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Abstract. This paper attempts to improve our understanding of timed languages
and their relation to timed automata. We start by giving a constructive proof of
the folk theorem stating that timed languages specified by the past fragment of
MITL, can be accepted by deterministic timed automata. On the other hand we
provide a proof that certain languages expressed in the future fragment of MITL

are not deterministic,1 and analyze the reason for this asymmetry.

1 Introduction

In this paper we compare the past and future fragments of the real-time temporal logic
MITL [AFH96] with respect to the recognizability of their models by deterministic
timed automata. To put our work in context we first discuss past and future in untimed
temporal logic, the question of online and offline monitoring as well as some related
work on real-time logics and timed languages.

1.1 Past and Future in LTL

Propositional linear-time temporal logic (LTL) is a commonly-accepted formalism for
specifying properties of finite-state discrete systems [MP95b]. The semantic models for
LTL are typically sequences which are infinite toward the future and finite toward the
past.2 On this semantic domain there is a “typing” asymmetry between models of prop-
erties expressed in the past fragment of LTL, which are star-free3 regular languages,
and models for formulae written using the future fragment which are star-free regu-
lar ω-languages. To facilitate a closer comparison of the expressive power of the two

� This work was partially supported by the European Community project IST-2003-507219
PROSYD (Property-based System Design).

1 As far as we know, no systematic techniques for proving such facts have been developed for
timed automata since their introduction 15 years ago until recently.

2 In other words the “carrier set” is isomorphic to N, not Z. Languages over bi-infinite sequences
have been studied in [NP86].

3 The word star-free comes from the characterization of these languages as those definable using
a special class of regular expressions the do not use the Kleene star but allow intersection and
complementation, see [MNP71].
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formalisms, one can unify their semantic domains by interpreting future LTL over fi-
nite sequences. This can be done, for example, by extending LTL semantics to include
“truncated” (finite) paths as in [EFH+03]. Getting rid of the ω-dimension we can focus
on the differences between the two formalisms which are related to the direction of the
temporal modalities.

When an automaton reads a sequence, the current state of the automaton represents
(the equivalence class of) the prefix read so far. Past LTL fits naturally this point of view
as satisfaction is determined now by what happened from time zero until now. Future
LTL, on the other hand, states at time zero what it expects to see or not to see in the
future. As time progresses, some of those “obligations” are fulfilled (or violated) and
some new ones are generated. Satisfaction is established if all obligations are met at
the end of the sequence. The translation from LTL formulae to automata that accept
their models is one of the cornerstones of formal verification [VW86], and most of
the work on the topic focused on future properties and ω-automata. From a future LTL
formula one can construct naturally an alternating or a non-deterministic automaton that
accepts the language. Such an automaton can be determinized either by the non-trivial
construction of Safra for ω-automata [Saf88], or by the simpler subset construction if
we take the finitary interpretation. The translation from past LTL to automata is more
folklore, but it is not hard to see that it translates naturally to deterministic automata,
a fact the also explains the simplicity of the online monitoring procedure in [HR02].
So the bottom line for LTL is that both the past and future fragments can be eventually
translated into deterministic automata.4

1.2 Deterministic Automata and Online Monitors

Monitoring is the process of testing whether a given behavior ξ satisfies a property ϕ (or,
equivalently, belongs to the corresponding language L). This process can be performed
in two different fashions. Offline monitoring starts after the whole sequence is given.
Online monitoring is interleaved with the process of reading the sequence and is similar
to the way the sequence is read by an automaton. Online monitors can detect violation or
satisfaction as soon as they happen, which can be after a small prefix of the sequence.5

This is advantageous for two reasons: for monitoring real systems (rather than simulated
ones) offline monitoring is a post-factum analysis and can be too late to be useful. Even
for simulated systems, where monitoring is used as a lightweight alternative to formal
verification, early detection may reduce simulation time significantly. In analog circuits,
the application domain that triggered this work, simulations can be very long.

4 We mention the results of [MP90] which show how to go from counter-free automata to past
LTL formulae and from counter-free ω-automata to mixed past-future formulae which are
Boolean combinations of formulae of the form � � ϕ where ϕ is a past formula. An alter-
native proof of the fact that all LTL formulae can be brought to this normal form appears in
[LPZ85].

5 To be more precise, violation or satisfaction of a property based on a prefix can be declared
when all possible continuations of the prefix are equivalent with respect to the formula. Such
a prefix is called “definitive” in [EFH+03]. If the corresponding automaton is minimal, this
fact can be easily detected by entering a “sink”state, either rejecting (for violation of safety)
or accepting (satisfaction of eventuality). For non-minimal automata the analysis is a bit more
involved.
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In [MN04] we have developed an offline monitoring procedure for the real-time logic
MITL[a,b]. This procedure, which was used to monitor properties of real-valued signals,
scans the signal from the end backwards and propagates truth values from sub-formulae
“upward” and from the present to the past. In order to have an online version of this pro-
cedure, we somehow need to produce an automaton-like mechanism that reads Boolean
signals, and whose state during reading is sufficiently detailed to detect acceptance or
rejection as they occur. To follow the same recipe as in the untimed case, one would
like to transform a formula to a timed automaton to be used as a monitoring procedure.
However, the natural translation of MITL yields non-deterministic or alternating timed
automata which, in the general case, do not determinize [AD94]. There are several
remedies for this problem:

1. Use the important observation of Tripakis [Tri02, KT04] that on-the-fly determiniza-
tion with respect to a given non-Zeno signal is possible for any timed automaton.
The reason for non-determinizability of certain automata is the need to memorize
the times of all events that have occurred within a bounded time window, without
any a-priori bound on their number. In monitoring, we observe a signal with a fixed
number of events, which can generate only a finite number of non-deterministic
choices and hence the restriction of the automaton to this signal is amenable to
subset construction.

2. Develop a piecewise-backward version of the procedure in [MN04] which after ev-
ery new event or sampling point, restarts the propagation of truth values backwards
(in most cases the propagation need not go back too far).

3. Use specification formalisms that correspond to deterministic timed automata.

This work is the result of attempting to follow the third approach.

1.3 Related Work

The study of real-time specification formalisms started in the eighties and generated
numerous logics, results and papers. The reader is advised to look at surveys and dis-
cussions of these logics [AH92a, Hen98, HR04], of timed automata [Alu99] and timed
languages in general [Asa04]. Without purporting to be exhaustive, we mention some
relevant results.

The real-time logic MITL was introduced in [AFH96] as a restriction of the more
general logic MTL (metric temporal logic) of [Koy90]. The restriction of time modal-
ities to positive-length intervals was intended to guarantee decidability but recent re-
sults [OW05, LW05] show that this restriction is not necessary for deciding MTL over
finitary event-based semantics. The original version of MITL contained only future tem-
poral operators and [AFH96] give a procedure for translating an MITL formula into
a non-deterministic timed automaton with the satisfiability and model-checking prob-
lems being EXPSPACE-complete. The non-determinizable nature of MITL is hinted in
the paper.

Event-recording automata, where only the time of the last occurrence of every input
letter can be remembered by a clock, have been shown to be determinizable in [AFH99].
Event-clock automata, introduced in the same paper, constitute a generalization of the
latter which allow also “event-predicting” clocks. Event-clock logic is another decid-
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able real-time logic which is equally expressive as MITL [RSH98] and which can be
naturally translated into determinizable event-clock automata. However those become
non-deterministic when expressed as classical Alur-Dill automata.6

An investigation of past and future versions of MITL was carried out in [AH92b]
where the “prediction” feature of event-clock automata was replaced by the ability of
the automaton to change the direction of reading. The authors describe a strict hierarchy
of timed languages based on the number of direction reversals needed to recognize
them (which corresponds roughly to the nesting depth of past and future operators).
The deterministic nature of the past fragment of MITL is mentioned as a corollary of
that hierarchy but no explicit proof is given.

Real-time monitoring tools often rely on temporal logics as their property specifica-
tion language, but typically under a discrete-time interpretation. For example, [KPA03]
use LTLt, standard LTL augmented with freeze quantifiers, while in [TR04] the moni-
toring procedure uses MTL. In [Gei02] the dense semantics is preserved but additional
restrictions on MITL are imposed in order to guarantee determinizability. These include
the restriction of timed modalities to intervals of the form [0, d] and disallowing arbi-
trary nesting of temporal operators.

In [MP04] we started focusing on deterministic timed automata because of the belief
that some fundamental concepts of automata theory are better studied in a deterministic
framework. We have defined there a notion of recognizability and have shown that is
coincides with acceptance by deterministic timed automata. The current paper is part of
the quest for a matching specification formalism.

The rest of the paper is organized as follows. In Section 2 we describe signals along
with the logic MITL. In Section 3 we define the variant of timed automata that we use
as signal acceptors. The proof of determinizability of the past fragment of MITL is
given in Section 4 followed, in Section 5, by the proof of non-determinizability of
the future fragment and a discussion of the reasons. Further contemplations close the
paper.

2 Signals and Their Temporal Logic

Two basic semantic domains can be used to describe timed behaviors. Time-event se-
quences consist of instantaneous events separated by time durations while discrete-
valued signals are functions from time to some discrete domain. The reader may consult
the introduction to [ACM02] or [Asa04] for more details on the algebraic characteriza-
tion of these domains. In this work we use Boolean signals as the semantic domain, but
the extension of the results to time-event sequences (which are equivalent to the timed
traces used by Alur and Dill [AD94]) need not be a difficult exercise.

Let the time domain T be the set R≥0 of non-negative real numbers. A finite length
Boolean signal ξ is a partial function ξ : T → B

n whose domain of definition is an
interval I = [0, r), r ∈ N. We say that the length of the signal is r and denote this

6 One may argue that deterministic event-clock automata preserve one essential feature of de-
terminism, namely, a unique run for every input signal, but this comes at the expense of losing
the causality of the runs due to the prediction feature which amounts to going back and forth
in time.
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fact by |ξ| = r. We use ξ[t] for the value of the signal at time t and the notation
σt1

1 · σt2
2 · · · σtk

k for a signal of length t1 + · · · + tk whose value is σ1 at the interval
[0, t1), σ2 in the interval [t1, t1 + t2), etc. We use t⊕ [a, b] to denote [t+a, t+b]∩ [0, r)
and t � [a, b] for [t − b, t − a) ∩ [0, r), that is, the Minkowski sum (difference) of {t}
and [a, b] restricted to the domain of definition of the signal in question. We call these
operations, respectively, forward and backward shifting.

We define the logic MITL[a,b] as a bounded version of the real-time temporal logic
MITL [AFH96], such that all temporal modalities are restricted to intervals of the form
[a, b] with 0 ≤ a < b and a, b ∈ N. The use of bounded temporal properties is one way
to interpret temporal logic over finite-duration traces. The basic formulae of MITL[a,b]
are defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 S [a,b]ϕ2| ϕ1 U [a,b]ϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions corresponding naturally to
the coordinates of the n-dimensional Boolean signal considered. The future and past
fragments of MITL use only the U and S modalities, respectively. The satisfaction re-
lation (ξ, t) |= ϕ, indicating that signal ξ satisfies ϕ at position t, is defined inductively
below. We use p[t] to denote the projection of ξ[t] on the dimension that corresponds to
variable p.

(ξ, t) |= p ↔ t ∈ [0, r) ∧ p[t] = T

(ξ, t) |= ¬ϕ ↔ (ξ, t) 
|= ϕ
(ξ, t) |= ϕ1 ∨ ϕ2 ↔ (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= ϕ1 S [a,b]ϕ2 ↔ ∃t′ ∈ t � [a, b] (ξ, t′) |= ϕ2 and ∀t′′ ∈ [t′, t], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1U[a,b]ϕ2 ↔ ∃ t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ2 and ∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

The satisfaction of a formula ϕ by the whole signal ξ is defined differently for the past
and future fragments. For the past it is defined backwards as7 (ξ, |ξ|) |= ϕ , and for the
future as (ξ, 0) |= ϕ.

From basic MITL[a,b] operators one can derive other standard Boolean and temporal
operators, in particular the time-constrained sometime in the past, always in the past,
eventually in the future and always in the future operators whose semantics is defined
as

(ξ, t) |= � [a,b] ϕ ↔ ∃t′ ∈ t � [a, b] (ξ, t′) |= ϕ

(ξ, t) |= � [a,b] ϕ ↔ ∀t′ ∈ t � [a, b] (ξ, t′) |= ϕ
(ξ, t) |= � [a,b] ϕ ↔ ∃t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ

(ξ, t) |= � [a,b] ϕ ↔ ∀t′ ∈ t ⊕ [a, b] (ξ, t′) |= ϕ

Note that our definition of the semantics of the time-bounded since and until operators
differs slightly from their conventional definition in discrete time as it requires a time
instant t′ where both (ξ, t′) |= ϕ2 and (ξ, t′) |= ϕ1.

7 To be more precise, it is the right limit of (ξ, t) |= ϕ at t → r.
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3 Timed Automata

We use a variant of TA which differs from the classical definitions [AD94, HNSY94]
by the following features:

1. It reads multi-dimensional dense Boolean signals, hence the alphabet letters are
associated with states rather than with transitions.

2. Acceptance conditions are more refined and may include constraints on clock val-
ues.

3. Clock values may include the special symbol ⊥ indicating that the clock is currently
inactive.

4. Transitions can be labeled by the usual resets of the form x := 0 or x := ⊥ as well
as by copy assignments of the form xi := xj .

The last three features do not change the expressive power of timed automata, see
[SV96], but allow us to treat clocks in a more “dynamic” fashion. Note that clock inac-
tivity in a state can be encoded implicitly by the fact that in all paths emanating from
the state, the clock is reset to zero before being tested [DY96]. The use of signals is mo-
tivated by our application domain and replicating our results to event-based semantics
is left as an exercise.

The set of valuations of a set C = {x1, . . . , xn} of clock variables, each denoted as
v = (v1, . . . , vn), defines the clock space H = (R≥0 ∪ {⊥})n. A configuration of a
timed automaton is a pair of the form (q, v) with q being a discrete state. For a clock
valuation v = (v1, . . . , vn), v + t is the valuation (v′1, . . . , v

′
n) such that v′i = vi if

vi = ⊥ and v′i = vi + t otherwise. A clock constraint is a Boolean combination of
conditions of the forms x ≥ d or x > d for some integer d.

Definition 1 (Timed Automaton). A timed automaton over signals is a tuple A =
(Σ, Q, C, λ, I, ∆, q0, F ) where Σ is the input alphabet (Bn in this paper), Q is a finite
set of discrete states and C is a set of clock variables. The labeling function λ : Q → Σ
associates a letter of the alphabet to every state while the staying condition (invariant)
I assigns to every state q a subset Iq of H defined by a conjunction of inequalities of
the form x ≤ d, for some clock x and integer d. The transition relation ∆ consists
of elements of the form (q, g, ρ, q′) where q and q′ are discrete states, the transition
guard g is a subset of H defined by a clock constraint and ρ is the update function, a
transformation of H defined by a set of copy assignments and resets on C. Finally q0 is
the initial state and F is the acceptance condition, a subset of Q × H defined for each
state by a clock constraint.

The behavior of the automaton as it reads a signal ξ consists of an alternation be-
tween time progress periods where the automaton stays in a state q as long as ξ[t] =
λ(q) and Iq holds , and discrete instantaneous transitions guarded by clock conditions.
Formally, a step of the automaton is one of the following:

– A time step: (q, v) σt

−→ (q, v + t), t ∈ R+ such that λ(q) = σ and v + t satisfies Iq

(due to the structure of Iq this holds as well for every t′, 0 ≤ t′ < t).

– A discrete step: (q, v) δ−→ (q′, v′), for some transition δ = (q, g, ρ, q′) ∈ ∆, such
that v satisfies g and v′ = ρ(v).
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A run of the automaton starting from a configuration (q0, v0) is a finite sequence of
alternating time and discrete steps of the form

ξ : (q0, v0)
σ

t1
1−→ (q0, v0 + t1)

δ1−→ (q1, v1)
σ

t2
2−→ (q1, v1 + t2)

δ2−→ · · · σtn
n−→ (qf , vf )

A run is accepting if the last configuration (qf , vf ) ∈ F . The signal carried by the run
is σt1

1 · σt2
2 · · ·σtn

n . The language of the automaton consists of all signals carried by
accepting runs.

A timed automaton is input-deterministic if every input signal admits a unique run,
a property guaranteed by the following two conditions:

1. Transition determinism: for every two transitions (q, g1, ρ1, q1) and (q, g2, ρ2, q2),
λ(q1) = λ(q2) implies g1 ∩ g2 = ∅.

2. Time determinism: for every state q and transition (q, g, ρ, q′), if λ(q) = λ(q′) then
the interior of Iq ∩ g is empty.

These two conditions imply that while reading a given signal, the automaton cannot be
in two or more configurations simultaneously for any positive-length duration.

4 From Past MITL[a,b] to Deterministic Timed Automata

In this section we show how to build a deterministic timed automaton for any past
MITL[a,b] formula. The construction follows the same lines as the compositional con-
struction of [Pnu03] for untimed future temporal logic, where an automaton for a for-
mula observes the states of the automata that correspond to its sub-formulae. This con-
struction is particularly attractive for past temporal logic where the correspondence
between states in the automaton and satisfaction of a sub formula is more direct.

We illustrate the idea underlying the proof on the formula � [a,b] ϕ for some past
formula ϕ. Intuitively, an automaton that accepts such a language should monitor the
truth value of ϕ and memorize, using clocks, the times when this value has changed.
Memorizing all such changes may require an unbounded number of clocks, but as we
shall see, only a finite number of those is sufficient since not all occurrence times of
these changes need to be remembered.

Consider signal ϕ of Figure 1-(a), a clock xi reset to zero at the ith time ϕ becomes
true and a clock yi reset when ϕ becomes false. For this example � [a,b] ϕ is true exactly
when (x1 ≥ a ∧ y1 ≤ b) ∨ (x2 ≥ a ∧ y2 ≤ b). Due to the monotonicity of the clock
dynamics, whenever y1 goes beyond b, its value becomes irrelevant for the satisfaction
of the acceptance condition, it can be discarded together with x1. By itself, this fact
does not guarantee finiteness of the number of clocks because we assume no a-priori
bound on the variability of ϕ.

Consider now Figure 1-(b), where the second rise of ϕ is less than b−a time after the
preceding fall. In this case, condition (x1 ≥ a ∧ y1 ≤ b) ∨ (x2 ≥ a ∧ y2 ≤ b) becomes
equivalent to x1 ≥ a ∧ y2 ≤ b. Since the values of y1 and x2 do not matter anymore
we may disactivate them and forget this short episode of ¬ϕ. When ϕ falls again we
may re-use clock y1 to record the occurrence time and let the acceptance condition be
x1 ≥ a ∧ y1 ≤ b. Hence the maximal number of events to be remembered before the
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ϕ

� [a,b] ϕ

ϕ

� [a,b] ϕ

x1 y1 x2 y2

x1 y1

(a)

(b)

Fig. 1. Memorizing changes in the truth value of ϕ: (a) x2 − y1 ≥ b − a; (b) x2 − y1 < b − a

oldest among them expires is m = b/(b − a) − 1 and at most 2m clocks are sufficient
for monitoring such a formula. Note that for a “punctual” modality where a = b, m
goes to infinity.

The automaton depicted in Figure 2, is a kind of an “event recorder” for accepting
signals satisfying � [a,b] ϕ. Its set of discrete states Q is partitioned into

Q¬ϕ = {(01)i0}i=0..m and Qϕ = {(01)i}i=1..m,

with the intended meaning that the Boolean sequences that encode states correspond to
the qualitative histories that they memorize, that is, the patterns of remembered rising
and falling of ϕ that have occurred less than b time ago. The clocks of the automaton are
{x1, y1, . . . , xm, ym}, each measuring the time since its corresponding event. Naturally,
clock xi is active only at states (01)j and (01)j0 for j ≥ i and clock yi at (01)j0
(01)j+1 for j ≥ i.

When ϕ first occurs the automaton moves from 0 to 01 and resets x1. When ϕ be-
comes false it moves to 010 while resetting y1. From there the following three continu-
ations are possible:

Table 1. The effect of the clock shifting operation while taking a transition from (01)i to (01)i−1

c x1 y1 · · · xi−1 yi−1 xi yi · · · xm ym

v u1 v1 · · · ui−1 vi−1 ui ⊥ · · · ⊥ ⊥
s(v) u2 v2 · · · ui ⊥ ⊥ ⊥ · · · ⊥ ⊥
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1. If ϕ remains false for more than b time, the true episode of ϕ can be forgotten and
the automaton moves to 0.

2. If ϕ becomes true within less than b − a time, the false episode is forgotten and the
automaton returns to 01.

3. If ϕ becomes true after more than b − a time the automaton resets x2 and moves to
0101.

Transitions of type 1 may happen in all states that record 2 changes or more. They
occur when the first falling of ϕ is more than b time old and hence the values of clocks
x1 and y1 can be forgotten. In order to keep the number of clocks bounded, this tran-
sition is accompanied by “shifting” the clocks values, that is, applying the operations
xi := xi+1 and yi := yi+1 for all i as well as xm := ym := ⊥. The effect of this shift-
ing operation when a transition from (01)i to (01)i−1 is taken is illustrated in Table 1.

Lemma 1. The event recorder automaton, running in parallel with the automaton Aϕ,
accepts the signals satisfying � [a,b] ϕ whenever x1 is active and satisfies x1 ≥ a.

y1 ≤ b ϕ

010101

y1 ≤ b

01010

¬ϕ

ϕ ∧ y2 ≤ b − a

y1 ≥ b/s

ϕ ∧ y1 ≥ b − a/

ϕ ∧ y1 ≥ b − a/

ϕ/

ϕ

y1 ≤ b y1 ≤ b

ϕ ∧ y1 ≤ b − a

¬ϕ

¬ϕ ϕ

0 01

010 0101

y1 ≥ b/s

y1 ≥ b/s y1 ≥ b/s

x2 := 0

x1 := 0

x3 := 0

¬ϕ/y1 := 0

¬ϕ/y2 := 0

¬ϕy1 ≤ b

(01)m0

. . .

Fig. 2. An [a, b] event recorder. The input labels and staying conditions are written on the bottom
of each state. Transitions are decorated by the input labels of the target states and by clock resets.
The clock shift operator is denoted by the symbol s.
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Sketch of Proof: We need to show that in every state of the form (01)i0 there have
been i risings and fallings of ϕ that have occurred less than b time ago such that each
falling has lasted for more than b − a time, and that the corresponding clocks represent
the times elapsed since they have occurred. When this is the case and since y1 ≤ b by
construction, x1 ≥ a at time t iff there was a time t′ ∈ t�[a, b] in which ϕ was true. The
proof is by induction on the length of the run. The claim is trivially true at the initial
state. The inductive step starts with a configuration of the automaton satisfying the
above, and proceeds by showing that it is preserved under time passage and transitions.
The proof for states of the form (01)i is similar.

Lemma 2. Given deterministic timed automata Aϕ and Aψ accepting [[ϕ]] and [[ψ]], re-
spectively, one can construct a deterministic timed automaton accepting
ϕS [a,b]ψ.

Proof: Observe first that ϕSψ can be seen as a restriction of � ψ to periods where ϕ
holds continuously. In other words, the automaton need not measure times of changes in
ψ after which ϕ became false. Hence the S -automaton (Figure 3) consists of an event
recorder for ψ augmented with an additional initial state ¬ϕ. Whenever ϕ becomes
true the automaton moves to the initial state of the event recorder and whenever ϕ be-
comes false it moves (from any state) back to ¬ϕ while forgetting all the past history
of ψ.

¬ϕ

ψ event recorder

¬ϕ

ϕ

. . .

0 01

ϕ

Fig. 3. The automaton for ϕS [a,b]ψ

Theorem 1 (Past MITL is Deterministic). Given a past MITL[a,b] formula ϕ, one can
construct a deterministic timed automaton A accepting [[ϕ]].

Proof: By induction on the structure of the formula. For a proposition p we build the
deterministic two-state automaton Ap which moves to and from the accepting state
according to the current value of p. For ¬ϕ we take the automaton Aϕ and complement
its acceptance condition while for ϕ ∨ ψ we do a Cartesian product of Aϕ and Aψ.
Combining this with the previous lemma the result is established.
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5 Future MITL is Non-deterministic

In this section we demonstrate the existence of a timed language L, definable in future
MITL, which cannot be accepted by any deterministic automaton. Consider the formula

� [0,a](p ⇒ � [a,b]q). (1)

and the language L consisting of all signals of length a+b that satisfy it. Models of this
formula are two-dimensional Boolean signals that satisfy some relation between the
times p is true in the interval [0, a] and times when q holds in [a, a + b] (see Figure 4).
An automaton for L reads first the p part and memorizes what is required to memorize
in order to determine whether the q part is accepted.

The syntactic (Nerode) right-congruence ∼ associated with a language L is defined
as:

u ∼ v iff ∀w u · w ∈ L ⇔ v · w ∈ L.

For untimed languages acceptance by a finite (deterministic) automaton is equivalent
to ∼ having a finite number of equivalence classes. In [MP04] we have shown that
for timed languages, finiteness can be replaced by some special kind of boundedness
which, among other things, implies:

Proposition 1 (MP04). If a language is accepted by a deterministic timed automaton
then there is some n such that all signals with n changes are Nerode equivalent to
signals with less than n changes.8

We now show that this is not the case for L, for which only signals which are identical
are equivalent.

Claim. Let u and v be two p-signals of length a. Then, u 
= v implies u 
∼ v with
respect to L.

Proof: Let t be the first time when u and v differ. Assume that p is true on [t, t + ε] in
u and false on that interval in v. We can then construct a distinguishing signal w such
that uw 
∈ L and vw ∈ L. Let w be the q-signal 1t · 0b−a+ε · 1a−t−ε, i.e. a signal which
is true throughout [a, a + b] except for the interval [t + a, t + b + ε] (see Figure 5).
Clearly uw will be rejected due to unfulfilled eventuality in the interval while vw will
be accepted because v generates no obligations for this interval which are not fulfilled
by the true values of w on both sides of the interval.

Hence, while reading the p-part the automaton should memorize the exact form of
the signal, and since its variability is not bounded, an unbounded number of clocks
is needed to memorize the times when p changes.

Corollary 1 (Future MITL is not Deterministic). There are languages expressible in
future MITL which cannot be recognized by any deterministic timed automaton.

8 Note that the converse is not true: consider, for instance, the language consisting of all signals
where p holds continuously, and whose duration is a prime number. All signals with one or
more changes in p value are rejected and hence equivalent, yet the language cannot be accepted
by a deterministic (or non-deterministic) timed automaton.
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p

q

a a + b0

Fig. 4. A candidate signal for satisfying the formula; values of p and q are specified only in the
relevant intervals, [0, a] for p and [a, a + b] for q

v

w

t t + ε t + a t + b + ε

u

w

t t + ε t + a t + b + ε

p

q

p

q

Fig. 5. Signal u, v and w such that u · w �∈ L and v · w ∈ L

This raises an intriguing question: why for specifications expressed in past MITL, the
automaton can forget certain small changes in p that persist less than b−a time? Below
we give an answer to this question.

Consider first a “punctual” version of the future formula (1), where q should follow
exactly b time after p:

� [0,a](p ⇒ � bq)

This formula admits a “dual” past formula

� [0,a](¬q ⇒ � b¬p)

which is semantically equivalent on signals of length a + b. In other words, the first-
order interpretations

∀t ∈ [0, a] p[t] ⇒ q[t + b]

and
∀t′ ∈ [b, b + a] ¬q[t′] ⇒ ¬p[t′ − b]

are equivalent (see Figure 6).
However, when we relax punctuality and use interval time modalities, the symmetry

between past and future is broken and the automaton for the corresponding past formula

� [0,a](¬q ⇒ � [a,b]¬p) (2)

can ignore short episodes. The reason is due to the inter-relationship between the di-
rection of the implication and the Minkowski sum. In a future interval modality, an
event that happens at t may create an obligation for something to hold somewhere or
throughout the future interval t ⊕ [a, b] = [t + a, t + b]. In the past modality a future
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q

p

t′t + b

t t′ − b

q

p

t′t ⊕ [a, b]

t′ � [a, b]t

Fig. 6. Punctual modalities are past-future symmetric; interval modalities are not

event at time t′ is implied by something that could/should have happened at the interval
t′ � [a, b] = [t′ − b, t′ − a]. Anything that lasts less then b− a does not generate its own
specific obligations (obligations that are not already generated by neighboring segments
of the signal). Logically speaking, (2) translates into the the first-order formula

∀t′ ∈ [b, a + b] (¬q[t′] ⇒ ∃t ∈ t′ � [a, b] ¬p[t])

or equivalently

∀t′ ∈ [b, a + b] ((∀t ∈ t′ � [a, b] p[t]) ⇒ q[t′]).

Consider now two p-signals p1 = ξ ·0t11t20t3 and p2 = ξ ·0t1+t2+t3 that differ only by
the true episode of length t2 < b−a in p1. It is not hard to see that for any t′ ∈ [b, a+b]

∀t ∈ t′ � [a, b] p1[t] ⇐⇒ ∀t ∈ t′ � [a, b] p2[t]

because any t′ � [a, b] that intersects the true segment 1t2 in p2 also intersects at least
one of its neighboring false segments. Hence the same obligations for t′ are generated
by p1 and p2 and they are Nerode equivalent.

So in conclusion, the difference between past and future in real-time temporal logic
turns out to be due to a syntactic artifact that generates some bounded variability “fil-
tering” for past interval modalities, but not for the future ones.

6 Discussion

It seems that the current paper does not conclude the search for a specification for-
malism which is natural, powerful and yet determinizable. Past MITL lacks the first
property and future MITL is not deterministic. As another candidate we have explored
a star-free version of the timed regular expressions presented in [ACM02]. The con-
catenation operator is more symmetric then the since and until operators and it could be
interesting to see how it behaves. However it turns out that variations on both the future
(1) and past (2) formulae can be defined by expressions such as

¬(U · (p · U ∧ ¬(〈U · q〉[a,b] · U)))

and
¬(U · (U · p ∧ ¬(U · 〈q · U〉[a,b])) · U),
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respectively, where U is a special symbol denoting the universal timed language. This
shows the star-free expressions are not deterministic either.

It looks as if determinizability can be obtained by enforcing some minimal duration
for sub-formulae that imply something toward the future, for example p in (1). In past
MITL this is automatically guaranteed by the structure of the formulae. We are currently
contemplating sufficient syntactic conditions that will guarantee a similar property for
the future fragment. In this context it is worth mentioning the inertial bi-bounded delay
operator used for expressing delays in abstract models of digital circuits, which was
formalized using timed automata in [MP95a]. This operator allows one to relate two
signals by an inclusion of the form

ξ′ ∈ Dc
[a,b](ξ)

where c ≤ a, meaning that every change in ξ that persists for at least c time, is propa-
gated to ξ′ within t ∈ [a, b] time. Observe that this type of persistence constraint can be
expressed within MITL. For example, the future formula (1) can be transformed into

� [0,a](� [0,b−a]p ⇒ � [a,b]q)

which is determinizable. Further investigations of these issues belong to the future.

Acknowledgments. This work benefited from discussions with E. Asarin, S. Tripakis
and Y. Lakhnech and from comments made by D. Fisman, T. Henzinger and anonymous
referees.
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