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Preface

This volume contains the proceedings of FORMATS 2005, the Third Interna-
tional Conference on Formal Modelling and Analysis of Timed Systems, held in
Uppsala, Sweden, September 26–28, 2005, in conjunction with ARTIST2 sum-
mer school, September 29–October 2, 2005, on Component Modelling, Testing
and Verification, and Static Analysis of Embedded Systems. FORMATS is an
annual workshop series initiated in 2003. It is dedicated to the advancement of
formal theories, techniques and software tools for modelling and analysis of timed
systems. FORMATS 2003 was associated to CONCUR 2003 (International Con-
ference on Concurrency Theory), held in Marseilles, France. FORMATS 2004
was organized in conjunction with FTRTFT (Formal Techniques in Real-Time
and Fault Tolerant Systems), Grenoble, France.

This year, FORMATS received 43 submissions out of which 19 papers were
selected for presentation by the Program Committee. Each of the submitted pa-
pers has been reviewed by at least three PC members and their sub-reviewers.
The scientific program of FORMATS 2005 contained three invited talks: Lothar
Thiele (Modular Performance Analysis of Distributed Embedded Systems), Karl-
Erik Årzén (Timing Analysis and Simulation Tools for Real-Time Control) and
Parosh Abdulla (Verification of Parameterised Timed Systems). The 19 se-
lected contributions cover work on semantics and modelling of timed systems,
formalisms for modelling and verification including timed automata, hybrid
automata, and timed Petri nets, games for verification and synthesis, model-
checking, case studies and issues related to implementation, security and perfor-
mance analysis.

We would like to thank all the PC members for their efforts in the reviewing
and selection process. We thank Ulrika Anderssson, Anders Hessel, Patrik Jo-
hansson, and Leonid Mokrushin for taking care of practical matters in the local
organization.

The Program Committee of FORMATS 2005 comprised: Parosh Abdulla
(Uppsala Univ., Sweden), Eugene Asarin (LIAFA, France), Patricia Bouyer (LSV,
France), Ed Brinksma (Univ. of Twente, Netherlands), Flavio Corradini (Univ. of
Camerino, Italy), Joost-Pieter Katoen (Aachen Univ., Germany), Marta Kwiat-
kowska (Univ. of Birmingham, UK), Yassine Lakhnech (Verimag, France), Kim
G. Larsen (Aalborg Univ., Denmark), Insup Lee (Univ. of Pennsylvania, USA),
Oded Maler (Verimag, France), Jens Palsberg (UCLA, USA), Paul Pettersson
(Co-chair, Uppsala Univ., Sweden), Jean-Francois Raskin (ULB, Belgium), Mar-
ille Stoelinga (Univ. of Twente, Netherlands), P.S. Thiagarajan (National Univ.
of Singapore), Stavros Tripakis (Verimag, France), Frits Vaandrager (Radboud
Univ. Nijmegen, Netherlands), Walter Vogler (Univ. of Augsburg, Germany),
and Wang Yi (Co-chair, Uppsala Univ., Sweden).



VI Preface

The Steering Committee of FORMATS consisted of Rajeev Alur (Univ. of
Pennsylvania, USA), Flavio Corradini (Univ. of Camerino, Italy), Kim G. Larsen
(Aalborg Univ., Denmark), Oded Maler (Verimag, France), Walter Vogler (Univ.
Augsburg, Germany), and Wang Yi (Uppsala Univ., Sweden).

We would also like to thank the following sub-reviewers who assisted us in the
evaluation of the submitted papers: Yasmina Abdeddaim, Dave Arney, Michael
Balser, Elmar Bihler, Benedikt Bollig, Hanifa Boucheneb, Thomas Brihaye, Scott
Cotton, Pedro D’Argenio Martin De Wulf, Laurent Doyen, Arvind Easwaran,
Marco Faella, Sebastian Fischmeister, Wan Fokkink, Laurent Fribourg, Greg
Goessler, Anders Hessel, David Jansen, Victor Khomenko, Jesung Kim, Tomas
Krilavicius, Didier Lime, Birgitta Lindstrm, Dejan Nickovic, Thomas Noll, Lau-
rent Mazare, George Pappas, Pierre-Alain Reynier, Olivier H. Roux, Usa Samma-
pun, Mark Schäfer, Insik Shin, Natalia Sidorova, Volker Stolz, Laurent Van Be-
gin, and Tim Willemse.

September 2005 Paul Pettersson and Wang Yi
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Modular Performance Analysis of Distributed
Embedded Systems

Lothar Thiele

Institute TIK, Switzerland
thiele@tik.ee.ethz.ch

Embedded computer systems are getting increasingly distributed. This can not only be
seen on a small scale, e.g. in terms of multiprocessors on a chip, but also in terms of
embedded systems that are connected via various communication networks. Whereas
classical methods from the worst case timing analysis and real-time community focus
on single resources, new models and methods need to be developed that enable the
design and analysis of systems that guarantee end-to-end properties.

The talk covers a new class of methods based on real-time calculus. They can be con-
sidered as a deterministic variant of queuing theory and allow for (a) bursty input events
and event streams, (b) heterogeneous composition of scheduling methods (EDF, FP,
TDMA, WFQ, ...), (c) distributed computation and communication resources (d) detailed
modeling of event stream correlations and resource behavior and (d) hard worst case
bounds. In addition, the methods have been combined with formal assume/guarantee in-
terfaces. Besides introducing the basic models and methods, some application studies
are covered also.

It appears that this class of new methods provide a major step towards the analysis
and design of predictable distributed systems.

P. Pettersson and W. Yi (Eds.): FORMATS 2005, LNCS 3829, p. 1, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Real Time Temporal Logic: Past, Present, Future�

Oded Maler1, Dejan Nickovic1, and Amir Pnueli2,3

1 Verimag, 2 Av. de Vignate, 38610 Gières, France
{Dejan.Nickovic, Oded.Maler}@imag.fr

2 Weizmann Institute of Science, Rehovot 76100, Israel
3 New York University, 251 Mercer St. New York, NY 10012, USA

Amir.Pnueli@cs.nyu.edu

Abstract. This paper attempts to improve our understanding of timed languages
and their relation to timed automata. We start by giving a constructive proof of
the folk theorem stating that timed languages specified by the past fragment of
MITL, can be accepted by deterministic timed automata. On the other hand we
provide a proof that certain languages expressed in the future fragment of MITL

are not deterministic,1 and analyze the reason for this asymmetry.

1 Introduction

In this paper we compare the past and future fragments of the real-time temporal logic
MITL [AFH96] with respect to the recognizability of their models by deterministic
timed automata. To put our work in context we first discuss past and future in untimed
temporal logic, the question of online and offline monitoring as well as some related
work on real-time logics and timed languages.

1.1 Past and Future in LTL

Propositional linear-time temporal logic (LTL) is a commonly-accepted formalism for
specifying properties of finite-state discrete systems [MP95b]. The semantic models for
LTL are typically sequences which are infinite toward the future and finite toward the
past.2 On this semantic domain there is a “typing” asymmetry between models of prop-
erties expressed in the past fragment of LTL, which are star-free3 regular languages,
and models for formulae written using the future fragment which are star-free regu-
lar ω-languages. To facilitate a closer comparison of the expressive power of the two

� This work was partially supported by the European Community project IST-2003-507219
PROSYD (Property-based System Design).

1 As far as we know, no systematic techniques for proving such facts have been developed for
timed automata since their introduction 15 years ago until recently.

2 In other words the “carrier set” is isomorphic to N, not Z. Languages over bi-infinite sequences
have been studied in [NP86].

3 The word star-free comes from the characterization of these languages as those definable using
a special class of regular expressions the do not use the Kleene star but allow intersection and
complementation, see [MNP71].

P. Pettersson and W. Yi (Eds.): FORMATS 2005, LNCS 3829, pp. 2–16, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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formalisms, one can unify their semantic domains by interpreting future LTL over fi-
nite sequences. This can be done, for example, by extending LTL semantics to include
“truncated” (finite) paths as in [EFH+03]. Getting rid of the ω-dimension we can focus
on the differences between the two formalisms which are related to the direction of the
temporal modalities.

When an automaton reads a sequence, the current state of the automaton represents
(the equivalence class of) the prefix read so far. Past LTL fits naturally this point of view
as satisfaction is determined now by what happened from time zero until now. Future
LTL, on the other hand, states at time zero what it expects to see or not to see in the
future. As time progresses, some of those “obligations” are fulfilled (or violated) and
some new ones are generated. Satisfaction is established if all obligations are met at
the end of the sequence. The translation from LTL formulae to automata that accept
their models is one of the cornerstones of formal verification [VW86], and most of
the work on the topic focused on future properties and ω-automata. From a future LTL
formula one can construct naturally an alternating or a non-deterministic automaton that
accepts the language. Such an automaton can be determinized either by the non-trivial
construction of Safra for ω-automata [Saf88], or by the simpler subset construction if
we take the finitary interpretation. The translation from past LTL to automata is more
folklore, but it is not hard to see that it translates naturally to deterministic automata,
a fact the also explains the simplicity of the online monitoring procedure in [HR02].
So the bottom line for LTL is that both the past and future fragments can be eventually
translated into deterministic automata.4

1.2 Deterministic Automata and Online Monitors

Monitoring is the process of testing whether a given behavior ξ satisfies a propertyϕ (or,
equivalently, belongs to the corresponding language L). This process can be performed
in two different fashions. Offline monitoring starts after the whole sequence is given.
Online monitoring is interleaved with the process of reading the sequence and is similar
to the way the sequence is read by an automaton. Online monitors can detect violation or
satisfaction as soon as they happen, which can be after a small prefix of the sequence.5

This is advantageous for two reasons: for monitoring real systems (rather than simulated
ones) offline monitoring is a post-factum analysis and can be too late to be useful. Even
for simulated systems, where monitoring is used as a lightweight alternative to formal
verification, early detection may reduce simulation time significantly. In analog circuits,
the application domain that triggered this work, simulations can be very long.

4 We mention the results of [MP90] which show how to go from counter-free automata to past
LTL formulae and from counter-free ω-automata to mixed past-future formulae which are
Boolean combinations of formulae of the form ϕ where ϕ is a past formula. An alter-
native proof of the fact that all LTL formulae can be brought to this normal form appears in
[LPZ85].

5 To be more precise, violation or satisfaction of a property based on a prefix can be declared
when all possible continuations of the prefix are equivalent with respect to the formula. Such
a prefix is called “definitive” in [EFH+03]. If the corresponding automaton is minimal, this
fact can be easily detected by entering a “sink”state, either rejecting (for violation of safety)
or accepting (satisfaction of eventuality). For non-minimal automata the analysis is a bit more
involved.
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In [MN04] we have developed an offline monitoring procedure for the real-time logic
MITL[a,b]. This procedure, which was used to monitor properties of real-valued signals,
scans the signal from the end backwards and propagates truth values from sub-formulae
“upward” and from the present to the past. In order to have an online version of this pro-
cedure, we somehow need to produce an automaton-like mechanism that reads Boolean
signals, and whose state during reading is sufficiently detailed to detect acceptance or
rejection as they occur. To follow the same recipe as in the untimed case, one would
like to transform a formula to a timed automaton to be used as a monitoring procedure.
However, the natural translation of MITL yields non-deterministic or alternating timed
automata which, in the general case, do not determinize [AD94]. There are several
remedies for this problem:

1. Use the important observation of Tripakis [Tri02, KT04] that on-the-fly determiniza-
tion with respect to a given non-Zeno signal is possible for any timed automaton.
The reason for non-determinizability of certain automata is the need to memorize
the times of all events that have occurred within a bounded time window, without
any a-priori bound on their number. In monitoring, we observe a signal with a fixed
number of events, which can generate only a finite number of non-deterministic
choices and hence the restriction of the automaton to this signal is amenable to
subset construction.

2. Develop a piecewise-backward version of the procedure in [MN04] which after ev-
ery new event or sampling point, restarts the propagation of truth values backwards
(in most cases the propagation need not go back too far).

3. Use specification formalisms that correspond to deterministic timed automata.

This work is the result of attempting to follow the third approach.

1.3 Related Work

The study of real-time specification formalisms started in the eighties and generated
numerous logics, results and papers. The reader is advised to look at surveys and dis-
cussions of these logics [AH92a, Hen98, HR04], of timed automata [Alu99] and timed
languages in general [Asa04]. Without purporting to be exhaustive, we mention some
relevant results.

The real-time logic MITL was introduced in [AFH96] as a restriction of the more
general logic MTL (metric temporal logic) of [Koy90]. The restriction of time modal-
ities to positive-length intervals was intended to guarantee decidability but recent re-
sults [OW05, LW05] show that this restriction is not necessary for deciding MTL over
finitary event-based semantics. The original version of MITL contained only future tem-
poral operators and [AFH96] give a procedure for translating an MITL formula into
a non-deterministic timed automaton with the satisfiability and model-checking prob-
lems being EXPSPACE-complete. The non-determinizable nature of MITL is hinted in
the paper.

Event-recording automata, where only the time of the last occurrence of every input
letter can be remembered by a clock, have been shown to be determinizable in [AFH99].
Event-clock automata, introduced in the same paper, constitute a generalization of the
latter which allow also “event-predicting” clocks. Event-clock logic is another decid-
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able real-time logic which is equally expressive as MITL [RSH98] and which can be
naturally translated into determinizable event-clock automata. However those become
non-deterministic when expressed as classical Alur-Dill automata.6

An investigation of past and future versions of MITL was carried out in [AH92b]
where the “prediction” feature of event-clock automata was replaced by the ability of
the automaton to change the direction of reading. The authors describe a strict hierarchy
of timed languages based on the number of direction reversals needed to recognize
them (which corresponds roughly to the nesting depth of past and future operators).
The deterministic nature of the past fragment of MITL is mentioned as a corollary of
that hierarchy but no explicit proof is given.

Real-time monitoring tools often rely on temporal logics as their property specifica-
tion language, but typically under a discrete-time interpretation. For example, [KPA03]
use LTLt, standard LTL augmented with freeze quantifiers, while in [TR04] the moni-
toring procedure uses MTL. In [Gei02] the dense semantics is preserved but additional
restrictions on MITL are imposed in order to guarantee determinizability. These include
the restriction of timed modalities to intervals of the form [0, d] and disallowing arbi-
trary nesting of temporal operators.

In [MP04] we started focusing on deterministic timed automata because of the belief
that some fundamental concepts of automata theory are better studied in a deterministic
framework. We have defined there a notion of recognizability and have shown that is
coincides with acceptance by deterministic timed automata. The current paper is part of
the quest for a matching specification formalism.

The rest of the paper is organized as follows. In Section 2 we describe signals along
with the logic MITL. In Section 3 we define the variant of timed automata that we use
as signal acceptors. The proof of determinizability of the past fragment of MITL is
given in Section 4 followed, in Section 5, by the proof of non-determinizability of
the future fragment and a discussion of the reasons. Further contemplations close the
paper.

2 Signals and Their Temporal Logic

Two basic semantic domains can be used to describe timed behaviors. Time-event se-
quences consist of instantaneous events separated by time durations while discrete-
valued signals are functions from time to some discrete domain. The reader may consult
the introduction to [ACM02] or [Asa04] for more details on the algebraic characteriza-
tion of these domains. In this work we use Boolean signals as the semantic domain, but
the extension of the results to time-event sequences (which are equivalent to the timed
traces used by Alur and Dill [AD94]) need not be a difficult exercise.

Let the time domain T be the set R≥0 of non-negative real numbers. A finite length
Boolean signal ξ is a partial function ξ : T → Bn whose domain of definition is an
interval I = [0, r), r ∈ N. We say that the length of the signal is r and denote this

6 One may argue that deterministic event-clock automata preserve one essential feature of de-
terminism, namely, a unique run for every input signal, but this comes at the expense of losing
the causality of the runs due to the prediction feature which amounts to going back and forth
in time.
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fact by |ξ| = r. We use ξ[t] for the value of the signal at time t and the notation
σt1

1 · σt2
2 · · ·σtk

k for a signal of length t1 + · · · + tk whose value is σ1 at the interval
[0, t1), σ2 in the interval [t1, t1 + t2), etc. We use t⊕ [a, b] to denote [t+a, t+b]∩ [0, r)
and t� [a, b] for [t − b, t − a) ∩ [0, r), that is, the Minkowski sum (difference) of {t}
and [a, b] restricted to the domain of definition of the signal in question. We call these
operations, respectively, forward and backward shifting.

We define the logic MITL[a,b] as a bounded version of the real-time temporal logic
MITL [AFH96], such that all temporal modalities are restricted to intervals of the form
[a, b] with 0 ≤ a < b and a, b ∈ N. The use of bounded temporal properties is one way
to interpret temporal logic over finite-duration traces. The basic formulae of MITL[a,b]
are defined by the grammar

ϕ := p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 S [a,b]ϕ2| ϕ1 U [a,b]ϕ2

where p belongs to a set P = {p1, . . . , pn} of propositions corresponding naturally to
the coordinates of the n-dimensional Boolean signal considered. The future and past
fragments of MITL use only the U and S modalities, respectively. The satisfaction re-
lation (ξ, t) |= ϕ, indicating that signal ξ satisfies ϕ at position t, is defined inductively
below. We use p[t] to denote the projection of ξ[t] on the dimension that corresponds to
variable p.

(ξ, t) |= p ↔ t ∈ [0, r) ∧ p[t] = T

(ξ, t) |= ¬ϕ ↔ (ξ, t) �|= ϕ
(ξ, t) |= ϕ1 ∨ ϕ2 ↔ (ξ, t) |= ϕ1 or (ξ, t) |= ϕ2

(ξ, t) |= ϕ1 S [a,b]ϕ2 ↔ ∃t′ ∈ t� [a, b] (ξ, t′) |= ϕ2 and ∀t′′ ∈ [t′, t], (ξ, t′′) |= ϕ1

(ξ, t) |= ϕ1U[a,b]ϕ2 ↔ ∃ t′ ∈ t⊕ [a, b] (ξ, t′) |= ϕ2 and ∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ1

The satisfaction of a formula ϕ by the whole signal ξ is defined differently for the past
and future fragments. For the past it is defined backwards as7 (ξ, |ξ|) |= ϕ , and for the
future as (ξ, 0) |= ϕ.

From basic MITL[a,b] operators one can derive other standard Boolean and temporal
operators, in particular the time-constrained sometime in the past, always in the past,
eventually in the future and always in the future operators whose semantics is defined
as

(ξ, t) |= [a,b] ϕ ↔ ∃t′ ∈ t� [a, b] (ξ, t′) |= ϕ

(ξ, t) |= [a,b] ϕ ↔ ∀t′ ∈ t� [a, b] (ξ, t′) |= ϕ
(ξ, t) |= [a,b] ϕ ↔ ∃t′ ∈ t⊕ [a, b] (ξ, t′) |= ϕ

(ξ, t) |= [a,b] ϕ ↔ ∀t′ ∈ t⊕ [a, b] (ξ, t′) |= ϕ

Note that our definition of the semantics of the time-bounded since and until operators
differs slightly from their conventional definition in discrete time as it requires a time
instant t′ where both (ξ, t′) |= ϕ2 and (ξ, t′) |= ϕ1.

7 To be more precise, it is the right limit of (ξ, t) |= ϕ at t → r.
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3 Timed Automata

We use a variant of TA which differs from the classical definitions [AD94, HNSY94]
by the following features:

1. It reads multi-dimensional dense Boolean signals, hence the alphabet letters are
associated with states rather than with transitions.

2. Acceptance conditions are more refined and may include constraints on clock val-
ues.

3. Clock values may include the special symbol⊥ indicating that the clock is currently
inactive.

4. Transitions can be labeled by the usual resets of the form x := 0 or x := ⊥ as well
as by copy assignments of the form xi := xj .

The last three features do not change the expressive power of timed automata, see
[SV96], but allow us to treat clocks in a more “dynamic” fashion. Note that clock inac-
tivity in a state can be encoded implicitly by the fact that in all paths emanating from
the state, the clock is reset to zero before being tested [DY96]. The use of signals is mo-
tivated by our application domain and replicating our results to event-based semantics
is left as an exercise.

The set of valuations of a set C = {x1, . . . , xn} of clock variables, each denoted as
v = (v1, . . . , vn), defines the clock space H = (R≥0 ∪ {⊥})n. A configuration of a
timed automaton is a pair of the form (q, v) with q being a discrete state. For a clock
valuation v = (v1, . . . , vn), v + t is the valuation (v′1, . . . , v

′
n) such that v′i = vi if

vi = ⊥ and v′i = vi + t otherwise. A clock constraint is a Boolean combination of
conditions of the forms x ≥ d or x > d for some integer d.

Definition 1 (Timed Automaton). A timed automaton over signals is a tuple A =
(Σ,Q, C, λ, I,Δ, q0, F ) where Σ is the input alphabet (Bn in this paper), Q is a finite
set of discrete states and C is a set of clock variables. The labeling function λ : Q→ Σ
associates a letter of the alphabet to every state while the staying condition (invariant)
I assigns to every state q a subset Iq of H defined by a conjunction of inequalities of
the form x ≤ d, for some clock x and integer d. The transition relation Δ consists
of elements of the form (q, g, ρ, q′) where q and q′ are discrete states, the transition
guard g is a subset of H defined by a clock constraint and ρ is the update function, a
transformation of H defined by a set of copy assignments and resets on C. Finally q0 is
the initial state and F is the acceptance condition, a subset of Q×H defined for each
state by a clock constraint.

The behavior of the automaton as it reads a signal ξ consists of an alternation be-
tween time progress periods where the automaton stays in a state q as long as ξ[t] =
λ(q) and Iq holds , and discrete instantaneous transitions guarded by clock conditions.
Formally, a step of the automaton is one of the following:

– A time step: (q, v) σt

−→ (q, v + t), t ∈ R+ such that λ(q) = σ and v + t satisfies Iq

(due to the structure of Iq this holds as well for every t′, 0 ≤ t′ < t).

– A discrete step: (q, v) δ−→ (q′, v′), for some transition δ = (q, g, ρ, q′) ∈ Δ, such
that v satisfies g and v′ = ρ(v).
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A run of the automaton starting from a configuration (q0, v0) is a finite sequence of
alternating time and discrete steps of the form

ξ : (q0, v0)
σ

t1
1−→ (q0, v0 + t1)

δ1−→ (q1, v1)
σ

t2
2−→ (q1, v1 + t2)

δ2−→ · · · σtn
n−→ (qf , vf )

A run is accepting if the last configuration (qf , vf ) ∈ F . The signal carried by the run
is σt1

1 · σt2
2 · · ·σtn

n . The language of the automaton consists of all signals carried by
accepting runs.

A timed automaton is input-deterministic if every input signal admits a unique run,
a property guaranteed by the following two conditions:

1. Transition determinism: for every two transitions (q, g1, ρ1, q1) and (q, g2, ρ2, q2),
λ(q1) = λ(q2) implies g1 ∩ g2 = ∅.

2. Time determinism: for every state q and transition (q, g, ρ, q′), if λ(q) = λ(q′) then
the interior of Iq ∩ g is empty.

These two conditions imply that while reading a given signal, the automaton cannot be
in two or more configurations simultaneously for any positive-length duration.

4 From Past MITL[a,b] to Deterministic Timed Automata

In this section we show how to build a deterministic timed automaton for any past
MITL[a,b] formula. The construction follows the same lines as the compositional con-
struction of [Pnu03] for untimed future temporal logic, where an automaton for a for-
mula observes the states of the automata that correspond to its sub-formulae. This con-
struction is particularly attractive for past temporal logic where the correspondence
between states in the automaton and satisfaction of a sub formula is more direct.

We illustrate the idea underlying the proof on the formula [a,b] ϕ for some past
formula ϕ. Intuitively, an automaton that accepts such a language should monitor the
truth value of ϕ and memorize, using clocks, the times when this value has changed.
Memorizing all such changes may require an unbounded number of clocks, but as we
shall see, only a finite number of those is sufficient since not all occurrence times of
these changes need to be remembered.

Consider signal ϕ of Figure 1-(a), a clock xi reset to zero at the ith time ϕ becomes
true and a clock yi reset when ϕ becomes false. For this example [a,b] ϕ is true exactly
when (x1 ≥ a ∧ y1 ≤ b) ∨ (x2 ≥ a ∧ y2 ≤ b). Due to the monotonicity of the clock
dynamics, whenever y1 goes beyond b, its value becomes irrelevant for the satisfaction
of the acceptance condition, it can be discarded together with x1. By itself, this fact
does not guarantee finiteness of the number of clocks because we assume no a-priori
bound on the variability of ϕ.

Consider now Figure 1-(b), where the second rise of ϕ is less than b−a time after the
preceding fall. In this case, condition (x1 ≥ a ∧ y1 ≤ b) ∨ (x2 ≥ a ∧ y2 ≤ b) becomes
equivalent to x1 ≥ a ∧ y2 ≤ b. Since the values of y1 and x2 do not matter anymore
we may disactivate them and forget this short episode of ¬ϕ. When ϕ falls again we
may re-use clock y1 to record the occurrence time and let the acceptance condition be
x1 ≥ a ∧ y1 ≤ b. Hence the maximal number of events to be remembered before the
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ϕ

[a,b] ϕ

ϕ

[a,b] ϕ

x1 y1 x2 y2

x1 y1

(a)

(b)

Fig. 1. Memorizing changes in the truth value of ϕ: (a) x2 − y1 ≥ b − a; (b) x2 − y1 < b − a

oldest among them expires is m = b/(b − a)− 1 and at most 2m clocks are sufficient
for monitoring such a formula. Note that for a “punctual” modality where a = b, m
goes to infinity.

The automaton depicted in Figure 2, is a kind of an “event recorder” for accepting
signals satisfying [a,b] ϕ. Its set of discrete states Q is partitioned into

Q¬ϕ = {(01)i0}i=0..m and Qϕ = {(01)i}i=1..m,

with the intended meaning that the Boolean sequences that encode states correspond to
the qualitative histories that they memorize, that is, the patterns of remembered rising
and falling of ϕ that have occurred less than b time ago. The clocks of the automaton are
{x1, y1, . . . , xm, ym}, each measuring the time since its corresponding event. Naturally,
clock xi is active only at states (01)j and (01)j0 for j ≥ i and clock yi at (01)j0
(01)j+1 for j ≥ i.

When ϕ first occurs the automaton moves from 0 to 01 and resets x1. When ϕ be-
comes false it moves to 010 while resetting y1. From there the following three continu-
ations are possible:

Table 1. The effect of the clock shifting operation while taking a transition from (01)i to (01)i−1

c x1 y1 · · · xi−1 yi−1 xi yi · · · xm ym

v u1 v1 · · · ui−1 vi−1 ui ⊥ · · · ⊥ ⊥
s(v) u2 v2 · · · ui ⊥ ⊥ ⊥ · · · ⊥ ⊥
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1. If ϕ remains false for more than b time, the true episode of ϕ can be forgotten and
the automaton moves to 0.

2. If ϕ becomes true within less than b− a time, the false episode is forgotten and the
automaton returns to 01.

3. If ϕ becomes true after more than b− a time the automaton resets x2 and moves to
0101.

Transitions of type 1 may happen in all states that record 2 changes or more. They
occur when the first falling of ϕ is more than b time old and hence the values of clocks
x1 and y1 can be forgotten. In order to keep the number of clocks bounded, this tran-
sition is accompanied by “shifting” the clocks values, that is, applying the operations
xi := xi+1 and yi := yi+1 for all i as well as xm := ym := ⊥. The effect of this shift-
ing operation when a transition from (01)i to (01)i−1 is taken is illustrated in Table 1.

Lemma 1. The event recorder automaton, running in parallel with the automatonAϕ,
accepts the signals satisfying [a,b] ϕ whenever x1 is active and satisfies x1 ≥ a.

y1 ≤ b ϕ

010101

y1 ≤ b

01010

¬ϕ

ϕ ∧ y2 ≤ b − a

y1 ≥ b/s

ϕ ∧ y1 ≥ b − a/

ϕ ∧ y1 ≥ b − a/

ϕ/

ϕ

y1 ≤ b y1 ≤ b

ϕ ∧ y1 ≤ b − a

¬ϕ

¬ϕ ϕ

0 01

010 0101

y1 ≥ b/s

y1 ≥ b/s y1 ≥ b/s

x2 := 0

x1 := 0

x3 := 0

¬ϕ/y1 := 0

¬ϕ/y2 := 0

¬ϕy1 ≤ b

(01)m0

. . .

Fig. 2. An [a, b] event recorder. The input labels and staying conditions are written on the bottom
of each state. Transitions are decorated by the input labels of the target states and by clock resets.
The clock shift operator is denoted by the symbol s.
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Sketch of Proof: We need to show that in every state of the form (01)i0 there have
been i risings and fallings of ϕ that have occurred less than b time ago such that each
falling has lasted for more than b− a time, and that the corresponding clocks represent
the times elapsed since they have occurred. When this is the case and since y1 ≤ b by
construction,x1 ≥ a at time t iff there was a time t′ ∈ t�[a, b] in which ϕ was true. The
proof is by induction on the length of the run. The claim is trivially true at the initial
state. The inductive step starts with a configuration of the automaton satisfying the
above, and proceeds by showing that it is preserved under time passage and transitions.
The proof for states of the form (01)i is similar.

Lemma 2. Given deterministic timed automataAϕ andAψ accepting [[ϕ]] and [[ψ]], re-
spectively, one can construct a deterministic timed automaton accepting
ϕS [a,b]ψ.

Proof: Observe first that ϕSψ can be seen as a restriction of ψ to periods where ϕ
holds continuously. In other words, the automaton need not measure times of changes in
ψ after which ϕ became false. Hence the S -automaton (Figure 3) consists of an event
recorder for ψ augmented with an additional initial state ¬ϕ. Whenever ϕ becomes
true the automaton moves to the initial state of the event recorder and whenever ϕ be-
comes false it moves (from any state) back to ¬ϕ while forgetting all the past history
of ψ.

¬ϕ

ψ event recorder

¬ϕ

ϕ

. . .

0 01

ϕ

Fig. 3. The automaton for ϕS [a,b]ψ

Theorem 1 (Past MITL is Deterministic). Given a past MITL[a,b] formula ϕ, one can
construct a deterministic timed automatonA accepting [[ϕ]].

Proof: By induction on the structure of the formula. For a proposition p we build the
deterministic two-state automaton Ap which moves to and from the accepting state
according to the current value of p. For ¬ϕ we take the automatonAϕ and complement
its acceptance condition while for ϕ ∨ ψ we do a Cartesian product of Aϕ and Aψ.
Combining this with the previous lemma the result is established.
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5 Future MITL is Non-deterministic

In this section we demonstrate the existence of a timed language L, definable in future
MITL, which cannot be accepted by any deterministic automaton. Consider the formula

[0,a](p⇒ [a,b]q). (1)

and the language L consisting of all signals of length a+b that satisfy it. Models of this
formula are two-dimensional Boolean signals that satisfy some relation between the
times p is true in the interval [0, a] and times when q holds in [a, a + b] (see Figure 4).
An automaton for L reads first the p part and memorizes what is required to memorize
in order to determine whether the q part is accepted.

The syntactic (Nerode) right-congruence∼ associated with a language L is defined
as:

u ∼ v iff ∀w u · w ∈ L⇔ v · w ∈ L.

For untimed languages acceptance by a finite (deterministic) automaton is equivalent
to ∼ having a finite number of equivalence classes. In [MP04] we have shown that
for timed languages, finiteness can be replaced by some special kind of boundedness
which, among other things, implies:

Proposition 1 (MP04). If a language is accepted by a deterministic timed automaton
then there is some n such that all signals with n changes are Nerode equivalent to
signals with less than n changes.8

We now show that this is not the case for L, for which only signals which are identical
are equivalent.

Claim. Let u and v be two p-signals of length a. Then, u �= v implies u �∼ v with
respect to L.

Proof: Let t be the first time when u and v differ. Assume that p is true on [t, t + ε] in
u and false on that interval in v. We can then construct a distinguishing signal w such
that uw �∈ L and vw ∈ L. Let w be the q-signal 1t · 0b−a+ε · 1a−t−ε, i.e. a signal which
is true throughout [a, a + b] except for the interval [t + a, t + b + ε] (see Figure 5).
Clearly uw will be rejected due to unfulfilled eventuality in the interval while vw will
be accepted because v generates no obligations for this interval which are not fulfilled
by the true values of w on both sides of the interval.

Hence, while reading the p-part the automaton should memorize the exact form of
the signal, and since its variability is not bounded, an unbounded number of clocks
is needed to memorize the times when p changes.

Corollary 1 (Future MITL is not Deterministic). There are languages expressible in
future MITL which cannot be recognized by any deterministic timed automaton.

8 Note that the converse is not true: consider, for instance, the language consisting of all signals
where p holds continuously, and whose duration is a prime number. All signals with one or
more changes in p value are rejected and hence equivalent, yet the language cannot be accepted
by a deterministic (or non-deterministic) timed automaton.
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p

q

a a + b0

Fig. 4. A candidate signal for satisfying the formula; values of p and q are specified only in the
relevant intervals, [0, a] for p and [a, a + b] for q

v

w

t t + ε t + a t + b + ε

u

w

t t + ε t + a t + b + ε

p

q

p

q

Fig. 5. Signal u, v and w such that u · w �∈ L and v · w ∈ L

This raises an intriguing question: why for specifications expressed in past MITL, the
automaton can forget certain small changes in p that persist less than b−a time? Below
we give an answer to this question.

Consider first a “punctual” version of the future formula (1), where q should follow
exactly b time after p:

[0,a](p⇒ bq)

This formula admits a “dual” past formula

[0,a](¬q ⇒ b¬p)

which is semantically equivalent on signals of length a + b. In other words, the first-
order interpretations

∀t ∈ [0, a] p[t] ⇒ q[t + b]

and
∀t′ ∈ [b, b + a] ¬q[t′] ⇒ ¬p[t′ − b]

are equivalent (see Figure 6).
However, when we relax punctuality and use interval time modalities, the symmetry

between past and future is broken and the automaton for the corresponding past formula

[0,a](¬q ⇒ [a,b]¬p) (2)

can ignore short episodes. The reason is due to the inter-relationship between the di-
rection of the implication and the Minkowski sum. In a future interval modality, an
event that happens at t may create an obligation for something to hold somewhere or
throughout the future interval t ⊕ [a, b] = [t + a, t + b]. In the past modality a future
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q

p

t′t + b

t t′ − b

q

p

t′t ⊕ [a, b]

t′ � [a, b]t

Fig. 6. Punctual modalities are past-future symmetric; interval modalities are not

event at time t′ is implied by something that could/should have happened at the interval
t′� [a, b] = [t′− b, t′− a]. Anything that lasts less then b− a does not generate its own
specific obligations (obligations that are not already generated by neighboring segments
of the signal). Logically speaking, (2) translates into the the first-order formula

∀t′ ∈ [b, a + b] (¬q[t′] ⇒ ∃t ∈ t′ � [a, b] ¬p[t])

or equivalently

∀t′ ∈ [b, a + b] ((∀t ∈ t′ � [a, b] p[t]) ⇒ q[t′]).

Consider now two p-signals p1 = ξ ·0t11t20t3 and p2 = ξ ·0t1+t2+t3 that differ only by
the true episode of length t2 < b−a in p1. It is not hard to see that for any t′ ∈ [b, a+b]

∀t ∈ t′ � [a, b] p1[t] ⇐⇒ ∀t ∈ t′ � [a, b] p2[t]

because any t′ � [a, b] that intersects the true segment 1t2 in p2 also intersects at least
one of its neighboring false segments. Hence the same obligations for t′ are generated
by p1 and p2 and they are Nerode equivalent.

So in conclusion, the difference between past and future in real-time temporal logic
turns out to be due to a syntactic artifact that generates some bounded variability “fil-
tering” for past interval modalities, but not for the future ones.

6 Discussion

It seems that the current paper does not conclude the search for a specification for-
malism which is natural, powerful and yet determinizable. Past MITL lacks the first
property and future MITL is not deterministic. As another candidate we have explored
a star-free version of the timed regular expressions presented in [ACM02]. The con-
catenation operator is more symmetric then the since and until operators and it could be
interesting to see how it behaves. However it turns out that variations on both the future
(1) and past (2) formulae can be defined by expressions such as

¬(U · (p · U ∧ ¬(〈U · q〉[a,b] · U)))

and
¬(U · (U · p ∧ ¬(U · 〈q · U〉[a,b])) · U),
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respectively, where U is a special symbol denoting the universal timed language. This
shows the star-free expressions are not deterministic either.

It looks as if determinizability can be obtained by enforcing some minimal duration
for sub-formulae that imply something toward the future, for example p in (1). In past
MITL this is automatically guaranteed by the structure of the formulae. We are currently
contemplating sufficient syntactic conditions that will guarantee a similar property for
the future fragment. In this context it is worth mentioning the inertial bi-bounded delay
operator used for expressing delays in abstract models of digital circuits, which was
formalized using timed automata in [MP95a]. This operator allows one to relate two
signals by an inclusion of the form

ξ′ ∈ Dc
[a,b](ξ)

where c ≤ a, meaning that every change in ξ that persists for at least c time, is propa-
gated to ξ′ within t ∈ [a, b] time. Observe that this type of persistence constraint can be
expressed within MITL. For example, the future formula (1) can be transformed into

[0,a]( [0,b−a]p⇒ [a,b]q)

which is determinizable. Further investigations of these issues belong to the future.
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referees.
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Abstract. Timed Input/Output Automaton (TIOA) is a mathematical
framework for specification and analysis of systems that involve discrete
and continuous evolution. In order to employ an interactive theorem
prover in deducing properties of a TIOA, its state-transition based de-
scription has to be translated to the language of the theorem prover. In
this paper, we describe a tool for translating TIOA to the language of the
Prototype Verification System (PVS)—a specification system with an in-
tegrated interactive theorem prover. We describe the translation scheme,
discuss the design decisions, and briefly present three case studies to il-
lustrate the application of the translator in the verification process.

1 Introduction

Timed Input/Output Automata [1, 2] is a mathematical framework for composi-
tional modeling and analysis of systems that involve discrete and continuous evo-
lution. The state of a timed I/O automaton changes discretely through actions,
and continuously over time intervals through trajectories. A formal language
called TIOA [3, 4] has been designed for specifying timed I/O automata. Like in
its predecessor IOA [5], in the TIOA language, discrete transitions are specified
in the precondition-effect style. In addition, TIOA introduces new constructs for
specifying trajectories. Based on the TIOA language, a set of software tools is
being developed [3]; these tools include a front-end type checker, a simulator,
and an interface to the Prototype Verification System (PVS) theorem prover [6]
(see Figure 1). This paper describes the new features of the TIOA language and
a tool for translating specifications written in TIOA to the language of PVS;
this tool is a part of the third component of the TIOA toolkit.

Motivation. Verification of timed I/O automata properties typically involves
proving invariants or simulation relations between pairs of automata. The timed
I/O automata framework provides a means for constructing very stylized proofs,
which take the form of induction over the length of the executions of an automa-
ton or a pair of automata, and a systematic case analysis of the actions and the
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Fig. 1. Theorem proving on TIOA specifications

trajectories. Therefore, it is possible to partially automate such proofs by us-
ing an interactive theorem prover, as shown in [7]. Apart of partial automation,
theorem prover support is useful for (a) managing large proofs, (b) re-checking
proofs after minor changes in the specification, and (c) generating human read-
able proofs from proof scripts. We have chosen to use the PVS theorem prover
because it provides an expressive specification language and an interactive the-
orem prover with powerful decision procedures. PVS also provides a way of
developing special strategies or tactics for partially automating proofs, and it
has been used in many real life verification projects [8].

To use a theorem prover like PVS for verification, one has to write the de-
scription of the timed I/O automaton model of the system in the language
of PVS, which is based on classical, typed higher-order logic. One could write
this automaton specification directly in PVS, but using the TIOA language has
the following advantages. (a) TIOA preserves the state-transition structure of
a timed I/O automaton, (b) allows the user to write programs to describe the
transitions using operational semantics, whereas in PVS, transition definitions
have to be functions or relations, (c) provides a natural way for describing tra-
jectories using differential equations, and also (d) allows one to use other tools
in the TIOA toolkit. Therefore, it is desirable to be able write the description of
a timed I/O automaton in the TIOA language, and then use an automated tool
to translate this description to the language of PVS.

Related Work and Contributions. Various tools have been developed to
translate IOA specifications to different theorem provers, for example, Larch [9,
10], PVS [11], and Isabelle [12, 13]. Our implementation of the TIOA to PVS
translator builds upon [9]. However, unlike IOA, TIOA allows the state of a
timed I/O automaton to evolve continuously over time through trajectories. The
main contribution of this paper is the design of a translation scheme from TIOA
to PVS that can handle trajectories, and the implementation of the translator.

The Timed Automata Modeling Environment (TAME) [7] provides a PVS
theory template for describing MMT automata [14]— a special type of I/O
automaton that adds time bounds for enabled actions. This theory template
has to be manually instantiated with the states, actions, and transitions of an
automaton. A similar template is instantiated automatically by our translator
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to specify timed I/O automata in PVS. This entails translating the operational
descriptions of transitions in TIOA to their corresponding functional descriptions
in PVS. Moreover, unlike a timed I/O automaton which uses trajectories, an
MMT automaton uses a time passage action to model continuous behavior. In
TAME, this time passage action is written as another action of the automaton,
with the properties of the pre- and post-state expressed in the enabling condition
of the action. This approach, however, if applied directly to translate a trajectory,
does not allow assertion of properties that must hold throughout the duration
of the trajectory. Our translation scheme solves this problem by embedding the
trajectory as a functional parameter of the time passage action.

We illustrate the application of the translator in three case studies: Fischer’s
mutual exclusion algorithm, a two-task race system, and a simple failure detector
[15, 2]. The TIOA specifications of the system and its properties are given as
input to the translator and the output is a set of PVS theories. The PVS theorem
prover is then used to verify the properties using inductive invariant proofs. In
two of these case studies, we describe time bounds on the actions of interest using
an abstract automaton, and then prove the timing properties by a simulation
relation from the system to this abstraction. The simulation relations typically
involve inequalities between variables of the system and its abstraction. Our
experience with the tool suggests that the process of writing system descriptions
in TIOA and then proving system properties using PVS on the translator output
can be helpful in verifying more complicated systems.

In the next section we give a brief overview of the timed I/O automata frame-
work and the TIOA language. In Section 3, we describe the translation scheme;
in Section 4, we illustrate the application of the translator with brief overviews
of three case studies. Finally, we conclude in Section 5.

2 TIOA Mathematical Model and Language

Here we briefly describe the timed I/O automaton model and refer the reader
to [1] for a complete description of the mathematical framework.

2.1 TIOA Mathematical Model

Let V be the set of variables of a timed I/O automaton. Each variable v ∈ V is
associated with a static type, type(v), which is the set of values v can assume.
A valuation for V is a function that associates each variable v ∈ V to a value in
type(v). val(V ) denotes the set of all valuations of V . Each variable v ∈ V is also
associated with a dynamic type, which is the set of trajectories v may follow.

The time domain T is a subgroup of (R,+). A time interval J is a nonempty,
left-closed sub-interval of R. J is said to be closed if it is also right-closed. A
trajectory τ of V is a mapping τ : J → val(V ), where J is a time interval starting
with 0. The domain of τ , τ.dom, is the interval J . A point trajectory is one with
the trivial domain {0}. The first time of τ , τ.ftime, is the infimum of τ.dom.
If τ.dom is closed then τ is closed and its limit time, τ.ltime, is the supremum
of τ.dom. For any variable v ∈ V , τ ↓ v(t) denotes the restriction of τ to the
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set val(v). Let τ and τ ′ be trajectories for V , with τ closed. The concatenation
of τ and τ ′ is the union of τ and the function obtained by shifting τ ′.dom until
τ.ltime = τ ′.f time. The suffix of a trajectory τ is obtained by restricting τ.dom
to [t,∞), and then shifting the resulting domain by −t.

A timed automaton A is a tuple of (X,Q,Θ,E,H,D, T ) where:

1. X is a set of variables.
2. Q ⊆ val(X) is a set of states.
3. Θ ⊆ Q is a nonempty set of start states.
4. A is a set of actions, partitioned into external E and internal actions H .
5. D ⊆ Q×A×Q is a set of discrete transitions. We write a transition (x, a,x′) ∈
D in short as x a→ x′. We say that a is enabled in x if x a→ x′ for some x′.

6. T is a set of trajectories for X such that τ(t) ∈ Q for every τ ∈ T and every
t ∈ τ.dom, and T is closed under prefix, suffix and concatenation.

A timed I/O automaton is a timed automaton with the set of external actions
E partitioned into input and output actions. This distinction is necessary for
composing timed I/O automata. In this paper, we consider only individual timed
I/O automata and so we do not differentiate input and output actions. We use
the terms timed I/O automaton and timed automaton synonymously.

An execution fragment of a timed I/O automatonA is an alternating sequence
of actions and trajectories α = τ0a1τ1a2 . . ., where τi ∈ T , ai ∈ A, and if τi is
not the last trajectory in α then τi is finite and τi.lstate

ai+1→ τi+1.fstate. An
execution fragment is closed if it is a finite sequence and the domain of the final
trajectory is a finite closed interval. An execution is an execution fragment whose
first state is a start state of A. A state of A is reachable if it is the last state
of some execution. An invariant property is one which is true in all reachable
states of A. A trace of an execution fragment α is obtained from α by removing
internal actions and modifying the trajectories to contain only information about
the amount of elapsed time. tracesA denotes the set of all traces of A. We say
that automaton A implements automaton B if tracesA ⊆ tracesB. A forward
simulation relation [1] from A to B is a sufficient condition for showing that
A implements B. A forward simulation from automaton A to B is a relation
R ⊆ QA × QB satisfying the following conditions for all states xA ∈ QA and
xB ∈ QB:

1. If xA ∈ ΘA then there exists a state xB ∈ ΘB such that xA R xB.
2. If xA R xB and α is a transition x a→A x′, then B has a closed execution frag-

ment β with β.fstate = xB, trace(β) = trace(α), and α.lstate R β.lstate.
3. If xA R xB and α is an execution fragment of A consisting of a single closed

trajectory, with α.fstate = xA, then B has a closed execution fragment β
with β.fstate = xB, trace(β) = trace(α), and α.lstate R β.lstate.

2.2 TIOA Language

The TIOA language [3] is a formal language for specifying the components and
properties of timed I/O automata. The states, actions and transitions of a timed
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I/O automaton are specified in TIOA in the same way as in the IOA language [5].
New features of the TIOA language include trajectories and a new AugmentedReal

data type. The trajectories are defined using differential and algebraic equa-
tions, invariants and stopping conditions. This approach is derived from [16],
in which the authors had used differential equations and English informally to
describe trajectories. Figure 2 shows an example of a TIOA specification. The
AugmentedReal type extends reals with a constructor for infinity. Each variable
has an explicitly defined static type, and an implicitly defined dynamic type.
The dynamic type of a Real variable is the set of piecewise-continuous functions;
the dynamic type of a variable of any other simple type or of the type discrete
Real is the set of piecewise constant functions.

Fig. 2. TIOA description of TwoTaskRace

The set of trajectories of a timed I/O automaton is defined systematically by a
set of trajectory definitions. A trajectory definition w is defined by an invariant
inv(w), a stopping condition stop(w), and a set of differential and algebraic
equations daes(w) (see definition of traj1 in Figure 2, lines 34–37). WA denotes
the set of trajectory definitions of A. Each w ∈ WA defines a set of trajectories,
denoted by traj(w). A trajectory τ belongs to traj(w) if the following conditions
hold: for each t ∈ τ.dom: (a) τ(t) ∈ inv(w). (b) If τ(t) ∈ stop(w), then t =
τ.ltime. (c) τ satisfies the set of differential and algebraic equations in daes(w).
(d) For each non-real variable v, (τ ↓ v)(t) = (τ ↓ v)(0); that is, the value of v
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is constant throughout the trajectory. The set of trajectories TA of automaton
A is the concatenation closure of the functions in

⋃
w∈WA traj(w).

3 Translation Scheme

For generating PVS theories that specify input TIOA descriptions, our translator
implements the approach prescribed in TAME [7]. The translator instantiates
a predefined PVS theory template that defines the components of a generic au-
tomaton. The translator automatically instantiates the template with the states,
actions, and transitions of the input TIOA specification. This instantiated the-
ory, together with several supporting library theories, completely specifies the
automaton, its transitions, and its reachable states in the language of PVS (see
Figure 1). Figure 3 shows the translator output in PVS for the TIOA description
in Figure 2. In the following sections, we describe in more detail the translation
of the various components of a TIOA description.

Fig. 3. PVS description of TwoTaskRace
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3.1 Data Types, Automaton Parameters, and States

Simple static types of the TIOA language Bool, Char, Int, Nat, Real and String

have their equivalents in PVS. PVS also supports declaration of TIOA types
enumeration, tuple, union, and array in its own syntax. The type AugmentedReal is
translated to the type time introduced in the time theory of TAME. time is defined
as a datatype consisting of two subtypes: fintime and infinity. The subtype fintime
consists of only non-negative reals; infinity is a constant constructor.

The TIOA language allows the user to introduce new types and operators
by declaring the types and the signature of the operators within the TIOA
description. The semantics of these types and operators are written in PVS
library theories, which are imported by the translator output.

The TIOA language provides the construct states for declaring the variables
of an automaton (see Figure 2, lines 8–12). Each variable can be assigned an
initial value at the start state. An optional initially predicate can be used to
specify the start states. An automaton can have parameters which can be used
in expressions within the description of the automaton (see Figure 2, lines 1–2).

In PVS, the state of an automaton is defined as a record with fields corre-
sponding to the variables of the automaton. A boolean predicate start returns
true when a given state satisfies the conditions of a start state (see Figure 3,
lines 3–15). Assignments of initial values to variables in the TIOA description
are translated as equalities in the start predicate in PVS, while the initially pred-
icate is inserted as an additional conjunction into the start predicate. Automaton
parameters are declared as constants in a separate PVS theory common decls (see
Figure 3, line 2) with axioms stating the relationship between them.

3.2 Actions and Transitions

In TIOA, actions are declared as internal or external (input or output). In PVS,
these are declared as subtypes of an action datatype. A visible predicate returns
true for the external and time passage actions.

In TIOA, discrete transitions are specified in precondition-effect style using
the keyword pre followed by a predicate (precondition), and the keyword eff fol-
lowed by a program (effect). We define a predicate enabled in PVS parameterized
on an action a and a state s to represent the preconditions. enabled returns true
when the corresponding TIOA precondition for a is satisfied at s.

The program of the effect clause specifies the relation between the post-state
and the pre-state of the transition. The program consists of sequential state-
ments, which may be assignments, if-then-else conditionals or for loops (see
Figure 2, lines 14–32). A non-deterministic assignment is handled by adding ex-
tra parameters to the action declaration and constraining the values of these
parameters in the enabled predicate of the action.

In TIOA, the effect of a transition is typically written in an imperative style
using a sequence of statements. We translate each type of statement to its cor-
responding functional relation between states, as shown in Table 1. The term P
is a program, while transP (s) is a function that returns the state obtained by
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Table 1. Translation of program statements. v is a state variable; t is an expression;
pred is a predicate; A is a finite set; choose picks an element from the given set A.
with makes a copy of the record s, assigning the field v with a new value t.

Fig. 4. Actions and transitions in TIOA

performing program P on state s. In PVS, we define a function trans parame-
terized on an action a and a state s, which returns the post-state of performing
the corresponding TIOA effect of a on s. Sequential statements like P1;P2 are
translated to a composition of the corresponding functions transP2(transP1 (s)).
Our translator can perform this composition in following two ways:

Substitution method: We first compute transP1 , then substitute each variable
in transP2 with its intermediate value obtained from transP1 . This approach
explicitly specifies the resulting value of each variable in the post-state in terms
of the variables in the pre-state [9]. Figure 4 shows a simple example to illustrate
this approach. foo performs some arithmetic, while bar swaps x and y if they
are not equal. The translation is shown in the left column of Figure 5. In the
transition of bar, x and y are assigned new values only when their values are not
equal in the pre-state. Otherwise, they are assigned their previous values.

Fig. 5. Translation of transitions using substitution (left) and LET (right)
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LET method: Instead of performing the substitution explicitly, we make use
of the PVS LET keyword to obtain intermediate states on which to apply subse-
quent programs. The program P1; P2 can be written as let s = transP1 (s) in
transP2(s). The right column in Figure 5 shows the translation of the effects of
foo and bar using let statements.

In the substitution method, the translator does the work of expressing the
final value of a variable in terms of the values of the variables in the pre-state.
In the LET method, the prover has to perform these substitutions to obtain
an expression for the post-state in an interactive proof. Therefore, the substi-
tution method is more efficient for theorem proving, whereas the LET method
preserves the sequential structure of the program, which is lost with the substi-
tution method. Since the style of translation in some cases may be a matter of
preference, we currently support both approaches as an option for the user.

3.3 Trajectories

The set of trajectories of an automaton is the concatenation closure of the set of
trajectories defined by the trajectory definitions of the automaton. A trajectory
definition w is specified by the trajdef keyword in a TIOA description followed
by an invariant predicate for inv(w), a stop when predicate for stop(w), and
an evolve clause for specifying daes(w) (see traj1 in Figure 2, lines 34–37).

Fig. 6. Using an additional parameter to specify rate of evolution

Each trajectory definition in TIOA is translated as a time passage action in
PVS containing the trajectory map as one of its parameters. The precondition of
this time passage action contains the conjunction of the predicates corresponding
to the invariant, the stopping condition, and the evolve clause of the trajectory
definition. In general, translating an arbitrary set of differential and algebraic
equations (DAES) in the evolve clause to the corresponding precondition may
be hard, but our translation scheme is designed to handle a large class of DAES,
including the most common classes like constant and linear differential equations,
and ordinary differential equations. The translator currently handles algebraic
equations, constant differential equations and inclusions; it is being extended to
handle linear differential equations.

Like other actions, a time passage action is declared as a subtype of the action
datatype, and specified using enabled-trans predicates. A time passage action has
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two required parameters: the length of the time interval of the trajectory, delta t,
and a trajectory map F mapping a time interval to a state of the automaton.

The transition function of the time passage action returns the last state of the
trajectory, obtained by applying the trajectory map F on delta t (see Figure 3,
line 63). The precondition of a time passage action has conjunctions stating
(1) the trajectory invariant, (2) the stopping condition, and (3) the evolution of
variables (see nu traj1 in Figure 3, lines 44-50, corresponding to traj1 in Figure 2).

If the evolve clause contains a constant differential inclusion of the form
d(x) ≤ k, we introduce an additional parameter x r in the time passage action
for specifying the rate of evolution. We then add a fourth conjunction into the
precondition to assert the restriction x r ≤ k. The following example uses a
constant differential inclusion that allows the rate of change of x to be between
0 and 2. The PVS output in Figure 6 contains an additional parameter x r as
the rate of change of x. The value of x r is constrained in the precondition.
trajdef progress invariant x ≥ 0 stop when x = 10

evolve d(x) ≥ 0; d(x) ≤ 2

3.4 Correctness of Translation

Consider a timed I/O automaton A, and its PVS translation B. A closed execu-
tion of B is an alternating finite sequence of states and actions (including time
passage actions): β = s0, b1, s1, b2, . . . , br, sr, where s0 is a start state, and for
all i, 0 ≤ i ≤ r, si is a state of B, and bi is an action of B. We define the following
two mappings:

Let β = s0, b1, s1, b2, . . . , br, sr be a closed execution of B. We define the
mapping F(β) as a sequence τ0, a1, τ1, . . . obtained from β by performing the
following: (1) Each state si is replaced with a point trajectory τj such that
τj .fstate = τj .lstate = si. (2) Each time passage action bi is replaced by T (bi),
where T (bi) is the parameter F of bi, which is the same as the corresponding
trajectory in A. (3) Consecutive sequences of trajectories are concatenated into
single trajectories.

Let α = τ0, a1, τ1, . . . be a closed execution of A. We define the mapping
G(α) as a sequence s0, b1, s1, b2, . . . , br, sr obtained from α by performing the
following. Let τi be a concatenation of τ(i,1), τ(i,2), . . ., such that τ(i,j) ∈ traj(wj)
for some trajectory definition wj of A. Replace τ(i,1), τ(i,2), . . . with τ(i,1).fstate,
ν(τ(i,1)), τ(i,1).lstate, ν(τ(i,2)), τ(i,2).lstate, . . ., where ν(τ) denotes the corre-
sponding time passage action in B for τ .

Using these mappings, we state the correctness of our translation scheme as a
theorem, in the sense that any closed execution (or trace) of a given timed I/O
automatonA has a corresponding closed execution (resp. trace) of the automaton
B, and vice versa, where B is described by the PVS theories generated by the
translator. Owing to limited space, we state the theorem and omit the proof,
which will be available in a complete version of the paper.

Theorem 1. (a) For any closed execution β of B, F(β) is a closed execution of
A. (b) For any closed execution α of A, G(α) is a closed execution of B.
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3.5 Implementation

Written in Java, the translator is a part of the TIOA toolkit (see Figure 1). The
implementation of the tool builds upon the existing IOA to Larch translator [9,
17]. Given an input TIOA description, the translator first uses the front-end
type checker to parse the input, reporting any errors if necessary. The front-
end produces an intermediate language which is also used by other tools in the
TIOA toolkit. The translator parses the intermediate language to obtain Java
objects representing the TIOA description. Finally, the translator performs the
translation as described in this paper, and generates a set of files containing PVS
theories specifying the automata and their properties. The translator accepts
command line arguments for selecting the translation style for transitions, as
well as for specifying additional theories that the output should import for any
user defined data types. The current version of the translator can be found at:
http://web.mit.edu/hongping/www/tioa/tioa2pvs-translator.

4 Proving Properties in PVS

In this section, we briefly discuss our experiences in verifying systems using the
PVS theorem prover on the theories generated by our translator. To evaluate the
translator we have so far studied the following three systems. We have specifically
selected distributed systems with timing requirements so as to test the scalabil-
ity and generality of our proof techniques. Although these distributed systems
are typically specified component-wise, we use a single automaton, obtained by
composing the components, as input to the translator for each system.

(1) Fischer’s mutual exclusion algorithm [15]: In this algorithm, each pro-
cess proceeds through different phases like try, test, etc. in order to get to the
critical phase where it gains access to the shared resource. The safety property
we want to prove is that no two processes are simultaneously in the critical

phase, as shown in Figure 7. Each process is indexed by a positive integer; pc is
an array recording the region each process is in. Notice that we are able to state
the invariant using universal quantifiers without having to bound the number of
processes.

(2) The two-task race system [15, 4] (see Figure 2) increments a variable count

repeatedly, within a1 and a2 time, a1 < a2, until it is interrupted by a set

action. This set action can occur within b1 and b2 time from the start, where
b1 ≤ b2. After set, the value of count is decremented (every [a1, a2] time) and a
report action is triggered when count reaches 0. We want to show that the time

Fig. 7. TIOA and PVS descriptions of the mutual exclusion property
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bounds on the occurrence of the report action are: lower bound: if a2 < b1 then

min(b1,a1) + (b1−a2)∗a1
a2 else a1, and upper bound: b2 + a2 + b2∗a2

a1 . To prove
this, we create an abstract automaton TwoTaskRaceSpec which performs a report

action within these bounds, and show a forward simulation from TwoTaskRace to
TwoTaskRaceSpec.

(3) A simple failure detector system [2] consisting of a sender, a delay prone
channel, and a receiver. The sender sends messages to the receiver, within u1 time
after the previous message. A timed queue delays the delivery of each message by
at most b. A failure can occur at any time, after which the sender stops sending.
The receiver timeouts after not receiving a message for at least u2 time. We are
interested in proving two properties for this system: (a) safety: a timeout occurs
only after a failure has occurred, and (b) timeliness: a timeout occurs within
u2 + b time after a failure. As in the two-task race example, to show the time
bound, we first create an abstract automaton that timeouts within u2 + b time
of occurrence of a failure, and then we prove a forward simulation.

We specify the systems and state their properties in the TIOA language. The
translator generates separate PVS theory files for the automaton specifications,
invariants, and simulation relations (see Figure 1). We invoke the PVS-prover
on these theories to interactively prove the translated lemmas and theorems.

One advantage of using a theorem prover like PVS is the ability to develop
and use special strategies to partially automate proofs. PVS strategies are writ-
ten to apply specific proof techniques to recurring patterns found in proofs.
In proving the system properties, we use special PVS strategies developed for
TAME and TIOA [7, 18]. As many of the properties involve inequalities over
real numbers, we also use the strategies in the Manip [19] and the Field [20]
packages.

PVS generates Type Correctness Conditions (TCCs), which are proof obliga-
tions to show that certain expressions have the right type. As we have defined
the enabled predicate and trans function separately, it is sometimes necessary to
add conditional statements into the eff program of the TIOA description, so as
to ensure type correctness in PVS.

Prior to proving the properties using the translator output, we had proved the
same properties using hand-translated versions of the system specifications [4].
These hand-translations were done assuming that all the differential equations
are constant, and that the all invariants and stopping conditions are convex. In
the proof of invariants, we are able to use a strategy to handle the induction
step involving the parameterized trajectory, thus the length of the proofs in the
hand translated version were comparable to those with the translators output.
However, such a strategy is still not available for use in simulation proofs, and
therefore additional proof steps were necessary when proving simulation relations
with the translator output, making the proofs longer by 105% in the worst
case1. Nonetheless, the advantage of our translation scheme is that it is general
enough to work for a large class of systems and that it can be implemented in
software.

1 We did not attempt to make the proofs compact.
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4.1 Invariant Proofs for Translated Specifications

To prove that a property holds in all reachable states, we use induction to prove
that (a) the property holds in the start states, and (b) given that the prop-
erty holds in any reachable pre-state, the property also holds in the post-state
obtained by performing any action that is enabled in the pre-state.

We use the auto induct strategy to inductively prove invariants. This strat-
egy breaks down the proofs into a base case, and one subgoal for each action type.
Trivial subgoals are discharged automatically, while other simple branches are
proved by using TIOA strategies like apply specific precond and try simp
with decision procedures of PVS. Harder subgoals require more careful user in-
teraction in the form of using simpler invariants and instantiating formulas.

In branches involving time passage actions, to obtain the post-state, we in-
stantiate the universal quantifier over the domain of the trajectory in the time
passage action with the limit time of the trajectory. A commonly occurring type
of invariant asserts that a continuously evolving variable, say v, does not cross a
deadline, say d. Within the trajectory branch of the proof of such an invariant,
we instantiate the universal quantifier over the domain of the trajectory with
the time required for v to reach the value of d. In particular, if v grows at a con-
stant rate k, we instantiate with (d− v)/k. We have also written a PVS strategy
deadline check which performs this instantiation.

The strategies provided by Field and Manip deals only with real values, while
our inequalities may involve time values. For example, in the two-task race sys-
tem, we want to show that last set ≥ fintime(now). Here, last set is a time value,
that is, a positive real or infinity, while now is a real value. If last set is infinite,
the inequality follows from the definitions of ≥ and infinity in the time theory
of TAME. For the finite case, we extract the real value from last set, and then
prove the version of the same inequality involving only reals.

4.2 Simulation Proofs for Translated Specifications

In our examples, we prove a forward simulation relation from the system to the
abstract automaton to show that the system satisfies the timing properties. The
proof of the simulation relation involves using induction, performing splits on the
actions, and verifying the inequalities in the relation. The induction hypothesis
assumes that a pre-state xA of the system automaton A is related to a pre-state
xB of the abstract automaton B. If the action aA is an external action or a time
passage action, we show the existence of a corresponding action aB in B such that
the aB is enabled in xB and that the post-states obtained by performing aA on
xA and aB on xB are related. If the action aA is internal, we show that the post-
state of aA is related to xB. To show that two states are related, we prove that
the relation holds between the two states using invariants of each automaton, as
well as techniques for manipulating inequalities and the time type. We have not
used automaton-specific strategies in our current proofs for simulation relations.
Such strategies have been developed in [21]. Once tailored to our translation
scheme, they will make the proofs shorter.
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A time passage action contains the trajectory map as a parameter. When we
show the existence of a corresponding action in the abstract automaton, we need
to instantiate the time passage action with an appropriate trajectory map. For
example, in the proof of the simulation relation in the two-task race system, the
time passage action nu traj1 of TwoTaskRace is simulated by the following time
passage action of TwoTaskRaceSpec:

nu post report(delta t(a A), lambda(t:TTRSpec decls.interval(zero,delta t(a A))):
s B with [now := now(s B)+dur(t)])

The time passage action nu post report of TwoTaskRaceSpec (abbreviated as TTR-
Spec) has two parameters. The first parameter has value equal to the length of
a A, the corresponding time passage action in the automaton TwoTaskRace. The
second parameter is a function that maps a given time interval of length t to
a state of the abstract automaton. This state is same as the pre-state s B of
TwoTaskRaceSpec, except that the variable now is incremented by t.

5 Conclusion and Future Work

In this paper we have introduced the TIOA language and presented a tool for
translating TIOA descriptions to the language of the PVS theorem prover. Al-
though the TIOA language provides convenient and natural constructs for de-
scribing a timed I/O automaton, it cannot be used directly in a theorem prover
such as PVS. Our tool performs the translation from TIOA to PVS, trans-
lating programs in the transition effects of TIOA descriptions into functional
relations in PVS, and trajectories into parameterized time passage actions. We
have described briefly three case studies in which we have successfully written
the systems in TIOA, and proved properties of the systems in PVS using the
output of the translator. Our experience suggests that the process of writing
system descriptions in TIOA and then proving system properties using PVS on
the translator output is useful for analyzing more complicated systems.

Some features remain to be implemented in the translator tool, like for loops,
and composition of automata. In future, we want to develop PVS strategies to
exploit the structure of the translator output for shorter and more readable
proofs. We will continue to work on other case studies to evaluate the translator
as a theorem proving interface for the TIOA language. These examples include
clock synchronization algorithms and implementation of atomic registers.
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Abstract. Soft real-time requirements are often related to communi-
cation in distributed systems. Therefore it is interesting to understand
how UML sequence diagrams can be used to specify such requirements.
We propose a way of integrating soft real-time requirements in sequence
diagram specifications by adding probabilities to timed sequence dia-
grams. Our approach builds on timed STAIRS, which is an approach
to the compositional and incremental development of sequence diagrams
supporting specification of mandatory as well as potential behavior.

1 Introduction

A soft real-time requirement is a time requirement that needs to be met only by
a certain percentage of the relevant behavior. A hard real-time requirement can
be seen as a special case of a soft real-time requirement; it is a soft real-time
requirement that needs to be met in 100% of the cases. When a delay depends
on factors that are hard to measure, highly complex or outside our control, a
soft real-time requirement is often more appropriate than a hard constraint.

Time constraints are often related to some kind of communication scenario.
Therefore it is important to be able to express soft real-time constraints in
sequence diagrams. Sequence diagrams show how a task is performed by sending
messages between lifelines.

In this paper we enable specification of soft real-time constraints with se-
quence diagrams by extending STAIRS presented in [HS03], [HHRS05a] and
[HHRS05b] with the possibility of assigning probabilities. The probabilities are
added independently from the time constraints, so our approach supports prob-
abilistic specifications in general.

The rest of this paper is organized as follows: Section 2 introduces a specifica-
tion to illustrate aspects of probabilistic STAIRS throughout the paper. Section
3 defines events, traces and some basic operators. Timed STAIRS is introduced
in section 4, while section 5 discusses the relation between mandatory choice
and probabilities. Probabilistic STAIRS is introduced in section 6, and section
7 shows how this enables the addition of a soft real-time requirement to the
example specification. In section 8 the refinement relation is defined. Section 9
demonstrates refinement of the example specification. We discuss some related
work in section 10 before concluding in section 11.
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c© Springer-Verlag Berlin Heidelberg 2005



Specification and Refinement of Soft Real-Time Requirements 33

2 The Automatic Teller Machine Example

We use as example a scenario where a customer withdraws money from an auto-
matic teller machine (atm). This section gives a brief and informal explanation
of the example. Figure 1 shows the first version of the specification. It serves
two purposes. Firstly, it introduces the basic UML sequence diagram notation.
Secondly, it allows us to characterize the need for more expressiveness. We come
back to this example in later sections to illustrate our approach. Since our main
concern is demonstration of real-time specifications we have omitted some de-
tails that would belong in a real-life scenario, such as the entering of a PIN code.
The scenario describes the case where the transaction succeeds.

sd cash_withdrawal_1

customer atm bank
card

card back

prompt ”Transaction accepted”

money(amount)

prompt ”Enter amount”

withdraw(amount)
request(amount)

accept
t1
t2

t3

t3-t2<5 s

t2-t1<10 s

Fig. 1. A cash withdrawal scenario

It is an interaction between three lifelines: the customer, the atm and the bank.
Lifelines represent the entities taking part in the interaction. The intuition be-
hind the specification is the following: First the customer inserts her/his card, and
the atm displays the text “Enter amount”. The customer then enters the desired
amount, and the atm sends a request to the bank asking whether the transaction
is acceptable. A hard real-time requirement has been placed on the reply from the
bank, stating that it should take no more than 10 seconds from the atm sends its
request to the reply is received.1 After the atm receives a positive reply from the
bank, it displays the text “Transaction accepted”, returns the card, and finally de-
livers the desired amount of money. A second hard real-time requirement has been
put on the delivery of money stating that the delay from the atm receives a positive
reply from the bank to the money is delivered should be less than five seconds.

UML sequence diagrams describe traces representing execution histories, and
categorize traces as positive (valid) or negative (invalid). Positive traces represent

1 We have chosen to use a different notation for real-time requirements than in UML
2.0, since we find our notation more suitable when the requirement crosses an operator
boundary, as will happen in later specifications. Graphical (concrete) syntax is not a
main issue in this paper.
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acceptable executions, while negative traces represent unacceptable executions.
All other traces are inconclusive, meaning that the specification does not say
whether they are acceptable [OMG04–p. 526]. According to the specification
in Figure 1, the positive traces are those where 1) messages are sent in the
order shown in the diagram and 2) both real-time requirements are fulfilled.
The negative traces are those that fulfill 1) but not 2).

The delay from the request is sent from the atm to a reply is received may de-
pend on several complex factors, so we might want to replace the hard real-time
requirement with a soft real-time requirement. Timed STAIRS gives a formal
semantics to (a subset of) UML sequence diagrams with hard real-time require-
ments. Specifying soft real-time constraints, however, is not possible. Enabling
the specification of soft real-time requirements within the framework of timed
STAIRS is the aim of this paper.

3 Events, Traces and Basic Operators

In this section we define the notions of events and traces. We also introduce a
number of helpful operators. Most of the definitions and explanations in this
section are taken from [HHRS05a].

For any set A, Aω denotes the set of finite as well as infinite sequences of
elements of A. N denotes the set of natural numbers, while N0 denotes the set
of natural numbers including 0. We define the functions

# ∈ Aω → N0 ∪ {∞}, [ ] ∈ Aω × N → A, � ∈ Aω ×Aω → Aω,

| ∈ Aω × N0 → Aω, S© ∈ P(A)×Aω → Aω

to yield the length of a sequence, the nth element of a sequence, the concatena-
tion of two sequences, truncation of a sequence and the filtering of a sequence.
Hence, #a yields the number of elements in a, and a[n] yields a’s nth element if
n ≤ #a. To concatenate two sequences means to glue them together. Therefore,
a1 � a2 denotes a sequence of length #a1 + #a2 that equals a1 if a1 is infinite,
and is prefixed by a1 and suffixed by a2 otherwise. For any 0 ≤ i ≤ #a, a | i
denotes the prefix of a of length i . By B S© a we denote the sequence obtained
from the sequence a by removing all elements in a that are not in the set B .

We also need filtering of pairs of sequences. The filtering function

T© ∈ P(A× B)× (Aω × Bω) → Aω × Bω

can be understood as a generalization of S© . For any set of pairs of elements P
and pairs of sequences t , P T© t denotes the pair of sequences obtained from t by

– truncating the longest sequence in t at the length of the shortest sequence
in t if the two sequences are not of equal length;

– for each j ∈ [1...k ], where k is the length of the shortest sequence in t , select-
ing or deleting the two elements at index j in the two sequences, depending
on whether the pair of these elements is in the set P .
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For example, we have that

{(1, f ), (1, g)} T© (〈1, 1, 2, 1, 2〉, 〈f , f , f , g, g〉) = (〈1, 1, 1〉, 〈f , f , g〉)

For a formal definition of T© , see [BS01].
πi is a projection operator returning element number i of a tuple.

3.1 Events

A message is a triple (s , re, tr) of a signal s , a receiver re and a transmitter tr .
M denotes the set of all messages. The receiver and transmitter are lifelines. L
denotes the set of all lifelines.

An event may be of two kinds; a transmission event tagged by “!” or a re-
ception event tagged by “?”.2 Every event occurring in a sequence diagram has
a timestamp tag. T denotes the set of timestamp tags. We use logical formulas
with timestamp tags as free variables to impose constraints on the timing of
events. By F(v) we denote the set of logical formulas whose free variables are
contained in the set of timestamp tags v .

An event is a triple (k ,m, t) ∈ {!, ?} × M × T of a kind, a message and a
timestamp tag. E denotes the set of all events. We define the functions

k . ∈ E → {?, !}, m. ∈ E →M, t . ∈ E → T , tr . ∈ E → L, re. ∈ E → L

to yield the kind, message, timestamp tag, transmitter and receiver of an event,
respectively. Since we are primarily interested in communication scenarios, we
do not give a semantic interpretation to events, except that the timestamp tag is
assigned a timestamp in form of a real number. R denotes the set of timestamps.
The set [[ E ]] of event interpretations is therefore defined by

[[ E ]] def= {(k ,m, t �→ r) | (k ,m, t) ∈ E ∧ r ∈ R} (1)

t �→ r means that timestamp r is assigned to timestamp tag t . We also define
the function

r . ∈ [[ E ]] → R

to yield the timestamp of an event interpretation. In the following, we use “event”
and “event interpretation” interchangeably.

3.2 Traces

A trace h ∈ [[ E ]]ω is a finite or infinite sequence of events. Traces represent
executions of the system under specification, and must satisfy a number of well-
formedness conditions. Firstly, we require the events of h to be ordered by time:

∀ i , j ∈ [1..#h] : i < j ⇒ r .h[i ] ≤ r .h[j ] (2)

2 Note that in timed STAIRS [HHRS05a] “?” represents consumption. We have chosen
to use “?” for reception since we do not concider consumption events in this paper.



36 A. Refsdal, K.E. Husa, and K. Stølen

Note that two events may occur at the same time.
Secondly, we allow the same event to occur only once in the same trace:

∀ i , j ∈ [1..#h] : i �= j ⇒ h[i ] �= h[j ] (3)

Thirdly, time will eventually progress beyond any finite point in time. The fol-
lowing constraint states that for each lifeline l represented by infinitely many
events in the trace h, and for any possible timestamp t there must exist an
l -event in h whose timestamp is greater than t :

∀ l ∈ L : (#e.l S© h = ∞⇒ ∀ t ∈ R : ∃ i ∈ N : r .(e.l S© h)[i ] > t) (4)

where e.l denotes the set of events that may take place on the lifeline l . Formally:

e.l def= {e ∈ [[ E ]] | (k .e =! ∧ tr .e = l) ∨ (k .e =? ∧ re.e = l)} (5)

We also require that for any single message, transmission happens before re-
ception. But we need to take into account that the transmitter or receiver of a
certain message might not be included in the sequence diagram. Thus we get
the following well-formedness requirement on traces, stating that if at any point
in the trace we have a transmission event, up to that point we must have had
at least as many transmissions as receptions of that particular message:

∀ i ∈ [1..#h] : k .h[i ] =! ⇒ (6)

#({!} × {m.h[i ]} ×U ) S© h|i > #({?} × {m.h[i ]} ×U ) S© h|i

where U def= {t �→ r | t ∈ T ∧ r ∈ R}.
H denotes the set of well-formed traces. Traces are written as a sequence of

events enclosed by 〈〉, for example 〈e1, e2, e3〉.

4 Syntax and Semantics for Timed STAIRS

In the following we explain how a timed sequence diagram can be represented
by a specification pair (p,n) where p is a set of positive traces and n is a set
of negative traces. (This is a simplification of timed STAIRS, where a sequence
diagram is represented by a set of specification pairs.) O denotes the set of
specification pairs. A specification pair (p,n) is contradictory if p ∩n �= ∅. [[ d ]]
denotes the specification pair representing sequence diagram d .

4.1 Textual Syntax for Timed Sequence Diagrams

The set of syntactically correct sequence diagrams, D, is defined inductively as
the least set such that: 3

3 Timed STAIRS [HHRS05a] also include the operators loop, assert and xalt. We have
omitted these operators to save space. There is also a formal requirement stating
that if we have a message in the diagram and both the transmitter and the receiver
lifelines of that message are present in the diagram, then both the transmit and
the receive event of that message must be present in the diagram as well. This
requirement is also omitted here to save space.
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– E ⊂ D
– d ∈ D ⇒ neg d ∈ D
– d1, d2 ∈ D ⇒ d1 par d2 ∈ D ∧ d1 seq d2 ∈ D ∧ d1 alt d2 ∈ D
– d ∈ D ∧ C ∈ F(tt .d) ⇒ d tc C ∈ D

where tt .d yields the set of timestamp tags occurring in d . The base case
implies that any event is a sequence diagram. Any other sequence diagram is
constructed from the basic ones through the application of operations for nega-
tion, potential choice (alternative), weak sequencing, parallel execution and time
constraint.

4.2 Denotational Semantics for Timed STAIRS

Event. The semantics of an event is the specification pair whose positive set
consists of infinitely many unary positive traces – one for each possible assign-
ment of a timestamp to its timestamp tag. The negative set is empty.

[[ (k ,m, t) ]] def= ({〈(k ,m, t �→ r)〉 | r ∈ R},∅) if (k ,m, t) ∈ E (7)

Negation. Undesired behavior is defined by the use of the neg construct. To
negate a specification means to move every positive trace to the negative set.
Negative traces remain negative. The empty trace is defined as positive to enable
positive traces in a composition. Negation of a specification is defined by

[[ neg d ]] def= ¬ [[ d ]] (8)

where
¬ (p,n) def= ({〈〉},n ∪ p) (9)

Parallel Execution. The operator for parallel execution is represented seman-
tically by ‖. Ignoring for the time being the sets of negative traces, a parallel
execution defines the set of traces we get by merging one trace from one (posi-
tive) set with one trace from the other (positive) set. Informally, for sets of traces
s1 and s2, s1 ‖ s2 is the set of all traces such that:

– all events from one trace in s1 and one trace in s2 are included (and no other
events),

– the ordering of events from each of the traces is preserved.

Formally:

s1 ‖ s2
def= {h ∈ H | ∃ or ∈ {1, 2}∞ : (10)

π2(({1} × [[ E ]]) T© (or , h)) ∈ s1 ∧

π2(({2} × [[ E ]]) T© (or , h)) ∈ s2}

In this definition we make use of an oracle, the infinite sequence or , to resolve
the non-determinism in the interleaving. It determines the order in which events
from traces in s1 and s2 are sequenced.
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The semantics of parallel execution may then be defined as

[[ d1 par d2 ]] def= [[ d1 ]] ‖ [[ d2 ]] (11)

where
(p1,n1) ‖ (p2,n2)

def= (p1 ‖ p2, (n1 ‖ (p2 ∪ n2)) ∪ (p1 ‖ n2)) (12)

Note that the merging of a negative trace with another (positive or negative)
trace always results in a negative trace.

Weak Sequencing. Weak sequencing is the implicit composition mechanism
combining constructs of a sequence diagram. The operator for weak sequencing
is represented semantically by �. We again temporarily ignore the sets of nega-
tive traces, and let s1 and s2 be trace sets. Since lifelines are independent, the
constraint for the ordering of events applies to each lifeline; events that occur
on different lifelines are interleaved. For s1 � s2 we therefore have the constraint
that events on one lifeline from one trace in s1 should come before events from
one trace in s2 on the same lifeline:

s1 � s2
def= {h ∈ H | ∃ h1 ∈ s1, h2 ∈ s2 : (13)

∀ l ∈ L : e.l S© h = e.l S© h1 �e.l S© h2}
The semantics of weak sequencing may then be defined as

[[ d1 seq d2 ]] def= [[ d1 ]] � [[ d2 ]] (14)

where

(p1,n1) � (p2,n2)
def= (p1 � p2, (n1 � (p2 ∪ n2)) ∪ (p1 � n2)) (15)

Weak sequencing involving at least one negative trace results in a negative trace.

Time Constraint. Time requirements are imposed by the use of a time con-
straint, denoted by �C , where C is a predicate over timestamp tags. When a
time constraint is applied to a trace set all traces not fulfilling the constraint are
removed. Formally, time constraint for a trace set s is defined as

s � C def= {h ∈ s | h |= C} (16)

where h |= C holds if for all possible assignments of timestamps to timestamp
tags done by h, there is an assignment of timestamps to the remaining timestamp
tags in C (possibly none) such that C evaluates to true. For example, if

h = 〈(k1,m1, t1 �→r1), (k2,m2, t2 �→r2), (k3,m3, t3 �→r3)〉 and C = t3 < t1 + 5

then h |= C if r3 < r1 + 5.
To apply a time requirement to a specification means to define failure to meet

the requirement as negative behavior. The positive traces of the operand that do
not fulfill the requirement become negative. The semantics of a time constraint
is defined as

[[ d tc C ]] def= [[ d ]] � C (17)
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where
(p,n) � C def= (p � C ,n ∪ (p � ¬ C )) (18)

Potential Choice. The alt construct is used to express underspecification by
grouping together traces that from the specifier’s point of view serve the same
purpose. This means that they are seen as equally desirable (for positive traces)
or undesirable (for negative traces). For two trace sets where both are positive
or both are negative, this can be represented semantically simply by taking the
union of the sets. Hence, potential choice corresponds to the pairwise union of the
positive sets and the negative sets. Formally, the semantics of the alt is defined
by

[[ d1 alt d2 ]] def= [[ d1 ]]  [[ d2 ]] (19)

where
(p1,n1)  (p2,n2)

def= (p1 ∪ p2,n1 ∪ n2) (20)

5 Mandatory Choice and Probabilities

In STAIRS the alt operator as formally defined above enables underspecification,
what we also refer to as potential choice. Underspecification means to leave
some freedom of choice to the developers that will eventually implement (or
further refine) the specification. This is for example useful when different design
alternatives fulfill a function equally well from the specifier’s point of view.

STAIRS supports also the specification of mandatory choice. For this purpose
the STAIRS specific xalt operator is used. Mandatory choice means that all al-
ternatives must be possible. It is often needed within security, for example in
relation to information flow [Ros95]. When specifying a password generator, for
instance, it is vital that all alternatives remain possible in the final implementa-
tion – otherwise in the extreme case we might end up with an implementation
that always generates the same password.

Mandatory choice is also useful for other purposes. Sometimes non-determinism
is employed to model the behavior of the environment of the system under spec-
ification. The mandatory choice operator is then used to represent alternative
inputs from the environment that the designer has considered. If some of these
alternatives are removed from the final specification, the implementation will
not be able to handle the relevant input as intended.

Sometimes an application is non-deterministic by nature, for example in
games. If we want to specify a dice, we obviously need to ensure that all al-
ternatives, one through six, are possible outcomes in the implementation.

In probabilistic STAIRS we generalize the xalt operator into an operator for
the specification of probabilities called palt. We may then also specify with what
probability the different alternatives should occur. In the dice example, the prob-
ability of every outcome should be exactly 1

6 . Of course, if an alternative has
an exact probability greater than zero, then this alternative must be a possible
outcome of a valid implementation. For this reason, probabilistic choice can be
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viewed as a special case of mandatory choice. This view is consistent with the
one presented in [MM99].

If an alternative is assigned a set of acceptable probabilities, then this set
represents underspecification. Such underspecification is usually present in soft
real-time requirements. A specification might say that the probability of a cer-
tain delay being less than 10 seconds should be 0.8 or more. This amounts to
saying that the set of acceptable probabilities is [0.8, .., 1.0]. According to this
specification, an implementation that gives a probability of 0.9 is certainly valid;
the developer only needs to achieve one of the acceptable probabilities.

6 Syntax and Semantics for Probabilistic STAIRS

In the following we explain how a probabilistic sequence diagram can be rep-
resented by a multiset of probability obligations (also called p-obligations). A
p-obligation ((p,n),Q) consists of a specification pair (p,n) and a set of prob-
abilities Q , with the following interpretation: The traces implementing (p,n)
should occur with a probability greater than or equal to a probability in Q .
Only traces in H \ n are allowed to implement (p,n). The probability for these
traces may be greater than the values in Q only if some or all of the traces are
also positive or inconclusive according to some other p-obligation. We use a mul-
tiset instead of just a set because multiple occurrences of the same p-obligation
(which may result from the composition operators) means that the specification
pair should occur with a probability greater than or equal to the sum of proba-
bilities from each instance of the p-obligation. For example, if the p-obligation
((p,n), [0.3, ..., 0.4]) occurs twice in a specification, then this means that the
traces implementing (p,n) should occur with a probability greater than or equal
to a value in [0.6, ..., 0.8]. P denotes the set of p-obligations. In probabilistic
STAIRS we may have underspecification with respect to traces and with respect
to probabilities. Underspecification with respect to traces is captured by the fact
that we may choose among the non-negative traces within a specification pair.
Underspecification with respect to probabilities is modeled by the possibility of
selecting among the probabilities within a p-obligation.

6.1 Textual Syntax for Probabilistic Sequence Diagrams

The set of syntactically correct sequence diagrams D is defined simply by adding
the following case to the inductive definition in 4.1:

– d1, d2 ∈ D ∧Q1,Q2 ⊆ [0...1] ⇒ d1;Q1 palt d2;Q2 ∈ D

6.2 Denotational Semantics for Probabilistic STAIRS

Event. Probabilities can be assigned only by the use of the palt. The traces
specified by a sequence diagram without occurrences of palt must occur with
probability 1 in their relevant context. Therefore the set of probabilities associ-
ated with an event is {1}.
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[[ (k ,m, t) ]] def= {(({〈(k ,m, t �→ r)〉 | r ∈ R},∅), {1})} if (k ,m, t) ∈ E (21)

Negation and Time Constraint. Negation and time constraint are not af-
fected by probabilities. They are defined by

[[ neg d ]] def= {(¬ o,Q) | (o,Q) ∈ [[ d ]]} (22)

[[ d tc C ]] def= {(o � C ,Q) | (o,Q) ∈ [[ d ]]} (23)

Parallel Execution and Weak Sequencing. When executing two specifica-
tions in parallel or sequentially, we get the mulitset of p-obligations obtained from
choosing one p-obligation from the first and one p-obligation from the second and
composing them in parallel or sequentially. Choosing the two p-obligations to be
composed is seen as two independent probabilistic choices; therefore the sets of
probabilities are multiplied. Formally, parallel execution and weak sequencing is
defined by

[[ d1 par d2 ]] def= {(o1 ‖ o2,Q1 ∗Q2) | (o1,Q1) ∈ [[ d1 ]] ∧ (o2,Q2) ∈ [[ d2 ]]} (24)

[[ d1 seq d2 ]] def= {(o1 � o2,Q1 ∗Q2) | (o1,Q1) ∈ [[ d1 ]] ∧ (o2,Q2) ∈ [[ d2 ]]} (25)

where multiplication of probability sets is defined by

Q1 ∗Q2
def= {q1 ∗ q2 | q1 ∈ Q1 ∧ q2 ∈ Q2} (26)

Potential Choice. The alt construct captures underspecification with respect
to traces (and not with respect to probabilities). When combining two p-obligations
the probabilities that are not in both probability sets are removed. Otherwise, we
might realize the composed specification with traces from only the first operand
with a probability allowed only by the second operand.

[[ d1 alt d2 ]] def= {(o1  o2,Q1 ∩Q2) | (o1,Q1) ∈ [[ d1 ]] ∧ (o2,Q2) ∈ [[ d2 ]]} (27)

Probabilistic Choice. The palt construct expresses probabilistic choice (and
therefore mandatory choice). Before defining the semantics of the palt we in-
troduce the notion of probability decoration. Probability decoration is used to
assign the probabilities associated with the operands of a palt. It is defined by

[[ d ;Q ′ ]] def= {(o,Q ∗Q ′) | (o,Q) ∈ [[ d ]]} (28)

The palt operator is meant to describe the probabilistic choice between two
alternative operands whose joint probability should add up to one. Formally,
the palt is defined by

[[ d1 palt d2 ]] def= [[ d1 ]] ∪ [[ d2 ]] ∪ {(⊕([[ d1 ]] ∪ [[ d2 ]]), {1})} (29)

Note that the syntactic restrictions ensure that d1 and d2 are of the form d ;Q
(see section 6.1). The p-obligation in the multiset to the right in 29 requires the
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probabilities of the two operands to add up to one. ⊕ characterizes the traces
allowed by the two operands together: A trace t is positive if it is positive ac-
cording to at least one p-obligation and not inconclusive according to any; t is
negative only if it is negative according to all p-obligations; traces that are incon-
clusive according to at least one p-obligation remain inconclusive. Formally, the
operator ⊕ for combining the specification pairs of a multiset S of p-obligations
into a single specification pair is therefore defined by

⊕S def= ((
⋃

((p,n),Q)∈S

p) ∩ (
⋂

((p,n),Q)∈S

p ∪ n),
⋂

((p,n),Q)∈S

n) (30)

7 Adding a Soft Real-Time Requirement to the Atm

We now replace the first hard real-time requirement in the atm example with a
soft real-time requirement. Consider the sequence diagram in Figure 2.

This specification is modeled semantically by three p-obligations, we call these
po1, po2 and po3. The result of choosing the first palt operand is modeled seman-
tically by po1. The positive traces of po1 are only those in which it takes less
than 10 seconds before the reply arrives from the bank and it takes less than five
seconds from the reply arrives to the money is delivered. Traces where one or
both of these constraints are not met are negative in po1. The acceptable range
of probability for this p-obligation is [0.8, ..., 1].

The result of choosing the second palt operand is modeled semantically by
po2. The positive traces of po2 are all traces where it takes 10 seconds or more
before the reply arrives from the bank and it takes less than five seconds from
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card
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prompt ”Enter amount”
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Fig. 2. Cash withdrawal with soft real-time constraint.
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the reply arrives to the money is delivered. Traces where one or both of these
constraints are not met are negative in po2. The acceptable range of probability
for this p-obligation is [0, ..., 0.2].

The last p-obligation, po3, models the combination of the two operands, which
means that po3 = (⊕{po1, po2}, {1}). This means that the positive traces of po3
are all traces where it takes less than five seconds to get money after the reply
is received from the bank, regardless of how long it takes to get the reply. The
negative traces are only those where it takes five seconds or more to get the money.

Traces where messages are not exchanged between the customer, the atm
and the bank as described by Figure 2 (but ignoring the time requirements) are
inconclusive according to po1, po2 and po3.

8 Refinement

Refinement of a specification means to reduce underspecification by adding in-
formation so that the specification becomes closer to an implementation. Se-
mantically, in our setting this can be done at the level of p-obligations or at
the level of multisets of p-obligations. We first define refinement semantically for
p-obligations. Then we lift this definition to specifications that are represented
semantically by multisets of p-obligations.

8.1 Refinement of P-obligations

As in [HHRS05b], a specification pair is refined by moving positive traces to the
set of negative traces or by moving traces from the set of inconclusive traces to ei-
ther the positive or the negative set. STAIRS [HHRS05b] refers to the first option
as narrowing and the second option as supplementing. As argued in [HHRS05b],
narrowing reduces the set of positive traces to capture new design decisions
or to match the problem more accurately. Supplementing categorizes (to this
point) inconclusive behavior as either positive or negative recognizing that early
descriptions normally lack completeness.

A p-obligation is refined by either refining its specification pair or reducing
its set of probabilities. Formally, a p-obligation ((p′,n ′),Q ′) is a refinement of a
p-obligation ((p,n),Q), written ((p,n),Q) � ((p′,n ′),Q ′), iff

n ⊆ n ′ ∧ p ⊆ p′ ∪ n ′ ∧Q ′ ⊆ Q (31)

8.2 Refinement of Specifications

All p-obligations at the given (more abstract) level represent a mandatory al-
ternative. Therefore each p-obligation needs to be represented by a p-obligation
also at the refined (more concrete) level. However, there are three additional
considerations to take into account when defining the refinement relation.

Firstly, if a p-obligation has 0 as an acceptable probability, this means that
it does not need to be implemented. Therefore p-obligations with 0 in the prob-
ability set need not be represented at the refined level.
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Secondly, we need to ensure that any combination of p-obligations at the
abstract level is refined at the concrete level. For example, if a p-obligation po
occurs several times at the abstract level it is not enough just to ensure that
there is a single p-obligation po′ at the concrete level such that po � po′.

Thirdly, it should be possible to refine a p-obligation at the abstract level
by the combination of a submultiset of p-obligations at the concrete level, as
long as the combination of these p-obligations is a refinement of the abstract p-
obligation. Suppose now that we have two specifications d1 and d2 such that
(({t1, t2}, {t3}), [0.4, ..., 0.6]) ∈ [[ d1 ]] and such that there is no p-obligation
((p,n),Q) in [[ d2 ]] such that Q ⊆ [0.4, ..., 0.6]. Then it should still be pos-
sible for d2 to be a refinement of d1, as long as there is a submultiset S of
[[ d2 ]] such that the combination of all p-obligations in S is a refinement of
(({t1, t2}, {t3}), [0.4, ..., 0.6]). This is the case for example if [[ d2 ]] contains the
p-obligations (({t1}, {t2, t3}), {0.3}) and (({t2}, {t1, t3}), {0.2}). Taken together,
these two p-obligations are certainly a valid refinement of
(({t1, t2}, {t3}), [0.4, ..., 0.6]).

Each p-obligation represents a probabilistic choice. The probability for a com-
bination of choices is the sum of probabilities for each choice. Let {Q1, ...,Qn}
be a multiset of probability sets. We then define

n∑
i=1

Qi
def= {min(1,

n∑
i=1

qi) | qi ∈ Qi} (32)

Note that the upper limit of probabilities is 1.
We are now ready to define refinement of specifications. Formally, a specifi-

cation d ′ is a refinement of a specification d , written d � d ′, iff

∀S ⊆ [[ d ]] : 0 �∈ π2.⊕̄S ⇒ ∃S ′ ⊆ [[ d ′ ]] : ⊕̄S � ⊕̄S ′ (33)

where the operator ⊕̄ characterizes the combination of all p-obligations in a
multiset S into a single pair ((p,n),Q). Formally, ⊕̄ is defined by

⊕̄S def= (⊕S ,
∑
po∈S

π2.po) (34)

9 Refining the Atm Specification

Figure 3 shows a refinement of the specification in Figure 2.
The change that has been made to “cash withdrawal 2” is to impose an upper

limit to the acceptable response time from the bank also in the second operand,
stating that the reply should be received within 20 seconds. In addition we
have narrowed the acceptable range of probability for both operands. It is now
required that the reply from the bank should be received within 10 seconds in
at least 90% of the cases, instead of just 80%.

The specification “cash withdrawal 3” is modeled semantically by three
p-obligations, we call these po′

1, po′
2 and po′

3. The p-obligation po′
1 represents
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Fig. 3. A refinement of Figure 2

the result of choosing the first operand of the palt. The positive and negative
traces of po′

1 are the same as for po1, while the set of acceptable probabilities for
po′

1 is [0.9, ..., 1], which is a subset of the probability set of po1. This means that
po1 � po′

1.
The result of choosing the second palt operand is modeled semantically by

po′
2. The positive and negative traces of po′

2 are the same as for po2, except that
traces where it takes more than 20 seconds to get a reply from the bank are
positive in po2 and negative in po′

2. Since the probability set of po′
2, [0, ..., 0.1],

is a subset of the probability set of po2, we get po2 � po′
2.

The last p-obligation, po′
3, models the combination of the two operands, which

means that po′
3 = (⊕{po′

1, po′
2}, {1}). According to po′

3 the positive traces are all
traces where it takes less than 20 seconds to get an answer from the bank and
less than five seconds to get money after the reply is received from the bank.
The negative traces are those where it takes 20 seconds or more to get a reply
or five seconds or more to get the money. Since the probability sets of po3 and
po′

3 are both {1} and the only difference with respect to traces is that the traces
where it takes 20 seconds or more to get a reply from the bank are positive in
po3 and negative in po′

3, we get po3 � po′
3.

The above shows that condition 33 is fulfilled for every singleton set that
is a submultiset of the semantics of “cash withdrawal 2”. It is easy to verify
that ⊕̄{po1, po2} � ⊕̄{po′

1, po
′
2}, ⊕̄{po2, po3} � ⊕̄{po′

2, po
′
3}, ⊕̄{po1, po3} �

⊕̄{po′
1, po′

3} and ⊕̄{po1, po2, po3} � ⊕̄{po′
1, po′

2, po′
3}. This means that condi-

tion 33 is fulfilled, so the specification “cash withdrawal 3” is a refinement of
“cash withdrawal 2”.

We also have that the original specification “cash withdrawal 1” with its
hard real-time constraint is a refinement of “cash withdrawal 2”. To see this,
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note that the specification “cash withdrawal 1” is represented semantically by
{(π1.po1, {1})}, and that (π1.po1, {1}) is a valid refinement of both po1 and po3.
Since 0 ∈ π2.po2, this shows that condition 33 is fulfilled for every singleton
set that is a submultiset of the semantics of “cash withdrawal 2”. In addition,
we see that (π1.po1, {1}) is a valid refinement of ⊕̄{po1, po2}, ⊕̄{po2, po3} and
⊕̄{po1, po2, po3}. Condition 33 is therefore fulfilled. A similar argument shows
that “cash withdrawal 1” is also a refinement of “cash withdrawal 3”.

10 Related Work

[Seg95] uses probabilistic automata to address the problem of verification of ran-
domized distributed algorithms. The analysis includes timed systems, so that
real-time properties can be investigated in a probabilistic setting. [Jan03] intro-
duces a stochastic extension to statecharts called StoCharts to allow the quan-
tification of the time between events according to a stochastic distribution, and
defines a formal semantics that can be analyzed by tools. [JL91] presents a for-
malism for specifying probabilistic transition systems where transitions have sets
of allowed probabilities, and defines two refinement relations on such systems.
These formalisms address many of the same issues as we do, but rely on complete
specifications of the communicating entities since the models are automata and
statecharts.

Various dialects of sequence diagrams have been used informally for several
decades. The latest versions of the most known variants are UML 2.0 [OMG04]
and MSC-2000 [ITU99].

Live Sequence Charts [DH01], [HM03] is an extension of MSC where (a part
of) a chart may be designated as universal (mandatory) or existential (optional).
Explicit criteria in the form of pre-charts are given for when a chart applies:
Whenever the system exhibits the communication behavior of its pre-chart its
own behavior must conform to that prescribed by the chart. Timing constraints
are included and alternatives may be assigned exact probabilities.

The UML Profile for Schedulability, Performance and Time [OMG05] extends
UML by adding stereotypes and annotations for defining values for performance
measures such as response time and CPU demand time. The profile is envisaged
to be used with a suitable modeling tool based on for example schedulability
analysis, Petri Nets or stochastic process algebra. The profile enables specifi-
cation of a wide range of time-related requirements, including soft real-time
requirements. However, no formal semantics is defined for the language.

Most closely related to the work presented in this paper is of course timed
STAIRS as presented in [HHRS05a]. Here the notions of positive and negative
behavior, mandatory choice and refinement are formalized in relation to se-
quence diagrams. Timed STAIRS has a more fine-grained analysis of refinement
than presented here. This is partly due to a richer semantical model for events
and traces. Events in timed STAIRS can be of three different types: transmit,
receive and consume. This enables the distinction between two forms of refine-
ment: glass-box refinement, which take the full semantics into account, and black



Specification and Refinement of Soft Real-Time Requirements 47

box refinement, which only considers externally visible changes. The approach
presented in this paper can easily be generalized to take this into account. Timed
STAIRS does not address probabilities.

11 Conclusion

We have extended the work presented in [HHRS05a]. Our contribution is to
generalize the approach to handle probabilities. This enables specification of
soft real-time constraints as well as probabilistic specifications in general. The
resulting approach, which we call probabilistic STAIRS, offers a powerful lan-
guage for specifying a wide range of communicating systems, underpinned by
a formal semantics that allows analysis of functional and non-functional prop-
erties, as well as formal definition of incremental development. The full report
[RHS05] on which this paper is based contains additional composition operators
(loop, assert, palt with n operands), a discussion on how probability spaces relate
to probabilistic STAIRS specifications and proofs of various properties such as
transitivity of refinement. In the future we intend to explore the relationship
between probabilistic STAIRS and state machines with time and probabilities.
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Abstract. In this paper, we study timed games played on weighted
timed automata. In this context, the reachability problem asks if, given
a set T of locations and a cost C, Player 1 has a strategy to force the
game into T with a cost less than C no matter how Player 2 behaves.
Recently, this problem has been studied independently by Alur et al and
by Bouyer et al. In those two works, a semi-algorithm is proposed to solve
the reachability problem, which is proved to terminate under a condition
imposing the non-zenoness of cost. In this paper, we show that in the
general case the existence of a strategy for Player 1 to win the game
with a bounded cost is undecidable. Our undecidability result holds for
weighted timed game automata with five clocks. On the positive side,
we show that if we restrict the number of clocks to one and we limit
the form of the cost on locations, then the semi-algorithm proposed by
Bouyer et al always terminates.

1 Introduction

Weighted timed automata are an extension of timed automata with costs : each
discrete transition has an associated non-negative integer cost to be paid when
the transition is taken, and each location has an associated cost rate that has
to be paid with respect to the time spent in the location. If the most important
problem for timed automata is reachability, the natural extension for weighted
timed automata is optimal cost reachability, that is, given an initial state, what
is the minimum cost to be paid to reach a given location. This problem has been
solved independently in [6] and [8]. The complexity of this problem is similar to
the complexity of classical reachability in timed automata [3]. The more general
problem of model-checking on weighted timed automata is investigated in [10].

Timed automata and weighted timed automata are models for closed systems,
where every transition is controlled. If we want to distinguish between actions of
a controller and actions of an environment we have to consider timed games on
those formalisms. In one round of the timed game played on a timed automaton,
Player 1 (the controller) chooses an action a and a time t ≥ 0, Player 2 (the
environment) updates the state of the automaton either by playing an uncon-
trollable action at time t′ ≤ t or by playing the action a at time t as proposed
by Player 1. We say that Player 1 has a winning strategy to reach a set T of
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target locations if it can force Player 2 to update the automaton in a way that
the control of the automaton eventually reaches a location of T . When the timed
game is played on a weighted timed automaton, we can ask if Player 1 can force
Player 2 to update the control of the automaton in a way to reach T with a
cost bounded by a given value. We can also ask to compute the optimal cost for
Player 1 winning such a game.

While games on timed automata are already well studied, see for example [11],
[1] and [2], and are known to be decidable, only preliminary results about games
on weighted timed automata are known. First results on reachability with an
optimal cost appear in [7], where the cost is equal the time spent to reach a
target location in a timed automaton. Optimal reachabitility is aslo studied in
[13] with any costs and weighted automata that are acyclic. In [4], Alur et al
study the k-bounded optimal game reachability problem, i.e. given an initial state
s of a weighted timed automaton A, a cost bound C and a set T of locations,
determine if Player 1 has a strategy to enforce the game started in state s into
a location of T within k rounds, while ensuring that the cost is bounded by C.
Their algorithmic solution has an exponential-time worst case complexity. In [9],
the authors study winning strategies to reach a set of target locations with an
optimal cost in a weighted timed automaton A. To compute the optimal cost
and to synthetize an optimal winning strategy, they provide a semi-algorithm for
which they can guarantee the termination under a condition called strict non-
zenoness of cost. This condition imposes that every cycle in the region automaton
of A has a cost bounded away from zero. The general case where this condition
is not imposed, is left open in both papers [4] and [9].

In this paper, we consider timed games played on a weighted timed automaton
as they are introduced in [4], and following the lines of [9] we study the two
problems of the existence of a winning strategy with a bounded cost, and of the
existence of a winning strategy with an optimal cost (Section 2). We prove the
unexpected negative result that for weighted timed automata, the existence of a
winning strategy with a cost bounded by a given value is undecidable (Section 3,
Theorem 1). The proof is based on a reduction of the halting problem for two-
counter machines. The weighted timed automaton simulating the two-counter
machine has five clocks and a cost rate equal to 0 or 1 on the locations. On the
positive side, we show that if we restrict the number of clocks to one and we
limit the cost rate to 0 or d where d is a fixed integer, then the two problems
mentioned above are decidable (Section 4, Corollary 3). The proof follows the
approach of [9] but we can prove the termination of their semi-algorithm without
the non-zenoness of cost hypothesis.

2 Timed Games

In this section, we recall the notion of timed game on a weighted timed automa-
ton as it is defined in [4]. In this context we introduce the concept of winning
strategy and the related cost problems as mentioned in [9]. We begin with the
definition of weighted timed automaton.
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2.1 Weighted Timed Automata

Let X be a finite set of clocks. Let R+ be the set of all non-negative reals and let
N be the set of all non-negative integers. A clock valuation is a map ν : X → R+.
The set of constraints over X , denoted G(X), is the set of boolean combinations
of constraints of the form x ∼ α or x − y ∼ α where x, y ∈ X , α ∈ N, and
∼∈ {<,≤,=,≥, >}. The way a clock valuation ν over X satisfies a constraint g
over X is defined naturally; it is denoted by ν |= g.

Definition 1. A weighted timed automata, WTA for short, is a tuple A =
(L,LF , X,Σ, δ, Inv,WL,Wδ) where L is a finite set of locations, LF ⊆ L is a
set of target locations, Σ is a finite set of actions that contains the special symbol
u, δ ⊆ L ×Σ ×G(X) × 2X × L is a transition relation, Inv : L → G(X) is an
invariant function, WL : L→ N gives the cost for each location, and Wδ : δ → N
gives the cost for each transition.

For a transition e = (l, a, g, Y, l′) ∈ δ, the label of e is a, and it is denoted by
Action(e). Transitions labeled with u model uncontrolled transitions. The other
ones are the controlled transitions.

A state of A is a pair q = (l, ν) where l ∈ L is a location and ν is a valuation
over X . Let Q denote the set of all states. For a clock valuation ν and a value
t ∈ R+, ν + t denotes the clock valuation ν′ where ν′(x) = ν(x) + t, for each
x ∈ X . For any clock valuation ν, and any subset of clocks Y ⊆ X , ν[Y := 0]
denotes the clock valuation ν′ such that ν′(x) = ν(x) for any x ∈ X \ Y and
ν′(x) = 0 for any x ∈ Y .

A timed transition inA is of the form (l, ν) →t (l, ν+t), where (l, ν), (l, ν+t) ∈
Q, t ∈ R+, and ν + t′ |= Inv(l) for every t′, 0 ≤ t′ ≤ t. A discrete transition in A
is of the form (l, ν) →e (l′, ν′) where e is a transition (l, a, g, Y, l′) ∈ δ such that
ν |= Inv(l), ν |= g, ν′ = ν[Y := 0] and ν′ |= Inv(l′).

In this paper, without loss of generality, we make the assumption that a
WTA A is c-deterministic, i.e. if q →e q′ and q →e′

q′′ with e, e′ two controlled
transitions such that Action(e) = Action(e′), then q′ = q′′.

Hypothesis 1. A WTA A is supposed to be c-deterministic.

A run ρ of a WTA A is a finite or infinite sequence of alternating timed and
discrete transitions

ρ = q1 →t1 q′1 →e1 q2 →t2 q′2 →e2 · · · →tk q′k →ek qk+1 · · · .

The run ρ is also denoted as q1 →t1·e1 q2 →t2·e2 · · · →tk·ek qk+1 · · · . When ρ is
the finite run q1 →t1·e1 · · · →tk·ek qk+1, with qi = (li, νi) for each i, we define
the cost W (ρ) of ρ as

W (ρ) =
k∑

i=1

WL(li) · ti +
k∑

i=1

Wδ(ei).
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2.2 Timed Games and Related Cost Problems

We now present the notion of timed game on a WTA and some related problems.
The timed game on a WTA A = (L,LF , X,Σ, δ, Inv, WL,Wδ) is played by

two players, Player 1 (the controller) and Player 2 (the environment). Let Σu =
Σ \ {u}. At any state q, Player 1 picks a time t and an action a ∈ Σu such that
there is a transition q →t·e q′ with Action(e) = a. Player 2 has two choices:

– either it can wait for time t′, 0 ≤ t′ ≤ t, and execute a transition q →t′·e′
q′′

with Action(e′) = u,
– or it can decide to wait for time t and execute the1 transition q →t·e q′

proposed by Player 1.

The game then evolves to a new state (according to the choice of Player 2) and
the two players proceed to play as before.

Comments 1. In the definition of a timed game, it is implicitly supposed that
Player 1 can always formulate a choice (t, a) in any reachable state q of the game.

We present the concept of strategy. A (Player 1) strategy is a function λ :
Q �→ R+×Σu. A finite or infinite run ρ = q1 →t1·e1 q2 →t2·e2 · · · →tk·ek qk+1 · · ·
is said to be played2 according to λ if for every i, if λ(qi) = (t′i, ai), then either
ti ≤ t′i and Action(ei) = u, or ti = t′i and Action(ei) = ai. The run ρ is winning
if for some i, qi = (li, νi) with li ∈ LF being a target location. Suppose that qi

is the first state of ρ such that li ∈ LF , and let ρ′ be the prefix run of ρ equal to
q1 →t1·e1 · · · →ti−1·ei−1 qi. Then we say that W (ρ′) is the cost of ρ to reach LF

and we abusively denote it by W (ρ). Given a state q and a strategy λ, we define
Outcome(q, λ) as the set of runs starting from q and played according to λ. The
strategy λ is winning from state q if all runs of Outcome(q, λ) are winning.

Finally, we define two notions of cost as proposed in [9], and we state the
problems studied in this paper. The cost Cost(q, λ) associated with a winning
strategy λ and a state q is defined by

Cost(q, λ) = sup{W (ρ) | ρ ∈ Outcome(q, λ)}.

Intuitively, the presence of the supremum is explained by the fact that Player 2
tries to make choices that lead to cost W (ρ) as large as possible. The optimal
cost OptCost(q) is then equal to

OptCost(q) = inf{Cost(q, λ) | λ is a winning strategy}.

A winning strategy λ from q is called optimal whenever Cost(q, λ) = OptCost(q).

Problem 1. Given a WTA A, a state q of A and a constant c ∈ N, decide if there
exists a winning strategy λ from q such that Cost(q, λ) ≤ c.

1 Recall that A is assumed to be c-deterministic.
2 This definition is from [4]. A third condition appears in the definition given in [9],[11].
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Problem 2. Given a WTA A and a state q of A, determine the optimal cost
OptCost(q) and decide whether there exists an optimal winning strategy.

Comments 2. Concerning Problem 2, there is an optimal winning strategy from
state q iff the infimum can be replaced by a minimum in the definition of
OptCost(q). Notice that Problem 1 is decidable if Problem 2 can be solved. In-
deed, there exists a winning strategy λ from q such that Cost(q, λ) ≤ c iff either
OptCost(q) < c, or OptCost(q) = c and there is an optimal strategy from q.

3 Undecidability Results

This section is devoted to the main result of this article, that is, Problems 1 is
undecidable. By Comments 2, it follows Problem 2 cannot be solved.

Theorem 1. Problem 1 is undecidable.

Proof. The idea of the proof is the following one. Given a two-counter machine
M , we will construct a WTA A and propose a timed game on A. In this game,
Player 1 will simulate the execution of M , and Player 2 will observe the possible
simulation errors done by Player 1. We will prove that for a well-chosen state q,
there exists a winning strategy λ from q with Cost(q, λ) ≤ 1 iff the machine M
halts. It will follow that Problem 1 is undecidable.

We here consider the classical model of two-counter machine [12]. The two coun-
ters are denoted by c1 and c2, and the different types of labeled instructions
are given in Table 1.3 A configuration of the machine M is given by a triple

Table 1. The possible instructions of a two-counter machine

zero test k : if ci = 0 then goto k′ else goto k′′

increment k : ci := ci + 1
decrement k : ci := ci − 1
stop k : STOP

(k, c1, c2) which represents the (label of the) current instruction of M and two
counter values. The first instruction of M is supposed to be labeled by k0 and
the stop instruction for which M halts, is supposed to be labeled by ks. The
initial configuration of M is thus (k0, 0, 0).

We first define how the counter values are encoded in the states of A. We
encode the value of counter c1 using three clocks x1, y1, z1 and the value of
counter c2 using three clocks x2, y2, z2

4. The clock values are always between 0
and 1. To keep the notation simple, we use the same notation to denote the clock

3 We assume that there is a zero test before each decrementation instruction such that
the counter value is not modified each time it is equal to zero.

4 An encoding using five clocks is possible, but the exposition would be more technical.
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or its value. When clear from the context, we often drop the subscript, that is,
counter c is described by clocks x, y and z. Counter ci, i = 1, 2, has value n ∈ N,

ci = n (1)

iff one of the following three conditions is satisfied :

– 0 ≤ xi ≤ yi ≤ zi ≤ 1, yi − xi = 1
2n+1 , and xi + (1− zi) = 1

2n+1 ,
– 0 ≤ zi ≤ xi ≤ yi ≤ 1, yi − xi = 1

2n+1 , and xi − zi = 1
2n+1 ,

– 0 ≤ yi ≤ zi ≤ xi ≤ 1, (1− xi) + yi = 1
2n+1 , and xi − zi = 1

2n+1 .

The first condition is given in Figure 1.5 We say that the encoding is in normal
form if xi = 0 (see Figure 2).

x y z

1
2n+1

α β

Fig. 1. One among the three encodings
of c1 = n, with α + β = 1

2n+1

x y z

1
2n+1

1
2n+1

Fig. 2. The encoding of c1 = n in nor-
mal form

xi := 0 l

σk

xi = 0

Fig. 3. Location labeled by σk

x = 1 ; x := 0
y = 1 ; y := 0
z = 1 ; z := 0

l

x ≤ 1 ∧ y ≤ 1 ∧ z ≤ 1

Fig. 4. Widget to let the value of a
counter unchanged

The automaton A = (L,LF , X,Σ, δ, Inv,WL,Wδ) has thus a set X of six
clocks (xi, yi and zi, i = 1, 2). The costs given by function WL to the locations
are either 0 or 1. The function Wδ assigns a null cost to each transition.6 The
set L contains a location for each label k of the machine M , which is labeled by
σk in a way to remember the label k. For each such k, the related location l is as
depicted in Figure 3 where i is equal to 1 or 2. We notice that the control spends
no time in location l, and that one of the two counters, ci, is encoded in normal
form. This is the way configurations (k, c1, c2) of the machine M are encoded by
states (l, ν) of the automaton A with locations l like in Figure 3. In particular,
the stop instruction of M which is labeled by ks is encoded by a location l like
in Figure 3, such that σks replaces σk and l ∈ LF is a target location.

In the sequel, we present widgets used by Player 1 to simulate the instruc-
tions of the machine M . These widgets are fragments of the automaton A; they
5 The two other conditions are cyclic– or mod 1, representations of the first condition.
6 In the following figures, the cost if not indicated is supposed to be equal to zero.
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are depicted in Figures 4–11. In these figures, target locations l ∈ LF are sur-
rounded by a double circle, uncontrolled transitions are labeled by the action
u, and controlled transitions are those that are not labeled. It is supposed that
controlled transitions leaving a given location are labeled by distinct actions of
Σu, in a way to have a c-deterministic WTA A (see Hypothesis 1). Notice that
the constructed automaton A will satisfy the assumptions of Comments 1.

With the construction of these widgets and a particular state q of A, we will
see that the machine M halts iff Player 1 has a winning strategy λ from q with
Cost(q, λ) ≤ 1. Let us describe this idea, the complete proof will be given later:

– If M halts, then the strategy of Player 1 is to faithfully simulate the instruc-
tions of M . If Player 2 lets Player 1 playing, then the cost of simulating M
equals 0, otherwise the cost equals 1. In both cases the game always reaches a
target location. This shows that λ is a winning strategy with Cost(q, λ) ≤ 1.

– Suppose that M does not halt. Either the timed game simulates the instruc-
tions of M and thus never finishes. Or it does not simulate the instructions
of M and Player 2 is able to force the game to reach a target location with a
cost strictly greater than 1. Therefore in both cases, Player 1 has no winning
strategy λ with Cost(q, λ) ≤ 1.

Widget W1 to let a counter value unchanged - The first widget allows, when time
elapses in a location l, to keep the value of counter c unchanged. Such a widget
is useful when, for instance, the value of one counter is incremented while the
value of the other counter is not modified. See Figure 4. If the control enters
location l at time t with clock values x, y, z encoding the value n of counter c,
and leave location l at time t′′ ≥ t, then for all t′, t ≤ t′ ≤ t′′, the current clock
values x′, y′, z′ still encode the value n. Indeed the clock values cyclically rotate
among the three possible conditions for encoding n (see (1)).

The widget W1 is often useful in combination with other widgets. To keep the
figures of those widgets readable, we often omit widget W1 inside them.

Widget W2 for normal form - Figure 5 presents a widget to put a counter encod-
ing in normal form. When the control enters location l with clocks values x, y, z
encoding the value n of counter c, the control reaches location l′ with x, y, z
encoding n and x = 0. The control instantaneoulsy leaves location l′ due to the
invariant x = 0.

y = 1 ; y := 0
z = 1 ; z := 0

x = 1 ; x := 0
l l′

x ≤ 1 ∧ y ≤ 1 ∧ z ≤ 1 x = 0

Fig. 5. Widget to put a counter encoding in
normal form

instr. k′

instr. k′′

l

σk

x = 0

y = z

y < z

Fig. 6. Widget for zero test
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Widget W3 for zero test - We here indicate how to simulate a zero test instruction,
i.e. an instruction k : if c = 0 then goto k′ else goto k′′. The widget for zero test
is given in Figure 6. We assume that the control reaches location l with the value
n of counter c encoded by x, y, z in normal form7, that is, x = 0, y = 1

2n+1 and
z = 1− 1

2n+1 . We notice that location l is like locations described in Figure 3. No
time can elapse in l. Clearly to test that n = 0 is equivalent to test that y = z
as done in this widget.

Widget W4 for increment - In this paragraph, we indicate how to simulate an
increment instruction k : c := c + 1. While the previous widgets have controlled
transitions only, and null costs on every location, the widget for incrementing
counter c uses two uncontrolled transitions, and have cost equal to 1 for certain
locations. This widget is composed of several parts.

l0

σk

l1 l2

x = 0 z < 1 x = 0

y := 0 x := 0

Fig. 7. First part of the widget for increment

(1) First part of widget W4

Consider Figure 7. We can suppose that the control reaches location l0 with the
value n of counter c encoded by x, y, z in normal form, such that x = 0, y = 1

2n+1

and z = 1− 1
2n+1 . The transition from l0 to l1 has to be taken immediately. As

the transition from l1 to l2 is controlled, Player 1 has to choose the amount
of time t that it waits in l1 before taking the transition to l2. Because of the
invariant labeling l1, we know that t < 1

2n+1 . When entering location l2, the
clock values are as follows: x = 0, y = t and z = 1 − 1

2n+1 + t. Note that to
faithfully simulate the increment of counter c, Player 1 should choose t = 1

2n+2 .
It is easy to verify that in location l2,

t =
1

2n+2 ⇔ y + z = 1. (2)

So, we are in the following situation: to verify that Player 1 has faithfully
chosen t to simulate the increment of counter c, we simply have to check that
in l2, y + z = 1. Hereafter, we show how Player 2 observes in location l2 the
possible simulation errors of Player 1. Notice that in l2, the clock values x, y, z
satisfy 0 = x < y < z ≤ 1.

(2) Part of widget W4 to check if y + z �= 1
For clarity, we distinguish the case where (i) y + z > 1 from the case where
(ii) y + z < 1. We begin with Case (i). The widget W> is given in Figure 8.
Notice that the first location of this widget is equal to the last one of the widget
7 This is always possible by using widget W2.
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l2 l3 l4

l5l6l7

0 0 1

010

x = 0 y ≤ 1 ∧ z ≤ 1 x ≤ 1

z ≤ 1x ≤ 1 ∧ y ≤ 1

u

z = 1 ; z := 0
y = 1
y := 0

x = 1
x := 0

z = 1
z := 0

y = 1 ; y := 0
x = 1
x := 0

Fig. 8. Widget W>

of Figure 7, and that the first transition is uncontrolled. Location l7 is a target
location, i.e. l7 ∈ LF . The idea is as follows: we use the cost W (ρ) of the run ρ
from l2 to l7 to compute the value y + z. The cost of each location is null except
for locations l4 and l6 where WL(l4) = 1 and WL(l6) = 1. Let ρ be a run from
l2 to l7 such that y and z are clock values in l2. Recall that in location l2, the
clock values x, y, z satisfy 0 = x < y < z ≤ 1. We can verify that the cost of ρ is
equal to y+ z (a cost y in location l4 and a cost z in location l6). Hence we have

y + z > 1 ⇔W (ρ) > 1. (3)

We now consider Case (ii). The widget W< is given in Figure 9. As for widget
W> the first location of this widget is equal to location l2 of Figure 7, and
the first transition is uncontrolled. Location l′6 is a target location. The idea is
similar to Case (i) : along the run ρ′ from l2 to l′6, the value n of counter c is
left unchanged, and the cost of ρ′ is equal to (1− y) + (1− z) (a cost 1− y in l′3
and a cost 1− z in l′5). As y + z < 1 is equivalent to (1− y) + (1− z) > 1, then

y + z < 1 ⇔W (ρ′) > 1. (4)

(3) Complete widget for increment
The complete widget for increment is composed of the widgets given in Figures 7,
8 and Figure 9, as it is schematically given in Figure 10. The counter that we
want to increment has value n. First the control enters the first part of the widget
for incrementation with x = 0, y = 1

2n+1 , z = 1− 1
2n+1 . As we have seen before,

Player 1 has to choose the amount of time t that it waits in l1 before taking the
transition to l2. The only way to reach l2 with y+ z = 1 is to simulate faithfully
the increment of the counter (see (2)). Then in location l2, Player 1 proposes to
Player 2 to move the control to the widget that encodes the next instruction of
the machine M . Player has three choices: either accept the move of Player 1, or
move the control to the widget W>, or move the control to the widget W<.

So, looking at Figure 10, the situation is as follows. Suppose that Player 1
faithfully simulates the increment instruction, i.e. y + z = 1 (see (2)). Either



58 T. Brihaye, V. Bruyère, and J.-F. Raskin

l2 l′3 l′4

l′5l′6

0 1 0

10

x = 0 y ≤ 1 ∧ z ≤ 1 x ≤ 1

z ≤ 1

z = 1 ; z := 0

u
y = 1
y := 0

x = 1 ; x := 0
z = 1
z := 0

Fig. 9. Widget W<

l0 l1 l2
next

instruction

widget W> widget W<

x = 0 z ≤ 1 x = 0

y := 0 x := 0

u u

Fig. 10. Widget W4 for increment

Player 2 lets the game evolving to the next instruction of M , and the cost
remains null. Or it decides to use one of the two widgets W>, W<, and the game
reaches a target location with a cost equal to 1 (see (3) and (4)). So whatever
the Player 2’s decision, the cost is bounded by 1. Suppose now that Player 1
does not simulate the increment instruction, i.e. y + z �= 1, then Player 2 can
take a decision such that the game reaches a target location with a cost strictly
greater than 1. Indeed, if y + z > 1, it decides to use the widget W> (see (3)),
otherwise it uses the widget W< (see (4)).

Widget W5 for decrement - As for the increment, the widget for decrement is
in several parts. We only present the first part in details, where Player 1 has to
faithfully simulate the decrement. The other parts where Player 2 observes the
possible errors of Player 1 are identical to Cases (i), (ii) of the increment widget.

Let us assume that we enter location l0 of the widget of Figure 11 with x = 0,
y = 1

2n+1 and z = 1− 1
2n+1 . We also assume that n > 1 (see footnote 3).

When the control leaves location l1, the clock values are respectively equal to
x = 0, z = 1, and y = 1

2n+1 + 1
2n+1 . Then Player 1 has to choose the amount of

time t that it waits in location l2 before taking the transition to l3. To faithfully
simulate the decrement, Player 1 should choose t = 1

2n . In location l4, we are now
in the same situation as in location l2 of the increment widget (see Figure 10):
t = 1

2n ⇔ y + z = 1. So, we just have to plug in l4 the two widgets W>, W<

and a transition to the next instruction of the machine M . The situation is the
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same as for the increment. Indeed if Player 1 faithfully simulates the decrement
instruction, then the cost is bounded by 1 whatever the Player 2’s decision. If
Player 1 does not simulate it, then Player 2 can take a decision such that the
game reaches a target location with a cost strictly greater than 1.

It should now be clear why we can reduce the halting of a two-counter machine
to the existence of a winning strategy for Player 1 to reach a target location
with a cost bounded by 1. Let M be a two-counter machine and A the WTA
constructed from the widgets as above. The target locations of A are either the
location associated with the stop instruction of M , or the target locations of the
widgets of Figures 8 and 9. Let q = (l, ν) be the state of A encoding the initial
configuration (k0, 0, 0) of M , that is, l is the location labeled by σk0 , and ν is the
clock valuation such that x1 = x2 = 0 and y1 = z1 = y2 = z2 = 1

2 . Let us prove
that M halts iff there exists a winning strategy λ from q with Cost(q, λ) ≤ 1.

Suppose that M halts, then the strategy λ of Player 1 is to faithfully simulate
the instructions of M . Let ρ be a run of Outcome(q, λ). If along ρ, Player 2 lets
Player 1 simulating M , then ρ reaches the target location of A associated with
the stop instruction of M with a cost W (ρ) = 0. If Player 2 decides to use one of
the two widgets W>, W<, then ρ reaches the target location of this widget with
W (ρ) = 1. Therefore, λ has a winning strategy from q satisfying Cost(q, λ) ≤ 1.

l0 l1 l2 l3 l4

x = 0 z ≤ 1 y ≤ 1 x ≤ 1 ∧ y ≤ 1 x = 0

z = 1
x := 0 z := 0

y = 1 ; y := 0

x = 1
x := 0

Fig. 11. First part of the widget for decrement

Suppose that there is a winning strategy λ from q with Cost(q, λ) ≤ 1. Assume
that M does not halt, the contradiction is obtained as follows. If λ consists in
simulating the instructions of M , then Player 2 decides to let Player 1 simulating
M . The corresponding run ρ ∈ Outcome(q, λ) will never reach a target location
since M does not halt. This is impossible since λ is winning. Thus suppose that
λ does not simulate the instructions of M , and let ρ ∈ Outcome(q, λ). As soon as
Player 2 observes a simulation error along ρ, it decides to use one of the widgets
W>, W< such that ρ reaches the target location of this widget with W (ρ) > 1.
This is impossible since λ is winning with a cost Cost(q, λ) ≤ 1. "#

4 Symbolic Analysis of Timed Games

4.1 The Pre Operator

In order to symbolically analyse timed games, we present a controllable prede-
cessor operator. The main result is Proposition 1 relating the iteration of this
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operator with the existence of a winning strategy with a bounded cost. The con-
tent of this section is close to [9], but with a different and simpler presentation.8

Let A = (L,LF , X,Σ, δ, Inv,WL,Wδ) be a WTA. An extended state of A is
a tuple (l, ν, w) where l ∈ L is a location, ν is a clock valuation over X , and
w ∈ R+ is called the credit. Intuitively, the credit models a sufficient amount of
resource that allows Player 1, when in state (l, ν), to reach a target location of
LF whatever Player 2 decides to do, with a cost less than or equal to w. The set
of extended states is denoted by QE .

We now define the following Pre operator.

Definition 2. Let A be a WTA and R ⊆ QE. Then (l, ν, w) ∈ Pre(R) iff there
exist t ∈ R+ and a controlled transition e ∈ δ such that

– there exists an extended state (l′, ν′, w′) ∈ R, with (l, ν) →t·e (l′, ν′), and
w ≥ w′ + WL(l) · t + Wδ(e),

– and for every t′, 0 ≤ t′ ≤ t, every uncontrolled transition e′ ∈ δ, and ev-
ery state (l′, ν′) such that (l, ν) →t′·e′

(l′, ν′), there exists an extended state
(l′, ν′, w′) ∈ R with w ≥ w′ + WL(l) · t′ + Wδ(e′).

The Pre operator satisfies the following nice properties. Given a WTA A, we
define the set Goal = {(l, ν, w) | l ∈ LF and w ≥ 0}, and the set

Pre∗(Goal) =
⋃
k≥0

Prek(Goal).9

A set R ⊆ QE of extended states is said upward closed if whenever (l, ν, w) ∈ R,
then (l, ν, w′) ∈ R for all w′ ≥ w.

Lemma 1. 1. For all R ⊆ QE, the set Pre(R) is upward closed.
2. The set Goal and Pre∗(Goal) are upward closed.

Proposition 1. Let A be a WTA. Then (l, ν, w) ∈ Pre∗(Goal) iff there exists a
winning strategy λ from state q = (l, ν) such that Cost(q, λ) ≤ w.

Proposition 1 leads to several comments in the case a symbolic representa-
tion10 for Pre∗(Goal) can be computed. In such a case, we say that Pre∗(Goal)
has an effective representation.

Comments 3. By Proposition 1, Problem 1 is decidable if (i) Pre∗(Goal) has an
effective representation, and (ii) the belonging of an extended state (l, ν, w) to
Pre∗(Goal) can be effectively checked. We now know from Theorem 1 that one
of the conditions (i), (ii) cannot be fulfilled in general.

8 In [9], timed games on WTA’s are reduced to games on linear hybrid automata where
the cost is one of the variables.

9 For k = 0, Prek(Goal) = Goal, and for k > 0, Prek(Goal) = Pre Prek−1(Goal) .
10 For instance this representation could be given in a decidable logical formalism like

the first-order theory of the reals with order and addition.
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Comments 4. Let A be a WTA and q = (l, ν) be a state of A. Problem 2
asks to determine the optimal cost OptCost(q). This is possible under the fol-
lowing hypotheses: (i) Pre∗(Goal) has an effective representation, (ii) the value
inf{w | (l, ν, w) ∈ Pre∗(Goal)} can be effectively computed. This value is exactly
OptCost(q).

Moreover the existence of an optimal winning strategy from q is decidable
if one can determine the value c = OptCost(q), and the belonging of (l, ν, c) to
Pre∗(Goal) can be effectively checked. Indeed, an optimal strategy exists iff c is
the minimum value of the set {w | (l, ν, w) ∈ Pre∗(Goal)} (see Comments 2).

In [9], Problem 2 has been solved for the class of WTA’s A such that the
cost function of is strictly non-zeno, i.e. every cycle in the region automaton
associated with A has a cost which is bounded away from zero. The authors of
this paper translate Problem 2 into some linear hybrid automata where the cost
is one of the variables. For this class of hybrid automata, the conditions men-
tioned above in these comments are fulfilled. Of course the automaton we have
contructed in the proof of Theorem 1 does not fall into this class of automata.

4.2 One Clock

In Section 3, Problem 1 was shown undecidable by a reduction of the halting
problem of a two-counter machine. The WTA in the proof uses five clocks, has
no cost on the transitions and cost 0 or 1 on the locations. We here study WTA’s
with one clock and such that for any location l, WL(l) ∈ {0, d} with d ∈ N a given
constant. For this particular class of automata, we solve Problem 2 by following
the lines of Comments 4. By Comments 2, Problem 1 is thus also solved. The
proof is only detailed for d = 1.

To facilitate the computation of the Pre operator, we first introduce another
operator denoted by π, that is largely inspired from the one of [9]. We need to
generalize some notation to extended states: a timed transition (l, ν) →t (l′, ν′)
is extended to (l, ν, w) →t (l, ν′, w −WL(l) · t), similarly with (l, ν) →e (l′, ν′)
extended to (l, ν, w) →e (l′, ν′, w −Wδ(e)). Given R ⊆ QE and a ∈ Σ we define

Prea(R) = {r ∈ QE | ∃r′ ∈ R such that r →e r′ with Action(e) = a},

as well as cPre(R) = ∪a∈ΣuPrea(R), and uPre(R) = Preu(R). We also define
the following set tPre(R,S), with R,S ⊆ QE. Intuitively, an extended state r is
in tPre(R,S) if from r we can reach r′ by time elapsing and along the timed
transition from r to r′ we avoid S. This set is defined by

tPre(R,S) =
{
r ∈ QE | ∃t ∈ R+ with r →t r′, r′ ∈ R, and Post[0,t](s) ⊆ S

}
where Post[0,t](s) = {r′ ∈ QE | ∃t′, 0 ≤ t′ ≤ t, such that r →t′

r′}. The new
operator π is then defined by :

π(R) = tPre
(
cPre(R), uPre(R)

)
. (5)

The next lemmas indicate useful properties of the various operators.
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Lemma 2. 1. cPre(R1 ∪R2) = cPre(R1) ∪ cPre(R2),
2. uPre(R1 ∪R2) = uPre(R1) ∪ uPre(R2),
3. tPre(R1 ∪R2, S) = tPre(R1, S) ∪ Pret(R2, S),
4. tPre(R,S1 ∪ S2) = tPre(R,S1) ∩ Pret(R,S2).

Lemma 3. 1. If R ⊆ QE is upward closed, then π(R) = Pre(R).
2. Pre∗(Goal) = π∗(Goal).

We now study WTA’s A with one clock x, such that WL(l) ∈ {0, 1} for every
location l. Let C be the largest constant used in the guards of A. As done in [5]
for timed automata, we define an equivalence relation on QE in order to obtain
a partition of this set.

Definition 3. Let (ν, w), (ν′, w′) ∈ R2
+. Then (ν, w) ∼ (ν′, w′) if the following

conditions hold.

1. Either $ν% = $ν′%, or ν, ν′ > C; $w% = $w′%;
2. For ν, ν′ ≤ C, fract(ν) = 0 iff fract(ν′) = 0; fract(w) = 0 iff fract(w′) = 0;
3. For ν, ν′ ≤ C, fract(ν) + fract(w) ∼ 1 iff fract(ν′) + fract(w′) ∼ 1, with
∼∈ {<,=, >}.

An example of equivalence relation ∼ is given in Figure 12. We extend the
relation ∼ to QE by defining (l, ν, w) ∼ (l′, ν′, w′) iff l = l′ and (ν, w) ∼ (ν′, w′).
Let P be the partition of QE obtained with this relation.

x

w

Fig. 12. The relation ∼ with C = 4

x

w

Fig. 13. The partition P2

The partition P is stable under π, that is, given R ∈ P , π(R) is a union of
equivalence classes of P . The reader could convince himself as follows. Let R ∈ P .
Clearly, the sets cPre(R) and uPre(R) are union of equivalences classes of P . Now
due to Lemma 2, it remains to check that given R,S ∈ P , the set tPre(R,S)
is a union of equivalence classes taking into account that WL(l) ∈ {0, 1}. We
summarize this result in the next lemma.

Lemma 4. P is stable under π.

By this lemma, the next corollary is straightforward since Goal is a union of
equivalence classes of P and by Lemmas 1 and 3.
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Corollary 1. The set Pre∗(Goal) is a union of equivalence classes of P. Given
a state q of A, the optimum cost OptCost(q) is a non-negative integer11.

Even if the proposed partition P is infinite, we are able to prove that the
computation of Pre∗(Goal) terminates. We first define the set Up(P) of upward
closed sets w.r.t. P : Up(P) = {R | R = ∪Ri, Ri ∈ P and R is upward closed}.

Lemma 5. The partially ordered set 〈Up(P),⊇〉 is Artinian12.

Corollary 2. Pre∗(Goal) can be effectively computed.

Looking at Comments 4, we get the next corollary.

Corollary 3. Let A be a WTA with one clock and such that WL(l) ∈ {0, 1} for
all locations l. Then Problems 1 and 2 can be solved.

Comments 5. The arguments given in this section are easily extended to a cost
function WL(l) ∈ {0, d} for any location l, where d ≥ 1 is a fixed integer. The
same approach holds but with a partition Pd different from P . This partition is
similar to P , except that we only need horizontal lines of the form w = d·n (with
n ∈ N) and each anti-diagonal of the form x + w = c is removed and replaced
by the lines of equations d · x + w = d · n (with n ∈ N). See Figure 13.
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Abstract. We consider real-time games where the goal consists, for each player,
in maximizing the average reward he or she receives per time unit. We consider
zero-sum rewards, so that a reward of +r to one player corresponds to a reward
of −r to the other player. The games are played on discrete-time game structures
which can be specified using a two-player version of timed automata whose loca-
tions are labeled by reward rates. Even though the rewards themselves are zero-
sum, the games are not, due to the requirement that time must progress along a
play of the game.

Since we focus on control applications, we define the value of the game to a
player to be the maximal average reward per time unit that the player can ensure.
We show that, in general, the values to players 1 and 2 do not sum to zero. We
provide algorithms for computing the value of the game for either player; the al-
gorithms are based on the relationship between the original, infinite-round game,
and a derived game that is played for only finitely many rounds. As memoryless
optimal strategies exist for both players in both games, we show that the problem
of computing the value of the game is in NP∩coNP.

1 Introduction

Games provide a setting for the study of control problems. It is natural to view a system
and its controller as two players in a game; the problem of synthesizing a controller
given a control goal can be phrased as the problem of finding a controller strategy
that enforces the goal, regardless of how the system behaves [Chu63, RW89, PR89].
In the control of real-time systems, the games must not only model the interac-
tion steps between the system and the controller, but also the amount of time that
elapses between these steps. This leads to timed games, a model that was first ap-
plied to the synthesis of controllers for safety, reachability, and other ω-regular goals
[MPS95, AH97, AMAS98, HHM99, dAFH+03]. More recently, the problem of design-
ing controllers for efficiency goals has been addressed, via the consideration of priced
versions of timed games [BCFL04, ABM04]. In priced timed games, price rates (or,
symmetrically, reward rates) are associated with the states of the game, and prices (or
rewards) with its transitions. The problem that has so far been addressed is the synthesis
of minimum-cost controllers for reachability goals [BCFL04, ABM04]. In this paper,
we focus instead on the problem of synthesizing controllers that maximize the average
reward1 per time unit accrued along an infinite play of the game. This is an expressive
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Inv2 : true
Inv1 : x≤2 a1

r = 1r = 2
Inv1 : true
Inv2 : true

q0

Fig. 1. A game automaton where player 1 can freeze time to achieve a higher average reward

and widely applicable efficiency goal, since many real-time systems are modeled as
non-terminating systems which exhibit infinite behaviors.

We consider timed games played between two players over discrete-time game struc-
tures with finite state space. At each round, both players independently choose a move.
We distinguish between immediate moves, which correspond to control actions or sys-
tem transitions and take 0 time, and timed moves. There are two timed moves: the move
Δ0, which signifies the intention to wait for 0 time, and the move Δ1, which signifies the
intention of waiting for 1 time unit. The two moves chosen by the players jointly de-
termine the successor state: roughly, immediate moves take the precedence over timed
ones, and unit-length time steps occur only when both players play Δ1. Each state is
associated with a reward rate, which specifies the reward obtained when staying at the
state for one time unit. We consider zero-sum rewards, so that a reward of +r to one
player corresponds to a reward of −r to the other player. These game structures can be
specified using a notation similar to that of timed automata. Each location is labeled
by a reward rate, and by two invariants (rather than one), which specify how long the
two players can stay at the location; the actions labeling the edges correspond to the
immediate moves of the players.

The goal of each player is to maximize the long-run average reward it receives per
time unit; however, this goal is subordinate to the requirement that players should not
block the progress of time by playing forever zero-delay moves (immediate moves, or
Δ0). As an example, consider the game of Figure 1. The strategy that maximizes the
reward per time unit calls for player 1 staying forever at q0: this yields an average
reward per time unit of 4. However, such a strategy would block time, since the clock x
would not be able to increase beyond the value 2, due to the player-1 invariant x ≤ 2 at
q0. If player 1 plays move a1, time can progress, but the average reward per time unit
is 1. To prevent players from blocking time in their pursuit of higher average reward,
we define the value of a play of the game in a way that enforces time progress. If
time diverges along the play, the value of the play is the average reward per time unit
obtained along it. If time does not diverge along the play, there are two cases. If a player
contributes to blocking the progress of time, then the value of the play to the player is
−∞; if the progress of time is blocked entirely by the other player, then the value of the
play to the player is +∞. These definitions are based on the treatment of time divergence
in timed games of [dAFH+03, dAHS02]. According to these definitions, even though
the reward rate is zero-sum, and time-divergent plays have zero-sum values, the games
are not zero-sum, due to the treatment of time divergence. Since we are interested in
the problem of controller design, we define the value of a game to a player to be the
maximal play value that the player is able to secure, regardless of how the adversary
plays. The resulting games are not determined: that the values that the two players can
secure do not sum to zero. We show that there is no symmetrical formulation that can
at the same time enforce time progress, and lead to a determined setting.
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We provide algorithms for computing the value of the game for either player. The
algorithms are based on the relationship between the original, infinite-round, game, and
a derived game that is played on the same discrete-time game structure, but for only
finitely many rounds. As in [EM79], the derived game terminates whenever one of the
two players closes a loop; our construction, however, differs from [EM79] in how it
assigns a value to the loops, due to our different notion of value of a play. We show that
a player can achieve the same value in the finite game, as in the original infinite-round
game. Our proof is inspired by the argument in [EM79], and it closes some small gaps
in the proof of [EM79].

The equivalence between finite and infinite games provides a PSPACE algorithm
for computing the value of average reward discrete-time games. We improve this re-
sult by showing that both finite and infinite games admit memoryless optimal strategies
for each player. Once we fix a memoryless strategy for a player, the game is reduced
to a graph. We provide a polynomial-time algorithm that enables the computaton of
the value of the graph for the other player. The algorithm is based on polynomial-time
graph transformations, followed by the application of Karp’s algorithm for computing
the minimum/maximal average cost of a cycle [Kar78]. The existence of memoryless
strategies, together with this algorithm, provide us with a polynomial witness and with
a polynomial-time algorithm for checking the witness. Since this analysis can be done
both for the winning strategies of a player, and for the “spoiling” strategies of the oppo-
nent, we conclude that the problem of computing the value of an average-reward timed
game, for either player, is in NP∩coNP. This matches the best known bounds for several
other classes of games, among which are turn-based deterministic parity games [EJ91]
and turn-based stochastic reachability games [Con92]. Since the maximum average re-
ward accumulated in the first n time units cannot be computed by iterating n times a
dynamic-programming operator, the weakly-polynomial algorithm of [ZP96] cannot be
adapted to our games; the existence of polynomial algorithms is an open problem.

The goal of minimizing the long-run average cost incurred during the life of a real-
time system has been considered previously in [BBL04]. There, the underlying model is
a timed automaton, and the paper solves the verification problem (“what is the minimum
long-run average cost achievable?”), or equivalently, the control problem for a fully
deterministic system. In contrast, the underlying computational model in this paper is
a timed game, and the problem solved is the control of a nondeterministic real-time
system.

Compared to other work on priced timed games [BCFL04, ABM04], our models for
timed games are simplified in two ways. First, rewards can only be accrued by staying
at a state, and not by taking transitions. Second, we study the problem in discrete time.
On the other hand, our models are more general in that, unlike [BCFL04, ABM04], we
do not impose structural constraints on the game structures that ensure the progress of
time. There is a tradeoff between imposing structural constraints and allowing rewards
for transitions: had we introduced constraints that ensure time progress, we could have
easily accommodated for rewards on the transitions. The restriction to discrete-time lim-
its somewhat the expressiveness of the models. Nevertheless, control problems where
the control actions can be issued only at discrete points in time are very common: most
real controllers are driven by a periodic clock; hence, the discrete-time restriction is not
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unduly limiting as far as the controller actions are concerned. We note that there are
also many cases where the system actions can be considered to occur in discrete-time:
this is the case, for instance, whenever the state of the system is sampled regularly in
time.

2 Discrete-Time Game Structures

We define discrete-time game structures as a discrete-time version of the timed
game structures of [dAFH+03]. A discrete-time game structure represents a game
between two players, which we denote by 1, 2; we indicate by ∼i the opponent
of i ∈ {1,2} (that is, player 3− i). A discrete-time game structure is a tuple G =
(S,Acts1,Acts2,Γ1,Γ2,δ ,r), where:

– S is a finite set of states.
– Acts1 and Acts2 are two disjoint sets of actions for player 1 and player 2, respec-

tively. We assume that Δ0,Δ1 /∈ Actsi and write Mi = Actsi ∪{Δ0,Δ1} for the sets
of moves of player i ∈ {1,2}.

– For i ∈ {1,2}, the function Γi : S �→ 2Mi \ /0 is an enabling condition, which assigns
to each state s a set Γi(s) of moves available to player i in that state.

– δ : S× (M1 ∪M2) �→ S is a destination function that, given a state and a move of
either player, determines the next state in the game.

– r : S �→ Z is a function that associates with each state s ∈ S the reward rate of s: this
is the reward that player 1 earns for staying for one time unit at s.

The move Δ0 represents an always-enabled stuttering move that takes 0 time: we require
that for s ∈ S and i ∈ {1,2}, we have Δ0 ∈ Γi(s) and δ (s,Δ0) = s. The moves in {Δ0}∪
Acts1 ∪Acts2 are known as the zero-time moves. The move Δ1 represents the decision
of waiting for 1 time unit. We do not require that Δ1 be always enabled: if we have
Δ1 �∈ Γi(s) for player i ∈ {1,2} at a state s ∈ S, then player i cannot wait, but must
immediately play a zero-time move. We define the size of a discrete-time game structure
by |G |= ∑s∈S(|Γ1(s)|+ |Γ2(s)|).

2.1 Move Outcomes, Runs, and Strategies

A timed game proceeds as follows. At each state s ∈ S, player 1 chooses a move a1 ∈
Γ1(s), and simultaneously and independently, player 2 chooses a move a2 ∈ Γ2(s). The
set of successor states δ̃ (s,a1,a2) ⊆ S is then determined according to the following
rules.

– Actions take precedence over stutter steps and time steps. If a1 ∈ Acts1 or a2 ∈
Acts2, then the game takes an action a selected nondeterministically from A =
{a1,a2}∩ (Acts1∪Acts2), and δ̃ (s,a1,a2) = {δ (s,a) | a ∈ A}.

– Stutter steps take precedence over time steps. If a1,a2 ∈ {Δ0,Δ1}, there are two
cases.
• If a1 = Δ0 or a2 = Δ0, the game performs a stutter step, and δ̃ (s,a1,a2) = {s}.
• If a1 = a2 = Δ1, then the game performs a time step of duration 1, and the game

proceeds to δ̃ (s,a1,a2) = {δ (s,Δ1)}.
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An infinite run (or simply run) of the discrete-time game structure G is a sequence
s0,〈a1

1,a
2
1〉,s1,〈a1

2,a
2
2〉,s2, . . . such that sk ∈ S, a1

k+1 ∈ Γ1(sk), a2
k+1 ∈ Γ2(sk), and sk+1 ∈

δ̃ (sk,a1
k+1,a

2
k+1) for all k ≥ 0. A finite run σ is a finite prefix of a run that terminates

at a state s, we then set last(σ) = s. We denote by FRuns the set of all finite runs of
the game structure, and by Runs the set of its infinite runs. For a finite or infinite run σ ,
and a number k < |σ |, we denote by σ≤k the prefix of σ up to and including state σk. A
state s′ is reachable from another state s if there exists a finite run s0,〈a1

1,a
2
1〉,s1, . . . ,sn

such that s0 = s and sn = s′.
A strategy πi for player i ∈ {1,2} is a mapping πi : FRuns �→ Mi that asso-

ciates with each finite run s0,〈a1
1,a

2
1〉,s1, . . . ,sn the move πi(s0,〈a1

1,a
2
1〉,s1, . . . ,sn) to

be played at sn. We require that the strategy only selects enabled moves, that is,
πi(σ) ∈ Γi(last(σ)) for all σ ∈ FRuns. For i ∈ {1,2}, let Πi denote the set of all player
i strategies. A strategy πi for player i ∈ {1,2} is memoryless if for all σ ,σ ′ ∈ FRuns we
have that last(σ) = last(σ ′) implies πi(σ)= πi(σ ′). For strategies π1 ∈Π1 and π2 ∈Π2,
we say that a run s0,〈a1

1,a
2
1〉,s1, . . . is consistent with π1 and π2 if, for all n ≥ 0 and

i = 1,2, we have πi(s0,〈a1
1,a

2
1〉,s1, . . . ,sn) = ai

n+1. We denote by Outcomes(s,π1,π2)
the set of all runs that start in s and are consistent with π1,π2. Note that in our timed
games, two strategies and a start state yield a set of outcomes, because if the players
both propose actions, a nondeterministic choice between the two moves is made. Ac-
cording to this definition, strategies can base their choices on the entire history of the
game, consisting of both past states and moves.

2.2 Discrete-Time Game Automata

We specify discrete-time game structures via discrete-time game automata, which are
a discrete-time version of the timed automaton games of [dAFH+03]; both models are
two-player versions of timed automata [AD94]. A clock condition over a set C of clocks
is a boolean combination of formulas of the form x( c or x−y( c, where c is an integer,
x,y ∈C, and ( is either < or ≤. We denote the set of all clock conditions over C by
ClkConds(C). A clock valuation is a function κ : C �→ IR≥0, and we denote by K(C) the
set of all clock valuations for C.

A discrete-time game automaton is a tuple A = (Q,C,Acts1,Acts2,E,θ ,ρ , Inv1,
Inv2,Rew), where:

– Q is a finite set of locations.
– C is a finite set of clocks.
– Acts1 and Acts2 are two disjoint, finite sets of actions for player 1 and player 2,

respectively.
– E ⊆ Q× (Acts1∪Acts2)×Q is an edge relation.
– θ : E �→ ClkConds(C) is a mapping that associates with each edge a clock con-

dition that specifies when the edge can be traversed. We require that for all
(q,a,q1),(q,a,q2) ∈ E with q1 �= q2, the conjunction θ (q,a,q1)∧θ (q,a,q2) is un-
satisfiable. In other words, the game move and clock values determine uniquely the
successor location.

– ρ : E �→ 2C is a mapping that associates with each edge the set of clocks to be reset
when the edge is traversed.
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– Inv1, Inv2 : Q �→ ClkConds(C) are two functions that associate with each location
an invariant for player 1 and 2, respectively.

– Rew : Q �→ Z is a function that assignes a reward Rew(q) ∈ Z with each q ∈Q.

Given a clock valuation κ : C �→ IR≥0, we denote by κ + 1 the valuation defined by
(κ + 1)(x) = κ(x)+ 1 for all clocks x ∈C. The clock valuation κ : C �→ IR≥0 satisfies
the clock constraint α ∈ ClkConds(C), written κ |= α , if α holds when the clocks have
the values specified by κ . For a subset C′ ⊆C of clocks, κ [C′ := 0] denotes the valuation
defined by κ [C′ := 0](x) = 0 if x ∈C′, and by κ [C′ := 0](x) = κ(x) otherwise.

The discrete-time game automaton A induces a discrete-time game structure [[A ]],
whose states consist of a location of A and a clock valuation over C. The idea is the
following. The move Δ0 is always enabled at all states 〈q,κ〉, and leads again to 〈q,κ〉.
The move Δ1 is enabled for player i ∈ {1,2} at state 〈q,κ〉 if κ +1 |= Invi(q); the move
leads to state 〈q,κ + 1〉. For player i ∈ {1,2} and a ∈ Actsi, the move a is enabled at
a state 〈q,κ〉 if there is a transition (q,a,q′) in E which is enabled at 〈q,κ〉, and if the
invariant Invi(q′) holds for the destination state 〈q′,κ [ρ(q,a,q′) := 0]〉. If the values of
the clocks can grow unboundedly, this translation would yield an infinite-state discrete-
time game structure. However, we can define clock regions similarly to timed automata
[AD94], and we can include in the discrete-time game structure only one state per clock
region; as usual, this leads to a finite state space.

3 The Average Reward Condition

In this section, we consider a discrete-time game structure G = (S,Acts1,Acts2,
Γ1,Γ2,δ ,r), unless otherwise noted.

3.1 The Value of a Game

We consider games where the goal for player 1 consists in maximizing the aver-
age reward per time unit obtained along a game outcome. The goal for player 2
is symmetrical, and it consists in minimizing the average reward per time unit ob-
tained along a game outcome. To make these goals precise, consider a finite run
σ = σ0,〈σ1

1 ,σ
2
1 〉,σ1, . . . ,σn. For k ≥ 1, the time Dk elapsed at step k of the run is de-

fined by Dk(σ) = 1 if σ1
k = σ2

k = Δ1, and Dk(σ) = 0 otherwise; the reward Rk accrued
at step k of the run is given by Rk(σ) = r(σk−1) ·Dk(σ). The time elapsed during σ and
the reward achieved during σ are defined in the obvious way, by D(σ) = ∑n

k=1 Dk(σ)
and R(σ) = ∑n

k=1 Rk(σ). Finally, we define the long-run average reward of an infinite
run σ ′ by:

r(σ ′) = liminf
n→∞

R(σ ′
≤n)

D(σ ′
≤n)

.

A first attempt to define the goal of the game consists in asking for the maximum
value of this long-run average reward that player 1 can secure. According to this ap-
proach, the value for player 1 of the game at a state s would be defined by

ṽ(G ,s) = sup
π1∈Π1

inf
π2∈Π2

inf{r(σ) | σ ∈ Outcomes(s,π1,π2)}.
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However, this approach fails to take into account the fact that, in timed games, players
must not only play in order to achieve the goal, but must also play realistic strategies
that guarantee the advancement of time. As an example, consider the game of Figure 1.
We have ṽ(〈q0, [x := 0]〉) = 4, and the optimal strategy of player 1 consists in staying
at q0 forever, never playing the move a1. Due to the invariant x ≤ 2, such a strategy
blocks the progress of time: once x = 2, the only move player 1 can play is Δ0. It is easy
to see that the only strategies of player 1 that do not block time eventually play move
a1, and have value 1. Note that the game does not contain any blocked states, i.e., from
every reachable state there is a run that is time-divergent: the lack of time progress of
the above-mentioned strategy is due to the fact that player 1 values more obtaining high
average reward, than letting time progress.

To ensure that winning strategies do not block the progress of time, we modify the
definition of value of a run, so that ensuring time divergence has higher priority than
maximizing the average reward. Following [dAFH+03], we introduce the following
predicates:

– For i ∈ {1,2}, we denote by blamelessi(σ) (“blameless i”) the predicate defined
by ∃n ≥ 0.∀k > n.σ i

k = Δ1. Intuitively, blamelessi(σ) holds if, along σ , player i
beyond a certain point cannot be blamed for blocking time.

– We denote by td(σ) (‘‘time-divergence”) the predicate defined by ∀n ≥ 0 . ∃k >
n . [(σ1

k = Δ1)∧ (σ2
k = Δ1)].

We define the value of a run σ ∈ Runs for player i ∈ {1,2} by:

wi(σ) =

⎧⎪⎨⎪⎩
+∞ if blamelessi(σ)∧¬td(σ);
(−1)(i+1) r(σ) if td(σ);
−∞ if ¬blamelessi(σ)∧¬td(σ).

(1)

It is easy to check that, for each run, exactly one of the three cases of the above definition
applies. Notice that if td(σ) holds, then w1(σ) = −w2(σ), so that the value of time-
divergent runs is defined in a zero-sum fashion. We define the value of the game for
player i at s ∈ S as follows:

vi(G ,s) = sup
πi∈Πi

inf
π∼i∈Π∼i

inf{wi(σ) | σ ∈Outcomes(s,π1,π2)}. (2)

We omit the argument G from vi(G ,s) when clear from the context.
We say that a state s ∈ S is well-formed if, for all i ∈ {1,2}, we have vi(s) > −∞.

From (1) and (2), a state is well-formed if both players can ensure that time progresses
from that state, unless blocked by the other player: this is the same notion of well-
formedness introduced in [dAHS02, dAFH+03]. Since we desire games where time
progresses, we consider only games consisting of well-formed states.

3.2 Determinacy

A game is determined if, for all s∈ S, we have v1(s)+v2(s) = 0: this means that if player
i∈ {1,2} cannot enforce a reward c∈ IR, then player∼i can enforce at least reward−c.
The following theorem provides a strong non-determinacy result for average-reward
discrete-time games.
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Theorem 1. (non-determinacy) For all c > 0, there exists a game structure G =
(S,Acts1,Acts2,Γ1,Γ2,δ ,r) with a state s ∈ S, and two “spoiling” strategies π∗1 ∈ Π1,
π∗2 ∈Π2, such that the following holds:

sup
π1∈Π1

sup{w1(σ) | σ ∈ Outcomes(s,π1,π∗2 )} ≤ −c

sup
π2∈Π2

sup{w2(σ) | σ ∈ Outcomes(s,π∗1 ,π2)} ≤ −c.

As a consequence, v1(s) ≤−c and v2(s)≤−c.

Note that in the theorem we take sup, rather than inf as in (2), over the set of outcomes
arising from the strategies. Hence, the theorem states that even if the choice among
actions is resolved in favor of the player trying to achieve the value, there is a game
with a state s where v1(s)+ v2(s) ≤ −2c < 0. Moreover, in the theorem, the adversary
strategies are fixed, again providing an advantage to the player trying to achieve the
value.

q2x := 0x := 0

a1

x≥1 x≥1

Inv1 : x≤0
Inv2 : x≤0

r =−c r = +ca1

a2

a2

q0q1

Fig. 2. A game automaton. Unspecified guards and invariants are “true”.

Proof. Consider the game of Figure 2. We take for π∗1 ∈Π1 and π∗2 ∈Π2 the strategies
that play always Δ0 in q0, and Δ1 elsewhere. Let s0 = 〈q0, [x := 0]〉, and consider the
value

v̂1(s0) = sup
π1∈Π1

sup{w1(σ) | σ ∈Outcomes(s0,π1,π∗2 )}.

There are two cases. If eventually player 1 plays forever Δ0 in s0, player 1 obtains the
value−∞, as time does not progress, and player 1 is not blameless. If player 1, whenever
at s0, eventually plays a1, then the value of the game to player 1 is −c. Hence, we have
v̂1(s0) =−c. The analysis for player 2 is symmetrical.

The example of Figure 2, together with the above analysis, indicates that we cannot
define the value of an average reward discrete-time game in a way that is symmetrical,
leads to determinacy, and enforces time progress. In fact, consider again the case in
which player 2 plays always Δ0 at s0. If, beyond some point, player 1 plays forever Δ0

in s0, time does not progress, and the situation is symmetrical wrt. players 1 and 2: they
both play forever Δ0. Hence, we must rule out this combination of strategies (either
by assigning value −∞ to the outcome, as we do, or by some other device). Once this
is ruled out, the other possibility is that player 1, whenever in s0, eventually plays a1.
In this case, time diverges, and the average value to player 1 is −c. As the analysis is
symmetrical, the value to both players is −c, contradicting determinacy.
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4 Solution of Average Reward Timed Games

In this section, we solve the problem of computing the value of an average reward
timed game with respect to both players. First, we define a turn-based version of the
timed game. Such version is equivalent to the first game when one is concerned with
the value achieved by a specific player. Then, following [EM79], we define a finite
game and we prove that it has the same value as the turn-based infinite game. This will
lead to a PSPACE algorithm for computing the value of the game. We then show that the
finite and, consequently, the infinite game admit memoryless optimal strategies for both
players; as mentioned in the introduction, this will enable us to show that the problem
of computing the value of the game is in NP∩coNP.

In the remainder of this section, we consider a fixed discrete-time game structure
G = (S,Acts1,Acts2,Γ1,Γ2,δ ,r), and we assume that all states are well-formed. We fo-
cus on the problem of computing v1(s), as the problem of computing v2(s) is symmet-
rical. For a finite run σ and a finite or infinite run σ ′ such that last(σ) = first(σ ′), we
denote by σ ·σ ′ their concatenation, where the common state is included only once.

4.1 Turn-Based Timed Game

We describe a turn-based version of the timed game, where at each round player 1
chooses his move before player 2. Player 2 can thus use her knowledge of player 1’s
move to choose her own. Moreover, when both players choose an action, the action
chosen by player 2 is carried out. This accounts for the fact that in the definition of
v1(s), nondeterminism is resolved in favor of player 2 (see (2)). Notice that if player 2
prefers to carry out the action chosen by player 1, she can reply with the stuttering move
Δ0. Definitions pertaining this game have a “t∞” superscript that stands for “turn-based
infinite”. We define the turn-based joint destination function δ̃ t : S×M1×M2 �→ S by

δ̃ t(s,a1,a2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
δ (s,Δ1) if a1 = a2 = Δ1

δ (s,Δ0) if {a1,a2} ⊆ {Δ0,Δ1} and a1 = Δ0 or a2 = Δ0

δ (s,a1) if a1 ∈ Acts1 and a2 ∈ {Δ0,Δ1}
δ (s,a2) if a2 ∈ Acts2

As before, a run is an infinite sequence s0,〈a1
1,a

2
1〉,s1,〈a1

2,a
2
2〉,s2, . . . such that sk ∈ S,

a1
k+1 ∈ Γ1(sk), a2

k+1 ∈ Γ2(sk), and sk+1 ∈ δ̃ t(sk,a1
k+1,a

2
k+1) for all k ≥ 0. A 1-run

is a finite prefix of a run ending in a state sk, while a 2-run is a finite prefix of
run ending in a move a ∈ M1. For a 2-run σ = s0,〈a1

1,a
2
1〉,s1, . . . ,sn,〈a1

n+1〉, we set
last(s0,〈a1

1,a
2
1〉,s1, . . . ,sn,〈a1

n+1〉) = sn and lasta(s0,〈a1
1,a

2
1〉,s1, . . . ,sn,〈a1

n+1〉) = a1
n+1.

For i∈{1,2}, we denote by FRunsi the set of all i-runs. Intuitively, i-runs are runs where
it is player i’s turn to move. In the turn-based game, a strategy πi for player i ∈ {1,2}
is a mapping πi : FRunsi �→ Mi such that πi(σ) ∈ Γi(last(σ)) for all σ ∈ FRunsi. For
i ∈ {1,2}, let Π t

i denote the set of all player i strategies; notice that Π t
1 = Π1. Player-

1 memoryless strategies are defined as usual. We say that a player-2 strategy π ∈ Π t
2

is memoryless iff, for all σ ,σ ′ ∈ FRuns2, last(σ) = last(σ ′) and lasta(σ) = lasta(σ ′)
imply π(σ) = π(σ ′).

For strategies π1 ∈Π t
1 and π2 ∈Π t

2, we say that a run s0,〈a1
1,a

2
1〉,s1, . . . is consistent

with π1 and π2 if, for all n ≥ 0 and i = 1,2, we have π1(s0,〈a1
1,a

2
1〉,s1, . . . ,sn) = a1

n+1
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and π2(s0,〈a1
1,a

2
1〉,s1, . . . ,sn,〈a1

n+1〉) = a2
n+1. Since δ̃ t is deterministic, for all s ∈ S,

there is a unique run that starts in s and is consistent with π1 and π2. We denote this
run by outcomest∞(s,π1,π2). The value assigned to a run, to a strategy and to the whole
game are defined as follows. We set wt∞

1 (σ) = w1(σ), and

vt∞
1 (s,π1) = inf

π2∈Π t
2

wt∞
1 (outcomest∞(s,π1,π2)); vt∞

1 (s) = sup
π1∈Π t

1

vt∞
1 (s,π1).

The following theorem follows from the definition of turn-based game and from (2).

Theorem 2. For all s ∈ S, it holds v1(s) = vt∞
1 (s).

4.2 Turn-Based Finite Game

We now define a finite turn-based game that can be played on a discrete-time game
structure. Definitions pertaining this game have a “tf” superscript that stands for “turn-
based finite”. The finite game ends as soon as a loop is closed. A maximal run in the
finite game is a 1-run σ = s0,〈a1

1,a
2
1〉,s1, . . . ,sn such that sn is the first state that is

repeated in σ . Formally, n is the least number such that sn = s j, for some j < n. We
set loop(σ) to be the suffix of σ : s j,〈a1

j+1,a
2
j+1〉, . . . ,sn. For π1 ∈ Π t

1, π2 ∈ Π t
2, and

s ∈ S, we denote by outcomestf(s,π1,π2) the unique maximal run that starts in s and is
consistent with π1 and π2.

In the finite game, a maximal run σ ending with the loop λ is assigned the value of
the infinite run obtained by repeating λ forever. Formally, wtf

1(σ) = w1(σ ·λ ω), where
λ ω denotes the concatenation of numerably many copies of λ . The value assigned to a
strategy π1 ∈Π t

1 and the value assigned to the whole game are defined as follows.

vtf
1(s,π1) = inf

π2∈Π t
2

wtf
1(outcomestf(s,π1,π2)); vtf

1(s) = sup
π1∈Π t

1

vtf
1(s,π1).

Notice that since this game is finite and turn-based, for all s ∈ S, it holds:

sup
π1∈Π1

inf
π2∈Π2

wtf
1(outcomestf(s,π1,π2)) = inf

π2∈Π2
sup

π1∈Π1

wtf
1(outcomestf(s,π1,π2)). (3)

4.3 Mapping Strategies

We introduce definitions that allow us to relate the finite game to the infinite one. For a
1-run σ = s0,〈a1

1,a
2
1〉,s1, . . . ,sn, let firstloop(σ) be the operator that returns the first sim-

ple loop (if any) occurring in σ . Similarly, let loopcut(σ) be the operator that removes
the first simple loop (if any) from σ . Formally, if σ is a simple run (i.e. it contains no
loops) we set firstloop(σ) = ε (the empty sequence), and loopcut(σ) = σ . Otherwise,
let k ≥ 0 be the smallest number such that σ j = σk, for some j < k; we set

firstloop(σ) = σ j,〈a1
j+1,a

2
j+1〉, . . . ,〈a1

k,a
2
k〉,σk;

loopcut(σ) = σ0,〈a1
1,a

2
1〉, . . . ,σ j,〈a1

k+1,a
2
k+1〉, . . . ,σn.

We now define the quasi-segmentation QSeg(σ) to be the sequence of simple loops
obtained by applying firstloop repeatedly to σ .
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QSeg(σ) =
{

ε if firstloop(σ) = ε
firstloop(σ) ·QSeg(loopcut(σ)) otherwise

For an infinite run σ , we set QSeg(σ) = limn→∞ QSeg(σ≤n). Given a finite run σ ,
loopcut can only be applied a finite number of times before it converges to a fixpoint.
We call this fixpoint resid(σ). Notice that for all runs σ , resid(σ) is a simple path and
therefore its length is bounded by |S|.

For simplicity, we developed the above definitions for 1-runs. The corresponding
definitions of resid(σ) and QSeg(σ) for 2-runs σ are similar.

For all i ∈ {1,2} and all strategies π ∈ Π t
i , we define the strategy π̃ as π̃(σ) =

π(resid(σ)) for all σ ∈ FRunsi. Intuitively, π̃ behaves like π until a loop is formed. At
that point, π̃ forgets the loop, behaving as if the whole loop had not occurred. We now
give some technical lemmas.

Lemma 1. Let π1 ∈ Π t
1, π2 ∈ Π t

2, and σ = outcomest∞(s, π̃1,π2). For all k > 0,
resid(σ≤k) is a prefix of a finite run consistent with π1. Formally, there is π ′2 ∈ Π t

2
and σ ′ = outcomestf(s,π1,π ′2) such that σ ′ = resid(σ≤k) ·ρ .

Similarly, let σ = outcomest∞(s,π1, π̃2). For all k > 0, there is π ′1 ∈ Π t
1 and σ ′ =

outcomestf(s,π ′1,π2) such that σ ′ = resid(σ≤k) ·ρ .

Proof. We prove the first statement, as the second one is analogous. We proceed by
induction on the length of QSeg(σ≤k). If QSeg(σ≤k) is the empty sequence (i.e. σ≤k

contains no loops), the result is easily obtained, as π̃1 coincides with π1 until a loop is
formed. So, we can take π ′2 = π2 and obtain the conclusion.

On the other hand, suppose QSeg(σ≤k)= λ1, . . . ,λn. For simplicity, suppose λ1 �= λ2.
As illustrated in Figure 3, let σ j be the first state after λ1 that does not belong to λ1.
Then, σ j−1 belongs to λ1 and there is another index i < j−1 such that σi = σ j−1. So,
the game went twice through σ j−1 and two different successors were taken. However,
player 1 must have chosen the same move in σi and σ j−1, as by construction π̃1(σ≤i) =
π̃1(σ≤ j−1). Therefore, the change must be due to a different choice of π2. It is easy to
devise π ′2 that coincides with π2, except that λ1 may be skipped, and at σi, the successor
σ j is chosen. We can then obtain a run ρ = outcomest∞(s, π̃1,π ′2) and an integer k′ ≥ 0
such that QSeg(ρ≤k′) = λ2, . . . ,λn and resid(ρ≤k′) = resid(ρ). The thesis is obtained by
applying the inductive hypothesis to ρ and k′.

Using this lemma, we can show that for all π1 ∈Π1, each loop occurring in the infinite
game under π̃1 can also occur in the finite game under π1.

λ1

σ jσi σ j−1

Fig. 3. Nodes linked by dashed lines represent the same state of the game
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Lemma 2. Let π1 ∈Π t
1, π2 ∈Π t

2, and σ = outcomest∞(s, π̃1,π2). For all λ ∈QSeg(σ),
λ can occur as the final loop in a maximal run of the finite game. Formally, there is
π ′2 ∈Π t

2 and σ ′ = outcomestf(s,π1,π ′2) such that λ = loop(σ ′).
Similarly, let σ = outcomest∞(s,π1, π̃2). For all λ ∈ QSeg(σ), there is π ′1 ∈ Π t

1 and
σ ′ = outcomestf(s,π ′1,π2) such that λ = loop(σ ′).

The next lemma states that if the strategy π1 of player 1 achieves value ν in the finite
turn-based game, the strategy π̃1 achieves at least as much in the infinite turn-based
game.

Lemma 3. For all s ∈ S and π1 ∈Π t
1, it holds vt∞

1 (s, π̃1)≥ vtf
1(s,π1).

Proof. Let ν = vtf
1(s,π1). We show that π̃1 can ensure reward ν in the infinite game. The

result is trivially true if ν =−∞. So, in the following we assume that ν >−∞.
Fix a player 2 strategy π2 ∈ Π t

2, and let σ = outcomest∞(s, π̃1,π2). Let QSeg(σ) =
λ1,λ2 . . .. We distinguish two cases, according to whether time diverges or not in σ . If
time diverges, all loops λ j that contain no tick give no contribution to the value of σ
and can therefore be ignored.

For all λ j containing (at least) a time step, by Lemma 2, λ j is a possible terminating
loop for the finite game under π1. Thus, R(λ j)≥ ν ·D(λ j). Now, the value of σ can be
split as the value due to loops containing time steps, plus the value due to the residual.
For all n≥ 0, let mn be the number of loops in QSeg(σ≤n). We obtain:

wt∞
1 (σ) =

liminf
n→∞

R(σ≤n)
D(σ≤n)

= liminf
n→∞

R(resid(σ≤n))+ ∑mn
j=1 R(λ j)

D(resid(σ≤n))+ ∑mn
j=1 D(λ j)

= liminf
n→∞

∑mn
j=1 R(λ j)

∑mn
j=1 D(λ j)

≥ ν.

Consider now the case when σ contains only finitely many time steps. Let k ≥ 0 be
such that no time steps occur in σ after σk. Consider a loop λ j entirely occurring after
σk. Obviously λ j contains no time steps. Moreover, by Lemma 2, λ j is a terminating
loop for a maximal run ρ in the finite game under π1. Since vtf

1(s,π1) > −∞, it must
be wtf

1(ρ) = +∞. Consequently, it holds blameless1(ρ) and in particular player 1 is
blameless in all edges in λ j.

Now, let k′ ≥ 0 be such that each state (and edge) after σk′ will eventually be part
of a loop of QSeg(σ). Let k′′ = max{k,k′}. Then, all edges that occur after k′′ will
eventually be part of a loop where player 1 is blameless. Consequently, k′′ is a witness
to the fact that blameless1(σ), and therefore wt∞

1 (σ) = +∞≥ ν .

Lemma 4. For all s ∈ S and π2 ∈Π t
2, it holds vt∞

1 (s, π̃2)≤ vtf
1(s,π2).

Proof. Let ν = vtf
1(s,π2). Similarly to Lemma 3, we can rule out the case ν = +∞

as trivial. Fix a player 1 strategy π1, and let σ = outcomest∞(s,π1, π̃2). We show
that wt∞

1 (σ) ≤ ν . If time diverges on σ , the proof is similar to the analogous case in
Lemma 3. Otherwise, let k ≥ 0 be such that no time steps occur in σ after σk. Con-
sider a loop λ ∈ QSeg(σ), entirely occurring after σk. Obviously λ contains no time
steps. Moreover, by Lemma 2, λ is a terminating loop for a maximal run ρ in the finite
game under π1. Since vtf

1(s,π1) < +∞, it must be wtf
1(ρ) = −∞. Consequently, it holds

¬blameless1(ρ) and in particular player 1 is blamed in some edge of λ . This shows that
¬blameless1(σ), and consequently wt∞

1 (σ) =−∞≤ ν .
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Lemmas 3 and 4 show that the infinite game is no harder than the finite one, for both
players. Considering also (3), we obtain the following result.

Theorem 3. For all s ∈ S, vt∞
1 (s) = vtf

1(s).

Theorems 2 and 3 allow us to use the finite game to compute the value of the original
timed game. The length of the finite game is bounded by |S|. It is well-known that a
recursive, backtracking algorithm can compute the value of such game in PSPACE.

Theorem 4. For all s ∈ S, v1(s) can be computed in PSPACE.

4.4 Memory

By following the “forgetful game” construction and proofs used by [EM79], we can
derive a similar result on the existence of memoryless strategies for both players. The
proof depends on the fact that the value of forgetful game is the same as the turn-based
finite game (and hence, the same as the infinite game, from Theorem 3), and follows
the same inductive steps as provided in [EM79].

Theorem 5. For all i ∈ {1,2}, and t ∈ S, there exists a memoryless optimal strategy for
player i. Formally, there exists πi ∈Πi such that v1(t,πi) = v1(t).

4.5 Improved Algorithms

We show that, given s ∈ S, ν ∈ Q and i ∈ {1,2}, the problem of checking whether
vtf

i (s) ≥ ν is in NP∩coNP. The decision problem vtf
1(s) ≥ ν is in NP because a memo-

ryless strategy for player 1 acts as a polynomial-time witness: once such a strategy π1

is fixed, we can compute in polynomial time the value vtf
1(s,π1). The problem is also

in coNP because, once a memoryless strategy of player 2 is fixed, we can compute in
polynomial time the value vtf

1(s,π2).
Once we fix a memoryless strategy for player i ∈ {1,2}, the finite game is reduced

to a multigraph where all the choices belong to player ∼i. It is convenient to define
the set of vertices of the multigraph as U = {{s} | s ∈ S}, rather than simply as S. Let
E be the set of edges of the multigraph. Each edge e ∈ E is labeled with the pair of
moves 〈a1,a2〉 ∈M1×M2 played by the players along e. We label e with tick whenever
a1 = a2 = Δ1, and with bli whenever ai ∈ Actsi ∪{Δ0}; every edge e from {s} to {t}
is also associated with reward r(s) if it has label tick, and reward 0 otherwise. We
indicate paths in this graph by u0,e1,u1,e2, . . . ,un, where ei is an edge from ui−1 to ui,
for 1 ≤ i ≤ n. Given a strongly connected component (SCC) (V,F), where V ⊆U and
F ⊆ E , we collapse (V,F) as follows: (i) we replace in U the vertices in V by the single
vertex

⋃
V ; (ii) we remove all edges in F ; (iii) we replace every edge from v ∈ V to

u ∈U \V (resp. from u ∈U \V to v ∈ V ) with an edge of the same label from
⋃

V to
u (resp. from u to

⋃
V ); (iv) we replace every edge e �∈ F from v ∈ V to v′ ∈ V with a

self-loop of the same label from
⋃

V to
⋃

V .
To determine the value of this multigraph to player 1, we first transform the multi-

graph so that all edges are labeled with tick, and we then apply Karp’s algorithm for
computing the loop with minimum or maximum average reward [Kar78]. We proceed
depending on whether player 1, or player 2, fixes a memoryless strategy. When player 1
fixes a memoryless strategy:
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1. Find a maximal SCC (V,F), where V ⊆ U and F ⊆ E , such that all edges in F
are labeled with ¬tick and ¬bl1. Player 2 will want to avoid following this SCC
forever; thus, we collapse it. Repeat until no more SCCs can be collapsed.

2. If a vertex u ∈ U has no outgoing edges, it means that player 2 could not avoid
entering and following one of the SCCs collapsed above. Hence, for each u ∈U
without outgoing edges, remove u from the graph along with all incoming edges,
and assign value +∞ to all s ∈ u. Repeat until no more vertices can be removed.

3. Find all the loops whose edges are all labeled with ¬tick. Due to the collapsing in
the above steps, each of these loops contains at least one edge labeled bl1, so its
value when followed forever is −∞. Remove all such vertices from the graph, and
assign value −∞ to the corresponding states.

4. From the resulting multigraph G, construct a multigraph G′ with the same vertices
as G. For each simple path in G of the form u0,e1,u1, . . . ,un,en+1,un+1 where the
edges e1, . . . ,en are labeled by ¬tick, and the edge en+1 is labeled by tick, we insert
in G′ an edge from u0 to un+1 labeled by the same reward as en+1.

5. Use the algorithm of [Kar78] to find the loop with minimal average reward in G′

(the algorithm of [Kar78] is phrased for graphs, but it can be trivially adapted to
multigraphs). If r is the average reward of the loop thus found, all the vertices of
the loop, and all the vertices that can reach the loop, have value r. Remove them
from G′, and assign value r to the corresponding states. Repeat this step until all
vertices have been removed.

Similarly (but not symmetrically), if player 2 fixes a memoryless strategy, we can com-
pute the value for player 1 as follows:

1. Find all the loops where all the edges are labeled with ¬tick and ¬bl1. These loops,
and all the vertices that can reach them, have value +∞. Remove them from the
graph, and assign value +∞ to the corresponding states.

2. Find a maximal SCC (V,F), where V ⊆U and F ⊆ E , such that all edges in F are
labeled with ¬tick. Due to the previous step, every loop in (V,F) contains at least
one edge labeled bl1, and player 1 will want to avoid following forever such an
SCC: thus, we collapse (V,F).

3. For each u ∈U without outgoing edges, remove u from the graph along with all
incoming edges, and assign value −∞ to all s ∈ u. Repeat until no more vertices
can be removed.

4. From the resulting multigraph G, construct a multigraph G′ as in step 4 of the
previous case.

5. This step is the same as step 5 of the previous case, except that in each iteration we
find the loop with maximal average reward.

Since the algorithm of [Kar78], as well as the above graph manipulations, can all be
done in polynomial time, we have the following result.

Theorem 6. The problem of computing the value to player i ∈ {1,2} of a discrete-time
average reward game is in NP∩coNP.

We note that the maximal reward that a player can accrue in the first n time units cannot
be computed by iterating n times a dynamic-programming operator, as is the case for
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untimed games. In fact, each player can play an unbounded number of zero-time moves
in the first n time units, so that even the finite time-horizon version of our games requires
the consideration of time divergence. Hence, it does not seem possible to adapt the
approach of [ZP96] to obtain a weakly-polynomial algorithm. Whether polynomial-
time algorithms can be achieved by other means is an open problem.
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Abstract. In this paper, we deal with the problem of parameter syn-
thesis for a subset of parameterised TCTL over timed automata. The
problem was proved decidable by V. Bruyere et al. in [10] for general
parameterised TCTL using a translation to Presburger arithmetic and
also considered by F. Wang in [13] using a parametric region construc-
tion. In contrast, we provide two efficient zone based algorithms for a
useful subset of parameterised TCTL. The subset has obvious applica-
tions to worst case execution time (WCET) analysis. In [11] WCET is
performed via model checking, but their approach uses a binary search
strategy over several invocations of the model checker. In contrast, both
our algorithms synthesise the bound directly. We provide experimental
results based on a prototype implementation in Uppaal for two case
studies: The first concerns response time analysis of a well known train
gate scenario. The second is an execution time analysis of task graph
problems where tasks have uncertain execution times.

1 Introduction

For most real-time systems it is essential that liveness properties come equipped
with acceptable upper time-bound guarantees in order to be of use. Merely
knowing that a particular service will be provided “eventually” once requested
or that the execution of a given set of tasks will “eventually” terminate is of
limited use. What we need in addition are hard real-time guarantees.

The temporal logic TCTL [1] provides a convenient formalism for express-
ing bounded as well as unbounded liveness properties for timed systems, and
tools like Kronos [9] and (partially) Uppaal [5] offer support for automatically
checking whether real time systems modelled as timed automata [2] satisfy given
TCTL properties.

As an example, consider a task graph [12] scheduling instance with a number
of interdependent tasks to be executed on a limited number of processors. The
interdependencies state that no task can execute until all tasks preceding it
in the graph are terminated. Now assume given lower and upper bounds on
the execution time for each task and a given (dynamic) policy for assigning
processors to tasks a natural problem is to provide guarantees as to the maximum
execution time for the entire task graph instance. Now assuming that Taski.End
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is a proposition indicating termination of task i, the following TCTL property
guarantees that the overall execution time does not exceed p:

A♦≤p

∧
i=1...n

Taski.End (1)

Bounded response or leads-to properties is another class of typical bounded
liveness properties. As an example consider the well-known train-gate scenario
distributed with Uppaal. The scenario models a railway control system which
controls the access to a bridge for several trains. The bridge is a critical shared re-
source that should only be crossed by at most one train at a time. To ensure this,
the controller applies a policy for holding trains back in critical situations. How-
ever, it is also important that the applied policy guarantees that each individual
train will make it to the bridge within a guaranteed time bound. Now assume
Traini.Appr and Traini.Cross are propositions indicating that train i is approach-
ing respectively crossing the bridge. The following TCTL property guarantees
that whenever train i approaches it will be granted access to the bridge within
p time-units:

A� (Traini.Appr =⇒ A♦≤pTraini.Cross ) (2)

Though (1) and (2) nicely express useful bounded liveness properties it re-
mains to find valid values for the time bound p in a systematic way. In fact we
might already have established that the particular real-time systems satisfy the
corresponding unbounded liveness properties, thus knowing that the bounded
liveness properties hold for some bounds.1 At the same time all our attempts of
identifying concrete values for p for which (1) (or (2)) holds might have failed.
What we really want is a method for automatically synthesising the smallest
value of p for which (1) (or ((2)) holds.

The above synthesis problem was shown decidable by V. Bruyere et al [10] for
general parameterised TCTL using a translation to Presburger arithmetic and
considered by F. Wang in [13] using a parametric region graph construction.
The contribution of this paper is to provide efficient zone-based algorithms for
parameter synthesis for TCTL properties of the forms A♦≤pφ and A�(ψ =⇒
A♦≤pφ) where φ and ψ are restricted to be propositions (state properties). Thus
we cover the two prototypical examples of (1) and (2). The paper offers two
approaches for parameter synthesis:

Our first approach assumes that the (unbounded) liveness property (e.g.
A♦φ) is already known to hold. This enables the parameter synthesis to be
reduced to a simple reachability analysis on an extended timed automaton model
with an additional clock for measuring time. This is in contrast to the method
in [11] for worst case execution time (WCET) analysis, where a binary search
strategy is used under the assumption that a bound exists (and is known).

In our second approach the algorithm for model checking the unbounded
liveness property A♦φ [7] is extended to directly synthesise the smallest p such
that A♦≤pφ holds (or conclude that such a p does not exist).

1 A simple argument based on the region-based model checking algorithm for TCTL.
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The structure of the remainder of the paper is as follows. Section 2 provides
the notational conventions of the paper, Sections 3 and 4 present the two ap-
proaches and Section 5 offers an extensive experimental investigation of the two
approaches on instances of the train gate scenario and task graph scheduling.

2 Notation

In this section we briefly define timed automata and the notation used through-
out the rest of the paper. Timed automata are finite state automata extended
with variables over the non-negative reals, called clocks. Edges of a timed au-
tomaton are guarded by an expression over the clocks in addition a set of clocks
to be reset when executing the edge. Locations have an invariant expression,
that must be satisfied when the automaton is in that location. Timed automata
can be composed into networks of communicating timed automata, but for sim-
plicity and without loss of generality we operate on a single timed automaton.
More formally, we define timed automata as follows.

Definition 1 (Timed Automaton). If X is a set of clocks, then B(X) is the
set of conjunctions over expressions on the form x �� n for x ∈ X, n ∈ N and
��∈ {<,≤,≥, >}. A timed automaton over X is a tuple (L, l0, E,G, U, I), where
L is a set of locations, l0 ∈ L is the initial location, E ⊆ L×L if a set of edges,
G : E → B(X) assigns guards to edges, U : E → P(X) assigns a set of clocks to
edges, and I : L→ B(X) assigns invariants to locations.

A state of a timed automaton over a set of clocks X is a pair (l, u), where l is a
location and u a valuation over the clocks in X . Clock valuations are functions
X → R≥0 that assign non-negative real values to clocks. The set of all clock
valuations is RX

≥0. Given a set of clocks Y ⊆ X and clock valuation u over X ,
πY (u) ∈ RY

≥0 is the projection of u onto Y . Two useful operations on clock
valuations are increment all clocks by some amount, (u + d)(x) = u(x) + d, and
reset a set of clocks r, u[r �→ 0](x) = 0 if x ∈ r, u(x) otherwise. The satisfaction
relation u |= g for g ∈ B(X) is defined in the obvious way.

We skip the concrete semantics of a timed automaton, but notice that the
state space is infinite. As usual, the solution to this problem is to define the
simulation graph of a timed automaton.

Definition 2 (Simulation Graph). The simulation graph of a timed automa-
ton (L, l0, E,G, U, I) over a set of clocks X has a vertex set {(l,W ) ∈ L ×
P(RX

≥0) | ∀u ∈ W : u |= I(l)}, and an edge set, ⇒, as defined below. We
distinguish between discrete (a.k.a. action) transitions and delay transitions:

(l,W ) e⇒ (l′,W ′) ⇔ e ∈ E ∧ e = (l, l′) ∧W ′ = (W ∧G(e))[U(e) �→ 0] ∧ I(l′)

(l,W ) δ⇒ (l′,W ′) ⇔
l = l′ ∧W ′ = {u + d | u ∈ W ∧ d ∈ R≥0 ∧ ∀0 ≤ d′ ≤ d : u + d′ |= I(l)}
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The vertices of the simulation graph are called symbolic states and describe
a possibly infinite set of concrete states. We define maxx((l,W )) = maxx(W ) =
sup{u(x) | u ∈ W} to be the supremum of the clock x in any valuation of the
symbolic state.

A zone is a set of clock valuations characterizable by a conjunction of ex-
pressions x �� n and x − y �� n, where x and y are clocks, n is an integer and
��∈ {<,≤,≥, >}. It is easy to see that the initial state S0 = (l0, {u0}), where
∀x ∈ X : u0(x) = 0, is a zone. An important property of timed automata is
that the successor of a zone is itself a zone, thus making zones a good choice
for representing symbolic states. Using zones, we obtain a countable state space.
In order to get a finite state space, exact abstractions over symbolic states are
used. An abstraction function is a partial function a : P(RX

≥0) ↪→ P(RX
≥0), such

that W ⊆ a(W ). If the set of zones is closed under a given abstraction, then the
abstraction is an extrapolation. For thee definitions of finite, sound and complete
abstractions we refer the interested reader to [8,4,3]. Several such abstractions
exist, all based on the maximum constant M(x) to which a clock x is compared
in a guard or in an invariant [8].2

A state formula, ϕ, is a predicate over expressions of the form x �� n, x−y ��
n, and l, where x and y are clocks in X , n is an integer, and ��∈ {<,≤} and
l is a location. The satisfaction relation is defined in the natural way and we
write (l, u) |= ϕ when (l, u) satisfies ϕ. A symbolic state satisfies a state formula
if any of the concrete states in the symbolic state satisfies the formula, i.e.,
(l,W ) |= ϕ⇔ ∃u ∈W : (l, u) |= ϕ.

3 Reduction to Reachability Analysis

In this section we present an algorithm for synthesising the smallest p such that
A♦≤pϕ holds under the assumption that A♦ϕ is known to hold. The problem
is reduced to building the state space of an annotated model. Our approach is
similar to that of [11], although their model uses discrete time and deadlocks as
soon as the goal condition ϕ is satisfied. They extend the model with an extra
counter c, which is zero in the initial state and incremented at every time tick.
Properties of the form E♦(ϕ∧ c ≥ p) for different values of p are model checked,
and a binary search strategy to find the maximum p for which the property holds
is used. In contrast, we use continuous time and extend the timed automaton
model with an additional clock, c, which is zero in the initial state and is neither
reset nor tested in the model. Instead of performing a binary search on different
values of p, we generate all states up to a depth where ϕ holds and record the
maximum value of c, see Fig. 1. This value is the smallest p s.t. A♦≤pϕ holds,
assuming that A♦ϕ holds.

It is important that the algorithm never computes any successors of states
satisfying ϕ – otherwise the resulting value for p would not be tight. Therefore
we introduce the following delay operation:
2 Variations include using two maximum constants per clock [4] or using location

specific maximum constants [3].
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proc Reachable(S0, ϕ) ≡
pre(S0 |= A♦ϕ)
Wait := {delay(S0[c �→ 0], ¬ϕ)}
Passed := ∅
p := 0 Initial estimate of p is zero
while Wait �= ∅ do

let S ∈ Wait
Wait = Wait \ {S}
p := max(p, maxc(S)) The estimate is enlarged as needed
S := S ∧ ¬ϕ Here S might become empty
foreach S′ : S

a⇒ S′ do For all action successors
S′ := delay(S′, ¬ϕ) Delay under ¬ϕ, see Def. 3
(S′ := extrapolate(S′)‡) See text on extrapolation and pruning
if ∀S′′ ∈ Passed : S′ �⊆ S′′ Unvisited state?

then Passed := Passed ∪ {T}
Wait := Wait ∪ {T}

fi
od

od
exit(p)

end

Fig. 1. An algorithm for finding the smallest p s.t. s0 |= A♦≤pϕ. The algorithm uses
two sets of symbolic states: Wait is the set of reached but not yet explored states;
Passed is the set of explored states. The algorithm takes a symbolic state, S, from
Wait, updates the estimate for p and restricts S to the states not satisfying ϕ. For each
action successor S′, the delay under ¬ϕ is computed. Finally, if the successor was not
previously explored, it is added to the Passed and Wait sets.

Definition 3 (Restricted Delay). We define a function delay : (L× RX
≥0)×

Φ → P(RX
≥0) mapping a state and a state formula to the set of clock valuations

that can be reached by delaying from the state without violating the state formula.

delay((l, v), ϕ) = { u | u |= I(l)
∧ ∃d ≥ 0 : u = v + d ∧ ∀0 ≤ d′ < d : (l, v + d′) |= ϕ ∧ I(l)}

The operation can easily be extended to operate on symbolic states.

If the symbolic state is a zone, then restricted delay is implementable using
DBMs, although the result will be non-convex and thus must be represented
as a list of zones. If the state formula does not constrain any clocks, then the
operation is trivial to implement using the unrestricted delay operation.

As mentioned in Section 2, timed automata have an infinite state space and
model checking is typically based on the simulation graph of the timed automa-
ton. The use of exact abstractions is crucial in obtaining a finite simulation
graph. In our case we must ensure that the timing information recorded in the
extra clock, c, is not destroyed by this abstraction while still guaranteeing ter-
mination. First we argue that even without the use of an abstraction function,
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a zone based implementation of the algorithm outlined before, will terminate.
Second, we argue that the efficiency of the algorithm can be improved by using
any of the standard abstractions and setting the maximum constant for c to
infinity. Third, we argue that the efficiency can be further improved by using a
special operator to prune parts of the search.

Termination. Termination follows from the fact that A♦ϕ holds. Since ϕ will
eventually hold and the algorithm in Fig. 1 does not explore the successors of
states in which ϕ holds, this guarantees termination of the algorithm.

Extrapolation. In timed automata model checking there are two reasons for
performing the analysis using an abstraction: The first is to ensure finiteness
and hence to guarantee termination; the second is for efficiency, as a coarser
abstraction results in a smaller simulation graph. In our case, termination is
guaranteed even when no abstraction function is used. Hence, we are mainly
interested in the second aspect. In [4] all extrapolation operators are defined
over a set of maximum constants derived from the model - one for each clock.
We have the following result:

Lemma 1. Let a be any of the extrapolation operators defined in [4]. For any
clock x for which the maximum constant is infinity, we have:

(l0, {v0}) ⇒∗
a (l, Z) implies ∀v ∈ Z : ∃v′ ∈ Z : v(x) = v′(x) ∧ (l0, v0) →∗ (l, v′)

In other words, if the maximum constant of a clock is infinity, then the value of
the clock is preserved in the abstraction. Thus the bound, p, produced by the
algorithm in Fig. 1 using any of the mentioned extrapolation operators, with the
maximum constant of the extra clock, c, being infinity, is valid (i.e, A♦≤pϕ holds)
and tight (i.e. A♦≤qϕ is false for any q < p). Validity follows from completeness
of the abstractions and tightness follows from lemma 1.

Pruning. Let X be the set of clocks in the model, and let c �∈ X be an additional
unrestricted clock. Given two concrete states (l, v) and (l, v′), such that πX(v) =
πX(v′) and v(c) < v′(c), there is no point in exploring (l, v) when (l, v′) has
already been explored, as the later can simulate the former with a bigger value
of c. We now describe how this observation can be used to prune the search. Let
us first introduce a new operation on zones.

Definition 4. Let c be a clock that is neither reset nor tested in the model. Let
X be the set of all clocks, excluding the additional c clock. The ‡ operator is
overloaded on both symbolic states and zones, and is defined as:

(l, Z)‡ = (l, Z‡)

Z‡ = {v | ∃v′ ∈ Z : 0 ≤ v(c) ≤ v′(c) ∧ πX(v) = πX(v′)}

The ‡ operation enlarges a zone by including those valuations that are identical
to the valuations already in the zone except that c has a smaller value, see Fig. 2.
We have the following result:
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Z

Z‡

Z ′

Z ′‡

c

Fig. 2. The ‡ operator performs a downwards closure on the extra clock c. Thus sym-
bolic states that are “cheaper” and smaller are included in “expensive” and bigger
states.

Lemma 2. The ‡-operation respects symbolic transitions in the sense that (l, Z)
⇒ (l, Z ′) iff (l, Z)‡ ⇒ (l, Z ′′) for Z ′‡ = Z ′′‡.

It follows that applying the ‡ operation to all successors computed in the algo-
rithm of Fig. 1 does not change the return value of the algorithm. It is useful to
note that using the LU extrapolation of [4] with a maximum lower bound of ∞
and a maximum upper bound of −∞ has the same effect as using ∞ for both
bounds and applying the ‡ operation on the result, i.e., a≺LU (Z) = a≺LU (Z)‡ if
U(c) = −∞.

4 Parameterised Liveness Checking

In the previous section we assumed that ϕ would eventually be satisfied. One way
of checking that this is in fact the case, is to use the model checker to verify that
A♦ϕ holds in the initial state. In this section we present an alternative algorithm
to first checking that ϕ will eventually hold followed by finding the bound using
the algorithm described in the previous section: The algorithm either establishes
that A♦ϕ does not hold; or if it does hold provides the smallest p s.t. that A♦≤pϕ
holds. As an easy extension, we provide an algorithm for finding the smallest p
s.t. A�(ψ =⇒ A♦≤pϕ) holds, i.e. the smallest p such that whenever ψ holds,
ϕ is guaranteed to hold before p time units – we call this time bounded leads-to
synthesis. The usefulness of time bounded leads-to synthesis is demonstrated in
Section 5.

Searching for Counter Examples. Before presenting the new algorithm, we re-
view the algorithm currently used in Uppaal for checking A♦ϕ. This algorithm
is strongly inspired by [7], and finds counter examples disproving A♦ϕ, i.e., any
maximal path where ¬ϕ holds in all states. A path is maximal if either it ends in
a state with no outgoing transitions, ends in a state from which an unbounded
delay is possible, or is infinite. The algorithm for this is shown in Fig. 3. It
takes an initial symbolic state, S0, and a state formula, ϕ. The algorithm is es-
sentially a depth first search restricted to states not satisfying ϕ, with detection
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proc Eventually(S0, ϕ) ≡
ST := ∅
Passed := ∅
Search(delay(S0, ¬ϕ))
exit(true)

end
proc Search(S) ≡

if loop(S, ST) then exit(false) fi Maximal path found
push(ST, S) Add to stack
S := S ∧ ¬ϕ Only explore states where ¬ϕ
if unbounded(S) ∨ deadlocked(S) then exit(false) fi Maximal path found
if ∀S′ ∈ Passed : S �⊆ S′ If unvisited state

then foreach S′ : S
a⇒ S′ do For all successors

Search(delay(S′, ¬ϕ)) Recursive call
od

fi
Passed := Passed ∪ {pop(ST)} Move from stack to Passed

end

Fig. 3. Recursive algorithm for checking S0 |= A♦ϕ. The algorithm maintains a set,
Passed, of previously explored states and a call stack, ST, for easy loop detection. The
recursive sub-procedure operates by first restricting the symbolic state S to the subset
not satisfying ϕ (i.e. it never explores states satisfying ϕ). If the result is unbounded
or contains deadlock states, then a counter example, i.e. a maximal path satisfying
¬ϕ, has been found. Otherwise, if the state has not been explored before (it is not in
Passed), then the algorithm is called recursively for all successors. Notice that exit
terminates the algorithm.

of maximal paths. As an optimisation the Passed set is used to remember states
known eventually to satisfy ϕ. States are added to this set during backtracking.3

Finding the bound. An algorithm for finding the smallest p such that A♦≤pϕ
holds is shown in Fig. 4. The main difference to the algorithm in Fig. 3 is the
addition of an extra clock, c, that is not used in the actual model and which
is reset to zero in the initial state. The algorithm maintains an estimate for p
while searching for maximal paths satisfying ¬ϕ. Initially, the estimate is zero.
Whenever a state satisfying ϕ is found to have a value for c larger than our
current estimate, the estimate is enlarged accordingly.

Pruning. As before, the ‡ operation can safely be used to enlarge all zones
without affecting the maximum value of c in any zone encountered.

Correctness. Figure 5 illustrates how unexplored states are picked up, stored on
the stack and pushed to the Passed set when backtracking. We observe that the
3 A loop in the simulation graph does not necessarily imply that all concrete state in

a symbolic state of the loop are part of a concrete infinite trace. This is only the
case if the symbolic loop is pre- and post-stable [7]. Fortunately, any loop in the
simulation graph is known to contain such a pre- and post-stable loop, and since we
are only interested in the existence of such a loop, we do not need to compute it.
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proc Eventually’(S0, ϕ) ≡
p := 0
ST := ∅
Passed := ∅
Search’(delay(S0[c �→ 0], ¬ϕ)) c is zero in the initial state
exit(p)

end
proc Search’(S) ≡

if loop(πX(S), πX(ST)) then exit(false) fi Notice project on X
p := max(p,maxc(S)) Enlarge estimate
push(ST, S‡) Notice use of ‡
S := S ∧ ¬ϕ
if unbounded(S) ∨ deadlocked(S) then exit(false) fi
if ∀S′ ∈ Passed : S �⊆ S′

then foreach S′ : S
a⇒ S′ do

Search’(delay(S′, ¬ϕ))
od

fi
Passed := Passed ∪ {pop(ST)}

end

Fig. 4. The algorithm returns the smallest p such that S0 |= A♦≤pϕ or false if no such
p exists

following invariants hold for Search′ in Fig. 4.

∀s ∈ Passed : πX(s) |= A♦≤p−s(c)ϕ (3)

∀0 ≤ p′ < p : ∃s ∈ Passed : s(c) > p′ (4)

∀s ∈ Passed ∪WP ∪ ST : ∃s0 ∈ S0 :
there is a path from s0 to s with delay s(c) (5)

Invariant (3) states that from all states s in Passed, ϕ will hold within p− s(c)
time units. In particular, once S0 is in Passed we have S0 |= A♦≤pϕ since c is
zero in the initial state. Invariant (4) states that for all values smaller than p,
there is a state in Passed in which c is larger. Finally, invariant (5) states that
c accurately measures the time along some path originating at an initial state.
Validity follows from (3) whereas tightness follows from (4) and (5).

Termination. We first observe that the Passed set is not necessary for guarantee-
ing termination. Also notice that the projection of the extended simulation graph
(extended in the sense that we added an extra clock c that is not abstracted by
the extrapolation operation) onto X is finite. Assume that the algorithm does
not terminate. Then there must be an infinite path in the extended simulation
graph such that ϕ never holds. The projection of this path onto X must nec-
essarily contain a loop since the projected simulation graph is finite. But such
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Unexplored

ST S0

≤ p

Passed

Fig. 5. The algorithm in Fig. 4 uses a stack, ST, to hold the trace to the currently
explored state. During backtracking, states are moved to the Passed set. It is an in-
variant of the algorithm that the distance (in time units) between the initial state and
any state in Passed is not larger than p.

a loop would be detected by the loop function contradicting that the algorithm
does not terminate.

Time Bounded Leads-to Synthesis. In Uppaal, the reachability checker and the
liveness checker can be combined to check leads-to properties, i.e., properties
on the form A�(ψ =⇒ A♦ϕ), also written ψ � ϕ. This is done by using the
reachability checker to generate all reachable symbolic states, S, satisfying ψ and
then using the liveness checker (Fig. 3) to check S |= A♦ϕ for each of them. As an
optimisation, the Passed set can be reused between invocations of the liveness
checker, as we only add states from which ϕ will eventually hold. The same
approach can be used to find the smallest p such that A�(ψ =⇒ A♦≤pϕ),
i.e., time bounded leads-to synthesis: Once again the model is extended with
an additional clock, c. The reachability checker is used to find all reachable
states, S, satisfying ψ. We then invoke Search’(delay(S[c �→ 0],¬ϕ)) on each
of them, maintaining Passed and p between calls. If Search’ returns false we
conclude that ψ � ϕ does not hold; otherwise p is a valid and tight bound.
It is important though, that c is reset as soon as ψ starts to hold, i.e., when
computing successors, the reachability checker must first compute the action
successors, then perform a restricted delay under ¬ψ (i.e., delay(S,¬ψ)), then
reset c and invoke the liveness checker on the subset actually satisfying ψ, and
then continue with an unrestricted delay operation as usual. With this approach,
c accurately captures the time between ψ holding and ϕ holding.

5 Experiments

We have implemented a prototype of the above algorithms in the most recent
development build of Uppaal. The prototype is limited to state formula over
locations and integer variables, thus simplifying the implementation of the re-
stricted delay operation. In the following, we describe experimental results for
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Liveness Reachability
Instance A♦≤p A♦ E♦ Total Binary DF w/o Extrap.
rand0000 23,1s 2.0s 0.5s 2.5s 3.5s 10.7 1.8s
rand0010 31.0s 2.8s 0.7s 3.5s 5.1s 14.0s 3.2s
rand0020 31.5s 2.4s 0.5s 2.9s 4.1s 14.9s 0.9s
rand0030 19.6s 1.4s 0.4s 1.8s 2.6s 9.1s 0.9s
rand0040 22.6s 2.0s 0.6s 2.6s 4.3s 10.4s 2.9s
rand0050 24.6s 1.5s 0.3s 1.8s 2.4s 11.4s 0.7s
rand0060 24.2s 1.6s 1.8s 3.4s 14.2s 11.3s 1.9s
rand0070 2.8 0.5s 0.6s 1.1s 4.4s 1.3s 1.3s
rand0080 29.6s 1.9s 0.4s 2.3s 3.2s 14.0s 1.0s
rand0090 20.6s 1.7s 0.4s 2.1s 2.9s 9.4s 1.2s
rand0100 17.1s 1.3s 0.3s 1.6s 2.6s 7.7s 1.3s

t1 t2 t3

t4 t5

t6

[4, 9] [1, 2] [5, 13]

[2, 8] [1, 1]

[4, 6]

Fig. 6. 11 instances of task graphs with 100 task running on 2 machines using fixed
priority scheduling. The experiments were conducted on a 1.3GHz Pentium M with
512MB memory.

both the bounded liveness property, A♦≤pϕ, and the bounded response or leads-
to property, A�(ψ =⇒ A♦≤pϕ), also denoted ψ �≤p ϕ.

We test the bounded liveness property on the task graph problem and the
bounded response property on the train gate problem. A task graph is a directed
acyclic graph where the nodes represent tasks and the arcs represent dependen-
cies among the tasks in the sense that a task is released when all parents have
finished executing. The right side of Fig. 6 depicts a task graph with 6 tasks.
Now, the task graph scheduling problem is, given a number of processor and
an execution time for each task, find a non-preemptive schedule that minimises
the total execution time while respecting all precedence constraints. In order to
perform WCET analysis on task graphs, we choose a fixed scheduling strategy,
in this case fixed priorities, and assign to each task an execution time interval
giving best and worst case execution times. This means that the system keeps a
priority queue with available tasks and whenever the last dependency of a task
finishes execution, that task is added to the queue. We can then synthesise p for
the property A♦≤p “all tasks finished” on the system. In other words, using the
scheduling strategy, what is the latest time when all tasks are finished.

In the first five columns of Figure 6 we compare the two approaches presented
in this paper to the approach of [11]. The experiments have been conducted
on 11 task graph instances with 100 tasks from the standard task graph set,
[12]. Column 1 displays the results for the parameterized liveness algorithm of
Figure 4 and columns 2 and 3 provide the execution time of checking the liveness
property and running the parameterized reachability algorithm of Figure 1 and
summed in column 4. Column 5 gives the results for the binary search approach
presented in [11] and were performed by searching between the upper bound of
assuming no parallelism and the lower bound of full parallelism.

The results in Fig. 6 clearly indicate that the reachability-based algorithm,
even when the verification time of the A♦ property is added, outperforms the
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parameterized liveness algorithm. For most of the instances, the difference is
approximately an order of magnitude.

Furthermore, the parameterized reachability approach also outperforms the bi-
nary searchmethodof [11].Actually, the execution timeof theparameterized reach-
ability algorithm is comparable to the execution time of a single model checking
problem of the binary search approach, thus making it a clear improvement for us-
ing model checkers to synthesize parameters for bounded liveness problems.

The major difference between the parameterized liveness algorithm and the
parameterized reachability algorithm is that the former is based on depth-first
search while the latter on breadth-first. In order investigate whether this differ-
ence can explain the difference in performance of the two algorithms, column 6
of Figure 6 displays the performance of the parameterized reachability algorithm
using depth-first search instead of breadth-first. The results show that there is,
roughly, a factor two difference between the depth-first reachability algorithm
and the parameterized liveness algorithm indicating that the depth-first strategy
of the parameterized liveness algorithm is responsible for the worse performance.

Finally, column 7 of Figure 6 gives the execution times for the problems with-
out implementing the extrapolation introduced in Definition 4. By comparing
these results with those of column 3 it is clear that performing the extrapolation
operation significantly improves performance of the parameterized reachability
algorithm up to a factor of four.

For verifying the bounded leads-to property �≤p we use the train gate con-
troller example as introduced in Section 1. The right of Fig. 7 depicts a timed
automata of a train for the train gate controller system. A train initially starts in
the Safe location. At any point in time, the train can move to the Appr location,
indicating that the train is approaching the gate. If nothing happens within ten
time units, the train can move to the Cross location, indicating that the train
is passing the gate. However, if the train receives a message to stop it proceeds
to the Stop location. Here, the train waits until it receives a notification that
it is allowed to proceed, it then moves to the Start location and further to the
Cross location within a given time interval. As stated in Section 1, an important

Trains �≤p �
4 0.2s 0.06s
5 0.4s 0.2s
6 3.8s 1.3s
7 25.7s 9.3s
8 268.1s 88.7s

Safe

Stop

Cross
x<=5

Appr
x<=20

Start
x<= 15

x>=10

x=0

x<=10 &&
e==id

stop?
x=0

x>=3

leave!

e=id,
x=0

appr!

e=id,
x=0 x>=7

x=0

e==id
go?

x=0

Fig. 7. 5 instances of the train gate controller. The experiments were conducted on a
2.6GHz Pentium4 with 2GB memory.
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property to verify is that whenever a train approaches it is eventually granted
permission to cross, i.e Train.Appr�Train.Cross. However, knowing that a train
will eventually pass might, in practice, be unimportant if we do not know the
longest waiting time a train can experience.

The table in Fig. 7 shows experimental results for instances of the train gate
controller with five to eight trains. The experiments compare the running time
of verifying the leads-to property (�) versus the bounded leads-to property
(�≤p). The results show that the penalty for verifying �≤p and synthesising
the parameter p is approximately a factor four as opposed to verifying �.

6 Conclusions

In this paper we have contributed results on efficient zone-based parameter syn-
thesis for time bounded liveness in timed automata. We have presented two
different approaches to the synthesis, one based on reduction to reachability
analysis and one based on a modified and extended version of the algorithm
for unbounded liveness checking. We have demonstrated the usefulness of the
analysis via two case studies. The experimental results showed (not quite unex-
pected) that the reachability based approach is much faster than the approach
based on liveness checking and also faster than the binary search approach pre-
sented in [11]. It is slightly more surprising that running an unbounded liveness
analysis and the reachability-based synthesis is more efficient than using the
modified liveness algorithm for synthesizing the parameter directly. The exper-
iments indicate that the reason for the difference in performance is the fact
that the parameterized liveness algorithm uses a depth-first search, whereas
the reachability-based approach uses a breadth-first strategy, since changing the
reachability-based algorithm to use depth-first search provides similar results to
the liveness-based approach. Thus, the parameterized liveness algorithm could
benefit from a breadth-first type implementation as opposed to depth-first. Fur-
thermore, we have provided an extrapolation operation for the algorithm and
shown its efficiency through experiments.

There is still room for improvement in the algorithms. Analogous to our work
in [6], it is possible to prune the search if an upper bound on the remaining time
for reaching the goal condition can be provided (either by the user or derived
from the model). Also, any guiding towards the most expensive goal state can
be used to quickly obtain good estimates of p, thus making it possible to prune
more states.

As our experimental investigation showed the reachability based approach to
be significantly faster, it might be a good idea to also use it for time bounded
leads-to synthesis. This is possible when ψ � ϕ is known to hold for a given
model; the approach is similar to the one described in Section 4, except that
instead of invoking the liveness-based algorithm for every state satisfying ψ we
invoke the reachability-based algorithm.

Finally, we leave it for further work to extend the time bounded liveness
synthesis for timed automata to cost bounded liveness synthesis for priced timed
automata.
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One of the prominent methods for program verification is that of model checking
[CES86, QS82]. In the last decade there has been an extensive research effort in or-
der to extend the applicability of model checking to systems with infinite state spaces.
There are at least two reasons why a system may be infinite-state:

– A system may operate on data structures with unbounded domains. Examples in-
clude real-valued clocks in timed automata [AD94], stacks in push-down automata
[BEM97], queues in communicating processes [AJ96], counters in counter ma-
chines, etc.

– A system can also be infinite-state because it is parameterized. This means that the
description of the system is parameterized by the number of components inside the
system. In such a case, we would like to verify correctness of the system regardless
of the number of processes.

We consider systems which contain both sources of infiniteness; namely parameterized
systems of processes each of which behaves as a timed automaton.

Parameterized verification has recently received a lot of attention. One of the earliest
works for model checking of parameterized systems was reported by German and Sistla
[GS92]. The paper considers systems consisting of an unbounded number of finite-state
processes, and reduces the problem to a corresponding one for Vector Addition Systems
with States, a model which is computationally equivalent to Petri nets.

Another important line of research in this area is that of Regular Model Checking.
Regular model checking was advocated by the paper [KMM+01] as a uniform frame-
work for the analysis of parameterized systems. The idea of regular model checking
is to perform symbolic reachability analysis, using regular sets as a symbolic repre-
sentation of the state space of the parameterized system. Examples of parameterized
systems which can be analyzed in this manner are systems consisting of homoge-
neous finite-state processes connected in linear, ring-formed, or tree-like topologies
[AJNS04, ALdR05, BT02, BLW03].

We consider verifying safety properties for Timed Networks (TNs) [AJ03]: systems
consisting of an arbitrary set of timed automata. Such systems embody both of the two
reasons for being infinite-state: they use an infinite data structure (namely clocks which
can assume values from the set of real numbers), and they are parameterized in allowing
an arbitrary set of processes. TNs cannot be analyzed within earlier frameworks for
parameterized verification, since the individual components are no longer finite-state
processes.

There are several examples of protocols which can be modelled as TNs. For instance,
Fischer’s protocol [SBM92] achieves mutual exclusion among an arbitrary set of timed
processes. This protocol, together with other protocols, such as the Lynch-Shavit proto-
col [LS92] and the Phillips audio control protocol [BGK+96], are designed to operate
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correctly regardless of the number of participants. Therefore, parameterized verification
is relevant in order to prove correctness of the entire family in one step.

We will consider a hierarchy of TNs defined by the number of clocks allowed inside
each timed automaton. First, we consider single-clock TNs in which each process is
restricted to operate on one clock. Despite this restriction, a single-clock TN operates
on an unbounded number of clocks, and hence its behaviour cannot be captured by that
of a timed automaton [AD94]. Therefore, it cannot be analyzed through existing tools
for timed automata such as KRONOS and UPPAAL. We present a symbolic algorithm
for verifying safety properties for single clock TNs. The symbolic representation we use
is a variant of that of zones widely used in tools for model checking timed automata. The
difference is that, in our case, all variables of the zone are existentially quantified. As an
example, we use our algorithm to verify parameterized versions of Fischer’s protocol
and the Lynch-Shavit protocol (i.e., we show their correctness regardless of the number
of participating processes).

On the other hand, there are many protocols in the literature which can be mod-
elled as TNs where each of the timed automata has more than one clock. For instance,
the Phillips audio protocol has two clocks per process. Also, the system described in
[MT01] consists of an arbitrary number of nodes, each of which is connected to a set of
LANs. Each node maintains timers to keep track of sending and receiving of messages
from other nodes connected to the same set of LANs. In a similar way to Fischer’s
protocol, it is clearly relevant to ask whether we can verify correctness of the protocol
in [BGK+96] regardless of the number of senders, or the protocol in [MT01] regard-
less of the number of nodes. The question is then whether the decidability result can
be extended form single-clock systems to multi-clock systems. We answer this ques-
tion negatively [ADM04a]. In fact, we show that two-clock TNs are Turing-powerful,
implying undecidability of all non-trivial verification problems.

Finally, we consider TNs which operate on the discrete time domain. In this case, we
show that safety properties can be checked regardless on the number of clocks inside
each component.

Considering the undecidability result for the dense-time case, we also study re-
stricted classes of TNs [ADM04b]:

– Open TNs in which only strict inequalities are allowed on clock values. We show
that undecidability is maintained in this case.

– Closed TNs in which only non-strict inequalities are allowed on clock values. In
a similar manner to discrete TNs, we show that the problem becomes decidable
regardless of the number of clocks inside each process

– Robust TNs. Using the robust semantics, a computation is accepted only if all neigh-
bouring computations are also accepted. We show that undecidability is maintained
in the case of robust TNs.
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Abstract. The timed automaton framework of Alur and Dill is a nat-
ural choice for the specification of partially synchronous distributed sys-
tems (systems which have only partial information about timing, e.g.,
only an upper bound on the message delay). The past has shown that
verification of these systems by model checking usually is very difficult.
The present paper demonstrates that an agreement algorithm of Attiya
et al, which falls into a – for model checkers – particularly problematic
subclass of partially synchronous distributed systems, can easily be mod-
eled with the Uppaal model checker, and that it is possible to analyze
some interesting and non-trivial instances with reasonable computational
resources. Although existing techniques are used, this is an interesting
case study in its own right that adds to the existing body of experience.
Furthermore, the agreement algorithm has not been formally verified
before to the author’s knowledge.

1 Introduction

Distributed systems are in general hard to understand and to reason about due
to their complexity and inherent non-determinism. That is why formal models
play an important role in the design of these systems: one can specify the system
and its properties in an unambiguous and precise way, and it enables a formal
correctness proof. The I/O-automata of Lynch and Tuttle provide a general
formal modeling framework for distributed systems [1, 2, 3]. Although the models
and proofs in this framework can be very general (e.g., parameterized by the
number of processes or the network topology), the proofs require – as usual – a
lot of human effort.

Model checking provides a more automated, albeit less general way of proving
the correctness of systems [4]. The approach requires the construction of a model
of the system and the specification of its correctness properties. A model checker
then automatically computes whether the model satisfies the properties or not.
The power of model checkers is that they are relatively easy to use compared
to manual verification techniques or theorem provers, but they also have some
clear drawbacks. In general only instances of the system can be verified (i.e., the
� Supported by the European Community Project IST-2001-35304 Ametist (Ad-

vanced Methods for Timed Systems), http://ametist.cs.utwente.nl/.
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algorithm can be verified for 3 processes, but not for n processes). Furthermore,
model checking suffers from the state space explosion problem: the number of
states grows exponentially in the number of system components. This often
renders the verification of realistic systems impossible.

A class of distributed systems for which model checking has yielded no ap-
parent successes is the subclass of partially synchronous systems in which (i)
message delay is bounded by some constant, and (ii) many messages can be in
transit simultaneously. In the partially synchronous model, system components
have some information about timing, although the information might not be
exact. It lies between the extremes of the synchronous model (the processes take
steps simultaneously) on one end and the asynchronous model (the processes take
steps in an arbitrary order and at arbitrary relative speeds) on the other end [3].
The timed automata framework of Alur and Dill [5] is a natural choice for the
specification of partially synchronous systems (as is the Timed I/O-automaton
framework [6], which, however, does not support model checking). Verification
of the above mentioned subclass of “difficult” partially synchronous systems by
model checking, however, is often very difficult since every message needs its own
clock to model the bounds on message delivery time. This is disastrous since the
state space of a timed automaton grows exponentially in the number of clocks.
Moreover, if messages may get lost or message delivery is unordered, then on
top of that also the discrete part of the model explodes rapidly.

Many realistic algorithms and protocols fall into the class of “difficult” par-
tially synchronous systems. Examples include the sliding window protocol for the
reliable transmission of data over unreliable channels [7, 8], a protocol to mon-
itor the presence of network nodes [9, 10, 11], and the ZeroConf protocol whose
purpose is to dynamically configure IPv4 link-local addresses [12, 13]. Further-
more, the agreement algorithm described in [14] (see also Chapter 25 of [3]) also
is a partially synchronous system that is difficult from the perspective of model
checking. The analysis of this algorithm with the Uppaal model checker is the
subject of the present paper. The main contribution consists of the formal veri-
fication of some non-trivial instances of the algorithm, which has not been done
before to the author’s knowledge. Although standard modeling and verification
techniques are used, the case study is interesting in its own right, and increases
the existing body of case-study experience. Independently of the present work,
Leslie Lamport has also analyzed a distributed algorithm that falls into the class
of difficult partially synchronous systems as defined above [15].

The remainder of this paper is structured as follows. The timed automaton
framework and the Uppaal model checker are very briefly introduced in Section
2. Section 3 then presents an informal description of the distributed algorithm
of [14], which consists of two parts: a timeout task and a main task. Section 4
describes the Uppaal model that is used to verify the timeout task. A model for
the parallel composition of the timeout task and the main task is proposed in
Section 5. Two properties of the timeout task that have been verified in Section
4 are used to reduce the complexity of this latter model. Finally, Section 6
discusses the present work. The Uppaal models from this paper are available at
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http://www.cs.ru.nl/ita/publications/papers/martijnh/. Note that the
Uppaal development version 3.5.7 has been used.

2 Timed Automata

This section provides a very brief overview of timed automata and their seman-
tics, and of the Uppaal tool, which is a model checker for timed automata. The
reader is referred to [16] and [17] for more details.

Timed automata are finite automata that are extended with real valued clock
variables [5]. Let X be a set of clock variables, then the set Φ(X) of clock
constraints φ is defined by the grammar φ := x ∼ c |φ1∧φ2, where x ∈ X , c ∈ N,
and ∼∈ {<,≤,=,≥, >}. A clock interpretation ν for a set X is a mapping from
X to R+, where R+ denotes the set of positive real numbers including zero. A
clock interpretation ν for X satisfies a clock constraint φ over X , denoted by
ν |= φ, if and only if φ evaluates to true with the values for the clocks given by ν.
For δ ∈ R+, ν + δ denotes the clock interpretation which maps every clock x to
the value ν(x) + δ. For a set Y ⊆ X , ν[Y := 0] denotes the clock interpretation
for X which assigns 0 to each x ∈ Y and agrees with ν over the rest of the clocks.
We let Γ (X) denote the set of all clock interpretations for X .

A timed automaton then is a tuple (L, l0, Σ,X, I, E), where L is a finite set
of locations, l0 ∈ L is the initial location, Σ is a finite set of labels, X is a finite
set of clocks, I is a mapping that labels each location l ∈ L with some clock
constraint in Φ(X) (the location invariant) and E ⊆ L×Σ×Φ(X)×2X×L is a set
of edges. An edge (l, a, φ, λ, l′) represents a transition from location l to location
l′ on the symbol a. The clock constraint φ specifies when the edge is enabled
and the set λ ⊆ X gives the clocks to be reset with this edge. The semantics of a
timed automaton (L, l0, Σ,X, I, E) is defined by associating a transition system
with it. A state is a pair (l, ν), where l ∈ L, and ν ∈ Γ (X) such that ν |= I(l).
The initial state is (l0, ν0), where ν0(x) = 0 for all x ∈ X . There are two types
of transitions (let δ ∈ R+ and let a ∈ Σ). First, ((l, ν), (l, ν + δ)) is a δ-delay
transition iff ν+δ′ |= I(l) for all 0 ≤ δ′ ≤ δ. Second, ((l, ν), (l′, ν′)) is an a-action
transition iff an edge (l, a, φ, λ, l′) exists such that ν |= φ, ν′ = ν[λ := 0] and
ν′ |= I(l′). Note that location invariants can be used to specify progress, and
that they can cause time deadlocks.

The transition system of a timed automaton is infinite due to the real val-
ued clocks. The region and zone constructions, however, are finite abstractions
that preserve Timed Computation Tree Logic (TCTL) formulas and a subset of
TCTL formulas (most notably reachability) respectively [18, 19]. This enables
the application of finite state model checking techniques as implemented, for
instance, by the Uppaal tool.

The Uppaal modeling language extends the basic timed automata as de-
fined above with bounded integer variables and binary blocking (CCS style) syn-
chronization. Systems are modeled as a set of communicating timed automata.
The Uppaal tool supports simulation of the model and the verification of
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reachability and invariant properties. The question whether a state satisfying φ
is reachable can be formalized as EF(φ). The question whether φ holds for all
reachable states is formalized as AG(φ). If a reachability property holds or an
invariant property does not hold, then Uppaal can provide a run that proves
this. This run can be replayed in the simulator, which is very useful for debugging
purposes.

3 Description of the Algorithm

This section presents an informal description of an algorithm that solves the
problem of fault-tolerant distributed agreement in a partially synchronous setting
[14] (see also Chapter 25 of [3]). A system of n processes, denoted by p1, ..., pn, is
considered, where each process is given an input value and at most f processes
may fail. Each process that does not fail must eventually (termination) choose
a decision value such that no two processes decide differently (agreement), and
if any process decides for v, then this has been the input value of some process
(validity)1. The process’s computation steps are atomic and take no time, and
two consecutive computation steps of a non-faulty process are separated c1 to c2
time units. The processes can communicate by sending messages to each other.
The message delay is bounded by d time units, and message delivery is unordered.
Furthermore, messages can get neither lost nor duplicated. The constant D is
defined as d+c2. As mentioned above, f out of the n processes may fail. A failure
may occur at any time, and if a process fails at some point, then an arbitrary
subset of the messages that would have been sent in the next computation step,
is sent. No further messages are sent by a failed process. It is convenient to
regard the algorithm, which is run by every process, as the merge of a timeout
task and a main task, such that a process’s computation step consists of a step
of the timeout task followed by a step of the main task.

3.1 Description of the Timeout Task

The goal of the timeout task is to maintain the running state of all other pro-
cesses. To this end, every process pj broadcasts an (alive , j) message in every
computation step. If process pi has run for sufficiently many computation steps
without receiving an (alive , j) message, then it assumes that pj halted either by
decision or by failure2. Figure 1 contains the description of a computation step
of the timeout task of process pi in precondition-effect style.

The boolean variable blocked is used by the main task to stop the timeout
task. Initially, this boolean is false. It is set to true if the process decides. The
other state components are a set halted ⊆ {1, ..., n}, initially ∅, and for every

1 This is required to avoid trivial solutions in which every process always decides for
some predetermined constant value.

2 The message complexity of this algorithm is quite high. Recently, an alternative
with an adjustable “probing load” for each node has been proposed in [9], further
analyzed in [10], and improved in [11].
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Precondition:
¬ blocked

Effect:
broadcast((alive,i))
for j := 1 to n do

counter(j) := counter(j) + 1
if (alive,j ) ∈ buff then

remove (alive,j ) from buff
counter(j) := 0

else if counter(j) ≥ � D
c1

�+1 then
add j to halted

od

Fig. 1. The timeout task for process pi

j ∈ {1, ..., n} a counter counter(j), initially set to −1. Additionally, every process
has a message buffer buff (a set), initially ∅. Two properties of the timeout task
have been proven in [14].

A1 If any pi adds j to halted at time t, then pj halts, and every message sent
from pj to pi is delivered strictly before time t.

A2 If pj halts at time t, then every pi either halts or adds j to halted by time
t + T , where T = D + c2 · ($D

c1
%+ 1).

These two properties are used in [14] for the correctness proof of the complete
algorithm. In this paper, these two properties are first mechanically verified for
a number of instances of the algorithm. Consequently, they are used to make an
abstract model of the complete algorithm in Section 5.

3.2 Description of the Main Task

Figure 2 contains the description of a computation step of the main task of
process pi in precondition-effect style. Apart from the input value vi and the state
components used by the timeout task, there is one additional state component,
namely the round counter r, initially zero. The input values are assumed to be
either zero or one for simplicity3.

Each process tries to decide in each round. Note that a process may decide for
0 only in even rounds, and for 1 only in odd rounds. Furthermore, if a process
fails to decide in round r, then it broadcasts r before going to round r + 1. On
the other hand, if a process decides in round r, it broadcasts r+1 before halting.
In order for a process to decide in a round r ≥ 1, it ensures that it has received
the message r − 1 from all non-halted processes, and no message r from any
process. Three main results that are obtained in [14] are the following.

3 An extension to an arbitrary input domain is discussed in [14].
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Precondition:
r = 0 ∧ vi = 1

Effect:
broadcast((0,i))
r := 1

Precondition:
r = 0 ∧ vi = 0

Effect:
broadcast((1,i))
decide(0)

Precondition:
r ≥ 1 ∧ ∃j (r, j) ∈ buff

Effect:
broadcast((r, i))
r := r + 1

Precondition:
r ≥ 1 ∧ ∀

j /∈halted (r − 1, j) ∈ buff ∧
¬∃j (r, j) ∈ buff

Effect:
broadcast((r + 1, i))
decide(r mod 2)

Fig. 2. The main task for process pi

M1 (Agreement, Lemma 5.9 of [14]). No two processes decide on different values.
M2 (Validity, Lemma 5.10 of [14]). If process pi decides on n, then n = vj for

some process j.
M3 (Termination, Theorem 5.1 of [14]). The upper bound on the time to reach

agreement equals (2f − 1)D + max {T, 3D}.

These results are mechanically verified in Section 5 for a number of non-trivial
instances of the algorithm.

4 Verification of the Timeout Task

4.1 Modeling the Timeout Task

Note that every process runs the same algorithm, and that the timeout parts of
different processes do not interfere with each other. Therefore, only two processes
are considered, say pi and pj . By the same argument, only one direction of the
timeout task is considered: pi (Observer) keeps track of the running state of pj

(Process).
Figure 3 shows the Uppaal automaton of the merge of the timeout task and

abstract main task of Process (the only functionality of the main task is to
halt). It has one local clock x to keep track of the time between two consecutive
computation steps. The Process automaton must spend exactly c2 time units
in the initial location init before it takes the transition to location comp (the
reason for this is explained below). It then immediately either fails or does a
computation step. Failure of Process is modeled by the pair of edges to halted,
which models the non-deterministic choice of the subset of messages to send.
The computation step is modeled by the self-loop and by the upper transition
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initial
x<=c2

comp
x<=c2

halted

x==c2

x>=c1
b!
x=0

b!
x=0

x=0

Fig. 3. The Process automaton

idle sending
x<=d

turn()
b?
active[id]=true,
x=0

alive=true, t=0, 
active[id]=false

Fig. 4. The broadcast template

to halted (a decision transition that blocks the timeout task)4. Note that x is
reset on every edge to halted for verification purposes.

As required by the algorithm, Process broadcasts an alive message at each
computation step. This action is modeled by a b-synchronization, which acti-
vates an instance of the broadcast template, shown in Figure 4. This template
is parameterized with a constant id in order to give each instance a unique
identifier. Clearly, the Uppaal model must ensure output enabledness of Pro-
cess : it must be able to broadcast the alive message when it wants to. Since
the maximal number of simultaneous broadcasts equals $ d

c1
%+ 2, this many in-

stances of the broadcast template must be present in the model. The guard
turn() and the assignments to active[id] implement a trick to reduce the reach-
able state space by partially exploiting the symmetry among the broadcast in-
stances5. After a b-synchronization, a broadcast automaton may spend at most
d time units in location sending, which is modeled using the local clock x. The
actual message delivery is modeled by the assignment alive=true on the transi-
tion back to idle. The reset of the global clock t is used for the verification of
property A1.

Figure 5 shows the automaton for the Observer, which is the composition of
an abstract main task (whose only purpose again is to halt) and the “receiv-
ing part” of the timeout task. It has a local integer variable cnt, initialized to
−1, and a local clock x. Furthermore, the boolean has halted models whether
Process ∈ haltedObserver . The Observer automaton must first spend c2 time units
in the initial location before taking the edge to location comp. Then, it must im-
mediately either do a computation step or fail. The computation step is modeled
by the self-loop and by the upper transition to halted. The procedure update()
updates the variables cnt, has halted and alive as specified in Figure 6. Failure
is modeled by the lower edge to halted.

Both the Observer automaton and the Process automaton must first spend
c2 time units in their initial location. This is a modeling trick to fulfill the
requirement from [14] that “every process has a computation or failure event

4 A straightforward model contains a third edge to halted with the guard x ≥ c1, the
synchronization b!, and the reset x = 0. Such an edge is, however, “covered” by the
present upper edge to halted and can therefore be left out.

5 A next release of Uppaal will hopefully support symmetry reduction, which can
automatically exploit the symmetry among broadcast automata [20].
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initial
x<=c2

comp
x<=c2

halted

x==c2

x>=c1
update(),
x=0

x>=c1
update()

Fig. 5. The Observer automaton

void update ()
{
if (!has_halted)

cnt++;
if (alive)
{

alive = false;
cnt = 0;

}
has_halted = cnt>=(D/c1)+1;

}

Fig. 6. The update() function

at time 0”. I.e., our model starts at time −c2. (If Uppaal would allow the
initialization of a clock to any natural number, then both initial locations can
be removed.)

4.2 Verifying the Timeout Task

Property A1 is translated to the following invariant property of the Uppaal
model (a broadcast automaton with identifier i is denoted by bi):

AG
(

has halted −→
(Process .halted ∧ ∀i bi.idle ∧ t > 0)

)
(1)

The state property ∀i bi.idle ∧ t > 0 ensures that all messages from Process
to Observer are delivered strictly before the conclusion of Observer that Process
halted. Property A2 is translated as follows:

AG

⎛⎝ (Process .halted ∧ Process .x > T )
−→

(Observer .halted ∨ has halted)

⎞⎠ (2)

The branching time nature of A2 is specified by this invariance property due
to the structure of our model: Process .x measures the time that has been elapsed
since Process arrived in the location halted.

Properties (1) and (2) have been verified for the following parameter values6:

– c1 = 1, c2 = 1 and d ∈ {0− 5},
– c1 = 1, c2 = 2 and d ∈ {0− 5}, and
– c1 = 9, c2 = 10 and d ∈ {5, 9− 11, 15, 20, 50}.

Each of the above instances could be verified within 5 minutes using at most
25 MB of memory.

6 A 3.4 GHz Pentium 4 machine with 2 GB of main memory running Fedora Core 4
has been used for all measurements. The tool memtime (available via the Uppaal
website http://www.uppaal.com/) has been used to measure the time and memory
consumption.
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5 Verification of the Algorithm

The Uppaal model of the parallel composition of the main task and the timeout
task, which is used to verify properties M1–M3, is presented in this section. It is
assumed that every process receives an input by time zero (synchronous start),
since otherwise the state space becomes too large to handle interesting instances.
If the timeout task is modeled explicitly, then many alive messages must be
sent every computation step, which results in an overly complex model. Using
properties A1 and A2, however, the explicit sending of alive messages can be
abstracted away.

5.1 Modeling the Algorithm

Figure 7 shows the Uppaal template of the behavior of the algorithm. This
template is parameterized with two constants, namely its unique identifier id,
and a boolean mayFail which indicates whether this process may fail7.

timeout

finished

main
initial
x<=c2

update
x<=T

wait
x<=c2

failCount()<f && mayFail
b[id]!
bv[id]=failValue(), 
failed[id]=true, reset()

to_fin[id]?
x>=c1
to[id]!
x=0

stop[id]!

allInformed()

pre4()
b[id]!
bv[id]=r[id]+1,
dec[id]=r[id]%2,
reset()

pre2()
b[id]!
bv[id]=1,
dec[id]=0,
reset()

pre1() b[id]! bv[id]=0, r[id]=1

pre3() b[id]! bv[id]=r[id], r[id]++,
cleanMB()

!(pre1() || pre2() || pre3() || pre4())

i:int[0,1]
x==c2
v[id]=i,
t=0

Fig. 7. The process template

Similar to the model of the timeout task, a process first waits c2 time units in
its initial location. Then, it non-deterministically chooses an input value in {0, 1}
on the edge to wait. The global clock t is used to measure the running time of
the algorithm, and is only reset on this edge. Then it either starts a computation
step or fails. A computation step first activates the timeout automaton of the
process, which is described below, on the edge to timeout. When the timeout
automaton finishes (it may have updated the halted set), the edge to main is
taken. Then there are five possibilities: one of the four preconditions of the main
task transitions is satisfied (note that they are all mutually exclusive), or none
of them is satisfied. In the first case, the specified actions are taken, and in
the second case nothing is done. The committed locations (those with a “C”

7 Again, this is a trick that exploits the symmetry of processes to reduce the reachable
state space.
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inside) specify that a computation step is atomic and that it takes no time (if
a committed location is active, then no delay is allowed and the next action
transition must involve a committed component). Note that broadcasting the
message (m, i) is achieved by assigning m to bv[id] on an edge with a b[id] -
synchronization. Figure 8 shows the functions that implement the preconditions
of the four transitions of the main task (see also Figure 2).

bool pre1 ()
{

return r[id]==0 && v[id]==1;
}

bool pre3 ()
{

if (r[id]<=0)
return false;

for (j:pid_t)
if (buff[id][r[id]][j])

return true;
return false;

}

bool pre2 ()
{
return r[id]==0 && v[id]==0;

}

bool pre4 ()
{
if (r[id]<=0 || pre3())

return false;
for (j:pid_t)

if (!halted[id][j] &&
!buff[id][r[id]-1][j])

return false;
return true;

}

Fig. 8. The preconditions for the four transitions of the main task

A failure is modeled by the edge from wait to update. This edge is only enabled
if fewer than f failures already have occurred. The failValue() function computes
the value that would have been broadcast during the next computation step.

In location update the process has halted either by decision or by failure.
It can stay there for a maximum of T time units and it provides a stop[id] -
synchronization. This is used for the abstraction of the timeout task, which is
explained below. When all other processes have been informed that this process
has halted (allInformed() returns true), then the transition to location finished
is enabled.

Similar to the model of the timeout task, the broadcasts are modeled by
instances of the broadcast template which is shown in Figure 9.

The template is parameterized with two constants, namely id, the identi-
fier of the process automaton this broadcast automaton belongs to, and bid,
an identifier that is unique among the other broadcast automata of process au-

sending
x<=didle

bv[id]<0
bv[id]=0

bv[id]>=0
initialize(),
x=0

turn()
b[id]?

allDelivered()
reset()

i:pid_t
shouldDeliver(i)
deliver(i)

Fig. 9. The broadcast template
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tomaton id. The broadcast automaton is started – if it is its turn8 – with a
b[id] -synchronization. If the value of bv[id] is smaller than zero, then nothing
is done (this is convenient for modeling in the process template). In location
sending it starts delivering the message that has been passed to it in bv[id]. The
shouldDeliver() and allDelivered() functions ensure that it delivers all messages
on time, but only if necessary. I.e., it is not useful to deliver a message to a pro-
cess that already has halted, since that message is never used; it only increases
the reachable state space.

Each process automaton has a separate timeout automaton that has two
functions. First, it is activated at the beginning of each computation step of the
process it belongs to in order to update the halted set of the process. Second,
it serves as a test automaton to ensure that the process it belongs to is output
enabled9. The timeout template is shown in Figure 10. It has one parameter,
namely the constant id, which refers to the process it belongs to.

error

to[id]?

i:pid_t
mayAdd(i)
stop[i]?
halted[id][i]=true

allActive()
b[id]?

to_fin[id]!

Fig. 10. The timeout template

When a timeout process is activated, it non-deterministically picks a subset of
processes that have halted and adds them to the halted set. Here properties A1
and A2 of the timeout task come in. The function mayAdd() checks for a given
process j whether all messages from j to this process have been delivered. If not,
then it may not add j to halted (property A1). Furthermore, the synchronization
over the channel stop[j] must be enabled. In Figure 7 can be seen that this is
only the case for the T time units after j has halted (property A2). But if this
process has not added j to halted by that time, then j cannot proceed to location
finished (in that case allInformed() returns false), with a time deadlock as result.
This is exactly the case when T − pi.x < c1 − pj .x for processes i and j. We
believe that this abstraction of the timeout task is safe, i.e., every admissible
computation path in the original model of [14] can be mapped to an equivalent
path in the Uppaal model.

The second function of the timeout template is implemented by the edge to
the error location. This location is reachable if the process wants to broadcast
and all its broadcast automata are active already. In a correct model, the error
location therefore is not reachable.

8 Similarly as in the model of the timeout task in the previous section, the guard
turn() partially exploits the symmetry between the broadcast automata of a single
process to reduce the reachable state space.

9 In this model, the number of necessary broadcast automata is no longer easily to
determine. Therefore, an explicit check is useful.
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5.2 Verifying the Algorithm

Properties M1–M3 are translated as follows (where U is the upper bound on the
running time of the protocol as specified before).

Agreement: AG
(
∀i,j deci ≥ 0 ∧ decj ≥ 0 −→ deci = decj

)
(3)

Validity: AG
(
∀i deci ≥ 0 −→ ∃j deci = vj

)
(4)

Termination: AG
(
(∃i pi.wait) −→ t ≤ U

)
(5)

The following properties are health checks to ensure that (i) the processes
are output enabled, and (ii) the only deadlocks in the model are those that are
expected.

AG
(
¬∃i Ti.error

)
(6)

AG
(
deadlock −→ (∀i pi.finished ∨ ∃i,j pj.x− pi.x > T − c1)

)
(7)

The properties (3)–(6) have been verified (using the convex-hull approxima-
tion of Uppaal with a breadth-first search order) for the following parameter
values6:

– n = 3, f ∈ {0, 1}, c1 = 1, c2 = 1, and d ∈ {0, 1, 2, 3, 5, 10},
– n = 3, f ∈ {0, 1}, c1 = 1, c2 = 2, and d ∈ {0, 1, 2, 3, 5, 10}, and
– n = 3, f ∈ {0, 1}, c1 = 9, c2 = 10, and d ∈ {5, 9− 11, 15, 20, 50, 100}.

Each of the above instances could be verified within 11 minutes using at most
1014 MB of memory. Property (7) has been verified for a subset of the above
parameter values, namely for the models with the three smallest values for d
in each item. This property is more difficult to model check since the convex-
hull approximation is not useful and it involves the deadlock state property,
which disables Uppaal’s LU-abstraction algorithm [21] (a less efficient one is
used instead), and which is computationally quite complex due to the symbolic
representation of states.

6 Conclusions

Despite the fact that model checkers are in general quite easy to use (in the
sense that their learning curve is not so steep as for instance the one of theorem
provers), making a good model still is difficult. The algorithm that has been an-
alyzed in this paper can easily be modeled “literally”. The message complexity
then, however, is huge due to the many broadcasts of alive messages, with the
result that model checking interesting instances becomes impossible. This has
been solved by a non-trivial abstraction of the timeout task. Ideally of course,
model checkers can even handle such “naive” models. Fortunately, much research
still is aimed at improving these tools. For instance, the Uppaal model checker is
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getting more and more mature, both w.r.t. usability as efficiency. An example of
the former is the recent addition of a C-like language. This makes the modeling
of the agreement protocol much easier, and makes the model more efficient. A
loop over an array, as for instance used in the pre3() and pre4() functions shown
in Figure 8, can now be encoded with a C-like function instead of using a cycle of
committed locations and/or an auxiliary variable. This saves the allocation and
deallocation of intermediate states and possibly a state variable. Other examples
of efficiency improvements of Uppaal are enhancements like symmetry reduction
[20] and the sweep line method [22], which are planned to be added to Uppaal
soon. Especially symmetry reduction would greatly benefit distributed systems,
which often exhibit full symmetry. Furthermore, recent research also focuses on
distributing Uppaal, which may even give a super-linear speed-up [23, 24].

It seems that the class of partially synchronous systems, which is notoriously
difficult from the perspective of model checking, now slowly comes within reach
of present model checking tools. Therefore, these tools have the potential to
play a valuable role in the design of these systems. They may provide valuable
early feedback on subtle design errors and hint at system invariants that can
subsequently be used in the general correctness proof.

Acknowledgements. The author thanks Frits Vaandrager and Jozef Hooman
for valuable discussions and comments on earlier versions of the present paper.
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Abstract. Timed automata (TA) are a widely used model for real-time systems.
Several tools are dedicated to this model, and they mostly implement a forward
analysis for checking reachability properties. Though diagonal constraints do not
add expressive power to classical TA, the standard forward analysis algorithm is
not correct for this model. In this paper we survey several approaches to han-
dle diagonal constraints and propose a refinement-based method for patching the
usual algorithm: erroneous traces found by the classical algorithm are analyzed,
and used for refining the model.

1 Introduction

Model checking. The development of reactive, critical or embedded systems requires
the use of formal verification methods. Model checking consists in verifying automati-
cally that a model fulfills its specification and has been widely and successfully applied
to industrial systems. It is often necessary to consider quantitative informations on time
elapsing in both the model description and the property to be verified. Timed automata
(TA) have been proposed by Alur and Dill [AD94] to model such real-time systems.
Since then, many theoretical results have been obtained: decidability of reachability
properties [AD94], model checking for timed temporal logics [ACD93, HNSY94], etc.

Reachability in timed automata. Decidability of reachability properties in timed au-
tomata is based on the construction of the so-called region automaton, which finitely
abstracts behaviours of timed automata [AD94]. However in practice this construction
is not implemented, and symbolic on-the-fly algorithms have been proposed to over-
come the complexity blow-up induced by timing constraints. These procedures are of-
ten based on zones and DBMs to represent the sets of clock valuations. In particular, an
on-the-fly forward reachability algorithm using zones has been developed and imple-
mented in tools like UPPAAL [LPY97] or KRONOS [DOTY96]. Even if timed automata
form a decidable class, the exact forward computation may not terminate. To overcome
this problem, an abstraction operator over zones needs to be used [DT98].

Guards in timed automata. Classical timed automata [AD94] consider only simple
constraints x ∼ c and diagonal constraints x−y ∼ c. Surprisingly the standard forward
reachability algorithm based on zones has been recently shown to be correct only for
TA with simple constraints, but not always correct for TA using diagonal constraints
[Bou03, BY03]: locations of TA with diagonal constraints may be found reachable by
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the algorithm while they are not! This problem comes from the use of the abstraction
operator over zones.

From [AD94, BDGP98] we know that diagonal constraints can be removed from
TA. This gives a procedure for verifying TA with diagonal constraints: construct a TA
without diagonal constraints and then apply the standard forward analysis algorithm.
However, removing diagonal constraints induces a blowup in the size of the model (it
is exponential in the number of diagonal constraints). This is clearly too expensive to
be used on real-life systems. Moreover diagonal constraints do not always raise wrong
diagnosis (only few examples can be found in the literature) and a systematic removal
of all diagonal constraints may therefore not be pertinent.

Our contribution. In this paper we propose a refinement-based method which does not
systematically remove all diagonal constraints. The core of our method is an algorithm
which analyzes an erroneous trace provided by the classical algorithm and selects a set
G of diagonal constraints which causes the error. We then remove diagonal constraints
of G from the model and re-run the classical algorithm on the refined model.

Outline of the paper. In Section 2 we introduce basic notions of timed automata, for-
ward reachability analysis, zones and abstractions. In Section 3 we survey several ap-
proaches to handle diagonal constraints and propose a refinement-based method for
patching the usual algorithm. In section 4 we describe our algorithm for selecting perti-
nent diagonal constraints. For this, we introduce an extension of the DBM data structure
which allows us to store information on the dependence of computed zones w.r.t. diag-
onal constraints. We prove correctness and progress of our refinement-based method.

Proofs are omitted due to lack of space, and can be found in [BLR05].

2 Forward Analysis of Timed Automata

Basic definitions, timed automata. We consider as time domain T the set Q+ of non-
negative rationals or the set R+ of non-negative reals. We consider a finite set X of
variables, called clocks. A clock valuation over X is a mapping v : X → T that assigns
to each clock a time value. The set of all clock valuations over X is denoted TX . Let
t ∈ T, the valuation v + t is defined by (v + t)(x) = v(x) + t, ∀x ∈ X . For a subset r
of X , we denote by [r ← 0]v the valuation such that for each x ∈ r, ([r ← 0]v)(x) = 0
and for each x ∈ X \ r, ([r ← 0]v)(x) = v(x).

Given a set of clocks X , we introduce two sets of clock constraints over X . The most
general one, denoted by C(X), is defined by the grammar “g ::= x ∼ c | x − y ∼ c |
g ∧ g | tt” where x, y ∈ X , c ∈ Z, ∼ ∈ {≤,=,≥} and tt stands for true. We also
use the proper subset Cdf(X) of diagonal-free constraints where the constraints of the
form x − y ∼ c (called diagonal constraints) are not allowed. To simplify, we do not
consider strict inequalities, but everything presented in this paper extends easily to strict
inequalities. We write v |= g when the clock valuation v satisfies the clock constraint g.
A clock constraint is said k-bounded whenever it only uses constraints with constants
between −k and +k.

A timed automaton (TA for short) over T is a tuple A = (Σ,X,L, �0, T ), where Σ
is a finite alphabet of actions, X is a finite set of clocks, L is a finite set of locations,
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�0 ∈ L is the initial location, and T ⊆ L × [C(X) × Σ × 2X ] × L is a finite set
of edges (or transitions). If only diagonal-free constraints are used on transitions, the
timed automaton is said to be diagonal-free. A state of A is a pair 〈�, v〉 where � ∈ L
is the current location and v ∈ TX represents the current values of clocks. The initial
state is 〈�0, v0〉 where v0 is the valuation mapping all clocks in X to 0. The semantics
of A can be described as an infinite transition system whose states are states of A and
whose transitions correspond to time elapsing followed by an enabled edge in A. More
precisely, from a state 〈�, v〉, it is possible to reach a state 〈�′, v′〉 if there exist δ ∈ T

and (�, g, a, r, �′) ∈ T such that v+δ |= g and v′ = [r ← 0](v+δ). Now we can define
a run of A as a finite sequence of such steps, it is denoted:

〈�0, v0〉
g1,a1,r1−−−−−→

t1
〈�1, v1〉

g2,a2,r2−−−−−→
t2

. . .
gp,ap,rp−−−−−→

tp

〈�p, vp〉

where ti is the amount of time elapsed since state 〈�0, v0〉—the duration of time elapsing
in the i-th location is then δi = ti+1 − ti. In the following we abstract away names of
actions because we will only consider reachability properties.

Reachability in timed automata. Reachability is a fundamental problem in verifica-
tion. For timed automata, it is stated as follows: given a timed automaton A and a set
of locations Lf , does there exist a run leading to some state 〈�, v〉, with l ∈ Lf? This
problem has been proved decidable (and PSPACE-complete) by Alur and Dill [AD94].
The proof is based on the well-known region construction: the (infinite) set of states of
A is partitioned into a finite set of regions such that two states which belong to the same
region satisfy the same reachability properties.

Algorithms for reachability. In practice the region construction is not used to check
reachability properties because the number of regions is too high: it is not abstracted
enough to be applied successfully over non-trivial systems. For this purpose, symbolic
and on-the-fly algorithms have been proposed and implemented [LPY97]. They use the
constraints of C(X) as symbolic representations for the sets of valuations. In this frame-
work such a constraint is called a zone and is usually implemented with DBMs (Dif-
ference Bound Matrices [BM83, Dil90]). Backward analysis raises no real problem but
forward analysis is more convenient for verifying timed automata with useful features
like integer variables. Given a zone Z and an edge e = (�, g, a, r, �′), Post(Z, e) denotes
the zone corresponding to the set {[r ← 0](v+t) ∈ TX | v ∈ Z, t ≥ 0, and v+t |= g}.
Symbolic transitions can then be defined over symbolic states (�, Z) using the Post(·)
operator. The symbolic graph may however be infinite, because constants used in zones
may grow for ever. The forward computation does not terminate in general. To avoid
this phenomenon, an abstraction operator, called the k-extrapolation (k is a constant
supposed to be greater than the maximal constant occurring in A), is used at each iter-
ation: Extrak(Z) denotes the smallest zone containing Z and defined by a k-bounded
clock constraint. Together with inclusion checking (line 9. of the algorithm), this clearly
entails the termination of the classical procedure described as Algorithm FRA (see Al-
gorithm 1). If a location of Lf is found as reachable, Algorithm FRA returns a witness
trace (i.e. a sequence of consecutive edges).

Completeness and correctness. Obviously, as the k-extrapolation of zones is an over-
approximation, this algorithm is complete: any reachable location is found as reachable
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Algorithm 1. Forward Reachability Analysis – FRA
1. Algorithm FRA (A: timed automaton; Lf : set of final locations) {
2. Define k as the maximal constant appearing in A;
3. Visited := ∅; (
 Visited stores the visited states 
)
4. Waiting := {(�0,Extrak(Z0))}; (
 Z0 = {v0} 
)
5. Repeat
6. Get and Remove (�,Z) from Waiting;
7. If � ∈ Lf (
 � is a final location 
)
8. then {Return “Yes” and a witness trace;}
9. else {If there is no (�,Z′) ∈ Visited s.t. Z ⊆ Z′ (
 inclusion checking 
)

10. then {Visited := Visited ∪ {(�,Z)};
11. Succ := {(�′,Extrak(Post(Z, e))) | e edge from � to �′};
12. Waiting := Waiting ∪ Succ;}}
13. Until (Waiting = ∅);
14. Return “No”; }

by the algorithm. The correctness (“only reachable locations are found as reachable by
the algorithm”) is more difficult to state. In [Bou03, BY03], Algorithm FRA has been
proved correct for diagonal-free timed automata and it has been shown to be not correct
for timed automata using also diagonal constraints. Figure 1 illustrates this correctness
problem: Algorithm FRA sees location “Error” of A as reachable whereas it is not
(see [BLR05] for details). This problem is not due to the choice of constant k or to the
definition of Extrak(·): if we replace the operator Extrak(·) by any operator ExtraK(·)
for some K or even by any abstraction operator Abs such that for every zone Z , Abs(Z)
is a zone containing Z , and {Abs(Z) | Z zone} is finite (to ensure termination of the
forward analysis algorithm), then the algorithm will not be correct and will announce
state “Error” as reachable in A (see [Bou04]).

Extrapolation and zones. As explained above, zones are a suitable symbolic repre-
sentation for clock valuations but contrary to what is sometimes assumed, zones are

x3 ≤ 3

{x3, x1} := 0
x2 = 3
x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2,
x1 := 0

x2 = 2
x2 := 0

x1 = 3
x1 := 0

x2 ≤ x1 + 1
x4 ≥ x3 + 2

Error
A0

Fig. 1. Automaton A
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not a symbolic way of handling regions: there is indeed no simple correspondence be-
tween zones and (sets of) regions, which explains the correctness problem encountered
in Algorithm FRA. For example, in the diagonal-free case, there exist k-bounded zones
which are strictly included in a region. Concerning models with diagonal constraints,
one can compute (using Algorithm FRA) a zone Z such that there is a region R with
Z ∩R = ∅ while Extrak(Z) ∩R �= ∅. Such a phenomenon appears for example in the
automaton of Figure 1. This emphasizes the fact that we have always to be careful when
handling regions and zones, and to separately consider methods based on regions and
methods based on zones. This seems related to abstraction problems encountered in the
verification of infinite-state systems, and we will use classical refinement techniques
[CGJ+00] to solve our problem.

3 Methods for Handling Diagonal Constraints

Our aim is to propose an efficient forward algorithm based on zones for checking reach-
ability properties in timed automata with diagonal constraints. We can distinguish two
main approaches. First there are the ones based on a systematic removal of diagonal
constraints: the original TA is replaced by a diagonal-free TA and a standard algorithm
is then applied. Secondly there are methods in which diagonal constraints are treated
only when they induce spurious traces: if the constraints generate no problem, then these
methods provide no extra-cost compared with the standard reachability algorithm. This
last criterion is very important because there are only few problematic cases.

3.1 Systematic Removal of Diagonal Constraints

It is well known that given a TA A with diagonal constraints, it is possible to build a
diagonal-free TA A′ s.t. A and A′ verify the same reachability properties [BDGP98].
This construction combined with the classical reachability algorithm for diagonal-free
TA provides a correct forward algorithm for TA, and such a method avoids the expensive
region automaton construction. Nevertheless removing diagonal constraints entails a
complexity blow-up: if n is the number of diagonal constraints in A, the size of A′

is in O(|A| · 2n). This approach is clearly too expensive, especially if we assume that
diagonal constraints mostly raise no error.

Intuitively, if we want to avoid problems with diagonal constraints, it seems sufficient
to ensure the following property: ∀Z computed, ∀g diagonal, Z ⊆ g∨Z ⊆ ¬g (∗). The
method proposed by Bengtsson and Yi in [BY04] relies on this criterion: after each
application of the extrapolation operator, the zone which is obtained is split so that
Property (∗) holds. Like the construction of [BDGP98], this solution suffers from an
exponential blow-up of the number of zones visited during the computation. Indeed, the
complexity of Algorithm FRA crucially depends on the number of zones which need to
be handled, and with both two previous methods, the number of zones is multiplied by
2n, where n is the number of diagonal constraints of the initial automaton.

Finally we could also restrict the removal of the two previous methods to the active
diagonal constraints in the current control location, following the idea proposed for
clocks by Daws and Yovine in [DY96], and generalized in [BBFL03].
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Note that all these methods induce a complexity blow-up even if there is no false-
positive execution. Indeed, timed automata with diagonal constraints are exponentially
more succinct than diagonal-free timed automata [BC05].

3.2 Target Methods for Spurious Traces

In this case, the aim is to develop special heuristics when a false-positive is found.
This would permit to have algorithms as efficient as the standard one when there is no
problem with diagonal constraints.

First note that given a symbolic execution, it is easy to check whether it is consistent
(i.e. whether a corresponding run actually exists in A) or if it is a false positive. This
can be done by using a forward computation with no extrapolation (the finiteness of the
execution ensures termination).

Therefore a natural (but wrong!) method could be: (1) use the standard reachability
algorithm, (2) if a location is found reachable through a symbolic execution ρ, check
whether ρ is a false positive, (3) if ρ is a false positive, run further the algorithm. But this
procedure is not complete: some reachable locations may be missed by this algorithm.
For example, assume that a false positive contains a symbolic state (�, Z), and assume
that later in the algorithm, a symbolic state (�, Z ′) is computed with Z ′ ⊆ Z . Because of
the inclusion checking, Algorithm FRA will stop the computation, whereas it is possible
that a valid run goes through symbolic state (�, Z ′): inclusion between extrapolated
zones does not imply inclusion between exact zones (see [BLR05] for an example). On
the other hand, removing states of the false positive trace from the list of visited states
could prevent termination of the computation.

We now consider two methods that extend this idea in order to have a complete and
correct algorithm.

Combining forward and backward computation. Since diagonal constraints are cor-
rectly handled with the backward computation, a possible approach consists in combin-
ing forward and backward computations. This algorithm works in two steps. First one
performs a forward analysis: If a location is found reachable with a correct execution,
the algorithm stops; If a false-positive execution is found, it is stored in the visited states
list and the algorithm continues. At the end of the first step, either a correct execution
has been found (and the answer is YES), or no spurious execution has been found (and
the answer is NO), otherwise the second step begins. It consists in a backward compu-
tation from the target states of the spurious executions. This backward computation is
restricted to the set of visited states computed in the first step. Such a method would
work, but it has an important drawback: the backward computation does not handle ad-
ditional data: in UPPAAL for ex., it is possible to add integer variables and operations
over these data, they can be treated in forward computations but not in backward. This
restricts a lot the applicability of the method.

A refinement-based and pure forward method. We now propose to use a refinement-
based method (illustrated on Figure 2): (a) use the standard algorithm over a model
M , (b) when a false positive ρ is found, refine the model in such a way that ρ will be
correctly treated in the refined model M ′, and (c) restart the procedure over M ′. Such
a methodology has been proposed in [CGJ+00] and has been applied to many kinds of
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infinite-state systems (constraint-based programs [HJMS02], hybrid systems [ADI03],
etc). In our case, a refinement step will consist in removing some diagonal constraints of
the initial automaton. Termination is clearly ensured if at least one diagonal constraint
is selected at each iteration. As removing diagonal constraints is expensive, the key
idea is to refine w.r.t. diagonal constraints only if it is necessary: when a false positive
ρ is found, we want to find as few diagonal constraints as possible such that if we
remove these diagonal constraints in the model, then the same false positive will not
be found again by Algorithm FRA. Selecting pertinent diagonal constraints is the core
of our algorithm and will be presented in the next section. We now briefly present the
refinement step of our algorithm.

new A

FRA(A)No!
witness

trace

consistent
trace ?refinement

selection of
diagonals Yes!

A

no yes

no yes

Fig. 2. Refinement-based method

Refinement w.r.t. a constraint g. Given a TA A = (Σ,X,L, �0, T ) and a diagonal
constraint g = (x− y ∼ c), we consider the method proposed in [BDGP98] to remove
g from A: the truth value of g is encoded into locations of the refined automaton Ag .
This boolean value is not changed by time elapsing, it can only be modified by a reset
of x or y. Locations of Ag are pairs (�, ε) with � ∈ L and ε ∈ {*,⊥}, and edges are
directly derived from those of A: they either relate locations with the same or opposite
truth value depending on the reset of the corresponding edge in A, and the occurrences
of the guard x− y ∼ c are just replaced by their truth value in the current location. This
construction can be directly extended to a set of diagonal constraints. If G is a finite set
of diagonal constraints andA a TA, we note Split(A, G) the TA which is obtained after
refinement w.r.t. the constraints in G.

4 Diagonal Constraint Analysis

We assume a timed automatonA = (Σ,X,L, �0, T ) is given, and we set n the cardinal
of set X . Let k be an integer greater than the maximal constant occurring in A. Let
Diag(A) be the set of diagonal constraints occurring in the guards ofA. In this section,
we propose an algorithm which, given an erroneous trace ρ, selects a set of diagonal
guards G ⊆ Diag(A) which satisfies the two following conditions: (i) G �= ∅, and
(ii) in Split(A, G), the erroneous trace ρ doesn’t exist anymore. Condition (i) ensures
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termination of the refinement method (as Diag(A) is a finite set), and condition (ii) is
a progress condition: a given erroneous path will never be found twice.

Of course, the set of all diagonal guards appearing along the erroneous trace satisfies
both conditions. But our aim is to select as few guards as possible. Our algorithm builds
a possibly much smaller set of guards, and it does not increase the complexity: it is
linear in the length of the run, like the consistency checking.

4.1 Erroneous Traces

Algorithm FRA returns a witness trace whenever a final state is found as reachable (a
trace ρ is a sequence of consecutive edges of A). Such a trace is erroneous whenever
no real run follows the same edges as the trace. To formalize this notion, we associate
with a trace ρ two zones: the zone Ze

ρ which corresponds to all valuations which are
reachable following trace ρ, and Za

ρ which corresponds to all valuations which are found
as reachable when applying the abstract symbolic computation 1 along ρ. We can define
these two families of zones inductively as follows. For the empty trace (denoted ε),
Ze

ε = Za
ε = {v0}, and if ρ is a trace and α an edge such that ρ.α is also a trace, we have

Ze
ρ.α = Post(Ze

ρ , α), and Za
ρ.α = Extrak(Post(Za

ρ , α)). Note that the zones defined
here only depend on ρ and not on automaton A. A trace ρ is said erroneous (we also
say that it is a false positive) for A when Ze

ρ = ∅ whereas Za
ρ �= ∅.

Algorithm FRA is correct for diagonal-free timed automata. Thus, if ρ is an erro-
neous trace, there must exist some diagonal guard along ρ which is the cause of the
error. One hope could be that when the exact and the abstract computations disagree,
the last guard encountered is diagonal (as it is the case for the automaton in Figure 1),
and that it is sufficient to refineA w.r.t. this guard to get rid of the erroneous trace. This
is however not the case: this guard can be a simple non diagonal constraint. Automaton
in Figure 3 illustrates this point (A0 refers to the automaton depicted on Figure 1): the
last transition, whose guard is non-diagonal, leads to an empty exact computation while
the abstract one is not empty. Understanding the role of diagonal constraints along an
erroneous trace thus requires a precise analysis of the whole execution.

ErrorA0

x2 ≤ 1x4 − x3 ≥ 2

Fig. 3. The problem occurs on the simple constraint x2 ≤ 1

4.2 Propagation of Constraints, the EDBM Data Structure

For analyzing an erroneous trace ρ which is output by Algorithm FRA, we will use
a forward computation. We want to understand precisely the effect of each diagonal
constraint and therefore we will study the differences between the zones Ze

− and Za
−.

We won’t directly reason on these zones but on their representations with DBMs. A

1 e stands for exact and a for abstract.
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DBM M = (mi,j)0≤i,j≤n is a square matrix of size n + 1 (where n is the number
of clocks) whose entries belong to Z ∪ {∞}. Its semantics is the zone �M� = {v ∈
TX | ∀i, j xi − xj ≤ mi,j} (we use a clock x0 assumed to be equal to 0 in order
to represent constraints xi ∼ c as a difference constraint xi − x0 ∼ c). To have a
non-ambiguous representation of zones by DBMs, we need to compute normal forms:
it consists in applying Floyd’s Algorithm for shortest paths over the implicit weighted
oriented graph described by such a matrix (see [Dil90, Bou04] for classical results over
DBMs).

As we use a shortest paths algorithm, the values of the entries depend not only on the
last guard we intersect but also on other entries. Just as it is done in Floyd’s Algorithm
in order to compute all shortest paths, we will store the “dependence” of each entry.

For example, if the current zone is x2 ≤ 5, and if the next transition of the trace is
g,{x2}−−−−−→ where g is x1 − x2 ≤ 3, the next zone which is computed is x1 ≤ 8 ∧ x2 =

0 ∧ x1 − x2 ≤ 8, and we will store that the constraints x1 ≤ 8 and x1 − x2 ≤ 8
depend on g (because they are inherited from the intersection of g with x2 ≤ 5). On
the contrary, the constraint x2 = 0 does not depend on g (it is solely due to the reset of
clock x2). For storing such a dependence information, we need to enrich the DBMs, we
thus define the EDBM data structure:

Definition 1 (Extended DBM — EDBM). An extended DBM is a pair (M,S) of
square matrices of size n + 1 where M is a classical DBM and S is a matrix whose
entries are non-empty sets of subsets of Diag(A).

Let (M,S) be an EDBM with M = (mi,j)i,j=0...n and S = (Si,j)i,j=0...n. This EDBM
represents the same zone as M , and the set Si,j informally contains all diagonal guards
on which entry mi,j may depend. In a weighted graph, it may exist several shortest paths
between two vertices. The same holds for dependence sets: the set Si,j may contain sev-
eral subsets of Diag(A), each one contains sufficient information on the dependence of
mi,j w.r.t. diagonal guards. Each set G ∈ Si,j will be a candidate set for the refinement
step whenever entry mi,j is detected as non correct. We store every possible set so as to
choose the minimal (i.e. smallest) one at the end.

Operations on EDBMs. Given a constraint g, we use Set(g) to denote {{g}} if g
is diagonal and {∅} otherwise. We first define the two following basic operations on
non-empty sets of sets:

(i) S1 ·∨S2 = {G | G ∈ S1 ∪ S2}
(ii) S1 .∧S2 = {G1 ∪G2 | G1 ∈ S1 and G2 ∈ S2}

We can now extend classical operations on DBMs (needed by Algorithm FRA) to
EDBMs. We consider two EDBMs (M,S) and (M ′,S′) with M = (mi,j)i,j=0...n,
S = (Si,j)i,j=0...n, M ′ = (m′

i,j)i,j=0...n, and S′ = (S′
i,j)i,j=0...n. We assume in

addition that the DBM M is in normal form.

Future. (M ′,S′) =
−−−−→
(M,S) whenever:

(m′
i,j ,S′

i,j) =

{
(∞, {∅}) if j = 0
(mi,j ,Si,j) otherwise
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Reset of clock xk. (M ′,S′) = [xk ← 0](M,S) whenever

(m′
i,j ,S′

i,j) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(0, {∅}) if i, j ∈ {0, k}
(mi,0,Si,0) if j = k,

(m0,j ,S0,j) if i = k,

(mi,j ,Si,j) otherwise

Intersection with g = (xk − xl ≤ c). (M ′,S′) = Inter((M,S), g) whenever:

(m′
i,j ,S′

i,j) =

⎧⎪⎪⎨⎪⎪⎩
(mi,j ,Si,j) if mi,j < m

(mi,j ,Si,j ·∨S) if mi,j = m

(m,S) if mi,j > m

where m = mi,k + c + ml,j and S = Si,k .∧Set(g) .∧Sl,j

Note that the intersection operation contains a normalization step in order to tighten
every entry w.r.t. the new constraint g. In fact, the resulting DBM M ′ is in normal form
after each of these three operations. Following UPPAAL implementation of forward
analysis [BBLP05], these operations are sufficient for computing the exact reachable
zones along a trace. Computing successors w.r.t. an edge

g,r−−−→ is done by computing
the future, then computing successively the intersection with all atomic guards forming
g2, and finally computing resets of all clocks in r:

�
∧p

j=1gj ,r
−−−−−−→ �′ is transformed into �

Fut.�−→ ∩g1�−→ · · · ∩gp�−→ r←0�−→ �′

From now on, we decompose in this way every transition and then the whole trace
ρ into elementary steps (αi)i=1...p (even if it is an abuse of notation, we write ρ =
α1 . . . αp) such that each step is either an intersection with an atomic guard, a reset
of clock, or a future operation. This decomposition allows us to consider each atomic
guard successively and then to detect the atomic guard causing the error (emptiness
is of course due to an intersection). Computing the symbolic execution along ρ then
corresponds to applying successively each operation αi (for i = 1 . . . p). We keep pre-
vious notations Ze

ρ and Za
ρ , and we denote (Mρ,Sρ) the EDBM obtained after having

applied successively operations αi to the EDBM (Mε,Sε) where each entry of Mε is 0,
whereas each entry of Sε is {∅}. Obviously, for every trace ρ, �Mρ� = Ze

ρ . To ease the
reading, we write Mρ(i, j) (resp. Sρ(i, j)) the entry (i, j) of the matrix Mρ (resp. Sρ).
We are now ready for presenting our algorithm which selects diagonal guards for the
refinement step.

4.3 Correctness and Progress of the Algorithm

Presentation of the algorithm. Our algorithm for selecting diagonal guards along an
erroneous trace is presented as Algorithm 2 and is called Select guards. At the i-th
step of the iteration, the EDBM stored in (M ′,S′) is the EDBM (Mρi ,Sρi) with ρi =
α1 . . . αi−1. As ρ is an erroneous trace, there exists some 1 ≤ i ≤ p such that �Mρi� �=

2 An atomic guard is a guard of the form x ∼ c or x − y ∼ c with ∼ ∈ {≤, ≥}.
3 k or l is possibly 0.
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Algorithm 2. Selection of diagonal guards – Select guards
1. Algorithm Select guards (ρ = α1 . . . αp an erroneous trace in A) {
2. Initialize EDBMs (M, S) and (M ′, S ′) to (Mε, Sε);
3. i := 0;
4. Repeat
5. i := i + 1;
6. (M, S) := (M ′, S ′);
7. If αi is the future operation, (M ′, S ′) :=

−−−−→
(M, S);

8. If αi is the intersection with gi , (M ′, S ′) := Inter((M,S), gi);
9. If αi is the reset of clock x, (M ′, S ′) := [x ← 0](M, S);

10. Until �M ′� = ∅
11. Return Sl,k

.∧Set(gi); } (
 the last αi is a guard gi of the form xk − xl ≤ c 
)3

∅ whereas �Mρi.αi� = ∅. The elementary step αi is an intersection with some guard
gi = (xk − xl ≤ c) and we get that Mρi(l, k) + c < 0 (otherwise �Mρi.αi� would not
be empty). Note that this inequality does not hold for the abstract computation because
Za

ρi.αi
�= ∅. As a consequence, we get that the entry (l, k) is not correct in the abstract

computation (i.e. in Za
ρi

). That’s why Algorithm Select guards outputs the dependence
set Sρi(l, k), and adds the guard gi whenever it is a diagonal guard. The refinement step
will split the original automaton along all diagonals in some G ∈ Sρ′ (l, k) .∧Set(gi).
Note that adding gi is necessary: consider the automaton in Figure 3 in which the two
last transitions are switched; there is no diagonal guard before the last transition. We
will now prove correctness of this selection algorithm.

Correctness of the algorithm. If ρ is a trace, and G a subset of Diag(A), we denote
ρ[G ← tt] the trace where the transitions labelled by some g ∈ G are replaced by
a transition labelled by the constraint tt. Roughly, the first lemma states that diagonal
guards which are not selected by our algorithm are not involved in the computation of
the corresponding entry.

Lemma 1. Let A be a timed automaton, and ρ a trace in A. Consider a pair (i, j) and
a set of diagonal guards G.

If
(
∃G0 ∈ Sρ(i, j) s.t. G0 ∩G = ∅

)
then Mρ[G←tt](i, j) = Mρ(i, j).

Proof (Sketch). The proof can be done by induction on the length of the trace ρ. It relies
on the fact that all guards which may have been used for computing the current entry
have been selected. Therefore, other guards can be removed safely. "#

Our algorithm outputs a set of sets G of diagonal guards, each set G contains candidates
for splitting the original automaton during the refinement step. The following proposi-
tion states that if there is an erroneous trace in a timed automaton, then each set G
which is part of the output of our algorithm is non-empty. This proves correctness of
the refinement step: each time we need to refine, we will be able to do so.

Proposition 1. Let A be a timed automaton, and ρ an erroneous trace in A. Then
Select guards(ρ) does not contain the empty set.
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Proof. The proof is done by contradiction. Suppose this set contains the empty set.
Using the previous lemma, we can remove all diagonal constraints appearing along this
path and obtain an erroneous path which does not contain any diagonal constraint. This
contradicts the correctness of the algorithm in the non-diagonal case. "#

The following proposition states that any set G selected by our algorithm is pertinent
w.r.t. ρ. In the refined automaton Split(A, G), the guards of G have been removed, and
every location of A is split into 2|G| locations so as to encode the truth value of guards
in G. The trace ρ inA corresponds to a set of traces – denoted πA,G(ρ) – in Split(A, G).
The next proposition states that Algorithm FRA will not output as a witness trace any
ρ′ ∈ πA,G(ρ). This is formally expressed as follows:

Proposition 2. LetA be a TA, and ρ an erroneous trace inA. Let G ∈ Select guards(ρ)
and A′ = Split(A, G). For all ρ′ ∈ πA,G(ρ), the abstract computation in A′ for ρ′

leads to an empty state, i.e. Za
ρ′ = ∅

Proof. ρ = ρ1.α is an erroneous trace such that Ze
ρ1
�= ∅, Ze

ρ = ∅ while Za
ρ �= ∅.

Assume that the entry which is not correct in Za
ρ1

is (l, k). Algorithm Select guards
returns Sρ1(l, k) .∧Set(g) where g is the guard labelling α.

Now consider G = Diag(A)\G. Lemma 1 ensures that the trace ρ1[G ← tt]
leads in A to a zone with the same entry (l, k) via an exact forward computation:
Mρ1[G←tt](l, k) = Mρ1(l, k). Emptiness of Ze

ρ then implies emptiness of Ze
ρ[G←tt]

.

Let A1 be the timed automaton obtained from A by replacing any guard in G by
tt. The trace ρ[G ← tt] is a trace of A1 and it leads also to an empty zone, as for the
computation in A, because this depends only on the trace and not on the automaton.

Now let A2 be Split(A1, G). Any trace ρ2 in πA1,G(ρ[G ← tt]) leads, as A1 along
ρ[G ← tt], to an empty zone: Ze

ρ2
= Ze

ρ[G←tt]
= ∅. There is no more diagonal con-

straint in A2. Thus, the abstract forward computation along trace ρ2 leads also to an
empty zone: Za

ρ2
= ∅.

Clearly A2 accepts more runs than A′ = Split(A, G) because some guards have
been replaced by tt. This holds for the exact and the abstract computation. Any trace ρ′

in πA,G(ρ) thus leads to an empty zone in the abstract computation: Za
ρ′ = ∅. "#

The two propositions show the correctness of our algorithm for selecting diagonal
constraints.

4.4 Comments on the Method

When ρ is an erroneous trace, Select guards(ρ) may output several non-empty sets of
diagonal guards. For the refinement step, we can choose any such set. In particular, we
can choose the smallest one, so that the refinement is not too expensive.

The key point of the method we propose is the Select guards algorithm because it
may avoid the removal of all diagonal constraints. Note that our method is not formally
optimal in the sense that it is possible that refining w.r.t. a proper subset of the selected
set is sufficient to treat correctly the current trace. However, we may find such a subset
with an incremental test: add successively each selected guard until the erroneous trace
is eliminated (this procedure is linear in |ρ|). It is clearly more efficient than any method
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consisting in splitting every constraint in Diag(A), especially because most of the di-
agonal constraints do not raise wrong diagnosis. For example, as explained in [BY04],
they are very useful for modeling scheduling problems (see for example [FPY02]).
Such systems contain a lot of diagonal constraints4 but, as the clocks of these systems
are bounded, our algorithm will never find erroneous traces, and no refinement is needed
(for this class of models the classical forward algorithm FRA will be correct). Then a
systematic splitting is expensive and useless. In [BLR05], we give several examples of
computations of Algorithm Select guards.

The splitting step could be implemented in several ways and we could avoid building
explicitly Split(A, G). First we could consider on-the-fly techniques where the truth
of guards in G are stored using a vector of booleans. Another possibility could be to
modify the computation of Post operator in order to integrate the splitting of diagonal
constraints.

4.5 Related Work

Several refinement-based methods have already been proposed in the past for timed
systems [AIKY95, MRS02, Sor04] and more generally for hybrid systems [ADI03]. In
these works the verification process starts assuming there is no timing information in
the system, and then, when a spurious trace is found, the system is refined using relevant
constraints (or predicates) of this spurious trace. For timed systems, predicates which
are used for refining the model are predicates which separate regions, which ensures that
the refinement process stops. In those works, abstraction and refinement are used either
to avoid computing the regions or to compute the coarsest time-abstract bisimulation
[TY01] before verifying the system.

In our work, the aim and the techniques are different. We do not want to propose
a verification algorithm fully based on abstraction and refinement, but we want to use
the refinement paradigm for patching the classical forward analysis algorithm with no
over-cost when no spurious trace is detected. Indeed, this algorithm, which is for ex-
ample implemented in UPPAAL, has already proven its efficiency in many case studies.
Moreover, as this algorithm is correct for TA without diagonal constraints, we select
predicates only among the diagonal constraints of the TA we verify.

5 Conclusion

In this paper we have studied the role of diagonal constraints in a forward analysis
computation. We have described several approaches to handle diagonal constraints and
proposed a refinement-based purely forward method for verifying reachability proper-
ties of timed automata with diagonal constraints. As diagonal constraints do not always
raise wrong diagnosis, a systematic removal of all diagonal constraints appears as too
expensive, and a refinement-based learning from erroneous traces of the classical algo-
rithm seems more appropriate to patch the usual algorithm, as there will be no over-cost
if no spurious trace is found. We think that, in practice, the cost of this approach is lower

4 There are n2 diagonal constraints where n is the number of tasks to be scheduled.
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than the cost of the systematic removal of all diagonal constraints. As further develop-
ments, we would like to combine techniques we have proposed in this paper with more
efficient refinement-based methods, as the lazy abstraction approach of [HJMS02]. We
also plan to implement this method and to compare it with other approaches.
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Abstract. In this paper, we describe a new algorithm for the problem
of checking whether a real-time system has a Partially Clairvoyant sched-
ule (PCS). Existing algorithms for the PCS problem are predicated on
sequential quantifier elimination, i.e., the innermost quantifier is elimi-
nated first, followed by the next one and so on. Our technique is radi-
cally different in that the quantifiers in the schedulability specification
are eliminated in arbitrary fashion. We demonstrate the usefulness of
this technique by achieving significant performance improvement over a
wide range of inputs. Additionally, the analysis developed for the new
procedure may find applications in domains such as finite model theory
and classical logic.

1 Introduction

The design of Real-time systems mandates the appreciation of uncertainty in
problem parameters. A significant concern in the scheduling of jobs in real-time
systems is the non-constancy in their execution times. Consider a set of n, ordered
jobs, J = {J1, J2, . . . , Jn}, with start times {s1, s2, . . . , sn} and execution times
{e1, e2, . . . , en}. The execution time ei of job Ji is an interval-valued constant
[li, ei], i.e., during a run of the job set, ei can assume any value in the range
[li, ui] and is not known before the job has finished executing. The job set executes
repeatedly in the same order, in scheduling windows of length L. There exists
a set of relative timing constraints between pairs of jobs; the constraint set is
expressed through the system

A · [�s �e]T ≤ �b (1)

whereA is anm×2·n integralmatrix,�bis an integralm-vector,�s = [s1, s2, . . . , sn]T

is the start time vector of the jobs and �e = [e1, e2, . . . , en]T is the execution
time vector of the jobs. We only permit strict difference constraints between
� The research of this author was conducted in part at the Discrete Algorithms and
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job pairs. These constraints express the “relative distance” relationship between
pairs of jobs and are hence known as relative timing constraints. For instance,
the following types of constraints are permitted: (a) Job J3 starts within 3 units
of job J1 finishing: s3 ≤ s1 + e1 + 3, (b) Job J5 needs to wait at least 7 units
after the conclusion of job J2, to commence: s5 ≥ s2 + e2 + 7. Likewise, the
requirement that the sum of the start times of the jobs not exceed 10 units of
time is not a relative timing constraint. The job set is ordered, i.e., job J1 starts
and finishes before job J2, which in turn starts and finishes before job J3 and so
on; the ordering constraints, si + ei ≤ si+1, ∀i = 1, 2, . . . , n− 1, are part of the
constraint system.

In Partially Clairvoyant scheduling, the goal is to check whether a set of jobs,
subject to the constraints described by System (1), can be scheduled on the
time line, if the start time of a job may depend upon the execution times of
previously scheduled jobs. Accordingly, the schedulability predicate is:

∃s1∀e1 ∈ [l1, u1] ∃s2∀e2 ∈ [l2, u2] . . .∃sn∀en ∈ [ln, un]

A · [�s �e]T ≤ �b (2)

The Partially Clairvoyant Schedulability problem (PCS) is then concerned
with verifying the satisfiability of Predicate (2).

On rewriting the constraint system A · [�s �e]T ≤ �b as G ·�s + H · �e ≤ �b, we
observe that every row in G has precisely one +1 and one −1; the same is true
for H as well. Additionally, an entry in H is either equal to the corresponding
entry in G, or it is zero. In some ways, H is a “subset” of G. We call this
structure, the “standard” structure. Note that in the standard structure, each
universally quantified variable ei is associated with an existentially quantified
variable si. We say that ei corresponds to si.

2 Motivation and Related Work

Partially Clairvoyant scheduling (also called Parametric Scheduling) was intro-
duced in [GPS95], wherein the first polynomial time algorithm for the PCS
problem was proposed. This algorithm, which we shall refer to as the primal ap-
proach is based on quantifier elimination over a system of temporal constraints
and has a worst case time complexity of Θ(n3) and requires Θ(n3) space. A dual-
based approach (i.e., dual to the approach in [GPS95]), exploiting the network
structure of difference constraints was proposed in [Sub03]. The key idea used
in the design of the dual algorithm is the fact that a system of strict difference
constraints specified for a job set has a Partially Clairvoyant schedule, if and
only if the corresponding constraint network does not have a negative Partially
Clairvoyant cost cycle. The dual algorithm has the same worst case time com-
plexity as the approach in [GPS95]; however it is more space efficient in that
it can be implemented in Θ(n2) space. We point out that there has been no
attempt in the literature to formally study the empirical performance of algo-
rithms for Partially Clairvoyant Scheduling. The study in this paper is the first
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of its kind and plays an important role in the identification of practical issues
involved in algorithm implementation of quantifier elimination procedures. The
Arbitrary Dual algorithm has the same time and space complexity as the dual-
based approach, but it permits a lot of flexibility, insofar as eliminating variables
is concerned.

Given a quantifier string in which all the quantifiers are existential or all
the quantifiers are universal, the order of quantifier elimination is irrelevant.
However, in the presence of quantifier alternation, it is well known that the
order of quantifier elimination matters; indeed elimination procedures eliminate
the innermost variable first, followed by the variable preceding it and so on
[Wei97]. It is to be noted that the logic demanding this order requires that
the variables be discrete; to the best of our knowledge, the literature has not
considered whether quantifier elimination must be sequential, if the variables are
continuous. The work in this paper establishes that there exist non-trivial cases,
in which quantifier elimination can indeed be conducted in a non-sequential
fashion.

3 PCS Algorithms in the Literature

The primal algorithm has been describe and analyzed in detail in [GPS95] and
we refer the reader to that article, for the sake of saving space.

3.1 The Dual Algorithm

The dual approachproceeds, by constructing the constraint networkG =< V,R >
corresponding to a set of n jobs, with standard constraints imposed on their exe-
cution, where V is the set of vertices and R is the set of edges. G is constructed as
per the following rules:

(a) V =< s1, s2, . . . , sn >, i.e., one node for the start time of each job,
(b) For every constraint of the form: si + k ≤ sj , construct a Type I arc r

(1)
ij :

si � sj , with weight w
(1)
ij = −k,

(c) For every constraint of the form: si + ei ≤ sj + k, construct a Type II arc
r
(2)
ij : si � sj , with weight w

(2)
ij = k − ei,

(d) For every constraint of the form: si ≤ sj + ej + k, construct a Type III arc
r
(3)
ij : si � sj , with weight w

(3)
ij = ej + k,

(e) For every constraint of the form: si + ei ≤ sj + ej + k, construct a Type IV

arc r
(4)
ij : si � sj , with weight w

(4)
ij = ej − ei + k.

The constraint network that is thus constructed, is provided as input to Al-
gorithm (3.1). Algorithm (3.1) proceeds by eliminating one job after another
from the constraint set, till either a negative Partially Clairvoyant cost cycle
is discovered or all the jobs have been eliminated. In the former case it de-
clares the constraint set to be infeasible from the perspective of obtaining a
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Partially Clairvoyant schedule and in the latter case the constraint set is de-
clared feasible. Note that eliminating a job Ji from the constraint set corre-
sponds to eliminating the pair (si, ei) from the constraint network. The cor-
rectness of Algorithm (3.1) follows from 2 simple observations: (a) A Partially
Clairvoyant system of difference constraints is infeasible if and only if the corre-
sponding constraint network has a cycle of negative Partially Clairvoyant cost,
and (b) Algorithm (3.1) detects or preserves negative Partially Clairvoyant cost
cycles. Algorithm (3.3) computes the Partially Clairvoyant cost of a cycle.

Function Partially-Clairvoyant-Standard (G =< V, R >)
1: for (i = n down to 1) do
2: G =Eliminate-job (Ji, G).
3: end for
4: return(A Partially Clairvoyant schedule exists.)

Algorithm 3.1. The dual-based algorithm for Partially Clairvoyant Scheduling

4 The Arbitrary Dual Algorithm

In Algorithm (3.1), job Ji is eliminated before job Ji−1, ∀i = n, n − 1, . . . , 2;
indeed the ordered elimination was crucial in correctness proof in [Sub03]. On
the other hand, Algorithm (4.1) eliminates jobs from the constraint network in
arbitrary fashion.

As mentioned before, and as proved in [Sub03], a constraint system has a Par-
tially Clairvoyant schedule, if and only if the corresponding constraint network
does not have a Negative Partially Clairvoyant cost (NPCC) cycle. Accordingly,
our strategy to prove the correctness of Algorithm (4.1) consists of two parts:
Theorem (1) will focus on showing that Step (3) of the algorithm either preserves
or detects NPCC cycles, while Theorem (2) shows that Step (3) does not create
NPCC cycles, if none exist.

Theorem 1. Step (3) of Algorithm (4.1) preserves or detects NPCC cycles in
the constraint network G, i.e., if there exists a NPCC cycle, before the execution
of Step (3), then at the execution of Step (3) in Algorithm (4.1), either Step
(12) in Algorithm (4.2) is executed, or there exists a NPCC cost cycle, in the
constraint network that results.

Before providing a formal proof of Theorem (1), we briefly sketch the me-
chanics of the Arbitrary dual algorithm. Algorithm (4.1) chooses an arbitrary
sequence of jobs to be eliminated from the constraint network. We stress that
eliminating job Ji from the constraint network, involves the elimination of both
its start time si and execution time ei. Consequently, the elimination of Ji from
G preserves the relative timing constraint structure (“standard” structure) of
the constraint network, in that every edge between a pair of vertices in the new
network continues to represent a standard constraint between the corresponding
jobs. In other words, Algorithm (4.1) is incremental in nature.
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Algorithm 3.2. Eliminating job Ji from the constraint network

At the heart of the Elim-Arbitrary-Job() procedure, and therefore at that
of Algorithm (4.1), is the Determine-Feasibility() procedure. This procedure
takes as input a constraint network, having precisely 2 vertices and 2 edges and
checks whether there is a NPCC cycle in this network. It is important to note that
the function Determine-Feasibility() eliminates jobs in the correct order, i.e.,
the higher numbered job before the lower numbered job. Thus, the predicate

∃si∀ei ∈ [li, ui]∃sk∀ek ∈ [lk, uk] G

is checked in case (i < k); otherwise, we check the predicate

∃sk∀ek ∈ [lk, uk]∃si∀ei ∈ [li, ui] G

Function Eliminate-job (Ji, G =< V, R >)
1: Let Sin denote the set of edges that are directed into vertex si.
2: Let Sout denote the set of edges that are directed from vertex si.
3: {Note that edges of different types, between the same pair of vertices are treated

as distinct edges; in order to simplify the notation we do not explicitly mention the
types of edges.}

4: for (each edge rki ∈ Sin) do
5: Adjust wki to reflect the substitution ei = li
6: for (each edge rij ∈ Sout) do
7: Adjust wij to reflect the substitution ei = ui

8: Create a new edge r′

kj with cost w′

kj = wki + wij

9: if (k = j) then
10: {A cycle has been detected}
11: if (w′

kj < 0) then
12: return(A Partially Clairvoyant schedule does not exist).
13: else
14: Discard rkj . {Self-loops are deleted from the constraint network.}
15: continue
16: end if
17: end if
18: if (there exists an edge rkj in G of the same type as r′kj , having smaller weight)

then
19: Discard r′kj

20: else
21: {Either no edge rkj of the same type as r′kj existed, in which case, we assume

that there exists an edge with weight wkj = ∞, or the weight of the existing
edge was greater than w′

kj . In either case, r′kj replaces the existing edge.}
22: Set rkj = r′kj with weight wkj = w′

kj .
23: end if
24: end for
25: end for
26: Let G′ denote the new network after all the above changes have been carried out.
27: return(G′)
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Algorithm 3.3. Computing the Partially Clairvoyant cost of a simple, directed cycle

Function Arbitrary-Dual (G =< V, R >)
1: Consider an arbitrary permutation π of the set {1, 2, . . . , n}.
2: for (i = 1 down to n) do
3: G =Eliminate-Arbitrary-job (Jπ(i), G).
4: end for
5: return (A Partially Clairvoyant schedule exists.)

Algorithm 4.1. The Arbitrary Dual algorithm for Partially Clairvoyant Scheduling

In other words, for constraint networks having precisely 2 vertices and 2 edges,
we call Partially-Clairvoyant-Standard() to eliminate jobs in the correct
order; it follows from [Sub03], that Determine-Feasibility() returns (true) if
and only if the 2−vertex, 2−edge input constraint network G does not contain a
NPCC cycle. Note that the constraint network G that is input to Determine-
Feasibility() is an ordered, directed cycle of length 2.

Function Compute-Partially-Clairvoyant-Cost (C, {i1, i2, . . . , ik})

1: {C is a cycle on the vertices {i1, i2, . . . , ik} The list < i1, i2, . . . , ik > is a list
of vertex indices, with each ij ∈ {1, 2, . . . , n}, j = 1, 2, . . . , k. Without loss of
generality, we assume that i1 < i2 < . . . < ik.}

2: if (k = 2) then
3: {Since C is a simple cycle, there are precisely 2 vertices and 2 edges in C;

further, there is precisely one edge into vertex si2 and one edge into si1 . Adjust
weight wi2i1 to reflect the substitution ei2 = ui2 and weight wi1i2 to reflect the
substitution ei2 = li2 .}

4: Let cost = wi1i2 + wi2i1 .
5: Adjust cost to reflect the substitution ei1 = ui1 if cost is a decreasing function of

ei1 and ei1 = li1 otherwise. {It is important to note that if ei1 appears in cost,
it is either as ei1 or as −ei1 .}

6: return(cost)
7: else
8: {We eliminate sik

from the cycle.}
9: Let sip and siq denote the vertices in C to which sik

is connected; further, we
assume that the edges of C are sip � sik

and sik
� siq .

10: Adjust wipik
to reflect the substitution eik

= lik
and wikiq to reflect the substi-

tution eik
= uik

.
11: Create a new edge sip � siq having weight wipiq = wipik

+ wikiq .
12: {Since C is a cycle, there did not exist an edge from sip to siq prior to the above

step.}
13: Let C ′ denote the new cycle, thus created.
14: return(Compute-Partially-Clairvoyant-Cost (C, {i1, i2, . . . , ik−1}).)
15: end if
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Algorithm 4.2. Eliminating job Ji from the constraint network in the Arbitrary
approach

Function Eliminate-Arbitrary-job (Ji, G =< V, R >)
1: Let Sin denote the set of edges that are directed into vertex si.
2: Let Sout denote the set of edges that are directed out of vertex si.
3: for (each edge rki ∈ Sin) do
4: for (each edge rij ∈ Sout) do
5: if ( k = j ) then
6: {sk � si � sk is a cycle}
7: Construct a 2-vertex network G2 with vertices labeled si and sk and edges

rki and rik.
8: if (Determine-feasibility(G2, i, k) then
9: {This constraint pair does not create infeasibility}

10: continue
11: else
12: return(A Partially Clairvoyant schedule does not exist).
13: end if
14: end if
15: {The following portion is executed only if k �= j.}
16: if ((k > i) and (j > i)) then
17: Create a new edge r′

kj with weight w′

kj = wki + wij .
18: Adjust w′

kj to reflect the substitution ei = ui, if w′

kj is a decreasing function
of ei and ei = li otherwise. {Note that due to the nature of the constraint
system, ei will appear in wkj either as ei or as −ei. Further, w′

kj is a standard
weight in that it is a function of the execution times ek and ej only and not
ei.}

19: Graph-Insert(G, r′kj)
20: continue
21: end if
22: {The following portion is executed, only if j �= k and at least one of j and k

is less than i.}
23: Adjust wki to reflect the substitution ei = li; Adjust wij to reflect the substi-

tution ei = ui.
24: Create a new edge r′

kj with cost w′

kj = wki + wij . {r′kj now represents a strict
difference constraint between the jobs Jj and Jk.}

25: Graph-Insert(G, r′kj)
26: {This completes the process of adjusting the constraint network to account

for the new constraints which are created as a result of the elimination.}
27: end for
28: end for
29: Let G′ be the network that results after the above changes have been carried out.
30: {Observe that the standard constraint structure is preserved in that G′ also repre-

sents an instance of a Partially Clairvoyant Scheduling problem, albeit with fewer
jobs}

31: return(G′)
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Algorithm 4.3. Inserting edge r′
kj into the constraint network

si

sk

f(ei,ek)

g(ei,ek)

Fig. 1. Arbitrary dual on a 2-vertex network

Now consider the sequence of events when an arbitrary job, Ji, is eliminated
from the constraint network by the Eliminate-Arbitrary-Job() procedure.
Steps (5) through (14) of this algorithm focus on identifying NPCC cycles of
length 2, by feeding constraint networks having precisely 2 vertices and 2 edges
(i.e., ordered, directed cycles) to Determine-Feasibility(). If none of these
constraint networks is a NPCC cycle, we know that there are no NPCC cycles
of length 2, involving Ji in the current constraint network.

Pick any NPCC cycle (say C) of length greater than 2, involving Ji. Let sa

denote the vertex with the edge directed into si and let sb denote the vertex
with the edge directed out of si. Observe that if both a > i and b > i, then when
evaluating the Partially Clairvoyant cost of C, it is necessary for the variable ei

to remain unsubstituted till si is contracted; in all other cases, ei needs to be
substituted before the contraction of si. This is precisely what is achieved by
Steps (16) through (24) of Algorithm (4.2).

We now provide a formal proof of the correctness of Algorithm (4.1).

Proof (of Theorem (1)): We use induction on the number of jobs, n, i.e., the
number of vertices in the constraint network G. Note that the base case of the
induction is n = 2, since there can be no constraints in the case of a job set with
a single job. Recall that we permit relative timing constraints only and hence
every constraint involves a pair of jobs.

Function Graph-Insert (G, r′

kj)
1: {We are inserting the standard constraint represented by r′

kj into the constraint
network G.}

2: if (there exists an edge rkj in G of the same type as r′

kj , having smaller weight)
then

3: Discard r′kj .
4: else
5: {Either no edge rkj of the same type as r′

kj existed, in which case, we assume
that there exists an edge with weight wkj = ∞, or the weight of the existing
edge was greater than w′

kj . In either case, r′kj replaces the existing edge.}
6: Set rkj = r′kj with weight wkj = w′

kj .
7: end if
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Consider the constraint network corresponding to a set of 2 jobs. As per the
construction procedure outlined in Section §3.1, the corresponding constraint
network contains 2 vertices s1 and s2. We need to consider the following 2 cases:

(a) Job J2, i.e, vertex s2 is chosen first for contraction - In this case, we note
that Algorithm (4.1) is identical to Algorithm (3.1) and its correctness follows
from the correctness of Algorithm (3.1).
(b) Job J1, i.e., vertex s1 is chosen first for contraction - In this case, Steps (5)
through (14) of Algorithm (4.2) create constraint networks corresponding to each
cycle in G, and these networks are input to Determine-Feasibility(), which as
discussed before, correctly handles networks representing simple, directed cycles
of length 2.

Algorithm 4.4. Determining the feasibility of a constraint network, having precisely
2 vertices and 2 edges

We have thus proved the base case of the induction.
Assume that Theorem (1) is true for all job sets of size at most k > 1. Now

consider a job set of size k + 1. Let Ji be the first job that is picked to be elim-
inated by the random permutation π in Algorithm (4.1). The following cases
arise:

(a) i = k + 1, i.e., job Jk+1 is chosen - In this case, we need to eliminate
(sk+1, ek+1) from the constraint network. However, this step is identical to ex-
ecuting a single step of Algorithm (3.1) and the correctness of Algorithm (3.1)
immediately implies that NPCC cycles are detected or preserved.
(b) i �= k + 1, i.e., a job other than the last one is chosen - Let C be a sim-
ple directed cycle in G, having negative Partially Clairvoyant cost. If C has
length 2, it is detected by the Determine-Feasibility() procedure, in Steps
(5) through (14) of Algorithm (4.2). If C has length greater than 2, the splicing
process indicated in Figure (2) is carried out.

The crucial observation is that if si is the smallest index in C, then, ei is
not eliminated till si is crushed; otherwise, ei is substituted first, because that

Function Determine-Feasibility (G, i, k)
1: if (i < k) then
2: Call Partially-Clairvoyant-Standard() on G, so that Jk is eliminated and

then Ji.
3: if (Partially-Clairvoyant-Standard() detects infeasibility in G) then
4: return(false)
5: else
6: return(true)
7: end if
8: else
9: Determine-Feasibility (G, k, i).

10: end if
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si si+1si-1si-2

Fig. 2. Arbitrary job elimination

is exactly how the algorithm in [Sub03] evaluates the Partially Clairvoyant cost
of C. Thus, eliminating si has not resulted in C being eliminated. However, it
is possible that an edge created by contracting si is eliminated by the Graph-
Insert() procedure. Notice though, that the only way this can happen, is if
there is a cycle having Partially Clairvoyant cost, even lower than C; in other
words, NPCC cycles are preserved in the resultant constraint network.

Thus, the validity of Theorem (1) follows by mathematical induction. �

Theorem 2. Step (3) of Algorithm (4.1) does not introduce negative Partially
Clairvoyant cost cycles into G, i.e., if there did not exist a negative Partially
Clairvoyant cost cycle in G, before the execution of Step (3) of Algorithm (4.1),
then there does not exist one, after its execution.

Proof: The argument is somewhat similar to the one used in Theorem(1). The key
observation, is that deleting edges does not create NPCC cycles. The only point at
which NPCC cycles can be introduced is during the Graph-Insert() procedure.
It is not hard to see though, that if aNPCC cycle is created in this step, then it must
have been the case that the cycle existed in the network, prior to the contraction
of si. In other words, if there did not exist a NPCC cycle, before the execution of
Step (3), then there does not exist one after the execution of Step (3). �

From Theorem (1) and Theorem (2), we know that Algorithm (4.1) declares
that a constraint specification does not have a Partially Clairvoyant schedule if
and only if the corresponding constraint network has a NPCC cycle, as required
by [Sub03]. It therefore follows that Algorithm (4.1) correctly decides whether
or not a system of standard constraints has a Partially Clairvoyant schedule.

The correctness of the Algorithm (4.1) is reinforced by our empirical analysis.
In every single instance of a constraint structure, the primal, the dual and the
Arbitrary dual, produced the same answer to the schedulability query.

Theorem 1 allows us to conclude that:

Corollary 1. Let

∃x1 ∀y1 ∈ [l1, u1] ∃x2 ∀y2 ∈ [l2, u2] . . .∃xn ∀yn ∈ [ln, un] G · �x + H · �y ≤ �b,(3)

be a Quantified Linear Program where (G, H) has the standard structure, de-
scribed before. Then there exists a polynomial time quantifier elimination proce-
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dure for determining the truth of the proposition, which eliminates existentially
quantified variables (and the corresponding universally quantified variables) in
arbitrary fashion.

5 Implementation

In the full paper, we shall provide a detailed description of the implementation
issues. Here, we confine ourselves to discussing our observations. The parameter
for discriminating inputs was the length of the NPCC cycles. Our implementa-
tional profile mirrors the study of negative cost cycle algorithms in [CGR96].

Observe that as per the proof of the Arbitrary Dual algorithm we could spec-
ify any arbitrary elimination order, e.g., sorting vertices based on degree product
and the algorithm would still function correctly. Accordingly, we consider three
versions of the Arbitrary Dual algorithm, viz., Min-Dual (mdual), Heap-Dual
(hdual) and Randomized Dual (rdual). Both Min-Dual and Heap-Dual are pred-
icated on the principle that it is advantageous to eliminate the job with the
least number of dependencies. For a vertex si, in the dual constraint network,
we define the degree product as din(si) · dout(si). In the case of Min-Dual, the
degree-products of the vertices are stored in a simple array. In this case, ac-
cessing the vertex with least degree-product takes O(n) time and adjusting the
degree-products of vertices, in the post-elimination phase, takes an additional
O(n) time. In the Heap-Dual case, vertices are organized as a heap; in this case,
selecting the vertex with the least degree-product takes O(log n) time, whereas
adjusting the degree-products of vertices, in the post-elimination phase takes
O(n · log n). In either case, the time spent on the additional data structuring can
be absorbed by the O(n2) time it takes to eliminate a vertex from the network.
In the Randomized Dual algorithm, the job to be eliminated is chosen uniformly,
and at random from the jobs which have not yet been eliminated.

5.1 Results

For the empirical analysis of the algorithms, we characterize a constraint network
by the length of its NPCC cycles. Accordingly, we get the following classes of
constraint networks:

(Na) Constraint networks with no NPCC cycles, (Nb) Constraint networks with
few NPCC cycles of large length, (Nc) Constraint networks with many NPCC
cycles of small length, and (Nd) Cruel Adversary constraint networks.

The Cruel Adversary type of constraint network represents instances of the
PCS problem in which some of the jobs are heavily constrained, while the rest
have very few constraints associated with them. Since these networks are globally
sparse, i.e., the total number of constraints is O(n), it is fair to expect that
algorithms for the PCS problem terminate quickly on these instances. However,
insofar as existing algorithms are concerned, the position of the “cruel” vertices,
i.e., the jobs which are heavily constrained in the sequence play an important
role in the time taken to terminate.
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Consider the constraint network in Figure (3); this constraint system is taken
from [LSW03] and describes the constraints associated with an embedded con-
trolled for a coffee machine. Each of the jobs {J1...Jn−1} has just 3 constraints
associated with it, whereas job Jn has Ω(n) constraints associated with it. The
constraint network is clearly sparse since it has O(n) edges. If we first elimi-
nate Jn from the constraint network, as demanded by the Primal and the Dual
algorithms, a complete constraint network, having Ω(n2) edges will result. The
complete network is the worst case input for all of the algorithms. However elim-
inating the other jobs before job Jn is eliminated avoids this problem, and for
this case and similar cases the Heap-Dual, Min-Dual and even the Randomized
Dual algorithms perform better than existing algorithms.

s3 sns2s1 sn-1

Fig. 3. A Cruel Adversary type of constraint network

A second example of a Cruel Adversary constraint network is described in
[MSC+97], where the real-time system is an embedded controlled used by NASA.
In this case, the n

2
th job in the sequence is the heavily constrained job, while all

other jobs are lightly constrained.
Each of the constraint networks (Na), (Nb) and (Nc) can have two subtypes,

viz., sparse, and dense. The Cruel Adversary constraint networks are necessarily
sparse. For the purposes of our analysis, we use the following definitions:

(i) Sparse networks have at most 10n edges, (ii) Dense networks have at least
n2

8 edges.

Our experiments were categorized as follows: (a) For networks with few NPCC
cycles of large length, we performed the tests on networks having one negative
cycle with length 8

10n, (b) For networks with many NPCC cycles of small length,
we have performed the tests on cycles with length 5, with the total number of
cycles equal to 8

5·10n, (e) Since the worst case execution time of all algorithms
occurs when there is no NPCC cycle, i.e., a Partially Clairvoyant schedule exists,
we have tested Cruel Adversary networks only for the case when a schedule
exists. For the Cruel Adversary case, we considered extensions of both examples
described above, i.e., the case in which the cruel vertex was sn and the case in
which the cruel vertex was sn

2
.
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Fig. 4. Implementation execution times on
sparse constraint networks with no nega-
tive clairvoyant cycles
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Fig. 5. Implementation execution times on
sparse constraint networks with a long neg-
ative clairvoyant cycle
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Fig. 6. Implementation execution times
on sparse constraint networks with many
short negative clairvoyant cycles
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Fig. 7. Implementation execution times on
dense constraint networks with no negative
clairvoyant cycles

Observations on sparse constraint networks. The results of running the
implementations on sparse constraint networks with no NPCC cycles are pre-
sented in Figure (5), while the results on sparse constraint networks with a single,
long, NPCC cycle are described in Figure (6). Figure (7) details our observa-
tions on sparse constraint networks with many short NPCC cycles. The primal
implementation could not finish the instances with more than 850 jobs, on ac-
count of memory constraints. From the figures, it is clear that implementations
of the Arbitrary Dual algorithm are indeed superior to existing algorithms for
this case.

Observations on dense constraint networks. Figures (8), (9) and (10) char-
acterize our observations on dense constraint networks, with no NPCC cycles, a
single, long NPCC cycle and many short NPCC cycles respectively. Once again
the figures demonstrate the superiority of the Arbitrary Dual algorithm.
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Fig. 8. Implementation execution times on
dense constraint networks with long nega-
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Fig. 9. Implementation execution times on
dense constraint networks with many short
negative clairvoyant cycles
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on the Cruel Adversary network with cruel
vertex sn

 0

 2

 4

 6

 8

 10

 12

 14

 0  100  200  300  400  500  600  700  800  900  1000

se
co

nd
s

number of jobs

"cruelB/dual"
"cruelB/rdual"
"cruelB/hdual"
"cruelB/mdual"

Fig. 11. Implementation execution times
on the Cruel Adversary network with cruel
vertex sn/2

Observations on Cruel Adversary type of constraint networks. It is
precisely in case of such constraint networks that the Arbitrary dual algorithm
plays such a pivotal role in performance improvement.

If it is apriori known that the scheduling instance has the unbalanced structure
of a Cruel Adversary, then it would be best to use the Min-Dual or Heap-
Dual versions of the Arbitrary dual algorithm. Indeed, as the figures show, even
the Randomized Dual algorithm fares better than the primal and dual-based
approaches, for these instances.
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Timing Analysis and Simulation Tools for
Real-Time Control

Karl-Erik Årzén
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The temporal non-determinism introduced by computing and communication in the
form of delay and jitter can lead to significant performance degradation. To achieve
good performance in systems with limited computer resources, e.g. embedded systems,
the resource constraints of the implementation platform must be taken into account at
design time. To facilitate this, software tools are needed to analyze and simulate how
the timing affects the control performance. Recently two new such tools, JITTERBUG
and TRUETIME have been developed at the Department of Automatic Control, Lund
University.

JITTERBUG is a MATLAB-based toolbox that makes it possible to compute a
quadratic performance criterion for a linear control system under various timing condi-
tions. The tool can also compute the spectral density of the signals in the system. Using
the toolbox, one can easily and quickly assert how sensitive a control system is to delay,
jitter, lost samples, etc., without resorting to simulation. The tool is quite general and
can also be used to investigate jitter-compensating controllers, aperiodic controllers,
and multi-rate controllers. The main contribution of the toolbox, which is built on well-
known theory (LQG theory and jump linear systems), is to make it easy to apply this
type of stochastic analysis to a wide range of problems.

The use of JITTERBUG assumes knowledge of sampling period and latency dis-
tributions. This information can be difficult to obtain without access to measurements
from the true target system under implementation. Also, the analysis cannot capture all
the details and nonlinearities (especially in the real-time scheduling) of the computer
system. A natural approach is to use simulation instead. However, today’s simulation
tools make it difficult to simulate the true temporal behaviour of control loops. What is
normally done is to introduce time delays in the control loop representing average-case
or worst-case delays. Taking a different approach, the MATLAB/Simulink-based tool
TRUETIME facilitates simulation of the temporal behaviour of a multitasking real-time
kernel executing controller tasks. The tasks are controlling processes that are modelled
as ordinary Simulink blocks. TRUETIME also makes it possible to simulate simple
models of wired and wireless communication networks and their influence on net-
worked control loops. Different scheduling policies may be used (e.g., priority-based
preemptive scheduling and earliest-deadline-first (EDF) scheduling).

TRUETIME can also be used as an experimental platform for research on dynamic
real-time control systems. For instance, it is possible to study compensation schemes
that adjust the control algorithm based on measurements of actual timing variations
(i.e., to treat the temporal uncertainty as a disturbance and manage it with feed-forward
or gain-scheduling). It is also easy to experiment with more flexible approaches to real-
time scheduling of controllers, such as feedback scheduling [1]. There the available
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CPU or network resources are dynamically distributed according the current situation
(CPU load, the performance of the different loops, etc.) in the system.

More information about JITTERBUG and TRUETIME can be found in [2]. The tool-
boxes can be downloaded from http://www.control.lth.se/user/dan/truetime/ and
http://www.control.lth.se/user/lincoln/jitterbug/
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Abstract. We show how to automatically construct and refine rect-
angular abstractions of systems of linear differential equations. From a
hybrid automaton whose dynamics are given by a system of linear dif-
ferential equations, our method computes automatically a sequence of
rectangular hybrid automata that are increasingly precise overapproxi-
mations of the original hybrid automaton. We prove an optimality crite-
rion for successive refinements. We also show that this method can take
into account a safety property to be verified, refining only relevant parts
of the state space. The practicability of the method is illustrated on a
benchmark case study.

1 Introduction

Hybrid systems are digital real-time systems embedded in analog environments.
A paradigmatic example of a hybrid system is a digital embedded control pro-
gram for an analog plant environment, like a furnace or an airplane: the con-
troller state moves discretely between control modes, and in each control mode,
the plant state evolves continuously according to physical laws. Those systems
combine discrete and continuous dynamics. Those aspects have been studied in
computer science and in control theory. Computer scientists have introduced hy-
brid automata [8], a formal model that combines discrete control graphs, usually
called finite state automata, with continuously evolving variables.

When the evolution of continuous variables are subject to rectangular flow con-
straints, that is, constraints of the form ẋ ∈ [a, b], hybrid automata are called rect-
angular. For that subclass of hybrid automata, there exists a reasonably efficient
algorithm to compute the flow successor [1]. Based on this algorithm, there exists
an iterative method that computes the exact set of reachable states when it termi-
nates. This semi-algorithm can be used to establish or refute safety properties. On
the other hand, if the evolution of continuous variables are subject to more com-
plicated flow constraints, for example affine dynamics like ẋ = 3x− y, computing
the flow successor is more difficult and only approximate methods are known.
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Rectangular hybrid automata have the additional property that they can
over-approximate, at any level of precision, the set of behaviors of more complex
hybrid automata. A general methodology to analyze complex hybrid automata
using rectangular approximations has been proposed in [10]. This methodology
can be summarized as follows: to establish a safety property on a complex hybrid
automata A, construct a rectangular approximation B of A and check the safety
property on B. If the property is established on B, then it also holds on A.
If the property is not established on B, then use a more precise rectangular
approximation B′.

So far, the construction of the abstraction B and its refinement B′ was sup-
posed to be obtained manually. In this paper, we show how to efficiently auto-
mate this methodology for the class of affine hybrid automata, that is, hybrid
automata whose continuous dynamics are defined by systems of linear differential
equations. More precisely, we show (i) how to compute automatically rectangular
approximations for affine hybrid automata, (ii) how to refine automatically and
in an optimal way rectangular approximations that fail to establish a given safety
property, (iii) how to target refinement only to relevant parts of the state space.

Refinements are obtained by splitting location invariants. A split is optimal if it
minimizes some measure of the imprecision of the resulting rectangular approxi-
mation. Intuitively, the imprecision corresponds to the size of the interval defining
the rectangular flow, because the smaller the imprecision, the closer the rectan-
gular dynamics is to the exact dynamics. In this paper, we minimize the maximal
imprecision of the dynamics in the split location of the refined automaton.

We have implemented our methodology and applied it to the navigation bench-
mark proposed in [5], for which we have implemented a prototype. The first results
that we have obtained are encouraging. We therefore expect further improvements
to the theory of refinement, as well as to the design and implementation of algo-
rithms, to be fruitful, and we plan to continue investigating this field.

Structure of the Paper. In Section 2 we recall the classical definitions of hy-
brid automata, giving their semantics as timed transition systems. We show how
rectangular overapproximations of affine hybrid automata can be constructed.
The methodology to obtain successive refinements of such rectangular approxi-
mations is detailed in Section 3 in the form of an optimization problem whose
solution is intended to give an optimal way of refining. We give an algorithm to
solve the problem in 2 dimensions (when the hybrid systems has 2 variables),
and we give an approximation technique for higher dimensions in the form of a
more abstract optimization problem that can be solved in general. Finally, the
refinement-based verification algorithm is explained in Section 4 and a case study
is presented in Section 5. Complete proofs of the theorems can be found at the
following web page: http://www.ulb.ac.be/di/ssd/cfv/publications.html.

2 Hybrid Automata and Abstraction

Intervals. An interval is a nonempty convex subset of the set R of real numbers.
For a bounded interval I, we denote the left (resp. right) end-point of I by lI
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(resp. rI). For an interval I, we define size(I) = rI − lI if I is bounded, and
size(I) = +∞ otherwise. A bounded interval I is closed if lI ∈ I and rI ∈ I.
Given two closed intervals I1 and I2, their convex hull is the closed interval
I3 = I1 # I2 such that lI3 = min(lI1 , lI2) and rI3 = max(rI1 , rI2).

Predicates. Let X = {x1, . . . , xn} be a finite set of variables. A valuation overX
is a function v : X → R. Alternatively, it can be seen as a tuple (v1, . . . , vn) =
(v(x1), . . . , v(xn)) in Rn. Given v : X → R and Y ⊆ X , define v|Y : Y → R
by v|Y (x) = v(x) ∀x ∈ Y . A linear term over X is an expression of the form
y ≡ a0 +

∑
xi∈X aixi where ai ∈ Q (0 ≤ i ≤ n) are rational constants. Given

a valuation v over X , we write �y�v for the real number a0 +
∑

xi∈X aiv(xi). We
denote by LTerm(X) the set of all linear terms overX . A rectangular predicate over
X is a formula of the form

∧
x∈X x ∈ Ix where Ix (x ∈ X) are closed intervals.

We denote by Rect(X) the set of all rectangular predicates over X . Given two
rectangular predicates p =

∧
x∈X x ∈ Ix and q =

∧
x∈X x ∈ Jx, we define the

size of p by |p| = maxx∈X{size(Ix)} and the rectangular hull of p and q by p# q =∧
x∈X x ∈ Ix#Jx. A linear constraint over X is a formula of the form y �� 0 where

y ∈ LTerm(X) is a linear term over X and ��∈ {<,≤,=, >,≥}. A linear predicate
overX is a finite conjunction of linear constraints overX . We denote by Lin(X) the
set of all linear constraints over X . For a (rectangular or linear) predicate p over
X , we write �p� for the set of all valuations v ∈ [X → R] satisfying p. A polytope
is a closed bounded set �p� defined by a linear predicate p. An affine dynamics
predicate over X is a formula of the form

∧
x∈X ẋ = tx where tx ∈ LTerm(X)

(x ∈ X) are linear terms over X and ẋ represents the first derivative of x. Let
Ẋ = {ẋ | x ∈ X}. We denote by Affine(X, Ẋ) the set of all affine dynamics
predicates over X . For an affine dynamics predicate p, we write �p� for the set of
all valuations v ∈ [X ∪ Ẋ → R] satisfying p.

Lines and Hyperplanes. A function f : Rn → R is called affine if it is of
the form f(x) = a0 +

∑
i aixi with ai ∈ Q (0 ≤ i ≤ n). We say that two

affine functions f1 and f2 are parallel if for some λ ∈ R the function f(x) =
f1(x)+λf2(x) is independent of x (that is, ∇f is identically 0). Given a function
f : A → B and b ∈ B, define the level set of f corresponding to b by f−1(b) =
{a ∈ A | f(a) = b}. For C ⊆ B, define f−1(C) = {a ∈ A | f(a) ∈ C}.
A hyperplane is a level set of an affine function. Given an affine function f :
Rn → R, we write π ≡ f(x) = 0 to denote the hyperplane π = f−1(0). In R2

a hyperplane is a line. Given two points a, b ∈ R2, let �ine(a, b) denote the line
passing by a and b. We write [a, b] for the line segment connecting a and b, i.e.
the set of convex combinations {λa + (1− λ)b | 0 ≤ λ ≤ 1}.

Transition Systems. A TTS (timed transition system) T is a tuple 〈S, S0, Sf ,
Σ,→〉where S is a (possibly infinite) set of states, S0 ⊆ S is the set of initial state,
Sf ⊆ S is the set of final states, Σ is a finite set of labels including the silent label
τ , and→ ⊆ S× (Σ ∪R≥0)×S is the transition relation. If (q, σ, q′) ∈ → we write
q

σ−→ q′. Define the successors of a set A ⊆ S in T to be the set PostT (A) = {s′ ∈
S | ∃ s ∈ A, ∃σ ∈ Σ ∪ R≥0 : s σ−→ s′}. Similarly, the predecessors of A in T are
given by PreT (A) = {s ∈ S | ∃ s′ ∈ A, ∃σ ∈ Σ ∪ R≥0 : s σ−→ s′}.
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�1

ON1∧ OFF2

I(0, 100)

�0

OFF1∧ OFF2

I(80, 100)

�2

OFF1∧ ON2

I(0, 100)

ON1 ≡ ẋ1 = h1 − a1x1 + b1x2

OFF1 ≡ ẋ1 = −a1x1 + b1x2

I(a, b) ≡ a ≤ x1 ≤ b ∧ a ≤ x2 ≤ b

ON2 ≡ ẋ2 = h2 − a2x2 + b2x1

OFF2 ≡ ẋ2 = −a2x2 + b2x1

x1 = 0

∧ x2 = 50

turnoff1

x1 = 100
turnon2

x2 = 80

toggle

x1 = 100 ∧ x2 ≤ 80 ∨ x2 = 0 ∧ x1 ≥ 20

turnon1

x1 = 80

turnoff2

x2 = 100

x2 = 100 ∧ x1 ≤ 80 ∨ x1 = 0 ∧ x2 ≥ 20

toggle

Fig. 1. A shared gas-burner

The reachable states of T is the set Reach(T ) =
⋃

i∈N
PostiT (S0) where

Post0T (A) = A and recursivelyPostiT (A) = PostT (Posti−1
T (A)). Let Reach−1(T ) =⋃

i∈N
Prei

T (Sf ) where Pre0
T (A) = A and recursively Prei

T (A) = PreT (Prei−1
T (A)).

Finally, let Unsafe(T ) = Reach(T )∩Reach−1(T ) be the set of reachable states that
can reach the final states. The complement of Unsafe(T ) is the set of safe states.

Given the TTS T = 〈S, S0, Sf , Σ,→〉, we define the stutter-closed relation
�⊆ S× (Σ\{τ}∪R≥0)×S as follows: if σ ∈ Σ\{τ}, then s

σ
−� s′ iff there exists

a finite sequence s0, . . . , sk ∈ S of states such that s = s0 and s0
τ−→ s1

τ−→ . . .
τ−→

sk
σ−→ s′; if t ∈ R≥0, then s

t
−� s′ iff there exists a finite sequence s0, . . . , s2k ∈ S

of states and a finite sequence t0, . . . , tk ∈ R≥0 of constants such that s = s0

and s0
t0−→ s1

τ−→ s2
t1−→ . . .

τ−→ s2k
tk−→ s′ and t = t0 + · · ·+ tk.

Hybrid Automata. We define two types of hybrid automata, with either affine
or rectangular dynamics [1, 11].

Definition 1 [Hybrid Automaton]. An hybrid automaton H is a tuple 〈Loc,
Lab,Edg, X, Init, Inv,Flow, Jump,Final〉 where: (i) Loc = {�1, . . . , �m} is a finite
set of locations. (ii) Lab is a finite set of labels containing the silent label τ . (iii)
Edg ⊆ Loc×Lab×Loc is a finite set of edges. (iv) X = {x1, . . . , xn} is a finite set of
variables. (v) Init : Loc → Lin(X) gives the initial condition Init(�) of location �.
The automaton can start in � with an initial valuation v lying in �Init(�)�. (vi)
Inv : Loc → Lin(X) gives the invariant condition Inv(�) of location �. We require
that �Inv(�)� is bounded for every � ∈ Loc. The automaton can stay in � as long
as the values of its variables lie in �Inv(�)� (vii) Flow governs the evolution of
the variables in each location:

– either Flow : Loc → Affine(X, Ẋ) and H is called an affine dynamics hybrid
automaton,

– or Flow : Loc → Rect(Ẋ) and H is called a rectangular dynamics hybrid
automaton;
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(viii) Jump : Edg → Lin(X∪X ′) with X ′ = {x′
1, . . . , x

′
n} gives the jump condition

Jump(e) of edge e. The variables in X ′ refer to the updated values of the variables
after the edge has been traversed. (ix) Final : Loc → Lin(X) gives the final
condition Final(�) of location �. In general, final conditions specify the unsafe
states of the system.

Example. Fig. 1 represents an affine dynamics hybrid automaton modeling a
single gas-burner that is, shared for heating alternatively two water tanks. It has
three locations �0, �1, �2 and two variables x1 and x2, the temperature in the two
tanks. The gas-burner can be either switched off (in �0) or turned on heating one of
the two tanks (in �1 or �2). The dynamics in each location is given by a combination
of the predicates ONi and OFFi (i = 1, 2) where the constants ai model the heat
exchange rate of the tank i with the room in which the tanks are located, bi model
the heat exchange rate between the two tanks and hi depends on the power of
the gas-burner. On every edge of the automaton, we have omitted the condition
x′

1 = x1 ∧ x′
2 = x2 also written as stable(x1, x2) that asserts that the values of

the variables have to be maintained when the edge is traversed. In the sequel, we
fix the constants h1 = h2 = 2, a1 = a2 = 0.01 and b1 = b2 = 0.005.

Definition 2 [Semantics of hybrid automata]. The semantics of an hybrid au-
tomaton H = 〈Loc,Edg, X, Init, Inv,Flow, Jump,Final〉 is the TTS �H� = 〈S, S0,
Sf , Σ,→〉 where S = Loc×Rn is the state space, S0 = {(�, v) ∈ S | v ∈ �Init(�)�}
is the initial space, Sf = {(�, v) ∈ S | v ∈ �Final(�)�} is the final space, Σ = Lab
and → contains all the tuples ((�, v), σ, (�′, v′)) such that:

– either there exists e = (�, σ, �′) ∈ Edg such that (v, v′) ∈ �Jump(e)�,
– or � = �′ and σ = δ ∈ R≥0 and there exists a continuously differentiable

function f : [0, δ] → �Inv(l)� such that f(0) = v, f(δ) = v′ and for all
t ∈ [0, δ]:
• either H has affine dynamics and (f(t), ḟ(t)) ∈ �Flow(�)�,
• or H has rectangular dynamics and ḟ(t) ∈ �Flow(�)�.

Such a function f is called a witness for the transition ((�, v), δ, (�′, v′)).

An hybrid automaton H is said empty if no final state of H is reachable, that
is, if Reach(�H�) ∩

⋃
�∈Loc�Final(�)� = ∅. The question to determine if a given

hybrid automaton is empty is known as the emptiness problem.
To attack this problem, many of the existing tools (a.o. HyTech [9], d/dt [2],

PHAVer [7]) use a symbolic analysis of the hybrid automaton with a forward
and/or backward approach: starting from the initial (resp. unsafe) states, iter-
ate the operator Post�H� (resp. Pre�H�) until a fix point is reached and then
check emptiness of the intersection with the unsafe (resp. initial) states. Those
procedures are not guaranteed to terminate since the emptiness problem is un-
decidable for both affine and rectangular dynamics hybrid automata [11].

Remark. The more efficient tool PHAVer does not implement the backward
analysis. Nevertheless, for a rectangular dynamics automaton H it is possible
to define the reverse automaton −H such that Pre�H� = Post�−H�, and so such
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that Reach−1
�H� = Reach�−H�. Roughly, the construction consists in reversing

the flow dynamics (an interval [a, b] is replaced by the interval [−b,−a]) and
the jump conditions (by permuting primed and unprimed variables). The other
components are kept unchanged except the initial and unsafe sets which are
swapped [11].

Overapproximations. The formal link between an automaton and its approx-
imation will be drawn with the notion of weak simulation[12].

Definition 3 [Weak simulation]. Given two TTS T1 = 〈S1, S1
0 , S

1
f , Σ,→1〉 and

T2 = 〈S2, S2
0 , S

2
f , Σ,→2〉 with the same set of labels, we write T1 - T2 and say

that T1 weakly simulates T2 if there exists a relation R ⊆ S1 × S2 such that:

1. for all (s1, s2) ∈ R, for each σ ∈ Σ\{τ} ∪R≥0, if s2
σ
−� s′2, then there exists

s′1 ∈ S1 such that s1
σ
−� s′1 and (s′1, s

′
2) ∈ R,

2. for all s2 ∈ S2
0 , there exists s1 ∈ S1

0 such that (s1, s2) ∈ R,
3. and for all s2 ∈ S2

f , for all s1 ∈ S1, if (s1, s2) ∈ R, then s1 ∈ S1
f .

Such a relation R is called a simulation relation for T1 - T2.

For a relation S ⊆ S1 × S2, let the inverse of S be the relation S−1 = {(s2, s1) |
(s1, s2) ∈ S}.

Definition 4 [Weak bisimulation]. Two TTS T1 and T2 are weakly bisimilar
(noted T1 ≈ T2) if there exists a simulation relation R for T1 - T2 and a simu-
lation relation S for T2 - T1 such that R = S−1.

In the sequel, we also use a slightly different notion of simulation where only
the unsafe states are to be simulated, because of the following observation: a
state that has been proven to be safe in T1 is necessarily safe in T2 if T1 - T2
and therefore the emptiness problem for an hybrid automaton H has the same
answer as the emptiness problem on H with some of its safe states forbidden.
So, it is sufficient to refine the automaton in its unsafe states. More details are
given in Section 4.

Definition 5 [Weak simulation for unsafe behaviours]. Given two TTS T1 =
〈S1, S1

0 , S
1
f , Σ,→1〉 and T2 = 〈S2, S2

0 , S
2
f , Σ,→2〉 with the same set of labels, we

write T1 -unsafe T2 and say that T1 weakly simulates the unsafe behaviours of T2
if there exists a relation R ⊆ S1 × Unsafe(T2) such that:

1. for all (s1, s2) ∈ R, for each σ ∈ Σ\{τ} ∪ R≥0, if s2
σ
−� s′2 and s′2 ∈

Unsafe(T2), then there exists s′1 ∈ S1 such that s1
σ
−� s′1 and (s′1, s

′
2) ∈ R,

2. for all s2 ∈ S2
0 , there exists s1 ∈ S1

0 such that (s1, s2) ∈ R,
3. and for all s2 ∈ S2

f , for all s1 ∈ S1, if (s1, s2) ∈ R, then s1 ∈ S1
f .

Such a relation R is called a simulation relation for T1 -unsafe T2.
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Definition 6 [Weak bisimulation for unsafe behaviours]. Two TTS T1 and T2
are weakly bisimilar for unsafe behaviours (noted T1 ≈unsafe T2) if there exists a
simulation relation R for T1 -unsafe T2 and a simulation relation S for T2 -unsafe
T1 such that R = S−1.

Lemma 7. Let T1 and T2 be two TTS. If T1 - T2, then T1 -unsafe T2.

Theorem 8. Let H and H ′ be two hybrid automata such that �H ′� -unsafe �H�.
If H ′ is empty, then so is H.

Definition 9 [Rectangular phase-portrait approximation]. We say that a hy-
brid automaton H ′ is a rectangular phase-portrait approximation of an hybrid
automaton H if �H ′� - �H� and H ′ has rectangular dynamics.

A natural way for constructing a rectangular phase-portrait approximation
H ′ = rect(H) of an affine dynamics hybrid automaton H is to replace in each
location � of H the affine flow condition FlowH(�) =

∧
x∈X ẋ = tx by the rect-

angular predicate FlowH′(�) =
∧

x∈X ẋ ∈ Ix where Ix is the tightest interval
containing the set {�tx�v | v ∈ �Inv(l)�}. The bounds of Ix can be determined
by a linear program since tx is a linear term and Inv(l) is a linear predicate.
The proof that �H ′� - �H� is obvious since for any v ∈ �FlowH(�)� we have
v|Ẋ ∈ �FlowH′(�)�.

Example. Fig. 2(a) depicts the result of this construction when applied to the
location �1 of the shared gas-burner automaton.

For an hybrid automaton H with set of locations LocH , let SafeLoc(H) =
{� ∈ LocH | �(�, v) ∈ Unsafe(�H�)}.

�1
ẋ1 ∈ [1, 5

2 ]
ẋ2 ∈ [−1, 1

2 ]
I(0, 100)

(a) Rectangular phase-
portrait.

�≥
1

ẋ1 ∈ [ 32 , 5
2 ]

ẋ2 ∈ [−1
2 , 1

2 ]
x2 ≥ x1 ∧
I(0, 100)

�≤
1

ẋ1 ∈ [1, 2]
ẋ2 ∈ [−1, 0]
x2 ≤ x1 ∧
I(0, 100)

τ τ

(b) Location splitting.

Fig. 2. Location �1 of the shared gas-burner
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Lemma 10. For every affine dynamics hybrid automaton H, we have
SafeLoc(rect(H)) ⊆ SafeLoc(H).

3 Abstraction Refinement for Hybrid Automata

Definition 11 [Refined approximation]. Given H ′ and H ′′ two rectangular
phase-portrait approximations of an hybrid automaton H , we say that H ′′ refines
H ′ if �H ′� - �H ′′�.

A natural way of refining an approximation of an affine dynamics hybrid
automaton is to split its locations by partitioning or covering their invariant.

Definition 12 [Cut]. Given a polytope P ⊆ Rn and a hyperplane π ≡ f(x) = 0,
we define the cut P/π = 〈P+, P−〉 where P+ = P ∩ f−1(R≥0) and P− =
P ∩ f−1(R≤0). The cut P/π is said non-trivial if P+ �= ∅ and P− �= ∅.

Thus a non-trivial cut P/π of a polytope P is a cover of P but not a partition
since the two pieces are closed sets and they share the points in P ∩ π.

Definition 13 [Location splitting]. Given an hybrid automaton H = 〈Loc, Lab,
Edg, X, Init, Inv,Flow, Jump,Final〉, one of its locations � ∈ Loc and a hyperplane
π ≡ fπ(x) = 0 in R|X|, the splitting of H by the hyperplane π in location �

is the hybrid automaton split(H, �, π) = 〈Loc′, Lab′,Edg′, X ′, Init′, Inv′,Flow′,
Jump′,Final′〉 where: (i) Loc′ = Loc\{�}∪{(�, P ), (�, Q)} where P = Inv(�)∧
fπ(x) ≤ 0 and Q = Inv(�) ∧ fπ(x) ≥ 0. For �′ ∈ Loc′, let loc(�′) = �′ if �′ ∈ Loc
and loc(�′) = � otherwise. (ii) Lab′ = Lab. (iii) Edg′ = E1 ∪ E2 where E1 =
{(�, σ, �′) | �, �′ ∈ Loc′ ∧ (loc(�), σ, loc(�′)) ∈ Edg} is the set of edges inherited
from H and E2 = {(�, τ, �′) | �, �′ ∈ Loc′ ∧ loc(�) = loc(�′) = �} are silent edges
between the two copies of the location �. (iv) X ′ = X . (v) Init′(�′) = Init(loc(�′))
for each �′ ∈ Loc′. (vi) Inv′(�′) = Inv(�′) for each �′ ∈ Loc\{�}, Inv′(�, P ) = P
and Inv′(�, Q) = Q. (vii) Flow′(�′) = Flow(loc(�′)) for each �′ ∈ Loc′. (viii) for
every e = (�, σ, �′) ∈ E1 we have Jump′(e) = Jump(loc(�), σ, loc(�)), and for every
e ∈ E2 we have Jump′(e) = stable(X). (ix) Final′(�′) = Final(loc(�′)) for each
�′ ∈ Loc′.

Example. Fig. 2(b) shows the rectangular phase-portrait approximation of the
splitting of the location �1 of the shared gas-burner by the line x1 = x2. The
resulting automaton is a refinement since the ranges of the rectangular dynamics
have decreased in each of the two splitted locations.

This technique is very general and has been applied to hybrid automata with
nonlinear dynamics [10]. However, in that last reference, the proof of correct-
ness (that the refined automaton split(H, �, π) weakly simulates the original
automaton H) relies crucially on the fact that the split of an invariant is derived
from a finite open cover, that is, a location � is replaced by (�, P ) and (�, Q)
where P,Q are open sets such that Inv(�) ⊆ P ∪ Q. Unfortunately, the proof
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cannot be extended to closed covers: for example, the continuously differentiable
function f : R≥0 → R defined by f(0) = 0 and f(t) = t2 sin(1/t) for t > 0, oscil-
lates infinitely in every interval [0, ε] (ε > 0). So that if f|[0,δ] was the witness of a
transition ((�, v), δ, (�, v′)) of an automaton H with variable XH = {y}, it would
be impossible for the automaton split(H, �, y = 0) to mimic that transition since
time cannot progress by any amount while maintaining either y ≥ 0 or y ≤ 0.
However, this kind of pathological behaviour can not appear as a solution of
a system of affine dynamics flow conditions (even though spiral trajectories are
still possible) because such solutions are analytic and zeroes of analytic functions
are isolated.

Theorem 14. For every hybrid automaton H, for every of its location �, and ev-
ery hyperplane π, we have �split(H, �, π)� ≈ �H�, that is, �split(H, �, π)� and �H�
are weakly bisimilar.

With the remark above, the proof of Theorem 14 is straightforward.
In this section, we are interested in finding automatically an optimal cut for

refining the state space. We consider the general problem to split a location in
an optimal way, that is, to minimize the imprecision of the resulting rectangular
phase-portrait approximation. The definition of the imprecision could have sev-
eral forms. We decide to minimize the maximal size of the rectangular predicates
that appear as flow conditions in the rectangular approximation of the splitted
automaton (and particularly in the splitted location). It may be necessary to
scale the variables in order to give sense to the comparison of their dynamics
range. We now discuss our choice. On the one hand, this criterion is natural
since the precision of the approximation is directly connected to the size of the
rectangular predicates. Further, minimizing the maximal size ensures that the
approximation becomes more precise. On the other hand, other criteria we have
tried (minimizing the sum of the squares of the sizes, minimizing the size of the
reachable set, etc.) gave rise to computational difficulties due to their non-linear
form. Our criterion can be handled with linear programming techniques, and
showed practical applicability with promising results (see Section 5).

3.1 Optimization Criteria

We ask to split the invariant of a location into two convex pieces, minimizing the
maximal size of the flow intervals obtained in the approximation. We define two
versions of this problem, one called concrete when the given dynamics is affine
on the invariant, and one called abstract when the invariant is already covered by
a number of pieces each with its rectangular dynamics. The second formulation
is introduced because we have no simple algorithm in nD for n ≥ 3 for solving
the concrete problem, while we have a general algorithm for the abstract one.
Therefore, it may be of interest to discretize the original affine system in order
to get an approximation of the best split. We show that the result can be made
arbitrarily close to the exact solution.

In Definition 15, we associate to each subset Q ⊆ P of the invariant P of
a location the tightest rectangular dynamics that contains the exact dynamics
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in the set Q (which is defined by an affine predicate of the form
∧

xi∈X ẋi =
fi(x1, . . . , xn)). Then, the imprecision of a cut of P into two pieces is de-
fined to be the maximal size of the rectangular predicates associated to each
piece.

Definition 15 [Concrete imprecision]. Let X = {x1, . . . , xn} be a finite set of
variables. Let P ⊂ Rn be a polytope and F = {f1, . . . , fn} a set of n affine
functions fi : Rn → R (1 ≤ i ≤ n). For a polytope Q ⊆ P , we define the
rectangular predicate rangeF (Q) =

∧
x∈X x ∈ Ix where for each xi ∈ X , we have

Ixi = fi(Q). We define the concrete imprecision of a cut P/π = 〈P+, P−〉 by
sizeRangeF (P/π) = max

{
|rangeF (P+)|, |rangeF (P−)|

}
.

Definition 16 [Concrete optimal-cut problem]. An instance of the concrete
optimal-cut problem is a tuple 〈P,X, F 〉 where: P ⊂ Rn is a polytope, X =
{x1, . . . , xn} is a set of n variables, and F is a set of n affine functions fi : Rn → R
(1 ≤ i ≤ n).

The concrete optimal-cut problem is to determine a hyperplane π ⊂ Rn such
that for every hyperplane π ⊂ Rn, sizeRangeF (P/π) ≤ sizeRangeF (P/π).

We define an abstract version of the optimal-cut problem where the invariants
of the locations are originally given as a union of polytopes P , and the flow
condition in each piece is rectangular. This form of the problem is obtained
when we discretize the concrete problem according to P . The abstract problem
asks to split the location into only two pieces such that the maximal flow interval
in the two pieces is minimized.

Definition 17 [Abstract imprecision]. Let X = {x1, . . . , xn} be a finite set
of variables. Let P ⊂ Rn be a polytope covered by a finite set of polytopes
P = {P1, . . . , Pm}, that is, such that P = P1 ∪ · · · ∪ Pm. Let Flow : P →
Rect(Ẋ) be a function that associates to each piece of P a rectangular dynamics.
For a polytope Q ⊆ P , we define the rectangular predicate rangeFlow(Q) =⊔

Pj∈P,Pj∩Q=∅
Flow(Pj). We define the abstract imprecision of a cut P/π =

〈P+, P−〉 by sizeRangeFlow(P/π) = max
{
|rangeFlow(P+)|, |rangeFlow(P−)|

}
.

Definition 18 [Abstract optimal-cut problem]. An instance of the abstract
optimal-cut problem is a tuple 〈P,P , X,Flow〉 where: P ⊂ Rn is a polytope,
P = {P1, . . . , Pm} is finite set of polytopes such that P = P1 ∪ · · · ∪ Pm,
X = {x1, . . . , xn} is a set of n variables, and Flow : P → Rect(Ẋ).

The abstract optimal-cut problem asks to determine a hyperplane π ⊂ Rn

such that for every hyperplane π ⊂ Rn, sizeRangeFlow(P/π) ≤ sizeRangeFlow

(P/π).

3.2 Solution of the Abstract Optimal-Cut Problem

We give an algorithm for solving the abstract problem and show how it can be
used to approximate the solution of the concrete problem.
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Definition 19 [Separability]. Two sets A,B ⊆ Rn are separable if there exists
an affine function f : Rn → R such that ∀x ∈ A : f(x) ≤ 0 and ∀x ∈ B :
f(x) ≥ 0.

This definition extends to sets of sets: we say that A ⊆ 2R
n

and B ⊆ 2R
n

are separable if
⋃
A and

⋃
B are separable. Separability can be tested using the

convex hull of a set, denoted CHull(·).

Lemma 20. Two sets A,B ⊆ Rn are separable iff there exists a hyperplane
π ⊂ Rn such that CHull(A) ∩ CHull(B) ⊆ π.

An optimal cut for the abstract problem 〈P,P , X,Flow〉 is solved by Al-
gorithm 1. It uses two external functions value and separable taking as in-
put two sets A and B of polytopes. The function value returns the number
sizeRangeFlow(〈

⋃
A,
⋃
B〉) and the boolean function separable returns true iff A

and B are separable. Lemma 20 suggests a natural implementation of separable.
This algorithm constructs two sets of pieces G+ ⊆ P and G− ⊆ P to be

separated from each other, and maintains a set G0 = P\(G+∪G−) of untreated
pieces. Initially, we have G+ = G− = ∅ and G0 = P . The call split(∅,∅,P)
returns two sets G+ and G− that are separable and such that any separating
hyperplane of G− and G+ is an optimal cut for 〈P,P , X,Flow〉. Intuitively, the
function split iteratively selects two pieces Pi, Pj ∈ P that are forced to be
separated because their flow interval rangeFlow(Pi ∪ Pj) is maximal. The sepa-
ration constraint can be represented as an edge between Pi and Pj in a graph
whose vertices is the set P . We can add new such constraints while the graph is
2-colorable with the additional requirement that the two sets of pieces induced
by the 2-coloring is physically separable by a hyperplane. In the case the new
edge is already connected to the rest of the graph, the color of the common
vertex imposes the color of the other. Otherwise, the algorithm has to explore
two choices (corresponding to put Pi in G− and Pj in G+ or vice versa). An
obvious argument shows that this can occur only n times (where n = |X | is the
number of variables) so that the the algorithm is in O(m.2n), assuming constant
execution time of external functions. We do not know if this bound is tight for
the problem.

Theorem 21. Algorithm 1 is correct and always terminates.

The Algorithm 1 can be used to solve the concrete optimal-cut problem up to a
precision ε ∈ Q>0, as stated by Theorem 23. It suffices to discretize the polytope
with a grid of size ε: given a set F = {f1, . . . , fn} of n affine functions in Rn,
let GridF

ε = {
⋂

1≤i≤n f−1
i ([ki ε, (ki + 1) ε]) | (k1, . . . , kn) ∈ Zn}. In practice, the

complexity blows up since the number of elements in the grid is exponential
in 1/ε.

Definition 22 [ε-discretization of a concrete optimal-cut problem]. Let Q =
〈P,X, F 〉 be an instance of the concrete optimal-cut problem in Rn, and let
ε ∈ Q>0. The ε-discretization of Q is the instance Qε = 〈P,P , X,Flow〉 of the
abstract optimal-cut problem such that:
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Algorithm 1. Algorithm for the abstract optimal-cut problem
Input : An instance 〈P,P, X, Flow〉 of the abstract optimal-cut problem.
Result: Two separable sets G− and G+ such that any separating hyperplane of G− and G+

is an optimal cut for 〈P,P, X, Flow〉.
begin

return split(∅, ∅,P) ;
end

external function value(A,B: set of polytopes): R
≥0

external function separable(A,B: set of polytopes): {true, false}
function split(G−, G+, G0: set of polytopes): 2P × 2P × R

≥0 begin
Let Pi, Pj ∈ P maximizing rangeFlow(Pi ∪ Pj) subject to Pi ∈ G0 ∨ Pj ∈ G0 ;1
if no such Pi, Pj exists then return 〈G−, G+, value(G− ∪ G0, G+ ∪ G0)〉 ;2
if Pi ∈ G0 ∧ Pj ∈ G0 then3

vA ← ∞ ;4
vB ← ∞ ;5
if separable(G− ∪ {Pi}, G+ ∪ {Pj}) then6

〈A1, A2, vA〉 ← split(G− ∪ {Pi}, G+ ∪ {Pj}, G0\{Pi, Pj}) ;7

if separable(G− ∪ {Pj}, G+ ∪ {Pi}) then8
〈B1, B2, vB〉 ← split(G− ∪ {Pj}, G+ ∪ {Pi}, G0\{Pi, Pj}) ;9

if vA = vB = ∞ then return 〈G−, G+, value(G− ∪ G0, G+ ∪ G0)〉 ;10
if vA ≤ vB then11

return 〈A1, A2, vA〉 ;12

else
return 〈B1, B2, vB〉 ;13

else
Assume w.l.o.g. that Pi ∈ G− ;14
if separable(G−, G+ ∪ {Pj}) then15

return split(G−, G+ ∪ {Pj}, G0\{Pj}) ;16
else

return 〈G−, G+, value(G− ∪ G0, G+ ∪ G0)〉 ;17

end

– P = {P ∩ box | box ∈ GridF
ε ∧ P ∩ box �= ∅}. Notice that P is finite since P

is bounded;
– for each Pj ∈ P , we have Flow(Pj) = rangeF (Pj) which is a rectangular

predicate of size at most ε.

Theorem 23. Let Q = 〈P,X, F 〉 be an instance of the concrete optimal-cut
problem and let Qε = 〈P,P , X,Flow〉 be its ε-discretization for some ε ∈ Q>0.
If π is a solution for Q and π

ε ) is a solution for Qε, then sizeRangeF (P/π
ε )−

sizeRangeF (P/π) < ε.

3.3 Solution of the Concrete Optimal-Cut Problem in R2

We propose an algorithm to solve the concrete optimal-cut problem 〈P,X, F 〉 in
two dimensions (P ⊂ R2) when F = {f1, f2} contains two functions. It is shown
as Algorithm 2. This algorithm is inspired by the abstract Algorithm 1 applied
to an ε-discretization of the concrete problem with ε → 0. The main trick is to
translate the condition of separability expressed with convex hulls into a more
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Fig. 3. Algorithm 2

continuous condition. We show that this condition can be expressed as a linear
program.

Let us execute Algorithm 2 and explain informally why it is correct. The input
is an instance 〈P,X, {f1, f2}〉 of the concrete optimal-cut problem. We represent
P on Fig. 3(a).

At lines 2,2 we compute the interval image of P by f1 and f2, and the size
of the those intervals (rx and ry). The assumption of line 2 implies that the
points r and t on Fig. 3(a) are such that sizeRangeF ({r, t}) = sizeRangeF (P ).
Therefore, any cut that separates those points is better than any other cut. This
remains true for the shaded regions defined by Δ0 on Fig. 3(a) until:

– either Δ0 becomes equal to ry − rx,
– or Δ0 reaches the value ry

2 , and the optimal-cut is given by the line � ≡
f2(x, y) = ẏmin + ry

2 .

This alternative is tested at line 2: the condition ry ≥ 2 rx is equivalent to ry

2 ≤
ry−rx. If ry < 2 rx, the algorithm continues as depicted on Fig. 3(b), separating
all pairs of points that give the largest range for function f1 and f2. The four
regions Pq, Pr, Ps and Pt (containing respectively q, r, s and t) are growing
altogether at the same ”rate”. The algorithm will stop whenever it becomes
impossible to separate both Pq from Ps and Pr from Pt. As in the abstract
algorithm, there are two branches to explore, corresponding to separate either
{Pq, Pr} from {Ps, Pt} or {Pq, Pt} from {Pr, Ps}. On Fig. 3(b), is represented
the intersection of the level sets of f1 and f2 as aΔ, bΔ, cΔ and dΔ. The subscript
emphasizes the fact that those points are moving when Δ varies.

Intuitively, {Pq, Pr} and {Ps, Pt} are separable iff aΔ and cΔ are outside P , a
possible separating line being the line connecting aΔ and cΔ. Similarly, {Pq, Pt}
and {Pr, Ps} are separable iff bΔ and dΔ are outside P . Assume that, as Δ
increases, one of the points bΔ and dΔ first enters P . Then, it becomes impossible
to separate {Pq, Pt} from {Pr, Ps}. But since {Pq, Pr} and {Ps, Pt} are still
separable, the algorithm can continue. When either aΔ or cΔ enters P , the
algorithm stops (with say Δ = Δ). An optimal line cut is given by the line
passing by aΔ� and cΔ� .
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Algorithm 2. Algorithm for computing the concrete optimal-cut in 2D
Input : An instance S = 〈P, X, F 〉 of the concrete optimal-cut problem with P ⊂ R

2,
X = {x, y}, and F = {f1, f2}.

Result: A line that solves the concrete optimal-cut problem for S.
begin

[ẋmin, ẋmax] ← f1(P ) ; [ẏmin, ẏmax] ← f2(P ) ;1
rx ← ẋmax − ẋmin ; ry ← ẏmax − ẏmin ;2
Assume w.l.o.g. that ry ≥ rx ;3
if ry ≥ 2 rx then return � ≡ f2(x, y) = ẏmin + ry

2 ;4
Δ0 ← ry − rx ;5
Let Δ be a symbolic parameter ;6
aΔ ← f−1

2 (ẏmin + Δ0 + Δ) ∩ f−1
1 (ẋmin + Δ) ;7

bΔ ← f−1
1 (ẋmin + Δ) ∩ f−1

2 (ẏmax − Δ0 − Δ) ;8
cΔ ← f−1

2 (ẏmax − Δ0 − Δ) ∩ f−1
1 (ẋmax − Δ) ;9

dΔ ← f−1
1 (ẋmax − Δ) ∩ f−1

2 (ẏmin + Δ0 + Δ) ;10
for z = a to d do Δz ← min{Δ | zΔ ∈ P} ;11
Δ1 ← min(Δa, Δc); Δ2 ← min(Δb, Δd) ;12
if Δ1 ≥ ry

2 − Δ0 ∨ Δ2 ≥ ry
2 − Δ0 then return � ≡ f2(x, y) = ẏmin + ry

2 ;13
Qmin ← P ∩ f−1

1 (ẋmin) ; Qmax ← P ∩ f−1
1 (ẋmax) ;14

if f2(Qmin) ∩ [ẏmin, ẏmin + Δ0] = ∅ ∧ f2(Qmin) ∩ [ẏmax − Δ0, ẏmax] = ∅ then15
return � ≡ f2(x, y) = ẏmin + ry

2 ;16

else if f2(Qmin) ∩ [ẏmin, ẏmin + Δ0] = ∅ = ∅ then17
if f2(Qmax) ∩ [ẏmin, ẏmin + Δ0] = ∅ then18

return � ≡ f2(x, y) = ẏmin + ry
2 ;19

else
return �ine(bΔ2 , dΔ2) ;20

else if f2(Qmin) ∩ [ẏmax − Δ0, ẏmax] = ∅ then21
if f2(Qmax) ∩ [ẏmax − Δ0, ẏmax] = ∅ then22

return � ≡ f2(x, y) = ẏmin + ry
2 ;23

else
return �ine(aΔ1 , cΔ1) ;24

else if f2(Qmax) ∩ [ẏmax − Δ0, ẏmax] = ∅ ∧ f2(Qmax) ∩ [ẏmin, ẏmin + Δ0] = ∅ then25
return � ≡ f2(x, y) = ẏmin + ry

2 ;26

else if f2(Qmax) ∩ [ẏmax − Δ0, ẏmax] = ∅ then27
return �ine(bΔ2 , dΔ2) ;28

else if f2(Qmax) ∩ [ẏmin, ẏmin + Δ0] = ∅ then29
return �ine(aΔ1 , cΔ1) ;30

else if Δ1 > Δ2 then31
return �ine(aΔ1 , cΔ1) ;32

else
return �ine(bΔ2 , dΔ2) ;33

end

As it can be shown, for z = a . . . d the point zΔ enters P for Δz = min{Δ |
zΔ ∈ P}. Then Δ = max(min(Δa, Δc),min(Δb, Δd)). Finally, notice that there
are several other special configurations that require a particular treatment by
Algorithm 2 (lines 2–2).

Remark. The macro-instructions of Algorithm 2 (lines 2, 2, 2) can be seen as
linear programs. In particular, the coordinates of aΔ, bΔ, cΔ and dΔ are linear
in the parameter Δ so that the minimization of line 2 is a linear program.

Theorem 24. Algorithm 2 is correct and always terminates.
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Algorithm 2 applies to the optimal-cut problem in 2D. A straightforward
extension to higher dimension is not trivially feasible. Indeed, already in 3D, we
have examples showing that the separability is not guaranteed even when the
level sets (which are planes) are intersecting entirely outside the given polytope.

Example. On Fig. 4 is shown the invariant of location �1 of the shared gas-
burner, with the position of the level sets of f1(x1, x2) = h1 − a1x1 + b1x2 and
f2(x1, x2) = −a2x2 + b2x1 at the end of Algorithm 2. The four arrows indicates
the moving direction of the lines corresponding to increase the parameter Δ
in the algorithm. The shaded regions corresponds to the pieces that are to be
separated. The optimal cut is the dashed line x1 = x2.

4 Refinement-Based Safety Verification Algorithm

In this section, we explain the methodology to obtain automatically successive
refinements of an affine hybrid automaton H for which to check emptiness.

A first rectangular phase-portrait approximation H0 = rect(H) is computed
from the original automaton H . Then the automaton H0 is symbolically an-
alyzed, both forward and backward as described in Section 2. This gives the
two sets Reach(�H0�) and Reach−1(�H0�). If their intersection Unsafe(�H0�) is
empty, then so is the set Unsafe(�H�) (by Lemma 7 and Theorem 8) and the
emptiness of H is established. Otherwise, we refine the automaton H by splitting
one of its unsafe locations and restart the procedure. In fact, from Theorem 25
below and Lemma 10, it appears that refining the rectangular approximation of
an automaton H in a safe location is useless for checking emptiness, since the
emptiness problem has the same answer for H and its refinement in that case.
In other words, the relevant part of the state-space to be refined is Unsafe(�H�).
This is stated by Corollary 26, using the notion of pruning.

For an hybrid automaton H = 〈Loc, Lab,Edg, X, Init, Inv,Flow, Jump,Final〉
and a subset L ⊆ Loc of its locations, let prune(H,L) be the hybrid automa-
ton 〈Loc′, Lab,Edg′, X, Init, Inv,Flow, Jump,Final〉 where Loc′ = Loc\L, Edg′ =
{(�, σ, �′) ∈ Edg | �, �′ ∈ Loc′} and the other components are left unchanged.

Theorem 25. For every hybrid automaton H, for every subset L ⊆ SafeLoc(H)
of its safe locations, we have �prune(H,L)� ≈unsafe �H�, that is, �prune(H,L)�
and �H� are weakly bisimilar for the unsafe behaviours.

Corollary 26. For every hybrid automaton H, for every location � ∈
SafeLoc(rect(H)), and every hyperplane π, rect(H) is empty iff rect(split(H, �, π))
is empty.

The core of the refinement based verification procedure is given below. Al-
though the refinement loop is not guaranteed to terminate, we could stop when
the size of the invariants run below a certain threshold with the conclusion that
the system is not robustly correct for that threshold. In a variation of this proce-
dure, the splitting can be iterated a fixed number of times in each loop, between
successive analysis of the rectangularized system.
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while Unsafe( rect(H) ) �= ∅ do
L ← SafeLoc(rect(H)) ;
H ′ ← prune(H, L) ;
Let � be a location of H ′ and π be a hyperplane ;
H ← split(H ′, �, π) ;

The splitting is done in the location � having the greatest imprecision (the
largest value of sizeRange on its invariant) and the hyperplane π is determined
using one of the algorithm presented in Section 3. This is a natural choice for �
since our goal is to finally reduce the overall imprecision of the rectangular
approximation. This way, the approximation can be made arbitrarily close to the
original system (for an infinite-norm metric [10]) and so if the system is robust (in
the sense that it is still correct under some small perturbation [6]), our procedure
eventually establishes its correctness, provided the reachability analysis of the
rectangular automata terminate. This contrasts with the counter-example based
refinement abstraction method (CEGAR) developed by Clarke et al. [4] where
the approximations are finite-state, but the refinement procedure is driven by
the elimination of spurious counter-examples (executions of the approximation
which have no concrete counterpart) and therefore not guaranteed to terminate.

5 Case Study

In practice, we use PPL (the Parma Polyhedra Library [3]) to overapproximate
the differential equations by rectangular inclusions. PPL is a C++ library to
manipulate polyhedrons with large rational coefficients and exact arithmetic.
We analyze the rectangular system with PHAVer [7], a recent tool for the veri-
fication of hybrid systems. This tool is designed to verify affine dynamics hybrid
automata, based on forward reachability analysis and user-defined rectangular
approximations. In our case, since the successive rectangular approximations are
obtained automatically, we have disabled the refinement features of PHAVer.
Also, we use the reverse automaton construction of Section 2 to implement back-
ward analysis.

We applied our methodology to the Navigation benchmark [5]. We present it
briefly. An object is moving on a m×n grid divided in m ·n cells. A map M asso-
ciates to each cell either an integer i in {0, . . . , 7} or a special symbol in {A,B}.
The integer determines the desired velocity vd(i) = (sin(iπ/4), cos(iπ/4)) in
the cell. Then the behaviour of the object (described by its position x and ve-
locity v) in such a cell is governed by the differential equations ẋ = v and
v̇ = A · (v − vd(i)) where A is a 2×2 matrix such that the solution velocity v
always converge to the desired velocity vd(i). A cell mapped to B should be
avoided and a cell mapped to A should be reached. We only verify the avoidance
property and we assume that the object cannot leave the grid. An instance of
the benchmark is characterized by the size of the grid, the map M , the matrix A
and the initial positions and velocities.
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Fig. 4. The optimal cut of the invariant
of location �1 of the shared gas-burner

Instance Grid Time (PT)
NAV01 3×3 5s (35s)
NAV02 3×3 10s (62s)
NAV03 3×3 10s (62s)
NAV04 3×3 75s (225si)
NAV07 4×4 11mn

i obtained with a heuristic

Fig. 5. Execution times on a Xeon 3GHz
with 4GB RAM (compared with PT =
PHAVer times [7])

This navigation benchmark has 4 variables x1, x2, v1, v2 but only two of them
(v1 and v2) appear in the right-hand side of the differential equations. So, the
quality of the splitting is not influenced by the position variables x1, x2. Thus
it is sufficient to consider line cuts in the plane v1v2 of the velocities. In order
to apply the procedure OptimalCut, we still have to choose two functions among
the four defining the system of differential equations: v1, v2, A1∗ · (v − vd) or
A2∗ · (v − vd(i)) where A1∗ (resp. A2∗) is the first (resp. second) row of A. In
practice, the first two functions give better results, essentially due to a lower
need in computational resources (mainly memory).

The results reported in Fig. 5 are encouraging since we were able to verify
more efficiently than PHAVer itself the instances NAV01-04, while we used that
tool as a black box for analysis of rectangular automata (thus with all heuristics
disabled). Also notice that the instance NAV04 was solved by PHAVer after
applying heuristic convex hull and bounding box approximations at particular
moments of the analysis [7]. Our results are fragile, since another choice of affine
functions has lead to computational difficulties, as mentioned above.
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Abstract. Within hybrid systems theory, o-minimal automata are often
considered on the border between decidability and undecidability. In such
classes of hybrid automata, the constraint of having only constant reset
upon discrete jumps is a strong limitation for their applicability: hence,
an important issue for both theoreticians and practitioners, is that of
relaxing the above constraint, while not fall into undecidability.

In this paper we start considering the problem of timed-bounded reach-
ability on o-minimal automata. This can be seen either as a reachability
problem paired with time-constraints or as a classical reachability prob-
lem for a class of hybrid automata which properly extends the o-minimal
one, with an extra variable representing time. Then, we directly face the
problem of extending o-minimal automata by allowing some variables to
retain their values upon a discrete jump, without crossing the undecid-
ability border.

1 Introduction

Hybrid automata [10] allow formal modeling and reasoning on systems in which
continuous and discrete dynamics mutually interact. A fundamental task, under-
lying automatic verification of hybrid systems, consists in solving a reachability
problem i.e. in checking whether the hybrid systems trajectories can evolve to
some (bad) region of the (infinite) state-space. The reachability problem is known
to be undecidable for a great variety of hybrid automata families [10, 11, 2]. In-
deed, the analysis of the border between decidability and undecidability stands
as one of the major questions in hybrid systems theory. So far, the results in
literature suggest that decidability can follow only from the imposition of strict
constraints, either to the continuous flow or to the discrete transitions of sys-
tems [2, 11, 1, 9, 13]. To this purpose, the recently introduced family of o-minimal
hybrid automata [13] is significant in that, on the one hand, it admits a great va-
riety of possible continuous evolutions but, on the other hand, it imposes a very
restrictive constraint on discrete transitions. Basically, upon each discrete jump
of an o-minimal system, all continuous variables must be (non deterministically)
reset to a constant. Stated in an other way, continuous and discrete dynamics are
completely decoupled. In [13], the entire family of o-minimal systems was shown
to admit finite bisimulation, and various classes of o-minimal automata were
proved decidable, being the corresponding bisimulation algorithm computable.
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Because of the above positive results o-minimal systems are a family of hybrid
automata having a great interest from a theoretical point of view; however, their
application is rather limited since any continuous variable is never admitted to
“remember” its value upon discrete transition.

Starting from the above considerations, in the first part of this paper we
consider a variant of reachability problem for o-minimal systems: the time-
bounded reachability problem (is a region reachable within a maximum time
t?). Such a problem can be seen either as a reachability problem paired with
time-constraints, or it can be reduced to a classical reachability problem for a
class of hybrid automata which properly extends the o-minimal one, with an
extra variable representing time. In order to show the decidability of our ex-
tended reachability problem, we use the first of the two above characterizations,
and we introduce a proof technique that does not require the construction of
a (finite) bisimulation abstraction. Basically, we build and solve an equivalent
minimum-path problem on a suitable weighted-graph.

In the second part of the paper, we directly face the problem of adjoining o-
minimal automata with variables that can maintain their value upon a discrete
jump. To this purpose we introduce the class of relaxed o-minimal automata that
we show to admit finite bisimulation. Finally, we rely on techniques introduced in
the first part of the paper to study and prove decidability for a further extension
of o-minimal automata, that we call MasterSlaves o-minimal automata. For space
sake, we include complete proofs of the claims in this paper in [8].

2 Preliminaries

We introduce here the basic notions and the notation we will need in the sequel.

Definition 1 (Hybrid Automata [2]). An Hybrid Automata is a tuple H =
(L,E,X, Init, Inv, F,G,R) with the following components:

– a finite set of locations, L;
– a finite set of continuous variables, X = {x1, . . . xn}, that take value on R;
– a finite set of discrete transitions (or jumps) E ⊆ L× L;
– F : L×Rn �→ Rn, assigning to each location � ∈ L a vector field F (�, ·) that

defines the evolution of continuous variables within �;
– an initial set of conditions: Init ⊆ L× Rn;
– Inv: L �→ 2R

n

, the Invariant location labelling;
– G : E �→ 2R

n

, the Guard edge labelling;
– R : E × Rn �→ 2R

n

, the Reset edge labelling.

We use the notation v to represent a valuation, (v1, . . . , vn) ∈ Rn, of the vari-
ables’ vector x = (x1, . . . , xn). ||x|| represents the usual euclidean vector norm,
whereas ẋ denotes the first derivatives of the variables in x. A state in H is a
pair s = (�,v), where � ∈ L is called the discrete component of s and v is called
the continuous component of s. An execution of H = (L,E,X, Init, Inv, f, G,R),
starts at any (�,v) ∈ Init and consists of continuous evolutions (within a loca-
tion) and discrete transitions (between two locations). Formally, an execution
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of H is a path in the timed transition system of H (cfr. Definition 2, below),
alternating discrete and continuous steps.

Definition 2. The timed transition system, T t
H , of the hybrid automata H =

(L,E,X, Init, Inv, F,G,R) is the labeled transition system T t
H = (Q,Q0, Σ,→),

with Q ⊆ L× Rn, Q0 ⊆ Q,Σ = R+ ∪ E, where:

– (�,v) ∈ Q if and only if v ∈ Inv(�) and (�,v) ∈ Q0 if and only if v ∈
Init(�) ∩ Inv(�);

– for each δ ∈ R+, there is a continuous transition (�,v) →δ (�,v′), if and only
if there is a differentiable function f : [0, δ] → Rn, with the first derivative
ḟ : [0, δ] → Rn such that:
1. f(0) = v and f(δ) = v′;
2. for all ε ∈ (0, δ), f(ε) ∈ Inv(�), and ḟ(ε) = F (�, f(ε)).

– there is a discrete transition (�,v) →e (�′,v′) if and only if e = (�, �′) ∈ E,
v ∈ G(�) and v′ ∈ R((�, �′),v)

A run of H will be denoted by the sequence (of continuous and discrete steps)
r = (�0,v0) t0→ (�0,w0) → (�1,v1) t1→ (�1,w1) → . . . (�n,vn) tn→ (�n,wn), where∑n

i=0 ti will be said the duration of r.
The time abstract transition system of H is the labeled transition system

TH = (Q,Q0, Σ →), where Σ = E ∪ {τ}, that is obtain from T t
H by replacing

each label δ ∈ R+ with the label τ .
A fundamental tool for resizing transition systems, while preserving crucial

properties (such as reachability) is bisimulation reduction, that we introduce
below. Consider a labeled transition system T = (Q,Q0, QF , Σ,→), where QF

denotes the set of final states, and let ∼B to be an equivalence relation on Q.

Definition 3. ∼B is a bisimulation of T = (Q,Q0, QF , Σ,→) if and only if:

– both Q0 and QF are ∼B blocks (i.e. union of ∼B classes);
– for each ∼B block, B, for each label a ∈ Σ, the region Prea(B) = {q ∈

Q | ∃p ∈ B ∧ q →a p} is a ∼B-block.

2.1 O-Minimal Theories and O-Minimal Hybrid Automata

In this paper we consider a class of hybrid automata called o-minimal automata
[13, 14]. O-minimal theories, introduced below, play a central role in the defin-
ition of o-minimal automata. We refer to [19, 18, 20] for a more comprehensive
introduction to o-minimal theories.

Definition 4. A theory of the reals is o-minimal if and only if every definable
subset of R is a finite union of points and intervals (possibly unbounded).

The class of o-minimal theories over the reals is quite rich: the theories Li(R) =
(R, <,+,−, 0, 1) and OF(R) = (R, <,+,−, ∗, 0, 1) are both o-minimal. The ex-
tension of the above theories obtained by admitting, in the underlying language,
a symbol for the exponential function, OFexp(R) = (R, <,+,−, ∗, exp, 0, 1), is
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also o-minimal. Another important extension is obtained by introducing, in the
underline language, a symbol for each restricted analytic functions and more ex-
tensions are discussed in [13]. By Definition 6, below, such a variety of o-minimal
theories (over the reals) ensures that o-minimal automata is a large and impor-
tant family of hybrid automata, admitting powerful continuous evolutions. In
the following definitions, we will use the notation adopted in [13].

Definition 5. Let F : Rn �→ Rn a smooth vector field on Rn. For each v ∈ Rn,
let γv(t) to denote the integral curve of F which passes through v at t = 0, that is
γ̇v(t) = F (γv(t)) and γv(0) = v. We say that F is complete if, for each v ∈ Rn,
γv(t) is defined for all times t. For such an F , the flow of F is the function
φ : Rn × R �→ Rn, given by φ(v, t) = γv(t).

Definition 6 (O-Minimal Hybrid Automata [13]). The hybrid automaton
H = (L,E,X, Init, Inv, F,G,R) is said an o-minimal automata if and only if:

– for each � ∈ L the smooth vector field F (�, ·) is complete;
– for each (�, �′) ∈ E, the reset function R : E �→ Rn does not depend on

continuous variables ( constant resettings);
– for each � ∈ L and (�, �′) ∈ E, the sets Inv(�), R(�, �′), G(�), Init(�), and

the flow of F (�, ·) are definable in the same o-minimal theory

Given an o-minimal theory, T , we denote by o-minimal(T ) automata the class
of o-minimal automata induced by T .

3 Related Work

The reachability problem for an hybrid automaton H , consists in the problem of
determinimg, given a location � and V ⊆ Rn, if there exists a run of H ending at
(�,v) with v ∈ V . In general, the latter problem is not decidable [11, 10]. So far,
according to the results in the litterature, it seems that its decidability can be
obtained only by imposing strict constraints either on the discrete transitions,
or on the continuous evolution of hybrid automata [2, 11].

In timed automata [1] and multirate automata [11, 12], for example, the flow
of continuous variables must be of constant slope one and general constant slope,
respectively. In both cases, the reachability problem is decidable because the cor-
responding time-abstract transition systems can be (algorithmically) reduced to
finite by bisimulation reduction [11]. Initialized rectangular automata [12] allow
to specify derivatives of the continuous variables flows by means of a conjunc-
tion of inequality of the form ẋ ≈ c, where ≈∈ {<,>,=} and c ∈ Q. Moreover
they impose an initialization constraint on discrete transitions. Given a discrete
transition (�, �′), all the variables that have a different flow in � and �′ must be
reset to an interval over R; The reachability problem is decidable for initialized
rectangular automata, since the corresponding time abstract transition systems
can be (algorithmically) reduced to finite by simulation reduction [9, 11].

O-minimal hybrid systems [13] are considered on the border between decid-
ability and undecidability for the reachability problem. If H is an o-minimal
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automata, then TH admits finite bisimulation [13, 14, 7]. This result does not
guarantee the decidability of the entire family [14], because the bisimulation re-
duction is not computable, in general, for o-minimal automata. In order to decide
reachability relying on bisimulation reduction, it is necessary to effectively:

1. represent sets of states;
2. perform set intersection, set complement, and check set emptiness;
3. given a set of states, Y , compute the set of states that can reach an element

in Y following a discrete/continuous step.

The computability of the above operations depends on the o-minimal theory in
which the flow of the hybrid automata, the Inv sets, the Guard sets, the Reset
sets, and the Initial conditions are defined. In [14] it is proved the decidability of
o-minimal(OF(R)) automata. Decidability depends on the fact that the theory
(OF(R)) admits quantifier elimination [17, 4] i.e. each formula in the theory is
equivalent to a quantifier free one that can be algorithmically determined. Thus,
for example, checking set emptiness corresponds to first performing quantifier
elimination, and then checking if the resulting formula is equivalent to false.
The results in [13, 14] show that o-minimal(OF(R)) automata constitute a class
of decidable hybrid systems admitting powerful coupled continuous dynamics.
For example, the flow of continuous variables whose first derivatives is given by
ẋ = Ax, with A nilpotent (that is ∃n An = 0), is OF(R) definable [13]. On
the converse, o-minimal(OF(R)) automata define the class of decidable hybrid
systems with the strongest constraints on discrete transition: each variable must
be nondeterministically reset to a constant upon each location switch.

In the next section we show how the above constraints on discrete transitions
leave open the following decidability question for o-minimal automata.

Is it possible to decide if a region is reachable within a time interval?

The answer of such a question is positive for the other families of decidable hybrid
automata (timed, multirate and initialized rectangular automata). We enclose
the circle giving a positive answer also for o-minimal(OF(R)) automata. The
construction we will give is interesting in itself, because it allows establishing an
alternative proof that reachability is decidable for o-minimal(OF(R)) automata.
Such a proof does not make use of bisimulation or simulation reduction and,
in our opinion, allows to better understand the link relating the constraints
defining both discrete and continuous components, in o-minimal automata, and
the decidability of the reachability problem. Moreover, our proof is constructive
and gives, as a free byproduct, an optimal reachability run i.e. a run whose
duration is minimal. The problem of determining optimal runs, assuming both
time constraints and discrete switches costs has been previously considered for
the class of timed automata in [16, 5, 3].

We conclude this section citing the works in [15, 6] where the issue of ex-
tending o-minimal automata relaxing the constant reset constraint is taken into
consideration, and some extensions leading to undecidability are presented.
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4 Time Bounded Reachability Problem and O-Minimal
Hybrid Automata

We start by formally defining the time bounded reachability problem on hybrid
automata.

Definition 7. The timed bounded reachability problem for an hybrid automata
H, consists in determining, given a location �, V ⊆ Rn, and a time value t ∈ Q,
if there exists a run of H having duration t′ ≤ t and ending at (�,v), with v ∈ V .

For most families of decidable hybrid automata (but not for classes of o-
minimal systems), the above problem can be reduced to a classical reachability
problem on an augmented automata of the same family. In fact, assume for ex-
ample to work with a timed, a multirate, or an initialized rectangular automata,
H , and suppose that you want to state if the region (�, V ) is reachable within
time t ∈ Q. You can obtain a new automata of the same family, H ′, by aug-
menting the set of continuous variables with a new (time) variable xt, where
ẋt = 1 in all locations and R(vt) = vt for all discrete transitions. Trivially, (�, V )
is reachable within the time t in H if and only if (�, V ×{t′ | t′ ≤ t}) is reachable
in H ′. The construction does not work for o-minimal(OF(R)) automata, since
o-minimal automata do not allow a variable to always maintain the same value
upon a discrete transition.

In order to prove that time bounded reachability is still decidable for o-
minimal(OF(R)) automata, we shall define an equivalent weighted graph mini-
mum-path problem. The graph manipulated will be a labelling of the control
graph of H , instead of a simulation or a bisimulation abstraction of TH . The
following lemma establishes a general property of o-minimal systems and will be
central in the correctness of the encoding.

Lemma 1. For each run of H,
r = (�0,v0) t0→ (�0,w0) → (�1,v1) . . .

tn−1→ (�n−1,wn−1) → (�n,vn),
there is a run of H,
r∗ = (�′0,v

′
0) t0→ (�′0,w

′
0) → (�′1,v

′
1) . . .

tm−1→ (�′m−1,w
′
m−1) → (�′m,v′

m), where:

• �0 = �′0, v0 = v′
0, �n = �′m, and vn = v′

m
• ∀ 0 ≤ i, j < m, it holds (i �= j) → (〈�′i, �′i+1〉) �= (〈�′j , �′j+1〉)
• the duration of r∗ is less or equal to the duration of r.

Lemma 1 can be used to build, given an o-minimal automata H , an o-minimal
automata H ′ with the following property: (�, V ) is reachable in H if and only if
V is reachable (in a suitable location of H ′) through a path that passes at most
once on each H ′-location. More precisely, we define the guard-expansion of an
o-minimal automata H , as below:

Definition 8. The guard-expansion of H = (L,E,X, Init, Inv, f, G,R) is the
o-minimal automata H ′ = (L′, E′, X ′, Init′, Inv′, f′, G′, R′) where:
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– L′ = {�j
i | (�j, �i) ∈ E} ∪ {��

i | �i ∈ L has not incoming edges};
– (�j

i , �
i
p) ∈ E if and only if (�i, �p) ∈ E;

– for all �j
i ∈ L′ we have Init′(�j

i )=Init(�i), Inv′(�j
i )=Inv(�i), G(�j

i , �
i
p)=G(�i,

�p), f ′(�j
i ,x)=f(�i,x);

– for all (�j
i , �

i
p) ∈ E, R′(�j

i , �
i
p) = R(�i, �p).

The result in Lemma 2 follows directly by Definition 8 and by Lemma 1.

Lemma 2. If (�i, V ) is reachable in the o-minimal automata H within time t,
then there exists j such that (�j

i , V ) is reachable in the guard-expansion of H,
through a run of duration t′ ≤ t that never pass twice in the same location.

5 An Algorithm for Time Bounded Reachability on
Classes of O-Minimal Hybrid Automata

We prove here the decidability of time bounded reachability for o-minimal(OF
(R)) automata. As anticipated, we will make use of the results in Section 4 to
map the problem onto a weighted graph minimum-path problem.

Given an o-minimal(OF(R)) automata, H , the first step in the construction
consists in obtaining the guard-expansion of H (cfr. Definition 8), H ′. By Lemma
2, checking if H admits a run to a region R, of duration at most t, is equivalent
to checking if there is a suitable acyclic run of duration at most t in H ′. We
represent in Figure 1 an o-minimal(OF(R)) automata and its guard-expansion1.
In the rest of this section we will use exactly the automata of Figure 1 to illustrate
the overall procedure.
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Fig. 1. An o-minimal(OF(R)) automaton and its guard-expansion

5.1 Phase 1: Labelling Scheme

Our next task is that of opportunely labeling the control graph of the guard-
expansion automata H ′, obtaining a weighted graph G. The set of nodes in G
consists of the set of locations of H ′ plus an auxiliary final node F .
1 Note that the continuous dynamics of the hybrid automata depicted in Figure 1 can

be expressed within (OF(R)) theory because the matrices involved in the underlying
differential equations systems are nilpotent (see [14]).
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If the target region, in our process, is in the location li of H , then F is linked
to all the locations of H ′ into which li gets split. Hence, for example, if we would
like to check time-bounded reachability of a region in the location �0, then G
would have the structure depicted in Figure 2.

The weights in G are real numbers maintaining

F

1
0

0
#

1

0

1
1

Fig. 2.

as much information as necessary to reduce our
time bounded reachability problem to that of de-
tecting a minimum weighted path in G. Such wei-
ghts are defined relying on the fact that OF(R) is a
decidable theory that admits quantifier elimination.
In fact, to label each edge of G, we build a suitable
OF(R) formula and we eliminate its quantifiers. As
a byproduct, we obtain a real number that we use
as a weight. More in detail, the labeling of G proceeds as follows:

• For each edge (lji , l
i
p) in G, we build the formula ψ(lji ,lip)(t0), that represents

the greatest lower bound of the (o-minimal) set of times allowing to pass
from a point in the reset region R(lj , li) of H , to a point in the guard region
G(li, lp) of H . The formula ψ(lji ,lip)(t0) is given by:

ψ(lji ,lip)(t0) = (ReachΔ
(lji ,lip)

(t0) ∨Reach(lji ,lip)(t0))∧
∧∀t(Reach(lji ,lip)(t) → t ≥ t0))

(1)

In ψ(lji ,lip)(t0), the subformula ReachΔ
(lji ,lip)

(t0) characterizes the time-point t0

as the left extreme of an open interval, Δ = (t0, t0 + ε), such that, for each
t0 < t < t0 + ε, the continuous components of H ′ can evolve from a value
in R(lj , li) to a value in G(li, lp) ∈ H , in time t. Similarly, the subformula
Reach(lji ,lip)(t) expresses the possibility to reach the guard-set G(li, lp) ∈ H

from the reset-set R(lj , li) ∈ H in time t. If φ denotes the flow of the vector
field F (�i, ·), then ReachΔ

(lji ,lip)
(t0) and Reach(lji ,lip)(t) are the following OF(R)

first-order formulas:

ReachΔ
(lji ,lip)

(t0) = ∃ε∀t[(t0 < t ∧ t < ε) → Reach(lji ,lip)(t)] (2)

Reach(lji ,lip)(t) = ∃x,y [x ∈ R(lj , li) ∧ y ∈ G(li, lp) ∧ φ(x, t) = y∧
∧∀t′(0 ≤ t′ ≤ t→ φ(x, t′) ∈ Inv(li))]

(3)

If ψ(lji ,lip)(t0) is satisfiable, then there is a unique value that can be assigned
to t0 to have a true sentence. Hence, by using, for example, Collins cylindric
algebraic decomposition algorithm [6] we can eliminate the quantifiers in
ψ(lji ,lip)(t0) and obtain a real algebraic number witnessing (the unique) time-
value satisfying ψ(lji ,lip)(t0). We use the computed greatest lower bound, say

α, to label the edge (lji , l
i
p) in G. We also distinguish the case in which α is

the left extreme of an open interval of times, from the case in which α is the
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left extreme of a closed interval of times (allowing to pass from R(lj , li) to
G(li, lp))2. In the first case, we use a dotted edge to connect the vertex lji
to the vertex lip in G. Finally, if ψ(lji ,lip)(t0) is not satisfiable, the edge (lji , l

i
p)

is labeled with the value +∞, meaning that it is never possible to reach
location lip ∈ H ′ from lji ∈ H ′.

• For each edge (l#i , lip) in G, we derive the formula ψ(l#i ,lip)(t0), that represents
the greatest lower bound on the time required to pass from a point in the
initial region of �i ∈ H to a point in the guard region G(li, lp) of H . The
process of construction of formula ψ(l#i ,lip)(t0) is equivalent to that of building
formula ψ(lji ,lip)(t0), in Equation 1. The only difference is that we should use
the initial-set Init(li) in place of the reset-set R(lj , li), within the definition
of the subformula in Equation 3. The edge (l#i , lip) is finally labeled either
with +∞ or with the real number resulting from solving the expression
derived from quantifier elimination applied to ψ(l#i ,lip)(t0).

• We follow an analogous approach to label each edge leading to the node F
in G. In this case, however, in place of guard-sets we use the final region V
to define the formulae in Equations 1,2,3.

5.2 Phase 2: Time Bounded Acyclic Paths Detection

Since now we have never used the input information about the time bound.
This information is necessary in the last phase of our procedure. In such a
step we simply apply a classical algorithm for the (multiple sources) minimum-
path problem3 on G, where F plays the role of target node, and the sources
are the nodes associated with each initial location, l#i , in H ′. Then, we match
the weight, w, of such a minimum path with the time bound, tmax. Finally we
answer positively to our problem if and only if w < tmax or w = tmax and the
corresponding minimum path does not contain any dotted edge.

Theorem 1. Time-bounded reachability is decidable for o-minimal(OF(R)) hy-
brid automata.

6 Generalizing Issues

The strategy discussed in previous sections to answer the time-bounded o-
minimal reachability problem can be naturally translated into an approach to
decide general reachability problem for o-minimal automata. Such an approach
2 This can be done by simply checking if the sentence ∃t0(Reach(lji ,lip)(t0) ∧

∀t(Reach(lji ,lip)(t) → t ≥ t0)) is equivalent to the free-quantifier sentence true.
3 Note that it is possible to carry on the computation of the overall minimum path

algorithm symbolically. This means that if α and α′ are two edge labelling reals,
represented by the two OF(R) quantifier free formulas φ(t) and φ′(t), then α + α′

can be obtained by eliminating the quantifiers in ∃t1, t2(φ(t1)∧φ′(t2)∧ t1 + t2 = t3).
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is even simpler in the case of general reachability, in the sense that we only need
to solve an equivalent connectivity problem on a directed (unlabeled) graph G.
Moreover, building the edges of G involves the definition and evaluation of OF(R)
sentences simpler than the formulas in Equations 1, 2, 3. More in detail, con-
sider again the o-minimal automata in Figure 1 and the problem of detecting the
reachability of an OF(R) definable set of states within location �0. The directed
unlabeled graph built to solve such problem has exactly the same set of nodes of
the graph in Figure 2 (built for time-bounded reachability). The rule for defining
the set of edges in G, instead, changes: in particular, for each edge (lji , l

i
p) in the

guard expansion H ′, we build a corresponding edge (lji , l
i
p) ∈ G if and only if the

following sentence is equivalent to the quantifier free sentence true:

∃x,y, t(x ∈ R(lj , li) ∩ Inv(li) ∧ y ∈ G(li, lp) ∩ Inv(li)∧

∧φ(x, t) = y ∧ ∀t′ ≤ t(φ(x, t′) ∈ Inv(li)) (4)

The above sentence simply asserts the possibility of reaching a point in the guard
region G(li, lp), from a point in the reset region R(lj, li). Note that, if it is not
necessary to specify the invariant sets in our hybrid automata, then the sentence
in Equation 4 uses only the existential fragment of the underlying theory.

With respect to traditional decision procedures in the litterature [13, 14], for
deciding reachability in o-minimal automata, the above sketched strategy does
not require to build the whole state-space of the bisimulation abstraction of TH .
Thus, it is valuable with respect to the, often fundamental in the verification
field, space-efficiency parameter. Moreover, in our opinion, the outlined decision
procedure for reachability precisely localize the decidability of o-minimal hybrid
automata within the following two parameters:

– the constant resets imposed onto the discrete dynamics;
– the decidability of the (existential fragment) of the theory defining all rele-

vant sets in the automata.

7 Relaxing O-Minimal Automata Constant Resets

7.1 Relaxed O-Minimal Automata

In this section, we directly face the problem of adjoining o-minimal automata
with variables that can maintain their values upon a discrete jump. To this aim,
Definition 9, below, introduces the class of relaxed o-minimal automata. In a
relaxed o-minimal hybrid automata, say H , continuous variables can maintain
their values along discrete transitions. However, for each cycle in the control
graph of H , there must be at least one edge along which all variables are non
deterministically reset to a constant. Let T to be an o-minimal theory:

Definition 9 (Relaxed O-Minimal(T ) Automata ). A Relaxed o-minimal
(T ) Automata is an hybrid automata H = 〈L,E,X, Init, Inv, F,G,R〉 in which:
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– L,E,X, Init, Inv, F,G are defined as in o-minimal hybrid automata, inside
the same o-minimal theory T ;

– the reset function R = R1× . . .×Rn=|X| : E×Rn×2R
n

is defined as follows:
1. for each edge e ∈ E, for each 1 ≤ i ≤ n, Ri(e, ·) is either equal to the

identity function id : R �→ R, or it is a constant function mapping each
value of the continuous variable xi to an interval over R;

2. for each cycle (�1 . . . �k = �1) in the control graph of H, G = (L,E),
there exists an edge e = (�i, �i+1) upon which the reset function R =
R1 × . . .×Rn is composed only by constant functions.

Consider a (general) hybrid automata H = 〈L,E,X, Init, Inv, F,G,R〉 and
let TH = 〈Q,Q0, QF , Σ,→〉, were QF is a set of final states, to be the time-
abstract transition system of H . We represent in Figure 3 a well known partition-
refinement computational approach to determine the maximum bisimulation
over TH . The procedure in Figure 3 successively refines a partition onto Q coarser
than the bisimulation quotient, iterating until a (finite) partition stable with re-
spect to →= (

⋃
e∈E →e)∪ →τ is determined. It follows that Bisim(H) computes

the bisimilation quotient of TH if and only if TH admits a finite bisimulation.
Theorem 2, at the end of this section, shows exactly that this is the case for the
time abstract transition systems of relaxed o-minimal automata.

We start by observing that, in order to show bisimulation finiteness for o-
minimal hybrid automata in [13], Pappas et al. used a partition refinement bisim-
ulation algorithm simpler than the general one presented in Figure 3. Such an
algorithm is depicted in Figure 4, and reduces to perform only the first for-loop
of Bisim, splitting independently the state-space associated with each location
� ∈ L. This, in turn, means that the discrete transitions are never considered
within the splitting process. The correctness of the algorithm depends on the fact
that o-minimal systems are constrained to constant resets. More precisely, if G(e)

Bisim(H)

(1) Let P be the coarsest partition of L × Rn compatible with respect to each block
{�} × Z, where � ∈ L, Z ∈ A� and A� = {Inv(�), Init(�), F inal(�)}

(2) Repeat
(3) oldP ← P
(4) for each (� ∈ L)
(5) while (∃B, B′ ∈ P such that ∅ �= B ∩ Preτ (B′) �= B)
(6) B1 ← B ∩ Preτ (B′); B2 ← B \ Preτ (B′)
(7) P ← (P \ {B}) ∪ {B1, B2}
(8) for each (e = (�, �′) ∈ E)
(9) for each (�′ × V ′ = B′ ∈ P, � × V = B ∈ P such that ∅ �= B ∩ Pree(B′) �= B)
(10) B1 ← B ∩ Pree(B′); B2 ← B \ Pree(B′)
(11) P ← (P \ {B}) ∪ {B1, B2}
(13) until (P = oldP)

Fig. 3. The partition refinement bisimulation algorithm for general hybrid automata
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BisimLoc(H)

(1) define A� = {Inv(�), Init(�), F inal(�)} ∪ {G(�, �′), R(�, �′) | (�, �′ ∈ E)}
(2) Let P be the coarsest partition of L × Rn compatible with respect

to each block {�} × Z, where � ∈ L, Z ∈ A�

(3) for each (� ∈ L)
(4) while (∃B,B′ ∈ P such that ∅ �= B ∩ Preτ (B′) �= B)
(5) B1 ← B ∩ Preτ (B′); B2 ← B \ Preτ (B′)
(6) P ← (P \ {B}) ∪ {B1, B2}

Fig. 4. The partition refinement bisimulation algorithm for o-minimal automata in [13]

and R(e) are classes in the initial partition P0, for each edge e, constant resets
ensure that discrete transitions do not cause any partition refinement since:

Pree(B) =
{
∅, if B ∩R(e) = ∅;
G(e), otherwise.

On the other hand, the termination of the refinement process within the bisim-
ulation procedure used by [13] in Figure 4, only depends on the form of the
following two components:

– the initial partition, which is a finite and composed by classes definable in
the o-minimal theory of H ;

– the smooth and complete vector field that defines the relation of the transi-
tion system, whose flow is definable in the o-minimal theory of H .

The above facts will be used within the following Lemmas, preliminary to the
main Theorem 2. Note that, since relaxed o-minimal automata allow identity
resets, the procedure in Figure 4 [13] does not allow to define a bisimulation
over the corresponding time-abstract transition systems. Consider a relaxed o-
minimal automata, H , and let P0 to be the partition built in the initialization
phase of Bisim(H).

Lemma 3. Each execution of the first for-loop within Bisim terminates leading
to a finite partition which refines P0.

Theorem 2. Relaxed o-minimal hybrid automata admit finite bisimulation.

The corollary below, follows immediately from Theorem 2 and from the fact that
the o-minimal theory OF(R) admits quantifier elimination.

Corollary 1. The reachability problem is decidable for Relaxed o-minimal(OF
(R)) automata.

7.2 MasterSlaves O-Minimal Automata

In Section 5, we exploited Tarski quantifier elimination to obtain a real value
that is a lower bound onto the time necessary to move among regions, within one
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o-minimal automaton location. Here we build up on this idea to define a further
extension of o-minimal automata which does not cross the undecidability border,
while relaxing the condition of having only constant reset on discrete jumps.

Briefly, this is achieved by endowing our automata with two classes of con-
tinuous variables. Precisely, MasterSlaves o-minimal hybrid automata will be
endowed with a set of variables that we call constant reset variables (or slaves
variables) plus a further variable that we call free variable (or master variable).
We impose the continuous evolution of the master variable, say xf , to be in-
dependent from slaves variables4: xf is allowed to maintain its value upon a
discrete transition if its flow does not change with the corresponding switch to
a new location. Otherwise, the free variable must be reset to a constant. As far
as slaves variables is concerned, we impose their discrete dynamics to be always
constrained to constant reset.

Given a location �, it is possible to define a T formula representing the set
of times allowing to traverse5 �, using exactly the same techniques adopted in
Section 5. We guarantee that such a set admits a strictly positive lower bound for
MasterSlaves o-minimal automata. The above fact, together with closed bounded
invariant sets (cfr. condition f) in Definition 10, below), is strongly related to
the decidability results stated in Theorems 3 and 4, at the end of this section.

To equip the reader of some more intuition, before formally introducing Mas-
terSlaves automata, we anticipate that conditions f), g) in Definition 10, and
the form of continuous dynamics, allow to ensure the following properties:

1. ∀� ∈ L there exists a strictly positive lower bound to the time required to
traverse �;

2. there exists a finite upper bound on the time that the free variable can
spend evolving according to a given vector field, F f , and subject to identity
resetting, without violating invariants.

Definition 10 (MasterSlaves O-Minimal(T ) Automata). A MasterSlaves
o-minimal(T ) Automata is an Hybrid Automata H = (L,E,X, Init, Inv, F,G,R)
with:

continuous dynamics
a) X = Xc ∪ {xf}, xf /∈ Xc. Xc = {xc

1, . . . , x
c
m}, m ≥ 1, is said the set of

constant reset variables (or slaves variables), whereas xf is said the free
variable (or master variable);

b) ∀� ∈ L, F (�, ·) : Rm+1 �→ Rm+1 is a complete smooth vector field whose
flow is T -definable.

c) ∀� ∈ L, the continuous evolution of the free variables does not depend on
Xc, i.e. it can be represented as the solution of a complete smooth vector
field, F f (�) : R �→ R. Moreover, if v ∈ Inv(�) |xf , then ||F f (v)|| �= 0.

4 In other words, for each location of a MasterSlaves automata, the flow of the free
variable can be represented as the solution of a smooth vector field F f : R 	→ R.

5 i.e. to reach a guard region in � departing from any guard region associated to a
discrete edge mapping to �.
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discrete dynamics
d) ∀(�, �′) ∈ E, R(�, �′) = Rf × Rc, where Rf (�, �′) can be the identity

function id : R �→ R only if F f (�) = F f (�′) and Inv(�)|xf = Inv(�′)|xf ;
otherwise Rf(�, �′) is a constant T -definable function mapping to 2R.
Rc(�, �′) : Rm �→ 2R

m

is a constant T -definable function;
relevant sets
e) ∀(�, �′) ∈ E, � ∈ L, the guard-set G(l, l′), the invariant-set Inv(�), and

(if any) the initial set Init(�) are definable within T ;
f) ∀� ∈ L, Inv(�) is a closed and bounded set;
g) ∀� ∈ L, there exists a strict positive constant d > 0 such that:

∗ for each v ∈
⋃

�′|(�′,�)∈E R(�′, �)(G(�′, �)) ∪ Init(�)
∗ for each w ∈

⋃
�′′|(�,�′′)∈E G(�, �′′)

the distance between v and w is at least d, i.e. ||v −w|| ≥ d.

Lemma 4 states that it is possible to solve a reachability problem on a given
MasterSlave o-minimal automata, by checking only runs that traverse at most k
edges, where k is a proper constant. The proof of Lemma 4 is based exactly on the
two properties discussed before formalizing our automata.We rely on the same
properties, and on the o-minimality of the theory underlying the definition of
our systems, to prove Theorem 3, stating that MasterSlaves o-minimal automata
admit finite bisimulation.

Lemma 4. Let H be a partitioned o-minimal. There is a constant k such that
for each state of H, (�,w), (�,w) is reachable in H if and only if H admits a
run traversing at most k discrete edges and leading to (�,w).

Theorem 3. MasterSlaves o-minimal automata admit finite bisimulation.

The decidability of the reachability problem for MasterSlaves(OF(R)) automata
follows directly from Theorem 3 (or, equivalently from Lemma 4) and from
decidability of o-minimal OF(R) theory.

Theorem 4. The reachability problem is decidable for MasterSlaves(OF(R)) o-
minimal automata.

8 Conclusions

In this paper we study a number of problems related both to the understanding
and to the extension of the border between hybrid systems decidability and un-
decidability . Our starting point was the family of o-minimal automata, which is
largely considered layering on such a border. In particular, we develop some not
bisimulation-based proof techniques for showing decidability of (timed-bounded)
reachability problems for classes of o-minimal systems. We finally analyze the
possibility to explicitly introduce identity resetting variables in o-minimal au-
tomata, without crossing the undecidability border.

Acknowledgements. We thank prof. A. Policriti for many useful discussions.
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Abstract. The inability to provide counterexamples for the violation
of timed probabilistic reachability properties constrains the practical use
of CSL model checking for continuous time Markov chains (CTMCs).
Counterexamples are essential tools in determining the causes of property
violations and are required during debugging. We propose the use of
explicit state model checking to determine runs leading into property
offending states. Since we are interested in finding paths that carry large
amounts of probability mass we employ directed explicit state model
checking technology to find such runs using a variety of heuristics guided
search algorithms, such as Best First search and Z*. The estimates used
in computing the heuristics rely on a uniformisation of the CTMC. We
apply our approach to a probabilistic model of the SCSI-2 protocol.

1 Introduction

Overview. Stochastic models are widely used in system design to describe dis-
crete phenomena that change randomly as time progresses. They are commonly
employed to specify and reason about system performance and dependability
characteristics. It is widely recognized that the availability of automated anal-
ysis tools is pivotal in the assurance of high quality system design, hence our
interest in formal analysis of this type of properties. In this paper we are consid-
ering the use of explicit state Model Checking [1] (ESMC) in the formal analysis
of stochastic system models. In particular, we use explicit state model check-
ing to explain why probabilistic timed reachability properties are not satisfied
by a stochastic model given in the form of a Continuous-Time Markov Chain
(CTMC).

A few model checking approaches for probabilistic models have been pre-
sented in the literature [2–9]. In [9], a branching time temporal logic named Con-
tinuous Stochastic Logic (CSL) for expressing real-time probabilistic properties
on CTMCs has been proposed, based on [7]. Efficient approximative stochastic
model checking algorithms to verify CSL formulae have been developed. We no-
tice that in practice relevant CSL formulae are often non-nested and fall into the
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Springer-Verlag Berlin Heidelberg 2005



178 H. Aljazzar, H. Hermanns, and S. Leue

common fragment of (the timed stochastic variants of) CTL and LTL. In this
paper we restrict ourselves to the consideration of an important class of safety
properties that can be expressed in this restricted fragment of CSL, namely
timed probabilistic reachability. A timed probabilistic reachability property is a
property of the form:

”The probability to reach a state s violating a state proposition ϑ, i.e
satisfying ϕ := ¬ϑ, within the time interval [0, t] does not exceed a prob-
ability p ∈ [0, 1]”.

The CSL syntax of this property is P<p(♦≤tϕ).
The practical applicability of CSL model checking is constrained by the in-

ability of this approach to produce offending system execution traces, also called
counterexamples in model checking parlance, that illustrate why a property was
violated. In particular, the probabilistic nature of the CTMC model checking
problem means that it cannot generally be assumed that a single state-transition
sequence through the model proves the violation of a probabilistic timed reach-
ability property, in case it is invalid. In ordinary model-checking, such state-
transition sequences are the prime debugging information provided by the model
checker, in case the property is refuted. In the context of CSL, the probability of
the property is determined by the probability mass flowing along all those state-
transition sequences which lead into a target state, and consequently, the model
checking algorithm cannot return a single state-transition sequence explaining
why such states were reachable with a certain probability. Instead, the model
checker can only give the actual probability in response to the specified CSL
property. This means that the stochastic model checking algorithm will not be
able to determine which part of the model is responsible for the undesired event
of exceeding a given probability bound. It is then left up to the user to inspect
the model in order to manually determine the reason for the property violation.

Approach. We address this problem by reconciling ESMC with CSL model check-
ing. ESMC checks state properties of a system model by systematically exploring
the state space of the system, usually given as an implicit graph. ESMC commonly
uses graph search algorithms such as Depth-First Search (DFS) and Breadth-First
Search (BFS) in the state space exploration. For safety properties, if an error is
found the model checker returns an offending system run in the form of a state-
transition sequence explaining how the property violating state can be reached
from the initial system state. Reachability analysis performed by ESMC over-
approximates the verification of timed probabilistic reachability since it does not
respect the time and probability bounds that the property imposes.

In order to reconcile both approaches, an important question is to define a
meaningful notion of a counterexample in the probabilistic context. Assume we
are facing a refuted timed probabilistic reachability property. This means that
the probability to reach an undesired state before the given time bound is higher
than the bound specified in the property. This is caused by an infinite set of
time-stamped runs (forming a tree structure of infinite depth and – owed to
varying real-timed time stamps – infinite branching), which has a probability
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measure higher than required. Now the question is: what portion of this infinite
set is the one that is undesired? The set itself does not provide useful information
to answer this question. Even more, there surely is no general answer since the
question is context-dependent. However it appears intuitively very beneficial to
understand the structure of this set by determining its largest portions, espe-
cially by identifying a selection of runs through the system along which most of
the relevant probability mass flows toward the undesired state. In this paper we
are thus interested in identifying system runs in the state graph which are mean-
ingful in the sense that they carry a lot of probability mass, and interpret these
as meaningful counterexamples to the timed probabilistic reachability proper-
ties that we analyze. To discriminate more meaningful runs leading to property
offending states from less meaningful ones during the state space exploration we
employ heuristics guided directed search algorithms.

We envisage our approach to be applied in combination with a numeric prob-
ability analyser, such as the one included in the CADP tool set [10, 11]. A typical
usage scenario would proceed in two steps. First, the system is checked on the
given timed probabilistic reachability property using the numeric analyser, i.e.,
the probabilistic model checker. Second, if the property is determined to be vio-
lated, then a counterexample is elicited by our directed state space exploration
approach. Intermediate results of the numeric analysis can be applied in guiding
the search process, as outlined in Section 3.2. While we assume that this is the
most likely usage scenario, our approach does not depend on a preceding proba-
bilistic model checking run. Even more, knowing that some state can be reached
within some time with a relatively high probability can in itself constitute im-
portant information about the system, even if it is not a counterexample to a
timed probabilistic reachability property in the above sense.

Structure of the Paper. In Section 2 we present some model foundations for
performing reachability analysis on probabilistic models. In Section 3 we extend
these concepts to include directed, heuristics guided model exploration. We in-
troduce the modeling of the SCSI-2 protocol, which serves as case study in our
paper, in Section 4. This section also gives the experimental results. We conclude
in Section 5.

2 Explicit-State Analysis of Probabilistic Systems

2.1 Probabilistic Systems

In this section, we sketch the model for probabilistic systems that we use.

Definition 1. A labelled discrete-timeMarkov chain (DTMC) is a triple (S, P, L),
where

– S is a finite set of states, and
– P : S × S −→ [0, 1] is a probability matrix, satisfying that for each state,

probabilities of outgoing probabilistic transitions cumulate to 1.
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Fig. 1. A simple DTMC, or a CTMC with E := {(s0, 3), (s1, 0), (s2, 5)}

– L : S −→ 2AP is labeling function, which assigns each state the subset of
valid atomic propositions.

We often assume that there is a unique initial state sinit of the system. Figure
1 illustrates a simple DTMC consisting of 3 states and 4 transitions. s0 is the
initial state, AP = {a, b} and L is given through the subsets of AP labeling the
states.

Definition 2. A labelled continuous-time Markov chain (CTMC) is a quadruple
(S, P,E, L), where

– (S, P, L), is a DTMC, and
– E : S −→ R>0 is a rate vector, assigning exit rates to states.

For example, the DTMC illustrated in Figure 1 can be extended to a CTMC
with E := {(s0, 3), (s1, 0), (s2, 5)}.

Paths, runs and probability measures. For a given DTMC (S, P, L), an infi-
nite run is a sequence s0−→ s1 −→ s2−→ . . . with, for i ∈ N, si ∈ S such that
P (si, si+1) > 0 for all i. A finite run σ is a sequence s0−→ s1−→ . . . sl−1−→ sl

such that sl is absorbing1, and P (si, si+1) > 0 for all i < l. A (finite or infinite)
path through a CTMC (S, P,E, L) is a sequence s0

t0−−→ s1
t1−−→ s2

t2−−→ . . . such
that s0−→ s1 −→ s2−→ . . . is a run through (S, P, L) and ti ∈ R>0 for all relevant
i. For a given initial state s0 in CTMC C, a unique probability measure Pr on
Path(s0) exists, where Path(s0) denotes the set of paths starting in s0 [9]. The
probability measure induces a probability measure on Run(s0), where Run(s0)
denotes the set of runs starting in s0. Because runs are time-abstract, the latter
measure only depends on the embedded DTMC, and can be defined directly
using Pr(s0, s0−→ s1−→ s2−→ . . .) = P (s0, s1) · Pr(s1, s1−→ s2−→ . . .).

Transient probabilities. In a CTMC, the time-dependent state probability can
be written as: π(s′, s, t) = Pr{σ ∈ Path(s) | σ@t = s′} where σ@t denotes the
state occupied at time t on path σ. π(s′, s, t) determines the probability to be
in state s′ at time t, if starting in state s at time 0. Efficient techniques based
on uniformisation exist to compute these probabilities. These thechniques use a
specific uniformised DTMC to reduce the required computations to the discrete
1 A state of a Markov chain is called absorbing if it has no outgoing transition leading

to another state.
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setting. In a DTMC the corresponding time dependency is given by the number
of hops along runs, and the hop-dependent probability is π(s′, s, k) = Pr{σ ∈
Run(s) | σ(k) = s′} where σ(k) denotes the k-th state in run σ. Intuitively,
π(s′, s, k) denotes the probability to be in state s′ after k hops, if starting in
state s (with 0 hops). The values of π(·, ·, k) are given by the entries of the
matrix P k as π(s′, s, k) = P k(s, s′).

Timed reachability probabilities. For a CTMC, the time-bounded reachability
probability can be defined as ρ(s′, s, t) = Pr{σ ∈ Path(s) | ∃t′ ∈ [0, t] : σ@t′ =
s′}. ρ(s′, s, t) determines the probability to hit state s′ at the latest at time t,
if starting in state s at time 0. The computation of ρ(s′, s, t) can be reduced to
that of π(s′, s, t) by making s′ absorbing (i.e., cutting all transitions) prior to
the computation of π(s′, s, t) [9].

2.2 Reachability Analysis of Probabilistic Models

Consider a timed probabilistic reachability property of the previously discussed
form φ := P<p(♦≤tϕ), to be checked on a given CTMC with initial state sinit.
According to the semantics of CSL [7] (which we omit here), the validity of φ can
be decided by comparing the probability bound p with the cumulated timed reach-
ability probability

∑
s′�ϕ ρ(s′, sinit, t). The computation of this quantity can be

done in one transient analysis where all states satisfying ϕ are made absorbing [9].
This answers the question how timed probabilistic reachability properties are

decided effectively. The goal of the present paper is more refined since we are
aiming to provide debugging information in case the property is refuted. When
that is the case, at least one offending state s′ satisfying ϕ is reachable. For
typical error state specifications, the number of such offending states is large,
leading to a large number of counterexamples that all contribute to exceeding
the probability bound p. We expect the user to be interested in a counterexample
which carries a high probability and which is hence most informative. We aim
specifically at identifying a finite run such that the contribution of this run to
the timed reachability probability is large or even maximal.

To arrive there, we first have to introduce timed run probabilities. Recall that
runs as such are time-abstract. Given a specific finite run r = s0−→ . . . −→ sk of
length k through the CTMC, the time-bounded run probability can be defined as

γ(r, t) = Pr{σ ∈ Path(s0) | ∃t′ ∈ [0, t] : σ@t′ = sk ∧ σ↓k = r},

where σ↓ is the projection of a path s0
t0−−→ s1

t1−−→ s2
t2−−→ . . . on the run s0−→ s1

−→ s2−→ . . . obtained by removing the transition time stamps. The subscript k

denotes the run truncated at depth k (thus ending in sk which is contained
in σ by construction). Intuitively, γ(r, t) gives the probability that the CTMC
moves along the run r and reaches last(r) at the least at time t. For a finite run
r = s0−→ s1 −→ s2−→ . . . −→ sn this timed run probability is given by

γ(r, t) =

t∫
0

(
p(s1, s0, t1) ·

(
. . .
( t−tn−1∫

0

p(sn, sn−1, tn) · dtn
)
. . .

))
· dt1, (1)
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where p(s′, s, t) = P (s, s′) ·
(
1− e−E(s)·t) is the probability to move from s to

s′ in the interval [0,t]. One can show that γ(r, t) can be computed by ρ(last(r),
f irst(r), t) (with the obvious meaning of first and last) on a CTMC where all
states which are not touched along the run r are made absorbing.

3 Directed Reachability Analysis of CTMCs

3.1 Search Algorithms

In state space search, the most commonly used algorithms are depth-first search
(DFS) and breadth-first search (BFS). Depth-first search (DFS) is memory ef-
ficient, but typically finds goal states only very deep in the search space which
leads to very long counterexamples. Breadth-first search (BFS) is complete and
can provide shortest counterexamples. However, BFS is in general too memory
inefficient to be applied to models of realistic size [12]. For weighted graphs, Dijk-
stra’s algorithm is known to deliver optimal solutions [13]. Originally, Dijkstra’s
algorithm uses the summation as a cost measure, i.e. the cost of path is the sum
of the costs of the path’s transitions. The cost (or merit) measure is a function
used by the search algorithm to assign each explored state a number quantifying
the costs of the path from the start state to a goal state over the current state,
e.g., path length. The merit is often considered to be the negation of the costs.
An optimal solution is a path whose merit is maximal (i.e., costs are minimal).
Markov chains can easily be cast into weighted graphs. In the stochastic setting,
however, the summation of costs that Dijkstra’s algorithm requires makes little
sense. We hence use Dijkstra’s algorithm with a suitable but non-additive cost
measure.

The algorithms DFS, BFS and Dijkstra are uninformed search algorithms.
To the contrary, the exists a large class of informed algorithms that take ad-
vantage of knowledge about structural properties of the state graph or the goal
state specification in order to improve the search. Belonging to this class, di-
rected search algorithms use such knowledge to perform heuristics guided state
space exploration. The guiding aims at finding optimal (e.g., shortest or cost-
minimal) paths in the state space. Heuristics guided search algorithms exploit
their knowledge during state expansion when deciding which node to expand
next. The problem knowledge manifests itself in a heuristic evaluation function
f which estimates the desirability of expanding a node. Amongst others, f relies
on an estimate h of the optimal costs of the cheapest solution rooted in the
current state. This algorithmic skeleton in its general form is called Best-first
(BF) [14] search. If f is identical to h, the resulting greedy best first algorithm
(GBestFS) will expand the successor node with the optimal value for h first.
It often finds a solution fast but it is not optimal with respect to the cost of
the path to a goal node since it can get stuck in sinks or local minima, as
has been observed in work on directed explicit-state model checking (DESMC)
which reconciles classical DFS based state space search with heuristics guided
search [12].
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In addition to GBestFS we also consider the Z∗2 search algorithm. Accord-
ing to Pearl [14], Z∗ is derived from BF by complying with the two following
requirements:

– The use of a recursively computed evaluation function f , and by
– The use of a delaying termination test when deciding optimality of the ex-

panded nodes.

The first requirement means that for each pair of states s and s′, where s
is the predecessor of s′ in the traversal tree, f(s′) is computed by f(s′) :=
F [ψ(s), f(s), h(s′)] for an arbitrary combination function F . ψ(s) stands for a
set of local parameters characterizing s. This requirement results in two effi-
ciency improving features, namely computation sharing and selective updating
[14]. The second requirement is needed to guarantee optimality of the search
result that Z* delivers.

The optimality of Z∗ can only be guaranteed if the following two conditions
are satisfied, in addition to the delaying termination test requirement:

1. The estimate h is optimistic, i.e. h(s) is always an overestimate of the profit
of expanding s.

2. The combining function F satisfies the order-preservation property illus-
trated in equation 2.

The property of h to be optimal has to be assured through its concrete definition
in an application context. We then need to ascertain that F satisfies the order-
preservation property:

F [ψ(s1), f(s1), h1(s′)] ≥ F [ψ(s2), f(s2), h1(s′)] ⇒
F [ψ(s1), f(s1), h2(s′)] ≥ F [ψ(s2), f(s2), h2(s′)],

(2)

for all states s1, s2 and s′ ∈ succ(s1) ∩ succ(s2) and all optimistic heuristics
h1 and h2 (where succ(s) enumerates the successor nodes of s). The order-
preservation property states that if two paths σ1 and σ2 from s to s′ are found,
where σ1 can be reached with less cost than σ2, then the further search process
will not reverse this order. In other words, by discarding the more expensive
path we do not throw away the optimal path. This property is fundamental for
the optimality of the algorithm.

3.2 Probabilistic Search Algorithms

In case a timed reachability property, say P<p(♦≤tϕ), is refuted, we are aiming at
identifying a run r through the CTMC leading to a state s with s � ϕ with a high,
if not the highest, timed run probability. In a heuristics guided state-space search
algorithm, the timed run probability γ(r, t) will therefore serve as optimization
2 The more prominent A∗ heuristics guided search algorithm is a variant of Z∗, where

an additive estimation function f is used. Since the costs in our context are probabil-
ities that are multiplied along the path, we need a multiplicative estimation function.
Therefore, A∗ is not applicable in this setting.
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goal. However, the determination of the precise value of the integral in equation 1
is computationally very expensive and prone to numerical instability problems.
Thus γ(r, t) cannot be used as a merit measure in the search process. Therefore
we propose in the following section an approximation of γ. The approximation
relies on a uniformisation of the CTMC.

Approximative Cost Measure. We use a uniformisation method to turn
the CTMC into a DTMC, which is then embedded in a Poisson process. Let
A = (S, P,E, L) be a CTMC. Using uniformisation we obtain an embedded
DTMC A′ = (S,M,L), with M being defined as follows:

M = I +
1
Γ
·E(s) · (P − I), (3)

where Γ is not smaller than the maximum of E. The Poisson process in which
A′ is embedded looks as follows:

Prob{N(t) = k} :=
(Γ · t)k

k!
· e−Γ ·t, k, t ≥ 0. (4)

For fixed t, N(t) is a random variable giving the (discrete) number of hops
made in the uniformised model A′ during the (continuous) time interval [0, t]
of A. For instance, the CTMC defined in Figure 1 can be uniformised using
Γ := max{ E(s0), E(s1), E(s2) } = 5. The uniformised model differs from the
original model only in so far as the branching probabilities of the state s0 are

changed as follows: s0
1
5−−→ s1, s0

2
5−−→ s2 and additionally s0

2
5−−→ s0.

The expected value of the Poisson process above is N := Γ · t. Intuitively, N
corresponds to the expected number of hops in the uniformised DTMC that may
occur in t time units. The probability that N hops occur in time t is maximal.
Now let t be the time bound given in the reachability property. Our search
algorithm is performed on A′ and selects a path leading to an error state which
has at most N transitions and carries a maximal probability. Thus we limit
the search process to states reachable within at most N transitions, i.e. states
probably reachable in the time interval [0, t].

In addition, γ(r, t) is reduced to its discrete variant γ′(r,N). While γ(r, t)
denotes the reachability probability in CTMC A along run r and bounded by
time t, γ′(r,N) denotes the reachability probability in DTMC A′ along run
r and bounded by hop count N . In the traversal tree spanned by the search
algorithm there is always at most one run r between each pair of states, i.e., r
is completely characterized by first(r) and last(r). Thus, instead of γ′(r,N) we
write γ′(last(r), f irst(r), N), or even γ′(last(r), N) if first(r) is the start state.
If first(r) is different from the start state, γ′(last(r), f irst(r), N) is computed
as if first(r) was the start state. We use π′ to denote the restriction of π to
the traversal tree. π′(s, k) is just π(s, sinit, k) (for start state sinit), but on the
DTMC obtained from A′ by redirecting all transitions which are not contained
in the traversal tree – except for self-loops – to an absorbing state. For any state
visited by the search algorithm, π′ is computed as follows:
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π′(sinit, k) =

{
1, k = 0

M(sinit, sinit) · π′(sinit, k − 1), k > 0

π′(s, k) =

⎧⎪⎨⎪⎩
0, k = 0

M(pred(s), s) · π′(pred(s), k − 1)+
M(s, s) · π′(s, k − 1), k > 0

(5)

where pred(s) stands for the unique predecessor of s in the traversal tree. For
some state s, γ′(s,N) can be efficiently computed according the following ex-
pression:

γ′(s,N) = M(pred(s), s) ·
N−1∑
k=0

π′(pred(s), k), (6)

where pred(s) stands for the unique predecessor of s in the traversal tree. Us-
ing the approximation explained above we are now able to define an efficiently
computable merit measure, namely γ′(s,N).

In the following we demonstrate the computation of γ′ by means of the uni-
formised variant of the the example illustrated in Figure 1. In the search process,
at first s0 is expanded generating s1 and s2. At this point γ′(s1, 2) is computed
as follows:

γ′(s1, 2) = 1
5 · (π′(s0, 0) + π′(s0, 1)) = 1

5 · (1 + 2
5 · 1) = 7

25 .

Now we assume that the search algorithm expands the state s2 generating the
states s0 and s1. A new computation of γ′(s1, 2) is performed on the following
way:

γ′(s1, 2) = 2
3 · (π′(s2, 0) + π′(s2, 1))

= 2
3 · (π′(s2, 0) + 2

5 · π′(s0, 0) + 0 · π′(s2, 0)) = 2
3 · (0 + 2

5 · 1) = 4
15

Since 7
25 > 4

15 , the run s0−→ s1 is preferred over s0−→ s2−→ s1 in order to
reach s1.

To give an impression of this approximation we consider an example CTMC
that emphasizes a characteristic challenge in timed probabilistic search. We study
the CTMC given on the left hand side of Figure 2, where E is defined as follows:

E(s) :=
{

2, if s ∈ {s0, s2}
20, otherwise

Let s0 be the start state, s3 and s13 be goal states. We refer to the run from
s0 to s13 by r1 and to s3 by r2. For small time bounds t < 1.0, γ(r1, t) is smaller
than γ(r2, t), but for large time bounds t ≥ 1.0, γ(r1, t) is higher than γ(r2, t).
This observation implies that our search algorithm should select run r1 for small
time-bounds, and r2 for larger bounds, in case it is a well-designed heuristics.
The plot on the right side of figure 2 illustrates γ(r1, t) and γ(r2, t) and their
approximations γ′(r1, N) and γ′(r2, N) depending on the time bound. We can
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Fig. 2. An example of a CTMC

see that the approximated curves run rather closely by the accurate curves. The
point of inflexion of the approximative curves where the higher probability mass
changes from r1 to r2 is located quite close to the inflection point of the non-
approximated curves. This illustrates that for a given time bound we are able to
rather accurately determine the optimal path using our approximation.

As mentioned previously, the cost estimate function f used in Z∗ takes a
heuristic function h into account. In our setting h is an optimistic heuristics, i.e.
for each state h(s) is an overestimate of the maximal probability h∗(s) to reach
a goal state started from s within at most N transitions, more precisely:

h(s) ≥ h∗(s) := max{γ′(s′, s,N) | s′ is a goal state}. (7)

f is defined formally in the following equation:

f(s′) := F [ψ(s), f(s), h(s′)] = F [{π′(s, k)|0 ≤ k ≤ N},M(s, s′), h(s′)]
= −γ′(s′, N) · h(s′). (8)

γ′(s′, N) · h(s′) is an estimate of the merit of the state s′ and the costs are
the negation of this value. If it is technically possible, information from the
numerical analysis can be used in the computation of γ′(s′, N) and h(s′) . This
would increase the performance by computation sharing. The quality of h can
also be improved. We remark that the property of f of being optimistic relies
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on the currently unproven conjecture that for each triple of states s1, s2 and
s3, where si is an ancestor of sj in the traversal tree of the search algorithm for
i < j, the following inequation holds:

γ′(s2, s1, N) · γ′(s3, s2, N) ≥ γ′(s3, s1, N). (9)

This implies admissibility of f , and consequently the optimality of the algorithm.
Our experiments confirm this conjecture since the search always finds optimal
counterexamples and a reopening of nodes, which can have detrimental effects on
the computational performance, was never observed. We point out, however, that
optimality is not our essential goal. The experience in directed model checking
has been that even inadmissible heuristics deliver good (sub-)optimal goals, if
only the heuristic estimate is informative. We also remark that we have to store
with each open state s, i.e. leaf state in the traversal tree, a vector of the size N−
depth(s) saving the probabilities to be in the state s after k transitions, for each
depth(s) ≤ k ≤ N . However the effect of this additional space is imperceptible,
hence the set of open states is very small relative to the whole state space.

To establish the optimality of Z∗ we still have to establish order-preservation
of f . This can be done by the following reasoning:

F [ψ(s1), f(s1), h1(s′)] ≥ F [ψ(s2), f(s2), h1(s′)]
⇒ −γ′(s1, N) · h1(s′) ≥ −γ′(s2, N) · h1(s′)
⇒ −γ′(s1, N) ≥ −γ′(s2, N)
⇒ −γ′(s1, N) · h2(s′) ≥ −γ′(s2, N) · h2(s′)
⇒ F [ψ(s1), f(s1), h2(s′)] ≥ F [ψ(s2), f(s2), h2(s′)]

In the above proof we use the fact that h1 and h2 never take the value 0. Let
S′ ⊆ S be the set containing all goal states. Note that hi(s) = 0 for some state
s implies that h∗(s) = 0 because hi(s) ≥ h∗(s). That means, the probability to
reach a goal state outgoing from s within N transitions is 0. In this case we are
allowed to remove s and its in- and outgoing transitions from the state space.

3.3 Heuristic Functions

We now turn to the question how to efficiently compute informative heuristic esti-
mates to be used in the search. Consider the property P<p(♦≤tϕ). For every state
s that we explore in the search we need an overestimating function for the max-
imal time-bounded run probability until a state satisfying ϕ is reached from s,

Table 1. A method to build heuristic functions for complex reachability properties

ϕ hϕ h̄ϕ

¬ ϕ1 h̄ϕ1 hϕ1

ϕ1 ∨ ϕ2 max{hϕ1 , hϕ2} min{h̄ϕ1 , h̄ϕ2}
ϕ1 ∧ ϕ2 min{hϕ1 , hϕ2} max{h̄ϕ1 , h̄ϕ2}
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more precisely, max{γ′(s′, s,N) | s′ � ϕ} Let hϕ be an estimation for the max-
imal time-bounded run probability until a state satisfying ϕ is reached and h̄ϕ

an estimation for the maximal time-bounded run probability until a state violat-
ing ϕ is reached. If ϕ is an atomic proposition, the concrete heuristic estimation
values are application dependent and we shall provide examples in the context of
our case study in Section 4. However, the state formulae characterizing the state
reachability conditions consist of boolean combinations of atomic state proposi-
tions, as for instance in the formula P<p(♦≤t(ϕ1 ∧ ¬ϕ2)). Table 1 illustrates how
heuristic estimates can be obtained from boolean combinations of atomic formu-
lae. If the given heuristic functions of the atomic propositions are admissible, then
the heuristic functions built according to Table1 are admissible. We can therefore
assume that Z∗ delivers paths leading into goal states with optimal costs.

4 Case Study: The SCSI-2 Protocol

SCSI-2 Protocol. To illustrate our approach we analyze a storage system of re-
alistic size. This system consists of up to 8 devices, one disk controller and up
to 7 hard disks. These devices are connected by a bus implementing the Small
Computer System Interface-2 (SCSI-2) standard [15]. Each device is assigned
a unique SCSI number between 0 and 7. In [16], this system was analyzed re-
garding starvation problems for disks having SCSI numbers smaller than the
SCSI number of the disk controller. Within the scope of that work the system
was modelled in LOTOS [17] and transformed into an interactive Markov chain
(IMC) by the CADP toolbox [10, 11]. We will use this model in our analysis.

In accordance with the SCSI-2 protocol definition, the controller can send a
command (CMD) to the disk d. After processing this command, the disk sends
a reconnect message (REC) to the controller. CMD and REC messages of every
disk are stored in eight-place FIFO queues. CMD and REC messages circulate
on the SCSI bus, which is shared by all devices. To avoid access conflicts on the
bus, a bus arbitration policy is used.

Directed Reachability Analysis of the SCSI-2 Protocol. We analyse the storage
system described above with respect to the probability of reaching an overload
situation of the hard disks. The system consists of one controller and three
disks. On one disk (the main disk) the operating system and all applications
are installed. The two other disks are used to backup the data of the main disk
(backup disks). In stress cases, the main disk is intensely loaded and has to serve
many more access requests than the other disks. It is interesting to determine
the probability to reach some state where the main disk is overloaded while the
other disks are not busy. In this situation the command queue of the main disk
is full and the queues of the backup disks are empty. Similarly we consider the
system behavior during backup. In order to capture these situations we define
the following atomic state propositions:

– For each disk d, the command queue of d is full: ϕd.
– For each disk d, the command queue of d is empty: ϑd.
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Let 0 be the SCSI number of the main disk and 1 and 2 the numbers of the
backup disks. We are interested in the following properties:

1. The main disk is overloaded and the backup disks are idle (MDOL):

φ := P<p(♦≤tϕ0 ∧ ϑ1 ∧ ϑ2) (10)

2. One backup disk is overloaded and the two other disks are idle (BDOL):

θ := P<p(♦≤tϑ0 ∧ (ϕ0 ∧ ϑ1)∨(ϑ0 ∧ ϕ1)) (11)

We first need heuristic estimation functions for the atomic propositions, as
discussed in Section 3.3.3 As we mentioned above, determining these estimates
requires to exploit some domain specific insight.

Let D denote the set containing the SCSI numbers of the plugged disks. The
map cq : S × D −→ {0, 1, ..., 8} gives for each disk the number of commands
contained in its command queue in the current state.

1. The delay required to issue a new command to the disk d, for some d ∈ D,
is modelled by a Markovian transition with rate λd.

2. The servicing time of the disk d is modelled by a Markovian transition with
rate μd.

For the uniformisation of the model we have to determine a value which is
not smaller than Emax ≥ max{E(s) | s ∈ S}. It can easily be shown that
max{E(s) | s ∈ S} =

∑
d∈D

(λd + μd) =: Emax. Thus in the uniformised model

the branching probability of the transition s rate−−−→ s′ is rate
Emax

. In each state s,
transitions modeling sending a new command to disk d as well as processing a
command by the disk d compete at least against the following Markovian delays
(including the delay of the transition itself):

– λi for each disk i, where cq(s, i) < 8.
– μi for each disk i, where cq(s, i) > 0.

This leads to the following inequation, describing possible underestimations for
the probabilities:

E(s) ≥

⎛⎜⎜⎝ ∑
i∈D

cq(s,i)<8

λi +
∑
i∈D

cq(s,i)>0

μi

⎞⎟⎟⎠ =: E′(s). (12)

In other words, the branching probability of leaving s, which we denote by
pout(s), is not smaller than E′(s)

Emax
. Thus, if s′ is the other end state of such

transition, then

γ′(s′, s,N) ≤ p ·
N−1∑
k=0

(1− pout(s))k,

where p is the branching probability of the transition, i.e. λi

Emax
or μi

Emax
.

3 Since negations of the atomic propositions do not occur in the property which we
analyse we do not need to give heuristic functions for the negations h̄.
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In conclusion, relying on the the over-approximation above and the conjec-
ture explained in Section 3.2, we can define the following optimistic heuristic
functions:

hϕd
(s) := (

λd

Emax
·

N−1∑
k=0

(1− pout(s))k))8−cq(s,d) (13)

hϑd
(s) := (

μd

Emax
·

N−1∑
k=0

(1− pout(s))k))cq(s,d) (14)

More precisely, we conjecture the following relations:

hϕd
(s) ≥ h∗

ϕd
(s) := max{γ′(s, s′, N) | cq(s′, d) = 8}

hϑd
(s) ≥ h∗

ϑd
(s) := max{γ′(s, s′, N) | cq(s′, d) = 0}

The heuristic functions hϕ and hϑ are built according to Table 14.

Implementation and Experiments. As mentioned above we use GBestFS and Z∗

as directed search algorithms and compare them to the undirected algorithms
DFS, BFS and Dijkstra. The variant of Dijkstra’s algorithm that we use in-
terprets the −γ′(s,N) values as a weight of the state s. We expect that BFS
delivers the shortest solution while our variant of Dijkstra delivers the path with
maximal time-bounded run probability.

We generate the models using the OPEN/ CÆSAR environment [18], also
referred to as CADP, with which it is possible to generate a C graph module
representing an implicit labeled transition system (LTS) corresponding to the
given LOTOS model. We then transform the generated LTS into a CTMC5. We
explore this CTMC on-the-fly by our search algorithms. If property violations
are found, the search algorithm delivers a path leading from the initial state to a
state violating the property. In order to preserve all probabilistic information of
the model, the remainder of the model is replaced by a special absorbing state
sout to which we redirect all transitions which originate from some state on the
path to the goal states, but which are not part of the path.

Table 2 shows an overview on the probabilities computed for the properties
MDOL and BDOL. In order to assess the quality of some counterexample that
we found we compare the reachability probability of the counterexamples with
the precise reachability probability of the property in the original model, as de-
termined by a transient analyser. For this purpose we generate the explicit state
graph of the model in the BCG format of CADP and modify it by making all goal
4 Note that heuristics built according to this table are monotone in case the heuris-

tics for the atomic propositions are monotone. For the SCSI-2 example this is the
case. The monotonicity manifests itself in the fact that we did not observe state
re-openings in the experiments.

5 In fact, in general the model resulting from this transformation is an interactive
Markov chain (IMC), which in this particular case happens to correspond to a
CTMC [16].
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Table 2. Overview on the probabilities computed for the properties MDOL and BDOL
for different time bounds, for main and backup disk load = 10

Prob. Time bound 1 2 3 4 5 6 7 8 9 10
MDOL Model 0.235 0.312 0.327 0.329 0.329 0.329 0.330 0.330 0.330 0.330

DFS - - - - - - 0.000 - - 0.000
BFS - 0.161 0.161 0.161 0.161 0.161 0.161 0.161 0.161 0.161
Dijkstra estimated - 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049

precise - 0.161 0.161 0.161 0.161 0.161 0.161 0.161 0.161 0.161
GBestFS estimated - 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005

precise - 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012
Z∗ estimated - 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049 0.049

precise - 0.161 0.161 0.161 0.161 0.161 0.161 0.161 0.161 0.161
BDOL Model 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008

DFS - - - 0.000 0.000 0.000 0.000 0.000 0.000 0.000
BFS - 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
Dijkstra estimated - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

precise - 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002
GBestFS estimated - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

precise - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Z∗ estimated - 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

precise - 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

states absorbing. After that we analyze the modified model using the transient
analyser of CADP. The resulting probabilities are given in the row labeled by
”Model”. For the probabilistic algorithms (Dijkstra, GBestFS, Z∗), two probabil-
ity values are recorded in Table 2, namely the estimated and the precise ones, c.f.
the table rows labeled ”estimated” and ”precise”. The estimated value is γ′(r,N)
computed by the search algorithm. The precise probability of the counterexample
is γ(r, t) computed by the numeric transient analyser of CADP. To compute the
precise value we run the transient analyser on the counterexample interpreted
as a truncated CTMC (see Figure 5). When the search algorithm was unable to
find a counterexample, then we denote this with an entry of the form ’-’.

To interpret the results, we can first see that for both properties the proba-
bility of the run delivered by Z∗ corresponds to the probability of the run using
Dijkstra. This supports the optimality of Z∗ and the optimality conjecture that
we propose in Section 3.2. The probabilities of the counterexamples delivered by
DFS are very close to zero which supports our claim that DFS is unsuitable in
this setting. In many cases the DFS algorithm failed to find a counterexample
at all. The reason is that we limited the search depth of DFS to N6. For time
bound 1 no counterexample could be found since no goal state was reachable
in the approximation within N state transitions. The optimal counterexample
for both properties happens to be the shortest one. Only due to this BFS was
able to select the optimal path in all experiments. The counterexamples found
by GBestFS are inferior to the optimal ones.

Figures 3 and 4 compare the performance of the different algorithms with
respect to CPU runtime, explored states and used memory space, respectively.
Generally, we can observe that the guided algorithms (GBestFS and Z∗) have a

6 C.f. also the incompleteness of depth bounded DFS discussed in [19].
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Fig. 3. Computational effort for MDOL depending on the time bound (main disk
load = 5)

much better performance in terms of both runtime and memory space than the
uninformed algorithms (DFS, BFS and Dijkstra). This suggests that the guided
search algorithms will scale much better to larger problems than, in particular,
Dijkstra’s algorithm. In some situations GBestFS works more efficiently than Z∗

but the difference is not very significant. The algorithms DFS and BFS perform
badly in terms of both runtime and number of explored states. The number of
explored states usually correlates with the memory space used by the algorithm.
However the probabilistic algorithms (Dijkstra, GBestFS and Z∗) use addition-
ally a vector of the size ≤ N for each open state s in order to save the values of
π(k), for depth(s) ≤ k ≤ N , c.f. section 3.2. Normally the effect of this additional
space is imperceptible, hence the set of open states is very small relative to the
whole state space. However, the effect can be noticed in Figure 4. Although BFS
explores more states than Dijkstra, it requires less memory than BFS.

To assess the counterexamples found by our probabilistic algorithms quali-
tatively, we consider the following comparison. For the properties MDOL and
BDOL, DFS finds an error state, if at all, over a very intricate run. These runs
contribute almost nothing to the whole reachability probability of the property.
In models in which short runs do not carry necessarily a large probability mass,
we will detect the same effect for BFS. Certainly, such runs do not provide much
insight in order to to locate the cause of the property violation. On the other
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Fig. 4. Computational effort for BDOL depending on the time bound (backup disk
load = 5)

0
LAMBDA !0

LAMBDA !1
LAMBDA !2

LAMBDA !1
LAMBDA !2

MU !0
MU !0

GOAL1
ARB ...2 3

CMD !0 CMD !0
2423

25

ARB

OTHERS

... ...

Fig. 5. A Counterexample for MDOL

hand, there are other runs that obviously carry larger probability mass. We il-
lustrate one such run in Figure 5. It also corresponds to the counterexample that
Z* finds for the MDOL property. This counterexample models the behavior of
the system in the case that right from the start permanently new commands are
sent to the main disk (disk 0) while the disk does not get the chance to service
any of these commands. The counterexample largely consists of eight repetitions
of the events Lambda !0, ARB, CMD !0. These correspond to a Markovian delay
(Lambda !0), access to the data bus (ARB) and the sending of a command to disk
0 (CMD !0). This in fact corresponds to the most direct way to overload the main
disk, a situation that is represented by the state labeled GOAL. All transitions
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which are not touched along this run are redirected to a sink state labeled OTH-
ERS. By analysing this counterexample we can identify the following two factors
contributing to the high probability of the property violation:

1. The Markov delay LAMBDA !0 modeling that the controller issues a new
command for disk 0 is relative large, i.e. the disk is highly frequented.

2. Other Markov delays, especially MU !0 modeling the servicing delay of disk
0, are relative small, i.e. the disk can barely service the requests.

This leads to the following solution strategy. The main disk has to be replaced
by a faster one which means increasing MU !0. At the same time the storage
system load could be reduced, i.e. the value of LAMBDA !0 should be decreased.

In summary, the experiments show that our approach succeeds in efficiently
finding counterexamples carrying large portion of the full probability and that
are therefore meaningful in the debugging process. The estimated probabilities
of the found counterexamples are relatively accurate, and comprise on average
50% for MDOL and 25% for BDOL of the total probability (c.f. line ”Model” in
the table).

5 Conclusion

We have described a method to determine counterexamples for timed probabilis-
tic reachability properties of CTMCs. Our approach relies on heuristics directed
explicit state search and employs uniformisation in order to efficiently compute
heuristics. Using experimental data we illustrated that our approach succeeds in
finding meaningful counterexamples in a way that is computationally superior
to using other, non-directed search approaches.

Related work can largely be found in the area of model checking for stochastic
systems, and in directed model checking, as cited earlier. We are not aware
of other approaches to solving counterexample generation for stochastic model
checking using heuristic search techniques. The method is also readily applicable
to untimed probabilistic reachability counterexample generation.

Goals for future research include the use of appropriate search methods to
approximate the timed probabilistic reachability problem from below, i.e., to
determine a set of n runs in the model leading into goal states so that the com-
bined probability of these runs exceeds the probability bound p. For appropri-
ately structured models and small n this may be computationally advantageous
compared to numerical stochastic model checking.
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Abstract. Monitoring real-time concurrent systems is a challenging
task. In this paper we formulate (model-based) supervision by means
of hidden state history reconstruction, from event (e.g. alarm) observa-
tions. We follow a so-called true concurrency approach using time Petri
nets: the model defines explicitly the causal and concurrency relations
between the observable events, produced by the system under supervi-
sion on different points of observation, and constrained by time aspects.
The problem is to compute on-the-fly the different partial order histories,
which are the possible explanations of the observable events. We do not
impose that time is observable: the aim of supervision is to infer the par-
tial ordering of the events and their possible firing dates. This is achieved
by considering a model of the system under supervision, given as a time
Petri net, and the on-the-fly construction of an unfolding, guided by the
observations. Using a symbolic representation, this paper presents a new
definition of the unfolding of time Petri nets with dense time.

1 Introduction and Related Work

Monitoring real-time concurrent systems is a challenging task. In this paper we
formulate model-based supervision by means of hidden state history reconstruc-
tion, from event (e.g. alarm) observations. We follow a so-called true concurrency
approach using time Petri nets: the model defines explicitly the causal and con-
currency relations between the observable events, produced by the system under
supervision on different points of observation, and constrained by time aspects.
The problem is to compute on-the-fly the different partial order histories, which
are the possible explanations of the observable events. An important application
is the supervision of telecommunications networks, which motivated this work.

Without considering time, a natural candidate to formalize the problem are
safe Petri nets with branching processes and unfoldings. The previous work of
our group used this framework to define the histories and a distributed algorithm
to build them as a collection of consistent local views[2]. The approach defines
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the possible explanations as the underlying event structure of the unfolding of
the product of the Petri net model and of an acyclic Petri net representing the
partial order of the observed alarms.

In this paper we extend our method to time Petri nets, allowing the designer
to model time constraints, restricting by this way the set of possible explanations,
We do not impose that time is observable: the aim of supervision is to infer the
partial ordering of the events and their possible firing dates. Using a symbolic
representation, this paper presents a new definition of the unfolding of time Petri
nets with dense time.

Model-based diagnosis using time Petri nets and partial orders has alreadybeen
addressed in [12]. In this work, temporal reasoning is based on (linear) logic. The
first reference to time Petri net unfolding seems to be in 1996, by A. Semenov,
A. Yakovlev and A. Koelmans [13] in the context of hardware verification. They
deal only with a quite restricted class of nets, called time independent choice time
Petri net, in which any choice is resolved independently of time. In [1], T. Aura
and J. Lilius give a partial order semantics to time Petri nets, based on the non-
sequential processes semantics for untimed net systems. A time process of a time
Petri net is defined as a traditionally constructed causal process that has a valid
timing. An algorithm for checking validness of a given timing is presented. It is
proved that the interleavings of the time processes are in bijection with the firing
schedules. But unfortunately, they do not provide a way to represent all the valid
processes using the notion of unfolding of time Petri net, as usual in the untimed
case. A few years later (in 2002), H. Fleischhack and C. Stehno in [10] give the
first notion of a finite prefix of the unfolding of a time Petri net. Their method
relies on a translation towards an ordinary place/transition net. This requires to
consider only discrete time and to enumerate all the situations. This also relies on
the introduction of new transitions, which represent the clock ticks. Although rel-
evant for model-checking, it is not clear that it allows us to recover causalities and
concurrencies, as required in the diagnosis application. Furthermore, we are con-
vinced that time constraints must be treated in a symbolic way, using the analog
of state class constructions of B. Berthomieu [3, 4].

The rest of the paper is organized as follows. Section 2 defines the different
ingredients of our model-based supervision, namely the diagnosis setup, the time
Petri net model and its partial order semantics. Section 3 describes the symbolic
unfolding technique used to compute the symbolic processes, which serve as
explanations. Before entering the general case, we consider the simplest case of
extended free-choice time Petri nets [5]. We conclude in Section 4. The proofs of
the theorems are available in the research report [7].

2 Diagnosis, Time Petri Nets and Partial Order
Semantics

2.1 Diagnosis: Problem

Let us consider a real distributed system, which produces on a given set of sen-
sors some events (or alarms) during its life. We consider the following setup for



198 T. Chatain and C. Jard

Diagnoser

System 
under 
super-
vision

αΥαΥ

ββ

Sensor 
B

Sensor
A

P1 
●

P2 
●

P3 P4

t1

t3

t2

t4

[0,∞[
α

[2,2]
γ

[1,2]
β[0,0]

γ

t1

t2

t4

t1

t2

t3

e1(α)

e2(β)

e3(γ)
e4(α)

e5(β)

e6(γ)

t1

t2

t4

t1

t2

t4

Explanations

P5

e1(α)

e2(β)

e3(γ)
e4(α)

e5(β)

e7(γ)

Fig. 1. Model-based diagnosis of distributed systems using time Petri nets

diagnosis, assuming that alarms are not lost. Each sensor records its local alarms
in sequence, while respecting causality (i.e. the observed sequences cannot con-
tradict the causal and temporal ordering defined in the model). The different
sensors perform independently and asynchronously, and a single supervisor col-
lects the records from the different sensors. Thus any interleaving of the records
from different sensors is possible, and causalities and temporal ordering among
alarms from different sensors are lost. This architecture is illustrated in Figure 1.

For the development of the example, we consider that the system under su-
pervision produces the sequences αγαγ on sensor A, and ββ on sensor B. Given
the time Petri net model of Figure 1 (left), the goal of the diagnoser is to com-
pute all the possible explanations shown in Figure 1. Explanations are labelled
partial orders. Each node is labeled by a transition of the Petri net model and
a possible date given by a symbolic expression. Notice that the diagnoser infers
the possible causalities between alarms, as well as the possible dates for each of
them. The first alarms αγα and ββ imply that transitions t1 and t2 are fired
twice and concurrently. The last γ can be explained by two different transitions
in conflict (t3 and t4).

2.2 Time Petri Net: Definition

Notations. We denote f−1 the inverse of a bijection f . We denote f|A the
restriction of a mapping f to a set A. The restriction has higher priority than
the inverse: f−1

|A = (f|A)−1. We denote ◦ the usual composition of functions. Q
denotes the set of nonnegative rational numbers.

Time Petri nets were introduced in [11].
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A time Petri net (TPN) is a tuple N = 〈P, T, pre, post , efd , lfd〉 where P and
T are finite sets of places and transitions respectively, pre and post map each
transition t ∈ T to its preset often denoted •t

def= pre(t) ⊆ P (•t �= ∅) and its
postset often denoted t•

def= post(t) ⊆ P ; efd : T −→ Q and lfd : T −→ Q ∪ {∞}
associate the earliest firing delay efd(t) and latest firing delay lfd(t) with each
transition t. A TPN is represented as a graph with two types of nodes: places
(circles) and transitions (bars). The closed interval [efd(t), lfd(t)] is written near
each transition. For the purpose of supervision, we consider labelled time Petri
nets 〈N,Λ, λ〉 where Λ is a set of event types (or alarms), and λ the typing of
transitions (α, β, γ in Figure 1).

A state of a time Petri net is given by a triple 〈M, dob, θ〉, where M ⊆ P is a
marking denoted with tokens (thick dots), θ ∈ Q is its date and dob : M −→ Q
associates a date of birth dob(p) ≤ θ with each token (marked place) p ∈ M .
A transition t ∈ T is enabled in the state 〈M, dob, θ〉 if all of its input places
are marked: •t ⊆ M . Its date of enabling doe(t) is the date of birth of the
youngest token in its input places: doe(t) def= maxp∈•t dob(p). All the time Petri
nets we consider in this article are safe, i.e. in each reachable state 〈M, dob, θ〉,
if a transition t is enabled in 〈M, dob, θ〉, then t• ∩ (M \ •t) = ∅.

A process of a TPN starts in an initial state 〈M0, dob0, θ0〉, which is given by
the initial marking M0 and the initial date θ0. Initially, all the tokens carry the
date θ0 as date of birth: ∀p ∈M0 dob0(p)

def= θ0.
The transition t can fire at date θ′ from state 〈M, dob, θ〉, if:

– t is enabled: •t ⊆M ;
– the minimum delay is reached: θ′ ≥ doe(t) + efd(t);
– time progresses: θ′ ≥ θ;
– the enabled transitions do not overtake the maximum delays:
∀t′ ∈ T •t′ ⊆M =⇒ θ′ ≤ doe(t′) + lfd(t′).

The firing of t at date θ′ leads to the state 〈(M \ •t) ∪ t•, dob ′, θ′〉, where
dob ′(p) def= dob(p) if p ∈M \ •t and dob ′(p) def= θ′ if p ∈ t•.

Finally we assume that time diverges: when infinitely many transitions fire,
time necessarily diverges to infinity.

In the initial state of the net of Figure 1, p1 and p2 are marked and their date
of birth is 0. t1 and t2 are enabled and their date of enabling is the initial date
0. t2 can fire in the initial state at any time between 1 and 2. Choose time 1.
After this firing p1 and p4 are marked, t1 is the only enabled transition and it
has already waited 1 time unit. t1 can fire at any time θ, provided it is greater
than 1. Consider t1 fires at time 3. p3 and p4 are marked in the new state, and
transitions t3 and t4 are enabled, and their date of enabling is 3 because they
have just been enabled by the firing of t1. To fire, t3 would have to wait 2 time
units. But transition t4 cannot wait at all. So t4 will necessarily fire (at time 3),
and t3 cannot fire.

Remark. The semantics of time Petri nets are often defined in a slightly different
way: the state of the net is given as a pair 〈M, I〉, where M is the marking, and I
maps each enabled transition t to the delay that has elapsed since it was enabled,
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that is θ− doe(t) with our notations. It is more convenient for us to attach time
information on the tokens of the marking than on the enabled transitions. We
have chosen the date of birth of the tokens rather than their age, because we
want to make the impact of the firing of transitions as local as possible. And
the age of each token in the marking must be updated each time a transition t
fires, whereas the date of birth has to be set only for the tokens that are created
by t. Furthermore, usual semantics often deal with the delay between the firing
of two consecutive transitions. In this paper we use the absolute firing date of
the transitions instead. This fits better to our approach in which we are not
interested in the total ordering of the events.

2.3 Partial Order Semantics

Processes. We will define the set X of (finite) processes of a safe time Petri net
starting at date θ0 in the initial marking M0. These processes are those described
in [1]. We define them inductively and use a canonical coding like in [8]. The
processes provide a partial order representation of the executions.

Each process will be a pair x
def= 〈E,Θ〉, where E is a set of events, and

Θ : E −→ Q maps each event to its firing date. Θ is sometimes represented as a
set of pairs (e,Θ(e)). Each event e is a pair (•e, τ(e)) that codes an occurrence of
the transition τ(e) in the process. •e is a set of pairs b

def= (•b, place(b)) ∈ E ×P .
Such a pair is called a condition and refers to the token that has been created by
the event •b in the place place(b). We say that the event e def= (•e, τ(e)) consumes
the conditions in •e. Symmetrically the set {(e, p) | p ∈ τ(e)•} of conditions that
are created by e is denoted e•.

For all set B of conditions, we denote Place(B) def= {place(b) | b ∈ B}, and
when the restriction of place to B is injective, we denote place−1

|B its inverse, and

for all P ⊆ Place(B), Place−1
|B (P ) def= {place−1

|B (p) | b ∈ P}.
The set of conditions that remain at the end of the process 〈E,Θ〉 (meaning

that they are created by an event of E, and no event of E consumes them)
is ↑(E) def=

⋃
e∈E e• \

⋃
e∈E

•e (it does not depend on Θ). The state that is
reached after the process 〈E,Θ〉 is 〈Place(↑(E)), dob ,maxe∈E Θ(e)〉, where for
all p ∈ Place(↑(E)), dob(p) def= Θ(•b), with b

def= place−1
|↑(E)(p).

We define inductively the set X of (finite) processes of a time Petri net starting
at date θ0 in the initial marking M0 as follows:

– 〈{⊥}, {(⊥, θ0)}〉 ∈ X , where ⊥ def= (∅, ε) represents the initial event. Notice
that the initial event does not actually represent the firing of a transition,
which explains the use of the special value ε /∈ T . For the same reason,
the set of conditions that are created by ⊥ is defined in a special way:
⊥• def= {(⊥, p) | p ∈M0}.

– For all process 〈E,Θ〉 ∈ X leading to state 〈M, dob, θ〉, if a transition t can
fire at date θ′ from state 〈M, dob, θ〉, then 〈E∪{e}, Θ∪{(e, θ′)}〉 ∈ X , where
the event e

def= (Place−1
|↑(E)(

•t), t) represents this firing of t.
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We define the relation→ on the events as: e→ e′ iff e• ∩ •e′ �= ∅. The reflexive
transitive closure →∗ of → is called the causality relation. For all event e, we
denote 1e2 def= {f ∈ E | f →∗ e}, and for all set E of events, 1E2 def=

⋃
e∈E1e2. We

also define cnds(E) def=
⋃

e∈E e• the set of conditions created by the events of E.
Two events of a process that are not causally related are said to be concurrent.

Symbolic Processes. We choose to group the processes that differ only by
their firing dates to obtain what we call a symbolic process.

A symbolic process of a time Petri net is a pair 〈E, pred〉 with
pred : (E −→ Q) −→ bool, such that for all mapping Θ : E −→ Q, if pred(Θ),
then 〈E,Θ〉 ∈ X .

In practice, pred is described by linear inequalities. Examples of symbolic
processes are given in Figure 1. The first explanation groups all the processes
formally defined as 〈E,Θ〉 where E contains the six following events, with the
associated firing dates (the initial event ⊥ is not represented):

1 = ({(⊥, P1)}, t1) Θ(1) ≥ Θ(⊥)
2 = ({(⊥, P2)}, t2) 1 ≤ Θ(2) −Θ(⊥) ≤ 2
3 = ({(1, P3), (2, P4)}, t4) Θ(3) = max{Θ(1), Θ(2)}
4 = ({(3, P1)}, t1) Θ(4) = Θ(3)
5 = ({(3, P2)}, t2) Θ(5) = Θ(3) + 2
6 = ({(4, P3)}, t3) Θ(6) = Θ(4) + 2

2.4 Diagnosis: Formal Problem Setting

Consider a net N modeling a system and an observation O of this system,
which associates a finite sequence of observed alarms (λs,1, . . . , λs,ns) with each
sensor s. The set of sensors is denoted S. For each sensor s, Λs indicates which
alarms the sensor observes.

To compute a diagnosis, we propose to build a net D(N,O) whose processes
correspond to the processes of N which satisfy the observation O. The idea is to
constrain the model by adding new places and transitions so that each transition
of the model that sends an alarm to a sensor s is not allowed to fire until all the
previous alarms sent to s have been observed.

To achieve this we create a place sλ for each alarm λ that may be sent to
the sensor s, plus one place s̄. For each transition t that sends an alarm λ to
the sensor s, we add sλ to the postset of t. After the ith alarm is sent to s, a
new transition ts,i which models the observation of this alarm by s, removes the
token from sλ and creates a token in the place s̄, meaning that the alarm has
been observed. s̄ is added to the preset of each transition that sends an alarm
to s, so that it cannot fire before the previous alarm has been observed. The
transitions ts,i are connected through places ps,i so that they must fire one after
another.

Formally, for a net N
def= 〈P, T, pre, post , efd , lfd〉 and an observation O from a

set S of sensors, we define a net D(N,O) def= 〈P ′, T ′,wpre ′, pre ′, post ′, efd ′, lfd ′〉.
This net is almost a time Petri net: a weak preset wpre ′(t) ⊆ pre ′(t), denoted ◦t
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has been added for each transition t ∈ T ′; only the date of birth of the tokens
in the weak preset participate in the definition of the date of weak enabling of t,
which replaces the date of enabling in the semantics: dowe(t) def= maxp∈◦t dob(p).
In the processes, for each event e, we denote ◦e

def= Place−1
|•e(

◦τ(e)).
D(N,O) is defined as follows (where  denotes the disjoint union):

– P ′ def= P  {s̄ | s ∈ S}  {sλ | s ∈ S ∧ λ ∈ Λs}  {ps,i | s ∈ S, i = 0, . . . , ns};
– T ′ def= T  {ts,i | s ∈ S, i = 1, . . . , ns};
– for all t ∈ T , wpre ′(t) def= pre(t), pre ′(t) def= wpre ′(t)  {s̄ | λ(t) ∈ Λs},

post ′(t) def= post(t)  {sλ(t) | λ(t) ∈ Λs},
efd ′(t) def= efd(t) and lfd ′(t) def= lfd(t);

– wpre ′(ts,i) = pre ′(ts,i)
def= {ps,i−1, sλs,i}, post ′(ts,i)

def= {ps,i, s̄} and
efd ′(ts,i) = lfd ′(ts,i)

def= 0.

Figure 2 shows the net of Figure 1 constrained by the observation αγαγ from
sensor A and ββ from sensor B.

We call diagnosis of observation O on net N any set of symbolic processes
of D(N,O), which contain all the processes 〈E,Θ〉 of D(N,O) such that:
{ps,ns | s ∈ S}  {sλ | s ∈ S ∧ λ ∈ Λs} ⊆ Place(↑(E)). Unless the model con-
tains loops of non observable events, these processes can be described by a finite
set of symbolic processes. These processes can be projected to keep only the
conditions and events which correspond to places and transitions of the model.
Then we obtain all the processes of N that are compatible with the observa-
tion O, as shown in Figure 1. The construction of the explanations is based on
the unfolding of D(N,O). The notion of unfolding allows us to use a compact
representation of the processes by sharing the common prefixes. The temporal
framework leads naturally to consider the new notion of symbolic unfolding that
we detail in the following section.

3 Symbolic Unfoldings of Time Petri Nets

Symbolic unfoldings have already been addressed in the context of high-level
Petri nets [6]. In this section we define the symbolic unfolding of time Petri nets,
i.e. a quite compact structure that contains all the possible processes and exhibits
concurrency. Actually the time Petri nets are extended with weak presets, as
required by our diagnosis approach (see Section 2.4). For symbolic unfoldings
of classical time Petri nets (such that the underlying untimed Petri net is safe),
consider that the weak preset ◦t of any transition t ∈ T is equal to its preset •t.

3.1 Pre-processes

For the construction of symbolic unfoldings of time Petri nets, we need the notion
of pre-process, that extends the notion of process.

For all process 〈E,Θ〉, and for all nonempty, causally closed set of events
E′ ⊆ E (⊥ ∈ E′ and 1E′2 = E′), 〈E′, Θ|E′〉 is called a pre-process. The definition
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Fig. 2. Our example of TPN, constrained by the observation αγαγ from sensor A and
ββ from sensor B

of the state that is reached after a process is also used for pre-processes. We define
the prefix relation ≤ on pre-processes as follows:

〈E,Θ〉 ≤ 〈E′, Θ′〉 iff E ⊆ E′ ∧ Θ = Θ′
|E

3.2 Symbolic Unfoldings of Extended Free Choice Time Petri Nets

An extended free choice time Petri net is a time Petri net such that:

∀t, t′ ∈ T •t ∩ •t′ �= ∅ =⇒ •t = •t′.

We define the symbolic unfolding U of an extended free choice time Petri net
by collecting all the events that appear in its processes: U def=

⋃
〈E,Θ〉∈X E.

This unfolding has two important properties in the case of extended free choice
time Petri nets:

Theorem 1. Let E ⊆ U be a nonempty finite set of events and Θ : E −→ Q
associate a firing date with each event of E. 〈E,Θ〉 is a pre-process iff:⎧⎨⎩

1E2 = E (E is causally closed)
�e, e′ ∈ E e �= e′ ∧ •e ∩ •e′ �= ∅ (E is conflict free)
∀e ∈ E \ {⊥} lpred(e,Θ) (all the events respect the firing delays)

where

lpred(e,Θ) def=

⎧⎪⎪⎨⎪⎪⎩
Θ(e) ≥ maxb∈•e Θ(•b) (t is strongly enabled when e fires)
Θ(e) ≥ dowe(t) + efd(t) (the earliest firing delay is reached)
∀t′ ∈ T •t′ = •t =⇒ Θ(e) ≤ dowe(t′) + lfd(t′)

(the latest firing delays are respected)
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with t
def= τ(e) and

for all t′ ∈ T such that •t′ = •t, dowe(t′) def= maxb∈Place−1
|•e

(◦t′) Θ(•b).

Theorem 2. For all e def= (B, t) ∈ cnds(U)× T ,

e ∈ U iff

⎧⎨⎩
Place(B) = •t
�f, f ′ ∈ 1e2 f �= f ′ ∧ •f ∩ •f ′ �= ∅
∃Θ : 1e2 −→ Q ∀f ∈ 1e2 \ {⊥} lpred(f,Θ)

The first theorem gives a way to extract processes from the unfolding, while
the second theorem gives a direct construction of the unfolding: adding a new
event e just requires solving linear constraints on the Θ(f), f ∈ 1e2. This also
happens with symbolic unfoldings of high-level Petri nets introduced in [6].

3.3 Symbolic Unfoldings of Time Petri Nets: General Case

If we define the symbolic unfolding of a time Petri net in the general case as
we have done for extended free choice time Petri nets, none of the two previous
theorems hold: extracting a process from the unfolding becomes complex (see
[1]); and especially we do not know any direct way to build the unfolding. It is
also interesting to notice that the union of two pre-processes 〈E,Θ〉 and 〈E′, Θ′〉
is not necessarily a pre-process, even if Θ|E∩E′ = Θ′

|E∩E′ and E ∪ E′ is conflict
free. In the example of Figure 1, we observe this if 〈E,Θ〉 is the process which
contains a firing of t1 at time 0 and a firing of t2 at time 1, and 〈E′, Θ′〉 is the
pre-process that we obtain by removing the firing of t2 from the process made
of t1 at time 0, t2 at time 2 and t3 at time 2. These difficulties come from the
fact that the condition that allows us to extend a process x

def= 〈E,Θ〉 with a
new event e concerns all the state reached after the process x, and however the
conditions in •e refer only to the tokens in the input places of τ(e).

From now on we assume that we know a partition of the set P of places of
the net in sets Pi ⊆ P of mutually exclusive places1; more precisely we demand
that for all reachable marking M , Pi ∩M is a singleton. For all place p ∈ Pi,
we denote p̄

def= Pi \ {p}. In the example of Figure 1, we will use the partition
{p1, p3, p5}, {p2, p4}.

Notion of partial state. A partial state of a time Petri net is a triple 〈L, dob, θ〉
with L ⊆ P , θ ∈ Q is a date and dob : L −→ Q associates a date of birth
dob(p) ≤ θ with each token (marked place) p ∈ L.

We define the relation 3 on partial states as follows:

〈L, dob, θ〉 3 〈L′, dob ′, θ′〉 iff L ⊆ L′ ∧ dob = dob ′
|L ∧ θ ≤ θ′

1 If we do not know any such partition, a solution is to extend the structure of the
net with one complementary place for each place of the net and to add these new
places in the preset (but not in the weak preset) and in the postset of the transitions
such that in any reachable marking each place p ∈ P is marked iff its complementary
place is not. This operation does not change the behaviour of the time Petri net:
since the weak presets do not change, the tokens in the complementary places do
not participate in the definition of the date of enabling.
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Firing a Transition from a Partial State. Although the semantics of time
Petri nets requires to check time conditions for all the enabled transitions in the
net, before firing a transition, there are cases when we know that a transition can
fire at a given date θ′, even if other transitions will fire before θ′ in other parts
of the net. As an example consider the net of Figure 1 starting at date 0 with
the marking {p1, p2}. Although the semantics forbids to fire t1 at date 10 before
firing t2, we feel that nothing can prevent t1 from firing at date 10, because
only t1 can remove the token in place p1. By contrast, the firing of t3 highly
depends on the firing date of t2 because when t4 is enabled it fires immediately
and disables t3. So if we want to fire t3 we have to check whether p2 or p4 is
marked.

A partial state firing is a triple (S, t, θ′) where S
def= 〈L, dobL, θL〉 is a partial

state, t is a transition such that •t ⊆ L, and θ′ ≥ θL is a date.
The idea in partial state firings is that the partial state S gives enough infor-

mation to be sure that t can fire at date θ′.
It will be crucial in the following to know how to select partial state firings.

However several choices are possible. If we are given a predicate PSF on par-
tial state firings, we can build extended processes by using only the extended
processes that satisfy PSF . Then we will try to map these extended processes into
pre-processes. If PSF is valid, then all the pre-processes we obtain are correct.

Extended Processes. Let PSF be a predicate on partial state firings. We will
define a notion of extended process (parameterized by PSF ), which is close to the
notion of process, but the events are replaced by extended events which represent
firings from partial states and keep track of all the conditions corresponding to
the partial state, not only those that are consumed by the transition.

For all extended event ė
def= 〈B, t〉, we use the same notations as for events:

•ė
def= B and τ(ė) def= t, and we define ė•

def= {(ė, p) | p ∈ (Place(B) \ •t) ∪ t•}. For
all place p ∈ Place(ė•), we define the extended event origin(p, ė) that actually
created the token in the place p:

origin(p, ė) def=

{
ė if p ∈ t• or ė = ⊥
origin(p, •b) with b

def= place−1
|B (p) otherwise

Like for processes, we define the set of conditions that remain at the end of
the extended process 〈Ė, Θ〉 as ↑(Ė) def=

⋃
ė∈Ė ė• \

⋃
ė∈Ė

•ė. But for extended
processes we define not only the global state that is reached after 〈Ė, Θ〉, but a
partial state associated with each set of conditions B ⊆ ↑(Ė). The partial state
associated with B is 〈L, dobL, θL〉, where:

– L
def= Place(B),

– dobL(p) def= Θ(origin(p, •b)) with b
def= place−1

|B (p),

– θL
def= maxb∈B Θ(•b).

We define the set Ẋ of extended processes of a time Petri net starting at date
θ0 in the initial marking M0 as follows:
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– Like for processes, 〈{⊥}, {(⊥, θ0)}〉 ∈ Ẋ, where ⊥ def= (∅, ε) represents the
initial event. The set of conditions that are created by ⊥ is defined as:
⊥• def= {(⊥, p) | p ∈M0}.

– For all extended process 〈Ė, Θ〉 ∈ Ẋ, for all B ⊆ ↑(Ė) leading to the partial
state S, for all t, θ′, if PSF (S, t, θ′), then 〈Ė ∪ {ė}, Θ ∪ {(ė, θ′)}〉 ∈ Ẋ, where
the extended event ė

def= (B, t) represents this firing of t.

Each extended event ė
def= (B, t) can be mapped to the corresponding event

h(ė) def= (B′, t) with B′ def=
{(

h(origin(p, ḟ)), p
)
| (ḟ , p) ∈ Place−1

|B (•t)
}
.

Corectness of PSF . We say that PSF is a valid predicate on partial state
firings iff for all extended process 〈Ė, Θ〉 ∈ Ẋ, 〈h(Ė), Θ ◦ h−1

|Ė 〉 is a pre-process
(notice that h|Ė is injective). In other terms there exists a process 〈E′, Θ′〉 ∈ X

such that 〈h(Ė), Θ ◦ h−1
Ė
〉 ≤ 〈E′, Θ′〉.

Symbolic Unfolding. As we did for extended free choice time Petri nets with
events in Section 3.2, we define the symbolic unfolding U of a time Petri net
by collecting all the extended events that appear in its extended processes:
U

def=
⋃

〈Ė,Θ〉∈Ẋ Ė.
We have equivalents of the two theorems we had with symbolic unfoldings of

extended free choice time Petri nets.

Theorem 3. Let Ė ⊆ U be a nonempty finite set of extended events and
Θ : Ė −→ Q associate a firing date with each extended event of Ė. 〈Ė, Θ〉 is
an extended process iff:⎧⎪⎪⎨⎪⎪⎩
1Ė2 = Ė (Ė is causally closed)
�ė, ė′ ∈ Ė ė �= ė′ ∧ •ė ∩ •ė′ �= ∅ (Ė is conflict free)
∀ė ∈ Ė \ {⊥} PSF (S, τ(ė), Θ(ė)) (e corresponds to a partial state firing)

where S is the partial state associated with •ė.

Theorem 4. For all ė def= (B, t) ∈ cnds(U)× T ,

ė ∈ U iff

⎧⎨⎩
�ḟ , ḟ ′ ∈ 1ė2 ḟ �= ḟ ′ ∧ •ḟ ∩ •ḟ ′ �= ∅
∃Θ : 1ė2 −→ Q ∀ḟ ∈ 1ė2 \ {⊥} PSF (S, τ(ḟ ), Θ(ḟ ))

where S is the partial state associated with •ḟ .

Selecting Partial State Firings. The definition of extended processes is para-
meterized by a predicate PSF on partial state firings: each extended event must
correspond to a partial firing that satisfies PSF , the others are forbidden. A good
choice for PSF takes three notions into account: completeness, redundancy and
preservation of concurrency.

Completeness. A predicate PSF on partial state firings is complete if for all
process 〈E,Θ〉 ∈ X, there exists an extended process 〈Ė, Θ′〉 ∈ Ẋ (with partial
state firings in PSF ) such that 〈h(Ė), Θ′ ◦ h−1

Ė
〉 = 〈E,Θ〉.
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Redundancy. Given a predicate PSF on partial state firings and a process
〈E,Θ〉 ∈ X, there may exist several extended processes 〈Ė, Θ′〉 ∈ Ẋ (with partial
state firings in PSF ) such that 〈h(Ė), Θ′ ◦ h−1

Ė
〉 = 〈E,Θ〉. This is called redun-

dancy. In particular, if PSF contains two partial state firings (〈L, dob, θ〉, t, θ′)
and (〈L′, dob ′, θ〉, t, θ′) where L′ � L and dob ′ = dob|L′ , then all the extended
processes involving (〈L, dob, θ〉, t, θ′) are redundant.

A trivial choice for PSF which does not preserve any concurrency. A trivial
complete predicate PSF is the predicate that demands that the state S is a
global state, and then check that t can fire at date θ′ from S. In addition, this
choice gives little redundancy. But the extended events of the extended processes
that we obtain in this case are totally ordered by causality. In other words, these
processes do not exhibit any concurrency at all. Actually we get what we call
firing sequences in interleaving semantics.

A proposition for PSF. What we want is a complete predicate on partial state
firings that generates as little redundancy as possible and that exhibits as much
concurrency as possible.

We first define a predicate PSF ′ on partial state firings as follows:
PSF ′(〈L, dobL, θ〉, t, θ′) iff

– t is enabled: •t ⊆ L;
– the minimum delay is reached: θ′ ≥ doe(t) + efd(t);
– time progresses: θ′ ≥ θ;
– the transitions that may consume tokens of L are disabled or do not overtake

the maximum delays:

∀t′ ∈ T •t′ ∩ L �= ∅ =⇒
{

∃p ∈ •t′ p̄ ∩ L �= ∅
∨ θ′ ≤ max

p∈◦t′∩L
dob(p) + lfd(t′)

Now we define PSF by eliminating some redundancy in PSF ′:
PSF (〈L, dob, θ〉, t, θ′) iff PSF ′(〈L, dob, θ〉, t, θ′) and there exists no L′ � L such
that PSF ′(〈L′, dob|L′ , θ〉, t, θ′).

It is important that the constraints solving (see Theorems 3 and 4) can be done
automatically: with the definition of PSF we have proposed here, the quantifiers
(∀ and ∃) on places and transitions expand into disjunctions and conjunctions.
The result is a disjunction of conjunctions of linear inequalities on the Θ(ė).
When a “max” appears in an inequality, this inequality can be rewritten into
the desired form. These systems are shown near the events in Figure 3.

Theorem 5. PSF is a valid, complete predicate on partial state firings.

3.4 Example of Unfolding

We come back to our simple example of time Petri net given in Figure 1. Figure 3
shows a prefix of its symbolic unfolding. We have kept all the events concerned
with the observations (this filtering is done by considering the time net D(N,O)
defined in subsection 2.4). To keep the figure readable, we do not show in the
unfolding the supplementary places and transitions induced by the observations).
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In this unfolding we see three explanations as extended processes. In contrast,
the explanations of Figure 1 are the symbolic processes that have been computed
from the extended processes. The linear constraints that appear near the events
of Figure 3 can be solved in order to find all the possible values for the dates of
the events. The three maximal extended processes of Figure 3 share the prefix
{e1, e2, e3, e4}. The first extended process contains also e5 and e7. It corresponds
to the second explanation of Figure 1. The second extended process contains the
prefix, plus e5 and e8 and the third contains the prefix, plus e6 and e9. These
two extended processes correspond to the same explanation: the first of Figure 1.

P1 P2

P3 P4

t1 t2

t4

e1 :
0≤θ(e1)-θ(��

e2 :
1≤θ(e2)-θ(��≤2

P1 P2

e3 :
θ(e3)=max(θ(e1),θ(e2))

θ(e3)-θ(e1)≤2

P4

t2 e5 :
1≤θ(e5)-θ(e3)≤2

P3

t1e4 :
0≤θ(e4)-θ(e3)

t3 t4 t3

P1 P2 P5 P4

e8 :
θ(e8)-θ(e4)=2
θ(e5)≤θ(e8)

θ(e8)≤max(θ(e4),θ(e5))

P2P5

e6 :
θ(e6)-θ(e4)=2
θ(e3)≤θ(e6)
θ(e6)-θ(e3)≤2

e7 :
θ(e7)=max(θ(e4),θ(e5))

θ(e7)-θ(e4)≤2

�

Fig. 3. A prefix of the symbolic unfolding of the time Petri net of Figure 1



Time Supervision of Concurrent Systems Using Symbolic Unfoldings 209

This is what we have called redundancy. After solving the linear constraints we
see that the second occurrence of t1 must have occured immediately after t4 has
fired and the second occurrence of t2 must have fired 2 time units later. Actually
the extended process with e5 and e8 and the one with e6 and e9 only differ by
the fact that transition t2 has fired before t3 in the first one, whereas t2 has fired
after t3 in the second one. Indeed, because of transition t4, the firing of t2 has a
strong influence on the firing of t3. This is the reason why there are too distinct
cases in the unfolding.

4 Conclusion

We have presented a possible approach to the supervision/diagnosis of timed
systems, using safe time Petri nets. In such nets, time constraints are given by
interval of nonnegative rationals and are used to restrict the set of behaviours.
The diagnosis problem is to recover the possible behaviours from a set of obser-
vations. We consider that the observations are given as a partial order (without
any timing information) from the activity of several sensors. The goal of the
supervisor is to select the possible timed behaviours of the model, which do not
contradict the observations: i.e. presents the same set of events labelled by the
alarms and orders the events in the same direction that the sensors do. This
goal is achevied by considering a symbolic unfolding of time Petri nets, which
is restricted by the observations. The result is a set of explanations, which ex-
plicit the causalities (both structural and temporal) between the observations.
At the same time, our algorithm infers the possible delays before the firing of
the transitions associated with them. Up to our knowledge, our symbolic unfold-
ing for safe time Petri nets is original, and its application to compute symbolic
explanations too.

A prototype implementation exists (a few thousands lines of Lisp code) and
we plan to use it on real case studies. Another project is to define an algorithm
to produce a complete finite prefix of the unfolding [9], which could be used for
other applications than diagnosis (for which we do not need this notion since
observations are finite sets).

At longer term, the notion of temporal diagnosis could be refined and revisited
when considering timed distributed systems, in which alarms could bring a time
information.
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Abstract. In this paper we consider the model of Time Petri Nets
(TPN) where time is associated with transitions. We also consider Timed
Automata (TA) as defined by Alur & Dill, and compare the expressive-
ness of the two models w.r.t. timed language acceptance and (weak)
timed bisimilarity. We first prove that there exists a TA A s.t. there is
no TPN (even unbounded) that is (weakly) timed bisimilar to A. We
then propose a structural translation from TA to (1-safe) TPNs preserv-
ing timed language acceptance. Further on, we prove that the previous
(slightly extended) translation also preserves weak timed bisimilarity for
a syntactical subclass T Asyn(≤, ≥) of TA. For the theory of TPNs, the
consequences are: 1) TA, bounded TPNs and 1-safe TPNs are equally
expressive w.r.t. timed language acceptance; 2) TA are strictly more ex-
pressive than bounded TPNs w.r.t. timed bisimilarity; 3) The subclass
T Asyn(≤,≥), bounded and 1-safe TPNs “à la Merlin” are equally ex-
pressive w.r.t. timed bisimilarity.

Keywords: Timed Language, Timed Bisimilarity, Time Petri Nets, Tim-
ed Automata, Expressiveness.

1 Introduction

In the last decade a number of extensions of Petri Nets with time have been
proposed: among them are Stochastic Petri Nets, and different flavors of so-
called Time or Timed Petri nets. Stochastic Petri Nets are now well known and
a lot of literature is devoted to this model whereas the theoretical properties of
the other timed extensions have not been investigated much.

Petri Nets with Time. Recent work [1, 11] considers Timed Arc Petri Nets
where each token has a clock representing its “age” but a lazy (non-urgent)
semantics of the net is assumed: this means that the firing of transitions may
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be delayed, even if this implies that some transitions are disabled because their
input tokens become too old. Thus the semantics used for this class of Petri nets
is such that they enjoy nice monotonic properties and fall into a class of systems
for which many problems are decidable.

In comparison, the other timed extensions of Petri Nets (apart from Stochastic
Petri Nets), i.e. Time Petri Nets (TPNs) [18] and Timed Petri Nets [20], do not
have such nice monotonic features although the number of clocks to be considered
is finite (one per transition). Also those models are very popular in the Discrete
Event Systems and industrial communities as they allow to model real-time
systems in a simple and elegant way and there are tools to check properties of
Time Petri Nets [6, 14].

For TPNs a transition can fire within a time interval whereas for Timed Petri
Nets it fires as soon as possible. Among Timed Petri Nets, time can be assigned to
places or transitions [21, 19]. The two corresponding subclasses namely P-Timed
Petri Nets and T-Timed Petri Nets are expressively equivalent [21, 19]. The same
classes are defined for TPNs i.e. T-TPNs and P-TPNs, and both classes of Timed
Petri Nets are included in both P-TPNs and T-TPNs [19]. P-TPNs and T-TPNs
are proved to be incomparable in [16].

The class T-TPNs is the most commonly-used subclass of TPNs and in this
paper we focus on this subclass that will be henceforth referred to as TPN.

Timed Automata. Timed Automata (TA) were introduced by Alur & Dill [3]
and have since been extensively studied. This model is an extension of finite
automata with (dense time) clocks and enables one to specify real-time systems.
Theoretical properties of various classes of TA have been considered in the last
decade. For instance, classes of determinizable TA such as Event Clock Automata
are investigated in [4] and form a strict subclass of TA.

TA and TPNs. TPNs and TA are very similar and until now it is often assumed
that TA have more features or are more expressive than TPNs because they seem
to be a lower level formalism. Anyway the expressiveness of the two models have
not been compared so far. This is an important direction to investigate as not
much is known on the complexity or decidability of common problems on TPNs
e.g. “is the universal language decidable on TPNs ?”. Moreover it is also crucial
for deciding which specification language one is going to use. If it turns out that
TPNs are strictly less expressive (w.r.t. some criterion) than TA, it is important
to know what the differences are.

Related Work. In a previous work [10] we have proved that TPN forms a
subclass of TA in the sense that every TPN can be simulated by a TA (weak
timed bisimilarity). A similar result can be found in [17] with a completely
different approach. In another line of work in [15], the authors compare Timed
State Machines and Time Petri Nets. They give a translation from one model
to another that preserves timed languages. Nevertheless, they consider only the
constraints with closed intervals and do not deal with general timed languages
(i.e. Büchi timed languages). [9] also considers expressiveness problems but for
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a subclass of TPNs. Finally it is claimed in [9] that 1-safe TPNs with weak1

constraints are strictly less expressive than TA with arbitrary types of constraints
but a fair comparison should allow the same type of constraints in both models.

Our Contribution. In this article, we compare precisely the expressive power
of TA vs. TPN using the notions of Timed Language Acceptance and Timed
Bisimilarity. This extends the previous results above in the following directions:
i) we consider general types of constraints (strict, weak); ii) we then show that
there is a TA A0 s.t. no TPN is (even weakly) timed bisimilar to A0; iii) this
leads us to consider weaker notions of equivalence and we focus on Timed Lan-
guage Acceptance. We prove that TA (with general types of constraints) and
TPN are equally expressive w.r.t. Timed Language Acceptance which is a new
and somewhat surprising result; for instance it implies (using a result from [10])
that 1-safe TPNs and bounded TPNs are equally expressive w.r.t. Timed Lan-
guage Acceptance; iv) to conclude we characterize a syntactical subclass of TA
that is equally expressive to TPN without strict constraints w.r.t. Timed Bisimi-
larity. The results of the paper are summarized in Table 1: all the results are new
except the one followed by [10]. We use the following notations: B-T PN ε for the
set of bounded TPNs with ε-transitions; 1-B-T PN ε for the subset of B-T PN ε

with at most one token in each place (one safe TPN); B-T PN (≤,≥) for the
subset of B-T PN ε where only closed intervals are used; T Aε for TA with ε-
transitions; T Asyn(≤,≥) for the syntactical subclass of TA that is equivalent to
B-T PN (≤,≥) (to be defined precisely in section 5). In the table (L or (W with
(∈ {<,≤}, respectively means “less expressive” w.r.t. Timed Language Accep-
tance and Weak Timed Bisimilarity; =L means “equally expressive as” w.r.t. lan-
guage acceptance and ≈W “equally expressive as” w.r.t. weak timed bisimilarity.

Outline of the Paper. Section 2 introduces the semantics of TPNs and TA,
Timed Languages and Timed Bisimilarity. In section 3 we prove our first result:
there is a TA A0 s.t. there is no TPN that is (weakly) timed bisimilar to A0. In
section 4 we focus on Timed Language Acceptance and we propose a structural
translation from TA to 1-B-T PN ε preserving timed language acceptance. We
then prove that TA and bounded TPNs are equally expressive w.r.t. Timed
Language Acceptance. This enables us to obtain new results for TPNs given by
corollaries 3 and 4. Finally, in section 5, we characterize a syntactical subclass of
TA (T Asyn(≤,≥)) that is equivalent, w.r.t. Timed Bisimilarity, to the original
version of TPNs (with closed intervals).This enables us to obtain new results for
TPNs given by corollary 6.

2 Time Petri Nets and Timed Automata

Notations. Let Σ be a set (or alphabet). Σ∗ (resp. Σω) denotes the set of
finite (resp. infinite) sequences of elements (or words) of Σ and Σ∞ = Σ∗ ∪Σω.
By convention if w ∈ Σω then the length of w denoted |w| is ω; otherwise if

1 Constraints using only ≤ and ≥.
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Table 1. Summary of the Results

Timed Language Acceptance Timed Bisimilarity

≤L T Aε [10] ≤W T Aε [10]
B-T PN ε =L 1-B-T PN ε =L T Aε <W T Aε

≈W 1-B-T PN (≤,≥)
B-T PN (≤, ≥) =L T Asyn(≤, ≥) ≈W T Asyn(≤, ≥)

Emptiness Problem Universal Problem
B-T PN ε Decidable [10] Undecidable

w = a1 · · · an, |w| = n. We also use Σε = Σ ∪ {ε} with ε �∈ Σ, where ε is the
empty word. BA stands for the set of mappings from A to B. If A is finite and
|A| = n, an element of BA is also a vector in Bn. The usual operators +,−, < and
= are used on vectors of An with A = N,Q,R and are the point-wise extensions
of their counterparts in A. The set B denotes the boolean values {tt,ff}, R≥0
denotes the set of non-negative reals and R>0 = R≥0 \ {0}. A valuation ν over a
set of variables X is an element of RX

≥0. For ν ∈ RX
≥0 and d ∈ R≥0, ν +d denotes

the valuation defined by (ν + d)(x) = ν(x) + d, and for X ′ ⊆ X , ν[X ′ �→ 0]
denotes the valuation ν′ with ν′(x) = 0 for x ∈ X ′ and ν′(x) = ν(x) otherwise.
0 denotes the valuation s.t. ∀x ∈ X, ν(x) = 0. An atomic constraint is a formula
of the form x �� c for x ∈ X , c ∈ Q≥0 and ��∈ {<,≤,≥, >}. We denote C(X) the
set of constraints over a set of variables X which consists of the conjunctions of
atomic constraints. Given a constraint ϕ ∈ C(X) and a valuation ν ∈ RX

≥0, we
denote ϕ(ν) ∈ B the truth value obtained by substituting each occurrence of x
in ϕ by ν(x).

2.1 Timed Languages and Timed Transition Systems

Let Σ be a fixed finite alphabet s.t. ε �∈ Σ. A is a finite set that can contain ε.

Definition 1 (Timed Words). A timed word w over Σ is a finite or infinite
sequence w = (a0, d0)(a1, d1) · · · (an, dn) · · · s.t. for each i ≥ 0, ai ∈ Σ, di ∈ R≥0
and di+1 ≥ di.

A timed word w = (a0, d0)(a1, d1) · · · (an, dn) · · · over Σ can be viewed as a pair
(v, τ) ∈ Σ∞×R∞

≥0 s.t. |v| = |τ |. The value dk gives the absolute time (considering
the initial instant is 0) of the action ak.

We write Untimed(w) = a0a1 · · ·an · · · for the untimed part of w, and
Duration(w) = supdk∈τ dk for the duration of the timed word w.

A timed language L over Σ is a set of timed words.

Definition 2 (Timed Transition System). A timed transition system (TTS)
over the set of actions A is a tuple S = (Q,Q0, A,−→, F,R) where Q is a set of
states, Q0 ⊆ Q is the set of initial states, A is a finite set of actions disjoint from
R≥0, −→⊆ Q × (A ∪ R≥0) × Q is a set of edges. If (q, e, q′) ∈−→, we also write
q

e−−→ q′. F ⊆ Q and R ⊆ Q are respectively the set of final and repeated states.
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In the case of q d−−→ q′ with d ∈ R≥0, d denotes a delay and not an absolute
time. We assume that in any TTS there is a transition q

0−−→ q′ and in this case
q = q′. A run ρ of length n ≥ 0 is a finite (n < ω) or infinite (n = ω) sequence
of alternating time and discrete transitions of the form

ρ = q0
d0−−→ q′0

a0−−−→ q1
d1−−→ q′1

a1−−−→ · · · qn
dn−−−→ q′n · · ·

We write first(ρ) = q0. We assume that a finite run ends with a time transition
dn. If ρ ends with dn, we let last(ρ) = q′n and write q0

d0a0···dn−−−−−−→ q′n. We write
q

∗−→ q′ if there is run ρ s.t. first(ρ) = q0 and last(ρ) = q′. The trace of an infinite
run ρ is the timed word trace(ρ) = (ai0 , d0 + · · ·+ di0) · · · (aik

, d0 + · · ·+ dik
) · · ·

that consists of the sequence of letters of A \ {ε}. If ρ is a finite run, we define the
trace of ρ by trace(ρ) = (ai0 , d0 + · · ·+ di0) · · · (aik

, d0 + · · · + dik
) where the aik

are in A \ {ε}.
We define Untimed(ρ) = Untimed(trace(ρ)) and Duration(ρ) =

∑
dk∈R≥0

dk.
A run is initial if first(ρ) ∈ Q0. A run ρ is accepting if i) either ρ is a finite

initial run and last(ρ) ∈ F or ii) ρ is infinite and there is a state q ∈ R that
appears infinitely often on ρ.

A timed word w = (ai, di)0≤i≤n is accepted by S if there is an accepting run
of trace w. The timed language L(S) accepted by S is the set of timed words
accepted by S.

Definition 3 (Strong Timed Similarity). Let S1 = (Q1, Q
1
0, A,−→1, F1, R1)

and S2 = (Q2, Q
2
0, A,−→2, F2, R2) be two TTS and ( be a binary relation over

Q1 × Q2. We write s ( s′ for (s, s′) ∈(. ( is a strong (timed) simulation
relation of S1 by S2 if: 1) if s1 ∈ F1 (resp. s1 ∈ R1) and s1 ( s2 then s2 ∈ F2

(resp. s2 ∈ R2); 2) if s1 ∈ Q1
0 there is some s2 ∈ Q2

0 s.t. s1 ( s2; 3) if s1
d−→1 s′1

with d ∈ R≥0 and s1 ( s2 then s2
d−→2 s′2 for some s′2, and s′1 ( s′2; 4) if

s1
a−→1 s′1 with a ∈ A and s1 ( s2 then s2

a−→2 s′2 and s′1 ( s′2.
A TTS S2 strongly simulates S1 if there is a strong (timed) simulation relation

of S1 by S2. We write S1 (S S2 in this case.

When there is a strong simulation relation ( of S1 by S2 and (−1 is also a strong
simulation relation2 of S2 by S1, we say that ( is a strong (timed) bisimulation
relation between S1 and S2 and use ≈ instead of (. Two TTS S1 and S2 are
strongly (timed) bisimilar if there exists a strong (timed) bisimulation relation
between S1 and S2. We write S1 ≈S S2 in this case.

Let S = (Q,Q0, Σε,−→, F,R) be a TTS. We define the ε-abstract TTS Sε =
(Q,Qε

0, Σ, −→ε, F,R) (with no ε-transitions) by:

– q
d−→ε q′ with d ∈ R≥0 iff there is a run ρ = q

∗−→ q′ with Untimed(ρ) = ε
and Duration(ρ) = d,

2 s2 �−1 s1 ⇐⇒ s1 � s2.
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– q
a−→ε q′ with a ∈ Σ iff there is a run ρ = q

∗−→ q′ with Untimed(ρ) = a and
Duration(ρ) = 0,

– Qε
0 = {q | ∃q′ ∈ Q0 | q′

∗−→ q and Duration(ρ) = 0 ∧Untimed(ρ) = ε}.

Definition 4 (Weak Time Similarity). Let S1 = (Q1, Q
1
0, Σε,−→1, F1, R1)

and S2 = (Q2, Q
2
0, Σε,−→2, F2, R2) be two TTS and ( be a binary relation over

Q1 × Q2. ( is a weak (timed) simulation relation of S1 by S2 if it is a strong
timed simulation relation of Sε

1 by Sε
2. A TTS S2 weakly simulates S1 if there is

a weak (timed) simulation relation of S1 by S2. We write S1 (W S2 in this case.

When there is a weak simulation relation ( of S1 by S2 and (−1 is also a weak
simulation relation of S2 by S1, we say that ( is a weak (timed) bisimulation
relation between S1 and S2 and use ≈ instead of (. Two TTS S1 and S2 are
weakly (timed) bisimilar if there exists a weak (timed) bisimulation relation
between S1 and S2. We write S1 ≈W S2 in this case. Note that if S1 (S S2 then
S1 (W S2 and if S1 (W S2 then L(S1) ⊆ L(S2).

2.2 Time Petri Nets

Time Petri Nets (TPN) were introduced in [18] and extend Petri Nets with timing
constraints on the firings of transitions. In such a model, a clock is associated
with each enabled transition, and gives the elapsed time since the more recent
date at which it became enabled. An enabled transition can be fired if the value
of its clock belongs to the interval associated with the transition. Furthermore,
time can progress only if the enabling duration still belongs to the downward
closure of the interval associated with any enabled transition. We consider here
a generalized version3 of TPN with accepting and repeated markings and prove
our results for this general model.

Definition 5 (Labeled Time Petri Net). A Labeled Time Petri Net N is
a tuple (P, T,Σε,

•(.), (.)•,M0, Λ, I, F,R) where: P is a finite set of places and
T is a finite set of transitions and P ∩ T = ∅; Σ is a finite set of actions
•(.) ∈ (NP )T is the backward incidence mapping; (.)• ∈ (NP )T is the forward
incidence mapping; M0 ∈ NP is the initial marking; Λ : T → Σε is the labeling
function; I : T → I(Q≥0) associates with each transition a firing interval; R ⊆
NP is the set of final markings and F ⊆ NP is the set of repeated markings.

Semantics of Time Petri Nets. A marking M of a TPN is a mapping in
NP and M(pi) is the number of tokens in place pi. A transition t is enabled
in a marking M iff M ≥ •t. We denote En(M) the set of enabled transitions
in M . To decide whether a transition t can be fired we need to know for how
long it has been enabled: if this amount of time lies into the interval I(t), t can
actually be fired, otherwise it cannot. On the other hand, time can progress only
if the enabling duration still belongs to the downward closure of the interval
associated with any enabled transition. Let ν ∈ (R≥0)En(M) be a valuation such

3 This is required to be able to define Büchi timed languages, which is not possible in
the original version of TPN of [18].
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that each value ν(t) is the time elapsed since transition t was last enabled. A
configuration of the TPN N is a pair (M, ν). An admissible configuration of a
TPN is a configuration (M, ν) s.t. ∀t ∈ En(M), ν(t) ∈ I(t)↓. We let ADM(N )
be the set of admissible configurations.

In this paper, we consider the intermediate semantics for TPNs, based on [8,
5], which is the most common one. The key point in the semantics is to de-
fine when a transition is newly enabled and one has to reset its clock. Let
↑enabled(t′,M, t) ∈ B be true if t′ is newly enabled by the firing of transition
t from marking M , and false otherwise. The firing of t leads to a new marking
M ′ = M − •t+ t•. The fact that a transition t′ is newly enabled on the firing of
a transition t �= t′ is determined w.r.t. the intermediate marking M − •t. When
a transition t is fired it is newly enabled whatever the intermediate marking is.
Formally this gives:

↑enabled(t′,M, t) =
(
t′ ∈ En(M − •t + t•)

)
∧
(
t′ �∈ En(M − •t) ∨ (t = t′)

)
(1)

Definition 6 (Semantics of TPN). The semantics of a TPN N = (P, T,Σε,
•(.), (.)•,M0, Λ, I, F,R) is a timed transition system SN = (Q, {q0}, T,→, F ′, R′)
where: Q = ADM(N ), q0 = (M0,0), F ′ = {(M, ν) | M ∈ F} and R =
{(M, ν) | M ∈ R}, and −→∈ Q× (T ∪R≥0)×Q consists of the discrete and con-
tinuous transition relations: i) the discrete transition relation is defined ∀t ∈ T
by:

(M, ν)
Λ(t)−−−→ (M ′, ν′) iff

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t ∈ En(M) ∧M ′ = M − •t + t•

ν(t) ∈ I(t),

∀t ∈ REn(M ′)
≥0 , ν′(t) =

{
0 if ↑enabled(t′,M, t),
ν(t) otherwise.

and ii) the continuous transition relation is defined ∀d ∈ R≥0 by:

(M, ν) d−→ (M, ν′) iff

{
ν′ = ν + d

∀t ∈ En(M), ν′(t) ∈ I(t)↓

A run ρ of N is an initial run of SN . The timed language accepted by N is
L(N ) = L(SN ).

We simply write (M, ν) w−→ to emphasize that there is a sequence of transitions
w that can be fired in SN from (M, ν). If Duration(w) = 0 we say that w is
an instantaneous firing sequence. The set of reachable configurations of N is
Reach(N ) = {M ∈ NP | ∃(M, ν) | (M0,0) ∗−→ (M, ν)}.

2.3 Timed Automata

Definition 7 (Timed Automaton). A Timed Automaton A is a tuple (L, l0,
X,Σε, E, Inv, F,R) where: L is a finite set of locations; l0 ∈ L is the initial
location; X is a finite set of positive real-valued clocks; Σε = Σ ∪ {ε} is a finite
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set of actions and ε is the silent action; E ⊆ L×C(X)×Σε× 2X ×L is a finite
set of edges, e = 〈l, γ, a, R, l′〉 ∈ E represents an edge from the location l to the
location l′ with the guard γ, the label a and the reset set R ⊆ X; Inv ∈ C(X)L

assigns an invariant to any location. We restrict the invariants to conjuncts of
terms of the form x ( r for x ∈ X and r ∈ N and (∈ {<,≤}. F ⊆ L is the set
of final locations and R ⊆ L is the set of repeated locations.

Definition 8 (Semantics of a Timed Automaton). The semantics of a
timed automaton A = (L, l0, C,Σε, E,Act, Inv, F,R) is a timed transition sys-
tem SA = (Q, q0, Σε,→, F ′, R′) with Q = L × (R≤0)X , q0 = (l0,0) is the ini-
tial state, F ′ = {(�, ν) | � ∈ F} and R′ = {(�, ν) | � ∈ R}, and → is defined
by: i) the discrete transitions relation (l, v) a−→ (l′, v′) iff ∃ (l, γ, a, R, l′) ∈ E
s.t. γ(v) = tt, v′ = v[R �→ 0] and Inv(l′)(v′) = tt; ii) the continuous transi-
tion relation (l, v) t−→ (l′, v′) iff l = l′, v′ = v + t and ∀ 0 ≤ t′ ≤ t, Inv(l)
(v + t′) = tt.

A run ρ of A is an initial run of SA. The timed language accepted by A is
L(A) = L(SA).

2.4 Expressiveness and Equivalence Problems

If B,B′ are either TPN or TA, we write B ≈S B′ (resp. B ≈W B′) for SB ≈S SB′

(resp. SB ≈W SB′). Let C and C′ be two classes of TPNs or TA.

Definition 9 (Expressiveness w.r.t. Timed Language Acceptance). The
class C is more expressive than C′ w.r.t. timed language acceptance if for all
B′ ∈ C′ there is a B ∈ C s.t. L(B) = L(B′). We write C′ ≤L C in this case. If
moreover there is some B ∈ C s.t. there is no B′ ∈ C′ with L(B) = L(B′), then
C′ <L C (read “strictly more expressive”). If both C′ ≤L C and C ≤L C′ then
C and C′ are equally expressive w.r.t. timed language acceptance, and we write
C =L C′.

Definition 10 (Expressiveness w.r.t. Timed Bisimilarity). The class C is
more expressive than C′ w.r.t. strong (resp. weak) timed bisimilarity if for all
B′ ∈ C′ there is a B ∈ C s.t. B ≈S B′ (resp. B ≈W B′). We write C′ ≤S C
(resp. C′ ≤W C) in this case. If moreover there is a B ∈ C s.t. there is no B′ ∈ C′
with B ≈S B′ (resp. B ≈W B′), then C′ <S C (resp. C′ <W C). If both C′ <S C
and C <S C′ (resp. <W) then C and C′ are equally expressive w.r.t. strong (resp.
weak) timed bisimilarity, and we write C ≈S C′ (resp. C ≈W C′).

In the sequel we will compare various classes of TPNs and TAs. We recall the
following theorem adapted from [10]:

Theorem 1 ([10]). For any N ∈ B-T PN ε there is a TA A s.t. N ≈W A,
hence B-T PN ε ≤W T Aε.

Moreover if T A(≤,≥) is the set of TA with only large constraints, we even have
that B-T PN (≤,≥) ≤W T A(≤,≥).
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3 Strict Ordering Results

In this section, we establish some results proving that TPNs are strictly less ex-
pressive w.r.t. weak timed bisimilarity than various classes of TA: T A(<) only
including strict constraints and T A(≤) only including large constraints.

Theorem 2. There is no TPN weakly timed bisimilar to A0 ∈ T A(<) (Fig. 1).

A similar theorem holds for a TA A1 with large constraints. Let A1 be the
automaton A0 with the strict constraint x < 1 replaced by x ≤ 1.

Theorem 3. There is no TPN weakly timed bisimilar to A1 ∈ T A(≤).

The previous theorems entail B-T PN ε <W T A(<) and B-T PN ε <W T A(≤)
and as a consequence:

Corollary 1. B-T PN ε <W T Aε.
l0 l1

a ; x < 1

Fig. 1. The Timed Automaton A0

To be fair, one should notice that actually
the class of bounded TPNs is strictly less
expressive than T A(≤) and T A(<) but
also that, obviously unbounded TPNs are
more expressive than TA (because they are Turing powerful). Anyway the inter-
esting question is the comparison between bounded TPNs and TA.

Following these negative results, we compare the expressiveness of TPNs and
TA w.r.t. to Timed Language Acceptance and then characterize a subclass of
TA that admits bisimilar TPNs without strict constraints.

4 Equivalence w.r.t. Timed Language Acceptance

In this section, we prove that TA and labeled TPNs are equally expressive w.r.t.
timed language acceptance, and give an effective syntactical translation from TA
to TPNs. Let A = (L, l0, X,Σε, E,Act, Inv, F,R) be a TA. As we are concerned
in this section with the language accepted by A we assume the invariant function
Inv is uniformly true. Let Cx be the set of atomic constraints on clock x that
are used in A. The Time Petri Net resulting from our translation is built from
“elementary blocks” modeling the truth value of the constraints of Cx. Then we
link them with other blocks for resetting clocks.

Encoding Atomic Constraints. Let ϕ ∈ Cx be an atomic constraint on x.
From ϕ, we define the TPN Nϕ, given by the widgets of Fig. 2 ((a) and (b)) and
Fig. 3. In the figures, a transition is written t(σ, I) where t is the name of the
transition, σ ∈ Σε and I ∈ I(Q≥0).

To avoid drawing too many arcs, we have adopted the following semantics:
the grey box is seen as a macro place; an arc from this grey box means that there
are as many copies of the transition as places in the grey box. For instance the
TPN of Fig. 2.(b) has 2 copies of the target transition r: one with input places
Px and rb and output places re and Px and another fresh copy of r with input
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Px

γtt

rb

re

tx(ε, [c, c])

t′(ε, ]0, ∞[)

r(ε, [0, 0])

•

(a) Widget Nx>c

Pxrb

γttre

tx(ε, [c, c])r(ε, [0, 0])

•

(b) Widget Nx≥c (with c > 0)

Fig. 2. Widgets for Nx>c and Nx≥c

places rb and γtt and output places re and Px. Note that in the widgets of Fig. 3
we put a token in γtt when firing r only on the copy of r with input place Pi

(otherwise the number of tokens in place γtt could be unbounded).
Also we assume that the automa-

Px

γtt

rb

Pu

re

Pi

tx(ε, [0, c[)
(resp. [0, c])

r(ε, [0, 0])
u(ε, [0, 0])

Only from Pi

•

•

Fig. 3. Widget Nx<c (resp. Nx≤c)

ton A has no constraint x ≥ 0 (as it
evaluates to true they can be safely
removed) and thus that the widget of
Fig. 2.(b) only appears with c > 0.
Each of these TPNs basically consists
of a “constraint” subpart (in the grey
boxes for Fig. 2 and in the dashed
box for Fig. 3) that models the truth
value of the atomic constraint, and
another “reset” subpart that will be
used to update the truth value of the
constraint when the clock x is reset.

The “constraint” subpart features
the place γtt: the intended meaning
is that when a token is available in
this place, the corresponding atomic
constraint ϕ is true.

When a clock x is reset, all the grey blocks modeling an x-constraint must be
set to their initial marking which has one token in Px for Fig. 2 and one token
in Px and γtt for Fig. 3. Our strategy to reset a block modeling a constraint is
to put a token in the rb place (rb stands for “reset begin”). Time cannot elapse
from there on (strong semantics for TPNs), as there will be a token in one of
the places of the grey block and thus transition r will be enabled.

Resetting Clocks. In order to reset all the blocks modeling constraints on a
clock x, we chain all of them in some arbitrary order, the re place of the ith block
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Nϕ
xn
qn

Nϕ
xn
1

Nϕ
x1
q1

Nϕ
x1
2

Nϕ
x1
1

r1
b r1

e r2
b r2

e rq1
b rq1

e r1
b r1

e r1
b rqn

e

rb(R) r1(R) rn(R) re(R)

• • •

• • •

r ε r
. . .

r r
. . .

r

(ε, [0, 0]) (ε, [0, 0]) (ε, [0, 0]) (ε, [0, 0])

[0, 0]

Fig. 4. Widget NReset(R) to reset the widgets of the constraints of clocks xi, 1 ≤ i ≤ n

is linked to the rb place of the i+ 1th block, via a 0 time unit transition ε. This
is illustrated in Fig. 4 for clocks x1 and xn. Assume R ⊆ X is a non empty set of
clocks. Let D(R) be the set of atomic constraints that are in the scope of R (the
clock of the constraint is in R). We write D(R) = {ϕx1

1 , ϕx1
2 , · · · , ϕx1

q1
, · · · , ϕxn

qn
}

where ϕ
xj

i is the ith constraints of the clock xj . To update all the widgets of
D(R), we connect the reset chains as described on Fig. 4. The picture inside the
dashed box denotes the widget NReset(R). We denote by rb(R) the first place of
this widget and re(R) the last one. To update the (truth value of the) widgets
of D(R) it then suffices to put a token in rb(R). In null duration it will go to
re(R) and have the effect of updating each widget of D(R) on its way.

The Complete Construction. First we create fresh places P� for each � ∈ L.
Then we build the widgets Nϕ, for each atomic constraint ϕ that appears in A.
Finally for each R ⊆ X s.t. there is an edge e = (�, γ, a, R, �′) ∈ E we build a
reset widget NReset(R). Then for each edge (�, γ, a, R, �′) ∈ E with γ = ∧i=1,nϕi

and n ≥ 0 we proceed as follows:

1. assume γ = ∧i=1,nϕi and n ≥ 0,
2. create a transition f(a, [0,∞[) and if n ≥ 1 another one r(ε, [0, 0]),
3. connect them to the places of the widgets Nϕi and NReset(R) as described on

Fig. 5. In case γ = tt (or n = 0) there is only one input place to f(a, [0,∞[)
which is P�. In case R = ∅ there is no transition r(ε, [0, 0]) and the output
place of f(a, [0,∞[) is P�′ .

To complete the construction we just need to put a token in the place P�0 if �0
is the initial location of the automaton, and set each widget Nϕ to its initial
marking, for each atomic constraint ϕ that appears in A, and this defines the
initial marking M0. The set of final markings is defined by the set of markings M
s.t. M(P�) = 1 for � ∈ F and the set of repeated markings by the set of markings
M s.t. M(P�) = 1 for � ∈ R. We denote Δ(A) the TPN obtained as described
previously. Notice that by construction 1) Δ(A) is 1-safe and moreover 2) in
each reachable marking M of Δ(A)

(∑
�∈L M(P�)

)
≤ 1. A widget related to an

atomic constraint has a linear size w.r.t. its size, a clock resetting widget has
a linear size w.r.t. the number of atomic constraints of the clock and a widget
associated with an edge has a linear size w.r.t. its description size. Thus the size
of Δ(A) is linear w.r.t. the size of A improving the quadratic complexity of the
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NReset(R)

Nϕn

Nϕ2

Nϕ1

γ1
tt

γ2
tt

γn
tt

. . .

P�

r1
b (R) rn

b (R) P�′

f(a, [0, ∞[)
r(ε, [0, 0])

Fig. 5. Widget Ne of an edge e = (�, γ, a, R, �′)

(restricted) translation in [15]. Finally, to prove L(Δ(A)) = L(A) we build two
simulation relations (1 and (2 s.t. Δ(A) (1 A and A (2 Δ(A). The complete
proof is given in [7].

New Results for TPNs. The proofs of the following results can be found in [7].

Corollary 2. The classes B-T PN ε and T Aε are equally expressive w.r.t. timed
language acceptance, i.e. B-T PN ε =L T Aε.

Corollary 3. 1-B-T PN ε =L B-T PN ε.

From the well-known result of Alur & Dill [3] and as our construction is effective,
it follows that:

Corollary 4. The universal language problem is undecidable for B-T PN ε (and
already for 1-B-T PN ε).

5 Equivalence w.r.t. Timed Bisimilarity

In this section, we consider the class B-T PN (≤,≥) of TPNs without strict
constraints, i.e. the original version of Merlin [18]. First recall that starting with
a TPN N ∈ B-T PN (≤,≥), the translation from TPN to TA proposed in [10]
gives a TA A with the following features:

– guards are of the form x ≥ c and invariants have the form x ≤ c ;
– between two resets of a clock x, the atomic constraints of the invariants over

x are increasing i.e. the sequence of invariants encountered from any location
is of the form x ≤ c1 and later on x ≤ c2 with c2 ≥ c1 etc.

Let us now consider the syntactical subclass T Asyn(≤,≥) of TA defined by:

Definition 11. The subclass T Asyn(≤,≥) of TA is defined by the set of TA of
the form (L, l0, X,Σε, E, Inv, F,R) where :

– guards are conjunctions of atomic constraints of the form x ≥ c and invari-
ants are conjunction of atomic constraints x ≤ c.
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– the invariants satisfy the following property; ∀e = (�, γ, a, R, �′) ∈ E, if x �∈ R
and x ≤ c is an atomic constraint in Inv(�), then if x ≤ c′ is Inv(�′) for
some c′ then c′ ≥ c.

We now adapt the construction of section 4 to define a translation from T Asyn(≤
,≥) to B-T PN (≤,≥) preserving timed bisimulation. The widget Nx≤c is mod-
ified as depicted in figure Fig. 6.(a). The widgets Nx≥c and Nreset(R) are those
of section 4 respectively in figures Fig. 2.(b) and Fig. 4.

The construction. As in section 4, we create a place P� for each location
� ∈ L. Then we build the blocks Nϕ for each atomic constraints ϕ = x ≥ c
(Fig. 2.(b)) that appears in guards of A and we build the blocks NI for each
atomic constraints I = x ≤ c (Fig.6.(a)) that appears in an invariant of A.
Finally for each R ⊆ X s.t. there is an edge e = (�, γ, a, R, �′) ∈ E we build
a reset widget NReset(R) (Fig. 4). Then for each edge (�, γ, a, R, �′) ∈ E with
γ = ∧i=1,nϕi and n ≥ 0, we proceed exactly as in section 4 (Fig. 5). For each
location � ∈ L with Inv(�) = ∧k=1,nIk, we proceed as follows:

1. if n ≥ 1, create a transition Ik(ε, [0, 0]) for 1 ≤ k ≤ n;
2. for 1 ≤ k ≤ n connect Ik(ε, [0, 0]) to P� and to the place urg of block NIk

,
as depicted in figure Fig. 6.(b).

LetA = (L, �0, X,Σε, E, Inv, F,R) and assume that the set of atomic constraints
of A is CA = CA(≥)∪CA(≤) where CA(��) is the set of atomic constraints x �� c,
��∈ {≤,≥}, of A and X = {x1, · · · , xk}.

We denote Δ+(A) = (P, T,Σε,
•(.), (.)•, M0, Λ, I, FΔ, RΔ) the TPN built as

described previously. The place Px and the transition tx of a widget Nϕ for ϕ ∈
CA are respectively written Pϕ

x and tϕx in the sequel. Moreover, for a constraint
ϕ = x ≥ c, the place γtt of a widget Nϕ is written γϕ

tt and the place urg of a
widget Nϕ is written urgϕ. We can now build a bisimulation relation ≈ between
A and Δ+(A).

New Results for TPNs.

Corollary 5. The classes B-T PN (≤,≥) and T Asyn(≤,≥) are equally expres-
sive w.r.t. weak timed bisimulation, i.e. B-T PN (≤,≥) ≈W T Asyn(≤,≥).

Pxrb

urgre

r(ε, [0, 0]) tx(ε, [c, c])

•

(a) Widget Nx≤c

NIn=(xn≤in) NI1=(x1≤i2)

urgn urg1

. . .

P�

In(ε, [0, 0])
I1(ε, [0, 0])

(b) Widgets for Inv(�)

Fig. 6. Widget Ne of an edge e = (�, γ, a, R, �′)
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Corollary 6. The classes 1-B-T PN (≤,≥) and B-T PN (≤,≥) are equally ex-
pressive w.r.t. timed bisimulation i.e. 1-B-T PN (≤,≥) ≈W B-T PN (≤,≥).

6 Conclusion

In this paper, we have investigated different questions relative to the expres-
siveness of TPNs. First, we have shown that TA and bounded TPNs (strict
constraints are permitted) are equivalent w.r.t. timed language equivalence. We
have also provided an effective construction of a TPN equivalent to a TA. This
enables us to prove that the universal language problem is undecidable for TPNs.
Then we have addressed the expressiveness problem for weak time bisimilarity.
We have proved that TA are strictly more expressive than bounded TPNs and
given a subclass of TA expressively equivalent to TPN “à la Merlin”.

Further work will consist in characterizing exactly the subclass of TA equiv-
alent to TPN w.r.t. timed bisimilarity.
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Abstract. We define quantitative similarity functions between timed
transition systems that measure the degree of closeness of two systems
as a real, in contrast to the traditional boolean yes/no approach to timed
simulation and language inclusion. Two systems are close if for each
timed trace of one system, there exists a corresponding timed trace in the
other system with the same sequence of events and closely corresponding
event timings. We show that timed CTL is robust with respect to our
quantitative version of bisimilarity, in particular, if a system satisfies a
formula, then every close system satisfies a close formula. We also define
a discounted version of CTL over timed systems, which assigns to every
CTL formula a real value that is obtained by discounting real time.
We prove the robustness of discounted CTL by establishing that close
states in the bisimilarity metric have close values for all discounted CTL
formulas.

1 Introduction

Timed systems model not only the sequence of system events but the timing
information as well. Unfortunately, most formal models for timed systems are
too precise: two states can be distinguished even if there is an arbitrarily small
mismatch between the timings of an event. For example, traditional timed lan-
guage inclusion requires that each trace in one system be matched exactly by
a trace in the other system. Since formal models for timed systems are only
approximations of the real world, and subject to estimation errors, this presents
a serious shortcoming in the theory, and has been well noted in the literature
[15, 21, 23, 13, 18, 16, 3, 19, 17].

We develop a theory of refinement for timed systems that is robust with re-
spect to small timing mismatches. The robustness is achieved by generalizing
timed refinement relations to metrics on timed systems that quantitatively es-
timate the closeness of two systems. That is, instead of looking at refinement
� This research was supported in part by the AFOSR MURI grant F49620-00-1-0327
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between systems as a boolean true/false relation, we assign a positive real num-
ber between zero and infinity to a pair of timed systems (Tr, Ts) which indicates
how well Tr refines Ts. In the linear setting, we define the distance between two
traces as ∞ if the untimed sequences differ, and as the supremum of the differ-
ence of corresponding time points otherwise. The distance between two systems
is then taken to be the supremum of closest matching trace differences from the
initial states. For example, the distance between the traces a

1→ b and a
2→ b is

1 unit, and occurs due to the second trace lagging the first by 1 unit at b. Simi-
larly, the distance between the first trace and the trace a

100→ b is 99. Intuitively,
the first trace is “closer” to the second than the third; our metric makes this
intuition precise.

Timed trace inclusion is undecidable on timed automata [2]. To compute
a refinement distance between timed automata, we therefore take a branching
view. We define quantitative notions of timed similarity and bisimilarity which
generalize timed similarity and bisimilarity relations [6, 22] to metrics over timed
systems. Given a positive real number ε, we define a state r to be ε-similar to
another state s, if (1) the observations at the states match, and (2) if for every
timed step from r there is a timed step from s such that the timing of events
on the traces from r and s remain within ε. We provide algorithms to compute
the similarity distance between two timed systems modeled as timed automata
to within any given precision.

We show that bisimilarity metrics provide a robust refinement theory for
timed systems by relating the metrics to timed computation tree logic (TCTL)
specifications. We prove a robustness theorem that states close states in the
metric satisfy TCTL specifications that have “close” timing requirements. For
example, if the bisimilarity distance between states r and s is ε, and r satisfies
the TCTL formula ∃�≤5a (i.e., r can get to a state where a holds within 5 time
units), then s satisfies ∃�≤5+2εa. A similar robustness theorem for MITL was
studied in [20]. However, they do not provide algorithms to compute distances
between systems, relying on system execution to estimate the bound.

As an illustration, consider the two timed automata in Figure 1. Each au-
tomaton has four locations and two clocks x, y. Observations are the same as

Tr Ts

reset y

reset x

reset
x, y

x ≤ 10

y = 3

reset y

3 ≤ y ≤ 4

reset x

reset
x, y

x ≤ 9 x ≤ 10

x ≤ 9

2 ≤ x ≤ 3 1 ≤ x ≤ 2

a b

d c

a b

d c

Fig. 1. Two similar timed automata
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the locations. Let the initial states be 〈a, x = 0, y = 0〉 in both automata. The
two automata seem close on inspection, but traditional language refinement of
Ts by Tr does not hold. The trace 〈a, x = 0, y = 0〉 0→ 〈b, 0, 0〉 4→ 〈c, 4, 4〉 . . .
in Tr cannot be matched by a trace in Ts. The automaton Ts however, does
have a similar trace, 〈a, x = 0, y = 0〉 0→ 〈b, 0, 0〉 3→ 〈c, 3, 3〉 . . . (the trace dif-
ference is 1 time unit). We want to be able to quantify this notion of similar
traces. Our metric gives a directed distance of 1 between Tr and Ts: for every
(timed) move of Tr from the starting state, there is a move for Ts such that
the trace difference is never more than 1 unit. The two automata do have the
same untimed languages, but are not timed similar. Thus, the traditional theory
does not tell us if the timed languages are close, or widely different. Looking at
TCTL specifications, we note Ts satisfies ∃�(c∧∃�≥7d), while Tr only satisfies
the more relaxed specification ∃�(c ∧ ∃�≥5d). Robustness guarantees a bound
on the relaxation of timing requirements.

Once we generalize refinement to quantitative metrics, a natural progression
is to look at logical formulae as functions on states, having real values in the in-
terval [0, 1]. We use discounting [10, 12] for this quantification and define dCTL,
a quantitative version of CTL for timed systems. Discounting gives more im-
portance to near events than to those in the far future. For example, for the
reachability query ∃�a, we would like to see a as soon as possible. If the short-
est time to reach a from the state s is ta, then we assign βta to the value of
∃�a at s, where β is a positive discount factor less than 1 in our multiplicative
discounting. The subscript constraints in TCTL (e.g., ≤ 5 in ∃�≤5a) may be
viewed as another form of discounting, focusing only on events before 5 time
units. Our discounting in dCTL takes a more uniform view; the discounting for
a time interval depends only on the duration of the interval. We also show that
the dCTL values are well behaved in the sense that close bisimilar states have
close values for all dCTL specifications. For the discounted CTL formula ∃�c,
the value in Tr is β9 and β10 in Ts (shortest time to reach c on time diverging
paths is 9 in Tr and 10 in Ts). They are again close (on the β scale).

The rest of the paper is organized as follows. In Section 2 we define quantita-
tive notions of simulation and bisimilarity, and exhibit an algorithm to compute
these functions to within any desired degree of accuracy for timed automata.
In Section 3 we prove the robustness theorem for quantitative bisimilarity with
respect to timed computation tree logic. In Section 4, we define dCTL, show
its robustness, and give a model checking algorithm for a subset of dCTL over
timed automata. Metrics have been studied before for discrete and probabilistic
syetms in [14, 12, 17, 11], and for timed systems in [5, 17, 20]; this paper provides,
to our knowledge, the first algorithms for computing refinement metrics on timed
systems.

2 Quantitative Timed Simulation Functions

We define quantitative refinement functions on timed systems. These functions
allow approximate matching of timed traces and generalize timed and untimed
simulation relations.
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2.1 Simulation Relations and Quantitative Extensions

A timed transition system (TTS) is a tuple A = 〈Q,Σ,→, μ,Q0〉 where

- Q is the set of states.
- Σ is a set of atomic propositions (the observations).
- →⊆ Q× IR+ ×Q is the transition relation.
- μ : Q �→ 2Σ is the observation map which assigns a truth value to atomic

propositions true in a state.
- Q0 ⊆ Q is the set of initial states.

We write q
t→ q′ if (q, t, q′) ∈→. A state trajectory is an infinite sequence

q0
t0→q1

t1→ . . . , where for each j ≥ 0, we have qj
tj→qj+1. The state trajectory is

initialized if q0 ∈ Q0 is an initial state. A state trajectory q0
t0→q1 . . . induces a

trace given by the observation sequence μ(q0)
t0→μ(q1)

t1→ . . . . To emphasize the
initial state, we say q0-trace for a trace induced by a state trajectory starting
from q0. A trace is initialized if it is induced by an initialized state trajectory.
A TTS Ai refines or implements a TTS As if every initialized trace of Ai is
also an initialized trace of As. The general trace inclusion problem for timed
systems is undecidable [2], simulation relations allow us to restrict our attention
to a computable relation.

Let A be a TTS. A binary relation (⊆ Q×Q is a timed simulation if q1 ( q2
implies the following conditions:

1. μ(q1) = μ(q2).
2. If q1

t→ q′1, then there exists q′2 such that q2
t→ q′2, and q′1 ( q′2.

The state q is timed simulated by the state q′ if there exists a timed simulation (
such that q ( q′. A binary relation ≡ is a timed bisimulation if it is a symmetric
timed simulation. Two states q and q′ are timed bisimilar if there exists a timed
bisimulation≡ with q ≡ q′. Timed bisimulation is stronger than timed simulation
which in turn is stronger than trace inclusion. If state q is timed simulated by
state q′, then every q-trace is also a q′-trace.

Untimed simulation and bisimulation relations are defined analogously by
ignoring the duration of time steps. Formally, a binary relation (⊆ Q×Q is an
(untimed) simulation if condition (2) above is replaced by

(2)′ If q1
t→ q′1, then there exists q′2 and t′ ∈ IR+ such that q2

t′
→ q′2, and q′1 ( q′2.

A symmetric untimed simulation relation is called an untimed bisimulation.
Timed simulation and bisimulation require that times be matched exactly.

This is often too strict a requirement, especially since timed models are approxi-
mations of the real world. On the other hand, untimed simulation and bisimula-
tion relations ignore the times on moves altogether. We now define approximate
notions of refinement, simulation, and bisimulation that quantify if the behavior
of an implementation TTS is “close enough” to a specification TTS. We begin
by defining a metric on traces. Given two traces π = r0

t0→ r1
t1→ r2 . . . and

π′ = s0
t′
0→ s1

t′
1→ s2 . . . , the distance D(π, π′) is defined by

D(π, π′) =
{
∞ : if rj �= sj for some j

supj{|
∑j

n=0 tn −
∑j

n=0 t
′
n|} : otherwise
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The trace metric D induces a refinement distance between two TTS. Given
two timed transition systems Ar, As, with initial states Qr, Qs respectively, the
refinement distance of Ar with respect to As is given by supπq

infπ′
q′ {D(πq, π

′
q′)}

where πq (respectively, π′
q′) is a q-trace (respectively, q′-trace) for some q ∈ Qr

(respectively, q′ ∈ Qs). Notice that the refinement distance is asymmetric: it is
a directed distance [11].

We also generalize the simulation relation to a directed distance in the follow-
ing way. For states r, s and δ ∈ IR, the simulation function S : Q×Q× IR → IR
is the least fixpoint (in the absolute value sense) of the following equation:

S(r, s, δ)=

{
∞ if μ(r) �=μ(s)
sup′

tr
inf ′ts

{max′ (δ, S(r′, s′, δ + tr − ts)) | r tr→ r′, s
ts→ s′} otherwise

where sup′, inf ′,max′ consider only the modulus in the ordering, i.e., x <′ y iff
|x| < |y| in the standard real number ordering. We say r is ε-simulated by s if
|S(r, s, 0)| ≤ ε. Note the ε-simulation is not transitive in the traditional sense. If
r is ε-simulated by s, and s is ε-simulated by w, then r is (2ε)-simulated by w.

Given two states r, s, it is useful to think of the value of S(r, s, δ) as being the
outcome of a game. Enviroment plays on r (and its successors), and chooses a
move at each round. We play on s and choose moves on its successors. Each round
adds another step to both traces (from r and s). The goal of the environment is to
maximise the trace difference, our goal is to minimize. The value of S(r, s, δ) is the
maximum lead of the r trace with respect to the s trace when the simulation game
starts with the r trace starting with a lead of δ. If from r, s the environment can
force the game into a configuration in which we cannot match its observation, we
assign a value of∞ to S(r, s, ·). Otherwise, we recursively compute the maximum
trace difference for each step from the successor states r′, s′. For the successors
r′, s′, the lead at the first step is (δ+ tr− ts). The lead from the first step onwards
is then S(r′, s′, δ + tr − ts). The maximum trace difference is either the starting
trace difference (δ), or some difference after the first step (S(r′, s′, δ + tr − ts)).

Note that different accumulated differences in the times in the two traces may
lead to different strategies, we need to keep track of the accumulated delay or
lead. For example, suppose the environment is generating a trace and is currently
at state r, and our matching trace has ended up at state s. Suppose r can only
take a step of length 1, and s can take two steps of lengths 0 and 100. If the two
traces ending at r and s have an accumulated difference of 0 (the times at which
r and s occur are exactly the same), then s should take the step of length 0. But
if the r trace leads the s trace by say 70 time units, then s should take the step
of length 100, the trace difference after the step will then be |70+1− 100| = 29,
if s took the 0 step, the trace difference would be 70 + 1− 0 = 71.

We also define the corresponding bisimulation function. For states r, s ∈ Q and
a real number δ, the bisimulation function B : Q×Q×IR → IR is the least fixpoint
(in the absolute value sense) of the equations B(r, s, δ) = ∞ if μ(r) �= μ(s), and

B(r, s, δ) = max

{
sup′

tr
inf ′ts

{max′ (δ, B(r′, s′, δ + tr − ts)) | r
tr→ r′, s

ts→ s′},
sup′

ts
inf ′tr

{max′ (δ, B(r′, s′, δ + tr − ts)) | r
tr→ r′, s

ts→ s′}

}
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otherwise, where sup′, inf ′,max′ consider only the modulus in the ordering. The
bisimilarity distance between two states r, s of a TTS is defined to be B(r, s, 0).
States r, s are ε-bisimilar if B(r, s, 0) ≤ ε. Notice that B(r, s, 0) = 0 iff r, s are
timed bisimilar.

Proposition 1. Let r and s be two states of a TTS. For every trace πr from
r, there is a trace πs from s such that D(πr, πs) ≤ |S(r, s, 0)|. The bisimilarity
distance B(r, s, 0) is a pseudo-metric on the states of TTSs.

Example 1. Consider the example in Fig. 2. The observations have been num-
bered for simplicity: μ(a1) = a, μ(bi) = b, μ(ci) = c. We want to compute
S(a, a1, 0). It can be checked that a is untimed similar to a1 All paths have
finite weights, so S(a, a1, 0) <∞. Consider the first step, a takes a step of length
7 in Ar. As has two options, it can take a step to b1 of length 5 or a step to b2
of length 8, and to decide which one to take, it needs S(b, b1, 2) and S(b, b2,−1).
S(b, b2,−1) is −1 + 10 − 4 = 5. To compute S(b, b1, 2), we look at b1’s options.
In the next step, if we move to c2, then the trace at the (c, c2) configuration will
be 2 + 10− 9 = 3. If we move to c1, the trace difference will be 2 + 10− 12 = 0
(this is the better option). Thus S(b, b1, 2) = 2 (the 2 is due to the initial lead).
Thus S(a, a1, 0) = 2. "#

5

410

7

Ar

12 9

As

8

c3c2

b

c

a1

b1 b2

a

c1

Fig. 2. Ar is 2-similar to As

2.2 Algorithms for Simulation Functions

Finite Weighted Graphs. We first look at computing ε-simulation on a spe-
cial case of timed transition systems. A finite timed graph T = (Q,Σ,E, μ,W )
consists of a finite set of locations Q, a set Σ of atomic propositions, an edge
relation E ⊆ Q×Q, an observation function μ : V → 2Σ on the locations, and
an integer weight function W : E → N+ on the edges. For vertices s, s′ ∈ Q,
we write s

t→ s′ iff there is an edge (s, s′) ∈ E with W (s, s′) = t. The following
theorem provides a bound on simulation functions on a finite timed graph.
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Theorem 1. Let A be a finite timed graph and let n = |Q| be the number
of nodes and Wmax = maxe∈E{W (e)} the maximum weight of any edge. Let
f ∈ {S,B}. (1) For every pair of vertices r, s ∈ Q, if |f(r, s, 0)| < ∞, then
|f(r, s, 0)| ≤ 2n2 ·Wmax. (2) The values S(r, s, 0) and B(r, s, 0) are computable
over finite timed graphs in time polynomial in n and Wmax.

The proof of (1) is by contradiction, we give the argument for S(r, s, 0). Since
we are working on a finite graph, the sup-inf in the definiton of S can be replaced
by a max-min. Consider the product graph A×A where if r tr−→ r′ and s

ts−→ s′

in A, then 〈r, s〉 tr−ts−→ 〈r′, s′〉 in A×A. The value of the max-min can be viewed
as the outcome of a game, where the environment chooses a (maximising) move
for the first vertex in the product graph, we choose a (minimising) move for the
second vertex, and the game moves to the resulting vertex pair.

Suppose n2Wmax < |S(r, s, 0)| < ∞. Since there are only n2 locations in the
pair graph, and since each composite move can cause at most Wmax lead or
lag, there must be a cycle of composite locations in the game, with non-zero
accumulative weight. When the game starts, we would do our best to not to
get into such a cycle. If we cannot avoid getting into such a cycle because of
observation matching of the environment moves, |S(v, s, 0)| will be ∞, because
the enviroment will force us to loop around that cycle forever. If |S(r, s, 0)| <
∞, and we choose to go into such a cycle, it must be the case that there is
an alternative path/cycle that we can take which has accumated delay of the
opposite sign. For example, it may happen that at some point in the game we
have an option of going into two loops, loop 1 has total gain 10, loop 2 has total
gain -1000. We will take loop 1 the first 500 times, then loop 2 once, then repeat
with loop 1. The leads and lags cancel out in part keeping S(r, s, 0) bounded.
A finite value value of S(r, s, 0) is then due to 1) some initial hard observation
matching contraint steps, with the number of steps being less than n2 (no cycles),
and 2) presence of different weight cycles (note we never need to go around the
maximum weight cycle more than once). A cycle in the pair graph can have
weight at most n2Wmax. Hence the value of |S(r, s, 0)| is bounded by 2n2Wmax.

Given the upper bound, the value of S() can then be computed using dynamic
programming (since all edges are integer valued, it suffices to restrict our atten-
tion to S(·, ·, δ) for integer valued δ). Further, this bound is tight: there is a finite
timed graph A and two states r, s of A with S(r, s, 0) in Θ(n2Wmax).

Timed Automata. Timed automata provide a syntax for timed transition
systems. A timed automaton A is a tuple 〈L,Σ,C, μ,→, Q0〉, where

– L is the set of locations.
– Σ is the set of atomic propositions.
– C is a finite set of clocks. A clock valuation v : C �→ IR+ for a set of clocks

C assigns a real value to each clock in C.
– μ : L �→ 2Σ is the observation map (it does not depend on clock values).
– →⊆ L × L × 2C × Φ(C) gives the set of transitions, where Φ(C) is the set

of clock contraints generated by ψ := x ≤ d | d ≤ x | ¬ψ | ψ1 ∧ ψ2.
– Q0 ⊆ L× IR+|C|

is the set of initial states.
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Each clock increases at rate 1 inside a location. A state is a location together
with a clock valuation, the set of states is denoted Q = L × (IR+)|C|. An edge
〈l, l′, λ, g〉 represents a transition from location l to location l′ when the clock
values at l satisfy the constraint g. The set λ ⊆ C gives the clocks to be reset with
this transition. The semantics of timed automata are given as timed transition
systems. This is standard [2], and omitted here.

For simplicity, we assume every clock of a timed automaton A stays within
M + 1, where M is the largest constant in the system. A region R of a timed
automaton A is a tuple 〈l, h,P(C)〉 where
– l is a location of A.
– h is a function which specifies the integer values of clocks h : C → (IN∩[0,M ])

(M is the largest constant in A).
– P(C) is a disjoint partition of the clocks {X0, . . .Xn |  Xi = C,Xi �=
∅ for i > 0}.

We say a state s with clock valuation v is in the region R when,
1. The location of s corresponds to the location of R
2. For all clocks x with v(x) < M + 1, $v(x)% = h(x).
3. For v(x) ≥M+1, h(x) = M . (This is slightly more refined than the standard

region partition, we have created more partitions in [M,M+1), we map clock
values which are greater than M into this interval. This is to simplify the
proofs.)

4. Let frac(r) denote the fractional value of r. For any pair of clocks (x, y),
frac(v(x)) < frac(v(y)) iff x ∈ Xi and y ∈ Xj with i < j (so, x, y ∈ Xk

implies frac(v(x)) = frac(v(y))).
5. frac(v(x)) = 0 iff x ∈ X0.

We say two states s, s′ to be region equivalent if they belong to the same region.
We now show that given states r, s in a timed automaton A, the values of

S(r, s, 0) and B(r, s, 0) can be computed to within any desired degree of accuracy.
We use a corner point abstraction (similar to that in [4]) which can be viewed
as a region graph augmented with additional timing information. We show that
the corner points are at a close bisimilarity distance from the states inside the
corresponding regions. Finally we use Theorem 1 to compute the approximation
for S(·) on the corner point graph.

A corner point is a tuple 〈α,R〉, where α ∈ IN|C| and R is a region. A region
R = 〈l, h, {X0, . . . Xn}〉 has n + 1 corner points {〈αi, R〉 | 0 ≤ i ≤ n}:

αi(x) =
{

h(x) : x ∈ Xj with j ≤ i
h(x) + 1 : x ∈ Xj with j > i

Intuitively, corner points denote the boundary points of the region.
Using the corner points, we construct a finite timed graph as follows. The

structure is similar to the region graph, only we use corner points, and weights
on some of the edges to model the passage of time. For a timed automaton
A, the corner point abstraction CP(A) has corner points p of A as states. The
observation of the state 〈α, 〈l, h,P(C)〉〉 is μ(l). The abstraction has the following
weighted transitions :



234 T.A. Henzinger, R. Majumdar, and V.S. Prabhu

Discrete. There is an edge 〈α,R〉 0−→ 〈α′, R′〉 if A has an edge 〈l, l′, λ, g〉 (l, l′

are locations of R,R′ respectively) such that (1) R satisfies the constraint
g, and (2) R′ = R[λ �→ 0], α′ = α[λ �→ 0] (note that corner points are closed
under resets).

Timed. For corner points 〈α,R〉, 〈α′, R〉 such that ∀x ∈ C, α′(x) = α(x) + 1,
we have an edge 〈α,R〉 1−→ 〈α′, R〉. These are the edges which model the
flow of time. Note that for each such edge, there are concrete states in A
which are arbitrarily close to the corner points, such that there is a time flow
of length arbitralily close to 1 in between those two states.

Region flow. These transitions model the immediate flow transitions in be-
tween “adjacent” regions. Suppose 〈α,R〉, 〈α,R′〉 are such that R′ is an
immediate time successor of R, then we have an edge 〈α,R〉 0−→ 〈α,R′〉.
If 〈α + 1, R′〉 is also a corner point of R′, then we also add the transition
〈α,R〉 1−→ 〈α + 1, R′〉.

Self loops. Each state also has a self loop transition of weight 0.
Transitive closure. We transitively close the timed, region flow, and the self

loop transitions upto weight M (the subset of the full transitive closure where
edges have weight less than or equal to M).

The number of states in the corner point abstraction of a timed automaton A
is O(|L| · |C| · (2M)|C|), where L is the set of locations in A, C the set of clocks,
and M the largest constant in the system.

Lemma 1. Let s be a state in a timed automaton A, and let p be a corner point
of the region R corresponding to s in the corner point abstraction of A. Then s
is ε-bisimilar to p for ε = |C|+1, that is, S(s, p, 0) ≤ |C|+1, where C is the set
of clocks in A.

Informally, each clock can be the cause of at most 1 unit of time difference, as
the time taken to hit a constraint is always of the form d− v(x) for some clock
x and integer d. Once a clock is reset, it collapses onto a corner point, and the
time taken from that point to reach a constraint controlled by x is the same as
that for the corresponding corner point in CP(A).

Using Lemma 1 and Theorem 1, we can “blow” up the time unit for a timed
automaton to compute ε-simulation and ε-bisimilarity to within any given de-
gree of accuracy. This gives an EXPTIME algorithm in the size of the timed
automaton and the desired accuracy.

Theorem 2. Given two states r, s in a timed automaton A, and a natural num-
ber m, we can compute numbers γ1, γ2 ∈ IR such that S(r, s, 0) ∈ [γ1− 1

m , γ1+ 1
m ]

and B(r, s, 0) ∈ [γ2 − 1
m , γ2 + 1

m ] in time polynomial in the number of states of
the corner point abstraction and in m|C|, where C is the set of clocks of A.

3 Robustness of Timed Computation Tree Logic

TCTL. Timed computation tree logic (TCTL) [1] is a real time extension of
CTL [7]. TCTL adds time contraints such as≤ 5 to CTL formulae for specifying
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timing requirements. For example, while the CTL formula ∀�a only requires a
to eventually hold on all paths, the TCTL formula ∀�≤5a requires a to hold on
all paths before 5 time units.

We will use ∼ to mean one of the binary relations <,≤, >,≥. The formulae
of TCTL are given inductively as follows:

ϕ := a | false | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∃(ϕ1 U∼dϕ2) | ∀(ϕ1 U∼dϕ2)

where a ∈ Σ and d ∈ IN.
The semantics of TCTL formulas is given over states of timed transition

systems. For a state s in a TTS

s |= a iff a ∈ μ(s); s �|= false; s |= ¬ϕ iff s �|= ϕ.
s |= ϕ1 ∨ ϕ2 iff s |= ϕ1 or s |= ϕ2.
s |= ϕ1 ∧ ϕ2 iff s |= ϕ1 and s |= ϕ2.
s |= ∃(ϕ1 U∼dϕ2) iff for some run πs starting from s, for some t ∼ d, the

state at time t, πs(t) |= ϕ2, and for all 0 ≤ t′ < t, πs(t′) |= ϕ1.
s |= ∀(ϕ1 U∼dϕ2) iff for all (infinite) paths πs starting from s, for some

t ∼ d, the state at time t, πs(t) |= ϕ2, and for all 0 ≤ t′ < t,
πs(t′) |= ϕ1.

We define the waiting-for operator as ∃(ϕ1W∼cϕ2) = ¬∀(¬ϕ2 U∼c¬(ϕ1 ∨ ϕ2)),
∀(ϕ1W∼cϕ2) = ¬∃(¬ϕ2 U∼c¬(ϕ1∨ϕ2)). The until operator in ϕ1 U∼dϕ2 requires
that ϕ2 become true at some time, the waiting-for formula ϕ1W∼dϕ2 admits
the possibility of ϕ1 forever “waiting” for all times t ∼ d and ϕ2 never being
satisfied. Formally, s |= ∀(ϕW∼dθ) (respectively, s |= ∃(ϕW∼dθ)) iff for all
traces (respectively, for some trace) πs from s, either 1) for all times t ∼ d,
πs(t) |= ϕ, or 2) at some time t, πs(t) |= θ, and for all (t′ < t) ∧ (t′ ∼ d),
πs(t′) |= ϕ. Using the waiting-for operator and the identities ¬(ϕ∃U∼dθ) =
(¬ϕ)∀W∼d(¬ϕ ∧ ¬θ) and ¬(ϕ∀U∼dθ) = (¬ϕ)∃W∼d(¬ϕ ∧ ¬θ), we can write
each TCTL formula ϕ in negation normal form by pushing the negation to the
atomic propositions.

δ-weakened TCTL. For each TCTL forumla ϕ in negation normal form, and
δ ∈ IR+, a δ-weakening ζδ(ϕ) of ϕ with respect to δ is defined as follows:

ζδ(a) := a, ζδ(¬a) := ¬a, ζδ(false) := false
ζδ(ϕ1 ∨ ϕ2) = ζδ(ϕ1) ∨ ζδ(ϕ2), ζδ(ϕ1 ∧ ϕ2) = ζδ(ϕ1) ∧ ζδ(ϕ2)
ζδ(‡(ϕ1 U∼dϕ2)) = ‡(ζδ(ϕ1)U∼δ(d,∼)ζ

δ(ϕ2)),
ζδ(‡(ϕ1W∼dϕ2)) = ‡(ζδ(ϕ1)W∼δ′(d,∼)ζ

δ(ϕ2))

where ‡ ∈ {∃, ∀} and

δ(d,∼) =

{
d + δ if ∼∈ {<,≤}
d− δ if ∼∈ {>,≥}

δ′(d,∼) =

{
d− δ if ∼∈ {<,≤}
d + δ if ∼∈ {>,≥}

The ζδ function relaxes the timing constraints by δ. The U and the W opera-
tors are weakened dually. Note that ¬ζδ(ψ) �= ζδ(¬ψ). The discrepancy occurs
because of the difference in how δ and δ′ are defined.



236 T.A. Henzinger, R. Majumdar, and V.S. Prabhu

Example 2. Let a and b be atomic propositions. We have ζ2(∃(aU≤5b))
= ∃(aU≤7b). Earlier, a state had to get to b within 5 time units, now it has
7 time units to satisfy the requirement. Similarly, ζ2(∃(aW≤5b)) = ∃(aW≤3b)).
The pre-weakened formula requires that either 1) for all t ≤ 5 the proposition
a must hold, or 2) at some time t, b must hold, and for all (t′ < t) ∧ (t′ ≤ 5) a
must hold. The weakening operator relaxes the requirement on a holding for all
times less than or equal to 5 to only being required to hold at times less than or
equal to 3 (modulo the (t′ < t) clause in case 2). "#

Proposition 2. For all reals δ ≥ 0, TCTL formulae ϕ, and states s of a TTS,
if s |= ϕ, then s |= ζδ(ϕ).

We now connect the bisimilarity metric with satisfaction of TCTL specifi-
cations. Of course, close states may not satisfy the same TCTL specifications.
Take ϕ = ∀�=5a, it requires a to occur at exactly 5 time units. One state may
have traces that satisfy a at exactly 5 time units, another state at 5+ε for an ar-
bitrarily small ε. The first state will satisfy ϕ, the second will not. However, two
states close in the bisimilarity metric does satisfy “close” TCTL specifications.
Theorem 3 makes this precise.

Theorem 3. Let ε > 0. Let r, s be two ε-bisimilar states of a timed transition
system, and let ϕ a TCTL formula in negation normal form. If r |= ϕ, then
s |= ζ2ε(ϕ).

The proof proceeds by induction on formulae. The crucial point is to note
that if r, s are ε-bisimilar, and if, starting from r, s the bisimilarity game arrives
at the configuration r1, s1, then r1, s1 are 2ε-bisimilar. So if r

t1
� r1

t2
� r2, and

s
t′
1

� s1
t′
2

� s2 (with ri, si being the corresponding states), then |t2 − t′2| ≤ 2ε.
The states r1 and s1 are not ε-bisimilar in general, but the traces originating
from the two states are close and remain within 2ε.

4 Discounted CTL for Timed Systems

Our next step is to develop a quantitative specification formalism that assigns
real numbers in the interval [0, 1] to CTL formulas. A value close to 0 is “bad,”
a value close to 1 “good.” We use time and discounting for this quantification.
Discounting gives more weight to the near future than to the far away future.
The resulting logic is called dCTL.

Syntax, Semantics, and Robustness. We look at a subset of standard boolean
CTL, with � being the only temporal operator. The formulae of dCTL are in-
ductively defined as follows:

ϕ := a | false | ¬ϕ | ϕ1 ∨ ϕ2 | ∃�ϕ | ∀�ϕ

where a ranges over atomic propositions. From this, we derive the formulas:
∃�ϕ = ¬∀�¬ϕ and ∀�ϕ = ¬∃�¬ϕ.
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The semantics of dCTL formulas are given as functions from states to the
real interval [0, 1]. For a discount parameter β ∈ [0, 1], and a timed transition
system, the value of a formula ϕ at a state s is defined as follows:

[[a]](s) := 1 if s |= a, 0 otherwise.
[[false]](s) := 0; [[¬ϕ]](s) := 1− [[ϕ]](s)
[[ϕ1
{∨
∧
}
ϕ2]](s) :=

{max
min

}
{[[ϕ1]](s), [[ϕ2]](s)}

[[
{∃
∀
}
�ϕ]](s) :=

{sup
inf

}
πs

supt∈IR+{βt([[ϕ]](πs(t)))}

where πs is an infinite time diverging path starting from state s, and πs(t) is the
state on that path at time t. Intuitively, for the � operator, the quicker we can
get to a good state, the better, and the discounted value reflects this fact. The
temporal operators can again be seen as playing a game. Environment chooses
the path πs, and we choose the best value on that path. In ∃� the environment
is cooperating and chooses the best path, in ∀�, it plays adversially and takes
the worst path. Note that β = 1 gives us the boolean case.

Example 3. Consider Tr in Figure 1. Assume we cannot stay at a location forever
(location invariants can ensure this). The value of ∀�b at the state 〈a, x = 0, y =
0〉 is β6. The automaton must move from a to b within 6 time units, for otherwise
it will get stuck at c and not be able to take the transition to d. Similarly, the
value at the starting state in Ts is β7.

Consider now the formula ∀�(b⇒ ∀�a) = ¬∃�¬(¬b∨∀�a) = 1−∃�(min(b,
(1−∀�a))). What is its value at the starting state, 〈a, 0, 0〉, of Tr? The value of
min(b, ·) is 0 at states not satisfying b, so we only need look at the b location in
the outermost ∃� clause. Tr needs to move out of b within 9 time units (else it
will get stuck at c). Thus we need to look at states 〈b, 0 ≤ x ≤ 9, 0 ≤ y ≤ 4〉. On
those states, we need the value of ∀�a. Suppose we enter b at time t. Then the
b states encountered are {〈b, t + z, z〉 | z ≤ 4, t + z ≤ 9}. The value of ∀�a at a
state 〈b, t+ z, z〉 is β3+9−(t+z) (we exit c at time 9− (t+ z), and can avoid a for
3 more time units). Thus the value of ∃�(min(b, (1− ∀�a))) at the initial state
is supt,z{βt+z(1−β3+9−(t+z)) | z ≤ 4, t+ z ≤ 9} (view t+ z as the elapsed time;
the individual contributions of t and z in the sum depending on the choice of the
path). The maximum value occurs when t + z is 0. Thus the value of the sup is
1− β12. So finally we have the value of ∀�(b⇒ ∀�a) at the starting state to be
β12. It turns out that the initial state in Ts has the same value for ∀�(b ⇒ ∀�a).
Both systems have the same “response” times for an a following a b. "#

dCTL is robust with respect to ε-bisimilarity: close states in the bisimilarity
metric have close dCTL values. Notice however that the closeness is not uniform
and may depend on the nesting depth of temporal operators [10].

Theorem 4. Let k be the number of nested temporal operators in a dCTL
formula ϕ, and let β be a real discount factor in [0, 1]. For all states r, s in a
TTS, if |B(r, s, 0)| ≤ ε, then |[[ϕ]](r) − [[ϕ]](s)| ≤ (k + 1)(1− β2ε).

Example 4. Consider ∀�b at the starting states (which are 1-bisimilar) in Tr, Ts

in Fig. 1. As shown in Ex. 3, the value in Tr is β6, and β7 in Ts. β6 − β7 =
β6(1 − β) ≤ 1− β ≤ 1− β2. "#
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Model Checking dCTL over Timed Automata. We compute the value of
[[ϕ]](s) as follows: for ϕ = ∃�θ, first recursively obtain [[θ]](v) for each state v in
the TTS. The value of [[ϕ]](s) is then sup{βtv([[θ]](v))}, where tv is the shortest
time to reach state v from state s. For ϕ = ∀�θ, we need to be a bit more
careful. We cannot simply take the longest time to reach states and then have
an outermost inf (i.e., dual to the ∃� case). The reason is that the ∃� case
had supπs

supt, and both the sups can be collapsed into one. The ∀� case has
infπs supt, and the actual path taken to visit a state matters. For example, it
may happen that on the longest path to visit a state v, we encounter a better
value of θ before v say at u; and on some other path to v, we never get to
see u, and hence get the true value of the inf. The value for a formula at a
state in a finite timed graph can be computed using the algorithms in [10] (with
trivial modifications). Timed automata involve real time and require a different
approach. We show how to compute the values for a subset of dCTL on the
states of a timed automaton.

Let Fmin(s, Z) denote the set of times that must elapse in order for a timed
automaton A to hit some configuration in the set of states Z starting from the
state s. Then the minimum time to reach the set Z from state s (denoted by
tmin(s, Z)) is defined to be the inf of the set Fmin(s, Z). The maximum time to
reach a set of states Z from s for the first time (tmax(s, Z)) can be defined dually.

Theorem 5 ([9]). (1) For a timed automaton A, the minimum and maximum
times required to reach a region R from a state s for the first time (tmin(s,R),
tmax(s,R)) are computable in time O(|C| · |G|) where C is the set of clocks in A,
and G is the region automaton of A. (2) For regions R and R′, either there is an
integer constant d such that for every state s ∈ R′, we have tmin(s,R) = d, or
there is an integer constant d and a clock x such that for every state s ∈ R′, we
have tmin(s,R) = d− frac(tx), where tx is the value of clock x in s; and similarly
for tmax(s,R).

We note that for any state s, we have [[P ]](s) is 0 or 1 for a boolean combina-
tion of propositions P , and this value is constant over a region. Thus the value of
[[∃�P ]](s) is βtmin where tmin is the shortest time to reach a region satisfying P
from s. For computing ∀�P , we look at the inf-sup game where the environment
chooses a path πs, and we pick a state πs(t) on that path. The value of the game
resulting from these choices is βtP (πs(t)). Enviroment is trying to minimise this
value, and we are trying to maximise. Given a path, we will pick the earliest
state on that path satisfying P . Thus the environment will pick paths which
avoid P the longest. Hence, the value of [[∀�P ]](s) is βtmax where tmax is the
maximum time that can be spent avoiding regions satisfying P . The next theo-
rem generalizes Theorem 5 to pairs of states. A state is integer (resp., rational)
valued if its clock valuation maps each clock to an integer (resp., rational).

Theorem 6. (1) Let r be an integer valued state in a timed automaton A. Then
tmin(r, s), the minimum time to reach the state s from r is computable in time
O(|C| · |G|) where C is the set of clocks in A, and G is the region automaton of
A. (2) For a region R′, either there is an integer constant d such that for every
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state s ∈ R′, we have tmin(r, s) = d; or there is an integer constant d and a clock
x such that tmin(r, s) = d + frac(tx), where tx is the value of clock x in s.

Theorem 6 is based on the fact that if a timed automaton can take a transition
from s to s′, then 1) for every state w region equivalent to s, there is a transition
w → w′ where w′ is region equivalent to s′, and 2) for every state w′ region
equivalent to s′, there is a transition w → w′ where w is region equivalent to s.
If πr is a trajectory starting from r and ending at s with minimal delay, then
for any other state s′ region equivalent to s, there is a corresponding minimum
delay trajectory π′

r from r which makes the same transitions as πr, in the same
order, going through the same regions of the region graph (only the timings may
be different). Note that an integer valued state constitutes a seperate region by
itself. Theorem 6 is easily generalised to rational valued initial states using the
standard trick of multiplying automata guards with integers.

Theorem 7. Let ϕ be a dCTL formula with no nested temporal operators. Then
[[∃�ϕ]](s) (and so [[∀�ϕ]](s)) can be computed for all rational-valued states s of
a timed automaton.

Let ϕ be a boolean combination of formulas of form [[
{∃
∀
}
�P ]] (P a boolean

combination of propositions). We have shown [[ϕ]](s′) to be computable for
all states (and moreover it to have a simple form over regions). The value of
[[∃�ϕ]](s) is then sup{βtmin(s,s′)[[ϕ]](s′)}. The sup as s′ varies over a region is eas-
ily computable, as both [[ϕ]](s′) and tmin(s, s′) have uniform forms over regions.
We can then take a max over the regions. Let |G| be the size of the region graph,
|G(Q)| the number of regions. Then computation of ϕ over all regions takes time
O(|G(Q)| · |C| · |G|). The computation of the minimum time in Theorem 6 takes
O(|C| · |G| ·m|C|), where m is the least common multiple of the denominators of
the rational clock values. Thus, the value of the formula ∃�ϕ can be computed
in time O(|C|2 · |G|2 · |G(Q)| · m|C|), i.e., polynomial in the size of the region
graph and in m|C|.

We can also compute the maximum time that can elapse to go from a rational
valued state to any (possibly irrational valued) state, but that does not help in
the computation in the ∀�ϕ case, as the actual path taken is important. We can
do it for the first temporal operator since then ϕ is a boolean combination of
propositions, and either 0 or 1 on regions. In the general case ϕ can have some
real value in [0, 1], and this boolean approach does not work. Incidentally, note
that its not known whether the maximum time problem between two general
states is decidable. The minimum time problem is decidable for general states
via a complicated reduction to the additive theory of real numbers [8]. Whether
these techniques may be used to get a model checking algorithm for dCTL
is open.

5 Conclusion

Quantitative simulation and bisimulation functions precisely characterize the
degree of closeness between timed systems, generalizing the (boolean) notions
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of timed simulation and bisimulation. For formal models of systems where the
exact (infinite-precision) values of numerical quantities may not be known, such
quantitative metrics provide a natural theory of refinement. Further, the metrics
quantify the robust satisfaction of TCTL specifications: states close under the
metric satisfy specifications with close timing requirements.

We also presented a quantitative theory for discounted CTL for timed sys-
tems. Discounted theories have been presented before for discrete systems [12, 10]
which discount each individual transition by some discount factor. We discount
time rather than individual transitions. Equal times are discounted by an equal
amount irrespective of the number of transitions involved. We showed dCTL is
robust: the values for a formula converge as the states converge in the bisimilar-
ity metric. Finally, we showed a subset of dCTL to be computable over timed
automata, and indicated why the continuous nature introduces difficulty over
the discrete case. The general model checking problem for dCTL remains open.
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Abstract. A testing-based faster-than relation has previously been de-
veloped that compares the worst-case efficiency of asynchronous systems.
This approach reveals that pipelining does not improve efficiency in gen-
eral; that it does so in practice depends on assumptions about the user
behaviour. Accordingly, the approach was adapted to a setting where user
behaviour is known to belong to a specific, but often occurring class of
request-response behaviours; some quantitative results on the efficiency
of the respective so-called response processes were given. In particular,
it was shown that in the adapted setting a very simple case of pipelined
process with two stages is faster than a comparable atomic processing.
In this paper, we determine the performance of general pipelines, study
whether the adapted faster-than relation is compatible with chaining
(used to build pipelines) and two other operators, and give results on
the performance of the resp. compositions, demonstrating also how rich
the request-respond setting is.

1 Introduction

PAFAS (Process Algebra for Faster Asynchronous Systems) has been proposed as
a useful tool for comparing the worst-case efficiency of asynchronous systems [3].
It is a CCS-like process description language [10] where a basic action is atomic
and instantaneous but has an associated time bound specifying the maximal
delay for its execution. (Time is discrete and, for simplicity, these bounds are
always 1 or 0.) As discussed in [3], these upper time bounds give information on
the efficiency of processes, but in contrast to most timed process algebras, time
does not influence the functionality (i.e. which actions are performed); so like
CCS, PAFAS treats the full functionality of asynchronous systems. Processes are
compared via a variant of the testing approach [4] where processes are embedded
into a test environment, which can be seen as a user of the process. A quantitative
formulation of satisfying a test is given in [2]: the performance of a process is the
function assigning to each test the maximal time it might take to satisfy the test
or user; one process is faster than another, if it never has a larger performance
value. These ideas were originally successfully studied in the Petri net formalism
[12, 6]. We refer the reader to [3] for more details and results on PAFAS.
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Consider a task that can be performed in two stages. In a sequential architec-
ture, the process performs both stages for such a task and only then starts with
the next task. In PAFAS, we can model this process as 2-Seq ≡ μx.in.τ.out.x,
where in is the input of data or some other request (the underbar indicat-
ing time bound 0), τ is an internal activity corresponding to the first stage,
and the second stage is integrated into out, which outputs the result or gives
a response to the request and takes time up to 1 as the first stage. Alterna-
tively, one could use a pipelined architecture, where a second task can be ac-
cepted already when the first stage is over for the first task. This process is
2-Pipe ≡ ((μx.in.s.x)‖{s}(μx.s.out.x))/s, where the first processing stage is in-
tegrated into the shift-action s in the first component.

Even though these are asynchronous systems, where the times needed by
actions are not exactly known, one would expect that 2-Pipe is faster than 2-Seq
since it allows more parallelism. But it turns out that 2-Pipe is not faster for the
following reason: in the PAFAS-approach, if one system is faster than another,
it also functionally refines this other system as in ordinary testing; in particular,
it cannot perform new action sequences – but 2-Pipe can perform the sequence
in in, which is not possible for 2-Seq.

Obviously, a theory for efficiency should be reconciled with the expectation
that the general principle of pipelining improves efficiency in practice. The argu-
ment above reveals that the expectation of 2-Pipe being faster is based on some
assumptions about the users, e.g. that their coordination will not be disturbed
by the new action sequence in in. While a testing approach that considers all
possible test environments usually leads to a precongruence, this cannot be ex-
pected in a test setting with a restricted class of users (or test environments),
and it is not immediately clear what sort of results one can achieve.

In [2], we have adapted the timed testing scenario by considering only users
Un that want n tasks to be performed as fast as possible, i.e. possibly in parallel.
While this is a severe restriction, the scenario is clearly of practical relevance:
users that input a request and then just wait for a response are ubiquitous; one
might think of queries to a database, messages being sent, or requiring access
to a web page. That the requests are available in parallel corresponds to testing
the respective system under heavy load. And from the theoretical perspective,
the results and examples of [2] and of the present paper demonstrate that the
scenario is still very rich, offering challenging problems. Given a process, its
response performance (i.e. the adapted performance function) assigns to each Un

the time it takes in the worst case to satisfy Un, i.e. it is essentially a function
from natural numbers to natural numbers. For finite-state processes that are
functionally correct in a sense to be defined (cf. Definition 9), we proved that
the response performance is asymptotically linear, and showed how to determine
its factor, which we called the asymptotic performance.

It then turned out that the asymptotic performance of 2-Pipe is indeed better
than that of 2-Seq – justifying the expectation that pipelining increases efficiency.
While we proved this explicitly, we just claimed that the response performance
for 2-Pipe is n + 1, but refrained from giving the proof because already for
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this simple example the proof we had was pretty involved. In this paper, we
determine the response performance for arbitrary pipelines, which might consist
of an arbitrary number of stages and might have stages with arbitrary upper
time bounds; in particular, 2-Pipe has two stages with each having upper bound
1, while 2-Seq consists of one stage with upper bound 2.

The proof is by induction on the number of stages; since the exact behaviour
of the pipeline seems very difficult to describe due to asynchronicity, the essen-
tial idea is to approximate it. As an approximation from below, we give some
behaviour that leads to the worst-case time of test-satisfaction. The difficult part
is the approximation from above: we give a superset of the possible behaviour
such that one can easily see the absence of behaviour with a worse time and such
that the superset-property can be proven inductively.

Pipelines are built with the chaining operation, and our proof involves some
compositional reasoning. In the present paper, chaining and two other composi-
tion operators are studied from the perspective of compositionality. The faster-
than relations based on the response performance, the asymptotic performance
resp., fail to be precongruences for these operators, which is not so surprising as
already argued above. But we can show that the composition of correct processes
is again a correct process, and we give estimates on its response performance.

Section 2 briefly recalls PAFAS and the timed testing scenario; see [3, 2] for
more detailed explanations. The adapted testing scenario and the results from
[2] are recalled in Sect. 3. Section 4 determines the response performance of
general pipelines, and compatibility of our faster-than relations with the three
composition operators is studied in Sect. 5. In Sect. 6, we give a conclusion and
discuss related work. Due to lack of space, most proofs had to be omitted.

2 PAFAS

Largely repeating from [2], in this section we briefly introduce our CCS-like
process description language PAFAS, its operational semantics and a testing-
based preorder relating processes according to the worst-case efficiency. For an
easier presentation, we will define the operational semantics of PAFAS using
refusal sets. In [3], the operational semantics is defined in a way which is closer
to intuition and independent of refusal sets, but more complicated.

A is an infinite set of actions a, b, c, . . . with the special action ω reserved
for test processes to signal success; τ is an additional internal action. Actions
in Aτ = A ∪ {τ} (ranged over by α, β, . . . ) can let time 1 pass before their
execution; i.e. 1 is their maximum delay after which they become urgent actions.
Aτ = {a | a ∈ A} ∪ {τ} denotes the set of urgent actions and is ranged over by
α, β, . . . (In most cases, longer delays can be specified by additional τ -prefixes.)

χ is the set of process variables x, y, z, . . . , used for recursive definitions. Take
a function Φ : Aτ → Aτ such that the set {α ∈ Aτ | ∅ �= Φ−1(α) �= {α}} is finite,
Φ−1(ω) ⊆ {ω} and Φ(τ) = τ ; then Φ is a general relabelling function. As shown in
[3], general relabelling functions subsume the classically distinguished operations
relabelling and hiding: P/A, where the actions in A are made internal, is the
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same as P [ΦA], where the relabelling function ΦA is defined by ΦA(α) = τ if
α ∈ A and ΦA(α) = α if α /∈ A. A relabelling that maps a1, . . . an to b1, . . . , bn

and is the identity otherwise is written b1/a1, . . . , bn/an.

Definition 1. The set P̃ of (discretely timed) process terms is the set of terms
generated by the following grammar:

P ::= 0
∣∣ α.P

∣∣ α.P
∣∣ P + P

∣∣ P‖AP
∣∣ P [Φ]

∣∣ x
∣∣ μx.P

where x ∈ χ, α ∈ Aτ , Φ a general relabelling function, A ⊆ A and recursion is
time-guarded, i.e. variable x in μx.P only appears within the scope of an α.()-
prefix with α ∈ Aτ . P is the set of closed terms called processes. "#

All operators are standard, e.g. P1 and P2 run in parallel in the parallel
composition P1‖AP2 having to synchronize on all actions from A, and α.P and
α.P is (action-)prefixing. Process a.P performs a with a maximal delay of 1;
hence, it can perform a immediately or it can idle for one time unit and become
a.P . As a stand-alone process, a.P must perform a immediately; but in a parallel
context our processes are patient: as a component in (a.P )‖{a}(a.Q), a.P has to
wait for synchronization on a and this can take up to time 1, since component
a.Q may idle this long. That a process may perform a conditional time step, i.e.
may take part in a time step in certain contexts, is the intuition behind refusal
sets defined below. Now the purely functional behaviour of processes (i.e. which
actions they can perform) is given by the following operational semantics.

Definition 2. The following SOS-rules define the transition relations α−→⊆ P̃×P̃
for α ∈ Aτ , the action transitions. We write P

α−→ P ′ if (P, P ′) ∈ α−→ and P
α−→

if there exists a P ′ ∈ P̃ such that P
α−→ P ′, and similarly later on.

Prefa1
α.P

α−→ P
Prefa2

α.P
α−→ P

Reca

P
α−→ P ′

μx.P
α−→ P ′{μx.P/x}

Para1
α /∈ A, P1

α−→ P ′
1

P1‖AP2
α−→ P ′

1‖AP2
Para2

α ∈ A, P1
α−→ P ′

1, P2
α−→ P ′

2

P1‖AP2
α−→ P ′

1‖AP ′
2

Suma

P1
α−→ P ′

1

P1 + P2
α−→ P ′

1

Rela
P

α−→ P ′

P [Φ]
Φ(α)−−−→ P ′[Φ]

Additionally, there are symmetric rules for Para1 and Suma for actions of P2.
An activated action of P is some α ∈ Aτ with P

α−→. "#

These rules are almost standard. Prefa1 and Prefa2 allow an activated action
to occur (just as e.g. in CCS), and it makes no difference whether the action is
urgent or not, i.e. Prefa1 allows to ignore the possible delay of α. Since passage
of time will never deactivate actions or activate new ones, we capture all asyn-
chronous behaviour that is possible in the standard CCS-like setting without
time, and timing cannot be used to coordinate system behaviour.
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We now give SOS-rules for so-called refusal sets. Performing such a set X is a
conditional time step (of duration 1) and X consists of (some, but not necessarily
all) actions which are not just waiting for synchronization; i.e. these actions are
not urgent, the process does not have to perform them at this moment, and they
can therefore be refused. If a process can perform a conditional time step, then
it can take part in a ‘real’ time step in a suitable environment; the refusal set
describes requirements for such an environment and the conditional time step
also describes the effect on the process.

Definition 3. The following SOS-rules define X−→r ⊆ P̃× P̃, where X,Xi ⊆ A:

Nilr
0 X−→r 0

Prefr1
α.P

X−→r α.P
Prefr2

α /∈ X ∪ {τ}
α.P

X−→r α.P

Parr

∀i=1,2 Pi
Xi−−→r P ′

i , X ⊆ (A ∩
⋃

i=1,2 Xi) ∪ ((
⋂

i=1,2 Xi) \A)

P1‖AP2
X−→r P ′

1‖AP
′
2

Sumr

∀i=1,2 Pi
X−→r P ′

i

P1 + P2
X−→r P ′

1 + P ′
2

Relr
P

Φ−1(X∪{τ})\{τ}−−−−−−−−−−−→r P ′

P [Φ] X−→r P ′[Φ]

Recr

P
X−→r P ′

μx.P
X−→r P ′{μx.P/x}

When P
X−→r P ′, we call this a (conditional) time step or, if X = A, a full

time step. In the latter case, we also write P
1−→ P ′. "#

For example, a.P (a.Q resp.) can make a time step with refusal set A \ {a}
(with refusal set A resp.) according to rule Prefr2 (Prefr1 resp.) and with rule
Parr we get (a.P )‖{a}(a.Q) 1−→ (a.P )‖{a}(a.Q) as announced above.

The language of P is its behaviour as a stand-alone process; such a process
never has to wait for a communication, hence all time steps in a run are full. As
usual, we will abstract from internal behaviour; but note that internal actions
gain some ‘visibility’ in timed behaviour, since their presence possibly allows
more time to pass between the occurrence of visible actions.

Definition 4. For P, P ′ ∈ P, we extend the transition relation P
μ−→ P ′ for

μ ∈ Aτ or μ = 1 to sequences w as usual and write P
w−→ P ′; w is a discrete

τ-trace of P .
For a sequence w ∈ (Aτ ∪ P(A))∗, let w/τ be the sequence w with all τ ’s

removed and w/σ be the sequence w with all time steps removed. The duration
ζ(w) of w is the number of time steps in w; note that ζ(w/τ) = ζ(w). We write
P

v⇒ P ′, if P w−→ P ′ for some w ∈ (Aτ ∪ {A})∗ and v = w/τ .
The timed transition system TTS(P ) of P consists of all transitions Q

μ−→ Q′

with μ ∈ Aτ or μ = 1 where Q is reachable from P via such transitions. The
language of TTS(P ) is DL(P ) = {w |P w⇒}, the (discretely timed) language of
P , containing the (discrete) traces of P .
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Similarly, P
μ−→r P ′ if either μ = α ∈ Aτ and P

α−→ P ′, or μ = X ⊆ A and
P

X−→r P ′. For sequences w, we define P
w−→r P ′ (where w is a refusal τ-trace)

and P
w⇒r P ′ as above. RT(P ) = {w |P w⇒r} is the set of refusal traces of P .

The refusal transition system RTS(P ) of P consists of all transitions Q
μ−→r Q′

with μ ∈ Aτ or μ ⊆ A where Q is reachable from P via such transitions. If
RTS(P ) contains only finitely many processes, we call P finite state. "#

Note that RTS(P ‖A Q) can be determined from RTS(P ) and RTS(Q) ac-
cording to the SOS-rules for parallel composition given above. TTS(P ) can be
obtained from RTS(P ) by deleting time steps that are not full and processes
that then are not reachable anymore. We now define the operation of chaining
(called linking in [10]), which is central for this paper, and general pipelines.

Definition 5. Let P and Q be two process terms that have only the observable
actions in and out in their language. Then the chaining of P and Q is P � Q =
(P [s/out] ‖{s} Q[s/in])/s. For l ≥ 1, we define an in-out-sequence of length l as
l-Seq ≡ μx.in.τ l−1.out.x, where τ l−1 is a sequence of l− 1 τ -prefixes. A pipeline
is the chaining of a positive number of in-out-sequences. "#

In P � Q, a request is first processed by P and then fed into Q for processing.
For any sensible behaviour notion (and in particular for those treated in this
paper), parallel composition with a fixed synchronization set is associative, and
so is chaining; hence, pipelines do not need any bracketing. l-Seq generalizes
2-Seq from the introduction, and 2-Pipe is essentially the pipeline 1-Seq � 1-Seq.

Proposition 6. Let P,Q ∈ P be processes and X,X ′ ⊆ A with P
X−→r Q. If

X ′ ⊆ X, then P
X′
−−→r Q. If X ′ does not contain an activated action of P , then

P
X∪X′
−−−−→r Q.
Let v be obtained from a sequence w of actions and time steps by deleting

some time steps; then P
w−→r implies P

v−→r.

Hence, the set of possible refusal sets for a process is downward closed w.r.t. set
inclusion, and non-activated actions can always be refused. Thus, only the refusal
of activated actions is relevant to determine the time steps of a process. behaviour
including some time steps can just as well occur without these, corresponding
to our idea of asynchronous behaviour with upper time bounds.

Definition 7. A process P ∈ P is testable if ω does not occur in P . Any process
O ∈ P may serve as a test process (observer). We write ‖ for ‖A\{ω}.

For O and a testable process P ∈ P, we define the performance function p by

p(P,O) = sup{n ∈ N0 | ∃v ∈ DL(P‖O) : ζ(v) = n and v does not contain ω}.

If the set on the right-hand-side has no maximum, the supremum is ∞. The
performance function pP of P is defined by pP (O) = p(P,O).

For testable processes, P is a faster implementation of Q or faster than Q,
P 4 Q, if for all test processes O we have p(P,O) ≤ p(Q,O), i.e. pP ≤ pQ. "#
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By definition, P 4 Q means that P is functionally a refinement of Q, since
it is satisfactory for at least as many test processes as Q, and that additionally
it is an improvement timewise. The following result states that timed tests can
see refusal traces, which give quite a detailed account of the timed behaviour of
processes; this is quite surprising, since we are in an asynchronous setting, where
tests should have little temporal control over the tested systems.

Theorem 8. For testable processes, P 4 Q if and only if RT(P ) ⊆ RT(Q).

If P is not faster than Q, i.e. P �4 Q, then there is a refusal trace of P that
is not one of Q. If P and Q are finite-state, inclusion of refusal traces can be
checked automatically; a corresponding tool, FastAsy, has been developed for a
Petri net setting [1]; FastAsy has been redesigned recently, and adaptation to
PAFAS is in progress.

3 Response Performance and Previous Results

3.1 Response Performance

Pipelining helps to improve efficiency only for restricted users; accordingly, the
users considered in [2] issue requests with action in and expect responses via
action out. In practice, these actions usually transfer data, but we abstract from
these data; see [2]. We assume further that the only users of interest have a
number of requests that they want to be answered as fast as possible, i.e. possibly
in parallel; thus, we consider the users Un defined by U1 ≡ in.out.ω.0 and Un+1 ≡
Un ‖ω in.out.ω.0. Comparing processes w.r.t. these users means to compare their
performance under heavy load.

The size of Un is its number n of requests, and accordingly we define the
response performance rpP of a testable process P as the function from N to
N0 ∪ {∞} with rpP (n) = pP (Un). The aim of [2] was to evaluate the response
performance of a process from its refusal transition system. This system is an
arc-labelled graph, an arc (or directed edge) being a transition; as usual, a path is
a sequence of transitions, each ending in a process from which the next transition
starts, it is closed if the last and first process coincide. If apart from the latter
coincidence all processes on a closed path are different, it is a cycle. Note that a
finite transition system can only have finitely many different cycles.

3.2 Response Processes

The results on response performance only hold for processes that can reasonably
serve the users Un, and we define these processes in two stages.

Definition 9. For sequence w and action α, #(α,w) denotes the number of oc-
currences of α in w, and similarly for a refusal setX in place of α. The o-number of
a process Q is the number of pending out actions, i.e. it is sup{#(out, w) | Q w−→r

and w does not contain in}; due to Prop. 6, we can as well consider w without
time steps only.
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A testable process is a response process if it can only perform in and out as
visible actions and is functionally correct in the following sense: if P w−→r Q, then
#(in, w)−#(out, w) is non-negative and the o-number of Q. "#

Thus, a response process P never performs too many out actions and is always
able to perform the required number of these. Still, it might fail to do so in a
bounded time; but then, the response performance would be ∞ for some n,
meaning that some user will not be satisfied within any time bound, which is
certainly an incorrect behaviour of the process.

Definition 10. A response process is correct if its response performance is finite
for all n. "#

For a response process P , whenever a time step is performed in RTS(P ) we
can add to or remove from the refusal set arbitrary actions in A \ {in, out}
by Prop. 6. Therefore, there are only four significant refusal sets, which for
notational convenience we write as A, {out}, {in} and ∅. When we speak of
RTS(P ) in the following, we are referring to this slightly reduced version, which
we will reduce even further below. Consequently, if P is finite state, RTS(P ) also
has finitely many transitions and is a finite transition system.

Theorem 11. [2] Let P ∈ P be a testable process, Q reachable from P with
o-number o and Q

μ−→r Q′.

1. Let P be a response process. Then o is finite. Furthermore, if μ is in, out
resp., then the o-number of Q′ is o+1, o−1 resp.; for all other cases of μ, it
is o. The numbers of in’s and of out’s on a closed path in RTS(P ) are equal.

2. If P is finite state, then it is decidable in time linear in the size of RTS(P )
whether P is a response process.

3.3 Results on the Response Performance

To find out about the response performance of a response process P , one con-
siders specific paths in a reduced version of RTS(P ).

Definition 12. The reduced refusal transition system rRTS(P ) of a response
process P is obtained from RTS(P ) by deleting all time steps Q

X−→r Q′ unless

either the refusal set X is A or ¬Q A−→r Q′, X is {out} and the o-number of Q
is positive; then, we delete all processes not reachable anymore.

We call a path in rRTS(P ) n-critical, if it contains at most n in’s and at most
n− 1 out’s and all time steps before the nth in are full. "#

Theorem 13. [2] The response performance rpP (n) of a response process P is
the supremum of the numbers of time steps taken over all n-critical paths.

We call a function f from N to N0 asymptotically linear, if there are constants
a, c ∈ R such that an− c ≤ f(n) ≤ an+ c for all n ∈ N; we call a the asymptotic
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factor of such a function. Observe that the asymptotic factor of an asymptotically
linear function can be determined whenever we know the function values for
infinitely many parameter values. Other main results of [2] are that the response
performance of a finite-state response process P is asymptotically linear, and
that its asymptotic factor, which we call the asymptotic performance of P , can
be determined efficiently.

Definition 14. A cycle in rRTS(P ) for a response process P is catastrophic, if it
contains a positive number of time steps but no in’s (and hence no out’s by 11.1).
For P without catastrophic cycles, we consider cycles which can be reached from
P by a path where all time steps are full and which themselves contain only time
steps that are full; the average performance of such a cycle is the number of its
full time steps divided by the number of its in’s, and the cycle is bad, if it has
maximal average performance in rRTS(P ). The average performance of a closed
path with analogous properties is defined analogously. "#

Theorem 15. [2] A finite-state response process P has a catastrophic cycle if
and only if its response performance is ∞ for some n, i.e. if and only if it is not
correct. If P is correct, the response performance is asymptotically linear, and
the asymptotic performance of P is the average performance of a bad cycle.

Our approach gives rise to two faster-than relations for correct response pro-
cesses, the first being finer than the second.

Definition 16. For correct response processes P and Q, we say that P is rp-
faster than Q, P 4rp Q, if rp(P ) ≤ rp(Q), and that P is asp-faster than Q,
P 4asp Q, if the asymptotic performance of P is at most that of Q. "#

4 Performance of Pipelines

First, we reformulate the definition of response performance; let INn = ‖n
∅ in

be the parallel composition of n processes in.0, and OUTn = ‖n
ω out.ω be the

parallel composition (with synchronization over ω) of n processes out.ω.0.

Proposition 17. Let P and Q be correct response processes.

1. rpP (n) = sup{m ∈ N0 | ∃v ∈ DL((INn ‖in P ) ‖out OUTn) :
ζ(v) = m and v does not contain ω}

2. rpP (n) = sup{m ∈ N0 | ∃v ∈ DL((INn ‖in P )/in) :
ζ(v) = m and v does contain at most n− 1 out}

3. RT ((INn ‖in (P � Q))/in) = RT ((INn ‖in P )/in� Q)

Interestingly, in Item 1 the user is separated into one part generating the
requests and another part accepting the responses. This corresponds to an ap-
plication, where P is a communication protocol. Compared to Thm. 13, Item 2
only considers very simple traces: the refusal traces of the process in Item 2 only
have the action out and the refusal sets A (corresponding to {out}) and ∅. This
simplicity will allow us to deal with the relevant behaviour of pipelines.
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Item 3 will allow us to relate the behaviour of a pipeline to that of a shorter
pipeline – essential for the inductive proof. We will show in Sect. 5, that the
chaining of two correct response processes is again correct. This also implies
that all pipelines are correct, since clearly all in-out-sequences are.

For the rest of this section, let Pipe ≡ l1-Seq � . . .� lk-Seq and n ∈ N be
fixed; let sum = Σk

i=1li and mx = max{l1, . . . , lk}. Our aim is to prove that
rpPipe(n) = sum + mx(n− 1). For k = 1, this should be clear: Pipe can always
perform l1 = sum full time steps between an in and an out.

For the relevant case k > 1, we putPipe′ ≡ l1-Seq � . . .� lk−1-Seq, and let sum′

and mx′ be defined analogously. Furthermore, we let P ≡ (INn ‖in Pipe)/in and
P ′ ≡ (INn ‖in Pipe′)/in. Since out is the only visible action P and P ′ can ever
perform, {out} is equivalent to A in their refusal traces according to Prop. 6.

Lemma 18. rpPipe(n) ≥ sum + mx(n− 1)

Proof. In the proof, we repeatedly use

(a) ({out}∗ in Alk {in}∗ out)n {out}∗ ⊆ RT(lk-Seq)

Observe that refusal sets can be deleted from such a refusal trace to give
another refusal trace; in particular, we will sometimes delete some parts Alk

below. Using Prop. 17.2, it suffices to show that

(b) {out}sum out ({out}mx out)n−1{out}∗ ⊆ RT(P )

This is the behaviour where only Pipe delays the outputs; but if Pipe is
chained with an l-Seq where l > mx, then the new component might block the
output from Pipe; so for the inductive proof, we will also prove that

(c) {out}sum out (∅∗ out)n−1{out}∗ ⊆ RT(P )

For the induction base k = 1, one can see from (a) that (b) and (c) hold: first,
INn and lk-Seq communicate, and Alk from lk-Seq gives rise to {out}sum by
sum = lk, which is followed by out. Then either this is repeated and we obtain
(b) by mx = lk, or we obtain (c) by skipping Alk (see the remark above) since
{in}∗ gives rise to ∅∗.

Now we assume, by induction, (b) and (c) to hold for P ′. According to
Prop. 17.3, we will show (b) and (c) with RT(P ) replaced by RT(P ′ � lk-Seq).
Observe that each refusal trace w in the latter set can be obtained from some
w′ ∈ RT(P ′) and v ∈ RT(lk-Seq) by merging an out in w′ with an in in v into a
τ (which we will write as τio although it really is not visible in w), by taking over
each out in v, and by synchronizing refusal sets X and Y with out ∈ X ∨ in ∈ Y
to give the set {out} if out ∈ Y or ∅ otherwise.

First consider lk ≤ mx′ = mx. Combining refusal traces from (b) for P ′ and
(a) according to the rules just described, we find that RT(P ′ � lk-Seq) contains

{out}sum′
τio {out}lk out ({out}mx′−lk τio {out}lk out)n−1{out}∗.
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Since sum = sum′+ lk and mx = mx′ = mx′− lk + lk, we have (b). Similarly, we
get (c) from (c) for P ′ and (a), since (obtaining ∅∗ from ∅∗ and {in}∗ according
to the remark made after (a)) RT(P ′ � lk-Seq) contains

{out}sum′
τio {out}lk out (τio ∅∗ out)n−1{out}∗.

Now consider the case mx′ ≤ lk = mx. Combining refusal traces from (c) for
P ′ and (a) according to the rules above, we find that RT(P ′ � lk-Seq) contains

{out}sum′
τio {out}lk out (τio {out}lk out)n−1{out}∗.

Since sum = sum′ + lk and mx = lk, we have (b). Similarly, we get (c) from
(c) for P ′ and (a) (recalling again the remark above), since RT(P ′ � lk-Seq) also
in this case contains

{out}sum′
τio {out}lk out (τio ∅∗ out)n−1{out}∗. "#

Thus, we have shown as an approximation to RT(P ) from below that there
really is some behaviour where the user under consideration has to wait for
sum + mx(n − 1) time steps. Now we have to prove an approximation from
above in order to show that the waiting time cannot be worse. We will show by
induction on k that each w ∈ RT(P ) has the form

(∗) {out}s1 ∅t1 out . . . {out}sn ∅tn out {out}s

(or can be obtained from such a sequence by replacing some sets {out} by ∅ and
taking prefixes) where ∀ j = 1, . . . , n we have:

(α) (Σj−1
i=1 si + ti) + sj ≤ sum + mx(j − 1)

or (β) ∃ j′ > 1 : j′ ≤ j ∧ (Σj−1
i=j′ si + ti) + sj ≤ mx(j − j′ + 1)

Then we are done: if w ∈ DL(P ) ⊆ RT(P ) has at most n− 1 out, then it has
the form {out}s1 out . . . {out}sn−1 out {out}sn or is a prefix of such a form, i.e.
all the ti according to (∗) are 0. By well-founded induction for j = 1, . . . , n we
assume that for all j′ < j we already know that Σj′

i=1 si ≤ sum + mx(j′ − 1).
If (α) applies for j, we also have this formula for j. Otherwise, (β) applies and
for the respective j′ we have Σj′−1

i=1 si ≤ sum + mx(j′ − 2) by induction as
well as Σj

i=j′ si ≤ mx(j − j′ + 1); together these again show that Σj
i=1 si ≤

sum + mx(j − 1). Finally, we see that w takes at most sum + mx(n− 1) time.

For the induction base k = 1, a refusal trace w of P is a combination of a
refusal trace from INn and some v ∈ RT(lk-Seq), which obviously has the form

(∗∗) ({out}∗ in A≤lk {in}∗ out)∗

(or can be obtained from such a sequence by replacing some refusal sets by
smaller sets and taking prefixes) where A≤lk is a sequence of at most lk A.
Since neither component can refuse in initially, we first have an internalized
communication. Then, the at most lk A from lk-Seq give rise to s1 ≤ sum {out}
(thus (α) is satisfied for j = 1); t1 {in} from lk-Seq give rise to t1 ∅. After out,
this behaviour is repeated, where we get (β) for j > 1 choosing j′ = j, since
sj ≤ lk = mx. Omitting the induction step, we concluded with Lemma 18:
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Theorem 19. For Pipe ≡ l1-Seq � . . .� lk-Seq, rpPipe(n) = sum + mx(n− 1).

In particular, this theorem reconfirms the claim from [2] that rp2-Pipe(n) =
n + 1, rp2-Seq(n) = 2n and hence 2-Pipe 3rp 2-Seq. Very generally, we have
rpl-Seq(n) = ln; breaking such a sequence up into a pipeline with more than
one component and overall length l, gives always a faster response process, since
it will have sum = l and mx < l. Another aspect is that a chain k-Pipe of k
components equal to 1-Seq (with time bound k for one request) has rpk-Pipe(n) =
n+ k− 1, hence it is asymptotically faster than the in-out-sequence 2-Seq (with
time bound just 2 for one request) even for large k, i.e. k-Pipe 3asp 2-Seq.

5 Compatibility with Parallel Composition

In our setting with very restricted test environments, we cannot expect to get
a precongruence for parallel composition, but we will study in detail how our
approach is compatible with parallel composition. Our parallel composition is
indexed with a set of actions to be synchronized, and the only actions we are
interested in are in and out. Synchronizing response processes on in only would
give a process that answers each in by two out, which is not desirable here.
Hence, the operations of interest are ‖ = ‖A and ‖∅, and we will also study �.

Theorem 20. If P1 and P2 are correct response processes, then so is P1
� P2,

and max(rpP1(n), rpP2 (n)) ≤ rpP1 � P2(n) ≤ rpP1 (n) + rpP2 (n) for all n ∈ N.

From the previous section, we know that e.g. rpl-Seq(n) = ln, rpk-Seq(n) =
kn and rpl-Seq � k-Seq(n) = max(k, l)n + min(k, l); here, at least the asymptotic
performance of l-Seq � k-Seq is the maximum of those of l-Seq and k-Seq.

On the other hand, consider Pk ≡ μx.(in.out)k−1.in.τk−1.out.x. Since every
kth response requires time up to k, while the others do not require any time, we
have rpPk

(n) = $n
k %k, and hence Pk 4rp 1-Seq and Pk 4asp 1-Seq.

Now we compare the response performance of 1-Seq � Pk and 1-Seq � 1-Seq
for multiples of k; we have rp1-Seq � Pk

(kn) = (2k − 1)n + 1: the first k − 1
responses may take time 1 each due to 1-Seq, the kth response may take time
k + 1 due to both components; then this is repeated, except that after the kth
response 1-Seq has already processed the next request, such that now every k
responses may take time up to 2k − 1. Thus, the asymptotic performance of
1-Seq � Pk is 2 − 1

k ; this is almost the sum of the asymptotic performances of
its components. Furthermore, the asymptotic performance of 1-Seq � 1-Seq is 1,
hence neither 1-Seq � Pk 4asp 1-Seq � 1-Seq nor 1-Seq � Pk 4rp 1-Seq � 1-Seq.
Almost the same results hold for Pk

� 1-Seq, hence both our preorders fail to be
precongruences for �. On the positive side observe that, due to Thm. 19, they
are precongruences if we only consider pipelines.

Theorem 21. If P and Q are correct response processes, then so is P‖Q.

E.g. for k-Seq and l-Seq, the response performance is simply the maximum of
the component response performances, i.e. rpk-Seq ‖ l-Seq(n) = max(k, l)n.
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In contrast to our results on chaining above and on ‖∅ below, the proof for the
above theorem does not allow to compute an upper bound on the asymptotic per-
formance of P‖Q from the asymptotic performances of P and Q. The following
example demonstrates that it is in fact impossible to determine such a bound.
For each k > 1, we will present two processes k-Bundle and Pk, which have
asymptotic performance 1 (and even the same response performance) such that
k-Bundle ‖ 1-Seq has asymptotic performance k while Pk ‖ 1-Seq has asymptotic
performance < 2. (Thus 4rp and 4asp are not precongruences for ‖.)

We define k-Bundle ≡ (k-sSeq ‖s . . . ‖s k-sSeq)/s with k components k-sSeq
which are in turn defined as k-sSeq ≡ μx.in.τk−1.out.s.x. This process repeatedly
gives a group of k responses within time k, so rpk-Bundle(n) = 1n

k 2k. This is also
the response performance of Pk ≡ μx.in.τk−1.out.(in.out)k−1.x.

For k-Bundle ‖ 1-Seq the response performance of n is kn: because of 1-Seq,
in and out have to alternate, because of k-Bundle each out takes up to time k.
For Pk ‖ 1-Seq the response performance of n is n+1n

k 2(k−1): because of 1-Seq,
each out may take at least time 1, because of Pk the first and then each kth out
may take up to time k, i.e. additional k − 1 time steps. The announced result
follows, since n + 1n

k 2(k − 1) ≤ n + (n
k + 1)(k − 1) = (2− 1

k )n + k − 1.
Intuitively, one might assume that ‖ slows responses down (as in the above

examples) because the components must synchronize on each response. So it
might be quite surprising that the response performance of P‖Q can be better
than the response performances of both P and Q. To see this, consider for an ar-
bitrary k ≥ 3 the processes P ≡ μx.in.(in. τk−1.out.out.in.out.x+ out.in.out.x)
and Q ≡ μx.in.out.in.(in.τk−1.out.out.x + out.x).

To simplify the argument, we only deal with the asymptotic performance. We
have rpP (3n) = rpQ(3n) ≥ (k+1)n since, using the first summand, dealing with
3 requests can take up to time k + 1. Thus, the asymptotic performance of P
and Q is at least k+1

3 > 1. In P‖Q, neither of the first summands can be used,
so each request is answered within time 1, i.e. rpP‖Q(n) = n and the asymptotic
performance is 1.

We close with results about the third reasonable composition operator ‖∅.

Theorem 22. If P and Q are correct response processes, then so is P‖∅Q.
Furthermore, rpP‖∅Q(n) = max{rpP (k), rpQ(k) | k ≤ n} for all n.

As a first example, we will consider l-Seq and 1-Seq; one would assume intu-
itively that l-Seq ‖∅ 1-Seq processes each group of l + 1 requests within time l
– one request in l-Seq, the other l in 1-Seq –, and that therefore the response
performance of n is 1 n

l+12l. This would give e.g. for l = 3 and n = 8 time 6.
That things are not so simple, and that this is actually false, can be seen from
the following behaviour. The first four out are indeed produced within time 3;
then, 1-Seq produces two more out within time 2. Within the same time, 3-Seq
– being an asynchronous process – produces one out and then quickly ”grabs”
the last request, producing the last out at time 8.

The following example shows that 4rp is not a precongruence for ‖∅. Let
R ≡ μx.in.(out.s.0‖sin.τ.out.s.x)/s. R accepts two requests at a time and then
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produces an out after at most one time step and the second out after at most
another time step; hence, rpR(n) = n, i.e. the response performance is the same
as that of 1-Seq.

Now define P ≡ 1-Seq ‖∅ R and Q ≡ 1-Seq ‖∅ 1-Seq. For Q, an asynchronous
speed up of a response cannot produce a longer overall response time; hence, in
the worst case, Q produces two out for each time step, showing rpQ(4n + 2) =
2n+ 1. To see that rpP (4n+ 2) ≥ 2n+ 2, consider a behaviour where every two
time steps 1-Seq and R produce two out each, and where in the end R performs
two in at time 2n and the last out at time 2n + 2.

For the asymptotic performance, we have a positive result. For this result,
let the throughput of a correct response process be the inverse of its asymptotic
performance. Observe that the requirement ”finite state” can be replaced by
”finite state up to bisimilarity of the reduced refusal transition systems”.

Theorem 23. Let P and Q be correct and finite state with asymptotic perfor-
mance a and b and throughput s and t. Then P‖∅Q has throughput s + t, i.e.
asymptotic performance ab

a+b . Hence, 4asp is a precongruence for such processes.

As a small application, we consider again 3-Seq ‖∅ 1-Seq; the asymptotic
performance is by our theorem 3

4 , i.e. asymptotically 4 responses take time 3
corresponding to the intuition discussed above.

6 Conclusion

This paper follows a line of research about the efficiency of asynchronous sys-
tems, modelled as timed systems where activities have upper but no lower time
bounds. In this line, the classical testing approach of [4] has been refined to timed
testing – first in a Petri net setting [12, 6, 1] and later in process algebra [3] –
and the resulting testing preorder is a suitable faster-than relation. Recently, a
corresponding bisimulation based faster-than relation was studied in [7]. Upper
time bounds have also been studied in the area of distributed algorithms; see
e.g. [9]. A bisimulation based faster-than relation for asynchronous systems using
lower time bounds has been suggested in [11]; this approach has been improved
recently in [8]. We refer the reader to [3] for a further comparison of efficiency
testing with the literature, in particular on other timed process algebras.

In order to prove pipelining to be efficient in the efficiency testing approach,
this approach was adapted in [2] to a scenario where users only show a sim-
ple request-response behaviour corresponding to heavy load. A notion of correct
response process was defined and shown to be decidable. The response perfor-
mance, a suitable efficiency measure in the adapted scenario, was shown to be
asymptotically linear for correct processes; cf. [5] and the discussion in [2] for
the relation to results in (max,+)-algebras. Characterizations were given that
help to determine the response performance and its constant factor, called the
asymptotic performance. The response and the asymptotic performance give rise
to two faster-than relations, the former being finer than the latter.
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In the present paper, we have studied these notions further – based on the
results of [2]. As one main result, we have shown what the response performance
is for a pipeline consisting of any number of sequential stages. Then we have
looked at three composition operators. While both faster-than relations fail to
be precongruences for these operators, we were nevertheless able to show some
compatibility results: the compositions of correct response processes are correct
again and, in some cases, we have given bounds on the response or asymptotic
performance of compositions. We have discussed examples to show the problems
in obtaining or improving these bounds and to exhibit some pitfalls one might
encounter in our approach.

We have settled what the response performance of the practically important
class of pipelines is, which shows that in some cases the response performance of
a chain of processes can be determined from its components and, consequently,
that the two faster-than relations are precongruences for chaining on this class.
It would be interesting to find similar results for other or more general classes.
Synchronous behaviour can be seen as a strongly restricted sort of asynchronous
behaviour in our approach; thus, it would be much simpler if we could obtain
results on the basis of synchronous behaviour only, and therefore it would be
very useful to find classes of correct response processes where such simplified
considerations suffice.

The request-response users we considered correspond to a system working
under heavy load. One could try to generalize this, but as already discussed in
[2], this will not be easy. Another challenging task is to find typical user behaviour
patterns other than just repetitions of in–out and to develop comparable, strong
results for the resulting testing preorders. After several such case studies, one
might consider general strategies to treat such assumptions on user behaviour.
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Abstract. We show that timed branching bisimilarity as defined by
van der Zwaag [14] and Baeten & Middelburg [2] is not an equivalence
relation, in case of a dense time domain. We propose an adaptation
based on van der Zwaag’s definition, and prove that the resulting timed
branching bisimilarity is an equivalence indeed. Furthermore, we prove
that in case of a discrete time domain, van der Zwaag’s definition and
our adaptation coincide.

1 Introduction

Branching bisimilarity [6, 7] is a widely used concurrency semantics for process
algebras that include the silent step τ . Two processes are branching bisimilar if
they can be related by some branching bisimulation relation. See [5] for a clear
account on the strong points of branching bisimilarity.

Over the years, process algebras such as CCS, CSP and ACP have been
extended with a notion of time. As a result, the concurrency semantics underlying
these process algebras have been adapted to cope with the presence of time.
Klusener [11–13] was the first to extend the notion of a branching bisimulation
relation to a setting with time. The main complication is that while a process
can let time pass without performing an action, such idling may mean that
certain behavioural options in the future are being discarded. Klusener pioneered
how this aspect of timed processes can be taken into account in a branching
bisimulation context. Based on his work, van der Zwaag [14, 15] and Baeten &
Middelburg [2] proposed new notions of a timed branching bisimulation relation.

A key property for a semantics is that it is an equivalence. In general, for
concurrency semantics in the presence of τ , reflexivity and symmetry are easy to
see, but transitivity is much more difficult. In particular, the transitivity proof
for branching bisimilarity in [6] turned out to be flawed, because the transitive
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closure of two branching bisimulation relations need not be a branching bisimu-
lation relation. Basten [3] pointed out this flaw, and proposed a new transitivity
proof for branching bisimilarity, based on the notion of a semi-branching bisim-
ulation relation. Such relations are preserved under transitive closure, and the
notions of branching bisimilarity and semi-branching bisimilarity coincide.

In a setting with time, proving equivalence of a concurrency semantics be-
comes even more complicated, compared to the untimed case. Still, equivalence
properties for timed semantics are often claimed, but hardly ever proved. In
[13, 14, 15, 2], equivalence properties are claimed without an explicit proof, al-
though in all cases it is stated that such proofs do exist.

In the current paper, we study in how far for the notion of timed branching
bisimilarity of van der Zwaag constitutes an equivalence relation. We give a
counter-example to show that in case of a dense time domain, his notion is
not transitive. We proceed to present a stronger version of van der Zwaag’s
definition (stronger in the sense that it relates fewer processes), and prove that
this adapted notion does constitute an equivalence relation, even when the time
domain is dense. Our proof follows the approach of Basten. Next, we show that
in case of a discrete time domain, van der Zwaag’s notion of timed branching
bisimilarity and our new notion coincide. So in particular, in case of a discrete
time domain, van der Zwaag’s notion does constitute an equivalence relation.

In the appendix we show that our counter-example for transitivity also applies
to the notion of timed branching bisimilarity by Baeten & Middelburg in case
of a dense time domain; see [2–Section 6.4.1]. So that notion does not constitute
an equivalence relation as well.

This paper is organized as follows. Section 2 contains the preliminaries. Sec-
tion 3 features a counter-example to show that the notion of timed branching
bisimilarity by van der Zwaag is not an equivalence relation in case of a dense
time domain. A new definition of timed branching bisimulation is proposed in
Section 4, and we prove that our notion of timed branching bisimilarity is an
equivalence indeed. In Section 5 we prove that in case of a discrete time domain,
our definition and van der Zwaag’s definition of timed branching bisimilarity
coincide. Section 6 gives suggestions for future work. In the appendix, we show
that our counter-example for transitivity also applies to the notion of timed
branching bisimilarity by Baeten & Middelburg [2].

2 Timed Labelled Transition Systems

Let Act be a nonempty set of visible actions, and τ a special action to represent
internal events, with τ �∈ Act . We use Actτ to denote Act ∪ {τ}.

The time domain Time is a totally ordered set with a least element 0. We say
that Time is discrete if for each pair u, v ∈ Time there are only finitely many
w ∈ Time such that u < w < v.

Definition 1 ([14]). A timed labelled transition system (TLTS) [8] is a tuple
(S,T , U), where:
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1. S is a set of states, including a special state
√

to represent successful termi-
nation;

2. T ⊆ S ×Actτ × Time × S is a set of transitions;
3. U ⊆ S × Time is a delay relation, which satisfies:

– if T (s, �, u, r), then U(s, u);
– if u < v and U(s, v), then U(s, u).

Transitions (s, �, u, s′) express that state s evolves into state s′ by the execution
of action � at (absolute) time u. It is assumed that the execution of transitions
does not consume any time. A transition (s, �, u, s′) is denoted by s

�−→u s′. If
U(s, u), then state s can let time pass until time u; these predicates are used to
express time deadlocks.

3 Van der Zwaag’s Timed Branching Bisimulation

Van Glabbeek and Weijland [7] introduced the notion of a branching bisimulation
relation for untimed LTSs. Intuitively, a τ -transition s

τ−→ s′ is invisible if it
does not lose possible behaviour (i.e., if s and s′ can be related by a branching
bisimulation relation). See [5] for a lucid exposition on the motivations behind
the definition of a branching bisimulation relation.

The reflexive transitive closure of τ−→ is denoted by =⇒ .

Definition 2 ([7]). Assume an untimed LTS. A symmetric binary relation B ⊆
S × S is a branching bisimulation if sBt implies:

1. if s �−→ s′, then
i either � = τ and s′Bt,
ii or t=⇒ t̂

�−→ t′ with sBt̂ and s′Bt′;
2. if s ↓, then t=⇒ t′ ↓ with sBt′.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a
branching bisimulation B with sBt.

Van der Zwaag [14] defined a timed version of branching bisimulation, which
takes into account time stamps of transitions and ultimate delays U(s, u).

For u ∈ Time , the reflexive transitive closure of τ−→u is denoted by =⇒u .

Definition 3 ([14]). Assume a TLTS (S,T , U). A collection B of symmetric
binary relations Bu ⊆ S × S for u ∈ Time is a timed branching bisimulation if
sBut implies:

1. if s �−→u s′, then
i either � = τ and s′But,
ii or t=⇒u t̂

�−→u t′ with sBut̂ and s′But
′;

2. if s ↓, then t=⇒u t′ ↓ with sBut
′;
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3. if u < v and U(s, v), then for some n > 0 there are t0, . . . , tn ∈ S with t = t0
and U(tn, v), and u0 < · · · < un ∈ Time with u = u0 and v = un, such that
for i < n, ti =⇒ui ti+1, sBuiti+1 and sBui+1ti+1.

Two states s and t are timed branching bisimilar at u if there is a timed branch-
ing bisimulation B with sBut. States s and t are timed branching bisimilar,
denoted by s↔Z

tb t,1 if they are timed branching bisimilar at all u ∈ Time.

Transitions can be executed at the same time consecutively. By the first clause
in Definition 3, the behavior of a state at some point in time is treated like untimed
behavior. The second clause deals with successful termination.2 By the last clause,
time passing in a state s is matched by a related state t with a “τ -path” where all
intermediate states are related to s at times when a τ -transition is performed.

In the following examples, Z≥0 ⊆ Time.

Example 1. Consider the following two TLTSs: s0
a−→2 s1

b−→1 s2 and t0
a−→2 t1.

We have s0 ↔Z
tb t0, since s0Bwt0 for w ≥ 0, s1Bwt1 for w > 1, and s2Bwt1 for

w ≥ 0 is a timed branching bisimulation.

Example 2. Consider the following two TLTSs: s0
a−→1 s1

τ−→2 s2
b−→3 s3 and

t0
a−→1 t1

b−→3 t2. We have s0 ↔Z
tb t0, since s0Bwt0 for w ≥ 0, s1Bwt1 for w ≤ 2,

s2Bwt1 for w ≥ 0, and s3Bwt2 for w ≥ 0 is a timed branching bisimulation.

Example 3. Consider the following two TLTSs: s0
a−→u s1

τ−→v s2 ↓ and t0
a−→u

t1 ↓. If u = v, we have s0 ↔Z
tb t0, since s0Bwt0 for w ≥ 0, s1But1, and s2Bwt1 for

w ≥ 0 is a timed branching bisimulation. If u �= v, we have s0 �↔Z
tb t0, because s1

and t1 are not timed branching bisimilar at time u; namely, t1 has a successful
termination, and s1 cannot simulate this at time u, as it cannot do a τ -transition
at time u.

Example 4. Consider the following two TLTSs: s0
τ−→u s1

a−→v s2 ↓ and t0
a−→v

t1 ↓. If u = v, we have s0 ↔Z
tb t0, since s0Bwt0 for w ≥ 0, s1Bwt0 for w ≥ 0, and

s2Bwt1 for w ≥ 0 is a timed branching bisimulation. If u �= v, we have s0 �↔Z
tb t0,

because s0 and t0 are not timed branching bisimilar at time u+v
2 .3

Van der Zwaag [14, 15] wrote about his definition: “It is straightforward to verify
that branching bisimilarity is an equivalence relation.” However, we found that
in general this is not the case. A counter-example is presented below. Note that
it uses a non-discrete time domain.

Example 5. Let p, q, and r defined as in Figures 1, 2 and 3, with Time = Q≥0.

We depict s
a−→u s′ as s

a(u)−→ s′.
1 The superscript Z refers to van der Zwaag, to distinguish it from the adaptation of

his definition of timed branching bisimulation that we will define later.
2 Van der Zwaag does not take into account successful termination, so the second clause

is missing in his definition.
3 s0 ↔tb t0 would hold for u < v if in Definition 3 we would require that they are

timed branching bisimilar at 0 (instead of at all u ∈ Time).
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p ↔Z
tb q, since pBwq for w ≥ 0, piBwqi for w ≤ 1

i+2 , and p′iBwqi for w > 0
(for i ≥ 0) is a timed branching bisimulation.

Moreover, q ↔Z
tb r, since qBwr for w ≥ 0, qiBwri for w ≥ 0, qiB0rj , and

qiBwr∞ for w = 0 ∨ w > 1
i+2 (for i, j ≥ 0) is a timed branching bisimulation.
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(Note that qi and r∞ are not timed branching bisimilar in the time interval
〈0, 1

i+2 ].)
However, p �↔Z

tb r, due to the fact that none of the pi can simulate r∞. Namely,
r∞ can idle until time 1; pi can only simulate this by executing a τ at time 1

i+2 ,
but the resulting process

∑i+1
n=1 a(

1
n ) is not timed branching bisimilar to r∞ at

time 1
i+2 , since only the latter can execute action a at time 1

i+2 .

4 A Strengthened Timed Branching Bisimulation

In this section, we propose a way to fix the definition of van der Zwaag (see De-
finition 3). Our adaptation requires the stuttering property [7] (see Definition 6)
at all time intervals. That is, in the last clause of Definition 3, we require that
sBwti+1 for ui ≤ w ≤ ui+1. Hence, we achieve a stronger version of van der
Zwaag’s definition. We prove that this new notion of timed branching bisimilar-
ity is an equivalence relation.

4.1 Timed Branching Bisimulaton

Definition 4. Assume a TLTS (S,T , U). A collection B of binary relations
Bu ⊆ S × S for u ∈ Time is a timed branching bisimulation if sBut implies:

1. if s �−→u s′, then
i either � = τ and s′But,
ii or t=⇒u t̂

�−→u t′ with sBut̂ and s′But
′;

2. if t �−→u t′, then
i either � = τ and sBut

′,
ii or s=⇒u ŝ

�−→u s′ with ŝBut and s′But
′;

3. if s ↓, then t=⇒u t′ ↓ with sBut
′;

4. if t ↓, then s=⇒u s′ ↓ with s′But;
5. if u < v and U(s, v), then for some n > 0 there are t0, . . . , tn ∈ S with t = t0

and U(tn, v), and u0 < · · · < un ∈ Time with u = u0 and v = un, such that
for i < n, ti =⇒ui ti+1 and sBwti+1 for ui ≤ w ≤ ui+1;

6. if u < v and U(t, v), then for some n > 0 there are s0, . . . , sn ∈ S with
s = s0 and U(sn, v), and u0 < · · · < un ∈ Time with u = u0 and v = un,
such that for i < n, si =⇒ui si+1 and si+1Bwt for ui ≤ w ≤ ui+1.

Two states s and t are timed branching bisimilar at u if there is a timed branch-
ing bisimulation B with sBut. States s and t are timed branching bisimilar,
denoted by s↔tb t, if they are timed branching bisimilar at all u ∈ Time.

It is not hard to see that the union of timed branching bisimulations is again a
timed branching bisimulation.

Note that states q and r from Example 5 are not timed branching bisimilar
according to Definition 4. Namely, none of the qi can simulate r∞ in the time
interval 〈0, 1

i+2 ], so that the stuttering property is violated.
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Starting from this point, we focus on timed branching bisimulation as defined
in Definition 4. We did not define this new notion of timed branching bisimulation
as a symmetric relation (like in Definition 3), in view of the equivalence proof
that we are going to present. Namely, in general the relation composition of two
symmetric relations is not symmetric. Clearly any symmetric timed branching
bisimulation is a timed branching bisimulation. Furthermore, it follows from
Definition 4 that the inverse of a timed branching bisimulation is again a timed
branching bisimulation, so the union of a timed branching bisimulation and its
inverse is a symmetric timed branching bisimulation. Hence, Definition 4 and
the definition of timed branching bisimulation as a symmetric relation give rise
to the same notion.

4.2 Timed Semi-Branching Bisimulation

Basten [3] showed that the relation composition of two (untimed) branching
bisimulations is not necessarily again a branching bisimulation. Figure 4 illus-
trates an example, showing that the relation composition of two timed branching
bisimulations is not always a timed branching bisimulation. It is a slightly sim-
plified version of an example from [3], here applied at time 0. Clearly, B and
D are timed branching bisimulations. However, B◦D is not, and the problem
arises at the transition r0

τ−→0 r1. According to case 1 of Definition 3, since
r0 (B◦D) t0, either r1 (B◦D) t0, or r0 (B◦D) t1 and r1 (B◦D) t2, must hold. But
neither of these cases hold, so B◦D is not a timed branching bisimulation.
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τ (0)

τ (0)

τ (0)
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τ (0)

t2

t1
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Fig. 4. Composition does not preserve timed branching bisimulation

Semi-branching bisimulation [7] relaxes case 1i of Definition 2: if s
τ−→ s′,

then it is allowed that t=⇒ t′ with sBt′ and s′Bt′. Basten proved that the rela-
tion composition of two semi-branching bisimulations is again a semi-branching
bisimulation. It is easy to see that semi-branching bisimilarity is reflexive and
symmetric. Hence, semi-branching bisimilarity is an equivalence relation. Then
he proved that semi-branching bisimilarity and branching bisimilarity coincide,
that means two states in an (untimed) LTS are related by a branching bisimu-
lation relation if and only if they are related by a semi-branching bisimulation
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relation. We mimic the approach in [3] to prove that timed branching bisimilarity
is an equivalence relation.

Definition 5. Assume a TLTS (S,T , U). A collection B of binary relations
Bu ⊆ S × Time × S for u ∈ Time is a timed semi-branching bisimulation if
sBut implies:

1. if s �−→u s′, then
i either � = τ and t=⇒u t′ with sBut

′ and s′But
′,

ii or t=⇒u t̂
�−→u t′ with sBut̂ and s′But

′;
2. if t �−→u t′, then

i either � = τ and s=⇒u s′ with s′But and s′But
′,

ii or s=⇒u ŝ
�−→u s′ with ŝBut and s′But

′;
3. if s ↓, then t=⇒u t′ ↓ with sBut

′;
4. if t ↓, then s=⇒u s′ ↓ with s′But;
5. if u < v and U(s, v), then for some n > 0 there are t0, . . . , tn ∈ S with t = t0

and U(tn, v), and u0 < · · · < un ∈ Time with u = u0 and v = un, such that
for i < n, ti =⇒ui ti+1 and sBwti+1 for ui ≤ w ≤ ui+1;

6. if u < v and U(t, v), then for some n > 0 there are s0, . . . , sn ∈ S with
s = s0 and U(sn, v), and u0 < · · · < un ∈ Time with u = u0 and v = un,
such that for i < n, si =⇒ui si+1 and si+1Bwt for ui ≤ w ≤ ui+1.

Two states s and t are timed semi-branching bisimilar at u if there is a timed
semi-branching bisimulation B with sBut. States s and t are timed semi-branching
bisimilar, denoted by s ↔tsb t, if they are timed semi-branching bisimilar at all
u ∈ Time.

It is not hard to see that the union of timed semi-branching bisimulations is
again a timed semi-branching bisimulation. Furthermore, any timed branching
bisimulation is a timed semi-branching bisimulation.

Definition 6 ([7]). A timed semi-branching bisimulation B is said to satisfy
the stuttering property if:

1. sBut, s′But and s
τ−→u s1

τ−→u · · · τ−→u sn
τ−→u s′ implies that siBut for

1 ≤ i ≤ n;
2. sBut, sBut

′ and t
τ−→u t1

τ−→u · · · τ−→u tn
τ−→u t′ implies that sButi for

1 ≤ i ≤ n.

Lemma 1. Any timed semi-branching bisimulation satisfying the stuttering prop-
erty is a timed branching bisimulation.

Proof. Let B be a timed semi-branching bisimulation that satisfies the stuttering
property. We prove that B is a timed branching bisimulation.

Let sBut. We only consider case 1i of Definition 5, because cases 1ii, 2ii and
3-6 are the same for both timed semi-branching and branching bisimulation.
Moreover, case 2i can be dealt with in a similar way as case 1i. So let s

τ−→u s′

and t=⇒u t′ with sBut
′ and s′But

′. We distinguish two cases.

1. t = t′. Then s′But, which agrees with case 1i of Definition 4.
2. t �= t′. Then t=⇒u t′′

τ−→u t
′. Since B satisfies the stuttering property, sBut

′′.
This agrees with case 1ii of Definition 4. "#
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4.3 Timed Branching Bisimilarity is an Equivalence

Our equivalence proof consists of the following main steps:

1. Wefirstprove that the relation compositionof two timed semi-branchingbisim-
ulation relations is again a semi-branching bisimulation relation (Proposi-
tion 1).

2. Then we prove that timed semi-branching bisimilarity is an equivalence re-
lation (Theorem 1).

3. Finally, we prove that the largest timed semi-branching bisimulation satisfies
the stuttering property (Proposition 2).

According to Lemma 1, any timed semi-branching bisimulation satisfying the
stuttering property is a timed branching bisimulation. So by the 3rd point, two
states are related by a timed branching bisimulation if and only if they are
related by a timed semi-branching bisimulation.

Lemma 2. Let B be a timed semi-branching bisimulation, and sBut.

1. s=⇒u s′ =⇒ (∃t′ ∈ S : t=⇒u t′ ∧ s′But
′);

2. t=⇒u t′ =⇒ (∃s′ ∈ S : s=⇒u s′ ∧ t′Bus
′).

Proof. We prove the first part, by induction on the number of τ -transitions at
u from s to s′.

1. Base case: The number of τ -transitions at u from s to s′ is zero. Then s = s′.
Take t′ = t. Clearly t=⇒u t′ and s′But

′.
2. Inductive case: s=⇒u s′ consists of n ≥ 1 τ -transitions at u. Then there exists

an s′′ ∈ S such that s=⇒u s′′ in n− 1 τ -transitions at u, and s′′
τ−→u s′. By

the induction hypothesis, t=⇒u t′′ with s′′But
′′. Since s′′

τ−→u s′ and B is a
timed semi-branching bisimulation:
– either t′′ =⇒u t′ and s′′But

′ and s′But
′;

– or t′′ =⇒u t̂
τ−→u t′ with s′′But̂ and s′But

′.
In both cases t=⇒u t′ with s′But

′.

The proof of the second part is similar. "#

Proposition 1. The relation composition of two timed semi-branching bisimu-
lations is again a timed semi-branching bisimulation.

Proof. Let B and D be timed semi-branching bisimulations. We prove that the
composition of B and D (or better, the compositions of Bu and Du for u ∈ Time)
is a timed semi-branching bisimulation. Suppose that rBusDut for r, s, t ∈ S.
We check that the conditions of Definition 5 are satisfied with respect to the
pair r, t. We distinguish four cases.

1. r
τ−→u r′ and s=⇒u s′ with rBus

′ and r′Bus
′. Since sDut and s=⇒u s′,

Lemma 2 yields that t=⇒u t′ with s′Dut
′. Hence, rBus

′Dut
′ and r′Bus

′Dut
′.
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2. r
�−→ur

′ and s=⇒u s′′
�−→us

′ with rBus
′′ and r′Bus

′. Since sDut and s=⇒u s′′,
Lemma 2 yields that t=⇒u t′′ with s′′Dut

′′. Since s′′
�−→u s′ and s′′Dut

′′:
– Either � = τ and t′′ =⇒u t′ with s′′Dut

′ and s′Dut
′. Then t=⇒u t′ with

rBus
′′Dut

′ and r′Bus
′Dut

′.
– Or t′′ =⇒u t′′′

�−→u t′ with s′′Dut
′′′ and s′Dut

′. Then t=⇒u t′′′
�−→u t

′ with
rBus

′′Dut
′′′ and r′Bus

′Dut
′.

3. r ↓. Since rBus, s=⇒u s′ ↓ with rBus
′. Since sDut and s=⇒u s′, Lemma 2

yields that t=⇒u t′′ with s′Dut
′′. Since s′ ↓ and s′Dut

′′, t′′ =⇒u t′ ↓ with
s′Dut

′. Hence, t=⇒u t′ ↓ with rBus
′Dut

′.
4. u < v and U(r, v). Since rBus, for some n > 0 there are s0, . . . , sn ∈ S with

s = s0 and U(sn, v), and u0 < · · · < un ∈ Time with u = u0 and v = un,
such that si =⇒ui si+1 and rBwsi+1 for ui ≤ w ≤ ui+1 and i < n.
For i ≤ n we show that for some mi > 0 there are ti0, . . . , t

i
mi

∈ S with t = t00
and U(tnmn

, v), and vi
0 ≤ · · · ≤ vi

mi
∈ Time with (Ai) ui−1 = vi

0 (if i > 0)
and (Bi) ui = vi

mi
, such that:

(Ci) tij =⇒vi
j
tij+1 for j < mi;

(Di) ti−1
mi−1

=⇒ui−1 t
i
0 (if i > 0);

(Ei) siDui−1t
i
0 (if i > 0);

(Fi) siDwt
i
j+1 for vi

j ≤ w ≤ vi
j+1 and j < mi.

We apply induction with respect to i.

– Base case: i = 0.
Let m0 = 1, t00 = t01 = t and v0

0 = v0
1 = u0. Note that B0, C0 and F0

hold.
– Inductive case: 0 < i ≤ n.

Suppose that mk, t
k
0 , . . . , t

k
mk

, vk
0 , . . . , v

k
mk

have been defined for 0 ≤ k <
i. Moreover, suppose that Bk, Ck and Fk hold for 0 ≤ k < i, and that
Ak, Dk and Ek hold for 0 < k < i.

Fi−1 for j = mi−1 − 1 together with Bi−1 yields si−1Dui−1t
i−1
mi−1

.
Since si−1 =⇒ui−1 si, Lemma 2 implies that ti−1

mi−1
=⇒ui−1 t

′ with siDui−1t
′.

We define ti0 = t′ [then Di and Ei hold] and vi
0 = ui−1 [then Ai

holds]. si =⇒ui · · · =⇒un−1 sn with U(sn, v) implies that U(si, ui). Since
siDui−1t

i
0, according to case 5 of Definition 5, for some mi > 0 there are

ti1, . . . , t
i
mi

∈ S with U(timi
, ui), and vi

1 < · · · < vi
mi

∈ Time with vi
0 < vi

1
and ui = vi

mi
[then Bi holds], such that for j < mi, tij =⇒vi

j
tij+1 [then Ci

holds] and siDwtij+1 for vi
j ≤ w ≤ vi

j+1 [then Fi holds].
Concluding, for i < n, rBuisi+1Duit

i+1
0 and rBwsi+1Dwt

i+1
j+1 for vi+1

j ≤ w ≤
vi+1

j+1 and j < mi. Since vi
j ≤ vi

j+1, v
i
mi

= ui = vi+1
0 , t = t00, u = u0 = v0

0 ,
tij =⇒vi

j
tij+1, t

i
mi

=⇒ui t
i+1
0 , and U(tnmn

, v), we are done.

So cases 1,3,5 of Definition 5 are satisfied. Similarly it can be checked that cases
2,4,6 are satisfied. So the composition of B and D is again a timed semi-branching
bisimulation. "#

Theorem 1. Timed semi-branching bisimilarity, ↔tsb, is an equivalence
relation.
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Proof. Reflexivity: Obviously, the identity relation on S is a timed semi-branching
bisimulation.

Symmetry: Let B a timed semi-branching bisimulation. Obviously, B−1 is also
a timed semi-branching bisimulation.

Transitivity: This follows from Proposition 1. "#

Proposition 2. The largest timed semi-branching bisimulation satisfies the stut-
tering property.

Proof. Let B be the largest timed semi-branching bisimulation on S. Let s
τ−→u

s1
τ−→u · · · τ−→u sn

τ−→u s′ with sBut and s′But. We prove that B′ = B∪{(si, t) |
1 ≤ i ≤ n} is a timed semi-branching bisimulation.

We check that all cases of Definition 5 are satisfied for the relations siB
′
ut,

for 1 ≤ i ≤ n. First we check that the transitions of si are matched by t. Since
s=⇒u si and sBut, by Lemma 2 t=⇒u t′ with siBut

′.

– If si
�−→u s′′, then it follows from siBut

′ that:
• Either � = τ and t′ =⇒u t′′ with siBut

′′ and s′′But
′′. Since t=⇒u t′ =⇒u t′′,

this agrees with case 1i of Definition 5.
• Or t′ =⇒u t′′′

�−→u t′′ with siBut
′′′ and s′′But

′′. Since t=⇒u t′ =⇒u t′′′, this
agrees with case 1ii of Definition 5.

– If si ↓, then it follows from siBut
′ that t′ =⇒u t′′ ↓ with siBut

′′. Since
t=⇒u t′ =⇒u t′′, this agrees with case 3 of Definition 5.

– If u < v and U(si, v), then it follows from siBut
′ that for some n > 0 there

are t0, . . . , tn ∈ S with t′ = t0 and U(tn, v), and u0 < · · · < un ∈ Time
with u = u0 and v = un, such that for i < n, ti =⇒ui ti+1 and siBwti for
ui ≤ w ≤ ui+1. Since t=⇒u t′ =⇒u t1, this agrees with case 5 of Definition 5.

Next we check that the transitions of t are matched by si.

– If t �−→u t′, then it follows from s′But that:
• Either � = τ and s′ =⇒u s′′ with s′′But and s′′But

′. Since si =⇒u s′ =⇒u s′′,
this agrees with case 2i of Definition 5.

• Or s′ =⇒u s′′′
�−→u s

′′ with s′′′But and s′′But
′. Since si =⇒u s′ =⇒u s′′′, this

agrees with case 2ii of Definition 5.
– If t ↓, then it follows from s′But that s′ =⇒u s′′ ↓ with s′′But. Since si =⇒u s′

=⇒u s′′, this agrees with case 4 of Definition 5.
– If u < v and U(t, v), then it follows from s′But that for some n > 0 there

are s′0, . . . , s
′
n ∈ S with s′ = s′0 and U(sn, v), and u0 < · · · < un ∈ Time

with u = u0 and v = un, such that for i < n, s′i =⇒ui s
′
i+1 and s′i+1Bwt for

ui ≤ w ≤ ui+1. Since si =⇒u s′ =⇒u s′1, this agrees with case 6 of Definition 5.

Hence B′ is a timed semi-branching bisimulation. Since B is the largest, and
B ⊆ B′, we find that B = B′. So B satisfies the first requirement of Definition 6.

Since B is the largest timed semi-branching bisimulation and↔tsb is an equiv-
alence, B is symmetric. Then B also satisfies the second requirement of Defini-
tion 6. Hence B satisfies the stuttering property. "#
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As a consequence, the largest timed semi-branching bisimulation is a timed
branching bisimulation (by Lemma 1 and Proposition 2). Since any timed
branching bisimulation is a timed semi-branching bisimulation, we have the fol-
lowing two corollaries.

Corollary 1. Two states are related by a timed branching bisimulation if and
only if they are related by a timed semi-branching bisimulation.

Corollary 2. Timed branching bisimilarity, ↔tb, is an equivalence relation.

We note that for each u ∈ Time , timed branching bisimilarity at time u is also
an equivalence relation.

5 Discrete Time Domains

Theorem 2. In case of a discrete time domain, ↔Z
tb and ↔tb coincide.

Proof. Clearly ↔tb⊆↔Z
tb. We prove that ↔Z

tb⊆↔tb. Suppose B is a timed
branching bisimulation relation according to Definition 3. We show that B is
a timed branching bisimulation relation according to Definition 4. B satisfies
cases 1-4 of Definition 4, since they coincide with cases 1-2 of Definition 3. We
prove that case 5 of Definition 4 is satisfied.

Let sBut and U(s, v) with u < v. Let u0 < · · · < un ∈ Time with u0 = u and
un = v, where u1, . . . , un−1 are all the elements from Time that are between u
and v. (Here we use that Time is discrete.) We prove induction on n that there
are t0, . . . , tn ∈ S with t = t0 and U(tn, v), such that for i < n, ti =⇒ui ti+1 and
sBwti+1 for ui ≤ w ≤ ui+1.

– Base case: n = 1. By case 3 of Definition 3 there is a t1 ∈ S with U(t1, v),
such that t=⇒u t1, sBut1 and sBvt1. Hence, sBwt1 for u ≤ w ≤ v.

– Inductive case: n > 1. Since U(s, v), clearly also U(s, u1). By case 3 of Defin-
ition 3 there is a t1 ∈ S such that t=⇒u t1, sBut1 and sBu1t1. Hence, sBwt1
for u ≤ w ≤ u1. By induction, sBu1t1 together with U(s, v) implies that
there are t2, . . . , tn ∈ S with U(tn, v), such that for 1 ≤ i < n, ti =⇒ui ti+1,
sBuiti+1 and sBui+1ti+1. Hence, sBwti+1 for ui ≤ w ≤ ui+1.

We conclude that case 5 of Definition 4 holds. Similarly it can be proved that
B satisfies case 6 of Definition 4. Hence B is a timed branching bisimulation
relation according to Definition 4. So ↔Z

tb⊆↔tb. "#

6 Future Work

We conclude the paper by pointing out some possible research directions for the
future.

1. It is an interesting question whether a rooted version of timed branching
bisimilarity is a congruence over a basic timed process algebra (such as
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Baeten and Bergstra’s BPAur
ρδ [1], which is basic real time process algebra

with time stamped urgent actions). Similar to equivalence, congruence prop-
erties for timed branching bisimilarity are often claimed, but hardly ever
proved. We only know of one such congruence proof, in [13].

2. Van der Zwaag [14] extended the cones and foci verification method from
Groote and Springintveld [9] to TLTSs. Fokkink and Pang [10] proposed an
adapted version of this timed cones and foci method. Both papers take ↔Z

tb

as a starting point. It should be investigated whether a timed cones and foci
method can be formulated for ↔tb as defined in the current paper.

3. Van Glabbeek [4] presented a wide range of concurrency semantics for un-
timed processes with the silent step τ . It would be a challenge to try and
formulate timed versions of these semantics, and prove equivalence and con-
gruence properties for the resulting timed semantics.
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A Branching Tail Bisimulation

Baeten and Middelburg [2] defined the notion of branching tail bisimulation,
which is closely related to van der Zwaag’s definition of timed branching bisim-
ulation. We show that in case of dense time, our counter-example (see Example
5) again shows that branching tail bisimilarity is not an equivalence relation.

In the absolute time setting of Baeten and Middelburg, states are of the form
<p, u> with p a process algebraic term and u a time stamp referring to the
absolute time. They give operational semantics to their process algebras such
that if <p, u>

v�−→<p, u+v> (where v�−→ for v > 0 denotes a time step of v time
units), then <p, u>

w�−→<p, u+w> for 0 < w < v; in our example this saturation
with time steps will be mimicked. The relation s

u�−→−→ s′ is defined by: either
s⇒ ŝ

u�−→ s′, or s
v�−→−→ ŝ

w�−→−→ s′ with v + w = u.4

Branching tail bisimulation is defined as follows.5

Definition 7 ([2]). Assume a TLTS in the style of Baeten and Middelburg. A
symmetric binary relation B ⊆ S × S is a branching tail bisimulation if sBt
implies:

1. if s �−→ s′, then
i either � = τ and t=⇒ t′ with sBt′ and s′Bt′;
ii or t=⇒ t̂

a−→ t′ with sBt̂ and s′Bt′;
2. if s �−→<

√
, u>, then t=⇒ t′

�−→<
√
, u> with sBt′;

3. if s u�−→ s′, then
i either t=⇒ t̂

v�−→ t̂′
w�−→−→ t′ with v + w = u, sBt̂ and s′Bt′;

ii or t=⇒ t̂
u�−→ t′ with sBt̂ and s′Bt′.

Two states s and t are branching tail bisimilar, written s ↔BM
tb t, if there is a

branching tail bisimulation B with sBt.6

We proceed to transpose the TLTSs from Example 5 into the setting of Baeten
and Middelburg. We now have the following transitions, for i ≥ 0:<p, 0> τ−→
4 Baeten and Middelburg also have a deadlock predicate �, which we do not take into

account here, as it does not play a role in our counter-example.
5 Baeten and Middelburg define this notion in the setting with relative time, and

remark that the adaptation of this definition to absolute time is straightforward.
Here we present this straightforward adaptation.

6 The superscript BM refers to Baeten and Middelburg, to distinguish it from the
notion of timed branching bisimulation as defined in this paper.
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<p0, 0>
<pi, 0>

τ−→<pi+1, 0>
<pi+1, 0>

τ−→<pi, 0>
<pi, u>

v−u�−→<pi, v>, 0 ≤ u < v ≤ 1
i+2

<pi,
1

i+2>
τ−→<p′i,

1
i+2>

<p′i, u>
v−u�−→<p′i, v>, 1

i+2 ≤ u < v ≤ 1
<p′i,

1
n>

a−→<
√
, 1

n>, n = 1, . . . , i + 1

<q, 0> τ−→<q0, 0>
<qi, 0>

τ−→<qi+1, 0>
<qi+1, 0>

τ−→<qi, 0>
<qi, u>

v−u�−→<qi, v>, 0 ≤ u < v ≤ 1
<qi,

1
n>

a−→<
√
, 1

n>, n = 1, . . . , i + 1

<r, 0> τ−→<r0, 0>
<ri, 0>

τ−→<ri+1, 0>
<ri+1, 0>

τ−→<ri, 0>
<ri, u>

v−u�−→<ri, v>, 1
i+2 ≤ u < v ≤ 1

<ri,
1
n>

a−→<
√
, 1

n>, n = 1, . . . , i + 1
<r0, 0>

τ−→<r∞, 0>
<r∞, 0> τ−→<r0, 0>
<r∞, u>

v−u�−→<r∞, v>, 0 ≤ u < v ≤ 1
<r∞, 1

n>
a−→<

√
, 1

n>, n ∈ N

<p, 0> ↔BM
tb <q, 0>, since <p,w>B<q,w> for w ≥ 0, <pi, w>B<qi, w> for

w ≤ 1
i+2 , and <p′i, w>B<qi, w> for w > 0 (for i ≥ 0) is a branching tail

bisimulation.
Moreover, <q, 0> ↔BM

tb <r, 0>, since <q,w>B<r,w> for w ≥ 0, <qi, w>
B<ri, w> for w ≥ 0, <qi, 0>B<rj , 0>, and <qi, w>B<r∞, w> for w = 0∨w >

1
i+2 (for i, j ≥ 0) is a branching tail bisimulation.

However, <p, 0> �↔BM
tb <r, 0>, since p cannot simulate r. This is due to the

fact that none of the pi can simulate r∞. Namely, r∞ can idle until time 1. pi

can only simulate this by executing a τ at time 1
i+2 , but the resulting process

<p′i,
1

i+2> is not timed branching bisimilar to <r∞, 1
i+2>, since only the latter

can execute action a at time 1
i+2 .
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Abstract. We examine to what extent implementation of timed au-
tomata can be achieved using the standard semantics and appropriate
modeling, instead of introducing new semantics. We propose an imple-
mentation methodology which allows to transform a timed automaton
into a program and to check whether the execution of this program on
a given platform satisfies a desired property. This is done by modeling
the program and the execution platform, respectively, as an untimed
automaton and a collection of timed automata. We also study the prob-
lem of property preservation, in particular when moving to a “better”
execution platform. We show that some subtleties arise regarding the
definition of “better”, in particular for digital clocks. The fundamental
issue is that faster clocks result in better “sampling” and therefore can
introduce more behaviors.

1 Introduction

Model-based design is being established as an important paradigm for the devel-
opment of embedded systems today. This paradigm advocates using models all
the way from design to implementation. Using models, rather than, say, building
and testing prototypes, is important in order to cut development costs and time.
However, using models alone is not enough. Being abstractions of reality, models
often make “idealizing” assumptions, which break down during implementation.
Thus, it is necessary to bridge, somehow, the gap between high-level models and
low-level implementations.

In this context, this paper studies the problem of implementation of timed
automata. Timed automata [1] are a popular model for describing real-time
systems. Numerous model-checking techniques and tools exist for this model,
e.g. [7, 14], permitting to prove automatically, at least in principle, properties on
a given model. Synthesis techniques and tools also exist, permitting to compute
automatically controllers that are correct by construction for a given plant and
property, meaning that the closed-loop system (plant, controller) satisfies this
property. Such controllers can sometimes be represented as timed automata.
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Regardless of whether a timed-automaton controller is synthesized automat-
ically or “by hand”, an important problem remains, namely, how to pass from
the timed-automaton model to an implementation. This is a typical bridging-
the-gap situation like the ones discussed above. Indeed, the semantics of timed
automata are “ideal” in a number of ways (“continuous sampling” of guards
using “perfect” clocks, zero execution and communication times, etc.).

A number of works exist on the timed automata implementation problem [4,
21, 13]. The main motivation for our work has been [21]. In summary, the results
of [21] are as follows. Given a TA A, the authors define a new semantics of A,
parameterized by a delay Δ, called almost ASAP semantics and denoted [A]Δ.
They also define a program semantics for A, parameterized by two delays ΔP

(modeling the period of the digital clock of the execution platform where the
program runs) and ΔL (modeling the worst-case execution time of the loop-body
of the program), denoted [A]ΔP ,ΔL .

The authors then prove three main results. First, an implementability result
stating that if Δ > 4ΔP + 3ΔL then [A]ΔP ,ΔL refines [A]Δ. Second, a “faster is
better” result stating that if Δ′ < Δ then [A]Δ′ refines [A]Δ. Third, a modeling
result which permits to transform A into a TA AΔ such that [A]Δ equals the stan-
dard semantics of AΔ. The refinement relation used guarantees that if S correctly
controls a given environment then any S′ that refines S also controls correctly
this environment. Thus, the three results above provide the cornerstones of a so-
lution to the implementability problem: first ΔP and ΔL can be fixed according
to the execution platform; then Δ can be chosen so that it satisfies the inequal-
ity above; finally, AΔ can be verified against an appropriate environment model
and a specification. If the specification is met, then there exists a program (im-
plementing [A]ΔP ,ΔL) which is guaranteed to meet the specification against the
same environment. Moreover, if the execution platform is changed for a “faster”
one, with Δ′

P ≤ ΔP and Δ′
L ≤ ΔL, then the “faster is better” result guarantees

that the program is still correct.
The question we would like to ask in this paper is the following: can simi-

lar results be obtained without introducing new semantics, but using modeling
instead? The question is not without interest, since, avoiding to introduce new
(and admittedly complicated) semantics has a number of advantages. First, the
approach becomes easier to understand. Second, the approach becomes more
general: new assumptions on the program type or execution platform can be in-
troduced simply by changing the corresponding models, in a modular way, with-
out having to modify the semantics. Third, new possibilities arise, for instance,
for automatic synthesis of controllers which are implementable by construction.

In the rest of this paper, we give a positive, albeit partial, answer to the above
question. In particular, we propose an implementation methodology for timed
automata which allows to transform a timed automaton into a program and
to check whether the execution of this program on a given platform satisfies a
desired property. This is done by modeling the program and the execution plat-
form, respectively, as an untimed automaton and a collection of timed automata,
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the latter capturing the three fundamental implementation components: digital
clock, program execution and IO interface. Section 3 describes the methodology.

This provides a solution to the implementation of timed automata, however,
we would also like to have a property guaranteeing that, when a platform P
is replaced by a “better” platform P ′, then a program proved correct for P
is also correct for P ′. We study this problem in Section 4 and show that, for
a reasonable definition of “better”, such a property does not generally hold.
The main problems arise from the following “paradox”. On one hand it seems
reasonable to consider P ′ as being better than P if the two are identical, except
that P ′ provides a periodic digital clock running twice as fast as the one of P .
On the other hand, a program using the faster clock has a higher “sampling
rate” and thus may generate more behaviors than a program using the slower
clock, which may result in violation of properties. Through a set of examples,
we expose such subtleties in Section 4. In Section 5 we indicate a few directions
on how to pursue this issue further.

Related Work: As mentioned above, paper [21] has been the main motivation
for our work.

Closely related is also the work on the tool Times [4] which allows to generate
code from timed automata extended with preemptable tasks. The focus in this
work is schedulability rather than semantical preservation. The generated code
is multi-threaded whereas ours is mono-threaded.

Similar motivations with ours has the work reported in [13], where the model
of time-triggered automata is proposed to capture execution on time-triggered
architectures [12]. Issues like execution and IO communication times, as well
as robustness of digital clocks (which cannot assumed to be perfect in other
architectures than time-triggered) are not considered in this work.

Related is also the work on digitization and robustness of timed automata,
e.g., see [11, 16, 15], however, the focus of most of these works is preservation of
dense-time semantics by various discrete-time semantics and the use of preser-
vation results for verification.

Finally, a large amount of work exists on code-generation from high-level mod-
els other than timed automata, for instance, hybrid automata [3], Giotto [10],
Simulink/Stateflow1 models [6, 5, 18], or synchronous languages [9, 6, 17, 19], to
mention only a few.

2 Timed Automata with Inputs and Outputs

A timed automaton with inputs and outputs (TA for short) is a tuple A =
(Q, qo,X, I,O,Tr, Inv). Q is a finite set of locations and qo ∈ Q is the initial
location. X is the finite set of clocks. I (resp. O) is a finite set of input (resp.
output) events. Tr is a finite set of transitions. A transition is a tuple tr =
(q, q′, a, g, r), where q, q′ ∈ Q are the source and target locations, a ∈ I∪O∪{τ}
is an input or output event, or an internal event τ , g is the guard (that is, a
1 Trademark of The Mathworks, Inc.
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conjunction of constraints of the form x#c, where x ∈ X, # ∈ {<,≤,=,≥, >}
and c is an integer constant) and r ⊆ X is the set of clocks to be reset. Inv is a
function that defines for each location q ∈ Q its invariant Inv(q), a constraint
similar to a guard which specifies the time progress condition. We require that
every guard of a transition t is contained in the invariant of the source location
of t.

A TA defines an infinite transition system TS = (S, s0,T). S is the set of states.
A state is a tuple (q, v), where q ∈ Q and v : X → R is a valuation associating
a non-negative real value to each clock. We require v to satisfy Inv(q). The
valuation assigning zero to all clocks is denoted vzero. The initial state of TS is
s0 = (qo, vzero). T ⊆ S×(I∪O∪{τ}∪R)×S is a set of discrete or timed transitions.
A discrete transition is a tuple (s, a, s′) where a ∈ I ∪ O ∪ {τ}, s = (q, v),
s′ = (q′, v′) and there exists a discrete transition tr = (q, q′, a, g, r) ∈ Tr such
that v satisfies g and v′ = v[r := 0] is obtained from v by setting all clocks in r
to zero and keeping the values of the rest of the clocks the same. We also write
s

tr→ s′ for a discrete transition. A timed transition is a tuple (s, δ, s′) ∈ T where
δ ∈ R, s = (q, v), s′ = (q, v′) and v′ = v + δ is obtained from v by increasing
all clocks by δ. We require that for all δ′ ≤ δ, v + δ′ satisfies Inv(q). We also
write s

δ→ s′ for a timed transition. A discrete transition sequence of A is a finite
sequence of discrete transitions tr0, tr1, ..., trk such that s0

δ0→tr0→ s1
δ1→tr1→ · · · sk,

for some δ0, ..., δk−1 ∈ R. The set of all discrete transition sequences of A is
denoted DTS(A). We assume that A is non-zeno, that is, it has no reachable
state s such that in all executions starting from s time converges.

3 A Methodology for the Implementation of Timed
Automata

In order to obtain an implementation of a timed automaton A in a systematic
way, we propose a methodology based on modeling. The main idea is to build a
global execution model, as illustrated in Figure 1. This model captures the (real-
time) execution of the program implementing A on a given execution platform
and along with a given environment. In particular, the steps of our methodology
are the following:

– A is transformed into an untimed (i.e., discrete) automaton Prog(A). The
latter is interpreted by a generic program, and this is how A is implemented.
At the same time, Prog(A) is part of the global execution model.

– The user provides models of the execution platform, in the form of timed
automata communicating with Prog(A). We identify three main components
permitting to model the essential features of the execution platform:
• A timed automaton ADC modeling the digital clock of the platform, that

the program implementing A consults when reading the current time.
• A timed automaton AEX modeling program execution.
• A timed automaton AIO modeling the interface of the program and exe-

cution platform with the external environment.
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The three models can be designed by the user, or chosen from a set of
“sample” models we provide in the rest of this section. A platform model is
the composition P = ADC||AEX||AIO.

– The user provides a model of the environment in the form of a TA Env. Env
can be composed with the “ideal” controller A to yield an “ideal” model of
the closed-loop system, A||Env, on which various properties can be model-
checked.

– Env can also be composed with the above set of models to yield the global
execution model:

M = Prog(A)||ADC||AEX||AIO||Env .

M models the execution of the program implementing A on an execution
platform behaving as specified by the triple (ADC,AIO,AEX) and interacting
with an environment behaving as specified by Env. In other words, M cap-
tures the execution semantics in the sense of [21]. As with the ideal model
A||Env, any property that the implementation must satisfy can be checked
on M .

Figure 1 shows the different components of the global execution model and their
interfaces. We explain these in more detail in the rest of this section.

�
�

plant model: Env

a1?, ..., an? b1!, ..., bm!

�

�

�

�trig!

output interface

now

execution
model: AEX

digital controller model: Prog(A)

digital clock
model: ADC

interface model: AIO

input and output

input interface

Fig. 1. The global execution model

Let A = (Q, qo,X, I,O,Tr, Inv) be a timed automaton with inputs and outputs.
This notation will be used in the whole section.

3.1 The Program Implementing a Timed Automaton

The program implementing A works by interpreting the untimed automaton
Prog(A) discussed above. Thus, we begin by explaining how to transform A into
Prog(A).
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Transforming A into Prog(A). Prog(A) is a finite automaton extended with
a set of static variables, meaning that they do not evolve with time (as opposed
to the clocks of A which are dynamic variables). Prog(A) has the same set of
discrete states Q as A. For each clock x of A, Prog(A) has a static variable xp of
type “real” (initialized to zero). Prog(A) also has an externally updated variable
now of type “real”: now is an interface variable between Prog(A) and ADC. now
stores the value of the current time as given by the platform clock. The program
may read this value at any time. All variables xp are initialized to now.

Prog(A) also has an input/output interface, in order to communicate with the
environment. For the moment, we will not be specific regarding this interface,
as there as many options, depending on the program implementation, execution
platform, and so on. Examples of possible interfaces are given below, along with
the examples of AIO models (Section 3.2).

For each transition tr = (q, q′, a, g, r) of A, Prog(A) has a transition trp =
(q, q′, trig?, ain, aout, gp, rp), where q, q′ are the source and destination discrete
states and:

– trig is an input event that serves to model the triggering of the external
loop of the program: the use of trig will become clear in the paragraphs that
follow (Section 3.2).

– If a ∈ I then ain is an element of the input interface associated with a. As
mentioned above, there are different such interfaces, so ain can be of different
types: if the interface is based on input variables, then ain is a condition on
these variables; if the interface is based on event-synchronization, then ain

can be an event. If a �∈ I then ain is empty and has no effect on the semantics
of trp.

– If a ∈ O then aout is an element of the output interface associated with
a. Again, different possibilities exist, some of which are presented in the
paragraph discussing how to model AIO (Section 3.2). If a �∈ O then aout is
empty and has no effect on the semantics of trp.

– gp is a condition obtained by replacing every occurrence of a clock x in the
guard g by now− xp.

– rp is a set of assignments obtained by replacing every reset of a clock x in r
by xp := now.

It should be noted that Prog(A) has no invariants: indeed, Prog(A) is an untimed
automaton with no urgency associated with it. The transitions of Prog(A) are
“triggered” by the input event trig, issued by AEX. AEX is a timed automaton
that includes the urgency constraints on the execution of Prog(A).

Prog(A) will also have a set of escape transitions. These transitions are self-
loops of the form (q, q, trig?, gelse), where gelse is the negation of the disjunction
of all guards of all other transitions exiting q. Thus, this escape transition models
the case where none of the previous transitions is enabled, thus, no transition
is taken and the program does not change state. Escape transitions are simply
added for modeling purposes and are not interpreted by the program interpreting
Prog(A).
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xp := now xp := now

now − xp > 1
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trig?
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trig?

x := 0 x = 1

A Prog(A)
x = 1, x := 0

x ≤ 1 x ≤ 1
a?, x := 0

b!, x ≤ 1

Fig. 2. Transforming A to Prog(A): the IO interface uses shared variables

In summary, Prog(A) is a discrete version of A where dynamic clocks are
replaced by static variables, input and output events are replaced by conditions
on input variables and assignments on output variables, respectively, and an
externally updated variable now capturing global time as given by the digital
clock of the platform.

Interpreting Prog(A). Perhaps the simplest control programs are the mono-
thread, single-loop programs of the form “while (some external condition) do:
read inputs; compute; update state; write outputs; end while”. For instance,
these are the types of programs typically generated by the compilers of syn-
chronous languages [9]. This is also the type of programs we consider in this
paper.

The “external condition” mentioned above can be some type of trigger, for
instance, the tick of a periodic clock, or the rising of an alarm. It can also be
simply “true”, as in the type of programs considered in [21]. We will consider
both types in this paper. We call the former type of programs triggered and the
latter trigger-free.

In our case, the body of the above loop will be as shown in Figure 3. The
current time is read and stored in variable now at the beginning of the loop

initialize;
loop forever
await trigger;
now := read_platform_clock();
in_1 := read_input_1();
in_2 := read_input_2();
...
for each outgoing transition tr of current_location do

if (input_condition(tr) and guard(tr)) then
perform_assignements(tr);
current_location := destination_location(tr);
break for loop;

end if;
end for;

end loop;

Fig. 3. The program interpreting Prog(A)
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body. Then all inputs are read. Then each outgoing transition is evaluated and
the first one which is enabled is taken, meaning the assignments are performed
(including clock assignments rp and output variable assignments aout) and the
current location is updated. Finally, the search for transitions is aborted and the
program returns to the beginning of the outer loop.

Notice that the guard(t) may contain not only the clock guard gp of a tran-
sition, but other conditions as well, for instance, a condition corresponding to an
input interface element. Also note that the event trig? of a transition of Prog(A)
is not interpreted: indeed it only serves the purpose of modeling the triggering
of the program loop. On the other hand, if there are events corresponding to
function calls (for instance, events fa

1 ! of Figure 6 or fb! of Figure 7 below),
these are indeed interpreted as function calls read input or write output (the
latter called inside perform assignments(t)). Finally, note that escape transi-
tions of Prog(A) are not evaluated in the “for each outgoing transition” loop.
This is because these transitions correspond precisely to the case where none of
the transitions of A is enabled.

3.2 Modeling the Execution Platform

Modeling the Digital Clock of the Platform. The platform clock is mod-
eled by a timed automaton ADC which updates variable now and “exports” this
variable to Prog(A) (see Figure 1). Different ADC models can be built: some are
shown in Figure 4.

Cl1(Δ) models a perfectly periodic digital clock with period Δ. Cl2(Δ, ε) mod-
els a clock with non-perfect period Δ± ε. In this model errors may accumulate,
so that the i-th tick of the clock (i.e., update of now) may occur anywhere in the
interval [(Δ − ε)i, (Δ + ε)i]. Cl3(Δ, ε) models a more restricted behavior where
errors do not accumulate: the i-th tick occurs in the interval [iΔ− ε, iΔ+ ε], for
all i.

Modeling the Execution of the Program. Computation is essentially
change of state, and execution time is the time it takes to change state. Prog(A)
is an untimed automaton, thus, does not contain this information: changes of
state can happen at any time. AEX is used to place restrictions on the times state
changes occur. These restrictions model worst-case and best-case execution times
(WCET, BCET) of the program interpreting Prog(A) on the execution platform.

� �� ���� ��
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now:=0

x ≤ Δ
x ≤ εx ≤ Δ

x = Δ
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now:=0 now:=now+Δ
x := 0
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Cl3(Δ, ε)Cl2(Δ, ε)Cl1(Δ)

Fig. 4. Digital-clock models
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...
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Fig. 5. Execution models

In Figure 5 we present sample AEX models, corresponding to the two types
of programs discussed above, namely, triggered and trigger-free programs. The
model on the left is very simple: it models a periodic invocation of the loop of
the program, every Δ time units. In this case, the assumption is that the WCET
of the body of the loop is at most Δ. This means that the body of the loop can
be completed before the next time it is invoked.

By simply replacing the guard x = Δ by x ≤ Δ, we obtain the automaton
in the middle of Figure 5: this models a trigger-free program with WCET equal
to Δ. A more detailed model is the automaton on the right of the figure (for
simplicity, the automaton is incomplete: it has the same locations and discrete
structure as A). This automaton models different WCETs for different changes
of state: if Prog(A) moves from q1 to q2 then the WCET is equal to Δq1,q2 , when
it moves from q1 to q3 then the WCET is Δq1,q3 , and so on. This automaton
exports a set of triggering events instead of a single one. In this case Prog(A)
needs to be modified accordingly, so that in a transition (q, q′, trig?, ...), trig is
replaced by trigq,q′ .

Modeling the Interfaces with the Environment. The ideal controller A
communicates with Env exchanging input and output messages in an instanta-
neous manner. Most computer programs communicate with their environment
by reading and writing shared variables, or via function calls (initiated by the
program).2

We now give some examples on how common situations of IO interfaces can
be modeled. Note that these are not the only possibilities. For simplicity, let
us also suppose that inputs and outputs are handled separately, so that AIO is
“split” in two components, one for inputs and one for outputs.

We first discuss inputs. One possible interface policy is the following. For
each input event a of A, there is a boolean interface variable a which is set to
“true” every time a occurs and remains “true” for a certain time bounded by
[la, ua]. This is modeled by the automaton on the left of Figure 6. Regarding the
definition of Prog(A) given above, the input interface element ain, in this case,
will simply be the condition a = true.
2 Interrupts are also an option. We do not consider this option in this paper, since it

does not match well with the program structure of Figure 3.
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Fig. 6. Input interface models

Another possible input interface is the one modeled by the automaton on the
right of Figure 6. This models the situation where the program calls a function
that checks whether event a has occurred since the last time the function was
called. The function call is modeled by events fa

0 and fa
1 , on which Prog(A) and

the interface automaton synchronize. fa
0 corresponds to the function returning

“false” (event a has not occurred) and fa
1 corresponds to the function returning

“true” (a has occurred). Notice that this model is untimed. Regarding the def-
inition of Prog(A) given above, the input interface element ain, in this case, is
either fa

1 ! or fa
0 !.

We now discuss outputs. One simple output interface is modeled by the au-
tomaton on the left of Figure 7. It receives a function call from the program
(event fb) and begins the process of emitting event b. This process takes some
time in [lb, ub]. Regarding the definition of Prog(A) given above, the output in-
terface element aout, in this case, will simply be fb!.

Another possibility is modeled by the automaton on the right of Figure 7.
Here, the program sets variable b to true whenever output b is to be emitted
(i.e., aout is the assignment b := true). The interface automaton “samples”
this variable periodically every Δ time units. Whenever the variable is “true”
output b is emitted to the environment. Also, the variable b is reset to “false”,
to prevent future emissions unless they are commanded by the program (which
must again set b to “true”).

3.3 Using the Global Execution Model for Verification and
Synthesis

The global execution model M is a network of timed and untimed automata
extended with discrete variables. Can M be automatically model-checked? It
can, provided its discrete state-space is finite. Here, we face a potential problem,
since variable now of ADC can grow arbitrarily large. Similarly, variables xp of
Prog(A) are reset to now and can thus be arbitrarily large as well.

This problem can be solved in the same way it is solved in the TA case,
where clocks can also grow arbitrarily. First, variable now can be removed, as
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follows. Resets xp := now are replaced by xp := 0 and now − xp is replaced
by xp in all guards. Then, ADC is modified so that, instead of updating now, it
updates all variables xp of Prog(A) simultaneously. For instance, in the examples
of ADC shown in Figure 4, now := now + Δ is replaced by a set of assignments
xp := xp + Δ, one for each xp. It can be seen that this model is semantically
equivalent to the previous one that uses now.3

We now have a model where xp variables are incremented simultaneously.
A reasoning similar to the one used to show finiteness of the region graph can
be used: once a variable xp has grown larger than the largest constant cmax

appearing in a guard gp of Prog(A), the exact value of xp is irrelevant, thus can
be replaced by +∞ without affecting the semantics of the model. The result is
a finite domain for xp, namely, {0, Δ, 2Δ, ..., cmax,+∞}. Using such abstraction
techniques 4 and model-checking tools as Kronos or Uppaal, M can be model-
checked against a given specification ϕ.

What if M fails to satisfy ϕ? Could we find another program Prog′ such that
M ′ = Prog′||ADC||AEX||AIO||Env satisfies ϕ? The answer is yes, and Prog′ can in
fact by synthesized automatically (at least in principle). Prog′ can be viewed as
a controller that functions in closed-loop with a “plant” ADC||AEX||AIO||Env. The
problem is to synthesize Prog′ so that the closed-loop system, i.e., M ′, satisfies
ϕ. Notice that the controller is untimed, in the sense that it communicates with
the “plant” via a discrete interface (discrete events and variables). The controller
does observe time, but only discrete time: the tick events of ADC.

Synthesis of an untimed controller for a timed plant against a (timed or un-
timed) specification is possible. In fact, the problem can be reduced to a problem
of untimed synthesis with partial observability. This is done by generating an ap-
3 In fact we could have presented Prog(A) and its interface with ADC in this way in the

first place, however, we find the model with now “cleaner” because every variable
has a unique writer. Instead, in the modified model xp variables are updated by ADC

and reset to zero by Prog(A).
4 In the case other ADC models than those of Figure 4 are used, some “sanity” hy-

potheses need to be made. It is natural to expect now to increase monotonically by
a finite number of quanta Δi, to diverge, and so on.
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propriate finite-state abstraction of the timed plant, such as the region graph [1]
or the time-abstracting bisimulation graph [20]. The controller to be synthesized
for this plant is not a state-feedback controller, since it cannot observe the clocks
of the plant (thus, neither the regions or zones of the abstract graph). The con-
troller only observes a discrete event and variable interface, as mentioned above.

4 On Property Preservation Under Platform Refinement

There is one piece missing from our framework, namely, a result of the form:

“given platforms P and P ′, such that P ′ is “better” than P , if Prog(A)||P ||Env
satisfies ϕ then Prog(A)||P ′||Env also satisfies ϕ”,

for a reasonable definition of “better”.
Such a result is important for many reasons. First, it guarantees that a pro-

gram that functions correctly on P will continue to function correctly when P
is replaced by a “better” platform, which is a reasonable expectation. Second,
it allows for abstractions to be made when modeling a platform and trying to
model-check the global execution model. Such abstractions are often crucial in
order to limit modeling complexity as well as state explosion. A result as above
allows for such abstractions, as long as it can be ensured that the real execution
platform is “better” than its model.

But what should the definition of “better” be? It seems appropriate to
adopt an element-wise definition, where P ′ = (A′

DC,A
′
EX,A

′
IO) is better than

P = (ADC,AEX,AIO) iff A′
DC is better than ADC, A′

EX is better than AEX and A′
IO

is better than AIO. But while a more or less standard refinement relation could
be used to define “better” in the cases of AEX and AIO,5 we run into problems
when trying to define “better” in the case of ADC. We illustrate these problems
in what follows. To make the discussion easier to follow, we will ignore AEX and
AIO models (i.e., assume they are “ideal”) and focus only on ADC. Thus, we
will assume that Prog(A) has no trig events and that it communicates with Env
directly via input/output synchronization events, like A does.

Example 1. Consider, then, automaton A1 on Figure 8 and let Env generate a
single timed trace where a! is produced at time t1 = 0.9 and b! is produced at
time t2 = 1.1. We claim that

Prog(A1)||Cl1(2)||Env |= �¬bad

but
Prog(A1)||Cl1(1)||Env �|= �¬bad

(recall that Cl1(Δ) is the parameterized digital-clock model shown in Figure 4).
Indeed, in the first case, at both times t1 and t2, now equals 0, which means

5 We say “more or less” because AIO contain inputs and outputs, and refinement
relations for such models are not that standard (e.g., see [2, 8]).
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� � �� � � �x := 0
a?

b?
x < 1

b?
x ≥ 1

bad

A1

� �

�

� �

�

�

�

x ≤ 3
x ≤ 3

x = 2

x := 0
x ≥ 3

x := 0
x ≥ 1

A4

�� �

A3

x := 0
x ≤ 4

x ∈ [1, 3]
x := 0

a!

Fig. 8. Counter-examples

that the guard now−xp ≥ 1 is evaluated to “false”. In the second case, however,
at t1, now = 0 while at t2, now = 1, so that now − xp = 1 − 0 = 1 and the
guard is “true”. On the other hand, it seems reasonable to expect a platform
P1 to be “better” than P2 if the only difference between the two is that P1 has
ADC = Cl1(1) whereas P2 has ADC = Cl1(2). Indeed, Cl1(1) runs twice as fast as
Cl1(2), in other words, it is strictly more precise. "#

What the above example shows is that the platform-refinement property we
hoped for does not hold in general. Notice that adding the assumption A||Env |=
ϕ does not help, since this assumption already holds in the counter-example
above. Thus, we have a situation where, on one hand, the “ideal” implementation
satisfies the property, on the other hand, the “slow” implementation satisfies the
property, however, the “fast” implementation does not satisfy the property. In
the rest of the section, we will attempt to modify our goal and examine other
possibilities of property preservation.

We first examine whether the goal holds for a “chaotic” environment Chaos,
that is, an environment which accepts any input and may generate any output
at any time:

(Prog(A)||P ||Chaos |= ϕ) ∧ (P ′ better than P ) ⇒ (Prog(A)||P ′||Chaos |= ϕ) ?

Example 2. The above implication does not hold either. To see this, consider a
modified version of automaton A1 of Figure 8, call it A2, where the guard x ≥ 1
is replaced by x = 1 and the guard x < 1 by x �= 1. Then the property �¬bad
is satisfied with digital clock model Cl1(2) but not with Cl1(1). The reason is
that with Cl1(2), now only takes the values 0, 2, ..., thus, the guard now−xp = 1
is never satisfied. With Cl1(2), now takes the values 0, 1, 2, ..., so the guard is
satisfied. "#

The above example suggests that, for properties of the form �¬bad, a “slower”
clock may be “better” than a “faster” one. This may seem like a paradox, how-
ever, it is explained by the fact that a program using the faster clock has a
higher “sampling rate” and thus may generate more behaviors. We formalize
this observation in the lemma that follows.

Lemma 1. Let A be a TA, Δ ∈ R and k ∈ {1, 2, ...}. Then

DTS(Prog(A)||Cl1(kΔ)) ⊆ DTS(Prog(A)||Cl1(Δ)) ⊆ DTS(A) .
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Sketch of proof: Let ρ = tr1, tr2, ..., trk be a sequence of discrete transitions of
A. This sequence defines a set of constraints C on the times t1, t2, ..., tk where
these transitions can be taken. Indeed, if a clock x is reset to zero by tri and
tested to x ≤ 5 by trj with j > i (and x is not reset between i and j) then this
creates the constraint tj − ti ≤ 5. Then, ρ ∈ DTS(A) iff C is satisfiable, i.e., has
a solution t1 ≤ t2 ≤ · · · ≤ tk with ti ∈ R. When interpreted in Prog(A)||Cl1(Δ),
ρ generates a set of constraints C′ which is stronger than C. Indeed, C′ contains
the additional constraint that every ti must be a multiple of Δ. Thus, if C is
unsatisfiable, so is C′. Similarly, when interpreted in Prog(A)||Cl1(kΔ), ρ gener-
ates a set of constraints C′′ which is stronger than C′, since ti must now be a
multiple of kΔ. "#
Notice that this lemma does not hold for timed traces, as Example 1 shows.
Based on this lemma we can prove the following.

Proposition 1. Let A be a TA, AEX a program execution model, AIO an IO
interface model, Δ ∈ R and k ∈ {1, 2, ...}. Let ϕ ≡ �¬bad for some location
“bad” of A. Then

A||Chaos |= ϕ⇒ Prog(A)||Cl1(Δ)||Chaos |= ϕ⇒ Prog(A)||Cl1(kΔ)||Chaos |= ϕ .

One may wonder whether Proposition 1 holds for other properties except
reachability of “bad” locations. A crucial property in any system is deadlock-
freedom, or, in the case of timed automata, non-zenoness. Observe that, as long
as the platform models ADC,AEX,AIO are non-zeno, Prog(A)||ADC||AEX||AIO is
also non-zeno, since Prog(A) is receptive to input events such as trig. We will
then study another property, namely, that it is always possible for Prog(A) to
take a discrete transition (possibly after letting time pass). We call such an
execution model non-blocking and write NB(Prog(A)||P ||Env). First note that
non-blockingness does not always hold.

Example 3. Consider TA A3 of Figure 8. If Prog(A3) is executed on a platform
with ADC = Cl1(4) then it is blocking, since the guard now − xp ∈ [1, 3] will be
evaluated when now = 0, 4, ..., and found false at all times. "#
We next study the following property of non-blockingness preservation:

NB(Prog(A)||P ||Chaos) ∧ (P ′ better than P ) ⇒ NB(Prog(A)||P ′||Chaos) ?

Example 4. The above implication does not hold either. Consider automaton A4
of Figure 8. Prog(A4) is non-blocking on a platform with ADC = Cl1(4), simply
because the guard now−xp = 2 is never evaluated to true. On the other hand, this
guard is evaluated to true with ADC = Cl1(2). In this case, Prog(A4) is blocking,
because it “gets stuck” in the right-most location with now− xp = 4 > 3, thus,
unable to take any transition. "#

5 Conclusions and Perspectives

In this paper we have asked a question, namely, whether timed automata can be
implemented using the standard semantics and appropriate modeling, instead of
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introducing new semantics. We proposed a modeling framework that permits this
goal to be partly achieved. In particular, we showed how to transform a timed
automaton into a program and how to model the execution of this program on a
given platform as a collection of (timed) automata. The models can be used to
check whether the implementation satisfies a desired property. They can also be
used for synthesis of another program which satisfies the property by construc-
tion. Still, subtleties arise regarding property preservation when changing the
execution platform. We exposed such subtleties through a series of examples.
We believe describing such failed attempts is useful, as it draws the limits of
what can be done. The question is worth pursuing, and we intend to do this as
part of future work. In particular, we would like to generalize Proposition 1 to
more digital clock models, by introducing an appropriate notion of refinement
for such models. Next would be to generalize this to entire platforms. Finally,
to study the preservation of more properties, such as the non-blocking property
we touched upon.
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Abstract. In this paper, we introduce a timed notion of abstract non-interference.
This is obtained by considering semantics which observe time elapsed in compu-
tations. Timing channels can be modeled in this way either by letting the attacker
to observe time as a public variable or reckon the time elapsed by observing the
computational traces’ length, corresponding to observe the program counter. In
the first case abstract non-interference provides a model for abstracting the infor-
mation about time, namely we can for example consider models of attackers that
can observe only intervals of time, or other more abstract properties. In the sec-
ond case abstract non-interference provides a model for attackers able to observe
properties of trace length, e.g., the public memory during the whole computa-
tion. We investigate when adding the observation of time does not increase the
attacker’s power in disclosing confidential information about data. This models
the absence of timing channels in language-based security.

Keywords: Abstract interpretation, security, non-interference, timing channels.

1 Introduction

The standard approach to the confidentiality problem, also called non-interference, is
based on a characterization of attackers that does not impose any observational or com-
plexity restriction on the attackers’ power [19]. The notion of abstract non-interference
(ANI) has been introduced recently in [10] as a weakening of this notion, modeling
weaker attackers having a restricted observation power specified as an abstraction of
the concrete domain of computation. In this paper we prove that ANI is an adequate
model of non-interference, including a variety of timing channels as a special case.

The Problem. Any non-interference problem in language-based security has first to
specify what an attacker can observe. Standard denotational semantics is typically not
adequate for modeling covert channels such as timing channels, deadlock channels and
termination channels. Consider for instance the following simple program fragment:

P
def= while h do l := l;h := h− 1 endw

In this case, the public output is unchanged, independently from the initial value of
h. However, if the attacker can measure the time elapsed, then it could understand
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whether the while-loop is executed or not, disclosing some information about the ini-
tial value of h. This means that, in this case, the program is not secure. Standard non-
interference does not model this behavior. Also, ANI as specified in [10] does not model
this aspect of information leakage, being based on a (time insensitive) denotational
semantics.

Main Contribution. In this paper we introduce a notion of abstract non-interference
which captures timing channels, called timed abstract non-interference (TANI). This
notion provides the appropriate setting for studying how properties of private data in-
terfere during the execution of the program, with properties of the elapsed time. We will
not consider in this paper the converse problem, i.e., how properties of the time elapsed
during program execution interfere with properties of data. This because we do not con-
sider here real-time system, where time is relevant to the behavior of programs [3]. We
show that timing channels can be modeled as instances of ANI, simply by considering
an appropriate, typically more concrete, semantics observing time. The simplest way
to include time in the semantics consists in considering the maximal trace semantics of
the transition system associated to programs: The trace semantics implicitly embeds the
time elapsed during computations in the length of traces. Another, more explicit, way
of including the information about time in the semantics consists in enriching the op-
erational semantics of our language in order to measure the elapsed time: We consider
a semantics that stores, in a specific variable, the time elapsed during the execution of
a program. In this case we consider the time information as a public datum that can be
observed by the attacker. Since, the difference between abstract non-interference in [10]
and timed abstract non-interference lies only upon the semantics used, it is always pos-
sible to characterize the most concrete harmless attacker, observing timing-channels.
This gives a measure of the level of security of a program under attack when the time
elapsed may represent a critical information. Moreover, time, as well as data, can be ab-
stracted. This is essential in order to model attackers that can observe properties of time
elapsed, such as intervals or regular delays such as congruences. It is worth noting that,
since we do not consider real-time systems, the only possible timing channels are due to
a one-way interaction between data (modeled either as trace length or in the semantics)
and time. We model this interaction in the framework of ANI by providing sufficient
conditions that avoid timing channels in programs. Indeed, the fact that, in the most
general case, an attacker may observe relational dependencies between data and time,
may create problems when we want to abstract time. Hence, we provide the conditions
characterizing the attackers whose capability of observing time does not increase their
power in disclosing confidential information about data. In other words, we character-
ize in which conditions timed abstract non-interference, where attackers observe time,
implies (untimed) abstract non-interference, where the same attackers cannot observe
time.

2 Information Flows in Language-Based Security

Confidential data are considered private, labeled with H (high-level of secrecy), while
all other data are public, labeled with L (low-level of secrecy) [9]. Non-interference can
be naturally expressed by using semantic models of program execution. This idea goes
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back to Cohen’s work on strong dependency [7], which uses denotational semantics for
modeling how information can be transmitted among variables during the execution of
programs. Therefore non-interference for programs essentially means that “a variation
of confidential (high or private) input does not cause a variation of public (low) out-
put” [19]. When this happens, we say that the program has only secure information
flows [5, 7, 9, 16, 22]. This situation has been modeled by considering the denotational
(input/output) semantics �P � of the program P . In particular we consider programs
where data are typed as private (H ) or public (L ). Program states in Σ are functions
(represented as tuples) mapping variables in the set of values V. Finite traces on Σ are
denoted Σ+. If T ∈ {H , L }, n = |{x ∈ Var(P )|x : T }|, and v ∈ Vn, we abuse
notation by denoting v ∈ VT the fact that v is a possible value for the variables with
security type T . Moreover, we assume that any input s, can be seen as a pair (h, l),
where sH = h is a value for private data and sL = l is a value for public data. In this
case, non-interference can be formulated as follows.

A program P is secure if ∀ input s, t sL = tL ⇒ (�P �(s))L = (�P �(t))L

This problem has been formulated also as a Partial Equivalence Relation (PER)
[20, 15]. In this case we have that if the input data are equivalent under a given equiv-
alent relation, then also the outputs have to be equivalent. The standard methods for
checking non-interference are based on security-type systems and data-flow/control-
flow analysis. Type-based approaches are designed in such a way that well-typed pro-
grams do not leak secrets. In a security-typed language, a type is inductively associated
with program statements in such a way that any statement showing a potential flow dis-
closing secrets is rejected [21, 24]. Similarly, data-flow/control-flow analysis techniques
are devoted to statically discover flows of secret data into public variables [6, 16, 17, 20].
All these approaches are characterized by the way they model attackers (or unauthorized
users). As far as timing channels are concerned, they are avoided in the Volpano and
Smith type system [23] by adding some restrictions or they can be removed by using
the program transformation in [1]. Concerning timed automata, a decidable notion of
non-interference has been introduced in [4]. We showed in [13] that this notion can be
modeled as a generalization of abstract non-interference.

Abstract Non-Interference. The idea of ANI [10], is that an attacker can observe only
some properties, modeled as abstract interpretations of program semantics, of public
concrete values. The model of an attacker, also called attacker, is therefore a pair of
abstractions 〈η, ρ〉, with η, ρ ∈ uco(℘(VL ))1, representing what an observer can see
about, respectively, the input and output of a program. The notion of narrow (abstract)
non-interference (NNI) represents the first weakening of standard non-interference rel-
atively to a given model of an attacker. When a program P satisfies NNI we write
[η]P (ρ), see Table 1. The problem with this notion is that it introduces deceptive flows
[10]. Consider, for instance, l := l ∗ h2, and consider the public input property of be-
ing an even number, then we can observe a variation of the output’s sign due to the
existence of both negative and positive even numbers, revealing flows which does not

1 uco(℘(VL )) denotes the set of all the upper closure operators on ℘(VL ).
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Table 1. Narrow and Abstract Non-Interference

[η]P (ρ) if ∀h1, h2 ∈ VH , ∀l1, l2 ∈ VL . η(l1)=η(l2) ⇒ρ(�P �(h1, l1)L ) = ρ(�P �(h2, l2)L )

(η)P (φ �[]ρ) if ∀h1, h2 ∈ VH , ∀l ∈ VL . ρ(�P �(φ(h1), η(l))L ) = ρ(�P �(φ(h2), η(l))L )

depend on the private data, here called deceptive. In order to avoid deceptive inter-
ference we introduce a weaker notion of non-interference, having no deceptive flows,
such that, when the attacker is able to observe the property η of public input, and the
property ρ of public output, then no information flow concerning the private input is
observable from the public output. The idea is to compare the set of all the computa-
tions that have the same input property η, instead of the single computations. We call
this notion abstract non-interference (ANI). When a program P satisfies abstract non-
interference we write (η)P (φ �[]ρ), where φ ∈ uco(℘(VH )), denoting a confidential
data property that we want to keep secret (see Table 1). Note that [id]P (id) models ex-
actly (standard) non-interference. Moreover, we have that abstract non-interference is a
weakening of both, standard and narrow non-interference: [id]P (id) ⇒ (η)P (φ �[]ρ)
and [η]P (ρ) ⇒ (η)P (φ �[]ρ), while standard non-interference is not stronger than nar-
row one due to deceptive interference. A proof-system has been introduced, in [11], for
checking both narrow and abstract non-interference inductively on program’s syntax,
while in [25] the author derive a type system for enforcing abstract non-interference
in a simple λ-calculus. Moreover, in [10], two methods for deriving the most concrete
output observation for a program, given the input one, for both narrow and abstract
non-interference are provided together with a domain transformer characterizing the
most abstract property that should be declassified in order to guarantee abstract non-
interference. In [12] we prove that these two construction form an adjunction in the
standard framework of abstract interpretation.

Example 1. Consider the properties Sign and Par, observing, respectively, the sign and
the parity of integers, and the program: P

def= l := l ∗ h2. with security typing: h : H
and l : L and V = Z. Let us check if (id)P (id �[]Par). Note that Par(�P �(2, 1)L ) =
Par(4) = 2Z while Par(�P �(3, 1)L ) = Par(9) = 2Z + 1, which are clearly different,
therefore in this case (id)P (id �[]Par) doesn’t hold. Consider (id)P (Sign �[]Par). Note
that Par(�P �(Sign(2), 1)L ) = Par(�P �(Sign(3), 1)L ) = Par(0+) = Z. In this case it
is simple to check that (id)P (Sign �[]Par) holds.

3 The Timed Semantics for Deterministic Languages

Consider a simple imperative language, IMP defined by the following syntax: c ::= nil |
x := e | c; c | while x do c endw, with e denoting expressions evaluated in the set of
values V with standard operations, i.e., if V = N then e can be any arithmetical expres-
sion. V can be structured as a flat domain whose bottom element, ⊥, denotes the value
of undefined variables. We follow Cousot’s construction [8], defining semantics, at dif-
ferent levels of abstractions, as the abstract interpretation of the maximal trace seman-
tics of a transition system associated with each well-formed program. In the following,
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Table 2. Operational timed semantics of IMP

〈nil, 〈s, t〉〉 → 〈s, t〉
〈e, 〈s, t〉〉 → n ∈ Vx

〈x := e, 〈s, t〉〉 → 〈s[n/x], t + tA 〉

〈c0, 〈s, t〉〉 → 〈s0, t0〉, 〈c1, 〈s0, t0〉〉 → 〈s1, t1〉
〈c0; c1, 〈s, t〉〉 → 〈s1, t1〉

〈x, 〈s, t〉〉 → 0

〈while x do c endw, 〈s, t〉〉 → 〈s, t + tT 〉

〈x, 〈s, t〉〉 → n ≥ 1, 〈c, 〈s, t〉〉 → 〈s0, t0〉, 〈while x do c endw, 〈s0, t0〉〉 → 〈s1, t1〉
〈while x do c endw, 〈s, t〉〉 → 〈s1, t1 + tT 〉

Σ̂+ and Σ̂ω def= N−→Σ̂ denote respectively the set of finite nonempty and infinite se-
quences of symbols in the set Σ̂. Given a sequence σ̂ ∈ Σ̂∞ def= Σ̂+ ∪ Σ̂ω, its length is
|σ̂| ∈ N∪{ω} and its i-th element is σ̂i. A non-empty finite (infinite) trace σ̂ ∈ Σ̂∞ is a
finite (infinite) sequence of program states such that, for all i < |σ̂|we have σ̂i → σ̂i+1.
The maximal trace semantics [8] of a transition system associated with a program P is
�P �∞, denoted 〈|P |〉, where if T ⊆ Σ̂ is a set of final/blocking states then 〈|P |〉ṅ =
{σ̂ ∈ Σ̂+||σ̂| = n, ∀i ∈ [1, n) . σ̂i−1 → σ̂i}, 〈|P |〉ω = {σ̂ ∈ Σ̂ω| ∀i ∈ N . σ̂i → σ̂i+1}.
We can define 〈|P |〉+ = ∪n>0{σ̂ ∈ 〈|P |〉ṅ| σ̂n−1 ∈ T }, and 〈|P |〉n = 〈|P |〉ṅ ∩ 〈|P |〉+.
If σ̂ ∈ 〈|P |〉+, then σ̂� and σ̂� denote respectively the final and initial state of σ̂. The
denotational semantics �P � associates input/output functions with programs, by mod-
eling non-termination by ⊥. This semantics is derived in [8] as an abstract interpreta-
tion of the maximal trace semantics: αD(X) def= λŝ ∈ Σ̂. {σ̂�|σ̂ ∈ X ∩ Σ̂+, ŝ = σ̂�}∪
{⊥|σ̂ ∈ X ∩ Σ̂ω, ŝ = σ̂�}. Note that, in our case, αD(X)(ŝ) is always a singleton.
It is well known that we can associate, inductively on its syntax, with each program
P ∈ IMP a function �P � denoting its input/output relation, such that �P �

def= αD(〈|P |〉)
[8]. In the following, if |Var(P )| = n, we consider Σ

def= Vn as the set of values for the
variables, and 〈|P |〉 and �P � will denote the semantics with Σ̂ = Σ.

Consider now a semantics containing the information about the elapsed time. In
particular, consider the well-known operational semantics of IMP enhanced with time,
described in Table 2, where s ∈ Σ, t ∈ N and tA , tT ∈ N2 are constant values denoting
respectively the time spent for an assignment and for a test. In this case we suppose that
the states in the concrete semantics are Σ̂

def= Σ × N. Namely we suppose that a state is
a pair composed by a tuple of values for the variable and by a natural value represent-
ing the time elapsed from the beginning of the execution. This operational semantics
naturally induces a transition relation on a set of states Σ, denoted →, specifying the
relation between a state and its possible successors. This transition system allows us
to define the timed maximal trace semantics 〈|P |〉+T modeling computations by using
traces of states including the information about time. By using the abstraction αD on
this maximal trace semantics, we can obtain a timed denotational semantics, denoted
by �P �+T = αD(〈|P |〉+T ).

Moreover, we can note that also the (standard) trace semantics, i.e., with Σ̂ = Σ, can
be seen as an abstraction of the timed maximal trace semantics, i.e., with Σ̂ = Σ×N. In

2 It would be the same if t ∈ R.
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particular, let us consider αst(〈s, t〉) = s and αst
t (X) =

⋃
σ∈X〈αst(σ�), . . . , αst(σ�)〉,

where X is a set of traces on Σ̂. Then maximal trace semantics is 〈|P |〉 = αst
t (〈|P |〉+T ).

Moreover, if we define the abstraction
αst

d , on the timed denotational seman-
tics, as αst

d (f) = λs. αst◦f(〈s, 0〉),
when f : Σ̂ −→ ℘(Σ̂), we ob-
tain the (standard) denotational seman-
tics �P � = αst

d (�P �+T ). All the seman-
tics, with their abstraction relations, are
shown in the Figure on the left.

semantics
Timed denotational

Standard trace
semantics

Timed trace semantics

Standard denotational semantics

αst
t

αD

αD

αst
d

〈|P |〉

�P�

〈|P |〉+T

�P�+T

4 Defining Timed Abstract Non-interference

One of the most important features of abstract non-interference is that it is parametric
on the chosen semantics. This means that we can enrich/change the checked notion of
abstract non-interference for imperative languages by simply enriching/changing the
considered semantics. For this reason, the idea for making abstract non-interference
time sensitive, namely able to detect timing channels, corresponds to considering a
more concrete semantics observing time. The first approach consists in considering
the maximal trace semantics, instead of the denotational one, since the trace semantics
compare the partial results at each step of computation. Indeed, the trace semantics
implicitly embeds the time elapsed during computations in the length of traces since we
can suppose that the time is measured as the discrete number of computational steps
executed by the system. This observation suggests us that the trace semantics can be
used for defining a stronger notion of non-interference that capture also timing channels.
Therefore, we assume that we can have a timing channel in presence of an attacker that
can count the number of execution steps, which means that the attacker observes time
by looking at the program counter. On the other hand, we can also embed the reckon of
time in the semantics, by considering time as a public variable observed by any attacker.
In this way we can also think of modeling attackers that can only observe properties of
time, e.g., intervals or regular delays as congruences.

4.1 Timed Abstract Non-interference on Traces

First of all, consider abstract non-interference, defined in [10] in terms of trace seman-
tics. This means that at each step of computation we require that, what an attacker may
observe does not depend on private input. This situation is possible whenever we sup-
pose that the attacker is able to observe the public memory modified by the program.
Since abstract non-interference is based on the distinction between input and output,
the simplest way to extend the two notions is to consider, as output, the results of all the
partial computations, and as input only the initial values (namely the initial state). With
this assumption we can consider again only two closures, η for the public input, and ρ
for the public output3.

3 Note that in the most general case we could consider a family of “output” observations.
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Consider first narrow abstract non-interference. We can formulate the notion of non-
interference by saying that starting from a state with the low property η, then all the
possible observations of the states during the computation have the same low prop-
erty ρ. Therefore, the new notion of narrow non-interference consists simply in ab-
stracting each state of any computational trace. Let us introduce this notion through
an example. Consider the standard semantics where states are simply tuples of val-
ues for the variables, and consider for example the concrete trace (each state is 〈h, l〉,
with h : H and l : L ): 〈3, 1〉 → 〈2, 2〉 → 〈1, 3〉 → 〈0, 4〉 → 〈0, 4〉. Now, sup-
pose to observe the parity of public data, i.e., Par, both in input and in output, then
intuitively the abstraction, i.e., observation of this trace through the property Par, is:
2Z+1 → 2Z → 2Z+1 → 2Z → 2Z. Formally, given σ ∈ 〈|P |〉, we define its abstrac-
tion through the observation of ρ, as follows: σρ is such that ∀i ≤ |σ| . σρ

i = ρ(σL
i ). At

this point, consider only the terminating trace semantics of P , then we can define the
abstract semantics: Let ρ ∈ uco(VL ), X ∈ ℘(Σ+):

〈|P |〉ηρ = αη
ρ(〈|P |〉), αη

ρ(X) =
{
sηδρ

∣∣s ∈ Σ, sδ ∈ X
}

This is clearly an abstraction since it is additive by construction. Hence, we can
define narrow non-interference for traces as: Let η, ρ ∈ uco(℘(VL )) and P a program

P is secure if ∀h1, h2 ∈ VH , ∀l1, l2 ∈ VL . 〈|P |〉ηρ(h1, l1) = 〈|P |〉ηρ(h2, l2)

In the definition above of narrow non-interference on traces, we compare abstract
observations of concrete computations. This means that in order to define narrow non-
interference we keep the concrete semantics and we change its observation. If, instead,
we want to define abstract non-interference on traces, then we have to change also the
concrete semantics by considering as initial state the set of all the states with the same
public input property, namely we consider a symbolic execution of the system. In this
case we have to consider a lift of the transition relation to sets: Consider the transition
system 〈Σ,→〉, we define the lift �⊆ ℘(Σ)× ℘(Σ) as follows: ∀X ∈ ℘(Σ)

X �
{
y ∈ Σ

∣∣∃x ∈ X. x → y
}

Consider now the lifted transition system 〈℘(Σ),�〉, and consider the trace seman-
tics obtained from this transition system. Let us denote also this semantics as 〈|P |〉,
since it is clear from the input (depending on the fact that it is a state or a set of states)
which semantics we have to consider. Let us consider the abstract trace semantics 〈|P |〉ηρ ,
on the lifted transition system, then we define abstract non-interference on traces: Let
φ ∈ uco(℘(VH )), η, ρ ∈ uco(℘(VL )) and P be a program.

P is secure if ∀h1, h2 ∈ VH , ∀l ∈ VL . 〈|P |〉ηρ(φ(h1), η(l))L = 〈|P |〉ηρ(φ(h2), η(l))L

As observed above, the maximal trace semantics contains some discrete informa-
tion about time, namely it distinguishes, for instance, traces that differ only for the
repetition of states. For this reason we can say that it models also the timing channels
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due to the capability of the attacker of observing the clock of the program. In order to
check this kind of non-interference, in the framework proposed in [10], we consider
further abstractions of the semantics. The interesting aspect of this extension is that we
can apply the transformers defined on abstract non-interference simply by considering
the approximation based on bounded iteration. Bounded iteration, in fact, proves I/O
non-interference by requiring a stronger condition, i.e., it requires that all the partial
computations provide the same public output (see [10]).

4.2 Timed Abstract Non-interference on Timed Semantics

In this section we consider states which contain the information of time, i.e, we ex-
plicitly treat time in abstract non-interference. This means that we could use languages
where time can interfere in the flow of computation. Suppose that the low inputs are
pairs where the first component is a tuple of possible values for low variables, and the
second one is the time passed, i.e., l̂ = 〈l, t〉. We denote by l̂D = l ∈ VL the projection
on the data component, and l̂T = t ∈ N the projection on the time component. In the
following a state σ̂ will be the triple 〈sH , sL , t〉, and the initial states are of the kind
σ̂ = 〈si, 0〉. Standard non-interference without timing channels is: Let P be a program

P is secure if ∀l ∈ VL , t ∈ N, ∀h1, h2 ∈ VH . (�P �+T (〈h1, l, 0〉))L T = (�P �+T (〈h2, l, 0〉)L T

We can define the notions of narrow and abstract timed non-interference. In the fol-
lowing, when a program satisfies timed narrow or abstract non-interference we write
respectively [η]P+T (ρ) and (η)P+T (φ �[]ρ), and consider η, ρ ∈ uco(℘(VL × N)) and
φ ∈ uco(℘(VH )).

Definition 1.

– P ∈ IMP is such that [η]P+T(ρ) if ∀h1, h2 ∈ VH , ∀l̂1, l̂2 ∈ VL × {0} such that
η(l̂1)L = η(l̂2)L ⇒ ρ(�P �+T (〈h1, l̂1〉)L T ) = ρ(�P �+T (〈h2, l̂2〉)L T ).

– P ∈ IMP satisfies (η)P+T(φ �[]ρ) if ∀h1, h2 ∈ VH , ∀l̂ ∈ VL × {0} we have
ρ(�P �+T (〈φ(h1), η(l̂ )L 〉)L T ) = ρ(�P �+T (〈φ(h2), η(l̂ )L 〉)L T ).

It is clear that the only difference between these notions and the untimed ones is in the
semantics, therefore we can inherit, in a straightforward way, the whole construction
made in the previous sections, simply by considering the time as a further public datum.
In particular this allows us to derive the most concrete property, about time, that an
attacker has to observe in order to be harmless, as we can see in the following example.

Example 2. Let us consider the following example:

P
def= h := h mod 4; while h do l := 2l− l;h := h− 1; endw

with security typing t = 〈h : H , l : L 〉 and VL = N. Suppose that each state of the
trace semantics is 〈h, l, t〉, and suppose l ∈ VL and h ∈ VH , h �= 0:

〈0, l, 0〉 → 〈0, l, tA 〉 → 〈0, l, tA + tT 〉
〈h, l, 0〉 → 〈h mod 4, l, tA 〉 → 〈(h mod 4)− 1, l, 3tA + tT )〉

→ 〈0, l, 2(h mod 4)tA + (h mod 4 + 1)tT )〉
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Therefore, if for example h mod 4 = 2 then the total time is 4tA + 3tT . This means
that the most concrete abstraction of the domain of time that avoids timing channels is
the one that have the element {tA + tT , 2tA + 2tT , 4tA + 3tT , 6tA + 4tT } and abstracts
all the other natural numbers in themselves.

5 Timed vs Untimed Abstract Non-interference...

In this section we compare abstract non-interference defined in terms of standard de-
notational semantics, with timed non-interference. In particular standard abstract non-
interference can be seen as an abstraction of the time component of TANI.

5.1 ...On Traces

We observed that the simple use of traces makes abstract non-interference time sen-
sitive. We wonder how a notion of abstract non-interference on traces which is time-
insensitive can be obtained as abstraction of TANI. Therefore, we want to derive a trace
semantics which is not able to observe the clock, namely we have to make indistinguish-
able traces that differ only for the repetition of states. This is a well-known notion in
literature, called stuttering [2]: A semantics is said to be without stuttering if it is insen-
sitive to the repetition of states. Namely we can think of transforming the set of traces
that gives semantics to the program by eliminating the stuttering and then we can check
non-interference exactly as we have done before. Let X be a property on traces σ. Then
X is without stuttering if σ ∈ X.σ = σ0σ1 . . . σn . . . then ∀i ≥ 0 .σ0 . . . σiσi . . . ∈ X .
It is easy to show that the following abstraction, which characterizes the stuttering prop-
erties, is clearly an abstraction of sets of traces. 〈|P |〉stu = αstu(〈|P |〉ηρ) where

αstu(X) =
{
〈σ0, . . . , σn〉

∣∣∃δ ∈ X . δ = 〈σk0
0 . . . , σkn

n 〉, ∀i . ki �= 0, σi �= σi+1
}

Now we can formalize the abstract non-interference in the following way, obtaining a
notion of abstract non-interference on traces unable to detect timing channels.

P is secure for trace-based abstract non-interference if ∀h1, h2 ∈ VH , ∀l ∈ VL .

αη
ρ(〈|P |〉stu(φ(h1), η(l))L ) = αη

ρ(〈|P |〉stu(φ(h2), η(l))L ).

Note that, in this case, as it is also shown in the following example, abstract non-
interference is always an abstraction of timed abstract non-interference. Namely the
timed notion always stronger than the untimed one.

Example 3. Consider the trace semantics of a program P , with states 〈h, l〉, with n ∈ N
and m ∈ 2N+1: 〈|P |〉 = {〈0, 2〉 → 〈0, 3〉 → 〈0, 5〉, 〈n, 2〉 → 〈0, 2〉 → 〈0, 3〉, 〈n,m〉 →
〈n,m + 1〉} Consider ρ = Par. We determine the abstract trace semantics relatively to
Par: 〈|P |〉Par

Par = αPar
Par(〈|P |〉) = {2N → 2N+1 → 2N+1, 2N → 2N → 2N+1, 2N+1→

2N} Hence, when the low input is even, we have interference. If we want to guaran-
tee non-interference knowing that the attacker cannot observe the time elapsed, then
we use the stuttering abstraction, obtaining the following semantics, which says that
there’s not interference, since for each abstract property we have only one possible
result. 〈|P |〉stu = {αstu(〈|P |〉Par

Par) = 2N → 2N + 1, 2N + 1 → 2N}
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5.2 ...on the Timed Semantics

In this section, we study the relation existing between the timed notion of abstract non-
interference and the untimed one, when we embed the time information in the seman-
tics. Indeed, starting from closures η, ρ ∈ uco(℘(VL )) without time, the extension to
semantics with time is trivially obtained by taking the closure that is not able to observe
anything about time, i.e., we interpret a generic closure η ∈ uco(℘(VL )) as the closure
that is not able to observe time, therefore that abstracts time to the top: η+T = 〈η, λt.N〉.
It is worth noting that [η]P (ρ) ⇔ [η+T ]P+T(ρ+T ). In other words, since time can be
treated as an additional public variable, we could see abstract non-interference as timed
abstract non-interference where the time variable is abstracted to the top. Unfortunately,
if we start from a semantics with time and we want to derive abstract non-interference
properties without time, then the relation is not so immediate. Indeed, if time interferes
with data we have that the abstraction of time is not straight. Clearly, time cannot in-
terfere with data in the concrete semantics for the simple imperative language we are
considering, but it can interfere in the abstract semantics modeling the attacker. In other
words, when we consider timed abstract non-interference, the attacker model could ob-
serve relations between data and time, avoiding the independent abstraction of time.
Namely if we abstract time we may lose something about the attacker’s observation of
data. Therefore, if we start from closure operators on semantics with time, namely from
the closures η, ρ ∈ uco(℘(VL ×N)), we can obtain properties without time in two ways.
We can think of erasing the observation of time only in the output, i.e., we abstract away
the information about time, or we can think of collecting all the possible results for ev-
ery possible time value. In this way, we are able to ignore the information about time
also in the input. In the following, we characterize some necessary and sufficient condi-
tions on the attacker model, that indeed make timed abstract non-interference stronger
than abstract non-interference, and therefore the two notions comparable.

Abstracting Time in the Output. Consider the first case, namely we do not observe
time in the output. Let us define the projection, of a pair X ∈ ℘(VL × N), on data
or on time in the following way: ΠT (X) def=

{
〈x, y〉

∣∣∃y′ ∈ N . 〈x, y′〉 ∈ X, y ∈ N
}

and ΠD (X) def=
{
〈x, y〉

∣∣∃x′ ∈ N . 〈x′, y〉 ∈ X, x ∈ VL
}

. In particular, given a clo-
sure ρ ∈ uco(℘(VL × N)), we can apply these abstractions to ρ obtaining for each X ∈
{T , D }, ΠX(ρ)

def=
{
ΠX(Y )

∣∣Y ∈ ρ
}

. It is immediate to show that for each X ∈ {T , D },
ΠX ∈ uco(℘(VL ×N)). It is clear that the set ΠT (ρ) is the set of the images of the map
ΠT ◦ρ. Note that, even if both ΠT (or ΠD ) and ρ are closures, then their composition
may not be a closure, as happens in the picture below, where we have 〈2,N〉 /∈ ΠT (ρ).
In general ΠT ◦ρ is not an upper closure operator,soweconsiderρ−T def= M(ΠT (ρ))4 and
ρ−D def= M(ΠD (ρ)), which are by definition of M, closures, i.e., η−T ∈ uco(℘(VL ))
and η−D ∈ uco(℘(N)). The fact that in general ρ−T �= ΠT (ρ) and ρ−D �= ΠD (ρ)
is a problem when we want to compare timed non-interference with abstract non-
interference since elements that have the same image in ρ may be different in ρ−T ,

4 M(X) def= {∧S | S ⊆ X} is called Moore closure.
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〈2, 0〉
〈3, 0〉

〈3, N〉
〈2, N〉

ΠT (ρ)

〈5, 3〉
〈2, 4〉

⊥

�

〈5, N〉
〈2, N〉

�

⊥

〈2, N〉

ρ−T

〈3, 0〉
〈2, 0〉

〈3, N〉
〈2, N〉

〈5, 3〉
〈2, 4〉

⊥

�

〈2, 4〉〈3, 0〉 〈2, 0〉

〈5, N〉
〈2, N〉

�

⊥

〈2, N〉

〈3, 0〉 〈2, 0〉 〈2, 4〉

and viceversa as we can see in the pic-
ture below. So, we would like to char-
acterize when the two notions are com-
parable. The picture above shows that
problems arise when the Moore clo-
sure adds new points, namely when
ΠT (ρ) is not a closure. Therefore, we
first want to understand when this is an
upper closure operator, namely when
ΠT ◦ρ ∈ uco(℘(VL × N)). It is well
known [18] that, given two closures
ρ, π ∈ uco(C), thenwe have π◦ρ ∈
uco(C) iff π◦ρ = ρ◦π = ρ # π.
This means that we need a ρ such that
ΠT ◦ρ = ρ◦ΠT .

Theorem 1. Let ρ ∈ uco(℘(VL × N)), then ρ−T = ΠT ◦ρ ∈ uco(℘(VL × N)) iff
ΠT ◦ρ◦ΠT = ρ◦ΠT iff ΠT ◦ρ◦ΠT = ΠT ◦ρ. Analogously, we have ρ−D = ΠD ◦ρ ∈
uco(℘(VL × N)) iff ΠD ◦ρ◦ΠD = ρ◦ΠD iff ΠD ◦ρ◦ΠD = ΠD ◦ρ.

In [14] a method for transforming ΠT in order to make it satisfy ΠT ◦ρ◦ΠT = ρ◦ΠT and
ΠT ◦ρ◦ΠT = ΠT ◦ρ is provided. Anyway, in this context we are more interested in mod-
ifying ρ in order to guarantee completeness. In particular, let X ∈ {T , D }, then the fol-
lowing transformations of ρ satisfies forward completeness. Note that
Π+

X (X) def=
⋃{

Y
∣∣ΠX(Y ) ⊆ X

}
is the right adjoint of ΠX:

ρ↑X(Y ) def=
{
ΠX◦ρ(Y ) if Y ∈ ΠX

ρ(Y ) otherwise
ρ↓X(Y ) def=

{
Π+

X ◦ρ(Y ) if Y ∈ ΠX

ρ(Y ) otherwise

Then ρ↓X 3 ρ 3 ρ↑X . Namely we can always transform the abstractions, used for mod-
eling the attacker, in order to guarantee that the abstraction of time is a complete upper
closure operator, i.e., given a generic ρ we always have that (ρ↓X)−T and (ρ↑X)−T are
closure operators. For the timed abstract non-interference this means that, given an at-
tacker’s model ρ, we can always find the closest model such that the observation of time
does not enrich the attacker capability of observing data.

The following theorem says that the semantics for timed abstract non-interference
is an abstract interpretation of the one for abstract non-interference with ρ−T iff the
output observation ρ commutes with ΠT

Theorem 2. Let η, ρ ∈ uco(℘(VL × N)), then ([η]P+T(ρ) ⇒ [η−T ]P+T(ρ−T )) if and
only if we have (ΠT ◦ρ = ρ◦ΠT ).

Whenever we observe a relational property between data and time, in timed abstract
non-interference we add new deceptive flows. Indeed, timed abstract non-interference
may fail even if the program is secure and avoids timing channels, as it happens in the
following example.
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Example 4. Consider the program P :
h := 2; while h do l := l + 2; h :=
h−1; endw. In this example, we show that
in the timed abstract non-interference we
add new deceptive flows due to the possible
relation between data and time of the ab-
stract property. Consider a property ρ such
that ρ(〈8, 5〉) �= ρ(〈6, 5〉) (as depicted in
the picture) and η = 〈Par, id〉, which ob-
serves parity of data and the identity on
time. Suppose tT = 1 and tA = 0.5.

ρ−T

〈1, N〉

�

⊥

〈2N, N〉

〈6, 5〉〈8, 5〉

〈2N, N〉
〈3, N〉

〈2N, N〉

�

⊥

〈6, 5〉, 〈1, 2〉

〈6, 5〉

〈8, 5〉, 〈3, 4〉

〈8, 5〉

〈2N � {8}, 1〉 〈2N � {6}, 3〉

Consider the initial low values (data and time) 〈4, 0〉 and 〈2, 0〉, clearly we have
η(〈4, 0〉) = 〈2N, 0〉 = η(〈2, 0〉). We have now compute the semantics:

�P �(0, 〈4, 0〉)L T = 〈8, 3tT + 4tT 〉 = 〈8, 5〉 and �P �(0, 〈2, 0〉)L T = 〈6, 5〉
At this point, since ρ(〈8, 5〉) �= ρ(〈6, 5〉), non-interference is not satisfied, while there
aren’t timing information flows, namely ρ−T (〈8, 5〉) = ρ−T (〈6, 5〉).
Note that, the presence of deceptive flows due to the observation of time arise only
when there is a relational dependency between data and time.
The following corollary provides a characterization of timing channels in terms of the
relation existing between the timed abstract non-interference and the abstract one.

Corollary 1. If ρ commutes with ΠT , i.e., ΠT ◦ρ = ρ◦ΠT , and [η−T ]P+T(ρ−T ) iff
[η]P+T(ρ), then timing channels are impossible in P .

Abstracting Time in the Input. As we said above we can think of another way of
erasing time, this is also suggested by the fact that we have two possible compo-
sitions of a closure with the projection ΠT : ΠT ◦ρ and ρ◦ΠT , which are the same
when they are closures. Anyway, their meaning is different, the first compute the prop-
erty with time and abstract the observation, while the second abstracts time in the
input, namely compute the property on the abstracted value, without time. Let L ⊆
VL , we can define the closure on ℘(VL ) as ρ−T (L) def= ↓D ◦ρ◦ΠT (〈L,N〉), where
〈L,N〉 def= {〈x, y〉|x ∈ L, y ∈ N} and the abstraction ↓Dis the projection of the tuple
on data, i.e., ↓D(X) def= {x|〈x, y〉 ∈ X}.

In the following, we characterize when the composition ↓D◦ρ◦ΠT is an upper clo-
sure operator. This is important in order to derive properties of narrow or abstract non-
interference without time in programs where the semantics measures time, and therefore
for understanding the relation existing between the notions of abstract non-interference
with and without time.

Proposition 1. ρ−T ∈ uco(℘(VL )) iff ↓D◦ΠT ◦ρ◦ΠT =↓D◦ρ◦ΠT .

The following theorem says that the semantics for timed abstract non-interference is
an abstract interpretation of the one for abstract non-interference with ρ−T iff the data
projection commutes on elements closed under ΠT .

Theorem 3. Let η, ρ ∈ uco(℘(VL ×N)). Let η−T , ρ−T ∈ uco(℘(VL )), ↓D◦ΠT ◦η =↓D
◦η◦ΠT , then [η]P+T(ρ) ⇒ [η−T ]P (ρ−T ) if and only if ↓D◦ρ◦ΠT =↓D◦ρ◦ΠT ◦ρ.
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Non Relational Attackers. A sufficient condition, in order to make the non-interference
notions comparable, consists in considering only closures defined on ℘(VL ) × ℘(N),
which are particular closures of ℘(VL ×N). Note that, if ρ ∈ uco(℘(A)×℘(B)), then
there always exist two closure ρA and ρB , such that ρ(〈X,Y 〉) = 〈ρA(X), ρB(Y )〉.
Consider ρ ∈ uco(℘(VL )×℘(N))), we can obtain the closure ρ∗ ∈ uco(℘(VL ×N)) as
ρ∗

def= γ◦ρ◦α, where α(X) def= 〈X↓D, X↓T〉 and γ(〈X,Y 〉) def=
{
〈x, y〉

∣∣x ∈ X, y ∈ Y
}

form a Galois insertion. Note that, in this case there are no more deceptive flows due to
the observation of time, since here we cannot observe relations between data and time.

Proposition 2. Let ρ ∈ uco(℘(VL ) × ℘(N)), consider ρ∗ ∈ uco(℘(VL × N)) defined
ρ∗

def= γ◦ρ◦α, then we have ΠT ◦ρ∗ = ρ∗◦ΠT and ΠD ◦ρ∗ = ρ∗◦ΠD .

Therefore, by Theorem 2 and Theorem 3, this
means that in the conditions of the Proposition
above, timed abstract non-interference implies ab-
stract non-interference. This is only a sufficient
condition, since there are closure operators ρ /∈
uco(℘(VL ) × ℘(N) such that ΠT ◦ρ = ρ−T or
ΠD ◦ρ = ρ−D . As we can see in the picture,
〈n,N〉 def=

{
〈n,m〉

∣∣m ∈ N
}

. where In particu-
lar in the example above we can also note that
ΠT ◦ρ = ΠT # ρ.

〈4, N〉
〈5, N〉

〈2, N〉
〈3, N〉

�

⊥

ΠT ◦ρ

〈4, N〉
〈5, N〉

〈4, 5〉
〈5, 6〉

〈2, 3〉
〈3, 4〉

〈2, N〉
〈3, N〉

�

⊥

ρ

6 Conclusion

In this paper, we extend abstract non-interference in order to detect timing channels,
namely those channels of informations created by the ability of the attacker to ob-
serve the time elapsed during computation, obtaining timed abstract non-interference,
which embeds the time reckoning into the semantics. Afterwards, we study the rela-
tion between this new notion and abstract non-interference defined in [10]. This is
an example of how, by changing the semantics, we can change the defined notion of
non-interference. In the same way, we would like to define a probabilistic abstract
non-interference, for checking probabilistic channels, considering also properties of the
probabilistic distribution of values.
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