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Abstract. Private itemset support counting (PISC) is a basic building block
of various privacy-preserving data mining algorithms. Briefly, in PISC, Client
wants to know the support of her itemset in Server’s database with the usual
privacy guarantees. First, we show that if the number of attributes is small,
then a communication-efficient PISC protocol can be constructed from a
communication-efficient oblivious transfer protocol. The converse is also true:
any communication-efficient PISC protocol gives rise to a communication-
efficient oblivious transfer protocol. Second, for the general case, we propose a
computationally efficient PISC protocol with linear communication in the size of
the database. Third, we show how to further reduce the communication by using
various tradeoffs and random sampling techniques.

Keywords: privacy-preserving data mining, private frequent itemset mining, pri-
vate itemset support counting, private subset inclusion test.

1 Introduction

Frequent itemset mining—also known as frequent pattern mining—is a central task in
data mining that has driven research in data mining for ten years. Nowadays, there are
special workshops on various aspects of frequent itemset mining [BGZ04]. The goal in
frequent itemset mining is to find all frequent itemsets in a given transaction database.
Many kinds of data can be viewed as transaction databases and various data mining
tasks arising in document analysis, web mining, computational biology, software engi-
neering and so on can be modelled as frequent itemset mining. For example, one can use
frequent itemset mining to find which items are usually bought together in a supermar-
ket, or to analyse the correlation between various patterns in the genome database. The
mining of frequent itemsets is a very challenging problem, and it is clearly even more
challenging in the scenarios when one encounters privacy issues. Several researchers
have studied the distributed case with multiple servers, all having a part of the database,
who need to mine frequent itemsets in the joint database without revealing each other
too much extra information.

We are concerned with a slightly different scenario where the database is owned by a
single party, Server, who sells the result of frequent itemset mining (either the collection
of all frequent itemsets or the support of a fixed itemset) to others. That is, we consider
the itemset support counting (ISC) problem, which is often used as a building block of
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frequent itemset mining or association rules mining, but is important also by itself. As
an example of ISC, Server could maintain a commercial citation database, and Client
could want to find out how many people cite both herself and Shannon. Other possible
examples include Internet search engines, mining in medical databases, etc. In most
of such applications, some form of privacy must be guaranteed. On the one hand, it
is not in Server’s interests that Client obtains more information than she has paid for;
moreover, in some cases like the medical databases, giving out more information might
even be illegal. On the other hand, Client also does not necessarily want Server to know
which itemset interests her.

To define the private itemset support counting, let us first describe the setting more
formally. Server owns a m×n Boolean database D that can be considered as a multiset
of m subsets of the set [n] = {1, . . . , n}. Every row is D is called a transaction; it might
correspond to a transaction in supermarket, with j ∈ D[i] if jth item was purchased
during the ith transaction. A subset of [n] is called an itemset, it corresponds to the
set of items that can be in the ith transaction (e.g., the set of items that were bought
together). The goal of Client is to determine the support suppD(Q) := |{i : Q ⊆ D[i]}|
of an itemset Q ⊆ [n] in D, i.e., to find out how many of Server’s transactions contain
Q. In an (m × n)-private itemset support counting (PISC) protocol, Client retrieves
suppD(Q), so that (1) she will get no other information about the database D (server-
privacy) and (2) Server gets no information about Q (client-privacy). In the scope of
this paper, we require server-privacy to be information-theoretical and client-privacy to
be computational.

The data mining setting implies a few non-standard considerations, mostly due to
the large amounts of the handled data. First, m and n can be very large (e.g., m, n ≥
10 000), so whenever possible, it is desirable to have communication and computation
of order o(mn). Second, again due to the large amount of data, it is impractical to
have protocols that are verifiable or even provide correctness. Therefore, we only focus
on the privacy issues of the PISC protocols. Thus, we use relaxed security definitions,
standard in the case of computationally-private information retrieval, oblivious transfer
and oblivious keyword search protocols, where the security of the client is only defined
by requiring that his query will remain private. Moreover, we construct protocols that
are private in the semi-honest model since they are usually efficient and may suffice in
the practice. Protocols, private in the malicious model, can be constructed by adding
standard zero-knowledge proofs. In all cases, we put emphasis both on the efficiency of
the protocols and on the provable security.

First, we show a close correspondence between PISC and CPIR by providing tight
two-way reductions between these two problems. More precisely: (a) Given a

(
s
1

)
-CPIR

protocol CPIR of �-bit strings with communication CCPIR(s, �), we show how to con-
struct a (2n ×n)-PISC protocol CPIR-PISC with communication CCPIR(2n, n). Taking
the recent

(
s
1

)
-oblivious transfer protocol for �-bit strings of Lipmaa [Lip05] with com-

munication Θ(log2 s + � · log s), this results in communication Θ(n2). (The use of a
very recent CPIR protocol by Gentry and Ramzan [GR05] results in communication
Θ(n).) However, in the case of CPIR-PISC, Server needs to store a table of 2n · n
bits and then execute the CPIR protocol on 2n elements, which is infeasible when say
n ≥ 20, while in a realistic data mining application, n might be larger than 10 000.
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(b) Given a (m × n)-PISC protocol PISC with communication CPISC(m, n), we show
how to construct a

(2n−1
1

)
-CPIR protocol PISC-CPIR on 1-bit strings with commu-

nication CPISC(2n, n). This enables us to carry over several standard results on the
CPIR and oblivious transfer protocols to the PISC scenario. Moreover, the reductions
increase communication at most by factor of n, therefore the optimal communication
of the CPIR and PISC protocols can differ only by a logarithmic term in the database
size.

For databases with many attributes, we describe an alternative (m×n)-PISC protocol
PSI-PISC that uses a new private subset inclusion protocol PSI, also described in this
paper, as a subroutine. The resulting protocol has communication (n+m+1) ·k, where
k is the bit-length of a ciphertext, and is private in the semi-honest model assuming that
the used homomorphic cryptosystem (a) has plaintext space with prime cardinality,
and (b) is IND-CPA secure; the Decisional Diffie-Hellman Assumption is sufficient
here. The protocol can be made secure in the malicious model by using standard (non-
interactive) zero-knowledge proofs. The PSI-PISC protocol is computationally feasible
even when n ≈ 10 000, since the computational work of Server is of order Θ(n + m +
w(D)) encryptions and decryptions, where w(D) is the number of 1-bits in the usually
very sparse database D.

In addition, we study imprecise protocols: we discuss the problem of just detecting
whether the given itemset is frequent and study sampling techniques. Random sampling
of the database and approximating the itemset support based on the support in the sam-
ple allows us to cheaply extend the PSI-PISC protocol to huge databases, supposing
that Client is willing to accept approximate answers.

2 Preliminaries

For an integer s, denote [s] := {1, 2, . . . , s}. For a nonnegative integer X , let len(X) :=
�log2(X + 1)� denote the number of bits it takes to store and transfer X . The statisti-
cal difference of two distributions X and Y over the discrete support Z is defined as
Dist (X ||Y ) := maxS⊆Z | Pr[X ∈ S] − Pr[Y ∈ S]|.

Data mining setting. Our setting is the following, very common one in data mining.
The Server has a transaction database D over n attributes (or items) A1, A2, . . . , An

and the database consists of m transactions. A transaction is a subset of the attributes.
Alternatively, a transaction database D of m transactions over n attributes can be con-
sidered as a m × n binary matrix D where the entry (i, j) is one iff Aj ∈ D[i]. In a
realistic setting, the resulting 0-1 matrix can have e.g. 100 000 transactions (rows) and
50 000 attributes (columns).

The frequent itemset mining task is, given a transaction database D of m rows
and a minimum frequency threshold σ ∈ (0, 1], to find the subsets of attributes
that are contained in σ-fraction of the transactions, i.e., to determine the col-
lection F = {X ⊆ {A1, . . . , An} : freqD(X) ≥ σ} of σ-frequent itemsets in D
where freqD(X) = |{i ∈ [m] : X ⊆ D[i]}| /m = suppD(X)/m. Alternatively,
the set of frequent itemsets can be specified by the support threshold as F =
{X ⊆ {A1, . . . , An} : suppD(X) ≥ σ · m}. Usually also the frequencies or the sup-
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ports of the frequent itemsets are required. We assume that attribute labels A1, . . . , An

are public and thus can be substituted with canonical labelling {1, . . . , n}.
Although frequent itemset mining can be done in time O(mnκ) [AMS+96], where

κ is the number of frequent itemsets, the running time can easily become intractable,
since κ itself is exponential in the cardinality of the largest frequent itemset due to
the monotonicity of the support. Therefore, various output compaction techniques are
known from the literature, see [BGZ04] for an up-to-date overview of frequent itemset
mining algorithms and references.

Sampling bounds. Let X1, . . . , Xk be independent random 0-1 variables that are
drawn from the same distribution with the expectation µ = Pr [Xi = 1]. Let X be the
average (X1+· · ·+Xk)/k. Then the Chernoff bound Pr [(1 − ε)µ ≤ X ≤ (1 + ε)µ] ≤
2 · exp

(
−kµε2

4

)
describes the distribution of relative error and the Hoeffding bound

Pr [|X − µ| ≥ ε] ≤ 2 · exp
(
−2kε2

)
the distribution of absolute error.

IND-CPA secure homomorphic cryptosystems. A public-key cryptosystem is a triple
Π = (G, E, D), where G is the key generation algorithm that returns (sk, pk) consist-
ing of a secret key sk and a public key pk, E is the encryption algorithm and D is the
decryption algorithm. For a fixed public-key cryptosystem Π and a secret key sk, let C
be the ciphertext space, let R be the randomness space and let P be the plaintext space.
Then, Epk : P × R → C and Dsk : C → P . Define Advindcpa

Π (A) := 2 · | Pr[(sk, pk) ←
G, (m0, m1) ← A(pk), b ← {0, 1} : A(m0, m1, Epk(mb; R)) = b] − 1

2 |. We say that

Π is (τ, ε)-secure in the sense of IND-CPA if Advindcpa
Π (A) ≤ ε for any probabilistic

algorithm A that works in time τ .
Cryptosystem Π is homomorphic if for any key pair (sk, pk), any m, m′ ∈ P and any

r, r′ ∈ R, Epk(m; r) ·Epk(m′; r′) = Epk(m+m′; r ◦ r′), where + is a group operation
in P , and ◦ is a groupoid operation in R. A few homomorphic cryptosystems are proven
to be secure in the sense of IND-CPA under reasonable complexity assumptions.

Definitions of Client and Server privacy. Assume that Client and Server want to se-
curely compute a functionality f , so that Client receives f(Q, D) and Server receives
nothing, where Q is Client’s private input and D is Server’s private input. In our case,
Server’s input is potentially so huge that all currently known cryptographic techniques
fail to provide correctness in tractable time. Therefore, we consider only privacy issues,
i.e., we use relaxed security definitions. Thus, we do not require Server to commit to
or even “know” a database to which Client’s search is effectively applied. Such a relax-
ation is standard in the case of protocols like oblivious transfer, computationally-private
information retrieval and oblivious keyword search; our security definitions correspond
closely to the formalisation given in [FIPR05]. Moreover, in a semi-honest case, all
proposed protocols have two messages and therefore, standard security definitions can
be somewhat simplified.

Denote by Client an honest Client and by Server an honest Server. Let Clientsk(·; ·)
denote Client’s (first) message and Serverpk(·; ·) denote Server’s (second) message.
Let RClient (resp. RServer) be the randomness space of an honest Client (resp. Server).
Then we say that a two-message protocol Π is (τ, ε)-client-private (in the malicious
model), if for any probabilistic algorithm A with the working time τ , Advc−privacy

Π (A) :=



Private Itemset Support Counting 101

2 · max(Q0,Q1)
∣
∣Pr [b ← {0, 1} : A(Q0, Q1, Client(Qb; RClient)) = b] − 1

2

∣
∣ ≤ ε. Here,

Q0 and Q1 are assumed to be valid client-side inputs, and the probability is taken over
the coin tosses of Client, A and over the choices of b.

We define information-theoretical server-privacy in the semihonest model by requir-
ing that for every unbounded honest-but-curious algorithm A, one can define a sim-
ulator Sim that, given solely A’s private input Q, A’s random coins r, and A’s pri-
vate output f(Q, D), generates output that is statistically indistinguishable from the
view (msg1, msg2) of A that reacts with the honest Server, where msg1 ← A(Q; r)
and msg2 ← Server(D, msg1; RServer). More precisely, the advantage of A is defined
Advs−privacy

Π (A) := max(Q,D) Dist (Simpk(Q, r, f(Q, D))||(msg1, msg2)). Here, D is as-
sumed to be a valid Server-side input. Protocol is ε-server-private (in the semihonest
model), if for all unbounded honest-but-curious A, Advs−privacy

Π (A) < ε. Security in the
malicious model is defined as usually.

Computationally-private information retrieval (CPIR) and oblivious transfer
(OT). During a single-server

(
m
1

)
-computationally-private information retrieval pro-

tocol, Client fetches D[Q] from the database D = (D[1], . . . , D[m]), D[i] ∈ Z� for
some fixed domain Z�, so that a computationally bounded Server does not know which
entry Client is learning. In the case of a two-message CPIR protocol, we can used
the previously previously given client-privacy definition. An (τ, ε)-client-private

(
m
1

)
-

CPIR is an (computationally) (τ, ε)-client-private and (information-theoretically) ε′-
server-private

(
m
1

)
-OT protocol if it is additionally ε′-server-private. A recent

(
m
1

)
-

CPIR protocol by Lipmaa [Lip05],
(
m
1

)
-LipmaaCPIR, has asymptotic communication

Θ(log2 m + log m · �) (assuming that the security parameter is a constant). Based on
the Aiello-Ishai-Reingold CPIR-to-OT transform [AIR01], Lipmaa also described an(
m
1

)
-OT protocol with the same asymptotic communication. Lipmaa’s protocols are

client-private assuming that the underlying Damgård-Jurik homomorphic cryptosystem
is IND-CPA secure, or equivalently, if the Decisional Composite Residuosity Problem
is hard. Lipmaa’s protocols are unconditionally server-private. A very recent

(
m
1

)
-CPIR

protocol by Gentry and Ramzan [GR05] has communication Θ(log m + �).

Private Keyword Search. In many data-mining applications, the data is indexed by
a relatively small subset of keys K ⊆ {1, . . . , m}, where the set K itself is private.
Therefore, if a Client wants to privately access D[Q] the straightforward solution, a(
m
1

)
-OT to the database where empty slots are filled with dummy elements is subopti-

mal. Several solutions that improve communication and computation costs in this situa-
tion [CGN97, OK04, FIPR05] have been proposed. Such solutions either combine hash
tables and oblivious transfer, or use oblivious evaluation of pseudo-random functions.

3 Basic Cryptographic Tool: Private Subset Inclusion Protocol

In a private subset inclusion (PSI) protocol, Client has a set Q ⊆ [n], Server has a
set S ⊆ [n], and Client must establish whether Q ⊆ S or not without neither of the
parties obtaining any additional information. More precisely, the protocols must satisfy
client-privacy and server-privacy as formalised in Sect. 2, where for the ease of imple-
mentation we define f(Q, S) = 0, if Q ⊆ S, and f(Q, S) �= 0, otherwise. We use the



102 S. Laur, H. Lipmaa, and T. Mielikäinen

PRIVATE INPUT: Client has a set Q and Server has a set S.
PRIVATE OUTPUT: Client knows whether Q ⊆ S or not.

Message 1, Client Generate a new key pair (sk, pk) ← G. Send pk to Server.
For any i ∈ [n], generate a new nonce ri ←r R. Send ci ← Epk(Q[i]; ri) to Server.

Message 2, Server Draw s ←r P , r ←r R uniformly at random. Set c ← (
∏

i:S[i]=0 ci)
s ·

Epk(0; r). Send c to Client.
Post-processing by Client Set t ← Dsk(c). Accept that Q ⊆ S iff t = 0.

Protocol 1. Private homomorphic subset inclusion test protocol

fact that Q ⊆ S ⇐⇒ |Q ∩ S| = |S|. Let Q (resp. S) also denote the characteristic
function of Q (resp. S). That is, Q[i] = 1 ⇐⇒ i ∈ Q and S[i] = 1 ⇐⇒ i ∈ S.

To solve PSI, we could use a recent private set intersection cardinality protocol
by Freedman, Nissim and Pinkas [FNP04]. However, their solution requires a costly
secure-circuit evaluation since the intersection cardinality must remain private. Proto-
col 1, based on ideas from [AIR01, Lip03], is a conceptually simpler and more efficient
alternative, especially when security either in the malicious model is required or the
protocol is used in the context of itemset counting as later in Protocol 3. Here, we ex-
plicitly assume that the plaintext length is at least len(n) bits, where n ≥ |Q ∪ S| is the
a priori fixed domain size. This assumption is always true in practice.

Theorem 1. Let Π be a (τ, ε) IND-CPA secure homomorphic cryptosystem and let n
be smaller than any prime divisor of |P|. Then Protocol 1 is (τ − O(n), nε)-client-
private and 0-server-private in the semi-honest model. Protocol 1 is correct with prob-
ability 1 − |P|−1.

Proof. First, Q ⊆ S iff w :=
∑

i:S[i]=0 Q[i] = 0. Therefore, homomorphic proper-
ties of Π assure that c is a random encryption of zero, if Q ⊆ S. If Q �⊆ S, then
w ≤ |Q| ≤ n is not a divisor of |P| and thus c is a random encryption of a random
plaintext. Consequently, the probability that Q �⊆ S if c is an encryption of zero is
|P|−1. Computational client-privacy follows directly from the IND-CPA security of Π .
As Server sees only n ciphertexts, any adversary A that can distinguish two vectors
of ciphertexts can be used for distinguishing only two ciphertexts. The corresponding
hybrid argument is fairly standard. Server-privacy is guaranteed as the second message
depends only on whether Q ⊆ S or not. ��

Security in the malicious model. A standard way to make the described protocol private
in the malicious model is to let Client to prove the correctness of her actions; that means
proving that (a) pk is a valid public key and that (b) every ci encrypts either 0 or 1.
This can be done by using (non-interactive) zero-knowledge or non-interactive zero-
knowledge proofs of knowledge.
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4 Exact Private Itemset Support Counting Protocols

Let Q ⊆ [n] be Client’s query, D be the database and m be the number of the rows in the
database; that is, D[i] ⊆ [n] for i ∈ [m]. More precisely, we treat Q as a binary n-tuple
corresponding to the characteristic function of Client’s input and D as an m × n binary
matrix. Recall that in a PISC protocol, Client has to compute, in a privacy-preserving
manner, the value suppD(Q) := |{i : Q ⊆ D[i]}|.

4.1 Relation Between PISC and CPIR

We first show that there are tight reductions between oblivious transfer and PISC pro-
tocols even if n is relatively small. For precise quantification, denote by CCPIR(s, �) the
communication of a

(
s
1

)
-computationally private information retrieval protocol CPIR on

�-bit strings. Similarly, let us denote by CPISC(m, n) the communication of an (m×n)-
PISC protocol PISC.

Theorem 2. (a) Let CPIR be a
(2n

1

)
-computationally private information retrieval pro-

tocol on �-bit strings. Assume that len(m) ≤ �. Then there exists a client-private
(m × n)-PISC protocol CPIR-PISC with communication CCPIR(2n, �). Server has to
pre-compute and store a table of 2n · len(m) bits; this table can be computed in time
Θ(2n · m) ignoring logarithmically-small multiplicands.
(b) Let PISC be a client-private (2n × n)-PISC protocol. Then there exists a

(2n−1
1

)
-

CPIR protocol PISC-CPIR on 1-bit strings with communication CPISC(2n, n). Server
has to pre-compute and store a table of ≤ 2n ·n bits; this table can be computed in time
Θ(22n · 2n) ignoring logarithmically-small multiplicands.

Proof. (a) Server computes off-line the support of all 2n itemsets in the database D,
and stores them in a new database D′. Note that the database D′ contains 2n elements,
each len(m) bits. After that, Client and Server use the

(2n

1

)
-CPIR protocol to retrieve

the Qth element of D′. Clearly, Client learns the support of Q, while Server obtains no
new knowledge. If we use an oblivious transfer protocol instead of a CPIR protocol,
then we get a server-private version of the CPIR-PISC protocol,

(b) Let S = S[1] . . . S[2n − 1] be Server’s (2n − 1)-bit input, and let i be Client’s
query in the

(2n−1
1

)
-CPIR protocol. We construct a specific 2n × n binary database D

such that itemset supports in it encode S. More precisely, let χ(a) := (a1, . . . , an) be a
Boolean vector corresponding to the binary representation of a, that is, a =

∑
2j−1aj .

The next algorithm builds a database D such that suppD(χ(a)) ≡ S[a] mod 2 for
every a ∈ {1, . . . , 2n − 1}:

1. Initialise D as a 2n × n all-zero matrix.
2. For w = n downto 1 do

For all a s.t. the vector (a1, . . . , an) ∈ Z
n
2 has Hamming weight w do

(a) Set v ← suppD(a1, . . . , an).
(b) If v �≡ S[a] mod 2

then replace the first all-zero row of D with (a1, . . . , an).
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Since this algorithm considers itemsets in the order of decreasing cardinality, subse-
quent changes do not alter the already computed supports; thus, at the end all bits of S
are correctly encoded. Moreover, the number of replaced rows is not greater than 2n −1
and thus step 2b never fails to find an all-zero row. It is straightforward to derive the
complexity bounds for this step.

Let D be the final version of this database. Now, when Client wants to make a
CPIR query i, he instead forms the corresponding PISC query Q := χ(i) and obtains
suppD(Q) by executing PISC. Then, he computes S[i] ← suppD(Q) mod 2. Clearly,
the client-privacy of PISC-CPIR follows directly from the client-privacy of the original
PISC protocol. ��

By using similar but more complicated techniques, one can directly construct an obliv-
ious transfer protocol based on a PISC protocol. In this case, the number of rows of the
database D is still polynomial w.r.t. the number of encoded bits.

Corollary 1. Assume that the Decisional Composite Residuosity Problem is hard. As-
sume that n = polylog(m). There exists a private (m × n)-PISC protocol CPIR-PISC
with communication Θ(n2 · log2 |P|+n · len(m)) and Server’s online work Θ(2n ·m).

The use of a very recent
(
m
1

)
-CPIR protocol by Gentry and Ramzan [GR05] would

result in communication Θ(n + len(m)).
As the communication complexity of non-private itemset support count is roughly

n + len(m), Corollary 1 provides an almost communication-optimal solution. On the
other hand, Thm. 2 indicates that any PISC protocol with optimal communication
O(n+log m) gives a rise to a

(
s
1

)
-CPIR protocol with communication O(log s). More-

over, the known lower and upper bounds on the CPIR protocols can be used to get
lower and upper bounds for the (m×polylog(m))-PISC protocols. For example, given
a trapdoor permutation, there exists an (m × polylog(m))-PISC protocol with com-
munication m − o(m). On the other hand, an (m × polylog(m))-PISC protocol with
communication m − o(m) implies the existence of one-way functions.

4.2 Oblivious Keyword Search-Based PISC

As a serious drawback, note that CPIR-PISC is practical only for small values of n,
e.g., when n ≤ 20, as the pre-computation step becomes quickly infeasible. The same
applies for the CPIR step, as Server’s workload is at least linear in the size of database
in all CPIR protocols.

However, in specific settings the online complexity of CPIR can be drastically re-
duced. The first efficient protocol for oblivious keyword search was proposed by Ogata
and Kurosawa [OK04]; their approach was extended in [FIPR05]. In these two proto-
cols, during the first phase Server transfers the whole database, in an encrypted form,
to Client. In the second phase, Client and Server invoke an oblivious pseudo-random
function evaluation protocol. As the result, Client obtains a secret key that allows her
to decrypt one database element. Though the initial communication of the protocol is
linear in the database size, the second phase has poly-logarithmic communication and
computation in the database size. Such a protocol is especially appealing if the second
phase are repeated many times as it is commonly done in data-mining algorithms.
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PRIVATE INPUT: Client has a query Q and Server has a database D.
PRIVATE OUTPUT: Client learns suppD(Q) if freqD(Q) ≥ σ.

Setup Phase
Server runs a frequent itemset mining algorithm that outputs F = {X : freqD(X) ≥ σ}.
Server chooses a secret key sk and for all X ∈ F computes Ei ← ObPrfsk(code(X)) ⊕
(0�|| suppD(X)).
Send list {Ei}, in a randomly permuted order, to Client.

Interactive Phase
Client and Server invoke ΠObPrf . At the end Client obtains mask ← ObPrfsk(code(X)).

Post-processing by Client
If there is an Ei such that Ei ⊕ mask = (0�||c) then output c;
else decide that suppD(Q) < σ.

Protocol 2. Protocol for PISC based on oblivious pseudo-random function evaluation

Thm. 2 can be used to transform an oblivious keyword search protocol to a PISC
protocol. If one is interested in the frequencies of all different supports, then the re-
sulting protocol is not really practical since the transfered PISC database must have
2n elements. However, in data-mining applications, Client is often only interested in
the supports of frequent itemsets. In such a case, Server can first run any conventional
frequent itemset mining algorithm on the database using an appropriate minimum fre-
quency threshold σ, and then encrypt supports of the obtained σ-frequent itemsets. In
practice, the minimum frequency threshold σ is chosen to be as low as possible, so that
the mining is still feasible, to get a good approximation of the supports of all itemsets.

Protocol 2 combines this idea with oblivious keyword search. This is relatively
straightforward, but we have included the protocol for the sake of completeness. To
read it, first recall that a two-argument pseudo-random function ObPrf is an OPRF, if
it can be obliviously evaluated by Client and Server [FIPR05]. In other words, there
exist a secure protocol ΠObPrf such that after executing it on Client’s private input x
and Server’s private input sk, Client learns ObPrfsk(x), while Server learns nothing.
Second, we assume that each itemset Q has a short unique code code(Q), this can be a
cryptographic hash of Q.

Theorem 3. Let ObPrf be (τ, ε′1) secure pseudo-random function with appropriate do-
main and range. Let the protocol ΠObPrf (τ, ε1) client-private and (τ, ε′2) server-private.
Then Protocol 2 is (τ, ε1)-client-private and (τ − O(1), ε′1 + ε′2)-server-private PISC
protocol. Protocol 2 yields an incorrect end-result with probability 2−� · |F|. The inter-
active phase can be repeated over the same initially transformed encrypted database
with a linear drop in concrete security.

Proof (Sketch). We do not provide a complete proof, see [FIPR05] for details. Client-
privacy and correctness are evident. Server-privacy follows from the next hybrid argu-
ment. First, consider a protocol Π1, where ΠObPrf is substituted with its ideal implemen-
tation. Let Π2 be the protocol, where also ObPrf is substituted with a random function.
It is clear that Π2 is 0-server-private. The claim follows, since the protocols Π2 and Π1
are computationally ε′1-close and Π1 and Protocol 2 are computationally ε′2-close. ��
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Ogata and Kurosawa used the RSA blinded signature to construct an ObPrf, i.e.,
there ObPrfsk(x) = Prf(BlindSignsk(x)) for a pseudo-random function Prf. However,
the Ogata-Kurosawa protocol is a priori secure only in the random-oracle model. On
the other hand, their protocol has only two messages and Server’s actions are verifiable.
Indeed, any two-message server-verifiable ObPrf can be converted to a blind signature
scheme. Thus, the Ogata-Kurosawa construction is optimal in that sense. Freedman et
al [FIPR05] proposed an alternative OPRF construction that is secure in the standard
model under the Decisional Diffie-Hellman assumption. Unfortunately, their two-round
solution is not a priori server-verifiable; that is, Client cannot test whether the obtained
value is equal to ObPrfsk(x). Therefore, a malicious Server can mount undetectable
denial of service attacks by deviating from ΠObPrf .

If the OPRF is verifiable and the Setup phase is done correctly, then the whole pro-
tocol is verifiable; this is since Server cannot change the committed values Ei. As the
Setup phase is relatively short and well-specified, its correctness can be guaranteed by
non-cryptographic methods. The later does not hold for query-transfer phase as queries
can arrive during a long time period.

Generally, Protocol 2 is well suited for static databases, where Server has to run
frequent itemsets mining algorithm rarely, say once in a month. Otherwise, the large
initial complexity over-weights its possible advantages.

4.3 On-Line Computation with Subset Inclusion

As stated before, the pre-computation cost of CPIR-PISC protocol is too large even
in the case of the databases of moderate size. Limiting the answers only to frequent
itemsets, like in Sect. 4.2, extends the applicability of CPIR-PISC to larger databases
but limits the possible queries. To answer support queries also in large databases, we
give Protocol 3. In this protocol, Server does not perform any pre-computation. Instead,
when Server gets Client’s query as an encrypted binary vector (c1, . . . , cn), he runs a
private subset inclusion test (a version of Protocol 1 that is secure in the semi-honest
model) for every row of D, and finally returns the replies in a randomised order. As a
result, Client receives Dsk(Ci) = 0 for every row where Q was present and Dsk(Ci) is
random element of P for every row where Q was not present. After that, she decrypts
the results and then counts the number of nonzero values. Together with Protocol 1, the
communication of this protocol (in the semi-honest model) is (n + 1 + m) · len(|P|)
bits. (Note that here we implicitly need that |P| > n.) No off-line work is done; Client
performs Θ(n+m) and Server does Θ(w(D)+m) units of online computation, where
w(D) denotes the number of 1-s in the whole database. Again, in the data-mining sce-
narios, the database is usually very sparse and therefore w(D) is small.

Theorem 4. Let Π be (τ, ε) IND-CPA secure homomorphic cryptosystem. Then Pro-
tocol 3 is (τ − O(n), nε) client-private and 0-server-private in the semi-honest model.

Proof. As Server sees only n encryptions, client-privacy follows from standard hybrid
argument: any adversary A that can distinguish two vectors of ciphertexts can be used
for distinguishing only two ciphertexts. Simulation of Client’s view is straightforward,
the simulator must send suppD(Q) encryptions of 0’s and m − suppD(Q) encryptions
of random elements. ��
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PRIVATE INPUT: Client has a set Q and Server has a database D.
PRIVATE OUTPUT: Client knows count = suppD(Q)

Message 1, Client Generate (sk, pk) ← G and send pk to Server.
For any i ∈ [n], send ci ← Epk(Q[i]; ri) with ri ←r R to Server.

Message 2, Server Generate a random permutation π : [m] �→ [m].
Set d ← ∏n

i=1 ci.
For every transaction j ∈ [m]

Draw sj ←r P and r′j ←r R uniformly at random.
Send Cj ← (d/

∏
i:D[π(j),i]=1 ci)

sj · Epk(0; r′j) to Client.
Post-processing by Client

Set count ← 0.
For every row j ∈ [m]

If Dsk(Cj) = 0 then count ← count + 1.
Return count.

Protocol 3. Protocol for PISC, based on the private inclusion test

Security against malicious Clients is achieved by letting Client to prove in zero-
knowledge, for every i ∈ [n], that ci is an encryption of either 0 or 1. This is usually
feasible since in reality, n ≤ 100 000.

5 Imprecise Private Itemset Counting Protocols

In practice, it is not usually necessary to give exact supports but accurate approxima-
tions. Sometimes it is even sufficient to know whether a set is frequent or not. In this
section, we consider two approaches to approximate frequency queries. First, we study
protocols to decide whether a given itemset is frequent or not. That gives rise to de-
terministic support approximation techniques. Second, we show how random sampling
can be used together with Protocol 3 to obtain support approximations with quality
guarantees.

5.1 Private Frequent Itemset Detection

The simplest approximation of the support of a frequent itemset is to tell whether or
not the itemset is frequent. At the end of a private frequent itemset detection (PFID)
protocol, Client learns whether freqD(Q) ≥ σ, and nothing else. PFID is a common
subtask in pattern discovery [MT97, GKM+03]. Moreover, PFID can be used as sub-
protocol in different approximate PISC protocols.

One straightforward solution is to use Prot. 2 on a database where one stores some
fixed integer instead of the cardinality of the support. However, this does not decrease
communication or computation significantly.

A more interesting alternative is to modify the database so that it contains only max-
imal frequent sets, i.e., frequent sets that are not subsets of other frequent sets. That is,
every maximal frequent set is added to a new database D′ as a transaction. Afterwards,
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Client and Sever execute a PISC protocol on D′. If suppD′(Q) ≥ 0, then Q is frequent
in the original database. Since the number of maximal itemsets can be exponentially
smaller than the number of frequent itemsets, this idea might give us a significant win
in the practice. Note that instead of just the support of Q, the resulting protocol also
outputs both the number � of maximal itemsets and the number k of maximal itemsets
that contain Q. This additional information is sometimes desired in data mining. Even
if undesired, however, such a leak is not necessarily very dangerous for the privacy of
the database, since in practice there are always many different alternatives that could be
the collection of the � maximal itemsets, k of them containing the itemset Q. Namely,
any anti-chain (i.e., a collection A such that (X ⊆ Y ∨ Y ⊆ X) ⇒ X = Y for all
X, Y ∈ A) of � itemsets on the attributes of the database such that k of the itemsets
contain Q and � − k do not contain Q could be that collection of maximal itemsets.

To show that the number of such possible collections of maximal itemsets is large,
we give a rough lower bound in the case the query contains less than n/2 elements
and there is no prior information on the database content. Let M be a collection of all
itemsets of cardinality �n/2�. Let cQ be the cardinality of {X ∈ M : Q ⊆ X} and c
cardinality of M, i.e. c =

(
n

�n/2�
)
. Now, there is exactly

(
cQ
k

)
ways to choose maximal

sets from M containing Q, and
(
c−cQ
�−k

)
ways to choose other �−m elements that cannot

contain Q. Therefore, the lower bound on consistent configurations is huge,

(
cQ
k

)(
c − cQ
� − k

)
=

(( n−|Q|
�n/2�−|Q|

)

k

)((
n

�n/2�
)

−
( n−|Q|
�n/2�−|Q|

)

� − k

)
.

Furthermore, the exact numbers of maximal itemsets can be hidden by adding adding
some subsets of the maximal itemsets to the database. This does not change the outcome
of the protocol since if an itemset is contained in some subset of a maximal itemset, then
it is obviously contained also in the maximal itemset itself. Note that also the supports
of the itemsets leak information about other itemsets and the underlying database since
each acquired support further restricts the collection of databases compatible with the
known supports [Mie03].

A PFID protocol can be used to answer exact and approximate support queries. Let
0 < σ1 < · · · < σk ≤ 1 be the minimum frequency thresholds for which the frequent
itemset detection problem can be solved. Then Client can find out to which of the inter-
vals (0, mσ1], . . . , (mσk, m] the support of Q belongs. Note that there are at most m
different possible supports and in practice the number is often strictly smaller than that.

5.2 Sampling

A randomly chosen subset of the transactions provides usually a very good summary
of the database. This is true also in the case of frequency estimation. Recall that the
frequency of an itemset in a transaction database is the fraction of the transactions
containing that itemset. Thus, the frequency of an itemset can be estimated from a
set of randomly chosen transactions. Furthermore, the relative and absolute errors of
such an estimation can be bounded by the Chernoff bound and the Hoeffding bound,
respectively. (Note that Protocol 3 can be applied as well to a randomly chosen subset
of transactions of the database as to the database itself.)
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Let us assume for a moment that we know that the frequency of the itemset is at least
σ. In that case the Chernoff bound gives us the following bound for the relative error ε:

Theorem 5. Let S be a random k-row sample of an n-row database D
with replacement. Then Pr [(1 − ε) freqD(Q) ≤ freqS(Q) ≤ (1 + ε) freqD(Q)] ≤
2 exp

(
−ε2kσ/4

)
, when the itemset is frequent, i.e. freqD(Q) ≥ σ.

Proof. Let IQ(S[i]) be IQ be an indicator variable, i.e. IQ(S[i]) = 1 if Q ⊆ S[i] and
0 otherwise. Then the frequency estimator freqS(Q) =

∑k
i=1 IQ(S[i])/k is a random

variable with the expectation E(freqS(Q)) = freqD(Q). As freqS(Q) is a sum of k
i.i.d. random zero-one variables and freqD(Q) ≥ σ by assumption, we can apply the
Chernoff bound and underestimate freqD(Q) by σ. This proves the claim. ��

Theorem 5 allows us to estimate the sufficient number of transactions to bound the
relative error ε and the failure probability δ:

Corollary 2. To guarantee that the relative error is at most ε and the failure probability
is at most δ, it is sufficient to randomly choose k ≥ 4(ln 2/δ)/(ε2σ) transactions from
the database.

Moreover, if we are interested in bounding the absolute error, the number of rows
sufficient to guarantee a certain error bound is even smaller without assuming anything
about the frequencies:

Theorem 6. Let S be a random k-row sample of an n-row database D with replace-
ment. Then Pr [|freqS(Q) − freqD(Q)| ≥ ε] ≤ 2 exp

(
−2ε2k

)
.

Proof. As freqS(Q) is a sum of k i.i.d. random zero-one variables, we can apply the
Hoeffding bound which proves the claim. ��

The number of transaction sufficient in this case is as follows:

Corollary 3. To guarantee that the relative error is at most ε and the failure probability
is at most δ, it is sufficient to randomly choose k ≥ (ln 2/δ)/(2ε2) transactions from
the database.

For example, with failure probability 10−3 and absolute error 1/100, it is sufficient to
have 38 500 rows in the sample and thus PSI-PISC protocol is efficient enough. Hence,
the sampling technique provides an approximation protocol such that the computation
and communication complexity are independent from database size. The complexity
depends only on the desired approximation error ε and the failure probability δ.

The approximation error bounds given above can be used also to obtain approxima-
tions for the frequent itemset detection, i.e., property testers for itemsets being frequent.
More specifically, we can use the above bounds to decide correctly with high probabil-
ity whether the itemset is frequent or not when the correct frequency of the itemset is
above or below the minimum frequency threshold σ at least by error ε; if the correct
frequency is within the error ε from the minimum frequency threshold σ, we might
answer incorrectly with non-negligible probability.

Chernoff and Hoeffding bounds are quite tight when estimating the frequency of a
single itemset from one sample databases, i.e. we re-sample the database before each
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query. This is not the case when several frequencies are estimated, i.e., when Server
generates a single database by sampling the transactions to answer all or many Client’s
queries. In this case, Server might even verify the approximation precision of all fre-
quent itemsets F (or some other collection of itemsets of interest).

The straightforward generalisation of of the Hoeffding bound to a collection F of
itemsets with maximum absolute error guarantee ε for an arbitrary sequence of fre-
quency queries to F yields to sample complexity of (ln 2 |F| /δ)/(2ε2) [Toi96]. How-
ever, this is a worst-case bound. In practice, transaction databases are not as difficult
to sample as possible but have a lot structure. One important measure of complexity of
a transaction database is its Vapnik-Chervonenkis dimension (VC-dimension) w.r.t. the
itemsets whose frequencies want to be able to estimate accurately. If the VC-dimension
is k, then the number of transactions is sufficient to guarantee maximum absolute error
ε with probability 1 − δ is O(k ln 1/(δε)/ε2).

For example, the VC-dimension of the database w.r.t. frequent itemsets can be
bounded above by log |C|, where C is the collection of closed frequent itemsets in
the database [Mie04]. (An itemset is closed in collection F if its support is strictly
higher than the largest support of its supersets.) Using this upper bound for the Vapnik-
Chervonenkis dimension, it is possible to show that a sample of O(ln |C| ln 1/(δε))/ε2

transactions suffices to guarantee with failure probability δ that the maximum absolute
error is at most ε. As the number of closed frequent itemsets can be exponentially
smaller than the number of frequent itemsets, the VC-based sample bound can be
O(ln ln |F| ln 1/(δε))/ε2 at smallest. In practice, one can compute both the Hoeffd-
ing bound and the VC-bound, and take the minimum of them. Also, if the collection
of the itemsets for which the approximation guarantees are required is small enough,
then one can maintain the frequency estimates for all itemsets of interest and stop the
sampling immediately when the frequency estimates are sufficiently accurate.
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