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Abstract. Automatically finding interesting, novel or surprising patterns in 
time series data is useful in several applications, such as fault diagnosis and 
fraud detection. In this paper, we extend the notion of distance-based outliers to 
time series data and propose two algorithms to detect both global and local 
outliers in time series data. We illustrate these algorithms on some real datasets. 
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1   Introduction 

Analyzing a sequence of values is an important task in many practical applications. 
For example, the sequence of observed values of the parameters of a chemical process 
is analyzed to understand output quality and for process diagnosis. Telemetry data 
sent by a system onboard a satellite is analyzed to evaluate the system's health. The 
trades performed by a trader in a stock exchange can be analyzed to understand 
his/her financial performance in the market.  

In such applications, the sequence to be analyzed consists of an ordered list of 
records (points). If each record consists of a single field then the sequence is 
univariate; otherwise it is multivariate. The ordering of records within a sequence is 
often based on a timestamp, in which case the sequence can be considered as a time 
series. An important question during the analysis of the sequence is: how do we 
identify interesting, novel or anomalous subsequences in the sequence? Note that 
identifying such subsequences is different from identifying single outlier points. We 
now need to define the meaning of terms such as interesting or anomalous. In the 
simplest case, extreme (high or low) values occurring in the sequence can be found 
out using standard statistical techniques for outlier detection in a time-series. 
However, in practice, we are often interested in more complex kinds of interesting or 
anomalous regions in the sequence. For example, (1) contiguous subsequences; or (2) 
noncontiguous subsequence (list of points not necessarily contiguous) etc. In this 
paper, we focus on the problem of automatically identifying contiguous subsequences 
of a given sequence, which are interesting or anomalous in a well-defined sense. 

2   Related Work 

Basic statistical techniques for outlier detection, including in time series data, are 
discussed in [1]. The notion of distance-based outliers in (non time series) datasets was 
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proposed in [4]. A related notion was proposed in [6]. This paper extends the approach 
in [4] to time series data. Several other techniques for novelty detection have been 
proposed [2], [7], [3], [5] for identifying interesting subsequences in a time series. See 
also H. Geirsson et al [http://hraun.vedur.is/ja/skyrslur/contgps/ node8.html]. 

3   Distance-Based Outliers Detection in Sequences 

3.1   Outlier Subsequence 

An n-sequence (or a sequence of length n) is an ordered finite sequence s = <s0, s1, …, 
sn-1> of n ≥ 1 elements. Elements of a multivariate (or multidimensional) sequence are 
tuples (or vectors). An m-sequence <x0, x1, …, xm-1> is a (contiguous) subsequence of 
another sequence s = <s0, s1, …, sn-1> if x0 = si, x1 = si+1, ..., xm-1 = si+m-1, for some 0 ≤ i 
≤ n – m i.e., a subsequence is a contiguous part of the original sequence; e.g., <2, 8, 
5> is a subsequence of sequence <8,7,2,8,5,4,4>. We consider the problem of 
detection of interesting or anomalous subsequences in a given single sequence. For 
this, we adapt the notion of a distance-based outlier in a set of points, proposed in [4], 
to distance-based outlier subsequence of a given sequence.  

Let d(xi, xj) denote the function to compute the distance between two elements xi 
and xj of a sequence; e.g., d could be Euclidean, Mahanttan or general Minkowski 
distance. There are several ways in which the distance d(α, β) between two m-
sequences α = <x0, x1, …, xm-1> and β = <y0, y1, …, ym-1> can be computed. For 
example, the Minkowski distance is defined as  
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For example, for α = <7, 2, 3>, β = <3, 0, 5>, d(x2, y2) = d(2, 0) = 2, whereas  
d(α, β) = [(7 – 3)2 + (2 – 0)2 + (3 – 5)2]1/2 = 4.9. When each xi and yi is either 0 or 1, 
p = 1 and when d(x, y) = XOR(x, y), the above distance d reduces to usual Hamming 
distance between two Boolean m-sequences. 

3.2   Algorithm 1 

We now adapt Knorr's notion of distance-based outliers in a set of points to distance-
based outlier m-subsequences of a given sequence. Let s = <s0, s1, …, sn-1> be a given 
n-sequence. Let m ≥ 1 be a given integer. Let Ω(s, m) denote the set of all possible m-
subsequences of s; e.g., Ω(<8,7,2,8,5,4,4>,4) = {<8,7,2,8>, <7,2,8,5>, <2,8,5,4>, 
<8,5,4,4>}. Clearly, Ω(s, m) = n – m + 1. Knorr [4] proposed a distance-based 
definition of an outlier in a given set S of points: a point x ∈ S is an outlier if at least 
p% points in S are at a distance > D from x, where p and D are user specified positive 
real numbers. We propose a simple generalization of this definition to adapt it for 
outlier subsequences of a given sequence.  

Definition 1. Let s = <s0, s1, …, sn-1> be a given n-sequence. Let m be a given integer 
such that 0 ≤ m ≤ n-1. Let 0 ≤ p ≤ 1 and D ≥  0 be two given real numbers. An  
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m-subsequence a = <x0, x1, …, xm-1> of s is a (p, m, D)-outlier in s if at least p% of 
the m-subsequences in Ω(s, m) are at a distance > D from a. 

Consider a 19-sequence s = <2, 5, 6, 2, 3, 1, 2, 9, 9, 9, 1, 2, 2, 1, 3, 1, 0, 2, 1>. For 
m = 3, Ω(s, m) contains 19 – 3 + 1 = 17 3-subsequences. Suppose D = 10.0 and p = 
60%. For the 3-subsequence <2, 3, 1> starting at 4th position, there is only 1 
subsequence in Ω(s, m) at a distance > 10.0 (using Euclidean distance); thus the 
fraction of 3-subsequences at a distance > 10.0 from this subsequence is 1/17 = 5.9%. 
Since 5.9 < 60.0, this 3-subsequence is not an outlier. For the subsequence <9, 9, 9>, 
there are 11 subsequences (i.e., 11/17 = 64.7%) which are at a distance > 10.0 from it. 
Thus this 3-subsequence is an outlier, for the given values of p and D.  

Knorr [4] contains an algorithm to find a set of distance-based outliers from a 
given set of points. We present below a simple generalization of the core of Knorr's 
algorithm to detect outlier m-subsequences of a given sequence.  
 
// Modified Knorr's algorithm for distance-based outlier m- 
// subsequences; m ≥ 1. 0 ≤ p ≤ 1 = fraction of m-subsequences  
// at distance > D from an outlier; D = a distance value 
algorithm knorr_seq 
input sequence s of n elements; 
input m, p, D;  
M := n – m + 1; // no. of m-subsequences of s 
for (i = 0; i <= (n - m); ) { 
    for (j = 0, count = 0; j <= n - m; j++) { 
        d := d(<si,si+1,...,si+m-1>, <sj,sj+1,...,sj+m-1>); 

      if ( d > D ) then count++; end if; 
  } // end for 
  if ( count/total > p ) then { 
      printf(“Outlier sub-sequence from %d to %d\n”,i,i+m-1);  
      i = i + m;  
  } else i++; end if; 

} // end for 
 
Essentially, the algorithm compares every candidate m-subsequence a = <si, si+1, ..., 

si+m-1> with every other m-subsequence b = <sj, sj+1, ..., sj+m-1>, incrementing count if 
d(a, b) > D. Thus, for every candidate m-subsequence of the given sequence, the 
algorithm counts the number of m-subsequence that are at a distance > D from it. If 
this number exceeds the specified limit, that m-subsequence is declared as an outlier. 
The user has to provide values for the parameters p, D and m. Our implementation 
offers a choice of various distance measures to the user (e.g., Manhattan, Euclidean, 
etc.). Clearly, the complexity of the algorithm is O(n2) where n = size of the given 
sequence. For correctness, we state the following without proof: 

Proposition 2. Every m-subsequence declared as an outlier by the algorithm 
knorr_seq satisfies Definition 1. Conversely, every m-subsequence that satisfies 
Definition 1 is declared as an outlier by the algorithm, provided no subsequence 
overlapping with it has already been declared an outlier. 

This algorithm will not generate overlapping outlier subsequences, due to the jump in 
the value of i (statement i = i + m) after an outlier sub-sequence is found. Fig. 1 
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shows the daily quantity of a commodity traded on a stock exchange for 52 days. The 
above algorithm, called with m = 4, p = 0.40 (40%), D = 150000.0 and using 
Euclidean distance, reports the following two 4-subsequences as outliers: 43 … 46 
and 47 … 50. This is reasonable, since the volume is drastically different in these 
periods compared to the other days. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Daily trading volume for a period of 52 days 

3.2   Algorithm 2 

Consider the time series in Fig. 2. The subsequence from 100 to 124, consisting of 
two cycles that are much shorter than their neighbours, is naturally an interesting. 
However, it is difficult to find it as an outlier using the above algorithm, since the 
values in this region occur as part of many other cycles. This is an example of a local 
outlier, which is an outlier only in relation to a few of its immediate (left and right) 
neighbouring subsequences. In contrast, Definition 1 considered the entire sequence 
and hence the resulting outliers can be called global outliers. 

Definition 3. Let s be a given sequence. Let α = <si, si+1, …, sj> be a given 
subsequence of s. Let 0 ≤ m ≤ n-1, k ≥ 1 be given integers. The set ΨL(m, k, α) of k 
left neighbours of α contains the following k m-subsequences {<si-m-k+1,…,si-1>,…,<si-

m, si-k>}. The set ΨR(m, k, α) of k right neighbours of α contains the following k m-
subsequences {<sj+1,…,sj+m>,…,<sj+k, sj+k+m>}. We define the set of neighbours of α 
as Ψ(m, k, α) = ΨL(m, k, α) ∪ ΨR(m, k, α).  

For s = <3,5,4,6,8,9,5,5,4,6,3,5,6,2,5>, α = <5,5,4>, m = 3, k = 4, the set of 4 left 
neighbours of α is ΨL(3, 4, α) = {<6,8,9>, <4,6,8>, <5,4,6>, <3,5,4>}; the set of 4 
right neighbours of α is ΨR(3, 4, α) = {<6,3,5>, <3,5,6>, <5,6,2>, <6,2,5>}. 

Definition 4. Let s be a given sequence. Let 0 ≤ m ≤ n-1, k ≥ 1 be given integers. Let 
0 ≤ p ≤ 1 and D ≥  0 be two given real numbers. An m-subsequence a of s is a (p, m, 
D, k)-left-local-outlier (or, simply left outlier) in s if at least p% of the m-
subsequences in ΨL(m, k, a) are at a distance > D from a. Right outlier and local 
outlier are defined similarly using ΨR(m, k, a) and Ψ(m, k, a).  
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Fig. 2. Average number of sunspots per year  

We now modify the algorithm to detect left local outliers in a given sequence; 
algorithms to detect right outliers and local outliers are similar. The algorithm counts 
how many of the k left neighbours of a particular candidate m-subsequence a are at a 
distance > D from it. If this number is > M, where M is given by the user, then it 
declares a as a left outlier. Our implementation offers a choice of various distance 
measures to the user (e.g., Manhattan, Euclidean etc.). The complexity of the 
algorithm is O(k*n) where n = size of the given sequence and k = the no. of 
neighbours to be checked on the left side. For correctness, we state the following 
without proof: 

Proposition 5. Every m-subsequence declared as a left outlier by the algorithm 
knorr_seq2 satisfies Definition 4. Conversely, every m-subsequence that satisfies 
Definition 4 is declared as a left outlier by the algorithm, provided no subsequence 
overlapping with it has already been declared a left outlier. 
 
algorithm knorr_seq2 
input sequence s of n elements; 
input m, k, M, D;  
for (i = 0; i <= (ps->N - m); ) { 
   for (j=i-m-k+1,count=0; j >= 0 && j+m-1 < i; j++) { 
        d := d(<si,si+1,...,si+m-1>, <sj,sj+1,...,sj+m-1>); 
        if ( d > D ) then count++; endif; 
   } // end for 
   if ( count > M ) then { 
       printf("Left outlier: start=%d end=%d\n",i,i+m-1); 
       i = i + m; 
   } else 
       i++; 
} // end for 

We have also extended the approach to detect inliers, such as those in Fig. 2.  

4   Conclusions and Further Work 

We proposed an extension of the distance-based outlier detection approach of [4] to 
detect interesting subsequences of a given sequence. The essential idea is that 
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interesting subsequences can be modeled as outliers in the distance-based framework. 
We presented two algorithms to detect both global and local outliers in a given time-
series data. An implementation provides a choice of several variants of these 
algorithms, along with different types of distance (or similarity) measures. We 
demonstrated the use of these algorithms to detect some interesting subsequences in 
some example datasets. The first limitation of this approach is that the user has to 
provide values for 3-4 parameters, which requires some experimentation. We are 
looking at the use of machine-learning algorithms for automatically learning values 
for these parameters, from a given set of already known interesting subsequences. 
Also, the quadratic complexity makes the algorithms too slow for large time series 
datasets. We are looking at the use of some well known index structures to improve 
the efficiency. Though, in principle, our techniques should work well even with 
multidimensional time series, we need to validate this on real-life time series. We are 
conducting several experiments to compare our results with those reported by other 
well-known algorithms for novelty detection in time series. 
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