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Abstract. Activity Diagram is an important component of the set of
diagrams used in UML. The OMG document on UML 2.0 proposes a
Petri net based semantics for Activity Diagrams. While Petri net based
approach is useful and interesting, it does not exploit the underlying
inherent synchronous concepts of activity diagrams. The latter can be
effectively utilized for validated code generation and verification. In this
paper, we shall capture activity diagrams in synchronous language frame-
work to arrive at executional models which will be useful in model based
design of software. This also enables validated code generation using
code generation mechanisms of synchronous language environments such
as Esterel and its programming environments. Further, the framework
leads to scalable verification methods.

1 Introduction

Activity Diagram is one of the important diagrams in UML. It is used to model
sequence of actions to capture the process flow actions and its results. It fo-
cuses on the work performed in the implementation of an operation (a method),
and the activities in a use case instance or in an object. In UML 2.0, activity
diagrams support concurrent control and data flow, loops, conditionals and ex-
ception handling. The two basic entities are Actions and Activities. An Action
is the fundamental unit of executable functionality and an activity provides the
coordinated sequencing of subordinate units whose individual elements are ac-
tions. This coordination is expressed as a graph of ActivityNodes connected by
ActivityEdges. Since there are actions that invoke activities, that may be nested
and possibly form invocation hierarchies invoking other activities (ultimately re-
solving to individual atomic actions). The OMG document [6] classifies activity
diagrams as Fundamental, Basic, Intermediate, Structured, Complete in terms
of complexity in the process flow. In this paper, we are concerned with the In-
termediate Level of Activity Diagrams that include control and data flow and
decisions. A simple activity diagram describing the order processing and account
is shown in Fig. 1.
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Fig. 1. Simple Activity Diagram

Although the OMG document [6] provides an intuitive semantics of Activity
Diagrams, it lacks a formal semantics required for analysis and automatic code
generation. Hence, in the recent past there has been a lot of interest in giving a
formal semantics to Activity Diagrams.

Most of the works on the semantics of UML activities in general have been
based on Petri nets. Two of the significant efforts toward formalization of UML
activities are [7] and [8]. Eshuis [7] proposes the semantics at the following two
levels :Requirement Level and Implementation Level. The first level is based on
Statechart like semantics and is transformed into a transition system for model
checking by NuSMV. The second level is based on STATEMATE semantics of
statecharts extended with properties to handle data. It is to be noted that the
implementation semantics has not been obtained as a refinement of the require-
ment level semantics. The semantics also covers activity charts of UML 1.5 but
not of activity diagrams of UML 2.01. Storrle [8] envisages a semantics by map-
ping activities into procedural Petri nets, which excludes data type annotations
but includes control flow. He has defined mappings to procedural Petri nets to
prevent multiple calls which otherwise would result in infinite nets.

In this paper, we propose a reactive formalism of Activity Diagrams of UML
2.0 description; for description purpose we use Esterel language. Our approach
combines the requirement level and implementation level semantics. Further the
notion of procedure call transitions as used in activity diagrams are captured
nicely through the ‘‘run module’’ construct and one can specify the number
of incarnations of the same module when called multiple times. Since it is based
on Esterel, that has efficient code generation tools, the transformations can be
used to realize a system directly from the model. Thus in our approach, we
can not only reason about activity diagrams but also generate validated code
automatically.

2 Activity Diagrams: Informal Interpretation

An action is the fundamental unit of executable functionality in an activity [6].
The execution of an action represents some transformation or processing in the

1 It should be pointed out that UML 2.0 is a significantly re-engineered version of
UML 1.5, particularly in the context of activity diagrams.
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modeled system, which could be a computer system or a process. An action may
have sets of incoming and outgoing activity edges that specify control flow and
data flow from and to other nodes. An action will not begin execution until
all of its input conditions are satisfied. The completion of the execution of an
action may enable the execution of a set of successor nodes and actions that
take their inputs from the outputs of the action. The sequencing of actions are
controlled by control edges and object flow edges within activities, which carry
control and object tokens respectively. An action can only begin execution when
all incoming control tokens are present and all input pins have object tokens. An
action execution represents the run-time behavior of executing an action within a
specific activity execution. When the execution of an action is complete, it offers
tokens in its outgoing control edges and output pins, where they are accessible
to other actions.

3 Synchronous Framework for Activity Diagrams

In this section, we capture activity diagrams in a synchronous framework. Syn-
chronous framework is based on the perfect synchrony hypothesis: the system
reacts instantaneously to events producing outputs along with the input com-
piling away the control commands. Synchronous languages are based on this
hypothesis and model reactive systems effectively and have a sound and com-
plete semantics. One of the distinct advantages of using synchronous languages
for specifying reactive systems is that the description of the system analyzed or
validated is very close to implementation. One of the oldest languages in the
family of synchronous languages Esterel has good developmental facilities such
as efficient code generating compilers, verifiers etc. For these reasons, we have
chosen Esterel as the underlying language for description of activity diagrams.
A brief characteristics of Esterel is given below.

3.1 Esterel

The basic object of Esterel without value passing, referred to as PURE Esterel,
is the signal. Signals are used for communication with the environment as well
as for internal communication. The programming unit is the module. A module
has an interface that defines its input and output signals and a body that is an
executable statement:

module M:
input I1, I2;
output 01, 02;
input relations
statement

end module

At execution time, a module is activated by repeatedly giving it an input
event consisting of a possibly empty set of input signals assumed to be present
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and satisfying the input relations. The module reacts by executing its body and
outputs the emitted output signals. We assume that the reaction is instantaneous
or perfectly synchronous in the sense that the outputs are produced in no time.
Hence, all necessary computations are also done in no time. The only statements
that consume time are the ones explicitly requested to do so. The reaction is also
required to be deterministic: for any state of the program and any input event,
there is exactly one possible output event. In perfectly synchronous languages,
a reaction is also called an instant. Instantiation of a module is done through
the run statement. For instance, run exchange [X1/E1, ... Xn/En] copies the
body of the module exchange in place of the run command after renaming all
occurrences of the signals X1, ... Xn by E1, ... En respectively; in other words,
the parameters are bound by capture.

Asynchronous tasks are those tasks which do take time; that is, the time
between initiation and completion is observable. In the terminology of Esterel,
this can be interpreted to mean that there will be at least one instant between
initiation and completion. The exec primitive provides the interface between
Esterel modules and asynchronous tasks. An asynchronous task is declared by
the statement “task task id (f par lst) return signal nm (type);” where task id
is the name of the task, f par lst gives the list of formal parameters (reference
or value) and the signal returned by the task is given by the signal nm with
its type after the keyword return Instantiation of the task is done through the
primitive exec. For example, the above task can be instantiated from an Esterel
program as “exec task id (a par lst);”.

A typical task declaration appears as “task ROBOT move (ip, fp) return
complete” and the call appears as “exec ROBOT move (x,y)”. The execution
of this statement in some process starts task ROBOT move and awaits for the
return signal complete for it to proceed further. In other words, exec requests
the environment to start the task and then waits for the return signal.

4 Synchronous Interpretation of Basic Activity Diagrams

The synchronous model for the Activity Diagrams is represented as a collection
of transformation rules for each construct of the Activity Diagrams. A basic
ActivityNode is modeled by an Esterel module named after the node. The in-
vocation of the activity is modeled by instantiating the module using the run
module construct.

A basic ActivityNode can invoke an asynchronous task which can handle sys-
tem specific functions and can be modeled by an Esterel task statement such as
exec taskA ()() return ExitA, where taskA is the external process perform-
ing the actual action written in the host language. The completion of the task
is signaled by emitting the signal ExitA referred as a return signal. A return
signal cannot be internally emitted by the program. In our model we ignore the
external action for the purpose of simplicity.

Each activity node has the following set of signals associated with it.

– EntryS is the signal emitted when a particular activity node is entered.
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– InS is the signal emitted when an action in a particular activity node is
being performed.

– ExitS is the signal emitted when a particular activity node is completed.

We also assume that there is a root activity node which contains and controls
the sequencing of the activity nodes through the activity edges. In the exam-
ple shown in Fig. 2, the module simpleActivity performs the task of passing
control tokens from the activity sendPayment to the activity receivePayment
and is the the root activity. The activities sendPayment, receivePayment and
simpleActivity in the above example, can be interpreted through the Esterel
fragments shown in the Fig.2.

module receivePayment

      %do something

end module

output InreceivePayment;
output ExitreceivePayment;
      emit InreceivePayment;

emit ExitreceivePayment

SimpleActivity

Send Payment Receive Payment

module sendPayment

     %do something
     emit ExitsendPayment
end module

output InsendPayment;
output ExitsendPayment;
     emit InsendPayment;

module simpleActivity
inputoutput ExitsendPayment;
     run sendPayment;
     await immediate ExitsendPayment;
     run receivePayment
end module

Fig. 2. Simple node

Merge Node: A merge node (cf. Fig. 3) is a control node that brings together
multiple alternate flows. It is not used to synchronize concurrent flows but to
accept one among alternate flows. It has multiple incoming edges and a single
outgoing edge. It can be described as follows

module mergeNode
run A % the module A implements activity A
||
run B % the module B implements activity B
||
await ExitA;

run C % The module C implements activity C
||
await ExitB

run C % The module C implements activity C

end module



Validated Code Generation for Activity Diagrams 513

MergeNode

A

C

B

Fig. 3. Merge Node

decisionNode

A

B

C

v

u

e

Fig. 4. Decision Node

Here the activities A and B are started concurrently, but whichever activity
completes earlier, starts the activity C. If activity A and B completes together,
then two instances of C would be running at the same time. This interpretation
is in line with the recent OMG document [6].

Decision Node: A decision node (cf. Fig. 4) is a control node that chooses
between the outgoing flows. It has one incoming edge and multiple outgoing
edges. It can be described by the following Esterel fragment.

module decisionNode
var e in

run A;
if e = u

run B; % e is the guard which if u then run B
else if e = v

run C; % e is the guard which if v then run C
end

end
end module

Here after the activity A completes, the control passes to activity B or C de-
pending on the guard condition e being equal to u or v respectively.

ForkJoin Node: A forkJoin node (cf. Fig. 5) is a control node that splits a flow
into multiple concurrent flows. It has one incoming edge and multiple outgoing
edges. Tokens arriving at a fork node are duplicated across the outgoing edges.
Tokens offered by the incoming edge are all offered to the outgoing edges.

forkjoinNode

A

B C

D

Fig. 5. Fork Join Node

R

A B

(2)

Fig. 6. Reentrant Node
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The forking and joining of activities can be described by the following Esterel
fragment.

module forkJoinNode

run A % run activity A
[
run B % run activity B
||
run C % run activity C

]
run D % run activity D

end module

Here after the activity A completes the activities B and C are started concur-
rently. Once both of B and C are complete, D is started. If concurrent activities
are not modeled carefully this may lead to problem. Let us consider the case
as shown in the Fig. 6. Here completion of A forks A once again with B. Thus,
a possible run of the system is A → AB → ABB → · · ·. That is there can be
an infinite incarnation of B. This causes problem with verification because of
unboundedness of states.

If we need to consider finite number of instances, we can use the parallel
construct in Esterel to specify a finite number of concurrent activities. This is
an advantage of the model, where one can specify the number of instances of
the same activity which could be forked simultaneously. This closely maps to
Workflow Management Systems, where one would specify the maximum number
of such concurrent instances of an activity. The Esterel model of the activity
diagram shown in Fig. 6 is shown below. The module R is the coordinating
module for A and B. In this model we assume that there could be at most two
instances of activity B as shown by the two modules named B1 and B2 in the
code. In Fig.6 the number shown in bracket indicates the maximum possible
number of instances of activity B. Here we assume calling external tasks as final
activities for ActivityNodes A and B.

module A:
output InA;
return ExitA;
task activityA ()(); % external asynchronous task declaration

exec activityA()() return ExitA % external action
||
abort

sustain InA; % indicates module A is active
when ExitA

end module

module B:
return ExitB;
output InB;
task activityB ()();% external asynchronous task declaration

exec activityB()() return ExitB % external action
||
abort

sustain InB;
when ExitB
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end module

module R:
return ExitA,ExitB1,ExitB2;
input InA, InB1,InB2;
task activityA ()();% external asynchronous task
task activityB ()();% external asynchronous task
input start;
signal b1b2, free in

loop
await [start or ExitA];
present free then [

abort
run A

when ExitA
]

end
end

||
loop

present [not InB1 ] then % First instance of B
[

await ExitA;
run B1/B[signal ExitB1/ExitB,InB1/InB] % Signal renaming

]
else [ present not InB2 then

[ % Second instance of B
await ExitA;
emit b1b2;
run B2/B[signal ExitB2/ExitB,InB2/InB] %Signal renaming

]
else [

await [ExitB1 or ExitB2];
emit start
]

end

]
end present

end
||
loop

await start;
abort

sustain free % free is on when B1 is active but B2 is dormant
when b1b2

end
end
end module

Since each run B produces a separate instance of the task associated with
the activity B, several simultaneous instances of activity associated with B can
exist. In this case one should specify the number of instances of such activities.
The model here shows capability of running two identical activities concurrently.

Modeling Exception: Fig. 7, shows the exception in an activity diagram.
The node which is aborted due to the exception is called the protected node
and the receiving node is the exception handler node. An exception handler
is an element that specifies a body to execute in case the specified exception
occurs during the execution of the protected node. In Fig. 7, Activity Node

B

Cancel 
Order

cancelOrderEvent

Process Order

Protected Node

Exception Handler

Fig. 7. Exception Node
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ProcessOrder is the protected node and CancelOrder is the exception handler
and CancelOrderEvent is the exception input. This can be modeled in Esterel
as shown below.

module B
input cancelOrderEvent, ExitProcessOrder;
trap T in

run ProcessOrder
||
abort

loop
await cancelOrderEvent; % Watch exception event
exit T

end
when ExitProcessOrder

handle T do
run cancelOrder % Exception Handler

end
end

Here the activity ProcessOrder is preempted and the the activity cancelOrder
is executed on raising the exception event cancelOrderEvent.

4.1 Activity with Data and Nesting

In many instances one ActivityNode may need to pass a data to another Ac-
tivityNode for processing by the Activity performed at that ActivityNode. For
example if P and Q are two ActivityNodes and P is required send a data X to
Q. as shown in Fig.8. This can be modeled using the mechanism shown below.
The ExitS signal emitted by the activity node S is used for synchronizing the
fact that the data token is available at the end of activity P.
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Fig. 8. Object node with data
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Fig. 9. Activity with Nesting

module main
inputoutput X:type % X is the data which is passed between
% activities
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run P(X)
await immediate exitP
run Q(X)

end module
module P
output X:type
...

emit ExitP
end module

module Q
input X:type
task QActivity()(); % declaration of asynchronous task
...

exec task QActivity(X) return ExitQActivity;
...
end module

In our model, Activity Diagrams with nested call can be modeled naturally.
Let us assume that one activity Y is nested in another activity X as a call Y
action in the activityNode C of X shown in Fig. 9. This can be modeled by using
the run Y construct of Esterel. The following Esterel fragment describes the
nested call of the Fig.9.

module X module Y
... ....

run A run P;
|| if e = u then
run B; run Q
run Y else if e = v then
... run R
... end

end end

4.2 Communication in Activity Diagrams

The notion of communication between two Activity Diagrams can be nicely mod-
eled in the Communicating Reactive Processes (CRP) [3] framework. The CRP
model consists of network M1||M2||..Mn of Esterel modules, each having its own
inputs and outputs and its own notion of instants. The network is asynchronous
and the nodes communicate though synchronous channels. In this model, each
Mi is an Activity Diagram each of which evolve locally with its own input and
output and mutually independent notions of time [3]. Signals may be sent or
received in activity diagrams through channels and is denoted by the common
send and receive nodes. As an implementation model, one can think of an asyn-
chronous layer (task) that handles rendezvous by providing the link between
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the asynchronous network events and node reactive events. The shared task can
be called as channel. Fig. 10, shows a simple example of an activity diagram
showning two component activities PrintServer and PrintClient communicating
data (as files) through a channel. The CRP code for the same is shown below.

module PrintServer
input channel printq from PrintClient : FILE % CRP channel
......

receive(printq,file) % send data file to printq
.....
end module
module PrintClient
output channel printq from PrintServer :FILE % CRP channel
...

send(printq,file) % receive data file from printq
....
end module

The send and receive [1] are communication primitives realizing the commu-
nication rendezvous between two locally synchronous programs. The primitive
send blocks until sending data on the named channel succeeds and the primitive
receive blocks until a communication succeeds on the named channel and the
value assigned to the variable.

5 Simulation and Code Generation

Above we have shown how activity diagrams can be transformed into Esterel
model. We are augmenting our previous work [4] to translate them automati-
cally. The Esterel model can be simulated by using the xes interface. Xes is the
simulator freely available along with the Esterel distribution. The simulator can
be generated by compiling the Esterel program with the xes library. The sim-
ulation gives the user a clear picture of the execution of the activity diagrams
and checking conformance to requirement is easy. We are also building simula-
tors directly in the domain of input activity diagrams whereby one can see the
simulation graphically.

5.1 Code Generation

There are two orthogonal levels of semantics, both indispensable: the intuitive
level, where semantics must be natural and easy to understand, and the formal
level, where the semantics is rigorously defined and fully non-ambiguous. Having
formal semantics for the languages also makes code generators much easier to
develop and verify. The translation process from Activity Diagrams to High
Level Language (HLL) code like C is based upon sound proven algorithms that
the Esterel code generators directly implement. By providing a formal semantics
based on the synchronous paradigm and Esterel, it is easy to build correct code
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ReceiveSend
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Fig. 10. Activities with communi-
cation
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Input/Output Handling Interface Functions

Fig. 11. Activity to Code Mapping

by construction, using Esterel-C/Java code generators. We assume Esterel-C
code generator for further discussion.

For actual execution of the code , the generated code must also be linked
with some extra layer of code that realizes the interface with the outside world
which detects input events, read data and realizes output events and send data.If
for example the module click should react to an input event, composed for
example of one input tokens I1 as shown in Fig. 11. The sequence will include
call to one automatically generated input C function click I I1() . This should
be followed by call to the reaction function by executing the C code click(),
followed by a call to output C function click O O1().

The automatic code building process is achieved using the rules described
above

1. Model the flow as an activity diagram model
2. Transform the model into the Esterel model following the rules as described

above. These can be automated by encoding them in a model transforming
algorithm similar to [4, 5].

3. Describe interfaces as required by the Esterel modules regarding inputs and
outputs.

4. The activities to be performed in the software exec tasks are to be encoded
in the host language and operating systems.

6 Verification

The above model captures the operational semantics of activity diagrams. How-
ever it is not amenable to formal verification using model checking due to pres-
ence of asynchronous tasks invoked by the exec statements. For the purpose
of verification, it is required to do a control abstraction of the Esterel models
whereby we only retain the labels where the task is to be created. The derived
model is thus converted into a pure Esterel program and one can perform a
constructive causality analysis using the Esterel compiler option of causal. This
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Fig. 12. Verification Screen Fig. 13. Output of Verification

model can then be converted into an automaton in BLIF (Berkley Logical In-
terchange Format) format, which is accepted by the Esterel model checker xeve.

As an example, let us consider the activity diagram given in Fig. 6 with the
following very simple safety property: when both B1 and B2 activities are going
on activity A cannot be started. It is to be noted here that B1 and B2 are two
incarnations of the activity B. This is assuming that there is no queuing of input.
This could be verified by xeve. The screen shots taken from xeve are included
here in Figs.12,13 for reference.

7 Conclusion and Future Work

We have explored the specification of operational semantics for the Activity Di-
agrams of UML 2.0 in a synchronous style. The semantics is good for simulation,
code generation and verification. Our initial experience shows that verification
of Activity Diagrams in this approach can be applied to moderately large exam-
ples. Further study is in progress. All the constructs can be expressed uniformly
in the constructs of Esterel. In this approach the external action done in the
activitynode can be easily modeled as an external task in the Esterel language.
The exception handling in Petri Nets as shown in [8] is rather difficult which
can be modeled easily in our framework. Presently, we are building a translator
which can translate the activity diagrams into Esterel models. We need to test
the effectiveness of the Esterel code generators in the context of real-life activity
diagrams.
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