which every vertex has bounded degree in G. The order
of the subgraph depends on the treewidth of G, the desired treewidth of the
subgraph, and the desired degree bound. Moreover, we prove that the bound is
best possible in a number of cases.

Before that, in Sections 2 and 3 we consider two relaxations of the main
result, firstly without the treewidth constraint, and then without the degree
constraint. That is, we determine the minimum number of vertices of bounded
degree in a graph of given treewidth (Section 2), and we determine the minimum
number of vertices in an induced subgraph of bounded treewidth, taken over all
graphs of given treewidth (Section 3). This latter result is the first ingredient
in the proof of the main result. The second ingredient is in Section 4, where we

� Research of P. Bose and V. Dujmović is supported by NSERC. Research of D. Wood
is supported by the Government of Spain grant MEC SB2003-0270, and by the
projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 175–186, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



176 P. Bose, V. Dujmović, and D.R. Wood

prove that the subgraph of a k-tree induced by the vertices of bounded degree
has surprisingly small treewidth.

A graph with treewidth 0 has no edges. Thus our results pertain to indepen-
dent sets for which every vertex has bounded degree in G. Here our bounds are
tight, and in the case of trees, we characterise the extremal trees. Furthermore,
by exploiting some structural properties of interval graphs that are of indepen-
dent interest, we prove that every interval graph with no (k + 2)-clique has a
maximum independent set in which every vertex has degree at most 2k. These
results are presented in Section 6.

1.1 Preliminaries

Let G be a graph. All graphs considered are finite, undirected, and simple. The
vertex-set and edge-set of G are denoted by V (G) and E(G), respectively. The
number of vertices of G is denoted by n = |V (G)|. The subgraph induced by a
set of vertices S ⊆ V (G) has vertex set S and edge set {vw ∈ E(G) : v, w ∈ S},
and is denoted by G[S].

A k-clique (k ≥ 0) is a set of k pairwise adjacent vertices. Let ω(G) denote
the maximum number k such that G has a k-clique. A chord of a cycle C is an
edge not in C whose endpoints are both in C. G is chordal if every cycle on at
least four vertices has a chord. The treewidth of G is the minimum number k
such that G is a subgraph of a chordal graph G′ with ω(G′) ≤ k + 1.

A vertex is simplicial if its neighbourhood is a clique. For each vertex v ∈
V (G), let G \ v denote the subgraph G[V (G) \ {v}]. The family of graphs called
k-trees (k ≥ 0) are defined recursively as follows. A graph G is a k-tree if either
(a) G is a (k+1)-clique, or (b) G has a simplicial vertex v whose neighbourhood
is a k-clique, and G \ v is a k-tree.

By definition, the graph obtained from a k-tree G by adding a new vertex
v adjacent to each vertex of a k-clique C is also a k-tree, in which case we
say v is added onto C. For every k-tree G on n vertices, ω(G) = k + 1; G has
minimum degree k; and G has kn − 1

2k(k + 1) edges, and thus G has average
degree 2k − k(k + 1)/n. It is well known that the treewidth of a graph G equals
the minimum number k such that G is a spanning subgraph of a k-tree.

We will express our results using the following notation. Let G be a graph.
Let Vd(G) = {v ∈ V (G) : degG(v) ≤ d} denote the set of vertices of G with
degree at most d. Let Gd = G[Vd(G)]. A subset of Vd(G) is called a degree-d set.
For an integer t ≥ 0, a t-set of G is a set S of vertices of G such that the induced
subgraph G[S] has treewidth at most t. Let αt(G) be the maximum number of
vertices in a t-set of G. Let αt

d(G) be the maximum number of vertices in a
degree-d t-set of G. Observe that αt

d(G) = αt(Gd).
Let G be a family of graphs. Let αt(G) be the minimum of αt(G), and let

αt
d(G) be the minimum of αt

d(G), taken over all G ∈ G. Let Gn,k be the family of
n-vertex graphs with treewidth k. Note that every graph in Gn,k has at least k+1
vertices. These definitions imply the following. Every graph G ∈ G has αt

d(G) ≥
αt

d(G) and αt(G) ≥ αt(G). Furthermore, there is at least one graph G for which
αt

d(G) = αt
d(G), and there is at least one graph G for which αt(G) = αt(G). Thus
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the lower bounds we derive in this paper are universal and the upper bounds are
existential.

As described above, our main result is a lower bound on αt
d(Gn,k) that is tight

in many cases. Here, lower and upper bounds are ’tight’ if they are equal when
ignoring the terms independent of n. Many of our upper bound constructions
are based on the k-th power of an n-vertex path P k

n . This graph has vertex set
{v1, v2, . . . , vn} and edge set {vivj : |i − j| ≤ k}. Obviously P k

n is a k-tree.
For t = k, a degree-d t-set in a graph G with treewidth k is simply a set of

vertices with degree at most d. Thus in this case, αk
d(G) = |Vd(G)|. At the other

extreme, a graph has treewidth 0 if and only if it has no edges. A set of vertices
I ⊆ V (G) is independent if G[I] has no edges. Thus a 0-set of G is simply an
independent set of vertices of G. As is standard, we abbreviate α0(G) by α(G),
α0

d(G) by αd(G), etc. An independent set I of G is maximum if |I| ≥ |J | for every
independent set J of G. Thus α(G) is the cardinality of a maximum independent
set of G.

2 Large Subgraphs of Bounded Degree

In this section we prove tight lower bounds on the number of vertices of bounded
degree in graphs of treewidth k. We will use the following result of Bose et al. [3].

Lemma 1 ([3]). Let G be a graph on n vertices, with minimum degree δ, and
with average degree α. Then for every integer d ≥ δ,

|Vd(G)| ≥
(

d + 1 − α

d + 1 − δ

)
n .

Theorem 1. For all integers k ≥ 0 and d ≥ 2k − 1,

lim
n→∞

αk
d(Gn,k)

n
=

d − 2k + 1
d − k + 1

.

Proof. First we prove a lower bound on αk
d(Gn,k). Let G be a graph in Gn,k

with αk
d(G) = αk

d(Gn,k). If a vertex v of G has degree at most d in a spanning
supergraph of G, then v has degree at most d in G. Thus we can assume that G
is a k-tree. Hence G has minimum degree k and average degree 2k− k(k + 1)/n.
By Lemma 1,

αk
d(Gn,k) = |Vd(G)| ≥

(
d + 1 − 2k + k(k + 1)/n

d + 1 − k

)
n

=
(

d − 2k + 1
d − k + 1

)
n +

k(k + 1)
d − k + 1

. (1)

Now we prove an upper bound on αk
d(Gn,k) for all n ≡ 2k (mod d−k+1), and

for all k ≥ 0 and d ≥ 2k−1. Let s be the integer such that n−2k = s(d−k+1).
Then s ≥ 0. We now construct a graph G ∈ Gn,k. Initially let G = P k

(s+2)k be
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the k-th power of the path (v1, v2, . . . , v(s+2)k). Let r = d − 2k + 1. Then r ≥ 0.
Add r vertices onto the clique (vik+1, vik+2, . . . , vik+k) for each 1 ≤ i ≤ s. Thus
G is a k-tree, as illustrated in Figure 1. The number of vertices in G is

(s + 2)k + sr = (s + 2)k + s(d − 2k + 1) = s(d − k + 1) + 2k = n . (2)

Each vertex vi, k + 1 ≤ i ≤ (s + 1)k, has degree 2k + r = d + 1. Hence such a
vertex is not in a degree-d set. The remaining vertices all have degree at most
d. Thus

αk
d(Gn,k) ≤ αk

d(G) = |Vd(G)| = rs+2k =
(

d − 2k + 1
d − k + 1

)
n +

2k2

d − k + 1
. (3)

r r r

k k k k k

Fig. 1. The graph G with k = 3, d = 7, and s = 3 (and thus r = 2)

Observe that the difference between the lower and upper bounds in (1) and
(3) is only

2k2 − k(k + 1)
d + 1 − k

=
k(k − 1)
d + 1 − k

≤ k − 1 .

It is easily seen that for all ε > 0, there is an n0 such that for all n ≥ n0,

0 ≤ αk
d(Gn,k)

n
− d − 2k + 1

d − k + 1
≤ ε .

Therefore the sequence {αk
d(Gn,k)/n : n ≥ 2k} converges to d−2k+1

d−k+1 . �

3 Large Subgraphs of Bounded Treewidth

We now prove a tight bound on the maximum order of an induced subgraph of
bounded treewidth in a graph of treewidth k.

Theorem 2. For all integers n and 0 ≤ t ≤ k,

αt(Gn,k) =
(

t + 1
k + 1

)
n .
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Proof. First we prove the lower bound. Let G be a graph in Gn,k. First suppose
that G is a k-tree. By definition, V (G) can be ordered (v1, v2, . . . , vn) so that
for each vertex vi, the predecessors {vj : j < i, vivj ∈ E(G)} of vi are a clique
of min{k, i − 1} vertices. Now colour G greedily in this order. That is, for i =
1, 2, . . . , n, assign to vi the minimum positive integer (a colour) not already
assigned to a neighbour of vi. Clearly k + 1 colours suffice. Let S be the union
of the t + 1 largest colour classes (monochromatic set of vertices). Thus |S| ≥
(t + 1)n/(k + 1). For each vertex vi in S, the predecessors of vi that are in S
and vi itself form a clique, and thus have pairwise distinct colours. Thus vi has
at most t predecessors in S, and they form a clique in G[S]. Hence G[S] has
treewidth at most t, and S is the desired t-set. Now suppose that G is not a
k-tree. Then G is a spanning subgraph of a k-tree G′. Thus G′ has a t-set S with
at least (t + 1)n/(k + 1) vertices. Now G[S] is a subgraph of G′[S]. Thus G[S]
also has treewidth at most t.

For the upper bound, we now show that every t-set of P k
n has at most (t +

1)n/(k + 1) vertices. First suppose that t = 0. A 0-set is an independent set.
Clearly every independent set of P k

n has at most n/(k+1) vertices. Now consider
the case of general t. Let S be a t-set of P k

n . By the above bound, P k
n [S] has an

independent set I of at least |S|/(t + 1) vertices. Now I is also an independent
set of P k

n . Thus |I| ≤ n/(k + 1). Hence |S|/(t + 1) ≤ n/(k + 1), and |S| ≤
(t + 1)n/(k + 1). �

4 Structure of Bounded Degree Subgraphs

In this section we study the structure of the subgraph of a k-tree induced
by the vertices of bounded degree. We first prove that in a k-tree with suf-
ficiently many vertices, not all the vertices of a clique have low degree. A
clique C = (v1, v2, . . . , vk) of a graph G is said to be ordered by degree if
degG(vi) ≤ degG(vi+1) for all 1 ≤ i ≤ k − 1.

Theorem 3. Let G be a k-tree on n ≥ 2k + 1 vertices. Let (u1, u2, . . . , uq) be a
clique of G ordered by degree. Then degG(ui) ≥ k + i − 1 for all 1 ≤ i ≤ q.

Note that Theorem 3 is not true if n ≤ 2k, as the statement would imply that
a (k+1)-clique has a vertex of degree n. Thus the difficulty in an inductive prove
of Theorem 3 is the base case. Theorem 3 follows from the following stronger
result with n ≥ 2k + 1 ≥ k + q.

Lemma 2. Let G be a k-tree on n vertices. Let C = (u1, u2, . . . , uq) be a clique
of G ordered by degree. If n ≥ k + q then

degG(ui) ≥ k + i − 1, 1 ≤ i ≤ q ; (4)

otherwise n ≤ k + q − 1, and

degG(ui) ≥
{

k + i − 1 if 1 ≤ i ≤ n − k − 1 ,

n − 1 if n − k ≤ i ≤ q .
(5)
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Proof. We proceed by induction on n. In the base case, G is a (k + 1)-clique,
and every vertex has degree k. The claim follows trivially. Assume the result
holds for k-trees on less than n vertices. Let C be a q-clique of a k-tree G on
n ≥ k + 2 vertices. Since every k-tree on at least k + 2 vertices has two non-
adjacent simplicial vertices [4], at least one simplicial vertex v is not in C. Since
n ≥ k + 2 and v is simplicial, the graph G1 = G \ v is a k-tree on n− 1 vertices.
Now C is a q-clique of G1. Let C = (u1, u2, . . . , uq) be ordered by degree in G1.
By induction, if n ≥ k + q + 1 then

degG1
(ui) ≥ k + i − 1, 1 ≤ i ≤ q ; (6)

otherwise n ≤ k + q, and

degG1
(ui) ≥

{
k + i − 1 if 1 ≤ i ≤ n − k − 2 ,

n − 2 if n − k − 1 ≤ i ≤ q .
(7)

First suppose that n ≥ k+q+1. Then by (6), degG(ui) ≥ degG1
(ui) ≥ k+i−1,

and (4) is satisfied. Otherwise n ≤ k + q. Let B = {un−k−1, un−k, . . . , uq}. Then
|B| ≥ 2, and by (7), every vertex in B has degree n−2 in G1. That is, each vertex
in B is adjacent to every other vertex in G1. Let X be the set of neighbours of
v. Since v is simplicial, X is a k-clique. At most one vertex of B is not in X ,
as otherwise X ∪ B would be a (k + 2)-clique of G1. Without loss of generality,
this exceptional vertex in B, if it exists, is un−k−1. The other vertices in B are
adjacent to one more vertex, namely v, in G than in G1. Thus degG(ui) ≥ k+i−1
for all 1 ≤ i ≤ n − k − 1, and degG(ui) = n − 1 for all n − k ≤ i ≤ q. Hence (5)
is satisfied. �

We can now prove the main result of this section.

Theorem 4. For all integers 1 ≤ k ≤ � ≤ 2k, and for every k-tree G on n ≥ �+2
vertices, the subgraph G� of G induced by the vertices of degree at most �, has
treewidth at most � − k.

Proof. Let C = (u1, u2, . . . , uq) be a clique of G ordered by degree. Suppose, for
the sake of contradiction, that there are at least � − k + 2 vertices of C with
degree at most �. Let j = � − k + 2. Since C is ordered by degree, deg(uj) ≤ �.
Since n ≥ � + 2, we have j ≤ n − k. By Lemma 2, deg(uj) ≥ k + j − 1 (unless
j = n−k, in which case deg(uj) = n−1 ≥ �+1, which is a contradiction). Hence
k+ j−1 ≤ �. That is, k+(�−k+2)−1 ≤ �, a contradiction. Thus C contributes
at most � − k + 1 vertices to G�, and ω(G�) ≤ � − k + 1. Now, G� is an induced
subgraph of G, which is chordal. Thus G� is chordal. Since ω(G�) ≤ � − k + 1,
G� has treewidth at most � − k. �

Note the following regarding Theorem 4:

– There are graphs of treewidth k ≥ 2 for which the theorem is not true. For
example, for any p ≥ k + 1, consider the graph G consisting of a (k + 1)-
clique C and a p-vertex path with one endpoint v in C. Then G has at least
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2k + 1 vertices, has treewidth k, and every vertex of G has degree at most
k, except for v which has deg(v) = k + 1. For � = k, G� is comprised of
two components, one a k-clique and the other a path, in which case G� has
treewidth k − 1 > � − k = 0. For k + 1 ≤ � ≤ 2k − 1, G� = G has treewidth
k > � − k.

– The theorem is not true if k ≤ n ≤ � + 1. For example, for any 1 ≤ k ≤
� ≤ 2k − 1, the k-tree obtained by adding � + 1 − k vertices onto an initial
k-clique has � + 1 vertices, maximum degree �, and treewidth k > � − k.

– The case of � = k is the well-known fact that in a k-tree with at least k + 2
vertices, distinct simplicial vertices are not adjacent. Put another way, the
set of simplicial vertices of a k-tree with at least k + 2 vertices is a 0-set.

5 Large Subgraphs of Bounded Treewidth and Bounded
Degree

The following theorem is the main result of the paper.

Theorem 5. For all integers 0 ≤ t ≤ k, d ≥ 2k, and n ≥ 2k + 1,

αt
d(Gn,k) ≥

⎛⎝ d − 2k + 1

d − 3
2k + 1 + t(t+1)

2(k+1)

⎞⎠( t + 1
k + 1

)
n +

k(t + 1)

d − 3
2k + 2 + t(t+1)

2(k+1)

Proof. Let G be a graph in Gn,k with αt
d(G) = αt

d(Gn,k). A degree-d t-set of a
spanning supergraph of G is a degree-d t-set of G. Thus we can assume that G
is a k-tree.

Consider � with k + t ≤ � ≤ 2k. By Theorem 4, G� has treewidth at most
� − k. Since t ≤ � − k, by Theorem 2,

αt(G�) ≥
(

t + 1
� − k + 1

)
|V�(G)| .

Since � ≤ d, αt(G�) ≤ αt
d(G), which implies that

|V�(G)| ≤
(

� − k + 1
t + 1

)
αt

d(G) . (8)

Now, G has kn − 1
2k(k + 1) edges and minimum degree k. Let ni be the

number of vertices of G with degree exactly i. Thus,∑
i≥k

i · ni = 2|E(G)| = 2kn− k(k + 1) = −k(k + 1) +
∑
i≥k

2k · ni .

Thus,

∑
i≥2k+1

(i − 2k)ni = −k(k + 1) +
2k−1∑
i=k

(2k − i)ni = −k(k + 1) +
2k−1∑
i=k

|Vi(G)| ,



182 P. Bose, V. Dujmović, and D.R. Wood

and ∑
i≥2k+1

(i − 2k)ni = −k(k + 1) +
k+t−1∑

i=k

|Vi(G)| +
2k−1∑
i=k+t

|Vi(G)| .

By (8),

∑
i≥2k+1

(i − 2k)ni ≤ −k(k + 1) + t · |Vk+t(G)| +
2k−1∑
i=k+t

(i − k + 1) · αt
d(G)

t + 1

≤ −k(k + 1) + t · αt
d(G) +

αt
d(G)

t + 1

k∑
i=t+1

i

= −k(k + 1) + αt
d(G)

(
t +

1
t + 1

(
k(k + 1) − t(t + 1)

2

))
= −k(k + 1) + αt

d(G)
(

t(t + 1) + k(k + 1)
2(t + 1)

)
.

Since d ≥ 2k,

−k(k+1)+ αt
d(G)

(
t(t + 1) + k(k + 1)

2(t + 1)

)
≥
∑

i≥d+1

(i−2k)ni ≥ (d−2k+1)
∑

i≥d+1

ni .

Hence,

|Vd(G)| = n −
∑

i≥d+1

ni ≥ n +
k(k + 1)

d − 2k + 1
− αt

d(G)
(

t(t + 1) + k(k + 1)
2(t + 1)(d − 2k + 1)

)
.

By Theorem 2,

αt
d(G) = αt(Gd)

≥ t + 1
k + 1

|Vd(G)|

≥ (t + 1)n
k + 1

+
k(t + 1)

d − 2k + 1
− αt

d(G)
(

t(t + 1) + k(k + 1)
2(k + 1)(d − 2k + 1)

)
.

It follows that

αt
d(G) ≥ (d − 2k + 1)(t + 1)n + k(k + 1)(t + 1)

(d − 3
2k + 1)(k + 1) + 1

2 t(t + 1)
.

The result follows. �
A number of notes regarding Theorem 5 are in order:

– Theorem 5 with t = k is equivalent to the lower bound in Theorem 1.
– For d < 2k, no result like Theorem 5 is possible, since αt

d(P
k
n ) = 2(t + 1).

– The proof of Theorem 5 is similar to a strategy developed by Biedl and
Wilkinson [1] for finding bounded degree independent sets in planar graphs.

We now prove an existential upper bound on the cardinality of a degree-d
t-set.
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Theorem 6. For all integers k ≥ 1 and d ≥ 2k − 1 such that 2(d− 2k + 1) ≡ 0
(mod k(k+1)), there are infinitely many values of n, such that for all 0 ≤ t < k,

αt
d(Gn,k) ≤

(
d − 2k + 1
d − 3

2
k + 1

)(
t + 1
k + 1

)
n +

(k − 1)(t + 1)(d − 2k + 1) + k(t + 1)(k + 1)
(d − 3

2
k + 1)(k + 1)

.

Proof. Our construction employs the following operation. Let G be a k-tree con-
taining an ordered k-clique C = (v1, v2, . . . , vk). A block at C consists of k+1 new
vertices {x1, x2, . . . , xk+1} where x1 is added onto the k-clique {v1, v2, . . . , vk};
x2 is added onto the k-clique {v1, v2, . . . , vk−1, x1}; x3 is added onto the k-clique
{v1, v2, . . . , vk−2, x1, x2}; and so on, up to xk+1 which is added onto the k-clique
{x1, x2, . . . , xk}. Clearly the graph obtained by adding a block to a k-clique of
a k-tree is also a k-tree

Our graph is parameterised by the positive integer n0 ≥ 2k + 3. Initially let
G be the k-th power of a path (v1, v2, . . . , vn0). Note that any k + 1 consecutive
vertices in the path form a clique. Let r be the non-negative integer such that
2(d − 2k + 1) = rk(k + 1). Add r blocks to G at (vi, vi+1, . . . , vi+k−1) for each
3 ≤ i ≤ n0 − k − 1, as illustrated in Figure 2.

G is a k-tree with n = n0 + r(k + 1)(n0 − (k + 3)) vertices. Let S be a
maximum degree-d t-set of G. Consider a vertex vi for k + 2 ≤ i ≤ n0 − k − 1.
Since n0 ≥ 2k + 3 there is such a vertex. The degree of vi is

2k + r
k∑

i=1

i = 2k + 1
2rk(k + 1) = d + 1 .

Thus vi �∈ S. Since each block {x1, x2, . . . , xk+1} is a clique, and treewidth-t
graphs have no (t + 2)-clique, at most t + 1 vertices from each block are in S.
Similarly, since {v1, v2, . . . , vk+1} and {vn0−k, vn0−k+1, . . . , vn0} are cliques, at
most t + 1 vertices from each of these sets are in S. Thus

αt
d(Gn,k) ≤ αt

d(G) = |S| ≤ (t + 1)
(
r(n0 − (k + 3)) + 2

)
. (9)

v 1 v 2 v 3
v k+

2
v n0

v n0
−1

v n0
−2

v n0
−k−

1

Fig. 2. The graph G with k = 3 and d = 11 (and thus r = 1)
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Substituting the equality n0 = n+r(k+1)(k+3)
1+r(k+1) into (9),

αt
d(Gn,k)
t + 1

≤ r(n + k − 1) + 2
1 + r(k + 1)

. (10)

The claimed bound on αt
d(Gn,k) follows by substituting the equality r = 2(d−2k+1)

k(k+1)

into (10). Observe that n is a function of n0 and n0 is independent of d. Thus
there are infinitely many values of n for each value of d. �

6 Bounded Degree Independent Sets

Intuitively, one would expect that a maximum independent set would not have
vertices v of high degree, as this would prevent the many neighbours of v from
being in the independent set. In this section, we explore the accuracy of this
intuition in the case of k-trees. Recall that αd(G) is the maximum cardinality of
a degree-d independent set in a graph G.

Motivated by applications in computational geometry, the previously known
results regarding bounded degree independent sets have been for planar graphs
[6,5,8,1]. The best results were obtained by Biedl and Wilkinson [1], who proved
tight bounds (up to an additive constant) on αd(G) for planar G with d ≤ 15.
For d ≥ 16 there is a gap in the bounds.

Theorem 2 with t = 0 proves that every n-vertex graph G with treewidth
k has α(G) ≥ n/(k + 1), and that this bound is tight for P k

n . Theorem 5 with
t = 0 gives the following lower bound on the size of a degree-d independent set
in a graph of treewidth k (for all k ≥ 1 and d ≥ 2k):

αd(Gn,k) ≥
(

d − 2k + 1
d − 3

2k + 1

)(
n

k + 1

)
+

k

d − 3
2k + 1

.

Note that such a bound is not possible for d < 2k since αd(P k
n ) = 2 for d < 2k.

Theorem 6 proves the corresponding upper bound. In particular, for all k ≥ 1,
there are infinitely many values of d, and for each such d, there are infinitely
many values of n for which

αd(Gn,k) ≤
(

d − 2k + 1
d − 3

2k + 1

)(
n

k + 1

)
+

(k − 1)(d − 2k + 1) + k(k + 1)
(d − 3

2k + 1)(k + 1)
.

These lower and upper bounds are tight. In fact, they differ by at most one. We
conclude that

lim
n→∞ lim

d→∞
αd(Gn,k)

n
=

d − 2k + 1
(d − 3

2k + 1)(k + 1)
.

6.1 Trees and Interval Graphs

Gn,1 is precisely the family of n-vertex forests. Observe that Theorems 5 and 6
with k = 1 and t = 0 prove that for all d ≥ 1,

αd(Gn,1) =
(d − 1)n + 2

2d − 1
.
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A tree T for which αd(T ) = (d−1)n+2
2d−1 is called αd-extremal. We omit the proof

of the following characterisation of the αd-extremal trees. A tree is d-regular if
every vertex has degree 1 or d, and there is at least one vertex of degree d.

Theorem 7. Let d be a positive integer. A tree T on n ≥ 5 vertices is αd-
extremal if and only if T is obtained from a (d + 1)-regular tree by subdividing
every leaf-edge once.

A graph G is an interval graph if one can assign to each vertex v ∈ V (G)
a closed interval [Lv, Rv] ⊆ R such that vw ∈ E(G) if and only if [Lv, Rv] ∩
[Lw, Rw] �= ∅. An interval graph G has tree-width equal to ω(G) + 1. (In fact, it
has path-width equal to ω(G)+1.) Thus the previous results of this paper apply
to interval graphs. However, for bounded degree independent sets in interval
graphs, we can say much more, as we show in this section. In an interval graph, it
is well known that we can assume that the endpoints of the intervals are distinct.
We say a vertex w is dominated by a vertex v if L(v) < L(w) < R(w) < R(v).

Lemma 3. Let G be an interval graph with ω(G) ≤ k + 1. Suppose G has a
vertex v with deg(v) ≥ 2k + 1. Then there is a vertex w that is dominated by v
and deg(w) ≤ 2k − 1.

Proof. For each vertex y ∈ V (G), let A(y) = {x ∈ V (G) : L(x) < L(y) < R(x)}
and B(y) = {x ∈ V (G) : L(x) < R(y) < R(x)}. Observe that x is dominated by
y if and only if xy ∈ E(G) but x �∈ A(y) ∪ B(y). Also |A(y)| ≤ k as otherwise
A(y)∪{y} would be a clique of at least k+2 vertices. Similarly |B(y)| ≤ k. Thus
|A(y) ∪ B(y)| ≤ 2k.

Now consider the given vertex v. Since deg(v) ≥ 2k + 1, v has a neighbour
u �∈ A(v)∪B(v). Thus u is dominated by v. Let w be a vertex with the shortest
interval that is dominated by v. That is, if u and w are dominated by v, then
R(w) − L(w) ≤ R(u) − L(u). Thus w does not dominate any vertex, and every
neighbour of w is in A(w) ∪ B(w). Now |A(w)| ≤ k, |B(w)| ≤ k, and v ∈
A(w) ∩ B(w). Thus deg(w) ≤ 2k − 1. �

Note that Lemma 3 with k = 1 is the obvious statement that a vertex of
degree at least three in a caterpillar is adjacent to a leaf.

Theorem 8. Every interval graph G with ω(G) ≤ k + 1 has a degree-2k maxi-
mum independent set. That is, α2k(G) = α(G).

Proof. Let I be a maximum independent set of G. If I contains a vertex v
with deg(v) ≥ 2k + 1, apply Lemma 3 to obtain a vertex w dominated by
v such that deg(w) ≤ 2k − 1. Replace v by w in I. The obtained set is still
independent, since every neighbour of w is also adjacent to v, and is thus not
in I. Apply this step repeatedly until every vertex in I has degree at most 2k.
Thus α2k(G) ≥ |I| = α(G). By definition, α2k(G) ≤ α(G). �

The bound of 2k in Theorem 8 is best possible, since P k
n is an interval graph

with ω(G) ≤ k + 1 and only 2k vertices of degree at most 2k− 1. Thus α(P k
n ) =

�n/(k + 1)� ' α2k−1(P k
n ).
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Abstract. Broadcast domination was introduced by Erwin in 2002, and
it is a variant of the standard dominating set problem, such that vertices
can be assigned various domination powers. Broadcast domination as-
signs a power f(v) ≥ 0 to each vertex v of a given graph, such that
every vertex of the graph is within distance f(v) from some vertex v
having f(v) ≥ 1. The optimal broadcast domination problem seeks to
minimize the sum of the powers assigned to the vertices of the graph.
Since the presentation of this problem its computational complexity has
been open, and the general belief has been that it might be NP-hard.
In this paper, we show that optimal broadcast domination is actually in
P , and we give a polynomial time algorithm for solving the problem on
arbitrary graphs, using a non standard approach.

1 Introduction

A dominating set in a graph is a subset of the vertices of the graph such that
every vertex of the graph either belongs to the dominating set or has a neighbor
in the dominating set. A vertex outside of the dominating set is said to be
dominated by one of its neighbors in the dominating set. The standard optimal
domination problem seeks to find a dominating set of minimum cardinality.
Since the introduction of this problem [2], [12], many domination related graph
parameters have been introduced and studied, and domination in graphs is one of
the most well known and widely studied subjects within graph algorithms [7], [8].

The standard dominating set problem can be seen as to represent a set of
cities having broadcast stations, where every city can hear a broadcast station
placed in it or in a neighboring city [11]. In 2002 Erwin [5] introduced the broad-
cast domination problem, which is more realistic in the sense that the various
broadcast stations are allowed to transmit at different powers. FM radio sta-
tions are distinguished both by their transmission frequency and by their ERP
(Effective Radiated Power). A transmitter with a higher ERP can transmit fur-
ther, but it is more expensive to build and to operate. Consequently, the optimal
broadcast domination problem asks to compute an integer valued power function
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f on the vertices, such that every vertex of the graph is at distance at most f(v)
from some vertex v having f(v) ≥ 1, and the sum of the powers are minimized.

Since the introduction of this problem, its computational complexity has
been open [4], [10]. The standard optimal domination problem is NP-hard [6],
and so are some variants that might resemble broadcast domination: optimal r-
domination asks for a dominating set of minimum cardinality where every vertex
of the graph is within distance r from some vertex of the dominating set for a
given r [9], [13], and the (k, r)-center problem asks to find an r-dominating set
containing at most k vertices, where one parameter is given and the other is
to be minimized [1], [6]. Since most of the interesting domination problems are
NP-hard on general graphs, this gave some indication that optimal broadcast
domination might also be NP-hard for general graphs. Following this, in 2003
Blair et al. gave polynomial time algorithms for optimal broadcast domination
of trees, interval graphs, and series-parallel graphs [3].

In this paper, we show that, quite surprisingly, optimal broadcast domination
is in P . We first prove that every graph has an optimal broadcast domination in
which the subsets of vertices dominated by the same vertex are ordered in a path
or a cycle. Using this, we give a polynomial time algorithm for computing optimal
broadcast dominations of arbitrary graphs. Our algorithm computes minimum
weight paths in an auxiliary graph, and thus differs from standard methods
of proving polynomial time bounds, like reductions to 2-SAT or 2-dimensional
matching.

This paper is organized as follows. In the next section, we give the necessary
background. In Section 3, we prove the necessary results on the structure of
optimal broadcast dominations. In Section 4, we use this result to develop a
polynomial time algorithm for all graphs. We conclude with a few remarks in
Section 5.

2 Definitions and Terminology

In this paper we work with unweighted, undirected, connected, and simple graphs
as input graphs to our problem. Let G = (V, E) be a graph with n = |V | and
m = |E|. For any vertex v ∈ V , the neighborhood of v is the set NG(v) = {u |
uv ∈ E}. Similarly, for any set S ⊆ V , NG(S) = ∪v∈SN(v) − S. We let G(S)
denote the subgraph of G induced by S.

The distance between two vertices u and v in G, denoted by dG(u, v), is the
minimum number of edges on a path between u and v. The eccentricity of a
vertex v, denoted by e(v), is the largest distance from v to to any vertex of G.
The radius of G, denoted by rad(G), is smallest eccentricity in G. The diameter
of G, denoted by diam(G), is the largest distance between any pair of vertices
in G.

A function f : V → {0, 1, · · · , diam(G)} is a broadcast on G. The set of
broadcast dominators defined by f is the set Vf = {v ∈ V | f(v) ≥ 1}. A
broadcast is dominating if for every vertex u ∈ V there is a vertex v ∈ Vf such
that d(u, v) ≤ f(v). In this case f is also called a broadcast domination. The cost
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Fig. 1. On the left hand side, a graph G with an efficient broadcast domination f is
shown. For vertices v with f(v) ≥ 1, the broadcast powers f(v) are shown in paren-
theses, and the dashed curves indicate the balls B(v, f(v)). For all other vertices w,
f(w) = 0. On the right hand side, the corresponding domination graph Gf is given,
and the weight of each vertex is shown in parentheses.

of a broadcast f incurred by a set S ⊆ V is cf (S) =
∑

v∈S f(v). Thus, cf (V ) is
the total cost incurred by broadcast function f on G.

For a vertex v ∈ V and an integer p ≥ 1, we define the ball BG(v, p) to be the
set of vertices that are at distance ≤ p from v in G. Thus BG(v, f(v)) is the set of
all vertices that are dominated by v (including v itself) if f(v) ≥ 1. We will omit
the subscript G in the notation for balls, since a ball will always refer to the input
graph G. A broadcast domination f on G is efficient if B(u, f(u))∩B(v, f(v)) = ∅
for all pairs of distinct vertices u, v ∈ V .

For an efficient broadcast domination f on G, we define the domination graph
Gf = (Vf , {uv | NG(B(u, f(u)))∩B(v, f(v)) �= ∅}). Hence the domination graph
can be seen as a modification of G in which every ball B(v, f(v)) is contracted
to the single vertex v, and neighborhoods are preserved. Since G is connected
and f is dominating, Gf is always connected. An example is given in Figure 1.

The optimal broadcast domination problem on a given graph G asks to com-
pute a broadcast domination on G with the minimum cost. Note that if f is an
optimal broadcast domination on G = (V, E), then cf (V ) ≤ rad(G) since one
can always choose a vertex v of smallest eccentricity and dominate all other ver-
tices with f(v) = e(v) = rad(G). If cf (V ) = rad(G) = f(v) for a single vertex v
in G, then f is called a radial broadcast domination.

3 The Structure of an Optimal Broadcast Domination

In [4], Dunbar et al. show that every graph has an optimal broadcast domination
that is efficient. In particular, the following lemma is implicit from the proof of
this result.
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Lemma 1. (Dunbar et al. [4]) For any non efficient broadcast domination f on
a graph G = (V, E), there is an efficient broadcast domination f ′ on G such that
|Vf ′ | < |Vf | and cf ′(V ) = cf (V ).

We now add the following results.

Lemma 2. Let f be an efficient broadcast domination on G = (V, E). If the
domination graph Gf has a vertex of degree > 2, then there is an efficient broad-
cast domination f ′ on G such that |Vf ′ | < |Vf | and cf ′(V ) = cf (V ).

Proof. Let v be a vertex with degree > 2 in Gf , and let x, y, and z be three of
the neighbors of v in Gf . By the way the domination graph Gf is defined, v, x, y,
and z are also vertices in G, and they all have broadcast powers ≥ 1 in f . Since
f is efficient, dG(v, x) = f(v) + f(x) + 1. Similarly, dG(v, y) = f(v) + f(y) + 1
and dG(v, z) = f(v) + f(z) + 1. Assume without loss of generality that f(x) ≤
f(y) ≤ f(z).

If f(x) + f(y) > f(z) then we construct a new broadcast f ′ on G with
f ′(u) = f(u) for all vertices u ∈ V \ {v, x, y, z}. Furthermore, we let f ′(v) =
f(v) + f(x) + f(y) + f(z), and f ′(x) = f ′(y) = f ′(z) = 0. The new broadcast f ′

is dominating since every vertex that was previously dominated by one of v, x, y,
or z is now dominated by v. To see this, let u be any vertex that was dominated
by x, y, or z in f . Thus dG(v, u) ≤ f(v) + 2f(z) + 1 by our assumptions. Since
f ′(v) > f(v)+ 2f(z), vertex u is now dominated by v in f ′. The cost of f ′ is the
same as that of f , and the number of broadcast dominators in f ′ is smaller.

Let now f(x) + f(y) ≤ f(z). As we mentioned above, there is a path P in G
between v and z of length f(v)+ f(z)+1. Let w be a vertex on P such that the
number of edges between w and z on P is f(v)+f(x)+f(y). Since f is efficient,
f(w) = 0. We construct a new broadcast f ′ on G such that f ′(u) = f(u) for all
vertices u ∈ V \ {v, w, x, y, z}. Furthermore, we let f ′(w) = f(v)+ f(x)+ f(y)+
f(z), and f ′(v) = f ′(x) = f ′(y) = f ′(z) = 0. By the way dG(z, w) is defined,
any vertex that was dominated by z or v in f is now dominated by w, since
dG(v, w) < f(z). Let u be a vertex that was dominated by y in f . The distance
between u and w in G is ≤ 2f(y) + 2f(v) + f(z) + 2 − f(v) − f(x) − f(y) =
f(y)+f(v)+f(z)+2−f(x) ≤ f(y)+f(v)+f(z)+f(x) = f ′(w). Thus u is now
dominated by w. The same is true for any vertex that was dominated by x in f
since we assumed that f(x) ≤ f(y). Thus f ′ is a broadcast domination. Clearly,
the costs of f ′ and f are the same, and f ′ has fewer broadcast dominators.

Thus we have shown how to compute a new broadcast domination f ′ as
desired. If f ′ is not efficient, then by Lemma 1 there exists an efficient broadcast
domination with the same cost and fewer broadcast dominators, so the lemma
follows.

We are now ready to state the main result of this section, on which our
algorithm will be based.

Theorem 1. For any graph G, there is an efficient optimal broadcast domina-
tion f on G such that the domination graph Gf is either a path or a cycle.
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Proof. Let f be any efficient optimal broadcast domination on G = (V, E). If Gf

has a vertex of degree > 2 then by Lemma 2, an efficient broadcast domination f ′

on G with |Vf ′ | < |Vf | and cf ′(V ) = cf (V ) exists. The proofs of both Lemmas
1 and 2 are constructive, so we know how to obtain f ′. As long as there are
vertices of degree > 2 in the domination graph, this process can be repeated.
Since we always obtain a new domination graph with a strictly smaller number
of vertices, the process has to stop after < n steps. Since domination graphs are
connected, the theorem follows.

Note that a path can be a single edge or a single vertex. If Gf is a single
vertex then f is a radial broadcast.

Corollary 1. For any graph G = (V, E), there is an efficient optimal broadcast
domination f on G such that removing the vertices of B(v, f(v)) from G results
in at most two connected components, for every v ∈ Vf .

Proof. Since there is always an efficient optimal broadcast domination f on G
such that the balls B(v, f(v)) with v ∈ Vf are ordered in a path or a cycle by
Theorem 1, it suffices to observe that B(v, f(v)) induces a connected subgraph
in G for each v ∈ Vf .

Corollary 2. For any graph G = (V, E), there is an efficient optimal broadcast
domination f on G such that a vertex x ∈ Vf satisfies the following: G′ = G(V \
B(x, f(x))) is connected (or empty), and G′ has an efficient optimal broadcast
domination f ′ such that G′

f ′ is a path (or empty).

Proof. By Theorem 1, let f be an efficient optimal broadcast domination of G
such that Gf is a path or a cycle. Let x be any vertex of Gf if Gf is a cycle,
any of the two endpoints of Gf if Gf is a path with at least two vertices, or
Gf itself if Gf is a single vertex. Let f ′(v) = f(v) for all v ∈ V \ {x}. Since f
is efficient on G, f ′ is an efficient dominating broadcast on G′, and G′

f ′ is the
result of removing x from Gf . Thus G′

f ′ is a path or empty.

4 Computing an Optimal Broadcast Domination

By Theorem 1 we know that an efficient optimal broadcast f on G must exist
such that Gf is a path or a cycle. We will first give an algorithm for handling
the case when Gf is a path.

4.1 Optimal Broadcast Domination When the Domination Graph
Is a Path

In this subsection, we want to find an efficient broadcast domination of minimum
cost over all broadcast dominations f on G = (V, E) such that Gf is a path. Our
approach will be as follows: for each vertex u of G, we will compute a new graph
Gu, and use this to find the best possible broadcast domination f such that Gf
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is a path and u belongs to a ball corresponding to one of the endpoints of Gf .
We will repeat this process for every u in G, and choose at the end the best f
ever computed.

Given a vertex u ∈ V , we define a directed graph Gu with weights assigned
to its vertices as follows: For each v ∈ V and each p ∈ [1, ..., rad(G)], there is a
vertex (v, p) in Gu if and only if one of the following is true:

• G(V \ B(v, p)) is connected or empty and u ∈ B(v, p)
• G(V \ B(v, p)) has at most two connected components and u �∈ B(v, p).

Thus Gu has a total of at most n · rad(G) vertices. Following Corollaries 1 and
2, each vertex (v, p) represents the situation that f(v) = p in the broadcast
domination f that we are aiming to compute. We define the weight of each
vertex (v, p) to be p.

The role of u is to define the “left” endpoint of the path that we will compute.
All edges will go from “left” to “right”. We partition the vertex set of Gu into
four subsets:

• Au = {(v, p) | G(V \ B(v, p)) is connected and u ∈ B(v, p)}
• Bu = {(v, p) | G(V \ B(v, p)) has two connected components}
• Cu = {(v, p) | G(V \ B(v, p)) is connected and u �∈ B(v, p)}
• Du = {(v, p) | B(v, p) = V }

For each vertex (v, p), let Lu(v, p) be the connected component of G(V \B(v, p))
that contains u (i.e., the component to the “left” of B(v, p)), and let Ru(v, p)
be the connected component of G(V \ B(v, p)) that does not contain u (i.e.,
the component to the “right” of B(v, p)). Thus Lu(v, p) = ∅ for every (v, p) ∈
Au ∪ Du, and Ru(v, p) = ∅ for every (v, p) ∈ Cu ∪ Du.

The edges of Gu are directed and defined as follows: A directed edge (v, p) →
(w, q) is an edge of Gu if and only if all of the following three conditions are
satisfied:

• B(v, p) ∩ B(w, q) = ∅ in G
• Ru(v, p) �= ∅ and Lu(w, q) �= ∅
• (NG(B(w, q)) ∩ Lu(w, q)) ⊂ B(v, p) and (NG(B(v, p)) ∩ Ru(v, p)) ⊂ B(w, q)

in G.

To restate the last requirement in plain text: B(v, p) must contain all neighbors
of B(w, q) in Lu(w, q), and B(w, q) must contain all neighbors of B(v, p) in
Ru(v, p).

Observation 1. Given the first two requirements that an edge of Gu must sat-
isfy, the two conditions of the last requirement are equivalent.

Proof. Note first that (NG(B(w, q)) ∩ Lu(w, q)) �= B(v, p) and (NG(B(v, p)) ∩
Ru(v, p)) �= B(w, q) since B(v, p) ∩ B(w, q) = ∅ and thus v has no neighbor
in B(w, q) and w has no neighbor in B(v, p) in G. Let now (NG(B(w, q)) ∩
Lu(w, q)) ⊂ B(v, p). Observe that B(v, p) ⊆ Lu(w, q), since B(v, p)∩B(w, q) = ∅
and each ball induces a connected subgraph of G. Furthermore, since B(w, q) ∪
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Ru(w, q) is connected and does not intersect with B(v, p), and since there is no
path from B(w, q) to u that avoids B(v, p), we can also conclude that B(w, q) ⊆
Ru(v, p). Assume now, for a contradiction, that (NG(B(v, p)) ∩ Ru(v, p)) �⊂
B(w, q). Thus B(v, p) has a neighbor z in Ru(v, p) and z �∈ B(w, q). Since
Ru(v, p) is connected there is a path between z and a vertex of B(w, q) in
Ru(v, p), and in particular, this path contains a vertex y of Ru(w, q). But this
means that there is a path between u and y in G(V \B(w, q)), which contradicts
that y ∈ Ru(w, q). The proof in the other direction is analogous.

By the way we have defined the edges of Gu, all vertices belonging to Au have
indegree 0 and all vertices belonging to Cu have outdegree 0. Hence, any path
in Gu can contain at most one vertex from Au (which must be the starting point
of the path) and at most one vertex from Cu (which must be the ending point
of the path). The vertices of Du are isolated, and every vertex of Du defines a
radial broadcast domination on its own.

Lemma 3. Given G = (V, E) and a vertex u in G, let (v1, p1) → (v2, p2) →
... → (vk, pk) be a directed path in Gu with (v1, p1) ∈ Au ∪ Du and (vk, pk) ∈
Cu ∪ Du. Then for 1 ≤ i ≤ k, the following is true:

⋃i−1
j=1 B(vj , pj) = Lu(vi, pi)

and
⋃k

j=i+1 B(vj , pj) = Ru(vi, pi).

Proof. Observe that k = 1 if and only if the path contains a vertex of Du, in
which case the lemma follows trivially. Let us for the rest of the proof assume
that k ≥ 2.

We first show that
⋃i−1

j=1 B(vj , pj) = Lu(vi, pi) by induction on i, starting
from i = 1 and continuing to i = k.

Let us consider the base cases i = 1 and i = 2. When i = 1, we must show
that Lu(v1, p1) = ∅, which follows trivially since (v1, p1) ∈ Au∪Du. When i = 2,
we need to show that B(v1, p1) = Lu(v2, p2). Since (v1, p1) → (v2, p2) is an
edge of Gu and Lu(v1, p1) = ∅, we know that NG(B(v1, p1)) ⊂ B(v2, p2). By
the definition of an edge of Gu, we also know that NG(B(v2, p2)) ∩ Lu(v2, p2) ⊂
B(v1, p1). Thus there cannot exist a path between a vertex of B(v2, p2) and a
vertex of B(v1, p1) that avoids B(v1, p1) and the result follows since Lu(v2, p2)
is connected.

For the induction step, assume that
⋃i−1

j=1 B(vj , pj) = Lu(vi, pi), and
we will show that

⋃i
j=1 B(vj , pj) = Lu(vi+1, pi+1). Because of the edge

(vi, pi) → (vi+1, pi+1), by the proof of Observation 1, we know that B(vi, pi) ⊆
Lu(vi+1, pi+1) and B(vi+1, pi+1) ⊆ Ru(vi, pi). Thus, by the induction assump-
tion, B(vi+1, pi+1) does not intersect with

⋃i
j=1 B(vj , pj). Again by the induc-

tion assumption,
⋃i

j=1 B(vj , pj) is connected and contains u. As a consequence,
we can conclude that

⋃i
j=1 B(vj , pj) ⊆ Lu(vi+1, pi+1). Now, if Lu(vi+1, pi+1)

contains a vertex x that does not belong to
⋃i

j=1 B(vj , pj) then due to the in-
duction assumption, there must be a path (possibly a single edge) between x

and a vertex of B(vi, pi) whose vertices are all outside of
⋃i−1

j=1 B(vj , pj). Con-
sequently, B(vi, pi) must have a neighbor y in Ru(vi, pi) such that that x �∈
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B(vi+1, pi+1), which contradicts the existence of the edge (vi, pi) → (vi+1, pi+1).
Thus

⋃i
j=1 B(vj , pj) = Lu(vi+1, pi+1), and the proof of this part is complete.

Showing that
⋃k

j=i+1 B(vj , pj) = Ru(vi, pi) for 1 ≤ i ≤ k is completely
analogous, and we skip this part.

Lemma 4. Given G = (V, E), there is a vertex u ∈ V such that (v1, p1) →
(v2, p2) → ... → (vk, pk) is a directed path in Gu with (v1, p1) ∈ Au ∪ Du and
(vk, pk) ∈ Cu ∪Du if and only if G has an efficient broadcast domination f such
that Gf is the undirected path v1 − v2 − ... − vk and f(vi) = pi for 1 ≤ i ≤ k.

Proof. Let f be an efficient broadcast on G = (V, E) with broadcast dominators
Vf ⊂ V such that Gf is a path. Let Vf = {v1, v2, ..., vk} so that v1 − v2 −
... − vk is the path equivalent to Gf , and let u be any vertex of B(v1, f(v1)). If
k = 1 then V = B(v1, p1), and the lemma trivially follows since Gu contains a
vertex (v1, p1) ∈ Du. Let k ≥ 2. By the proofs of Corollaries 1 and 2, removing
B(v1, f(v1)) or B(vk, f(vk)) from G results in a connected graph, and removing
B(vi, f(vi)) from G results in exactly two connected components for 2 ≤ i ≤ k−1
(if k ≥ 3). Consequently, for each vi ∈ Vf , (vi, f(vi)) is a vertex of Gu. In Gu,
(v1, f(v1)) belongs to Au, (vk, f(vk)) belongs to Cu, vertices (vi, f(vi)) belong to
Bu for 2 ≤ i ≤ k−1 (for k ≥ 3), and (v1, f(v1)) → (v2, f(v2)) → ... → (vk, f(vk))
is a path by the definition of the edges in Gu.

In the other direction, let u be a vertex of G, and let P = (v1, p1) →
(v2, p2) → ... → (vk, pk) be a directed path in Gu such that (v1, p1) ∈ Au ∪ Du

and (vk, pk) ∈ Cu ∪ Du. Define a function f so that f(vi) = pi for 1 ≤ i ≤ k,
and f(v) = 0 for all other vertices of G. By Lemma 3,

⋃k
i=1 B(vi, pi) = V , and

B(vi, pi) ∩ B(vj , pj) = ∅, for 1 ≤ i < j ≤ k. Thus f is an efficient broadcast
domination on G.

Now the idea is to find a directed path Pu in Gu from a vertex of Au ∪ Du

to a vertex of Cu ∪ Du such that the sum of the weights of the vertices of Pu

(including the endpoints) is minimized. Let us call this sum W (Pu). Then we
will compute Gu for each vertex u in G, and repeat this process, and at the end
choose a path with the minimum total weight. Our algorithm for the path case
is given in Figure 2.

Theorem 2. Given a graph G = (V, E), Algorithm MPBD computes an effi-
cient broadcast domination f on G of minimum cost such that Gf is a path.

Proof. We compute a minimum weight path in Gu for every u ∈ V , and among
all these paths we choose a path P with the lowest W (P ). By Lemma 4, P
corresponds to a broadcast domination f of G such that Gf is a path, and
by the way each Gu is constructed, W (P ) = cf (V ). Assume that there is a
broadcast domination f ′ on G with cf ′(V ) < cf (V ) such that Gf ′ is a path.
Lemma 4 guarantees the existence of a path P ′ in Gv for some vertex v ∈ V
such that W (P ′) < W (P ), which is a contradiction.

Corollary 3. Let G = (V, E) be a graph such that there is an efficient optimal
broadcast domination on G where the domination graph is a path. Algorithm
MPBD computes such a broadcast domination on G.
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Algorithm Minimum Path Broadcast Domination - MPBD
Input: A graph G = (V, E).
Output: An efficient broadcast domination function f of minimum cost on G,
such that Gf is a path.
begin

for each vertex v in G do
f(v) = 0;

Let P be a dummy path with W (P ) = rad(G) + 1;
for each vertex u in G do

Compute Gu with vertex sets Au, Bu, Cu, and Du;
Find a minimum weight path Pu starting in a vertex of Au ∪ Du and
ending in a vertex of Cu ∪ Du;
if W (Pu) < W (P ) then

P = Pu;
end-for
for each vertex (v, p) on P do

f(v) = p;
end

Fig. 2. The algorithm for computing the best path broadcast domination

4.2 Optimal Broadcast Domination for All Cases

Now we want to compute an optimal broadcast domination for any given graph
G. Our approach will be as follows. Let x be any vertex of G. For each k between
1 and rad(G) such that G′ = G(V \ B(x, k)) is connected or empty, we run the
minimum path broadcast domination algorithm MPBD on G′. Our algorithm
for the general case is given in Figure 3.

In this way, we consider all broadcast dominations f whose corresponding
domination graphs are paths or cycles. The advantage of this approach is its
simplicity. The disadvantage is that we also consider many cases that do not
correspond to a path or a cycle, which we could have detected with a longer and
more involved algorithm. However, these unnecessary cases do not threaten the
correctness of the algorithm, and detecting them does not decrease the asymp-
totic time bound.

Theorem 3. Algorithm OBD computes an optimal broadcast domination of any
given graph.

Proof. Let G = (V, E) be the input graph. By Theorem 1 and Corollary 2, there
is a vertex x in V and an integer k ∈ [1, rad(G)] such that the graph G′ = G(V \
B(x, k)) has an efficient optimal broadcast domination f ′ where the domination
graph G′

f ′ is a path, and that f ′ can be extended to an optimal broadcast
domination f for G with f(x) = k, f(v) = 0 for v ∈ B(x, k) with x �= v, and
f(v) = f ′(v) for all other vertices v. Algorithm MPBD computes an optimal
broadcast domination of G′, and since Algorithm OBD tries all possibilities for
(x, k), the result follows.
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Algorithm Optimal Broadcast Domination - OBD
Input: A graph G = (V, E).
Output: An efficient optimal broadcast domination function f on G.
begin

opt = rad(G) + 1;
for each vertex x in G do

for k = 1 to rad(G) do
if G′ = G(V \ B(x, k)) is connected or empty then

f = MPBD(G′);
if cf (V \ B(x, k)) + k < opt then

opt = cf (V \ B(x, k)) + k;
f(x) = k;
for each vertex v in B(x, k) \ {x} do

f(v) = 0;
end-if

end-if
end

Fig. 3. The algorithm for computing an optimal broadcast domination

Note that although there is always an efficient optimal broadcast domination
f such that Gf is a cycle or a path, there can of course exist other optimal
broadcast dominations f ′ with cf ′(V ) = cf (V ) such that Gf ′ is not a path
or a cycle, and such that f ′ is not efficient. The optimal broadcast domination
returned by algorithm OBD does not necessarily correspond to a path or a cycle,
since we do not force the endpoints (or forbid the interior points) of the path for
G′ to be neighbors of B(x, k). Nor is the returned broadcast necessarily efficient,
as some ball B(v, p) might have an outreach outside of G′ and might overlap
with B(x, k).

4.3 Time Complexity

We explain a straight forward implementation of our algorithms to justify the
polynomial time complexity. In Algorithm MPBD, given a graph G, for each
vertex u in G, we create an auxiliary graph Gu with at most n · rad(G) vertices.
Thus we create n graphs with O(n2) vertices and O(n4) edges each. In each such
graph, we first compute vertex sets Au, Bu, Cu, and Du, which requires a breadth
first search for each vertex of Gu, thus O(n6) time for each auxiliary graph. The
edges of Gu can also be computed within this bound. Then we compute a path
of minimum weight in each such graph. A shortest path in a connected graph
H = (U, D) can be computed in time O(|D| log |U |) by well-known algorithms
like the one by Dijkstra. Minimum weight paths can be computed by simple
modifications of such algorithms within the same time bound. Thus in each
graph that we create, it takes O(n4 log n) time to find a minimum weight path.
Consequently the total time required for each Gu is O(n6), giving a total of
O(n7) time for Algorithm MPBD. In Algorithm OBD, we repeat this process
n · rad(G) = O(n2) times to find an optimal broadcast domination. As a result,
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the overall time complexity of a straight forward implementation is O(n9) and
thus polynomial.

It can be shown that each auxiliary graph Gu is acyclic and has O(n3) edges.
Therefore minimum weight paths can be computed by topological sort in time
O(n3) in each such graph. With a preprocessing step of computing all pairs of
shortest paths on G in O(n3) time, and using an O(n3) space data structure to
store the information about the edges between all possible balls in all auxiliary
graphs, we can actually reduce the total running time to O(n3r2m), where r =
rad(G). We leave the details of this implementation to the full paper, due to
limited space here.

5 Concluding Remarks

In this paper we have shown that the broadcast domination problem is solvable
in polynomial time on all graphs. Our focus has been on polynomial time and
not the best possible time bound. Our algorithm can be enhanced to run sub-
stantially faster, as explained. For further research, more efficient algorithms for
this problem should be of interest.

The optimal broadcast domination problem studies the cost cf (V ) =∑
v∈V f(v) of a broadcast domination f on a graph G = (V, E). Other defini-

tions of the cost of a broadcast may be appropriate depending on the application,
since the cost of a broadcast can be different from the value of a broadcast. To
be more precise, one could define a cost function c(i), and let the total cost be
cf (V ) =

∑
v∈V c(f(v)). Thus in our case c(i) = i for all i. Our polynomial time

algorithm can be used for all cost functions c, where c(i) + c(j) ≥ c(i + j) for all
integers i and j ≥ 0. For general cost functions the problem becomes NP-hard,
because we can let c(0) = 0, c(1) = 1, and c(i) > n for all i > 1, which gives a
direct reduction from the standard dominating set problem.
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Abstract. Many graph search algorithms use a labelling of the vertices
to compute an ordering of the vertices. We examine such algorithms
which compute a peo (perfect elimination ordering) of a chordal graph,
and corresponding algorithms which compute an meo (minimal elimina-
tion ordering) of a non-chordal graph.

We express all known peo-computing search algorithms as instances of
a generic algorithm called MLS (Maximal Label Search) and generalize
Algorithm MLS into CompMLS, which can compute any peo.

We then extend these algorithms to versions which compute an meo,
and likewise generalize all known meo-computing search algorithms. We
show the surprising result that all these search algorithms compute the
same set of minimal triangulations, even though the computed meos are
different.

1 Introduction

Graph searching plays a fundamental role in many algorithms, particularly using
Breadth-First or Depth-First searches and their many variants. One important
application is to compute special graph orderings related to the chordality of a
graph. When the input graph is chordal, one wants to find an ordering of the
vertices called a peo (perfect elimination ordering), which repeatedly selects a
vertex whose neighbourhood is a clique (called a simplicial vertex ), and removes
it from the graph. This is a certificate of chordality, as, given an ordering of the
vertices, one can determine in linear time whether it is a peo of the graph.

When the input graph fails to be chordal, it is often interesting to embed
it into a chordal graph by adding an inclusion-minimal set of edges, a process
called minimal triangulation. One of the ways of accomplishing this is to use
an ordering of the vertices called an meo (minimal elimination ordering), and
use this to simulate a peo by repeatedly adding any edges whose absence would
violate the simplicial condition.

Though some earlier work had been done on these problems ([11], [10]), the
seminal paper is that of Rose, Tarjan and Lueker [12], which presented two very
efficient algorithms to compute a peo or an meo. They introduced the concept

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 199–213, 2005.
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of lexicographic order (which roughly speaking is a dictionary order), and used
this for graph searches which at each step choose an unnumbered vertex of
maximal label. With this technique, they introduced Algorithm LEX M, which
for a non-chordal graph computes an meo in a very efficient O(nm) time, and
then streamlined this for use on a chordal graph, introducing what is now called
Algorithm LexBFS, a Breadth-First Search which runs in optimal O(n+m) time
and computes a peo if the input graph is chordal.

Later work has been done on computing peos. Tarjan and Yannakakis [14]
presented Algorithm MCS (Maximal Cardinality Search) which is similar to
LexBFS but uses a simplified labelling and order (a cardinality choice criterion
is used instead of a lexicographic one). MCS also computes in linear time a peo
if the input graph is chordal.

Shier [13] remarks that neither LexBFS nor MCS is capable of computing all
peos. He proposes a generalization of both LexBFS and MCS, Algorithm MEC,
which can compute any peo of a chordal graph.

Recently, Corneil and Krueger [6] introduced Algorithm LexDFS as a Depth-
First analogue to LexBFS. They also introduced Algorithm MNS (Maximal
Neighbourhood Search) as a generalization of LexBFS, LexDFS and MCS, which
simply chooses at each step a vertex whose set of numbered neighbours is
inclusion-maximal. They gave characterizations of the orderings computed by
these search Algorithms and observed, from a result of Tarjan and Yannakakis
[14] on the property characterizing MNS orderings, every MNS ordering yields
a peo if the input graph is chordal.

Berry, Blair, Heggernes and Peyton [1] recently introduced Algorithm MCS-
M, which computes an meo. MCS-M is extended from MCS in the same fashion
LEX M can be extended from LexBFS. The sets of meos defined by LEX M and
by MCS-M are different, but Villanger [15] recently showed that the same sets
of minimal triangulations were obtained.

In this paper, we address natural questions which arise about peos and meos:
how can the existing algorithms be generalized? Do these new algorithms com-
pute all peos of a chordal graph? Can they all be extended to compute meos?
What sets of minimal triangulations are obtained?

We show that LexBFS, MCS, LexDFS and MNS can be described as instances
of a generic algorithm called MLS (Maximal Label Search) which computes a
peo of a chordal graph, but cannot compute every peo of every chordal graph.
In order to obtain all possible peos, we extend MLS to CompMLS, which uses
Shier’s idea of working on the connected components of the subgraph induced
by the unnumbered vertices. We show that every instance of gereric CompMLS
is capable of computing any peo of a chordal graph.

We then go on to examine the issues pertaining to meos and minimal triangu-
lations. We show that MNS, MLS and CompMLS can all be extended to compute
an meo, in the same way that LEX M is extended from LexBFS. We show the
very strong result that all the sets of minimal triangulations computed are the
same, independent of the meo-computing algorithm which is used, and that not
all minimal triangulations can be computed by this new family of algorithms.
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Because of space limitations, we give either abridged proofs or no proof for
our results; the proofs may be skipped without hindering comprehension. The
reader is referred to the journal version of this paper for the full proofs.

The paper is organized as follows: Section 2 gives some definitions and nota-
tions, in Section 3 we discuss peos, and in Section 4 we discuss meos.

2 Preliminaries

All graphs in this work are undirected and finite. A graph is denoted G = (V, E),
with n = |V |, and m = |E|. The neighbourhood of a vertex x in G is denoted
NG(x), or simply N(x) if the meaning is clear. An ordering on V is a one-to-one
mapping from {1, 2, ..., n} to V . In every figure in this paper showing an ordering
α on V , α is defined by giving on the figure the number α−1(x) for every vertex
x. We denote by ZZ+ the set of positive integers {1, 2, 3, . . .}.

A chordal (or triangulated) graph is a graph with no chordless cycle of length
greater or equal to 4. To recognize chordal graphs efficiently, Fulkerson and Gross
[9] used a greedy elimination scheme on simplicial vertices: “A graph is chordal
iff one can repeatedly find a simplicial vertex and delete it from the graph, until
no vertex is left.” This defines an ordering on the vertices which is called a perfect
elimination ordering (peo) of the graph.

When a graph G fails to be chordal, any ordering α on the vertices can be
used to embed G into a chordal graph (called a triangulation of G) by repeatedly
choosing the next vertex x, adding any edges necessary to make it simplicial,
and removing x. If F is the set of added edges, graph H = (V, E +F ) is chordal
and is denoted G+

α .
If H = (V, E + F ) is a triangulation of G = (V, E), and if for every proper

subset F ′ ⊂ F , graph (V, E + F ′) fails to be chordal, H is called a minimal
triangulation of G. If moreover H = G+

α , α is called a minimal elimination
ordering (meo) of G.

In [12], two very important characterizations are given:

Path Lemma
For any graph G = (V, E), any ordering α on V and any x, y in V such that
α−1(y) < α−1(x), xy is an edge of G+

α iff there is a path μ in G from x to y
such that ∀t ∈ μ \ {x, y}, α−1(t) < α−1(y).

Unique Chord Property
For any graph G = (V, E) and any triangulation H = (V, E + F ) of G, H is a
minimal triangulation of G iff each edge in F is the unique chord of a 4-cycle of H .

3 Computing Peos

Algorithm MNS, as defined by [6], works in the following fashion: start with a
graph where all vertices are unnumbered and all labels of all vertices are empty.
Repeatedly choose an unnumbered vertex x whose label is maximal (with respect
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to set inclusion), give x the following number i, and add (by a union operation) i
to the label of all as-yet unnumbered neighbours of x. Note that the graph search
algorithms in [6] number vertices from 1 to n. In this paper, our algorithms
compute peos and meos directly, and thus number vertices from n down to 1.
MNS is a generalization of both LexBFS and LexDFS, where labels are lists and
maximality is defined using lexicographic order, and it is also a generalization
of MCS, where maximality is decided using the cardinality of the MNS labels.
Corneil and Krueger [6] observed that MNS computes a peo of a chordal graph,
and that any LexBFS, LexDFS or MCS ordering of a graph is an MNS one.

We will now extend MNS, using a labelling structure:

Definition 1. A labelling structure is a structure (L,%, l0, Inc), where:

– L is a set (the set of labels),
– % is a partial order on L (which may be total or not, with ≺ denoting the

corresponding strict order), which will be used to choose a vertex of maximal
label,

– l0 is an element of L, which will be used to initialize the labels,
– Inc is a mapping from L×ZZ+ to L, which will be used to increment a label,

and such that for any integer n in ZZ+, any integer i from 1 to n and any
labels l and l′ in Ln

i , the following properties hold:
(ls1) l ≺ Inc(l, i)
(ls2) if l ≺ l′ then Inc(l, i) ≺ Inc(l′, i)

where Ln
i is the subset of L defined by induction on i by:

– Ln
n = {l0}, and

– Ln
i−1 = Ln

i ∪ {l = Inc(l′, i) | l′ ∈ Ln
i }, for any i from n down to 2.

The corresponding algorithm, which we introduce as MLS (Maximal Label
Search), is given by Figure 1. MLS iteratively selects a vertex to add to the
ordering and increments the labels of its unselected neighbours. We will refer to
the iteration of the loop that defines α(i) as Step i of the algorithm. We observe
that Ln

i corresponds to the set of labels that could possibly be assigned to an
unselected vertex at the beginning of Step i.

Algorithm MLS (Maximal Label Search)
input : A graph G = (V, E) and a labelling structure (L,�, l0, Inc).
output: An ordering α on V .
Initialize all labels as l0; G′ ← G;
for i = n downto 1 do

Choose a vertex x of G′ of maximal label;
α(i) ← x;
foreach y in NG′ (x) do

label(y) ← Inc(label(y), i);
Remove x from G′;

Fig. 1. Algorithm MLS
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LexBFS, MCS, LexDFS and MNS are all special cases of MLS, with the
following labelling structures (L,%, l0, Inc):

LexBFS (Structure S1): L is the set of lists of elements of ZZ+, % is lexico-
graphical order (a total order), l0 is the empty list, Inc(l, i) is obtained from l
by adding i to the end of the list.

MCS (Structure S2): L = ZZ+∪{0}, % is ≤ (a total order), l0 = 0, Inc(l, i) =
l + 1.

LexDFS (Structure S3): L is the set of lists of elements of ZZ+, % is lexico-
graphical order (a total order), l0 is the empty list, Inc(l, i) is obtained from l
by adding n + 1 − i to the beginning of the list.

MNS (Structure S4): L is the power set of ZZ+, % is ⊆ (not a total order),
l0 = ∅, Inc(l, i) = l ∪ {i}.

In our proofs, we will use the following notations: for any graph G = (V, E),
any execution of our algorithms on G computing some ordering α on V , and any
integer i from 1 to n, we say Vi is the set of still unnumbered vertices at the
beginning of Step i (i.e. Vi = {α(j), 1 ≤ j ≤ i}), G′

i is graph G′ at the beginning
of Step i (i.e. G′

i = G[Vi]), and, for each y ∈ Vi, labeli(y) is the value of label(y)
at the beginning of Step i and Numi(y) = {j ∈ {i + 1, i + 2, ..., n} | label(y) has
been incremented at Step j}.

We can view MLS as a generic algorithm with parameter S. For every la-
belling structure S, we denote by S-MLS the instance of generic Algorithm MLS
using this particular labelling structure S and by “S-MLS ordering of a graph G”
any ordering that can be computed by S-MLS on input graph G. Thus, LexBFS
is S1-MLS, MCS is S2-MLS, LexDFS is S3-MLS, and MNS is S4-MLS.

The set of S-MLS orderings of a given graph depends on S. An MLS ordering
of a graph G is an ordering that can be computed by MLS on G, i.e. by S-MLS
for some labelling structure S. Thus, the set of MLS orderings of G is the union
of the sets of S-MLS orderings of G for all labelling structures S.

The following theorem shows that MNS can compute every S-MLS ordering
of a given graph for every labelling structure S, so that any graph has the same
MNS and MLS orderings. This theorem can easily be proved using the MNS
characterization presented in [6] or by a proof similar to that of Theorem 4
given in Section 4.

Theorem 1. For any graph G = (V, E) and any labelling structure S, any S-
MLS ordering of G is an MNS ordering of G.

A corollary of Theorem 1 is that any instance of MLS computes a peo of a
chordal graph, since this is true for MNS [6]. Another consequence is that any
LexBFS, MCS or LexDFS ordering of a graph is also an MNS ordering, which
already follows from the characterizations given in [6]. However, for arbitrary
labelling structures S and S′, an ordering computed by S-MLS need not be
computable by S′-MLS. For instance, Figure 2(a) shows a LexBFS ordering
which is not an MCS ordering, while Figure 2(b) shows an MCS ordering which
is not a LexBFS ordering. There also exist graphs with MNS orderings that are
neither LexBFS nor MCS orderings.
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Fig. 2. A chordal graph with different (a) LexBFS and (b) MCS orderings
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Fig. 3. α is a CompMNS ordering of G but not an MNS one

It is interesting to remark that even though MLS, or equivalently MNS, is
more general than LexBFS and MCS, it still is not powerful enough to compute
every possible peo of a given chordal graph. This is shown by the simple coun-
terexample in Figure 3: no MLS execution on this graph will find the ordering
indicated, although it is clearly a peo.

In order to make it possible to find any peo, we further generalize MLS using
Shier’s idea [13] of using the connected components of the subgraph G′ induced
by the unnumbered vertices. We thus introduce Algorithm CompMLS, defined
from Algorithm MLS by replacing:

“Choose a vertex x of G′ of maximal label;”
with
“Choose a connected component C of G′;
Choose a vertex x of C of maximal label in C;”.

This generalizes the whole family of peo-computing algorithms discussed in
this paper: for any X in {LexBFS, MCS, LexDFS, MNS, MLS}, Algorithm
CompX is a generalization of X, and computes a peo if the graph is chordal.
The CompMLS algorithms also generalize Algorithms MEC and MCC defined
by Shier [13]: MEC is CompMNS and MCC is CompMCS.

Algorithm CompMNS can compute the peo of Figure 3. In fact, Shier proved
in [13] that CompMNS and even CompMCS compute all peos of a chordal graph.
We show that this result holds for every instance of Algorithm CompMLS, as
for any labelling structure S, a chordal graph has the same CompMNS and
S-CompMLS orderings. This follows from Theorem 6 in Section 4.

Theorem 2. For any chordal graph G and any labelling structure S, the S-
CompMLS orderings of G are exactly its peos.

Let us conclude this section by some remarks on running the MLS family of
algorithms on non-chordal graphs. LexBFS has been used on AT-free graphs [7]
and has been shown to have very interesting invariants even on an arbitrary graph
([2], [3]). Likewise, MCS has also been used on various graph classes ([8], [5]).
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Fig. 4. A non-chordal graph with different (a) CompLexBFS and (b) CompMCS or-
derings

Unlike a chordal graph, a non-chordal graph does not necessarily have the
same CompLexBFS, CompMCS, CompLexDFS, and CompMNS orderings. Fig-
ure 4(a) shows a CompLexBFS ordering which is not a CompMCS one, while
Figure 4(b) shows a CompMCS ordering which is not a CompLexBFS one.

4 Computing Meos

We will now introduce the extensions of Algorithms MNS, MLS and CompMLS
into their meo-computing counterparts.

To extend LexBFS into LEX M, at each step choosing a vertex x of maxi-
mum label label(x), an edge is added between x and any unnumbered vertex y
whenever there is a path from x to y in the subgraph induced by the unnumbered
vertices such that all internal vertices on the path have a label strictly smaller
than the label of y. This approach has been used recently in [1] to extend MCS
into meo-computing Algorithm MCS-M; here, we extend MLS into MLSM, as
given by Figure 5. Thus LEX M is S1-MLSM, MCS-M is S2-MLSM, LexDFS-M
is defined as S3-MLSM, and MNSM is defined as S4-MLSM. We will see in the
next section that Algorithm MNSM is in fact as general as MLSM: every MLSM
ordering of a graph is an MNSM ordering.

4.1 The MLSM Family of Algorithms

Theorem 3. For any execution of MLSM, H = G+
α , and α is a meo of G.

To prove this, we will need several technical lemmas. The proofs of Lemmas 1
and 2 are straightforward, and that of Lemma 3 is given in the Appendix.

Lemma 1. For any graph G = (V, E), any execution of MLS (resp. MLSM) on
G computing ordering α, any integers i, j such that 1 ≤ i < j ≤ n and any y in
Vi, the following propositions are equivalent:

1. labelj(y) �= labelj−1(y),
2. labelj−1(y) = Inc(labelj(y), j),
3. labelj(y) ≺ labelj−1(y),
4. j ∈ Numi(y),
5. α(j)y is an edge of G (resp. H),
6. (for MLSM) there is a path μ in G′

j from α(j) to y such that ∀t ∈ μ \
{α(j), y}, labelj(t) ≺ labelj(y).
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Algorithm MLSM (Maximal Label Search for Meo)

input : A graph G = (V, E) and a labelling structure (L,�, l0, Inc).
output: An meo α on V and a minimal triangulation H = G+

α of G.
Initialize all labels as l0; E′ ← ∅; G′ ← G;
for i =n downto 1 do

Choose a vertex x of G′ of maximal label;
α(i) ← x;
foreach vertex y of G′ different from x do

if there is a path from x to y in G′ such that every internal vertex on
the path has a label strictly smaller than label(y) then

E′ ← E′ ∪ {xy};

foreach y in V such that xy ∈ E′ do
label(y) ← Inc(label(y), i);

Remove x from G′;
H ← (V, E′);

Fig. 5. Algorithm MLSM

Lemma 2. For any graph G = (V, E), any execution of MLS or MLSM on G,
any integer i from 1 to n and any x, y in Vi,
(i) if Numi(x) = Numi(y) then labeli(x) = labeli(y), and
(ii) if Numi(x) ⊂ Numi(y) then labeli(x) ≺ labeli(y).

Lemma 3. For any graph G, any execution of MLSM on G computing ordering
α, any integer i from 1 to n and any path μ in G′

i ending in some vertex y,
a) ∀t ∈ μ \ {y}, labeli(t) ≺ labeli(y) iff ∀t ∈ μ \ {y}, Numi(t) ⊂ Numi(y),
b) if ∀t ∈ μ \ {y}, labeli(t) ≺ labeli(y) then ∀t ∈ μ \ {y}, α−1(t) < α−1(y),
c) if ∀t ∈ μ \ {y}, α−1(t) < α−1(y) then ∀t ∈ μ \ {y}, Numi(t) ⊆ Numi(y).

Proof (of Theorem 3). We first show that for any execution of MLSM, H = G+
α .

Let x, y ∈ V such that α−1(y) < α−1(x) = i. Let us show that xy is an edge of
H iff it is an edge of G+

α .
If xy is an edge of H then, by Lemma 1, there is a path μ in G′

i from x
to y such that ∀t ∈ μ \ {x, y}, labeli(t) ≺ labeli(y). By Lemma 3 b), ∀t ∈
μ \ {x, y}, α−1(t) < α−1(y) and, by the Path Lemma, xy is an edge of G+

α .
Conversely, let xy be an edge of G+

α . Let us show that xy is an edge of
H . By the Path Lemma, there is a path μ in G from x to y such that ∀t ∈
μ \ {x, y}, α−1(t) < α−1(y) < i, so μ \ {x} ⊆ Vi−1. By Lemma 3 c), ∀t ∈
μ \ {x, y}, Numi−1(t) ⊆ Numi−1(y). Let t1 be the neighbour of x in μ. xt1 is
an edge of H , so, by Lemma 1, i ∈ Numi−1(t1), hence i ∈ Numi−1(y), and by
Lemma 1 xy is an edge of H .

We now show that G+
α is a minimal triangulation of G. Let H = G+

α =
(V, E + F ). As G+

α is a triangulation of G, by the Unique Chord Property, it
is sufficient to show that each edge in F is the unique chord of a cycle in H of
length 4. Let xy be an edge in F with α−1(y) < α−1(x) = i. xy is an edge of H
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so by Lemma 1 there is a path μ in G′
i from x to y such that ∀t ∈ μ \ {x, y},

labeli(t) ≺ labeli(y), and also α−1(t) < α−1(y) by Lemma 3 b). μ \ {x, y} �= ∅
since xy is not an edge in G. Let t1 be the vertex in μ \ {x, y} such that α−1(t1)
is maximum. By the Path Lemma, xt1 and t1y are edges of G+

α and therefore of
H . As labeli(t1) ≺ labeli(y), by Lemma 2 (i) and (ii) Numi(y) �⊆ Numi(t1). Let
j ∈ Numi(y) \Numi(t1), and z = α(j). j > i and by Lemma 1 yz is an edge of
H (and therefore of G+

α ) but t1z is not. Since yx and yz are edges of G+
α with

α−1(y) < α−1(x) = i < j = α−1(z), by definition of G+
α xz is an edge of G+

α ,
and therefore of H . Hence xy is the unique chord of cycle (x, t1, y, z, x) in H of
length 4.

Thus MLSM (and also LEX M, MCS-M, LexDFS-M and MNSM) computes
an meo and a minimal triangulation of the input graph. MLSM has the same
behaviour (same labelling and numbering) on the input graph as MLS on the
output minimal triangulation. As a result, MLS and MLSM have the same be-
havior on chordal graphs and the following property holds for any graph.

Property 1. For any graph G and any labelling structure S, any S-MLSM or-
dering α of G is an S-MLS ordering of G+

α .

Let us remark that for two given structures S and S′, the sets of orderings
computed by S-MLSM and S′-MLSM may be different, as is the case for S-MLS
and S′-MLS on chordal graphs. LEX M and MCS-M for example are different,
as shown in Figure 2 (since MLS and MLSM compute the same orderings on a
chordal graph). In the same way that MNS is as general as MLS, it turns out
that MNSM is as general as MLSM, thus every graph has the same MLSM and
MNSM orderings.

Theorem 4. For any graph G = (V, E) and any labelling structure S, any S-
MLSM ordering of G is an MNSM ordering of G.

Proof. Let S be a labelling structure and let α be a S-MLSM ordering of G. Let
us show that α is a MNSM ordering of G. Let e be an execution of MLSM on
G and S computing α, and let e′ be an execution of MNSM on G numbering at
each step the same vertex as e, provided that this vertex is still unnumbered and
of maximal label among the unnumbered vertices. We rename labeli and Numi

into label′i and Num′
i in e′. For any i from 1 to n, let P (i) be the property:

e′ numbers successively α(n), α(n − 1), ..., α(i + 1) and for any vertex y ∈ Vi,
Numi(y) = Num′

i(y). Let us show P (i) by induction on i from n down to 1.
P (n) obviously holds. Assume P (i) holds for some i, n ≥ i > 1. Let us show
P (i−1). We first show that e′ numbers α(i) at step i, i.e. that there is no vertex
y ∈ Vi such that label′i(α(i)) ⊂ label′i(y). If there was such a vertex y then
we would have by definition of MNSM labelling Num′

i(α(i)) = label′i(α(i)) ⊂
label′i(y) = Num′

i(y), and also Numi(α(i)) ⊂ Numi(y) by induction hypothesis,
hence by Lemma 2 labeli(α(i)) ≺ labeli(y), which contradicts the maximality of
labeli(α(i)) in Vi in e. Thus e′ numbers α(i) at step i, and, when processing α(i),
labels of the same vertices are increased in executions e and e′ by Lemma 3 a)
and induction hypothesis. So P (i − 1) holds, which completes the proof of P (i)
by induction. From P (1), α is a MNSM ordering of G.
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4.2 The CompMLSM Family of Algorithms

We define CompMLSM from MLSM in the same way as we defined CompMLS
from MLS. Properties extend readily from an MLSM algorithm to its
CompMLSM version: at step i, our proofs only compare the label of α(i) to
labels of vertices along paths in the graph G′

i of unnumbered vertices, so α(i)
needs only be maximal within the connected component of G′

i containing it.
We thus have similar results:

Theorem 5. For any input graph G and any X in {LEX M, MCS-M, LexDFS-
M, MNSM, MLSM}, CompX computes a meo α of G and the associated minimal
triangulation G+

α of G.

We also easily extend results such as Property 1.
An important difference between MLSM and CompMLSM is that the set of

orderings CompMLSM can find is independent of the labelling structure used,
and is a superset of the set of orderings obtainable by any algorithm of the
MLSM family.

Theorem 6. Any graph has the same S-CompMLSM orderings for all labelling
structures S.

We need the following technical lemma.

Lemma 4. For any graph G, any labelling structure S, any execution of S-
CompMLSM on G computing ordering α and any integer i from 1 to n,
Numi(α(i)) is inclusion-maximum in the connected component of G′

i contain-
ing α(i).

Proof. Let C be the connected component of G′
i containing α(i) and y be a

vertex of C. Let us show that Numi(y) ⊆ Numi(α(i)). Let z ∈ Numi(y).
Let us show that z ∈ Numi(α(i)). Let μ1 be a path from α(i) to y in the
subgraph of G′

i induced by C. By Lemma 1 and Theorem 5, yz is an edge of
G+

α , so by the Path Lemma there is a path μ2 in G from y to z such that
∀t ∈ μ2 \ {y, z}, α−1(t) < α−1(y) ≤ i. The path μ from α(i) to z obtained by
concatenation of μ1 and μ2 is such that ∀t ∈ μ \ {α(i), z}, α−1(t) < i < α−1(z).
By the Path Lemma, α(i)z is an edge of G+

α and, by Lemma 1 and Theorem 5,
z ∈ Numi(α(i)).

Proof (of Theorem 6). Let G be a graph and S, S′ be labelling structures. Let us
show that any S-CompMLSM ordering of G is a S′-CompMLSM ordering. The
proof is similar to that of Theorem 4, replacing S-MLSM by S-CompMLSM and
MNSM by S′-CompMLSM. We need only revise our argument that e′ numbers
α(i) at step i as follows:

Let C be the connected component of G′
i containing α(i), which is the same

in e and e′ by induction hypothesis. By Lemma 4, Numi(α(i)) is inclusion max-
imum in C, so by induction hypothesis Num′

i(α(i)) is inclusion maximum in C,
and by Lemma 2 label′i(α(i)) is maximum in C, so e′ numbers α(i) at step i.
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Fig. 6. (a) Graph G and an meo α of G. (b) The corresponding minimal triangula-
tion G+

α of G. No version of CompMLSM or MLSM can compute this meo, and the
corresponding minimal triangulation is not obtainable by any of these algorithms.

If the input graph is chordal, since the S-CompMLSM execution is the same
as the S-CompMLS one, the same orderings are found. By [13], CompMCS
computes all peos, so we can deduce that S-CompMLS also computes all peos.
Thus Theorem 2 is a corollary of Theorem 6.

Computing all peos does not extend to meos for the MLSM family of algo-
rithms: Figure 6 shows an meo which CompMLSM is not capable of computing.

This raises the question of which minimal triangulations can be obtained by
various algorithms of this family. Villanger in [15] proved the surprising result
that the sets of minimal triangulations obtainable by LEX M and MCS-M are
the same. Upon investigation, it turns out that, given one of these algorithms,
using its Comp version does not enlarge the set of computable triangulations,
although the set of computable meos may be larger.

Theorem 7. For any graph G and any given labelling structure S, G has the
same sets of S-MLSM and of S-CompMLSM minimal triangulations.

Proof. Let G = (V, E) be a graph and let S be a labelling structure. Clearly,
any S-MLSM minimal triangulation of G is a S-CompMLSM one. Conversely,
let H be a S-CompMLSM minimal triangulation of G and let us show that it
is a S-MLSM one. Let α be the ordering on V computed by some execution of
S-CompMLSM computing H , and, for any i from 1 to n, let Ci be the connected
component of G′

i chosen at step i of this execution. Let α′ be the ordering on V
and H ′ be the minimal triangulation of G computed by an execution of S-MLSM
choosing, for any i from 1 to n, α′(i) at step i in the following way (every
variable v is denoted v in the execution of CompMLSM and v′ in that of MLSM):

1) Choose a connected component C′
i of G′′

i containing a vertex of maxi-
mal label in G′′

i .
2) If there is some j from 1 to n such that C′

i = Cj and label′i(α(j)) is maximum
in C′

i then choose α′(i) = α(j) else choose for α′(i) any vertex of C′
i of maximal

label in G′′
i .
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Note that there is at most one integer j such that C′
i = Cj since for any j, k

such that j < k, Cj �= Ck since α(k) ∈ Ck \ Cj . Let us now show that H ′ = H .
For any subset J of {1, 2, ..., n}, let α(J) denote the set of vertices {α(j) | j ∈ J},
and, for any i from 1 to n, let P (i) be the following property.
P (i) : if there is some j from 1 to n such that C′

i = Cj and ∀y ∈ C′
i,

α′(Num′
i(y)) = α(Numj(y)) then the edges of H ′ produced when processing

the vertices of C′
i (in the execution of MLSM) are exactly those of H produced

when processing the vertices of Cj (in the execution of CompMLSM).
Let us show P (i) by induction on i from 1 to n. P (1) holds since C′

1 contains
a single vertex and processing this vertex produces no edge of H (or H ′). We
suppose P (i−1) for some i, 1 < i ≤ n. Let us show P (i). We suppose that there is
some j from 1 to n such that C′

i = Cj and ∀y ∈ C′
i, α′(Num′

i(y)) = α(Numj(y)).
By Lemma 4 Numj(α(j)), and therefore α(Numj(α(j))), is inclusion-maximum
in Cj , so α′(Num′

i(α(j))), and therefore Num′
i(α(j)), is inclusion-maximum

in C′
i and by Lemma 2 label′i(α(j)) is maximum in C′

i. By definition of α′,
α′(i) = α(j). The edges of H ′ produced when processing α′(i) are exactly
those of H produced when processing α(j) by Lemma 3 a), and the con-
nected components of G′′

i−1 obtained from C′
i by removing α′(i) are exactly

those of G′
j−1 obtained from Cj by removing α(j) with ∀y ∈ C′

i \ {α′(i)},
α′(Num′

i−1(y)) = α(Numj−1(y)). For each such connected component C, there
is some k < i and some l < j such that C = C′

k = Cl and ∀y ∈ C′
k,

α′(Num′
k(y)) = α′(Num′

i−1(y)) = α(Numj−1(y)) = α(Numl(y)), so by in-
duction hypothesis the edges of H ′ produced when processing the vertices of C
are exactly those of H produced when processing the vertices of C. Hence the
edges of H ′ produced when processing the vertices of C′

i are exactly those of H
produced when processing the vertices of Cj . So P (i) holds, which completes the
induction on i. Now, for each connected component C of G there are some i and
j from 1 to n such that C = C′

i = Cj and ∀y ∈ C, Num′
i(y) = Numj(y) = ∅, so

by P (i) the edges of H ′ produced when processing the vertices of C are exactly
those of H produced when processing the vertices of C. Hence H ′ = H .

Theorem 7, together with Theorem 6, yields the following interesting result:

Theorem 8. For any graph G, whichever meo-computing algorithm of the
MLSM and CompMLSM families is used (e.g., LEX M, MCS-M, LexDFS-M,
MNSM, or their Comp extensions), the set of computable minimal triangula-
tions is the same.

These minimal triangulations fail to cover all possible minimal triangulations:
Figure 6(b) shows a minimal triangulation which is obtainable by none of our
graph search meo-computing algorithms.

5 Conclusion

We have extended Algorithm LexBFS into Algorithm MLS by defining a general
labelling structure, and shown how to extend this further to CompMLS to enable
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any possible peo to be computed. We have also extended all these algorithms to
meo-computing versions. Our work yields alternate (and often simpler) proofs
for the results of several papers, as [1,12,13,14,15].

However, we have shown that these new meo-computing algorithms fail to
enhance the possibility for finding a wider range of minimal triangulations. LEX
M has been studied experimentally, and shown to be very restrictive ([4]), yield-
ing triangulations which are far from minimum. This problem remains with the
enlarged family of new meo-computing algorithms we present here, and appears
to be a fundamental limitation of graph search.

As for the complexity of Algorithms MLS and MLSM, implementations of
LexBFS and MCS in O(n+m) time and of LEX M in O(nm) time are well known
[12,14] and serve as valid implementations of MNS and MNSM respectively. In
the journal version of this paper we will present a complexity analysis of any
algorithm of the MLS and MLSM families. We will study the complexity of the
problem of determining whether a given ordering on the vertex set of a given
graph can be computed or not by a given algorithm of these families. We will also
show that the conjunction of conditions (ls1) and (ls2) on a labelling structure is
sufficient, but not necessary, to ensure that the corresponding algorithm of the
MLS (resp. MLSM) family computes a peo of every chordal graph (resp. meo
of every graph). We will define a weaker condition that is both necessary and
sufficient.

As mentioned in the Introduction, LexBFS and MCS, though designed for
chordal graphs, have been used for graph classes other than chordal graphs. The
more general peo-finding algorithms discussed in this paper could also prove
useful on non-chordal graphs, on a wider variety of graph classes and problems.
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Appendix

We give here the proof of Lemma 3. It uses the following technical Lemmas 5
and 6. For any path μ containing vertices x and y, μ[x, y] denotes the subpath
of μ between x and y.

Lemma 5. For any graph G, any execution of MLSM on G, any integer i from 1
to n and any path μ in G′

i−1 ending in some vertex y, if ∀t ∈ μ\{y}, Numi(t) ⊂
Numi(y) then ∀t ∈ μ \ {y}, Numi−1(t) ⊂ Numi−1(y).

Proof. We suppose that ∀t ∈ μ \ {y}, Numi(t) ⊂ Numi(y) (and therefore
labeli(t) ≺ labeli(y) by Lemma 2). Let t ∈ μ \ {y} and let us show that
Numi−1(t) ⊂ Numi−1(y). It is sufficient to show that if i ∈ Numi−1(t) then
i ∈ Numi−1(y). We suppose that i ∈ Numi−1(t). By Lemma 1 there is a path
λ in G′

i from α(i) to t such that ∀t′ ∈ λ \ {α(i), t}, labeli(t′) ≺ labeli(t). Let
μ′ be the path obtained by concatenation of λ and μ[t, y]. Then μ′ is a path in
G′

i from α(i) to y such that ∀t′ ∈ μ′ \ {α(i), y}, labeli(t′) ≺ labeli(y). Hence by
Lemma 1 i ∈ Numi−1(y).

Lemma 6. For any graph G, any execution of MLSM on G, any integer i from
1 to n and any path μ in G′

i ending in some vertex y, if ∃t ∈ μ\{y} | Numi(t) �⊆
Numi(y) then ∃t1 ∈ μ \ {y} | ∀t ∈ μ[t1, y] \ {t1}, Numi(t) ⊂ Numi(t1).

Proof. We suppose that ∃t ∈ μ \ {y} | Numi(t) �⊆ Numi(y). Let j be the
largest integer such that ∃t ∈ μ \ {y} | Numj−1(t) �⊆ Numj−1(y) and let t1
be the vertex of μ closest to y such that Numj−1(t1) �⊆ Numj−1(y). So j −
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1 ≥ i, j ∈ Numj−1(t1) and ∀t ∈ μ[t1, y] \ {t1}, j �∈ Numj−1(t). Let us show
that Numj(t1) = Numj(y). We assume for contradiction that Numj(t1) �=
Numj(y). Let t2 be the vertex of μ[t1, y] closest to t1 such that Numj(t2) =
Numj(y). By the choice of j, ∀t ∈ μ[t1, t2] \ {t2}, Numj(t) ⊂ Numj(t2) and by
Lemma 5 Numj−1(t1) ⊂ Numj−1(t2). So j ∈ Numj−1(t2) with t2 ∈ μ[t1, y] \
{t1}, a contradiction.

So ∀t ∈ μ[t1, y] \ {t1}, Numj−1(t) = Numj(t) ⊆ Numj(y) = Numj(t1) ⊂
Numj(t1) ∪ {j} = Numj−1(t1). As j − 1 ≥ i, by Lemma 5 ∀t ∈ μ[t1, y] \
{t1}, Numi(t) ⊂ Numi(t1).

Lemma 3. For any graph G, any execution of MLSM on G computing ordering
α, any integer i from 1 to n and any path μ in G′

i ending in some vertex y,
a) ∀t ∈ μ \ {y}, labeli(t) ≺ labeli(y) iff ∀t ∈ μ \ {y}, Numi(t) ⊂ Numi(y),
b) if ∀t ∈ μ \ {y}, labeli(t) ≺ labeli(y) then ∀t ∈ μ \ {y}, α−1(t) < α−1(y),
c) if ∀t ∈ μ \ {y}, α−1(t) < α−1(y) then ∀t ∈ μ \ {y}, Numi(t) ⊆ Numi(y).

Proof. a) For the forward direction, we assume for contradiction that ∀t ∈
μ \ {y}, labeli(t) ≺ labeli(y) and ∃t ∈ μ \ {y} | Numi(t) �⊂ Numi(y) (and
therefore Numi(t) �⊆ Numi(y) since, by Lemma 2 (i), Numi(t) �= Numi(y)).
By Lemma 6, ∃t1 ∈ μ \ {y} | Numi(y) ⊂ Numi(t1) and by Lemma 2
labeli(y) ≺ labeli(t1), a contradiction.

The reverse direction follows immediately from Lemma 2.
b) We suppose that ∀t ∈ μ \ {y}, labeli(t) ≺ labeli(y). Let k =

max{α−1(t), t ∈ μ}. By a) and Lemma 5, ∀t ∈ μ \ {y}, labelk(t) ≺ labelk(y).
So α(k) = y, which completes the proof.

c) We assume for contradiction that ∀t ∈ μ \ {y}, α−1(t) < α−1(y) and
∃t ∈ μ \ {y} | Numi(t) �⊆ Numi(y). By Lemma 6 ∃t1 ∈ μ \ {y} | ∀t ∈ μ[t1, y] \
{t1}, Numi(t) ⊂ Numi(t1) and by a) and b), α−1(y) < α−1(t1), a contradiction.
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Abstract. In this paper, we establish structural properties of cographs
which enable us to present an algorithm which, for a cograph G and
a non-edge xy (i.e., two non-adjacent vertices x and y) of G, finds the
minimum number of edges that need to be added to the edge set of G
such that the resulting graph is a cograph and contains the edge xy.
The motivation for this problem comes from algorithms for the dynamic
recognition and online maintenance of graphs; the proposed algorithm
could be a suitable addition to the algorithm of Shamir and Sharan
[13] for the online maintenance of cographs. The proposed algorithm
runs in time linear in the size of the input graph and requires linear space.

Keywords: Perfect graphs, cographs, cotrees, connected components,
co-connected components, optimization problems.

1 Introduction

In this paper, we study the following problem:

(Cograph,+1)-MinEdgeAddition: Given a cograph G and a non-edge xy
(i.e., a pair of non-adjacent vertices x and y) of G, find the minimum
number of non-edges of G that need to be added to G so that the resulting
graph is a cograph and contains xy as an edge.

This problem is an instance of a more general (Π, +k)-MinEdgeAddition problem
in which we deal with a class Π of graphs and we want to have k given non-edges
added. Similarly, we can define the (Π,−k)-MinEdgeAddition problem: we are
given a graph G from a class Π and k edges of G which we want removed; since
the removal of these edges yields a graph G′ which may not necessarily belong to
Π , we want to find the minimum number of non-edges of G which when added to
G′ give a graph in Π (note that the fact that we add non-edges of G prevents the
addition of an edge of G which we want removed). Further extensions lead to the
(Π,±k)-MinEdgeDeletion problem, in which we remove the minimum number
of edges of G (instead of adding non-edges) in order to obtain a graph in Π .

The above problems are motivated by the dynamic recognition problem on
(or on-line maintenance of) graphs: a series of requests for the addition or the
deletion of an edge or a vertex (potentially incident on a number of edges) are
submitted and each is executed only if the resulting graph remains in the same
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class of graphs. Several authors have studied this problem for different classes of
graphs and have given algorithms supporting some or all the above operations;
we mention the edges-only fully dynamic algorithm of Ibarra [8] for chordal
graphs, the fully dynamic algorithm of Hell et al. [7] for proper interval graphs,
and the fully dynamic algorithm of Shamir and Sharan [13] for cographs.

The cographs, short for complement reducible graphs, are defined as the class
of graphs formed from a single vertex under the closure of the operations of
union and complementation, namely: (i) a single-vertex graph is a cograph;
(ii) the disjoint union of cographs is a cograph; (iii) the complement of a co-
graph is a cograph. Cographs were introduced in the early 1970s by Lerchs [11]
who studied their structural and algorithmic properties. Along with other prop-
erties, Lerchs has shown that they admit a unique tree representation, up to
isomorphism, called a cotree. Cographs have arisen in many disparate areas of
applied mathematics and computer science and have been independently redis-
covered by various researchers under various names such as D∗-graphs [10], P4

restricted graphs [4,5], 2-parity graphs and Hereditary Dacey graphs or HD -
graphs [15]. They are perfect and in fact form a proper subclass of permutation
graphs and distance hereditary graphs; they contain the class of quasi-threshold
graphs and, thus, the threshold graphs [1,9]. Furthermore, they are precisely the
graphs which contain no induced subgraph isomorphic to a P4 (i.e., a chordless
path on four vertices).

The study of cographs led naturally to constructive characterizations that
implied several linear-time recognition algorithms that also enabled the con-
struction of the cotree in linear time [1,14]. Surprisingly, despite the structural
simplicity of cographs, constructing linear-time recognition algorithms has been
challenging. The first linear-time recognition and cotree-construction algorithm
was proposed by Corneil, Perl, and Stewart [5] in 1985. Recently, Bretscher et
al. [2] presented a simple linear-time recognition algorithm which uses a multi-
sweep LexBFS approach; their algorithm either produces the cotree of the input
graph or identifies an induced P4. Additionally, since the cographs are perfect,
many interesting optimization problems in graph theory, which are NP-complete
in general graphs, have polynomial sequential solutions [1,9]; for example, for the
problem of determining the minimum path cover for a cograph, Lin et al. [12]
presented a linear-time algorithm, which can be used to produce a Hamiltonian
cycle or path, if such a structure exists.

In this paper, we solve the (Cograph,+1)-MinEdgeAddition problem. We
consider (what we call) the component-partition of a graph G with respect to
any of its vertices v: this is related to the partition of the subgraph of G induced
by the neighbors of v in G into co-components and to the partition of the sub-
graph induced by the non-neighbors of v into components. By taking advantage
of the fact that a cograph contains no induced subgraph isomorphic to a P4 [11],
we establish structural properties for the component-partition of a cograph with
respect to any of its vertices. These properties and the use of dynamic program-
ming enable us to describe an algorithm for the above problem which runs in
time linear in the size of the input graph.
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2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. For a
graph G, we denote by V (G) and E(G) the vertex set and edge set of G, respec-
tively. Let S be a subset of the vertex set V (G) of a graph G; the subgraph of
G induced by S is denoted by G[S].

The neighborhood N(x) of a vertex x of the graph G is the set of all the
vertices of G which are adjacent to x. The closed neighborhood of x is defined
as N [x] := N(x) ∪ {x}. The neighborhood of a subset S of vertices is defined as
N(S) :=

(⋃
x∈S N(x)

)
− S and its closed neighborhood as N [S] := N(S) ∪ S. If

two vertices x and y are adjacent in G, we say that x sees y; otherwise we say
that x misses y. We extend this notion to vertex sets: Vi ⊆ V (G) sees (misses)
Vj ⊆ V (G) if and only if every vertex x ∈ Vi sees (misses) every vertex y ∈ Vj .

If the graph G contains a path from a vertex x to a vertex y, we say that
x is connected to y. The connected components (or components) of G are the
equivalence classes of the “is connected to” relation on the vertex set V (G) of
G. The co-connected components (or co-components) of G are the connected
components of the complement G of G.

3 The Component-Partition

Let us consider for a vertex v of a graph G the partition of the subgraphs G[N(v)]
and G[V (G)−N [v]] into co-components and connected components, respectively;
then, we define:

Definition 1. Let G be a graph and v a vertex of G. We define the component-
partition of G with respect to v, denoted by (v; Ĉ1..�; C1..k), as the partition of
the vertex set V (G)

V (G) = {v} + Ĉ1 + Ĉ2 + . . . + Ĉ� + C1 + C2 + . . . + Ck,

where Ĉ1, Ĉ2, . . . , Ĉ� are the co-connected components of G[N(v)] and C1, C2,
. . . , Ck are the connected components of G[V (G) − N [v]].

In particular, we restrict our attention to component-partitions such that
there are no P4s with vertices in both N(v) and V (G) − N [v]; thus, we define:

Definition 2. Let G be a graph, v a vertex of G, and (v; Ĉ1..�; C1..k) the compo-
nent-partition of G with respect to v. We say that this component-partition is
good if and only if G contains no P4 with a vertex in some Ĉi (1 ≤ i ≤ �) and
a vertex in some Cj (1 ≤ j ≤ k).

Our interest in good component-partitions comes from the property described
in the following observation:

Observation 1. Suppose that the component-partition (v; Ĉ1..�; C1..k) of a
graph G with respect to a vertex v is good. If G contains a P4, then all the
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vertices of the P4 belong to the same co-component Ĉi or to the same compo-
nent Cj.

Observation 1 follows from the fact that the vertices of any P4 in the sub-
graph G[N [v]] all belong to the same co-component of G[N(v)], and the vertices
of any P4 in the subgraph G[V (G)− N [v]] all belong to the same component of
G[V (G)−N [v]]. Additionally, the definition of a good component-partition and
the fact that the cographs do not contain P4s clearly imply:

Observation 2. If G is a cograph, then the component-partition of any induced
subgraph of G with respect to any of its vertices is good.

In Lemma 1 we establish necessary and sufficient conditions for a component-
partition to be good.

Lemma 1. Let G be a graph, v a vertex of G, and (v; Ĉ1..�; C1..k) the component-
partition of G with respect to v. Then, the component-partition of G with respect
to v is good if and only if the following two conditions hold:

(i) for each co-component Ĉi and each component Cj, Ĉi either sees or misses Cj;
(ii) if, for each co-component Ĉi, 1 ≤ i ≤ �, we define the set Îi =

{ j | Ĉi sees Cj }, then the co-components of G[N(v)] have the following
monotonicity property: |Îi| ≤ |Îj | implies that Îi ⊆ Îj .

Condition (ii) of Lemma 1 can be phrased in another equivalent way, as given
in the following corollary.

Corollary 1. Let G be a graph, v a vertex of G, and (v; Ĉ1..�; C1..k) the compo-
nent-partition of G with respect to v. Then, the component-partition of G with
respect to v is good if and only if the following two conditions hold:

(i) for each co-component Ĉi and each component Cj, Ĉi either sees or misses Cj;
(ii) Suppose that the ordering of the co-components Ĉ1, Ĉ2, . . . , Ĉ� corresponds to

their ordering by non-decreasing |Îi|, where Îi = { j | Ĉi sees Cj }. If we
associate each component Ci, 1 ≤ i ≤ k, with the set Ii = { j | Ci sees Ĉj },
then the components of G[V (G)−N [v]] have the following property: if Ii �= ∅
and h is the minimum element of Ii, then Ii = {h, h + 1, . . . , �}.

We also note that because the co-components of the neighbors of a vertex and the
components of its non-neighbors trade places in the complement of the graph,
then properties similar to those described in conditions (ii) of Lemma 1 and
Corollary 1 hold for the sets Ii and Îi, respectively.

Let us assume that the component-partition (v; Ĉ1..�; C1..k) of the graph G

is good. We partition the set of co-components {Ĉ1, Ĉ2, . . . , Ĉ�} of the subgraph
G[N(v)] into a collection of sets Ŝ1, Ŝ2, . . . , Ŝ�′ defined as follows:

Definition 3. Consider the equivalence relation R on the set of co-components
{Ĉ1, Ĉ2, . . . , Ĉ�} such that (Ĉi, Ĉj) ∈ R if and only if Îi = Îj, i.e., Ĉi and Ĉj

see the same components of the subgraph G[V (G) − N [v]]. We define the sets
Ŝ1, Ŝ2, . . . , Ŝ�′ as the equivalence classes of the relation R where, for every i, j
such that 1 ≤ i < j ≤ �′, and every Ĉr ∈ Ŝi and Ĉs ∈ Ŝj, it holds that Îr ⊂ Îs.
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The value �′ is equal to the number of distinct sets Îi, and thus each set Ŝj is
nonempty. It is not difficult to see that the partition sets Ŝ1, Ŝ2, . . . , Ŝ�′ have the
following properties:

◦ If a connected component C of the subgraph G[V (G)−N [v]] sees a co-com-
ponent Ĉi ∈ Ŝj, then C sees all the co-components in Ŝj .

◦ Let us consider the ordering of the co-components {Ĉ1, Ĉ2, . . . , Ĉ�} consisting
of an arbitrary ordering of the elements of the set Ŝ1 followed by an arbitrary
ordering of the elements of Ŝ2 and so on up to the set Ŝ�′ . In this ordering,
the co-components Ĉi, 1 ≤ i ≤ �, are ordered by non-decreasing value of |Îi|.

In light of these properties and the fact that the component-
partition (v; Ĉ1..�; C1..k) is good (thus condition (ii) of Corollary 1 holds),
we have:

Definition 4. We define the following partition of the set of components {C1, C2,
. . . , Ck} of the subgraph G[V (G) − N [v]]:

S1 = { Cj | ∀ Ĉ ∈ Ŝ1, Cj sees Ĉ }
Si = { Cj | ∀ Ĉ ∈ Ŝi and Ĉ′ ∈ Ŝi−1, Cj sees Ĉ but misses Ĉ′ } (2 ≤ i ≤ �′)
S�′+1 = { C1, C2, . . . , Ck } −

⋃
i=1,...,�′

Si

The definition of the sets Ŝj , j = 1, 2, . . . , �′, implies that Si �= ∅ for all
i = 2, 3, . . . , �′. However, S�′+1 and S1 may be empty. In particular, S�′+1 is
empty if and only if the graph G is connected; in fact, S�′+1 contains the con-
nected components of G except for the component to which v belongs. Figure 1
illustrates the partitions of the set of co-components and of the set of compo-
nents described above and their adjacencies in a good component-partition of
the graph G with respect to vertex v; the dotted ovals indicate the partition
sets, and the circles inside the ovals indicate the components or co-components
belonging to the partition set.

In terms of the partitions into sets Ŝ1, Ŝ2, . . . , Ŝ�′ and S1, S2, . . . , S�′ , S�′+1,
the cotree of a cograph G has a very special structure, which is described in

v

G[N(v)]

G[V (G) − N [v]]
S�′+1S1 S2 S�′

Ŝ1 Ŝ2 Ŝ�′

Fig. 1
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Ŝ1
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v

S�′+1

S1

S�′

Ŝ1

Ŝ�′

(a) (b)

Fig. 2

the following observation (because of Observation 2, the sets Ŝ1, Ŝ2, . . . , Ŝ�′ and
S1, S2, . . . , S�′ , S�′+1 are well defined).

Observation 3. Let G be a cograph, v a vertex of G, and Ŝ1, Ŝ2, . . . , Ŝ�′ and
S1, S2, . . . , S�′ , S�′+1, respectively, the partitions of the co-connected components
of G[N(v)] and of the connected components of G[V (G)−N [v]] as defined above.
Then,

(i) if S1 = ∅, the cotree of G has the general form depicted in Figure 2(a);

(ii) if S1 �= ∅, the cotree of G has the general form depicted in Figure 2(b).

In either case, the dashed part1 appears in the tree if and only if S�′+1 �= ∅.

The circular nodes labeled with a 0 or a 1 in Figure 2 are 0-nodes and 1-nodes,
respectively, whereas the shaded node is a leaf node; the triangles denote the
cotrees of the corresponding connected components or co-components.

4 Adding an Edge in a Cograph

Let G be a cograph and let x, y be two vertices of G which are not adjacent. We
want to solve the (Cograph,+1)-MinEdgeAddition problem for G, x, y, i.e., we
wish to make x and y adjacent, while adding the minimum number of non-edges
of G so that the resulting graph is a cograph. Instrumental in the algorithm that
we will be presenting is the component-partition of the graph G with respect to
a vertex of G (see Definition 1) and in particular the partitions into sets Ŝi and

1 Lerchs’ definition required that the root of a cotree be a 1-node [11]; here, we relax
this condition and allow the root to be a 0-node as well, thus obtaining cotrees whose
internal nodes all have at least two children, and whose root is a 1-node if and only
if the corresponding cograph is connected.
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Sj (see Definitions 3 and 4); since G is a cograph, Observation 2 holds and thus
the adjacencies between the Ŝis and Sjs are as shown in Figure 1.

In particular, let Ŝ1(x), Ŝ2(x), . . . , Ŝ�′x(x) and S1(x), S2(x), . . . , S�′x(x),
S�′x+1(x) be the sets of the co-components of the subgraph G[N(x)] and of the
connected components of the subgraph G[V (G) − N [x]], respectively. Since x
and y are non-adjacent, then y belongs to a set, say, Skx(x); in particular, let Cy

be the component in Skx(x) to which y belongs. Similarly, let Ŝ1(y), Ŝ2(y), . . . ,
Ŝ�′y(y) and S1(y), S2(y), . . . , S�′y(y), S�′y+1(y) be the sets of the co-components
of G[N(y)] and of the connected components of G[V (G) − N [y]], respectively,
and suppose that x belongs to the component Cx of the set Sky (y). Because the
elements of the sets Ŝkx+i(x) and Ŝky+i(y), i ≥ 0, and Skx+i(x) and Sky+i(y),
i ≥ 1, correspond to the subtrees of the cotree of G hanging from the nodes in
the path from the parent of the least common ancestor of x and y to the root
(see Figure 2), it holds that

Ŝkx+i(x) = Ŝky+i(y) for all i ≥ 0
and Skx+i(x) = Sky+i(y) for all i ≥ 1

which also implies that �′x − kx = �′y − ky. Moreover, from any subtrees, other
than those containing x and y, hanging from the least common ancestor of x
and y, we have:

Skx(x) − {Cy} = Sky(y) − {Cx}.

For the sake of simplicity of the notation, let us define

Vi(x) =
⋃

1≤t≤i

(
Ŝt(x) ∪ St(x)

)
and Vi(y) =

⋃
1≤t≤i

(
Ŝt(y) ∪ St(y)

)
.

Note that V0(x) = ∅ and V0(y) = ∅. Then, the properties of a good component-
partition (in light of Observation 2) imply (see also Figure 1):

P1: the common neighbors of x and y are precisely the vertices in Ŝkx(x) ∪
Ŝkx+1(x) ∪ . . . ∪ Ŝ�′x(x) = Ŝky(y) ∪ Ŝky+1(y) ∪ . . . ∪ Ŝ�′y(y);

P2: Cy = {y} ∪ Vky−1(y) and similarly, Cx = {x} ∪ Vkx−1(x).

In order to show Property P2, we note that Cy is the connected component to
which y belongs after all the common neighbors of x and y have been removed;
then, Property P2 follows from considering the removal of the vertices in Ŝky (y)∪
Ŝky+1(y) ∪ . . . ∪ Ŝ�′y(y) (see Property P1) in the component-partition of the
graph G with respect to y.

Let G′ be an optimal solution to the (Cograph,+1)-MinEdgeAddition prob-
lem, i.e., G′ is a cograph for which V (G′) = V (G), E(G) ∪ {xy} ⊆ E(G′), and
|E(G′)| is minimum. Clearly, Observation 2 holds for G′; the properties of G′

are described in the following two lemmata.
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x

Ŝkx(x) Ŝkx+1(x) Ŝ�′x(x)

Skx(x)-{Cy} Skx+1(x) S�′x(x) S�′x+1(x)

Fig. 3. Skx(x)−{Cy} �= ∅: the rightmost sets Ŝ′
i(x) and S′

i(x), i = rx−(�′x−kx), . . . , rx,
in the partitions of the subgraphs G′[NG′ (x)] and G′[V (G′) − NG′ [x]]

x

Ŝkx(x)

Ŝkx+1(x) Ŝ�′x(x)

Skx+1(x) S�′x(x) S�′x+1(x)

Fig. 4. Skx(x) = {Cy}: the rightmost sets Ŝ′
i(x) and S′

i(x), i = rx−(�′x−kx)+1, . . . , rx,
and Ŝ′

rx−(�′x−kx)(x) in the partitions of G′[NG′ (x)] and G′[V (G′) − NG′ [x]]

Lemma 2. Let G be a cograph, x, y be two non-adjacent vertices of G, and let

◦ Ŝ1(x), Ŝ2(x), . . . , Ŝ�′x(x) and S1(x), S2(x), . . . , S�′x(x), S�′x+1(x),
◦ Ŝ1(y), Ŝ2(y), . . . , Ŝ�′y(y) and S1(y), S2(y), . . . , S�′y(y), S�′y+1(y),
◦ kx, ky, Cy, Vi(x), and Vi(y)

be as described above. Then, for the partition of the subgraphs G′[NG′(x)] and
G′[V (G′) − NG′ [x]] of an optimal graph G′ into sets of co-components Ŝ′

1(x),
Ŝ′

2(x), . . . , Ŝ′
rx

(x), and connected components S′
1(x), S′

2(x), . . . , S′
rx

(x), S′
rx+1(x)

respectively, the following properties hold:

(i) Ŝ′
rx−i(x) = Ŝ�′x−i(x) = Ŝ�′y−i(y) for all i = 0, 1, 2, . . . , �′x − kx − 1, and

S′
rx+1−i(x) = S�′x+1−i(x) = S�′y+1−i(y) for all i = 0, 1, 2, . . . , �′x − kx (see

Figures 3 and 4);
(ii) if Skx(x) contains at least one connected component in addition to Cy, then

Ŝ′
rx−(�′x−kx)(x)= Ŝkx(x)= Ŝky (y) and S′

rx−(�′x−kx)(x)=Skx(x) − {Cy} (see
Figure 3);

(iii) if Skx(x) contains just the connected component Cy, then all the co-
components in Ŝkx(x) form co-components in Ŝ′

rx−(�′x−kx)(x) (see Fig-
ure 4).
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In terms of the cotree of the graph G, Lemma 2 implies that all changes that
need to be done in order to obtain the cotree of the graph G′ are restricted in
the subtree rooted at the least common ancestor of x and y.

The remaining sets of co-components and components in the component-
partition of the optimal graph G′ with respect to x are obtained from an opti-
mal “grouping” of the vertices in Vkx−1(x)∪Cy = Vkx−1(x)∪{y}∪Vky−1(y) (see
Property P2). The following lemma gives the possible cases of such a “group-
ing.” It does not take into account case (iii) of Lemma 2; if this case applies,
then the set Ŝ′

rx−(�′x−kx)(x), in addition to the co-components that result by the

“grouping,” contains the co-components in Ŝkx(x) as well (see Figure 4).

Lemma 3. Let G be a cograph, x, y be two non-adjacent vertices of G, and let

◦ Ŝ1(x), Ŝ2(x), . . . , Ŝ�′x(x) and S1(x), S2(x), . . . , S�′x(x), S�′x+1(x),
◦ Ŝ1(y), Ŝ2(y), . . . , Ŝ�′y(y) and S1(y), S2(y), . . . , S�′y(y), S�′y+1(y),
◦ Vi(x) and Vi(y)

be as described above. Then, an optimal “grouping” of the vertices in Vi(x) ∪
{y} ∪ Vj(y) in order to form sets of co-components Ŝ′

1(x), Ŝ′
2(x), . . . , Ŝ′

k(x) and
sets of connected components S′

1(x), S′
2(x), . . . , S′

k(x) in the component-partition
of an optimal graph G′ with respect to vertex x is of one of the following forms:

(a) k = 1, Ŝ′
k(x) contains a single co-component induced by all the vertices in

Vi(x) ∪ {y} ∪ Vj(y), and S′
k(x) = ∅ (see Figure 5(a));

(b) provided that Vj(y) �= ∅, k = i + 1, Ŝ′
k(x) consists of a single co-

component involving just vertex y, S′
k(x) consists of a single connected

component induced by the vertices in Vj(y), whereas the remaining sets
Ŝ′

1(x), Ŝ′
2(x), . . . , Ŝ′

k−1(x) and S′
1(x), S′

2(x), . . . , S′
k−1(x) are identical to

Ŝ1(x), Ŝ2(x), . . . , Ŝi(x) and S1(x), S2(x), . . . , Si(x), respectively (see Fig-
ure 5(b));

(c) provided that j ≥ 2 or j = 1 and S1(y) �= ∅, Ŝ′
k(x) = Ŝj(y) and S′

k(x) =
Sj(y) (see Figure 5(c));

(d) provided that i ≥ 2 or i = 1 and S1(x) �= ∅, Ŝ′
k(x) = Ŝi(x) and S′

k(x) =
Si(x) (see Figure 5(d)).

Lemma 2 and the fact that the vertices in Ŝkx(x) ∪ Ŝkx+1(x) ∪ . . . ∪ Ŝ�′x(x) see
all the vertices in {x, y} ∪ Vkx−1(x) ∪ Vky−1(y) (see Property P1) imply that
new edges are added only as a result of the “grouping;” it is important to note
that we do not need to add new edges connecting vertices in the same set Ŝ′

t(x)
or S′

t(x) as the vertices in each such set induce subgraphs not containing any
P4s. Then, in light of Lemma 3, we get a recursive expression for the number
of additional edges that such an optimal “grouping” requires; this is given in
Lemma 4.

Lemma 4. Suppose that the conditions of Lemma 2 hold and let cost(i, j) denote
the number of edges with both endpoints in {x} ∪ Vi(x) ∪ {y} ∪ Vj(y) which need
to be added to G in an optimal “grouping” of the vertices in Vi(x) ∪ {y} ∪ Vj(y)
to form sets Ŝ′

t(x) and S′
t(x). Then,
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x

Ŝ

x

y
Ŝ1(x)

S1(x)

Ŝi(x)

Si(x) S

(a) (b)

x

Ŝj(y)

Sj(y)

x

Ŝi(x)

Si(x)

(c) (d)

Fig. 5. Cases (a)-(d) of Lemma 3 where Ŝ contains a single co-component induced by
Vi(x) ∪ {y} ∪ Vj(y) and S contains a single component induced by Vj(y)

(i) the number of additional edges in the graph G′ (optimal solution for the
problem (Cograph,+1)-MinEdgeAddition for G, x, y) is cost(kx − 1, ky − 1);

(ii) the value cost(i, j) is the minimum among the costs of the cases below pro-
vided that they apply:
(a) 1 +

∑i
t=1 |St(x)| +

∑j
t=1

(
|Ŝt(y)| + |St(y)|

)
;

(b) 1 +
∑i

t=1

(
|Ŝt(x)| + |St(x)|

)
+
∑j

t=1 |St(y)|, provided that j ≥ 1;

(c) cost(i, j − 1) + |Ŝj(y)| ·
(
1 +
∑i

t=1

(
|Ŝt(x)| + |St(x)|

))
, provided that

j ≥ 2 or j = 1 and S1(y) �= ∅;
(d) cost(i − 1, j) + |Ŝi(x)| ·

(
1 +
∑j

t=1

(
|Ŝt(y)| + |St(y)|

))
, provided that

i ≥ 2 or i = 1 and S1(x) �= ∅.

It is important to note the symmetry between cases (a) and (b) and between
cases (c) and (d) with respect to x and y, as it is expected. Let us now consider
some special cases.

◦ If i = 0 and j = 0, then only case (a) applies and cost(0, 0) = 1.
◦ If i = 0 and j = 1, then case (d) does not apply while the cost in case (a)

is no smaller that the cost in case (b), thus, cost(0, 1) is the minimum of
1+
∑1

t=1 |St(y)| and of cost(0, j−1)+|Ŝj(y)| assuming that case (c) applies:
if S1(y) �= ∅ then case (c) applies and since cost(0, 0) = 1, we have that
cost(0, 1) = min{1 + |S1(y)|, 1 + |Ŝ1(y)|}; if S1(y) = ∅ then case (c) does
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not apply and thus cost(0, 1) is 1 + |S1(y)| = 1. In either case, cost(0, 1) =
min{1 + |S1(y)|, 1 + |Ŝ1(y)|}.

◦ If i = 1 and j = 0, then cases (b) and (c) do not apply, so that cost(1, 0)
is the minimum of 1 +

∑1
t=1 |St(x)| and of cost(0, 0) + |Ŝi(x)| assuming

that case (d) applies. The case is symmetric to the previous case so that
cost(1, 0) = min{1 + |S1(x)|, 1 + |Ŝ1(x)|}.

◦ If i = 0 and j ≥ 2, then case (d) does not apply, while the cost in case (a)
is no smaller than the cost in case (b) since 1 +

∑j
t=1

(
|Ŝt(y)| + |St(y)|

)
<

1 +
∑j

t=1 |St(y)|; thus, cost(0, j) is the minimum of 1 +
∑j

t=1 |St(y)| and of
cost(0, j − 1) + |Ŝj(y)|.

◦ If i ≥ 2 and j = 0, then case (c) does not apply, while the cost in case (b)
is no smaller than the cost in case (a) since 1 +

∑i
t=1

(
|Ŝt(x)| + |St(x)|

)
<

1 +
∑i

t=1 |St(x)|; thus, cost(i, 0) is the minimum of 1 +
∑i

t=1 |St(x)| and of
cost(i − 1, 0) + |Ŝi(x)|.

Based on Lemma 4 and the above discussion, we give below our algorithm.
The algorithm uses four matrices Ax[ ], Bx[ ], Ay[ ], and By[ ], such that Av[i] =∑i

t=1 |Ŝt(v)| and Bv[i] =
∑i

t=1 |St(v)|. It also uses a 2-dimensional array cost[ , ],
where it saves the values of cost( , ). The algorithm receives as input a cograph G
on n vertices and two non-adjacent vertices x, y of G, and outputs the minimum
number of edges that need to be added to G so that x, y become adjacent and the
resulting graph is a cograph (we note that the algorithm can be easily modified
to produce the set of edges that need to be added, instead of their number only,
within the same time and space complexity). In detail, it works as follows:

Algorithm Add-Edge-in-Cograph

1. Compute the sets
Ŝ1(x), Ŝ2(x), . . . , Ŝ�′x(x) of co-components of G[N(x)] and
S1(x), S2(x), . . . , S�′x(x), S�′x+1(x) of conn. components of G[V (G)−N [x]];

find the set Skx(x) to which y belongs;
compute the sets

Ŝ1(y), Ŝ2(y), . . . , Ŝ�′y(y) of co-components of G[N(y)] and
S1(y), S2(y), . . . , S�′y(y), S�′y+1(y) of conn. components of G[V (G)−N [y]];

find the set Sky(y) to which x belongs;
2. Ax[0] ← 0; Bx[0] ← 0;

for i = 1, 2, . . . , kx − 1 do
Ax[i] ← Ax[i − 1] + |Ŝi(x)|;
Bx[i] ← Bx[i − 1] + |Si(x)|;

Ay[0] ← 0; By[0] ← 0;
for i = 1, 2, . . . , ky − 1 do

Ay [i] ← Ay [i − 1] + |Ŝi(y)|;
By[i] ← By[i − 1] + |Si(y)|;

3. cost[0, 0] ← 1;
for j = 1, 2, . . . , ky − 1 do

cost[0, j] ← min{1 + By[j], cost[0, j − 1] + Ay[j] − Ay [j − 1]};
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for i = 1, 2, . . . , kx − 1 do
cost[i, 0] ← min{1 + Bx[i], cost[i − 1, 0] + Ax[i] − Ax[i − 1]};
for j = 1, 2, . . . , ky − 1 do

val1 ← 1 + Bx[i] + Ay[j] + By[j]; {case (a)}
val2 ← 1 + Ax[i] + Bx[i] + By[j]; {case (b)}
if j ≥ 2 or (j = 1 and By[1] �= 0) {case (c)}
then val3 ← cost[i, j − 1] + (Ay[j] − Ay[j − 1]) · (1 + Ax[i] + Bx[i])
else val3 ← n2;
if i ≥ 2 or (i = 1 and Bx[1] �= 0) {case (d)}
then val4 ← cost[i − 1, j] + (Ax[i] − Ax[i − 1]) · (1 + Ay[j] + By[j])
else val4 ← n2;
cost[i, j] ← min{val1, val2, val3, val4};

return(cost[kx − 1, ky − 1]).

Note that whenever a value cost[ , ] is needed for another cost-computation,
it has already been computed. The correctness of Algorithm Add-Edge-in-
Cograph follows from Lemma 4, the discussion of the special cases, and the
definitions of the arrays Ax[ ], Bx[ ], Ay[ ], and By[ ], which also imply that Ax[i]−
Ax[i− 1] = |Ŝi(x)|, Bx[j]−Bx[j − 1] = |Sj(x)|, and similarly for Ay[ ] and By[ ].

Time and Space Complexity: Suppose that the input cograph G has n ver-
tices and m edges. Then, the sets Ŝ1(x), Ŝ2(x), . . . , Ŝ�′x(x) and S1(x), S2(x), . . .,
S�′x+1(x) can be computed in O(n + m) time and space either by computing
the cotree of G [5], or by computing the co-components of G[N(x)] [3,6] and
the connected components of G[V (G) − N [x]] and then by placing them in the
appropriate Ŝi(x) or Si(x) based on their number of incident edges to vertices
in V (G) − N [x] and in N(x) respectively. Finding the set Skx(x) can be done
in constant time. Similarly, the computation of the corresponding sets Ŝi(y)
and Si(y), and finding Sky(y) takes O(n + m) time and space. For the com-
plexity of Steps 2 and 3, we observe that �′x and �′y are O(

√
m): since every

vertex in any co-component of Ŝi (1 ≤ i ≤ �′x) sees every vertex in the co-
components of Ŝj for j �= i, there exist at least �′x(�′x − 1)/2 edges connecting
vertices in different co-components of G[N(x)]; since G contains a total of m
edges and there are at least �′x edges connecting x to its neighbors, we conclude
that m ≥ �′x + �′x(�′x − 1)/2 > �′x

2
/2, from which the result for �′x follows; a

similar argument holds for �′y. Step 2 takes O(
√

m) = O(n) time, since kx ≤ �′x
and ky ≤ �′y. Step 3 takes O(kx ·ky) = O(�′x ·�′y) = O(m) time. The space needed
by Algorithm Add-Edge-in-Cograph is equal to the space needed for the rep-
resentation of the input graph G and the space taken by the arrays Ax[ ], Bx[ ],
Ay[ ], By[ ], and cost[ , ]; hence, it is O(n + m + kx · ky) = O(n + m). Therefore,
Algorithm Add-Edge-in-Cograph takes O(n + m) time and space.

5 Concluding Remarks

In this paper, we described a linear-time algorithm for the (Cograph,+1)-Min-
EdgeAddition problem; instrumental in our construction are the properties of
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the component-partition of a cograph that we establish. Since the cographs are
complement-invariant, the approach we used when applied on the complement of
the given graph gives a solution to the (Cograph,−1)-MinEdgeDeletion problem.

It would be interesting to obtain efficient algorithms for the (Cograph,−1)-
MinEdgeAddition and the (Cograph,+1)-MinEdgeDeletion problems as well as
for the extensions of all these problems in which k edges or non-edges are in-
volved. Finally, it would also be interesting to study the problems for other
classes of graphs; an obvious immediate next step would be to consider the class
of P4-sparse graphs, a superclass of the class of cographs.

Acknowledgment. The authors would like to thank A. Brandstädt for propos-
ing the four variants (Π,±1)-MinEdgeAddition/Deletion problems, D. Corneil
for suggesting a solution to the (Cograph,−1)-MinEdgeDeletion problem, and
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Abstract. Delay management for public transport consists of deciding
whether vehicles should wait for delayed transferring passengers, with
the objective of minimizing the overall passenger discomfort.

This paper classifies the computational complexity of delay manage-
ment problems with respect to various structural parameters, such as the
maximum number of passenger transfers, the graph topology, and the ca-
pability of trains to reduce delays. Our focus is to distinguish between
polynomially solvable and NP-complete problem variants. To that end,
we show that even fairly restricted versions of the delay management
problem are hard to solve.

1 Introduction

Even a carefully planned railway system will once in a while have to deal with de-
layed trains due to unforeseeable events. In such a case, the railway operator can
react by maintaining some connections and modifying the schedule accordingly.

This paper considers the impact of such modifications on the overall passen-
ger delay. The problem of managing delayed trains is still not well understood,
even though the first research on railway delays started as early as two decades
ago (see, for example, [HK81]). In particular, no efficient exact algorithms are
known so far for any general problem setting. We present an explanation for
this situation by showing that several restricted versions of the delay manage-
ment problem are NP-complete. We identify various combinatorial aspects that
cause the problem to be difficult to solve, and complementarily extend some of
the polynomial time algorithms of [GGJ+04]. Thus, we establish a fairly pre-
cise complexity boundary that depends on structural parameters of the problem
instance.

The delay management problem considers a trade-off that is best explained by
an example. Consider a passenger in an on-time train, which decides to wait for a
delayed feeder train. Although the passenger was traveling on-time, she now faces
a delay because of this decision. Moreover, she herself may later miss a connecting
train in a subsequent station. Alternatively, had the train not waited, then the
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connecting passengers in the feeder train would have missed their connection.
In particular, they would have had to wait for the next train, thus facing a
large delay each. Delay management consists of deciding which connecting trains
should wait for which delayed feeder trains, with the objective of minimizing the
sum of the delays faced by the passengers.

We model the railway network as a graph, and passenger flows as fixed paths
in this graph. In this network, unforeseen events may occur that result in the
late arrival of connecting passengers at transfer stations. Given these so-called
source delays, our goal is to decide which connecting trains wait for delayed
transfer passengers, such that the sum of all passenger delays is minimized. In
our opinion, this model captures the key aspects of delay management, such
as the propagation of delays through the network. Because of its abstractness,
the model is also applicable to other modes of scheduled public transport. Still,
some important real-life aspects are not included, such as the availability of track
capacity to accommodate the adjusted schedule.

1.1 Contribution of the Paper

This paper identifies a boundary between NP-completeness and polynomial solv-
ability for various natural problem parameters of the delay management problem.
In particular, we focus here on the case where all non-zero source delays are of
equal size, which we refer to as binary source delays.

We first show that the binary delay management problem is strongly NP-
complete if trains cannot catch up on their delay, already on a railway network
with series-parallel topology. As the complexity reduction requires the passengers
to transfer at most three times, the result complements our earlier finding that
the problem is polynomially solvable when passengers transfer at most twice
[GGJ+04]. We also extend the latter result to the case of unbounded number
of transfers, in which initially on-time passengers are not allowed to miss a
connecting train (though they are allowed to be delayed).

Next, we study the binary delay management problem with slack times,
meaning that trains can catch up on their delay. We show that this variant
is already NP-complete on a railway network with a line structure. Again, this
contrasts an earlier result on the polynomial solvability of such a line network
without slack times [GGJ+04]. Further, a slightly different NP-completeness re-
duction yields passengers that transfer twice, on a more general network that
is series-parallel. As an ingredient for one of our proofs, we establish that the
maximum unweighted directed cut problem on directed acyclic graphs is NP-
complete.

Without slack times, all source delays must contribute to the objective. For
this setting, we also investigate the objective function without this offset, and
show that it is NP-hard to approximate to a certain constant factor.

Finally, we describe a polynomial time “pedal-to-the-metal” algorithm for
the delay management problem with slack times, under the restriction that all
passengers travel to the same destination station on a network with a tree-like
structure.
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Table 1. Classification of the binary delay management problem, with implied entries
grayed out. Contributions of the paper are in italic.

Network No slack times With slack times
topology ≤ 2 transfers ≤ 3 transfers < ∞ transfers ≤ 2 transfers < ∞ transfers

General min cut NP-complete NP-complete NP-complete NP-complete
Series-parallel min cut NP-complete NP-complete NP-complete NP-complete
Line min cut dynamic prog dynamic prog ? NP-complete

Tree, single destination “pedal-to-the-metal”

Given our interest in complexity aspects, we focus on fairly simple versions
of the delay management problem, which are perhaps not too realistic. Still,
our findings give insight into the structure of more complex and more realistic
models. Thus, the main contribution of the paper is to identify combinatorial
aspects that are crucial for the problem’s complexity. Table 1 summarizes the
results. Naturally, the unrestricted delay management problem is NP-complete
as well.

Due to space limitations, this paper only summarizes our results and omits
most of the proofs. The detailed exposition of our results is available as [GJPS04].

1.2 Related Research

The above described delay management problem was introduced by [Sch01], who
proposed a Mixed Integer Programming formulation for a model that is similar
to ours. Schöbel [Sch03] also showed that, when no two delayed vehicles meet in
an optimal solution to this model, its constraint matrix is totally unimodular.
In that case, an optimal solution can be obtained in polynomial time by Linear
Programming. Further, [GGJ+04] described a minimum cut reduction for pas-
sengers that transfer at most twice, and a polynomial-time dynamic program for
railway networks with a path topology.

In spite of these algorithmic results, no strong NP-completeness results were
known so far for delay management. [Sch03] showed that the bi-criteria prob-
lem of concurrently minimizing the weighted passenger delay and the number
of missed connections is weakly NP-complete. For the same bi-criteria problem,
[Meg04] provides a slightly different complexity proof and some further theoret-
ical observations.

[GJPW04] provides a first competitive analysis for the on-line version of delay
management. A series of papers by Suhl et al., most recently [BS04], evaluates
different deterministic delay policies by simulation.

2 Problem Statement

This section describes the delay management model analyzed in the paper. First,
we describe the general model, which is similar to the model in [Sch01]. Next,
we specify the considered restrictions of the model.
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General Model Definition
Let G = (V, E) be a directed acyclic graph. Each vertex v ∈ V represents
a station, and each edge e = (u, v) ∈ E represents a single direct train only
operating the connection between u and v. Trains do not have intermediate
stops in this model. At each station v, the outgoing edges (v, w) represent the
connecting trains for the passengers traveling on the incoming trains (u, v). A
directed path in G then corresponds to a journey a passenger can undertake
by transferring between trains. We assume transfers to happen instantaneously.
Thus, passengers arriving at a station with a delay can only board the connecting
train if it waits for the entire delay of the feeder train. Alternatively, one could
model the transfers by additional edges in the graph. We omit this construction
for simplicity, but point out that these additional edges do not influence our
results.

A train e = (u, v) ∈ E can reduce a possible delay by S(e) ≥ 0 time units on
its trip from u to v, for example by driving faster than scheduled. We refer to
S(e) as the slack time of the train. Trains must not arrive earlier than scheduled,
so slack times can only be used if a train waits for some passengers, and thus
departs with a delay.

Passenger flows in the railway system are modeled by a set of directed paths
P in the graph. Such a path P induces transfers at every internal vertex of P .
A path P ∈ P has an associated weight w(P ) representing the number of pas-
sengers, or the importance of the path in a more abstract sense. As a direct
consequence of an unforeseen event, some passengers may arrive at a transfer
station with a delay. In our model, such passengers are represented by a passen-
ger path P ∈ P with a source delay D(P ) > 0, starting at that transfer station
and ending at the passengers’ destination. Thus, our model defines source de-
lays on paths rather than on trains. We refer to paths with D(P ) = 0 as source
punctual paths, and to paths with D(P ) > 0 as source delayed paths.

A passenger path P ∈ P misses a connection if it arrives at a transfer station
with a delay, and its connecting train does not wait long enough. We assume that
trains are operated according to a periodic timetable with period T , and that
delays do not propagate to the next period. Although the latter may happen,
we do not consider such cases for the sake of simplicity. Hence, a passenger path
P ∈ P has an arrival delay δP = T if it misses a connection. If all connections
on path P are maintained, its arrival delay δP equals the arrival delay of its last
train. We refer to paths with δP = 0, arriving as scheduled at their destination, as
punctual paths, to those arriving delayed as delayed paths, and to those missing a
connection as dropped paths. Further, we refer to paths not missing a connection
as maintained paths. The possibility to drop paths is a key aspect of this setting.
Indeed, dropping a path P effectively removes P from the network, such that no
train is influenced any more by P .

An instance is completely defined by the tuple (G,S,P ,D, w, T ). For such
an instance, a delay policy π specifies which trains wait, for how long, and how
much slack time they use. We wish to find a delay policy π∗ that minimizes the
total passenger delay defined as the weighted sum of arrival delays

∑
P∈P wP δP .
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Problem Restricting Parameters
Our complexity results consider several restricted versions of the general model.
These restrictions include the basic cases of limiting the maximum number of
passenger transfers (maximum passenger path length), restricting the source
delays to one single non-zero value (binary source delays), and not allowing for
trains to catch up on delays (availability of slack times).

As for the network topology, we consider lines, trees, and series-parallel
graphs. Series-parallel graphs have treewidth two, which intuitively means they
are almost trees. Many NP-complete problems, such as Independent Set and Ver-
tex Cover, become polynomially solvable on bounded-treewidth graphs. Hence,
an NP-hardness result for series-parallel graphs in some sense complements a
polynomial time algorithm for trees and line graphs.

Our results also apply to the setting where all source delayed paths originate
from a single delayed train [GJPS04]. Additionally, one can consider dynamic
path choices, i.e., passengers can react dynamically to the chosen delay policy.
Such choices become irrelevant if only unique origin-destination paths exist, as
can be obtained in most of our constructions. Hence, our hardness results extend
to this setting [GJPS04].

3 Delay Management Without Slack Times

Our first analysis considers the restricted setting of binary source delays and no
slack times, that is, D(P ) ∈ {0, δ} for all P ∈ P , and S(e) = 0 for all e ∈ E. In
this setting, an optimal delay policy π∗ describes which trains depart on-time,
and which ones wait for time δ. We refer to this restricted model as the binary
delay management problem, and write an instance as (G,P ,D, w, T ).

3.1 Proof of Hardness with Three Transfers

Here, we show that the binary delay management problem is NP-complete al-
ready for unweighted passenger paths on a series-parallel train-network. To that
end, we first prove a weaker theorem.

Definition: Decision binary delay management problem.
Instance: A binary delay management instance (G,P ,D, w, T ), d ∈ N.
Question: Is there a delay policy such that the total passenger delay is less than
or equal to d?

Theorem 1. The decision binary delay management problem with passenger
paths changing at most four times is NP-complete.

Proof. It is easy to see that the problem is in NP, as the weighted delay of the
paths induced by a delay policy π can be computed in polynomial time, and
the size of π is polynomial as well. We show that the problem is NP-hard by
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Fig. 1. The construction for an extended edge (u, ue, ve, v) in G2. Directed edges rep-
resent the trains in the network. Undirected lines represent the paths. Thick paths are
the paths of weight M . Dashed paths represent paths with source delay δ.

reduction from Maximum Independent Set [GJ79–Problem GT20]. Let the undi-
rected graph G = (V, E), |V | = n, |E| = m be a Maximum Independent Set in-
stance asking for an independent set of size K. Consider its 2-subdivision [Pol74]
G2 = (V2, E2), i.e., the graph obtained by inserting the vertices ue, ve for each
undirected edge e = (u, v) and splitting the edge into three undirected edges
(u, ue), (ue, ve), (ve, v). We refer to this construction for an edge e = (u, v) of
the original graph as the extended edge in the 2-subdivision, symbolized by
(u, ue, ve, v). The graph G has a maximum independent set of size K if and only
if its 2-subdivision G2 has a maximum independent set of size K + m.

In the following, we construct gadgets for every extended edge of the 2-sub-
division graph. In the resulting delay management instance, certain paths that
are maintained in an optimal delay policy π∗ correspond to the vertices in the
maximum independent set of the 2-subdivision.

For each vertex q in G2 we construct a path Pq in the delay management
instance, such that two vertices q, r can be in the same independent set if and
only if the corresponding paths Pq and Pr can both be maintained in the same
optimal delay policy. A maximum independent set in G2 hence corresponds to
an optimal set of maintained paths.

For this construction, consider an extended edge (u, ue, ve, v). For the vertices
u, v we have paths Pu, Pv ∈ P , both with unit weight and unit source delay. These
paths exist once for every u ∈ V . Further, we introduce paths Pue , Pve for ue

and ve, both with unit weight and no source delay. The exact configuration of
all these paths is shown in Figure 1.

For each extended edge (u, ue, ve, v) of the 2-subdivision we introduce five
paths in the delay management instance, P e

1 , P e
2 , P e

3 , P e
α, P e

β , each with weight
w(P e

i ) = M, i ∈ {1, 2, 3, α, β}, where M is a sufficiently large value. The paths
P e

α and P e
β have source delay δ, the other paths have no source delay. Because

of the large weight M , the source delayed paths P e
α, P e

β will never be dropped
in an optimal delay policy π∗. For the same reason, the paths P e

i , i ∈ {1, 2, 3}
will always be kept punctual. We refer to these paths as M -paths, and Figure 1
shows their exact configuration.
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Let π∗ be an optimal delay management policy for the constructed instance,
meaning that no M -paths are dropped. In π∗, the paths corresponding to vertices
of G2 interact by sharing edges. Because of the M -paths, π∗ cannot maintain two
such interacting paths, since one requires the shared edge to be delayed, whereas
the other requires it to be on-time. Indeed, Pu and Pue share the edge (Au, Bu),
and Pue and Pve share (De, Ee). Note that this construction enforces that each
maintained unit weight path arrives at its destination with a delay of δ.

Hence, the unit weight paths that are maintained in π∗ correspond to an
independent set I in G2. Since every maintained path reduces the cost of the
delay policy, I is a maximum independent set.

More precisely, set δ = 1, T = 2, M = m + 2, and d = 2mMδ + (2m + n)T −
(m + K)(T − δ). Now G2 has an independent set of size m + K if and only if
the binary delay management instance has a delay policy π with cost at most d
which maintains m + K unit weight paths.

Finally, observe that the longest constructed passenger path requires only
four changes. �

Theorem 1 can be strengthened by constructing an even simpler instance of
the delay management problem.

Theorem 2. The decision binary delay management problem is NP-complete
on a series-parallel graph with passenger paths changing at most three times and
unweighted passenger paths.

The proof is given in [GJPS04]. The main idea to obtain a series-parallel
network is to contract the seven node classes A, · · · , G to a single node each,
which does not change the interaction of paths.

3.2 Approximating the Additional Delay

As stated in Section 2, our objective is to minimize the total weighted passenger
delay. Alternatively, it also makes sense to minimize only the weighted delay that
paths face in addition to their source delay. Indeed, as there are no slack times,
a source delayed path can never do better than arrive at its destination with
a delay of δ. This portion of the delay cannot be optimized, so it is reasonable
to omit it from the objective function. We refer to this alternative objective
function as the additional weighted delay, which should be minimized.

As Independent Set and Vertex Cover are complementary problems, the re-
sults from [H̊as01] provide an inapproximability result for the delay management
problem with the additional delay objective function. The proof involves a dif-
ferent reduction from independent set, and generally needs more than three
passenger transfers. The proof can be found in [GJPS04].

Lemma 1. For any ε > 0, it is NP-hard to approximate the binary decision
delay management problem with the objective of minimizing the additional delay
within a factor 15

14 − ε.



234 M. Gatto et al.

3.3 Polynomially Solvable Cases

Several special cases of the delay management problem can be solved by reduc-
tion to a minimum directed cut problem [GGJ+04]. This section extends these
results for the case in which no delay policy is allowed to drop source punctual
paths. As dropping source punctual paths is in some sense unfair, this restricted
case may very well be reasonable from a practical point of view.

A minimum directed s-t-cut is a partition of the vertex set into two disjoint
sets S, S̄, with s ∈ S, t ∈ S̄, such that the sum of the costs of the edges traversing
the cut from S to S̄ is minimal. We construct a new graph G′ = (V ′, E′, c), with
a cost function c : E → N. A minimum directed cut in G′ with respect to c
corresponds to an optimal delay policy on (G,P ,D, w, T ).

We map the trains E to vertices in G′, and add two new vertices s and t.
The idea of the reduction is that trains in S wait, whereas trains in S̄ depart
on time. For each source punctual passenger path we introduce infinite weight
edges between every two subsequent trains the path uses. Further, for each such
path we introduce a new vertex and infinite weight edges from each train used by
the path to the new vertex, such that it must be in S if the path is delayed. An
appropriately weighted edge connected to t ∈ S̄ accounts for the delay occurring
if the path is delayed. For each source delayed path, we also introduce a new
vertex. This vertex is connected to all trains used by the path with infinite
weight edges, such that the vertex is in S̄ if one of these trains is on-time. An
appropriately weighted edge connects s ∈ S with this vertex, accounting for the
dropping costs. An additional weighted edge (s, t) accounts for the delay of the
source delayed path. The detailed construction and the proof of the following
lemma are given in [GJPS04].

Lemma 2. Given that source punctual passenger paths cannot be dropped, the
minimum total passenger delay for (G,D,P , w, T ) is equal to the cost of the
minimum directed s-t-cut [S, S̄] in G′. In such an optimal delay policy all trains
corresponding to vertices in S wait and all trains corresponding to vertices in S̄
depart on-time.

Now, if the source punctual paths are short enough that they cannot be
dropped, the above construction works in general.

Corollary 1. The delay management problem with an unrestricted delay policy
can be solved by reduction to a minimum cut problem if each source punctual
path uses one train only.

Moreover, a slightly different construction than above for the source punc-
tual paths yields the following more general theorem. The proof can be found
in [GJPS04].

Theorem 3. The delay management problem with an unrestricted delay policy
can be solved by reduction to a minimum cut problem if each source punctual
path transfers at most twice.
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4 Delay Management with Slack Times

In this section, we analyze the case where trains can have some slack time. A
train e having slack time S(e) is able to catch up S(e) time units on its delay.
As stated earlier, we do not allow trains to catch up more time than they are
delayed, implying that they can never arrive early. Also for this case, the never-
meet-property allows for a polynomial-time algorithm [Sch03].

4.1 Proof of Hardness

In Section 3.1, we showed that the delay management problem is NP-complete
already on series-parallel networks. Here, we show that by including slack times
the delay management problem becomes NP-complete already on a network with
the topology of a line. In contrast, the delay management problem without slack
times is still polynomially solvable in this case [GGJ+04]. Further, we show that
by including slack times the delay management problem becomes NP-complete
already with passenger paths transferring twice. This variant as well is still
polynomial-time solvable without slack times [GGJ+04].

We reduce from Maximum Directed Acyclic Cut. As the hardness proof of
Maximum Directed Cut in [PY91] does not create an acyclic graph, we first show
that the Maximum Directed Acyclic Cut problem is NP-complete.

Definition: Maximum Directed Acyclic Cut
Instance: Directed acyclic unweighted graph G = (V, E), K ∈ N.
Question: Does a partition of V exist into two disjoint sets V1, V2, V = V1 ∪ V2,
such that the number of edges traversing the partition from V1 to V2 is greater
than or equal to K?

Theorem 4. Maximum Directed Acyclic Cut is NP-complete.

Proof. Clearly, the problem is in NP. We prove it to be NP-hard by reduction
from Maximum Unweighted Directed Cut [GJ79–Problem ND16]: given a di-
rected graph G = (V, E), |V | = n, |E| = m and a positive integer K ∈ N , is
there a partition of V into two disjoint sets V1, V2, V = V1 ∪ V2, such that the
number of edges traversing the cut from V1 to V2 is at least K?

We first build a maximum directed acyclic cut instance G′ = (V ′, E′) using
edge weights c′ as follows. For each vertex vi ∈ V , we build a gadget of five
vertices, {v1

i , v2
i , v3

i , v4
i , v5

i }, connected by four edges (vj
i , v

j+1
i ), j ∈ {1, . . . , 4},

with weight c′(vj
i , v

j+1
i ) = m. At most two non-consecutive edges of each gadget

can traverse the cut. By setting their weights to m we enforce that two of these
edges actually do traverse the cut. For each edge e = (vi, vj) ∈ E, we insert the
edge (v2

i , v4
j ) in E′ with weight c′(v2

i , v4
j ) = 1.

The reduction is polynomial in space and time: we have 5n vertices and
4n + m edges, and the graph can be constructed efficiently. The graph G has a
maximum cut V1, V2 of size K if and only if G′ has a maximum cut V ′

1 , V ′
2 of

size 2nm + K.



236 M. Gatto et al.

The crucial observation for the reduction’s correctness is that a node gadget
cannot have both v2

i ∈ V ′
1 and v4

i ∈ V ′
2 , and at the same time contribute 2m

from gadget-internal edges.
Finally, the above reduction also works for unweighted graphs G′. In that

case we introduce, for each gadget, m parallel paths of length two between even-
numbered vertices instead of the edges of weight m, multiplying the
odd-numbered vertices. Still, the cut consistently separates the vertices as
above. As we introduce 4m edges for each vertex in G, the construction remains
polynomial. �

In the following, we show that fairly restricted versions of the delay manage-
ment problem with slack times are already NP-complete.

Definition: Decision delay management problem with slack times.
Instance: A delay management instance (G,S,P ,D, w, T ), d ∈ N.
Question: Does a delay policy exist, such that the total passenger delay does not
exceed d?

Theorem 5. The decision delay management problem with slack times is NP-
complete with binary delays, binary slack times, unweighted passenger paths, and
passengers transferring at most twice.

Proof. The proof is by reduction from Maximum Directed Acyclic Cut. It is clear
that the problem is in NP, as the delay of each path can be efficiently computed
from a delay policy.

Given a maximum directed acyclic cut instance G = (V, E), we build a
delay management problem (G′,P ,D, w,S, T ), with G′ = (V ′, E′), as follows.
For every v ∈ V , we introduce an edge fv ∈ E′ without slack. For each edge
e = (u, v) ∈ E, we introduce an edge ge from fu to fv having slack time equal
to δ. Further, for each edge e = (u, v) ∈ E, we introduce two paths, the path
Pe = (fu, ge, fv) with source delay δ with unit weight, and the source punctual
path Pu

e = {fu} with weight 3. More precisely, the latter weighted path can be
replaced by three parallel paths of unit weight. Note that each outgoing edge
(u, v) ∈ E induces one path Pu

e on fu.
We set δ = 1 and T = 4, and ask for a delay policy inducing a total delay

of d = mT − Kδ = 4m − K. There is a direct correspondence of a delay policy
in G′ to a cut in G: if fu waits, u ∈ V1, otherwise u ∈ V2. It remains to prove
that we have a cut of size at least K if and only if there is a delay policy with at
most d total delay. To this end, it is sufficient to analyze the delay caused by the
two paths Pe and Pu

e for the different policies. If fu does not wait, Pe is dropped
and Pu

e is on time. So, independent of fv, these two paths together contribute T
to the objective. If both fu and fv wait, the paths contribute 4δ = T to the
objective, as both paths arrive with a delay. Only if fu waits and fv departs as
scheduled, the two paths contribute 3δ to the objective. Now, G has a maximum
directed cut of size K if and only if (G,S,P ,D, w, T ) has a delay policy causing
4m− K = d delay. Using the described correspondence between a cut in G and
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a delay policy in G′, for every edge e of G there is a contribution of 3 units to
the total delay if e crosses the cut, and of 4 units otherwise. �

In contrast to Lemma 2, no source punctual paths are dropped in the above
construction. Note that the reduction can be adapted to any T = kδ by intro-
ducing k − 1 paths P i

e per edge e instead of three. The special case k = 1 is also
feasible, but it is unclear how this should be interpreted. Furthermore, dynamic
path choices do not influence the construction of Theorem 5, since the first and
the last edge of the paths Pe cannot be changed. This observation allows us to
simplify the network topology even further, as stated in the following theorem
and proven in [GJPS04].

Corollary 2. The decision delay management problem with slack times is NP-
complete with binary delays, binary slack times, and unweighted passenger paths,
even if the network forms a line.

In general, the proof of Corollary 2 yields paths with an arbitrary number of
transfers, as opposed to the proof of Theorem 2. Actually, the delay management
problem with slack times is already NP-complete on a series-parallel network
where passengers transfer at most twice. For a proof, see [GJPS04].

Corollary 3. The decision delay management problem with slack times is NP-
complete on a series-parallel network if passenger paths transfer twice, with unit
path weights, binary delays, and binary slack times.

4.2 Polynomially Solvable Cases

Although the general setting on the line is NP-hard, some variants of the de-
lay management problem with slack times can be solved efficiently by simple
strategies. Below we describe two such variants.

Let G be a graph that forms a line. Contrary to the models analyzed so far,
we consider a single train traveling on the line with intermediate stops. This
implies that a passenger path does not need to connect to other trains, once it
has entered the train. Hence, a path can either be dropped before boarding the
train, or it reaches its destination, possibly with some delay.

First, assume that all paths P ∈ P end at the terminal station of the consid-
ered train. This can be interpreted as passengers traveling to the city center on
an urban rail line. We refer to this model as all passengers to a unique destination
on a single train.

Theorem 6. The delay management problem with slack times and all passen-
gers to a unique destination on a single train can be solved in polynomial time.

Proof. This problem can be solved by the following pedal-to-the-metal strategy.
The driver a priori fixes a target delay at the terminal stop, exhausts all slack
times, and drives at maximum velocity to achieve that target delay. For a more
precise analysis, see [GJPS04].
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The above delay policy can be extended to the case where single trains oper-
ate between the stations, the graph is a rooted in-tree, and all passengers travel
to the root of the tree. The passengers must thus connect to a new train at
each intermediate station on their trip to the root node. For further details,
see [GJPS04].
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Abstract. A proper vertex coloring of a graph G = (V, E) is acyclic if G con-
tains no bicolored cycle. A graph G is L-list colorable if for a given list assign-
ment L = {L(v) : v ∈ V }, there exists a proper coloring c of G such that
c(v) ∈ L(v) for all v ∈ V . If G is L-list colorable for every list assignment
with |L(v)| ≥ k for all v ∈ V , then G is said k-choosable. A graph is said to be
acyclically k-choosable if the coloring obtained is acyclic. In this paper, we study
the acyclic choosability of graphs with small maximum degree. In 1979, Burstein
proved that every graph with maximum degree 4 admits a proper acyclic coloring
using 5 colors [Bur79]. We give a simple proof that (a) every graph with maxi-
mum degree Δ = 3 is acyclically 4-choosable and we prove that (b) every graph
with maximum degree Δ = 4 is acyclically 5-choosable. The proof of (b) uses a
backtracking greedy algorithm and Burstein’s theorem.

1 Introduction

Let G be a graph. Let V (G) be its set of vertices and E(G) be its set of edges. A
proper vertex coloring of G is an assignment f of integers (or labels) to the vertices of
G such that f(u) �= f(v) if the vertices u and v are adjacent in G. A k-coloring is a
proper vertex coloring using k colors. A proper vertex coloring of a graph is acyclic if
there is no bicolored cycle. The acyclic chromatic number of G, χa(G), is the smallest
integer k such that G is acyclically k-colorable. Acyclic colorings were introduced by
Grünbaum in [Grü73] and studied by Mitchem [Mit74], Albertson, Berman [AB77],
and Kostochka [Kos76]. In 1979, Borodin proved Grünbaum’s conjecture:

Theorem 1. [Bor79] Every planar graph is acyclically 5-colorable.

This bound is best possible: in 1973, Grünbaum gave an example of a 4-regular planar
graph [Grü73] which is not acyclically colorable with four colors. Moreover, there exist
bipartite 2-degenerate planar graphs which are not acyclically 4-colorable [KM76].

Borodin, Kostochka and Woodall improved this bound for planar graphs with a
given girth. We recall that the girth of a graph is the length of its shortest cycle.

Theorem 2. [BKW99]

1. Every planar graph with girth at least 7 is acyclically 3-colorable.
2. Every planar graph with girth at least 5 is acyclically 4-colorable.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 239–248, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In 1979, Burstein studied graphs with small maximum degree and proved :

Theorem 3. [Bur79] Every graph with maximum degree 4 is acyclically 5-colorable.

There are graphs with maximum degree 4 which need 5 colors, for example K5.
A graph G is L-list colorable if for a given list assignment L = {L(v) : v ∈ V (G)}

there is a coloring c of the vertices such that c(v) ∈ L(v) and c(v) �= c(u) if u and v
are adjacent in G. If G is L-list colorable for every list assignment with |L(v)| ≥ k for
all v ∈ V (G), then G is said k-choosable. In [Voi93], Voigt proved that there are planar
graphs which are not 4-choosable, and in [Tho94], Thomassen proved that every planar
graph is 5-choosable. In this paper we focus on acyclic choosability of graphs. This is,
for which value k, any list assignement L, with |L(v)| ≥ k for all v ∈ V (G), allows an
acyclic coloring of G. In [BFDFK+02], the following theorem is proved and the next
conjecture is given:

Theorem 4. [BFDFK+02] Every planar graph is acyclically 7-choosable.

This means that for any given list assignment L, with |L(v)| ≥ 7 for all v ∈ V (G),
there is an acyclic coloring c of G, such that it is possible to choose for each vertex v a
color in L(v). The acyclic list chromatic number of G, χl

a(G), is the smallest integer k
such that G is acyclically k-choosable.

Conjecture 1. [BFDFK+02] Every planar graph is acyclically 5-choosable.

The acyclic choosability has been studied for other families of graphs. In [MS04],
an upper bound on χl

a for the graphs with bounded degree is given:

Theorem 5. [MS04] Let G be a graph with maximum degree Δ, then χl
a(G)

≤ �50Δ4/3�.

In [MOR05], the authors studied the acyclic choosability of graphs with bounded
maximum average degree. The maximum average degree, Mad(G), of the graph G is
defined as

Mad(G) = max{2|E(H)|/|V (H)|, H � G}

Theorem 6. [MOR05]

1. Every graph G with Mad(G) < 8
3 is acyclically 3-choosable.

2. Every graph G with Mad(G) < 19
6 is acyclically 4-choosable.

3. Every graph G with Mad(G) < 24
7 is acyclically 5-choosable.

This result implies that every graph with maximum degree 2 (resp. 3) is acyclically
3-choosable (resp. acyclically 4-choosable). The proof of this theorem is based on dis-
charging methods. In this paper, we give a simpler proof of the acyclic 4-choosability
of subcubic graphs and we prove the next theorem:

Theorem 7. Let G be a graph with maximum degree Δ ≤ 4, then χl
a(G) ≤ 5.

Note that Theorem 7 improves Burstein’s result on maximum degree four graphs.
In what follows, we call k-vertex a vertex of degree k. The next section is dedicated to
the acyclic 4-choosability of subcubic graphs. In Section 3, we prove Theorem 7.
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2 Acyclic 4-Choosability of Subcubic Graphs

Let H be a subcubic graph with minimum order which is not acyclically 4-choosable.
Let L = {L(v) : v ∈ V (H)} be a list assignment such that there exists no extracted
acyclic coloring. Let c be a proper coloring of H , with c(v) ∈ L(v) for all v ∈ V (H),
such that the number a of bicolored cycles is minimal. There is such coloring, since
subcubic graphs are 4-choosable. Let C be a bicolored cycle. We prove that we can
recolor a part of C such that C is 3-colored and the total number of bicolored cycle is
at most a − 1. The coloring obtained contradicts the minimality of a, completing the
proof.

Claim. The counterexample H does not contain 1-vertices nor 2-vertices, so H is 3-
regular.

Proof. 1. Suppose that H contains a 1-vertex u adjacent to a vertex v. By minimality
of H , the graph H ′ = H \ {u} is acyclically 4-choosable. Let c be an acyclic
coloring of H ′ such that c(v) ∈ L(v) for all v ∈ V (H ′). We extend this coloring to
H by coloring u with any color in L(u) \ {c(v)}. Since u cannot be in a cycle, the
coloring obtained is an acyclic coloring of H , contradicting the definition of H .

2. Suppose that H contains a 2-vertex v adjacent to two other vertices u and w. By
minimality of H , the graph H ′ = (V (H) \ {v}, E(H) \ {uv, vw} ∪ {uw}) is
acyclically 4-choosable. There is an acyclic coloring c of H ′ which we can extend
to H by coloring v with a color in L(v) \ {c(u), c(w)}. Indeed, v cannot be part of
a bicolored cycle since c(u) �= c(w), u and v being adjacent in H ′.

Assume w.l.o.g. that the cycle C = x1x2x3 . . .xk with k ≥ 4 is bicolored using the
colors 1 and 2, with c(x1) = 1. Each vertex xi is adjacent to the vertices xi−1, xi+1, and
yi. Each vertex yi is adjacent to xi and to two other vertices zi, ti (see Figure 1). The
vertices xi, yj, zk, tl are not necessarily distinct. We consider two cases according to
the color of the vertex y3 : first case, y3 is colored with a color used in C, so c(y3) = 2;
second case, y3 is not colored 1 or 2, let c(y3) = 3.
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1. Suppose that c(y3) = 2. We know that 1 ∈ L(x3). The vertex x3 cannot be colored
2 because its neighbours are colored 2. There is at most two other problematic col-
ors, say 3 and 4, because they create bicolored cycles passing through y2, x2, x3, y3,
and z3 and through y4, x4, x3, y3, and t3. So we consider that L(x3) = {1, 2, 3, 4},
c(y2) = c(z3) = 3 and c(y4) = c(t3) = 4. In this case we have to modify c(y3).
We color y3 with a color in L(y3)\{2, 3, 4}. Then we finally color x3 with 3 or 4.

2. Suppose that c(y3) = 3. We know that 1 ∈ L(x3). The vertex x3 cannot be colored
2 or 3 because its neighbours are colored 2 or 3. There is at most one other problem-
atic color, say 4, because it creates a bicolored cycle passing through y2, x2, x3, x4,
and y4. So we consider that L(x3) = {1, 2, 3, 4} and c(y2) = c(y4) = 4. If there
was a color b ∈ L(x2)\{1, 2, 3, 4}, we could set c(x2) = b and c(x3) = 1. So
we consider that L(x2) = L(x4) = {1, 2, 3, 4}. In this case we can let c(x2) =
c(x4) = 3 and c(x3) = 2.

This completes the proof.

3 Acyclic 5-Choosability of Graphs with Maximum Degree 4

Let H be a counterexample to Theorem 7 with minimum order, and L a list assignment
such that there is no extracted acyclic coloring. In the first subsection, we prove some
structural properties of H , that will allow us to use an algorithm (presented in the second
and in the third subsection) which gives an acyclic coloring of H from L, contradicting
the definition of L.

3.1 Structural Properties of H

Claim. The counterexample H is 4-regular.

Proof. 1. H does not contain any 1-vertices nor 2-vertices (see the first claim).
2. H does not contain any 3-vertices. Suppose that H contains a 3-vertex v adjacent

to three vertices x, y, z with d(x) ≥ 3, d(y) ≥ 3, d(z) ≥ 3. Let x1, x2, (x3 if
d(x) = 4) be the other neighbours of x (y1, y2, y3 for y and z1, z2, z3 for z). By
minimality of H , the graph H ′ = (V (H) \ {v}, E(H) \ {vx, vy, vz} ∪ {xy}) is
acyclically 5-choosable. So, there is an acyclic coloring c of H ′. If c(x), c(y), c(z)
are all distinct, it is easy to extend the coloring c to H by coloring v with a color
different from c(x), c(y), c(z). Hence suppose that w.l.o.g. c(x) = c(z) = 1 and
c(y) = 2. Observe that if L(v) �= {1, 2, c(x1), c(x2), c(x3)}, we can extend the col-
oring c to H . So, L(v) = {1, 2, c(x1), c(x2), c(x3)} and {c(x1), c(x2), c(x3)} =
{c(z1), c(z2), c(z3)} = {3, 4, 5}. If L(x) �= {1, 2, 3, 4, 5}, we are done : we color x
with a color different from 1,2,3,4,5; the colors of x, y, z are all distinct and finally
we color v. For the same reason, L(z) = {1, 2, 3, 4, 5}. In this case, we recolor x
and z with 2 and we color v with 1.

Corollary 1. The counterexample H is bridgeless.

Claim. The counterexample H does not contain a cut vertex.
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Proof. By contradiction, let v be a cut vertex with neighbours x1, x2, y1 and y2 such
that x1 and x2 (resp. y1 and y2) are in the same connected component of G\{v} (by
Corollary 1, H is bridgeless). Let G′ be the graph obtained from G\{v} by adding the
edges x1x2 and y1y2. Since G′ is smaller than G it has an acyclic coloring c where
c(x1) �= c(x2) and c(y1) �= c(y2). If we consider this coloring in the graph G, the only
uncolored vertex is v and since it is a cut vertex, whatever its assigned color we cannot
create a bicolored cycle going through xivyj . Furthermore, since c(x1) �= c(x2) (resp.
c(y1) �= c(y2)) we cannot create a bicolored cycle going through x1vx2 (resp. y1vy2).
So v can be colored with a color in L(v)\{c(x1), c(x2), c(y1), c(y2)}.

Claim. The graph H contains an edge uv such that L(u) �= L(v).

Proof. If ∀v ∈ V (H), L(v) = {1, 2, 3, 4, 5}, then by Burstein’s Theorem, there exists
an acyclic coloring c of H , which contradicts the definition of H . Hence, there exists
an edge uv with L(u) �= L(v).

From now, we suppose that we have an edge uv, which is not a bridge (by
Corollary 1), with L(u) �= L(v) and such that u is not a cut vertex.

Claim. There is an order x1, x2, . . . , xn on the vertices, such that x1 and xn are ad-
jacent, L(x1) �= L(xn), and the vertices xi, with i < n, have a neighbour xj with
j > i.

Proof. Since u is not a cut vertex, consider a spanning tree T of H \ {u} rooted in v.
Let x1 = u and order the others vertices from x2 to xn, according to a post order walk
on T . Notice that xn = v and for i < n, each xi has a father in T which is posterior in
the order.

In the next subsections, we use this order to acyclically color the vertices of H . We
will successively color x1, x2, . . . , xn. During this process, when we color xi, we may
change the color of xj , for 1 < j < i < n (that is why we say that our algorithm is a
backtracking greedy algorithm; at each step, we try to color almost greedily and for this
we may change the colors of a bounded number of vertices). Note that the color of x1

remains unchanged until coloring xn. At the beginning there is no constraints; so, let
the color of x1 be such that c(x1) ∈ L(x1) \ L(xn). In the next subsection we explain
how to color the vertices xi, for i < n. In the last subsection, we finally color xn; that
will complete the proof of Theorem 7.

3.2 The Backtracking Greedy Algorithm: The Coloring of xi, 1 < i < n

At Step 1, we colored x1 with a color a with a /∈ L(xn). The following Claim allows
us to color all the vertices until xn−1.

Claim. Let c be a partial acyclic coloring of H on the vertices {x1, . . . , xi−1}. Then,
there exists a partial acyclic coloring c′ of H on the vertices {x1, . . . , xi}, i < n, which
do not modify the color of x1.
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Proof. Let c be a partial acyclic coloring of H on the vertices {x1, . . . , xi−1}. We
would like to extend the coloring c to xi. We know that xi has at most three colored
neighbours by the definition of the order. Let xj , xk, xl be these vertices. We consider
two cases following the adjacency of xi to x1. However, the analysis are almost the
same.

1. The vertex xi is adjacent to x1, xj , xk. We recall that x1 is adjacent to xn which is
not colored. Let x1

1, x
2
1 be the other neighbours of x1. Let x1

j , x
2
j , x

3
j be the other

neighbours of xj (x1
k, x2

k, x3
k for xk). We consider the different cases following the

coloring of xj , xk.

1.1. The colors of xj , xk, x1 are all distinct. We just let c′(xi) ∈ L(xi) \ {c(xj),
c(xk), c(x1)}.

1.2. A color appears exactly twice on xj , xk, x1.

1.2.1. The color of x1 appears twice. W.l.o.g., suppose that c(x1) = c(xj) = a
and c(xk) = 1, a �= 1. We just let c′(xi) ∈ L(xi) \ {1, a, c(x1

1), c(x
2
1)}

(we recall that x1 is adjacent to xn which is not colored).
1.2.2. A color different from c(x1) appears twice. Let c(xj) = c(xk) = 1 and

c(x1) = a, a �= 1. If L(xi) �= {1, a, c(x1
j), c(x

2
j ), c(x

3
j )}, we are done

: we could color xi with c′(xi) ∈ L(xi) \ {1, a, c(x1
j), c(x

2
j ), c(x

3
j )}.

Hence, L(xi) = {1, a, c(x1
j), c(x

2
j ), c(x

3
j )} and {c(x1

j), c(x
2
j ), c(x

3
j )} =

{c(x1
k), c(x2

k), c(x3
k}. Set {c(x1

k), c(x2
k), c(x3

k} = {2, 3, 4}. Now, we re-
color xj with a color different from 1, 2, 3, 4 and we get case 1.1 or 1.2.1.

1.3. A color appears three times. So, suppose that c(x1) = c(xj) = c(xk) = a. It
is easy to see that if we cannot color xi, this implies that all the neighbours of
x1 (resp. xj , xk) have distinct colors. So we recolor xj with a color different
from a, c(x1

j ), c(x
2
j ), c(x

3
j ) and we get case 1.2.1.

2. The vertex xi is not adjacent to x1. Let x1
j , x

2
j , x

3
j be the other neighbours of xj

(x1
k, x2

k, x3
k for xk and x1

l , x
2
l , x

3
l for xl). Following the coloring of the vertices of

xj , xk, xl, we consider the different cases :

2.1. The colors of xj , xk, xl are all distinct. We just color xi with (xi) ∈ L(xi) \
{c(xj), c(xk), c(xl)}.

2.2. A color appears exactly twice on xj , xk, xl. W.l.o.g. We suppose that c(xj) =
c(xk) = 1 and c(xl) = 2. If L(xi) �= {1, 2, c(x1

j), c(x
2
j ), c(x

3
j )}, we are done

: let c′(xi) ∈ L(xi) \ {1, 2, c(x1
j), c(x

2
j ), c(x

3
j )}. So, L(xi) = {1, 2, c(x1

j),
c(x2

j ), c(x3
j )} and {c(x1

j ), c(x
2
j ), c(x

3
j )} = {c(x1

k), c(x2
k), c(x3

k)}; say {c(x1
j),

c(x2
j ), c(x3

j )} = {3, 4, 5}. Now, if L(xj) �= {1, 2, 3, 4, 5}, we recolor xj such
that c′(xj) ∈ L(xj) \ {1, 2, 3, 4, 5} and let c′(xi) ∈ L(xi) \ {c′(xj), c′(xk),
c′(xl)}. Consequently, L(xj) = {1, 2, 3, 4, 5} and for the same reason, L(xk)
= {1, 2, 3, 4, 5}. In this case, let c′(xj) = c′(xk) = 2, and c′(xi) = 1.

2.3. A color appears three times on xj , xk, xl. It is easy to observe that if we cannot
color xi, this implies that at least one vertex of xj , xk, xl has a neighbourhood
colored with three distinct colors. Hence we can recolor this vertex with a dif-
ferent color and get case 2.2.
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3.3 The Final Step: The Coloring of xn

At this point, we have a partial acyclic coloring such that c(x1) = a with a /∈ L(xn). Let
x1, u, v, w be the neighbourhood N(xn) of xn. Let u1, u2, u3 be the other neighbours
of u (v1, v2, v3 for v, and w1, w2, w3 for w, and x1

1, x
2
1, x

3
1 for x1).

We show that we can extend the partial acyclic coloring to xn by recoloring if
necessary one or some vertices of N(xn). For this, we consider the different cases
according to the coloring of N(xn) :

1. The vertices of N(xn) have all distinct colors. In this case, it is easy to extend the
coloring to xn by coloring xn with c(xn) ∈ L(xn) \ {c(u), c(v), c(w)} (recall that
c(x1) /∈ L(xn)).

2. Exactly one color appears twice in N(xn) :
2.1. Suppose that c(u) = c(v) �= a, c(w) �= c(u), c(w) �= a. If we can color xn

with a color different from c(u), c(w), c(u1), c(u2), c(u3) (a /∈ L(xn)), we
are done. Hence, L(xn) = {c(u), c(w), c(u1), c(u2), c(u3)}; the colors of the
ui are distincts, the colors of the vi are distinct and {c(u1), c(u2), c(u3)} =
{c(v1), c(v2), c(v3)}. Now, we color xn with c(u) and we recolor u and v with
a proper color. The coloring obtained is acyclic.

2.2. The color of x1, i.e. a, appears twice. Set c(u) = c(x1) = a, c(v) = b,
and c(w) = c (a, b, c are distinct). If L(xn) �= {b, c, c(u1), c(u2), c(u3)}, we
can color xn (with a color different from these of v, w, u1, u2, u3) and the
coloring obtained is an acyclic coloring. Otherwise, this implies that : the col-
ors of the ui are distinct (i = 1, 2, 3); the colors of the xi

1 are distinct; S =
{c(u1), c(u2), c(u3)} = {c(x1

1), c(x
2
1), c(x

3
1)}, a /∈ S, and L(xn) = {c(u1),

c(u2), c(u3), b, c}. Now, we recolor u with a color different from c(u1), c(u2),
c(u3), a. If this new color is equal to b or c, we have case 2.1, else, we have
case 1.

3. Exactly two colors appear twice. W.l.o.g., set c(u)=c(v)=1 and c(w)=c(x1)=a.
First, we show that L(xn) contains necessarily the color 1. If 1 /∈ L(xn), say

L(xn) = {2, 3, 4, 5, 6}. If we cannot color xn, this implies that there exists at least
one of the vertices u, v, w, x1 whose the neighbours have distinct colors; say u. So,
we recolor u with a color different from c(u1), c(u2), c(u3), 1. If this new color
is a, then we can color xn with a color of the neighbours of u according to the
coloring of the neighbours of w and x1, otherwise, we get case 2.2.

Hence, we suppose that 1 ∈ L(xn) and we assume L(xn) = {1, 2, 3, 4, 5}.
If we cannot color xn with 2, 3, 4, 5; this implies that by coloring xn with one
of these colors, we will create a bicolored cycle. So, each of the colors 2, 3, 4, 5
appears at least twice among the colors c(ui), c(vi), c(wi), c(xi

1), i = 1, 2, 3. We
can form four bicolored cycles, we have the following different cases: Case 1, we
have three bicolored cycles going through uxnv and one going through wxnx1.
Case 2, we have one bicolored cycle going through uxnv and three going through
wxnx1. Case 3, we have two bicolored cycle going through uxnv and two going
through wxnx1.

3.1. Suppose that we are in Case 1. Three bicolored cycles can be created (using
one of the colors of L(xn)), going through u and v; this implies that the col-
ors of the neighbours of u (resp. v) are distinct and {c(u1), c(u2), c(u3)} =
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{c(v1), c(v2), c(v3)}. assume, w.l.o.g. that c(u1) = 2, c(u2) = 3, c(u3) = 4
and c(w1) = c(x1

1) = 5 (if the color 5 does not appear in the neighbourhood
of w and x1, we can color xn with 5). Now, if we can recolor u with a color
different from 1, 2, 3, 4, a, we get case 2.2. So L(u) = {1, 2, 3, 4, a} and by
the same way, L(v) = {1, 2, 3, 4, a}. We set c(u) = a. Now, we try to color
xn with one of the colors 2, 3, 4: if we still create three bicolored cycles, then
this implies that {2, 3, 4} ⊂ {c(w2), c(w3), c(x2

1), c(x
3
1)} and consequently the

color 1 appears at most one time on ui, vi, wi, x
i
1 for 1 ≤ i ≤ 3. In this case,

we recolor v with the color a and we color xn with 1. Case 2 can be dealt
analogously.

3.2. Suppose now that we are in Case 3 and that two bicolored cycles going through
u and v and two bicolored cycles going through w and x1 can be created by
choosing a color of xn in {2, 3, 4, 5}. So, we have : c(u) = c(v) = 1, c(w) =
c(x1) = a and w.l.o.g c(u1) = c(v1) = 2, c(u2) = c(v2) = 3, c(w1) =
c(x1

1) = 4 and c(w2) = c(x2
1) = 5.

Suppose now that there exists a vertex y3 of {u3, v3, w3, x
3
1} such that

c(y3) /∈ {c(y1), c(y2)}. Assume w.l.o.g. that c(u3) = b with b �= 2, 3 (it may
happen that a = b). If we can recolor u with a color different from 1, 2, 3, a, b,
we obtain case 2.2. Hence, a �= b, L(u) = {1, 2, 3, a, b}. If {c(w3), c(x3

1)} �=
{2, 3}, set c(u) = a and c(v) = 2 or 3 following the colors of w3 and x3

1. Now,
assume that {c(w3), c(x3

1)} = {2, 3} and say that c(w3) = 2, c(x3
1) = 3. If we

can recolor w with a color different from 1, 2, 4, 5, a or x1 with a color different
from 1, 3, 4, 5, a, then we obtain case 2.1. Consequently, L(w) = {1, 2, 4, 5, a}
and L(x1) = {1, 3, 4, 5, a}. We set c(w) = 1. If we cannot color xn then
{c(u3), c(v3)} = {4, 5}, say c(u3) = 4 and c(v3) = 5. As previously, we
can prove that L(v) = {1, 2, 3, 5, a}. Finally, we set c(u) = c(v) = c(w) =
c(x1) = a and c(xn) = 1. The obtained coloring is acyclic.

Hence, c(u3) ∈ {2, 3}, c(v3) ∈ {2, 3}, c(w3) ∈ {4, 5}, c(x3
1) ∈ {4, 5}.

W.l.o.g. set c(u3) = 2. Now, we will recolor u and/or v. If we can recolor u
with a color different from 1, 2, 3, we can color xn with 2 or 3.

So we must study the coloring of the neighbourhood of u (at distance 2).
Let u1

1, u
2
1, u

3
1 be the other neighbours of u1 (u1

2, u
2
2, u

3
2 for u2, and u1

3, u
2
3, u

3
3

for u3). We recall that at least one of u1
1, u

2
1, u

3
1 or u1

3, u
2
3, u

3
3 is colored by 1;

say u1
1 (as well, one of u1

2, u
2
2, u

3
2 is colored by 1; say u1

2). So, if we can recolor
u with a color different from 1, 2, 3, c(u2

1), c(u
3
1), we are done. Assume that

L(u) = {1, 2, 3, b, c} (b �= c, b /∈ {1, 2, 3}, c /∈ {1, 2, 3}), c(u2
1) = c(u1

3) = b,
c(u3

1) = c(u2
3) = c. Since c(u1

1), c(u
2
1), c(u

3
1) are distinct, let us recolor u1.

Assign to u1 a color different from 1, 2, b, c. If its new color is different from
3, we are done (we can then easily recolor u with a color different from 1). So,
suppose that the new color of u1 is 3. Hence, we cannot recolor u with a color in
{1, 2, 3, b, c}, i.e. with b or c, if and only if {c(u2

2), c(u3
2)} = {b, c}. However,

if L(u2) �= {1, 2, 3, b, c}, we can recolor u2, then u. Finally, this implies that
we have L(u) = L(u1) = L(u2) = {1, 2, 3, b, c}, {c(u1

1), c(u
2
1), c(u

3
1)} =

{c(u1
2), c(u2

2), c(u3
3)} = {1, b, c}. In this case, we assign the color 2 to u1 and

u2, the color 3 to u and the color 2 to xn.
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4. Suppose that a color appears exactly three times. It is easy to observe that if we
cannot color xn, this implies that the neighbours of at least one of the vertices
u, v, w, x1 have distinct colors, say u. so we can recolor u and get case 2.2.

5. A color appears four times : there is only one possibility, i.e. c(u) = c(v) = c(w) =
c(x1) = a. Since a /∈ L(xn), if we cannot color xn, this implies that the neighbours
of at least one of the vertices u, v, w, x1 have distinct colors, say u. So, we can
recolor u and get case 4.

4 Conclusion

Finally, we propose the following question:

Problem 1. Is it NP-hard or not to decide if a subcubic graph is acyclically 3-choosable?

In 1978, Kostochka proved that it is an NP-complete problem to decide for a given
graph G if it is acyclically 3-colorable [Kos78]. Recently, Ochem proved that it is NP-
complete to decide if a graph with maximum degree Δ ≤ 4 is acyclically 3-colorable
[Och05]. However, the complexity of the problem to decide for a given subcubic graph
G if it is acyclically 3-colorable is unknown.
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Abstract. A c-tree is a tree such that each vertex has a color c ∈
{c1, c2, · · · , cm}. In this paper we give a simple algorithm to generate
all c-trees with at most n vertices and diameter d, without repetition.
Our algorithm generates each c-tree in constant time. By using the algo-
rithm for each diameter 2, 3, · · · , n − 1, we can generate all c-trees with
n vertices.

1 Introduction

It is useful to have the complete list of graphs for a particular class. One can use
such a list to search for a counter-example to some conjecture, to find the best
graph among all candidate graphs, or to experimentally measure the average
performance of an algorithm over all possible input graphs.

Many algorithms to generate a particular class of graphs are already known
[B80, LN01, LR99, M98, N02, R78, W86]. Many excellent textbooks have been
published on the subject [G93, KS98, W89].

Algorithms to generate all trees with n vertices without repetition are already
known. The algorithm [LR99, W86, NU03] generates each tree in O(1) time on
average, and the algorithm [NU04] generates each tree in O(1) time.

Let C = {c1 = a, c2 = b, c3 = c, · · · , cm} be a set of colors. A c-tree is a tree
such that each vertex has a color c ∈ C.

In this paper we give a simple algorithm to generate, without repetition, all
c-trees with at most n vertices and diameter d. Our algorithm generates each
c-tree in constant time. It does not output each c-tree entirely, but outputs the
difference from the preceding c-tree. Our algorithm is based on our algorithm in
[NU03], and completely different from [W86].

The main idea of our algorithm is first to define a simple relation among
the c-trees, that is “a family tree” of c-trees (see Fig. 1), then outputs c-trees
by traversing the family tree. The family tree, denoted by Tn,d,m, is the (huge)
tree such that the vertices of Tn,d,m correspond to the c-trees with at most n
vertices and diameter d, and each edge corresponds to some relation between
two c-trees. We give a formal definition in Section 4. By traversing the family
tree we can generate all c-trees corresponding to the vertices of the family tree
without repetition.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 249–260, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. The family tree T7,4,3 sharing c-spine (a, b, b, a, b)
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We have designed several generation algorithms based on the family trees
[N02, NU03]. In this paper we first extend the method for c-trees.

Our algorithm has an application for a problem in tree mining. Many tree
mining algorithms based on systematic enumeration of subtrees are already
known. See a survey paper [C05]. Given a huge size of XML data, we wish to
discover frequent patterns in the data. The frequent “patterns” are candidates
for new “knowledge” [A03]. We can model XML data as a tree, where each data
object is represented by a node with a label (=color), and each relationship be-
tween data objects by an edge. If we restrict patterns to frequent occurrences
of the same colored subtrees, then we can solve the problem by (1) generating
every c-tree, (2) then count the occurrences of each c-tree as a subgraph in the
given XML tree, (3) then output the frequently occurred c-trees. By using our
algorithm to generate every c-tree based on the family tree, we can efficiently
prune rarely occurred c-trees, since in the family tree every “child” c-tree con-
tains its “parent” c-tree as a subtree, so if the occurrence of a c-tree T is rare
then the occurrence of any “descendant” c-tree of T is also rare. Thus we need
not count the occurrences of each descendant rare c-tree of T .

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 assigns a unique ordered c-tree H for each c-tree T , by choosing the
root of T and the ordering of each child vertices. Section 4 introduces the family
tree. Section 5 generates all c-paths, which are colored paths. Section 6 presents
our algorithm to generate all c-trees for the even diameter case. In Section 7 we
sketch our algorithm for the odd diameter case. Finally Section 8 is a conclusion.

2 Preliminaries

In this section we give some definitions.
Let G be a connected graph with n vertices. An edge connecting vertices x

and y is denoted by (x, y). A path is a sequence of distinct vertices (v0, v1, · · · , vk)
such that (vi−1, vi) is an edge for i = 1, 2, · · · , k. The length of a path is the
number of edges in the path. The distance between a pair of vertices u and v
is the minimum length of a path between u and v. The diameter of G is the
maximum distance between two vertices in G.

A tree is a connected graph without cycles. A rooted tree is a tree with one
vertex r chosen as its root . A c-tree is a tree such that each vertex has a color
c ∈ {c1, c2, · · · , cm}. For each vertex v in a rooted tree, let UP (v) be the unique
path from v to the root r. If UP (v) has exactly k edges then we say that the
depth of v is k, and write dep(v) = k. The parent of v �= r is its neighbor on
UP (v), and the ancestors of v �= r are the vertices on UP (v) except v. The
parent of the root r and the ancestors of r are not defined. We say that if v is
the parent of u then u is a child of v, and if v is an ancestor of u then u is a
descendant of v. A leaf is a vertex that has no child.

An ordered tree is a rooted tree with left-to-right ordering specified for the
children of each vertex. We denote by T (v) the ordered subtree of an ordered
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Fig. 2. The dc sequences

tree T consisting of a vertex v and all descendants of v with preserving the
left-to-right ordering for the children of each vertex.

Let T be an ordered c-tree with n vertices, and (v1, v2, · · · , vn) be the list of
the vertices of T in preorder [A95]. Let dep(vi) be the depth of vi and c(vi) be the
color of vi for i = 1, 2, · · · , n. Then, the sequence L(T ) = (dep(v1), c(v1), dep(v2),
c(v2), · · · , dep(vn), c(vn)) is called the dc-sequence of T . Some examples are shown
in Fig. 2. Note that those trees in Fig. 2 are isomorphic as unordered c-trees,
but non-isomorphic as ordered c-trees.

Let T1 and T2 be two ordered c-trees, and L(T1)=(a1, b1, a2, b2, · · · , an, bn) and
L(T2)=(x1, y1, x2, y2, · · · , xz, yz) be their dc-sequences. If there is some j such that
ai =xi and bi =yi for each i=1, 2, · · · , j−1 (possibly j = 1) and either (i) aj > xj ,
(ii) aj = xj and bj > yj, or (iii) n > z = j − 1, then we say that L(T1) is heavier
than L(T2), and write L(T1) > L(T2). For example, in Fig. 2, (a)<(b)<(c).

3 The Left-Heavy Embeddings

In Section 3–6, we only consider the case where the diameter is even.
Let T be a c-tree with diameter 2k, and (v0, v1, · · · , v2k) be a path in T having

length 2k. One can observe that T may have many such paths, but the vertex
vk, called the center of T , is unique [W01–p72]. We assign to T the rooted c-tree
R derived from T by choosing vk as the root. Then we assign to R a unique
ordered c-tree H as follows.

Given a rooted c-treeR, since we can choosemany left-to-right orderings for the
children of each vertex, we can observe thatRcorresponds to many non-isomorphic
ordered c-trees. Let H be the ordered c-tree corresponding to R that has the heav-
iest dc sequence L(H). Then we say that H is the left-heavy embedding of R. For
example, the ordered c-tree in Fig. 2(c) is the left-heavy embedding of a rooted
c-tree, however the ordered c-trees in Fig. 2(a) and (b) are not, since the one in
Fig. 2(c) is heavier. We assign the ordered c-tree H to R.

Given a c-tree T , we have assigned to T a unique distinct rooted c-tree R,
and then we have assigned to R a unique distinct ordered c-tree H , which is
the left-heavy embedding of R. Note that T, R and H have the same diameter
2k. Let Sn,2k,m be the set of all left-heavy embeddings of c-trees with at most
n vertices and diameter 2k. If we generate all ordered c-trees in Sn,2k,m, then
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it also means the generation of all c-trees with at most n vertices and diameter
2k. We are going to generate all ordered c-trees in Sn,2k,m.

We have the following lemma.

Lemma 1. An ordered c-tree H is the left-heavy embedding of a rooted c-tree if
and only if for every pair of consecutive child vertices v1 and v2, they appear in
this order in the left-to-right ordering, L(T (v1)) ≥ L(T (v2)) holds.

Proof. By contradiction. �

In the rest of the paper the condition “L(T (v1)) ≥ L(T (v2)) for each consec-
utive child vertices v1 and v2”, is called the left-heavy condition.

4 The Family Tree of c-Trees Sharing a c-Spine

Let H be a left-heavy embedding in Sn,2k,m with root r. Let pk be the first leaf
of H at depth k in preorder, and PL = (r = p0, p1, · · · , pk) be the path between
r = p0 and pk. We say that PL is the left spine of H . Let H

′
be the ordered

tree derived from H by removing T (p1), that is the subtree rooted at p1. We can
observe that H

′
is also a left-heavy embedding. Let qk be the first leaf in H

′
at

depth k in preorder, and PR = (r = q0, q1, · · · , qk) be the path between r = q0

and qk. We say that PR is the right spine of H . We call PL ∪ PR the spine of
H . We can observe that PL ∪PR corresponds to a path with 2k edges. Since the
diameter of H is 2k, such pk and qk always exist.

An left-heavy embedding H in Sn,2k,m is trivial if it consists of only PL∪PR.
Observe that any non-trivial H ∈ Sn,2k,m has at least three leaves, so we can
choose one leaf except pk and qk.

Assume H ∈ Sn,2k,m is non-trivial. The last leaf x of H in preorder except
pk and qk is called the removable vertex of H . Let P (H) be the ordered c-tree
derived from H by removing x.

Now we consider whether the left-heavy condition still holds in P (H) or not.
We have the following seven cases, depending on the location of x in H . Let
r1, r2, · · · , rd(r) be the children of r. Assume that they appear in this order in
the left-to-right ordering of them. Also assume that pk in PL is a descendant of
ry and qk in PR is a descendant of rz. See Fig. 3.

Case 1: x ∈ T (ri) for some i > z.
Then the left-heavy condition still holds in P (H), since we remove the right-

most leaf, so a “right” subtree may loose some weight, but it never destroys the
left-heavy condition.
Case 2: x ∈ T (rz), and x succeeds qk in preorder.

Then the left-heavy condition still holds in P (H). Similar to Case 1.
Case 3: x ∈ T (rz), and x precedes qk in preorder.

Now there is no leaf x satisfying Case 1 or 2.
Let qj on PR be the ancestor of x having maximum depth, and qj = q

′
j , q

′
j+1,

q
′
j+2, · · · , q

′
s = x be the path between qj and x. See Fig. 4. Note that by the
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Fig. 3. Illustration for the seven cases
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Fig. 4. Illustration for Case 3

definition of PR, the depth of any descendant of q
′
j+1 is at most k−1. (Otherwise,

q
′
j+1 has a descendant at depth k, and PR must pass through q

′
j+1. Now PR is the

path between r and the leftmost descendant of q
′
j+1 at depth k, a contradiction.)

We have the following two subcases.
Case 3(a): T (q

′
j+1) is not a path.

Then the left-heavy condition still holds in P (H). See Fig. 4(a), where the
set of color is {c1 = a, c2 = b, c3 = c}. Let t be the first leaf of T (q

′
j+1) in

preorder. Note that the dc sequence of the path from q
′
j+1 to t is heavier than

the dc sequence of the path from qj+1 to qk, since the left-heavy condition holds
in H .
Case 3(b): T (q

′
j+1) is a path.

Then we have two subcases.
If c(q

′
j+1) = c(qj+1), c(q

′
j+2) = c(qj+2), · · · c(q

′
s−1) = c(qs−1) holds then

the left-heavy condition destroyed in P (H), since L(T (qj+1)) is heavier than
L(T (q

′
j+1)) in P (H). See Fig. 4(c). In this case, by swapping the order of q

′
j+1

and qj+1, the left-heavy condition again holds. We re-define the resulting ordered
c-tree as P (H).

Otherwise the left-heavy condition still holds in P (H). See Fig. 4(b).
Case 4: x ∈ T (ri) for some i, y < i < z.

Now rz−1 is the ancestor of x at depth one, and there is no leaf x satisfying
Case 1, 2 or 3.



Generating Colored Trees 255

Case 4(a): T (rz−1) is not a path.
Then the left-heavy condition still holds in P (H). (Similar to Case 3(a).)

Case 4(b): T (rz−1) is a path.
Similar to Case 3(b). We have two subcases as follows.
Let q

′
0 = r, q

′
1, q

′
2, · · · , q

′
s = x be the path between r and x.

If c(q
′
1) = c(q1), c(q

′
2) = c(q2), · · · , c(q

′
s−1) = c(qs−1) holds, then the left-

heavy condition destroyed in P (H), since L(T (q1)) is heavier than L(T (q
′
1)) in

P (H). In this case, by swapping the order of q
′
1 = rz−1 and q1 = rz , the left-

heavy condition again holds. We re-define the resulting ordered c-tree as P (H).
Case 5: x ∈ T (ry), and x succeeds pk in preorder.

Then the left-heavy condition still holds in P (H). Similar to Case 1 and 2.
Case 6: x ∈ T (ry), and x precedes pk in preorder.

Similar to Case 3.
Case 7: x ∈ T (ri) for some i < y.

Similar to Case 4.

Since we never remove pk and qk, the spine always remains as it was. Note
that P (H) is left-heavy unless Case 3(b), 4(b) or 6(b) occurs, and even if Case
3(b), 4(b) or 6(b) occurs, by a possible modification, the resulting P (H) is left-
heavy.

Now we have the following lemma.

Lemma 2. For any non-trivial H ∈ Sn,2k,m, P (H) is also in Sn,2k,m (after
possible modification in Case 3(b), 4(b) or 6(b)).

Given an ordered c-tree H in Sn,2k,m, by repeatedly removing the removable
vertex, we can have the unique sequence H, P (H), P (P (H)), · · · of ordered c-
trees in Sn,2k,m, which eventually ends with the trivial ordered c-tree H1. By
merging these sequences we can have the family tree of Sn,2k,m, denoted by
Tn,2k,m, such that the vertices of Tn,2k,m correspond to the c-trees in Sn,2k,m

having the same c-spine, and each edge corresponds to each relation between
some H and P (H). For instance, T7,4,3 with c-spine (a, b, b, a, b) is shown in
Fig. 1.

We say that P (H) is the parent tree of H and H is a child tree of P (H). We
also say P (H) is a Type i child of H if Case i occurs to find P (H) from H .

5 Algorithm for c-Paths

A c-path is a path such that each vertex has a color c ∈ {c1, c2, · · · , cm}. Given
an integer 2k, one can generate every c-path with length 2k in constant time for
each on average[RS00]. The detail is not mentioned in [RS00], but we can design
a naive recursive algorithm as follows.

Let S2k,m be the set of all c-path with length 2k. Let (v0, v1, · · · , v2k) be a
c-path with edge (vi−1, vi) for 1 ≤ i ≤ 2k. Let (c(v0), c(v1), · · · , c(v2k)) be the
sequence of colors. Given a c-path, since we can choose the direction of the path
we have two such sequences of colors, each one is the reverse of the other. Assume
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S1 and S2 be the two sequence of colors for a c-path. We say a sequence S1 is a
forward sequence if S1 is lexicographically larger than or equal to S2.

If we generate all forward sequences with length 2k+1 over alphabet {c1, c2,
· · · , cm}, then they correspond to all c-paths in S2k,m.

Each forward sequence (x0, x1, · · · , x2k) with length 2k + 1 is one of the
following two types.

Type 1: x0 > x2k.
Then subsequence (x1, x2, · · · , x2k−1) is any sequence.

Type 2: x0 = x2k.
Then subsequence (x1, x2, · · · , x2k−1) is any forward sequence corresponds to

a c-path in S2k−1,m.

Based on the recursive structure above we can generate every c-path in con-
stant time for each on average.

6 Algorithm for c-Trees

In this section we give an algorithm to construct Tn,2k,m.
Using the algorithm in [RS00] or Section 5, we can generate every c-path in

constant time for each. During the generation above, at the time we generate
each c-path Pc, we wish to generate all c-trees in Sn,2k,m sharing the c-spine Pc.

All we need to do is, given a c-tree H having the c-spine Pc, to generate
all “child” c-trees of H . Then in a recursive manner we can generate all c-trees
in Tn,2k,m sharing the c-spine Pc. Now we are going to give an algorithm to
generate all child c-trees of a given ordered c-tree.

Let H be an ordered c-tree in Sn,2k,m. We have eight cases depending on the
location of the removable vertex x in H as follows.

Again let r1, r2, · · · , rd(r) be the children of the root r. Assume they appear
in this order in the left-to-right ordering of them. Let PL = (p0 = r, p1, · · · , pk),
and PR = (q0 = r, q1, · · · , qk). Also assume that pk in PL is a descendant of ry

and qk in PR is a descendant of rz. See Fig. 3.

Case 0: H is trivial, that means H has only two leaves pk and qk.
Case 1: x ∈ T (ri) for some i > z.
Case 2: x ∈ T (rz), and x succeeds qk in preorder.
Case 3: x ∈ T (rz), and x precedes qk in preorder.
Case 4: x ∈ T (ri) for some i, y < i < z.
Case 5: x ∈ T (ry), and x succeeds pk in preorder.
Case 6: x ∈ T (ry), and x precedes pk in preorder.
Case 7: x ∈ T (ri) for some i < y.

For each case we can generate all child c-trees of H . In this paper we only
explain for Case 2 and Case 3, since other cases are similar.
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Case 2: x ∈ T (cz), and x succeeds qk in preorder.
If H has a child c-tree Hc with Type 4, 5, 6 or 7, then P (Hc) �= H , a

contradiction. Thus H has no child c-tree with Type 4, 5, 6 or 7.
Then consider for child c-trees with Type 1, 2 and 3.

Case 2(1): Child c-trees with Type 1.
Let H1[i] be the c-tree derived from H by adding the rightmost child leaf of

r with color ci. Assume that rz has color cj . The child c-trees of H with Type
1 are H1[0], H1[1], · · · , H1[j]. Note that H1[j + 1] is not left heavy.

Case 2(2): Child c-trees with Type 2.
We need some definitions here.
Let P = (u0 = r, u1, · · · , udep(x) = x) be the path between r = u0 and x. Let

uy on PR be the ancestor of x having maximum depth. Thus P and PR share
the subpath u0 = q0, u1 = q1, · · · , uy = qy). Let si+1 be the child vertex of ui

preceding ui+1 (if such si+1 exists), for 0 ≤ i ≤ dep(x).
We say that H is active at depth i if (i)ui has two or more child vertices, and

(ii)L(H(ui+1)) is a prefix of L(H(si+1)). Intuitively, if H is active at depth i,
then we are copying subtree H(ui+1) from H(si+1). We say the copy-depth of H
is d if H is active at depth d but not active at any depth in {0, 1, · · · , d−1}. If H
is not active at any depth, then we say the copy-depth of H is dep(x). Assume
that H is active at depth d.

Let H2[i, j] be the c-tree derived from H by adding the rightmost child leaf
s to uj with color ci. Thus uj+1 precede the new vertex s in H2[i, j], if j + 1 ≤
dep(x). Any child c-tree of H with Type 2 is H2[i, j] for some i, j, however
not all of them are child c-trees of H with Type 2. We need to check each
carefully.

For j = 0, 1, · · · , d − 1, if c(uj+1) ≥ ci then H2[i, j] is a child c-tree of H ,
and otherwise H2[i, j] is not a child c-tree of H , since it is not left heavy. The
copy-depth of each derived c-tree is j if ci equal to c(uj+1), and is j+1 otherwise.

Then consider for j = d, d + 1, · · · , dep(x). Let nR be the number of vertices
in the subtree H(uj+1) rooted at uj+1, and t be the (nR + 1)-th vertex in the
subtree H(sj+1) rooted at sj+1. Assume t has a color c�.

If j > dep(t) then H2[i, j] is not a child c-tree of H , since it is not left heavy.
If j = dep(t) but � < i then H2[i, j] is not a child c-tree of H , since it is not left
heavy. If j = dep(t) and � = i then H2[i, j] is a child c-tree of H . The copy-depth
of the derived c-tree is again d. If j = dep(t) and � > i then H2[i, j] is a child
c-tree of H . The copy-depth of each derived c-tree is j if ci equal to c(sj+1),
and is j + 1 otherwise. If j < dep(t) then H2[i, j] is a child c-tree of H for any
i. The copy-depth of each derived c-tree is j if ci equal to c(sj+1), and is j + 1
otherwise.

Case 2(3): Child c-trees with Type 3.
In this case we need to check the reverse of Case 3(b) in Section 4. Thus a

c-tree with Type 2 may have a child c-tree with Type 3.
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Define P = (u0 = r, u1, · · · , udep(x) = x), uy, � as in Case 2(2).
If H has only one leaf succeeding qk in preorder, H(uy+1) is a path, H(qy+1)

is a path, and L(H(uy+1)) is a prefix of L(H(qy+1)), then, for each i > �,
H2[i, dep(x)] is a child c-tree with Type 3, after swapping the order of uy+1 and
qy+1.

Case 3: x ∈ T (cz), and x precedes qk in preorder.
If H has a child c-tree Hc with Type 4, 5, 6 or 7, then P (Hc) �= H , a

contradiction. Thus H has no child c-tree with Type 4, 5, 6 or 7.
Then consider for child c-trees with Type 1, 2 and 3.

Case 3(1): Child c-trees with Type 1.
Omitted. Similar to Case 2(1).

Case 3(2): Child c-trees with Type 2.
Omitted. Similar to Case 2(2).

Case 3(3): Child c-trees with Type 3.
Let P = (u0 = r, u1, · · · , udep(x) = x) be the path between r = u0 and x. Let

uy on PR be the ancestor of x having maximum depth. Let si+1 be the child
vertex of ui preceding ui+1 (if such si+1exists), for 0 ≤ i ≤ dep(x).

We say that H is active at depth i if (i)ui has two or more child vertices, and
(ii)L(H(ui+1)) is a prefix of L(H(si+1)). We say the copy-depth of H is d if H
is active at depth d but not active at any depth in {0, 1, · · · , d − 1}. If H is not
active at any depth, then we say the copy-depth of H is dep(x). Assume that H
is active at depth d.

For j ≥ y, let H3[i, j] be the c-tree derived from H by adding the new child
leaf s to uj succeeding uj+1 with color ci.

Any child c-tree of H with Type 3 is H3[i, j] for some i, j, however not all of
them are child c-trees of H with Type 3.

For j = y, if s ≤ i < t, where cs = c(uj+1) and ct = c(qj+1), then H2[i, j] is
a child c-tree of H .

For j = y + 1, y + 2, · · · , d − 1, if c(uj+1) ≥ i then H3[i, j] is a child c-tree
of H , and otherwise H3[i, j] is not a child c-tree of H , since it is not left heavy.
The copy-depth of each derived c-tree is j if ci equal to c(uj+1), and is j + 1
otherwise.

Then consider for j = d, d + 1, · · · , dep(x). Let nR be the number of vertices
in the subtree H(uj+1) rooted at uj+1, and t be the (nR + 1)-th vertex in the
subtree H(sj+1) rooted at sj+1. Assume t has a color c�.

If j > dep(t) then H3[i, j] is not a child c-tree of H , since it is not left heavy.
If j = dep(t) but � < i then H3[i, j] is not a child c-tree of H , since it is not left
heavy. If j = dep(t) and � = i then H3[i, j] is a child c-tree of H . The copy-depth
of the derived c-tree is again d. If j = dep(t) and � > i then H3[i, j] is a child
c-tree of H . The copy-depth of each derived c-tree is j if ci equal to c(sj+1),
and is j + 1 otherwise. If j < dep(t) then H3[i, j] is a child c-tree of H for any
i. The copy-depth of each derived c-tree is j if ci equal to c(sj+1), and is j + 1
otherwise.
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Based on the case analysis above, we have the following theorem.

Theorem 1. One can generate all c-trees in O(f(n)) time and O(n) space,
where f(n) is the number of nonisomorphic c-trees with at most n vertices and
diameter 2k.

Proof. Since we traverse the family tree Tn,2k,m and output each ordered c-tree
at each corresponding vertex of Tn,2k,m, we can generate all c-trees in Sn,2k,m.

We maintain the last two occurrences of each depth in two arrays of length
k. We record the update of the arrays and restore the arrays if return occur.
Thus we can find ui in constant time for each i.

We also maintain the current copy-depth d and the vertex next to be copied.
Other parts of the algorithm need only constant time of computation for each

edge of Tn,2k,m.
Thus the algorithm runs in O(f(n)) time. Note that the algorithm does not

output each tree entirely, but the difference from the preceding tree.
For each recursive call we need a constant amount of space, and the depth

of the recursive call is bounded by n. Thus the algorithm uses O(n) space. �

7 The Odd Diameter Case

In this section we sketch the case where the diameter is odd.
It is known that a tree with odd diameter 2k+1 may have many paths of length

2k + 1, but all of them share a unique edge, called the center of T [W01–p72].
Intuitively, by treating the edge as the root, we can define the family tree

Tn,2k+1,m in a similar manner to the even diameter case. The detail is omitted.

8 Conclusion

In this paper we gave a simple algorithm to generate all c-trees with at most n
vertices and diameter d. The algorithm generates each c-tree in constant time
on average.

By slightly modifying the algorithm as shown below [NU03, NU04] we can
improve the worst case running time. Since we traverse at most three edges to
generate next c-tree, the algorithm generates each c-tree in constant time.

Procedure find-all-children(T , depth)
{ T is the current c-tree, and depth is the depth of the recursive call.}
begin

01 if depth is even
02 then Output T { before outputting its child c-trees.}
03 Generate child c-trees T1, T2, · · · , Tx by the method in Section 6 and 7, and
04 recursively call find-all-children for each child c-tree.
05 if depth is odd
06 then Output T { after outputting its child c-trees.}

end
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Abstract. Consider a hyperstar H and a function ω assigning a non-
negative weight to every unordered pair of vertices of H and satisfying
the following restriction: for any three vertices u, v, x such that u and v
belong to the same set of hyperedges, ω({u, x}) = ω({v, x}). We provide
an efficient method that finds a tree-realization T of H which has the
maximum weight subject to the minimum number of leaves.

We transform the problem to the construction of an optimal degree-
constrained spanning arborescence of a non-negatively weighted directed
acyclic graph (DAG). The latter problem is a special case of the weighted
matroid intersection problem. We propose a faster method based on find-
ing the maximum weighted bipartite matching.

1 Introduction

Consider the following notion. A realization of a hypergraph H = (V, F ) is an
undirected graph G = (V, E) such that every edge of G is contained in some
hyperedge of H and the subgraph of G induced by every hyperedge of H is
connected. If G is a tree, it is called a tree-realization of H .

We state the following optimization problem, which we term the TreeMin-
Leaves problem. Given a hypergraph H = (V, F ) and a function assigning
non-negative weights to every unordered pair of vertices of H contained in some
hyperedge of H . The task is to find a tree-realization of H that has the minimum
number of leaves and, subject to this requirement, has the maximum weight.

We prove that the TreeMinLeaves problem is NP-hard even if H has exactly
one hyperedge. Then we solve it polynomially under the following two restrictions.

1. H is a hyperstar, that is to say H is a hypergraph where the intersection of
all its hyperedges is not empty.

2. For any three vertices u, v, x such that u and v belong to the same set of
hyperedges, the weight of {u, x} is equal to the weight of {v, x}.

To solve the problem, we define on vertices of H a special directed acyclic
graph (DAG) G having exactly one root. Then we show that there is a bijection
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between the tree-realizations of H and the spanning arborescences of G. More-
over, given a spanning arborescence of G, the corresponding tree-realization of H
can be obtained by removing the edge directions of the arborescence. Therefore,
to find an optimal tree-realization of H with the minimum number of leaves, we
have to find an optimal spanning arborescence of G with the minimum number
of vertices with degree 1 (we call the latter problem MinDegree1) and then to
transform the arborescence into the tree-realization of H .

The MinDegree1 problem is a special case of the weighted matroid intersec-
tion problem. We propose a faster method for solving the MinDegree1 problem
based on finding the maximum weighted bipartite matching.

The TreeMinLeaves problem is similar to the problem of finding a maximum-
weight tree-realization of a hypergraph that was presented in [4], with two dif-
ferences. On the one hand, we restrict a hypergraph to a hyperstar. And on the
other hand, we find a tree-realization of a hypergraph that has the maximum
weight subject to the minimum number of leaves.

Several works have investigated problems related to tree-realizations of hy-
pergraphs. A necessary and sufficient condition for a hypergraph to have a tree-
realization is described in [5]. Algorithms for checking this condition are pre-
sented in [1] and [9]. An algorithm, that for a given hypergraph H recognizes
whether there is a tree-realization T such that the subgraph of T induced by
every hyperedge of H is a path, was presented in [8].

Our method for solving the TreeMinLeaves problem has applications in the
area of communication network design. One possible motivation could be as
follows. Given a collection of groups of customers, how do we construct the
minimum cost communication tree over a global set of customers, such that
each two customers of some group are connected through other customers from
this group. The network has to acquire group fault tolerance, group privacy and
the minimum number of customers having only one connection (leaves). Group
fault tolerance means that customers within a specified group are not sensitive
to disconnections of the global set. Group privacy means that communication
between two customers of a specified group does not require participation of
customers outside this group. Achieving the minimum number of leaves reduces
the probability of creating an isolated customer in the case of disconnection.

The rest of the paper is organized as follows. Section 2 provides preliminary
definitions. Section 3 describes the transformation of the TreeMinLeaves problem
into the MinDegree1 problem. In Section 4 we solve the MinDegree1 problem by
the method based on finding the maximum weighted bipartite matching. Section
5 summarizes the paper.

2 Preliminaries

Definition 1. A hypergraph is a pair H = (V, F ) where V is a finite set and
F is a family of subsets of V . The elements of V and F are called vertices and
hyperedges, respectively.

Definition 2. A hyperstar is a hypergraph H = (V, F ) with (
⋂

F �= ∅).
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Definition 3. Let H = (V, F ) be a hypergraph. A graph G is called a realiza-
tion of H, if it satisfies the following two properties.

1. Each e ∈ E(G) is contained in some s ∈ F .
2. For any s ∈ F , G[s] is a connected graph.

Definition 4. If a realization T of a hypergraph H = (V, F ) is a tree, T is called
a tree-realization of H.

Definition 5. A hypertree is a hypergraph that has a tree-realization.

Remark. A hyperstar is a special case of a hypertree [5].

Definition 6. Let H = (V, F ) be a hypergraph and v ∈ V be a vertex. The
incidence set of v denoted by I(v) is the set of all hyperedges of H such that
v is contained in them.

Definition 7. Let H = (V, F ) be a hypergraph. Two vertices u, v ∈ V are rel-
atives in H, if I(u) = I(v). (For example, vertices a and b are relatives in H
in Figure 1.) S ⊆ V is a set of relatives in H, if any two of its elements are
relatives.

Proposition 1. A binary relation R such that (u, v) ∈ R if and only if u and
v are relatives is an equivalence relation. The maximal sets of relatives are the
equivalence classes of R. �

Remark. We denote the equivalence class containing v ∈ V by [v].

Definition 8. A directed acyclic graph or a DAG is a directed graph containing
no directed cycles.

Definition 9. An arborescence is a directed tree in which one vertex called
the root has indegree 0 and the remaining vertices have indegree 1.

Let us fix the notations relating to degrees of vertices of a graph. We denote
the degree of a vertex v of a graph G by dG(v). If G is a directed graph then by
din

G (v) and dout
G (v) we denote the indegree and the outdegree of v, respectively.

3 Optimal Tree-Realization of a Hypergraph

In this section we define the TreeMinLeaves problem and describe the transfor-
mation of the TreeMinLeaves problem into the MinDegree1 problem.

The TreeMinLeaves Problem. Let H = (V, F ) be a hypergraph and
let ω : {{u, v} | ∃s ∈ F ({u, v} ⊆ s)} → R+ be a function of weights. The task
is to find a tree-realization of H that has the minimum number of leaves and,
subject to this requirement, has the maximum weight.

The TreeMinLeaves problem is NP-hard even if H has exactly one hyperedge.
NP-hardness can be shown by reduction from the Hamiltonian Path problem.
We show that the TreeMinLeaves problem can be solved polynomially under the
following two restrictions.
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1. H = (V, F ) is a hyperstar.
2. For every u, v, x ∈ V such that u and v are relatives, ω({u, x}) = ω({v, x}).

(For example, ω({a, c}) = ω({b, c}) in H in Figure 1).

To solve the TreeMinLeaves problem under these restrictions, we define the
notion of a weighted hierarchical DAG of a hyperstar.

Definition 10. Let H = (V, F ) be a hyperstar. Let ω : {{u, v} | ∃s ∈
F ({u, v} ⊆ s)} → R+ be a function of weights. A DAG G = (V, E) is called a
weighted hierarchical DAG of H if it constructed as follows.

1. Define an arbitrary linear order on every maximal set of relatives.
2.

∀u, v∈V : (u, v)∈E⇔

⎧⎨⎩
I(v) ⊂ I(u)

or
I(v)=I(u) and (v<u) by the linear order for [v].

3. Set the weight of every (u, v) ∈ E(G) equal to ω({u, v}).

An example of the construction of G see in Figure 1.

Let us prove two properties of a weighted hierarchical DAG of a hyperstar.

Proposition 2. A weighted hierarchical DAG of a hyperstar H = (V, F ) can be
constructed in O(V 2 ∗ F ) time.

Proof.
O(V 2) pairs of vertices must be checked and every I(v) can be computed in
O(F ) time. �

Proposition 3. A weighted hierarchical DAG of a hyperstar H = (V, F ) has
exactly one root.

Proof.
Assume by contradiction that there are two roots r1 and r2. Considering that
H is a hyperstar, I(r1) = I(r2) = F . Hence r1 and r2 are relatives. According
to the linear order defined on [r1], either (r1 < r2) or (r2 < r1). Thus indegree
of one of these roots is not zero. �

The following claims establish a bijection between the tree-realizations of a
hyperstar H and the spanning arborescences of a weighted hierarchical DAG
of H .

Lemma 1. Any two weighted hierarchical DAGs of a hyperstar H are isomor-
phic (taking into account the weights of the edges).

Proof.
Let R1, . . . , Rk, R′

1, . . . , R
′
k be two linear orders on k maximal sets of relatives,

and let G and G′ be two weighted hierarchical DAGs of H constructed under
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these linear orders, and let p1, . . . , pk be permutations on R1, . . . Rk respectively,
such that pi transforms Ri into R′

i. Consider the function h = p1∪ . . .∪pk. Then
we can show that h is an isomorphism.

Assume that (u, v) ∈ E(G).
If u and v are not relatives, then I(v) ⊂ I(u). Observe that h(u) is a relative

of u and h(v) is a relative of v; therefore, (h(u), h(v)) ∈ E(G′). According to the
restriction on weights, ω(u, v) = ω(h(u), v) = ω(h(u), h(v)).

If u and v are relatives, assume that Ri is the order on [v]. Then v < u
according to Ri and h(v) < h(u) according to R′

i. Therefore, (h(u), h(v)) ∈
E(G′). Equality of the weights can be proved analogously.

In the same manner we can prove that if (u, v) ∈ E(G′) then (h−1(u), h−1(v))
∈ E(G) and ω(u, v) = ω(h−1(u), h−1(v)). �

Proposition 4. Let T be a tree-realization of a hyperstar H = (V, F ). For any
u, v ∈ V connected by an edge in T , either I(u) ⊆ I(v) or I(v) ⊆ I(u).

Proof.
Assume by contradiction that there is (u, v) ∈ E(T ) such that I(u) � I(v) and
I(v) � I(u). This means that ∃x, y ∈ F ((x ∈ I(u) ∧ x /∈ I(v)) ∧ (y ∈ I(v) ∧ y /∈
I(u))). Thus ((u ∈ x∧ u /∈ y)∧ (v ∈ y ∧ v /∈ x)). Let w ∈ V such that I(w) = F .
In particular, w ∈ x and w ∈ y. According to Definition 3, w is connected with u
in T by a path P1 that passes through vertices of x only and w is connected with
v in T by a path P2 that passes through vertices of y only. On the one hand,
(u, v) /∈ P1 and (u, v) /∈ P2. On the other hand, by our assumption (u, v) ∈ E(T ).
Thus there is a cycle in T in contradiction to Definition 4. �

Lemma 2. Let T be a tree-realization of a hyperstar H = (V, F ). Then there
is a weighted hierarchical DAG G of H such that T can be transformed into a
spanning arborescence of G by assigning directions to its edges.

Proof.
Let us fix some vertex r ∈ V such that I(r) = F . Let us assign directions to
edges of T such that T is transformed into an arborescence T ′ with root r. We
make the following observation: if (u, v) ∈ E(T ′) then I(v) ⊆ I(u). Assume
by contradiction that the observation does not hold for some (u, v) ∈ E(T ′).
According to Proposition 4, I(u) ⊂ I(v). Note that I(u) ⊂ I(r) = F and that
the path P1 from r to v passes through u in T . Let s ∈ I(v) be a set such that
s /∈ I(u). According to Definition 3, r is connected to v in T by a path P2 that
passes through vertices of s only. Considering that u /∈ s, we get that P1 �= P2.
Therefore there are two paths between r and v in T in contradiction to Definition
4. Thus the observation holds.

Let T1, . . . , Tk be the subgraphs of T induced by maximal sets of relatives,
and let T ′

1, . . . T
′
k be the graphs obtained by transitive closure of T1, . . . Tk, re-

spectively. Define partial order relations R′
1, . . . R

′
k as follows: (u, v) ∈ R′

i if and
only if (v, u) ∈ E(T ′

i ). Extend the relations to linear orders on maximal set of
relatives. Let R1, . . . , Rk be the relations obtained as the result of the extension
of R′

1, . . . , R
′
k, respectively. Construct G given R1, . . . Rk.
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It remains to be shown that T ′ is a spanning arborescence of G. Let us
prove that if (u, v) ∈ E(T ′) then (u, v) ∈ E(G). If u and v are not relatives,
then I(v) ⊂ I(u) according to the observation discussed above. If u and v are
relatives then v < u by the order we defined on [v]. In both cases, according to
the construction of G, (u, v) ∈ E(G). �

Lemma 3. Let H = (V, F ) be a hyperstar. Let T ′ be a spanning arborescence
of a weighted hierarchical DAG G of H. Then T ′ is transformed into a tree-
realization T of H by removing the edge directions.

Proof.
Let us remove the edge directions of T ′ and get a tree T . Take s ∈ F and
u, v ∈ s. We have to prove that u and v are connected in T by a path
that passes through vertices of s only, according to Definition 4. Let w be
the vertex with din

G (w) = 0, which is unique according to Proposition 3.
According to Definition 9, there are unique paths from w to u and from w
to v in T ′. Let w → u1 → . . . → uk → u and w → v1 → . . . → vl → v
be paths in T ′ from w to u and from w to v, respectively. According to
the construction of G, s ∈ I(u) ⊆ I(uk) ⊆ . . . ⊆ I(u1) ⊆ I(w) and
s ∈ I(v) ⊆ I(vl) ⊆ . . . ⊆ I(v1) ⊆ I(w). Therefore, w, u1, . . . , uk, v1, . . . , vl

belong to s. Hence, the walk [u, uk, . . . , u1, w, v1, . . . , vl, v] contains a path in T
between u and v that passes through vertices of s only. �

In order to formulate the central theorem of the section, consider the
following problem.

The MinDegree1 Problem. Let G = (V, E) be a DAG with exactly
one root r and let ω : E(G) → R+ be a function of weights. The task is to find
a spanning arborescence of G that has the minimum number of vertices with
degree 1 and, subject to this requirement, has the maximum weight.

Theorem 1. There is a bijection between the set of solutions of the
TreeMinLeaves problem on H and the set of solutions of the MinDegree1 prob-
lem on any arbitrary weighted hierarchical DAG of H. Moreover, a solution of
TreeMinLeaves can be obtained from a solution of MinDegree1 by removing edge
directions.

Proof.
The proof immediately follows from Lemmas 1, 2 and 3. �

The MinDegree1 problem is a special case of the weighted matroid intersec-
tion problem. Let us explain the idea behind the statement. Let G = (V, E),
r and ω be a DAG, a root and weights, respectively, as given in the Min-
Degree1 problem. Consider a set E′ of copies of edges of E such that ∀e =
(u, v) ∈ E : e′ = (u, v) ∈ E′. Let B be a very large number, for example,
B = (

∑
e∈E ω(e)) ∗ |V |2. Consider a function of weights ω′ : (E ∪ E′) → R+

defined as follows:
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– ∀e ∈ E : ω′(e) = ω(e);
– ∀e′ ∈ E′ : ω′(e′) = ω′(e) + B (E′ are heavy edges).

Let Min = (E ∪ E′, I) be a pair such that for every S ∈ I and v ∈ V (G) at
most one edge of S enters into v. Let Mout = (E ∪ E′, I) be a pair such that
for every S ∈ I and v ∈ V (G) at most two edges of S ∩ E′ exit from root r
and at most one edge of S ∩ E′ exits from non-root v. Min = (E ∪ E′, I) and
Mout = (E ∪E′, I) are matroids [6]. We solve the weighted matroid intersection
problem for Min, Mout and ω′ to obtain a maximum-weight set T of Min∩Mout.
The solution of the MinDegree1 problem is T with the original weights of edges.

According to our best knowledge, the best upper bound of the weighted
matroid intersection problem is O(Ek(logE + k) [2], where k is the cardinality
of the resulting solution. In our case, k = O(V ), hence the upper bound is
O(EV (logE + V ). In Section 4 we propose a method designed specially for
solving the MinDegree1 problem that takes O(V 2(logV +*G)) time, where *G
is the maximum outdegree of V(G). Clearly, our method is faster for graphs with
|E| > |V |.

4 Optimal Spanning Arborescence

Let G = (V, E) be a DAG with exactly one root r, and let ω : E(G) → R+ be a
function of weights. We construct a bipartite graph G′ = (V1, V2, E

′) as follows.

– ∀u ∈ V : V1 includes one copy u′ of u,
V2 includes dout

G (u) copies u: 〈u′′, 1〉, . . . , 〈u′′, dout
G (u)〉.

– ∀(u, v) ∈ E: E′ includes (〈u′′, i〉, v′), i = 1, . . . , dout
G (u).

Let B be a very large number, for example, B = (
∑

e∈E ω(e)) ∗ |V (G)|2. We
define a function ω′ : E′ → R+ of weights as follows.

∀(〈u′′, i〉, v′) ∈ E′ :

ω′(〈u′′, i〉, v′) =
{

ω(u, v) + B, if i = 1 (for u �= r) or i ≤ 2 (for u = r)
ω(u, v), otherwise.

Let us call the graph G′ a weighted bipartite representative of a DAG G. An
example of the construction of G′ see in Figure 1.

We say that ω(u, v) is an original weight of an edge (〈u′′, i〉, v′) of G′. We
call edges of G′ having weights greater than B heavy edges. Also, we refer to a
vertex 〈u′′, i〉 ∈ V2 as a copy of u ∈ V (G). If a copy of u ∈ V (G) is incident to
some heavy edge in G′, we call it a heavy copy of u.

Theorem 2. Consider a maximum-weight matching M of a weighted bipartite
representative G′ of a given DAG G. Then the graph T with V (T ) = V (G) such
that ∀(u, v) ∈ E : (u, v) ∈ E(T ) ⇔ ∃i (〈u′′, i〉, v′) ∈ M is a solution of the
MinDegree1 problem.

To prove Theorem 2, we need the two following lemmas.
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Lemma 4. T is a spanning arborescence of G.

Proof.
We must show that T does not have a vertex with indegree greater than 1 and
T connects all vertices of G.

For the former assume by contradiction that there is a vertex v ∈ V (T ) such
that din

T (v) ≥ 2 and edges (u, v) ∈ E(T ) and (w, v) ∈ E(T ) enter into v. There
are i, j such that (〈u′′, i〉, v′) ∈ M and (〈w′′, j〉, v′) ∈ M in contradiction to the
definition of a matching.

For the latter assume by contradiction that T does not connect all vertices
of G. This means that there is a vertex l ∈ V (G) other than the root such
that din

T (l) = 0. Therefore, the vertex l′ ∈ V1 is exposed by M . Because of
din

G (l) ≥ 1, ∃u ∈ V (G) : (u, l) ∈ E(G). Hence, according to definition of
G′, ∀i ∈ {1, . . . , dout

G (u)} : (〈u′′, i〉, l′) ∈ E(G′). Observe that there is i ∈
{1, . . . , dout

G (u)} such that the vertex 〈u′′, i〉 ∈ V2 is exposed by M . Actually,
if for all i ∈ {1, . . . , dout

G (u)} vertices 〈u′′, i〉 are matched by M , then ∀v′ ∈
V1 : (u, v) ∈ E(G) ⇒ (〈u′′, i〉, v′) ∈ M for some i. But we have already
seen that for l′ this is not so. Therefore, we take such i that the vertex 〈u′′, i〉
is exposed by M and add the edge (〈u′′, i〉, l′) to M in contradiction to the
maximality of M . �

Lemma 5. The maximum-weight matching M of G′ has the maximum possible
number of heavy edges.

Proof.
Let M1 and M2 be two matchings of G′ containing k1 and k2 heavy edges,
respectively, such that k1 > k2. To prove the lemma we must show that∑

e∈M1
ω′(e) >

∑
e∈M2

ω′(e). Let W1 and W2 be sums of original weights of
edges of M1 and M2, respectively. Then

∑
e∈M1

ω′(e) = k1 ∗ B + W1 and∑
e∈M2

ω′(e) = k2 ∗ B + W2 are the weights of M1 and M2, respectively.
According to our selection of B, the sum of all original weights is less then

B. Therefore: k2 ∗ B + W2 < k2 ∗ B + B = (k2 + 1) ∗ B ≤ k1 ∗ B + W1. �

Now, we are ready to prove Theorem 2.

Proof of Theorem 2.
First, let us prove that T of G has the minimum number of vertices with degree
1. Let k be the number of heavy edges in M . The three properties below follow
from the maximality of M .

1. For every v ∈ V (G) such that v �= r, if at least one copy of v is matched by
M in V2, then the vertex 〈v′′, 1〉 is matched by M .

2. One copy of r, 〈r′′, 1〉, is matched by M in V2.
3. If at least two copies of r are matched by M in V2, then both 〈r′′, 1〉 and

〈r′′, 2〉 are matched by M .

According to these properties, if property 3 holds, then V (G) has exactly (k−1)
vertices, whose copies are matched by M in V2. Otherwise, V (G) has exactly
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k such vertices. In both cases, M is transformed into a spanning arborescence
T (Lemma 4) with (k − 1) vertices, whose degree is at least 2. According to
Lemma 5, k is the maximum possible number of heavy edges in M . Thus (k−1)
is the maximum possible number of vertices with degree at least 2 in T . Hence
(|V | − k + 1) is the minimum possible number of vertices with degree 1 in T .

Second, to show that the weight of T is maximum, assume by contradiction
that there is a spanning arborescence T ′ of G having the same number of vertices
with degree 1 as T but

∑
e∈T ′ ω(e) >

∑
e∈T ω(e). For every vertex v ∈ V (T ),

let (v, v1), . . . , (v, vm) be the edges of T that exit from v. Transform them into
the edges (〈v′′, 1〉, v′1), . . . , (〈v′′, m〉, v′m) of G′. It is not difficult to see that T ′

corresponds to a matching M ′ of G′. Note that
∑

e∈M ω′(e) = k∗B+
∑

e∈T ω(e)
and

∑
e∈M ′ ω′(e) = k ∗ B +

∑
e∈T ′ ω(e). Therefore,

∑
e∈M ′ ω′(e) >

∑
e∈M ω′(e)

in contradiction to the maximality of M . �

We have shown that the MinDegree1 problem can be solved for DAG
G = (V, E) by computing the maximum-weight matching of its weighted bi-
partite representative G′ = (V1, V2, E

′). A maximum-weight matching of G′ can
be computed by the Hungarian method ([7] Chapter 17). However, the straight-
forward application of the Hungarian method to G′ is inappropriate. Actually,
the execution of the Hungarian method on G′ consists of V1 applications of Dijk-
stra’s algorithm. A rough estimation of the complexity of Dijkstra’s algorithm is
O((V1 +V2)2). Taking into account that |V1| = |V |, |V2| = O(E), we get that the
whole complexity is O(V ∗ (V + E)2), which is even worse than the complexity
of weighted matroid intersection problem.

The complexity of the matching computation can be considerably reduced
if we take into account the structure of G′. According to the definition of the
function ω′, weights of edges incident to each non-heavy copy of v in V2 of G′

correspond to weights of edges that exit from v in DAG G. Hence, in every
iteration of the Hungarian method, non-heavy copies of every vertex v ∈ V ,
that are exposed in V2 by the current matching, can be contracted into a single
vertex v∗. The new matching contains at most one edge incident to v∗, thus
v∗ can be replaced by any non-heavy copy of v in V2 that was involved in the
contraction into v∗. It is easy to obtain the ”contracted version” of G′ in O(V )
time, given DAG G and the current matching. The contracted version of G′

has O(V ) vertices, thus application of Dijkstra’s algorithm to the graph takes
O(V logV +E∗) time [3], where E∗ is the set of edges of the ”contracted version”
of G′. Note that E∗ = V ∗ *G, where *G is the maximum outdegree of V(G).
Hence we achieve O(V logV + V ∗ *G) time per application. Thus the whole
complexity is O(V 2(logV + *G)).

5 Summary

We presented a technique for the TreeMinLeaves problem that transforms the
input into an instance of the MinDegree1 problem. The latter problem is solved
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by our method based on finding the maximum weighted bipartite matching. An
example of execution of the proposed technique is shown in Figure 1.
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Fig. 1. A process of solving of the TreeMinLeaves problem

A natural extension of the proposed method is a generalization to other
types of hypergraphs. It is unlikely that the proposed technique could be applied
straightforwardly to hypergraphs which are not a hyperstars, but using it as
a part of a more complicated scheme seems quite possible. Finally, note that
the complexity of the unweighted version of the TreeMinLeaves problem for
hypertrees remains unknown, to our best knowledge.
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Abstract. In the context of protein engineering, we consider the prob-
lem of computing an mRNA sequence of maximal codon-wise similarity
to a given mRNA (and consequently, to a given protein) that addition-
ally satisfies some secondary structure constraints, the so-called MRSO
problem [2]. Since the MRSO problem is known to be APX-hard [8],
Bongartz proposed in [8] to attack the problem using the concept of pa-
rameterized complexity. In this paper we follow this suggested approach
by devising fixed-parameter algorithms for several interesting parameters
of MRSO. We believe these algorithms to be relevant for practical appli-
cations today, as well as for several future applications. Furthermore, our
results extend the known tractability borderline of MRSO, and provide
new research horizons for further improvements of this sort.

1 Introduction

In [2,3], Backofen et al. introduced the problem of computing an mRNA sequence
of maximum codon-wise similarity to a given mRNA (and consequently, to a
given protein) that additionally satisfies some secondary structure constraints,
the so-called MRSO problem.

The initial motivation of MRSO is concerned with selenocysteine insertion,
i.e. generating new amino acid sequences containing selenocysteine. This rare
amino acid was discovered as the 21st amino acid [5], giving another clue to the
complexity and flexibility of the mRNA translation mechanism. Selenocysteine
is encoded by the UGA codon, which is usually a stop codon encoding the end
of translation. It has been shown [5] that in case of selenocysteine, termination
of translation is inhibited in the presence of a sequence of nucleotides which
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forms a hairpin-like structure in the 3′-region after the UGA codon. It is argued
in [2] that modifying existing proteins by incorporating selenocysteine instead of
a catalytic cysteine is an important problem for catalytic activity enhancement
and X-ray crystallography.

Selenocysteine insertion is concerned with a restricted type of secondary
structure, i.e. a secondary structure without pseudo-knots, and hence the linear-
time algorithm presented in [2] provides an optimal solution. However, it is rea-
sonable to assume that the discovery of selenocysteine will lead to the discovery
of several other amino acids of similar kind, some of which are likely to require
more complex secondary structures. Even today, similar problems occur in pro-
grammed frameshifts which allow to encode two different amino acid sequences
in one mRNA sequence [12,11]. This motivates the investigation of MRSO for
more elaborate secondary structures [2,8], and is the starting point of our study.

For the MRSO problem, it has been shown in [2] that there exists a linear-
time algorithm if the considered secondary structure corresponds to an outer-
planar graph (as it is the case of selenocysteine insertion). In this paper, we
refer to this algorithm as AOP. For the general case, the problem was proved
to be NP-complete [2], and Bongartz showed recently that the problem is in
fact APX-hard [8]. An algorithm for approximating MRSO within ratio 2 is
given in [2]. A slightly slower but somewhat simpler 4-approximation algorithm
is given in [8]. We mention also that an extension of MRSO, where insertions
and deletions are allowed in the amino acid sequence, is presented in [1].

Since MRSO for general secondary structures is known to be APX-hard [8],
Bongartz proposed in [8] to attack the problem using the concept of parame-
terized complexity [10]. Parameterized complexity is an approach to complexity
theory which offers an alternative method of analyzing computational problems
in terms of their tractability. For many hard problems, the seemingly unavoid-
able combinatorial explosion can be restricted to a small part of the input, the
parameter, so that the problems can be solved in polynomial-time when the
parameter is fixed.

In the last decade, parameterized complexity has proven to be useful in sev-
eral applications within computational biology [7]. In this paper we attempt to
follow this line by presenting fixed-parameter algorithms for several interesting
parameters of MRSO. We believe these algorithms to be relevant for practical
applications today, as well as for several future applications. Furthermore, our
results extend the known tractability borderline of MRSO, and provide new
research horizons for further improvements of this sort.

The paper is organized as follows. In the next section we briefly discuss basic
notations and definitions that we will use throughout. In Section 3, we present
a fixed-parameter algorithm for two natural parameters of MRSO, namely the
number of degree three vertices, and the number of edge crossings in the given
implied structure graph (see Definition 2 in the following section). In Section 4,
we give a tighter NP-completeness result for MRSO, by showing that the prob-
lem is NP-complete even if the given implied structure graph has page number
two. In Section 5, we consider the cutwidth of the implied structure graph as a
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parameter, and show that the problem is polynomial-time solvable in case this
parameter is fixed. Finally, in Section 6 we prove that a slightly restricted version
of MRSO is polynomial-time solvable in case the score of the optimal solution
is fixed.

2 Preliminaries

An mRNA is a string over the alphabet Σ = {A, C, G, U}, where Σ represents
the four different types of nucleotides in the molecule. The pairs {A, U}, {G, C},
and {G, U} are known as complementary nucleotide pairs. Hydrogen bonds can
only be formed between complementary nucleotides in an mRNA folding. A
codon of an mRNA sequence is a sequence of three consecutive nucleotides, i.e.
a string in Σ3. Thus, an mRNA sequence S = s1 · · · s3n is a concatenation of n
consecutive codons, where the ith codon of S is s3i−2s3i−1s3i.

Given a source mRNA sequence S = s1 . . . s3n, we wish to evaluate the codon-
wise similarity between S and another target mRNA sequence T = t1 . . . t3n. For
this, we are provided with a set of n functions, F = f1, . . . , fn, called similarity
functions of S, such that for all 1 ≤ i ≤ n, each function fi is of the form
fi : Σ3 → Q. Thus, fi assigns a value to the ith codon of T according to its level
of similarity in comparison with the ith codon of S. The total level of similarity
between S and T is then given by

∑n
i=1 fi(t3i−2t3i−1t3i). Note that given a set

of similarity functions F = f1, . . . , fn for S, one does not need to know anything
else about S in order to compute the similarity score of S and T .

The structure constraints Γ ⊆ {{i, j} | 1≤ i < j ≤ 3n} for a target mRNA
sequence T of length 3n, are pairings between distinct integers in {1, 2, . . . , 3n}.
These represent necessary hydrogen bonds in the folding of T . Since we assume
that each nucleotide can pair with at most one other nucleotide in any folding,
each integer appears in at most one pair in Γ . Furthermore, there are no pairs
of the form {i, i + 1} or {i, i + 2} in Γ , for all 1 ≤ i ≤ 3n − 2.

Given a set of structure constraints Γ ⊆ {{i, j} | 1 ≤ i < j ≤ 3n}, and an
arbitrary target mRNA sequence T = t1 · · · t3n, we say that nucleotides ti and
tj in T are compatible with respect to Γ , if either {ti, tj} is a complementary
nucleotide pair or {i, j} /∈ Γ . The entire sequence T is compatible with respect
to Γ , if all pairs of nucleotides in T are compatible with respect to Γ .

Definition 1 (mRNA Structure Optimization (MRSO) [2]). Let F be a
set of n similarity functions for a source mRNA sequence of length 3n, and let
Γ ⊆ {{i, j} | 1≤ i<j≤3n} be a set of structure constraints. The MRSO problem
asks to find a target mRNA sequence which is compatible with respect to Γ , and
which achieves the highest possible similarity score with respect to F .

It is convenient to formalize MRSO in a slightly different manner using
graph theoretic concepts. For a graph G, we let V(G) denote the set of ver-
tices of G, and E(G) the set of edges of G. A linear graph G is a graph with
V(G) = {1, . . . , |V(G)|}. That is, it is a graph with vertices which have a fixed
ordering. Therefore, we now view Γ as a linear graph with 3n vertices which has
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a maximum degree of one. As we are really interested in codon-wise similarity,
we use a more suitable representation of Γ .

Definition 2 (Implied structure graph [2]). Let Γ ⊆ {{i, j} | 1≤ i<j≤3n}
be a set of structure constraints for a target mRNA sequence of length 3n. The
implied structure graph of Γ , is the linear graph GΓ with:

V(GΓ )={1, 2, . . . , n}, and

E(GΓ )=
{
{i, j}

∣∣∣∃{x, y} ∈ Γ : x ∈ {3i−2, 3i−1, 3i}∧ y ∈ {3j −2, 3j−1, 3j}
}
.

Fig. 1. An example of an implied structure graph obtained from a set of structure
constraints. Note that GΓ is outerplanar since swapping the two middle vertices yields
an ordering of the vertices with no edge crossings.

Hence, GΓ is a subcubic graph (i.e. a graph with a maximum degree of
three) where vertex i in V(GΓ ) corresponds to the ith codon of a target mRNA
sequence, and i, j ∈ V(GΓ ) are connected in E(GΓ ) if there are any structure
constraints in Γ between the ith and jth codons of the sequence. Note that there
can be at most three structure constraints between any pair of codons.

Given a subset of vertices V ⊆ V(GΓ ), we let GΓ [V ] denote the subgraph of
GΓ induced by V , i.e. the subgraph with vertex set V and edge set E(GΓ )∩(V×
V ). Similarly, given a subset of edges E ⊆ E(GΓ ), GΓ [E] denotes the subgraph
of GΓ with vertex set {i | {i, j} ∈ E(GΓ )} and edge set E. Furthermore, we let
GΓ [i, j] denote the subgraph of GΓ induced by {i, . . . , j} ⊆ V(GΓ ).

Two edges {i, j} and {i′, j′} cross in GΓ if either i < i′ < j < j′ or i′ < i <
j′ < j. Note that two crossing edges might not cross under a different ordering of
V(GΓ ). If there exists an ordering of V(GΓ ) which introduces no edge crossings
then GΓ is outerplanar. Recall that in this case, algorithm AOP [2] solves MRSO
in linear time.

A codon assignment for GΓ is a mappings from some V ⊆ V(GΓ ) to Σ3.
An assignment for a pair of vertices i, j ∈ V(GΓ ), i → t3i−2t3i−1t3i and j →
t3j−2t3j−1t3j , is compatible with respect to GΓ , if either {i, j} /∈ E(GΓ ) or ti′ and
tj′ are complementary nucleotides for any {i′, j′} ∈ Γ ∩{3i−2, 3i−1, 3i}×{3j−
2, 3j−1, 3j}. More generally, an assignment φ : V → Σ3 for some V ⊆ V(GΓ ) is
compatible with respect to GΓ , if for any i, j ∈ V , the assignment i→φ(i) and
j → φ(j) is compatible with respect to GΓ . Henceforth, we consider instances
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for MRSO of the form (GΓ ,F). Our goal in this setting is then to find an
assignment φ : V(GΓ ) → Σ3 (i.e. a target mRNA sequence T = φ(1) · · · φ(n)),
which is compatible with GΓ , and which maximizes

∑n
i=1 fi(φ(i)).

3 Two Natural Parameters for MRSO

Our discussion begins by considering two natural parameters for MRSO. These
are the number of edge crossings in GΓ , and the number of degree three vertices
in GΓ . We use χ and δ to denote these two parameters respectfully throughout
the section.

Our initial interest in parameters χ and δ arises from the fact that we be-
lieve them to be small in many practical applications. Consider parameter χ.
It is widely believed that many natural mRNA secondary structures form an
outerplanar formation, i.e. a formation with no edge crossings. Consequently,
exploring this parameter was suggested explicitly in [8]. As for parameter δ, re-
call that a vertex of degree three in GΓ represents a codon with three nucleotides,
each pairing with complementary nucleotides in three different codons. Although
this situation can occur in a folding of an mRNA molecule, it can be expected
to be quite rare due to the natural geometric and thermodynamic constraints
imposed on any such folding.

It turns out that MRSO is polynomial-time solvable when either χ or δ are
fixed. To show this, we will first present an initial algorithm, and later demon-
strate how it can be applied for both cases. We will need the following definition:

Definition 3 (Nice edge bipartition). Let GΓ be an implied structure graph
with n vertices. An edge bipartition P = (Et, Eb) of GΓ is a partitioning of the
edges in GΓ into Et and Eb, the top and bottom edges of P respectfully, such
that Et ∪ Eb = E(GΓ ), Et ∩ Eb = ∅ and Et �= ∅. Furthermore, P is said to be
nice if the subgraph GΓ [Et] is outerplanar.

Our initial algorithm is called ANEB. This algorithm will apply only for cases
where a nice edge bipartition of GΓ with a fixed number of bottom edges is
given alongside the input. Following the description of ANEB, we show that when
considering either χ or δ to be fixed, one can easily obtain such a bipartition.

The heart of algorithm ANEB is the following simple observation. Suppose
we want to find the highest scoring compatible mRNA sequence which starts
with codon AAA. For this, we can replace the similarity function f1 ∈ F by a
different function f ′, where f ′(AAA) = f1(AAA) and f ′(C) = −∞ for all codons
C �= AAA. Solving MRSO for the instance (GΓ ,F ′), where F ′ = f ′, f2, . . . , fn,
will then give us our desired mRNA. The following definition generalizes this
example.

Definition 4 (Corresponding similarity functions). Let (GΓ ,F) be an in-
stance of MRSO with F = f1, . . . , fn. Also, let φ : V → Σ3 be a codon as-
signment for some V ⊆ V(GΓ ). The corresponding set of similarity functions of
assignment φ, denoted Fφ = fφ

1 , . . . , fφ
n , is defined as follows:
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– For all i ∈ V : fφ
i (φ(i)) = fi(φ(i)), and fφ

i (C) = −∞ for any C �= φ(i).
– For all j ∈ V(GΓ ) − V : fφ

j = fj.

Algorithm ANEB uses AOP, the algorithm given in [2] for outerplanar implied
structure graphs, as a subprocedure in its computation. At its core, ANEB is ba-
sically an exhaustive search procedure that searches through all possible codon
assignments for vertices which are incident to edges in Eb. For each such assign-
ment, ANEB first checks if the assignment is compatible with respect to GΓ [Eb],
and if so, it invokes AOP with the set of similarity functions corresponding to
this assignment. Finally, ANEB outputs the maximum solution over all target
mRNAs returned by AOP. A schematic description of ANEB is given in Figure 2.

Algorithm ANEB(GΓ ,F ,P)
Data : An implied structure graph GΓ of order n, a set of similarity functions

F = f1, . . . , fn and a nice edge bipartition P = (Et, Eb).
Result : An optimal target mRNA sequence T which is compatible with

respect to GΓ .
begin

foreach possible codon assignment φ to vertices incident to edges in Eb do
if φ is compatible with respect to GΓ [Eb] then

(a) Construct Fφ, the similarity functions corresponding to φ.
(b) Invoke AOP(GΓ [Et],Fφ).

end
end
return the target mRNA sequence found in Step (b) with the highest
similarity score.

end

Fig. 2. Algorithm ANEB

Lemma 1. Given an instance (GΓ ,F) for MRSO accompanied by a nice edge
bipartition P = (Et, Eb) of GΓ , ANEB computes an optimal target mRNA se-
quence for this instance in O(642εn) time, where n = |V(GΓ )| and ε = |Eb|.
Proof. Consider the schematic description of ANEB in Figure 2 and let Vb =
{i | {i, j} ∈ Eb} be the subset of vertices incident to Eb. Any assignment φ :
Vb → Σ3 enumerated in the algorithm is verified for compatibility with respect
to GΓ [Eb]. Hence, by the correctness of AOP, any target mRNA outputted by
ANEB with a similarity score higher than −∞ is compatible with respect to GΓ .
Furthermore, by the optimality of AOP, and since all possible codon assignments
to Vb are considered by ANEB, this target mRNA is optimal with respect to F .

For the time complexity bound, note that the number of codon assignments
enumerated by the algorithm is |Σ3||Vb| ≤ 642ε. Furthermore, constructing any
such assignment and checking it for compatibility with respect to GΓ [Eb] can be
done in O(n) time. Therefore, since each call to AOP requires O(n) time [2], the
overall time complexity of ANEB is bounded by O(642εn). �
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We now return to our two parameters χ and δ, starting with χ. Recall that
if χ = 0 then GΓ is outerplanar. Hence, a nice edge bipartition with χ bottom
edges is available by definition. To see this, consider an edge bipartition with
one bottom edge for each pair of edge crossings in GΓ . Such an edge bipartition
is nice, has at most χ bottom edges, and can be constructed in linear time. We
therefore obtain the following proposition.

Proposition 1. MRSO is polynomial-time solvable in case χ = O(lg n).

Proof. According to the above discussion, GΓ has a nice edge bipartition with
at most χ bottom edges and this partitioning can be constructed in O(n) time.
Thus, by Lemma 1, algorithm ANEB can be applied to solve MRSO in O(642χn)
time, and so the proposition follows. �

Next consider parameter δ. Constructing a nice edge bipartition with δ bot-
tom edges is immediate when considering the following easy lemma.

Lemma 2. If G is a graph with maximum degree 2, then G is outerplanar.

Proof. If G is a graph with maximum degree 2, then every connected component
in G is either a path or a cycle. Since paths and cycles are outerplanar, the lemma
immediately follows. �

Consider an edge bipartition of GΓ such that for each degree three vertex
i ∈ V(GΓ ), exactly one edge incident to i is a bottom edge. Clearly, such a
bipartition has at most δ bottom edges and can be constructed in linear time.
Let P = (Et, Eb) be an edge bipartition obtained in this fashion. Since GΓ

is subcubic, every vertex is incident to at most two top edges in P . Thus, by
Lemma 2, G[Et] is outerplanar and P is nice.

Proposition 2. MRSO is polynomial-time solvable in case δ = O(lg n).

Proof. Replace δ with χ in the proof of Proposition 1. �

4 Page-Number Characterization of GΓ

In light of algorithm ANEB and Lemma 1, a natural question to ask is whether
MRSO is polynomial-time solvable in case we are provided an edge bipartition
in which both parts induce no edge crossing under the same vertex ordering.
Alternatively, since the problem is polynomial-time solvable in case GΓ is outer-
planar, one might inquire if MRSO is still tractable when the implied structure
graph is planar. In this section we provide a negative answer to both these ques-
tion by proving that MRSO remains NP-hard even for a restrictive class of
implied structure graphs.

Given a graph G, the page-number of G is the smallest partitioning of E(G)
possible, such that each subset of edges in the partition induces no edge crossings
under the same vertex ordering. Clearly the page-number of an outerplanar graph
is one. Also, it is known that four pages are necessary and sufficient for planar
graphs [17]. We show that MRSO is NP-complete even if the implied structure
graph has page number two.
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Proposition 3. MRSO is NP-complete even when restricted to implied struc-
ture graphs with page-number two.

Proof. We describe a reduction from the Maximum Independent Set prob-
lem, which is known to be NP-complete even when restricted to cubic planar
bridegeless connected graphs [4]. The proof is a direct extension of the APX-
completeness proof for MRSO given in [8].

Let an instance of the Maximum Independent Set problem be given by a
cubic planar bridgeless connected graphs G of order n. According to [14], there
exists a linear-time algorithm for finding a 2-page embedding of a cubic planar
bridgeless graph, and hence there is no loss of generality in assuming that G
is given in the form of a linear graph with page-number two. We now turn to
defining the corresponding instance of MRSO. The implied structure graph GΓ

is merely the input graph G and the set of similarity functions fi : Σ3 → Q,
1 ≤ i ≤ n, is defined as follows:

∀i, 1 ≤ i ≤ n, fi(t3i−2t3i−1t3i) =

{
1 if t3i−2t3i−1t3i = AAA

0 otherwise

Quoting [8], the idea of the reduction is simply to identify the set of vertices
which are assigned to AAA in a solution for the corresponding instance of the
MRSO problem, with an independent set in G. Correctness of the proof now
follows directly from [8], Theorem 3. �

Corollary 1. MRSO is NP-complete even when restricted to planar implied
structure graphs.

5 The Cutwidth of GΓ

Let (GΓ ,F) be an instance of MRSO with V(GΓ ) = {1, . . . , n}. For p ∈
{1, . . . , n−1}, the p-cutwidth of GΓ is defined as the number of edges connecting
vertices in {1, . . . , p} to vertices in {p+1, . . . , n}. The cutwidth of GΓ is defined as
the maximum p-cutwidth over all p ∈ {1, . . . , n−1}. In the following we consider
the cutwidth of GΓ as a parameter for MRSO. We begin by showing that the
problem is polynomial-time solvable in case GΓ has bounded cutwidth. Follow-
ing this, we show this result implies that MRSO is polynomial-time solvable for
several other interesting cases. We let ψ denote the cutwidth of GΓ throughout
the section.

For obtaining our initial result, we present an algorithm which we call ACUT.
This algorithm works by recursively partitioning GΓ into two subgraphs GΓ [1, p]
and GΓ [p+1, n], and then concatenating two optimal target mRNA sequences
T ′ = C1, . . . , Cp and T ′′ = Cp+1, . . . , Cn which are compatible with respect
to these two subgraphs. To ensure that the concatenated solution T = T ′T ′′ is
compatible with respect to GΓ , ACUT enumerates all codon assignments between
connected vertices of the two subgraphs.
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In order to prevent unnecessary assignments from being enumerated, we dis-
tinguish in ACUT between vertices which were assigned a codon in a previous
recursive step, and those which have not yet been assigned one. We enforce two
invariants. First, all assigned vertices are compatible throughout the entire ex-
ecution of the algorithm. Second, once a vertex is assigned at some recursive
step of the algorithm, no assignments are enumerated for this vertex in any
subsequent step.

As in ANEB, algorithm ACUT uses corresponding similarity functions (Def-
inition 4) to apply codon assignments. A similarity function f is degenerate, if
there is some codon C such that f(C) > −∞, and f(C′) = −∞ for any other
codon C′ ∈ Σ3, C′ �= C. In ACUT, we use degenerate similarity functions both to
recognize the assigned vertices along the recursion, and also to propagate their
corresponding codon assignment. A schematic description of ACUT is given in
Figure 3.

Algorithm ACUT(GΓ ,F)
Data : An implied structure graph GΓ with V(GΓ ) = {1, . . . , n}, and a set of

similarity functions F = f1, . . . , fn.
Result : An optimal target mRNA sequence T which is compatible with

respect to GΓ .
begin

1. if E(GΓ ) = ∅ then return T that maximizes F .
2. Select p ∈ {1, . . . , n−1} with maximum p-cutwidth.
3. Set Ep = {{i, j} ∈ E(GΓ ) | 1 ≤ i ≤ p, p+1 ≤ j ≤ n}.
4. Set Vp = {i | {i, j} ∈ Ep} to be the vertices incident to Ep.
5. Let Ap = {i ∈ Vp | fi is degenerate} be the assigned vertices in Vp.
6. Define φAp : Ap → Σ3 such that φAp(i) = C ⇔ fi(C) > −∞.
7. foreach possible codon assignment φVp−Ap : Vp−Ap → Σ3 do

if φ = φAp ∪ φVp−Ap is compatible with respect to GΓ [Ep] then

(a) T ′ ← ACUT(GΓ [1, p], fφ
1 , . . . , fφ

p ).
(b) T ′′ ← ACUT(GΓ [p+1, n], fφ

p+1, . . . , f
φ
n ).

end
end
return the highest similarity scoring target mRNA sequence T = T ′T ′′

found in step 7.
end

Fig. 3. Algorithm ACUT

Lemma 3. Given an instance (GΓ ,F) for MRSO, algorithm ACUT computes
an optimal target mRNA sequence for this instance in O(642ψn) time, where
n = |V(GΓ )| and ψ is the cutwidth of GΓ .

Proof. Consider the schematic description of ACUT in Figure 3. We prove the
correctness and optimality of the algorithm by induction on its recursion. At the
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recursive basis, the solution returned is optimal and compatible by construction.
For the inductive step, assume T ′ and T ′′ are the two target mRNAs computed
at steps (a) and (b) respectfully. Then T ′ and T ′′ are compatible with respect
to GΓ [1, p] and GΓ [p+1, n] respectfully. Hence, since by construction T ′T ′′ is
compatible with respect to GΓ [Ep], it is also compatible with respect to GΓ .
Furthermore, since the algorithm considers all assignments to vertices in Vp

with score higher than −∞, the target mRNA returned at this step is optimal.
For the time complexity bound of ACUT, note that the number of codon

assignments enumerated by the algorithm in each recursive step is |Σ3||Vp| ≤
642ψ. Since the number of recursive steps is bounded by O(n), the overall time
complexity of ACUT is bounded by O(642ψn). �

Corollary 2. MRSO is polynomial-time solvable in case ψ = O(lg n).

We next consider the implications of Corollary 2. The treewidth [15] of a
graph is a graph property that has been studied extensively in the literature.
Informally, it measures in some sense the degree of tree-likeness of the graph.
In [13] (via [9]), the authors showed that for a graph with n vertices, constant
maximum degree, and constant treewidth, one can obtain an ordering of the
vertices such that the linear graph under this ordering has cutwidth bounded by
O(lg n).

Corollary 3. MRSO is polynomial-time solvable in case GΓ has constant
treewidth.

Note that the tree width of any outerplanar graph is bounded by two [16], and
so the algorithm above generalizes AOP, although the time complexity bound of
AOP is better. In [6], Bodlaender gives a list of several other interesting graph
classes which are subclasses of constant treewidth graphs. Among many others,
we state only a few in the following corollary.

Corollary 4. MRSO is polynomial-time solvable in case GΓ is either a chordal
graph, an interval graph, a circular arc graph, or a k-outerplanar graph where k
is any constant.

Hence, Corollary 1 and the last case in the corollary above give a fine bor-
derline between tractable and intractable instances of MRSO.

6 Parameterizing by the Similarity Score

We next turn to consider the score of the optimum solution as a parameter for
MRSO. For this, we suggest a relaxation on the similarity functions of an MRSO
instance. More specifically, we consider instances with similarity functions of the
form fi : Σ3 → N. We call similarity functions of this sort natural similarity
functions, and denote MRSON the MRSO problem restricted to instances with
this type of similarity functions. Most of the interest in restrictive similarity
functions stems from the following proposition.



Fixed-Parameter Algorithms for Protein Similarity Search 281

Proposition 4. MRSON is polynomial-time solvable in case the similarity
score of the optimal solution is fixed.

Proof. Let (GΓ ,F) be an instance of MRSON and let κ denote the similarity
score of the optimal target mRNA of this instance. Set n = |V(GΓ )|. We may
assume without loss of generality that for all 1 ≤ i ≤ n, fi(C) > 0 for some
codon C ∈ Σ3. Otherwise, if there exists any function fi ∈ F which fails to meet
this requirement, we solve the sub-instance (G′

Γ ,F ′) obtained by deleting i from
GΓ and fi from F . Any feasible solution for (G′

Γ ,F ′) can then be extended to a
feasible solution of the same score for the original instance since Γ has maximum
degree one. We present an algorithm which searches for a target mRNA string
T , by focusing on finding κ pairwise compatible codons with respect to GΓ . The
proof is divided into two separate parts depending on α(GΓ ), the cardinality of
a maximum independent set in GΓ .

Suppose κ ≤ α(GΓ ). Let V ⊆ V(GΓ ) be an independent set of size κ in
GΓ . Since GΓ is at most cubic, such a subset V can be found in O(4κn) time
using the bounded search tree technique [10]. We define a string T of length 3n
as follows. For each i ∈ V , assign codon Ci ∈ Σ3 such that fi(Ci) ≥ 1. This is
always possible since V is an independent set in GΓ , and since for all 1 ≤ i ≤ n,
fi(C) > 0 for some C ∈ Σ3. For each j ∈ V(GΓ )− V , assign codon Cj which is
compatible with all codons assigned to vertices in V with respect to GΓ . Again
this is always possible since Γ has maximum degree one. We check at once that
T = C1C2 . . . Cn is compatible with respect to GΓ and

∑n
i=1 fi(Ci) ≥ |V | = κ.

Now suppose κ > α(GΓ ). Since GΓ is at most cubic, we have α(GΓ ) ≥ n
4 , and

hence κ > n
4 . Here, the algorithm is by direct enumeration. More precisely, the

algorithm tries in turn to obtain a solution mRNA string T by finding � pairwise
compatible codons, where � ranges from 1 to κ. So, let � ∈ {1, 2, . . . , κ}. We
search through all �-subsets of V(GΓ ) for an �-subset with an assignment which
is compatible with respect to GΓ . Such an exhaustive search can be executed in
O(
(

n
�

)
64�) time. Summing-up over � and neglecting the time to check κ > α(GΓ ),

i.e., O(4κ), we obtain O(
∑κ

�=1

(
n
�

)
64�), which is O(2O(κ) κκ+1) since GΓ is at

most cubic and κ > α(GΓ ) ≥ n
4 .

Hence, MRSON can be solved in O(2O(κ) κκ+1 + 4κn) time, and the propo-
sition above follows. �

Note that all hardness results obtained for MRSO still hold for MRSO
under natural similarity functions. Nevertheless, using a simple combinatorial
argument, we can easily obtain an optimal algorithm if we consider the score of
the optimal solution for MRSON to be fixed. Even so, it is a challenging problem
to investigate the parameterized complexity of the MRSO problem for more
general similarity functions. We do believe that it might be worth considering
similarity functions of the form fi : Σ3 → N ∪ {−∞} since these capture most
of the information necessary in most practical applications. Here, the −∞ value
can be used in case a certain codon (e.g. a stop codon) is not acceptable in a
certain position of T .
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Abstract. Cluster Editing is the problem of changing a graph G by
at most k edge insertions or deletions into a disjoint union of cliques.
The problem is motivated from computational biology and known to
be FPT. We study the enumeration of all solutions with a minimal set
of edge changes. Enumerations can support efficient decisions between
ambiguous solutions. We prove that all minimal solutions differ only on a
so-called a full kernel of at most k2/4+O(k) vertices. This bound is tight.
For ambiguous edges we get an optimal bound up to a constant factor.
Finally we give an algorithm that outputs a compressed enumeration in
O∗(2.4k) time.

1 Introduction

The Cluster Editing problem requires to transform a graph G = (V, E) with
n vertices by at most k edge changes into a cluster graph, that is, a disjoint
union of complete graphs (G, k are given). A change is an edge insertion or
deletion, whereas V remains fixed. A graph is a cluster graph iff it is free of
induced P3 (path of three vertices). In Cluster Deletion, only edge deletions
are allowed. These problems from [2,1,14] have applications in computational
biology, such as phylogeny reconstruction [2], and classification of gene expression
data [15,16], where vertices represent genes, and edges join co-regulated genes
belonging to the same functional groups. We imagine that there is a hidden
clustering, but the observed graph G is up to k changes away from a cluster
graph, due to experimental errors, noisy data, vertices belonging to different
groups, and incomplete clusters due to non-transitive similarity relations. If k +
n, we may look for possible underlying clusterings close to G.

Known complexity results include the NP-hardness of computing the small-
est possible k, given G [2,1,14]. Efficient FPT algorithms with parameter k have
been devised in [9]. Main results are a problem kernel for Cluster Editing
with O(k2) vertices and O(k3) edges, computable in O(n3) time, and algo-
rithms that solve Cluster Editing and Cluster Deletion in O(2.27k + n3)
and O(1.77k + n3) time, respectively. (For an introduction to fixed-parameter
tractability see e.g. [5].)

In the present paper we follow a line of research initiated in [8,4]. We want
an enumeration of all possible solutions for given G and k. (Actually, we have to

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 283–294, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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modify this goal slightly.) A particular smallest set of changes may not always
yield the true hidden clustering, especially if several optimal solutions exist. It
is not even clear that the smallest possible number k0 of changes is the cor-
rect explanation of data. It is more cautious to consider all solutions within
some parameter value k ≥ k0, and to judge them afterwards by further criteria
specific to the application. Pairs of items may belong to the same cluster with
different prior probabilities, which allows discrimination of solutions, made by a
Bayesian inference algorithm or ad-hoc by an expert, e.g., a biologist who exam-
ines gene expression data and has additional knowledge about gene functions. In
the language of [12] the enumeration is a version space, i.e., the set of hypothe-
ses (clusterings) consistent with the data and the assumptions (here: at most k
changes appeared). The version space is used a a basis for inference. A concise
description of it is crucial to efficiency of any inference procedure. However, the
scope of the present paper is on the complexity of the enumeration itself. Any-
way, our first main result for Cluster Editing is that all solutions agree on
most pairs of vertices, except vertices in a small kernel and in small clusters, i.e.,
with a size depending on k only. For any two vertices outside these small sets
we can safely conclude whether they belong to the same cluster or not, provided
that parameter value k is valid.

Preliminaries. Given an instance G, k of Cluster Editing, let G′, G′′ be two
solutions, i.e., two cluster graphs obtained from G by at most k changes. We
say that G′′ contains G′ if the changes leading from G to G′ are a subset of the
changes leading from G to G′′. (This should not be confused with containment
of the graphs.) A solution not containing any other solution is minimal. The
enumeration version of Cluster Editing can be split in a nontrivial and a
trivial part. The former part is to enumerate all minimal solutions G′. Once we
know them, it is pretty easy to characterize all solutions reachable from G by
at most k changes: One can just divide or merge clusters, using the remaining
number of allowed changes. Note that only the smallest clusters in G′ are subject
to further changes. In particular, if k is close to k0, further changes are very
limited. From now on we consider the nontrivial part only.

Vertices u, v form an ambiguous pair if uv is an edge in some minimal solution
but a non-edge in some other minimal solution. A vertex is called ambiguous if
it belongs to an ambiguous pair. A full kernel is a set of vertices containing all
ambiguous vertices. This notion, introduced in [4], is a counterpart of problem
kernels of FPT optimization problems. The actual enumeration process can be
restricted to a full kernel.

Finally we clarify some graph-theoretic notation. A clique is any complete
subgraph of G = (V, E), not necessarily maximal. For any X ⊆ V , G − X is
graph G with X and all incident edges removed. For an induced subgraph H
of G, and w a vertex not in H , we denote by H + w the subgraph induced by
the vertices of H and w. The open neighborhood N(X) of a vertex set X is
the set of vertices being not in X but incident to some vertex of X . We call
two subsets of vertices pair-disjoint if they share at most one vertex. A module
is a set M ⊆ V such that every vertex outside M is adjacent to either no
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vertex or all vertices in M . The number of vertices and edges of G is n and m,
respectively. Symbols Pn, Cn, Kn denote a chordless path, a chordless cycle, and
a clique, respectively, of n vertices. The star graph K1,s has one central vertex
adjacent to s other vertices, and no further edges. The O∗() complexity notation
suppresses polynomial factors in exponential bounds.

Our Results. In Section 2 we show that a full kernel with O(k2) vertices for
Cluster Deletion is efficiently computable. Our main tool is a certain decom-
position of graphs. (We remark that novel graph decompositions like “crowns”
recently proved very powerful in FPT algorithms, see e.g. [3,7] and several pa-
pers in [6]. In particular, [13] consider P3 packings, which is loosely related to
our subject.) We also find the optimal constant factor 1/4. For the number of
ambiguous pairs we get the optimal bound Θ(k4), however with coarse estimates
of the constant factor.

We think that it is worth the effort to figure out a matching bound for the exact
size of a full kernel, including the constant factor. (The bound in [9] is 8 times as
high.) The full kernel is interesting for its own, for it includes all deviations between
any twominimal solutions, whereas problemkernels in traditional FPT theory only
serve as computational tools for finding one optimal solution.

However, another benefit of a full kernel is that it can be used to enumerate
all minimal solutions in O(ck) time for some constant c, whereas polynomial
time in n is needed for kernel construction only. Section 3 is devoted to the
enumeration of all minimal solutions. A compressed description can be easily
computed in O∗(2.562k) time. In the rest of Section 3 we further reduce the base
to 2.4 by deeper analysis of the P3 structure of graphs.

2 The Number of Ambiguities

2.1 The Cluster Decomposition

The following decomposition is the basis for our estimate of the full kernel size.

Definition 1. A cluster decomposition of a connected graph G = (V, E) is a
partition of V in disjoint sets, namely a head Q and pre-clusters, with the fol-
lowing properties:

(i) Every pre-cluster is a clique.
(ii) There are no edges between any two pre-clusters.
(iii) Every pre-cluster C is a module.
(iv) For any two pre-clusters C and D, sets N(C), N(D), called the tags of C

and D in Q, are disjoint.

Lemma 1. If a G graph is at most k edit steps away from a cluster graph, then
a cluster decomposition of G with |Q| ≤ 3k can be computed in O(k2n+m) time.

Proof. Consider a maximal set P of mutually pair-disjoint induced P3 in G. Let
Q be the vertex set spanned by P . Since P is maximal, G−Q does not contain
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another P3, hence G−Q induces a cluster graph. Defining Q to be the head and
the connected components of G − Q to be the pre-clusters, we see that (i),(ii)
are fulfilled. Furthermore (iii) is true, since otherwise there would exist u, v ∈ C
and w ∈ Q that induce a P3 u − v − w, contradicting the maximality of P .
Finally, if some C, D violate (iv), then some vertices u ∈ C, v ∈ Q, w ∈ D would
form a P3, again contradicting the maximality of P . In conclusion, a set P as
specified yields a cluster decomposition. We also remark that Q contains at most
3k vertices, hence no more than 3k pre-clusters are connected to Q.

In order to construct P efficiently, we start from the subgraph H of G with
empty vertex set and from an empty P . Then we insert vertex by vertex in H
and maintain a cluster decomposition of the current H , until H = G. For any
new vertex w added to H we form several new P3, each consisting of w and a
pair of vertices u, v in H . We call u, v an eligible pair if u, v, w actually form a
P3, and u, v are not already together in some P3 in P . Then, we take disjoint
eligible pairs and add the resulting new P3 to P in a greedy fashion, until P
cannot be extended further in the current H . Correctness of this procedure is
straightforward. Next we sketch the time analysis.

We have to find a greedy set of eligible pairs u, v efficiently in every step. First
of all, u, v must form an induced P3 with w. Since Q has size O(k), only O(k)
of the pre-clusters are connected with Q, and the pre-clusters are modules in H ,
subgraph H + w can be easily partitioned in O(k) modules, using the cluster
decomposition of H . Now, it suffices to choose O(k) representative vertices, one
from each module of H + w, and to check O(k2) pairs u, v whether they form
P3 with w, since the results carry over to all vertices u′, v′ in the same modules.
Once we know the pairs of candidate modules, our greedy extension procedure
can be restricted to vertices from these pairs of modules. Vertices that became
members of any new P3 in P will move, of course, from the pre-clusters to Q.

As we have seen above, for every w we need O(k2) preprocessing time for
identifying the new members of P from a partitioning of H + w into modules.
This gives the O(k2n) term. The time for all other operations can be limited
globally, i.e. for the whole algorithm: Since the final P has still at most k P3,
inserting them in P costs only O(k) time. Edges incident to every new w are
inserted in the growing subgraph H in O(m) time. Thus, we also need only
O(m) time in total, in order to compute modules of H + w from the cluster
decomposition of H , and for all updates of the cluster decomposition. �

Next we define a cleaning procedure which transforms an instance G, k of
Cluster Editing into another instance while preserving the set of minimal
solutions. The purpose is to do some forced changes immediately and to remove
parts of G being irrelevant for the problem. Recall that every v ∈ Q is in the tag
of at most one pre-cluster C. To avoid case distinctions, we introduce a dummy
clique of size 0 and define its tag as the set of all vertices in Q that are not in
the tag of any (real) pre-cluster.

Cleaning Procedure:
(1) For every pre-cluster C with more than k vertices, insert an edge uv

between any two u, v ∈ N(C) that are not yet adjacent.
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(2) For any two pre-clusters C and D with c and d vertices, respectively,
where c + d > k, delete every edge uv with u ∈ N(C) and v ∈ N(D). (In
particular, D may be the dummy pre-cluster and d = 0.)

(3) Remove every clique which is disconnected from the rest of the graph.
Apply these rules as long as possible.

Lemma 2. The cleaning procedure does not alter the set of minimal solutions
and can be implemented to run in O(k2 + m) time if a cluster decomposition as
in Lemma 1 is already given.

Proof. In any solution, every clique with k+2 vertices in G must entirely belong
to one cluster, otherwise we had to disconnect the clique, which is impossible
with k deletions. To see the correctness of (1), note that both C∪{u} and C∪{v}
are cliques of size at least k + 2, hence u, v must be in the same cluster. As for
(2), observe that if we keep edge uv, every vertex in C ∪ D must be incident to
an inserted or deleted edge incident one of u, v, but this amounts to more than k
changes, a contradiction. Correctness of (3) is trivial. Extra edges that connect
an isolated clique to other vertices cannot be part of any minimal solution.

Note that (1) and (2) only add edges inside (or delete edges between) tags
in a set of O(k) vertices, hence these rules are applicable at most once to each
of O(k2) vertex pairs. Rule (3) simply removes isolated cliques. Hence the time
is linear in the size of G. �

Corollary 1. After the cleaning procedure, every pre-cluster C has at most k
vertices.

Proof. Assume that a larger C exists. Since (1) does not apply, C ∪ N(C) is a
clique. Since (2) does not apply, no edge connects N(C) and vertices outside
C ∪ N(C). This gives an isolated clique, and (3) applies, a contradiction. �

Corollary 2. A full kernel with at most 3k2 + 3k vertices can be computed in
O(k2n + m) time.

Proof. Observe that the remaining graph is a full kernel, |Q| ≤ 3k, all tags are
disjoint, and the pre-clusters are bounded due to Corollary 1. �

2.2 Ambiguous Vertices

Corollary 2 establishes an O(k2) bound for the full kernel. Next we considerably
reduce the constant factor by a tighter analysis. In the following we fix the cluster
decomposition and a certain minimal solution. With respect to this minimal
solution, we distinguish several cases of pre-clusters C and “charge” them for
changes of edges that touch vertices in C. All pre-clusters will be charged. Since
at most k changes are allowed in total, this will eventually limit the full-kernel
size. Before we can present our sophisticated charging scheme, we need:

Lemma 3. If the graph (full kernel) G′ remaining after the cleaning procedure
is disconnected, then a minimal solution never adds edges between vertices from
different connected components of G′.
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Proof. We merely need the fact that the cleaning procedure performs only en-
forced changes, i.e., changes that must be done in any minimal solution. Any
cluster with vertices from different connected components of G′ can be split in
smaller clusters, each containing vertices from one component. This finer cluster-
ing used a proper subset of further changes (starting from G′), hence the given
clustering was not a minimal solution. �

Theorem 1. At most k2/4+7k/2+1/4 vertices are ambiguous, and a full kernel
of that size can be computed in O(k2n + m) time.

Proof. Consider any connected component H of the full kernel after the cleaning
procedure. Let c1 ≥ . . . ≥ cr be the vertex numbers of all pre-clusters in H , in
descending order. If the tags of all pre-clusters in H are cliques, we define the
weight of H as c1 + cr. Otherwise, the weight of H is defined to be only c1.
Finally, w is the maximum weight of a connected component in our full kernel.
Note that every tag is non-empty, otherwise the pre-cluster would be an isolated
clique and would have been removed by the cleaning procedure.

We say that a pre-cluster is inert with respect to a fixed minimal solution,
if the vertex set of this pre-cluster and its tag forms exactly one cluster there.
Now let C, with c vertices, be a largest pre-cluster in a connected component H
of weight w. In the following we suppose that C is not inert in some minimal
solution, and we fix such a minimal solution. (Only later we discuss the case
that C is inert in all minimal solutions.)

Phase 1:
First assume that all other pre-clusters in H are inert. Since, by Lemma 3,
changes after the cleaning procedure occur only inside connected components,
it follows as the only remaining possibility that C ∪N(C) is split in at least two
clusters. This splitting requires at least c deletions of edges incident to vertices
of C, this is easily seen from N(C) �= ∅ and the fact that C is both a clique and
a module. Moreover, since we are considering a minimal solution, N(C) was not
a clique. Hence, by the definition of w, we have c = w.

The other case is that some other pre-cluster D in H , say with d vertices,
is not inert either. We claim that at least c + d changes of edges that involve
vertices of C ∪ D must be done. It is easy to check the few different cases that
C ∪ N(C) (or D ∪ N(D)) is cut in different clusters or stays in one cluster that
gets at least one more vertex. Trivially, we also have c + d ≥ w.

Thus we can already charge one or two non-inert pre-clusters for at least w
changes, in both cases.

Phase 2:
Next we will also charge all the remaining pre-clusters in all components. In
the following, consider any connected component with, say, r pre-clusters. By
connectivity, at least r − 1 edges tie their tags together. Two pre-clusters are
said to be neighbors if there exists an edge between their tags.

If the considered component has at least one non-inert pre-cluster C, or an
inert pre-cluster C whose tag N(C) is not a clique, we can successively charge
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all r pre-clusters, each for one change, as follows. First charge all pre-clusters
C of the two mentioned types: If C is not inert, there is a change involving a
vertex of C. If C is inert but N(C) not a clique, an edge insertion must be
done in N(C). Next, pick a yet uncharged pre-cluster D (inert, with a clique as
tag) which has already a charged neighbor C. Since D is inert, an edge between
N(C) and N(D) is deleted in the solution, and we charge D for this deletion.
Since C was already charged, we do not count this edge twice. By connectivity,
this procedure never gets stuck, until all pre-clusters are charged. If one of the
pre-clusters in the component is dummy, we also consider it as “charged” in
the beginning and proceed as above. In either case, every non-empty pre-cluster
in the component is now charged for a different change. Also note that every
pre-cluster contains at most w vertices.

It remains to discuss components where all pre-clusters are inert and have
cliques as tags. Obviously, at least r − 1 edges must be deleted. We charge the
largest and the smallest pre-cluster together for one deletion, and the other r−2
pre-clusters together for r − 2 deletions. By definition of w, at most w vertices
from pre-clusters are now charged for each of the r − 1 edge deletions.

Putting things together:
Recall that we have at most k changes in total. In Phase 1 we charged, for y ≥ w
of them, no more than y vertices from one or two pre-clusters. In Phase 2, at most
w ≤ y vertices from nonempty pre-clusters have been charged for each of the,
at most, k − y other changes. Since all pre-clusters are charged, the pre-clusters
contain in total no more than (1+k−y)y vertices. This expression is maximized
if y = (k+1)/2, hence the pre-clusters contain at most k2/4+k/2+1/4 vertices.
Adding the at most 3k vertices from Q yields the result.

Finally we give the time complexity. Let C again be a largest pre-cluster in
a connected component of maximum weight. (Hence C is easy to find in the
cluster decomposition.) Our construction and analysis shows: If C is not inert
in some minimal solution, the union of pre-clusters has already a size of at most
k2/4 + k/2+ 1/4, and we can stop. By contraposition, if this union is larger, we
know that C is inert in all minimal solutions. Hence, removing C ∪N(C) leaves
us with a smaller full kernel. Moreover, we still have a cluster decomposition
of this smaller graph with |Q| ≤ 3k, since the part outside Q is still a cluster
graph. Thus we can simply iterate the procedure. A cluster decomposition with
|Q| ≤ 3k must be computed only once in the beginning. The only thing to
recompute after every removal is the connected components of Q. Now the time
bound follows from the previous results. �

The size bound in Theorem 1 is asymptotically tight (even for the more
restrictive Cluster Deletion problem), as the following example shows. For
simplicity let k be even.

Proposition 1. There exist graphs with k2/4 + 3k/2 + 2 ambiguous vertices.

Proof. Take k/2 + 1 disjoint cliques, each with k/2 + 1 vertices, and attach to
every clique another vertex that is adjacent to one vertex in the clique. We put
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any one of the extra vertices x and its only neighbor y in one cluster, the other
k/2 edges incident to y are deleted. The other k/2 extra edges are also deleted.
Every such solution is minimal, hence all vertices are ambiguous. �

There remains a gap in the linear term only. However note that for the graphs
in the previous proof, the minimum number of changes to reach a cluster graph
is only k0 = k/2 + 1. It arises the question whether the full kernel size is even
smaller than k2/4 for k = k0, or already for some k < 2k0.

2.3 Ambiguous Pairs

The worst case number of ambiguous pairs which can be Θ(k4), due to:

Theorem 2. The number of ambiguous pairs is bounded by k4/32 + 7k3/8 +
97k2/16 − 7k/8 − 3/32. On the other hand, there exist graphs with k4/800 am-
biguous pairs.

Proof. The first statement follows readily from Theorem 1. The worst case would
be that all pairs in a full kernel of maximum size are ambiguous.

To construct an example for the lower bound, take ak disjoint cliques, each
with bk vertices, and another special vertex z. Constants a, b are specified later.
For simplicity assume that all numbers that denote cardinalities are in fact
integer. Join one vertex from every clique by an edge to z. In the following, Kv

denotes the clique with vertex v connected to z. For any Ku and Kv and w ∈ Kv

(w �= v) we specify a minimal solution as follows. We keep edges uz, zv, vw, and
all edges in Ku. This implies that Ku and z, v, w belong to the same cluster.
In order to put z, v, w in Ku we have to insert 3bk edges. The other ak − 2
edges indicent to z are deleted, as well as the 2bk − 4 edges between v and w,
respectively, and the rest of Kv. Obviously, these (a + 5b)k − 6 changes yield
a cluster graph. This solution is minimal, by the following argument. In any
solution using a subset of changes we have to keep uz, zv, vw and the edges
in Ku, too, hence Ku, z, v, w are in the same cluster. Furthermore we have to
keep Kv \ {v, w} and all other cliques. Since merging two Θ(k) cliques would
require Θ(k2) insertions, we must also delete the same edges as above. Note that
all a2b2k4/2 edges (lower-order terms neglected) are ambiguous. The constant
factor is maximized under constraint a + 5b ≤ 1 if a = 1/2 and b = 1/10. �

Closing the huge gap in the constant factor is left as an open problem. Similar
remarks as above apply to the graphs used in this proof: Note that k0 = ak =
k/2. We conjecture that the number of ambiguous pairs is much smaller for
k close to k0. Another open question arises from Theorem 1. Our construction
guarantees a bound in terms of k, but not the smallest full kernel for every graph.
We conjecture that, in order to compute the exact set of ambiguous pairs, one
must actually compute all minimal solutions, so that exponential time in k is
required. This leads us to the next subject: We can compute the smallest full
kernel, via a concise description of all minimal solutions, by a search tree smaller
than the obvious O∗(3k) bound.



On the Fixed-Parameter Enumerability of Cluster Editing 291

3 Enumerating the Minimal Solutions

We suppose that the reader is familiar with the search tree technique which is
standard in FPT algorithmics, and with the notion of branching number or,
synonymously, splitting number, we refer to [10]. The branching number is the
positive root of the characteristic polynomial of the recurrence that bounds the
size of the search tree. A trivial algorithm for enumerating all minimal sets of at
most k changes that turn a given graph G into a cluster graph works as follows:
At every node of the search tree it chooses some induced P3 in G and deletes
one of the two edges or inserts the missing edge, then it branches on these three
cases, and so on. The complexity is O∗(3k). It is also a trivial fact that this time
is needed in the worst case to enumerate all minimal solutions. For instance, the
disjoint union of k copies of P3 has that many solutions. On the other hand, this
solution space has a simple structure and can be described implicitly. Due to an
analoguous situtation for the Vertex Cover problem, we introduced in [4] the
notion of a concise description of the solution space. This gives the possibility
to develop more clever branching rules and to describe all solutions by a smaller
search tree.

Next we give such an algorithm for Cluster Editing which is still fairly
simple. Our branching rule is based on a lemma that can be esily proved by case
inspection:

Lemma 4. If two P3 in G share exactly one vertex, there also exist two P3

that share exactly two (adjacent) vertices. If G is connected and all P3 in G are
disjoint, then G is a complete graph or G = P3.

Consequently, a graph is either a disjoint union of cliques and P3, or it con-
tains a 4-vertex subgraph with two different P3. In the former case, the set of
minimal solutions is simply the cartesian product of sets of size 3 (the vertex
pairs in each P3 component), as stated above. In the latter case we branch on
such a 4-vertex subgraph.

Theorem 3. A description of all minimal solutions (more precisely, a list of
single solutions and cartesian products of certain sets of vertex pairs) can be
computed in O∗(2.562k) time.

Proof. Every tree node represents a graph and a parameter value. The root
represents the given G and k. Every tree node is processed as follows. If the
graph is a disjoint union of cliques and P3 then stop at this node and output
this part of the list. Otherwise take four vertices that form two different P3,
say with vertex set {w1, u, v} and {w2, u, v}, respectively, note that the common
pair uv can be an edge or not. Clearly, we have to change either the status of
uv, or the status of one of wiu, wiv, for i = 1, 2. One option reduces k by 1,
four options reduce k by 2. Thus, the branching number is the root of equation
x2 = x + 4, which yields x = (1 +

√
17)/2 < 2.562. �

The idea of this theorem can be immediately generalized to an arbitrary
but fixed p: Always choose a pair of vertices u, v that belongs to more than p
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different P3. Then, either change the status of uv or of one pair in each of these
P3. As long such u, v exist, the branching number is given by the recurrence
xp+1 = xp + 2p+1. In particular, p = 2 yields x3 = x2 + 8, hence x < 2.4.
Larger p would further improve the branching number. However, it remains to
describe the minimal solutions in the leaves of the resulting search tree, where
the branching rule is nolonger applicable. Therefore, we first have to characterize
graphs G where every vertex pair belongs to at most p P3. Clearly, it is enough to
study connected graphs of this type. In the following we manage the case p = 2.
The plan is as follows. We completely characterize our graphs G of interest,
showing that G is either a “trivial” graph, i.e. a large path, cycle or clique, or
one of a handful of small exceptional graphs. Hence the leaves of our search trees
represent only “small” or “trivial” graphs for which the solutions to Cluster
Editing with the residual parameter are easy to enumerate. Thus we end up
with a search tree algorithm with branching number 2.4.

Theorem 4. A connected graph G where every vertex pair belongs to at most
two P3 is either a Pn, Cn or Kn or one of the 6-vertex graphs (a)-(g) shown
below, or an induced subgraph thereof.

Proof. Predicate P (., .) with two vertices as arguments says that this pair is in
at most two P3. If every vertex of G is simplicial (its neighborhood is a clique),
then G = Kn. Otherwise we choose some vertex r such that N(r) contains two
non-adjacent vertices u, v. Let r be of maximum degree among all non-simplicial
vertices. By P (r, v), vertex u has at most one neighbor x ∈ N(r) which is not
adjacent to v. Similarly, v has at most one neighbor y ∈ N(r) which is not
adjacent to u. Due to P (u, v), vertices u, v have at most one common neighbor
z �= r. Thus N(r) consists of u, v and perhaps x, y, z. (Each of x, y, z may or
may not exist.) P (r, t) gives the following Claim: Any t ∈ N(r) has at most
two non-neighbors in N(r), and if t has exactly two, t cannot possess neighbors
outside N(r). Now we examine the cases for N(r).

x and y exist. Then each of u, v has two non-neighbors in N(r) and hence
no further neighbors. If z exists too, z cannot have a further neighbor z′ /∈ N(r)
either: Since z′ is not adjacent to u and v, edge zz′ would violate P (z, z′). Next
observe that x must be adjacent to at least one of y, z, and y to at least one
of x, z, due to the claim. From the resulting cases, only one (and its symmetric
counterpart) is impossible: If xy, xz are edges but yz is not, P (y, z) does not
hold. The other cases give the graphs (a),(b),(c). In (a) and (b), vertices x and y
have no further neighbors, due to the claim. Hence (a) and (b) are maximal with
the desired property. We show the same for (c), in a different way: Assuming
that x has a further neighbor x′, edge P (x, x′) is violated, and similarly with y.

x and y exist, but not z. Then similar arguments apply. If x, y are not adja-
cent, none of u, v, x, y can have further neighbors due to the claim, and we get
an induced subgraph of (a). If xy is an edge then N(r) = P4. Both x and y can
have at most one further neighbor. It must be a common neighbor, or we get
violations of predicate P . This vertex w in turn cannot have further neighbors,
by P (x, w). Thus we get graph (d).
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Only x and z exist. (Case y and z is symmetric). If x, z are not adjacent
then N(r) = P4 as before. Hence suppose that xz is an edge. By the claim, the
maximum number of further neighbors of u, v, x, z is 1, 0, 1, 2, respectively. But
a neighbor of z would contradict P (v, z). The neighbors of u and x must be
identical, and this new vertex w cannot have further neighbors, by P (u, w). This
case yields graph (e).

Only z exists. Since r is the non-simplicial vertex with maximum degree, z
has no further neighbors. Each of u, v may have one further neighbor, and they
are different, which gives the maximal graph (f).

Only x exists. (Case y is symmetric.) Each of u and x can have one further
neighbor. If these neighbors are different, we obtain graph (g) which is maximal
by similar arguments as before. If u, x have a common neighbor w, we can append
another edge to w, and the maximal graph is isomorphic to (f).

None of x, y, z exists. Since r is a non-simplicial vertex with maximum degree
2, each of u and v has at most one further neighbor. Applying this argument
inductively to the new vertices, we easily find that G is either Cn or Pn, depend-
ing on whether the last neighbors are equal, different and adjacent, or different
and non-adjacent. �
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Coming back to the motivation, we can get a description of all minimal so-
lutions to Cluster Editing as follows: Branch on pairs that belong to three
or more P3, as long as possible. Every leaf of the resulting search tree is la-
beled by either a disjoint union of cliques (that can be ignored, as discussed
earlier), chordless paths and cycles, and other connected components of con-
stantly bounded size. Given the “residual” k for the leaf, these paths and cycles
must be of length O(k), otherwise there is no solution for this leaf (dead end).
Characterizing all minimal solutions in chordless paths and cycles is trivial, due
to their highly regular structure. For the other connected components we may
precompute the (constantly many) minimal solutions, this part does not even
depend on parameter k. Finally we have to combine solutions from the connected
component so that the total number of changes is at most the current k. Details
are straightforward but tedious. We summarize our findings in:

Theorem 5. A description of all minimal solutions is computable in O∗(2.4k)
time.
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Abstract. We study constraint satisfaction problems (CSPs) that are
k-consistent in the sense that any k input constraints can be simulta-
neously satisfied. In this setting, we focus on constraint languages with
a single binary constraint type. Such a constraint satisfaction problem
is equivalent to the question whether there is a homomorphism from an
input digraph G to a fixed target digraph H . The instance corresponding
to G is k-consistent if every subgraph of G of size at most k is homo-
morphic to H . Let ρk(H) be the largest ρ such that every k-consistent G
contains a subgraph G′ of size at least ρ||E(G)|| that is homomorphic to
H . The ratio ρk(H) reflects the fraction of constraints of a k-consistent
instance that can be always satisfied. We determine ρk(H) for all di-
graphs H that are not acyclic and show that limk→∞ ρk(H) = 1 if and
only if H has tree duality. In addition, for graphs H with tree duality,
we design an algorithm that computes in linear time for a given input
graph G either a homomorphism from almost the entire graph G to H ,
or a subgraph of G of bounded size that is not homomorphic to H .

1 Introduction

Constraint satisfaction problems (CSPs) form an important model for problems
arising in many areas of computer science. This is witnessed by the interest
in the computational complexity of various variants of CSPs [1,2,8,9,10,11,23].
However, sometimes not all the constraints need to be satisfied, but it suffices to
satisfy a large fraction of them. In order to maximize this fraction, the input can

� Supported by Institute for Theoretical Computer Science (ITI), project
1M0021620808 of Czech Ministry of Education.

�� The author was a postdoctoral fellow at TU Berlin within the framework of the
European training network COMBSTRU from October 2004 to July 2005.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 295–306, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



296 M. Bodirsky and D. Král’

be pruned in the beginning by removing small sets of contradictory constraints
so that the input becomes “locally” consistent. Formally, an instance of CSP is
said to be k-consistent if any k constraints can be simultaneously satisfied.

A similar notion of local consistency can be defined in terms of variables: an
instance is k-consistent if the values of any k variables can be chosen so that any
constraint on only these variables is satisfied. Our results extend to this setting.

Both these notions of local consistency differ fundamentally from the notion
of k-consistency of Freuder [11] (and also the notion of relational k-consistency
of Dechter and van Beek [4]), where a CSP instance is k-consistent if every
solution for the constraints on k − 1 variables (constraints) can be extended to
another variable (constraint).

1.1 History of Locally Consistent CSPs

The notion of local consistency considered in this paper can be traced back to
the early 1980’s. Lieberherr and Specker [19,20] studied the problem for CNF
formulas: they require that any k clauses of a given formula can be satisfied
and asked what fraction of all the clauses can be satisfied. They settled the case
k = 1, 2, 3. A simpler proof of their results was found by Yannakakis [24]. The
case k = 4 was settled in [17] (exploring a connection to Usiskin’s numbers [21]).
Locally consistent CNF formulas can also be found in Chapter 20 of [16].

Huang et al. [14] and Trevisan [22] resolved the asymptotic behavior of locally
consistent CNF formulas as k approaches infinity. Trevisan [22] was the first to
define the notion of local consistency for CSPs with constraints that are Boolean
predicates. For a set Π of Boolean constraints, ρk(Π) is the maximum ρ such
that a fraction of at least ρ constraints can be satisfied in any k-consistent
input. Note that we now allow negations in the arguments of the constraints
(the domain is the Boolean field). If Π is the set of all the predicates of arity �,
then limk→∞ ρk(Π) = 21−� [22]. The ratios ρk(Π), k ≥ 1, for a set Π consisting
of a single predicate of arity at most three were determined by Dvořák et al. [6].
The asymptotic behavior for sets Π of predicates was studied in [18], where
limk→∞ ρk(Π) was expressed as the minimum of a certain functional on a convex
set of polynomials derived from Π . Efficient algorithms for locally consistent
CSPs with constraints that are Boolean predicates were also designed [6,7,18].

1.2 Our Contribution

We initiate the study of locally consistent CSPs on larger finite domains and
focus on the case where all the constraints are of the same binary relation.
The relation can be described by a digraph H whose vertices correspond to the
elements of the domain. Two vertices are joined by an arc if the ordered pair of
the corresponding elements is contained in the relation. Similarly, the input can
be described by a digraph G: the vertices of G correspond to the variables and the
arcs to the given constraints. There is a satisfying assignment for the input if and
only if G is homomorphic to H , i.e., there exists a mapping h : V (G) → V (H)
such that h(u)h(v) ∈ E(H) for every uv ∈ E(G).
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The notion of local consistency translates to digraphs as follows: G corre-
sponds to an k-consistent input if every subgraph of G of size at most k, i.e.,
with at most k edges, is homomorphic to H . The ratio ρk(H) denotes the largest
ρ such that for any k-consistent G there is a mapping h : V (G) → V (H) pre-
serving at least ρ||G|| arcs of G. The version defined in terms of variables also
translates to digraphs: for that we require that each subgraph G′ of order at
most k is homomorphic to H . The corresponding ratio is denoted by ρv

k(H).
We can restrict our attention to digraphs H that are cores. H is a core if it

does not have a homomorphism to a proper subgraph. Every digraph H contains
a unique (up to isomorphism) subgraph H ′ such that H is homomorphic to H ′

and H ′ is a core. Obviously, ρk(H) = ρk(H ′) and ρv
k(H) = ρv

k(H ′).
We show that if H contains a directed cycle (or a loop), then ρk(H) and ρv

k(H)
coincide and are equal to the fractional relative density δ′rel(H) of H as defined
in Section 2. For such digraphs H , we also design a simple linear time algorithm
that finds a mapping h : V (G) → V (H) preserving at least δ′rel(H)·||G|| arcs of G.

Then, we focus on the asymptotic behavior of ρk(H). We find a close relation
to the notion of tree duality from [13] by showing that limk→∞ ρk(H) = 1
if and only if H has tree duality. In particular, the limit is equal to one for
orientations of paths or acyclic tournaments. Finally, in Section 6, we sketch
possible generalizations of our results for CSPs with larger constraint languages.

2 Target Graphs with Cycles or Loops

We first focus on the binary relations (constraints) whose corresponding target
graph H such that H contains a directed cycle. This includes the case when the
relation is symmetric.

For a digraph H , we define the fractional relative density of H as follows.

δ′rel(H) = max
x:V (H)→〈0,1〉| ∑

v∈V (H)
x(v)=1

∑
uv∈E(H)

x(u) · x(v)

The maximum is taken over all functions x : V (H) → 〈0, 1〉 such that the sum
of x(v) is equal to one. In particular, if H contains a loop, then δ′rel(H) = 1.
This notion of density is similar to that of relative density as used e.g. in [15]:

δrel(H) = max
∅�=H′⊆H

||H ′||
|H ′|2 .

The two notions are in general different. Consider the digraph H depicted in Fig-
ure 1 that is obtained from the complete graph of order five by replacing each
edge by a bigon and removing two non-incident arcs. The relative density δrel(H)
is 18/25 = 0.720 but the fractional relative density δ′rel(H) is 88/121 ≈ 0.727 (set
x(v) = 3/11 for the vertex incident with 8 arcs and x(v) = 2/11 for the other
vertices). However, the two notions coincide when H corresponds to a symmet-
ric binary relation [5]. In this case, both the target and the input graph can be
viewed as an undirected digraph (replace each bigon by a single undirected edge).
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Fig. 1. A digraph with different relative density and fractional relative density

Let ω(H) denote the size of the largest subset A ⊆ V (H) such that any two
distinct vertices of A are joined by an arc.

Proposition 1. If a digraph H corresponds to a symmetric binary relation,
then δ′rel(H) = δrel(H). Moreover, δrel(H) equals 1, if H contains a loop, and
δrel(H) = 1 − 1/ω(H) otherwise.

Proof. If H contains a loop, then δrel(H) = δ′rel(H) = 1. In the rest, we as-
sume that H has no loops. Let x : V (H) → 〈0, 1〉 be the function such that
δ′rel(H) =

∑
uv∈E(H) x(u) · x(v),

∑
v∈V (H) x(v) = 1 and the support of x is min-

imal. We show that uv ∈ E(H) for any two vertices u and v contained in the
support.

Assume the opposite and let u and v be two non-adjacent vertices such that
x(u) > 0 and x(v) > 0. Let Xu = 2

∑
uw∈E(H) x(w) and Xv =

∑
uw∈E(H) x(w).

By symmetry, we can assume that Xu ≤ Xv. Consider the following function x′:

x′(w) =

⎧⎨⎩x(u) − min{x(u), x(v)} if w = u,
x(v) + min{x(u), x(v)} if w = v, and

x(w) otherwise.

Since the vertices u and v are non-adjacent in H , the following holds:∑
uv∈E(H)

x′(u) · x′(v) −
∑

uv∈E(H)

x(u) · x(v) = 2(Xv − Xu)min{x(u), x(v)}.

The choice of x implies that Xu = Xv and δ′rel(H) =
∑

uv∈E(H) x′(u) · x′(v).
Since Xu = Xv, the configuration is again symmetric with respect to u and v
and we may assume that x(u) < x(v). Consequently, x′(u) = 0 and the support
of x is not minimal. We conclude that the support of x induces a complete
graph.

It is an easy exercise in calculus to show that if δ′rel(H) =
∑

uv∈E(H) x(u) ·
x(v), then x(u) = 1/k where k is the size of the support of x. Hence, δ′rel(H) =
1 − 1/ω(H). Since δrel(H) ≤ δ′rel(H), we have δrel(H) = δ′rel(H).
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The density δ′rel(H) is always a lower bound on ρk(H) (even if H is acyclic):

Lemma 1. Let H be a digraph. The following holds for every k ≥ 1:

ρk(H) ≥ δ′rel(H) .

Moreover, there exists a deterministic algorithm that for any digraph G finds a
mapping h : V (G) → V (H) that preserves at least δ′rel(H) · ||G|| arcs of G. The
running time of the algorithm is linear in the size of G (if H is fixed).

Proof. Let x : V (H) → 〈0, 1〉 be the function such that
∑

v∈V (H) x(v) = 1
and δ′rel(H) =

∑
uv∈E(H) x(u) · x(v). Consider a mapping h : V (G) → V (H)

that maps each vertex of G to a vertex v ∈ V (H) with probability x(v). The
probability that an arc of G is mapped to an arc of H is exactly

∑
uv∈E(H) x(u) ·

x(v) = δ′rel(H). Hence, the expected number of arcs preserved by h is δ′rel(H) ·
||G||. The mapping h can be found deterministically in linear time using the
derandomization method based on conditional expectations as described in [24].

Let us now recall Markov’s inequality and Chernoff’s inequality:

Proposition 2. If X is a non-negative random variable with the expected value
E, then the following holds for every α ≥ 1:

Prob(X ≥ α) ≤ E

α
.

Proposition 3. If X is the sum of N independent random zero-one variables,
each equal to one with probability p, then the following holds for 0 < δ ≤ 1:

Prob(X ≥ (1 + δ)pN) ≤ e−
δ2pN

3 and Prob(X ≤ (1 − δ)pN) ≤ e−
δ2pN

2 .

We now prove the converse inequality of Lemma 1:

Theorem 1. If H is a non-acyclic digraph, then ρk(H) = δ′rel(H) for all k ≥ 1.

Proof. Fix k ≥ 1 and ε, 0 < ε ≤ 1/2. Let n be a sufficiently large integer. We
find a digraph G such that every subgraph of G of size at most k is homomorphic
to H , but every mapping h : V (G) → V (H) preserves at most (δ′rel(H) + ε)||G||
arcs.

We first consider a random digraph G0 and we later prune it to obey all the
requirements. G0 is a random graph of order n in which the arc from u to v,
u �= v, is included with probability n−1+1/2k independently of the other arcs. G0

contains no loops. Since the expected number of arcs of G0 is n(n−1)n−1+1/2k =
n1/2k(n− 1), Proposition 3 implies that the probability that the number of arcs
is smaller than (1 − ε/4)n1+1/2k does not exceed 1/4 for a sufficiently large n.

Next, we estimate the number of (not necessarily directed) cycles of G0. The
expected number of bigons is

(
n
2

)
n−2+2/2k ≤ n1/k and that of cycles of length

� = 3, . . . , k is at most n�2�(n−1+1/2k)� ≤ 2�n1/2. By Proposition 2, the number
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of such bigons and cycles does not exceed 4 · k2kn1/2 with probability at least
1/4. Hence, if n is sufficiently large (and k is fixed), the number of arcs contained
in such bigons and cycles is bounded by εn/4 with probability at least 3/4.

Fix a mapping h : V (G0) → V (H). Set x(v) := |h−1(v)|/n for v ∈ V (H). By
the definition of δ′rel(H), the following holds:∑

uv∈E(H)

x(u)x(v) ≤ δ′rel(H) (1)

The expected number of arcs of G0 preserved by h can be estimated using (1):∑
uv∈E(H)

|h−1(u)| · |h−1(v)|n−1+1/2k =
∑

uv∈E(H)

x(u)x(v)n1+1/2k ≤δ′rel(H)n1+1/2k.

By Proposition 3, the probability that the number of arcs preserved by h ex-

ceeds (1+ε/4)δ′rel(H)n1+1/2k is at most e−
ε2δ′rel(H)n1+1/2k

48 . Since there are |V (H)|n
possible choices of h, and since the target graph H and the numbers k and ε are
fixed, the probability that there exists h : V (G0) → V (H) preserving more than
(1 + ε/4)δ′rel(H)n1+1/2k arcs of G0 is at most 1/4 if n is sufficiently large.

We conclude that the following holds with positive probability:

1. G0 contains at least (1 − ε/4)n1+1/2k arcs,
2. the size of the set E of the arcs contained in bigons or cycles of length at

most k in G0 does not exceed εn/4, and
3. every h : V (G0) → V (H) preserves at most (1 + ε/4) δ′rel(H)n1+1/2k arcs.

Therefore, there exists a graph G0 with the above three properties. The final
graph G is obtained from G0 by removing the arcs contained in the set E.

The size of G is at least (1− ε/2)n1+1/2k. Since every mapping h : V (G0) →
V (H) preserves at most (1+ε/4)δ′rel(H)n1+1/2k arcs and G is a subgraph of G0,
every h : V (G) → V (H) also preserves at most this number of arcs. We now
infer the bound on the fraction of arcs preserved by h (recall that ε ≤ 1/2):

(1 + ε/4)δ′rel(H)n1+1/2k

||G|| ≤ 1 + ε/4
1 − ε/2

δ′rel(H) ≤ (1 + ε)δ′rel(H) .

Next, we show that any subgraph of G of size at most k is homomorphic
to H . Let G′ be such a subgraph. Since the size of G′ is at most k, G′ is an
orientation of a forest. Hence, there is a homomorphism from G′ to any directed
cycle. In particular, there is a homomorphism from G′ to H .

Since for every ε > 0, there is a digraph G corresponding to a k-consistent
input and the fraction of arcs preserved by any h : V (G) → V (H) is at most
δ′rel(H)+ε, we have ρk(H) ≤ δ′rel(H). The opposite inequality holds by Lemma 1.

Proposition 1 and Theorem 1 imply the following for symmetric relations:

Corollary 1. Let H be a digraph corresponding to a symmetric binary relation
R. The following holds for every k ≥ 1:

ρk(H) =
{

1 if there exists an element a such that [a, a] ∈ R

1 − 1/ω(H) otherwise
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Since every subgraph of order at most k of G from the proof of Theorem 1 is
an orientation of a forest and thus homomorphic to H , the following also holds:

Corollary 2. If a digraph H contains a directed cycle, then ρv
k(H) = δ′rel(H)

for all k ≥ 1.

3 Graph Homomorphisms and Tree Duality

In the next two sections, we discover a close connection between the limit
limk→∞ ρk(H) and the concept of tree duality. A digraph H has tree duality
if G is homomorphic to H whenever every (directed) tree homomorphic to G
is also homomorphic to H . E.g., every orientation of a simple path or every
acyclic tournament has tree duality. Feder and Vardi [10] and Hell, Nešetřil and
Zhu [13] observed that if H has tree duality, then the H-coloring problem (the
decision problem whether a given graph is homomorphic to H) can be solved in
polynomial time [12] by the so-called consistency check algorithm, which is also
called arc-consistency procedure in artificial intelligence.

An equivalent definition of having tree duality uses the notion of set graphs.
For a digraph H , the set graph 2H is the graph whose vertices are non-empty
subsets of V (H) and two subsets U and V are joined by an arc if the following
holds: for every vertex u ∈ U , there exists a vertex v ∈ V such that uv is an arc
of H , and for every vertex v ∈ V , there exists a vertex u ∈ U such that uv is an
arc of H (see Figure 2). H has tree duality if and only if 2H is homomorphic to
H [3,10]. Note that this criterion can be used to decide algorithmically whether
a given digraph H has tree duality.

We now describe the consistency check algorithm studied already in [11]. At
the beginning, each vertex v of an input graph G is assigned the set �0(v) of all
the vertices of the target graph H and the set assigned to v after i steps of the
algorithm is denoted by �i(v). At the i-th step, a vertex w ∈ V (H) is removed
from the set of v if G contains an arc vv′ such that H does not contain an arc
ww′ for any w′ ∈ �i−1(v′) or G contains an arc v′v such that H does not contain

{1, 2}

{3, 4}

{1, 2, 4}

{1, 3, 4}

{3}

{2, 3}

{2}

{1}

{4}

{2, 3, 4} {2, 4}

{1, 3}{1, 2, 3}
2

3

4

1

{1, 4}

{1, 2, 3, 4}

Fig. 2. An example of a digraph H with tree duality and its set graph
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an arc w′w for any w′ ∈ �i−1(v′). We say that such an arc vv′ is violated at
the i-th step. The procedure terminates when there are no violated arcs. The
number of steps never exceeds |G| · |H |. The running time of the procedure is
linear in |G| + ||G|| when H is fixed (and when the assignments �i at each step
are implicitly represented).

If there is a vertex v whose final set is empty, then G is not homomorphic to
H . Otherwise, the mapping h : V (G) → V (2H) that maps each v to its final set
is a homomorphism from G to 2H . If H has tree duality, then 2H is homomorphic
to H and thus G is homomorphic to H .

4 Target Graphs with Tree Duality

In this section, we show that if H has tree duality, then limk→∞ ρk(H) = 1. We
also design an algorithm that either finds a good mapping from G to H or detects
a subgraph of G of bounded size not homomorphic to H (under the assumption
that H has tree duality). Note that even if H has tree duality, the problem
to maximize the number of satisfied constraints can be hard. For instance the
problem whether G is homomorphic to the digraph consisting of a single arc
can be solved in polynomial time, but the maximization problem is hard: for an
undirected graph G0, let G be the digraph obtained by replacing each edge with
a bigon. The maximum number of arcs that can be preserved by a mapping from
G to the arc is equal to the size of the maximum cut of G0.

Theorem 2. If H is a digraph that has tree duality, then the following holds:

lim
k→∞

ρk(H) = 1.

Moreover, there is an algorithm that for an input graph G and ε > 0 either finds
a mapping h : V (G) → V (H) preserving at least (1 − ε) · ||G|| arcs or finds a
subgraph of G of size at most |H |�2|H|/ε� not homomorphic to H. The running
time of the algorithm is linear in |G| + ||G|| if the target graph H is fixed.

Proof. We first describe the algorithm. The algorithm runs the consistency check
algorithm for the first �2|H |/ε� steps and constructs the corresponding assign-
ments �i. It then distinguishes two cases. The first case is that there exists a
vertex v with �i(v) = ∅. Let i be the smallest index with this property. For every
w ∈ V (H), there exists a step of the algorithm when w was removed from the set
of v because an incident edge was violated. For w ∈ V (H), consider such an edge
vwv and the corresponding step iw. Note that iw < i. Now, for every w′ ∈ V (H)
missing in �iw (vw), consider the step when w′ was removed from the sets of vw.
Note that �iw(vw) �= ∅ by the choice of i. We obtain new sets of arcs that were
violated before the iw-th step and that caused vertices w′ to be removed from
the set of vw. Continue in this way unless the sets assigned to the vertices of G
are equal to V (H). This terminates because the numbers iw of steps decrease.
Since i ≤ �2|H |/ε�, the number of considered violated arcs does not exceed:

|H |+ |H |(|H | − 1) + |H |(|H | − 1)2 + · · ·+ |H |(|H | − 1)�2|H|/ε�−1 ≤ |H |�2|H|/ε� .

This set of arcs contains a subgraph of G that is not homomorphic to H .
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The other case is that �i(v) �= ∅ for all v ∈ V (G) and i. Let Ei be the set of the
arcs violated at the i-th step. Since each edge is violated at most 2|H | times (at
each step when the edge is violated, the size of the set of one of its end-vertices
decreases), the sum |E1| + · · · + |E�2|H|/ε�| is bounded by 2|H | · ||G||. Hence,
there exists i = 1, . . . , �2|H |/ε� such that |Ei| ≤ ε||G||. Consider a mapping
h′ : V (G) → V (2H) defined as h′(v) := �i−1(v); h′ preserves all arcs possibly
except for those of Ei. Since 2H is homomorphic to H , there is a homomorphism
h : V (G) → V (H) that preserves at least (1 − ε)||G|| arcs. The bound on the
running time of our algorithm follows from the discussions in Section 3.

Since the algorithm finds for a |H |�2|H|/ε�-consistent G a mapping preserving
at least (1 − ε)||G|| arcs, ρ|H|�2|H|/ε�(H) ≥ 1 − ε and limk→∞ ρk(H) = 1.

Since ρv
2k(H) ≥ ρk(H) and ρ(H) is non-decreasing in k, Theorem 2 implies:

Corollary 3. If H is a digraph that has tree duality, then the following holds:

lim
k→∞

ρv
k(H) = 1.

Moreover, there is an algorithm that for an input graph G and ε > 0 either finds
a mapping h : V (G) → V (H) preserving at least (1 − ε) · ||G|| arcs or finds
a subgraph of G of order at most 1 + |H |�2|H|/ε� not homomorphic to H. The
running time of the algorithm is linear in |G| + ||G|| if H is fixed.

5 Target Graphs Without Tree Duality

In this section, we show that if a digraph H does not have tree duality, then
ρk(H) is bounded away from 1 by a constant (that depends on the digraph H):

Theorem 3. Let H be a digraph of order n without tree duality. The following
holds for every k:

ρk(H) ≤ 1 − 2−2n .

Proof. Fix k ≥ 1. Let m be the number of arcs of 2H . We show that for every
ε > 0, there exists a digraph G such that every subgraph of G of size at most
k can be mapped to H but no mapping h : V (G) → V (H) preserves more than
(1−m−1 +ε)||G|| arcs of G. Since m ≤ 22n, the statement of the theorem would
then follow.

The proof proceeds similarly to that of Theorem 1. Let N be a (sufficiently)
large integer. Associate with every vertex vi, 1 ≤ i ≤ 2n − 1, of 2H a set Vi of
N distinct vertices. We construct a random graph G0 with the vertex set ∪iVi.
Two vertices u ∈ Vi and v ∈ Vj are joined by an arc in G0 with probability
N−1+1/2k if vivj is an arc of H , and they are not joined by an arc, otherwise.
The expected number of arcs of G0 is mN1+1/2k. In particular, by Proposition 3,
the probability that G0 has less than (1 − ε/4)mN1+1/2k arcs does not exceed
1/4 (for a sufficiently large N).

The expected number of (not necessarily directed) cycles of G0 of length
� = 1, . . . , k does not exceed 2n�N �N �(−1+1/2k) = O(N1/2) (recall that k and H
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are fixed). Hence, by Proposition 2, the number of arcs of G0 contained in such
cycles does not exceed εN with probability at least 3/4.

Fix now a mapping h : V (G0) → V (H). Consider the following random
mapping h0 : V (2H) → V (H). A vertex vi ∈ V (2H) is mapped to a vertex
w ∈ V (H) with probability |h−1(w) ∩ Vi|/|Vi|. Let m0 be the expected number
of arcs of 2H (the expectation is taken over mappings h0) that are mapped to
arcs of H . Since 2H cannot be homomorphically mapped to H , m0 ≤ m − 1.
Observe that the expected number of arcs of G0 (the expectation is now taken
over the choices of G0) mapped to arcs of H is m0N

1+1/2k. Similarly, as in the
proof of Theorem 1, it can be shown that the number of arcs of G0 mapped
to arcs of H by h exceeds (1 + ε/4)m0N

1+1/2k with probability 2−Ω(ε2N1+1/2k).
Since there are nnN = 2O(N) mappings h, G0 has the following three properties
with positive probability:

1. G0 contains at least (1 − ε/4)mN1+1/2k arcs,
2. the number of arcs contained in cycles of length at most k is at most εN/4,

and
3. no mapping h : V (G0) → V (H) preserves more than (1+ε/4)(m−1)N1+1/2k

arcs of G0.

The desired graph G is obtained from G0 by removing the arcs contained in cycles
of length at most k. A calculation analogous to that in the proof of Theorem 1
yields that every mapping h : V (G) → V (H) preserves at most (1−m−1+ε)||G||
arcs of G.

Theorem 3 immediately yields:

Corollary 4. The limit limk→∞ ρk(H) for a digraph H is equal to 1 if and only
if H has tree duality.

6 Directions for Future Research

The main interest in locally consistent CSPs comes from the question how much
it helps if the input is locally consistent. This is reflected by the behavior of ρk(H)
as a function of k. In case that H does not have tree duality, in particular, if H
contains a loop or a directed cycle, the assumption on local consistency does not
help. On the other hand, if H has tree duality, this assumption helps a lot.

In [6,7,18], the authors also addressed the weighted versions of the problems.
Let us mention that all our results, in particular Theorems 1, 2 and 3, Corollar-
ies 1, 2, 3 and 4, hold for the weighted versions of the problems, too. The reader
is welcomed to check him/her/itself that the proofs translate to this setting.

The ultimate goal is to find an expression for the limit limk→∞ ρk for CSPs
with more types of constraints and with constraints of arbitrary arity. The char-
acterization of CSPs with limk→∞ ρk = 1 that is based on tree duality applies to
all constraint languages that admit a set function, even if the constraint language
contains several constraint types. Note that this class of computational problems



Locally Consistent CSPs with Binary Constraints 305

contains many previously known tractable families of problems including Horn,
constant, and ACI problems [3]. At the moment, we are trying to extend our
arguments and to find an formula that expresses the limit for CSPs without tree
duality.
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18. D. Král’, O. Pangrác: An Asymptotically Optimal Linear-Time Algorithm for Lo-
cally Consistent Constraint Satisfaction Problems, submitted.

19. K. Lieberherr, E. Specker: Complexity of Partial Satisfaction. J. of the ACM, 28(2)
(1981) 411–422.

20. K. Lieberherr, E. Specker: Complexity of Partial Satisfaction II. Technical Report
293, Dept. of EECS, Princeton University (1982).

21. Z. Usiskin: Max-min Probabilities in the Voting Paradox. Ann. Math. Stat. 35
(1963) 857–862.

22. L. Trevisan: On Local versus Global Satisfiability, SIAM J. Discrete Math., 17(4)
(2004), 541–547. A preliminary version available as ECCC report TR97-12.

23. G. J. Woeginger: Exact Algorithms for NP-hard Problems: A Survey. In: Proc.
Worksh. Comb. Opt.—Eureka, You Shrink. LNCS 2570, Springer (2003) 185–207.

24. M. Yannakakis: On the Approximation of Maximum Satisfiability. J. Algorithms
17 (1994) 475–502.



On Randomized Broadcasting in Star Graphs�

Robert Elsässer and Thomas Sauerwald

University of Paderborn,
Fürstenallee 11, 33102 Paderborn

{elsa, sauerwal}@upb.de

Abstract. One of the most frequently studied problems in the context
of information dissemination in communication networks is the broad-
casting problem. In this paper, we study the following robust, simple,
and scalable randomized broadcasting protocol: At some time t an infor-
mation is placed at one of the nodes of a graph G, and in the succeeding
steps, each informed node choses one of its neighbors in G uniformly
at random, and sends the information to this neighbor. We show that
this algorithm spreads an information to all nodes in a Star graph Sn

of dimension n within O(log(N)) steps, with high probability, where N
denotes the number of nodes in Sn. In our proofs, we apply some meth-
ods which may be of independent interest, and extend the results of [10]
concerning randomized broadcasting in hypercubic graphs.

1 Introduction

Broadcasting algorithms have been extensively studied in the context of informa-
tion dissemination in communication networks. These algorithms are designed to
solve the problem of distributing a particular message from a distinguished node
called source to all other nodes in the network. Several efficient (deterministic
and randomized) broadcasting schemes have been developed for different graph
classes and communication models.

In this paper we study the following randomized algorithm (also known as
“rumor spreading”): A vertex of a graph G initially has an information that has
to be transmitted to all nodes of G. In each succeeding round, any informed node
chooses one of its neighbors uniformly at random, and transmits the information
to this neighbor. The goal is to determine the number of steps needed to spread
the information to all nodes of G.

The algorithm described before has several advantages such as simplicity,
scalability, and robustness [10]. It can be applied in standard point to point
communication networks, described by connected, undirected graphs in which
the vertices represent the processors and the edges represent bidirectional com-
munication channels between the nodes.
� This work was partially supported by the German Research Foundation (DFG)
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Another application comes from the maintenance of replicated databases.
There are updates injected at various nodes, and these updates must propagate
to all the nodes in the network. At each step, a processor and its neighbor
check whether their copies of the database agree, and if not then they make the
necessary reconciliation. The goal is that all copies of the database converge to
the same contents. See [8] for details.

The performance of the algorithm we consider has been analyzed in several
graph classes in the past. Pittel proved that in a complete graph every node
is informed by the algorithm described before within log(N) + ln(N) + O(1)
steps, with high probability1, where N denotes the number of vertices in the
graph. Frieze and Molloy [12] showed that in a random graph a lower bound
of Θ(log(N)/N) is required on the edge density in order to deterministically
broadcast information in �log(N)� to all nodes in the graph. This result has
been improved by Chen in [5]. Feige et al. [10] analyzed the performance of
the aforementioned broadcasting algorithm in random graphs, bounded degree
graphs, and hypercubes. Moreover they prooved an upper bound of
O(N log(N)) which holds for any graph. Karp et al. [16] showed that, in a
similar model, the number of messages can be bounded by O(N log(log(N))),
w.h.p.

As described above, we are interested in analyzing the run time of the afore-
mentioned broadcasting algorithm in Star graphs. These graphs have been in-
troduced by Akers et al. in [2,1]. The n dimensional Star graph Sn has N = n!
vertices corresponding to the n! permutations of (1, 2, . . . , n). There is an edge
from one permutation (x1, . . . , xn) to some other one (y1, . . . , yn) iff an index
i ∈ {2, . . . , n} exists such that x1 = yi, xi = y1, and xj = yj for any j �= 1, i.
It is easy to see that Sn is n − 1 regular, and as shown in [2], it is a bipartite
edge-transitive Cayley graph.

The Star graph has several very attractive properties. Like the Hypercube,
the Star graph is strongly hierarchical, maximally fault tolerant, and strongly
resilient. However, the Star graph has significantly less connections and smaller
distances than the Hypercube with comparible number of vertices [1]. Several
communication algorithms like routing and broadcasting have also been analyzed
in Star graphs as well [1,3,4,9,7,11,15,19]. However, these papers mostly consider
the deterministic case.

In this paper we analyze the performance of the simple randomized broad-
casting algorithm described above in Sn. In Section 2, we state new results
concerning the expansion properties of small subsets of vertices in a Star graph.
These results are needed in Section 3 to prove that, with high probability, the
algorithm described above broadcasts an information to every node of Sn within
O(log(N)) steps. We conclude the paper by summarizing our results and by
pointing to some open problems.

1 When we write “with high probability” or “w.h.p.” in this paper, we mean with
probability at least 1 − O(1/N).
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2 Auxiliary Combinatorial Results

In this section we derive some new results on the expansion properties of small
subsets of vertices in Sn = (Vn, En). Let E(m) := min|X|=m

1
m |E(X, X)| be

called the expansion for m in the graph Sn, where X ⊂ Vn and |E(X, X)|
denotes the number of edges connecting X with its complement X. We know
that for the Hypercube the edge isoperimetric problem is solved [14], and it
holds that E(m) ≥ n−�log(m)� for any integer m with 1 ≤ m ≤ N/2. However,
a similar result for the Star graph like E(m) ≥ n + 1 − �Γ−1(|m|)�, where
Γ (x) =

∫∞
0

tx−1e−t dt for real-valued x �= 0, is not known yet. In fact, there are
two major difficulties in analyzing the expansion on this graph. First, the Star
graph falls into n − 1 subgraphs, and is clearly not the Cartesian Product of
these subgraphs. On the other hand, the n-Cube is simply the product of only
two n − 1-dimensional subcubes.

The following simple propositions gives an upper bound on the expansion for
some m. We omit the proofs due to space limitations.

Proposition 1. For any Star graph Sn it holds that E((n − c)!) ≤ c, c ∈
{0, . . . , n}, and E((δn)!) ≤ (1 − δ)n, where (δn)! ∈ IN .

Proposition 2. If m ∈ [(n − c)!, (n − c + 1)!], then for any Star graph Sn we
have

E(m) ≤ (c + 1)(n − c − 2) + n − 1
n − c − 1

,

where c ∈ {1, . . . , n − 2}.

Combining these upper bounds, it follows that if we assume in every
round the worst-case expansion, we are only able to achieve a runtime of
O(n(log n)2).

There is another way to derive upper bounds which based on the hierachi-
cal structure. Denote by ESn(m) the expansion for an integer m in the n-Star
Graph.

Lemma 1. It holds for any integer n and integer 0 ≤ m ≤ n! that ESn(m) ≤
c ⇒ ESn+1(m) ≤ c + 1.

In order to compute an adequate lower bound, we will identify a proper
subgraph in Sn which enables us to examine the expansion of small subsets of
Vn (cf. the embedding of well studied graphs in the Star graph [15,17,18]). First
consider the following definition (cf. [7]).

Definition 1. Let the tree Bn(v) ⊆ Sn with root v ∈ Vn defined in the follow-
ing way. Bn(v) consists of n levels, where level Bi

n(v) contains some vertices
at distance i from v in Bn(v), i ∈ {0, . . . n − 1}. We begin by B0

n(v) := {v}
and B1

n(v) := {vi | vi = (1 i) ◦ v, i ∈ {2, . . . , n}}, where (1 i) denotes the trans-
position which interchanges the first and ith entries in the permutation rep-
resented by v and ◦ denotes the composition of both permutations. Similarly,
B2

n(v) =
{
vij | vij = (1 j)◦(1 i)◦v, j ∈ {2, . . . , i−1, i+1, . . . , n}, i ∈ {2, . . . , n}

}
,
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and Bk
n(v) =

{
vi1...ik

| vi1...ik
= (1 ik) ◦ · · · ◦ (1 i1) ◦ v, ik ∈ {2, . . . , n}, iq �=

ir for any q �= r
}
.

Lemma 2. Bn is indeed a tree and a subgraph of Sn, that is no additional edges
between two nodes in Bn exists.

Proof. Since Sn is vertex-transitive, we define id to be the root in Bn. The con-
struction of Bn implies that once a number has been put to any component, this
component remains unchanged during the remaining process. As a consequence,
every node except for the root contains exact one non-trivial cycle. It also follows
that there exist only one node in Bn, namely id, with the first component 1. Now
consider any node u �= id ∈ Bn in level l, where we may assume l ≥ 1, since all
neighbours of the root are in Bn by definition. The node u can be represented
as a cylce of length l: u = (c1 . . . cl), where c1 = 1, since id is the root of our
tree. Applying the transposition (1 cl) ◦ (1 . . . cl) = (1 . . . cl−1) leads obviously to
the predecessor of u. If we apply the transposition (1 c2) ◦ (1 . . . cl), we reach the
node (c2 . . . cl) which first component must be 1. Any transposition like (1 ci),
where 2 ≤ i ≤ l − 1, leads to the node (1 ci) ◦ (1 . . . cl) = (1 . . . ci−1)(ci . . . cl)
which contains two disjoint cycles and can therefore not be in Bn. On the other
hand, if we apply (1 j), where j �= ci for all 2 ≤ i ≤ l, we reach the node node
(1 . . . clcl+1) with cl+1 = j which is one of the successors of u in Bn.

Now we use this tree to compute a lower bound on the expansion of small
subsets in Sn.

Theorem 1. Let c ≥ 1 be an arbitrary but fixed constant. Then, for sufficiently
large n it holds that E(m) ≥ c−1

c (n − 1), where m ≤ nn/((2+ε)c), where ε > 0 is
a constant.

Proof. For our proof we consider the following algorithm:

Find Good Expansion Set

Input: I ⊆ Vn, |I| ≤ nn/((2+ε)c)

Output: ∅ �= X ⊆ I, |E(X, I)| ≥ 2c−1
2c (n − 1)|X|

Select an arbitrary v ∈ I
X := {v}
while |E(X,I∩Bn(v))|

|X| < 2c−1
2c (n − 1)

X = succ(X) ∩ I
end while
return X

In this proof, the set I will be called the set of informed nodes. Let t be
the final step of the algorithm and let 2c−1

2c be denoted by d. Before step i will
be executed, all nodes in X are at level i − 1 and have therefore n − 1 − i +
1 = n − i successors. If the condition of the loop is satisfied, then we have
|E(X, I ∩Bn(v))| < d(n−1)|X |, and it follows that |E(X, I ∩Bn(v))| ≥ ((1−d)
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(n−1)−i+1)|X |. Consequently, the number of nodes in X after the last iteration
t is at least:

t∏
i=1

(
(1 − d)(n − 1) − i + 1

)
≥
(n

c′
)t

,

c′ a proper constant, if the smallest factor is at least 1. Now we will show that
a t exists such that n− t− 1 ≥ d(n− 1) and

(
n
c′
)t ≥ n

n
(2+ε)c . The first inequality

ensures that the number of successors of the nodes in Bn(v) at level t is still large
enough and the second one implies that within at most t iterations all informed
nodes have to be used. If we set t = n−1

2c , then both inequalities hold. The first
inequality means that, after t iterations, every informed node on level t has at
least d(n− 1) successors. This implies that E(X, I ∩Bn) ≥ d(n− 1)|X | after the
termination of our algorithm. Now, since X ⊆ I, it follows that

|E(I, I)| = |E(X, I)| + |E(I\X, I)|
= |E(X, I)|︸ ︷︷ ︸

≥d(n−1)|X|

− |E(I\X, X)|︸ ︷︷ ︸
≤(1−d)(n−1)|X|

+|E(I\X, I ∪ X)|

≥ c − 1
c

(n − 1)|X | + |E(I\X, I ∪ X)|,

We can now apply our algorithm again with the input I\X , and by induction
we get

|E(I, I)|
|I| ≥ c − 1

c
(n − 1),

and the statement is proved. �

Combining Theorem 1 with Propositions 1,2 it is easy to see that for subsets
of size (δn)! with δ < 1/3, the bound of Theorem 1 is tight up to a small constant
factor.

In addition, we can state the following corollary

Corollary 1. Let X ⊆ Vn, where |X | = (n − c)!, c ∈ {0, . . . , n} and x ∈ X
arbitrary. Then it holds

∃Y ⊆ X : x ∈ Y and
|E(Y, X)|

|Y | ≥ (c − 1).

Recall that E((n − c)!) ≤ c due Proposition 1, so the last Corollary is already
near to the optimum, but there is still a gap since our last result holds only for
a subset of X .

3 Runtime Analysis

In this section we use the result of Theorem 1 to show that the randomized
broadcasting algorithm2 spreads an information to all nodes of a Star graph
2 When we write the broadcasting algorithm, we always refer to the algorithm defined

at the beginning of this section.
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within O(n log(n)) steps, w.h.p. Since this algorithm always requires at least
Ω(log(N)) steps to inform all nodes in a graph [10], and since a node in the Star
graph exists, which is never contacted within O(n log(n)) steps with probability
(1/n)O(n), we can conclude that our result is asymptotically optimal.

Let P be an arbitrary but fixed partition of Sn in n
4 -dimensional substars.

In order to obtain such a partition, we first partition Sn into n disjoint com-
ponents S′

i, i ∈ {1, . . . , n}, where S′
i = {(x1, i, x3, . . . , xn) ∈ Vn} Then, we

partition each S′
i into n − 1 further components among the third entry in

the permutations, and so on... Consequently, the partition P consists of sets
S′

i1,...,i3n/4
= {(x1, i1, . . . , i3n/4, x3n/4+2, . . . , xn) ∈ Vn}. Note, that n

4 must not
be an integer, but for simplicity we will assume this in the sequel. It is easy to
see, that n

4 can be replaced by �n
4 � in the following proofs.

Our first objective is to show that after O(n log(n)) steps, in every substar
of this partition P at least one node has been informed with a probability of
1 − (1/n)O(n log(n)) by the broadcasting algorithm.

Lemma 3. After 120n log(n) steps at least n20 nodes of Sn will be informed by
the randomized broadcasting algorithm, with probability 1 − (1/n)Ω(n log(n)).

Proof. We consider the tree Bn(v) defined in Definition 1, but here we are only
interested in nodes belonging to the levels 0, . . . , 40. First, we show that the
root informs more than

√
n successors within 3n log(n) steps with probability

1 − O(1/nn log(n)). The probability for informing at most
√

n successors of the
root within this time is

P√
n(v) ≤

(
n − 1√

n

)( √
n

n − 1

)3n log(n)

≤
(

1
n

)n log(n)

.

The conditional probability P ′√
n
(v′) that a successor v′ of v informs at most

√
n

successors, given that v′ has been informed by v, is

P√
n(v′) ≤

(
n − 1√
n + 1

)(√
n + 1

n − 1

)3n log(n)

≤
(

1
n

)n log(n)

.

Therefore, the probability for having more than n informed nodes in level B2
n(v)

after 6n log(n) steps is higher than (1 − (1/n)n log(n)) · ((1 − (1/n)n log(n))
√

n.
Generally, the probability that an informed node v′′ in some level Bi

n(v), where
i ≤ 39, informs at most

√
n successors is

P√
n(v′′) ≤

(
n − 1√
n + 39

)(√
n + 39
n − 1

)3n log(n)

≤
(

1
n

)n log(n)

.

This implies that after 120n log(n) steps, in level B40
n (v) are n20 informed nodes

with probability P > (1− (1/n)n log(n))n21
= 1− (1/n)Ω(n log(n)), and the lemma

follows. �

Lemma 4. Let Y ⊆ Vn and d ∈ {1, . . . , � 3
2 (n − 1)�}. Then, there exists X ⊆ Y

such that |X | ≥ |Y |/(n − 1)d and ∀u, v ∈ X : dist(u, v) ≥ d.
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We omit the proof due to space limitations.

Lemma 5. Assume that any fixed Sd, where d ∈ {n
4 , . . . , n}, contains n20 in-

formed nodes. Then, with probability 1 − O(exp(−n11)), there exists after 2 ad-
ditional steps in every Sd−1 ⊂ Sd at least n6 informed nodes.

Proof. It is easy to see, that every substar Sd−1 ⊂ Sd can be reached from
any node in Sd within at most 2 steps. Using Lemma 4, we can find a set of
nodes X ⊂ I of size n15, in which any two nodes are at distance at least 5
from each other. Now we can divide X into d ≤ n disjoint subsets so that
every subset contains at least n14 nodes. We assign each substar Sd−1 one of
these subsets, and consider the propagation of the information into each substar
from its assigned subset only. Since these nodes are at distance at least 5 from
each other, the propagations caused by the nodes of X within the next two
steps are independent from each other. Therefore, we can model the problem of
informing n6 nodes in a fixed substar Sd−1 ⊂ Sd by n14 Bernoulli-distributed
random variables Xi, i ∈ {1, . . . , n14}, where Pr[Xi = 1] ≥ 1

(n−1)2 ≥ 1
n2 , and

Pr[Xi = 0] = 1 − Pr[Xi = 1] for any i. Let X :=
∑n14

i=1 Xi. Then μ := E[X ] ≥
n14/(n2) = n12. If we apply the Chernoff bound [6,13], we obtain by setting
δ = 1 − (1/n6) that Pr[X ≤ n6] ≤ exp(−(n12

(
1 − 1

n6

)2)/2). Since we assigned
each substar Sd−1 a different subset of nodes, and since all the events of informing
the substars are independent from each other, the probability for informing at
least n6 nodes in each substar Sd−1 equals (1 − Pr[X ≤ n6])d, and the lemma
follows. �

Lemma 6. Let a substar Sd = (Vd, Ed) of Sn contain n6 informed nodes, where
d ∈ {n

4 , . . . , n}. Then, at least n20 nodes will be informed in Sd, after O(log(n))
additional rounds, with probability 1 − O(exp(−n5)).

Proof. Let I(t) denote the set of informed nodes in Sd at time t. We show that if
n6 ≤ |I(t)| ≤ n20, then a constant τ > 1 exists such that |I(t+1)| ≥ τ |I(t)|. Since
|I(t)| ≤ n20 here, Theorem 1 implies that |E(I(t), I(t) ∩ Vd)| ≥ c(n − 1)|I(t)|,
where c < 1 is a proper constant value. Now we have to take into consideration
that a node can be possibly informed by different nodes in one round. However,
we will try to construct a process with mutually independent random variables.
Let x denote the fraction of nodes in I(t)∩Vd with at least c

2 (n− 1) neighbours
in I(t) ∩ Vd. By simple calculation it follows that x is at least 2c/(2 − c).

Let X0 = {v ∈ I(t) |N(v) ∩ I(t) ∩ Vd ≥ c
2 (n − 1)}, where N(v) denotes

the neighbours of v in Sn. Due to the algorithm, each of these nodes select
within one step a neighbor, and transmit the information to this neighbor. For
the analysis, we divide this one step into substeps, in which only one selected
node is allowed to transmit. After every substep i, the set X i−1 is updated,
leading to some new set X i as described in the sequel. In every substep i, we
select a node v ∈ X i−1 which maximizes |E(v, I(t) ∩ Vd)| = |N(v) ∩ I(t) ∩ Vd|.
After substep i in which v informs its chosen neighbor w, X i = X i−1\{v}, and if
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w ∈ I(t) ∩ Vd, then I(t) is extended by w. Obviously, after every substep i (in
step t + 1), |E(X i, I(t) ∩ Vd)| > |E(X i−1 \ {v}, I(t) ∩ Vd)| − (n − 1). After y
substeps, the number of edges between the set Xy and I(t) ∩ Vd is more than
c(|X0|−y)(n−1)/2−y(n−1). If y ≤ m|X0|, where m = c/(4+c), then there are
at least (|X0|−y)·c(n−1)/4 edges between the set Xy and I(t)∩Vd. Therefore, a
node v in the set Xy must exist which has at least c

4 (n−1) edges to I(t)∩Vd, and
contacts in the next substep an uninformed node in Vd with probability p = c/4.
This implies that in step t+1, we can model the number of newly infected nodes
by m|X0| mutually independent Bernoulli-distributed random variables Xi with
success probabilities pi ≥ p ∀i ∈ {1, . . . , m|X0|}. Again, let X =

∑m
i=1 Xi, and

μ := E[X ] ≥ m|X0|p. Using the Chernoff bounds as before, we obtain

Pr
[
X ≤ m|X0|p

4

]
≤ e−

m|X0|p 9
16

2 .

This implies that with probability 1 − O(exp(−n6)), for any I(t) with n6 ≤
|I(t)| ≤ n20, it holds that |I(t + 1)| ≥ τ |I(t)|, where τ > 1 is a constant, and the
lemma follows. �

Let us now summarize the results of Lemmas 3, 5, and 6 in the following
theorem.

Theorem 2. There exists a constant α such that after αn log(n) steps at least
n20 nodes are informed in all n

4 -dimensional substars of the partition P with
probability 1 − 1/(nΩ(n log(n))).

Proof. Due to Lemma 3, with a probability of 1 − (1/n)Ω(n log(n)) at least n20

nodes will be informed after O(n log(n)) rounds. Recall the description of P by
an balanced tree. Clearly, P has at most n!

(n/4)! ≤ n
3
4 n edges and the nodes on

the last level represent the n
4 -dimensional substars of our partition P . Using the

Lemmas 5 and 6, on every edge the information is successfully transmitted with
a probability of at least

1 − 1
en5 =

(
1 − 1

en5

) en5

en5 ≥
(1

4

) 1
en5

This probability is such large that the transmission is successful along all con-
sidered edges with a probability of at least

((1
4
) 1

en5
)n

3
4 n

≥
(1

4

) 1
en3

= 1 − (1/n)Ω(n log(n)),

because all events are independent. Recall, that the lowest probability appeared
in our proof was 1 − (1/n)Ω(n log(n)) and so the theorem follows. �

We should mention here that the technique applied for the hypercube seems
to be inappropriate here on the Star Graph. With our new method of analyzing
the stochastic process from behind, we are able to rely on the techniques which
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lead to our completely informed partition. Looking at the last theorem, we might
ask for a conversion, i.e., for every node w ∈ Vn there exist at least one node
v in each n

4 -dimensional substar, which contacts w within the next γn log(n)
rounds, where γ is a large but fixed constant. In order to show this, we need the
following definition.

Definition 2. A node u ∈ Vn contacts another node v ∈ Vn within the time-
interval [a, b], if there exists a path (u1 := u, u2, . . . , um−1, um := v) in Sn with
the following properties:

∃t1 < t2 < · · · < tm−1 ∈ [a, b] : ui contacts ui+1 in round ti, i ∈ {1, . . . , m − 1}

That is, if u is informed at the beginning of round a, v will be informed after
round b.

Similar to the definition of informed nodes, a node u contacts a subset of
nodes V ′, if there exists at least one node in V ′, which is contacted by u.

In the sequel, we fix one arbitrary node w ∈ Vn. Similar to the definitions of
I and I(t), we define K(t) to be the set of nodes in round t, which will contact
the fixed node w within the time interval [t, fn log(n)], where f is a large but
fixed constant. In contrast to I(t), K(t) increases while t decreases. The round
fn log(n) can be viewed as a time step in the future from which we analyze
the propagation backwards. Our aim is to show that in round fn log(n) all
nodes have already been informed. To prove this, we consider first the following
lemma.

Lemma 7. |K(fn log(n) − 120n ln(n))| ≥ n20 with probability 1 − O(1/n2n).

Proof. Again, we consider the tree Bn(w) up to level 40. We show that w is
contacted by at least

√
n out of his successors within 3n ln(n) rounds, with

probability 1 − O(1/n2n). The probability that an arbitrary direct successor
of w fails to contact w during this time is less than (1 − 1

n−1 )3n ln(n) ≤ ( 1
n )3.

Therefore, the probability that less than
√

n successors contact w is

P ′
1 ≤

n−1∑
i=n−√

n

(
n − 1

i

)(
1
n3

)i (
1 − 1

n3

)n−1−i

≤
(

(1/n3)
(n −

√
n)/(n − 1)

)n−√
n

·
(

(n3 − 1)/n3

(n −
√

n)/(n − 1)

)√
n−1

< o
( 1

n2n

)
.

Similarly, a node w′ at level j−1 in Bn(w) is contacted by less than
√

n successors
with probability

P ′
j ≤

n−j∑
i=n−j+1−√

n

(
n − j

i

)(
1
n3

)i (
1 − 1

n3

)n−j−i

≤
(

(1/n3)
(n − j + 1 −√

n)/(n − j)

)n−j+1−√
n

·
(

(n3 − 1)/n3

(n − j + 1 −√
n)/(n − j)

)√
n−1
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Since we have less than n41 nodes in these 40 levels, w is contacted by at least
n20 nodes within 120n ln(n) steps with probability 1 − O(1/n2n). �

For the following lemmas, we can apply the methods already used in this
section.

Lemma 8. Let d ∈ {n
4 , . . . , n} and |K(t) ∩ Vd| ≥ n20. Then, with probability

1 − O(exp(−n11)), there exist in every substar Sd−1 ⊂ Sd at least n6 nodes,
which contact K(t) within the time-interval [t − 2, t].

Proof. Analogous to Lemma 5, since for every node we consider a fixed path. �

Lemma 9. Let d ∈ {n
4 , . . . , n} and |K(t) ∩ Vd| = n6. Then, with probability

1 − O(exp(−n5)) it holds that |K(t − ρ log(n))) ∩ Vd| ≥ n20, where ρ is a large
but fixed constant.

Proof. For simplicity, we denote by K the set K(t) ∩ Vd. In contrast to lemma
6, the problem that one node can be informed by different nodes in one round
does not appear. On the other hand, we allow the possibility that some nodes
in K can be contacted by more than one node.

We apply theorem 1 which implies that at least c(n − 1)|K| edges, where c
is a suitable constant value, are connecting K and K ∩ Vd. Let l := |N(K)∩ Vd|
be the number of neighbours in Vd of nodes in K. For every node in N(K) ∩ Vd

we define:

∀i ∈ {1, . . . , l}Xi :=

{
1 if the i-th node from K ∩ Vd contacts K

0 else

So the random variable X :=
∑l

i=1 Xi describes the number of nodes in the set
K(t− 1)\K(t). Every Xi is bernoulli-distributed and it holds that μ := E[X ] ≥
cn6. Since the Xi are mutually independent, we can use the Chernoff-Bound
again, we obtain Pr[X ≤ cn6/4] ≤ exp(−(c(9/16)n6)/2), where δ = 3

4 . The
more t decreases, the more the last probability decreases and so we are able to
raise the power of O(log(n)) to the inverse probability, which finishes our proof.

�

We summarize now the results of the previous lemmas in the following
theorem.

Theorem 3. With probability 1 − O(1/n2n) it holds that

K
(
fn log(n) − γn log(n)

)
∩ Sn

4
�= ∅

for all n
4 -dimensional substars of P , where γ is a large but fixed constant.

The proof is very similar to the proof of Theorem 2, and we omit it here due
to space limitations.

Obviously, the goal is now to show that I(t) ∩K(t) �= ∅ in a proper round t,
with high probability, which means in fact that the node w will be informed in
round fn log(n).
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Theorem 4. Suppose that there exists a round t such that for every n
4 -dimens-

ional substar Sn
4

of P the following statements hold:

I(t) ∩ Sn
4
�= ∅ and K

(
t +

3
8
n
)
∩ Sn

4
�= ∅.

Then, with probability 1 − exp(−n
2
8 n) it holds that

I
(
t +

3
8
n
)
∩ K

(
t +

3
8
n
)
�= ∅.

Proof. Since the diameter of an n-dimensional Star graph is �3(n−1)/2� ≤ 3n/2,
the diameter of every Sn

4
is at most 3n/8. Consequently, the informed node in

every substar Sn
4

contacts a node in K(t + 3n/8)∩Sn
4

within 3n/8 steps with a

probability of at least
(
1/n
) 3

8 n. Since the events in these substars are mutually
independent, and there are n!/(n/4)! ≥ (n/4)

3n
4 ≥ n

5n
8 substars, at least one

informed node succeeds with probability

1 −
(
1 − 1

n
3
8 n

)n
5
8 n

≥ 1 −
(1

e

)n
2
8 n

.

�
We are now able to state our main result.

Theorem 5. Given one informed node at the beginning, then after O(n log(n))
rounds the randomized broadcasting algorithm informs all nodes in a Star graph
Sn with probability 1 − O(1/nn).

The main result of the paper can easily be generalized to other simple single
port randomized broadcasting algorithms such as the pull model. See [8] for
details concerning the pull model.

4 Conclusion

Let us now summarize the results of the paper. In Section 2, we stated new
results concerning the expansion properties of small subsets of vertices in a Star
graph. We used these results in Section 3 to prove that, with high probability, the
algorithm described above broadcasts an information to every node of Sn within
O(log(N)) steps. Since this algorithm requires in every graph Ω(log(N) + D)
steps, where D is the diameter of the graph, the result is asymtotically optimal.
We also considered Cayley graphs on wich the randomized algorithm
requires ω(log(N) + D) steps, however we omit the details here due to space
limitations.
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Abstract. Given k + 1 pairs of vertices (s1, s2), (u1, v1), . . . , (uk, vk) of
a directed acyclic graph, we show that a modified version of a data
structure of Suurballe and Tarjan can output, for each pair (ul, vl) with
1 ≤ l ≤ k, a tuple (s1, t1, s2, t2) with {t1, t2} = {ul, vl} in constant time
such that there are two disjoint paths p1, from s1 to t1, and p2, from s2

to t2, if such a tuple exists. Disjoint can mean vertex- as well as edge-
disjoint. As an application we show that the presented data structure
can be used to improve the previous best known running time O(mn)
for the so called 2-disjoint paths problem on directed acyclic graphs to
O(m(log2+m/n n)+n log3 n). In this problem, given a tuple (s1, s2, t1, t2)
of four vertices, we want to construct two disjoint paths p1, from s1 to
t1, and p2, from s2 to t2, if such paths exist.

1 Introduction

The problem of finding disjoint paths is one of the fundamental problems in graph
theory with many applications concerning network reliability, routing problems,
VLSI-design, . . . Such problems have been studied extensively and a variety of
efficient algorithm are known for undirected graphs (cf. [1] and [2]), whereas
much less is known about finding disjoint paths on directed graphs.

Previous results. Given 2k vertices s1, . . . , sk, t1, . . . , tk, one simple path finding
problem consists of determining k disjoint paths pi (i ∈ {1, . . . , k}) between the
vertices {s1, . . . , sk} and {t1, . . . , tk} with pi leading from si to tπ(i) such that
π is a permutation of the numbers 1, . . . , k. This problem can be solved with
standard network flow techniques for directed as well as for undirected graphs
and for both, vertex- and edge-disjoint paths. For fixed k ∈ IN, this leads to a
running time of O(m + n), where here and in the following m will denote the
number of edges and n the number of vertices of the graph under consideration.

For undirected graphs and k ∈ {2, 3}, Di Battista, Tamassia, and Vismara [1]
have shown that allowing a preprocessing time of O(m + n) (if k = 2) or O(n2)
(if k = 3) one can construct a data structure that can test the existence of
k vertex-disjoint paths between each pair of two vertices in constant time and
output k such paths, if they exist, in a time linear in the number of the edges
visited by these paths. Di Battista, Tamassia, and Vismara also gave an overview
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over other data structures supporting the above queries for k ≥ 4. For results
concerning edge-disjoint paths between pairs of vertices, we refer the reader to
the paper of Dinitz and Westbrook [2].

For a directed graph G = (V, E) and a fixed vertex s ∈ V , Suurballe and
Tarjan [13] presented a data structure with a preprocessing time of O(n +
m log2+m/n n) which, for each t ∈ V , can test in constant time whether there
are two disjoint paths from s to t, and, if so, can output such paths in linear
time. The result holds for both, vertex- and edge-disjoint paths.

Another interesting paths finding problem is the k-disjoint paths problem. In
this problem we are given a tuple (s1, t1, . . . , sk, tk) of 2k vertices and we want
to construct k disjoint paths pi (1 ≤ i ≤ k), from si to ti. For short, we will refer
to this problem as the k-DPP or, more precisely, as k-VDPP, if disjoint means
vertex-disjoint, and as k-EDPP, if disjoint means edge disjoint.

The first polynomial time algorithms for the k-VDPP on undirected graphs
where given by Ohtsuki [6], Seymour [11], Shiloach [12], and Thomassen [16],
for k = 2, and by Robertson and Seymour [9] for general but fixed k. With
the line-graph reduction described by Perl and Shiloach in [8] the k-EDPP can
also be solved in polynomial time. If we let α be the inverse Ackerman function
as defined in [14], the currently best known time bounds for the k-DPP on
undirected graphs, are O(mα(m, n)+n) for the 2-VDPP, O(mα(m, n)+n log n)
time for the 2-EDPP as shown by the author of this paper in [15], and O(mn2)
time for the k-VDPP with fixed k > 2, and O(m2n2) for the k-EDPP with fixed
k > 2 as shown by Perković and Reed in [7].1

For directed graphs, the decision versions of the k-EDPP and the k-VDPP
are NP-complete, even for k = 2, as shown by Fortune, Hopcroft, and Wyllie
[3]. However, in [8] Perl and Shiloach presented an O(mn)-time algorithm for
solving the 2-VDPP and the 2-EDPP on dags (directed acyclic graphs). Fortune,
Hopcroft, and Wyllie [3] generalized this result of Perl and Shiloach to an
O(mnk−1)-time algorithm for the k-VDPP on dags for all k ≥ 2. Lucchesi and
Giglio [5] described a linear time reduction from the decision version of the 2-
VDPP on dags to the decision version of the 2-VDPP on undirected graphs, such
that there is always a solution of the 2-VDPP on the undirected graph after the
reduction, if this graph is non-planar. Since Perl and Shiloach [8] have shown that
the 2-VDPP on undirected planar graphs is solvable in linear time, the decision
version of the 2-VDPP on dags is also solvable in linear time. Finally, applying
the reduction from the 2-EDPP on dags to the 2-VDPP on dags given in [15]
there is an O(n + m log2+m/n n) time algorithm for solving the decision version
of the 2-EDPP on dags. As an application of the k-EDPP on dags, Schrijver [10]
described an airplane routing problem that can be solved with an algorithm for
the k-EDPP on dags.

New results. In some scenarios, given a tuple (s1, s2, t1, t2) of vertices, apart
from testing whether there are two disjoint paths leading from the vertices

1 For the last two results we also use the line graph reduction from the k-EDPP to
the k-VDPP as well as a reduction from the decision version to the general version
of the k-DPP that increases the running time by factor m.
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in {s1, s2} to the vertices in {t1, t2} we might also be interested in knowing
whether the path starting in s1 leads to t1 or t2 without constructing such
paths. Given k + 1 pairs of vertices (s1, s2), (u1, v1), . . . , (uk, vk) of a directed
graph, we present in Section 3 a modified version of a data structure of Suurballe
and Tarjan which can output, for each pair (ul, vl) with 1 ≤ l ≤ k, a tu-
ple (s1, t1, s2, t2) with {t1, t2} = {ul, vl} in constant time such that there are
two vertex- or, alternatively, edge-disjoint paths p1, from s1 to t1, and p2,
from s2 to t2, if such a tuple exists. This data structure can be constructed
in O((m + k)(log2+(m+k)/(n+k) n) + n log2 n) time.

As an application of this data structure and main result of this paper, extend-
ing some ideas of Lucchesi and Giglio [5] concerning a reduction for the decision
version of the 2-VDPP, we show that it can be used to improve the running
time for the 2-VDPP on dags from O(mn) to O(m(log2+m/n n)+n log3 n) time.
Applying the reduction from the 2-EDPP to the 2-VDPP given in [15] results
in an O(m(log2+m/n n) + n log3 n) time algorithm for the 2-EDPP on dags.

2 Preliminaries

Paths referred to in this paper are always simple paths, i.e. paths on which no
vertex appears more often than once. If a vertex v or an edge e is visited by
a path p, we write v ∈ p or e ∈ p. For a path p and vertices a, b ∈ p, we let
p[a, b] be the sub-path of p from a to b. p(a, b], p[a, b), and p(a, b) will denote the
sub-paths of p[a, b] starting in the vertex visited immediately after a, or ending
in the vertex visited immediately before b, or both, respectively. The length of a
path p is the number of edges visited by p and denoted by |p|. Finally, for two
paths p1 and p2, p1 ◦ p2 is the concatenation of the two paths.

As for paths, given a tree T = (V, E) and a vertex v or an edge e, we write
v ∈ T if v ∈ V and e ∈ T if e ∈ E. fT (v) denotes the father of v in T .

A topological numbering τ of the vertices of a dag G = (V, E) is an injective
mapping from V to {1, . . . , n} such that for each pair (v, w) of vertices for which
there is a path from v to w, τ(v) < τ(w) holds. It is well known that for each
dag G a topological numbering can be computed in linear time.

3 Finding Disjoint Paths Between Pairs of Vertices

Suurballe and Tarjan presented in [13] a data structure which, given a directed
graph G = (V, E) and a fixed vertex s ∈ V , for each vertex v, can test the
existence of two disjoint paths from s to v in constant time. This data structure
can be constructed in O(n + m log2+m/n n) time. It consists of a shortest-path
tree T with source node s and stores with each vertex v ∈ V two vertices p(v)
and q(v) which on dags have the following properties:

1. If τ is a topological numbering of the vertices of V , then, for each v ∈ V
with two edge-disjoint paths from s to v, τ(q(v)) < τ(v) and (p(v), v) ∈ E.

2. If there are two edge-disjoint paths from s to v, then there are also two
edge-disjoint paths from s to q(v).
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3. Two edge-disjoint paths p1 and p2 from s to v, if they exist, can be con-
structed in O(|p1| + |p2|) time as follows:

In a first round, mark v and, beginning in v with each marked vertex x, also
mark q(x) until reaching s. This process must stop because of property 1. In
a second round p1 is constructed in reverse direction starting in v and, when
reaching a vertex x, following edge (p(x), x) in reverse direction if x is marked,
or, if it is not, following edge (fT (x), x) in reverse direction. Moreover, when
visiting a marked vertex x, un-mark x. In a third round p2 is constructed in
the same way as p1 following (p(x), x) and un-marking x, if x is marked, and
following (fT (x), x), if x is not marked.

Suurballe and Tarjan also observed that the construction of p1 and p2 un-
marks all vertices marked in the first round of the construction. This guarantees
that prior to the construction of a further pair of disjoint paths no vertex in our
graph is marked. Note that we do not claim that property 3 follows immediately
from the first two other properties. We only claim that the values p(v) and q(v)
computed by the data structure of Suurballe and Tarjan have the above three
properties.

Let G′ = (V ′, E′) be the graph obtained from a dag G by replacing each
vertex v ∈ V with two vertices v1 and v2 and each edge (u, v) with an edge
(u2, v1) and by adding new edges (v1, v2) for every v ∈ V . Then, there are two
internally vertex-disjoint paths from a vertex s ∈ V to a vertex t ∈ V in G, if,
and only if, there are two edge-disjoint paths from s2 to t1 in G′. Hence, the
data structure of Suurballe and Tarjan can be also used to test the existence of
two vertex-disjoint paths of a dag G = (V, E) and to construct such paths p1

and p2 in O(|p1| + |p2|) time.
In this section we want to show:

Lemma 1. Let G = (V, E) be a dag. Then, given k+1 pairs of vertices (s1, s2),
(u1, v1), . . . , (uk, vk) it is possible to construct in O((m+k)(log2+(m+k)/(n+k) n)+
n log2 n) time a data structure that can output, for each pair (ul, vl) with 1 ≤ l ≤
k a tuple (s1, t1, s2, t2) with {t1, t2} = {ul, vl} in constant time such that there
are two disjoint paths p1, from s1 to t1, and p2, from s2 to t2, if such a tuple
exist. The paths themselves can be output in O(|p1| + |p2|) time.

In our proof of Lemma 1 disjoint means edge-disjoint, but with the previous
reduction it also holds for vertex-disjoint paths.

Proof. Let G′ = (V ′, E′) be the graph obtained by adding vertices s, w1, . . . , wk

and edges (s, s1), (s, s2), (u1, w1), (v1, w1), . . . , (uk, wk), (vk, wk) to G. Then our
problem reduces to the problem of determining a data structure able to output,
for each i ∈ {1, . . . , k}, a tuple (s1, y1, s2, y2) such that there are disjoint paths
p1 and p2 from s to wi with pj (j ∈ {1, 2}) using (s, sj) as first and (yj , wi) as
last edge, if such a tuple exists.

We start with constructing in O(n+(m+k) log2+(m+k)/(n+k) n) time the data
structure of Suurballe and Tarjan for graph G′ with s as fixed source node and
we define T, p, and q to be the shortest-path tree and the mappings constructed
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by this data structure with the properties described at the beginning of this
section. Moreover, we determine in O(n) time a tree T ′ consisting of all vertices
v ∈ V ′ for which there are two disjoint paths from s to v, s being the root of T ′,
and fT ′(v) = q(v) for all v ∈ T ′.

In the following, for each v ∈ T ′, let p1(v) and p2(v) be the two disjoint
paths from s to v which would be constructed by Suurballe’s and Tarjan’s data
structure or, more precisely, p1(v) should be the path visiting (p(v), v) as last
edge, and p2(v) should be the path visiting (fT (v), v) as last edge. Moreover, for
i ∈ {1, 2}, we define ri(v) to be first vertex visited after s on pi(v).

We now try to determine a lookup table containing the vertices r1(v) for all
v ∈ V (hence, r2(v) is the vertex w ∈ {s1, s2} with w �= r1(v)). We start with a
depth-first-search in T ′ and when visiting a vertex y, we colour the vertices of T
such that all vertices x �= s on the tree path from s to y in T ′ are coloured black
in T if p1(x) starts with edge (s, s1), whereas, if p1(x) starts with edge (s, s2), x
is coloured red. All other vertices of T should be coloured white. In other words,
if x is coloured black, we have r1(x) = s1, whereas, if x is coloured red, we have
r1(x) = s2. Note that the red or black coloured vertices are exactly the vertices
marked before the construction of p1(y) and p2(y).

Suppose our depth-first-search reaches a child y of s in T ′. For constructing
two disjoint paths from s to y with the data structure of Suurballe and Tarjan in
the first round of the construction process only y and s are to be marked. Hence,
it follows from the construction process described above that r1(y) is equal to y
if p(y) = s, and equal to the first vertex z �= s on the tree path from s to p(y) in
T , if p(y) �= s (z can be determined in constant time if in a preprocessing step
taking O(m) time we determine for each v ∈ T the first vertex �= s on the tree
path from s to v in T ). Hence, we know how to colour y correctly.

When reaching a vertex y not equal to a child of s in T ′, we will determine
the last red or black coloured vertex x �= s before p(y) on the tree path from s to
p(y) in T . Note that the ancestors of y in T ′ are exactly the vertices that would
be marked by the data structure of Suurballe and Tarjan in the first round
of constructing two disjoint paths from s to y and that all these nodes have
already been coloured black or red by the depth-first-search in T ′. If no red or
black coloured vertex exists on the tree path from s to p(y) in T , we know from
the construction process of path p1(y), that p1(y) between s and p(y) follows
the tree path from s to p(y) in T . Hence, y should be coloured black if (s, s1) is
the first edge on the path from s to p(y) in T , and, if (s, s2) is the first edge on
this path, y should be coloured red. If x exists, from the properties of the data
structure of Suurballe and Tarjan given at the beginning of this section it follows
that p1(y)[s, y] = p1(x)[s, x] ◦ T [x, p(y)] ◦ (p(y), y), where T [x, p(y)] denotes the
tree path from x to p(y) in T (note that, if τ is a topological numbering of
the vertices in G′, the vertices that would be marked before the construction of
two disjoint paths from s to x by the data structure of Suurballe and Tarjan
are exactly the vertices v with τ(v) ≤ τ(x) that would by marked before the
construction of disjoint paths from s to y and that p1(x) visits only vertices
v with τ(v) ≤ τ(x)). Hence, if by induction we have already shown that all
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ancestors of y in T ′ are coloured correctly, then y is also coloured correctly by
colouring it in the same colour as x.

For the computation of the last coloured vertex x on the tree path from s to a
vertex y in T , we maintain two copies T1 and T2 of our shortest-path tree T . We
delete all black and red coloured vertices from T1, as well as all black coloured
vertices from T2. Let y′ be the vertex that appears in the middle of the tree path
from s to y in T (with an appropriate encoding of the vertices of T , y′ can be
computed in constant time). We then ask whether y is reachable from y′ in T1.
If so, x does not exist or lie on the tree path from s to y′ in T . Otherwise, our
search can be reduced to the tree path from y′ to y in T . In other words, x can
be determined by a binary search. We can also identify the colour of x by testing
whether y is reachable from fT (x) in T2. We use the dynamic data structure of
Holm, de Lichtenberg, and Tarjan [4] for updating T1 and T2 and for answering
our connectivity queries. This data structure allows us to delete a vertex with r
adjacent edges or to reinsert such a vertex in O(r log2 n) amortized time and to
decide whether two vertices are connected in O(log n/ log log n) worst case time.

Since our algorithm consists of O(n) deletions of vertices and (adjacent)
edges, O(n) reinsertions, and only O(n log n) queries for determining the vertices
r1(v) for all v ∈ V , the construction time of our data structure is bounded by
O((m + k)(log2+(m+k)/(n+k) n) + n log2 n). For each v ∈ V , p1(v) and p2(v) can
be output with the data structure of Suurballe and Tarjan in O(|p1(v)|+ |p2(v)|)
time. �

4 Solving the 2-VDPP on Dags

In this section we present an O(m(log2+m/n n) + n log3 n)-time algorithm for
solving the 2-VDPP on dags. In the following, disjoint means always vertex-
disjoint.

Let us call an instance I = (G, s1, s2, t1, t2) of the 2-VDPP on a dag G =
(V, E) to be irreducible if the in-degree of each vertex v ∈ V − {s1, s2} and the
out-degree of each vertex v ∈ V − {t1, t2} is at least two, and if t1, t2 have no
outgoing and s1, s2 no incoming edges. On irreducible instances the following
lemma holds:

Lemma 2. Let (G, s1, s2, t1, t2) be an irreducible instance of the 2-VDPP on a
dag G = (V, E). Then, for each pair v, w ∈ V with v �= w, there are two disjoint
paths p1 and p2 such that pi (1 ≤ i ≤ 2) leads from a vertex in {v, w} to a vertex
in {t1, t2} as well as two disjoint paths leading from {s1, s2} to {v, w}.

Corollary 3 (Thomassen [17]). If (G, s1, s2, t1, t2) is an irreducible instance
of the 2-VDPP on a dag G = (V, E), then, for each vertex v ∈ V −{s1, s2, t1, t2},
there exist four paths p1 from s1 to v, p2 from s2 to v, p3 from v to t1, and p4

from v to t2 such that the only vertex visited by more than one of the paths is v.

As observed by Thomassen [17], given an algorithm for solving the 2-VDPP
on irreducible instances in T (m, n) time, the 2-VDPP on dags can be solved in
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O(T (m, n)+m+n) time. Hence, in the following, we let I = (G, s1, s2, t1, t2) be
an irreducible instance of the 2-VDPP on a dag G = (V, E). Moreover, we define
U(G) to be the undirected graph obtained from G by replacing each directed
edge (u, v) of G with an undirected edge {u, v}.

Let us first describe how the original algorithm of Lucchesi and Giglio finds
two disjoint paths solving the 2-VDPP. In a first step it determines two disjoint
paths p1, from s1 to t1, and p2, from s2 to t2, in U(G). Like Lucchesi and Giglio,
for two consecutive edges (u, v) and (v, w) on p1 or p2, let us refer to v as a
switch if either both edges (u, v) and (w, v) are part of E (i.e. (v, u), (v, w) �∈ E,
since G is a dag), or (v, u), (v, w) ∈ E. Lucchesi and Giglio [5] proved that there
is a choice of four vertices u, u′, v, and v′ in the following also called boundary
vertices and of four paths r1, r2, q1, q2 in G such that p1 and p2 depending on
the positions of u, u′, v, v′ can be replaced by one of the four pairs of paths given
in the left column of Table 1 such that the resulting paths are disjoint (ignore
the other columns of this table). Moreover, in Lucchesi’s and Giglio’s algorithm
u can be chosen as the switch with the smallest and v as the switch with the
largest topological number among all switches on p1 and p2. This guarantees
that in each replacement of Table 1 replacing sub-paths of p1 and p2 by sub-
paths of q1 and q2 the vertex u is not a switch of the new paths p∗1 and p∗2
and in all other cases v is not a switch of p∗1 and p∗2. u′ and v′ are chosen in
such a way that they are not switches of p1 and p2 neither before nor after the
replacement. Being paths in G the paths q1, q2, r1, and r2 cannot contain any
switch. Consequently, the set of switches of p∗1 and p∗2 is a proper subset of the
switches of p1 and p2 before the replacement. Therefore, after O(n) replacements
as shown in Table 1 the resulting paths can no longer contain any switch and
they solve the 2-VDPP. Since the running time for identifying the vertices u, u′, v,
and v′ and the construction of the paths r1, r2, q1 and q2 is bounded by O(m),
Lucchesi’s and Giglio’s algorithm runs in O(mn) time.

The main idea of the algorithm of this paper is to choose the vertices u, u′, v,
and v′ much more carefully such that after each replacement at least a constant
fraction of the switches of p1 and p2 are removed. This would reduce the number
of replacements from O(n) to O(log n). Unfortunately, this approach will not
always be successful. In some sub-cases we will not be able to reduce the number
of switches by a constant fraction. However, in all these cases using the data
structure presented in Section 3 we will be able to guess the boundary vertices
of the next sub-rounds without constructing the paths r1, r2, q1, q2. This will
reduce the running time between two replacements which remove a constant
fraction of switches to O(m log2 n) time.

Let us now describe our new algorithm for the 2-VDPP on dags. Like Lucchesi
and Giglio we start with the construction of two disjoint paths p1, from s1 to t1,
and p2, from s2 to t2, in U(G). This can be done in O(mα(m, n)) time (cf. [15]).
The remaining part of the algorithm is divided into several rounds.

Let us describe what is done in each round. For i ∈ {1, 2}, let ni be the
number of switches on pi at the beginning of the round, let ci be the vertex on
pi visited immediately after the � 1

4ni�-th switch of pi and let di be the vertex
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Table 1. The path replacements in the different sub-cases

Sub-case Description: For i, j with {1, 2} = {i, j} Replacements
1a v ∈ pi, v

′ ∈ rj p∗
i := pi[si, v] ◦ ri[v, ti]

2a v ∈ pi, v
′ ∈ rj p∗

j := pj [sj , v
′] ◦ rj [v′, tj ]

1b.α u ∈ pi[ci, ti], u′ ∈ qj p∗
i := qi[si, u] ◦ pi[u, ti]

1b.β u ∈ pi[si, ci), u′ ∈ qj pj := qj [sj , u
′] ◦ pj [u′, tj ]

2b u ∈ pi, u
′ ∈ qj

1c.α u, v ∈ pi, u
′ ∈ qi, v

′ ∈ ri, u �∈ pi(di, ti] p∗
i := qi[si, u

′] ◦ pj [u′, v′] ◦ ri[v′, ti]
1c.β u, v ∈ pi, u

′ ∈ qi, v
′ ∈ ri, u ∈ pi(di, ti] p∗

j := qj [sj , u] ◦ pi[u, v] ◦ rj [v, tj ]
2c u, v ∈ pi, u

′ ∈ qi, v
′ ∈ ri

1d u ∈ pi, v ∈ pj , u
′ ∈ qi, v′ ∈ rj p∗

i := qi[si, u
′] ◦ pj [u′, v] ◦ ri[v, ti]

2d u ∈ pi, v ∈ pj , u
′ ∈ qi, v′ ∈ rj p∗

j := qj [sj , u] ◦ pi[u, v′] ◦ rj [v′, tj ]

on pi visited immediately before (ni − � 1
4ni�)-th switch of pi. If � 1

4ni� = 0, let
ci := si, di := ti.

Let τ be a topological numbering of the vertices of G. Like Lucchesi and
Giglio in [5] we define v to be the switch with largest topological number on
p1 and p2, but unlike Lucchesi and Giglio we let v′ be the first vertex x with
τ(x) > τ(v) on the path p1 or p2 not visiting v. We distinguish between Case
1, where v ∈ p1[s1, c1) or v ∈ p2[s2, c2), and Case 2, where v ∈ p1[c1, t1] or
v ∈ p2[c2, t2]. In Case 1, we define u to be the switch with the lowest topological
number on p1 or p2, whereas in Case 2, unlike Lucchesi and Giglio, we let u
be the switch on p1[c1, t1] or p2[c2, t2] with the smallest topological number. In
both cases we let u′ be the last vertex x with τ(x) < τ(u) on the path p1 or
p2 not visiting u. We define q1 and q2 to be disjoint paths from s1 and s2 to u
and u′ such that qi starts in si (1 ≤ i ≤ 2), and, similarly, we let r1 and r2 be
disjoint paths from v and v′ to t1 and t2 such that ri ends in ti (1 ≤ i ≤ 2).
These paths exist because of Lemma 2.

We consider different sub-cases and replace p1 and p2 with two paths p∗1 and
p∗2 as shown in Table 1. For i ∈ {1, 2}, sub-cases with prefix number i should be
sub-cases of Case i. The new paths are disjoint:

Lemma 4. p∗1 and p∗2 are disjoint.

Proof. p∗1 and p∗2 are disjoint: For the Cases 1a, 2a, 1b.α, 1b.β, and 2.b this follows
from the fact that the remaining sub-paths of p1 and p2 used for the construction
of p∗1 and p∗2 apart from u′ and v′ visit only vertices x with τ(x) ≤ τ(v) (Cases
1a, 2a) or only vertices x with τ(x) ≥ τ(u) (Cases 1b.α, 1b.β, 2b). Let p′1 and p′2
be the sub-paths of p1 and p2, respectively, that were used for the construction
of p∗1 and p∗2 in one of the remaining cases. Then the disjointness from p∗1 and
p∗2 in the remaining cases follows if we can show that τ(u) ≤ τ(x) ≤ τ(v) holds
for all x ∈ p′1 and all x ∈ p′2 with x �∈ {u′, v′}. It is easy to see that this
holds if, for each ordered pair of vertices (x, y) ∈ {(u, v′), (u′, v), (u′, v′)} with
x, y ∈ p′i for an i ∈ {1, 2}, x appears before y on p′i. The latter statement is
true since v′ must appear after the last switch on p1 or p2, whereas u′, in Case
1, must appear before the first switch on p1 or p2, and, in Case 2, must appear
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before the first switch on p1[c1, t1] or p2[c2, t2], and, therefore, before v or v′ on
p1 or p2. �

After the path replacements of Table 1, u and v as vertices with the smallest
or largest topological number can no longer be switches of p1 or p2. Unfortu-
nately, u and v may be the only switches deleted from p1 and p2 in the Cases
1b.β, 1c.β, or 2a. Therefore, in these cases the idea is to consider not only one
round but a series of k rounds such that in the first k−1 rounds we are in one of
the Cases 1b.β, 1c.β, or 2a, and in the last round we are in one of the other cases.

We will from now on consider the k rounds as exactly one round sometimes
also called super-round and the k rounds as sub-rounds of this round. For a
simpler implementation we will not update the vertices ci and cj, after each of
the first k− 1 sub-rounds. There is one exception: In a sub-round corresponding
to Case 1c.β we replace ci with di and di with ci (since pi after the replacement
visits the vertices between ci and di in reverse direction).2

The k-th sub-round then guarantees that enough switches are being removed
from p1 and p2 in each super-round. More precisely, from Table 1 we can con-
clude that after each round (super-round in Case 1b.β, 1c.β, or 2a) at least
1 + min{� 1

4n1�, � 1
4n2�} switches (or 1 + max{� 1

4n1�, � 1
4n2�} switches if n1 = 0

or n2 = 0) are removed from p1 and p2: Apart from u and v, in the Cases 1a,
1c.α, and 1d at least all switches of p1(d1, t1] or p2(d2, t2] and in the Cases 1b.α,
2b, 2c, and 2d at least all switches of p1[s1, c1) or p2[s2, c2) are removed (for
the Cases 1d and 2d note that, as shown in the proof of Lemma 4, u appears
before v′ on pi and u′ before v on pj). Thus, our algorithm terminates after
O(log n) rounds with two disjoint paths p1, from s1 to t1, and p2, from s2 to t2.
Each round can be implemented efficiently:

Lemma 5. Each round has a running time of O(m(log2+m/n n) + n log2 n).

Proof. For each round n1, n2, c1, c2, d1, d2 and therefore the boundary vertices
u, u′, v, v′ (of the first sub-round in the case of a super-round) can be computed
in O(n) time. With standard network flow techniques two disjoint paths from s1

and s2 to u and u′ as well as two disjoint paths from v and v′ to t1 and t2 can
be computed in O(m) time. Given these paths, it is easy to decide in which case
we are and to implement the path replacements for the Cases 1a, 1b.α, 1c.α, 1d,
2b, 2c, and 2d, again in O(m) time.

We now consider the time complexity of the Cases 1b.β, 1c.β, and 2a. When
talking about p1 and p2 at the beginning of the l-th sub-round or the boundary
vertices in the l-th sub-round we denote them by pl

1, p
l
2, u

l, u′l, vl, or v′l, respec-
tively. If we mean the paths after the last sub-round we write pk+1

1 and pk+1
2 .

Let us define the original part of pl
1 and pl

2 to be the part of pl
1 and pl

2 that is
equal to the corresponding part of p1

1 or p1
2. More precisely, if before the first sub-

round we mark all edges of p1
1 and p1

2 and in the j-th sub-round when replacing
2 More precisely, if one of the vertices c1, c2, d1, d2 does no longer exist on these paths,

we know that the replacement by which it was removed resulted in the deletion of at
least a constant fraction of all switches from the paths given in the first sub-round
and the corresponding sub-round can be defined as the last sub-round.
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pj
1 and pj

2 with pj+1
1 and pj+1

2 we un-mark all edges not lying on the sub-paths
of pj

1 and pj
2 used for the construction of pj+1

1 and pj+1
2 , then the original part

of pl
1 (pl

2) is the sub-path of pl
1 (pl

2) consisting of the marked edges.
We next want to show that the boundary vertices of each sub-round must

lie on the original parts of the paths given in this sub-round. For ul and vl

(1 ≤ l ≤ k), this is true since all switches of pl
1 and pl

2 lie on the original part.
For l ∈ {1, . . . , k}, let us define numbers al and bl such that the al-th sub-

round is the last sub-round before the l-th sub-round corresponding to Case
1b.β or 1c.β and the bl-th sub-round is the last sub-round before the l-th sub-
round corresponding to Case 2a or 1c.β (al or bl should be 0 if no such sub-
round exists). Then by induction one can show that the endpoints of the original
parts of pl

1 and pl
2 consist of the vertices ual , u′al , vbl , and v′bl , where we define

u0 = s1, u
′0 = s2, v

0 = t1, and v′0 = t2. Moreover, again by induction one
can show that τ(ual) ≤ τ(x) ≤ τ(vbl ) holds for all vertices x �∈ {u′al , v′bl} on
the original parts of pl

1 and pl
2. Now, from τ(u′al) < τ(ual) ≤ τ(ul) ≤ τ(vl) ≤

τ(vbl ) < τ(v′bl ) we can conclude that the vertices u′l and v′l must appear after a
vertex x ∈ {ual , u′al} on pl

1 or pl
2 or be equal to x and they must appear before

a vertex y ∈ {vbl , v′bl} on pl
1 or pl

2 or be equal to y. Therefore, u′l and v′l lie
on the original part of pl

1 or pl
2. We can use the knowledge that the boundary

vertices always lie on the original part of p1 or p2 which always is a sub-path of
p1
1 or p1

2 for an efficient computation of the boundary vertices:
Knowing the original parts of p1 and p2 for each sub-round, we can easily

compute vl for all l ∈ {1, . . . , k} if, before the first sub-round, we construct in
O(n) time a list of all switches on p1 and p2 sorted by their topological numbers.
We then repeatedly delete the vertex with the largest topological number from
this list until we find a vertex x lying on the original part of p1 or p2. We always
start the search with the last vertex deleted in the previous sub-round. Hence,
the time needed to compute the boundary vertex v taken over all sub-rounds is
bounded by O(n), and, similarly, this also holds for the boundary vertex u.

We now describe the computation of u′l and v′l for 1 ≤ l ≤ k: For each
i ∈ {1, 2}, let us number the vertices visited by the paths p1

i in the order in
which they appear on p1

i and let us construct a list of all switches of p1
i sorted

by these numbers. Using these lists we can identify the last switch of pl
i by a

binary search in O(log n) time. If vl ∈ pl
j holds for j ∈ {1, 2} with j �= i, then

v′l is the first vertex x with a topological number larger than that of vl on the
part of pl

i between the last switch of pl
i and the endpoint of the original part

of pl
i appearing after the last switch. Since the vertices on this part of pl

i are
sorted by their topological numbers, v′l can be determined by a further binary
search again in O(log n) time. Hence, the time needed for the construction of
the boundary vertices v′l for all sub-rounds can be bounded by O(n log n) time
and, similarly, this also holds for the computation of the boundary vertices u′l.

Therefore, if we know for each sub-round which case is applicable, i.e. if we
know the original parts of pl

1 and pl
2 of the following sub-round, we can efficiently

compute ul, u′l, vl, and v′l for each sub-round. In order to determine the relevant
case, the super-round is split into two phases. In the first phase, if in a sub-round
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u and v lie on p1 and p2 in such a way that we might be in Case 1b.β, 1c.β, or
2a, we assume that we are in this case and, under this assumption, we compute
the boundary vertices of the next sub-round. For example, if v ∈ pi[si, ci) and
u ∈ pj [sj , cj) with i, j ∈ {1, 2} we assume that we are in Case 1b.β (note that
we will never encounter more than one of the Cases 1b.β, 1c.β, and 2a).

After the first phase we construct in maximal O((m + n)(log2+(m+n)/2n n)+
n2 log n) = O(m(log2+m/n n) + n2 log n) time the data structure described in
Lemma 1 with (u1, v1), . . . , (uk, vk) being equal to the pairs of boundary vertices
(u, u′) of each sub-round considered in the first phase of our super-round.

In the second phase, starting again with the first sub-round we use this
data structure to determine for each pair (ul, u′l) a tuple (s1, w1, s2, w2) with
{w1, w2} = {ul, u′l} such that there are two disjoint paths q1, from s1 to w1,
and q2, from s2 to w2, and in a similar way again using the data structure of
Lemma 1 we can construct a tuple (x1, t1, x2, t2) with {x1, x2} = {vl, v′l} such
that there are two disjoint paths r1, from x1 to t1, and r2, from x2 to t2. We
finally test whether we are in one of the Cases 1b.β, 1c.β, or 2a and, therefore,
have correctly computed the boundary vertices of the next sub-round. If we are
in one of the other cases we stop the computation of boundary vertices since we
must be in the last sub-round of the super-round.

Concerning the paths pk+1
1 and pk+1

2 resulting from the last sub-round of our
super-round, if in the last sub-round we are in one of the c- or d-Cases of Table 1,
they consist of three pairs of disjoint paths: q1 and q2, from s1 and s2 to uk and
u′k, r1 and r2, from vk and v′k to t1 and t2, and two sub-paths of the original
parts of pk

1 and pk
2 . We can determine these paths from the data structure of

Lemma 1 and from the paths p1
1 and p1

2 in O(n) time. Even if in last sub-round
we are in an a- or b-Case, we can construct pk+1

1 and pk+1
2 in O(n) time. For

details see the full version of this paper. �

Theorem 6. On dags the 2-VDPP is solvable in O(m(log2+m/n n) + n log3 n)
time.

Proof. In a first step we reduce the problem to a dag G with O(n) edges:
Lucchesi and Giglio [5] have shown that two disjoint paths from s1 to t1

and from s2 to t2 on a dag G = (V, E) can be constructed from two disjoint
paths p1 and p2 in U(G) by replacing sub-paths of p1 and p2 by sub-paths of
a set S of paths. If we add extra vertices x and y as well as four extra edges
(x, s1), (x, s2), (t1, y), and (t2, y) to G, S can be chosen arbitrarily as long as S
consists of two disjoint paths from x to v as well as of two disjoint paths from v
to y for every v ∈ V . Such paths must exist because of Corollary 3.

If we choose as paths from x to vertices v ∈ V the paths that would be
constructed by the data structure of Suurballe and Tarjan [13], these paths visit
only edges of the shortest-path tree T and edges of the form (p(w), w) with T
and p being defined as in the beginning of Section 3. Consequently, the graph
containing these O(n) edges plus O(n) edges for the construction of disjoint
paths from vertices v ∈ V to y, as well as the edges of p1 and p2 is a subgraph
of G on which the 2-VDPP is solvable, but which consists of only O(n) edges.
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The running time for the reduction of our problem to a sparse graph with only
O(n) edges is dominated by the construction time of O(m(log2+m/n n)+n log2 n)
for the data structure of Suurballe and Tarjan. After the reduction two disjoint
paths on U(G) can be computed in O(nα(n, n)) time [15]. The following O(log n)
rounds run in O(n log2 n) time (Lemma 5). �
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Abstract. We consider a generalization of the classical max-cut prob-
lem where two objective functions are simultaneously considered. We de-
rive some theorems on the existence and the non-existence of feasible cuts
that are at the same time near optimal for both criteria. Furthermore, two
approximation algorithms with performance guarantee are presented.
The first one is deterministic while the second one is randomized.

1 Introduction

Given an undirected graph G = (V, E) with non-negative edge weights wij , the
objective of the Maximum Cut problem (max-cut) is to find a partition of the
vertex set into two subsets S and S, such that the sum of the weights of the
edges having endpoints in different subsets is maximum. Formally, the weight of
the cut (S, S) to be maximized is given by

W (S, S) =
∑

i∈S,j∈S

wij .

This well known combinatorial problem was shown to be NP-complete by Karp
[10]. It has applications in many fields including VLSI circuit design and statis-
tical Physics [5].

In this article, we study a bi-criteria version of the max-cut problem. For-
mally, we are given an undirected graph G = (V, E) and two distinct weighting
functions. Each feasible cut is then evaluated with respect to these two criteria.

In general no feasible solution can meet optimality simultaneously for both
criteria. However, a set of solutions which dominate1 all the others (the so-
called Pareto curve) always exists. Because of the complexity of the classical
(mono-criterion) max-cut problem, determining this Pareto curve is computa-
tionally problematic. Indeed, the bi-criteria max-cut problem generalizes max-
cut. Moreover, the size of the Pareto curve, i.e. the number of non-dominated
solutions, may be exponential.

Concerning multi-criteria optimization (see [6] for a recent book on the topic),
three different approaches are often followed: the budget approach, the Pareto
1 A solution x dominates another solution y if x is at least as good as y for all criteria

and strictly better for at least one criterion.

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 331–340, 2005.
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curve approach and the simultaneous approach. In this article we follow the
third one.

By taking as a reference an ideal solution, namely a (not necessarily feasible)
cut which simultaneously maximizes all objective functions, one tries to com-
pute a feasible cut which approximates this ideal solution with a performance
guarantee on each criterion.

In this direction, Stein and Wein [13] considered a scheduling problem with
two well studied criteria, namely the makespan and the average weighted com-
pletion time. They derived existence and non-existence theorems on schedules
that are simultaneously near-optimal with respect to both objective functions.
A series of recent papers follow this approach [12,2,1,3,4].

In this article, we follow the same approach for the bi-criteria max-cut prob-
lem. The paper is organized as follows: A formal presentation of the problem is
given in Section 2. Sections 3 and 4 are respectively devoted to a deterministic
and a randomized bi-criteria approximation algorithm with performance guar-
antee. Finally, some outlooks and concluding remarks are given in Section 5.

2 Formalization and Notation

We are given an undirected graph G = (V, E) where each edge e ∈ E has a non-
negative weight we and a non-negative length le. A solution (S, S) is feasible if
it constitutes a partition of V . An edge e belongs to a cut (S, S), denoted by
e ∈ (S, S), if e links a vertex in S and a vertex in S. The following objective
functions, namely the total weight and the total length, are considered:

W (S, S) =
∑

e∈(S,S)

we and L(S, S) =
∑

e∈(S,S)

le.

Let (O, O) (resp. (P, P )) be a feasible cut which maximizes the total weight
(resp. length). Let (I, I) be an ideal (not necessarily feasible) cut such that:

W (I, I) = W (O, O) = OPTW and L(I, I) = L(P, P ) = OPTL.

The bi-criteria weighted max-cut problem is then to find a feasible cut
(A, A) such that:

W (A, A) ≥ α OPTW and L(A, A) ≥ β OPTL

where 0 < α ≤ 1 and 0 < β ≤ 1. An (α, β)-approximation algorithm outputs a
solution which is simultaneously α-approximate on the first criterion (the total
weight) and β-approximate on the second criterion (the total length).

3 A Deterministic Approximation Algorithm

Given a deterministic α-approximation algorithm Al for the mono-criterion
weighted max-cut problem, one can build an (α/2, α/2)-approximation algo-
rithm for the bi-criteria weighted max-cut problem. The algorithm called Bi-
Approx follows:



Approximation Algorithms for the Bi-criteria Weighted max-cut Problem 333

Bi-Approx
Input: G and Al
Step 1: Find (S1, S1) with Al s.t. W (S1, S1) ≥ α.OPTW
Step 2: Find (S2, S2) with Al s.t. L(S2, S2) ≥ α.OPTL
Step 3: Build (S3, S3) s.t. S3 = (S1 ∩ S2) ∪ (S1 ∩ S2)
Step 4: If L(S1, S1) ≥ 0.5 L(S2, S2)

Then Return (S1, S1)
Else If W (S2, S2) ≥ 0.5 W (S1, S1)

Then Return (S2, S2)
Else Return (S3, S3)

Theorem 1. Bi-Approx is a deterministic (α/2, α/2)-approximation algori-
thm for the bi-criteria weighted max-cut problem if Al is a deterministic α-
approxima-tion algorithm for the mono-criterion weighted max-cut problem.

Proof. Clearly, if Bi-Approx returns (S1, S1) or (S2, S2) then the solution re-
turned is either (α, α/2) or (α/2, α)-approximate, and hence (α/2, α/2)-
approximate. In the following, we suppose that (S3, S3) is returned by Bi-
Approx and we prove that it is an (α/2, α/2)-approximate cut.

We partition V into four subsets X , Y , Z and T such that (S1, S1) = (X ∪
Y, Z ∪ T ) and (S2, S2) = (X ∪Z, Y ∪ T ). Vertices of each subset are shrunk into
super-nodes denoted by vX , vY , vZ and vT . More precisely, all nodes v ∈ X fall
into vX , all nodes v ∈ Y fall into vY etc. Edges between two super-nodes are
also shrunk into one super-edge such that:

wvA vB =
∑

v∈A,v′∈B

wv v′ and lvA vB =
∑

v∈A,v′∈B

lv v′

where A ∈ {X, Y, Z, T}, B ∈ {X, Y, Z, T} and A �= B. Finally, we get a new
graph K4 as depicted in Figure 2.

Now observe that if lvX vT + lvY vZ ≥ lvX vY + lvZ vT is true then we get a
contradiction since instead of (S3, S3), (S1, S1) would have been returned:

lvX vT + lvY vZ ≥ lvX vY + lvZ vT

lvX vT + lvY vZ ≥ (lvX vY + lvZ vT + lvX vT + lvY vZ )/2
L(S1, S1) ≥ L(S2, S2)/2

Symmetrically, if wvX vT + wvY vZ ≥ wvX vZ + wvY vT is true then we get a
contradiction since instead of (S3, S3), (S2, S2) would have been returned:

wvX vT + wvY vZ ≥ wvX vZ + wvY vT

wvX vT + wvY vZ ≥ (wvX vZ + wvY vT + wvX vT + wvY vZ )/2
W (S2, S2) ≥ W (S1, S1)/2

Thus we have:

lvX vT + lvY vZ < lvX vY + lvZ vT and (1)
wvX vT + wvY vZ < wvX vZ + wvY vT . (2)
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Z T
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cut
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an α-approximate cut for L

Fig. 1. Vertices of G are partitioned into
four subsets X, Y , Z and T . This parti-
tion depends on (S1, S1) and (S2, S2).
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Fig. 2. Vertices and edges of G are shrunk
to get a complete graph with four nodes

From inequality (1) we get:

(lvX vY + lvZ vT )/2 > (lvX vT + lvY vZ )/2
lvX vZ + lvY vT + (lvX vY + lvZ vT )/2 > (lvX vT + lvY vZ )/2

lvX vZ + lvY vT + lvX vY + lvZ vT > (lvX vT + lvY vZ +
+ lvX vY + lvZ vT )/2

L(S3, S3) > 0.5L(S2, S2)

L(S3, S3) ≥
α

2
OPTL

From inequality (2) we get:

(wvX vZ + wvY vT )/2 > (wvX vT + wvY vZ )/2
wvX vY + wvZ vT + (wvX vZ + wvY vT )/2 > (wvX vT + wvY vZ )/2

wvX vY + wvZ vT + wvX vZ + wvY vT > (wvX vT + wvY vZ +
+ wvX vZ + wvY vT )/2

W (S3, S3) > 0.5W (S1, S1)

W (S3, S3) >
α

2
OPTW �

The analysis of Bi-Approx is tight. To see it, consider the instance given
in Figure 3 where K is a large integer. The ideal point has a total weight and a
total length equal to 1 while (S1, S1) achieves the values (α, αK−1

2K ) and (S2, S2)
achieves the values (αK−1

2K , α). The algorithm returns a solution (S3, S3) such
that S3 = {v1, v3, v5} and its total weight and total length are both equal to
αK+1

2K . When K tends to infinity, the solution returned tends to be (α/2, α/2)-
approximate.
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S1

S2

v1

v2

v3

v4

v5
(1 − α, 1 − α)

(α K+1
2K , 0)

(α K−1
2K , α K−1

2K )

(0, α K+1
2K )

Fig. 3. Instance for which Bi-Approx returns an (α/2, α/2)-approximate solution

Corollary 1. There exists a deterministic (0.43928, 0.43928)-approximate algo-
rithm for the bi-criteria weighted max-cut problem.

Proof. Replace Al in Bi-Approx by the derandomized algorithm of Goemans
and Williamson [7,8] which is a 0.87856-approximate algorithm and the result
follows. �

Interestingly, an existence result can be derived from the algorithm Bi-
Approx.

Corollary 2. For all instances of the bi-criteria weighted max-cut problem,
there always exists a feasible solution which approximates the ideal point within
a ratio 1/2 on the two criteria.

Proof. Suppose that Al in Bi-Approx is an optimal (1-approximate) algorithm
for the mono-criterion weighted max-cut problem and the result follows. �

The question whether the above theorem can be improved arises but the
following theorem brings a negative answer.

Theorem 2. No (α, β)-approximation algorithm such that α > β ≥ 1/2 (or
β > α ≥ 1/2) exists for the bi-criteria max-cut problem.

Proof. Consider the complete graph K3 whose edges e, e′ and e′′ are such that
we = le′ = 0 and le = we′ = we′′ = le′′ = 1. The ideal solution (I, I) has a total
weight and a total length both equal to 2 while no feasible cut has a total weight
and a total length simultaneously strictly superior to 1. �

4 A Randomized Approximation Algorithm

As usual, we consider that a randomized algorithm for a mono-criterion maxi-
mization problem is an α-expected approximate algorithm if the expected value
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(denoted by E[X ]) of the solution returned is at least α times the value (denoted
by OPT ) of an optimal solution: E[X ] ≥ αOPT .

When randomization is considered, the bi-criteria weighted max-cut prob-
lem is then to find a feasible cut (A, A) such that E[W (A, A)] ≥ αOPTW and
E[L(A, A)] ≥ βOPTL where 0 < α ≤ 1 and 0 < β ≤ 1.

There is no hope to get an (α, β)-expected approximate algorithm for the
bi-criteria weighted max-cut problem with α = β and α > 2/3. To see it,
consider the example given in Figure 4 where the ideal cut (I, I) achieves the
values (1, 1). Four cuts (S1, S1), (S2, S2), (S3, S3) and (S4, S4) are feasible with
values respectively (0, 0), (2/3, 2/3), (1/3, 1), and (1, 1/3). Let Ran Al be a
randomized algorithm which outputs (Si, Si) with a probability pi. Obviously,
one has p1 + p2 + p3 + p4 = 1. The expected value of the cut (S, S) output by
Ran Al is:

E[W (S, S)] =
2p2

3
+

p3

3
+ p4 and E[L(S, S)] =

2p2

3
+ p3 +

p4

3
.

The problem is then to find p1, p2, p3 and p4 such that E[W (S, S)] ≥ α,
E[L(S, S)] ≥ α and α is maximized. When p1 = p3 = p4 = 0 and p2 = 1, α
reaches 2/3 which is the best possible value. As a consequence, no randomized
algorithm can be (α, α)-expected approximate with α > 2/3.

v1

v2v3

(0, 2/3) (2/3, 0)

(1/3, 1/3)
Fig. 4. The ideal cut (I, I) has a total weight and a total length both equal to 1

This statement has a consequence in the approximability of the weighted
bi-criteria max-cut problem. Indeed, there is no hope to design a deterministic
(α, β)-approximate algorithm such that α + β > 4/3. To see it, suppose that we
have such an algorithm2. One can build two solutions (S1, S1) and (S2, S2) such
that W (S1, S1) ≥ αOPTW , L(S1, S1) ≥ βOPTL, W (S2, S2) ≥ βOPTW and
L(S2, S2) ≥ αOPTL. Now consider the randomized algorithm which consists in
returning (S1, S1) with a probability 1/2 and (S2, S2) with a probability 1/2. We
would get an (α+β

2 , α+β
2 )-expected approximate solution (S, S) and α+β

2 > 2/3.
The algorithm (called Ransam in [9]) which consists in building a cut (S, S)

by putting equiprobably a vertex v ∈ V to either S or S is 1/2-expected approxi-
mate for the mono-criterion weighted max-cut problem. One can remark that it
achieves the same performance guarantee for a multi-criteria weighted max-cut
problem. However, a better randomized algorithm can be built for the bi-criteria
max-cut problem. We propose an algorithm called Ran Bi-Approx which uses
a mono-criterion α-approximation algorithm (called Al in the following).

2 Because of the symmetry of the problem, an (α, β)-approximate algorithm is also
(β, α)-approximate.
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Ran Bi-Approx
Input: G and Al
Step 1: Find (S1, S1) with Al s.t. W (S1, S1) ≥ α OPTW
Step 2: Find (S2, S2) with Al s.t. L(S2, S2) ≥ α OPTL
Step 3: Build (S3, S3) s.t. S3 = (S1 ∩ S2) ∪ (S1 ∩ S2)
Step 4: Let γ = (3 −

√
5)/2

Step 5: If W (S2, S2) ≥ γW (S1, S1)
Then If L(S1, S1) ≥ γL(S2, S2)

Then Return (S1, S1) with a probability 0.5
and (S2, S2) with a probability 0.5

Else Return (S1, S1) with a probability γ

and (S2, S2) with a probability 1 − γ
Else If L(S1, S1) ≥ γL(S2, S2)

Then Return (S1, S1) with a probability 1 − γ
and (S2, S2) with a probability γ

Else Return (S3, S3)

Theorem 3. Ran Bi-Approx is a randomized (
√

5−1
2 α,

√
5−1
2 α)-expected ap-

proximation algorithm for the bi-criteria weighted max-cut problem if Al is an
α-approximation algorithm.

Proof. The algorithm considers four cases. For the first case, we suppose that:

W (S2, S2) ≥ γW (S1, S1) and L(S1, S1) ≥ γL(S2, S2).

So, we have:

W (S2, S2) ≥ γαOPTW and L(S1, S1) ≥ γαOPTL.

Since the solution returned in this case is (S1, S1) with a probability 0.5
and (S2, S2) with a probability 0.5, the expected value on each criterion of the
solution returned is at least α(1+γ)

2 times the optimum.
For the second case, we suppose that:

W (S2, S2) ≥ γW (S1, S1) and L(S1, S1) ≥ 0.

So, we have W (S2, S2) ≥ γαOPTW. Since the solution returned in this case is
(S1, S1) with a probability γ = 1−γ

2−γ and (S2, S2) with a probability 1−γ = 1
2−γ ,

the expected value on each criterion of the solution returned is at least α
2−γ times

the optimum.
The third case is symmetric to the second case, the expected value on each

criterion of the solution returned is at least α
2−γ times the optimum.

For the fourth case, we suppose that:

W (S2, S2) < γW (S1, S1) and L(S1, S1) < γL(S2, S2).
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As it was done before, we consider that the set of vertices is partitioned into
four subsets (see Figure 1) and the proof is done on a simple K4 graph (see
Figure 2). So, we have:

wvX vY + wvZ vT + wvX vT + wvY vZ < γ
(
wvX vZ + wvY vT +

+ wvX vT + wvY vZ

)
(3)

lvX vZ + lvY vT + lvX vT + lvY vZ < γ
(
lvX vY + lvZ vT +

+ lvX vT + lvY vZ

)
. (4)

From inequality (3), we get:

wvX vT + wvY vZ < γ
(
wvX vZ + wvY vT +

+ wvX vT + wvY vZ

)
(1 − γ)

(
wvX vT + wvY vZ

)
< γ
(
wvX vZ + wvY vT

)
(1 − γ)

γ

(
wvX vT + wvY vZ

)
< wvX vZ + wvY vT

(1 − γ)
γ

(
wvX vT + wvY vZ + wvX vZ + wvY vT

)
<

1
γ

(
wvX vZ + wvY vT

)
(1 − γ)

(
wvX vT + wvY vZ + wvX vZ + wvY vT

)
< wvX vZ + wvY vT +

+ wvX vY + wvZ vT

(1 − γ)W (S1, S1) < W (S3, S3)

Symmetrically, from inequality (4) we get:

(1 − γ)L(S2, S2) < L(S3, S3)

In this case, (S3, S3) is returned and its value on each criterion is at least (1−γ)α
times the optimum.

Let f(γ) = min{1 − γ, 1
2−γ , 1+γ

2 } for 0 ≤ γ ≤ 1. This function finds its

maximum when γ = 3−√
5

2 . As a consequence, the solution returned by Ran
Bi-Approx has an expected value on each criterion which is at least

√
5−1
2 α

times the optimum. �

Corollary 3. There exists a randomized (0.54297, 0.54297)-expected approxi-
mate algorithm for the bi-criteria weighted max-cut problem.

Proof. Replace Al by the algorithm of Goemans and Williamson [7,8] in Ran
Bi-Approx and the result follows. �

5 Concluding Remarks

Since we considered a bi-criteria max-cut problem and provided approximation
algorithms, the question whether it is possible to get similar results with more
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than two criteria arises. Unfortunately, the example given in Figure 5 shows that
it is not possible to build a deterministic algorithm which approximates the ideal
point with a performance guarantee when three criteria are considered. As a con-
sequence, there is no hope to find an approximation algorithm with performance
guarantee for the k-criteria weighted max-cut problem where k > 2. However,
the algorithm which consists in building a cut (S, S) by putting equiprobably a
vertex v ∈ V to either S or S remains a 1/2-expected approximation algorithm
for any k-criteria weighted max-cut problem.

v1

v2v3

(0, 0, 1) (0, 1, 0)

(1, 0, 0)

Fig. 5. The ideal cut (I, I) achieves the values (1, 1, 1) while any feasible cut achieves
0 on at least one coordinate. Thus, no approximation factor can be guaranteed.

Note that approximation results for the k-criteria weighted max-cut prob-
lem can be found if another approach is considered. Indeed, if we restrict our-
selves to feasible solutions then rarely a solution will dominate all the others
(i.e. will be better than the others on every criterion) but a set of solutions
which dominate all the others always exists. This set of solutions is called the
Pareto curve and Papadimitriou and Yannakakis [11] proved that an approxima-
tion with performance guarantee of this curve (an ε-approximate Pareto curve)
always exists.

The algorithms proposed in this article achieve the same ratios for both cri-
teria. Indeed, Bi-Approx is a (α/2, α/2)-approximation algorithm while Ran
Bi-Approx is a (

√
5−1
2 ,

√
5−1
2 )-expected approximation algorithm. As a conse-

quence, it would be interesting to obtain results when the ratios are different.

Acknowledgement. We thank Martin Skutella for giving us the example of
Figure 3.
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Abstract. In the unweighted case, approximation ratio for the indepen-
dent set problem has been analyzed in terms of the graph parameters
such as the number of vertices, maximum degree, and average degree.
In the weighted case, no corresponding results are possible for average
degree, since inserting the vertices with small weight decreases the aver-
age degree arbitrarily without significantly changing the approximation
ratio. In this paper, we introduce weighted measures, namely “weighted”
average degree and “weighted” inductiveness, and analyze algorithms for
the weighted independent set problem in terms of these parameters.

1 Introduction

An independent set in a graph is a set of vertices in which no two vertices are
adjacent. The (weighted) independent set problem is that of finding a maxi-
mum (weight) independent set. Numerous approximation algorithms has been
analyzed for this problem. In the unweighted case, an algorithm with approx-
imation ratio Δ/6 + O(1) was proposed by Halldórsson and Radhakrishnan
[6] for the graphs with the maximum degree Δ. Vishwanathan proposed an
SDP-based algorithm whose approximation ratio is O(Δ log log Δ/ logΔ) [3].
For graphs with the average degree d, Hochbaum [7] proved that an LP-based
algorithm has approximation ratio (d + 1)/2. Halldórsson and Radhakrishnan
[5] improved this approximation ratio to (2d + 3)/5. Moreover, an algorithm
with approximation ratio O(d log log d/ log d) was proposed by Halldórsson [2].
In the weighted case, Halldórsson and Lau [4] gave an algorithm with approx-
imation ratio (Δ + 2)/3. For δ-inductive graphs approximation ratio (δ + 1)/2
is known due to Hochbaum [7], and Halldórsson [2] proposed an algorithm with
approximation ratio O(δ log log δ/ log δ). Note that δ ≤ Δ for any graph.

In this paper, we extend the approximation algorithms of [2,7] to the weighted
case. Since inserting the vertices with small weight decreases d arbitrarily without
significantly changing approximation ratio, we introduce the weighted average
degree dw and analyze the approximation ratio. For weighted graphs, there exist

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 341–350, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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approximation algorithms whose approximation ratio is analyzed in terms of
inductiveness. We extend inductiveness to weighted version and introduce the
weighted inductiveness δw.

The rest of this paper is organized as follows. In Section 2 we define the
weighted average degree and the weighted inductiveness. We also show the re-
lationship between various degrees. In Section 3 we propose a greedy algorithm
whose lower bound is max(W/(dw +1), W/(δw+1)), where W is the total weight.
We also prove that this algorithm has approximation ratio max(δw, 1). In Sec-
tion 4 we prove that the approximation ratio of min((dw + 1)/2, (δw + 1)/2)
can be achieved by an LP-based algorithm. Finally we will prove that the ap-
proximation ratios of O(dw log log dw/ log dw) and O(δw log log δw/ log δw) can
be achieved by an SDP-based algorithm in Section 5. We will assume that the
input graphs have no isolated vertices.

2 Preliminaries

2.1 Definitions

Let G be an undirected graph where each vertex v has positive weight wv. Let
V (G) and E(G) denote the vertex set and the edge set of G, respectively, as
usual. Let W (G) be the sum of the weights of all vertices. n(G) is the number of
vertices in G. Let Δ(G) and d(G) denote the maximum and the average degree
of G, respectively. d(v, G) is the degree of vertex v in G. The inductiveness δ(G)
of a graph G is given by

δ(G) = max
H⊆G

min
v∈V (H)

d(v, H), (1)

where H ⊆ G denotes that H is a subgraph of G. Let π be an ordering of vertices
in V , that is, a one to one map V → {1, 2, . . . , n} (n = |V |). We define the right
degree of a vertex v in G with respect to π as follows:

dπ(v, G) = |{u ∈ V |(u, v) ∈ E, π(u) > π(v)}|. (2)

The right degree of a vertex v is the number of adjacent vertices to the right
when we arrange vertices from left to right according to π. If there exists π such
that m ≥ maxv dπ(v, G), we call G an m-inductive graph.

For a vertex set X , let w(X) denote the sum of the weights of the vertices
in X . Let NG(v) denote the set of vertices adjacent to vertex v in G. For a
vertex v, we define the weighted degree dw(v, G) in G as follows:

dw(v, G) =
w(NG(v))

wv
. (3)

Δw(G) = maxv dw(v, G) is the maximum weighted degree of G. We will omit G
if it is clear from the context. We define the weighted average degree dw(G) of
graph G as follows:

dw(G) =
∑

v∈V wvd(v)
W

. (4)
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In fact, we can represent the weighted average degree in the following form:

dw(G) =
∑

v∈V w(N(v))
W

(5)

=
∑

v∈V wvdw(v)
W

. (6)

The weighted inductiveness δw(G) of a graph G is given by

δw(G) = max
H⊆G

min
v∈V (H)

dw(v, H). (7)

We define the right weighted degree of a vertex v for an ordering π in G as
follows:

dπ
w(v, G) =

w({u ∈ V |(u, v) ∈ E, π(u) > π(v)})
wv

.

If there exists π such that m ≥ maxv dπ
w(v, G), we call G a weighted m-inductive

graph.
We denote by αw(G) the weight of the optimal solution of the weighted

independent set problem on G. For an algorithm A, A(G) denotes the weight of
the independent set obtained by A on G. Then the approximation ratio of A is
defined by

sup
G

αw(G)
A(G)

.

We will consider unweighted graphs as weighted ones where each vertex has unit
weight. α(G) denotes the size of a maximum independent set on G.

2.2 Weighted Inductiveness

Let π be an ordering of the vertices of G and vi be a vertex with π(vi) = i. We
define V π

i = {vj |j ≥ i}. Let Gπ
i be the induced subgraph of G by V π

i . Smallest-
first ordering π is an ordering such that the weighted degree of vi is minimum
in Gπ

i for all i (1 ≤ i ≤ n). We can find a smallest-first ordering in polynomial
time by a greedy algorithm. We can prove the following theorem in the same
manner as in the case of unweighted inductiveness [8].

Theorem 1. For any ordering π, the inequality

δw(G) ≤ max
v

dπ
w(v, G)

holds. Moreover, if π is a smallest-first ordering, then the equality

δw(G) = max
v

dπ
w(v, G)

holds.

Corollary 1. A smallest-first ordering π minimizes maxv dπ
w(v, G).
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2.3 Relationship Between Weighted and Unweighted Degrees

Theorem 2. The following relationships hold for all graphs G:

δ ≤ Δw (8)
δw ≤ Δ (9)
d ≤ Δw (10)

dw ≤ Δ. (11)

Proof. We obtain inequalities (8) and (9) by considering the non-decreasing order
and the non-increasing order of weight, respectively. (11) follows immediately
from the definition of measures. Finally, we prove inequality (10). We can get
the following inequalities:∑

v∈V

dw(v) =
∑
v∈V

∑
u:(u,v)∈E

wu

wv
=

∑
(u,v)∈E

[
wu

wv
+

wv

wu

]
≥ 2|E| = nd.

Thus,

Δw = max
v∈V

dw(v) ≥ 1
n

∑
v∈V

dw(v) ≥ d.

Hence, this theorem holds. �

There exist graphs where δw and dw are arbitrarily smaller than δ: Consider
the complete bipartite graph G = Kn/2,n/2, where vertices have weight 1 on one
side and w on the other side. Then, δ(G) = n/2, while δw(G) = n/(2w). For dw,
we consider an n-clique of {v0, v1, . . . , vn−1} plus vn connected to only vn−1. The
weight wi of vi is given by wi = 1 for 0 ≤ i ≤ n − 1 and wn = w. In the graph,
δ = n − 1 and

dw =
w + (n − 1)2 + n

w + n
= 1 + O

(
n2

w

)
.

3 Greedy Algorithm

3.1 Previous Results

For unweighted graphs, the greedy algorithm can be written as follows. We select
a minimum degree vertex as a vertex in the independent set I, and delete this
vertex and all of its neighbors from the graph. We repeat this process for the
remaining subgraph until the subgraph becomes empty. This algorithm attains
the Turán bound [5,7];

|I| ≥ n

d + 1
. (12)

For weighted graphs, the minimum degree greedy algorithm attains the fol-
lowing lower bound [2,8]

w(I) ≥ W

δ + 1
. (13)
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The greedy algorithm for the weighted graphs is almost the same as the
unweighted greedy algorithm. The difference is that, instead of selecting a mini-
mum degree vertex, our algorithm selects a vertex of minimum weighted degree.
We call this algorithm WG.

Sakai, Togasaki, and Yamazaki proposed an algorithm which is essentially
the same as WG and proved the following theorem [10].

Theorem 3 ([10]). WG finds an independent set with the following lower
bound:

WG(G) ≥
∑
v∈V

w2
v

w(N(v)) + wv
.

3.2 Lower Bound

We use the following proposition.

Proposition 1. Assume that ai > 0, bi > 0 for all 1 ≤ i ≤ n. Then the
inequality ∑

i

b2
i

ai
≥ (
∑

i bi)
2∑

i ai

holds.

Proof. The inequality is equivalent to

∑
i

ai

∑
i

b2
i

ai
≥
(∑

i

bi

)2

.

This inequality comes from the Cauchy-Schwarz inequality
(∑

i x2
i

) (∑
i y2

i

)
≥

(
∑

i xiyi)
2, by assigning xi =

√
ai and yi = bi/

√
ai. �

Let I be the independent set obtained by WG. Let vi be the i-th vertex
selected into the independent set I. Let Gi be the subgraph induced by the
remaining vertices at the beginning of the i-th iteration.

Theorem 4. WG produces an independent set satisfying the inequality

WG(G) ≥ W

dw + 1
.

Proof. We obtain the lower bound of dwW :

dwW =
∑

v∈V (G)

wvdw(v, G) ≥
∑

i

∑
v∈NGi

(vi)∪{vi}
wvdw(v, Gi)

≥
∑

i

∑
v∈NGi

(vi)∪{vi}
wvdw(vi, Gi) =

∑
i

(w(NGi(vi)) + wvi) dw(vi, Gi).
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Adding W =
∑

i (w(NGi(vi)) + wvi), we can deduce the inequality(
dw + 1

)
W ≥

∑
i

(w(NGi(vi)) + wvi)
2

wvi

.

Finally we apply Proposition 1 with ai = wvi , bi = w(NGi(vi)) + wvi . The
inequality (

dw + 1
)
W ≥ W 2

WG(G)
holds, which implies the theorem. �

Theorem 3 also leads to Theorem 4.

Theorem 5. WG produces the independent set satisfying the inequality

WG(G) ≥ W

δw + 1
.

Proof. Because δw ≥ dw(vi, Gi) for all i and W =
∑

i (w(NGi(vi)) + wvi), the
inequality

Wδw ≥
∑

i

(w(NGi(vi)) + wvi) dw(vi, Gi)

holds. With this inequality, we can prove this theorem in the same way as The-
orem 4. �
Proposition 2. The lower bounds of Theorems 4 and 5 are tight.

Proof. We illustrate the tight example for both theorems. Let G be a star graph
with n vertices. We assign weight 1 to the central vertex and 1/

√
n − 1 to the

other vertices. In this graph, dw = δw =
√

n − 1, W =
√

n − 1 + 1. WG may
output the singleton with the central vertex. In this case, WG(G) = 1 and thus
the inequalities in Theorems 4 and 5 hold with equality. �

3.3 Approximation Ratio

Theorem 6. WG attains approximation ratio max(δw, 1).

Proof. Let Vi = NGi(vi)∪{vi}, and Hi be the subgraph of G induced by Vi. In the
case δw ≤ 1, it is easy to see that αw(Hi) = wvi and thus αw(G) ≤

∑
i αw(Hi) =∑

i wvi = WG(G). Otherwise, by the property of WG and the definition of
inductiveness, αw(Hi) ≤ max(wvi , w(NHi(vi))) = wvi · max(1, dw(vi, Hi)) ≤
wvi · max(1, δw(G)) = wvi · δw(G). The inequalities

αw(G) ≤
∑

i

αw(Hi) ≤
∑

i

wvi · δw(G) = WG(G) · δw(G)

are immediate. �
This theorem immediately implies that this problem is polynomial time solv-

able for the graphs with δw ≤ 1; We will ignore this case hereafter.
The graph in Proposition 2 is the tight example for WG:

Proposition 3. The approximation ratio δw of WG is tight.
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4 LP-Based Algorithms

4.1 Unweighted Results

We will consider the combination of linear programming and the greedy algo-
rithm. With the lower bound (12), Hochbaum [7] proved that this combination
achieves the approximation ratio (d+1)/2. In this section we extend Hochbaum’s
analysis to the weighted case and prove that the proposed algorithm has the ap-
proximation ratios (dw + 1)/2 and (δw + 1)/2.

4.2 LP Relaxation for the Weighted Independent Set Problem

The weighted independent set problem can be formulated in the integer pro-
gramming as follows:

maximize
∑

i∈V wixi, (14)
subject to xi + xj ≤ 1 for all (i, j) ∈ E,

xi ∈ {0, 1} for all i ∈ V.

Relaxing the integral constraint, we can deduce the following linear program-
ming:

maximize
∑

i∈V wixi, (15)
subject to xi + xj ≤ 1 for all (i, j) ∈ E,

0 ≤ xi ≤ 1 for all i ∈ V.

We can obtain the optimal solution to this LP each of whose elements is 0,
1/2, or 1 [12]. Note that this LP can be solved with a combinatorial algorithm
[9,11]. We classify the vertices into three sets according to the value of xi, that
is, S1 = {i ∈ V |xi = 1}, S1/2 = {i ∈ V |xi = 1/2}, S0 = {i ∈ V |xi = 0}. Note
that S1 is an independent set of G and no vertex in S1/2 has a neighbor in S1.
We also note that S1/2 induces a subgraph with no isolated vertices.

4.3 Algorithm

We first solve the LP relaxation to divide the vertex set V into three subsets S1,
S1/2, and S0 as above. We then apply WG to the subgraph H induced by S1/2

to obtain an independent set IH of H . Finally, we output the independent set
I = S1 ∪ IH . We call this algorithm WGL.

4.4 Approximation Ratio

From Theorem 4, we can prove the following theorem in the same manner as the
Hochbaum’s proof [7] of the approximation ratio (d + 1)/2 for unweighted graphs.

Theorem 7. Approximation ratio of WGL is (dw + 1)/2.

We prove the approximation ratio in terms of the weighted inductiveness.
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Theorem 8. Approximation ratio of WGL is (δw + 1)/2.

Proof. From Theorem 5,

αw(G)
WGL(G)

≤
w(S1) + 1

2w(S 1
2
)

w(S1) +
w(S 1

2
)

δw(H)+1

≤ δw(H) + 1
2

≤ δw + 1
2

. �

Proposition 4. The approximation ratio of Theorems 7 and 8 is tight.

Proof. We consider the split graph G = (V, E), where V = {u1, u2, . . . , ut,
v1, v2, . . . , v2t−1} and E = {(ui, vj)|1 ≤ i ≤ t, 1 ≤ j ≤ 2t− 1} ∪ {(ui, uj)|1 ≤ i <
j ≤ t}. The induced subgraph by {ui} is a clique and the set {vi} is an indepen-
dent set. We give each vertex ui weight w/t+ε, each vertex vi weight w/(2t−1),
where ε is a small positive constant. In the optimal solution for LP (15), each
value of xi is 1/2. Thus, S1/2 = V (G). In this graph, WGL(G) = w/t + ε and
αw = w. So, the following equations hold:

dw =2t− 1 +
3t2 − 2t

2w
ε,

αw(G)
WGL(G)

=
dw + 1

2
−
(

t2

w + εt
− 3t2 − 2t

4w

)
ε,

δw =2t− 1 − t2

w + εt
ε,

αw(G)
WGL(G)

=
δw + 1

2
− t2

2(w + εt)
ε.

Hence, Theorems 7 and 8 are tight. �

5 SDP-Based Algorithms

5.1 Previous Result

The following theorem was proved in [2]:

Theorem 9 ([2]). For any fixed real k such that ϑw(G) ≥ 2W/k, we can con-
struct an independent set in G whose weight is Ω(W/(kδ1−1/(2k))).

The function ϑw(G), defined in [1], is the weighted version of Lovász’s ϑ-function.
This function can be computed using semi-definite programming (SDP) in poly-
nomial time, and has the property αw(G) ≤ ϑw(G).

For the unweighted graphs, the combination of this theorem and the greedy
algorithm yields the approximation ratio O(d log log d/ log d).

5.2 Approximation Ratio for the Weighted Graphs

We will prove the following result for the weighted version of the algorithm with
the approximation ratio O(d log log d/ log d).

Theorem 10. For any fixed real t such that t ≥ W (G)/αw(G), we can approx-

imate the weighted independent set problem within O(t2d
1−1/(8t)

w ).
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Proof. Assume that t ≥ W (G)/αw(G) is fixed. Let K be the subgraph induced
by the vertices whose degrees in G are less than 2tdw. Then we can estimate the
value dwW (G) as follows:

dwW (G) =
∑

v∈V (G)

wvd(v) ≥
∑

v∈V (G)\V (K)

wvd(v) ≥ 2tdw

∑
v∈V (G)\V (K)

wv.

Thus, the inequality
∑

v∈V (G)\V (K) wv ≤ W (G)/(2t) holds. From this inequality,
we can prove the theorem along with [2]. �

Theorem 11. For any fixed real t such that t ≥ W (G)/αw(G), we can approx-
imate the weighted independent set problem within O(t2δ1−1/(8t)

w ).

Proof. Let π be an ordering of vertices in G with which the value of maxv dπ
w(v) is

equal to δw. Let π′ be the reverse ordering of π. Assume that t ≥ W (G)/αw(G)
is fixed. Let K be the subgraph induced by the vertices whose right degrees
dπ′

(v, G) are less than 2tδw. Thus K is a 2tδw-inductive graph. Then the follow-
ing inequalities hold:

Wδw ≥
∑

v∈V (G)

wvdπ
w(v) =

∑
v∈V (G)

wvdπ′
(v)

≥
∑

v∈V (G)\V (K)

wvdπ′
(v) ≥ 2tδw

∑
v∈V (G)\V (K)

wv.

Thus, we can prove this theorem just like [2]. �

5.3 Algorithm

In this section we propose two algorithms: WGSA, whose approximation ratio is
a function of dw, and WGSI, whose approximation ratio is a function of δw.

WGSA is the following algorithm. We get an independent set by applying WG.
Independently, we apply the algorithm given by Theorem 10 to obtain another
independent set. We output the one with larger weight.

Theorem 12. WGSA achieves approximation ratio O(dw log log dw/ log dw) for
the weighted independent set problem.

Proof. From Theorems 4 and 10, we can prove this theorem in the same manner
as [2]. �

WGSI is the following algorithm. We get an independent set by applying WG.
Independently, we apply the algorithm given by Theorem 11 to obtain another
independent set. We output the one with larger weight.

Theorem 13. WGSI achieves approximation ratio O(δw log log δw/ log δw) for
the weighted independent set problem.

Proof. From Theorems 5 and 11, we can prove this theorem in the same way
as [2]. �
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6 Conclusion

In this paper, we defined the weighted average degree dw and the weighted induc-
tiveness δw, and proved the lower bound of the weight of the independent set ob-
tained by the weighted greedy algorithm. We also proved that this algorithm has
approximation ratio δw. Combining with LP, we obtained the approximation ra-
tio min((dw+1)/2, (δw+1)/2). Also combining with SDP, we proved that approx-
imation ratio can attain O(dw log log dw/ log dw) and O(δw log log δw/ log δw).
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Abstract. We consider several graph theoretic problems on unit disk
graphs (Maximum Independent Set, Minimum Vertex Cover, and Mini-
mum (Connected) Dominating Set) relevant to mobile ad hoc networks.
We propose two new notions: thickness and density. If the thickness of a
unit disk graph is bounded, then the mentioned problems can be solved
in polynomial time. For unit disk graphs of bounded density, we present
a new asymptotic fully-polynomial approximation scheme for the con-
sidered problems. The scheme for Minimum Connected Dominating Set
is the first Baker-like asymptotic FPTAS for this problem. By adapting
the proof, it implies e.g. an asymptotic FPTAS for Minimum Connected
Dominating Set on planar graphs.

1 Introduction

Mobile ad hoc networks and wireless sensor networks have attracted widespread
attention in the last few years. Due to their flexibility, they are very interesting
for consumer, military, and scientific markets. To solve combinatorial problems
on such networks, the networks are often modeled as (unit) disk graphs. A graph
G = (V, E) is a disk graph if and only if there exists a set of disks D = {Di | 1 ≤
i ≤ |V |}, such that each vertex corresponds to a disk Di and two vertices are
connected by an edge if and only if the two corresponding disks intersect. Tangent
disks are assumed to intersect as well. In a unit disk graph, the radii of all disks
are equal. We call D a disk representation of G. Observe that (unit) disk graphs
are a good model for wireless communication networks.

As (unit) disk graphs have a nice geometric interpretation, classical graph
theoretic problems relevant to wireless communication networks seem easier to
solve or approximate than they are on general graphs. By making some realistic
assumptions about the geometric interpretation, we find various new properties
and algorithms. The main contribution of this paper is an asymptotic FPTAS for
Maximum Independent Set, Minimum Vertex Cover, and Minimum (Connected)
Dominating Set on unit disk graphs of bounded density, improving existing re-
sults on such graphs. The proof used for Minimum Connected Dominating Set
� This research was supported by the Netherlands Organisation for Scientific Research

NWO (project Treewidth and Combinatorial Optimisation) and by the Bsik project
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substantially improves previous analyses for this problem and can also be applied
to these algorithms (see e.g. [8,10]). The notion of thickness, introduced in Sec.
4, is of interest by itself as a modeling assumption in wireless communication
networks. We develop polynomial time algorithms for the considered problems
on unit disk graphs of bounded thickness.

2 Preliminaries

An independent set S ⊆ V contains only non-adjacent vertices (i.e. u, v ∈ S ⇒
(u, v) �∈ E). In a mobile ad hoc network, an independent set of nodes is capable of
transmitting simultaneously without signal interferences. To maximize commu-
nication capabilities, a maximum size independent set (maximum independent
set) is sought. A set S ⊆ V is a vertex cover if and only if u ∈ S or v ∈ S for
each (u, v) ∈ E.

A set S ⊆ V is a dominating set for U ⊆ V if and only if each v ∈ U is in
S or is adjacent to a vertex in S. The nodes in a dominating set could function
as emergency transmitters capable of reaching every node in the network, or as
central nodes in node clusters. For a connected dominating set S, the subgraph of
G induced by S (G[S] = (S, (S×S)∩E)) must also be connected. It can be used
as a backbone to simplify and improve message routing. We seek a minimum
size (connected) dominating set (minimum (connected) dominating set).

Several approximation scheme types are used. For each instance x of a max-
imization (minimization) problem and each ε > 0, a polynomial time approx-
imation scheme (PTAS) delivers in time polynomial in |x| a feasible solution
of value within a factor 1 − ε (resp. 1 + ε) of the optimum. A fully polynomial
time approximation scheme (FPTAS) delivers such a solution in time polyno-
mial in |x| and 1

ε . An asymptotic fully polynomial time approximation scheme
(FPTASω) gives a feasible solution in time polynomial in |x| and 1

ε and attains
the approximation factor if |x| > c, for some constant c only dependent on ε. We
also use the notion of fixed-parameter tractability from Downey and Fellows [11].

3 Previous Work

Clark, Colbourn, and Johnson [9] proved all problems mentioned above NP-hard
for (unit) disk graphs. Marathe et al. [15] give constant factor polynomial time
approximation algorithms. Wan et al. [23] present a distributed constant factor
approximation algorithm for Minimum Connected Dominating Set.

Matsui [16] and Hunt et al. [14] give different PTASs for Maximum Indepen-
dent Set on unit disk graphs. Hunt et al. also have PTASs for Minimum Vertex
Cover and Minimum Dominating Set. Cheng et al. [8] propose a PTAS for Mini-
mum Connected Dominating Set on unit disk graphs. Nieberg et al. [17,18] give a
robust PTAS for Maximum Independent Set and Minimum Dominating Set if no
disk representation is known. Erlebach et al. [12] propose a PTAS for Maximum
Independent Set and Minimum Vertex Cover on general disk graphs. Chan [7]
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gives a PTAS for Maximum Independent Set on the intersection graph of a set
of fat objects. Under the used definition, a set of disks is fat.

The possibility of creating PTASs and FPTASωs exploiting fixed-parameter
tractability has been used before, notably by Baker [4] for planar graphs. De-
maine and Hajiaghayi [10] consider minor-closed graphs of locally bounded
treewidth. Although bounded density unit disk graphs have locally bounded
treewidth, they are not minor-closed [22]. Hunt et al. [14] consider λ-precision
unit disk graphs where the distance between any two disk centers is at least λ.
Any λ-precision unit disk graph has density Θ( 1

λ2 ). The reverse is not necessarily
true. Hence our results generalize the schemes of Hunt et al. Furthermore, we
show that path decompositions suffice instead of the more complex tree decom-
positions used by Hunt et al. Finally, Alber and Fiala [1] describe subexponential
exact algorithms for Maximum Independent Set on λ-precision unit disk graphs
and show the problem is fixed-parameter tractable on such graphs.

4 Thickness

Assume we are given a unit disk graph G = (V, E) with n = |V | and a known
disk representation D = {Di = (ci, ri) | i = 1, . . . , n} for G, where ci ∈ IR2 is the
center of disk i and ri = 1

2 its radius.
The thickness of a unit disk graph is determined by a slab decomposition of

a disk representation of that graph. Given an angle α (0 ≤ α < π) and a disk
center cs, partition the plane using an infinite set of parallel lines, such that the
distance between each two neighboring lines is 1, each line intersects the x-axis
at angle α, and one line goes through cs. The area between two neighboring lines
(slab boundaries) is called a slab. A disk is said to be in a slab if its center is
either between two slab boundaries defining the slab, or on the left boundary
of the slab. This partition induces a slab decomposition s = 〈α, cs〉 of D. It also
induces a decomposition of V into mutually disjoint, but collectively exhaustive
subsets Y1, Y2, . . . , Yb (b ≤ n), such that Yj contains the vertices corresponding
to the disk centers in the j-th non-empty slab of s. We assume there also exist
three empty ‘dummy’ slabs Y−1, Y0, and Yb+1.

Given a slab decomposition s, the thickness t(s) is the maximum number of
disk centers of D (or, equivalently, the maximum number of vertices) in any slab
of s, i.e. t(s) = max1≤i≤b |Yi|. We define the thickness t of D as the minimum
thickness over all slab decompositions of D. Both t(s) and t can be computed in
polynomial time [21].

4.1 Relation to Pathwidth

A path decomposition of a graph G = (V, E) is a sequence (X1, X2, . . . , Xp) of
subsets of V (called bags) such that 1)

⋃
1≤i≤p Xi = V , 2) for all (v, w) ∈ E,

there is an i (1 ≤ i ≤ p) such that v, w ∈ Xi, and 3) Xi ∩ Xk ⊆ Xj for all i, j, k
with 1 ≤ i < j < k ≤ p. The width of a path decomposition (X1, X2, . . . , Xp) is
max1≤i≤p |Xi| − 1. The pathwidth of a graph G = (V, E) is the minimum width
of any path decomposition of G [19].
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Theorem 1. Given a slab decomposition s of D, there exists a path decomposi-
tion of G of width at most 2t(s) − 1 and consisting of at most n − 1 bags.

Proof. Construct a sequence of bags (X1, X2, . . . , Xb−1) with Xj = Yj ∪ Yj+1

(1 ≤ j ≤ b − 1). As the length of each edge is at most 1, vertices in Yj can only
have edges to vertices in Yj−1, Yj , and Yj+1. Then clearly (X1, . . . , Xb−1) satisfies
all requirements for a path decomposition. The width of the decomposition is
max1≤j≤b−1 |Xj | − 1 = max1≤j≤b−1 |Yj ∪ Yj+1| − 1 ≤ 2 max1≤j≤b |Yj | − 1 =
2t(s) − 1. Since b ≤ n, the decomposition consists of at most n − 1 bags. �

A corollary is that 2t − 1 is an upper bound on the pathwidth of G.
A path decomposition can be used to solve many optimization problems. This

includes the problems focused on in this paper. Given the pathwidth bound of
2t− 1, Maximum Independent Set and Minimum Vertex Cover can be solved in
O(22tn) time, Minimum Dominating Set in O(32tn) time, and Minimum Con-
nected Dominating set in O(2t2tn) time [2,6,10,20]. However, a slab decompo-
sition can also be used to solve the optimization problems directly, i.e. without
creating a path decomposition, as will be shown below.

4.2 Direct Dynamic Programming Algorithms

Maximum Independent Set. For any j (1 ≤ j ≤ b+1) and given Wj ⊆ Yj , in
any independent set S ∪Wj , with S ⊆ Y0 ∪ · · · ∪Yj−1, of maximum size, S must
be an independent set, independent of Wj , of maximum size. Equivalently, as
disks have radius 1

2 , Wj−1 = S∩Yj−1 must be independent of Wj . In a slab-wise
dynamic programming algorithm, we can therefore exhaustively enumerate all
possible Wj and Wj−1, for each slab j.

Theorem 2. A maximum independent set of a unit disk graph with thickness t
can be computed in O(t222tn) time.

It follows straightforwardly that a minimum vertex cover of a unit disk graph
with thickness t can also be computed in O(t222tn) time.

Minimum Dominating Set. For some set W ⊆ V , we denote the vertices in
Yj dominated by W as Dj(W ). Furthermore, given a dominating set DS, we
denote DS restricted to slab j (DS∩Yj) by Aj , the vertices in slab j dominated
by Aj or Aj−1 (Dj(Aj)∪Dj(Aj−1)) by Bj , and the vertices dominated by Aj+1

(Dj(Aj+1)) by Cj . In the algorithm, we will always ensure that Aj , Bj , and Cj

are mutually exclusive, but collectively exhaust Yj .
We observe that for any j (1 ≤ j ≤ b+1) and given Aj , Bj ⊆ Yj (Aj∩Bj = ∅),

in any dominating set S∪Aj for Y−1∪· · ·∪Yj−1∪Bj , with S ⊆ Y−1∪· · ·∪Yj−1, of
minimum size, S must be a dominating set for (Y−1∪· · ·∪Yj−2)∪(Yj−1−Aj−1−
Dj−1(Aj)), with Dj(Aj−1) ⊇ Bj −Dj(Aj), of minimum size. Because Dj(Aj−1)
is allowed to be a superset of Bj−Dj(Aj), we can use exhaustive enumeration on
just Aj and Aj−1 and compute Bj as Dj(Aj)∪Dj(Aj−1)−Aj . Since this considers
only maximal Bj , we need a post-processing step with exhaustive enumeration
on Aj and Bj to fix the table. This is shown in Alg. 1.
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1. Set size0(∅, ∅) = 0
2. for j ← 1 to b + 1
3. do Set sizej(Aj , Bj) = ∞ for each Aj ⊆ Yj , Bj ⊆ Yj − Aj

4. for each Aj ⊆ Yj

5. do for each Aj−1 ⊆ Yj−1

6. do Let Bj = Dj(Aj) ∪ Dj(Aj−1) − Aj

Cj−1 = Dj−1(Aj) − Aj−1, and
Bj−1 = Yj−1 − Aj−1 − Cj−1

7. if sizej−1(Aj−1, Bj−1) �= ∞ and
|Aj | + sizej−1(Aj−1, Bj−1) < sizej(Aj , Bj)

8. then sizej(Aj , Bj) = |Aj | + sizej−1(Aj−1, Bj−1)
9. od od
10. for each Aj ⊆ Yj

11. do for each Bj ⊆ Yj − Aj (in order of descending |Bj |)
12. do for each v ∈ Bj

13. do if sizej(Aj , Bj) < sizej(Aj , Bj\{v})
14. then sizej(Aj , Bj\{v}) ← sizej(Aj , Bj)
15. od od od od
16. return sizeb+1(∅, ∅)

Alg. 1. Solving Minimum Dominating Set, given a slab decomposition Y1, . . . , Yb

Theorem 3. Algorithm 1 computes a minimum dominating set of a unit disk
graph with thickness t in O(t222tn) time.

Minimum Connected Dominating Set. The subset of a minimum connected
dominating set on slabs 1 to j is not necessarily connected. Therefore we consider
partial connected dominating sets. For each j (1 ≤ j ≤ b + 1), a set Sj ⊆
Y−1 ∪ · · · ∪Yj is a partial connected dominating set of Y−1 ∪ · · · ∪Yj−1 ∪Bj with
Bj ⊆ Yj if and only if Sj is a dominating set for Y−1 ∪ · · · ∪Yj−1 ∪Bj and either
C ∩Yj �= ∅ for each connected component C of Sj , or j ≥ b and Sj is connected.
Note that this definition enforces that Sb+1 is a connected dominating set.

We solve the minimum partial connected dominating set problem by building
on the solution for Minimum Dominating Set. A major problem is to remember
the connected components of each considered partial connected dominating set.
For each connected component Ci (1 ≤ i ≤ Kj) of a partial connected dominat-
ing set, denote Ci∩Yj by Ai

j , and thus Aj = A1
j ∪· · ·∪A

Kj

j . The sets A1
j , . . . , A

Kj

j

are mutually exclusive and not connected to each other. Hence each Ai
j must

be the union of one or more connected components of Aj . In fact, A1
j , . . . , A

Kj

j

forms a partition of the connected components of Aj . We call A1
j , . . . , A

Kj

j the
front of the partial connected dominating set. It can be shown that a front can
represent the connectivity information of a partial connected dominating set.

Now we adapt the algorithm for Minimum Dominating Set. We use the same
enumeration strategy, but also look at all possible fronts. This can be done by
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considering all non-crossing partitions of the connected components of Aj . Given
a total ordering ≺ on the elements of a finite set S, S1, . . . , Sp is a non-crossing
partition of S if and only if Si ∩ Sj = ∅ for each 1 ≤ i < j ≤ p,

⋃p
i=1 Si = S,

and a ≺ b ≺ c ≺ d is false for all i, j (1 ≤ i, j ≤ p, i �= j), any a, c ∈ Si, and
any b, d ∈ Sj . Here, for two connected components X, Y of Aj , we define ≺ such
that X ≺ Y if and only if cy

u < cy
v for all vertices u ∈ X, v ∈ Y , i.e. Y lies above

X . Note that either X ≺ Y or Y ≺ X must hold.

Lemma 1. Given the above total ordering ≺, each front is a non-crossing par-
tition of the connected components of Aj and Aj−1.

The number of non-crossing partitions of an m-element set is Cm [5], the m-th
Catalan number. It is well known that Cm is O( 4m

m
√

m
). Demaine and Hajiaghayi

[10] used Catalan structures similarly for Minimum Connected Dominating Set
on planar graphs. In fact, this approach can be used for any graph having an
embedding where the induced subgraph of the endpoints of any two crossing
edges has at least three edges.

Finally, if Aj−1 and Aj are in the same partial connected dominating set,
we can show that a non-crossing partition of the connected components of Aj−1

induces a unique non-crossing partition of the connected components of Aj . As
the table maintained by the algorithm stores all relevant non-crossing partitions
of Aj−1, we can derive all needed non-crossing partitions from the table.

Theorem 4. A minimum connected dominating set of a unit disk graph with
thickness t can be computed in O(t224tn) time.

The following is a corollary of the theorems in this section.

Corollary 1. Maximum Independent Set, Minimum Vertex Cover, and Mini-
mum (Connected) Dominating Set are fixed-parameter tractable (in t) for unit
disk graphs with a known disk representation.

Note that this also implies that polynomial time algorithms for the problems
exist if t = t(n) ≤ c log n, for some constant c > 0.

5 Density

If the thickness of a unit disk graph is large, we have to resort to approximation
algorithms to obtain a polynomial time algorithm. For this purpose, we propose
the new notion of density. We first define grid decompositions, which determine
the density of a unit disk graph. Given an angle α (0 ≤ α < 1

2π) and two disk
centers cv and ch, the plane can be partitioned into a grid of 1 × 1 squares,
such that the vertical lines defining the grid intersect the x-axis at angle α,
one vertical line intersects cv, and one horizontal line intersects ch. A disk is
considered to be in a grid square if its center is between the two horizontal and
between the two vertical grid boundaries defining the square. If a center is on a
vertical (horizontal) grid boundary, then the disk is considered to be in the grid
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square to the right of (below) the boundary. This partition of the plane induces
a grid decomposition g = 〈α, cv, ch〉 of D.

Given a grid decomposition g, the density d(g) is the maximum number of
disk centers of D (or, equivalently, the maximum number of vertices) in any
grid square of g. The density d of D is defined as the minimum density over all
grid decompositions of D. The density of a given grid decomposition and the
minimum density can be computed in polynomial time [21].

Unfortunately, the considered graph problems are still NP-hard for unit disk
graphs of bounded density [21]. Because the problems are polynomially bounded
optimization problems, we know from Ausiello et al. [3] that no FPTAS ex-
ists for Maximum Independent Set, Minimum Vertex Cover, or Minimum (Con-
nected) Dominating Set on unit disk graphs of bounded density, unless P=NP.
An FPTASω can however be found, as will be shown below.

5.1 Shifting Strip Decompositions

Let G = (V, E) be a unit disk graph with known disk representation D, con-
taining disks of radius 1

2 . We assume a grid decomposition of D with density
d and angle 0 is given. Partition the plane into horizontal strips using a set of
horizontal lines (strip boundaries). Strip boundaries are of the form y = j, where
j ∈ ZZ, and coincide with horizontal boundaries of the grid decomposition. The
height of a strip is equal to the distance between its two strip boundaries. A disk
is in a strip defined by two horizontal lines y = j and y = l (j < l and j, l ∈ ZZ)
if and only if its center is on or below y = l and above y = j. The decomposition
of the disk centers induced by the strips is called a strip decomposition. A strip
decomposition also induces a decomposition of the graph, such that a vertex is
in a strip if and only if the corresponding disk is in that strip.

A strip decomposition can be used as a decomposition for the well known
shifting technique [4,13]. By choosing the height of the strips appropriately, we
can bound the thickness of each strip and apply the algorithms of the previous
section to each strip. Repeating this for several placements of the strip bound-
aries gives an approximation of the optimum. We show how to apply these ideas
to construct an FPTASω for Minimum Connected Dominating Set.

Minimum Connected Dominating Set. Assume G is connected. Let f(n)
be some function (4d ≤ f(n) ≤ n) and k an integer (3 < k ≤ f(n)

d ). Construct a
strip decomposition such that each strip has thickness smaller than f(n)+d and
height at least f(n)

d , and such that there are at most n
f(n) +1 strips. Because the

density is d, this can indeed be done, and in O(n log n) time [21]. Denote such a
decomposition, shifted down by a, by Da (0 ≤ a ≤ k − 1). We denote the set of
disks in the b-th strip of Da by Db

a (b ∈ ZZ).
Next, for each strip, we add all disks within distance 2 of its boundaries to

the strip. So if y = j and y = l (j, l ∈ ZZ, j < l) are the two strip boundaries
defining strip Db

a, then a disk will be in Db
a if and only if its center is on or be-

low y = l+2 and above y = j−2. We call the area between y = l+1 and y = j−1
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the interior of the strip. The areas between y = l + 2 and y = l +1 and between
y = j − 1 and y = j − 2 are jointly referred to as the exterior.

The thickness of any strip in D0 is at most f(n) + 5d. Hence the thickness
of any strip in Da is at most f(n) + (a + 5)d ≤ f(n) + (k + 4)d ≤ f(n) +
(f(n)

d +4)d ≤ 3f(n). We compute a minimum connected dominating set for each
connected component in the interior of each strip in Da, possibly using vertices
in the exterior of the strip. By adapting the algorithm proposed in Theorem
4 and using that the thickness of any strip in Da is at most 3f(n), this takes
O(f(n)2 212f(n) n) time. Denote the union of the minimum connected dominating
sets of each connected component in the interior of the b-th strip of Da by CDSb

a

(b ∈ ZZ) and let CDSa =
⋃

b∈ZZ CDSb
a.

Lemma 2. CDSa (0 ≤ a ≤ k − 1) is a connected dominating set for G.

Proof. Because the interiors of the strips overlap, CDSa is trivially a dominating
set for G. Now suppose CDSa is not connected. Consider two distinct connected
components X, Y of CDSa and the shortest path P between X and Y . If |P | ≤ 2,
then X = Y . If |P | > 2, consider the first three consecutive vertices v, p0, p1 of P
with v ∈ X . These vertices must be in the interior of the same strip and belong
to the same connected component in this strip. As CDSa contains a minimum
connected dominating set for each connected component in the interior of each
strip, there exists a path in CDSa from v to a vertex r ∈ X dominating p1.
Then a path between X and Y exists which is shorter than P . This contradicts
the definition of P . Hence CDSa is connected. �
Next we link the size of CDSb

a to the size of a minimum connected dominating
set. We first need the following proposition.

Proposition 1. Let G = (V, E) be a connected graph and S an arbitrary domi-
nating set of G. If S has ncc connected components, then there exists a connected
dominating set for G of size at most |S| + 2ncc − 2.

Proof. In any disconnected dominating set there are two connected components
that can be connected by adding at most two vertices to the dominating set. �
Lemma 3. Let OPT be a minimum connected dominating set for G. Then for
each a (0 ≤ a ≤ k − 1) and for each strip b, |CDSb

a| ≤ |OPT ∩ Db
a| + 2|OPT ∩

exterior(Db
a)|.

Proof. Let OPT b
a = OPT∩Db

a. Clearly, OPT b
a is a dominating set for the interior

of Db
a. However, OPT b

a may consist of several connected components. We observe
that each such connected component must intersect the exterior of Db

a, or OPT
would not be connected. Hence the number of connected components of OPT b

a

is at most |OPT ∩ exterior(Db
a)|. Then, following Proposition 1, there exists a

connected dominating set of size at most |OPT b
a | + 2|OPT ∩ exterior(Db

a)| for
each connected component in the interior of Db

a, which possibly uses vertices in
the exterior of Db

a. Because CDSb
a is a minimum connected dominating set for

each connected component in the interior of Db
a, possibly using vertices in the

exterior of Db
a, |CDSb

a| ≤ |OPT ∩ Db
a| + 2|OPT ∩ exterior(Db

a)|. �
Now let CDSmin be such that |CDSmin| = min0≤a≤k−1 |CDSa|.
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Lemma 4. CDSmin is at least a (1+ 8
k )-approximation of a minimum connected

dominating set of G.

Proof. Let OPT be a minimum connected dominating set of G. Then

k |CDSmin| ≤
∑k−1

a=0 |CDSa|
≤
∑k−1

a=0

∑
b |CDSb

a|
≤
∑k−1

a=0

∑
b |OPT ∩ Db

a| + 2|OPT ∩ exterior(Db
a)|

=
(∑k−1

a=0

∑
b |OPT ∩ Db

a|
)

+ 2
(∑k−1

a=0

∑
b |OPT ∩ exterior(Db

a)|
)

Observe that no disk can be within distance 2 of a strip boundary for more than
four values of a. Hence

∑k−1
a=0

∑
b |OPT ∩ Db

a| ≤ (k + 4)|OPT |. Similarly, no
disk can be in the exterior of a strip for more than two values of a. Therefore∑k−1

a=0

∑
b |OPT ∩ exterior(Db

a)| ≤ 2|OPT |. Then k |CDSmin| ≤ (k + 4)|OPT |+
2(2|OPT |) = (k + 8)|OPT |. Hence |CDSmin| ≤ (1 + 8

k )|OPT |. �

Theorem 5. There exists an FPTASω for Minimum Connected Dominating Set
on unit disk graphs of bounded density, i.e. of density d = d(n) = o(log n).

Proof. For each a (0 ≤ a ≤ k − 1), Da can be computed in O(n log n) time [21].
Computing CDSb

a takes O(f(n)2 212f(n) n) time. Since there are n
f(n) strips,

CDSa can be computed in O(f(n) 212f(n) n2) time. Then CDSmin can be com-
puted in O(kn2f(n) 212f(n) + kn log n) time. If we choose f(n) = 1

12 log n, the
running time is O(kn3 log n). Choosing k = � 8

ε �, we obtain an (1+ε) approxima-
tion of the minimum connected dominating set in time polynomial in n and 1

ε .
Because k can be at most f(n)

d , 96d
log n is the lowest possible value of ε for a given

n. If however d = d(n) = o(log n), then 96d
log n becomes smaller than any desired

value for n large enough. Hence the described scheme is an FPTASω. �

Now consider again the results for Minimum Connected Dominating Set by
Cheng et al. [8] and Demaine and Hajiaghayi [10]. Our main improvement is
adding vertices within distance 2, where previously this distance would have
been Θ(log n). By adapting Lemmas 2 and 3, we can improve the running times
of the Cheng et al. and Demaine and Hajiaghayi algorithms. Then the almost-
PTAS for minor-closed graphs of locally bounded treewidth and PTAS for planar
graphs by Demaine and Hajiaghayi improve to an FPTASω. Although Demaine
and Hajiaghayi [10] already claim an FPTASω for planar graphs using their
generic algorithms for contraction-bidimensional problems, the new analysis ex-
tends Baker’s [4] original approach for planar graphs to Minimum Connected
Dominating Set.

We mention here that schemes for other problems than Minimum Connected
Dominating Set can be constructed in similar ways [22].

Theorem 6. There exists an FPTASω for Maximum Independent Set, Mini-
mum Vertex Cover, and Minimum Dominating Set on unit disk graphs of
bounded density, i.e. of density d = d(n) = o(log n).

For lack of space, we omit a formal proof of this theorem.
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Université Paris-Sud, 91405, Orsay-Cedex, France

{Pascal.Berthome, Kim.Nguyen}@lri.fr
2 Preuves, Programmes et Systèmes (PPS), CNRS UMR 7126, Université Paris 7,

Case 7014, 2 Place Jussieu, 75251 PARIS Cedex 05, France, and
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Abstract. In this paper, we present a new algorithm for computing the
chromatic polynomial of a general graph G. Our method is based on the
addition of edges and contraction of non-edges of G, the base case of the
recursion being chordal graphs. The set of edges to be considered is taken
from a triangulation of G. To achieve our goal, we use the properties of
triangulations and clique-trees with respect to the previous operations,
and guide our algorithm to efficiently divide the original problem.

Furthermore, we give some lower bounds of the general complexity
of our method, and provide experimental results for several families of
graphs.

Keywords: Chromatic polynomial, chordal graphs, minimal triangula-
tion, clique tree.

1 Introduction

Introduced by Birkhoff and Lewis in 1946 [6], the chromatic polynomial of a
graph G counts the number of ways of properly coloring G. This polynomial
also captures many combinatorial information about a graph, describing acyclic
orientations, the all-terminal reliability, and the spanning trees. More surpris-
ingly, it is closely related in physics with the zero-temperature partition function
of the q-state Potts antiferromagnet, motivating the computation this polyno-
mial for some class of graphs by physicists (e.g., see [8]). Created in order to give
some proof of the famous 4-color theorem, the chromatic polynomial has been
studied for itself. Studies include among others the search of the real/complex
roots of the polynomial [11,8], and the search of graphs uniquely defined by their
chromatic polynomials [9].

Once we have the chromatic polynomial of any graph, its chromatic number
is simply the first integral non-zero of the polynomial, thus, it can be com-
puted in polynomial time. As shown in [14], the chromatic polynomial includes

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 362–373, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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many other notions than the chromatic number, thus its computation reveals to
be quite complex even when the chromatic number is known. Recently, it was
shown that computing the coefficients of this polynomial in general graphs is
#P-hard [13].

Several papers deal with the effective computation of this polynomial. Most
of them use the paradigm of edge contraction/deletion. The main strategies
developed in the literature stop the recursion to graphs for which the polynomial
is easy to compute. We can note the work of Haggard [10], in which this latter
paradigm is used at the extreme: if the considered graph is small enough it checks
if it is isomorphic to a graph which polynomial has already been computed. Other
papers, such as [14], use as base case chordal graphs for which the chromatic
polynomial is easy to determine [7].

In this paper, we also use the chordal graphs as base cases in the recursion
tree. However, we improve the global computation by exploiting the clique-tree
associated to the considered chordal graphs. Another important difference with
most of the literature is that we prefer an edge addition/contraction method
rather than the classical edge contraction/deletion method.

In the remaining of the paper, we recall in Section 2 known results on the
chromatic polynomials, the chordal graphs and the triangulation of a graph.
In Section 3, we provide results that lead to our algorithm for computing the
chromatic polynomial. The general algorithm as well as lower bounds on its time
complexity is given in Section 4. In Section 5, we provide some experimental
results. Finally, we conclude the paper in Section 6. A detailed version of this
extended abstract is available at [5].

2 Preliminaries

2.1 Chromatic Polynomials

In the following, we use classical graph theory on undirected graphs. Notions
may be found for example in [2]. Let G = (V, E) be an undirected loop-less
graph, with n = |V | and m = |E|. A proper coloring of G with k colors is simply
a function φ from V into Ik = {1, . . . , k} (I0 = ∅) such that two neighbors in the
graph have different colors. For a given integer λ ≥ 0, the chromatic polynomial
P (G, λ) is the number of distinct proper colorings of G using at most λ colors.
In [14], the different forms of this polynomial are reviewed. According to the
chosen basis, the coefficients reflect different properties of the graph. As example,
let give some well-known chromatic polynomials, leading to the most popular
basis for writing these polynomials.

Empty graph: λn;

Complete graph: λ(n) =
n−1∏
i=0

(λ − i);

Trees: λ(λ − 1)n−1.

Here are some simple results that are the base of the computation of the
chromatic polynomial. If e is an edge of G, we note G− e the graph obtained by
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removing e from E, and G/e the graph obtained by contracting e. If e is not an
edge of G, we denote G + e the graph obtained by adding e to G. In this case,
we can define G/e by (G+ e)/e. Using this notation, the two following relations
can be easily established.

P (G, λ) = P (G + e, λ) + P (G/e, λ), if e �∈ E (1)

P (G, λ) = P (G − e, λ) − P (G/e, λ), if e ∈ E (2)

Both formulations can be applied to compute recursively the chromatic poly-
nomial. Base case in Formulation 1 is the complete graph, since we add edges to
the initial graph, and to any contracted graph, whereas the base cases with the
other formulation are the trees or the empty graphs. However, the straightfor-
ward use of these formulations clearly lead to an exponential exploration and is
not practical in many simple cases. Note that these two equations simply verify
that the object we are talking about is a polynomial, since it is obtained by a
finite combination (addition/subtraction) of elementary polynomials.

We also introduce the following folklore lemma:

Lemma 1 ([11]). Let G be a graph and G1 and G2 be subgraphs of G such that
G = G1 ∪ G2 and G1 ∩ G2 ∼ Kr, then we have:

P (G, λ) =
P (G1, λ)P (G2, λ)

λ(r)
(3)

Using this lemma, we can derive the chromatic polynomial of the trees, by elim-
inating all the leaves, one by one. Another application is the computation of the
chromatic polynomial of the chordal graphs as shown below.

In this paper, we will use Lemma 1 to break down the effective complexity
of computation of the chromatic polynomial. The goal in the recursions steps
of our algorithm is first to complete clique separators of the graph in order to
split the computation of the chromatic polynomial of a large graph into several
computations for smaller ones. The edges that should be added in this process
should belong to some (minimal) triangulation of the input graph.

2.2 Triangulation and Clique Trees

A chordal graph G is a graph in which there are no induced cycles of length > 3.
Many problems that are NP-complete in general graphs are polynomially solvable
in chordal graphs, such as the colorability problem. One useful representation of
chordal graphs is the clique-tree initially described in [3]. The following definition
is derived from [1]. A clique-tree of a given chordal graph G = (V, E) is a tree
T = (V , E) such that:

– V = {C1, C2, . . . , Cj} is the set of the maximal cliques of G;
– for every vertex v in G, the set of maximal cliques containing v induces a

subtree of T .
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a

b

g f e

dc

abg bcfg

cdfg

bcef

Fig. 1. A chordal graph and its clique tree

A simple example is given in Figure 1. Note that any edge in the clique
tree represents a minimal clique separator of G. This provides a simple way to
compute the chromatic polynomial for this family of graphs as shown in Lemma 2
below.

For a general graph G = (V, E), a triangulation of G is a set of edges F such
that G′ = (V, E∪F ) is chordal. Finding a triangulation with the minimum num-
ber of edges is known as the minimal fill-in problem and is NP-complete [15]. A
triangulation is minimal if no proper subset of it is a triangulation. Many effi-
cient algorithms have been designed for computing a minimal triangulation. For
example, the minimum degree heuristic and its variations [4] appear to be very
efficient in practise for the minimum fill-in problem, however it does not con-
stitute an approximation algorithm. In [12], a O(k) approximation polynomial
algorithm is given, where k is the minimum fill-in value.

Definition 1. Let G = (V, E) be a graph and F a minimal triangulation of G.
Let T = (V , E) a clique tree of G′ = (V, E ∪F ). The augmented clique tree of
G for F is T = (V , E , φ), where φ is a labeling of E by subsets of F defined by:

φ(Vi, Vj) = F ∩ E(G′[Vi ∩ Vj ]),

where G′[U ] denotes the subgraph of G′ induced by U a subset of V (G′).

Note that the edges of T constitute the minimal clique separators of G′, the
triangulation of G. Consequently, the labeling defines for any edge of T the subset
of F that has to be added in G to complete this separator. In order to measure
the quality of a triangulation, we define the thickness of a triangulation as
the maximal size of a label of the corresponding augmented clique tree.

a

b

g f e

dc

abg bcfg

cdfg

bcef

(b,g)

(c,f)

(c,g), (c,f)

Fig. 2. A graph and its augmented clique tree for the triangulation F = {(b, f),
(b, g), (c, f)}
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For example, in Figure 2, the thickness of the proposed triangulation is 2. We

will show in Section 6 that the thickness of a graph is an original parameter of
the triangulation of a graph and that it is disconnected to the minimum fill-in.

Lemma 2 ( [7]). Let G = (V, E) be a chordal graph. Let T = (V , E) be a clique-
tree representation of G, V = {V1, . . . , Vk}. Then, the chromatic polynomial of
G is:

P (G, λ) =
k∏

i=1

λ|Vi|/
∏

(Vi,Vj)∈E
λ|Vi∩Vj | (4)

3 Augmented Clique Tree, Edge Contraction and
Separation

In this section, we exhibit some properties of the augmented clique tree under
the edge manipulations and graph separation operations.

Using Equation 1, we perform both operations of edge addition and contrac-
tion of a non-edge of the graph. In this section, we show how an augmented
clique tree evolves under these two elementary operations. At each step of the
computation of the chromatic polynomial, we can associate three elements:

(1) the graph G1 whose chromatic polynomial has to be computed;
(2) a triangulation of G1, say F1;
(3) a clique tree T1 of G′

1 = G1 + F1 = (V (G1), E(G1) ∪ F1).

Theorem 1. Let G be a graph, F a triangulation of G, and T a clique tree of
G + F . Let e be an element of F . Let G1 = G + e and G2 = G/e. Then, there
exists F1, F2, T1 and T2 such that:

1. F1 is a triangulation of G1 and T1 is a clique tree of G1 + F1;
2. F2 is a triangulation of G2, and T2 is a clique tree of G2 + F2.

These sets can be computed in quadratic time (O(|V (G)|2)) from G, F and T .

Proof. This proof is divided into two parts.
The first one considers the graph G1 = G + e. From the previous remarks,

it is easy to see that F1 = F − e and T1 = T is a valid choice. These two sets
can be clearly obtained in linear time.

The second part of the proof concerns G2 = G/e. We will just sketch the
proof here, for the sake of clarity. First, let us remark that if a graph is chordal,
then it remains chordal after an edge contraction. In our case, G+ F is chordal,
and consequently, so is (G + F )/e. Let denote a and b the extremities of e. The
operation, /e on a set or a graph simply consists in identifying both extremities
of e and remove redundant elements.

Then F2 can be defined as E((G + F )/e) − E(G/e). It simply corresponds
to the elements of F/e that are not edges of G/e. This occurs when an edge
of type (b, x) in F collapse into an edge (a, x) in E(G). Then, the clique tree
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corresponding to G2 + F2 can be obtained from the description of this graph.
However, there exists a clever way to do this, simply based on the description of
T . This method is described in Algorithm 1 which is proven in details in [5]. This
algorithm and the contraction algorithms can be performed in O(n2) operations,
where n is the number of vertices of G. �

Algorithm 1: Clique-Tree-Contraction(T,e)
 T is a clique-tree of a given chordal graph G and e = (i, j) is an edge of G

1 begin
2 Within any clique set, replace the elements j by i
3 while there exists two neighbor cliques c1 and c2 such that c1 ⊆ c2

4 if φ(c1, c2) is contained in ∪(i,j) �=(1,2)φ(ei, ej) then
5 Contract the edge c1, c2 in T
6 return T ′, the resulting tree after renaming and contractions
7 end

We illustrate our method on a simple example in Figure 3. Let consider the
cycle with 7 vertices and one of its minimal triangulation in Figure 3(a). Fig-
ure 3(c) shows the result on C7 of the contraction of the edge (1, 5). Figure 3(b)
shows how the (augmented) clique tree evolves using Algorithm 1.

Note that the augmented clique tree structure can be regarded as another
description of the graph itself. Thus, during the overall computation, we can
only maintain this structure.
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(a) The cycle C7 and
one triangulation F
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(b) Evolution of a clique tree
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Fig. 3. The clique-tree contraction on the cycle. The triangulation sets are shown in
dashed lines.

Let consider now the impact of Lemma 1 on the augmented clique tree.

Theorem 2. Let G be a graph and G1 and G2 be subgraphs of G such that
G = G1 ∪ G2 and G1 ∩ G2 ∼ Kr. Let F be a triangulation of G and T be
the clique tree of G + F . Then, the triangulation set F can be divided into two
disjoint sets F1 and F2 such that F1 (resp. F2) is a triangulation of G1 (resp.
G2). Furthermore, the clique trees of the triangulated graphs can be obtained
from T by removing only one edge.

Proof. First, since G1 ∩ G2 ∼ Kr, there is no edge of F that can be added to
G1 ∩G2. Consequently any edge of F has to be added either on G\G2 or G\G1.
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Then let consider F1 (resp. F2) the subset of F for which both extremities are
in G1 (resp.F2). Using the above remark, these two sets form a partition of F .

Considering a clique tree of G + F , since G1 ∩ G2 is isomorphic to Kr, it
corresponds to a clique separator of G, consequently for G + F . Thus, there ex-
ists an edge e in this tree that represents this separator. Consequently, removing
this edge from the tree creates two clique trees T1 and T2. It is straightforward
to see that Ti is an augmented clique tree of Gi + Fi, i = 1, 2. �

These two operations performed on an initial triangulation of the input graph
lead to our general algorithm presented in the following section.

4 General Algorithm

4.1 Algorithm

Using the results of the previous section, we give an algorithm for computing
the chromatic polynomial of a generic graph G as well as some bounds on its
complexity. The idea of the algorithm is quite simple. First, using Theorem 1 we
pre-compute a triangulation for a given graph G and use it to add (and contract)
edges, computing until we reach a chordal graph. The second optimization is to
direct the choice of the edge in the addition/contraction algorithm in order to
arise to a clique separator. For this choice, we use the augmented clique tree.
Actually, if a label of the augmented clique tree is empty, the corresponding edge
is a clique separator of the associated graph. We discuss below the choice of the
edge to add/contract at each step has a direct impact on the efficiency of the
algorithm.

Algorithm 2: Chromatic-Polynomial(G, T)
 T is an augmented clique-tree of the graph G
 Returns the Chromatic polynomial of G

1 begin
2 if G is triangulated then return Chromatic-Polynomial(G,T) using Lemma 2

3 if ∃e ∈ T such that φ(e) = ∅
4 Decompose G using Theorem 2:
5 Let G1, T1, G2, T2 and Kr the resulting elements
6 P1 ← Chromatic-Polynomial(G1 , T1)
7 P2 ← Chromatic-Polynomial(G2 , T2)
8 return P1 × P2/P (Kr)
9 Let e = ChoiceFunction(G,T )
10 Using Theorem 1, we compute
11 G1 = G + e, and the resulting T1 = T
12 G2 = G/e, and the resulting T2

13 return Chromatic-Polynomial(G1 , T1) + Chromatic-Polynomial(G2 , T2)
14 end

The correctness of this algorithm is straightforward given Equation 1 and
Theorems 1 and 2.
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The choice function used in Step 9 has a great impact on the overall efficiency
of the algorithm. Let us remind that the main idea of our method is to add all
the edges of φ(e) for a given edge e of the augmented clique tree, in order to
create a clique on the graph and then, be able to split it into two smaller graphs.
Nevertheless, to have this method perform efficiently, we need to separate the
graph so that the remaining edges to be added are evenly distributed between
each graph. Several choice functions have been tested based on different proper-
ties of the augmented clique tree. The choices are based on two main ideas: find
an edge of the augmented clique tree with small thickness in order to break the
tree quickly, and break the augmented clique tree into two equivalent parts.

Thus, taking these two points into account when implementing the choice
function, we can clearly improve our algorithm. However, it’s unlikely that there
is a best choice function for all graphs. Experimentation might be the key to
fine-tune ad-hoc parameters to compute practically certain (class of) graphs.
The impact of this choice function has been exhibited for cycles [5]. Using Algo-
rithm 2, the number of nodes of the computation tree vary from O(ρn), where
ρ is the golden ratio to O(n2) when the edges are added in a clever way.

4.2 A Lower Bound of the Complexity

In this section, we provide a simple lower bound of the complexity of the previous
algorithm directly connected to the structure of the triangulation set, viewed as
a simple graph. In the following, we show that, within a same edge of the clique
tree, the order in which we examine the edges in F is not significant in terms of
number of nodes in the recursion tree. The proofs here are omitted but may be
found in [5].

Lemma 3. Let F be an edge set using labels in {1, . . . , k}, and n ≥ k. Let∑
bn
i λ(i) be the chromatic polynomial of Gn = Kn \ F . Then, the value s(n) =∑

bn
i is independent of n (= cc(F )).

Let F be an edge set using labels in {1, . . . , k}. We define cc(F ) as the number
of clique covers of F . Lemma 3 provides a way to compute this value using the
chromatic polynomial. For example, it is easy to see that cc(F ) = 2 is F is
reduced to one edge, and 2k if F is a matching of size k.

Theorem 3. Let G be graph and F a triangulation of G. Let T be the augmented
clique tree of G and F . Let F1 be the label of an edge of T . Then, the number of
nodes in the recursion tree induced by Algorithm 2 is greater than 2cc(F1) − 1.

Thus, given a triangulation of a graph, we can evaluate a lower bound of the
complexity, and thus of the general computation time of the chromatic polyno-
mial. Note that cc(F ) is directly related to the chromatic polynomial of Km \F ,
where Km is the smallest complete graph that contains F (e.g., two consecutive
edges are included in K3). Thus, the computation of the lower bound can be
performed using our general technique, on smaller graphs as the input ones.
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5 Experiments

In this section, we provide experimental results on several classes of graphs.
The algorithms are coded in OCAML. The experiments have been carried out
on a AMD Athlon XP 2800. In the following, we never consider triangulated
graphs since Lemma 1 gives an efficient solution. All the computations of the
thickness of triangulation parameter have been performed using the minimum
degree heuristic. This only provides an upper bound of the parameter and a
decomposition for this value.

Small Thickness of Triangulation
In this paragraph, we examine the behavior of this algorithm on graphs having
a small thickness of triangulation. In this class, we only present cycles, cylinders
and grids. Other experiments can be found in [5].

Cycle: Cn, n nodes, n edges, thickness of triangulation: 1. The clique tree is
a chain, as we have seen in the previous sections. Even the closed form of the
chromatic polynomial is known, this constitutes a good benchmark for generic
algorithms.

n 100 200 300 400 500 600 700 800 900 1000 2000
Time (s) 0.23 1.36 2.78 5.43 8.92 13.22 19.81 26.01 33.84 43.05 241.20

Cylinders 4 times n: Cyl(4, n), 4n nodes, 8n−4 edges, thickness of triangulation:
4. The clique tree is a chain with extremities having two leaves.

n 5 10 15 20 25 30 40 50
|V (G)| 20 40 60 80 100 120 160 200

Time (s) 0.06 0.72 2.33 6.41 12.49 19.68 55.65 108

The thickness of triangulation increases a lot with the size of the cycle in
the cylinder. The corresponding clique tree is more and more compact. All these
tends to let more complex the chromatic polynomial.

Grids 3 times n: M(3, n), 3n nodes, 5n− 3 edges, thickness of triangulation: 2.
The augmented clique tree in this case is the same as for the cylinders Cyl(4, n).

n 10 20 30 40 50 60 70 80 90 100 150 200
Time (s) 0.03 0.17 0.42 0.87 1.40 2.05 2.96 4.09 5.04 6.73 16.87 32.15

Random Graphs
Many experiments on random graphs have been performed. However, we would
like to emphasize several characteristics. The aim was to determine the link
between the efficiency of computation, the size and the density of the graph.
Each value is the mean over 100 test graphs.

From these experiments, we can see that the curves of the thickness of tri-
angulation follows the time’s. For the graphs having more than 22 edges, the
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line Solved/10mn presents the number of instances in the test that have been
solved successfully without any time constraint and within 10 minutes (e.g.,
73/53 means that 73 chromatic polynomials have been found and 53 within 10
mn of computation; -/100 means that all the instances have been solved within
10mn). The mean times are given relatively to the solved instances. It may not
be significant when the number of solved instances is small.

20 vertices

density 20 30 40 50 60 70 80 90
#edges Clique Tree 14.2 12.00 9.97 8.27 6.9 5.8 4.65 3.52
diameter Clique Tree 6.42 5.86 5.02 4.45 3.94 3.43 2.83 2.27

Size Max Clique 6.67 8.99 11.00 12.73 14.09 15.19 16.35 17.48
Thickness 8.7 15.86 22.26 25.61 25.51 23.17 17.8 10.26
Time (s) 0.25 3.02 16.30 39.17 36.62 24.29 6.68 0.49

21 vertices

density 20 30 40 50 60 70 80 90
#edges Clique Tree 15.20 12.60 10.58 8.48 6.92 5.8 4.68 3.63
diameter Clique Tree 6.87 5.95 5.36 4.61 3.95 3.44 2.85 2.40

Size Max Clique 6.65 9.38 11.4 13.52 15.08 16.20 17.32 18.37
Thickness 9.1 18.01 24.35 30.05 29.94 26.79 20.49 11.47
Time (s) 0.44 9.73 38.43 169.82 167.69 76.83 17.99 1.03

22 vertices

density 20 30 40 50 60 70 80 90
#edges Clique Tree 15.75 12.68 10.51 8.68 7.09 5.98 4.84 3.54
diameter Clique Tree 6.95 5.88 5.38 4.62 4.08 3.55 2.95 2.34

Size Max Clique 7.19 10.28 12.47 14.32 15.9 17.00 18.16 19.46
Thickness 10.38 21.75 29.69 34.63 33.97 30.3 22.43 12.78
Time (s) 1.31 24.59 188.06 556.29 652.60 256.30 42.73 2.07

Solved/10mn -/100 -/100 99/95 98/69 100/69 100/89 -/100 -/100
23 vertices

density 20 30 40 50 60 70 80 90
#edges Clique Tree 16.03 12.87 10.62 8.78 7.23 5.94 4.86 3.72
diameter Clique Tree 7.04 6.07 5.29 4.71 4.11 3.45 2.91 2.46

Size Max Clique 7.91 11.13 13.35 15.21 16.76 18.06 19.14 20.28
Thickness 13.98 26.82 35.49 39.74 39.23 33.45 25.17 13.96
Time (s) 2.98 112.95 465.65 1189.291540.93867.54 121.00 4.29

Solved/10mn -/100 99/97 85/63 74/24 78/21 100/54 100/98 -/100
24 vertices

density 20 30 40 50 60 70 80 90
#edges Clique Tree 16.55 13.32 10.78 9.03 7.53 6.15 4.97 3.76
diameter Clique Tree 7.02 6.1 5.29 4.79 4.27 3.66 3.08 2.48

Size Max Clique 8.41 11.66 14.2 15.97 17.45 18.85 20.03 21.24
Thickness 16.01 30.75 40.47 45.22 43.82 38.23 28.41 15.79
Time (s) 8.16 304.10 1096.511070 1175 1316 351 9.2

Solved/10mn -/100 96/82 56/21 16/5 15/2 60/12 100/84 -/100
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25 vertices

density 20 30 40 50 60 70 80 90
#edges Clique Tree 16.87 13.49 10.99 9.14 7.57 6.27 5.03 3.81
diameter Clique Tree 7.01 6.13 5.33 4.83 4.32 3.71 3.09 2.43

Size Max Clique 9.10 12.5 15.01 16.85 18.43 19.73 20.97 22.19
Thickness 19.84 35.21 46.2 49.83 48.11 42.63 31.32 18.23
Time (s) 48.20 474.87 1045 906 982 948 781.61 24.98

Solved/10mn 100/98 73/53 16/3 3/1 4/1 16/4 87/41 -/100

6 Conclusion

This work constitutes a first approach of the computation of the chromatic poly-
nomial using the triangulation theory of the graphs. Doing this, we have enlight-
ened some correlations between a new parameter of triangulation, namely the
thickness of triangulation, and the computation time of our algorithm. Some
non-trivial lower bounds, using the computation of chromatic polynomials on
small graphs have been shown. In Section 5, we present some computational
results using this technique. The main point is that the choice function has to
be improved in order to compute the chromatic polynomial of random graphs of
medium sized graphs (up to 30 or 40 nodes) for any density.

Many questions arise from this work. First of all, is this new parameter can be
optimized independently from the other classical parameters of triangulation, as
the minimum fill-in. In the example of Figure 4, we show that both parameters
are not optimal for the same triangulations. In this example, only two minimal
triangulations are possible (up to symmetry). The minimal degree heuristic finds
the triangulation that minimizes the fill-in. Thus, it may be of interest studying
this new parameter. Concerning the computation of the chromatic polynomial
itself, this work constitutes a first step in the elaboration of a new heuristic.
Studies on the choice function have to be performed and analysed. Another
direction of experimentation could be to use the two opposite approaches for this
computation. First, use the remove and contract edges paradigm (Equation 2)
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Fig. 4. A graph for which the minimum fill-in and the thickness of triangulation does
not exist for the same triangulations. Each circle denotes a complete graph and each
edge represents a complete bipartite graph, and p = 2, q = 3 and r = 6.
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in order to break large cliques, inducing large thickness, then use our approach
when the triangulation induces a small enough thickness.
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Abstract. Minimal triangulations and potential maximal cliques are the main in-
gredients for a number of polynomial time algorithms on different graph classes
computing the treewidth of a graph. Potential maximal cliques are also the main
engine of the fastest so far O(1.9601n)-time exact treewidth algorithm. Based on
the recent results of Mazoit, we define the structures that can be regarded as mini-
mal triangulations and potential maximal cliques for branchwidth: efficient trian-
gulations and blocks. We show how blocks can be used to construct an algorithm
computing the branchwidth of a graph on n vertices in time (2 +

√
3)n · nO(1).

1 Introduction

Treewidth is one of the most basic parameters in graph algorithms and it plays an impor-
tant role in structural graph theory. Treewidth serves as the main tools in Robertson and
Seymour’s Graph Minors project [19]. It is well known that many intractable problems
can be solved in polynomial (and very often in linear time) when the input is restricted
to graphs of bounded treewidth. See [3] for a comprehensive survey.

The branchwidth is strongly related to treewidth. It is known that for any graph
G, bw(G) ≤ tw(G) + 1 ≤ 1.5 · bw(G). Both bounds are tight and achievable on
trees and complete graphs. Branchwidth was introduced by Robertson & Seymour and
it appeared to be even more appropriate tool than treewidth for Graph Minor Theory.
Since both parameters are so close, one can expect that the algorithmic behaviour of the
problems is also quite similar. However, this is not true. For example, on planar graphs
branchwidth is solvable in polynomial time [22] while computing the treewidth of a
planar graph in polynomial time is a long standing open problem. Even more striking
example was observed by Kloks et al. in [15]: it appeared that computing branchwidth
is NP hard even on split graphs. Note that the treewidth of a split graph can be found in
linear time.

The last decade has led to much research in fast exponential-time algorithms. Ex-
amples of recently developed exponential algorithms are algorithms for Maximum In-
dependent Set [14,20], (Maximum) Satisfiability [8,13,18,21,24], Coloring [2,6,9], and
many others (see the recent survey written by Woeginger [25] for an overview). There
are several relatively simple algorithms based on dynamic programming computing the

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 374–384, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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treewidth of a graph on n vertices in time 2n · nO(1) which with more careful analy-
sis can be sped-up to O(1.9601n) [10]. No such algorithm is known for branchwidth.
The only nontrivial algorithm for branchwidth we were aware can be obtained by using
deep min-max theorems of Robertson & Seymour [19] relating branchwidth and tan-
gles. Then by playing with tangle axioms one can reduce the search space and perform
dynamic programming to construct optimal tangles in time 4n · nO(1). (We leave the
details in this extended abstract.)

Thus treewidth seems to be more simple problem for design of exponential time
algorithms than branchwidth. The explanation to that can be that all known exact al-
gorithms for treewidth exploit the relations between treewidth, minimal triangulations,
minimal separators and potential maximal cliques. Mazoit in [16] observed that the
branchwidth also can be seen as a triangulation problem. However, while for treewidth
one can work only with minimal triangulations the situation with branchwidth is more
complicated. Luckily enough we still can use some specific triangulations, which we
call efficient triangulations. The efficient triangulations were first used, under a differ-
ent name, in [4]. In this paper we adopt the techniques of Mazoit to discover the ana-
logue of potential maximal cliques for branchwidth, we call these structures by blocks.
Potential maximal cliques are extremely useful tools in work with treewidth [5,10]. We
believe that blocks can also be useful to work with branchwidth. To exemplify that we
show how blocks can be used to compute branchwidth in time (2 +

√
3)n · nO(1). Note

that this is the fastest known exact algorithm for this problem.

2 Basic Definitions

We denote by G = (V, E) a finite undirected and simple graph with |V | = n vertices
and |E| = m edges. Throughout this paper we use a modified big-Oh notation that
suppresses all polynomially bounded factors. For functions f and g we write f(n) =
O∗(g(n)

)
if f(n) = g(n) · nO(1).

For any non-empty subset W ⊆ V , the subgraph of G induced by W is denoted
by G[W ]. If S is a set of vertices, we denote by G − S the graph G[V \ S]. The
neighborhood of a vertex v is N(v) =

{
u ∈ V : {u, v} ∈ E

}
and for a vertex set

S ⊆ V we put N(S) =
⋃

v∈S N(v) \ S. A clique C of a graph G is a subset of V such
that all the vertices of C are pairwise adjacent. Let ω(G) denote the maximum clique
size of G.

A graph G is chordal if every cycle of G with at least four vertices has a chord,
that is an edge between two non-consecutive vertices of the cycle. Consider an arbitrary
graph G = (V, E), and a supergraph H = (V, F ) of G (i.e. E ⊆ F ). We say that
H is a triangulation of G if H is chordal. Moreover, if no strict sub-graph of H is a
triangulation of G, then H is called a minimal triangulation.

The notion of branchwidth is due to Robertson and Seymour [19]. A branch decom-
position of a graph G = (V, E) is a pair (T, τ) in which T = (VT , ET ) is a ternary
tree (i.e. each node is of degree one or three) and τ is a function mapping each edge
of G on a leaf of T . The vertices of T will be called nodes and its edges will be called
branches. For any branch e ∈ ET , let T1(e) and T2(e) be the subtrees obtained from
T by removing e. Let lab(e) be the set of vertices of G both incident to edges mapped
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on T1(e) and T2(e). The maximum of
{
| lab(e)|, e ∈ ET

}
, is called the width of the

branch decomposition. The branchwidth of a graph G
(
bw(G)

)
is the minimum width

over all branch decompositions of G. Note that the definitions of branch decomposition
and branch-width also apply to hypergraphs. As pointed by Robertson and Seymour, the
definition of branch decomposition can be relaxed. A relaxed branch decomposition of
G = (V, E) is a couple (T, τ) where T is an arbitrary tree and τ is an application map-
ping each edge of G to at least one leaf of T . The labels of the branches and the width
of the decomposition are defined as before. From any relaxed branch decomposition we
can construct a branch decomposition without increasing the width.

The branchwidth is strongly related to a well-known graph parameter introduced
by Robertson and Seymour, namely the treewidth. One of the equivalent definitions for
treewidth is tw(G) = min

{
ω(H)−1 | H is a triangulation of G

}
. Robertson and Sey-

mour show that the two parameters differ by at most a factor of 1.5. More precisely,
for any graph G we have bw(G) ≤ tw(G) + 1 ≤ 1.5 bw(G). In particular, if G is
a complete graph, its treewidth is n − 1, while its branchwidth is �2n/3� (see [19]).
Clearly, when computing the treewidth of a graph we can restrict to minimal triangula-
tions. This observation and the study of minimal triangulations of graphs led to several
results about treewidth computation, including an exact algorithm in O∗(1.961n) time.

The branch decompositions of a graph can also be associated to triangulations. In-
deed, given a branch decomposition (T, τ) of G = (V, E), we can associate to each
x ∈ V the subtree of T covering all the leaves of T containing edges incident to x. It
is well-known that the intersection graph of the sub-trees of a tree is chordal [11]. Thus
the intersection graph of the trees Tx is a triangulation H(T, τ) of G. Note that for each
branch e ∈ ET , lab(e) is the set of vertices x such that e belongs to Tx. In particular,
lab(e) induces a clique in H(T, τ), not necessarily maximal. (We shall point out later
that, for each maximal clique Ω of H(T, τ), there exists a node u of T such that u ∈ Tx

for all x ∈ Ω.)
The first big difference with treewidth is that there exist examples of graphs for

which any optimal branch decomposition leads to non-minimal triangulations [16].
Therefore the many existing tools about minimal triangulations are not sufficient in
our case. The second important difference is that the branchwidth problem remains NP-
hard even for a restricted class of chordal graphs, the split graphs [15]. Nevertheless,
our technique for computing the branchwidth relies on a structural result stating that,
for any graph G, there is an optimal branch decomposition (T, τ) such that H(T, τ) is
an efficient triangulation of G. The efficient decomposition, defined in the next section,
behave somehow similarily to minimal decompositions. In order to obtain our exact
algorithm for branchwidth, we will combine this observation with an exponential algo-
rithm computing the branchwidth of hyper-cliques.

3 Branchwidth and Efficient Triangulations

Let a and b be two non adjacent vertices of a graph G = (V, E). A set of vertices
S ⊆ V is an a, b-separator if in the graph G − S a and b in are in different connected
components. S is a minimal a, b-separator if no proper subset of S is an a, b-separator.
We say that S is a minimal separator of G if there are two vertices a and b such that
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S is a minimal a, b-separator. We denote by C(S) the set of connected components of
G − S and by ΔG the set of all minimal separators of G.

Definition 1. A triangulation H of G is efficient if

1. each minimal separator of H is also a minimal separator of G;
2. for each minimal separator S of H , the connected components of H−S are exactly

the connected components of G − S.

The efficient triangulations were introduced in [4] (actually the authors used to call
them “minimal triangulations”). In particular, all the minimal triangulations of G are
efficient [17].

Theorem 1 ([16]). There is an optimal branch decomposition (T, τ) of G such that
the chordal graph H(T, τ) is an efficient triangulation of G. Moreover, each minimal
separator of H is the label of some branch of T .

Definition 2. A set of vertices B ⊆ V of G is called a block if, for each connected
component Ci of G − B,

– its neighborhood Si = N(Ci) is a minimal separator;
– B \ Si is non empty and contained in a connected component of G − Si.

We say that the minimal separators Si border the block B and we denote by S(B) the
set of these separators.

Let BG denote the set of blocks of G. Note that V is a block with S(V ) = ∅.
We prove that if H is an efficient triangulation of G, then any maximal clique K of

H is a block of G.

Lemma 1 ([5]). Let H be a chordal graph and Ω be a maximal clique of H . Then Ω is
a block of H .

Lemma 2. Let H be an efficient triangulation of G and Ω be any maximal clique of
H . Then Ω is a block of G. Conversely, for any block B of G, there is an efficient
triangulation H(B) of G such that B induces a maximal clique in H .

Proof. If H is an efficient triangulation of G, by Lemma 1 every maximal clique Ω is a
block of H . By definition of efficient triangulations, a block of H is also a block of G.

Conversely, if B is a block of G, let C1, . . . , Cp be the connected components of
G − B and let Si = N(Ci), for all 1 ≤ i ≤ p. Let H(B) be the graph obtain from G
by completing B and each set Si ∪ Ci into a clique. The minimal separators of H(B)
are exactly S1, . . . , Sp. Moreover, for each Si, the connected components of H−Si are
exactly the components of G − Si.

Note that the treewidth of a graph can be expressed by the following equation:

tw(G) = min
H triangulation of G

max{|Ω| − 1 | Ω maximal clique of H}. (1)

The minimum can be taken over all minimal triangulations H of G. A similar formula
can be obtained for branchwidth.
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Definition 3 (block-branchwidth). Let B be a block of G and K(B) be the complete
graph with vertex set B. A branch decomposition (TB, τB) of K(B) respects the block
B if, for each minimal separator S ∈ S(B), there is a branch e of the decomposition
such that S ⊆ lab(e). The block branchwidth bbw(B) of B is the minimum width over
all the branch decompositions of K(B) respecting B.

Equivalently, bbw(B) is the branchwidth of the hypergraph obtained from the com-
plete graph with vertex set B by adding a hyperedge S for each minimal separator S
bordering B. The block-branchwidth allows us to express the branchwidth of G by a
formula similar to Equation 1 (see Propositions 4.18 and 6.7 in [16]).

Theorem 2 ([16]).

bw(G) = min
H efficient triangulation of G

max{bbw(Ω) | Ω maximal clique of H}.

(2)

Proof. Let (T, τ) be an optimal branch decomposition of G such that H = H(T, τ)
is an efficient triangulation of G. Such a decomposition exists by Theorem 1. First, let
us construct a branch decomposition (T ′, τ ′) of H having the same width as (T, τ).
For each edge {x, y} of E(H) − E(G), the sub-trees Tx and Ty share a branch e.
We divide the branch e by a node v, add a leaf w adjacent to v and map the edge
{x, y} on w. Clearly this will not increase the width of the decomposition. Consider
any maximal clique Ω of G. By Lemma 2, Ω is a block of G and by Theorem 1 each
minimal separator bordering Ω is contained in the label of some branch eS of T ′. For
each S let (TS , τS) be a arbitrary branch decomposition of the clique K(S). We glue
this decomposition to T ′ on the branch eS . That is, we add a node on eS and a node on
some branch of TS and make them adjacent. We call this new edge e′S , in particular its
label is exactly S. By this process we obtain a relaxed branch decomposition (T ′′, τ ′′) of
H of same width as (T ′, τ ′). By removing from T ′′ all the leaves that do not correspond
to edges in the clique Ω, we obtained a relaxed clique decomposition of the complete
graph K(Ω). For each minimal separator S bordering Ω, note that S is contained in the
label of the edge e′S , so the new decomposition respects Ω. Hence bbw(Ω) ≤ bw(G)
for each maximal clique Ω of H .

Conversely, let H be any efficient triangulation of G, let us show that bw(G) ≤
max{bbw(Ω) | Ω maximal clique of H}. For each maximal clique Ω of G, we de-
note by (TΩ, τΩ) an optimal branch decompoition of K(Ω), respecting the block Ω.
We connect these decompositions into a relaxed branch decomposition of H . For this
purpose we use a clique tree associated to the chordal graph graph H (see e.g. [12]).
A clique tree is given by a tree T = (VT , ET ) and a one-to-one correspondence be-
tween the nodes of T and the maximal cliques of H such that, for each Ω, Ω′ maximal
cliques of H , their intersection is contained in all the cliques associated to nodes on
the unique path from uΩ to uΩ′ of T (uΩ and uΩ′ denote the nodes associated to Ω
and Ω′ respectively). Moreover, for each branch e = {uΩ, uΩ′} of T , S = Ω ∩ Ω′

is a minimal separator bordering Ω and Ω′ [12]. Let eS (resp. e′S) be a branch of TΩ

(resp. TΩ′) whose label contains S. We connect TΩ and TΩ′ by adding a new branch
between the middle of eS and e′S , for all branches {uΩ, uΩ′} of T . Hence we ob-
tain a relaxed branch decomposition of H . By the properties of the clique tree, the



Computing Branchwidth Via Efficient Triangulations and Blocks 379

label of each newly created edge connecting TΩ and TΩ′ is exactly S = Ω ∩ Ω′.
Consequently, the labels of the branches contained in some TΩ do not change. Hence
bw(H) ≤ max{bbw(Ω) | Ω maximal clique of H}. G being a sub-graph of H , we
have bw(G) ≤ bw(H) and the conclusion follows.

A potential maximal clique of a graph G is a set of vertices Ω such that there is
a minimal triangulation H of G in which Ω introduces a maximal clique [5]. Using
the Equation 1, Bouchitté and Todinca show that, given a graph and all its potential
maximal cliques, the treewidth of the graph can be computed in polynomial time. The
result is refined in [10], where the authors show the following:

Theorem 3. There is an algorithm that, given a graph G and the set ΠG of its potential
maximal cliques, computes the treewidth of G in O(nm|ΠG|) time.

According to Lemma 2, a vertex subset Ω of G can be a maximal clique of an
efficient triangulation H of G if and only if Ω is a block of G. Hence, in our case the
blocks play the same role as the potential maximal cliques in Theorem 3.

Using Equation 2 instead of Equation 1 and blocks instead of potential maximal
cliques, the algorithm cited in Theorem can be directly transformed into an algorithm
taking G, the set BG of all its blocks and the block-branchwidth of each block B, and
computing the branchwidth of G in O(nm|BG|) time. In the rest of this section we give,
without proofs, the new algorithm and the main tools for obtaining it.

Given a minimal separator S of G and a connected component C of G − S, let
R(S, C) denote the hypergraph obtained from G[S ∪ C] by adding the hyperedge S.

Lemma 3 (Similar to Corollary 4.5 in [5]). For any graph G,

bw(G) = min(�2n/3�, min
S∈ΔG

max
C∈C(S)

bw(R(S, C)))

Moreover, the minimum can be taken over the inclusion-minimal separators of G.

The case when bw(G) = �2n/3� corresponds to the fact that, for an optimal de-
composition (T, τ) of G, the efficient triangulation H(T, τ) is the complete graph.

Lemma 4 (Similar to Corollary 4.8 in [5]). Let S be a minimal separator of G and C
be a component of G − S such that S = N(C). Then

bw(R(S, C)) = min
blocks Ω s.t. S⊂Ω⊆S∪C

max(bbw(Ω), bw(R(Si, Ci)))

where Ci are the components of G − Ω contained in C and Si = N(Ci).

The algorithm for computing the branchwidth of G is a straightforward translation
of Lemmas 3 and 4, and very similar to the one of [10].

Input: G, all its blocks and all its minimal separators
Output: bw(G)
begin

compute all the pairs {S, C} where S is a minimal separator and C a component
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of G − S with S = N(C); sort them by the size of S ∪ C
for each {S, C} taken in increasing order

bw(R(S,C)) := bbw(S ∪ C)
for each block Ω with S ⊂ Ω ⊆ S ∪ C

compute the components Ci of G − Ω contained in C and let Si = N(Ci)
bw(R(S,C)) := min(bw(R(S,C)),

max
i

(bbw(Ω), bw(R(Si, Ci))))

end for
end for
let Δ∗

G be the set of inclusion-minimal separators of G
bw(G) := min(�2n/3�, min

S∈Δ∗
G

max
C∈C(S)

bw(R(S,C)))

end

Theorem 4. Given a graph G and the list BG of all its blocks together with their block-
branchwidth, the branchwidth of G can be computed in O(nm|BG|) time.

Proof. The proof is very similar to the proof of [10], for treewidth and potential maxi-
mal cliques. We omit it here.

4 Computing the Block-Branchwidth

The main result of this section is that the block-branchwidth of a block B of G can be
computed in O∗(

√
3

n
) time. Computing the block-branchwidth is NP-hard, as it can be

deduced directly from [15].
Let n(B) denote the number of vertices of the block B of G and let s(B) be the

number of minimal separators bordering B. Note that s(B) is at most the number of
components of G − B, in particular n(B) + s(B) ≤ n.

Lemma 5. bbw(B) ≤ p if and only if there is a partition of B into four parts A1, A2,
A3 and D such that

1. |B \ Ai| ≤ p, for all i ∈ {1, 2, 3};
2. for each minimal separator S ∈ S(B), S is contained in B \ Ai for some i ∈

{1, 2, 3}.

Proof. Suppose that bbw(B) ≤ p and let (T, τ) be an optimal branch decomposition
of B respecting the block. Recall that this branch decomposition corresponds to the
complete graph K(B) with vertex set B. For each x ∈ B let Tx be the minimal sub-tree
of T spanning all the leaves of T labeled with an edge incident to x. Let u represent
B. Clearly u is a ternary node. Let e1, e2, e3 be the branches of T incident to u. Let
T (i) be the sub-tree of T rooted in u, containing the branch ei, for i ∈ {1, 2, 3}. Let
Bi = {z ∈ B | z is incident to some edge of K(B) mapped on a leaf of T (i)}. Fix
D = B1 ∩ B2 ∩ B3, and Ai = Bj ∩ Bk \ D for all triples (i, j, k) with i, j, k ∈
{1, 2, 3} and distinct. Observe that D, A1, A2, A3 form a partition of B. The three sets
are pairwise disjoint by construction. Since for all x ∈ B, u ∈ Tx, we have that x ∈
Bi ∩ Bj for distinct i, j ∈ {1, 2, 3}, so x is in one of the four sets A1, A2, A3 or D.
It remains to show that the partition satisfies the conditions of the theorem. Consider a
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separator S ∈ S(B) and a branch e in the decomposition with S ⊆ lab(e). Suppose
w.l.o.g. that e ∈ T (i). Consequently lab(e) ⊆ Bi, and since Bi = B \ Ai we have the
second condition of the theorem. For proving the first condition, since A1, A2, A3, D is
a partition of B, note that lab(ei) = Aj ∪ Ak ∪ D = B \ Ai. Therefore |B \ Ai| ≤ p,
for all i ∈ {1, 2, 3}.

Conversely, suppose that such a partition exists and let us construct a branch de-
composition of K(B) respecting the block B, of width at most p. Let Bi = B \Ai, for
each i ∈ {1, 2, 3}. For each i, construct an arbitrary branch decomposition (Ti, τi) of
the complete graph with vertex set Bi. Let T be the tree obtained as follows : for each
Ti, add a new node vi on some branch of Ti, then glue the three trees by adding a new
node u, adjacent to v1, v2, v3. The tree T is a ternary tree and each edge of K(B) is
mapped on at least one leaf of T , so we obtained a relaxed tree decomposition (T, τ)
of K(B). Let ei be the branch {u, vi}. Note that lab(ei) = Bi ∩ (Bj ∪ Bk), where
{i, j, k} = {1, 2, 3}. Hence lab(ei) = Bi. Consequently, the relaxed branch decompo-
sition respects the block B. Clearly for each branch e of T , lab(e) is contained in some
Bi, so | lab(e)| ≤ p and the conclusion follows.

Theorem 5. The block-branchwidth of any block B can be computed in O∗(3s(B))
time.

Proof. Let B be a block of G. Suppose that bbw(B) ≤ p. By Lemma 5, there exists a
partition of B in A1, A2, A3 and D such that |B \ Ai| ≤ p and every S ∈ S(B) is a
subset of B \ Ai. Denote by a1, a2, a3 and d the sizes of A1, A2, A3 and D. We can
partition S(B) in three subsets Si such that every S ∈ Si is included in B \ Ai. Let Si

be the union of all the minimal separators of Si. The numbers a1, a2, a3 and d satisfy
the following inequalities:

1. ai ≥ 0, d ≥ 0, a1 + a2 + a3 + d = |B|;
2. |S1∩S2∩S3| ≤ d, |(S1∩S2)\S3| ≤ a3, |(S2∩S3)\S1| ≤ a1, |(S3∩S1)\S2| ≤ a2;
3. a1 + a2 + d ≤ p, a2 + a3 + d ≤ p, a3 + a1 + d ≤ p.

The first inequalies express the fact that A1, A2, A3 and D is a partition of B, the
second express the fact that Si is a subset of B \ Ai and the last ones express the fact
that bbw(B) ≤ p.

Conversely, suppose there is a partition of S(B) in S1, S2 and S3 and four integers
a1, a2, a3, d satisfying the system above. Then there exist a partition of B into four sets
A1, A2, A3, D, of cardinalities a1, a2, a3, d and such that D intersects S1 ∪ S2 ∪ S3

exactly in S1 ∩ S2 ∩ S3, and each Ai intersects S1 ∪ S2 ∪ S3 exactly in (Sj ∩ Sk) \ Si,
where {i, j, k} = {1, 2, 3}. Moreover |B \ Ai| ≤ p by the third series of inequalities,
so by Lemma 5 we have bbw(B) ≤ p.

Hence, there an efficient branch decomposition of K(B) respecting B of branch-
width at most p if and only if there is a partition partition S1,S2,S3 of S(B) and four
numbers a1, a2, a3 and d satisfying the system. To decide whether bbw(B) ≤ p or not,
we only have to try all the partitions of S(B) in S1, S2 and S3 and check all the n4

possible values for the ai’s and d. This can be done in O∗(3|S(B)|) = O∗(3s(B)) time
as claimed.

Theorem 6. The block-branchwidth of any block B can be computed in O∗(3n(B))
time.
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Proof. We show that for any number p, the existence of a partition like in Lemma 5 can
be tested in O∗(3n(B)).

For this purpose, instead of partitioning B into four parts, we try all the partitions
of B into three parts A1, X, D, where X corresponds to A2 ∪ A3. If |B \ A1| ≤ p,
we check in polynomial time if X can be partitioned into A2 and A3 as required. Since
there are at most 3n(B) three-partitions of B, it only remains to solve this last point.

We say that two vertices x, y ∈ X are equivalent if there exist z ∈ A1 and a minimal
separator S bordering B such that x, y, z ∈ S. In particular, x ∼ y implies that x and
y must be both in A2 or both in A3. Let X1, . . . , Xq be the equivalence classes of X .
Then X can be partitioned into A2 and A3 as required if and only if {|X1|, . . . , |Xq|}
can be partitioned into two parts of sum at most p − |A1| − |D| vertices. Consider
now the EXACT SUBSET-SUM problem, whose instance is a set of positive integers
I = {i1, . . . , iq} and a number t, and the problem consists in finding a subset of I
whose sum is exactly t. Though NP-hard in general, it becomes polynomial when t and
the numbers ij are polynomially bounded in n (see e.g. the chapter on approximation
algorithms, the subset-sum problem in the book of Cormen, Leiserson, Rivest [7]). By
taking I = {|X1|, . . . , |Xq|} and trying all possible values of t between 1 and n2, we
can check in polynomial time if X can be partitioned as required.

Since at least one of s(B) or n(B) is smaller or equal to n/2, we deduce:

Theorem 7. For any block B of G, the block-branchwidth of B can be computed in
O∗(

√
3

n
) time.

Theorems 4 and 7 imply our main result.

Theorem 8. The branchwidth of graphs can be computed in O∗((2 +
√

3)n) time and
O∗(2n) space.

Proof. The algorithm enumerates every subset B of V and checks if B is a block.
Clearly, we can verify if B is a block in polynomial time. If so, we compute the block
branchwidth of B using Theorem 7. The number of blocks is at most 2n and for each
block we need O∗(

√
3

n
) for computing its block branchwidth. Hence the running time

of this phase is O∗((2 +
√

3)n), and the space is O∗(2n).
Eventually, we use Theorem 4 for computing the branchwidth of G. The second

phase takes O∗(2n) time and space.

5 Open Problems

Our algorithm is based on the enumeration of the blocks of a graph (in O∗(2n) time)
and on the computation of the block-branchwidth of a block (in O∗(

√
3

n
) time). It is

natural to ask whether one of these steps can be improved.
Computing the block-branchwidth is the same problem as computing the branch-

width of a complete hypergraph with n′ vertices and s′ hyper-edges of cardinality at
least three. Can we obtain an algorithm faster than our O(max(3n′

, 3s′
))-time

algorithm?
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Note that there exist graphs with n vertices having 2n/nO(1) blocks. Indeed, con-
sider the disjoint union of a clique K and an independent set I , both having n/2 vertices,
and add a perfect matching between K and I . We obtain a graph Gn such that for any
I ′ ⊆ I , Gn − I ′ is a block. Thus Gn has at least

(
n

n/2

)
≥ 2n/n blocks. The interesting

question here is if we can define a new class of triangulations, smaller than the efficient
triangulations but also containing H(T, τ) for some optimal branch decompositions of
the graph.
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Abstract. We prove that given a graph, one can efficiently find a set
of no more than m/5.217 + 1 nodes whose removal yields a partial two-
tree. As an application, we immediately get simple algorithms for several
problems, including Max-Cut, Max-2-SAT and Max-2-XSAT. All of
these take a record-breaking time of O∗(2m/5.217), where m is the num-
ber of clauses or edges, while only using polynomial space. Moreover,
the existence of the aforementioned node sets implies an upper bound
of m/5.217 + 3 on the treewidth of a graph with m edges. Letting go
of polynomial space restrictions, this can be improved to a bound of
m/5.769+O(log n) on the pathwidth, leading to algorithms for the above
problems that take O∗(2m/5.769) time.

1 Introduction

Recently, there has been a wave of effort in proving exponential-time worst-
case upper bounds for NP-hard problems—in particular for the exact solution of
Max-SNP-hard problems [11]. One of the most intensely investigated problems
in this area seems to be SAT, the problem of satisfiability of a propositional for-
mula in conjunctive normal form (CNF). The maximum satisfiability problem—
Max-SAT—is an important generalization of SAT. Given a formula in CNF, it
asks for the maximum number of simultaneously satisfiable clauses. The decision
variant of this problem is complete for both NP and Max-SNP, even if each
clause contains at most two literals—this restriction is called Max-2-SAT. Re-
cently, numerous results regarding worst-case time bounds for the exact solution
of Max-SAT and Max-2-SAT have been published. The best bound that has
been achieved for Max-SAT [3] with regards to m, the number of clauses, is
O∗(2m/2.46).1 The best algorithm developed particularly for Max-2-SAT [6] has
time complexity O∗(2m/5). With respect to the number of variables, the trivial
O∗(2n) algorithm has not been improved until recently, when Williams came up
with a new algorithm solving Max-2-SAT in O∗(2ωn/3) steps [10] for ω ≈ 2.379.

In general, a Max-SAT instance is represented by a multiset rather than
a set of clauses, since a clause may occur more than once. In order to account
for this, we let m denote the number of clause occurrences—the total weight.
1 The O∗-notation was introduced by Woeginger and suppresses all polynomial factors;

e.g., 2kn5 = O∗(2k).

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 385–396, 2005.
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Furthermore, we declare t to stand for the number of clause types. A clause type
will be understood as a maximum distinct set of variables occuring together in
at least one clause, disregarding negations. It is easy to see that t can be much
smaller than m, even in formulæ that do not have multiple identical clauses.

In this paper, we present a very simple algorithm for Max-2-SAT that
has time complexity O∗(2t/5), and thus O∗(2m/5) just like the involved one by
Gramm et al. [6]. Moreover, we analyze a slightly more complicated version of
the algorithm, lowering the bound to O∗(2t/5.217). The latter improves upon the
best known upper bounds for solving Max-2-SAT [6], Max-2-XSAT [7], and
Max-Cut [8]—while still using only polynomial space. Furtherwise, we present
the fastest polynomial space algorithm for Dominating Set on cubic graphs,
which takes O∗(2n/2) time. Whereas the runtime bound for this problem has
recently been improved from O∗(1.51n) [5] to O∗(1.21n) [4], the latter algorithm
is very involved and requires exponential space.

Impressive as these new record bounds may seem, they are just the tip of
the iceberg. In fact, they represent little more than mere by-products of a much
more general technique. It relies on our main graph theoretical result, which
states that the removal of at most |E|/5.217+ 1 nodes from a graph G = (V, E)
yields a series-parallel graph. The method that stems from this observation en-
ables a narrowing of the search space for many important NP-hard problems.
In particular, a simple application yields the above-mentioned record-breaking
bounds.

Moreover, it follows that the treewidth and pathwidth of G are at most
|E|/5.217 + 3 and |E|/5.217 + 3 + log n, respectively. Employing a recent result
by Fomin and Høie, we can improve these bounds to |E|/5.769+O(logn), yielding
O∗(2m/5.769) time algorithms for Max-2-SAT, Max-2-XSAT, and Max-Cut
based on dynamic programming [9]—at the price of exponential space.

2 Preliminaries

We assume the reader to be familiar with the notion of treewidth [1]. Throughout
this paper, we adhere to the notation for boolean formulæ used by Gramm
et al. [6].

Let F be a formula in 2-CNF whose set of variables will be called V . The
corresponding connectivity graph is GF = (V, E) where

E =
{
{x, y} | the distinct variables x and y occur together in a clause

}
,

representing the way variables interact in a formula. Notice that it does not make
a difference in how many clauses a pair of variables occurs, or whether a variable
is negated or not. For instance, the two graphs GF [x] and GF [x̄] are identical. As
a consequence, the formula F cannot be reconstructed from GF .

3 An Algorithm with Only One Reduction Rule

In what follows, we prove our foundational result: a graph with m edges has
treewidth at most m/5 + 2, and we can quickly find a set of no more than m/5
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nodes whose removal leaves a very simply structured graph, namely a special
case of a partial 2-tree. As an application of this technique we can solve several
optimization problems efficiently.

More precisely, our method becomes applicable when problems can be ex-
pressed in graph terms as follows: There is a graph G = (V, E) for every instance,
and given a node v in the graph, we can reduce the instance to a smaller one
whose graph is G[V \ {v}]. Moreover, the problem must be easy to solve when
the corresponding graphs are partial 2-trees. Finally, reduction steps on nodes
of degree two or more may be expensive, whereas nodes of degree one have to be
easy to deal with in the problem context. Then, the algorithm derived from our
graph-theoretical result takes at most m/5 expensive operations to reduce any
input instance with m egdes to one whose graph is a special case of a partial
2-tree.

Many problems have the aforementioned properties, where the expensive
operations usually originate from case distinctions that lead to branching in the
recursion tree. Consider Max-Cut as an example: Vertices of degree one can be
deleted, since they will increase the overall size of a maximum cut by one in any
case, whereas nodes of higher degree require branching.

The algorithm presented in this section is rather simple and broadly applica-
ble. An even simpler algorithm will emerge in the next section; however, it will
have the additional requirement that nodes of degree two are easy to deal with
as well. Hence, if this condition does not hold for a problem, we have to stick to
the more general algorithm from this section; otherwise, the simpler algorithm
from the next section is preferable.

The special rôle of degree-one nodes in the first algorithm is reflected in the
following definition:

Definition 1. Let G = (V, E) be a graph. Then R(G) is the graph obtained by
deleting vertices v with deg(v) = 1 repeatedly until there are no such vertices
left.

Observe that R(G) is well-defined, since it does not make any difference in
what order nodes are chosen for deletion. What is more, the following lemma
shows that even when we delete arbitrary nodes between reductions, the order
is irrelevant. This property greatly simplifies algorithmic application of the rule.
From now on, we shorten G[V \ {v}] to G − v as well as G[V \ D] to G − D.

Lemma 1. Let G = (V, E) be a graph and D = {v1, . . . , vk} a set of vertices
from V . Then, R(G−D) = R(R(. . . (R(R(G− v1)− v2)− v3) · · · − vk−1)− vk).

The previous as well as the following lemma are straightforward. In all inter-
esting cases, R-reducing a graph does not affect its treewidth:

Lemma 2. Let G be a graph containing a cycle. Then tw(G) = tw(R(G)).

Having investigated the properties of our only reduction rule, we turn our
attention to the simple family of hot dog graphs. Surprisingly, any graph can be
turned into a hot dog graph by deleting a small set of nodes and applying the
R-reduction.
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Definition 2. A path of length at least one between two possibly identical nodes
s and t in a graph G is called a leg if all its nodes other than s and t have degree
two in G. A hot dog graph consists of nodes v1, . . . , vk such that vi and vi+1 are
connected by arbitrarily many legs. Additionally, vk and v1 may be connected
in this fashion as well.

Definition 3. Let G = (V, E) be a graph whose nodes have degree at least two.
A 4-spider is a subgraph that consists of a head h ∈ V with degree four, three or
four distinct feet u1, . . . , ul ∈ V \ {h} of degree at least three, and four disjoint
legs connecting head and feet.

A 3-spider is defined similarly for a head of degree three and exactly three
distinct feet connected to it via three legs. In any case, the body of a spider
consists of all its nodes except the feet.

The nice thing about spiders is that their bodies can be removed from a
graph quite easily: First remove the head, which is a node with relatively high
degree, and then remove the remainder of the body by consecutively removing
nodes of degree one.

It is interesting to note that hot dog graphs cannot contain spiders. The
following lemma shows that the converse is also true in a fairly general setting.
This enables us to turn any graph into a hot dog graph using relatively cheap
operations.

Lemma 3. Let G = (V, E) be a connected graph whose nodes have degree be-
tween two and four. G is a hot dog graph iff it does not contain a 3- or 4-spider.

Proof. It is obvious that a hot dog graph cannot contain spiders. On the other
hand, let G be a graph as postulated in the premise that does not contain
a spider. Let H be the set of nodes that do not have exactly two neighbors.
Observe that every v ∈ H may be connected to at most two more nodes from
H via legs, because otherwise vi would be the head of a spider. Thus, we can
arrange the nodes from H in a linear or cyclical fashion as in the definition of a
hot dog graph. �

Interestingly, if a node v has been the head of a spider in G, it keeps this
rôle in the contracted graph. In what follows, we want to estimate the spider
bodycount required to carve out a hot dog graph. In effect, we need to look
for the number of edges that have to be removed. As it turns out, this feat
is substantially eased if we analyze in terms of a potential function of nodes
instead.

Definition 4. Let G = (V, E) be a graph, v ∈ V , and

deg3(v) =
∣∣{u ∈ V | there is a leg connecting u and v, and deg(u) ≥ 3}

∣∣.
We define the potential functions ψ : V → N and Ψ : G → N as follows:

ψ(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if deg(v) ≤ 2
0 if deg(v) = 3 and deg3(v) = 1
5/4 if deg(v) = 3 and deg3(v) > 1
2 if deg(v) ≥ 4
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We extend the definition to graphs via Ψ(G) =
∑

v∈V ψ(v).

Lemma 4. Let G = (V, E) be a graph. Then Ψ(G) ≤ |E|.

Proof.

|E| =
1
2

∑
v∈V

deg(v) =
1
2

|V |−1∑
i=1

∑
v∈V

deg(v)=i

i ≥
∑
v∈V

deg(v)=3

5
4

+
∑
v∈V

deg(v)≥4

2 ≥ Ψ(G). �

Lemma 5. Let G = (V, E) be a graph whose nodes have degree between two and
four. If G contains a 4-spider with head h, then Ψ(R(G − h)) ≤ Ψ(G) − 5.

Proof. Let S be a 4-spider with head h. We have to distinguish several cases.
In the first case, S has four different feet u1, . . . , u4 with 3 ≤ deg(ui) ≤ 4.

Removing h and all nodes of degree one consecutively has the following effect:
Because h is erased, the potential decreases by 2. As a consequence, the degree of
each foot is lowered by one. This means that the potential decreases by 2−5/4 =
3/4 or 5/4 − 0 = 5/4 per foot. The total loss of potential thus amounts to at
least 2 + 4(3/4) = 5.

In the second case, there are only three feet u1, . . . , u3, and the situation is
slightly more complicated. W.l.o.g. two paths are leading to u1 and one path
each to u2 and u3. If deg(u1) = 4, removing the body of S does the following:
The potential of u1 is lowered by 2, the potential of h decreased by 2 as well,
and the potentials of u2 and u3 shrink by 2 − 5/4 = 3/4 or 5/4 − 0 = 5/4 each.
Altogether, these values sum up to a loss of potential greater than 5.

Otherwise, if deg(u1) = 3, only one other leg starts from u1. Let z denote
the node this leg ends in. Note that z and h have to be different, since otherwise
S would not be a spider at all: There would be three paths to u1, but only two
feet.

If z, u2, u3 are all different, the potential of h decreases by 2, the potential
of u1 by 5/4, and the potentials of z, u2, and u3 by at least 3/4 each, which is
again more than 5 in total. If z, u2, u3 are not all different, say z = u3 �= u2,
then the potential of h is lowered by 2, the potential of u1 by 5/4, the potential
of z = u3 by at least 5/4, and the potential of u2 by at least 3/4, which is more
than 5 altogether. �
Lemma 6. Let G = (V, E) be a connected graph whose nodes have degree be-
tween two and four. If G does not contain any 4-spider, but a 3-spider with
head h, then Ψ(R(G − h)) ≤ Ψ(G) − 5.

Proof. Let h be the head of a 3-spider with feet u1, u2, u3. Removing this spider
causes the potential to decrease by at least 5, since ψ(h) = 5/4, and we lose
at least 5/4 on each foot, too. To see this, distinguish the following two cases:
Either, deg(ui) = 3—this leads to a decrease in potential of exactly 5/4—or,
deg(ui) = 4 for some i. In the latter case, observe that there is exactly one leg
between ui and h, as ui is a foot of the 3-spider with head h. Since ui cannot be
the head of a 4-spider, the three other legs starting in ui end in the same node z.
Then, however, we have that ψ(ui) = 0 in R(G − h) due to the definition of ψ
and deg3. �
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Let us now begin putting the pieces together.

Theorem 1. Let G = (V, E) be a graph. There is a set D ⊆ V such that
R(G − D) is a hot dog graph and |D| ≤ |E|/5.

Proof. We construct a set of nodes D such that R(G − D) is a hot dog graph.
As long as G contains a node v with degree at least five, remove v from G and
set D := D∪{v}. Now delete the bodies of all 4-spiders from G, and then do the
same for 3-spiders. Add the heads of all these spiders to D. Note that removing
a spider’s body is the same as removing its head and applying the reduction
rule R afterwards.

We obtain a set D such that R(G − D) is a hot dog graph. Using Lemmata
4, 5, and 6, it is easy to see that |D| ≤ m/5. �

Theorem 2. The treewidth of a graph G = (V, E) is at most |E|/5 + 2.

Proof. Let D be the set given by Theorem 1. By Lemma 2, R-reducing the graph
G−D leaves its treewidth intact, provided that G−D contains a cycle. Hence,
the treewidth of G−D is at most that of a hot dog graph. It is easy to see that
hot dog graphs constitute a special case of series-parallel graphs, which have
treewidth at most two [2–p. 174]. Otherwise, G − D is but a forest. Altogether,
we have that tw(G) ≤ |D| + 2 = |E|/5 + 2. �

4 A Second Rule Simplifies the Algorithm

In this section, we develop a simpler algorithm which employs a second reduction
rule in addition, that is, a rule that replaces a path (u, v, w) with deg(v) = 2 by
the path (u, w). We call this operation contracting v. Notice that this introduces
another constraint on the set of possible applications: Degree-two nodes must
be easy to handle in the problem translation. That is, the way they contribute
to a solution should only depend on their two neighbors.

In short, we trade simplicity for applicability: As we will see in what follows,
the refined method allows for a much simpler implementation, and thus eases
the analysis. Moreover, in the place of hot dog graphs, it leaves a trivial graph
without any edges.

On the other hand, there are problems that do not meet the above ex-
tra constraint, while the technique from the previous section can still be em-
ployed. Again, consider Max-Cut: In the direct approach, it is not clear how to
avoid branching on degree-two nodes. (Fortunately, Max-Cut can be reduced
to Max-2-SAT by replacing an edge {x, y} by two clauses {x, y} and {x̄, ȳ}.
The number of edges becomes the number of clause types.)

Definition 5. Let G = (V, E) be a graph and v ∈ V . Let R′(G) be the graph
that we get from G by repeatedly removing degree one vertices and contracting
degree two vertices until no such operation is possible. Whenever a contraction
leads to a double edge, only a single edge is retained. We also define R′

v(G) :=
R′(G − v).
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Algorithm A
Input: A graph G = (V, E)
Output: C ⊆ V , |D| ≤ |E|/5, such that R′(G − D) has no edges
D ← ∅;
while there is a node v with deg(v) ≥ 3 do

choose a node v with maximum degree;
D ← D ∪ {v}; G ← R′

v(G)
od;
return D

Fig. 1. A simpler algorithm that uses R′ rather than R

Lemma 7. Let G = (V, E) be a graph with minimum degree three and maximum
degree four. If v ∈ V and deg(v) = 4, then Ψ(R′

v(G)) ≤ Ψ(G) − 5.

Proof. Let u1, . . . , u4 be the neighbors of v. We have ψ(v) = 2, and removing
v decreases the degree of each ui by one. In total, the operation lowers the
potential by at least 2 + 4(3/4) = 5. Since neither the removal of a degree one
node nor the contraction of a degree two node can increase the potential, this
implies Ψ(R′

v(G)) ≤ Ψ(G) − 5. �

Lemma 8. Let G = (V, E) be a 3-regular graph. For every v ∈ V we have that
Ψ(R′

v(G)) ≤ Ψ(G) − 5.

Proof. Every node in a 3-regular graph has a potential of Ψ(3) = 5/4. Removing
v hence lowers the potential by 5. �

Theorem 3. Algorithm A finds a set D ⊆ V such that |D| ≤ m/5 and the
reduced graph R′(G − D) has no edges.

Proof. As long as there are nodes of degree at least five, the body of the while-
loop increases the size of D by one while removing at least five edges. As soon as
all nodes have degree at most four, Ψ(G) ≤ |E| by Lemma 4. From then on, the
potential Ψ(G) decreases by at least five in the body of the while-loop according
to Lemmata 7 and 8. Since R′(G) never contains nodes of degree one or two, the
graph cannot have any edges when the algorithm terminates.

It is, however, not obvious that R′(G−D) is the same graph. We only know
that removing the nodes of D in the right order and applying reduction rules in
between yields a graph without edges. However, analogously to Lemma 1, it is
easy to see that indeed R′

xk
(R′

xk−1
(· · ·R′

x1
(G) · · · )) = R′(G − {x1, . . . , xk}). �

In order to use Algorithm A for solving Max-2-SAT, we must find reduction
rules for formulæ that correspond to removing a node of degree one and con-
tracting a node of degree two. A simple reduction rule can be used on a formula
F to remove a node of degree one from GF . But what do we need to do with F
in order to contract a node of degree two in GF ? It is easy to see that we have
to eliminate a variable x that occurs with exactly two other variables y and z in
2-clauses, introducing new clauses of the type {y, z} in return.
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Definition 6. Let F be a 2-SAT-formula. A variable x is a double companion
if and only if the degree of x in GF is two.

To ease the introduction of a double companion reduction rule, we now gen-
eralize the notion of a clause. We are used to defining a clause to be a pair (ω, C)
where C is a set of (non-complementary) literals and ω a positive integer. In this
section, we allow ω to be a negative integer as well. When we add up formulæ,
the weights of identical clauses add up. Let F be a formula. Then F [A] denotes
the formula we get by setting all literals in A to true. This includes simplification
and typically yields some satisfied clauses that take the form (ω,T). Moreover,
let OptVal(F ) be the maximum (weighted) number of satisfiable clauses in F
under any assignment [6]. For the following lemma, remember the definition of
our new parameter t, the number of clause types.

Lemma 9 (The double companion reduction rule). Let F be an arbitrary
2-SAT formula. If x is a double companion, then we can transform F into an
equivalent formula F ′ which contains the same variables as F except x, and
possibly clauses of negative weight, in polynomial time. The formula F ′ does not
have more clause types than F . Moreover, GF ′ is the graph obtained from GF

by contracting x.

Proof. Let x be a double companion that occurs together with y and z. Let
F = F ′ + F ′′, where F ′ consists of all the clauses that contain x and F ′′ holds
all the other clauses. We define a = OptVal(F ′[y, z]), b = OptVal(F ′[y, z̄]),
c = OptVal(F ′[ȳ, z]), and d = OptVal(F ′[ȳ, z̄]). Let

G =
{
(a + b + c + d,T), (−d, {y, z}), (−c, {y, z̄}), (−b, {ȳ, z}), (−a, {ȳ, z̄})

}
.

We easily see a = OptVal(G[y, z]), b = OptVal(G[y, z̄]), c = OptVal(G[ȳ, z]), and
d = OptVal(G[ȳ, z̄]). Therefore, OptVal(F ′ + F ′′) = OptVal(G+ F ′′). Moreover,
x does obviously not occur in G + F ′′. �

We now have reduction rules for formulæ in 2-CNF that enable us to eliminate
all nodes with degree up to two in the corresponding connectivity graph. A näıve
approach uses this machinery on the connectivity graph of a 2-CNF formula to
find the number of satisfiable clauses. The algorithm can be easily modified to
return an optimal assignment, too. The running time is again O∗(2t/5), where
t ≤ m is the number of different clause types.

It turns out that we need not use the connectivity graph explicitly. Instead,
we can employ a recursive procedure as described in Algorithm B. In this form it
corresponds to classical satisfiability algorithms starting with the Davis–Putnam
procedure: Apply reduction rules as long as possible and then choose a variable
for branching. In the past, better and better algorithms included more and more
complicated rules. This involves reduction rules as well as rules for choosing a
variable (or a group of variables) to branch on, combined with clever pruning
of cases that cannot lead to an optimal assignment. In contrast, Algorithm B is
very simple: It is comprised of only two reduction rules and one rule to choose
a variable for branching, none of which are complicated.
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Algorithm B
Input: A Max-2-SAT-formula F
Output: OptVal(F )
Reduce F by the (double) companion reduction rule while possible;
if F = {(k, T)} then return k
else

choose a variable x that occurs in a maximum number of clause types;
return max{Algorithm B(F [x]), Algorithm B(F [x̄])}

fi

Fig. 2. A very simple algorithm for Max-2-SAT that does not use the connectivity
graph directly

5 Improving Beyond t/5

In this section, we apply a tiny modification to the algorithm discussed above.
More precisely, we introduce the additional rule to avoid picking a node of degree
four all of whose neighbors have degree four as well, whenever possible.

We begin by looking at a special case for graphs of low degree. This theorem
is of independent interest, and its proof serves to introduce the methods we apply
in Theorem 5.

Theorem 4. Let G = (V, E) be a graph with m edges and maximum degree
four. Then there is a set D ⊆ V , |D| ≤ 3

16m + 1, such that R′(G − D) has no
edges.

Proof. Given G = (V, E), construct D ⊆ V as follows. Pick a vertex of maximum
degree, and while choosing vertices of degree four, only take a vertex all of whose
neighbors have degree four if no other type of degree-four node remains. Note
that the latter is only the case if the graph is 4-regular. Remove the chosen vertex,
apply the two reduction rules, and repeat the procedure until the maximum
degree in the remaining graph drops below three.

ψ(v) =

⎧⎪⎨⎪⎩
0 if deg(v) ≤ 2
4/3 if deg(v) = 3
2 if deg(v) ≥ 4

We redefine the potential function ψ as seen on
the left. Let 〈n1, . . . , nd〉 denote the case that we
pick a node v of degree d whose neighbors have
degree n1 through nd. The respective losses of

potential caused by the removal of such nodes v can be computed easily: the
potential of v drops to zero, whereas the degree of each of its neighbors decreases
by one. For instance, the loss of potential in the case 〈4, 4, 4, 3〉 amounts to
2 + 3 · (2 − 4/3) + 4/3. The resulting values are listed in the following table.

case 〈4, 4, 4, 4〉 〈4, 4, 4, 3〉 〈4, 4, 3, 3〉 〈4, 3, 3, 3〉 〈3, 3, 3, 3〉 〈3, 3, 3〉
loss 4 2

3 5 1
3 6 6 2

3 7 1
3 5 1

3

Observe that the special case 〈4, 4, 4, 4〉 can only occur in the first itera-
tion, which causes at most one extra step, or if preceded by 〈3, 3, 3, 3〉: Clearly,
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it cannot be preceded by 〈3, 3, 3〉, because we always pick a vertex of maxi-
mum degree. Furthermore, a node of degree three is created in all the remaining
cases, preventing the graph from becoming 4-regular and thus excluding the case
〈4, 4, 4, 4〉.

Except for the first step, the good case 〈3, 3, 3, 3〉 countervails against the bad
case 〈4, 4, 4, 4〉. Since the average loss of potential in these two cases amounts
to 6, we have that the potential decreases by an average of at least 5 1

3 per
step. Hence, the overall potential will drop to zero after at most 3

16m additional
iterations. �

Note that, analogously to Lemma 4, it is easily checked that Ψ(G) ≤ |E| for
continuations of the potential functions in both the previous and the upcoming
proof.

Theorem 5. Let G = (V, E) be a graph with m edges. Then there is a set
D ⊆ V , |D| ≤ 23

120m + 1, such that R′(G − D) has no edges.

Proof. We use both the algorithm and the notation described in the proof to the
previous theorem. Again, we redefine the potential function ψ:

ψ(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if deg(v) ≤ 2
30/23 if deg(v) = 3
45/23 if deg(v) = 4
5/2 if deg(v) ≥ 5

Obviously, we get rid of at least six edges
per iteration as long as the algorithm re-
moves nodes of degree at least six. It hence
suffices to switch to an analysis via poten-
tial as soon as the maximum degree in the

remaining graph has decreased to at most five. When a node of degree five is
deleted, this lowers the potential by at least 5/2 + 5 · (5/2 − 45/23) = 5 5

23 . The
other cases are listed below.

case 〈4, 4, 4, 4〉 〈4, 4, 4, 3〉 〈4, 4, 3, 3〉 〈4, 3, 3, 3〉 〈3, 3, 3, 3〉 〈3, 3, 3〉
loss 4 13

23 5 5
23 5 20

23 6 12
23 7 4

23 5 5
23

As detailed above, the good case 〈3, 3, 3, 3〉 countervails against the bad case
〈4, 4, 4, 4〉; their average loss of potential is 5 20

23 . Hence, only nodes of degree at
most two remain after at most 23

120m + 1 iterations. �

Modifiying Algorithm A according to the above result leads to the following
improved running times.

Corollary 1. Max-2-SAT and Max-2-XSAT can be solved in O∗(2t/5.217) and
thus in O∗(2m/5.217) time. Max-Cut can be solved in O∗(2m/5.217) time. All
algorithms require only polynomial space.

In order to give an upper bound on the treewidth of a graph G = (V, E)
using the above results, it suffices to check that tw(G−D) ≤ 2. This is because
tw(R′(G − D)) = 0, and R′ does not trivialize graphs of treewidth at least
three [2–p. 174].

Corollary 2. The treewidth of a graph G = (V, E) is at most |E|/5.217 + 3.
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6 Dominating Set on Graphs of Maximum Degree Three

In the case of maximum degree three, Theorem 1 can be improved by redefining
the potential function ψ as ψ(v) = 1.5 for degree three vertices v and ψ(v) = 0
otherwise. The refined theorem yields a set D of size at most |E|/6.

Consider a node v in such a graph. There are at most four ways to dominate v:
by itself or not by itself, but by one of its neighbors. We try these four possibilities
for each node from D, which accounts for at most 4m/6 = 2n/2 possibilities
altogether. In each case, we mark the selected dominators as dominating and
their neighbors as dominated. Then we remove the nodes in D from the graph,
remembering the dominators in D as D′. An optimal dominating set D′′ for the
remaining annotated graph can be easily found in polynomial time. In any case,
D′∪D′′ is a dominating set for the entire graph, and we obviously find a globally
optimal dominating set by going through all the 2n/2 cases.

The overall algorithm is quite simple and has a running time of O∗(2n/2) =
O∗(1.42n), improving the result of O∗(1.51n) by Fomin, Kratsch, and Woegin-
ger [5]. It is the fastest algorithm that uses polynomial space.

7 Trading Space for Time

The result on the size of D in the preceding section implicitly establishes an upper
bound of m/6+O(1) on the treewidth of cubic graphs. In a more general setting,
such an upper bound might be interesting in its own right. According to Fomin
and Høie [4], the pathwidth of a cubic graph is at most (1 + ε)n/6 + O(log n),
where ε > 0 is an arbitrarily small constant.

We can exploit this result in order to give an even tighter bound on the path-
width of general graphs. Unfortunately, this method comes at the cost of losing
several benefits of the approaches discussed so far. In particular, the resulting
algorithms are no longer intuitive, and require exponential instead of polynomial
space.

Theorem 6. The pathwidth of a graph with m edges and n nodes is at most
m/5.769 + O(log n). A corresponding path decomposition can be found in poly-
nomial time. Thus Max-Cut, Max-2-SAT, and Max-2-XSAT can be solved
in O∗(2m/5.769) steps.

Proof. Consider the following algorithm, which employs the aforementioned re-
duction rules for nodes of degree at most two without further notice: While there
are nodes with degree at least six, we delete them from the graph. When only
nodes of degree at most five remain, we have Ψ(G) ≤ m for the continuation of
the potential function ψ, when we choose α = 25/26, β = 25/13, and γ = 5/2 in

ψ(v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α if deg(v) = 3
β if deg(v) = 4
γ if deg(v) = 5
0 if deg(v) < 3.

It is easy to verify that the potential decreases
by at least 75/13 whenever a node of degree
four or five is removed. The sole exception is
the removal of a degree-five node all of whose
neighbors have degree five as well, which leads
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to a loss of only 145/26. We can avoid this case unless the graph is five-regular.
As in the proof of Theorem 4, this can only occur if the node deleted in the
previous step was of a special kind: Here, this would be nodes of degree at least
six, and degree-five nodes with only degree-three neighbors. In the latter case
the potential decreases by 90/13, implying a loss of 325/52 > 75/13 on average.

When the algorithm terminates, a cubic graph remains. If p denotes its po-
tential, it consists of exactly p/α nodes. According to the result of Fomin and
Høie [4], its pathwidth is at most (1 + ε)p/6α + O(log n) = (1 + ε)13p/75 +
O(log n). For the original graph and ε small enough, this implies a bound of
(1 + ε)13m/75 + O(log n) ≤ m/5.769 + O(log n).
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Abstract. The NP-complete Closest 4-Leaf Power problem asks,
given an undirected graph, whether it can be modified by at most �
edge insertions or deletions such that it becomes a 4-leaf power. Herein,
a 4-leaf power is a graph that can be constructed by considering an
unrooted tree—the 4-leaf root—with leaves one-to-one labeled by the
graph vertices, where we connect two graph vertices by an edge iff their
corresponding leaves are at distance at most 4 in the tree. Complement-
ing and “completing” previous work on Closest 2-Leaf Power and
Closest 3-Leaf Power, we show that Closest 4-Leaf Power is
fixed-parameter tractable with respect to parameter �.

1 Introduction

Graph powers form a classical concept in graph theory, and the rich literature
dates back to the sixties of the previous century. The k-power of an undirected
graph G = (V, E) is the undirected graph Gk = (V, E′) with (u, v) ∈ E′ iff
there is a path of length at most k between u and v in G. We say G is the k-root
of Gk. While it is NP-complete to decide whether a given graph is a k-power [10],
one can decide in O(|V |3) time whether a graph is a k-power of a tree for any
fixed k [6], and it can be decided in linear time whether a graph is a square of
a tree [9].

Here, we concentrate on certain practically motivated variants of tree pow-
ers. Whereas Kearney and Corneil [6] study the problem where every tree node
one-to-one corresponds to a graph vertex, Nishimura, Ragde, and Thilikos [12]
introduce the notion of leaf powers where exclusively the tree leaves stand in
one-to-one correspondence with the graph vertices. In addition, Lin, Kearney,
and Jiang [8] and Chen, Jiang, and Lin [2] examine the variant of leaf powers
where all inner nodes of the root tree have degree at least three. Both problems
find applications in computational evolutionary biology [12,8,2]. The correspond-
ing recognition problems are called k-Leaf Power [12] and k-Phylogenetic
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Root [8], respectively.1 For k ≤ 4, both problems are solvable in polynomial
time [12,8]. The complexities of both recognition problems for k ≥ 5 are open.

Several groups of researchers [2,6,8] strongly advocate the consideration of a
more relaxed or “approximate” version of the graph power recognition problem:
Now, look for roots whose powers are close to the input graphs, thus turning the
focus of study to the corresponding graph modification problems. In this “error
correction setting” the question is whether a given graph can be modified by
adding or deleting at most � edges such that the resulting graph has a k-tree
root. This problem turns out to be NP-complete for k ≥ 2 [6,5]. One also obtains
NP-completeness for the corresponding problems Closest k-Leaf Power [7,3]
and Closest k-Phylogenetic Root [2].

All nontrivial (k ≥ 2) “approximate recognition” problems in our context
turn out to be NP-complete [2,3,5,6,7,14]. Hence, the pressing quest is to also
show positive algorithmic tractability results such as polynomial-time approx-
imation or non-trivial (exponential-time) exact algorithms. So far, only the
most simple version of Closest k-Leaf Power, k = 2, has been algorithmi-
cally attacked with somewhat satisfactory success. In this context recently intri-
cate polynomial-time constant-factor approximation algorithms have been devel-
oped [1].2 Moreover, it is fairly easy to show that the problem is fixed-parameter
tractable with respect to the parameter � denoting the number of allowed edge
modifications. At least with respect to this fixed-parameter tractability result,
the success is surely due to the fact that there is a very simple characterization
by a forbidden subgraph: a graph is a 2-leaf power iff it contains no induced 3-
vertex subgraph forming a path. Observe that, in this way, also the recognition
problem for 2-leaf powers is solvable in linear time by just checking whether the
given graph is a disjoint union of cliques. By way of contrast, the recognition
problem for 3-leaf and 4-leaf powers is much harder and only intricate cubic-time
algorithms are known [12]. The key idea we put forward here and in a companion
paper [3] is to again develop and employ forbidden subgraph characterizations
of the respective graph classes. In [3], we describe a forbidden subgraph char-
acterization for 3-leaf powers, consisting of five graphs of small size. Here, we
employ a forbidden subgraph characterization for 4-leaf powers—it already re-
quires numerous forbidden subgraphs.

Let us discuss the algorithmic use of these forbidden subgraph characteriza-
tions. First, both characterizations immediately imply polynomial-time recog-
nition algorithms for 3- and 4-leaf powers which are conceptually simpler than
those in [12]. However, they are of purely theoretical interest because the run-
ning times of these straightforward algorithms are much worse than that of the

1 Both problems k-Leaf Power and k-Phylogenetic Root ask whether a given
graph is a leaf power resp. a phylogenetic power. We find it more natural to use
the term power instead of the term root, although we used the term root in the
conference version of our previous considerations concerning the case k = 3 [3].

2 Note that in the various papers (partially not referring to each other) Closest
2-Leaf Power appears under various names such as Cluster Editing [14] and
Correlation Clustering [1].
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known cubic-time algorithms from [12]. More important, the characterizations
open up the way to the first tractability results for the harder problems Closest
k-Leaf Power for k = 3, 4. Using the forbidden subgraphs for 3-leaf powers,
in [3] we show that Closest 3-Leaf Power is fixed-parameter tractable with
respect to the parameter “number � of edge modifications.” Due to the signif-
icantly increased combinatorial complexity of 4-leaf powers, analogous results
for Closest 4-Leaf Power remained open in [3]. We close this gap here.
We show that Closest 4-Leaf Power can be solved in polynomial time for
� = O(log n/ log log n); that is, it is fixed-parameter tractable with respect to
parameter �. Moreover, the variants of Closest 4-Leaf Power where only
edge insertions or only edge deletions are allowed are fixed-parameter tractable
as well.

Due to the lack of space, we omit all proofs.

2 Preliminaries

We consider only undirected graphs G = (V, E) with n := |V | and m := |E|.
Edges are denoted as tuples (u, v), ignoring any ordering. For a graph G = (V, E)
and u, v ∈ V , let dG(u, v) denote the length of the shortest path between u and v
in G. With E(G), we denote the edge set E of a graph G = (V, E). We call a
graph G′ = (V ′, E′) an induced subgraph of G = (V, E) and denote G′ with G[V ′]
if V ′ ⊆ V and E′ = {(u, v) | u, v ∈ V ′ and (u, v) ∈ E}. For a collection of
graphs G, a graph is said to be G-free if it does not contain any graph in G as
induced subgraph. A cycle with n vertices is denoted as Cn. An edge between two
vertices of a cycle that is not part of the cycle is called chord. An induced cycle of
length at least four is called hole—note that a hole is chordless. A chordal graph
then is a hole-free graph. Let a minimum edge cut, denoted MinCut(G, V1, V2),
be a minimum weight set of edges in G = (V, E) that disconnects all vertices
in V1 ⊆ V from those in V2 ⊆ V . We say a set is maximal with respect to some
property if it is not a proper subset of another set with that property. For two
sets A and B, A � B denotes the symmetric difference (A \ B) ∪ (B \ A).

Definition 1 ([12]). Consider an unrooted tree T with leaves one-to-one labeled
by the elements of a set V . The k-leaf power of T is a graph, denoted T k, with
T k := (V, E), where E := {(u, v) | u, v ∈ V and dT (u, v) ≤ k}. We call T a
k-leaf root of T k.

The k-Leaf Power (LPk) problem then is to decide, given a graph G,
whether there is a tree T such that T k = G.

One may view the leaf power concept as a “Steiner extension” of the standard
notion of tree powers [2,8]. The more general, approximate version of LPk we
focus on in this work, called Closest k-Leaf Power (CLPk), then reads
as follows. Consider a graph G = (V, E) and a nonnegative integer �, is there a
tree T such that T k and G differ by at most � edges, that is, |E(T k)�E(G)| ≤ �?
CLPk is NP-complete for k ≥ 2 [7,3].
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In this paper we also study two variations of CLPk referring to only one-sided
errors: CLPk Edge Insertion only allows insertion of edges and CLPk Edge
Deletion only allows deletion of edges to obtain T k. CLPk Edge Deletion
is NP-complete for k ≥ 2 [11,3], and CLPk Edge Insertion is NP-complete
for k ≥ 3 but trivially polynomial-time solvable for k = 2.

A central technical tool within this work are critical cliques and critical clique
graphs as Lin et al. [8] introduce them.

Definition 2. A critical clique of a graph G is a clique K where the vertices of K
all have the same set of neighbors in G\K, and K is maximal under this property.
Consider a graph G = (V, E). Let VC be the collection of its critical cliques. Then
the critical clique graph CC(G) is a graph (VC , EC) (we use the term nodes for
its vertices) with (Ki, Kj) ∈ EC ⇐⇒ ∀u ∈ Ki, v ∈ Kj : (u, v) ∈ E. That
is, the critical clique graph has the critical cliques as nodes, and two nodes are
connected iff the corresponding critical cliques together form a larger clique.

Definition 3. Consider a graph G = (V, E) and an arbitrary set of vertices A
with A∩V = ∅. An unrooted tree T = (A∪V, E′) is called a k-Steiner root of G
if E = {(u, v) | u, v ∈ V and dT (u, v) ≤ k}.

Note that if A = ∅, then a k-Steiner root simply is a k-tree root. Similarly,
if A is the set of inner nodes of T , then a k-Steiner root is the same as a k-leaf
root. This means that the set of graphs that have k-Steiner roots is a superset
of the set of graphs that have k-tree roots or k-leaf roots. The following lemma
is easy to show (a similar statement was already made by Lin et al. [8]).

Lemma 1. A graph G has a k-leaf root iff CC(G) has a (k − 2)-Steiner root.

We show that CLP4 and both its edge insertion and edge deletion variant are
fixed-parameter tractable (FPT) with respect to parameter �. That is, we show
that CLP4 can be solved in f(�) · nO(1) time, where f is a computable function
only depending on �, and n denotes the number of vertices of the input graph.

3 Forbidden Subgraph Characterization of 4-Leaf Powers

In this section we give a characterization of 4-leaf powers using a set of eight
forbidden induced subgraphs for the critical clique graphs of 4-leaf powers. This
set can be extended to a larger set of forbidden subgraphs for the 4-leaf powers
themselves by a simple iterative algorithm. Independently and by different proof
techniques, Rautenbach [13] achieves the same results. Our approach, however,
is tailored towards the algorithmic treatment following in the next section. The
eight forbidden subgraphs for critical clique graphs of 4-leaf powers are shown
in Fig. 1. Let F := {F1, F2, . . . , F8} as given there.

Theorem 1. For a graph G, the following are equivalent: (1) G is a 4-leaf power.
(2) G is chordal and its critical clique graph CC(G) is F-free.



Extending the Tractability Border for Closest Leaf Powers 401

F1 F2 F3 F4 F5 F6 F7 F8

Fig. 1. The eight forbidden subgraphs for critical clique graphs of 4-leaf powers

SRG(CC(G) = (VC , EC))
Input: (F ∪ {C4, C5})-free critical clique graph CC(G) = (VC , EC)
Output: Pseudo Steiner root graph of CC(G)

1 S ← ({bc | c ∈ VC}, ∅)
2 L ← list of all maximal cliques of CC(G)
3 while there is a K in L which shares edges (c1, c2) and (c1, c3) with two

other maximal cliques K′ and K′′ in CC(G):
4 Delete K from L
5 for each c ∈ K, c �= c1:
6 Insert an edge between bc1 and bc

7 while there is a K in L which shares only one edge (c1, c2) with only one
other maximal clique K′ in CC(G):

8 Delete K from L
9 if K′ is in L:
10 for each c ∈ K, c �= c1:
11 Insert an edge between bc1 and bc

12 else:
13 c′ ← a node in K′ \ K
14 if there is an edge (bc1 , bc′) in S:
15 for each c ∈ K, c �= c2:
16 Insert an edge between bc2 and bc

17 else:
18 for each c ∈ K, c �= c1:
19 Insert an edge between bc1 and bc

20 while there is a K in L:
21 Delete K from L
22 Add a new node sK into S
23 for each c ∈ K:
24 Insert an edge between sK and bc

25 while there are at least two connected components S1 and S2 in S:
26 Add two new edge-connected Steiner nodes s1 and s2 to S and connect s1

by an edge to an arbitrary node in S1 and s2 to an arbitrary node in S2

27 return S

Fig. 2. Algorithm to construct the pseudo Steiner root graph S of a critical clique
graph CC(G)

Corollary 1. All graphs that are 4-leaf powers are chordal and can be charac-
terized by a finite set of forbidden subgraphs.
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It is relatively easy to see that graphs having a 4-leaf root must be chordal,
and that a critical clique graph CC(G) containing a graph in F (Fig. 1) as an in-
duced subgraph has no 2-Steiner root (and, according to Lemma 1, the graph G
has no 4-leaf root). The reverse direction of Theorem 1 is technically far more dif-
ficult. We show constructively that every F -free and chordal critical clique graph
indeed has a 2-Steiner root by using Algorithm SRG (Fig. 2). This algorithm ex-
tends a method by Lin et al. [8] for constructing 2-Steiner roots: While their algo-
rithm only computes an output graph if the input graph has a 2-Steiner root and
says “no” otherwise, our Algorithm SRG (Fig. 2) also generates an output graph
with some guaranteed properties for inputs that are (F∪{C4, C5})-free but non-
chordal graphs. This will be of use for our fixed-parameter algorithms in Sect. 4.

For a given critical clique graph CC(G) = (VC , EC), Algorithm SRG con-
structs a pseudo Steiner root graph S = (V ′, E′) with V ′ := A ∪ B, where
B := {bc | c ∈ C} and A ∩ B = ∅. The nodes in A and B are called Steiner and
non-Steiner nodes, respectively. Each non-Steiner node one-to-one corresponds
to a node in CC(G), whereas Steiner nodes do not correspond to nodes in CC(G).
If CC(G) is F -free and chordal, then S is a 2-Steiner root of CC(G). (The term
“pseudo Steiner root graph” expresses that if the input graph is (F ∪{C4, C5})-
free but nonchordal, then the output S has some, but not all properties of a
2-Steiner root.)

The idea of Algorithm SRG is to consider every maximal clique of the input
graph CC(G) and to connect the corresponding nodes in the output graph to
form a star. More specifically, if a maximal clique K in CC(G) has an edge e
in common with another maximal clique K ′, then the node in the output graph
corresponding to one of the endpoints of e is connected by edges with the other
nodes corresponding to K and the node in the output graph corresponding to
the other endpoint of e is connected by edges with the other nodes corresponding
to K ′. If otherwise K has no edge in common with another maximal clique, a
Steiner node sK is inserted into the output graph, and every node corresponding
to a node of K is connected by an edge to sK (see Fig. 3 for an example).

We can show that Algorithm SRG fulfills the following claims, which implies
that the constructed pseudo Steiner root graph of an F -free chordal critical
clique graph CC(G) actually is a 2-Steiner root of CC(G), which together with

K1

K2 K3 K4
v1

v2 v3

bv1

bv2 bv3

SRG(CC(G)):CC(G):

Fig. 3. Example of a subgraph of a critical clique graph CC(G) and the pseudo Steiner
root graph computed for this subgraph. Algorithm SRG first considers the maximal
clique K1 with c1 = v1 (see Fig. 2) and inserts edges between bv1 and the other
nodes corresponding to K1. Thereafter, the cliques K2 and K3 are considered. When
considering K4, Algorithm SRG inserts a Steiner node (drawn white).



Extending the Tractability Border for Closest Leaf Powers 403

Lemma 1 proves the missing direction of Theorem 1. Note that the first two
claims do not require chordality of the input graph. We will make use of this
fact in Sect. 4 when we have to modify a critical clique graph to make it chordal.
The claims are:

1. Every maximal clique K of an (F∪{C4, C5})-free critical clique graph CC(G)
is considered at least once by Algorithm SRG, and for every node pair u, v
in K, a path of length at most two is generated between the corresponding
nodes of u and v in the output graph.

2. For an (F ∪ {C4, C5})-free critical clique graph CC(G) = (VC , EC) Algo-
rithm SRG outputs a graph with the following property: If two nodes u, v ∈
VC are not adjacent in CC(G), then the distance between the nodes corre-
sponding to u and v in the output graph is at least three.

3. For a chordal and F -free critical clique graph CC(G) the output graph of
Algorithm SRG is a tree.

Note that Algorithm SRG runs in polynomial time, as there are at most 2 ·
|EC | maximal cliques in an (F ∪ {C4, C5})-free critical clique graph CC(G) =
(VC , EC).

4 Fixed-Parameter Tractability of CLP4

In this section we show the fixed-parameter tractability of CLP4 Edge Dele-
tion, CLP4 Edge Insertion, and CLP4 with respect to the parameter “num-
ber of edge editing operations” �. The basic approach resembles our previous
work for CLP3 [3]; however, for the case of CLP4 Edge Deletion new, more
intricate methods are necessary. Therefore, we focus on the CLP4 Edge Dele-
tion case in this section.

Note that graphs that have 3-leaf roots have a characterization similar to
that of Theorem 1: they are graphs that are chordal and contain none of the
induced subgraphs “bull,” “dart,” and “gem” [3]. Therefore, the basic idea for
CLP3 Edge Deletion as well as for CLP4 Edge Deletion is to use the
forbidden subgraph characterization in a depth-bounded search tree algorithm:
find a forbidden subgraph, and recursively branch into several cases according
to the possible edge deletions that destroy the forbidden subgraph. If we can
upper-bound the number of branching cases by a function depending only on �,
since the depth can be bounded from above by �, we obtain a run time that
proves fixed-parameter tractability.

Since the forbidden subgraph characterization from Theorem 1 for the crit-
ical clique graph CC(G) is much simpler than the implied characterization
for G (Corollary 1), we would like to apply modifications directly on CC(G).
This is possible by the following lemma, which is a straightforward extension of
Lemma 6 in [3].

Lemma 2. For a graph G, there is always an optimal solution for CLP4 that is
represented by edge editing operations on CC(G). That is, one can find an opti-
mal solution that does not delete any edges within a critical clique; furthermore,
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in this optimal solution, between two critical cliques either all or no edges are
inserted or deleted.

Now, working with CC(G) = (VC , EC) instead of G has two consequences:
First, a deletion of an edge in CC(G) can represent several edge deletions in G.
Consider an edge e in CC(G) between two nodes that represent critical cliques
of sizes c1 and c2. Deleting e implies deleting all c1 ·c2 edges between the vertices
of the critical cliques in G. Therefore, we give the edge e the weight c1 · c2. Note
that this means that an edge modification on CC(G) can decrease the param-
eter � in the depth-bounded search tree algorithm by more than one. Second,
if two adjacent nodes in CC(G) obtain an identical neighborhood after deleting
edges in CC(G), then CC(G) needs to be updated, since each node in CC(G)
has to represent a critical clique in G. In this situation a merge operation is
needed, which replaces these nodes in CC(G) by a new node with the same
neighborhood as the original nodes. Subsequently, assume that after each mod-
ification of CC(G), all pairs of nodes in CC(G) are checked as to whether a
merge operation between them is required. This can be done in O(|VC | · |EC |)
time.

The main obstacle in obtaining fixed-parameter tractability for both CLP3
Edge Deletion and CLP4 Edge Deletion is that the holes in CC(G) can
have arbitrary length, and, therefore, one cannot simply find some hole and
branch for each edge of the hole that is to be deleted—the number of branching
cases would not be a function only depending on �. For CLP3 Edge Deletion,
the key observation is that the critical clique graph CC(G) of a graph G contain-
ing neither a bull nor a dart nor a gem nor a C4 contains no triangles. This allows
to show that, after destroying the forbidden subgraphs bull, dart, gem, and C4

in G, no hole in CC(G) can be “accidentally” destroyed by merge operations be-
tween its nodes and, therefore, one has to delete at least one edge of every hole.
Since moreover making a triangle-free graph chordal means to make it a forest,
a minimum weight set of edges to be deleted to make CC(G) chordal can be
obtained in polynomial time by searching for a maximum weight spanning tree.
Unfortunately, there can be triangles in an F -free (Fig. 1) CC(G) as we obtain
it for CLP4 after deleting the forbidden subgraphs. Thus, the main technical
contribution of this section is to show how to circumvent these difficulties.

The idea is to examine the output graph SRG(CC(G)) of Algorithm SRG
(Fig. 2) for the critical clique graph CC(G). If it is a tree, we are done. Other-
wise, the output is a pseudo Steiner root graph S that contains a cycle which
corresponds to a hole in CC(G). By repeatedly deleting degree-1 nodes and con-
tracting consecutive degree-2 nodes in S we get a graph S′ in which there is no
path that consists of three or more consecutive degree-2 nodes. By finding the
shortest cycle in this reduced graph S′, we can obtain an “FPT hole” in CC(G),
that is, a hole for which we can bound the possibilities to delete edges to get rid
of the hole in an optimal way by a function only depending on � (see Fig. 4).

For the pseudocode of this algorithm, which is presented in Fig. 5, we intro-
duce some notation for the mapping between the nodes of a critical clique graph
and the nodes of its pseudo Steiner root graph.
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a) b)

c) d)

Fig. 4. Illustration of finding and destroying holes in an (F ∪ {C4, C5})-free critical
clique graph: a) A nonchordal critical clique graph CC(G). b) The pseudo Steiner root
graph S constructed by Algorithm SRG for CC(G). c) The reduced pseudo Steiner
root graph S′. d) The sets marked with an ellipsis correspond to the degree-3 nodes
in S′. Our algorithm for CLP4 Edge Deletion either deletes one of the bold edges
or it deletes a minimum weight set of edges between two of the node sets marked with
an ellipsis (these sets are called “big node areas” in Def. 5).

Definition 4. Consider a critical clique graph CC(G) = (VC , EC) and a pseudo
Steiner root graph S = (VS , ES) constructed by Algorithm SRG for CC(G).
For v ∈ VC we use S(v) to denote the node from VS that corresponds to v, and
for vS ∈ VS , we define S−1(vS) as the node in VC corresponding to vS if vS is
a non-Steiner node, or ⊥ if vS is a Steiner node. We extend this notation to
sets: for V ′

C ⊆ VC , S(V ′
C) := {S(v) | v ∈ V ′

C}, and for V ′
S ⊆ VS , S−1(V ′

S) :=
{S−1(v) | v ∈ V ′

S}.

To define the branching set D in line 18 of Algorithm CLP4Del-Branch,
we need some notation.

Definition 5. A big node is a node of a pseudo Steiner root graph S that
is not deleted by the data reduction in lines 11–19 of Algorithm CLP4Del-
Branch (Fig. 5) and that has degree at least 3 in the constructed pseudo Steiner
root graph S′ (see Fig. 6).

For a cycle Q in a pseudo Steiner root graph S as constructed by Algorithm
CLP4Del-Branch in line 16, let v0, . . . , vq−1 be the big nodes in Q, ordered
by their appearance in Q, and for every node vi with 0 ≤ i < q let Pi be the path
in Q between vi and v(i+1) mod q.

With P+
i we denote the path Pi plus its attached trees, that is, the maximal

set of nodes in S such that P+
i contains the nodes of Pi and such that P+

i induces
a connected component in S \ {vi, v(i+1) mod q}.
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CLP4Del-Branch(G, �)
Input: A graph G = (V, E) and an integer �

Output: A set of at most � edges in G whose removal makes G a 4-leaf power,
or nil if no such set exists

1 if � < 0: return nil

2 Compute CC(G)
3 if CC(G) contains an induced forbidden subgraph F ∈ F ∪ {C4, C5}:
4 for each edge e in F :

5 X ← CLP4Del-Branch(CC-Del(G, {e}), �−CC-Weight(G, {e}))
6 if X �= nil: return X ∪ {e}
7 return nil

8 S ← SRG(CC(G))
9 if S is a tree: return ∅
10 S′ ← S

11 while there is a degree-1-node u in S′:

12 delete u

13 while there is a path (u, v, w) of three degree-2-nodes in S′:

14 delete v and insert an edge between u and w

15 Q′ ← shortest cycle in S′

16 Q ← cycle in S corresponding to Q′

17 H ← S−1(Q) \ {⊥}
18 Determine a set D (see Lemma 4) of edge sets in CC(G)[H] such that at

least one edge set d ∈ D is a subset of an optimal solution
19 for each d ∈ D:

20 X ← CLP4Del-Branch(CC-Del(G, d), �−CC-Weight(G, d))
21 if X �= nil: return X ∪ d

22 return nil

Fig. 5. Algorithm for CLP4 Edge Deletion. The subroutine CC-Del(G, d) takes a
graph G and a set d of edges in CC(G) as input. For every edge (K1, K2) ∈ d, all
edges from G that have one endpoint in the clique represented by K1 and the other
endpoint in the clique represented by K2 are deleted by CC-Del(G, d). The function
CC-Weight(G, d) returns the sum of the weights of the edges in d.

We further denote with Ai, 0 ≤ i < q, the big node areas that are defined as

Ai := S−1({v ∈ Q | dS(vi, v) ≤ 2}) \ {⊥}.

The following lemma will help us to show that the cycle Q determined by
Algorithm CLP4Del-Branch (Fig. 5) in line 16 indeed induces at least one
hole in CC(G).

Lemma 3. Consider a cycle Q in a pseudo Steiner root graph S as constructed
by Algorithm CLP4Del-Branch (Fig. 5) in line 16. Let v0, . . . , vp−1 be the
nodes of Q, ordered by their appearance in Q. Then there is no edge (S−1(vi),
S−1(vj)) with 0 ≤ i, j < p in CC(G) such that vi and vj have a distance of more
than 2 on Q.
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S−1(P+
i )S−1(P+

(i−1) mod q)

vi

P+
(i−1) mod q P+

i

Fig. 6. Illustration for Definition 5. The upper picture shows a part of the pseudo
Steiner root graph S. The encircled node vi is a big node; black nodes are part of
a cycle in S. The grey nodes are deleted by the data reduction in lines 11–14 of
Algorithm CLP4Del-Branch. The only Steiner node in this example is the node
marked with a triangle. The lower picture shows the corresponding part of CC(G).
The bold edges are those between vertices of the big node area Ai.

The main observation that helps to bound the number of branching cases
and, hence, leads to our fixed-parameter algorithm is that for a cycle Q in a
pseudo Steiner root graph S the number of branching cases is independent of
the lengths of the paths in Q between the big nodes: If we want to disconnect
two big node areas, then it is always optimal to take an edge set with minimum
weight whose removal disconnects the two big node areas. Such an edge set can
be found in polynomial time by maximum flow techniques.

Lemma 4. In CLP4Del-Branch, the branching set D chosen as follows con-
tains at least one subset of an optimal solution: Either delete an edge in a big
node area, that is, an edge (u, v) with u, v ∈ Ai for some 0 ≤ i < q, or delete a
set of edges

MinCut(CC(G)[S−1(P+
i ) \ {⊥}], Ai, A(i+1) mod q),

that is, delete a minimum weight set of edges such that all paths between two
neighboring big node areas are destroyed.

It remains to show the complexity of CLP4Del-Branch. All steps within
a single invocation of CLP4Del-Branch can be done in polynomial time. We
therefore focus on the number of recursive calls. In line 4, there can be at most 10
recursive calls corresponding to at most 10 edges to delete in a forbidden sub-
graph (for example F3 in Fig. 1); as we will see, this is dominated by the number
of recursive calls in line 20 for destroying a long cycle.

A well-known result by Erdős and Pósa [4] states that any graph with mini-
mum vertex degree at least 3 has a cycle of length at most 2 logn + 1, where n
denotes the number of graph vertices. Using this result we can give an upper
bound on the size of the shortest cycle in S′ and show the following lemma:



408 M. Dom et al.

Lemma 5. When choosing D in line 18 of Algorithm CLP4Del-Branch as
described by Lemma 4, we can upper-bound its size by |D| ≤ 96 · log |V | + 24.

Theorem 2. CLP4 Edge Deletion with � edge deletions allowed is fixed-
parameter tractable with respect to �.

Proof. By Lemma 5 and the fact that the height of the search tree is bounded
from above by �, CLP4Del-Branch runs in (96 · log |V | + 24)� · |V |O(1) ≤
c� · (� log �)� ·nO(1) time for a constant c (the inequality holds because (log n)� ≤
(3� log �)� + n for all values of n and �). �

With Theorem 2 and using the same techniques as applied for CLP3 Edge
Insertion and CLP3 [3], we achieve the following result:

Theorem 3. 1. CLP4 Edge Insertion with � edge insertions allowed is
fixed-parameter tractable with respect to �.

2. CLP4 with � edge insertions and deletions is fixed-parameter tractable with
respect to �.
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7. M. Křivánek and J. Morávek. NP-hard problems in hierarchical-tree clustering.

Acta Inform., 23(3):311–323, 1986.
8. G. Lin, P. E. Kearney, and T. Jiang. Phylogenetic k-root and Steiner k-root. In

Proc. 11th ISAAC, volume 1969 of LNCS, pages 539–551. Springer, 2000.
9. Y.-L. Lin and S. S. Skiena. Algorithms for square roots of graphs. SIAM J. Discrete

Math., 8(1):99–118, 1995.
10. R. Motwani and M. Sudan. Computing roots of graphs is hard. Discrete Appl.

Math., 54(1):81–88, 1994.
11. A. Natanzon. Complexity and approximation of some graph modification problems.

Master’s thesis, Department of Computer Science, Tel Aviv University, 1999.
12. N. Nishimura, P. Ragde, and D. M. Thilikos. On graph powers for leaf-labeled

trees. J. Algorithms, 42(1):69–108, 2002.
13. D. Rautenbach. 4-leafroots. Manuscript, Forschungsinstitut für Diskrete Mathe-

matik, Universität Bonn, June 2004.
14. R. Shamir, R. Sharan, and D. Tsur. Cluster graph modification problems. Discrete

Appl. Math., 144:173–182, 2004.



Bounding the Misclassification Error in Spectral
Partitioning in the Planted Partition Model�

Joachim Giesen and Dieter Mitsche

Institute for Theoretical Computer Science, ETH Zürich, CH-8092 Zürich
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Abstract. A partitioning of a set of n items is a grouping of these items
into k disjoint, equally sized classes. Any partition can be modeled as a
graph. The items become the vertices of the graph and two vertices are
connected by an edge if and only if the associated items belong to the
same class. In a planted partition model a graph that models a partition
is given, which is obscured by random noise, i.e., edges within a class can
get removed and edges between classes can get inserted. The task is to
reconstruct the planted partition from this graph. We design a spectral
partitioning algorithm and analyze how many items it misclassifies in
the worst case. The number of classes k is one parameter in the model
that allows to control the difficulty of the problem. Our analysis extends
the range of k for which any non-trivial quality guarantees can be given.

1 Introduction

The partition reconstruction problem, which we study in this paper, is related
to the k-partition problem. In the latter problem the task is to partition the ver-
tices of a given graph into k equally sized classes such that the number of edges
between the classes is minimized. This problem is already NP-hard for k = 2,
i.e., in the graph bisection case [6]. Thus researchers, see for example [4,2] and
the references therein, started to analyze the problem in specialized but from
an application point of view (e.g., parallel scheduling or mesh partitioning) still
meaningful, graph families - especially families of random graphs. The random
graph families typically assume a given partition of the vertices of the graph
(planted partition), which is obscured by random noise. The families are param-
eterized by a set of parameters, e.g., the number of vertices n and classes k.
The goal now becomes to assess the ability of a partitioning algorithm to recon-
struct the planted classes. Two measures to assess the quality of a partitioning
algorithm in terms of the parameters of the random graph families are

(1) the probability that the algorithm can reconstruct the planted partition, and
(2) the number of items that the algorithm misclassifies (with a suited definition

of misclassification).
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The best studied random graph family for the partition reconstruction problem
is the following: an edge in the graph appears with probability p if its two
incident vertices belong to the same planted class and with probability q < p
otherwise, independently from all other edges. In general the probabilities p and
q can depend on the number n of vertices in the graph and on the number
k of classes of the planted partition. The known theoretical guarantees in this
model state that certain algorithms can with high probability reconstruct the
planted partition correctly for a certain range of the parameters of the random
graph family. In these cases the number of misclassifications is concentrated at
zero. Here we show that in certain situations where no guarantees on perfect
reconstruction are known for any algorithm we can at least meaningfully bound
the number of misclassifications for an algorithm that falls within the category
of spectral partitioning algorithms. Spectral partitioning algorithms make use of
the eigenvalues and eigenvectors of the similarity matrix in order to perform the
partitioning.

Related Work. The partitioning problem in the planted partition model that
we have described above gets more difficult if the difference p − q gets small
and/or k gets large. If we assume that p and q are fixed the only parameter
left to control the difficulty of the problem is k. The algorithm of Shamir and
Tsur [10] which builds on ideas of Condon and Karp [4] can with high proba-
bility reconstruct correctly up to k = O(

√
n/ log n) planted classes. The same

guarantees can be given for an algorithm due to McSherry [8]. Both algorithms
are polynomial in time and even allow the classes to differ in size (only a lower
bound on the size of the classes is needed), i.e., they deal with the more general
planted clustering problem. The algorithm of McSherry falls in the category of
spectral clustering algorithms. The use of spectral methods for clustering has
become increasingly popular in recent years. The vast majority of the literature
points out the experimental success of spectral methods, see for example the
review by Meila et al. [9] where also the measure for the number of misclassi-
fications that we are going to use here was introduced. On the theoretical side
much less is known about the reasons why spectral algorithms perform well.
In 1987 Boppana [3] presented a spectral algorithm for recovering the optimal
bisection of a graph. Much later Alon et al. [1] showed how the entries in the
second eigenvector of the adjacency matrix of a graph can be used to find a
hidden clique of size Ω(

√
n) in a random graph. Spielman and Teng [11] showed

how bounded degree planar graphs and d-dimensional meshes can be partitioned
using the signs of the entries in the second eigenvector of the adjacency matrix
of the graph or mesh, respectively.

Our Result. We design an efficient (polynomial in n) spectral algorithm and
analyze the number of misclassifications it makes when k can be as large as c

√
n,

where c is a constant that we specify. Note that so far nothing was known on
how well or badly any partitioning algorithm performs for k = ω(

√
n/ log n).

We get that the relative number of misclassifications for k = o(
√

n) goes to zero
with high probability when n goes to infinity.
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2 Planted Partitions

In this section we introduce the planted partition reconstruction problem and
define two quality measures that can be used to compare different parti-
tioning algorithms. We first introduce the A(ϕ, p, q) distribution, see also
McSherry [8].

A(ϕ, p, q) Distribution. Given a surjective function ϕ : {1, . . . , n} → {1, . . . , k}
and probabilities p, q ∈ (0, 1) with p > q. The A(ϕ, p, q) distribution is a distri-
bution on the set of n×n symmetric, 0-1 matrices with zero trace. Let Â = (âij)
be a matrix drawn from this distribution. It is âij = 0 if i = j and for i �= j,

P (âij = 1) = p if ϕ(i) = ϕ(j)
P (âij = 0) = 1 − p if ϕ(i) = ϕ(j)
P (âij = 1) = q if ϕ(i) �= ϕ(j)
P (âij = 0) = 1 − q if ϕ(i) �= ϕ(j),

independently. The matrix of expectations A = (aij) corresponding to the
A(ϕ, p, q) distribution is given as

aij = 0 if i = j
aij = p if ϕ(i) = ϕ(j) and i �= j
aij = q if ϕ(i) �= ϕ(j)

Lemma 1 (Füredi and Komlós [5], van Vu [13], Krivelevich and van
Vu [7]). Let Â be a matrix drawn from the A(ϕ, p, q) distribution and A be
the matrix of expectations corresponding to this distribution. Let c = min{p(1 −
p), q(1 − q)} and assume that c2 ' (log n)6/n. Then

|A − Â| ≤
√

n

with probability at least 1− 2e−c2n/8. Here | · | denotes the L2 matrix norm, i.e.,
|B| = max|x|=1 |Bx|.

Planted Partition Reconstruction Problem. Given a matrix Â drawn from
the A(ϕ, p, q) distribution. Assume that all classes ϕ−1(l), l ∈ {1, . . . , k} have the
same size n/k. Then the function ϕ is called a partition function. The planted
partition reconstruction problem asks to reconstruct ϕ up to a permutation of
{1, . . . , k} only from Â (up to permutations of of {1, . . . , k}).

Quality of a Reconstruction Algorithm. A planted partition reconstruction
algorithm takes a matrix Â drawn from the distribution A(ϕ, p, q) as input and
outputs a function ψ : {1, . . . , n} → {1, . . . , k′}. There are two natural measures
to assess the quality of the reconstruction algorithm.

(1) The probability of correct reconstruction, i.e.,

P [ϕ = ψ up to a permutation of {1, . . . , k}].
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(2) The distribution of the number of elements in {1, . . . , n} misclassified by
the algorithm. The definition for the number of misclassifications used here
(see also Meila et al. [9]) is as the size of a maximum matching on the
weighted, complete bipartite graph whose vertices are the classes ϕ−1(i), i ∈
{1, . . . , k} and the classes ψ−1(j), j ∈ {1, . . . , k′} produced by the algorithm.
The weight of the edge {ϕ−1(i), ψ−1(j)} is |ϕ−1(i) ∩ ψ−1(j)|, i.e. the size of
the intersection of the classes. The matching gives a pairing of the classes
defined by ϕ and ψ. Assume without loss of generality that always ϕ−1(i)
and ψ−1(i) are paired. Then the number of misclassifications is given as

n −
min{k,k′}∑

i=1

|ϕ−1(i) ∩ ψ−1(i)|.

3 Spectral Properties

Any real symmetric n × n matrix has n real eigenvalues and Rn has a corre-
sponding eigenbasis. Here we are concerned with two types of real symmetric
matrices. First, any matrix Â drawn from an A(ϕ, p, q) distribution. Second, the
matrix A of expectations corresponding to the distribution A(ϕ, p, q).

We want to denote the eigenvalues of Â by λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂n and the
vectors of a corresponding orthonormal eigenbasis of Rn by v1, . . . , vn, i.e., it
is Âvi = λ̂ivi, vT

i vj = 0 if i �= j and vT
i vi = 1, and the v1, . . . , vn span the

whole Rn.
For the sake of analysis we want to assume here without loss of generality that

the matrix A of expectations has a block diagonal structure, i.e., the elements in
the i-th class have indices from n

k (i−1)+1 to n
k i in {1, . . . , n}. It is easy to verify

that the eigenvalues λ1 ≥ . . . ≥ λn of A are (n
k −1)p+(n− n

k )q, n
k (p−q)−p and

−p with corresponding multiplicities 1, k − 1 and n− k, respectively. A possible
orthonormal basis of the eigenspace corresponding to the k largest eigenvalues
of A is ui, i = 1, . . . , k, whose j-th coordinates are given as follows,

uij =

{√
k
n , j ∈ {n

k (i − 1) + 1, . . . , n
k i}

0, else.

Theorem 1 (Weyl).

max{|λi − λ̂i| | i ∈ {1, . . . , n}} ≤ |A − Â|.

Spectral Separation. The spectral separation δk(A) of the eigenspace of the
matrix A of expectations corresponding to its k largest eigenvalues from its
complement is defined as the difference of the k-th and the (k+1)-th eigenvalue,
i.e., it is δk(A) = n

k (p − q).

Projection Matrix. The matrix P̂ that projects any vector in Rn to the
eigenspace corresponding to the k largest eigenvalues of a matrix Â drawn from
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the distribution A(ϕ, p, q), i.e., the projection onto the space spanned by the
vectors v1, . . . , vk, is given as

P̂ =
k∑

i=1

viv
T
i .

The matrix P that projects any vector in Rn to the eigenspace corresponding to
the k largest eigenvalues of the matrix A of expectations can be characterized
even more explicitly. Its entries are given as

pij =
{

k
n , ϕ(i) = ϕ(j)
0, ϕ(i) �= ϕ(j)

Lemma 2. All the k largest eigenvalues of Â are larger than
√

n and all the
n − k smallest eigenvalues of Â are smaller than

√
n with probability at least

1 − 2e−c2n/8 provided that n is sufficiently large and k < p−q
4

√
n.

Proof. Plugging in our assumption that k < p−q
4

√
n gives that the k largest

eigenvalues of A are larger than 4
√

n − p > 2
√

n. By the lemma of Füredi and
Komlós it is |A− Â| ≤

√
n with probability at least 1− 2e−c2n/8. Now it follows

from Weyl’s theorem that the k largest eigenvalues of Â are larger than
√

n with
probability at least 1 − 2e−c2n/8. Since the n − k smallest eigenvalues of A are
−p it also follows that the n − k smallest eigenvalues of Â are smaller than

√
n

with probability at least 1 − 2e−c2n/8. �

Lemma 3. With probability at least 1 − 2e−c2n/8 it holds

n

k
(p − q) − p −

√
n ≤ λ̂2 and λ̂2

k

n
− k√

n
≤ p − q,

provided n is sufficiently large.

Proof. It holds λ2 = n
k (p− q)− p. By combining Weyl’s theorem and the lemma

of Füredi and Komlós we get that with probability at least 1− 2e−c2n/8 it holds

λ̂2 ∈
[n
k

(p − q) − p −
√

n,
n

k
(p − q) − p +

√
n
]
.

Hence with the same probability

λ̂2
k

n
− k√

n
≤ p − q ≤ λ̂2

k

n
+

k√
n

+
k

n
.,

where we used p ≤ 1 for the upper bound and p ≥ 0 for the lower bound. �

Theorem 2 (Stewart [12]). Let P̂ and P be the projection matrices as defined
above. It holds

|P − P̂ | ≤ 2|A − Â|
δk(A) − 2|A − Â|

if δk(A) > 4|A − Â| where | · | is the L2 matrix norm.
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4 A Spectral Algorithm

Now we have all prerequisites at hand that we need to describe our spectral
algorithm to solve the planted partition reconstruction problem.

SpectralReconstruct(Â)
1 k′ := number of eigenvalues of Â that are larger than

√
n.

2 P̂ := projection matrix computed from the k′ largest eigenvectors
v1, . . . , vk′ of Â.

3 for i = 1 to n do
4 Ri := set of row indices which are among the n

k′ largest entries of
the i-th column of P̂ .

5 for j = 1 to n do

6 cij :=
{

1, j ∈ Ri

0, else
7 end for
8 ci := (ci1, . . . , cin)T

9 end for
10 I := {1, . . . , n}; l := 1
11 while exists an unmarked index i ∈ I do
12 Cl := ∅
13 for each j ∈ I do
14 if cT

i cj > 4n
5k′ do

15 Cl := Cl ∪ {j}
16 end if
17 end for
18 if |Cl| ≥

(
1 −
√

160
√

n

λ̂2−3
√

n

)
n
k′ do

19 I := I \ Cl; l := l + 1
20 else
21 mark index i.
22 end if
23 end while
24 Cl := I
25 return C1, . . . , Cl

In line 1 the number of planted classes k′ is estimated. The estimate is mo-
tivated by Lemma 2. In line 2 the projection matrix P̂ that belongs to Â is
computed. From line 3 to line 9 for each column i of Â a vector ci ∈ {0, 1}n

with exactly n
k′ entries that are one is computed. In lines 10 to 24 the actual

partitioning takes place. Roughly speaking, two indices i, j are put into the same
class if the Hamming distance of the corresponding vectors ci and cj is small
(test in line 14). A class as created in lines 12 to 17 is not allowed to be too small
(test in line 18), otherwise its elements get distributed into other classes that
are going to be constructed in future executions of the body of the while-loop.
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Notice that the algorithm runs in time polynomial in n and only makes use of
quantities that can be deduced from Â, i.e., it does not need to know the values
of p, q and k.

5 Bounding the Number of Misclassifications

Safe Vector. A vector ci ∈ {0, 1}n as produced by the algorithm Spectral-
Reconstruct is called safe with respect to ϕ if more than 9

10 of the indices in
{1, . . . , n} that correspond to the one entries in ci are mapped by ϕ to ϕ(i), i.e.,
all these elements belong to the same class. A vector ci is called unsafe if it is
not safe.

Lemma 4. In the algorithm SpectralReconstruct with probability at least
1 − 2e−c2n/8 at most

160n
√

n
k (p − q) − 2

vectors ci ∈ {0, 1}n are constructed that are unsafe if k < p−q
4

√
n.

Proof. Let x be the number of unsafe vectors ci that are computed within the
algorithm SpectralReconstruct from the projection matrix P̂ . If ci is an
unsafe vector then at least n

10k of the n
k largest entries in the i-th column of P̂

correspond to row indices j ∈ {1, . . . , n} such that the entries pij in P are zero,
i.e., these entries are not among the n

k largest entries in the i-th column of P .
That is, at least x n

10k of the large entries in P become small entries in P̂ , i.e.,
they do no longer belong to the n

k largest entries in their column. We denote the
number of such entries by y and can bound it by using the Frobenius norm of
the matrix P − P̂ . The Frobenius norm of a real n × n matrix B is defined as

|B|F =

√√√√ n∑
i,j=1

b2
ij .

The Frobenius norm and the L2 norm are related by |B|2F ≤ r|B|2, where r is
the rank of B. Thus in order to bound the Frobenius norm of P − P̂ we first
bound its L2 norm,

|P − P̂ | ≤ 2|A − Â|
δk(A) − 2|A − Â|

=
2|A − Â|

n
k (p − q) − 2|A − Â|

≤ 2
√

n
n
k (p − q) − 2

√
n

=
2

√
n

k (p − q) − 2
< 1,

where we use the theorem of Stewart in the first inequality, the definition of the
spectral gap in the first equality, the lemma of Füredi and Komlós in the second
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inequality and our assumption on k in the last inequality. Note, that the second
inequality only holds with probability at least 1 − 2e−c2n/8. From Lemma 2 it
follows that the k′ chosen in line 1 of the algorithm SpectralReconstruct is
exactly k with probability at least 1 − 2e−c2n/8. Hence the rank of P − P̂ is at
most 2k with probability at least 1 − 2e−c2n/8. That gives

|P − P̂ |2F ≤ 2k|P − P̂ |2 < 2k|P − P̂ | ≤ 4k
√

n
k (p − q) − 2

,

where the first inequality only holds with probability at least 1 − 2e−c2n/8.
In order for a large entry in P to become a small entry in P̂ this entry must

become at least as small in P̂ as some other entry in the same column which
is zero in P . The number of large/small pairs in a column of P that become
small/large pairs in P̂ can be maximized for a given bound on the Frobenius
norm |P − P̂ |2F if the large entry, which is k

n in P , and the small entry, which is
zero in P , both become k

2n in P̂ . By this argument the number y of such pairs
can be bounded from above by

(
k

2n
)2y ≤ 4k

√
n

k (p − q) − 2
, that is y ≤

16n2

k√
n

k (p − q) − 2
.

Putting everything together we get

x
n

10k
≤ y ≤

16n2

k√
n

k (p − q) − 2
, that is x ≤ 160n

√
n

k (p − q) − 2
.

This inequality holds with the same probability that the bound on the Frobenius
norm |P − P̂ |2F holds. The latter probability is at least 1 − 2e−c2n/8. �

Notation. To shorten our exposition we set in the following

α =
160

√
n

k (p − q) − 2
.

Lemma 5. With probability at least 1 − 2e−c2n/8 in at least (1 −
√

α)k classes
we have at least (1 −

√
α)n

k associated safe vectors if k < p−q
4

√
n.

Proof. The proof of the lemma is equivalent to showing that the complemen-
tary event that there are less than (1 −

√
α)k classes with at least (1 −

√
α)n

k

associated safe vectors occurs with probability at most 2e−c2n/8. In case of the
complementary event there are more than

√
αk classes, which contain more than√

αn
k unsafe vectors each. Thus we get in total more than

√
αk

√
αn

k = αn un-
safe vectors. By Lemma 4, however, this happens only with probability at most
2e−c2n/8. �
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Covered Vectors and Split Classes. A vector ci covers a vector cj and vice
versa if cT

i cj > 4n
5k . A class C = ϕ−1(l), l ∈ {1, . . . , k} is split by an unsafe vector

cj if there exists a safe vector ci with i ∈ C that is covered by cj . An unsafe
vector ch almost splits C if it does not split C, but there exists an unsafe vector
cj which splits C and covers ch.

Lemma 6. Every unsafe vector can split or almost split at most one class.

Proof. Let cj be an unsafe vector and let ci be a safe vector covered by cj ,
i.e., cT

i cj > 4n
5k . By the definition of safe vectors more than 9

10
n
k of the indices

corresponding to the one entries in ci are mapped by ϕ to ϕ(i). That is, at least(
4
5
− 1

10

)
n

k
=

7
10

n

k
>

n

2k

of the indices corresponding to the one entries of cj are mapped by ϕ to ϕ(i).
That shows there cannot be another safe vector ch with ϕ(i) �= ϕ(h) covered by
cj . Thus cj can split at most one class.

It remains to show that an unsafe vector can almost split at most one class.
Let cj be an unsafe vector and let ci be an unsafe vector that splits a class and
is covered by cj . That is, cT

i cj > 4n
5k and there exists a safe vector ch such that

at least 7
10

n
k of the indices corresponding to the one entries of ci are mapped by

ϕ to ϕ(h). That is, more than(
7
10

− 1
5

)
n

k
=

n

2k

of the indices corresponding to the one entries of cj are mapped by ϕ to ϕ(h).
That shows that cj can split or almost split at most one class. �

Lemma 7. With probability at least 1− 2e−c2n/8 at most
√

αk classes are split
or almost split by more than

√
αn

k unsafe vectors, provided k < p−q
4

√
n.

Proof. The proof of the lemma is equivalent to showing that the complementary
event that more than

√
αk classes are split or almost split by more than

√
αn

k

unsafe vectors occurs with probability at most 2e−c2n/8. If this is the case, since
by Lemma 6 every unsafe vector splits or almost splits at most one class, the
total number of unsafe vectors that split or almost split a class is more than

√
αk

√
α

n

k
= αn.

That is, the number of unsafe vectors is more than αn. But this happens ac-
cording to Lemma 4 only with probability at most 2e−c2n/8. �

Safe Class. A class ϕ−1(m),m ∈ {1, . . . , k} is called safe if it contains more
than (1−

√
α)n

k indices of safe vectors and if it is split or almost split by at most√
αn

k unsafe vectors.
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Lemma 8. For any safe class C = ϕ−1(m),m ∈ {1, . . . , k} the algorithm Spec-

tralReconstruct with probability at least 1−2e−c2n/8 outputs a class Cl that
contains at least

(
1 −

√
α −

√
2α
)

n
k indices in C corresponding to safe vectors,

provided k < p−q
8

√
n.

Proof. Let ci be vector which is used in line 14 of the algorithm SpectralRe-
construct to create a class Cl. A safe vector cj with j ∈ C can only be put
into the class Cl if either ci is another safe vector with i ∈ C or if ci is an unsafe
vector that splits C. We discuss the two cases now.

Assume ci is a safe vector with i ∈ C. Then all safe vectors ch with h ∈ C
will also be drawn into Cl since we have

cT
i ch >

(
1 − 2

1
10

)
n

k
=

4n

5k
.

That is, Cl will contain all safe vectors whose index is in C. It remains to show
that Cl will pass the test in line 18 of the algorithm. But this follows from our
definition of safe class and

1−
√

α = 1−
√

160
√

n
k (p − q) − 2

≥ 1−
√√√√ 160

√
n

k

(
λ̂2

k
n − k√

n

)
− 2

= 1−
√

160
√

n

λ̂2 − 3
√

n
,

where we used the lower bound on p − q from Lemma 3.
Now assume that ci is an unsafe vector that splits C. Then ci can draw some

of the safe vectors whose index is in C into Cl and it can draw some unsafe
vectors that either split or almost split C. Assume that Cl passes the test in
line 18. Since by the definition of a safe class it can draw at most

√
αn

k unsafe
vectors, it has to draw at least(

1 −
√

160
√

n

λ̂2 − 3
√

n

)
n

k
−
√

α
n

k

safe vectors with an index in C. Using that with probability at least 1−2e−c2n/8

it holds
n

k
(p − q) − p −

√
n ≤ λ̂2,

see Lemma 3, we find that with the same probability

1−
√

160
√

n

λ̂2 − 3
√

n
≥1−

√
160

√
n

k (p − q) − p√
n
− 4

≥1−
√√√√ 160

1
2

(√
n

k (p − q) − 2
)=1−

√
2α,

here we used
1
2

√
n

k
(p − q) ≥ p√

n
+ 3,
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which follows from k < p−q
8

√
n. Combining everything we get that Cl with

probability at least 1 − 2e−c2n/8 contains at least(
1 −

√
α −

√
2α
) n

k

indices in C corresponding to safe vectors. �

Theorem 3. With probability at least 1 − 2e−c2n/8 at most(
3
√

α +
√

2α
)

n

indices are misclassified by the algorithm SpectralReconstruct provided k <
p−q
8

√
n.

Proof. By combining Lemmas 5 and 7 we get with probability at least 1 −
2e−c2n/8 at least (

1 −
√

α −
√

α
)
k =

(
1 − 2

√
α
)
k

safe classes. From each safe class at least(
1 −

√
α −

√
2α
) n

k

indices of safe vectors are grouped together by the algorithm with probability
at least 1 − 2e−c2n/8, see Lemma 8. Thus in total with probability at least
1 − 2e−c2n/8 at least(

1 −
√

α −
√

2α
) n

k

(
1 − 2

√
α
)
k >

(
1 − 3

√
α −

√
2α
)

n

indices of safe vectors are grouped together correctly. Hence, by the definition
of the number of misclassifications via a maximum weight matching, with prob-
ability at least 1 − 2e−c2n/8 at most(

3
√

α +
√

2α
)

n

elements are misclassified. �

Discussion. Note that the theorem is non-trivial only if

k <
p − q

1762 + 960
√

2

√
n.

The theorem implies that if k = o(
√

n) then the relative number of misclassi-
fications goes to zero with high probability as n goes to infinity. That is the
first non-trivial result for k = ω(

√
n

log n ). But also in the case k = c
√

n for a

small constant c the theorem provides useful information. It basically says that
on average the percentage of elements per class that get misclassified by the
algorithm becomes arbitrarily small if c is small enough.



420 J. Giesen and D. Mitsche

6 Concluding Remarks

We presented and analyzed a spectral partitioning algorithm. The analysis pro-
vided non-trivial guarantees for a range of parameters where such guarantees
were not known before. As we have presented it, the algorithm and its analysis
are restricted to the case that all classes have exactly the same size. It is an
interesting question whether classes of different size can be handled in the same
way.
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Abstract. Partitive set families are families of sets that can be quite
large, but have a compact, recursive representation in the form of a
tree. This tree is a common generalization of PQ trees, the modular de-
composition of graphs, certain decompositions of boolean functions, and
decompositions that arise on a variety of other combinatorial structures.
We describe natural operators on partitive set families, give algebraic
identities for manipulating them, and describe efficient algorithms for
evaluating them. We use these results to obtain new time bounds for find-
ing the common intervals of a set of permutations, finding the modular
decomposition of an edge-colored graph (also known as a two-structure),
finding the PQ tree of a matrix when a consecutive-ones arrangement is
given, and finding the modular decomposition of a permutation graph
when its permutation realizer is given.

1 Introduction

A 0-1 matrix has the consecutive-ones property if there exists a permutation of
the set of columns such that the 1’s in each row occupy a consecutive block.
Such a permutation is called a consecutive-ones ordering.

In general, the number of consecutive-ones orderings need not be polyno-
mial; there may be |V |! of them. However, the PQ tree of a family that has the
consecutive-ones property gives a way to represent all of its consecutive-ones
orderings using O(|V |) space. The PQ tree is a rooted, ordered tree whose leaves
are the elements of V , and whose internal nodes are each labeled either P or Q.
The left-to-right leaf order gives a consecutive-ones ordering, and any new leaf
order that can be obtained by permuting arbitrarily the children of a P node or
reversing the order of children of a Q node is also a consecutive-ones ordering.
There are no other consecutive-ones orderings.

One of the most significant applications of PQ trees is in finding planar
embeddings of planar graphs. Booth and Lueker used PQ trees to develop an
algorithm for determining whether a family of sets has the consecutive-ones
property [2]. The algorithm runs in O(|V | + l(F)) time, where l(F) is the sum
of cardinalities of members of F , or length of F .

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 421–432, 2005.
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A set family F with the consecutive-ones property gives rise to an interval
graph, which has one vertex for each member of F , and an adjacency between
two vertices if and only if the corresponding members of F intersect. Booth and
Lueker’s result gave a linear-time algorithm for determining whether a given
graph is an interval graph, and, if so, finding such a set family F for it. This
problem played a key role during the 1950’s in establishing that DNA has a
linear topology [1], though linear-time algorithms were unavailable at that time.
Variations on this problem come up in the physical mapping of a genome, using
laboratory data that can be modeled with a graph [19,25].

a    b     c    d    e    f    g    h    i    j    k

a     b     c

d e

h i

kg j

f

1 1 1 1 1

1 1 1 1 1 1

1 1

1 1

1

1 1 1 1

1 1 1 1

1 1

Fig. 1. A consecutive-ones ordering of a matrix, and the corresponding PQ tree. The
zeros in the matrix are omitted. The ordering of the columns is a consecutive-ones
ordering because the 1’s in each row are consecutive. The left-to-right leaf order of
the PQ tree gives this ordering. Reversing the left-to-right order of children of a Q
node (rectangles) or permuting arbitrarily the left-to-right order of children of a P
node (points) induces a new leaf order, which is also a consecutive-ones ordering. For
instance, permuting the order of children of the left child of the root and reversing the
order of children of the right child gives (d, a, b, c, e, f, k, j, h, i, g) as a consecutive-ones
ordering. An ordering of columns of the matrix is a consecutive-ones ordering iff it is
the leaf order of the PQ tree induced by reversing the children of some set of Q nodes
and permuting the children of some set of P nodes.

A module of an undirected graph G = (V,E) is a set X of vertices such
that each vertex y ∈ V − X is either adjacent to all members of X or adjacent
to none of them. The number of modules can be exponential in the size of
G. However, there exists a compact O(|V |) representation of all the modules,
called the modular decomposition. The modular decomposition, first described
by Gallai [7], is a tree that has the members of V as its leaves, and where the
internal nodes are all labeled prime or degenerate. Details of the representation
are given below. The modular decomposition can be computed in O(|V | + |E|)
time [15].

A close relationship between the modular decomposition and a variety of
combinatorial problems on graphs have been described. Gallai [7] showed a
close relationship to the transitive orientation problem, which is the problem of
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orienting the edges of an undirected edge so that the resulting digraph is tran-
sitive (i.e. a poset relation). Using the modular decomposition, a transitive ori-
entation, if it exists, can be found in O(|V | + |E|) time [15]. This result has
led to linear time bounds for maximum clique and minimum coloring on transi-
tively orientable graphs (i.e. comparability graphs), and recognizing permutation
graphs and co-interval graphs. Surveys on applications can be found in [20,21,22].
The modular decomposition has a straightforward extension to directed graphs,
and linear time bounds have recently been given for finding it [17].

The modules of a graph are an example of a partitive set family [3,20]. All
partitive set families have a compact representation by means of a tree; the
modular decomposition is just an example of it when the set family is the modules
of a graph. The PQ tree is another example of this phenomenon. In [14], it is
shown that the PQ tree is this representation of a certain partitive family defined
by the 0-1 matrix, and, more generally that, like the modular decomposition,
the PQ tree is an example of a substitution decomposition [21], a combinatorial
abstraction that has partitive families as a central ingredient.

Other partitive families have played a role in linear time bounds for recog-
nizing circular-arc graphs [13,16], O(n + m log n) bounds for recognizing probe
interval graphs [18], and arise in decompositions of boolean expressions [21].

In this paper, we describe natural algebraic operators on decomposition trees
of partitive families, give identities for manipulating them, and develop algo-
rithms for evaluating them. We use these results to obtain new time bounds
for combinatorial problems that involve partitive families, such as finding the
common intervals of a set of permutations [24,10], finding the modular decom-
position of edge-colored graphs, or two-structures [6], finding the PQ tree of a
matrix when a consecutive-ones arrangement is given, and finding the modu-
lar decomposition of a permutation graph when its realizer in the form of a
permutation is given.

2 Preliminaries

Two sets X and Y overlap if they intersect, but neither is a subset of the other.
That is, they overlap if X − Y , Y − X, and X ∩ Y are all nonempty.

Let F is a family of subsets of a set V . Then let |F| denote the number of
sets in F ; this contrasts with l(F), which is the sum of cardinalities of the sets in
F . In general, it takes Ω(l(F)) space to represent F in the computer. However,
suppose that F satisfies the following: V ∈ F , {x} ∈ F for all x ∈ V , and no two
members of F overlap. In this case, it is easy to see that l(F) can be Ω(|V |2), but
F can be represented in O(|V |) space. The Hasse diagram of the subset relation
on members of F is a tree whose root is V and whose leaves are its one-element
subsets. Labeling only the leaves of this tree with the corresponding set gives a
representation of F . Given a node of the tree, the set X that it represents can
be returned in O(|X|) time by traversing its subtree and assembling the disjoint
union of its leaf descendants. This is as efficient as any representation of X, but
takes O(1) space to represent X.
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Let us call such a set family a tree-like family, and its tree representation its
inclusion tree. Partitive families are a generalization of tree-like families, called
partitive families, that may have a number of members that is exponential in
the size of V , yet still has an O(|V |) representation.

Definition 1. [7,3,21,6] A set family F on domain V is partitive iff it has the
following properties:

– V ∈ F , ∅ �∈ F , and for all v ∈ V , {v} ∈ F
– For all X,Y ∈ F , if X and Y overlap, then X ∩ Y ∈ F , X ∪ Y ∈ F ,

X − Y ∈ F , and Y − X ∈ F .

Let the strong members of a partitive family be those that overlap with no
other member of F , and let the weak members be the remaining members.

Theorem 1. [3,21] The strong members of a partitive family F are a tree-
like family where the Hasse diagram T of the subset relation has the following
properties:

1. Every weak member of F is a union of siblings in T ;
2. Each internal node X can be classified as one of the following types:

(a) Degenerate: Every union of more than one child is a member of F ;
(b) Prime: Other than X itself, no union of more than one child is a member

of F ;
(c) Linear: There exists a linear order on the children such that a union of

more than one child is a member of F if and only if the children are
consecutive in the linear order.

Conversely, a set family that has such a representative is partitive. Let us call
the tree representation of F given by the theorem the decomposition tree of F .

Example 1. A nonempty set X of vertices of a directed graph G = (V,E) is a
module iff it satisfies the following conditions for to every y ∈ V − X:

1. Either every element of X or no element of X is a neighbor of y;
2. y is either a neighbor of every element of X or of no element of X.

It is not hard to show that the modules of a graph satisfy the requirements of
Definition 1. It follows that the modules of a graph can be represented in O(|V |)
space with a tree [7,21].

It takes O(|V | + |E|) time to compute the modular decomposition of an
arbitrary directed graph [17]; linear time bounds for the special case of undirected
graphs were given in [15].

If F is a partitive set family, let T (F) denote its decomposition tree, and
if T is a partitive decomposition tree, let F(T ) denote the set family that it
represents. There is no way to distinguish whether a node with two children is
prime, degenerate or linear, but the classification is unique for nodes with three
or more children. Henceforth, we will consider a node to be classified as prime,
degenerate, or linear only if it has at least three children.
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{i}

{b}{a} {e,f,g}{d}{c}

{g}{e} {f}

{a,b}(P) {c,d,e,f,g,h}(P)

(D) {h}

{a,b,c,d,e,f,g,h,i}(L)
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i

ba

e

f

g

dc

Fig. 2. A graph and its modular decomposition tree. Each strong module of the graph
corresponds to a node of the tree, labeled linear (L), prime (P), or degenerate(D). The
other modules are unions of children of {e, f, g}, namely, {e, f}, {e, g}, and {f, g}, and
unions of consecutive children of {a, b, c, d, e, f, g, h, i}, namely, {a, b, c, d, e, f, g, h} and
{c, d, e, f, g, h, i}.

Definition 2. A partitive set family is symmetric if, whenever X and Y are
overlapping members of F , the symmetric difference XΔY = (X −Y )∪ (Y −X)
is a member of F . It is antisymmetric if XΔY is never a member when X and
Y are overlapping members.

It is not hard to see that if a graph is symmetric (undirected), its modules are
a symmetric partitive family, and that if it is antisymmetric, its modules are an
antisymmetric partitive family, unless it has modules that induce disconnected
subgraphs. In particular, the modules of a tournament are an antisymmetric par-
titive family. A partitive set family is symmetric if and only if its decomposition
tree has no linear nodes, and it is antisymmetric if and only if its decomposition
tree has no degenerate nodes.

If F is an arbitrary set family, let C(F) denote the partitive closure of F ,
namely, the smallest partitive family F ′ such that F ⊆ F ′. Let S(F) denote the
symmetric partitive closure of F , namely, the smallest symmetric partitive family
F ′′ such that F ⊆ F ′′. It is shown in [14] that each of these closures is unique.

If M is a zero-one matrix, then let V denote its columns, and let F(M)
denote the set family on V that has one set for each row of M , namely, the
one obtained by interpreting the row as the bit-vector representation of a set.
That is, the set represented by a row is the set of columns where the row has
a 1. Conversely, if F is a family of subsets of a domain V , we may obtain a
representation of F with M , such that F(M) = F . M has the consecutive-ones
property if and only if there exists an ordering of V such that every member of
F is consecutive, and, in this case, we may refer to the PQ tree of M as the the
PQ tree of F . The following gives a generalization of the PQ tree to arbitrary
set families or zero-one matrices:

Definition 3. [14] Let F be an arbitrary set family. Let the PQR tree of F be
the decomposition tree of C(F), where the prime nodes are labeled P, the linear
nodes are labeled Q, and the degenerate nodes are labeled R.
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Theorem 2. [14] F has the consecutive-ones property if and only if its PQR
tree has no R nodes, and, in this case, its PQR tree is its PQ tree.

Let F be an arbitrary set family on V , and N (F) denote the family of
nonempty subsets of V that don’t overlap with any member of F .

Theorem 3. [11] N (F) is a symmetric partitive set family, and if F has the
consecutive-ones property, its decomposition tree is the PQ tree, where the prime
nodes are interpreted as Q nodes and the degenerate nodes are interpreted as P
nodes.

The proof of the following is elementary:

Theorem 4. [17] If F1 and F2 are two partitive families, then so is F1 ∩ F2.
If they are both symmetric partitive families, then so is F1 ∩F2, and if they are
both antisymmetric partitive families, then so if F1 ∩ F2.

Definition 4. If T1 and T2 are partitive decomposition trees, then let T1 ∩T2 be
the decomposition tree of F(T1) ∩ F(T2), which exists by Theorem 4.

Theorem 5. [17] Given decomposition trees T1 and T2 of symmetric partitive
families, it takes time proportional to the sum of cardinalities of their nodes to
find T1 ∩ T2.

3 New Results

3.1 Intersection of Arbitrary Partitive Families

Theorem 5 applies only to symmetric partitive families. The case where they are
not symmetric is more difficult.

The additional difficulties posed by linear nodes are illustrated by the simple
case of two trees T1 and T2 that each have V = {1, 2, .., 8} as their only internal
node. If T1 and T2 are decomposition trees of symmetric partitive families, then
V is prime or degenerate in each. In T1∩T2, V is the only internal node, and it is
degenerate if it is degenerate in both trees and prime otherwise. The intersection
is trivial to compute in this case.

On the other hand, suppose V is linear in each of T1 and T2, and ({1}, {2}, ...,
{8}) is the order of its children in T1 and ({6}, {5}, {8}, {7}, {2}, {1}, {4}, {3})
is the order of children in T2. Then {1, 2}, {3, 4}, {5, 6}, {7, 8}, {1, 2, 3, 4}, and
{5, 6, 7, 8} are internal nodes. In general, two linear nodes in two partitive trees
can give rise to a complicated subtree in the intersection.

We improve the bound of Theorem 4 and generalize it to arbitrary partitive
families, not just symmetric ones:

Theorem 6. Given arbitrary partitive decomposition trees T1 and T2 on domain
V , it takes O(|V |) time to find T1 ∩ T2.
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Let the intervals of a permutation (v1, v2, ..., vn) be a nonempty set of the
form {vi, vi+1, ..., vj}. The common intervals of a set of permutations of the same
set are the intervals that are common to all of them.

If π is a linear ordering of V , then its intervals are an antisymmetric partitive
family: their decomposition tree T (π) is the tree with one internal linear node,
and leaf set V ordered in the order given by π. It follows that the common
intervals of a set {π1, π2, ..., πk} is a partitive set family whose decomposition
tree is given by T (π1) ∩ T (π2) ∩ ... ∩ T (πk).

Application 1. The following is immediate from this example and Theorem 6:

Theorem 7. It takes O(kn) time to find the common intervals of a set {π1, π2,
...πk} of permutations of a set V .

The previous time bound for this problem was O(nk + K), where K is the
number of common intervals [10]. (Note that K can be quadratic in n).

Application 2. The conceptual complexity of many linear-time algorithms for
computing the PQ tree is well-known. However, Theorem 6 gives a simple O(nm)
approach to finding the PQ tree of an n×m matrix. Let M be a 0-1 matrix with
m columns and n rows, let M1 be the submatrix given by the top �m/2� rows
and let M2 be the submatrix given by the remaining �m/2� rows. To find the
PQ tree of M , we may find the PQ trees T1 and T2 of M1 and M2 by recursion,
and then return T1 ∩ T2 as the PQ tree of M . The correctness follows from
Theorem 3.

Application 3. [12] If T is a PQ tree, let Π(T ) denote the set of permutations
represented by T . If T and T ′ are PQ trees on domain V , then let T % T ′ denote
that Π(T ) ⊆ Π(T ′). Given the PQ trees T1 and T2 of two set families on the
same domain V , let the the join of T1 and T2 be the minimal PQ tree T3 (with
respect to %) such that T1 % T3 and T2 % T3. The join of two PQ trees was
first described by Landau, Parida, and Weimann [12], who have used it in an
application to genomics, and who obtained an O(|V |3) algorithm to compute
it. When we communicated Theorem 7, they used it to improve the bound to
O(|V |).

A two-structure is a directed graph whose edges are colored. A module of a
two-structure is a module X of the underlying graph that satisfies the following
additional requirement: whenever y ∈ V − X, all edges from members of X to
y are the same color, and all edges from y to members of X are the same color.
The modules of a two-structure are a partitive family [6].

The following give a relationship between modular decomposition of two-
structures and problems in other areas that have not been observed before.

Example 2. A distance function d on a set V is an ultrametric if, for all x, y, z ∈
V , either d(x, y), d(y, z) and d(x, z) are all equal, or two are equal and the
third is smaller. Ultrametrics arise in many clustering applications, such as the
problem of inferring phylogenetic trees. An example is the distance metric in a
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graph with edge weights, where the height of a path is the maximum weight of
an edge on the path, and where the distance between two vertices is the height
of the minimum-height path between them. An ultrametric can be modeled as
a two-structure, where for x, y ∈ V , the “color” of edge xy is d(x, y). In this
case, the modular decomposition of the two structure is the tree returned by the
well-known UPGMA clustering algorithm [23].

Example 3. Given a string a1a2, ..., an, let us define a two-structure with vertices
{1, 2, ..., n}, and for vertices i and j, let the label (“color”) of edge ij be the
longest common prefix of aiai+1...an and ajaj+1...an. It is not hard to show that
the modular decomposition of this two-structure is the well-known suffix tree
of the string, which is used in efficient solutions to a variety of combinatorial
problems on strings [4,9].

Though these last two examples yield an interesting structural relationship,
they do not yield more efficient algorithms. However, in [17], we give a linear-time
algorithm for finding the modular decomposition of a symmetric (undirected)
two-structure. This is a key step in the linear time bounds we show there for
finding the modular decomposition of a directed graph.

Because of the added difficulties posed by linear nodes in the decomposition,
the best bound until now for finding the modular decomposition of arbitrary
two-structures has been O(|V |2) [5]. However, given Theorem 6, we can now
improve this quite easily:

Proposition 1. It takes O(k|V | + |E|) time to find the modular decomposition
of a two-structure that has vertex set V , edge set E, and k edge colors.

Proof. Let Gi denote the graph on V given by edges of color i. Find the modular
decomposition Ti of each Gi for each i from 1 to k using the linear-time modular
decomposition algorithm for directed graphs given in [17]. Since the edge sets
are disjoint, this takes a total of O(k|V |+ |E|) time. The modular decomposition
of the two-structure is given by T1 ∩ T2 ∩ ... ∩ Tk−1, which takes O(k|V |) time
to find, by Theorem 6.

By an only slightly more involved proof, we can get a linear time bound, as
follows. Let the essential subtree of a partitive decomposition tree T be the tree
T ′ obtained by deleting leaf children of the root if the root is degenerate, and
let its size be the number of leaves in the tree.

Lemma 1. Let T1, T2, ..., Tk be partitive trees on domain V , and let T ′
1, T

′
2, ..., T

′
k

be their essential subtrees. It takes time proportional to the sum of sizes of
T ′

1, T
′
2, ..., T

′
k to find T1 ∩ T2 ∩ ... ∩ Tk.

Theorem 8. It takes O(|V | + |E|) time to find the modular decomposition of
an arbitrary two-structure.

Proof. Let G1, G2, ..., Gk be as in the proof of Proposition 1. It is easy to see that
the essential subtree of the modular decomposition of Gi can be obtained from
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the modular decomposition of the subgraph induced by non-isolated vertices,
which has O(|Ei|) vertices. Therefore, given Ei, the modular decomposition of
Gi can be found in O(|Ei|) time using the linear-time modular decomposition
algorithm of [17]. Using this observation, and replacing Theorem 7 with Lemma 1
in the proof of Proposition 1, yields the linear time bound.

3.2 New Algebraic Operators on Symmetric Partitive Families

By Theorem 3, N (F) has a decomposition tree even when F does not have the
consecutive-ones property. Therefore, N (F) is defined even when F is itself a
symmetric partitive family.

Theorem 9. If F is a symmetric partitive family, then T (N (F)) is obtained
from T (F) be relabeling each degenerate node as prime and each prime node as
degenerate.

Definition 5. If T is the decomposition tree of a symmetric partitive family, let
its complement T denote T (N (F(T ))). That is, T is the result of exchanging
the roles of prime and degenerate nodes.

Theorem 10. If F is an arbitrary set family, then T (S(F)) = T (N (F)).

Definition 6. Let F1 and F2 be symmetric partitive families on V , and let
T1 and T2 be their decomposition trees. The union F1 ∪ F2 is not necessarily
partitive, so let T1 ∪ T2 denote the smallest symmetric partitive family that has
F1 ∪ F2 as a subfamily, that is, let T1 ∪ T2 = T (S(F1 ∪ F2)).

These definitions of intersection and union therefore define a lattice on the
set of all symmetric partitive trees on domain V . The minimal element of the
lattice is the tree with V as its only internal node, with V labeled as prime, and
the maximal element is this same tree, but with V labeled degenerate.

The following shows that the definitions satisfy familiar properties expected
of these operators; the proof will appear in the journal version.

Theorem 11. Let T1 and T2 be decomposition trees of symmetric partitive fam-
ilies. Then: T1 = T1, T1 ∩ T2 = T1 ∪ T2, and T1 ∪ T2 = T1 ∩ T2

Corollary 1. It takes O(|V |) time to find the union of two symmetric partitive
trees.

Clearly, the intersection operator is commutative and associative, as is the
union operator. However, together, they are not distributive. That is, it is not
true in general that T1 ∩ (T2 ∪ T3) = (T1 ∩ T2) ∪ (T1 ∩ T3), as the following
example illustrates. Let V = {1, 2, 3}, let T1, T2, T3 be decomposition trees on
V where {1, 2} is the only non-root internal node of T1, {1, 3} is the only non-
root internal node of T2, and {2, 3} is the only non-root internal node of T3.
Then T2 ∪ T3 is the maximal element of the lattice, hence T1 ∩ (T2 ∪ T3) = T1.
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However, T1 ∩ T2 = T1 ∩ T3 is the minimal element of the lattice, hence so is
(T1 ∩ T2) ∪ (T1 ∩ T3).

Let a symmetric decomposition tree on domain V be elementary if it has at
most one non-root internal node.

Theorem 12. If T is the decomposition tree of a symmetric partitive family on
domain V and T has k ≥ 1 non-root internal nodes, then T can be written as
T = T1 op1 T2 op2 , ..., opk−1Tk, where each opi is either ∪ or ∩, the operators
are evaluated left-to-right, and each Ti is elementary.

The proof is by induction on the number of non-root internal nodes. Theo-
rem 12 is a key element in our time bound for intersecting partitive trees.

Modules and the quotients they induce in a graph are examples of a substi-
tution decomposition on the domain of graphs [21]. We can define a substitu-
tion decomposition on the domain of decomposition trees of symmetric partitive
families where where the roots carry a bit that it as strong or weak. Let an
autonomous set denote a node of T or a union of siblings in T . Note: It is not
necessary for the parent of C to be degenerate. If X is autonomous, then if it
is a node of T , the factor T [X] is the subtree rooted at X, and if it is a union
of a set C of siblings, the factor T [X] is the tree where X is the root, and its
subtrees are the subtrees of T rooted at members of C; in this case, if X has at
least three children, then it has the same prime/degenerate label as the parent
of C. Let the quotient T/X denote the operation of nodes that are subsets of X
and replacing them with a single leaf. The quotient is strong if X is a node of
T , and weak if it is a union of siblings that is not a node of T .

Clearly, these operations are invertible: T can be uniquely reconstructed from
a quotient T/W and factor T [W ] if the leaf w of T/W that corresponds to W
is indicated, and a bit at the root of T [W ] identifies whether the quotient was
strong or weak.

Several algebraic properties have been described previously for substitution
decompositions, but the introduction of union and intersection operators on
partitive trees yields the following new identities, which we use in obtaining the
new time bounds in this paper:

Theorem 13. If Ta and Tb are decomposition trees of symmetric partitive fam-
ilies on domain V and A is autonomous in both Ta and Tb, then:

- (Ta ∩ Tb)/A = Ta/A ∩ Tb/A - (Ta ∩ Tb)[A] = Ta[A] ∩ Tb[A]
- (Ta ∪ Tb)/A = Ta/A ∪ Tb/A - (Ta ∪ Tb)[A] = Ta[A] ∪ Tb[A]

If X and Y are disjoint autonomous sets, (T/X)/Y = (T/Y )/X. There-
fore, we can write this as T/{X,Y }, and, more generally, if {A1, A2, ..., Ak} are
disjoint autonomous sets, the quotient T/{A1, A2, ..., Ak} is uniquely defined.

3.3 Algorithmic Uses of Compact Representations

Any algorithm can be made to run in time linear in the size of its input simply by
selecting a suitably space-inefficient representation for the input. For instance,
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many algorithms for NP-complete problems can be made to run in “linear” time
by choosing a unary representation for integer inputs. Linearity of an algorithm
does not imply an optimal time bound unless the representation of the input is
also asymptotically optimal.

When Booth and Lueker’s algorithm [2] for finding the PQ tree is applied
to a set family that is not known to have the consecutive-ones property, the
algorithm either returns the PQ tree, or else rejects the family as not having
the consecutive-ones property. The running time of O(|V |+ l(F)) is an optimum
time bound, since it uses a space-efficient representation of arbitrary set families.

However, when it is applied to a set family that is already known to have
the consecutive-ones property, the proof of optimality of the time bound is no
longer valid because it assumes an input of size Θ(|V |+ l(F)). Families with the
consecutive-ones property have a representation that is more compact than the
standard listing of elements of each member of the family. A consecutive-ones
family F can be represented in O(|V | + |F|) space by giving a consecutive-ones
ordering, and representing each member X of F in O(1) space by giving the first
and last member of the interval occupied by X in this ordering.

Theorem 14. It takes O(|V | + |F|) time to find the PQ tree of a consecutive-
ones family F , given a consecutive-ones ordering and, for each X ∈ F , the first
and last element of X in the ordering.

It is worth noting that Theorem 14 is the key starting point in the proofs of
all of the remaining results of this paper. It also implies that, given the interval
representation of an interval graph, the graph’s PQ tree can be obtained in
O(|V |) time if the endpoints of the intervals are integers from 1 to O(1), and in
O(|V | log |V |) time if they are given as real numbers.

A similar type of result can be obtained for modular decomposition of per-
mutation graphs. A permutation graph is obtained from two permutations of V ,
by letting the members of V be the vertices and letting two vertices x and y be
adjacent if x is before y in one of the permutations and after it in the other [8].
Recognizing permutations and deriving their modular decomposition takes linear
time [15]. However, it turns out that this bound for finding the modular decom-
position is not optimal if the input graph is known to be a permutation graph:

Theorem 15. Given an O(|V |) representation of a permutation graph using
two permutations of V , it takes O(|V |) time to find its modular decomposition.
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Abstract. We study some counting and enumeration problems for chordal
graphs, especially concerning independent sets. We first provide the following
efficient algorithms for a chordal graph: (1) a linear-time algorithm for counting
the number of independent sets; (2) a linear-time algorithm for counting the
number of maximum independent sets; (3) a polynomial-time algorithm for
counting the number of independent sets of a fixed size. With similar ideas, we
show that enumeration (namely, listing) of the independent sets, the maximum
independent sets, and the independent sets of a fixed size in a chordal graph
can be done in constant amortized time per output. On the other hand, we prove
that the following problems for a chordal graph are #P-complete: (1) counting
the number of maximal independent sets; (2) counting the number of minimum
maximal independent sets. With similar ideas, we also show that finding a
minimum weighted maximal independent set in a chordal graph is NP-hard, and
even hard to approximate.

Keywords: Chordal graph, counting, enumeration, independent set, NP-
completeness, #P-completeness, polynomial time algorithm.

1 Introduction

How can we cope with computationally hard graph problems? There are several pos-
sible answers, and one of them is to utilize the special graph structures arising from a
particular context. This has been motivating the study of special graph classes in algo-
rithmic graph theory [3,12]. This paper deals with counting and enumeration problems
from this perspective. Recently, counting and enumeration of some specified sets in a
graph have been widely investigated, e.g., in the data mining area. In general, however,
from the graph-theoretic point of view, those problems are hard even if input graphs
are quite restricted. For example, counting the number of independent sets in a planar
bipartite graph of maximum degree 4 is #P-complete [17]. Therefore, we wonder what
kind of graph structures makes counting and enumeration problems tractable.
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Table 1. Summary of the results. We denote the number of vertices and edges by n and m respec-
tively. The running times for enumeration algorithms refer to amortized time per output.

Chordal graphs Counting [ref.] Enumeration [ref.]
independent sets O(n + m) [this paper] O(1) [this paper]
maximum independent sets O(n + m) [this paper] O(1) [this paper]
independent sets of size k O(k2(n + m)) [this paper] O(1) [this paper]
maximal independent sets #P-complete [this paper] O(n + m) [7,14]
minimum maximal independent sets #P-complete [this paper]

In this paper, we consider chordal graphs. A chordal graph is a graph in which every
cycle of length at least four has a chord. From the practical point of view, chordal graphs
have numerous applications in, for example, sparse matrix computation (e.g., see Blair
& Peyton [2]), relational databases [1], and computational biology [4]. Chordal graphs
have been widely investigated, and they are sometimes called triangulated graphs, or
rigid circuit graphs (see, e.g., Golumbic’s book [12–Epilogue 2004]). A chordal graph
has various characterizations; for example, a chordal graph is an intersection graph of
subtrees of a tree, and a graph is chordal if and only if it admits a special vertex ordering,
called perfect elimination ordering [3]. Also, the class of chordal graphs forms a wide
subclass of perfect graphs [12].

It is known that many graph optimization problems can be solved in polynomial
time for chordal graphs; to list a few of them, the maximum weighted clique problem,
the maximum weighted independent set problem, the minimum coloring problem [11],
the minimum maximal independent set problem [8]. There are also parallel algorithms
to solve some of these problems efficiently [13]. However, relatively fewer problems
have been studied for enumeration and counting in chordal graphs; the only algorithms
we are aware of are the enumeration algorithms for all maximal cliques [10], all max-
imal independent sets [7,14], all minimum separators and minimal separators [5], and
all perfect elimination orderings [6].

In this paper, we investigate the problems concerning the number of independent
sets in a chordal graph. Table 1 lists the results of the paper. We first give the following
efficient algorithms for a chordal graph; (1) a linear-time algorithm to count the number
of independent sets, (2) a linear-time algorithm to count the number of maximum inde-
pendent sets, and (3) a polynomial-time algorithm to count the number of independent
sets of a given size. The running time of the third algorithm is linear when the size is
constant. Note that in general counting the number of independent sets and the number
of maximum independent sets in a graph is #P-complete [15], and counting the num-
ber of independent sets of size k in a graph is #W[1]-complete [9] (namely, intractable
in a parameterized sense). Let us also note that the time complexity here refers to the
arithmetic operations, not to the bit operations.

The basic idea of these efficient algorithms is to invoke a clique tree associated with
a chordal graph and perform a bottom-up computation via dynamic programming on
the clique tree. A clique tree is based on the characterization of a chordal graph as an
intersection graph of subtrees of a tree. Since a clique tree can be constructed in linear
time and the structure of clique tree is simple, this approach leads to simple and efficient
algorithms for the problems above. However, a careful analysis is necessary to obtain
the linear-time complexity.
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Along the same idea, we can also enumerate all independent sets, all maximum
independent sets, and all independent sets of constant size in a chordal graph in O(1)
amortized time per output.

On the other hand, we show that the following counting problems are #P-complete:
(1) counting the number of maximal independent sets in a chordal graph, and (2) count-
ing the number of minimum maximal independent sets in a chordal graph. Using a
modified reduction, we furthermore show that the problem to find a minimum weighted
maximal independent set is NP-hard. We also show that the problem is even hard to
approximate. More precisely speaking, there is no randomized polynomial-time ap-
proximation algorithm to find such a set within a factor of c ln |V |, for some constant
c, unless NP ⊆ ZTIME(nO(log log n)). This is in contrast with a linear-time algorithm
by Farber that finds a minimum weighted maximal independent set in a chordal graph
when the weights are 0 or 1 [8].

Due to space limitation, some proofs are omitted.

2 Preliminaries

In this article, we assume that the reader has a moderate familiarity with graph theory.
This section aims at fixing the notation and introducing a chordal graph and concepts
around that. Let G = (V, E) be a graph, which we always assume to be simple and finite,
and also we assume that graphs are connected without loss of generality. The neighbor-
hood of a vertex v in a graph G = (V, E) is the set NG(v) = {u ∈ V | {u, v} ∈ E}. For a
vertex subset U of V , we denote by NG(U) the set {v ∈ V | v ∈ N(u) for some u ∈ U}. If
no confusion can arise we will omit the subscript G. We denote the closed neighborhood
N(v)∪{v} by N[v]. A vertex set I is an independent set of G if any pair of vertices in I is
not an edge of G, and a vertex set C is a clique if every pair of vertices in C is an edge of
G. An independent set is maximum if it has the largest size among all independent sets.
An independent set is maximal if none of its proper supersets is an independent set. An
independent set is minimum maximal if it is maximal and has the smallest size among
all maximal independent sets. A maximum clique, a maximal clique and a minimum
maximal clique are defined analogously. An edge which joins two vertices of a cycle
but is not itself an edge of the cycle is a chord of the cycle. A graph is chordal if each
cycle of length at least 4 has a chord.

To a chordal graph G = (V, E), we associate a tree T , called a clique tree of G,
satisfying the following two properties. (A) The nodes of T are the maximal cliques of
G. (B) For every vertex v of G, the subgraph Tv of T induced by the maximal cliques
containing v is a tree. (In the literature, the condition (A) is sometimes weakened as
each node is a vertex subset of G.) It is well known that a graph is chordal if and only
if it has a clique tree, and in such a case a clique tree can be constructed in linear time.
Some details are explained in books [3,16].

3 Linear-Time Algorithm to Count the Independent Sets

In this section, we describe an algorithm for counting the number of independent sets
in a chordal graph. The basic idea of our algorithm is to divide the input graph into
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subgraphs induced by subtrees of the clique tree. Any two of these subtrees share a
vertex of a clique if they are disjoint in the clique tree. This property is very powerful
for counting the number of independent sets since any independent set can include at
most one vertex of a clique. We compute the number of independent sets including each
vertex of the clique, or no vertex of the clique by using the recursions.

First, we introduce some notations and state some lemmas. Given a chordal graph
G = (V, E), we construct a clique tree T of G. We now pick up any node in the clique
tree T , regard the node as the root of T , and denote it by Kr. This is what we call a
rooted clique tree. For a maximal clique K in a chordal graph G and a rooted clique
tree T of G, a maximal clique K′ in G is a descendant of K (with respect to T ) if K′
is a descendant of K in T . For convenience, we consider K itself a descendant of K as
well, and when no confusion arises we omit saying “with respect to T .” Let PRT(K) be
the parent of K in T . For convenience, we define PRT(Kr) by ∅. We denote by T (K)
the subtree of T rooted at the node corresponding to the maximal clique K. Let G(K)
denote the subgraph of G induced by the vertices included in at least one node in T (K).
Observe that G(K) is a chordal graph of which T (K) is a clique tree.

For a graph G, let IS(G) be the family of independent sets in G. For a vertex v, let
IS(G, v) be the family of independent sets in G including v, i.e., IS(G, v) := {S | S ∈
IS(G), v ∈ S }. For a vertex set U, let IS(G,U) be the family of independent sets in G
including no vertex of U, i.e., IS(G,U) := {S | S ∈ IS(G), S ∩U = ∅}.
Lemma 1. Let G be a chordal graph and T be a rooted clique tree of G. Choose a
maximal clique K of G, and let K1, . . . ,K� be the children of K in T . (If K is a leaf
of the clique tree, we set � := 0.) Furthermore let v ∈ K and S ⊆ V(G(K)). Then,
S ∈ IS(G(K), v) if and only if S is represented by the union of {v} and S 1, . . . , S �
such that S i ∈ IS(G(Ki), v) if v belongs to Ki, and S i ∈ IS(G(Ki),K ∩ Ki) otherwise.
Furthermore, such a representation is unique.

By a close inspection of the proof, we can observe that for every i, j ∈ {1, . . . , �},
i � j, it holds that V(G(Ki))\K is disjoint from V(G(Kj))\K. This property gives a nice
decomposition of the problem into several independent parts, and enables us to perform
the dynamic programming on a clique tree.

By similar discussion, we obtain the following lemma.

Lemma 2. Let G be a chordal graph and T be a rooted clique tree of G. Choose a
maximal clique K of G, and let K1, . . . ,K� be the children of K in T . (If K is a leaf of
the clique tree, we set � := 0.)

1. We have S ∈ IS(G(K),K) if and only if S is the union of S 1, . . . , S l such that
S i ∈ IS(G(Ki),K ∩ Ki). Furthermore, such a representation is unique.
2. For each i ∈ {1, . . . , �}, we have S i ∈ IS(G(Ki),K ∩ Ki) if and only if S i belongs
either to IS(G(Ki), v) for some v ∈ Ki \K or to IS(G(Ki),Ki). Furthermore, S i belongs
to exactly one of them.

From these lemmas, we have the following recursive equations for IS.

Equations 1. Let G be a chordal graph and T be a rooted clique tree of G. For a
maximal clique K of G which is not a leaf of the clique tree, let K1, . . . ,K� be the
children of K in T . Furthermore, let v ∈ K. Then, the following identities hold. (We
remind that ∪̇ means “disjoint union.”)
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Algorithm 1: #IndSets
Input : A chordal graph G = (V, E);
Output: The number of independent sets in G;
construct a rooted clique tree T of G with root Kr;1

call #IndSetsIter(Kr);2

return
∣∣∣∣IS(G,Kr)

∣∣∣∣ +∑v∈Kr |IS(G(Kr), v)|.3

Procedure #IndSetsIter(K)
Input : A maximal clique K of the chordal graph G;
if K is a leaf of T then4

set
∣∣∣∣IS(G(K),K)

∣∣∣∣ := 0 and |IS(K, v)| := 1 for each v ∈ K;5

else6

foreach child K′ of K do call #IndSetsIter(K′);7

foreach child K′ of K do compute
∣∣∣∣IS(G(K′),K ∩ K′)

∣∣∣∣ by8 ∣∣∣∣IS(G(K′),K′)
∣∣∣∣ +∑u∈K′\K |IS(G(K′), u)| ;

compute
∣∣∣∣IS(G(K),K)

∣∣∣∣ by
∏

K′∈CHD(K)

∣∣∣∣IS(G(K′),K ∩ K′)
∣∣∣∣;9

foreach v ∈ K do compute |IS(G(K), v)| by10 ∏
K′∈CHD(K),v∈K′ |IS(G(K′), v)| ×∏K′∈CHD(K),v�K′

∣∣∣∣IS(G(K′),K ∩ K′)
∣∣∣∣ .

Fig. 1. Algorithm to count the number of independent sets in a chordal graph

IS(G(K)) = IS(G(K),K) ∪̇
⋃̇
v∈K
IS(G(K), v);

IS(G(K), v) = {S ∪ {v} | S =
�⋃

i=1

S i, S i ∈
{IS(G(Ki), v) if v ∈ Ki

IS(G(Ki),K ∩ Ki) otherwise

}
};

IS(G(K),K) = {S | S =
�⋃

i=1

S i, S i ∈ IS(G(Ki),K ∩ Ki)};

IS(G(Ki),K ∩ Ki) = IS(G(Ki),Ki) ∪̇
⋃̇

u∈Ki\K
IS(G(Ki), u) for each i ∈ {1, . . . , �}.

These equations lead us to the algorithm in Fig. 1 to count the number of independent
sets in a chordal graph. For a maximal clique K of a chordal graph G, we denote the set
of children of K in a rooted clique tree of G by CHD(K).

Theorem 1. The algorithm #IndSets outputs the number of independent sets in a
chordal graph G = (V, E) in O(|V | + |E|) time.

4 Linear-Time Algorithm to Count the Maximum Independent
Sets

In this section, we modify Algorithm #IndSets to count the number of maximum
independent sets in a chordal graph. For a set family S, we denote by max(S) the
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cardinality of a largest set in S, and argmax(S) denotes the family of largest sets in
S. For a graph G, let MIS(G) be the family of maximum independent sets in G.
For a vertex v, let MIS(G, v) be the family of maximum independent sets in G in-
cluding v, i.e., MIS(G, v) := {S ∈ MIS(G) | v ∈ S }. For a vertex set U, let
MIS(G,U) be the family of maximum independent sets in G including no vertex of
U, i.e.,MIS(G,U) := {S ∈ MIS(G) | S ∩ U = ∅}.

From lemmas stated in the previous section and Equations 1, we immediately have
the following equations.

Equations 2. With the same set-up as Equations 1, the following identities hold.

MIS(G(K)) = argmax(MIS(G(K),K) ∪̇
⋃̇
v∈K
MIS(G(K), v));

MIS(G(K), v) = argmax({S | S =
�⋃

i=1

S i, S i ∈
{MIS(G(Ki), v) if v ∈ Ki

MIS(G(Ki),K ∩ Ki) otherwise

}
});

MIS(G(K),K) = argmax({S | S =
�⋃

i=1

S i, S i ∈ MIS(G(Ki),K ∩ Ki)});

MIS(G(Ki),K ∩ Ki) = argmax(MIS(G(Ki),Ki) ∪̇
⋃̇

u∈Ki\K
MIS(G(Ki), u)).

Since the sets of each family on the left hand side have the same size in each equation,
the cardinality of the set can be computed in the same order as Algorithm #IndSets.
For example,MIS(G(K)) can be computed as follows.

1. Set N := 0 and M := max(MIS(G(K),K) ∪⋃v∈KMIS(G(K), v));
2. if the size of a member of MIS(G(K),K) is equal to M, then N := N +∣∣∣∣MIS(G(K),K)

∣∣∣∣;
3. for each v ∈ K, if the size of a member of MIS(G(K), v)) is equal to M, then

N := N + |MIS(G(K), v))|;
4. output N.

In this way we have the following theorem.

Theorem 2. The number of maximum independent sets in a chordal graph G = (V, E)
can be computed in O(|V | + |E|) time.

5 Efficient Algorithm to Count the Independent Sets of Size k

In this section, we modify Algorithm #IndSets to count the number of independent
sets of size k. For a graph G and a number k, let IS(G; k) be the family of independent
sets in G of size k. For a vertex v, let IS(G, v; k) be the family of independent sets in G
of size k including v, i.e., IS(G, v; k) := {S ∈ IS(G; k) | v ∈ S }. For a vertex set U, let
IS(G,U; k) be the family of independent sets in G of size k including no vertex of U,
i.e., IS(G,U; k) = {S ∈ IS(G; k) | S ∩U = ∅}.

From lemmas stated in Section 3 and Equations 1, we immediately obtain the fol-
lowing equations.
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Equations 3.

IS(G(K); k) = IS(G(K),K; k) ∪̇
⋃̇
v∈K
IS(G(K), v; k);

IS(G(K), v; k) = {S | S =
�⋃

i=1

S i, |S | = k, S i ∈
{IS(G(Ki), v) if v ∈ Ki

IS(G(Ki),K ∩ Ki) otherwise

}
};

IS(G(K),K; k) = {S | S =
�⋃

i=1

S i, |S | = k, S i ∈ IS(G(Ki),K ∩ Ki)};

IS(G(Ki),K ∩ Ki; k) = IS(G(Ki),Ki; k) ∪̇
⋃̇

u∈Ki\K
IS(G(Ki), u; k).

In contrast to Equations 1, the second and third equations of Equations 3 do not give

a straightforward way to compute |IS(G(K), v; k)| and
∣∣∣∣IS(G(K),K; k)

∣∣∣∣, respectively,
since we have to count the number of combinations of S 1, . . . , S � which generate an
independent set of size k. To compute them, we use a more detailed algorithm.

Here we only explain a method to compute |IS(G(K), v; k)| since
∣∣∣∣IS(G(K),K; k)

∣∣∣∣
can be computed in a similar way. Fix an arbitrary vertex v ∈ K. Then, according to v,
we give indices to the children of K such that K1, . . . ,Kp include v and Kp+1, . . . ,K� do
not. For k′ ≤ k and �′ ≤ p, let NUM(�′; k′) := {S | S = ⋃�′i=1 S i, S i ∈ IS(Ki, v), |S | = k′}.
For k′ ≤ k and �′ ≥ p+1, let NUM(�′; k′) := {S | S = ⋃�i=�′ S i, S i ∈ IS(Ki,Ki\K), |S | =
k′}. Then, it holds that |IS(G(K), v; k)| = ∑k

h=0(|NUM(p; h)| × ∣∣∣NUM(p + 1; k − h)
∣∣∣).

For each �′ and k′, |NUM(�′; k′)| can be computed in O(k × p) time based on the
following recursive equation:

∣∣∣NUM(�′; k′)
∣∣∣ =
{∑k′

h=0 |NUM(�′ − 1; h)| × |IS(G(K�′ ), v; k′ − h)| if �′ > 1,
|IS(G(K1), v; k′)| otherwise.

Similarly,
∣∣∣NUM(�′; k′)

∣∣∣ can be computed in O(k′) time. The computation of

|NUM(�′; k′)| and
∣∣∣NUM(�′; k′)

∣∣∣ for all combinations of �′ and k′ can be done in
O(k2|CHD(K)|) time, thus we can count the number of independent sets of size k in
a chordal graph in O(k2|V |2) time. In the following, we reduce the computation time by
the same technique used in the previous sections.

Observe that
∣∣∣∣IS(G(K),K; k′)

∣∣∣∣ = ∑k′
h=0

∣∣∣NUM(p; h)
∣∣∣ × ∣∣∣NUM(p + 1; k′ − h)

∣∣∣, which

gives
∣∣∣NUM(p + 1; k′)

∣∣∣ × ∣∣∣NUM(p; 0)
∣∣∣ = ∣∣∣∣IS(G(K),K; k′)

∣∣∣∣ − ∑k′
h=1

∣∣∣NUM(p; h)
∣∣∣ ×∣∣∣NUM(p + 1; k′ − h)

∣∣∣. This implies that we can compute
∣∣∣NUM(k′; p + 1)

∣∣∣ from∣∣∣∣IS(G(K),K; h)
∣∣∣∣ and

∣∣∣NUM(p; h)
∣∣∣ in the increasing order of k′. The computation time

for this task is O(k × p).
In summary, we can compute |IS(G(K), v; k′)| for all v ∈ K and k′ ∈ {0, . . . , k}

in O(k2∑
v∈K |{K′ ∈ CHD(K) | v ∈ K′}|) time. Therefore, the total computation time over

all iterations can be bounded in the same way as the above section, and we obtain the
following theorem.

Theorem 3. 1. The number of independent sets of size k in a chordal graph G =
(V, E) can be computed in O(k2(|V | + |E|)) time.
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2. The numbers of independent sets of all sizes from 0 to |V | in a chordal graph G =
(V, E) can be simultaneously computed in O(|V |2(|V | + |E|)) time.

6 Enumeration

Equations 1 in Section 3 directly give the following algorithm for enumerating the in-
dependent sets of a given chordal graph, in which each procedure corresponds to an
equation of Equations 1.

Algorithm 3: EnumIS(G)
Input : a chordal graph G = (V, E);
Output: all independent sets in G;
construct a clique tree T of G with root K;1

foreach u ∈ K do enumerate all independent sets in IS(G, u) by EnumIS2(K, u);2

enumerate all independent sets in IS(G,K) by EnumIS3(K).3

Procedure EnumIS2(K, u)
Input : A maximal clique K of G, a vertex u ∈ K;
if K has no child then4

output {u}; //output an independent set if the bottom level is reached5

else6

foreach child Ki of K such that u ∈ Ki do enumerate all independent sets in7

IS(G(Ki), u) by EnumIS2(Ki, u);
foreach child Ki of K such that u � Ki do enumerate all independent sets in8

IS(G(Ki),K ∩ Ki) by EnumIS4(Ki);
output all independent sets in IS(G(K), u) by combining the independent sets in9

IS(G(Ki), u) and in IS(G(Kj),K ∩ Kj) for all i, j;

Procedure EnumIS3(K)
Input : A maximal clique K of G;
if K has no child then10

output ∅; //output an independent set if the bottom level is reached11

else12

foreach child Ki of K do enumerate all independent sets in IS(G(Ki),K ∩ Ki) by13

EnumIS4(Ki);
output all independent sets in IS(G(K),K) by combining the independent sets in14

IS(G(Ki),K ∩ Ki);

Procedure EnumIS4(K)
Input : A maximal clique K of G;
call EnumIS3(K);15

foreach u ∈ K \ PRT(K) do enumerate all independent sets in IS(G(K), u) by16

EnumIS2(G(K), u);
output all independent sets in IS(G(K),K ∩ PRT(K)) by combining the independent sets17

in IS(G(K), u);
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From the lemmas and theorems in the previous sections, EnumIS(G) surely enu-
merates all independent sets in G. However, we cannot bound its time complexity by
constant for each output. In the following, we present a slight modification to obtain a
constant-time enumeration algorithm.

Let us consider the computation tree of this algorithm. A computation tree is a
rooted-tree representation of a recursive structure, in which the vertices are recursive
calls, and the edges connect two vertices if and only if one vertex recursively calls the
other. We define an iteration of the algorithm by the operations done in a vertex of the
computation tree. In other words, an iteration is the computation in some procedure P
recursively called by another procedure, in which the computation in the recursive calls
generated by P is excluded.

We first reduce the number of iterations by the following two modifications. (1)
If an iteration I generated by an iteration Ip recursively calls just one iteration Ic, we
modify the algorithm so that Ip recursively calls Ic directly. (2) If an iteration I outputs
just one independent set, merge I and the iteration which recursively calls I into one.

For a given chordal graph G = (V, E) and a rooted clique tree of G, the number of
possible inputs for each procedure is at most O(|E|), as in our counting algorithms. Thus,
we can enumerate all of these cases in O(|E|) time, and keep the results of modifications
(1) and (2) in the memory. It can be done as a preprocessing within O(|E|) time.

By these modifications, we can see that any iteration which is a leaf of the com-
putation tree outputs at least two independent sets, thus the number of iterations is not
greater than the number of independent sets in G. We can also see that if an iteration
outputs just one independent set, then, the input clique must be a leaf of the clique tree.
Hence, the size of the output independent set is at most one.

We next consider how to compute all combinations of independent sets in, for exam-
ple, Step 9 of the algorithm. In the procedures, the independent sets for K are generated
by combining the independent recursive calls for several maximal cliques, say K1 and
K2. This step can be implemented as follows. First, we compute an indenendent set I1

for K1, and for this I1, we compute all independent sets I2 for K2, and output I1∪I2. Next
we compute another independent set I′1 for K1, and compute all independent sets I2 for
K2, and output I1∪ I2, then compute yet another independent set for K1, and so on. Then
the computation time in one iteration is proportional to (the number of recursive calls
generated) times (the maximum number of vertices added to the current independent
set). Because of modification (2), any iteration adds at most one vertex to the current
independent set. Therefore, the total time complexity of the algorithm is linear in the
number of independent sets.

Theorem 4. All independent sets in a chordal graph can be enumerated in constant
time for each on average with additional O(|V | + |E|) time for preprocessing.

Similar algorithms can be developed to enumerate the maximum independent sets
and the independent sets of size k. However, some iterations may add to the current
independent set several vertices not bounded by a constant. Since there are at most
|E| kinds of inputs for each procedure, we can enumerate all such sets of vertices that
will be added in an iteration, and put an identical name to each set of vertices in short
time. By adding the name instead of adding vertices in a vertex set, we can execute the
addition in constant time. Thus, the maximum independent sets and the independent
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sets of size k can be enumerated in constant time for each on average with additional
O((|V | + |E|)|V |2) time for preprocessing.

7 Hardness of Counting the Maximal Independent Sets

In this section, we show the hardness results for counting the number of maximal in-
dependent sets in a chordal graph. Although finding a maximal independent set is easy
even in a general graph, we show that the counting version of the problem is actually
hard.

Theorem 5. Counting the number of maximal independent sets in a chordal graph is
#P-complete.

The proof is based on a reduction from the counting problem of the number of set
covers. Let X be a finite set, and S ⊆ 2X be a family of subsets of X. A set cover of
X is a subfamily F ⊆ S such that

⋃F = X. Counting the number of set covers is
#P-complete [15].

Proof of Theorem 5 (Sketch). The membership in #P is immediate. To show the #P-
hardness, we use a polynomial-time reduction of the problem for counting the number
of set covers to our problem.

Let X be a finite set and S ⊆ 2X be a family of subsets of X, and consider them as
an instance of the set cover problem. Let us put S := {S 1, . . . , S t}. From X and S, we
construct a chordal graph G = (V, E) in the following way.

We set V := X ∪S∪S′, where S′ := {S ′1, . . . , S ′t}. Namely, S′ is a copy of S. Now,
we draw edges. There are three kinds of edges. (1) We connect every pair of vertices in X
by an edge. (2) For every S ∈ S, we connect x ∈ X and S by an edge if and only if x ∈ S .
(3) For every S ∈ S, we connect S and S ′ (a copy of S ) by an edge. Formally speaking,
we define E := {{x, y} | x, y ∈ X}∪ {{x, S } | x ∈ X, S ∈ S, x ∈ S }∪ {{S , S ′} | S ∈ S}. This
completes our construction, which can be done in polynomial time. The constructed
graph G is indeed chordal.

Now, we look at the relation between the set covers of X and the maximal in-
dependent sets of G. Let U be a maximal independent set of G. We distinguish two
cases.

Case 1. Consider the case in which U contains a vertex x ∈ X. Let Gx := G \ NG[x].
By the construction, we have that V(Gx) = {S ∈ S | x � S } ∪ S′ and E(Gx) = {{S , S ′} |
S ∈ S, x � S }. Then the number of maximal independent sets containing x is exactly
2|{S∈S|x�S }|.

Case 2. Consider the case in which U contains no vertex of X. Then, the number of
maximal independent sets containing no vertex of X is equal to the number of set covers
of X.

To summarize, we obtained that the number of maximal independent sets of G is
equal to the number of set covers of X plus

∑
x∈X 2|{S∈S|x�S }|. Since the last sum can be

computed in polynomial time, this concludes the reduction. 
�
As a variation, let us consider the problem for counting the minimum maximal

independent sets in a chordal graph. Note that a minimum maximal independent set in
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a chordal graph can be found in polynomial time [8]. In contrast to that, the counting
version is hard.

Theorem 6. Counting the minimum maximal independent sets in a chordal graph is
#P-complete.

8 Hardness of Finding a Minimum Weighted Maximal
Independent Set

In this section, we consider an optimization problem to find a minimum weighted
maximal independent set in a chordal graph. Namely, given a chordal graph G and
a weight for each vertex, we are asked to find a maximal independent set of G with
minimum weight. Here, the weight of a vertex subset is the sum of the weights of its
vertices.

Notice that there is a linear-time algorithm for this problem when the weight of
each vertex is zero or one [8]. On the contrary, we show that the problem is actually
hard when the weight is arbitrary.

Theorem 7. Finding a minimum weighted maximal independent set in a chordal graph
is NP-hard.

The proof is similar to what we saw in the previous section. We use the optimization
version of the set cover problem, namely the minimum set cover problem. It is known
that the minimum set cover problem is NP-hard.

Proof of Theorem 7. For a given instance of the minimum set cover problem, we use
the same construction of a graph G as in the proof of Theorem 5. We define a weight
function w as follows: w(x) := 2|S| + 1 for every x ∈ X; w(S ) := 2 for every S ∈ S;
w(S ′) := 1 for every S ′ ∈ S′. This completes the construction.

Now, observe that S is a maximal independent set of the constructed graph G, and
the weight of S is 2|S|. Therefore, no element of X takes part in any minimum weighted
maximal independent set of G. Then, from the discussion in the proof of Theorem 5,
if M is a maximal independent set of G satisfying M ∩ X = ∅, then M ∩ S is a set
cover of X. The weight of M is |M ∩ S| + |S|. Therefore, if M is a minimum weighted
independent set of G, then M minimizes |M ∩ S|, which is the size of a set cover. Hence,
M ∩ S is a minimum set cover. This concludes the reduction. 
�

We can further show the hardness to get an approximation algorithm running in
polynomial time. The precise statement is as follows (ZTIME(t) is the class of languages
which have a randomized algorithm running in expected time t with zero error).

Theorem 8. There is no randomized polynomial-time algorithm for the minimum
weight maximal independent set problem in a chordal graph with approximation ra-
tio c ln |V |, for some fixed constant c, unless NP ⊆ ZTIME(nO(log log n)).

Acknowledgement. The authors are grateful to L. Shankar Ram for pointing out a
paper [5].
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Abstract. We improve the current complexities for maintaining a
chordal graph by starting with an empty graph and repeatedly adding
or deleting edges.

1 Introduction

Our motivation for this paper stems from the biology-based problem of improving
the matrix representing an evolutionary tree (phylogeny) which contains errors.
To solve this, Berry, Sigayret and Sinoquet in [2] needed to start with an inde-
pendent set and repeatedly add an edge of minimum weight, while maintaining
a chordal graph. However, the most efficient algorithms for dynamically main-
taining a chordal graph (see Ibarra [8]) were insufficient to ensure a complexity
which could be used in practice.

In this paper, we improve the time complexity for dynamic algorithms for
chordal graphs. Ibarra studied the problem of maintaining a chordal graph as
edges are inserted or deleted. Operations considered were insert, delete, insert
query and delete query; the last two operations ask whether deletion/addition
of a given edge xy preserves chordality. He gave three implementations of the
algorithm. In the first implementation, all operations take O(n) time. In the
second, deletions take O(n log n) time, deletion queries and insertion run in
O(n) time, while insertion queries run in O(log2 n) time. The third variant was
designed for sparse chordal graphs and will not be addressed in this paper.

Our new running times are O(n) for insertion and deletion, O(1) for insertion
queries, and O(n) for deletion queries. All data structures used are simple. We do
make one extra assumption, which is notmade in the Ibarra paper. We assume that
we start with an empty graph; if this assumption is not made, there is an initial
start-up cost of O(mΔ), where Δ is the maximum degree of a vertex, or O(nα),
where nα is the cost of doing matrix multiplication. We use this result to improve
the time bound for the original phylogeny problem, from O(n4) to O(n3).

2 Preliminaries

In this paper, G = (V, E) will be a graph with n vertices and m edges. We will
use non-formal notations such as G−S instead of G(V −S). An xy-separator in
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a connected graph G is a non-empty set S of vertices such that there is no path
from x to y in G−S. S is a minimal xy-separator if S does not properly contain
any xy-separator. Whenever there exists a pair {x, y} of vertices such that S is
a minimal xy-separator, S is called a minimal separator.

A graph is chordal if every cycle of length greater than three has a chord.
Chordal graphs have a long history of study; see, for example [1,6]. A clique tree
of a chordal graph G is a tree T such that nodes have a 1-1 correspondence with
maximal cliques of G, edges correspond to non empty intersections of pairs of
maximal cliques, and for all vertices v in G, the set of maximal cliques which
contain v induces a subtree of T . A graph is chordal iff it has a clique tree ([5],
[3], [12]). Each edge S = K1 ∩ K2 of T corresponds to one minimal separator S
of G; conversely, each minimal separator of G is represented by at least one edge
of T . A chordal graph may thus have several clique trees. A clique tree has O(n)
nodes. There are known algorithms (see for example [10]) which find a clique
tree of a chordal graph in O(m + n) time.

The discussions in this paper will use the following theorems which are easy
to prove using well-known results on chordal graphs and a characterization
from [2]:

Characterization 1. ([2]) Let G = (V, E) be a chordal graph, xy �∈ E. Then
G + xy is chordal iff {x, y} is a 2-pair of G (i.e. all chordless paths between x
and y are of length 2).

Theorem 2. Edge xy can be deleted from a chordal graph G without causing a
chordless cycle iff x and y are not together in any minimal separator of G.

Theorem 3. Edge xy can be added to a connected chordal graph G without
causing a chordless cycle iff x and y are both adjacent to every vertex in some
minimal xy-separator S. Furthermore S = N(x) ∩ N(y).

Theorem 4. The number of maximal cliques containing a vertex x in a chordal
graph is at most |N(x)|. The total number of vertices in all maximal cliques of
a clique tree is O(m).

3 Data Structures

We maintain a clique tree of the current chordal graph G with the following
modifications. For each maximal clique K and minimal separator S in the clique
tree, and each vertex x, we keep variables neighnum(x, K) and neighnum(x, S)
denoting the number of neighbors of x in K and S respectively.

We also maintain an array Insertable; Insertable(x, y) = 1 iff xy can be
inserted while maintaining chordality.

We will discuss how to calculate initial values if we are given a start graph
G after Theorem 7. If we start with an edgeless graph, all values are initially 0.
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4 Algorithms

We now discuss how to implement the various operations. Some of these opera-
tions are identical to those in [8], but are repeated here so that the reader can
have easy access to the full algorithm.

The simplest primitive, given our data structures, is Insert Query. We
look up in our array Insertable whether Insertable(x, y) = 1. The other simple
primitive to describe is Delete Query; to achieve an O(n) bound, step through
the tree and test whether more than one maximal clique contains both x and
y. If it is desired, this can be reduced to O(min{degree(x), degree(y)}) by using
Theorem 4 and letting each vertex x keep a list pointing to each clique which
contains x.

Operations Insert and Delete are very similar to each other. In each case,
we modify the clique tree and then update the array Insertable to decide which
edges may now be added to the graph while preserving chordality.

We first deal with the insertion of xy.
The first part of the modification, finding a clique tree for G+xy, may work

exactly as in Ibarra’s paper, though we must make sure to update our new data
structures as well. For completeness, we will give the full process here.

Let xy be the edge to be inserted. There will be exactly one new maximal
clique, which is y + x + (N(x) ∩ N(y)). At most 2 maximal cliques of G are
deleted, which are x + (N(x) ∩N(y)) and y + (N(x)∩N(y)) if these cliques are
currently maximal in G. For simplicity, we will treat the cases of 2, 1 or 0 of
x + (N(x) ∩ N(y)), y + (N(x) ∩ N(y)) existing in the clique tree separately. To
determine whether one or both of these cliques are in the current tree, let K1

be any maximal clique containing x and K2 be any maximal clique containing
y. We find the path from K1 to K2 in the clique tree. Let Kx be the last clique
on this path which contains x, and let Ky be the first clique on the path which
contains y. It is not hard to see that if x + (N(x) ∩ N(y)) is in the tree, then
it must be Kx and if y + (N(x) ∩ N(y)) is in the tree, it must be Ky. Thus, we
can determine which cliques appear and disappear with the addition of edge xy
in O(n) time.

– Case 1. both x+N(x)∩N(y) and y+N(x)∩N(y) are maximal cliques of G.
There is a separator Sxy on the path from Kx=x+ N(x)∩N(y) to Ky=y +
N(x) ∩ N(y) which is exactly equal to N(x) ∩ N(y), else xy could not have
been inserted while maintaining chordality. We delete this edge and unify
the two nodes representing Kx and Ky into node Kxy=x+y+(N(x)∩N(y))
as in Figure 1.

– Case 2. we now consider the case in which one of the two possible maximal
cliques ceases to be maximal due to the addition of xy; w.l.o.g., let us assume
that Kx = x + (N(x) ∩ N(y)) is a maximal clique of G.

Let Ky be the first clique containing y on the path from K1 to K2; as
noted earlier, Kx = x+(N(x)∩N(y)) will be the last clique containing x on
this path. We add an edge from the Kx to Ky, and delete edge N(x)∩N(y)
on the path from x to y. We then add y to Kx as in Figure 2.
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– Case 3. in this case, we add a new node to the clique tree corresponding to
x + y + (N(x) ∩ N(y)), and add edges from this node to Kx and Ky, and
delete Sxy as in Figure 3.

We need to update the variables neighnum(v, K) and neighnum(v, S) for
each maximal clique K and minimal separator S of the tree to reflect the changes
caused by insertion of xy. For each clique K and separator S containing y, add
1 to neighnum(x, K) and neighnum(x, S); similarly, increment the values of
neighnum(y, K) and neighnum(y, S) for each clique or separator containing y.
We have at most one new maximal clique Kxy in the tree: x+y+(N(x)∩N(y));
for each vertex v, we let neighnum(v, Kxy) = neighnum(v, Sxy) plus the number
of neighbors of v in {x, y}.

We now have to update the values for separators which were changed by the
insertion of xy. Note that in case 1, no separators change, in case 2 a single
separator (which goes between Kx and Ky) has a vertex added to it, and in case
3 two separators are added corresponding to the edges around the new node of
the clique tree.
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The only separators changed are those adjacent to the new maximal clique
x+y+(N(x)∩N(y)), and correspond to N(x)∩N(y) plus possibly a vertex from
{x, y}. Since we know the number of neighbors of each vertex w.r.t. N(x)∩N(y),
it is easy to calculate the number of neighbors of each vertex w.r.t. to the new
separators in constant time.

The array Insertable must be updated after addition of edge xy. We will
defer discussion of this step until after we discuss deletion of an edge, since both
steps make use of a routine which takes an input vertex x and a clique tree, and
finds all z such that xz is insertable in O(n) time.

We will now examine deletion.
The deletion of an edge xy causes the maximal clique x + y + (N(x)∩N(y))

to disappear from the clique tree. At most two new maximal cliques may appear:
x+(N(x)∩N(y)) and y +(N(x)∩N(y)). As in the case of insertion, we discuss
the cases of 0, 1 or 2 maximal cliques appearing separately. As observed by Ibarra
[8], it is easy to determine whether each of these cliques appears in O(n) time.
We find the single maximal clique containing x and y, and look for edges from
this node which correspond to separators containing 1 + |N(x)∩N(y)| vertices;
we then test whether x or y is the vertex missing in such a separator.

– Case 1. Two maximal cliques appear: x+(N(x)∩N(y)) and y+(N(x)∩N(y)).
In this case, the tree node corresponding to x+y+(N(x)∩N(y)) is split into
2 adjacent nodes x+(N(x)∩N(y)) and y +(N(x)∩N(y)). The neighboring
cliques Y∗ containing y are made neighbors of y + (N(x) ∩ N(y)), other
cliques which were neighbors of x + y + (N(x) ∩ N(y)) become neighbors of
x + (N(x) ∩ N(y)) in the new tree, as in Figure 4.

– Case 2. If one maximal clique, which we will w.l.o.g. assume is x + (N(x) ∩
N(y)) appears, the following changes are made.

Let Ky be the neighbor of x+y+(N(x)∩N(y)) which is separated by an
edge separator with 1 + |N(x)∩N(y)| vertices. We remove y from the node
x + y + (N(x) ∩ N(y)) and for every neighbor Y∗ of x + y + (N(x) ∩ N(y))
containing y in the clique tree except for Ky, we remove the connection from
Y∗ to x + y + (N(x) ∩ N(y)) and add an edge from Y∗ to Ky, as in Figure
5. Note that since none of these Y∗ correspond to cliques containing x, the
separator between Y∗ and Ky is the same as the old separator between Ky

and x + y + (N(x) ∩ N(y)).
– Case 3. In the remaining case, no new maximal clique appears; we remove

x+y+(N(x)∩N(y)) from the clique tree, then we find Ky and an analogous
Kx as in the previous case; these are cliques which contain y + N(x)∩N(y)
and x + N(x)∩N(y) respectively. We add an edge between Kx and Ky. All
former neighbors of x + y + (N(x) ∩ N(y)) containing y are given edges to
Ky, while other neighbors are given edges to Kx, as in Figure 6. Since no
remaining clique contains both x and y, the separators remain the same in
the new clique tree, except for the edge separating Kx and Ky.

We now describe how to modify the variables maintained after the modification
of the clique tree.
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The only new maximal cliques to appear are either x + (N(x) ∩ N(y)) or
y + (N(x) ∩ N(y)). Since we know the number of neighbors in each vertex in
x + y + (N(x) ∩ N(y)), it is easy to compute the number of neighbors in the
new clique in constant time per vertex. The only new separator which could
have been created was N(x)∩N(y). Again, it is easy to compute the number of
neighbors of each vertex w.r.t. the new separator N(x) ∩ N(y), since we know
the number of its neighbors in x + y + N(x) ∩ N(y).

We now come to the updating of the array Insertable after deletion or addition
of the edge xy:

Theorem 5. Let G be a connected chordal graph. Let x, y, v and w be vertices
such that neither v nor w is equal to x or y.

1. If G+xy is chordal: vw can be inserted into G+xy while preserving chordality
iff vw could be added to G while preserving chordality.
2. If G−xy is chordal: vw can be inserted into G−xy while preserving chordality
iff vw could be added to G while preserving chordality.

Proof.

1. xy is not an edge of G. G and G + xy are chordal.
=⇒ (G+xy)+vw is chordal. Suppose G + vw is not chordal: there exists a

chordless cycle C = v ∼ w ∼ v. In G + xy + vw, which is chordal, C
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does not remain chordless and this must be due to chord xy. Then x and
y are in C which is w.l.o.g. v−s−w∼x∼y∼v. As a consequence, cycle
v−s−w∼x−y ∼ v is chordless in G + xy + vw — a contradiction.

⇐= G+vw is chordal. By Theorem 3 there exists a minimal vw-separator
S = N(v)∩N(w). The addition of edge xy does not change the common
neighborhood of v and w; then there exists in G + xy a minimal vw-
separator S′ ⊇ S. Suppose S′ �= S; then there exists a new path between
v and w; this path must use edge xy, and is w.l.o.g. v∼x−y∼w. As
there is also a path v−s−w for some s ∈ S, chordal graph G + xy
contains a chordless cycle of length ≥ 4 — a contradiction. Then S′ =
S = N(v) ∩ N(w) remains a minimal vw-separator in G + xy and, by
Theorem 3, vw is insertable in G + xy.

2. Apply part 1 of this theorem with G′ = G + xy and thus G = G′ − xy. �

Given the above theorem, we only need to find which vertex pairs {x, z}
and {y, z} can be inserted to preserve chordality, and update these values in the
array Insertable.

We give an algorithm which takes an arbitrary single vertex v and finds all
non-neighbors w of v such that vw can be inserted and preserve chordality in
O(n) time given the information maintained on the clique tree. By Theorem 5,
we can simply run this for x and y when xy is inserted or deleted, and we will
have updated our Insertable list correctly.

Theorem 6. Given a vertex v, we can find all vertices w such that vw can be
inserted while preserving chordality in O(n) time.

Proof. The following algorithm takes a vertex v and finds all w such that adding
vw to G will preserve chordality.

For each non-neighbor w of v, place w on the clique tree at any clique which
contains w. We select any clique containing v, and traverse the clique tree in a
depth-first fashion. When a non-neighbor w is reached on the clique tree, we will
decide whether adding vw to the tree would preserve chordality.

We keep one extra data structure during our traversal. Recall that vw can be
added iff w and v are both completely adjacent to some minimal vw-separator.
The extra structure is an array posssep of size n, which holds pointers to possible
separators S such that S might be a minimal vw-separator meeting the criteria
of Theorem 2 for some w we may encounter on the path. Initially, posssep is
empty.

Suppose that we are at clique node K in our traversal of T , and our DFS
traversal of T leaves K by an edge corresponding to separator S to a new node
K ′ of T .

We test using neighnum(v, S) whether v is adjacent to all vertices of S. If
neighnum(v, S) = |S|, then S could be a possible vw-separator meeting the
conditions of Theorem 2. We look at position |S| of posseps. If this is already
non-empty, then there is already a separator S′ with the same vertices as S
encountered earlier than S on the path from x. In this case, if S meets the
conditions of Theorem 2, S′ also meets the conditions of Theorem 2 for any w
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encountered on the path, and S is not stored in posseps. If position |S| is empty,
we mark this edge e as a candidate separator, and put a pointer in posseps(|S|)
to edge e. We add 1 to a count of the number of separators in posseps, and if
this number of separators in posseps becomes 1, we call this separator startsep.

Suppose that we encounter a vertex w which was placed on the clique tree.
We want to test whether v and w are separated by any vw-separator S such that
both v and w are completely adjacent to S.

It is not hard to see that all minimal vw-separators are on the path from v
to the current node, though (since w may be in many cliques on this path) not
all edges on the path correspond to minimal vw-separators. We test how many
neighbors of w there are in separator startsep; call this number vwneighbors.
Clearly, any separator with fewer than vwneighbors vertices cannot separate v
from w. In addition, any separator with more than vwneighbors vertices cannot
be completely adjacent to w, since neighbors of v can only disappear as we
traverse the path from v to w. Thus, we only need to check if the edge pointed
to by posseps(vwneighbors) is a minimal vw-separator satisfying the conditions
of Theorem 2. If the array points to edge Ki − S − Kj , with Ki closer to v,
we check that w is not in Ki (or this would not be a vw-separator), and that
neighnum(w, S) = |S|.

We make Insertable(v, w) = 1 if these conditions hold, and 0 otherwise.
As we back up across an edge e = Ki − S −Kj in the DFS, if e is marked as

a separator, we delete the pointer in posseps(|S|), and decrement the number of
current possible separators. �

Combining the theorems above, we get the desired result.

Theorem 7. The algorithm maintains a chordal graph under the operations
insert, delete, delete query, and insert query, taking O(n) time for the first three
operations and O(1) time for insert query.

If a connected graph G is given as input, it is necessary to construct a clique
tree, and compute neighnum(v, S) and neighnumN(v, K) for each vertex v,
each minimal separator S, and each clique K of the clique tree.

As a clique tree of a chordal graph can be found in O(m+n) time and has an
O(m) overall number of vertices in the nodes, we can step through all maximal
cliques K, and for each v in K add 1 to neighnum(w, K) for all neighbors w of
v, thus finding all these variables in O(m n) time.

Although there are also O(m) vertices over all minimal separators of the
clique tree (so the argument above could also be used to count all variables in
O(mn) time), the algorithms for finding a clique tree of a chordal graph usually
do not explicitly label the separators. Therefore, we describe briefly how these
separators could be labeled in O(m + n) time. Choose an arbitrary root for the
clique tree. For each node K of the clique tree, perform the following operation.
Mark all positions of an array which are vertices of K. For each child K ′ of K,
step through all vertices of K ′, putting them on the separator between K and
K ′ if these are marked in the array. Since vertices of each maximal clique K are



Faster Dynamic Algorithms for Chordal Graphs 453

traversed at most twice (once when K is a parent, and once when K is a child),
the total time spent constructing separators is O(m + n).

Thus, all initial variables can be computed in O(mn) time. Alternatively, we
can use matrix multiplication to get the variables. Construct a graph G′ with a
vertex for each minimal separator S, a vertex for each maximal clique K, and
two copies v1 and v2 of each vertex v of the graph. Add an edge from v1 to w2 if
and only if v and w are adjacent in G, and an edge from v2 to K or S if and only
if v is in this maximal clique or minimal separator. The number of neighbors of v
in K (or S) in G is the number of paths of length two from v1 to K (or S) in G′.
It is well known that the number of paths of length two from i to j is equal to
M2[i, j], where M is the adjacency matrix of the graph. Since G′ has O(n) ver-
tices, all variables can be constructed in O(nα) time, where α is the coefficient of
n in a matrix multiplication algorithm. The best known bound for α is 2.376 [4],
and the variables can be computed in this time bound if one is willing to allow
the (complex) algorithms used for matrix multiplication in that paper.

Recall that our algorithm assumes that our initial graph is edgeless. We thus need
to deal with a chordal graph which is not connected. We begin with a forest of
elementary clique trees. While the graph is not connected, the insertability of
xy is determined by first testing whether x and y are in the same connected
component of G. If not, xy is insertable, and the corresponding cliques trees will
be merged (process similar to Case 1 of insertion, but without initial edge N(x)∩
N(y)); clearly, the only changes we have then to perform on array Insertable
are w.l.o.g. Insertable(x, z) = 1 for each neighbor z of y. For operation Delete,
when the graph is disconnected by an edge deletion, its clique tree is split (by
deleting edge Kx−Ky in Case 1 or 3 of deletion) and the child trees are managed
separately.

5 Phylogeny

We now discuss the problem of efficient construction of a chordal graph by re-
peatedly adding a minimum weight edge xy to a current chordal graph G such
that G + xy is chordal. The fastest known algorithm for this problem runs in
O(n4) time ([2]); we will reduce the time complexity to O(n3). The previous
algorithm relied on Characterization 1 and used the algorithm ([11]) for main-
taining all 2-pairs in a general graph as edges are added in O(n4) overall time. In
this paper, we show that new 2-pairs can be found more efficiently if the graph
is known to be chordal.

The problem discussed in this section arose in the context of computational
biology. The problem, called phylogeny, involves reconstructing an evolutionary
tree, given genetic information of modern species. A correspondence between the
phylogeny problem and chordal graphs was first noted in [7].

To summarize very briefly the work most relevant to this paper, one can
construct a matrix computing phylogenetic dissimilarity between different pairs
of species. If we assume that this matrix is an ‘additive tree distance’ (which
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corresponds to the notion that if species A branches off from B and C, and
then later B branches off from C, the phylogenetic difference between A and
C is equal to the difference between A and B plus the difference between B
and C), then the graph Gi formed by including all edges with difference less
than each threshold i will be a chordal graph ([7]). In practice, [7] found that
the data tends to give graphs which are not chordal, but are ”almost” chordal.
We want to take this data, and modify it as little as possible to get a chordal
graph. [2] proposes an edge addition scheme, starting from an edgeless graph,
and repeatedly adding the smallest weight edge which preserves chordality, as
an effective way of processing the phylogenetic data.

In that paper, an O(n4) algorithm was given to solve the problem. We use
the results of the previous section to reduce the time complexity to O(n3). Recall
from Theorem 5 that when an edge xy which maintains chordality is added, the
only pairs which can change status as far as eligibility for addition are pairs
containing x or y.

Therefore, we can maintain a list of edges eligible for addition to the struc-
ture, and there will be at most n3 modifications of the list throughout the run-
ning of the algorithm. If the list of eligible edges is stored in increasing order of
weight, we will simply choose the first eligible edge for addition at any step, and
use the algorithm of the previous section to determine which changes to make
in the list in O(n) time.

If the list is stored as a balanced tree, additions and deletions can be made
in O(log n) time, leading to an O(n3 log n) algorithm for finding the order in
which edges will be added. We will show how to accomplish the same task in
O(n3) time.

Theorem 8. We can find the complete sequence in which we will add minimum
weight edges which preserve chordality in O(n3) time.

Proof. As a first step, we sort all possible pairs by weight, and label each pair
xy with the position of xy in the sorted list. At each step, we want to find the
eligible pair with smallest label to add to our graph.

Instead of keeping the entire list of eligible pairs sorted, we group the eligible
pairs as follows. We maintain unordered lists Li of eligible pairs with thresholds
i n + 1 through (i + 1)n for each i from 0 to n− 1; i.e., we keep a list of eligible
edges with thresholds in the ranges [1..n], [n + 1..2n], ... [n(n− 1)+ 1..n2]. Each
eligible pair xy has a pointer to the position of xy in the appropriate list.

To choose the next eligible edge for addition, step through the lists until we
find some non-empty list. Since there are O(n) lists, we can find the next eligible
pair in O(n) time. Once the appropriate list is found, examine all pairs in the
list to find the smallest eligible pair. Since each list contains at most n elements,
the total time to find the next eligible pair is O(n).

Using the algorithm of the previous section, we can find all pairs which must
be added and deleted from the list of eligible edges in O(n) time. Since each
modification clearly takes constant time using our data structures, the total
time for adding an edge is O(n).
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Since there are O(n2) edges added, the total time taken to find the sequence
of edge additions is O(n3). �

6 Conclusion

This paper shows that if we start with an edgeless graph, we can maintain
chordality as edges are added and deleted using O(n) time for insertions, dele-
tions, and delete queries, and constant time for insert queries. As an application,
we show that a triangulation problem arising out of phylogeny can be solved in
O(n3) time.
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Abstract. In this paper, we consider the recognition problem on the
HHDS-free graphs, a class of homogeneously orderable graphs, and we
show that it has polynomial time complexity. In particular, we describe a
simple O(n2m)-time algorithm which determines whether a graph G on
n vertices and m edges is HHDS-free. To the best of our knowledge, this
is the first polynomial-time algorithm for recognizing this class of graphs.

Keywords: HHD-free graphs, HHDS-free graphs, sun, homogeneously
orderable graphs, perfectly orderable graphs, recognition.

1 Introduction

In the late 1990s, Brandstädt, Dragan, and Nicolai [2] defined the homogeneously
orderable graphs as those graphs admitting a homogeneous elimination order
(a vertex ordering v1, v2, . . . , vn is a homogeneous elimination ordering if for
every i, vi is h-extremal in the subgraph induced by vi, vi+1, . . . , vn; a vertex v
is h-extremal in a graph G if the set D2(v) of vertices at distance at most 2
from v in G contains a proper homogeneous dominating set, i.e., there exists
a set H ⊂ D2(v) such that H is a homogeneous set in G and D2(v) ⊆ N [H ]).
They showed that the class of homogeneously orderable graphs contains the class
of homogeneous graphs introduced by D’Atri, Moscarini, and Sassano [7]. The
larger class of homogeneously orderable graphs seems to be more interesting
for several reasons; among these are algorithmic reasons, e.g., the (cardinality)
Steiner tree problem is solvable in polynomial time on homogeneously orderable
graphs [7].

In this paper, we consider a subclass of homogeneously orderable graphs,
namely, the HHDS-free graphs. A graph is HHDS-free if it contains no induced
hole (i.e., a chordless cycle on ≥ 5 vertices), house, domino (see Figure 1), or
sun. In [2], Brandstädt, Dragan, and Nicolai proved that a graph G is HHDS-
free if and only if G is hereditary homogeneously orderable, i.e., every induced
subgraph of G is homogeneously orderable.

The definition of the class of homogeneously orderable graphs implies that
this class is a generalization of both the class of dually chordal and the class of
distance-hereditary graphs [2,3]. Bandelt and Mulder [1] showed that a graph G
is distance-hereditary if and only if it contains no induced house, hole, domino,
or gem; then, since every sun contains a gem [2,3], distance-hereditary graphs

D. Kratsch (Ed.): WG 2005, LNCS 3787, pp. 456–467, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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hole house dominobuilding

Fig. 1. Some useful graphs

are HHDS-free. Additionally, the HHD-free graphs properly generalize the class
of chordal (or triangulated) graphs [9]; a graph is {house,hole,domino}-free or
HHD-free if it contains no induced house, hole, or domino. In [11], Hoàng and
Khouzam proved that the HHD-free graphs admit a perfect order, and thus
are perfectly orderable [4,13,16]; as a result, the HHDS-free graphs are perfectly
orderable as well. A superclass of the HHD-free graphs, which also properly
generalizes the class of chordal graphs, is the class of {house,hole}-free or HH-
free graphs; Chvátal conjectured [5] and later Hayward [10] proved that the
complement G of an HH-free graph G is perfectly orderable.

In [3], it is mentioned that the recognition complexity of HHDS-free graphs
is open. Yet, several recognition algorithms have been proposed for graph classes
that are defined or characterized by forbidden induced holes, houses, or dominos
(see [3,9]). Indeed, Hoàng and Khouzam [11], while studying the class of brittle
graphs (a well known class of perfectly orderable graphs which contains the
HHD-free graphs), showed that the HHD-free graphs can be recognized in O(n4)
time, where n denotes the number of vertices of the input graph. An improved
result was obtained by Hoàng and Sritharan [12] who presented an O(n3)-time
algorithm for recognizing HH-free graphs and showed that HHD-free graphs
can be recognized in O(n3) time as well; one of the key ingredients in their
algorithms is the reduction of a subproblem to the recognition of chordal graphs.
Based on the result in [12], recently, Nikolopoulos and Palios [14] presented
an O(min{nm α(n), nm + n2 log n})-time and O(n + m)-space algorithm for
recognizing HHD-free graphs, where m is the number of edges of the input graph
and α(n) is the very slowly growing inverse of the Ackerman’s function.

The main result of this paper is that an HHD-free graph G is also HHDS-free
if and only if there is no vertex v of G such that v is the top of a house or a “build-
ing” in an auxiliary graph which is a modification of G; a building, which is a
generalization of a house, is a cycle on at least 5 vertices with a single chord (i.e.,
an edge joining two nonconsecutive vertices of the cycle) connecting two vertices
of the cycle which are at distance 2 (see Figure 1). This result enables us to de-
scribe an O(n2m)-time algorithm for recognizing whether an input graph on n
vertices and m edges is HHDS-free. The space required by the algorithm is O(n2).

2 Theoretical Framework

We consider finite undirected graphs with no loops or multiple edges. Let G be
such a graph; then, V (G) and E(G) denote the set of vertices and of edges of G,
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respectively. Let S ⊆ V (G) be a set of vertices of G; the subgraph of G induced
by S is denoted by G[S]. The neighborhood N(x) of a vertex x ∈ V (G) is the
set of all the vertices of G that are adjacent to x. We use M(x) to denote the
set V (G)−

(
N(x)∪{x}

)
of non-neighbors of x in G. An independent (or stable)

set is a set of vertices no two of which are adjacent.
A path v0v1 . . . vk of a graph G is called simple if none of its vertices occurs

more than once; it is called a cycle (simple cycle) if v0vk ∈ E(G). A simple path
(cycle) is chordless if vivj /∈ E(G) for any two non-consecutive vertices vi, vj in
the path (cycle). A chordless path (chordless cycle, respectively) on n vertices is
commonly denoted by Pn (Cn, respectively).

A graph is chordal (or triangulated) if and only if every cycle of length strictly
greater than 3 possesses a chord (i.e., an edge joining two nonconsecutive vertices
of the cycle) [3,9,17]. The following definition is taken from [3].

Definition 1. [6,8] A sun (or trampoline) is a chordal graph G on 2n ver-
tices for some n ≥ 3 whose vertex set can be partitioned into two sets, U =
{u0, u1, . . . , un−1} and W = {w0, w1, . . . , wn−1}, such that W is an independent
set and for each i and j, wj is adjacent to ui if and only if i = j or i ≡ j + 1
mod n.

A sun on 2k vertices is often called a k-sun. A sun such that the set U induces a
complete graph is called a complete sun. It has been shown that every sun con-
tains a complete sun [6,8]; yet, determining whether a graph contains a complete
sun does not seem easier than determining whether it contains a sun. We prove
the following lemma.

Lemma 1. Let H be a graph whose vertices can be partitioned into two sets
U = {u0, u1, . . . , uk−1} and W = {w0, w1, . . . , wk−1} of k ≥ 3 vertices each,
such that W is an independent set and for each i and j, wj is adjacent to ui if
and only if i = j or i ≡ j+1 mod k. Then, H is a sun with partition sets U and
W if and only if the subgraph H [U ] is chordal and the vertices u0, u1, . . . , uk−1

form a cycle u0u1 · · ·uk−1.

Proof. (=⇒) Since H is a sun, then H is chordal and thus the subgraph H [U ] is
chordal as well. Moreover, for all i = 0, 1, . . . , k−1, the vertices ui and ui+1mod k

are adjacent in H since a chordless path from ui+1mod k to ui in the (connected)
graph induced by {ui+1mod k, wi+1 mod k, . . . , ui−1, wi−1, ui} in H has to be of
length 1; otherwise, the vertices of the path along with vertex wi would induce
a chordless cycle on 4 or more vertices, a contradiction to the chordality of H .
(⇐=) Since H [U ] is chordal, the lemma follows easily from the fact that no wi

(0 ≤ i < k) participates in a chordless cycle on 4 or more vertices since wi’s only
neighbors, ui and ui+1 mod k, are adjacent in H .

Let G be a graph and let v be an arbitrary vertex of G. Let us define the
following set of non-edges of G

Ev = { xz | x, z ∈ M(v) and ∃y ∈ M(v) such that xyz is a P3 of G }
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which we call P3-edges. Then, we construct the graph Ĝv from G as follows:

V (Ĝv) = V (G) and E(Ĝv) = E(G) ∪ Ev.

Note that the definition of P3-edges implies that E(G)∩Ev = ∅. If the graph G

has n vertices and m edges, then the graph Ĝv has n vertices and O(n2) edges.

Definition 2.

� We collectively call a house or a building a generalized house or g-house for
short.

� If vertex v is the top of a house or a building, then v is the top of the g-house.
If v at the top is adjacent to vertices u, w in the g-house, we say that the
roof of the g-house is (v; u, w). The vertices of the g-house that do not belong
to its roof form a chordless path which we call the base of the g-house.

� A g-house is shorter than another g-house if it involves fewer vertices.

Our HHDS-free graph recognition algorithm relies on the following theorem.

Theorem 1. Let G be an HHD-free graph. The graph G contains a sun if and
only if there exists a vertex v such that the graph Ĝv defined above with respect
to v contains a house or a building with v at its top.

Proof. (=⇒) Suppose that the graph G contains a sun induced by the sets of
vertices U = {u0, u1, . . . , uk−1} and W = {w0, w1, . . . , wk−1}, where k ≥ 3 (see
Definition 1). Then, in the graph Ĝw0 , the vertices w0, u0, u1, w1, w2, . . . , wk−1

induce a house or a building with vertex w0 at its top (see Figure 2 for an
example where k = 5; dashed edges indicate P3-edges); note that u0u1 ∈ E(G)
(see Lemma 1), that the vertices u0 and u1 are not adjacent to any of the
vertices w1, w2, . . . , wk−2 and w2, w3, . . . , wk−1, respectively, and that, for all
i = 1, 2, . . . , k − 2, the vertices wi and wi+1 induce a P3-edge.
(⇐=) Suppose that there exists a vertex v which is the top of a house or a
building in Ĝv, i.e., v is the top of a g-house. Then, the following holds:

Fact 1. If the vertex v is the top of a g-house in the graph Ĝv, with
roof (v; u, w), then every edge in the base of a shortest g-house with
roof (v; u, w) is a P3-edge.

G

u0u1

u2

u3

u4

w0

w1

w2 w3

w4

Gw0

u0u1

u2
u3

u4

w0

w1 w2 w3 w4

Fig. 2
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Fact 1 is established in Lemma 2. Thus, if a shortest g-house with roof (v; u, w)
has base p1p2 · · · pk, then each pipi+1 (1 ≤ i ≤ k − 1) is a P3-edge; let us replace
each such edge with a corresponding P3 piqipi+1 in G. Then, from the fact that
we are considering a shortest g-house, we conclude that for i = 1, 2, . . . , k−1, the
vertex qi is not adjacent to any of the vertices in {p1, p2, . . . , pi−1, pi+2, . . . , pk}
(as in the proof of Lemma 2), which implies that the qis are all distinct (note
that the qis may be arbitrarily adjacent to one other); the situation is depicted
in Figure 3 where dashed lines indicate potential edges.

Additionally, vertex u is adjacent to at least one of the vertices q1, q2,
. . . , qk−1. If u were not adjacent to any of them, then if x is the leftmost neighbor
of w among q1, q2, . . . , qk−1, pk and if ρ is a chordless path from p1 to x in the
(connected) graph induced by the vertices {p1, q1, p2, q2, . . . , x} in G, the vertices
v, u, w, and the vertices of the path ρ induce a house or a building in G (with v
at its top), which contradicts the fact that the graph G is HHD-free. Thus, u is
adjacent to at least one qi. In fact, we can show the following:

Fact 2. There exists an integer r, where 1 ≤ r ≤ k − 1, such that the
vertex u is adjacent to precisely q1, q2, . . . , qr among the qis, otherwise
the graph G contains a sun.

Fact 2 is established in Lemma 6 (case (b)) with the aid of Lemma 4: since u
is adjacent to both p1 and a vertex qi, then Lemma 4 implies that it is also
adjacent to q1; then, for r = max{ j | uqj ∈ E(G) }, Lemma 6 (case (b)) implies
that if there exists a vertex qi (2 ≤ i ≤ r − 1) which is not adjacent to u, then
the graph G contains a sun, as desired.

So, let us consider the case where the vertex u is adjacent to each of the
vertices q1, q2, . . . , qr, where 1 ≤ r ≤ k−1. Similarly, we assume that there exists
an integer �, where 1 ≤ � ≤ k−1, such that the vertex w is adjacent to each of the
vertices q�, q�+1, . . . , qk−1. Then, it has to be that r ≥ �; if r < �, then the vertices
v, u, w, and the vertices of a chordless path from qr to q� in the (connected)
graph induced by {qr, pr+1, qr+1, . . . , p�, q�} induce a house or a building in G,
a contradiction. In fact, r = k − 1 and � = 1, i.e., the vertices u, w are adjacent
to each of the vertices q1, q2, . . . , qk−1. Suppose for contradiction that r ≤ k − 2
which implies that k ≥ 3 since r ≥ 1; then, because r ≥ �, the vertex w is

v

u w

p1 p2 pk

q1 q2 qk−1

Fig. 3
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pj pj+1pj+1

qj−1qj−1
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Fig. 4
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adjacent to both qk−2 and qk−1. Moreover, qk−2qk−1 ∈ E(G) (for otherwise the
vertices w, qk−2, pk−1, qk−1, pk would induce a house in G with vertex pk at its
top, a contradiction); then, the vertices pk−2, qk−2, qk−1 ∈ M(v) induce a P3 in
G, that is, pk−2qk−1 would be a P3-edge in Ĝv, which implies that the vertices
v, u, p1, p2, . . . , pk−2, qk−1, w induce a g-house in Ĝv with roof (v, u, w); note that
qk−1 is not adjacent to p1, p2, . . . , pk−3 nor to u. This, however, contradicts the
minimality of the g-house induced by v, u, p1, p2, . . . , pk, w. Thus, the assumption
that r ≤ k−2 led us to a contradiction. Hence, r = k−1 (i.e., vertex u is adjacent
to each of the vertices q1, q2, . . . , qk−1); similarly, vertex w is adjacent to each of
these vertices as well.

If there exists a vertex qi that is adjacent to a vertex qj but is not adjacent to
a vertex qj′ , where 1 ≤ i < j′ < j ≤ k−1, then clearly k ≥ 4 and Lemma 6 along
with Lemma 4 imply that the graph G contains a sun: since qi is adjacent to both
pi+1 and qj , then Lemma 4 implies that it is also adjacent to qi+1 (note that the
graph G is HHD-free and contains the path pi+1qi+1pi+2qi+2 · · · pjqj , with chords
only between qis, and the vertex qi is not adjacent to any of pi+2, pi+3, . . . , pj);
then, Lemma 6 (case (b)) implies that since vertex qi is not adjacent to vertex qj′ ,
where i + 2 ≤ j′ ≤ j − 1, the graph G contains a sun.

Suppose now that no vertex qi as in the previous paragraph exists; that is,
for all i = 1, 2, . . . , k−2, if qi is adjacent to a vertex qj , where 1 ≤ i < j ≤ k−1,
then qi is adjacent to each of qi+1, qi+2, . . . , qj . Then Lemma 5 implies that the
subgraph of G induced by the vertices w, u, q1, q2, . . . , qk−1 is chordal; recall that
uw ∈ E(G) and both u and w are adjacent to each of the vertices q1, q2, . . . , qk−1.
Additionally, we take advantage of the fact that u is adjacent to each of the
vertices q1, q2, . . . , qk−1 in order to show by induction on i that qiqi+1 ∈ E(G)
for all i = 1, 2, . . . , k − 2. For the basis step, we observe that if q1q2 /∈ E(G)
then the vertices u, p1, q1, p2, q2 induce a house in G (with vertex p1 at its top),
a contradiction. For the inductive step, we assume that qj−1qj ∈ E(G) where
j ≥ 2, and suppose for contradiction that qjqj+1 /∈ E(G); if qj−1qj+1 /∈ E(G),
then the vertices u, qj−1, qj , pj+1, qj+1 induce a house in G with vertex qj−1 at its
top (Figure 4(a)), which leads to a contradiction, whereas if qj−1qj+1 ∈ E(G),
then the vertices qj−1, pj , qj , pj+1, qj+1 induce a house in G with vertex pj at its
top (Figure 4(b)), a contradiction again. Therefore, qjqj+1 ∈ E(G), and from the
induction, qiqi+1 ∈ E(G) for all i = 1, 2, . . . , k − 2. This result, the chordality of
the subgraph G[{w, u, q1, q2, . . . , qk−1}], the fact that uw ∈ E(G), uq1 ∈ E(G),
and wqk−1 ∈ E(G), and Lemma 1 imply that the subgraph of G induced by the
vertices v, u, p1, q1, p2, q2, . . . , pk−1, qk−1, pk, w is a sun with partition sets U =
{u, q1, q2, . . . , qk−1, w} and W = {v, p1, p2, . . . , pk}.

Lemma 2. Let G be an HHD-free graph, v a vertex of G, and Ĝv be the auxiliary
graph defined above with respect to v. If the vertex v is the top of a g-house in
the graph Ĝv and if u and w are the neighbors of v in the g-house, then every
edge in the base of a shortest g-house with roof (v; u, w) is a P3-edge.

Proof. Let a shortest g-house with roof (v; u, w) have base p1p2 · · · pk, where
k ≥ 2 (Figure 5(a)). Since G does not contain a house or a hole, the path p1 · · · pk



462 S.D. Nikolopoulos and L. Palios

vv

uu ww

p1p1 p2 p3 pk−1 pkpk

ρ

pi pi+1

ρ′

(a) (b)

Fig. 5

contains P3-edges; let us replace each P3-edge pipi+1 (1 ≤ i < k) by a correspond-
ing P3 piqipi+1 of G. Then, each such vertex qi is not adjacent to any vertex in
{p1, . . . , pi−1, pi+2, . . . , pk}: if qi were adjacent to pj , for some j ∈ {1, 2, . . . , i − 1}
then the vertices pj , qi, pi+1 would induce a P3 in G, and thus pjpi+1 would be
a P3-edge, which would imply that the vertices v, u, p1, . . . , pj , pi+1, . . . , pk, w

would induce a g-house with roof (v; u, w) in Ĝv, in contradiction to the mini-
mality of the g-house induced by v, u, p1, p2, . . . , pk, w; a similar argument leads
to a contradiction if qi were adjacent to pj , for some j ∈ {i + 2, i + 3, . . . , k}.
The fact that qi is not adjacent to any vertex in {p1, . . . , pi−1, pi+2, . . . , pk} also
implies that the vertices qi are all different.

We will show next that every edge pipi+1 is a P3-edge. Suppose for contra-
diction that pipi+1 is not a P3-edge; hence, it is an edge of G instead. Consider
a chordless path ρ in G from p1 to pi in the (connected) graph induced by
{p1, q1, p2, . . . , qi−1, pi} and a chordless path ρ′ from pi+1 to pk in the (conne-
cted) graph induced by {pi+1, qi+1, pi+2, . . . , qk−1, pk}. We show that the con-
catenation of the path ρ, the edge pipi+1, and the path ρ′ forms a chordless
path in G (see Figure 5(b)). If there were a chord, this would have been an
edge q�qr, where � < i and r ≥ i + 1. Let us consider an edge q�qr that mini-
mizes the difference r− �; then, the vertices of the path ρ from q� to pi, and the
vertices of the path ρ′ from pi+1 to qr induce a cycle in G. In fact, they induce
a chordless cycle due to the minimality of q�qr, the chordlessness of ρ and ρ′,
and the fact that pi sees none of the vertices of ρ′ except for pi+1, and that pi+1

sees none of the vertices of ρ except for pi. Additionally, because G contains
no hole, it must be the case that � = i − 1 and r = i + 1, i.e., the vertices
q�, pi, pi+1, qr form a C4. Then, the vertices q�, qr, pr+1 induce a P3 in G and
thus the edge q�pr+1 is a P3-edge in Ĝv. If neither u nor w see q� then the ver-
tices v, u, p1, p2, . . . , p�, q�, pr+1, pr+2, . . . , pk, w would form a g-house in Ĝv with
roof (v; u, w) which is shorter than the g-house induced by v, u, p1, . . . , pk, w, in
contradiction to the minimality of the latter g-house; hence, at least one of u, w
sees q�, and similarly at least one of u, w sees qr. On the other hand, neither u
nor w see both q� and qr, since G does not contain a house. Therefore, either
u sees q� and w sees qr or u sees qr and w sees q�; in either case, the vertices
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v, u, q�, qr, w induce a house (recall that uw ∈ E(G)); a contradiction. Thus,
no chord exists, and the concatenation of the path ρ, the edge pipi+1, and the
path ρ′ forms a chordless path π in G (Figure 5(b)).

The vertex u is not adjacent to any vertex in the path ρ′. If it were, let t′

be the leftmost such vertex; clearly, t′ �= pi+1. Moreover, let t be the rightmost
vertex of ρ which is adjacent to u; t is well defined since up1 ∈ E(G) and t �= pi.
But then, the vertex u and the vertices in the part of the path π from t to t′

induce a hole in G, which leads to a contradiction; thus, u is not adjacent to any
vertex in ρ′. Similarly, w is not adjacent to any vertex in ρ. But then G contains
a hole: it is induced by the vertices u, w, and the vertices of the path π from the
rightmost neighbor of u in ρ (which is to the left of pi) to the leftmost neighbor
of w in ρ′ (which is to the right of pi+1). This however contradicts the fact that
G is HHD-free, and therefore we conclude that the base of the g-house induced
by u, v, w, p1, p2, . . . , pk consists entirely of P3-edges.

Lemma 3. Let G be a graph which contains a C4 abcd and a path ρ from c to d
(different from the path cd) whose vertices other than its endpoints c and d are
adjacent neither to a nor to b. Then, the graph G contains a hole, a house, or a
domino.

Lemma 4. Let G be an HHD-free graph that contains a path psqsps+1qs+1

· · · ptqt, where t ≥ s + 1, with chords only between qis, and let x be a vertex
of G that is adjacent to ps and is not adjacent to any of ps+1, ps+2, . . . , pt. If the
vertex x is adjacent to qt, then it is also adjacent to qs.

Proof. Suppose for contradiction that xqs /∈ E(G). Let t′ = min{ i | s + 1 ≤
i ≤ t and xqi ∈ E(G) }; the vertex qt′ is well defined since x is adjacent to qt.
Then, qsqt′ ∈ E(G), otherwise the length of a chordless path from qs to qt′ in the
(connected) graph induced by {qs, ps+1, qs+1, . . . , pt′ , qt′} in G would be of length
at least 2 and the vertices of the path along with x and ps would induce a hole
in G, a contradiction. But then, the vertices x, ps, qs, qt′ induce a C4 in G and
G contains the path qsps+1qs+1 · · · pt′qt′ whose vertices other than its endpoints
are adjacent neither to x nor to ps. Thus, Lemma 3 applies, implying that the
graph G contains a hole, a house, or a domino, in contradiction to the fact that G
is HHD-free. Therefore, the vertex x is adjacent to qs.

Lemma 5. Let H be a graph that does not contain holes, and v1, v2, . . . , vk (k ≥
3) be an ordering of a subset of vertices of H such that, for all i = 1, 2, . . . , k−1,
if vi is adjacent to vj, where i < j ≤ k, then vi is adjacent to each of the vertices
vi+1, vi+2, . . . , vj. Then, the subgraph of H induced by the vertices v1, v2, . . . , vk

is chordal.

Proof. Since the graph H does not contain holes, we only need to show that the
subgraph induced by the vertices v1, v2, . . . , vk does not contain a C4. Suppose
for contradiction that it contained a C4, say, vavbvcvd, and suppose without loss
of generality that a = min{a, b, c, d}. Then, we distinguish the following cases:

(i) b = max{a, b, c, d}: then, va is adjacent to vb but is not adjacent to vc and
yet c < b (see Figure 6(a)), a contradiction;
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va

va

va

vb

vb

vc

vc

vc

vd

vd

vi

vj

(a) (b)

Fig. 6. Different cases for the C4 vavbvcvd

(ii) c = max{a, b, c, d}: then, if i = min{b, d} and j = max{b, d}, vi is adjacent
to vc but is not adjacent to vj and yet i < j < c (see Figure 6(b)), a
contradiction;

(iii) d = max{a, b, c, d}: the case is similar to case (i) and leads to a contradiction.

In all cases, we reached a contradiction, which implies that the subgraph of
H induced by the vertices v1, v2, . . . , vk is chordal.

Lemma 6. Let G be an HHD-free graph that contains a path qsps+1qs+1 · · · ptqt,
where t ≥ s + 2, with chords only between qis, and let x be a vertex of G that is
adjacent to qs and qt, and is not adjacent to any of ps+1, ps+2, . . . , pt.

(a) Suppose that the vertex x is not adjacent to the vertices qs+1, qs+2, . . . , qt−1,
and that for i = s, s + 1, . . . , t − 1, if the vertex qi is adjacent to qj (where
i < j ≤ t) then it is adjacent to each of the vertices qi+1, qi+2, . . . , qj. Then,
the vertices x, qs, ps+1, qs+1, . . . , pt, qt induce a sun in G.

(b) If there exists a vertex qi (s + 1 ≤ i ≤ t − 1) that is not adjacent to x, then
the graph G contains a sun.

Proof. (a) First, the set {qs, qs+1, . . . , qt} contains at least 3 vertices. Next, due
to the property of the qis, Lemma 5 implies that the subgraph of G induced by
the vertices qs, qs+1, . . . , qt is chordal. In light of Lemma 1 and of the fact that
the vertex x is adjacent to qs and qt only, and each vertex pi (s + 1 ≤ i ≤ t) is
adjacent to qi−1 and qi only, we need only prove that the vertices qs, qs+1, . . . , qt

induce a cycle qsqs+1 · · · qt in G.
We begin by showing that the vertex qs is adjacent to at least one vertex

in {qs, qs+1, . . . , qt}; if it were not, then the vertices x, qs, ps+1, and the ver-
tices of a chordless path from qs+1 to qt in the (connected) graph induced by
{qs+1, ps+2, qs+2, . . . , pt, qt} would induce a hole in G, a contradiction. If q� is
that vertex, i.e., qsq� ∈ E(G), then qsqt ∈ E(G): this is trivially true if q� = qt; if
q� �= qt, then because the graph G contains the path xqtptqt−1 · · · p�+1q�, where
� ≤ t−1, with chords only between qis, and the vertex qs is adjacent to x and q�

but is not adjacent to any of pt, pt−1, . . . , p�+1, Lemma 4 applies, implying that
qs is adjacent to qt in G. From this fact and from the property of the vertices
qi (s ≤ i < t) that if qi is adjacent to qj , where i < j ≤ t, then qi is adjacent
to each of the vertices qi+1, qi+2, . . . , qj , we conclude that qs is adjacent to each
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of the vertices qs+1, qs+2, . . . , qt; this in turn enables us to additionally show (by
induction on i) that qiqi+1 ∈ E(G) for all i = s+1, s+2, . . . , t−1. For the basis
step, we note that if qs+1qs+2 /∈ E(G), then the vertices qs, ps+1, qs+1, ps+2, qs+2

induce a house in G with vertex ps+1 at its top, a contradiction. For the inductive
step, assume that qj−1qj ∈ E(G) where j ≥ s+ 2. We show that qjqj+1 ∈ E(G);
if not, then the vertices qs, qj−1, qj , pj+1, qj+1 induce a house in G with ver-
tex qj−1 at its top, a contradiction. Our inductive proof is complete implying
that qiqi+1 ∈ E(G) for all i = s+1, s+2, . . . , t−1; then, because qsqs+1 ∈ E(G)
and qsqt ∈ E(G), we have that the vertices qs, qs+1, . . . , qt indeed induce a cy-
cle qsqs+1 · · · qt in G.
(b) Since the vertex x is adjacent to qs and qt, and is not adjacent to a vertex in
{qs+1, qs+1, . . . , qt−1}, we can find vertices q�, qr, where s ≤ � < r ≤ t, such that x
is adjacent to q� and qr but is not adjacent to any of q�+1, q�+2, . . . , qr−1. Then, if
for each vertex qi (� ≤ i ≤ r−1), the fact that qi is adjacent to a vertex qj , where
i < j ≤ r, implies that qi is adjacent to each of the vertices qi+1, qi+2, . . . , qj ,
Lemma 6 (case (a)) applies, implying that the vertices x, q�, p�+1, q�+1, . . . , pr, qr

induce a sun in G. Suppose now that there exists a vertex qi (� ≤ i ≤ r−1) that
is adjacent to a vertex qj and is not adjacent to a vertex qj′ , where i < j′ < j ≤ r.
Let us collect all such vertices in a (non-empty) set S.

For each vertex qi in S (which is adjacent, say, to qji where i + 1 < ji),
Lemma 4 implies that qi is adjacent to qi+1; note that G is HHD-free and contains
the path pi+1qi+1 · · · pjiqji , and qi is adjacent to pi+1 and qji . Then, for each
vertex qi ∈ S, we can find indices �i and ri where i < �i < ri ≤ r, such
that qi is adjacent to q�i and qri but is not adjacent to any of the vertices
q�i+1, q�i+2, . . . , qri−1, and the difference ri − �i is minimized. Let qı̂ be a vertex
in S such that rı̂ − �ı̂ = minqi∈S{ri − �i}; the minimality of qı̂ implies that for
i = �ı̂, �ı̂ + 1, . . . , rı̂ − 1, if the vertex qi is adjacent to qj (where i < j ≤ rı̂) then
it is adjacent to each of the vertices qi+1, qi+2, . . . , qj . This, the fact that the
graph G contains the path q�ı̂

p�ı̂+1q�ı̂+1 · · · prı̂
qrı̂

, where rı̂ ≥ �ı̂ + 2, with chords
only between qis, and the fact that vertex qı̂ is adjacent to q�ı̂

and qrı̂
but is not

adjacent to any of q�ı̂+1, q�ı̂+2, . . . , qrı̂−1 imply that Lemma 6 (case (a)) applies,
and therefore, the vertices qı̂, q�ı̂

, p�ı̂+1, q�ı̂+1, . . . , prı̂
, qrı̂

induce a sun in G.

3 The Algorithm

The recognition algorithm takes advantage of Theorem 1. We start by checking
whether the input graph G is HHD-free. If it is not, then clearly G is not HHDS-
free. Otherwise, for each vertex v of G, we construct the auxiliary graph Ĝv

and check whether v is the top of a house or a building in Ĝv; if this is so for
any vertex v, then G is not HHDS-free. We note that in order to check whether
v is the top of a house or a building in Ĝv, we can use the algorithms in [12]
(Algorithm High) and [14] (Algorithm Not-in-HHB) which for a graph H and a
vertex x return true if and only if the vertex x belongs to a hole or is the top
of a house or a building in H ; Lemma 7 establishes that v does not belong to a
hole in Ĝv if G is HHD-free.
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Lemma 7. Let G be an HHD-free graph, v a vertex of G, and Ĝv be the auxiliary
graph defined in Section 2 with respect to v. Then, the vertex v does not belong
to a hole in the graph Ĝv.

Formally, the recognition algorithm works as follows:

Algorithm Rec-HHDS-free

1. if G is not HHD-free
then return “G is not HHDS-free”;

2. for each vertex v of G do
2.1 construct the auxiliary graph Ĝv;
2.2 if v is the top of a house or a building in Ĝv

then return “G is not HHDS-free”; {G contains a sun}
3. return “G is HHDS-free”.

The correctness of the algorithm follows from Theorem 1.

Time and Space Complexity. Let n and m be the number of vertices and
edges of the input graph G. Step 1 can be executed in O(min{nmα(n), nm +
n2 log n}) time and O(n + m) space [14]. In Step 2, the construction of the
auxiliary graph Ĝv can be done in O(nm) time and requires O(n2) space. Then,
we check whether vertex v is the top of a house or a building by means of the
Algorithm Not-in-HHB [14], which for a graph on N vertices and M edges takes
O(N + min{Mα(N), M + N log N}) time and O(N + M) space; since Ĝv has
n vertices and O(n2) edges, Substep 2.2 takes O(n2) time and space. Thus, the
entire execution of Step 2 for all the vertices of G takes O(n2m) time and O(n2)
space. Step 3 takes constant time and space.

Therefore, we obtain the following theorem.

Theorem 2. Let G be an undirected graph on n vertices and m edges. Then,
there exists an algorithm for determining whether G is an HHDS-free graph in
O(n2m) time and O(n2) space.

4 Concluding Remarks

We have presented a recognition algorithm for the class of HHDS-free graphs
running in O(n2m) time with O(n2) space. To the best of our knowledge, it is the
first polynomial-time algorithm for recognizing the class of HHDS-free graphs.
The proposed recognition algorithm can be augmented to provide a certificate
(an induced house, hole, domino, or sun) in linear additional time and space
whenever it decides that the input graph is not HHDS-free: for a house, hole, or
domino, see [15]; for a sun, we take advantage of the proof of Theorem 1, which
is constructive. Finally, the use of P3-edges enables us to recognize {house, hole,
domino, 3-sun}-free graphs in O(n2m) time and O(n) space.
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Dujmović, Vida 175

Eberhard, Felix 127
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