
Computational Power of Symport/Antiport:
History, Advances, and Open Problems

Artiom Alhazov1,2, Rudolf Freund3, and Yurii Rogozhin2

1 Research Group on Mathematical Linguistics,
Rovira i Virgili University, Pl. Imperial Tàrraco 1, 43005 Tarragona, Spain

artiome.alhazov@estudiants.urv.es
2 Institute of Mathematics and Computer Science

of the Academy of Sciences of Moldova,
Str. Academiei 5, Chişinău, Moldova

{artiom, rogozhin}@math.md
3 Faculty of Informatics, Vienna University of Technology,

Favoritenstr. 9–11, A–1040 Vienna, Austria
rudi@emcc.at

Abstract. We first give a historical overview of the most important
results obtained in the area of P systems and tissue P systems with
symport/antiport rules, especially with respect to the development of
computational completeness results improving descriptional complexity
parameters. We consider the number of membranes (cells in tissue P
systems), the weight of the rules, and the number of objects. Then we
establish our newest results: P systems with only one membrane, symport
rules of weight three, and with only seven additional objects remaining in
the skin membrane at the end of a halting computation are computation-
ally complete; P systems with minimal cooperation, i.e., P systems with
symport/antiport rules of size one and P systems with symport rules
of weight two, are computationally complete with only two membranes
with only three and six, respectively, superfluous objects remaining in
the output membrane at the end of a halting computation.

1 Introduction

P systems with symport/antiport rules, i.e., P systems with pure communication
rules assigned to membranes, were introduced in [38]. Symport rules move objects
across a membrane together in one direction, whereas antiport rules move objects
across a membrane in opposite directions. These operations are very powerful,
i.e., P systems with symport/antiport rules have universal computational power
with only one membrane, e.g., see [15], [22], [17].

After establishing the necessary definitions, we first give a historical overview
of the most important results obtained in the area of P systems and tissue P sys-
tems with symport/antiport rules and review the development of computational
completeness results improving descriptional complexity parameters, especially
concerning the number of membranes and cells, respectively, and the weight of

R. Freund et al. (Eds.): WMC 2005, LNCS 3850, pp. 1–30, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 A. Alhazov, R. Freund, and Y. Rogozhin

the rules as well as the number of objects. Moreover, we establish our newest
results: first we prove that P systems with only one membrane and symport
rules of weight three can generate any Turing computable set of numbers with
only seven additional symbols remaining in the skin membrane at the end of a
halting computation, which improves the result of [21] where thirteen superflu-
ous symbols remained. Then we show that P systems with minimal cooperation,
i.e., P systems with symport/antiport rules of weight one and P systems with
symport rules of weight two, are computationally complete with only two mem-
branes modulo some initial segment. In P systems with symport/antiport rules
of weight one, only three superfluous objects remain in the output membrane at
the end of a halting computation, whereas in P systems with symport rules of
weight two six additional objects remain. For both variants, in [5] it has been
shown that two membranes are enough to obtain computational completeness
modulo a terminal alphabet; in this paper, we now show that the use of a termi-
nal alphabet can be avoided for the price of superfluous objects remaining in the
output membrane at the end of a halting computation. So far we were not able
to completely avoid these additional objects, hence, it remains as an interesting
question how to reduce their number.

2 Basic Notions and Definitions

For the basic elements of formal language theory needed in the following, we
refer to [45]. We just list a few notions and notations: N denotes the set of
natural numbers (i.e., of non-negative integers). V ∗ is the free monoid generated
by the alphabet V under the operation of concatenation and the empty string,
denoted by λ, as unit element; by NRE, NREG, and NFIN we denote the family
of recursively enumerable sets, regular sets, and finite sets of natural numbers,
respectively. For k ≥ 1, by NkRE we denote the family of recursively enumerable
sets of natural numbers excluding the initial segment 0 to k − 1. Equivalently,
NkRE = {k + L | L ∈ NRE}, where k + L = {k + n | n ∈ L}.

Let {a1, . . . , an} be an arbitrary alphabet; the number of occurrences of a
symbol ai in x is denoted by |x|ai

; the Parikh vector associated with x with
respect to a1, . . . , an is

(
|x|a1

, . . . , |x|an

)
. The Parikh image of a language L over

{a1, . . . , an} is the set of all Parikh vectors of strings in L. A (finite) multiset
〈m1, a1〉 . . . 〈mn, an〉 with mi ∈ N, 1 ≤ i ≤ n, can be represented by any string
x the Parikh vector of which with respect to a1, . . . , an is (m1, . . . , mn) .

The family of recursively enumerable sets of vectors of natural numbers is
denoted by PsRE.

2.1 Register Machines and Counter Automata

The proofs of the main results discussed in this paper are based on the simulation
of register machines or counter automata, respectively; with respect to register
machines, we refer to [37] for original definitions, and to [13] for definitions like
those we use in this paper.

Computational Power of Symport/Antiport 3

A (non-deterministic) register machine is a construct

M = (d, Q, q0, qf , P) ,

where:

– d is the number of registers,
– Q is a finite set of label for the instructions of M,
– q0 is the initial label,
– qf is the final label, and
– P is a finite set of instructions injectively labelled with elements from Q.

The labelled instructions are of the following forms:
1. q1 : (A (r) , q2, q3);

add 1 to the contents of register r and proceed to one of the instructions
(labelled with) q2 and q3 (“ADD”-instruction).

2. q1 : (S (r) , q2, q3);
if register r is not empty, then subtract 1 from its contents and go
to instruction q2, otherwise proceed to instruction q3 (“SUBTRACT”-
instruction).

3. qf : halt;
stop the machine; the final label qf is only assigned to this instruction.

A (non-deterministic) register machine M is said to generate a vector of nat-
ural numbers (s1, . . . , sk) if, starting with the instruction with label q0 and all
registers containing the number 0, the machine stops (it reaches the instruction
qf : halt) with the first k registers containing the numbers s1, . . . , sk (and all
other registers being empty).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets
of vectors of natural numbers which can be generated by Turing machines, i.e.,
the family PsRE. More precisely, from the main result in [37] that the actions
of a Turing machine can be simulated by a register machine with two registers
(using a prime number encoding of the configuration of the Turing machine)
we know that any recursively enumerable set of k-vectors of natural numbers
can be generated by a register machine with k + 2 registers where only “ADD”-
instructions are needed for the first k registers.

A non-deterministic counter automaton is a construct

M = (d, Q, q0, qf , P) ,

where:

– d is the number of counters, and we denote D = {1, . . . , d};
– Q is a finite set of states, and without loss of generality, we use the notation

Q = {qi | 0 ≤ i ≤ f} and F = {0, 1, . . . , f},
– q0 ∈ Q is the initial state,
– qf ∈ Q is the final state, and
– P is a finite set of instructions of the following forms:

4 A. Alhazov, R. Freund, and Y. Rogozhin

1. (qi → ql, k+), with i, l ∈ F, i �= f, k ∈ D (“increment”-instruction).
This instruction increments counter k by one and changes the state of
the system from qi to ql.

2. (qi → ql, k−), with i, l ∈ F, i �= f, k ∈ D (“decrement”-instruction). If
the value of counter k is greater than zero, then this instruction decre-
ments it by 1 and changes the state of the system from qi to ql. Otherwise
(when the value of register k is zero) the computation is blocked in state
qi.

3. (qi → ql, k = 0), with i, l ∈ F, i �= f, k ∈ D (“test for zero”-instruction).
If the value of counter k is zero, then this instruction changes the state
of the system from qi to ql. Otherwise (the value stored in counter k is
greater than zero) the computation is blocked in state qi.

4. halt. This instruction stops the computation of the counter automaton,
and it can only be assigned to the final state qf .

A transition of the counter automaton consists in updating/checking the value
of a counter according to an instruction of one of the types described above and
by changing the current state to another one. The computation starts in state q0
with all counters being equal to zero. The result of the computation of a counter
automaton is the value of the first k counters when the automaton halts in state
qf ∈ Q (without loss of generality we may assume that in this case all other
counters are empty). A counter automaton thus (by means of all computations)
generates a set of k-vectors of natural numbers. As for register machines, we
know that any set of k-vectors of natural numbers from PsRE can be generated
by a counter automaton with k+2 counters where only “increment”-instructions
are needed for the first k counters.

A special variant of counter automata uses a set C of pairs {i, j} with i, j ∈ Q
and i �= j. As a part of the semantics of the counter automaton with conflicting
counters M = (d, Q, q0, qf , P, C), the automaton stops without yielding a result
whenever it reaches a configuration where, for any pair of conflicting counters,
both are non-empty.

Given an arbitrary counter automaton, we can easily construct an equivalent
counter automaton with conflicting counters: For every counter i which shall
also be tested for zero, we add a conflicting counter ı̄; then we replace all “test
for zero”-instructions (l → l′, i = 0) by the sequence of instructions (l → l′′, ı̄+),
(l′′ → l′, ı̄−). Thus, in counter automata with conflicting counters we only use
“increment”-instructions and “decrement”-instructions, whereas the “test for
zero”-instructions are replaced by the special conflicting counters semantics.

Another special variant of a counter automaton is called partially blind (multi)
counter automaton (or machine, [23]); we shall use the abbreviation PBCA for
this restricted type of counter automata which consists of a finite number (we call
the number m) of counters that can add one and subtract one, but cannot test
for zero. If there is an attempt to decrement a zero counter, the system aborts
and does not accept. The first k counters (for some k ≤ m) are input counters.
The system is started with some nonnegative integers (n1, . . . , nk) in the input
counters and the other counters set to zero. The input tuple is accepted if the

Computational Power of Symport/Antiport 5

system reaches a halting state and all the counters are zero. Hence, the language
accepted by a PBCA is the set of k-tuples of nonnegative integers accepted by
the system.

Formally a PBCA is defined as M = (m, B, l0, lh, R) where m is the number
of partially blind counters in the system, B is the set of instruction labels, l0 is
the starting instruction, lh is the halting instruction, and R is the set of labelled
instructions. These labelled instructions in R are of the forms:

– li : (ADD(r), lj),
– li : (SUB(r), lj),
– li : HALT ,

where li and lj are instruction labels and r is the counter that should be
added/ subtracted.

For notational convenience, we will denote the family of sets of tuples of
natural numbers accepted by some PBCA as aPBLIND and the family of
sets of tuples of natural numbers accepted by PBCAs with m counters as m-
aPBLIND.

A related model called blind (multi)counter automaton (or machine, see [23]) is
a (multi)counter automaton that can add one and subtract one from a counter,
but cannot test a counter for zero. The difference between this model and a
partially blind counter automaton is that a blind counter automaton does not
abort when a zero counter is decremented. Thus, the counter can store negative
numbers. Again, an input is accepted if the computation reaches an accept state
and all the counters are zero.

We note that blind counter automata are equivalent in power to reversal
bounded counter automata [23] which are equivalent to semilinear sets [30].
Partially blind counter automata are strictly more powerful than blind counter
automata [23].

We have defined a PBCA as an acceptor for k-tuples of nonnegative inte-
gers. One can also define a partially blind counter automaton that is used as
a generator of k-tuples of nonnegative integers [29]. A partially blind counter
generator (PBCG) M consists of m counters, where the first k ≤ m counters
are distinguished as the output counters. M starts with all counters set to zero.
Again, at each step, each counter can be incremented/decremented by 1 (or left
unchanged), but if there is an attempt to decrement a zero counter, the system
aborts and does not generate anything. If the system halts in a final state with
zero in counters k + 1, . . . , m, then the tuple (n1, . . . , nk) in the first k counters
is said to be generated by M .

A restricted variant of a counter automaton is called linear-bounded multi-
counter automaton (or machine).

A deterministic multicounter automaton Z is linear-bounded if, when given
an input n in one of its counters (called the input counter) and zeros in the other
counters, it computes in such a way that the sum of the values of the counters
at any time during the computation is at most n. One can easily normalize
the computation so that every increment is preceded by a decrement (i.e., if Z

6 A. Alhazov, R. Freund, and Y. Rogozhin

wants to increment a counter Cj , it first decrements some counter Ci and then
increments Cj) and every decrement is followed by an increment. Thus we can
assume that every instruction of Z, which is not “Halt”, is of the form:

p: If Ci �= 0, decrement Ci by 1, increment Cj by 1,
and go to k else go to state l

where p, k, l are labels (states). We do not require that the contents of the coun-
ters is zero when the automaton halts.

If in the instruction as defined above there is a “choice” for states k and/or
l, then the automaton is called non-deterministic.

2.2 P Systems with Symport/Antiport Rules

The reader is supposed to be familiar with basic elements of membrane comput-
ing, e.g., from [40]; comprehensive information can be found on the P systems
web page http://psystems.disco.unimib.it.

A P system with symport/antiport rules is a construct

Π = (O, µ, w1, . . . , wk, E, R1, . . . , Rk, i0),

where:

1. O is a finite alphabet of symbols called objects ;
2. µ is a membrane structure consisting of k membranes that are labelled in a

one-to-one manner by 1, 2, . . . , k;
3. wi ∈ O∗, for each 1 ≤ i ≤ k, is a finite multiset of objects associated with

the region i (delimited by membrane i);
4. E ⊆ O is the set of objects that appear in the environment in an infinite

number of copies;
5. Ri, for each 1 ≤ i ≤ k, is a finite set of symport/antiport rules associated

with membrane i; these rules are of the forms (x, in) and (y, out) (symport
rules) and (y, out; x, in) (antiport rules), respectively, where x, y ∈ O+;

6. i0 is the label of an elementary membrane of µ that identifies the correspond-
ing output region.

A P system with symport/antiport rules is defined as a computational device
consisting of a set of k hierarchically nested membranes that identify k distinct
regions (the membrane structure µ), where to each membrane i there are assigned
a multiset of objects wi and a finite set of symport/antiport rules Ri, 1 ≤ i ≤ k.
A rule (x, in) ∈ Ri permits the objects specified by x to be moved into region i
from the immediately outer region. Notice that for P systems with symport rules
the rules in the skin membrane of the form (x, in), where x ∈ E∗, are forbidden.
A rule (x, out) ∈ Ri permits the multiset x to be moved from region i into
the outer region. A rule (y, out; x, in) permits the multisets y and x, which are
situated in region i and the outer region of i, respectively, to be exchanged. It is
clear that a rule can be applied if and only if the multisets involved by this rule

Computational Power of Symport/Antiport 7

are present in the corresponding regions. The weight of a symport rule (x, in)
or (x, out) is given by |x| , while the weight of an antiport rule (y, out; x, in) is
given by max{|x|, |y|}.

As usual, a computation in a P system with symport/antiport rules is obtained
by applying the rules in a non-deterministic maximally parallel manner. Specif-
ically, in this variant, a computation is restricted to moving objects through
membranes, since symport/antiport rules do not allow the system to modify
the objects placed inside the regions. Initially, each region i contains the corre-
sponding finite multiset wi, whereas the environment contains only objects from
E that appear in infinitely many copies.

A computation is successful if starting from the initial configuration, the P sys-
tem reaches a configuration where no rule can be applied anymore. The result of a
successful computation is a natural number that is obtained by counting all objects
(only the terminal objects as it done in [5], if in addition we specify a subset of O
as the set of terminal symbols) present in region i0. Given a P system Π , the set of
natural numbers computed in this way byΠ is denoted by N(Π). If the multiplicity
of each (terminal) object is counted separately, then a vector of natural numbers is
obtained, denoted by Ps(Π), see [40]. For short, we shall also speak of a P system
only when dealing with a P system with symport/antiport rules as defined above.

By
NOnPm(syms, antit)

we denote the family of sets of natural numbers (non-negative integers) that are
generated by a P system with symport/antiport rules having at most n > 0
objects in O, at least m > 0 membranes, symport rules of size at most s ≥ 0,
and antiport rules of size at most t ≥ 0. By

NkOnPm(syms, antit)

we denote the corresponding families of recursively enumerable sets of natural
numbers without initial segment {0, 1, . . . , k − 1}. If we replace numbers by
vectors, then in the notations above N is replaced by Ps. When any of the
parameters m, n, s, t is not bounded, it is replaced by ∗; if the number of objects
n is unbounded, we also may just omit n. If s = 0, then we may even omit syms;
if t = 0, then we may even omit antit.

It may happen that P systems with symport/antiport (symport) rules can
simulate deterministic register machines (i.e., register machines where in each
ADD-instruction q1 : (A (r) , q2, q3) the labels q2 and q3 are equal) in a deter-
ministic way, i.e., from each configuration of the P system we can derive at most
one other configuration. Then, when considering these P systems as accepting
devices (the input from a set in PsRE is put as an additional multiset into
some specified membrane of the P system), we can get deterministic accepting
P systems; the corresponding families of recursively enumerable sets of natural
numbers then are denoted in the same way as before, but with the prefix aD;
e.g., from the results proved in [18] and [14] we immediately obtain

PsRE = aDPsOP1(anti2).

8 A. Alhazov, R. Freund, and Y. Rogozhin

Sometimes, the results we recall use the intersection with a terminal alphabet,
in that way avoiding superfluous symbols to be counted as a result of a halting com-
putation. In that case, we add the suffix T at the end of the corresponding notation.

2.3 Tissue P Systems with Symport/Antiport Rules

Tissue P systems were introduced in [34], and tissue-like P systems with channel
states were investigated in [19]. Here we deal with the following type of systems
(omitting the channel states).

A tissue P system (of degree m ≥ 1) with symport/antiport rules is a con-
struct

Π =
(
m, O, w1, . . . , wm, ch,

(
R(i,j)

)
(i,j)∈ch

)
,

where:

– m is the number of cells,
– O is the alphabet of objects,
– w1, . . . , wm are strings over O representing the initial multisets of objects

present in the cells of the system (it is assumed that the m cells are labelled
with 1, 2, . . . , m) and, moreover, we assume that all objects from O appear
in an unbounded number in the environment,

– ch ⊆ {(i, j) | i, j ∈ {0, 1, 2, . . . , m} , (i, j) �= (0, 0)} is the set of links (chan-
nels) between cells (these were called synapses in [19]; 0 indicates the envi-
ronment), R(i,j) is a finite set of symport/antiport rules associated with the
channel (i, j) ∈ ch.

A symport/antiport rule of the form y/λ, λ/x, or y/x, respectively, x, y ∈ O+,
from R(i,j) for the ordered pair (i, j) of cells means moving the objects specified
by y from cell i (from the environment, if i = 0) to cell j, at the same time
moving the objects specified by x in the opposite direction. For short, we shall
also speak of a tissue P system only when dealing with a tissue P system with
symport/antiport rules as defined above.

The computation starts with the multisets specified by w1, . . . , wm in the m
cells; in each time unit, a rule is used on each channel for which a rule can be used
(if no rule is applicable for a channel, then no object passes over it). Therefore,
the use of rules is sequential at the level of each channel, but it is parallel at the
level of the system: all channels which can use a rule must do it (the system is
synchronously evolving). The computation is successful if and only if it halts.

The result of a halting computation is the number described by the multiplic-
ity of objects present in cell 1 (or in the first k cells) in the halting configuration.
The set of all (vectors of) natural numbers computed in this way by the system
Π is denoted by N(Π) (resp., Ps(Π)). The family of sets N(Π) (Ps(Π)) of
(vectors of) natural numbers computed as above by systems with at most n > 0
symbols and m > 0 cells as well as with symport rules of weight s ≥ 0 and
antiport rules of weight t ≥ 0 is denoted by

NOnt′Pm(syms, antit) (resp., PsOnt′Pm(syms, antit)).

When any of the parameters m, n, s, t is not bounded, it is replaced by ∗.

Computational Power of Symport/Antiport 9

In [19], only channels (i, j) with i �= j are allowed, and, moreover, for any
i, j only one channel out of {(i, j) , (j, i)} is allowed, i.e., between two cells (or
one cell and the environment) only one channel is allowed (this technical detail
may influence considerably the computational power). The family of sets N(Π)
(resp., Ps(Π)) of (vectors of) natural numbers computed as above by systems
with at most n > 0 symbols and m > 0 cells as well as with symport rules of
weight s ≥ 0 and antiport rules of weight t ≥ 0 is denoted by

NOntPm(syms, antit) (resp., PsOntPm(syms, antit)).

3 Descriptional Complexity – A Historic Overview

In this section we review the development of computational completeness results
with respect to descriptional complexity parameters, especially concerning the
number of membranes (cells in tissue P systems), the weight of the rules, and
the number of objects.

3.1 Rules Involving More Than Two Objects

We first recall results where rules involving more than two objects are used.
As it was shown in [38], two membranes are enough for getting computational
completeness when rules involving at most four objects, moving up to two objects
in each direction, are used, i.e.,

NRE = NOP2(sym2, anti2).

Using antiport. The result stated above was independently improved in [15],
[17], and [22] – one membrane is enough:

NRE = NOP1(sym1, anti2).

In fact, only one symport rule is needed; this can be avoided for the price of one
additional object in the output region:

N1RE = N1OP1(anti2).

It is worth mentioning that the only antiport rules used are those exchanging
one object by two objects.

Using symport. The history of P systems with symport only is longer. In [33]
the results

NRE = NOP2(sym5) = NOP3(sym4) = NOP5(sym3)

were proved, whereas in [21]

N13RE = N13OP1(sym3)

was shown; the additional symbols can be avoided if a second membrane is used:

NRE = NOP2(sym3).

10 A. Alhazov, R. Freund, and Y. Rogozhin

In this paper we now will show that we can bound the number of additional
symbols by 7:

N7RE = N7OP1(sym3).

Determinism. It is known that deterministic P systems with one membrane
using only antiport rules of weight at most 2 (actually, only the rules exchanging
one object for two objects are needed, see [18], [11]) or using only symport rules
of weight at most 3 (see [18]) can accept all sets of vectors of natural numbers (in
fact, this is only proved for sets of numbers, but the extension to sets of vectors
is straightforward), i.e.,

PsRE = aDPsOP1(anti2) = aDPsOP1(sym3).

3.2 Minimal Cooperation

Already in [38] it was shown that

NRE = NOP5(sym2, anti1),

i.e., five membranes are already enough when only rules involving two objects
are used. However, both types of rules involving two objects are used: symport
rules moving up to two objects in the same direction, and antiport rules moving
two objects in different directions.

Minimal cooperation by antiport. We now consider P systems where sym-
port rules move only one object and antiport rules move only two objects across
the a membrane in different directions. The first proof of the computational
completeness of such P systems can be found in [9]:

NRE = NOP9(sym1, anti1),

i.e., these P systems have nine membranes. This first result was improved by
reducing the number of membranes to six [31], five [10], and four [20, 32], and
finally in [46] it was shown that

N5RE = N5OP3(sym1, anti1),

i.e., three membranes are sufficient to generate all recursively enumerable sets
of numbers (with five additional objects in the output membrane).

In [6], a stronger result was shown where the output membrane did not contain
superfluous symbols:

PsRE = PsOP3(sym1, anti1).

In [5] it was shown that even two membranes are enough to obtain computational
completeness, yet only modulo a terminal alphabet:

PsRE = PsOP2(sym1, anti1)T .

In this paper we now will show that we can bound the number of additional
symbols by 3:

N3RE = N3OP2(sym1, anti1).

Computational Power of Symport/Antiport 11

Minimal cooperation by symport. We now consider P systems moving only
one or two objects by a symport rule; these systems were shown to be compu-
tationally complete with four membranes in [22]:

NRE = NOP4(sym2).

In [6], this result was improved down to three membranes even for vectors of
natural numbers:

PsRE = PsOP3(sym2).
Moreover, in [6] it was also shown that even two membranes are enough to obtain
computational completeness (modulo a terminal alphabet):

PsRE = PsOP2(sym2)T .

In this paper we will show that the number of additional objects in the output
region can be bound by six:

N6RE = N6OP2(sym2).

The tissue case. If we do not restrict the graph of communication to be a
tree, certain advantages appear. It was shown in [48] that

NRE = NOtP3(sym1, anti1),

i.e., three cells are enough when using symport/antiport rules of weight one.
This result was improved in [8] to two cells, again without additional objects in
the output cell, and an equivalent result holds if antiport rules of weight one are
replaced by symport rules of weight two:

PsRE = PsOtP2(sym1, anti1) = PsOtP2(sym2).

Moreover, it was shown in the same article that accepting can be done deter-
ministically:

PsRE = aDPsOtP2(sym1, anti1) = aDPsOtP2(sym2).

A nice aspect of the proof is that it not only holds true for P systems with
channels operating sequentially (as it is usually defined for tissue P systems),
but also for P systems with channels operating in a maximally parallel way (like
in standard P systems, generalizing the region communication structure of P
systems to the arbitrary graph structure of tissue P systems).

Below computational completeness. In [8], it was also shown that

NOP1(sym1, anti1) ∪ NOtP1(sym1, anti1) ⊆ NFIN.

Together with the counterpart results for symport systems,

NOP1(sym2) ∪ NOtP1(sym2) ⊆ NFIN

obtained in [21], this is enough to state the optimality of the computational
completeness results for the two-membrane/two-cell systems.

The most interesting open questions remaining in the cases considered so far
concern the possibility to reduce the number of extra objects in the output region
in some of the results stated above.

12 A. Alhazov, R. Freund, and Y. Rogozhin

3.3 Small Number of Objects

In the preceding subsections, a survey of computational completeness results
depending on the number of membranes or cells and the weights of the rules has
been given. We now follow another direction of descriptional complexity: we try
to keep the number of membranes or cells and especially the number of objects
small, yet on the other hand allow rules of unbounded weight.
P Systems. A quite surprising result was presented in [42]: using symport/
antiport rules of unbounded weight, P systems with four membranes are com-
putationally complete even when the alphabet contains only three symbols:

NRE = NO3P4(sym∗, anti∗).

Then it has been shown in [1] that

NRE = NO5P1(sym∗, anti∗),

i.e., for P systems with one membrane, even five objects are enough for getting
computational completeness.

The original result was improved in [3]; in sum, the actual computational
completeness results for P systems can be found there:

NRE = NOnPm(sym∗, anti∗) = aNOnPm(sym∗, anti∗)
for (n, m) ∈ {(5, 1) , (4, 2) , (3, 3) , (2, 4)} .

The results mentioned above are presented as part of a general picture (“com-
plexity carpet”), including results for generating/accepting/computing functions
on vectors of specified dimensions.

Below computational completeness. The same article ([3]) presents unde-
cidability results for the families

(a)NO2P3(sym∗, anti∗), (a)NO3P2(sym∗, anti∗), (a)NO4P1(sym∗, anti∗);

moreover, it was shown that

NO1P2(sym∗, anti∗) ∩ NO2P1(sym∗, anti∗) ⊇ NREG;
aNO3P1(sym∗, anti∗) ∩ aNO2P2(sym∗, anti∗) ⊇ NREG;
NO1P1(sym∗, anti∗) = NFIN ;
aNO2P1(sym∗, anti∗) ⊇ NFIN.

The last result has been improved in [29]; in the same article, also some results
on one-symbol P systems are presented:

aNO2P1(sym∗, anti∗) � NREG;
aNO1P5m+3(sym∗, anti∗) � am-PBLIND;
NO1P5m+3(sym∗, anti∗) ⊇ m-PBLIND.

The parameter 5m + 3 in the last two results can even be reduced to 2m + 3,
i.e., 2m + 3 membranes are enough to simulate partially blind counter au-
tomata/generators (these results will appear in the final version of [29].

Computational Power of Symport/Antiport 13

Several questions are still open; the most interesting one is to determine the
computational power of P systems with one symbol (we conjecture that they
are not computationally complete, even if we can use an unbounded number of
membranes and symport/antiport rules of unbounded weight).

Tissue P Systems. The question concerning systems with only one object has
been answered in a positive way in [16] for tissue P systems:

NRE = NO1tP7(sym∗, anti∗) = NO1t
′P6(sym∗, anti∗).

In [2] the “complexity carpet” for tissue P systems was completed:

NRE = NOntPm(sym∗, anti∗)
for (n, m) ∈ {(4, 2) , (2, 3) , (1, 7)} ,

but
NREG = NO∗tP1(sym∗, anti∗) = NO2tP1(sym∗, anti∗)

and
NFIN = NO1tP1(sym∗, anti∗) = NO1t

′P1(sym∗, anti∗).

Using two channels between a cell and the environment, one cell can sometimes
be saved, and one-cell systems become computationally complete:

NRE = NOnt′Pm(sym∗, anti∗)
for (n, m) ∈ {(5, 1) , (3, 2) , (2, 3) , (1, 6)} .

3.4 Computational Completeness - Summary

We now finish our historical review with repeating (some of) the best known
results of computational completeness:

One membrane:
aDPsOP1(anti2) = aDPsOP1(sym3) = PsRE,
N1RE = N1OP1(anti2),
N7RE = N7OP1(sym3).

P systems - minimal cooperation:
PsRE = PsOP2(sym1, anti1)T = PsOP2(sym2)T ,
N3RE = N3OP2(sym1, anti1),
N6RE = N6OP2(sym2).

Tissue P systems – minimal cooperation:
PsRE = aDPsOtP2(sym1, anti1) = aDPsOtP2(sym2),
P sRE = PsOtP2(sym1, anti1) = PsOtP2(sym2).

P systems – small number of objects:
NRE = NOnPm(sym∗, anti∗)

for (n, m) ∈ {(5, 1) , (4, 2) , (3, 3) , (2, 4)} .

14 A. Alhazov, R. Freund, and Y. Rogozhin

Tissue P systems – small number of objects:
NRE = NOntPm(sym∗, anti∗)

for (n, m) ∈ {(4, 2) , (2, 3) , (1, 7)} ,
NRE = NOnt′Pm(sym∗, anti∗)

for (n, m) ∈ {(5, 1) , (3, 2) , (2, 3) , (1, 6)} .

3.5 Bounded Symport/Antiport Systems

The question whether or not the deterministic version is weaker than the non-
deterministic version of a specific variant of (tissue)P systems is an interesting
and fundamental research issue in membrane computing, in particular for P
systems with symport/antiport rules (see [41], [18], [26]).

Let us consider P systems that are used as acceptors. A symport/antiport P
systems is called bounded if the only rules allowed are of the form (u, out; v, in)
such that u, v are multisets of objects with the restriction that |u| = |v|. (Note
that all the rules are antiport rules). The power of these systems is exactly
equivalent to that of linear-bounded (multi)counter automata or log (n) space-
bounded Turing machines (see [27]).

The deterministic and non-deterministic versions of such systems are equiva-
lent if and only if deterministic and non-deterministic linear-bounded automata
are equivalent, the latter problem being a long-standing open problem in com-
plexity theory (see [27, 28]). This is in contrast to the fact that determinis-
tic and non-deterministic 1-membrane unrestricted symport/antiport systems
are equivalent and are universal (see, for example, Subsection 3.1 of this
paper).

4 New Results

We first improve the result N13OP1(sym3) = N13RE from [21]. For the proof,
we use the variant of counter automata with conflicting counters and implement
the semantics that if two conflicting counters are non-empty at the same time,
then the computation is blocked without producing a result.

Theorem 1. N7OP1(sym3) = N7RE.

Proof. Let L be an arbitrary set from N7RE and consider a counter au-
tomaton M = (d, Q, q0, qf , P, C) with conflicting counters generating L − 7
(= {n − 7 | n ∈ L}); C is a finite set of pair sets of conflicting counters {i, ı̄} .
We construct a P system simulating M :

Π = (O, E, [1]1, w1, R1, 1),
O = {xi | 1 ≤ i ≤ 6} ∪ Q ∪ {(p, j) | p ∈ P, 1 ≤ j ≤ 6}

∪ {ai, Ai | i ∈ C} ∪ {#, b, d} ,
E = {ai, Ai | i ∈ C} ∪ {x2, x3, #}

∪ Q ∪ {(p, j) | p ∈ P, j ∈ {2, 4, 5, 6}},
w1 = l0dx1x4x5x6

∏
p∈P (p, 1) (p, 3) b.

Computational Power of Symport/Antiport 15

The following rules allow us to simulate the counter automaton M :

– The rules (daiaı̄, out) implement the special semantics of conflicting coun-
ters {i, ı̄} with leading to an infinite computation by applying the rules
(d#, out) and (d#, in).

– The simulation of the instructions of M is initiated by also sending out x1 in
the first step; the rules (x1x2x3, in) as well as (x2x4x5, out) and (x3x6, out)
then allow us to send out the specific signal variables x4, x5, and x6 which
are needed to guide the sequence of rules to be applied.

– The instruction p : (l → l′, i−) is simulated by the sequence of rules

(l(p, 1)x1, out),
((p, 1)x4(p, 2), in),
((p, 2)(p, 3)ai, out), ((p, 2)(p, 3)d, out),
((p, 3)x5(p, 4), in),
((p, 4)(p, 5), out),
((p, 5)x6l

′, in).

In case that no symbol ai is present (which corresponds to the fact that
counter i is empty), the rule ((p, 2)(p, 3)d, out) leads to an infinite computa-
tion by applying the rules (d#, out) and (d#, in). Otherwise, decrementing
is successfully accomplished by applying the rule ((p, 2)(p, 3)ai, out).

– The instruction p : (l → l′, i+) is simulated by the sequence of rules

(l(p, 1)x1, out),
((p, 1)x4(p, 2), in),
((p, 2)(p, 3)Ai, out),
((p, 3)x5l

′, in),
(Aix6ai, in).

The symbol Ai is sent out to take exactly one symbol ai in.
– A simulation of M by Π terminates with sending out the symbols from

{(p, 1) , (p, 3) | p ∈ P} ∪ {Ai | i ∈ C} which were used during the simulation
of the instructions of M as soon as the halting label lh of M appears:
(lhbx, out),
x ∈ {(p, 1) , (p, 3) | p ∈ P} ∪ {Ai | i ∈ C},
(lhb, in).
If the system halts, the objects inside correspond with the contents of the
output registers, and the extra symbols are lh, d, b, x1, x4, x5, x6, i.e., seven
in total. �

We now show that two membranes are enough to obtain computational complete-
ness with symport/antiport rules of minimal size 1 with only three additional
objects remaining in halting computations.

16 A. Alhazov, R. Freund, and Y. Rogozhin

Theorem 2. N3OP2(sym1, anti1) = N3RE.

Proof. We simulate a counter automaton M = (d, Q, q0, qf , P) which starts with
empty counters. We also suppose that all instructions from P are labelled in a
one-to-one manner with elements of {1, . . . , n} = I; I is the disjoint union of
{n} as well as I+, I−, and I=0 where by I+, I−, and I=0 we denote the set
of labels for the “increment”-, “decrement”-, and “test for zero”-instructions,
respectively. Additionally we suppose, without loss of generality, that on the
first counter of the counter automaton M only “increment” instructions – of the
form (qi → ql, c1+) – are operating.

We construct the P system Π1 as follows:

Π1 = (O, [1 [2]2]1, w1, w2, E, R1, R2, 2),
O = E ∪ {Ic, q

′
0, F1, F2, F3, F4, F5, #1, #2, bj , b

′
j | j ∈ I},

E = Q ∪ {aj, a
′
j , a

′′
j | j ∈ I} ∪ C ∪ {F2, F3, F4, F5},

w1 = q′0Ic#1#1#2#2,

w2 = F1F1F1

∏

j∈I

bj

∏

j∈I

b′j,

Ri = Ri,s ∪ Ri,r ∪ Ri,f , i = 1, 2.

The functioning of this system may be split into two stages:

1. simulating the instructions of the counter automaton;
2. terminating the computation.

We code the counter automaton as follows:
Region 1 will hold the current state of the automaton, represented by a symbol

qi ∈ Q; region 2 will hold the value of all counters, represented by the number
of occurrences of symbols ck ∈ C, k ∈ D, where D = {1, . . . , d}. We also use the
following idea realized by the phase “START” below: from the environment, we
bring symbols ck into region 1 all the time during the computation. This process
may only be stopped if all stages finish correctly; otherwise, the computation
will never stop.

We split our proof into several parts that depend on the logical separation of
the behavior of the system. We will present the rules and the initial symbols for
each part, but we remark that the system we present is the union of all these
parts. The rules Ri are given by three phases:

1. START (stage 1);
2. RUN (stage 1);
3. END (stage 2).

The parts of the computations illustrated in the following describe differ-
ent stages of the evolution of the P system given in the corresponding the-
orem. For simplicity, we focus on explaining a particular stage and omit the
objects that do not participate in the evolution at that time. Each rectangle

Computational Power of Symport/Antiport 17

represents a membrane, each variable represents a copy of an object in a cor-
responding membrane (symbols outside of the outermost rectangle are found in
the environment). In each step, the symbols that will evolve (will be moved)
are written in boldface. The labels of the applied rules are written above the
symbol ⇒.

1. START.

R1,s = {1s1 : (Ic, in), 1s2 : (Ic, out; ck, in), 1s3 : (ck, out) | ck ∈ C}
∪ {1s4 : (q′0, out; q0, in)},

R2,s = ∅

Symbol Ic brings one symbol ck from the environment into region 1 (rules 1s1,
1s2), where it may be used immediately during the simulation of the “increment”
instruction and then moved to region 2. Otherwise symbol ck returns to the
environment (rule 1s3). Rule 1s4 is used for synchronizing the appearance of
the symbols ck and qi in region 1.

We illustrate the beginning of the computation as follows:

ck1q0ajck2 q′
0Ic bj ⇒1s2,1s4 Icq′0ajck2 q0ck1 bj ⇒1s1,1s3,1r1

q′0q0ck1ck2 ajIc bj ⇒1s2,2r1 q′0q0ck1Ic ck2bj aj · · ·

2. RUN.

R1,r = {1r1 : (qi, out; aj, in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+, −, = 0}}
∪ {1r2 : (bj, out; a′

j , in), 1r3 : (aj , out; bj, in),
1r4 : (#1, out; bj, in) | j ∈ I}

∪ {1r5 : (a′
j , out; a′′

j , in) | j ∈ I+ ∪ I−} ∪ {1r6 : (#1, out; #1, in)}
∪ {1r7 : (b′j, out; a′′

j , in), 1r8 : (a′
j , out; b′j, in),

1r9 : (#1, out; b′j, in) | j ∈ I=0}
∪ {1r10 : (a′′

j , out, ql, in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {+, −, = 0}}
∪ {1r11 : (bj , out), 1r12 : (b′j , out) | j ∈ I},

R2,r = {2r1 : (bj, out; aj , in) | j ∈ I}
∪ {2r2 : (aj , out; ck, in) | (j : qi → ql, ck+) ∈ P}
∪ {2r3 : (a′

j , in) | j ∈ I+}
∪ {2r4 : (a′

j , out; bj, in) | j ∈ I+ ∪ I−}
∪ {2r5 : (aj , out) | j ∈ I− ∪ I=0}
∪ {2r6 : (ck, out; a′

j, in) | (j : qi → ql, ckγ) ∈ P, γ ∈ {−, = 0}}
∪ {2r7 : (b′j, out; bj , in), 2r8 : (b′j , in) | j ∈ I=0}
∪ {2r9 : (aj , out; #2, in) | j ∈ I+} ∪ {2r10 : (#2, out; #2, in)}.

18 A. Alhazov, R. Freund, and Y. Rogozhin

“Increment”-instruction:

aja
′
ja

′′
j ql qick#1#1 bj ⇒1r1 a′

ja
′′
j qiql ajck#1#1 bj ⇒2r1

a′
ja

′′
j qiql bjck#1#1 aj ⇒1r2,2r2 bja

′′
j qiql aja′

j#1#1 ck

Now there are two possibilities: we may either apply
a) rule 1r5 or
b) rule 2r3.

It is easy to see that case a) leads to an infinite computation:

bja′′
j qiql aja′

j#1#1 ck ⇒1r5,1r3

aja′
jqiql bja′′

j #1#1 ck ⇒1r2,1r10 ajbjqia′′
j a′

jql#1#1 ck

After that rule 1r4 will eventually be applied, object #1 will be moved to the
environment and then applying rule 1r6 leads to an infinite computation.

Now let us consider case b):

bja
′′
j qiql aja′

j#1#1 ck ⇒1r3,2r3 aja
′′
j qiql bj#1#1 a′

jck

We cannot apply rule 1r2 as this leads to an infinite computation (see above).
Hence, rule 2r4 has to be applied:

aja
′′
j qiql bj#1#1 a′

jck ⇒2r4 aja′′
j qiql a′

j#1#1 bjck ⇒1r5

aja
′
jqiql a′′

j #1#1 bjck ⇒1r10 aja
′
ja

′′
j qi ql#1#1 bjck

In that way, qi is replaced by ql and ck is moved from region 1 into region 2.

“Decrement”-instruction:

aja
′
ja

′′
j ql qi#1#1 bjck ⇒1r1 a′

ja
′′
j qiql aj#1#1 bjck ⇒2r1

a′
ja

′′
j qiql bj#1#1 ajck ⇒1r2,2r5 bja

′′
j qiql aja′

j#1#1 ck ⇒1r3,2r6

aja
′′
j qiql bjck#1#1 a′

j ⇒2r4 aja′′
j qiql a′

jck#1#1 bj ⇒1r5

aja
′
jqiql a′′

j ck#1#1 bj ⇒1r10 aja
′
ja

′′
j qi qlck#1#1 bj

In the way described above, qi is replaced by ql and ck is removed from region
2 to region 1.

Computational Power of Symport/Antiport 19

“Test for zero”-instruction:
qi is replaced by ql if there is no ck in region 2, otherwise a′

j in region 1
exchanges with ck in region 2 and the computation will never stop.

(i) There is no ck in region 2:

aja
′
ja

′′
j ql qi#1#1 bjb

′
j ⇒1r1 a′

ja
′′
j qiql aj#1#1 bjb

′
j ⇒2r1

a′
ja

′′
j qiql bj#1#1 ajb

′
j

Now there are two possibilities: we apply either
a) rule 2r7 or
b) rule 1r2.

It is easy to see that case a) leads to an infinite computation:

a′
ja

′′
j qiql bj#1#1 ajb′

j ⇒2r7,2r5 a′
ja

′′
j qiql ajb′

j#1#1 bj ⇒2r1,2r8

a′
ja

′′
j qiql bj#1#1 ajb′

j ⇒2r7,2r5 · · · ⇒2r1,2r8 a′
ja

′′
j qiql bj#1#1 ajb

′
j

⇒1r2,2r5 bja
′′
j qiql aja

′
j#1#1 b′j ⇒1r3 aja

′′
j qiql bja

′
j#1#1 b′j

Again there are two possibilities: we can apply either
c) rule 1r2 or
d) rule 2r7.

Case c) leads to an infinite computation (rules 1r4 and 1r6).

Now let us consider case d):

aja
′′
j qiql bja

′
j#1#1 b′

j ⇒2r7 aja′′
j qiql b′

ja
′
j#1#1 bj ⇒1r7

ajb′
jqiql a′′

j a
′
j#1#1 bj ⇒1r8,1r10 aja

′
ja

′′
j qi qlb′

j#1#1 bj

There are two possibilities: we can apply either
e) rule 1r7 or
f) rule 2r8.

Case e) leads to infinite computation (rules 1r9 and 1r6).

In case f), the object b′j comes back to region 2.

(b) There is some ck in region 2:
Consider again case d):

aja
′′
j qiql bja′

j#1#1 b′
jck ⇒2r7,2r6 aja′′

j qiql b′
jck#1#1 a′

jbj ⇒1r7

ajb′
jqiql a′′

j ck#1#1 a′
jbj ⇒1r9,1r10 aja

′′
j #1qi qlb′

jck#1 a′
jbj

20 A. Alhazov, R. Freund, and Y. Rogozhin

Now the application of rule 1r6 leads to an infinite computation.
Finally, let us notice that applying the rules 1r11 and 1r12 during the phase

RUN leads to infinite computation. Hence, we model correctly the “test for zero”
instruction.

3. END.

R1,f = {1f1 : (F1, out; F2, in), 1f2 : (F2, out; F3, in),
1f3 : (F3, out; F4, in), 1f4 : (F4, out; F5, in)},

R2,f = {2f1 : (F1, out; qf , in), 2f2 : (qf , out; Ic, in),
2f3 : (qf , out; #1, in), 2f4 : (qf , out; #2, in), 2f5 : (F5, out),
2f6 : (bj , out; F5, in), 2f7 : (b′j , out; F5, in)}.

We illustrate the end of computations as follows:

F2F3F4F5Icck1ck2 qf#1#1#2#2 F1F1F1bj1b
′
j2 ⇒2f1,1s1

F2F3F4F5ck1ck2 Ic#1#1#2#2F1 qfF1F1bj1b
′
j2

⇒2f3,1s2,1f1

F2F3F4F5Icck2F1 F2ck1#1#2#2qf #1F1F1bj1b
′
j2

⇒1s1,1s4,1f2,2f1

F2F3F4F5ck1ck2F1 F3Ic#1#2#2F1 qf#1F1bj1b
′
j2

⇒1s2,1f1,1f3,2f3

F2F3F4F5ck1IcF1F1 F2F4ck2#2#2qf #1#1F1bj1b
′
j2 ⇒1s1,1s4,1f2,1f4,2f1

F2F3F4F5ck1ck2F1F1 F3F5Ic#2#2F1 qf#1#1bj1b
′
j2

Notice that now rule 2f2 will eventually be applied, as otherwise the appli-
cation of rule 2f4 will lead to an infinite computation (rule 2r10). Hence, we
continue as follows:

F2F3F4F5ck1ck2F1F1 F3F5Ic#2#2F1 qf#1#1bj1b
′
j2

⇒1f1,1f3,2f2,2f6

F2F3F4F5ck1ck2F1F1F1 F2F4#2#2bj1qf Ic#1#1F5b
′
j2 ⇒1f2,1f4,1r11,2f5

F2F3F4F5ck1ck2F1F1F1bj1 F3F5F5#2#2qf Ic#1#1b
′
j2

We continue in this manner until all objects bj , b
′
j , j ∈ I from the elementary

membrane 2 have been moved to the environment. Notice that the result in the
elementary membrane 2 (multiset ct

1) cannot be changed during phase END, as
object Ic now is situated in the elementary membrane and cannot bring symbols
c1 from the environment. Recall that the counter automaton can only increment
the first counter c1, so all other computations of P system Π1 cannot change

Computational Power of Symport/Antiport 21

the number of symbols c1 in the elementary membrane. Thus, at the end of
a terminating computation, in the elementary membrane there are the result
(multiset ct

1) and only the three additional objects Ic, #1, #1. �
A “dual” class of systems with minimal cooperation is the class where two objects
are moved across the membrane in the same direction rather than in the opposite
ones. We now prove a similar result for this class using six additional symbols.

Theorem 3. N6OP2(sym2) = N6RE.

Proof. As in the proof of Theorem 1 we simulate a counter automaton M =
(d, Q, q0, qf , P) that starts with empty counters. Again we suppose that all
instructions from P are labelled in a one-to-one manner with elements of
{1, . . . , n} = I and that I is the disjoint union of {n} as well as I+, I−, and
I=0 where by I+, I−, and I=0 we denote the set of labels for the “increment”-,
“decrement”-, and “test for zero”-instructions, respectively. Moreover, we define
I ′ = {1, 2, . . . , n + 4}, Qk = {qi,k}, 1 ≤ k ≤ 5, i ∈ K, K = {0, 1, . . . , f}, and
C = {ci | 1 ≤ i ≤ d}.

We construct the P system Π2 as follows:

Π2 = (O, [1 [2]2]1, w1, w2, E, R1, R2, 2),

O = {#0, #1, #2, $1, $2, $3, â, b̂, Ic} ∪ {ak | 1 ≤ k ≤ 5} ∪ Q
⋃

1≤k≤5

Qk

∪ C ∪ {aj , a
′
j , ǎj, âj , bj , dj , d

′
j , d

′′
j | j ∈ I} ∪ {et, ht | t ∈ I ′},

E = {a1, a3, a5, #0} ∪ {aj, a
′
j | j ∈ I} ∪ {ht | t ∈ I ′} ∪ Q ∪ Q2 ∪ Q4 ∪ C,

w1 = #1âb̂a2a4$3

∏

j∈I

ǎj

∏

j∈I

d′j
∏

j∈I

d′′j
∏

t∈I′

et

∏

i∈K

q̂i

∏

i∈K

qi,1

∏

i∈K

qi,3

∏

i∈K

qi,5,

w2 = #2$n+1
1 $2

∏

j∈I

âj

∏

j∈I

bj

∏

j∈I

dj ,

Ri = Ri,s ∪ Ri,r ∪ Ri,f , i ∈ {1, 2}.

The functioning of this system again may be split into two stages:

1. simulating the instructions of the counter automaton;
2. terminating the computation.

We code the counter automaton as in Theorem 1 above: region 1 will hold the
current state of the automaton, represented by a symbol qi ∈ Q; region 2 will hold
the value of all counters, represented by the number of occurrences of symbols ck ∈
C, k ∈ D, where D = {1, . . . , d}. We also use the following idea (called “circle”)
realized by phase “START” below: from the environment, we bring symbols ck into
region 1 all the time during the computation. This process may only be stopped if
all stages finish correctly; otherwise, the computation will never stop.

We split our proof into several parts that depend on the logical separation
of the behavior of the system. We will present the rules and the initial symbols
for each part, but we remark that the system that we present is the union of all
these parts.

22 A. Alhazov, R. Freund, and Y. Rogozhin

The rules Ri again are given by three phases:

1. START (stage 1);
2. RUN (stage 1);
3. END (stage 2).

1. START.

R1,s = {1s1 : (Ic, out), 1s2 : (Icck, in), 1s3 : (ck, out) | k ∈ D},

R2,s = ∅.

Symbol Ic brings one symbol c ∈ C from the environment into region 1
(rules 1s1, 1s2) where it may be used immediately during the simulation of
an “increment”-instruction and moved to region 2. Otherwise symbol c returns
to the environment (rule 1s3).

2. RUN.

R1,r = {1r1 : (qiq̂i, out) | i ∈ K}
∪ {1r2 : (aj q̂i, in) | (j : qi → ql, kγ) ∈ P, γ ∈ {+, −, = 0}, k ∈ D}
∪ {1r3 : (aj â, out) | j ∈ I+ ∪ I−} ∪ {1r4 : (aj b̂, out) | j ∈ I=0}
∪ {1r5 : (#2, out), 1r6 : (#2, in)} ∪ {1r7 : (bjǎj , out) | j ∈ I}
∪ {1r8 : (bj#1, out) | j ∈ I} ∪ {1r9 : (âj#1, out) | j ∈ I}
∪ {1r10 : (#0#1, in), 1r11 : (#0b̂, in)} ∪ {1r12 : (a′

jbj , in) | j ∈ I}
∪ {1r13 : (âa1, in), 1r14 : (a1a2, out), 1r15 : (a2a3, in)}
∪ {1r16 : (a3a4, out), 1r17 : (a4a5, in), 1r18 : (a5, out)}
∪ {1r19 : (a′

jql,1, out) | (j : qi → ql, kγ) ∈ P, γ ∈ {+, −, = 0}, k ∈ D}
∪ {1r20 : (qi,1qi,2, in), 1r21 : (qi,2qi,3, out), 1r22 : (qi,3qi,4, in) | i ∈ K}
∪ {1r23 : (qi,4qi,5, out), 1r24 : (qi,5qi, in) | i ∈ K}
∪ {1r25 : (dj â, out), 1r26 : (dj#0, in) | j ∈ I+ ∪ I−}
∪ {1r27 : (dj ǎj , in) | j ∈ I} ∪ {1r28 : (dj#1, out) | j ∈ I+ ∪ I−}
∪ {1r29 : (djd

′
j , out) | j ∈ I=0} ∪ {1r30 : (d′j b̂, in) | j ∈ I=0},

R2,r = {2r1 : (aj ǎj , in) | j ∈ I} ∪ {2r2 : (bj ǎj , out) | j ∈ I}
∪ {2r3 : (ajck, out) | (j : qi → ql, kγ) ∈ P, γ ∈ {−, = 0}, k ∈ D}
∪ {2r4 : (aj#2, out) | j ∈ I−} ∪ {2r5 : (aj âj , out) | j ∈ I+}
∪ {2r6 : (#0, in), 2r7 : (#0, out)}
∪ {2r8 : (ckâj , in) | (j : qi → ql, k+) ∈ P, k ∈ D}
∪ {2r9 : (a′

jbj , in) | j ∈ I} ∪ {2r10 : (a′
jdj , out) | j ∈ I}

∪ {2r11 : (dja5, in) | j ∈ I+ ∪ I−} ∪ {2r12 : (a5, out)}
∪ {2r13 : (djd

′′
j , in) | j ∈ I=0} ∪ {2r14 : (ajd

′′
j , out) | j ∈ I=0}.

Computational Power of Symport/Antiport 23

“Increment”-instruction:

ajc Icqiq̂iǎj â bj âj ⇒1r1,1s1 qiq̂iajIcc ǎj â bj âj ⇒1r2,1s2

qi Iccq̂iaj ǎj â bjâj where c ∈ C

Now there are two variants of computations (depending on the application of
rule 2r1 or rule 1r3). It is easy to see that the application of rule 1r3 leads to
an infinite computation (by “circle”). Consider applying rule 2r1:

qick Iccq̂iajǎjâ bj âj ⇒2r1,1s1,1s3

qiIcckc q̂iâ bjǎjajâj ⇒2r2,2r5,1s2

qic Icck q̂iâbjǎjaj âj

Notice that object âj cannot be idle, as the application of the rules 1r9, 1r10,
2r6, 2r7 leads to an infinite computation. Hence, rule 2r8 will be applied and ob-
ject ck will be moved to region 2 (thus, we increase the number of objects ck in re-
gion 2 by one and model the increment-instruction of the counter automaton). In
an analogous way, object bj cannot be idle, as applying rules 1r8, 1r10, 2r6, 2r7
leads to an infinite computation. Thus, rule 2r1 cannot be applied and rule 1r7
will eventually be applied.

ca′
ja1a3a5 Icckq̂iâbjǎjajâja2a4ql,1

Icca′
jbjǎjaj âa1a3a5 q̂ia2a4ql,1 âjck ⇒1r12,1r13,1s2

ǎjaja3a5 Iccq̂iâa1a2a4ql,1a
′
jbj âjck

Notice that applying rule 1r19 leads to an infinite computation, as object bj

cannot be idle. Thus, rule 2r9 will eventually be applied.

ǎjaja3a5ql,2ql,4 Iccq̂iâa1a2a4ql,1a′
jbjql,3ql,5 dj âjck

⇒2r9,1r14,1s1,1s3

Iccǎjaja1a2a3a5ql,2ql,4 q̂iâa4ql,1ql,3ql,5 dja′
jbjâjck

⇒2r10,1r15,1s2

ǎjaja1a5ql,2ql,4 Iccq̂ia2a3a4âdja′
jql,1ql,3ql,5 bjâjck

⇒1r19,1r25,1r16,1s1,1s3

Iccaj ǎjdjâa1a3a4a5a′
jql,1ql,2ql,4 q̂ia2ql,3ql,5 bj âjck

⇒1r27,1r13,1r17,1r20,1s2

aja3a
′
jql,4 Iccq̂iâa1a2a4ǎjdja5ql,1ql,2ql,3ql,5 bjâjck

24 A. Alhazov, R. Freund, and Y. Rogozhin

Now we can apply the rules 1r25, 1r18 or 2r11. It is easy to see that applying
rule 1r25 leads to an infinite computation (rules 1r26, 2r6, 2r7), which is true
for rule 1r18, too (rules 1r28, 1r10, 2r6, 2r7). Hence, now consider applying rule
2r11.

aja3a
′
jql,4ql Iccq̂lq̂iâa1a2a4ǎjdja5ql,1ql,2ql,3ql,5 bj âjck

⇒2r11,1r21,1r14,1s1,1s3

Iccaja1a2a3a′
jql,2ql,3ql,4ql q̂lq̂iâa4ǎjql,1ql,5 dja5bj âjck

⇒2r12,1r15,1r22,1s2

aja1a
′
jql,2ql Iccq̂lq̂iâa2a3a4a5ǎjql,1ql,3ql,4ql,5 djbj âjck

⇒1r16,1r18,1r23,1s1,1s3

Iccaja1a3a4a5a′
jql,2ql,4ql,5ql q̂lq̂iâa2ǎjql,1ql,3 djbj âjck

⇒1r17,1r24,1s2

aja1a3a
′
jql,2ql,4 Iccqlq̂lq̂iâa2a4a5ǎjql,1ql,3ql,5 djbjâjck

⇒1r1,1r18,1s1,1s3

Iccaja1a3a5a
′
jql,2ql,4qlq̂l q̂iâa2a4ǎjql,1ql,3ql,5 djbjâjck

Thus, we begin a new circle of modelling.

“Decrement”-instruction.
If there is an object ck in region 2, we obtain the following computation:

aj qiq̂iǎj â bjck#2 ⇒1r1 qiq̂iaj ǎj â bjck#2 ⇒1r2

qi q̂iaj ǎjâ bjck#2

Now there are two variants of computations (depending on the application of
rule 2r1 or rule 1r3). It is easy to see that the application of rule 1r3 leads to
an infinite computation (by “circle”). Now consider applying rule 2r1:

qi q̂iajǎjâ bjck#2 ⇒2r1 qi q̂iâ bjǎjajck#2 ⇒2r2,2r3

qi q̂ibjǎj âajck #2

Thus, object ck is moved from region 2 to region 1 (i.e., we decrease the
number of objects ck in region 2 by one and in that way model the “decrement”-
instruction of the counter automaton).

The case when there is no object ck in region 2 leads to an infinite compu-
tation (rules 2r4, 1r5, 1r6), hence, again we correctly model the “decrement”-
instruction. The further behavior of the system is the same as in the case of
modelling the “increment”-instruction.

Computational Power of Symport/Antiport 25

“Test for zero”-instruction:
qi is replaced by ql if there is no ck in region 2 (case a)), otherwise the

computation will never stop (case b)).

Case a):

aj qiq̂iǎj b̂d
′
jd

′′
j bjdj#2 ⇒1r1 qiq̂iaj ǎj b̂d

′
jd

′′
j bjdj#2 ⇒1r2

qi q̂iaj ǎj b̂d
′
jd

′′
j bjdj#2

Now there are two variants of computations (depending on the application
of rule 2r1 or rule 1r4). It is easy to see that the application of rule 1r4
leads to an infinite computation (by “circle”). Consider the application of rule
2r1:

qiql,2ql,4qla
′
j q̂iajǎjql,1ql,3ql,5b̂d

′
jd

′′
j bjdj#2 ⇒2r1

qiql,2ql,4qla
′
j q̂iql,1ql,3ql,5b̂d

′
jd

′′
j ajǎjbjdj#2 ⇒2r2

qiql,2ql,4qla
′
j q̂iǎjbjql,1ql,3ql,5b̂d

′
jd

′′
j ajdj#2 ⇒1r7

qiql,2ql,4qlǎjbja′
j q̂iql,1ql,3ql,5b̂d

′
jd

′′
j ajdj#2 ⇒1r12

qiql,2ql,4qlǎj q̂ibja
′
jql,1ql,3ql,5b̂d

′
jd

′′
j ajdj#2

Again there are two variants of computations, depending on the application
of rule 1r19 or rule 2r9. Notice that applying rule 1r19 leads to an infinite
computation, as object bj cannot be idle (rules 1r8, 1r10, 2r6, 2r7). Hence, we
only consider the case of applying rule 2r9:

qiql,2ql,4qlǎj q̂ibja′
jql,1ql,3ql,5b̂d

′
jd

′′
j ajdj#2 ⇒2r9

qiql,2ql,4qlǎj q̂iql,1ql,3ql,5b̂d
′
jd

′′
j ajbja′

jdj#2 ⇒2r10

qiql,2ql,4qlǎj q̂ia
′
jql,1ql,3ql,5b̂djd

′
jd

′′
j ajbj#2

Now there are two variants of computations, depending on the application
of rule 2r13 and 1r29. It is easy to see that applying rule 2r14 leads to an
infinite computation (rules 2r14, 1r4, 1r11, 2r6, 2r7). Hence, consider applying
rule 1r29:

26 A. Alhazov, R. Freund, and Y. Rogozhin

qiql,2ql,4qlǎj q̂ia′
jql,1ql,3ql,5b̂djd′

jd
′′
j ajbj#2 ⇒1r29,1r19

qia
′
jql,1ql,2ql,4qlǎjdjd

′
j q̂iql,3ql,5b̂d

′′
j ajbj#2 ⇒1r20,1r27

qia
′
jql,4qld

′
j q̂iql,1ql,2ql,3ql,5b̂ǎjdjd′′

j ajbj#2 ⇒1r21,2r13

qia
′
jql,2ql,3ql,4qld

′
j q̂iql,1ql,5b̂ǎj djd′′

j ajbj#2 ⇒1r22,2r14

qia
′
jql,2qld

′
j q̂iql,1ql,3ql,4ql,5d′′j ajb̂ǎj djbj#2 ⇒1r4,1r23

qia
′
jql,2ql,4ql,5qlajb̂d′

j q̂iql,1ql,3d
′′
j ǎj djbj#2 ⇒1r24,1r30

qia
′
jql,2ql,4aj q̂iql,1ql,3ql,5qlb̂d

′
jd

′′
j ǎj djbj#2

Thus, qi is replaced by ql in region 1.

Case b):

aj qiq̂iǎj b̂ ckbjdj#2 ⇒1r1 qiq̂iaj ǎj b̂ ckbjdj#2 ⇒1r2

qi q̂iaj ǎj b̂ ckbjdj#2

Again there are two variants of computations (depending on the application
of rule 2r1 or rule 1r4). It is easy to see that the application of rule 1r4 leads
to infinite computation (by “circle”). Consider the applying of rule 2r1:

qi q̂iajǎjb̂ ckbjdj#2 ⇒2r1 qi q̂ib̂ ckajǎjbjdj#2 ⇒2r2,2r3

qi q̂iǎjbjckaj b̂ dj#2

There are two variants of computations, depending on the application of rule
2r1 or rule 1r4. Notice that they both lead to infinite computations. Indeed, if
rule 2r1 will be applied, then rules 1r8, 1r10, 2r6, 2r7 will be applied (applying
rules 2r6, 2r7 leads to an infinite computation). If rule 1r4 will be applied, it
again leads to an infinite computation (rules 1r11, 2r6, 2r7). Thus, we correctly
model a “test for zero”-instruction.

3. END.

R1,f = {1f1 : ($1ǎj , out) | j ∈ I}
∪ {1f2 : ($2e1, out), 1f3 : ($1$3, out)}
∪ {1f4 : (etht, in) | t ∈ I ′}
∪ {1f5 : (htet+1, out) | 1 ≤ t ≤ n + 3},

Computational Power of Symport/Antiport 27

R2,f = {2f1 : (qf , in), 2f2 : (qf$1, out), 2f3 : (qf$2, out)}
∪ {2f4 : ($1â, in), 2f5 : ($1#1, in), 2f6 : ($1Ic, in)}
∪ {2f7 : (hn+4, in)}
∪ {2f8 : (hn+4âj , out) | j ∈ I}
∪ {2f9 : (hn+4bj , out) | j ∈ I}
∪ {2f10 : (hn+4dj , out) | j ∈ I}.

At first, all objects ǎj will be moved to the environment and the objects
â, #1, Ic to region 2 (thus, we stop without continuing the loop) and after that
all objects âj , bj , dj will be moved from region 2 to region 1. Hence, in region 2
now there are only the objects c1 (representing the result of the computation)
and the six additional objects #1, #2, â, Ic, qf , hn+4. �

Both constructions from Theorem 2 and Theorem 3 can easily be modified to
show that

PsOP2(sym1, anti1)T = PsRE and
PsOP2(sym2)T = PsRE,

i.e., the results proved in Theorem 2 and Theorem 3 can be extended from sets
of natural numbers to sets of vectors of natural numbers.

5 Final Remarks

In this paper we have proved the new results that P systems with minimal cooper-
ation, i.e., P systems with symport/antiport rules of size one, are computationally
complete with only two membranes: they generate all recursively enumerable sets
of vectors of nonnegative integers excluding (at most) the initial segment {0, 1, 2}.
In an analogous manner, P systems with symport rules of size two are computa-
tionally complete with only two membranes: they generate all recursively enumer-
able sets of vectors of nonnegative integers excluding (at most) the initial segment
{0, 1, 2, 3, 4, 5}. On the other hand it is known that systems with such rules in only
onemembrane cannot be universal, see [21, 47, 7].Hence, the resultswehave proved
in this paper are optimal with respect to the number of membranes. Notice that for
tissue P systems with minimal cooperation this problem has already been solved
successfully ([8]), i.e., it was proved that two cells are enough to generate all recur-
sively enumerable sets of natural numbers.

Moreover, for P systems with symport rules of weight three we already obtain
computational completeness with only one membrane modulo the initial seg-
ment {0, 1, 2, 3, 4, 5, 6}, which improves the result of [21], where thirteen objects
remained in the skin membrane at the end of a halting computation.

As so far we have not been able to completely avoid additional symbols that
remain after a computation has halted, the interesting open question remains
to find the minimal numbers of these additional objects that permit to obtain
computationally completeness in the cases described above.

28 A. Alhazov, R. Freund, and Y. Rogozhin

Acknowledgements

The first author is supported by the project TIC2002-04220-C03-02 of the Re-
search Group on Mathematical Linguistics, Tarragona. The first author and the
third author acknowledge the U.S. Civilian Research and Development Founda-
tion (CRDF)and theMoldavianResearch andDevelopmentAssociation (MRDA),
Award No. MM2-3034 for providing a challenging and fruitful framework for co-
operation. This article was written during the first author’s stay at the Vienna
University of Technology.

References

1. A. Alhazov, R. Freund: P systems with one membrane and symport/antiport rules
of five symbols are computationally complete. In [25], 19–28.

2. A. Alhazov, R. Freund, M. Oswald: Tissue P systems with antiport rules and
a small number of symbols and cells. In Developments in Language Theory, 9th
International Conference, DLT 2005 (C. De Felice, A. Restivo, eds.), Palermo,
Italy, July 4 – 8, 2005, LNCS 3572, Springer, Berlin, 2005, 100–111.

3. A. Alhazov, R. Freund, M. Oswald: Symbol/membrane complexity of P systems
with symport/antiport rules. In [12], 123–146.

4. A. Alhazov, R. Freund, Yu. Rogozhin: Computational power of symport/antiport:
history, advances and open problems. In [12], 44–78.

5. A. Alhazov, R. Freund, Yu. Rogozhin: Some optimal results on communicative P
systems with minimal cooperation. In [24], 23–36.

6. A. Alhazov, M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan: Communica-
tive P systems with minimal cooperation. In [36], 161–177.

7. A. Alhazov, Yu. Rogozhin: Minimal cooperation in symport/antiport P systems
with one membrane. In [25], 29–34.

8. A. Alhazov, Yu. Rogozhin, S. Verlan: Symport/antiport tissue P systems with
minimal cooperation. In [24], 37 – 52.

9. F. Bernardini, M. Gheorghe: On the power of minimal symport/antiport. In
Pre-proceedings of Workshop on Membrane Computing, WMC-2003 (A. Alhazov,
C. Mart́ın-Vide, Gh. Păun, eds.), Tarragona, July 17–22, 2003, Technical Report
RGML 28/03, Universitat Rovira i Virgili, Tarragona, 2003, 72–83.

10. F. Bernardini, A. Păun: Universality of minimal symport/antiport: five membranes
suffice. In Membrane Computing, International Workshop, WMC 2003, Tarragona,
July 2003, Selected Papers (C. Martin-Vide, G. Mauri, Gh. Păun, G. Rozenberg,
A. Salomaa, eds.), LNCS 2933, Springer, Berlin, 2004, 43–45.

11. C.S. Calude, Gh. Păun: Bio-steps beyond Turing. BioSystems, 77 (2004), 175–194.
12. R. Freund, G. Lojka, M. Oswald, Gh. Păun, eds.: Pre-proceedings of Sixth Inter-

national Workshop on Membrane Computing, WMC6, Vienna, July 18–21, 2005.
13. R. Freund, M. Oswald: GP systems with forbidding context. Fundamenta Infor-

maticae, 49 (2002), 81–102.
14. R. Freund, M. Oswald: A short note on analysing P systems with antiport rules.

Bulletin of the European Association for Theoretical Computer Science, 78 (2002)
231–236.

15. R. Freund, M. Oswald: P systems with activated/prohibited membrane channels.
In [44], 261–268.

Computational Power of Symport/Antiport 29

16. R. Freund, M. Oswald: Tissue P systems with symport/antiport rules of one symbol
are computationally universal. In [24], 187–200.

17. R. Freund, A. Păun: Membrane systems with symport/antiport: universality re-
sults. In [44], 270–287.

18. R. Freund, Gh. Păun: On deterministic P Systems. Manuscript, 2003 (available at
http://psystems.disco.unimib.it).

19. R. Freund, Gh. Păun, M.J. Pérez-Jiménez: Tissue-like P systems with channel
states. In [43], 206–223, and Theoretical Computer Science, 330 (2005), 101–116.

20. P. Frisco: About P systems with symport/antiport. In [43], 224–236.
21. P. Frisco, H.J. Hoogeboom: P systems with symport/antiport simulating counter

automata. Acta Informatica, 41 (2004), 145–170.
22. P. Frisco, H.J. Hoogeboom: Simulating counter automata by P systems with sym-

port/antiport. In [44], 288–301.
23. S. Greibach: Remarks on blind and partially blind one-way multicounter machines.

Theoretical Computer Science, 7 (1978), 311–324.
24. M.A. Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-Jiménez, eds.: Cellular Computing.

Complexity Aspects. Fenix Editora, Sevilla, 2005.
25. M.A. Gutierrez-Naranjo, A. Riscos-Núñez, F.J. Romero-Campero, D. Sburlan, eds.:

Proceedings of the Third Brainstorming Week on Membrane Computing, Sevilla
(Spain), January 31 – February 4, 2005.

26. O.H. Ibarra: On determinism versus nondeterminism in P systems. Theoretical
Computer Science, to appear.

27. O.H. Ibarra, S.Woodworth: On bounded symport/antiport P systems. Proc.
DNA11, UWO, London, Ontario, 2005, 37–48, and LNCS, to appear.

28. O.H. Ibarra: Some recent results concerning deterministic P systems. In [12], 24–25.
29. O. Ibarra, S. Woodworth: On symport/antiport P systems with one or two symbols.

In Pre-Proceedings of the Workshop on Theory and Applications of P Systems,
Timişoara, September 26-27, 2005, 75–82.

30. O.H. Ibarra, S. Woodworth, H. Yen, Z. Dang: On symport/antiport systems and
semilinear sets. In [12], 312–335.

31. L. Kari, C. Mart́ın-Vide, A. Păun: On the universality of P systems with mini-
mal symport/antiport rules. In Aspects of Molecular Computing. Essays Dedicated
to Tom Head on the Occasion of His 70th Birthday (N. Jonoska, Gh. Păun, G.
Rozenberg, eds.), LNCS 2950, Springer, Berlin, 2004 254–265.

32. M. Margenstern, V. Rogozhin, Yu. Rogozhin, S. Verlan: About P systems with
minimal symport/antiport rules and four membranes. In [35], 283–294.

33. C. Mart́ın-Vide, A. Păun, Gh. Păun: On the power of P systems with symport
rules, Journal of Universal Computer Science, 8 (2002), 317–331.

34. C. Mart́ın-Vide, J. Pazos, Gh. Păun, A. Rodŕıguez-Patón: Tissue P systems. The-
oretical Computer Science, 296 (2003), 295–326.

35. G. Mauri, Gh. Păun, C. Zandron, eds.: Pre-Proceedings of Fifth Workshop on
Membrane Computing (WMC5), Universitá di Milano-Bicocca, Italy, June 14–16,
2004.

36. G. Mauri, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg, A. Salomaa, eds.: Mem-
brane Computing. 5th Inter. Workshop, WMC5, Milan, Italy, June 2004, Revised
Selected and Invited Papers. LNCS 3365, Springer, Berlin, 2005.

37. M.L. Minsky: Finite and infinite machines. Prentice Hall, Englewood Cliffs, New
Jersey, 1967.

38. A. Păun, Gh. Păun: The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20 (2002), 295–305.

30 A. Alhazov, R. Freund, and Y. Rogozhin

39. Gh. Păun: Computing with membranes. Journal of Computer and Systems Science,
61 (2000), 108–143.

40. Gh. Păun: Membrane computing. An Introduction. Springer-Verlag, 2002.
41. Gh. Păun: Further twenty six open problems in membrane computing. In [25],

249–262.
42. Gh. Păun, J. Pazos, M.J. Perez-Jimenez, A. Rodriguez-Paton: Symport/antiport

P systems with three objects are universal. Fundamenta Informaticae, 64 (2005),
1–4.

43. Gh. Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini, eds.: Second
Brainstorming Week on Membrane Computing. Technical report of Research Group
on Natural Computing, University of Seville, TR 01, 2004.

44. Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron, eds.: Membrane Computing.
International Workshop, WMC-CdeA 02, Curtea de Arges, Romania, August 19–
23, 2002. Revised Papers. LNCS 2597, Springer, Berlin, 2003.

45. G. Rozenberg, A. Salomaa, eds.: Handbook of formal languages (3 volumes).
Springer, Berlin, 1997.

46. Gy. Vaszil: On the size of P systems with minimal symport/antiport. In [35], 422–
431.

47. S. Verlan: Optimal results on tissue P systems with minimal symport/antiport.
Presented at EMCC meeting, Lorentz Center, Leiden, The Netherlands, 22–26
November, 2004.

48. S. Verlan: Tissue P systems with minimal symport/antiport. In Developments in
Language Theory, DLT 2004 (C.S. Calude, E. Calude, M.J. Dinneen, eds.), LNCS
3340, Springer, Berlin, 2004, 418–430.

	Introduction
	Basic Notions and Definitions
	Register Machines and Counter Automata
	P Systems with Symport/Antiport Rules
	Tissue P Systems with Symport/Antiport Rules

	Descriptional Complexity -- A Historic Overview
	Rules Involving More Than Two Objects
	Minimal Cooperation
	Small Number of Objects
	Computational Completeness - Summary
	Bounded Symport/Antiport Systems

	New Results
	Final Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

