

Lecture Notes in Computer Science 3783
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Sihan Qing Wenbo Mao Javier Lopez
Guilin Wang (Eds.)

Information and
Communications
Security

7th International Conference, ICICS 2005
Beijing, China, December 10-13, 2005
Proceedings

13

Volume Editors

Sihan Qing
Chinese Academy of Sciences, Institute of Software
Beijing 100080, P.R. China
E-mail: qsihan@ercist.iscas.ac.cn

Wenbo Mao
HP Labs. China
112 Jian Guo Road, Beijing 100022, P.R. China

Javier Lopez
University of Malaga, Computer Science Department
29071 Malaga, Spain
E-mail: jlm@lcc.uma.es

Guilin Wang
Institute for Infocomm Research
21 Heng Mui Keng Terrace, Singapore 119613
E-mail: glwang@i2r.a-star.edu.sg

Library of Congress Control Number: 2005937067

CR Subject Classification (1998): E.3, G.2.1, D.4.6, K.6.5, F.2.1, C.2, J.1

ISSN 0302-9743
ISBN-10 3-540-30934-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30934-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11602897 06/3142 5 4 3 2 1 0

Preface

The Seventh International Conference on Information and Communications Se-
curity, ICICS 2005, was held in Beijing, China, 10-13 December 2005. The ICICS
conference series is an established forum for exchanging new research ideas and
development results in the areas of information security and applied cryptog-
raphy. The first event began here in Beijing in 1997. Since then the conference
series has been interleaving its venues in China and the rest of the world: ICICS
1997 in Beijing, China; ICICS 1999 in Sydney, Australia; ICICS 2001 in Xi’an,
China; ICICS 2002 in Singapore; ICICS 2003 in Hohhot City, China; and ICICS
2004 in Malaga, Spain. The conference proceedings of the past events have al-
ways been published by Springer in the Lecture Notes in Computer Science
series, with volume numbers, respectively: LNCS 1334, LNCS 1726, LNCS 2229,
LNCS 2513, LNCS 2836, and LNCS 3269.

ICICS 2005 was sponsored by the Chinese Academy of Sciences (CAS); the
Beijing Natural Science Foundation of China under Grant No. 4052016; the
National Natural Science Foundation of China under Grants No. 60083007 and
No. 60573042; the National Grand Fundamental Research 973 Program of China
under Grant No. G1999035802, and Hewlett-Packard Laboratories, China. The
conference was organized and hosted by the Engineering Research Center for
Information Security Technology of the Chinese Academy of Sciences (ERCIST,
CAS) in co-operation with the International Communications and Information
Security Association (ICISA).

The aim of the ICICS conference series has been to offer the attendees the
opportunity to discuss the latest developments in theoretical and practical as-
pects of information and communications security. The Technical Program for
this year had three parts: (1) paper presentations, which consisted of 40 papers
selected from 235 submissions, (2) two invited speeches, one from academia by
Prof. Jean-Jacques Quisquater of the University of Louvain and one from in-
dustry by Mr. Graeme Proudler of Hewlett-Packard Laboratories, Bristol and
Chairman of the Technical Committee of the Trusted Computing Group, and (3)
Trusted Computing Technical Presentations (TCTP@ICICS 2005), which con-
sisted of Trusted Computing solutions and demo showcases presented by Trusted
Computing technology providers from industry. TC, which is defined, specified
and promoted by the industry standard body Trusted Computing Group (TCG),
is an important and pervasively progressing topic in platform security. However,
it has so far mainly been researched and developed in industry. We believe that
a closer involvement in TC from academia will help to advance this important
area. TCTP@ICICS 2005 aimed to enhance interactions between academia and
industry on the topic of TC.

We are grateful to the program committee members and external referees for
their precious time and valued contribution to the tough and time-consuming

VI Preface

review process. We are also pleased to thank Dr. Guilin Wang for his great
help in publishing affairs, Dr. Jianbo He for his great contribution to website
related affairs, and Mr. Yinghe Jia, Prof. Yeping He, Prof. Xizhen Ni, and other
members of the Organizing Committee for helping with many local details.

Finally we wish to thank the authors of every paper, whether accepted or
not, the attendees of the conference and all the other people who contributed to
the conference in various ways.

September 2005 Sihan Qing
Wenbo Mao
Javier Lopez

ICICS 2005

Seventh International Conference
on Information and Communications Security

Beijing, China
December 10-13, 2005

Organized by
Engineering Research Center for Information Security Technology (ERCIST)

(Chinese Academy of Sciences)

In co-operation with
International Communications and Information Security Association (ICISA)

Sponsored by

Chinese Academy of Sciences (CAS)
Beijing Natural Science Foundation of China

National Natural Science Foundation of China
National Grand Fundamental Research 973 Program of China and

Hewlett-Packard Laboratories, China

General Chair

Sihan Qing Chinese Academy of Sciences, China

Program Chairs

Sihan Qing Chinese Academy of Sciences, China
Wenbo Mao HP Labs, Beijing & Bristol
Javier Lopez University of Malaga, Spain

Program Committee

Tuomas Aura Microsoft, UK
Feng Bao Institute for Infocomm Research, Singapore
Alex Biryukov Katholieke Univ. Leuven, Belgium
Mike Burmester Florida State University, USA
Chin-Chen Chang National Chung Cheng University, Taiwan
Lily Chen Motorola, USA
Welland Chu Thales, Hong Kong, China

VIII Organization

Bruno Crispo Vrije University, Holland
Ed Dawson Queensland University of Technology, Australia
Robert H. Deng Singapore Management University, Singapore
Yvo Desmedt University College London, UK
Josep Domingo-Ferrer Univ. Rovira-Virgili, Spain
Dengguo Feng Chinese Academy of Sciences, China
Antonio Gomez-Skarmeta Univ. of Murcia, Spain
Stefanos Gritzalis University of Aegean, Greece
Yongfei Han Onets, China
Hai Jin Huazhong Univ. of Sci. & Tech., China
Marc Joye Gemplus & CIM-PACA, France
Kwangjo Kim Information and Communications University, Korea
Chi-Sung Laih National Cheng Kung University, Taiwan
Antonio Maña University of Malaga, Spain
Catherine Meadows Naval Research Laboratory, USA
Eiji Okamoto University of Tsukuba, Japan
Giuseppe Persiano Università di Salerno, Italy
David Pointcheval ENS, France
Jean-Jacques Quisquater UCL, Belgium
Bimal Roy Indian Statistical Institute, India
Rei Safavi-Naini University of Wollongong, Australia
Kouichi Sakurai Kyushu University, Japan
Tomas Sander HP Labs, Princeton, USA
Nigel Smart Bristol University, UK
Miguel Soriano UPC, Spain
Vijay Varadharajan Macquarie University, Australia
Guozhen Xiao Xidian University, China
Yiqun Lisa Yin Independent security consultant, USA
Moti Yung Columbia University & RSA Labs, USA
Yuliang Zheng University of North Carolina at Charlotte, USA
Jianying Zhou Institute for Infocomm Research, Singapore

Publication Chair

Guilin Wang Institute for Infocomm Research, Singapore

Organizing Committee Chairs

Yinghe Jia China Information Security Technology Committee, China
Yeping He ERCIST, Chinese Academy of Sciences, China
Xizhen Ni ERCIST, Chinese Academy of Sciences, China

Organization IX

External Reviewers

Joonsang Baek Venkat Balakrishnan T. Balopoulos
Paulo Barreto Kemal Bicakci Colin Boyd
Xavier Boyen Hongxu Cai Oscar Canovas
Alvaro Cardenas Jordi Castellà-Roca Dario Catalano
Julien Cathalo Debrup Chakraborty Sanjit Chatterjee
Yongxi Cheng Zhian Cheng Andrew Clark
Félix J. Garćıa Clemente Scott Contini Paolo D’Arco
Xuhua Ding Yevgeniy Dodis Qingkuan Dong
Boris Dragovic Jiang Du Dang Nguyen Duc
Ratna Dutta Oscar Esparza Marcel Fernandez
Jordi Forne Xiaotong Fu Clemente Galdi
Chandana Gamage Jie Guo Lifeng Guo
L. Gymnopoulos Shai Halevi Yong-Sork Her
Juan Hernández-Serrano Yoshiaki Hori John Iliadis
Kenji Imamoto Sarath Indrakanti C. Kalloniatis
Georgios Kambourakis HyunChan Kim Costas Lambrinoudakis
Tri V. Le Eonkyung Lee Hyunrok Lee
Dimitrios Lekkas Manuel Leone Jung-Shian Li
Minming Li Ninghui Li Shengqiang Li
Benôıt Libert Vo Duc Liem Chi-Jen Lu
Wenming Lu Miao Ma Antoni Mart́ınez-Ballesté
Barbara Masucci Gabriel López Millán José L. Muñoz-Tapia
Aarthi Nagarajan Gregory Neven Svetla Nikova
Peng Ning Ryuzo Nishi Elisabeth Oswald
Dan Page Pascal Paillier Jae Min Park
Josep Pegueroles Kun Peng Olivier Pereira
Gregorio Martinez Perez Angela Piper Bogdan Popescu
Chun Ruan Palash Sarkar Jasper Scholten
Francesc Sebé Wook Shin Agusti Solanas
Martijn Stam François-Xavier Standaert Gelareh Taban
Dongvu Tonien Udaya Kiran Tupakula Yoshifumi Ueshige
Frederik Vercauteren Ivan Visconti Zhiguo Wan
Chen Wang Shuhong Wang Yongdong Wu
Jing Xiao JonPhil Yang Yanjiang Yang
Janson Zhang Jing Zhang Ning Zhang
Weiliang Zhao Yingchao Zhao Yunlei Zhao
Huafei Zhu

Table of Contents

Fair Exchange

An Evenhanded Certified Email System for Contract Signing
Kenji Imamoto, Jianying Zhou, Kouichi Sakurai 1

Efficient ID-Based Optimistic Fair Exchange with Provable Security
Zhenfeng Zhang, Dengguo Feng, Jing Xu, Yongbin Zhou 14

On the Quest for Impartiality: Design and Analysis of a Fair
Non-repudiation Protocol

J. Cederquist, R. Corin, M. Torabi Dashti . 27

Generic, Optimistic, and Efficient Schemes for Fair Certified Email
Delivery

Guilin Wang, Feng Bao, Kenji Imamoto, Kouichi Sakurai 40

Digital Signatures I

Cryptanalysis of a Forward Secure Blind Signature Scheme with
Provable Security

Shuhong Wang, Feng Bao, Robert H. Deng . 53

On Delegatability of Four Designated Verifier Signatures
Yong Li, Helger Lipmaa, Dingyi Pei . 61

PIATS: A Partially Sanitizable Signature Scheme
Tetsuya Izu, Nobuyuki Kanaya, Masahiko Takenaka,
Takashi Yoshioka . 72

Cryptographic Protocols

Ciphertext Comparison, a New Solution to the Millionaire Problem
Kun Peng, Colin Boyd, Ed Dawson, Byoungcheon Lee 84

Private Itemset Support Counting
Sven Laur, Helger Lipmaa, Taneli Mielikäinen . 97

Visual Cryptographic Protocols Using the Trusted Initializer
Hidenori Kuwakado, Masakatu Morii, Hatsukazu Tanaka 112

XII Table of Contents

Admissible Interference by Typing for Cryptographic Protocols
Alaaeddine Fellah, John Mullins . 123

Cryptanalysis

On the Security Bounds of CMC, EME, EME+ and EME∗ Modes of
Operation

Raphael C.-W. Phan, Bok-Min Goi . 136

On the Security of Encryption Modes of MD4, MD5 and HAVAL
Jongsung Kim, Alex Biryukov, Bart Preneel, Sangjin Lee 147

Cryptanalysis of PASS II and MiniPass
Bok-Min Goi, Jintai Ding, M.U. Siddiqi . 159

Simple Power Analysis on Fast Modular Reduction with NIST
Recommended Elliptic Curves

Yasuyuki Sakai, Kouichi Sakurai . 169

Digital Signatures II

Asymmetric Concurrent Signatures
Khanh Nguyen . 181

Generic Construction of (Identity-Based) Perfect Concurrent Signatures
Sherman S.M. Chow, Willy Susilo . 194

Sequential Aggregate Signatures Working over Independent
Homomorphic Trapdoor One-Way Permutation Domains

Huafei Zhu, Feng Bao, Robert H. Deng . 207

Network Security

Session Table Architecture for Defending SYN Flood Attack
Xin Li, Zhenzhou Ji, Mingzeng Hu . 220

A Behavior-Based Ingress Rate-Limiting Mechanism Against
DoS/DDoS Attacks

Song Huang, Ling Zhang, Shou-Ling Dong . 231

Port Scan Behavior Diagnosis by Clustering
Lanjia Wang, Haixin Duan, Xing Li . 243

Table of Contents XIII

Network Vulnerability Analysis Through Vulnerability Take-Grant
Model (VTG)

Hamid Reza Shahriari, Reza Sadoddin, Rasool Jalili, Reza Zakeri,
Ali Reza Omidian . 256

Applied Cryptography

Multiplex Encryption: A Practical Approach to Encrypting
Multi-recipient Emails

Wei Wei, Xuhua Ding, Kefei Chen . 269

Secure Multicast Using Proxy Encryption
Yun-Peng Chiu, Chin-Laung Lei, Chun-Ying Huang 280

Efficient and Non-interactive Timed-Release Encryption
Julien Cathalo, Benôıt Libert, Jean-Jacques Quisquater 291

Key Management

Security Properties of Two Authenticated Conference Key Agreement
Protocols

Qiang Tang, Chris J. Mitchell . 304

Cryptanalysis of Two User Identification Schemes with Key Distribution
Preserving Anonymity

Eun-Jun Yoon, Kee-Young Yoo . 315

Enhanced ID-Based Authenticated Key Agreement Protocols for a
Multiple Independent PKG Environment

Sangjin Kim, Hoonjung Lee, Heekuck Oh . 323

Access Control

Enforce Mandatory Access Control Policy on XML Documents
Lan Li, Xinghao Jiang, Jianhua Li . 336

Network Access Control for Mobile Ad-Hoc Networks
Pan Wang, Peng Ning, Douglas S. Reeves . 350

Remotely Keyed Cryptographics Secure Remote Display Access Using
(Mostly) Untrusted Hardware

Debra L. Cook, Ricardo Baratto, Angelos D. Keromytis 363

XIV Table of Contents

Applications

Authenticating Query Results in Data Publishing
Di Ma, Robert H. Deng, Hweehwa Pang, Jianying Zhou 376

Multi-Source Stream Authentication Framework in Case of Composite
MPEG-4 Stream

Tieyan Li, Huafei Zhu, Yongdong Wu . 389

Batching SSL/TLS Handshake Improved
Fang Qi, Weijia Jia, Feng Bao, Yongdong Wu . 402

Achieving Efficient Conjunctive Keyword Searches over Encrypted Data
Lucas Ballard, Seny Kamara, Fabian Monrose . 414

Watermarking

Total Disclosure of the Embedding and Detection Algorithms for a
Secure Digital Watermarking Scheme for Audio

David Meǵıas, Jordi Herrera-Joancomart́ı, Julià Minguillón 427

Reversible Watermark with Large Capacity Using the Predictive Coding
Minoru Kuribayashi, Masakatu Morii, Hatsukazu Tanaka 441

System Security

PCAV: Internet Attack Visualization on Parallel Coordinates
Hyunsang Choi, Heejo Lee . 454

Implementation of Packet Filter Configurations Anomaly Detection
System with SIERRA

Yi Yin, R.S. Bhuvaneswaran, Yoshiaki Katayama,
Naohisa Takahashi . 467

D DIPS: An Intrusion Prevention System for Database Security
Jiazhu Dai, Huaikou Miao . 481

Author Index . 491

An Evenhanded Certified Email System
for Contract Signing

Kenji Imamoto1, Jianying Zhou2, and Kouichi Sakurai1

1 Information Science and Electrical Engineering, Kyushu University,
6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan

imamoto@itslab.csce.kyushu-u.ac.jp, sakurai@csce.kyushu-u.ac.jp
2 Institute for Infocomm Research,

21 Heng Mui Keng Terrace, Singapore 119613
jyzhou@i2r.a-star.edu.sg

Abstract. Certified email is a system which enables a sender to prove
a receiver’s receipt of email. Such a system can be used for applications
related to electronic commerce on the Internet. This paper considers a
situation where a sender or a receiver wants to change his/her mind due
to the change of mail content value (e.g., stock, auction, gambling) during
the transaction. We point out that no traditional certified email systems
have been designed for such a case, thus one of the participants can be at
a disadvantage. To avoid this problem, we propose an evenhanded cer-
tified email system in which each participant can change his/her choice,
either cancel or finish the transaction, at any time during the transaction.

1 Introduction

As the Internet has become more and more popular, many contracts are being
signed online as well. A variant of the contract signing problem is certified email
in which, Alice sends a mail to Bob and wants some evidence (i.e., a receipt)
that Bob received her mail. Fairness is an important requirement for a certified
email protocol that guarantees when the protocol terminates, either both parties
have obtained their desired items, or neither acquired any useful information.

Many certified email systems have been proposed [1, 2, 3, 4, 5, 6], and some
systems are commercialized. For efficiency, most of certified email systems in-
clude a trusted third party (TTP) as a mediator. This mediator is involved to
ensure the fairness of a transaction. Although protocols without TTP were also
proposed [7], they are not practical in terms of computation and communication
overheads. Hence, this paper only focuses on certified email systems that use a
TTP.

Some of existing systems introduced the concept of timeliness (i.e., any par-
ticipant can terminate a session in finite time without loss of fairness) to avoid
waiting the other’s response forever [1, 2]. In order to provide timeliness, a sys-
tem proposed in [1] has two sub-protocols: cancel protocol and help protocol. By
using the cancel protocol, a sender can cancel a session if the intended receiver
ignores the sender’s request. On the other hand, by using the help protocol, a

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 1–13, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

2 K. Imamoto, J. Zhou, and K. Sakurai

receiver can obtain the mail even if the sender does nothing after the receiver
responded to the sender’s request.

In addition to termination of a session in finite time, the cancel protocol can
also be used to change a sender’s decision before completing the session (i.e., she
can stop transmission of the mail). However, since the receiver cannot execute
the cancel protocol, he cannot change his mind after a particular point even
before completing the session (i.e., he cannot deny the receipt of the mail). This
difference leads to the following disadvantageous situation.

Suppose Alice sells gold to Bob at 100 dollars. The receipt of gold means
that “Alice must sell gold at 100 dollars and Bob must pay 100 dollars”.
Then, they execute the proposed certified email protocol to exchange
gold and the receipt. After Bob’s response to Alice’s request (but before
completing the protocol), someone who says “I want to buy gold at 120
dollars” might appear. In this case, she will cancel the protocol, and sell
gold to the new buyer. On the other hand, someone who says “I want to
sell gold at 80 dollars” might appear. In this case, Bob wants to cancel
the protocol and buy gold from the new seller, but he cannot.

The above situation can happen frequently in the case of a contract that the
item’s value is changeable, for example a soccer pool where the news of a player’s
sudden injury may change the betters’ choices. Since no traditional certified
email systems have been designed for such a case, one of the participants can be
at a disadvantage. In this paper, we propose an evenhanded system in which each
participant can change his/her choice anytime before a termination without loss
of fairness. We call this property “Change of Choice”. In our proposed system,
each participant has sub-processes to cope with any event in order to enjoy
the best benefit. Note that each participant always plays in a way that increases
his/her own benefit, and a participant who first acts will obtain the better benefit
(i.e., first come, first served).

2 Model and Requirements

This paper considers contracts of changeable values, where a party owning a
variable item wants to sell her item to another party. Suppose the digital item
is delivered with a certified email system, and the sender can claim the payment
(as indicated in the receipt) from the receiver by proving the item has been
received by the receiver. To simplify our analysis, we assume the price offered at
the starting point of a session is the one negotiated by both participants.

Each party communicates through a network where no message is lost or
delayed, and the value of an exchanged item can change anytime. Each party
decides his/her action to make own benefit as high as possible.

A standard certified email system has the following requirements.

– Fairness: Both participants can either obtain the result each one desires, or
neither of them does.

An Evenhanded Certified Email System for Contract Signing 3

– Authentication: Each participant can identify his/her partner.
– Non-repudiation: Both participants cannot repudiate their own action after

the session is over.
– Timeliness: Either participant can terminate a session at any time without

loss of fairness.

Non-repudiation has two variants. Non-repudiation of receipt guarantees that
a receiver cannot deny the receipt of mail after the receiver actually received it.
Non-repudiation of origin guarantees that a sender cannot deny the transmission
of mail if the sender actually sent it.

Besides the above standard requirements, there is an extra requirement of
“Change of Choice” for an evenhanded certified email system as described earlier.

3 Game Tree and Evenhanded System

To concretely define an evenhanded system that can avoid any one-sided disad-
vantageous scenario as described in Section 1, we define evenhanded situation
and stage by using game theory in an extensive form 1. In this section, we first
introduce the notion of game theory, and next define the evenhanded system.

3.1 System Expression Using Game Theory

Games, such as chess, can be represented by a labeled directed tree graph. Each
vertex of this tree except for the leaves is labeled with the name of a player and
represents a decision point for this player in the course of the game. The choices
or possible moves at this point are represented by the edges starting from this
vertex. The leaves of the tree correspond to possible ends of the game. Each
leaf is labeled with a tuple of real numbers, which represent the payoffs for the
players if the game ends in that leaf. The payoff may be negative, in which case
it is interpreted as a loss. The starting point of the game is represented by the
root of the tree. The goal of the players in a game is to maximize their payoffs.

There are some striking similarities between exchanges and games. Indeed, in
both cases, we have two (or more) parties/players who interact with each other
according to some rules, and whose actions influence the future actions of the
other. From this reason, we try to express certified email systems by game tree
using the following rules.

A system is advanced by one of the participants’ available choices. Generally,
each participant may have one or more choices as follows: (1) execute faithfully,
(2) make the session valid with the TTP’s help, (3) cancel the session, or (4)
stay (i.e., do nothing). If both parties select the choice of stay, then the session is
equivalent to being cancelled. A system consists of one or more “stages”, which
are periods between each choice (except for stay) decided by one of the partici-
pants. Moreover, each stage has three “situations” divided by events related to

1 A similar work in [8] defines fairness by game tree.

4 K. Imamoto, J. Zhou, and K. Sakurai

the changes of the exchanged item’s value, that is, higher/lower than the initial
value, or no change. No party can predict these events beforehand.

Each participant can execute anytime one of any available choices at each
stage. This means it is not decided which party selects the choice first at each
stage if both parties have choices. To express such a chance, we add a chance
move (either a sender selects first or a receiver selects first) at the first node of
each stage.

In the case of contract with changeable values, each participant’s payoff de-
pends on the change of value. For example, if the value becomes higher than the
initial value, since the sender of the exchanged item suffers a loss by sending it
at the initial value, the choice of cancelling the session can make a higher profit
for the sender than another choice. On the other hand, receiving the item at
the initial value makes a higher profit for the receiver. Contrary to the above
situation, if the value becomes lower than the initial value, sending the item at
the initial value makes a higher profit for the sender while cancelling the session
makes a higher profit for the receiver. Therefore, we can say that payoff for a
party is 1 if the end of a session is desired for the party, and payoff is −1 if
the end is not desired. However, completing a session by faithful execution can
increase slightly both participants’ payoffs (0 < pf < 1) 2.

Meaning of Each Object in Game Tree
In the following figures, black circle denotes a chance move, white circle denotes
a sender’s turn, and gray circle denotes a receiver’s turn. Each edge represents
available choice (i.e., Fi is ith procedure of the faithful execution, C is cancel, S
is stay, H is TTP’s help), and possible move (i.e., SF means that the sender can
select a choice before the receiver, and RF means the contrary) at each point.
Also each square denotes a termination of the session, at which payoffs for both
participants are determined. In appendix A, we show an example system to
explain how to express and analyze a system by game tree.

3.2 Definition of Evenhanded System

Roughly speaking, an evenhanded situation means a situation where both parties
have a strategy to receive a good (positive) payoff. For example, in the situation
of rise of the value, the sender should have the choice of cancelling the session,
and the receiver should have the choice to make the session valid. Therefore,
we define an evenhanded situation as a period in which each participant has a
strategy to obtain his/her positive payoff. However, a choice of moving into the
next stage cannot be seen as such strategies. On an evenhanded stage, period
of stay does not cause any disadvantage for each participant. In other words, all
situations on the evenhanded stage are evenhanded situations; or, if one of the
situations is disadvantageous for a party, then another situation is advantageous
for the party.

2 This rule is introduced because we assume that, if nothing happens, each participant
wants to send/receive a mail by a faithful way.

An Evenhanded Certified Email System for Contract Signing 5

From the above definitions, we say a system is evenhanded for contract with
changeable values if all of the stages in the system are evenhanded.

3.3 Analysis Example

Fig.1 is an example of a typical on-line certified email system expressed by game
tree. This system can be divided into two stages, and Fig.2 shows three situations
of the second stage. Each square in Fig.2 denotes a termination of the session,
and numbers in a tuple under each square denote payoffs for the participants.
(Left number is for the sender, and right one is for the receiver.) In Fig.2, vi

means the value of the exchanged item on ith stage, and v1 is the initial value.
The faithful execution of the system is as follows. First, a sender sends an

encrypted message (using the TTP’s public key) and a hash value of the message
to her intended receiver (denoted as procedure F1). Next, if the receiver wants
to read the message, he sends the encrypted message and a signature of the hash
value to the TTP (denoted as procedure F2). If the signature is valid, the TTP
sends the decrypted message to the receiver and the receipt of the message to
the sender, and this session can be completed faithfully. Also, the sender can
perform a cancel protocol (C) anytime before a termination of the session.

On the second stage of the example system, the sender has choices of C and
S while the receiver has choices of F2 and S.

– In the case of v1 > v2, the sender’s choice is S and the receiver’s choice is S.
This strategy results in payoffs of (−1, 1).

– In the case of v1 = v2, the sender’s choice is S and the receiver’s choice is
F2. This strategy results in payoffs of (pf , pf).

– In the case of v1 < v2, the sender’s choice is C and the receiver’s choice is
F2. This strategy results in payoffs of either (1,−1) or (pf − 1, pf + 1).

From the above analysis, we can see that situations of “v1 < v2” and “v1 = v2”
on the second stage are evenhanded because both parties have choices to gain
a positive payoff. (In the case of v1 < v2, the payoffs depend on the result of

Fig. 1. Example System

6 K. Imamoto, J. Zhou, and K. Sakurai

Fig. 2. Situations at 2nd Stage of Example System

the chance move). However, the situation of “v1 > v2” is advantageous for the
receiver because the receiver can always receive a positive payoff if he always
selects a rational choice (his payoff must be 1) but the sender cannot (her max-
imum payoff is -1). Therefore, neither the second stage nor the whole system is
evenhanded.

4 Analysis of Existing Systems

Here we express two existing systems [3, 1] by game tree, and demonstrate that
they are not evenhanded systems as defined in Section 3. Due to the page limit,
we omit the figures of their game trees.

System of Ateniese et al. [3]

On the second stage, the sender has no choice but S while the receiver has choices
of F2, H and S.

– In the case of v1 > v2, the sender’s choice is S and the receiver’s choice is S.
This strategy results in payoffs of (−1, 1)

– In the case of v1 < v2, the sender’s choice is S and the receiver’s choice is
F2. This strategy results in payoffs of (pf − 1, pf + 1).

From the above analysis, both situations on the second stage are advantageous
for the receiver. Therefore, this system is not evenhanded (advantageous for the
receiver on the second stage).

An Evenhanded Certified Email System for Contract Signing 7

System of Onieva et al. [1]

On the second stage, the sender has choices of C and S while the receiver has
choices of F2, H and S.

– In the case of v1 > v2, the sender’s choice is S and the receiver’s choice is S.
This strategy results in payoffs of (−1, 1).

– In the case of v1 < v2, the sender’s choice is C and the receiver’s choice is
H . This strategy results in payoffs of (1,−1) or (−1, 1).

From the above analysis, the situation of v1 > v2 is advantageous for the
receiver, and the situation of v1 < v2 is evenhanded. Therefore, this stage is
not evenhanded (advantageous for the receiver in case of v1 > v2 on the second
stage).

On the third stage, the sender has choices of F3, C and S while the receiver
has choices of H and S.

– In the case of v1 > v3, the sender’s choice is F3 and the receiver’s choice is
S. This strategy results in payoffs of (pf + 1, pf − 1).

– In the case of v1 < v3, the sender’s choice is C and the receiver’s choice is
H . This strategy results in payoffs of (1,−1) or (−1, 1).

From the above analysis, the situation of v1 > v3 is advantageous for the
sender, and the situation of v1 < v3 is evenhanded. Therefore, this stage and
whole system is not evenhanded (advantageous for the sender in case of v1 > v3
on the third stage).

In addition to the above analysis, no existing system, as long as we have in-
vestigated [2, 4, 5, 6], is evenhanded. Especially, in any optimistic systems, which
use an off-line TTP [1, 2, 4, 5], the receiver is advantageous on the second stage
where H choice is available, but the sender is advantageous on the following
stage(s) because no system prepares the cancel choice for the receiver. Hence,
on the second stage, the rational receiver always selects the choice of H or S to
prevent his disadvantageous stage because there is no reason for the receiver to
execute faithfully. (Compared with the risk of meeting disadvantageous stage,
the benefit of pf might be not very attractive for the receiver.) As a consequence,
for contract with changeable values, rational party uses a non-evenhanded opti-
mistic system in the same way as on-line systems, in which the TTP is always
used.

5 An Evenhanded Certified Email System

In order to prevent disadvantageous stage, an evenhanded system needs to pro-
vide “choice of cancel”, for both the sender and the receiver. The reason why
no previous system using an optimistic protocol provides the receiver with the
choice of cancel is that the TTP does not have a way to check whether the re-
ceiver actually received the mail or not. Cancelling a session without checking

8 K. Imamoto, J. Zhou, and K. Sakurai

the receiver’s receipt can break fairness because the sender cannot make the
receipt valid after cancelling the session while the receiver might have actually
received the mail. To provide a way to check the receiver’s receipt, we introduce
a bulletin board on which anyone can check all posted entries. In this section, we
propose an evenhanded certified email system and analyze it in terms of secu-
rity and actual management. Our proposed system needs some assumptions as
follows.

– The bulletin board stores and publishes all authorized entries, and maintains
the order of the posted entries.

– The TTP performs nothing except the procedures set by the system.
– The channel between the TTP and the bulletin board is authentic.
– Any party has his/her own public key pair, and knows the other party’s

public key.

5.1 Proposed System

Our system consists of three protocols: main protocol, help protocol, and cancel
protocol. Main protocol is used as a faithful execution to exchange the sender’s
variable item and the receiver’s receipt, and the TTP does not appear. Help
protocol can be initiated by the receiver before termination of a session, and
used to make the session valid with the TTP’s help. Both parties can initiate
cancel protocol before termination of a session, and it is used to cancel the
session. Table 1 outlines the notation used in the protocol description.

Main Protocol (Faithful Execution)

– Start message (S → R): S2R, S2T, H(K), EO
– Response message (R → B): SID, S2R, S2T, H(K), EO, ER,

MACP (S2R, S2T, H(K), EO, ER)
– Finish message (S → B): SID, K, MACP (K)

Before executing the main protocol, the sender shares SID (Session ID) and P
(Password) with the bulletin board. Next, the sender randomly selects a session

Table 1. Notation

S, R,T, B sender/ receiver/ TTP/ bulletin board
H(X) a one-way cryptographic hash value of X

PUBX(Y) an encrypted message of Y by X’s public key
SIGX(Y) a signature of Y by X’s private key
cleartext the name and price of the item

S2R PUBR(SID, P, S, R, EK(M), cleartext)
S2T PUBT (SID, S, R, K)
EO SIGS(SID, S2R, S2T, H(K))
ER SIGR(EO)
R2T SIGR(S2T, help)

An Evenhanded Certified Email System for Contract Signing 9

key K, and sends Start message to the intended receiver 3. cleartext includes
the description of the exchanged item (=M) and its initial value (=v1).

After receiving the start message, the receiver verifies the signature of EO. If
it is invalid, then abort. Otherwise, the receiver decrypts S2R with his private
key and obtains SID, P , and EK(M). If Cancel message has not been published
on the bulletin board, the receiver sends Response message to the bulletin board.
Then, the bulletin board checks the validity of MACP (S2R, S2T,H(K),EO,ER)
included in the posted message, and if it is valid, S2R, S2T , H(K), EO, and
ER are published on the board. Otherwise, the message is rejected.

Next, the sender verifies the signature of posted ER with the receiver’s public
key. If it is invalid, then abort. Otherwise, if neither Finish message nor Help
message has been posted, the sender sends Finish message to the bulletin board.
Then, the bulletin board checks the validity of MACP (K) included in the posted
message, and if it is valid, K is published on the board. Otherwise, the message
is rejected.

Finally, the receiver can receive the message by decrypting EK(M) with the
published K. On the other hand, the sender can insist on the receiver’s receipt
of M by showing the posted entries on the board.

Help Protocol

– Request message (R → T): R2T

– Help message (T → B): K

This protocol can be initiated by the receiver if neither valid Finish message
nor Cancel message has been posted on the bulletin board. First, the receiver
signs S2T included in Start message, and sends Request message to the TTP.

Next, the TTP checks whether valid Response message has been posted on
the bulletin board or not, and if it is published, the TTP decrypts S2T with its
private key, and publishes K included in it.

After all, the receiver can receive the message by decrypting EK(M) with the
published K and the sender can insist on the receiver’s receipt of M by showing
the posted entries on the board.

Cancel Protocol

– Cancel message (S or R → B): SID, cancel, MACP (cancel)

This protocol can be initiated by either the sender or the receiver if neither
valid Finish message nor Help message has been posted on the bulletin board.
The bulletin board checks the validity of MACP (cancel) included in the posted
message, and if it is valid, the cancel message is published on the board. Oth-
erwise, the message is rejected. By completing this protocol, the session can be

3 In the case that M is a big message to be exchanged, to improve the effi-
ciency, a session key L may be introduced and S2R can be re-defined as S2R =
EL(EK(M)), PUBR(SID, P, S, R, L, cleartext).

10 K. Imamoto, J. Zhou, and K. Sakurai

cancelled. However, if valid Finish message or Help message has been posted
before Cancel message, the cancel is invalid.

If a session is cancelled, the bulletin board stops receiving new entries of the
session. Without this rule, an unfair situation can happen in a race condition:
the sender sends Finish message to the bulletin board while the receiver sends
Cancel message at the same time. In this case, the cancel becomes invalid but
the receiver can get the message by decrypting EK(M) with the published K.

5.2 Analysis

Now, we conduct an informal analysis of the proposed system against the require-
ments introduced in Section 2. In the proposed system, the sender’s authenti-
cation and non-repudiation of origin are available by the verification of EO.
Similarly, the receiver’s authentication and non-repudiation of receipt are avail-
able by the verification of ER. The receiver cannot obtain M without knowing
K, and the sender cannot make the receipt valid without publishing K. More-
over, a receipt cannot be cancelled after publishing K. These properties result
in fairness of the whole system. In addition, timeliness is available by using the
help protocol or the cancel protocol.

Since our system uses a bulletin board, actual management of the board
should be considered. We especially consider denial of service (DoS) attack
against the bulletin board as an important problem. In our system, because
only parties who know the correct pair of SID/P are allowed to post on the
board, plenty of waste posting from DoS attackers can be prevented. Moreover,
by introduction of a unique SID, the board can detect DoS attacks that re-
send previously transferred messages, and the receiver can also detect the replay
attack which aims to make him believe the sender sends the message twice.

We also consider a case in which a wrong key K or S2T different from the one
included in Start message is posted. To confirm the correctness of K in Finish
message, B will check whether the hash value of K is equal to H(K) posted on
the bulletin board. To confirm the correctness of S2T in Request message, the
TTP will check whether S2T is equal to the one posted on the bulletin board.
Moreover, the correctness of the posted S2T and H(K) can be confirmed by
verification of EO which is also on the bulletin board.

If SID is generated at random, it is possible that the receiver uses this SID/P
pair to initiate another session with another party. This problem can be solved
by introducing both participants’ identities into each SID. Other parties cannot
use a SID with incorrect identities to post messages. As the sender (S) and
the bulletin board (B) share SID and P before executing the main protocol,
and SID and P will be different for each session, there should be an efficient
mechanism to allow S and B to share SID and P before each session. Suppose
S and B share a secret (Pmaster) in advance. Then, SID and P for each session
can be derived as SID = S||R||i, and P = H(S, R, i, Pmaster), where || means a
concatenation and i is a time-stamp or a counter.

Compared with other systems’ public-key operations (i.e., encryption, decryp-
tion, signature generation and verification), the computational complexity of a

An Evenhanded Certified Email System for Contract Signing 11

normal execution in our system is low: the total numbers in [1, 2, 3, 4, 5] and ours
are 6, 6, 9, 10, 7 and 6, respectively.

Next, we show that the proposed system is evenhanded (see Fig.3).

Fig. 3. Proposed System

– On the second stage, the sender has choices of C and S while the receiver
has choices of F2, C and S.
• In the case of v1 > v2, the sender’s choice is S and the receiver’s choice

is C. This strategy results in payoffs of (−1, 1).
• In the case of v1 < v2, the sender’s choice is C and the receiver’s choice

is F2. This strategy results in payoffs of (1,−1) or it moves into the next
stage.
From the above analysis, the situation of v1 > v2 is advantageous for

the receiver, and the situation of v1 < v2 is advantageous for the sender.
Therefore, this stage is evenhanded.

– On the third stage, the sender has choices of F3, C and S while the receiver
has choices of H , C and S.
• In the case of v1 > v3, the sender’s choice is F3 and the receiver’s choice

is C. This strategy results in payoffs of (pf + 1, pf − 1) or (−1, 1).
• In the case of v1 < v3, the sender’s choice is C and the receiver’s choice

is H . This strategy results in payoffs of (1,−1) or (−1, 1).
From the above analysis, both situations at this stage are evenhanded.

12 K. Imamoto, J. Zhou, and K. Sakurai

Fig. 4. Situations of Toy Example

Since all stages in this system are evenhanded, it is an evenhanded certified
email system.

Note, it is easy to design an evenhanded fair exchange protocol using the
bulletin board without TTP. For example, sending all messages on the bul-
letin board, the posted message is used as the receiver’s receipt of the message.
However, considering exchange of items with changeable values, the assumption
about adequate price offered at the starting point is not realistic. Then the above
protocol without TTP is not evenhanded (see appendix A). For this reason, a
contract of changeable values needs both participants’ operations to make the
contract evenhanded even if the assumption does not exist. In this case, even
if using the bulletin board, it is not straightforward to design an evenhanded
fair exchange protocol without TTP. This is because if the proposed protocol
does not use TTP, the receiver loses the way to decrypt the message without the
sender’s help (i.e., the help choice to TTP H is not available), and the whole
system becomes un-evenhanded. To design an evenhanded fair exchange protocol
without TTP is one of our future works.

6 Conclusion

This paper considered a situation where a sender or a receiver can change his/her
mind anytime before termination of a session. To cope with such a situation, we
defined a notion of an evenhanded system by game tree and showed no previous
system is evenhanded. We further proposed an evenhanded certified email system
by using a bulletin board.

As far as we know, no existing system is evenhanded. So, it would be inter-
esting to investigate how other non-evenhanded protocols can be turned into
evenhanded ones.

References

1. J. A. Onieva, J. Zhou, and J. Lopez, “Enhancing Certified Email Service for Time-
liness and Multicasting”, INC’04.

2. S. Kremer, and O. Markowitch, “Selective Receipt in Certified email”, IN-
DOCRYPT’01.

An Evenhanded Certified Email System for Contract Signing 13

3. G. Ateniese, B. d. Medeiros, and M. T. Goodrich, “TRICERT: A Distributed Cer-
tified email Scheme”, NDSS’01.

4. O. Markowitch and S. Kremer, “An Optimistic Non-repudiation Protocol with
Transparent Trusted Third Party,” ISC’01.

5. G. Ateniese and C. N. Rotaru, “Stateless-Recipient Certified Email System based
on Verifiable Encryption,” CT-RSA’02.

6. M. Abadi, N. Glew, B. Horne and B. Pinkas, “Certified Email with a Light On-line
Trusted Third Party: Design and Implementation,” WWW’02.

7. R. Markle, “Secure Communications over Insecure Channels”, Communications of
the ACM 21:294-299, 1978.

8. L. Buttyan, and J-P. Hubaux, “Toward a Formal Model of Fair Exchange - a Game
Theoretic Approach”, EPFL SSC Technical Report No. SSC/1999/039.

A Assumption About Adequate Initial Price Offered by
the Sender

Under the model introduced in Section 2, we can easily design a simpler even-
handed system by using an on-line TTP. However, in such a system, if the
assumption about adequate price offered at the starting point is not realized,
some disadvantageous situation might happen.

Now we show a toy example which leads to a disadvantageous situation, and
introduce requirements of contract systems against the problem. The proce-
dure of the toy example is as follows. First, the sender sends S, R, M, cleartext,
SIGS(S, R, M, cleartext) to the TTP. Then, the TTP sends M to the intended
receiver, and its recept, SIGT (SIGS(S, R, M, cleartext)), to the sender. Be-
cause each session is completed soon after the initiation, the value of M does
not change from the initial value v1. Hence, this system is evenhanded, in which
the payoffs are always (pf , pf).

This system can be seen as an evenhanded system only based on the assump-
tion that v1 offered by the sender is adequate. Otherwise, a problem will arise.
Here, vS (vR) denotes the adequate price for the sender (the receiver). At this
time, this system has three situations for the receiver: v1 > vR, v1 = vR, and
v1 < vR. (The assumption means v1 = vR.) Regarding the case where the sender
(receiver) sells (buys) the item at the lower (higher) price than the adequate
price as a negative result, the payoffs in each situation are shown as in Fig.4
(suppose vS = vR).

In this system, the sender can decide v1 and complete the exchange without
the receiver’s operation. As a natural result of this, a rational sender always
decides v1, where v1 > vS = vR. This strategy results in the payoffs always
being (pf + 1, pf − 1). That is, in case the assumption v1 = vR is not realized,
the sender is advantageous in this system.

For this reason, in a contract of changeable values, any session requires both
participants’ operations to make the contract valid as our proposed system in-
troduced in Section 5. In addition, the conditions of a contract should be explicit
such as the usage of cleartext to make both participants agree on the contract.
In a system with these properties, each participant can choose to cancel a session
if the offered value is not adequate.

Efficient ID-Based Optimistic Fair Exchange
with Provable Security

Zhenfeng Zhang1,2, Dengguo Feng1,2, Jing Xu1,3, and Yongbin Zhou1,2

1 State Key Laboratory of Information Security
2 Institute of Software, Chinese Academy of Sciences, Beijing 100080, P.R. China
3 Graduate School of Chinese Academy of Sciences, Beijing 100039, P.R. China

zfzhang@is.iscas.ac.cn

Abstract. The notion of identity based cryptosystem was introduced
by Shamir in 1984, and has attracted much interest since it eliminates
the need of certificates and simplify the key management. In this paper,
we propose an optimistic fair exchange protocol for identity-based sig-
natures. A semi-trust third party (ttp) is still involved in our protocol
to ensure fairness. However, there is no need for registrations between
users and ttp, and no zero-knowledge proof is needed to provide verifi-
ability. The proposed optimistic fair exchange protocol is much concise
and efficient, and can be shown to be secure in the random model with
a tight security reduction.

Keywords: Fair exchange, Identity-based Signature, Provable Security.

1 Introduction

With the growth of open networks such as Internet, the problem of fair exchanges
has become one of the fundamental problems in secure electronic transactions
and digital rights management. Payment systems, contract signing, electronic
commerce and certified e-mail are classical examples in which fairness is a rele-
vant security property. Informally, an exchange protocol allows two distributed
parties to exchange electronic data in an efficient and fair manner, and it is said
to be fair if it ensures that during the exchange of items, no party involved in
the protocol can gain a significant advantage over the other party, even if the
protocol is halted for any reason.

Protocols for fair exchange have attracted much attention in the crypto-
graphic community in the past few years. The proposed methods mainly include:
simultaneous secret exchange, gradual secret releasing, fair exchange using an
on-line ttp and fair exchange with an off-line ttp. Among these results, opti-
mistic fair exchange protocols based on an off-line trusted third party [1,5] are
preferable as they offer a more cost-effective use of a trusted third party. An
optimistic fair exchange protocol usually involves three parties: users Alice and
Bob, as well as an off-line ttp. The off-line ttp does not participate the actual
exchange protocol in normal cases, and is invoked only in abnormal cases to
dispute the arguments between Alice and Bob to ensure fairness.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 14–26, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Efficient ID-Based Optimistic Fair Exchange with Provable Security 15

Asokan et al. [1] were the first to formally study the problem of optimistic fair
exchanges. They present several provably secure but highly interactive solutions,
based on the concept of verifiable encryption of signatures. Their approach was
later generalized by [11], but all these schemes involve expensive and highly
interactive zero-knowledge proofs in the exchange phase. Other less formal works
on interactive verifiably encrypted signatures include [5,2]. The first and only
non-interactive verifiably encrypted signature scheme was constructed by Boneh
et al. [8], which is provably secure in the random oracle model, and is the first
elegant scheme without a special registration between users and ttp and without
zero-knowledge proofs.

Recently, Park etc. [17] proposed an optimistic protocol for fair exchange
based on RSA signatures, using a technique of “two-signatures”. However, Park’s
scheme was soon shown to be totally breakable in the registration phase by [14].
Moreover, Dodis and Reyzin [14] proposed a new primitive called verifiably com-
mitted signatures for constructing fair exchange protocols, and presented a com-
mitted signature scheme based on GDH signatures [9]. However, a registration
protocol between ttp and users is still needed, and a zero-knowledge proofs of
the equality of two discrete logarithms are involved to ensure the fairness.

Motivated by the approaches of verifiably encrypted signatures and verifiably
committed signatures, the authors of [21] introduce a paradigm called verifiable
probabilistic signature schemes, in which the exchanged items are probabilistic
signatures. As probabilistic signatures has been studied extensively, this method
seems rather natural. In their paradigm, a semi-trusted off-line ttp generates a
trapdoor permutation as the system parameter, which can be used to produce
verifiable partial signatures, while no further registrations between ttp and users
is needed and no zero-knowledge proofs are involved. Thus, their framework has
almost-optimal structures as that of [8]. Their approach is generic, and the result-
ing fair exchange protocol works especially with standard RSA signatures [18].
While being very concise and efficient, the only presented trapdoor permutation
is based the factoring problem.

In 1984, Shamir [19] introduced the notion of identity-based cryptography
(id-pkc), in which a user’s public-key can be derived form his unique identifier
information. The id-pkc eliminates certificates and greatly simplifies the key
management. A breakthrough work in the research of id-pkc shall owe to Boneh
and Franklin [10], who proposed the first efficient identity encryption scheme
based on bilinear pairings over elliptic curves. Since then, a great deal of research
has been done about the ID-based cryptosystems and protocols. However, as
far as we know, no efficient identity based fair exchanges has been proposed.
Although the approach proposed by Zhang etc. [21] can be applied to identity
based signatures, the specified trapdoor permutation based on factoring may be
not desirable in some applications, especially for schemes over elliptic curves.

In this paper, we propose an optimistic protocol for fair exchanges of identity-
based signatures. A semi-trusted off-line ttp is still involved, who generates a
public-key as the system parameter, while keeps the corresponding private-key
secret to settle the dispute. No registration between users and ttp is needed and

16 Z. Zhang et al.

no zero-knowledge proofs are involved. The underlying identity-based signatures
utilizing bilinear pairings over elliptic curves, and the public-key chosen by ttp
is a point over elliptic curves. The proposed protocol is as concise as that in
[8,21], and is provably secure in the random oracle model.

It should be noted that, Micali [16] presented a fair electronic exchange pro-
tocol for contract signing with an invisible trusted party in PODC 2003, which
has a similar framework that does not need registrations between users and
ttp. However, Bao et al. [4] showed that Micali’s protocol cannot achieve the
claimed fairness: the trusted party may face a dilemma situation that no mat-
ter what it does, one of the exchanging parties can succeed in cheating, and
proposed a revised version that preserves fairness while remaining optimistic.
Although the correctness of the revised version is believable, no security proof
is provided. Moreover, a semantically secure encryption scheme under adaptive
chosen ciphertext attacks is needed both in [16] and [4], and a random number
specified by the initial party will be used by both parties for the underlying
semantically-secure encryption.

The rest of the paper is organized as follows. In Section 2, we present a
brief description of the formal model and security of identity-based verifiable
probabilistic signatures. In Section 3, we propose a concrete identity-based veri-
fiable probabilistic signature scheme and prove its security in the random oracle
model. An identity-based optimistic fair exchange protocol is presented in section
4. Section 5 concludes the paper.

2 Verifiable Probabilistic Signature Model

Formal definitions of non-interactive fair exchanges via verifiable committed sig-
natures or verifiable probabilistic signatures are proposed in [14] and [21] re-
spectively, which explicitly consider the attack model and security goals, and
result in a concrete description for the security against all parties involved in the
protocols. Similar to [14,21], we present a formal model for the identity-based
fair exchanges. And, to emphasize the role of probabilistic signature, we term it
identity-based verifiable probabilistic signature scheme.

2.1 Definitions of ID-Based Verifiable Probabilistic Signatures

In an identity-based cryptosystem, there is a trusted authority called the private
key generator (pkg) who holds a master key and issues private keys for all users
in the system domain, and the public-key of a user can be derived publicly
and directly form his unique identifier information. An identity-based verifiable
probabilistic signature scheme involves three entities: a singer, a verifier and an
arbitrator ttp, and is given by the following procedures.

Setup: System parameters param and a master key s is first generated by the
pkg of an identity-based cryptosystem. A trapdoor one-way permutation is also
published by a trusted third party (ttp) as a system parameter, that is, ttp

Efficient ID-Based Optimistic Fair Exchange with Provable Security 17

generates a key pair (PK, SK), and makes PK public while keeps the trapdoor
SK secret. Note that the ttp may be different from pkg.

Extract: Given a user’s identity id, the pkg computes a private-key sk cor-
responding to id using his master-key s, and transmits it to the user. The user’s
public-key can be regarded as id and the corresponding private-key is sk.

Psig and Pver: These are probabilistic signing algorithm and verification
algorithm. Given a message m, and private key sk, a signer outputs a prob-
abilistic signature σ = Psig(sk, m). The corresponding verification algorithm
Pver(m, σ, id) takes as input m, σ and the signer’s identity id, outputs 1 or 0.

VPsig and VPver: These are verifiable probabilistic signing and verification
algorithms, which are just like an ordinary probabilistic signing and verifica-
tion algorithms, except they depend on the public key PK. Given a message
m, and keys sk and PK, a signer outputs a verifiable partial signature σ′ =
VPsig(sk, PK, m). The corresponding verification algorithm VPver(m, σ′,id,PK)
takes as input m, σ′ and public keys id and PK, outputs 1 (accept) or 0 (reject).

Resolution Algorithm: This is an algorithm run by an arbitrator ttp in case
a singer refuses to open her probabilistic signature σ to a verifier, who in turn
possesses a valid verifiable partial signature σ′. In this case, Res(m, σ′, id, SK)
should output a legal probabilistic signature σ on m of a signer with identity id.

The correctness of a verifiable probabilistic signature scheme states that

Pver(m, Psig(sk, m), id) = 1,

VPver(m, VPsig(sk, PK, m), id, PK) = 1,

Pver
(
m, Res

(
m, σ′, id, SK

)
, pk

)
= 1.

In a verifiable probabilistic signature model, ttp does not need to store anything
except the trapdoor of the published one-way permutation. No further registra-
tion between users and ttp is needed, which will greatly reduce the communi-
cation overhead and managing cost. While in a verifiable committed signature
scheme [14] and most of the verifiable encrypted signature schemes except [8],
ttp shall maintain a secret-public key pair for each user via a registration phase,
and the secret keys will then be used to resolve a dispute.

2.2 Security of ID-Based Verifiable Probabilistic Signatures

The security of a verifiable probabilistic signature scheme consists of ensuring
fairness from three aspects: security against signer, security against verifier, and
security against arbitrator. In the following, we denote by OVPsig an oracle simu-
lating the verifiable probabilistic signing procedure, and ORes an oracle simulat-
ing the resolution procedure, and let OExt be an oracle simulating the private-key
extracting operation. Let k be a suitable security parameter, and PPT stand for
“probabilistic polynomial time”.

Security against a signer: Intuitively, a signer should not be able to pro-
duce a verifiable probabilistic signature which is valid from a verifier’s point of
view, but which will not be extracted into a probabilistic signature of the signer

18 Z. Zhang et al.

by an honest arbitrator ttp. More precisely, we require that any PPT adversary
A succeeds with at most negligible probability in the following experiment.

Setup(1k) → (param, SK, PK)

(m, σ′, id) ← AORes,OExt(param, PK)

σ ← Res(m, σ′, id, SK)
Success ofA =

[
VPver(m, σ′, id, PK) = 1, Pver(m, σ, id) = 0

]
.

In the model of considering security against signers, we allow an adversary A to
have the strongest power of extracting the private-key for any identity id.

Security against a verifier: A verifier should not be able to transfer any
of the verifiable probabilistic signatures σ′ that he got from a signer into a prob-
abilistic signature σ, without explicitly asking ttp to do that. More precisely,
any PPT adversary A shall succeed with at most negligible probability in the
following experiment:

Setup(1k) → (param, SK, PK)
(m, σ, id) ← AOVPsig, ORes,OExt (param, PK)

Success ofA =
[
Pver(m, σ, id) = 1, m �∈ Query(A, ORes), id �∈ Query(A, OExt)

]
,

where Query(A, ORes) is the set of valid queries A asked to ORes, i.e., the set of
(m, σ′, id) the adversary A queried to ORes satisfying VPver(m, σ′, id, PK) = 1,
Query(A, OExt) is the set of queries A asked to the private-key-extractor OExt.

Security against the arbitrator: An arbitrator’s work is to check the
validity of a request and recover the required probabilistic signature in case
of dispute. However, a signer does not want the arbitrator to produce a valid
probabilistic signature which she did not intend to produce, so we require the
arbitrator to be semi-trusted in our model. To achieve this goal, we require that
any PPT adversary A, associated with verifiable probabilistic signing oracle
OVPsig, succeeds with at most negligible probability in the following experiment:

Setup∗(1k) → (param, SK∗, PK)
(m, σ, id) ← AOVPsig(SK∗, param, PK)

Success ofA =
[
Pver(m, σ, id) = 1, m �∈ Query(A, OVPsig)

]
,

where Setup∗(1k) denotes the run of Setup with the dishonest arbitrator A, and
SK∗ is her state after this run, and Query(A, OVPsig) is the set of queries A asked
to the verifiable probabilistic signing oracle OVPsig.

Definition 1. A verifiable probabilistic signature scheme is secure if it is secure
against signer’s attack, verifier’s attack and arbitrator’s attack.

3 ID-Based Verifiable Probabilistic Signature Scheme

We shall present a verifiable probabilistic signature scheme based on Bellare et
al.s [7] modified Sakai-Ogishi-Kasahara signature scheme [20], which was com-

Efficient ID-Based Optimistic Fair Exchange with Provable Security 19

monly called SOK-IBS (for Sakai-Ogishi-Kasahara Identity Based Signature) in
literatures [7]. In fact, the SOK-IBS scheme can be regarded as an identity based
extension of a randomized version of Boneh et al.’s short signature scheme [9].

3.1 The Bilinear Pairing

Let G1 be a cyclic additive group generated by P , whose order is a prime q, and
G2 be a cyclic multiplicative group of the same order. Let e : G1 ×G1 → G2 be a
pairing which satisfies the following conditions:

1. Bilinearity: For any P, Q, R ∈ G1, we have e(P + Q, R) = e(P, R)e(Q, R)
and e(P, Q + R) = e(P, Q)e(P, R). In particular, for any a, b ∈ Zq,

e(aP, bP) = e(P, P)ab = e(P, abP) = e(abP, P).

2. Non-degeneracy: There exists P, Q ∈ G1, such that e(P, Q) �= 1.
3. Computability: There is an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

The typical way of obtaining such pairings is by deriving them from the Weil-
pairing or the Tate-pairing on an elliptic curve over a finite field. We refer to
[9,10] for a more comprehensive description on how these groups, pairings and
other parameters should be selected for efficiency and security.

Computation Diffie-Hellman (CDH) Problem: Given P , aP , bP ∈ G1 for
randomly chosen a, b ∈R Z∗

q , to compute abP .

3.2 The Proposed Scheme

Since 2001, all kinds of identity-based cryptosystems have been proposed based
on the bilinear maps, such as Weil-pairing or Tate-pairing on an elliptic curve
over a finite field. The following is a brief overview of the identity-based setting.
We refer to [10] for a detailed description.

• Setup: Given a security parameter k, the pkg chooses groups G1 and G2 of
prime order q > 2k, a generator P of G1, a bilinear map e : G1 ×G1 → G2, a ran-
domly chosen master key s ∈ Z∗

q and the associated public key Ppub = sP . It also
picks cryptographic hash functions of same domain and range H1, H2 : {0, 1}∗ →
G1. The system’s public parameters are params = (G1,G2, e, P, Ppub, H1, H2).

The ttp chooses x ∈ Z∗
q at random, generates a public key PK = xP and

publishes it as a system parameter, and keeps SK = x secret.
• Extract: Suppose the identity of a user is ID. Given an identity ID, the

pkg computes QID = H1(ID) ∈ G1 and dID = sQID ∈ G1 that is transmitted to
the user. The user’s private-key is dID, which satisfies e(dID, P) = e(QID, Ppub).

• Psig and Pver: These are the signing and verification algorithms of the
SOK-IBS scheme. In order to sign a message m, Psig perform as following:

20 Z. Zhang et al.

– Pick r ∈R Zq, compute U = rP ∈ G1 and H = H2(ID, m, U) ∈ G1.
– Compute V = dID + rH ∈ G1.

The signature on m is the pair σ = 〈U, V 〉 ∈ G1 × G1.

To verify a signature σ = 〈U, V 〉 ∈ G1 × G1 on a message m for an identity
ID, the algorithm Pver first takes

QID = H1(ID) ∈ G1 and H = H2(ID, m, U) ∈ G1,

and then accepts the signature if and only if

e(P, V) = e(Ppub, QID) · e(U, H). (1)

The signature scheme constituted of (Psig, Pver) is actually the SOK-IBS
scheme, which has been proved [7] to be non-existentially forgeable against adap-
tive chosen message attacks in the random oracle model [6], first by Bellare etc.
[7] through a general framework applying to a large family of schemes, and then
by Libert and Quisquater [15], who showed that SOK-IBS scheme has a much
tighter security proof under the CDH assumption.

• VPsig and VPver: To generate a partial signature a message m, VPsig
performs as following:

– First choose r ∈ Zq at random and compute U = rP ∈ G1, and then let
H = H2(ID, m, U) ∈ G1.

– Compute V ′ = dID + rH + rPK ∈ G1.

The verifiable partial signature on m is the pair σ′ = 〈U, V ′〉 ∈ G1 × G1.

The corresponding verification algorithm VPver takes as input σ′, ID and
PK. It first computes QID = H1(ID) ∈ G1 and H = H2(ID, m, U) ∈ G1, and
then accepts the signature if

e(P, V ′) = e(Ppub, QID) · e(U, H + PK), (2)

and rejects it otherwise.
• Res: Given a verifiable partial signature σ′ = (U, V ′) on a message m for

an identity ID, the arbitrator ttp first verifies its validity by checking (2). If
valid, ttp computes

V = V ′ − xU (3)

and returns σ = (U, V) = Res(m, σ′, ID, SK) as a probabilistic signature of m
to the verifier.

Note that, ttp holds the trapdoor SK = x, and if U = rP , then we have

r · PK = r · xP = x · rP = xU.

That is, if U = rP and V ′ = dID + rH + rPK, then V = V ′ − xU = dID + rH.
Thus 〈U, V 〉 is a regular SOK-IBS signature on message m for the identity ID.

Efficient ID-Based Optimistic Fair Exchange with Provable Security 21

Remark: The following facts shall be noted.

– Similar to the proofs [7,15] of SOK-IBS signature scheme, the verifiable par-
tial signature scheme constituted of (VPsig, VPver) can be shown to be non-
existential forgeable under adaptive chosen message attacks in the random
oracle model, assuming the CDH problem in G1 is hard.

– The signer’s identity ID is explicitly included in the signature as H =
H2(ID, m, U), thus the colluding attacks proposed by Bao [3] will not work.

– This approach also works for other identity-based signatures, such as [12].
– In our scheme, the ttp is semi-trusted and can be any party different from

pkg. This makes our scheme more flexible. In fact, if we designate pkg as
the arbitrator, then this ttp must be fully trusted since every user’s private
key is escrowed by it.

3.3 Security of Our Scheme

Theorem 1. Under the formal model described in section 2, the verifiable prob-
abilistic signature scheme based on SOK-IBS is provably secure in the random
oracle model, provided that the CDH problem is hard.

Proof. According to Definition 1, we shall show that the proposed verifiable
probabilistic signatures is secure against signer, verifier and arbitrator. As we
will see, the security against a signer follows unconditionally, and an arbitrator’s
attack can be converted into a forger for the SOK-IBS signature, while a verifier’s
attack can be related to the CDH problem. The major difficulty for the proof of
security against a verifier comes from the dealing with the resolution queries.

Security against signer’s attack: With the help of the oracles ORes and
OExt, a malicious signer’s goal is to produce a valid verifiable partial signature
σ′ = (U, V ′), which cannot be extracted into a valid probabilistic signature
σ = (U, V). However, this is always not the case. In fact, for any σ′ = (U, V ′)
satisfying e(P, V ′) = e(Ppub, QID) · e(U, H + PK), and V = V ′ − xU , we have

e(P, V) = e(P, V ′)e(P,−xU) = e(P, V ′)e(PK, U)−1 = e(Ppub, QID) · e(U, H).

Thus the (U, V) extracted by ttp is definitely a valid SOK-IBS signature on m,
and the signer Alice cannot deny it. In fact, the oracle ORes cannot give any help
to a malicious signer: what ORes extracted is exactly the xU , which was already
known to her as rPK = rxP = xU .

Security against verifier’s attack: Making use of the oracles OVPsig, OExt

and ORes, an adversarial verifier wins if he forges a valid probabilistic signature
σ = (U, V) for an entity with identity ID, for which the corresponding verifiable
partial signature σ′ = (U, V ′) has not been queried to ORes, and ID has not been
queried to OExt. We shall show that such an attack can be used by a probabilistic
polynomial time algorithm F to solve the CDH problem.

Let (X = aP, Y = bP) ∈ G1 ×G1 be a random instance of the CDH problem
taken as input by F . F takes z ∈ Z∗

q at random and sets PK = zY , and

22 Z. Zhang et al.

then initializes Bob with Ppub = X and PK as system’s overall public keys.
The algorithm F then starts performing queries such as those required by an
identity based setting and the security model described as in section 2. Without
loss of generality, we assume that, for any key extraction query or signature
query involving an identity, a H1 oracle query was previously issued for the
same identity. Then these queries are answered by F as follows.

– Queries on oracle H1: When an identity ID is submitted to the H1 oracle,
as in Coron’s proof technique [13], F flips a coin T ∈ {0, 1} that yields 0 with
probability δ and 1 with probability 1 − δ. F then picks w ∈ Z∗

q . If T = 0 then
the hash value H1(ID) is defined as being wP ∈ G1. If T = 1, then F returns
wY ∈ G1. In both cases, F inserts a tuple (ID, w, T) in a list L1 to keep track
of the way it answered the query.

– Key extraction queries: When Bob requests the private key associated to
an identity ID, F recovers the corresponding (ID, w, T) from L1 (recall that
such a tuple must exist because of the aforementioned assumption). If T = 1,
then F outputs “failure” and halts because it is unable to coherently answer the
query. Otherwise, it means that H1(ID) was previously defined to be wP ∈ G1

and wPpub = wX is then returned to Bob as a private key associated to ID.
– Queries on oracle H2: When a tuple (ID, m, U) is submitted to the H2

oracle, F first scans a list L2 to check whether H2 was already defined for
that input. If it was, the previously defined value is returned. Otherwise, F
picks a random v ∈ Z∗

q , stores the tuple (ID, m, U, v) in the list L2 and returns
H = vP ∈ G1 as a hash value to Bob.

– Partial signature queries OVPsig: When Bob queries the partial signature
oracle OVPsig on a message mi for an identity ID, F first recovers the previously
defined value QID = H1(ID) from L1. (1) If QID = wP , F randomly chooses
vi ∈ Z∗

q and sets Ui = viP and V ′
i = wPpub + vi(H + PK). (2) If QID = wY , it

chooses numbers ti, vi ∈ Z∗
q at random, and then sets V ′

i = tiPpub, Ui = viPpub,
and defines the hash value H2(ID, mi, Ui) as H = v−1

i (tiP − QID) − PK ∈ G1

(F halts and outputs “failure” if H2 turns out to be already defined for the input
(ID, mi, Ui)). The (Ui, V

′
i) is returned to Bob and appears as a valid verifiable

partial signature from the latter’s point of view, since

(1) e(P, V ′
i) = e(wP, Ppub)e(viP, H + PK) = e(Ppub, QID)e(Ui, H + PK);

(2) e(Ppub, QID)e(Ui, H + PK) = e(Ppub, QID)e(viPpub, v
−1
i (tiP −QID))

= e(Ppub, QID)e(Ppub, (tiP −QID))

= e(Ppub, tiP) = e(tiPpub, P) = e(P, V ′
i).

F keeps a list of L3 = {(ID, mi, Ui, V
′
i , vi)}.

– Resolution queries ORes: When Bob queries the resolution oracle ORes on
a partial signature (m, U, V ′) for an identity ID, F first check its validity and
recovers the previously defined value QID = H1(ID) from L1. If T = 1, it halts
and outputs “failure”. Otherwise, F looks up the list L3, finds out vi and answers

Efficient ID-Based Optimistic Fair Exchange with Provable Security 23

Bob with V = V ′ − viPK if (m, U, V ′) is in the list, and halts otherwise. Note
that, if (U, V ′) is a valid partial signature and if V ′ = viP , then (U, V) is a valid
SOK-IBS signature. And since the partial signature scheme (VPsig, VPver) is
non-existential forgeable under adaptive chosen message attacks, assuming the
CDH problem is hard, the probability that m has not been queried to OVPsig

(which means that (m, U, V ′) is a valid forgery) is negligible, and so is it with F
halts in answering ORes-queries if T = 0.

Suppose Bob outputs a fake signature σ̃ = (m̃, Ũ , Ṽ) for an identity ˜ID even-
tually. F then recovers the triple (˜ID, w̃, T̃) from L1. If T̃ = 0, then F outputs
“failure” and stops. Otherwise, it goes on and finds out whether (˜ID, m̃, Ũ , ·, ·)
appears in the list L3. Suppose it does not appear in the list L3, then the list L2

must contain an entry (˜ID, m̃, Ũ , ṽ) with overwhelming probability (otherwise,
B stops and outputs “failure”). Then, since H̃ = H2(˜ID, m̃, Ũ) was defined to
be ṽP ∈ G1, if Bob succeeded in the game with the view it was provided with,
F knows that

e(P, Ṽ) = e(X, Q ˜ID)e(Ũ , H̃)

with H̃ = ṽP and Q ˜ID = w̃Y for known elements w̃, ṽ ∈ Z∗
q . Then, it is also

known that
e(P, Ṽ − ṽŨ) = e(X, w̃Y),

and thus w̃−1(Ṽ − ṽŨ) is the solution to the CDH instance (X, Y) ∈ G1 × G1.
If (˜ID, m̃, Ũ , ·, ·) does appear in the list L3, then (˜ID, m̃, Ũ , ·) most not have

been queried to the oracle ORes. F goes through the list L3 to find out the ṽ,
for which Ũ = ṽPpub = ṽX . Note that (Ũ , Ṽ) and (Ũ , Ṽ ′) are verifiable partial
signature and SOK-IBS signature on m̃ respectively. From (1) and (2) we have

e(Ṽ ′ − Ṽ , P) = e(Ũ , PK) = e(ṽX, zY) = e(X, Y)ṽz ,

and thus (ṽz)−1(Ṽ ′ − Ṽ) is the solution to the CDH instance (X, Y) ∈ G1 × G1.
Assume that a PPT verifier Bob has an advantage ε in forging a signature

in an attack modelled by the game of section 2, when running in a suitable time
and asking qHi queries to random oracles Hi(i = 1, 2), qE queries to the key
extraction oracle, qS queries to the verifiable partial signature oracle, and qRes

queries to the resolution oracle.
When assessing F ’s probability of failure, one readily checks that its proba-

bility to fail in handling a signing query because of a conflict on H2 is at most
qS(qH2 + qS)/2k (as L2 never contains more than qH2 + qS entries) while the
probability for Bob to output a valid forgery (Ũ , Ṽ) on M̃ without asking the
corresponding H2(˜ID, m̃, Ũ) query is at most 1/2k. Finally, by an analysis sim-
ilar to Coron’s one [13], the probability δqE+qRes(1 − δ) for F not to fail in a
key extraction query or a resolution query or because Bob produces its forgery
on a ‘bad’ identity ˜ID is greater than 1− 1/e(qE + qRes + 1) when the optimal
probability δopt = (qE + qRes)/(qE + qRes +1) is taken. Eventually, it comes that
F ’s advantage in solving the CDH problem in G1 is at least(

ε− (qS(qH2 + qS) + 1) /2k
)
/e(qE + qRes + 1).

24 Z. Zhang et al.

Security against arbitrator’s attack: Now we consider an adversarial
ttp’s attack. Holding the trapdoor SK = x, ttp can extract any U and V ′

into a pair of (U, V) satisfying (1). We shall also show a reduction of converting
an arbitrator’s attack into a valid forgery for the SOK-IBS signature scheme. A
forger F accepts ID and PK as input. The ttp holds (PK, SK) and has access
to the OVPsig-oracle and the random oracle H2, and wins if he forges a SOK-IBS
signature σ̃ = (m̃, Ũ , Ṽ), while m̃ has not been queried to OVPsig-oracle.

Here is how F invokes ttp. For an OVPsig-query on message m, F chooses
ti, vi ∈ Z∗

q at random, and then sets V ′
i = tiPpub ∈ G1, Ui = viPpub ∈ G1,

and defines the hash value H2(ID, mi, Ui) as H = v−1
i (tiP − QID) − PK ∈ G1

(F halts and outputs “failure” if H2 turns out to be already defined for the
input (ID, mi, Ui)). The (Ui, V

′
i) is returned to Bob as a valid verifiable partial

signature. When ttp outputs a forgery (m̃, σ̃) as described above, where m̃ has
not been queried to OVPsig, F just outputs (m̃, σ). We see that the simulation is
perfect, and F succeeds in generating a valid forgery if ttp succeeds.

From a ttp’s point of view, a OVPsig-oracle is essentially a SOK-IBS signing
oracle, since she holds the trapdoor SK = x. Therefore, what ttp is trying to
do is to forge a valid SOK-IBS signature under adaptive chosen message attacks.
Her advantage is negligible as the SOK-IBS scheme is non-existential forgeable
against adaptive chosen-message attacks, under the CDH-assumption.

The above arguments show that, our scheme is provably secure under the
well-known CDH assumption, of course, in the random oracle model. �

4 ID-Based Optimistic Fair Exchanges

Now we present an optimistic fair exchange protocol based on the probabilistic
signatures described as in section 3. The construction is similar to [8], [14], [21].

Assume Alice’s identity is IDA and the private key is dA = sQA = sH1(IDA),
and Bob’s identity is IDB and his private key is dB = sQB = sH1(IDB). The
public key of a TTP is PK = xP while the private key is SK = x.

1. Alice first randomly chooses rA ∈ Z∗
q and computes UA = rAP ∈ G1 and

HA = H2(IDA, m, UA) ∈ G1, then computes V ′ = dA + rAHA + rAPK ∈ G1.
Alice sends a verifiable partial signature σ′

Alice = (m, UA, V ′
A) to Bob.

2. Bob first computes QA = H1(IDA) ∈ G1 and HA = H2(IDA, m, UA) ∈ G1.
He then checks

e(P, V ′
A) = e(Ppub, QA) · e(UA, HA + PK).

If it is valid, Bob randomly chooses rB ∈ Z∗
q and computes UB = rBP ∈ G1 and

HB = H2(IDB , m, UB) ∈ G1, and then computes V ′
B = dB + rBHB ∈ G1. Bob

sends his signature σBob = (m, UB, VB) to Alice.
3. After receiving Bob’s signature σBob = (m, UB, VB), Alice first computes

QB = H1(IDB) ∈ G1 and HB = H2(IDB , m, UB) ∈ G1, and then verifies

e(P, VB) = e(Ppub, QB) · e(UB, HB).

If valid, she computes VA = V ′
A − rAPK and sends σAlice = (m, UA, VA) to Bob.

Efficient ID-Based Optimistic Fair Exchange with Provable Security 25

4. If Bob does not receive anything in step 3, or if Alice’s signature σAlice is
invalid, then he sends the verifiable partial signature σ′

Alice = (m, UA, V ′
A) and

his probabilistic signature σBob = (m, UB, VB) to ttp. This protocol provides a
vehicle for ttp to understand whether the protocol was correctly carried out. ttp
first computes QA = H1(IDA), HA = H2(IDA, m, UA), and QB = H1(IDB),
HB = H2(IDB, m, UB), and then checks

e(P, VB) = e(Ppub, QB) · e(UB, HB),

and
e(P, V ′

A) = e(Ppub, QA) · e(UA, HA + PK).

If both are valid, ttp extracts VA = V ′
A − xUA, and sends σAlice = (m, UA, VA)

to Bob and sends σBob = (m, UB, VB) to Alice.

5 Conclusion

We propose an efficient and optimistic fair exchange protocol of identity-based
signatures and give a security proof with tight reduction in the random model.
Similar to [21], a semi-trust third party (ttp) is still involved in our protocol
to ensure fairness, while it is not required to store any information except its
private-key. There is no need for registrations between users and ttp, and no
zero-knowledge proof is involved. This is the first identity-based optimistic fair
exchange protocol with such a concise framework.

Acknowledgement

The work is supported by National Natural Science Foundation of China under
Granted No.60373039, and National Grand Fundamental Research Project of
China under Granted No.G1999035802.

References

1. N.Asokan, V.Shoup, M.Waidner. Optimistic fair exchange of digital signatures.
Advances in Cryptology - EUROCRYPT’98, LNCS 1403, pages 591-606, Springer-
Verlag, 1998; IEEE J. on Selected Areas in Communication, 18(4): 593-610, 2000.

2. G.Ateniese. Efficient verifiable encryption (and fair exchange) of digital signatures.
Sixth ACM Conference on Computer and Communication Security, pages 138-
146. ACM, 1999; Verifiable encryption of digital signatures and applications, ACM
Transactions on Information and System Security, Vol. 7, No. 1, pages 1-20, 2004.

3. F. Bao. Colluding Attacks to a Payment Protocol and Two Signature Exchange
Schemes. In ASIACRYPT 2004, LNCS 3329, pages 417-429, Springer-Verlag, 2004.

4. F. Bao, G.L. Wang, J.Y. Zhou, H.F. Zhu. Analysis and Improvement of Micali’s
Fair Contract Signing Protocol, ACISP 2004, LNCS 3108, pp. 176-187, 2004.

5. F. Bao, R.H. Deng, W. Mao. Efficient and practical fair exchange protocols with
off-line TTP. IEEE Symposium on Security and Privacy, pages 77-85, 1998.

26 Z. Zhang et al.

6. M. Bellare and P. Rogaway: Random oracles are practical: a paradigm for designing
efficient protocols. Proceedings of the First Annual Conference on Computer and
Commmunications Security, ACM, 1993.

7. M. Bellare, C. Namprempre and G. Neven. Security Proofs for Identity-Based Iden-
tification and Signature Schemes, Advances in Cryptology-Eurocrypt’04, LNCS
3027, pages 268-286, Springer-Verlag, 2004.

8. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. Advances in Cryptology-EUROCRYPT 2003, LNCS
2656, pages 416-432. Springer-Verlag, 2003.

9. D. Boneh, B. Lynn, H. Shacham. Short signatures from the weil pairing. Advances
in Cryptology-ASIACRYPT 2001, LNCS 2248, pp.514-532, Springer-Verlag, 2001.

10. D. Boneh, M. Franklin: Identity-based encryption from the Weil Pairing. In
Crypto’2001, LNCS 2139, Springer-Verlag, pages 213-229, 2001.

11. J. Camenisch and I. B. Damgard. Verifiable encryption, group encryption, and
their applications to group signatures and signature sharing schemes. Advances in
Cryptology-ASIACRYPT 2000, LNCS 1976, pages 331-345, Springer-Verlag, 2000.

12. J.C. Cha, J.H. Cheon. An Identity-Based Signature from Gap Diffie-Hellman
Groups, Proc. of PKC 2003. Springer-Verlag, LNCS 2567, pp.18-30, Springer, 2003.

13. J.S. Coron. On the exact security of Full Domain Hash. Advances in Cryptology-
Crypto 2000, LNCS 1880, pp.229-235, Springer-Verlag, 2000.

14. Y. Dodis and L. Reyzin. Breaking and Repairing Optimistic Fair Exchange from
PODC 2003. ACM Workshop on Digital Rights Management, pages 47-54, 2003.

15. B. Libert, J.-J. Quisquater. The Exact Security of an Identity Based Signature and
its Applications, IACR Cryptology ePrint Archive, Report 2004/102, 2004.

16. S. Micali. Simple and fast optimistic protocols for fair electronic exchange. 2003
ACM Symposium on Principles of Distributed Computing, pages 12-19, 2003.

17. J. M. Park, E. Chong, H. Siegel, I. Ray. Constructing fair exchange protocols for
E-commerce via distributed computation of RSA signatures. In 22th ACM Symp.
on Principles of Distributed Computing, pages 172-181, 2003.

18. RSA Labs: RSA Cryptography Standard: EMSAPSS-PKCS�1 v2.1, 2002.
19. A. Shamir, Identity based cryptosystems and signature schemes, Advances in

Cryptology-Crypto’84, LNCS 196, Springer-Verlag, pages 47-53.
20. R. Sakai, K. Ohgishi, M. Kasahara. Cryptosystems based on pairing, In 2000 Sym-

poium on Cryptography and Information Security, Okinawa, Japan, 2000.
21. Z. F. Zhang, Y. B. Zhou and D. G. Feng. Efficient and Optimistic Fair Exchange

based on Standard RSA with Provable Security, IACR Cryptology ePrint Archive,
Report 2004/351, 2004.

On the Quest for Impartiality:
Design and Analysis of a Fair Non-repudiation

Protocol

J. Cederquist1, R. Corin1, and M. Torabi Dashti2

1 University of Twente
2 CWI Amsterdam

Abstract. We design and analyze a simple optimistic fair non-repudia-
tion protocol. Our protocol is considerably simpler and more efficient
than current proposals, due mainly to the avoidance of using session
labels. We model-check both safety and liveness properties. The safety
properties are verified using a standard intruder, and the liveness proper-
ties using an intruder that respects the resilient communication channels
assumption. Finally, to provide further confidence in the protocol, several
vulnerabilities on weaker versions of our protocol are exposed.

1 Introduction

During the last decades the use of open networks for exchanging information
has undergone an impressive growth. As a consequence, new security issues like
non-repudiation and fair exchange have to be considered. Repudiation is the
denial of a previously uttered statement. In the situation where agent A sends
a message to agent B, non-repudiation guarantees that A cannot deny having
sent the message and that B cannot deny having received it. One of the major
difficulties in designing non-repudiation protocols is to achieve fairness, i.e. to
avoid that one of the entities gets its evidence without the other one being able
to get its evidence as well.

It has been shown that achieving fair exchange is impossible without a trusted
third party (TTP) [18]. However, using a TTP in every exchange is inefficient.
So, to avoid bottlenecks, Asokan et al. [2] introduced the optimistic approach
to fair exchange, where the TTP is used only in the case of session recovery or
abortion (which are assumed to be infrequent).

In comparison to other security issues like secrecy or authentication, fairness
has not been studied intensively. Secrecy and authentication are safety properties
for which the Dolev-Yao intruder is the most powerful intruder [7] (under certain
assumptions, such as perfect cryptography). However, we also aim at verifying
(session) termination, a liveness property that cannot be verified using the stan-
dard Dolev-Yao model. Therefore, we use a modified Dolev-Yao intruder that
respects the resilient communication channels assumption (saying that messages
sent over the network will eventually be delivered) [6].

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 27–39, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

28 J. Cederquist, R. Corin, and M. Torabi Dashti

In the literature, several fair non-repudiation protocols have been proposed,
e.g. [14, 21, 13]. These protocols use session labels to identify session runs. A ses-
sion label typically consist of a hash of all message components. However, using
session labels does not only add computational cost, but also it may introduce
vulnerabilities, as shown in [13].

In this paper we design an optimistic non-repudiation protocol which avoids
using session labels altogether, and use a model checker to verify it. We refer the
interested reader to [6] for detailed explanations regarding the adopted analysis
technique and its comparison to other analysis approaches in the literature.

Contributions. Our contributions are threefold, as listed below.

– We propose a fair non-repudiation protocol which is simpler than existing
ones. Existing fair non-repudiation protocols use labels to identify the session
runs. Here we show that these labels can be avoided, allowing for a more
efficient protocol. Our TTP distinguishes session runs by recognizing fresh
keys, which the TTP receives in abort or resolve requests.

– We check a finite state model of our protocol, under the perfect cryptography
assumption [8], using the technique of [6], briefly presented in Section 3. Our
verification shows that an honest agent (that follows the protocol) will not
be treated in an unfair way, even if the agent communicates with a dishonest
agent that does not follow the protocol.

– To further validate the analysis method, we illustrate several vulnerabilities
found by the model-checker when different fields are missing from our pro-
tocol. This also provides confidence in the full protocol and indicates that
the fields are indeed needed.

The rest of the paper is organized as follows. In the next section we describe
our fair non-repudiation protocol. The intruder model and the formal analysis
are described in Section 3. In Section 4 we present the results of our formal
analysis. We conclude with some related work and final remarks in Section 5.

2 A Fair Non-repudiation Protocol

In this section we describe our fair non-repudiation protocol. We first describe
the underlying cryptographic assumptions and requirements on the trusted third
party (TTP). Then we present our protocol, and finally we describe the evidences
each party obtains and the fair exchange properties the protocol satisfies.

Cryptographic assumptions. In our analysis the cryptographic operations are
assumed to be “ideal”, as in Dolev and Yao [8]: First, we assume to have a secure
one way hash function h. Also, we have symmetric encryption of a message M
with key K, denoted by {M}K . In {M}K , M can only be extracted using K. We
let {K}TTP denote K encrypted asymmetrically using the trusted third party
TTP’s public key. Finally, (X)A denotes X signed by A (using A’s private key).
The signature can be verified using A’s public key, and X can be extracted.

Design and Analysis of a Fair Non-repudiation Protocol 29

TTP assumptions. Our TTP is assumed to have a persistent database of aborted
or resolved sessions, containing entries of the form 〈status : X Y W Z〉. In our
protocol, status is either aborted or resolved ; X and Y are agent identities,
W is a cryptographic key and Z is the hash of a cipher text. A query to this
database is denoted by a predicate status(X, Y, W, Z), which holds when entry
〈status : X Y W Z〉 exists in the TTP’s database.

2.1 Protocol

The non-repudiation protocol that we present below allows an agent A to send a
message M to agent B in a fair manner, meaning that A gets evidence of receipt
(EOR) iff B receives M as well as evidence of origin (EOO). The EOR allows A
to prove that B did indeed receive M , whilst the EOO allows B to prove that
it was A who sent M . The protocol consists of three sub-protocols:

Main protocol. Agent A wants to send M to B, using TTP for session abort or
resolution. Initially, A chooses a fresh key K. The main protocol is:

1. A → B : {M}K, EOOM for EOOM = (B,TTP, h({M}K), {K, A}TTP)A

2. B → A : EORM for EORM = (EOOM)B

3. A → B : K
4. B → A : EORK for EORK = (A, h({M}K), K)B

First A sends {M}K, along with EOOM , which consists of B and TTP’s iden-
tities, a commitment to send M using K in the form of a hash h({M}K), and
K encrypted with the TTP’s public key (along with A’s identity) in case the
session is later resolved. On receipt, B stores {M}K , checks the signature of
EOOM to ensure that the message is genuinely coming from A, and extracts
the values for performing more tests: Firstly, it checks that the leftmost value of
EOOM is B’s identity; Secondly, that TTP is a valid TTP for B, whom B trusts
for recovering a session; Thirdly, B checks that the included hash commitment
is indeed the hash of {M}K. When all this is verified, B signs EOOM with his
private key to obtain EORM and sends it to A. When A gets this message, it
checks whether the signature is that of B. If this is the case, A sends K to B.
Then B sends EORK , signing K along with A’s identity and h({M}K). Note
that B does not need to check whether the key in message 3 decrypts {M}K ,
since (A, h({M}K), K ′)B would not be a valid evidence of receipt of M for A.

Abort protocol. If A does not receive a valid EORM from B, at step 2 in the
main protocol, then A can invoke the abort protocol, for canceling the exchange:

1. A → TTP : (abort, h({M}K), B, {K, A}TTP)A

2. TTP → A :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ETTP for ETTP = (A, B, K, h({M}K))TTP,

if resolved(A, B, K, h({M}K))

ABTTP for ABTTP = (A, B, h({M}K), {K, A}TTP)TTP,

otherwise

30 J. Cederquist, R. Corin, and M. Torabi Dashti

First A sends to TTP an abort request message consisting of an abort flag, the
commitment h({M}K), B’s identity and {K, A}TTP. On receipt, TTP checks
A’s signature, and checks that it can decrypt the message {K, A}TTP. If the
decryption succeeds, TTP checks that the included identity A next to the key K
matches the signature of the whole abort request message. Next, TTP queries
its database with resolved(A, B, K, h({M}K)). If the query holds, it means that
this session has been resolved earlier. The answer from TTP to A is then ETTP,
including the key K signed by the private key of TTP. In the case that the query
fails, TTP declares that the session is aborted and stores the entry 〈aborted :
A B K h({M}K)〉 in its database. The answer ABTTP signed by the TTP is
returned to A, as an acknowledgment of the successful abortion. Note that this
message does not include K in the clear.

Resolve protocol. If B does not get K or A does not get EORK , then both
parties may resolve the protocol by consulting TTP:

1. P → TTP : ((B,TTP, h({M}K), {K, A}TTP)A)B

2. TTP → P :
{

ABTTP, if aborted(A, B, K, h({M}K))
ETTP, otherwise

Here P is the party that is resolving the session (i.e. A or B). First P sends
EORM , as a resolve request message. On receipt, TTP checks the validity of the
signatures, and the successful decryption and matching of {K, A}TTP. Then,
TTP queries its database for aborted(A, B, K, h({M}K)) to find out whether
the session has been previously aborted. If the session has not been aborted, the
resolve request is accepted and TTP stores 〈resolved : A B K h({M}K)〉 in its
database, and answers with ETTP evidence containing key K, which is signed
with TTP’s private key. If the session is already aborted, TTP answers with
ABTTP, a message representing the session abortion.

2.2 Evidences and Dispute Resolution

In case of a dispute, the parties present evidences to an external judge. In our
protocol, the evidence of receipt EOR for A is EORM and {M}K , plus either
EORK or ETTP. The evidence of origin EOO for B is EOOM , {M}K and K.

Dispute resolution. Suppose B claims that it did not receive M from A, when A
possesses EOR. Then A presents EORM , {M}K and either EORK or ETTP to
the judge. The messages EORM and {M}K provide proof that B committed
in the session to receive M , while EORK or ETTP represent that either B
received K, or he can receive it from TTP, respectively.

Suppose A claims that it did not send M to B, when B possesses EOO. Then
B presents EOOM , {M}K and K to the judge, who can check that A had indeed
committed to communicate M to B. Since K was freshly created by A, B could
only have received it from A directly or from TTP, who checked that A provided
the correct K in EOOM .

Design and Analysis of a Fair Non-repudiation Protocol 31

2.3 Fair Exchange Properties

We aim at verifying effectiveness, fairness and timeliness (cf. requirements for
fair exchange in [1]). These properties are illustrated in the case where A is the
initiator and B the responder:

– Effectiveness says that if A and B behave according to the protocol and A
does not abort, then the protocol session will reach a state where B has
received the message M and EOO, and A has received EOR, and both A
and B terminate, i.e. have no further pending operations to perform in that
protocol session.

– Fairness expresses that when the protocol session has terminated then B has
received M and EOO if and only if A has received EOR.

– Timeliness means that protocol sessions terminate for all honest parties.
In other words, after an honest agent X has initiated a protocol session
with some Y , then X will reach its termination1. Moreover, timeliness also
specifies that after this termination the degree of fairness does not decrease
for X : if X did not get his evidence before termination then it cannot be
that Y gets her evidence without X also getting his.

Effectiveness is a functional sanity check, and may thus be verified in a system
without intruder. For the other two properties, we can first verify termination
and then check fairness and timeliness assuming that the protocol sessions ter-
minate. This has the benefit of reducing the two properties to safety properties.
Thus, termination is the only liveness property that needs to be checked.

3 Formal Analysis

We now implement the necessary machinery to formally analyze whether the
protocol proposed in Section 2.1 meets the properties described in Section 2.3.

3.1 Communication Model

We consider two different communication models. The first model is used for
verifying effectiveness. In this model there is no intruder (all agents are honest):
A set of agents communicate over a network, performing send and receive ac-
tions. These actions are synchronized, meaning that an agent A can only send a
message m to B (denoted by send(A, m, B)), if B at the same time receives it
from A (denoted by recv(A, m, B)). The synchronization between send(A, m, B)
and recv(A, m, B) actions is denoted by com(A, m, B).

We use a second model to verify all the remaining properties. In this model
there is an intruder I with complete control over the network. When an agent A
sends a message m with the intention that it should be received by B, it is in
fact the intruder that receives it, and it is also only from the intruder that B
may receive m. Also in this model send and receive actions are synchronized.
1 Here termination refers to that particular agents’ session. An agent X may continue

executing subsequent sessions after one session is finished.

32 J. Cederquist, R. Corin, and M. Torabi Dashti

3.2 The μCRL Specification Language and Toolset

We briefly describe the symbols used in the μCRL code of the intruders below.
For a complete description of the syntax and semantics of μCRL we refer to [12].
The symbols ‘.’ and ‘+’ are used for the sequential and alternative composition
(“choice”) operator, respectively. The operator

∑
d∈D P (d) behaves like P (d1)+

P (d2) + · · · . The process expression p � b � q, where b is a Boolean term and p
and q are processes, behaves like p if b is true, and like q if b is false. Finally, τ
represents an internal action, and the constant δ expresses that, from then on,
no action can be performed.

The formalization of the protocol described in Section 2 is carried out in
μCRL [12]. The μCRL toolset includes an automatic state space generator and
symbolic state space reduction tools. The fair exchange properties are expressed
in the regular alternation-free μ-calculus [16]. The model checker EVALUA-
TOR 3.0 [16] from the CADP tool set [9] is then used to verify these properties.

3.3 Intruder Models

We use two different intruder models. For safety properties the normal Dolev-Yao
intruder [8] is used. As mentioned earlier, this intruder is not suitable for veri-
fication of liveness properties [17], so to verify termination we use the intruder
suggested in [6]. This intruder is shown to be equivalent, w.r.t. termination, to
the Dolev-Yao intruder that respects the resilient communication channels as-
sumption (RCC, messages sent over the network will eventually be delivered) [6],
which is enough for our purposes. The Dolev-Yao intruder stores all received
messages in a set X , representing its knowledge. The intruder uses X for synthe-
sizing new messages (synth in the code below), using the usual rules of message
(de)composition (in particular, the intruder can decrypt and sign messages only
if it knows the corresponding key). The intruder can also block communications.
Below we illustrate a specification of an intruder DYB , in this case played by
dishonest agent B. The intruder DYB can perform a special evidence action
evidenceB(k, m). This action is parameterized by a key k and a message m,
meaning that the gathered evidence regards message m and was provided in
the session using key k. We allow DYB to perform the action evidenceB(k, m)
only when it can synthesize EOO(k, m). In general, the particular data that
constitutes an evidence is protocol specific, denoted below by EOO(k, m).

DYB(X) =
∑

p∈Agent
m∈Message

recv(p, m, B).DYB(X ∪ {m}) +

∑
p∈Agent
synth(m,X)

send(B, m, p).DYB(X) +

∑
k∈Key
m∈msg

evidenceB(k, m).DYB(X) � synth(EOO(k, m)) � δ +

τ.δ

Design and Analysis of a Fair Non-repudiation Protocol 33

According to the operational semantics that underlies μCRL, a process p + δ
behaves like p. So to express that the intruder shall be able to stop all communi-
cations at its own will, we let it perform an internal action τ before deadlock δ.

The intruder IB for verifying termination maintains, besides X , a set Y for
messages that have been received but not yet sent (cf. RCC). To distinguish the
send actions that the intruder eventually has to perform (according to RCC) from
the ones that it can perform (but does not have to), the send actions are tagged
with X and Y , respectively. The synchronizations between send and receive
actions are denoted com , comX and comY referring to the synchronizations
between send and recv , sendX and recv , and sendY and recv , respectively.

IB(X, Y) =
∑

p∈Agent
m∈Message

recv(p, m, B).IB(X ∪ {m}, Y ∪ {m}) +

∑
p∈Agent
m �∈Y
synth(m,X)

sendX(B, m, p).IB(X, Y) +

∑
p∈Agent
m∈Y

sendY (B, m, p).IB(X, Y \ {m})

Note that when we split the fairness and timeliness properties into termina-
tion and two safety properties, as described in Section 2.3, we also verify these
properties using respectively the two intruders above. This can be done since
the intruder IB is equivalent to the Dolev-Yao intruder that respects the com-
munication channels assumption [6].

3.4 Regular Alternation-Free μ-Calculus

The regular alternation-free μ-calculus is used here to formulate properties of
(states in) labeled transition systems. It is a fragment of μ-calculus that can be
efficiently checked. Here we briefly describe what is needed for expressing the fair
exchange properties of the protocol we investigate. For a complete description of
the syntax and semantics we refer to [16]. The regular alternation-free μ-calculus
is built up from three types of formulas: action formulas, regular formulas and
state formulas. We use ‘.’, ‘∨’, ‘¬’ and ‘∗’ for concatenation, choice, complement
and transitive-reflexive closure, respectively, of regular formulas. The symbols F
and T are used in both action formulas and state formulas. In action formulas
they represent no action and any action, respectively. The meaning of F and T
in state formulas are the empty set and the entire state space, respectively. The
operators 〈· · · 〉 and [· · ·] have their usual meaning (� and � in modal logics).
The CADP toolset also allows wildcards ‘∗’ in action parameters.

3.5 The Fair Exchange Properties

Here we formalize the fair exchange properties that we verify. To enhance read-
ability, the protocol implementations are extended with certain abstract actions

34 J. Cederquist, R. Corin, and M. Torabi Dashti

that do not affect the behavior of the agents. An agent P performs the actions
initP (k, m) when it engages in a protocol session, terminateP (k, m) when the
session is over from P ’s point of view, and evidenceP (k, m) when it receives a
valid evidence, for the key k and item m. The TTP performs abort(k, m) when
a session is successfully aborted, for the key k and item m.

First, we check that the protocol is effective. Note that this is verified in
the model without intruder. Whenever agent P has started execution, then P ’s
termination is inevitable:

[T ∗.initP (k, m)] μZ.(〈T 〉T ∧ [¬terminateP (k, m)]Z) (1)

Also, if there is no abort, P receives its evidence before termination:

[(¬(abort(k, m) ∨ evidenceP (k, m))∗.terminateP (k, m)]F (2)

Now we turn to the fairness and timeliness properties, to be verified in the
model with intruder. We assume that the intruder plays the role of Q. The prop-
erties below are thus defined to describe “fairness for P”. The corresponding
properties for Q are defined in a similar way. The properties fairness and timeli-
ness are verified, as described above, by verifying termination separately, using
the intruder described in Section 3.3

[T ∗.initP (k, m).(¬terminateP (k, m))∗]
〈(¬comX(∗, ∗, ∗))∗.terminateP (k, m)〉T,

(3)

i.e. whenever initP (k, m) has happened, but not yet terminateP (k, m), there is
a path to terminateP (k, m) that does not contain comX actions. This means
that, whenever initP (k, m) has happened, but not yet terminateP (k, m), and
assuming RCC, terminateP (k, m) will happen.

The remaining properties concern safety so we use the normal Dolev-Yao
intruder. Fairness (for P) means that if Q gets its evidence, then so shall P :

[(¬evidenceQ(k, m))∗.evidenceP (k, m).(¬evidenceQ(k, m))∗.
terminateP (k, m)]F (4)

This property says that P does not terminate in an unfair state for P . But
since P will eventually terminate (property 3), P will indeed terminate in a fair
state.

Finally, timeliness for P says that after P ’s termination, if P has not got his
evidence, Q cannot get her evidence unless P initiates a new session with same
key and item:

[(¬evidenceP (k, m))∗.terminateP (k, m).
(¬initP (k, m))∗.evidenceQ(k, m)]F (5)

In the case when P does initiate a new session with same key and item, P will
get his evidence if Q gets hers (according to the properties 3 and 4).

Design and Analysis of a Fair Non-repudiation Protocol 35

4 Results

In this section we describe the results obtained from the formal analysis described
in Section 3 performed on our protocol proposed in Section 2.

Honest scenario S0: A and B are honest. We first encode a scenario in which
both A and B are honest, along with the TTP. A exchanges items with B
using fresh keys. To model timeouts, we use nondeterministic choices between
communication actions. For instance, either A receives an answer timely from
B in Message 2, in the main protocol, or it initiates the abort sub-protocol.
Correspondingly, B has a choice between a send action and a τ action, which
models an asynchronous communication in which the message is ignored by A.
This scenario was model-checked and showed to be deadlock-free and effective.

Result 1. The protocol in Section 2.1 is effective for scenario S0, satisfying the
properties (1) and (2) in Section 3.5.

Dishonest scenario S1: A dishonest and B honest. When A is dishonest and
B is honest, we execute B along with the intruder, who takes the identity of
A. We first verify the safety properties (4) and (5) using the standard intruder
(the first intruder in Section 3.3). Then we model check whether A can unfairly
generate B’s evidence, and verify that this is impossible, thus rendering the
protocol secure.

Result 2. The protocol in Section 2.1 respects fair exchange and timeliness
(properties (4) and (5) in Section 3.5, with respect to A) for scenario S1.

Second, we force the intruder to respect RCC (by using the second intruder
in Section 3.3). This scenario, called S′

1, is used to verify termination:

Result 3. The protocol in Section 2.1 respects termination (property (3) in Sec-
tion 3.5, with respect to A) for scenario S′

1.

Dishonest scenario S2: A honest and B dishonest. In the opposite case, in which
A is honest and B is dishonest, we obtain similar results to the above statements.

4.1 Further Experiments

We now illustrate vulnerabilities found by analyzing modified versions of the
protocol presented in Section 2. The protocol is modified in such a way that
certain assumptions are removed or different message components are excluded.
The encountered vulnerabilities expose the need for the particular assumptions
or excluded message components.

Reuse of keys. Suppose that A reuses a key K in a subsequent session. Then our
analysis reports that for dishonest scenario S2, A may be attacked by B. The
attack is reproduced in standard notation below:

36 J. Cederquist, R. Corin, and M. Torabi Dashti

a1. A → B : {M}K , EOOM for EOOM = (B,TTP, h({M}K), {K, A}TTP)A

...
b1. A → B : {M ′}K , EOOM′ for EOOM′ = (B,TTP, h({M ′}K), {K, A}TTP)A

First A sends the message a1, initiating a session. Then the session runs normally.
When A later starts another session by sending message b1, B can immediately
obtain M ′ and thus obtain the evidence EOO, before A can obtain its corre-
sponding evidence. The vulnerability above was found in a scenario where A is
honest, and uses two items and one key, and B is dishonest. This violation of
property (4) shows that A needs to use fresh keys for each new session.

Missing hash in EOOM . Consider EOOM , the second component of the main
protocol in Section 2.1. If we exclude the hash h({M}K), obtaining a new
EOO′

M = (B, TTP, {K, A}TTP)A, the following vulnerability is found:

1. A → B : {M}K′, EOO′
M for EOO′

M = (B,TTP, {K, A}TTP)A

2. B → A : EOR′
M for EOR′

M = (EOO′
M)B

Agent A starts a session with B, but uses a key K ′ to encrypt message M and
embeds a different key K in EOO′

M . When B replies A can run the resolve
protocol and obtain evidence EOR. However, when B wants to recover, TTP
returns K which is not useful to decrypt {M}K′, hence the evidences of A and B
do not match. This vulnerability was found in a scenario where A is dishonest,
and uses two keys, and B is honest. Again property (4) is violated which shows
that including the hash in EOOM is necessary for security of the protocol in
Section 2.1.

Missing A’s identity in EOOM . We now consider the case in which A’s iden-
tity is excluded from the component {K, A}TTP in EOOM . Suppose then that
EOO′

M = (B, TTP, h({M}K), {K}TTP)A. The following attack is found:

a1. A → B : {M}K , EOOM for EOO′
M = (B,TTP, h({M}K), {K}TTP)A

b1. B → C : {M}K , EOOM for EOO′
M = (C,TTP, h({M}K), {K}TTP)B

2. C → B : EOR′
M for EOR′

M = (EOO′
M)C

When A starts a session with B, B immediately starts another session with
another agent C, reusing the information that A used. When C answers, B
resolves and obtains K and hence the evidence. However A cannot obtain EOOM

since B never answers to A’s first message. When A is honest and B is dishonest,
B can simply reuse its own identity and resolve to “itself” (we disallow the TTP
to check this). Property (4) is thus violated, indicating that the identity of A is
needed in {K, A}TTP .

Missing A’s identity in EORK . If A’s identity is missing in EORK (so that
EORK = (h({M}K), K)B), the following vulnerability is found:

Design and Analysis of a Fair Non-repudiation Protocol 37

a1. A → B : {M}K, EOOM for EOOM = (B,TTP, h({M}K), {K, A}TTP)A

a2. B → A : EORM for EORM = (EOOM)B

a3. A → B : K
a4. B → A : EORK for EORK = (h({M}K), K)B

b1. C → B : {M}K, EOOM for EOOM = (B,TTP, h({M}K), {K, C}TTP)C

b2. B → C : EORM for EORM = (EOOM)B

Here, A runs a normal session a with B which terminates. A is allied to another
user C, who starts a replay of the session by A: we assume A hands over M
and K to C. Now, B replies with EORM , at which point C aborts the session
with B. Then B is unable to obtain evidence, but C has evidence since EORK

does not mention A nor C, and thus it constitutes valid evidence EOR for C as
well. This vulnerability appears in our analysis when we hand out information
to a dishonest A about previous sessions giving some EORK to A (which may
be from an old session of B with some other agent X which we assume is allied
to A). In such a scenario, property (4) is violated immediately when A runs
the abort protocol after B answers its second message. Thus, we conclude that
EORK needs to include A’s identity.

Missing hash in EORK . Finally we consider the case in which h({M}K) is
missing in EORK , so EORK = (A, K)B. The following attack is then possible:

a1. A → B : {M}K , EOOM for EOOM = (B,TTP, h({M}K), {K, A}TTP)A

a2. B → A : EORM for EORM = (EOOM)B

a3. A → B : K
a4. B → A : EORK for EORK = (A, K)B

b1. A → B : {M ′}K , EOOM for EOOM = (B,TTP, h({M ′}K), {K, A}TTP)A

b2. B → A : EORM for EORM = (EOOM)B

Similar to the previous case, A runs a normal session a with B. Then A starts
another session, but now using a different message M ′, reusing the same key K.
After obtaining an answer from B, A aborts the session. In this state A has valid
evidence since the previous EORK is not bound to M , and thus it is valid also
for an exchange between A and B with K. One could argue that B could also
remember K and obtain M ′. But B is not supposed to be stateful and save old
keys, B just follows the protocol as is specified. In a scenario with A dishonest
and B honest, property (4) is violated, exposing the mentioned vulnerability.
This shows that EORK has to contain h({M}K).

5 Conclusion and Related Work

We present a novel optimistic non-repudiation protocol, simpler than previous
proposals. The simplicity is due to avoiding the usage of labels to identify sessions
and assuming the usage of fresh keys per-session. We model-check the proposed
protocol and verify the fair exchange properties using the technique in [6]. A
full formalization can be found in an extended version of this document [5]. To

38 J. Cederquist, R. Corin, and M. Torabi Dashti

provide further confidence in our proposal we illustrate vulnerabilities when dif-
ferent fields are missing in the protocol.

Related Work. Several non-repudiation and fair exchange protocols have been
previously proposed. Early tries on optimized exchange protocols [11, 10], i.e.
those with only three message exchanges in honest protocol runs, have been
found flawed [4, 20]. A recent optimized protocol suggested by Zhou [20], de-
veloped on previous ones, remarkably does not suffer from previously reported
problems. But it has an elaborate dispute resolution phase requiring both par-
ticipants to attend the court. We believe an evidence of receipt or origin must be
self sufficient to settle a dispute, which requires the addition of a fourth message
in our protocol.

More recently, Kremer and Markowitch [14] proposed a four-message protocol
(KM) to achieve non-repudiation. Their protocol is analyzed by Kremer and
Raskin [15] using a game-based technique. Quite similar to the KM protocol is
Zhou-Gollman’s protocol (ZG) [21]. Gürgens et al. [13] present several potential
unfair situations that may happen in both the KM2 and ZG protocols. These
unfair situations arise from confusion in the labels used to identify the session
runs. By carefully setting (complex) labels, Gürgens et al. propose a protocol
for achieving fair exchange. The ZG protocol was also analyzed by Bella and
Paulson [3] who used the theorem prover Isabelle to model the protocol by an
inductive definition and to prove some desired properties. Another interesting
approach to formal verification of fair exchange is the work by Shmatikov and
Mitchell [19] who used the model checker Murϕ to analyze fair exchange and
contract signing protocols, using a Dolev-Yao intruder.

Acknowledgments. We thank Ana Almeida Matos, Sandro Etalle, Wan Fokkink,
Pieter Hartel, Steve Kremer and the anonymous reviewers for helpful comments.

References

1. N. Asokan. Fairness in electronic commerce. PhD thesis, University of Waterloo,
1998.

2. N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair exchange.
In 4th ACM Conference on Computer and Communications Security, pages 7–17.
ACM Press, 1997.

3. G. Bella and L. C. Paulson. Mechanical proofs about a non-repudiation protocol.
In R. J. Boulton and P. B. Jackson, editors, TPHOLs 2001, volume 2152 of LNCS,
pages 91–104. Springer-Verlag, September 2001.

4. C. Boyd and P. Kearney. Exploring fair exchange protocols using specification
animation. In Information Security Workshop (ISW), volume 1975 of LNCS, pages
209–223. Springer-Verlag, 2000.

5. J. Cederquist, R. Corin, and M. Torabi Dashti. On the quest for impartiality:
Design and analysis of a fair non-repudiation protocol (extended version). Technical
Report TR-CTIT-05-32, University of Twente, The Netherlands, 2005.

2 The KM protocol was not originally designed to provide fair exchange but simply
non-repudiation (private communication, 2004).

Design and Analysis of a Fair Non-repudiation Protocol 39

6. J. Cederquist and M. Torabi Dashti. An intruder model for verifying termination
in security protocols. Technical Report TR-CTIT-05-29, University of Twente,
Enschede, The Netherlands, 2005.

7. I. Cervesato. The Dolev-Yao Intruder is the Most Powerful Attacker. In J. Halpern,
editor, LICS’01, Boston, MA, 16–19 June 2001. IEEE Computer Society Press.

8. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, IT-29(2):198–208, March 1983.

9. J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP: A protocol validation and verification toolbox. In R. Alur and T. A.
Henzinger, editors, Proceedings of the 8th Conference on Computer-Aided Verifi-
cation, volume 1102 of LNCS, pages 437–440. Springer-Verlag, 1996.

10. J. Ferrer-Gomila, M. Payeras-Capella;, and L. Huguet i Rotger. A realistic protocol
for multi-party certified electronic mail. In Proceedings of the 5th International
Conference on Information Security, pages 210–219, UK, 2002. Springer-Verlag.

11. J. L. Ferrer-Gomila and L. H. Rotger. An efficient asynchronous protocol for
optimistic certified mail. In International Workshop on Cryptographic Techniques
and E-Commerce (Cryptec), 1999.

12. J. F. Groote and A. Ponse. The syntax and semantics of μCRL. In A. Ponse,
C. Verhoef, and S. F. M. van Vlijmen, editors, Algebra of Communicating Processes
’94, Workshops in Computing Series, pages 26–62. Springer-Verlag, 1995.

13. S. Gürgens, C. Rudolph, and H. Vogt. On the security of fair non-repudiation
protocols. In Information Security Conference (ISC), volume 2851 of LNCS, pages
193–207. Springer, 2003.

14. S. Kremer, O. Markowitch, and J. Zhou. An intensive survey of non-repudiation
protocols. Computer Communications, 25(17):1606–1621, November 2002.

15. S. Kremer and J. Raskin. A game-based verification of non-repudiation and fair
exchange protocols. In K. Larsen and M. Nielsen, editors, Proceedings of the 12th
International Conference on Concurrency Theory, volume 2154 of LNCS, pages
551–565. Springer-Verlag, 2001.

16. R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking for regular
alternation-free mu-calculus. Sci. Comput. Program., 46(3):255–281, 2003.

17. C. Meadows. Formal methods for cryptographic protocol analysis: Emerging issues
and trends. IEEE Journal on Selected Areas in Communication, 21(2):44–54, 2003.

18. H. Pagnia and F. C. Gärtner. On the impossibility of fair exchange without a trused
third party. Technical Report TUD-BS-1999-02, Darmstadt University, 1999.

19. V. Shmatikov and J. C. Mitchell. Finite-state analysis of two contract signing
protocols. Theoretical Computer Science, 283(2):419–450, 2002.

20. J. Zhou. On the security of a multi-party certified email protocol. In Proc.
ICICS’04, volume 3269 of Lecture Notes in Computer Science, pages 40–52.
Springer, 2004.

21. J. Zhou and D. Gollmann. A fair non-repudiation protocol. In Proceedings of the
IEEE Symposium on Research in Security and Privacy, pages 55–61, Oakland, CA,
1996. IEEE Computer Society Press.

Generic, Optimistic, and Efficient Schemes for
Fair Certified Email Delivery

Guilin Wang1, Feng Bao1, Kenji Imamoto2, and Kouichi Sakurai2

1 Institute for Infocomm Research,
21 Heng Mui Keng Terrace, Singapore 119613

{glwang, baofeng}@i2r.a-star.edu.sg
2 Kyushu University, Fukuoka, Japan
imamoto@itslab.csce.kyushu-u.ac.jp

sakurai@csce.kyushu-u.ac.jp

Abstract. As a value-added service for standard email systems, a cer-
tified email scheme allows a sender to deliver a message to a receiver
in a fair way in the sense that either the sender obtains a receipt from
the receiver and the receiver accesses the content of the email simulta-
neously, or neither party gets the expected item. In this paper, we first
point out some weaknesses in several existing schemes. Then, we present
two generic optimistic certified email schemes with transparent TTP.
Our schemes are not only fair, but also support timeliness in two flavors:
one scheme supports weak timeliness but with stateless TTP, while the
other guarantees (strong) timeliness though only supports weak stateless
TTP. Technical discussion and comparison are provide to show that our
schemes are both secure and efficient, compared with the-state-of-art in
this field.

Keywords: certified email, non-repudiation, fair exchange, security
protocol.

1 Introduction

Certified email schemes are designed to achieve fair-exchange of a message and
a receipt between two potentially mistrusting parties over the Internet. We call
such a scheme is fair, if it is guaranteed that the message receiver can get the
email content if and only if the message sender obtains an irrefutable receipt from
the receiver. In other words, a dishonest party cannot obtain his/her expected
item from a honest party in a cheating way such that the honest party is unable
to get the corresponding item.

The undeniable receipt issued by the receiver serves as an evidence for non-
repudiation of receipt (NRR). Namely, if the receiver denies having received the
delivered message from the sender, the sender can provide publicly verifiable
NRR evidence to an arbitrator to show that this is untrue. Some email schemes
also provide evidences for non-repudiation of origin (NRO). Similarly, NRO ev-
idence protects the receiver from the sender’s dishonest denial that she has not
deliver a particular message to the receiver, though this is the fact. We remark

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 40–52, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generic, Optimistic, and Efficient Schemes for Fair Certified Email Delivery 41

that certified email schemes supporting NRO services are functionally equivalent
to non-repudiation protocols.

Since direct fair-exchange between two parties is extremely inefficient on both
aspects of computation and communication, realistic solutions for certified email
delivery need a trusted third party (TTP). Actually, according to the different
usage of the TPP, certified email schemes (and non-repudiation protocols) can be
classified in two types: schemes with on-line TTPs [8,16] or schemes with off-line
TTPs [17,1,18,2,10,3,9,12,14]. Generally speaking, it would not be too difficult
to carry out the first type schemes, due to the TTP’s participation in every
protocol instance (though maybe not in each step). However, those schemes are
still expensive and inefficient in practice, since the TTP must offer services with
high level of availability and performance, and the TTP is likely to become the
system bottleneck if numerous certified emails per day have to be exchanged
via the same TTP. A more appealing and promising approach is to exploit the
TTP in an off-line fashion. Actually, those schemes with off-line TTPs are called
as optimistic [1], since the TTP is not invoked in the protocol execution at all,
unless one of the two parties misbehaves or the communication channel is out of
order. In fact, most of researches in this area have focused on those optimistic
fair-exchange protocols.

Most of certified email schemes [17,18,10,3,9,12,14] are designed to satisfy
some or all of the following properties:

P1) Optimism: The TTP is involved only in abnormal cases, i.e., one party is
trying to cheat or the communication channel fails to work.

P2) Generic Construction: Each party can independently exploit any (se-
cure) standard signature scheme to generate non-repudiation evidences.

P3) Transparent TTP: The generated non-repudiation evidences are the
same regardless of whether the TTP is involved in the protocol execution.

P4) Stateless TTP: To settle potential disputes between users, the TTP is
not required to keep a database for remembering and searching the state
information for each protocol instance.

P5) High Performance: To execute the protocol, both overheads of compu-
tation and communication could be reduced as much as possible.

P6) NRR Service: The protocol generates NRR (non-repudiation of receipt)
evidence for the sender, which proves that the receiver received a specific
message from the sender, if the receiver indeed obtained this message.

P7) NRO Service: The protocol generates NRO (non-repudiation of origin)
evidence for the receiver, which proves that the sender delivered a specific
message to the receiver, if the receiver indeed did this successfully.

P8) Fairness: After the completion of a protocol run, either each party obtains
the expected item or neither party does.

P9) Timeliness: At any time during a protocol run, each party can unilaterally
choose to terminate the protocol without losing fairness.

P10) Confidentiality: Except the receiver and the sender, the content of the
delivered message cannot be accessed by anybody else, including the TTP.

42 G. Wang et al.

In the above list, the first five properties are very meaningful in real-world
systems to reduce the running cost of the TTP. As for the security require-
ments, fairness and NRR evidence are essential requirements for all certified
email schemes, while NRO evidence, timeliness and confidentiality are optional.
Actually, some schemes may only meet weak timeliness, i.e., one party can only
terminate the protocol after waiting for a fixed amount of time, not on any
moment during the protocol execution.

However, the existing schemes do not satisfy part of the above ten proper-
ties. In some cases, fairness, the most important security requirement for certi-
fied email, cannot be achieved due to the existence of some subtle but reasonable
attacks [12]. This paper has two main contributions. We first identify some weak-
nesses in the certified email schemes proposed in [9,14]. After that, we present
two certified email schemes supporting as many as possible properties. Specifi-
cally, one of our schemes supports weak timeliness but with stateless TTP, while
the other satisfies (strong) timeliness though only supports weak stateless TTP.
Except the difference on those two properties, all other eight properties are guar-
anteed by both schemes simultaneously. Table 1 shows that our schemes are not
only secure but also efficient, when we compared them with the-state-of-art in
this field.

Note that the on-line schemes in [8,16] are not enumerated in Table 1, since
we only focus on optimistic protocols. In addition, to evaluate the efficiency we
just compare the costs of both communication and computation in normal case,
i.e., in the exchange protocols, since the abort and recovery protocols are only
run rarely in abnormal cases. “Messages” means the number of message flows
need to be transferred between the sender and receiver in each exchange proto-
col, while “Operations” denotes the number of asymmetric operations need to
be performed by the two parties. Fairness in most of those schemes is affected
by different potential attacks, so we mark those schemes with “Yes*” under the

Table 1. Comparison of Basic Features, Efficiency, and Security

ZG ZDB GRV MK KM AN Micali IS New New
[17] [18] [12] [13] [10] [3] [14] [9] I II

P1. Optimism Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
P2. Generic Constr. Yes Yes Yes No Yes Yes* Yes Yes Yes Yes
P3. Trans. TTP No No No Yes No Yes Yes Yes Yes Yes
P4. Stateless TTP No No No No No Yes Yes Yes Yes Weak
P5. Messages 4 4 4 4 4 4 3 3 3 3
P5. Operations 8 12 10 12 8 17 8 8 8 8
P6. NRR Service Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
P7. NRO Service Yes Yes Yes Yes Yes No Yes Yes Yes Yes
P8. Fairness Yes* Yes* Yes Yes* Yes* Yes Yes* Yes* Yes Yes
P9. Timeliness Weak Yes Yes Yes Yes No Weak No Weak Yes
P10. Confidentiality No No No No No No Yes Yes Yes Yes

Generic, Optimistic, and Efficient Schemes for Fair Certified Email Delivery 43

column of “fairness”. Because those schemes are likely to be repaired by more
or less modifications, though the security of revised schemes should be checked
carefully again.

The rest of the paper is organized as follows. Section 2 introduces notations.
In Section 3, we review and analyze the IS scheme [9]. After that, two new
schemes are presented and then analyzed in Section 4 and Section 5, respectively.
Finally, Section 6 concludes the paper.

2 Notations

In this paper, we use A, B, and T to denote unique identifiers of a sender Alice,
a receiver Bob, and a TTP, respectively. m is a message Alice wants to deliver
to Bob. c = Ek(m) is the ciphertext of message m encrypted with a symmetric
encryption algorithm Ek(·), where k is a session key selected by the sender Alice.
Dk(·) denotes the corresponding symmetric decryption algorithm, i.e., we have
m = Dk(Ek(m)). In addition, H(·) stands for a cryptographic hash function.
EX(·) means party X ’s asymmetric encryption algorithm, so that the resulting
ciphertexts can only be decrypted by party X using its private key. SX(·) denotes
party X ’s secure signing algorithm, so that the resulting digital signatures can be
verified by anybody using party X ’s signature verification key, which is assumed
to be publicly available.

3 The IS Scheme and Its Security

In [9], the authors actually proposed two certified email schemes, one with on-
line TTP, while the other with off-line TTP. Here, we only review and analyze
their scheme with off-line TTP. For simplicity, we call it the IS scheme.

3.1 Review of the IS Scheme

(1) Exchange Protocol. When Alice wants to deliver a message m to Bob,
they jointly executed the following exchange protocol:

(e1). A −→ B : A, T, c, EK, sub, SA(B, c, EK)
(e2). B −→ A : SB(SA(B, c, EK))
(e3). A −→ B : EB(k)

The whole exchange protocol is explained in detail as follows.

1). The sender Alice first generates a random session key k, then computes
c = Ek(m), EK = ET (A, B, EB(k)), and her signature SA(B, c, EK). Then,
Alice transmits (A, T, c, EK, sub, SA(B, c, EK)) to Bob, where sub is the
subject of message m to encourage Bob receiving this encrypted email.

2). Upon receiving message flow (e1), Bob checks whether SA(B, c, EK) is Al-
ice’s valid signature on message (B, c, EK). If this is true and Bob would like
to get this email from Alice, he returns back his signature SB(SA(B, c, EK))
to the sender Alice. Otherwise, Bob could ignore message flow (e1).

44 G. Wang et al.

3). If Bob’s signature SB(SA(B, c, EK)) is received timely and correctly, the
sender Alice reveals EB(K) to the receiver Bob.

4). When EB(K) is received, the receiver Bob first derives the session key k by
computing k = DB(EB(k)), and then obtains message m = Dk(c).

(2) Recovery Protocol. If Bob honestly sent his receipt SB(SA(B, c, EK))
to Alice but Alice does not reveal EB(k) to him, Bob can initiate the following
recovery protocol to get EB(k) from the TTP directly.

(r1). B −→ T : c, EK, SB(SA(B, c, EK))
(r2). T −→ B : EB(k)

T −→ A : SB(SA(B, c, EK))

Upon receiving a recovery request (r1), the TTP first decrypts EK to get
(A, B, EB(k)), and then checks whether SA(B, c, EB(k)) and SB(SA(B, c, EK))
are valid signatures. If both of them are correct, the TTP forwards EB(k) to
Bob and SB(SA(B, c, EK)) to Alice.

(3) Dispute Resolution Policy. The original authors do not provide ex-
plicit dispute resolution policy, though they briefly mentioned that the generated
signatures can be used as non-repudiation evidences (page 333 in [9]).

3.2 Security of the IS Scheme

In this section, we point out some weaknesses in the IS scheme.
(1) Protocol Specification. In the IS scheme, the protocol specification is

not clear enough in the following senses. Firstly, when the exchange protocol is
finished, Bob also needs to check whether EK ≡ ET (A, B, EB(k)). Otherwise,
what he received may be an invalid NRO evidence. Secondly, the authors do not
provide explicit definitions of NRO and NRR evidences, and exact procedures
how a judge (or verifier) can validate those evidences. Obviously, just providing
SB(SA(B, c, EK)) is not enough. Finally, there are no clear requirements on
public encryption algorithms. That is, if those algorithms are randomized, how
to deal with the random numbers utilized to produce EB(k) and EK. Simply
requiring Alice should reveal those numbers to Bob may be not sufficient.

(2) An Attack. In the real world, there may be many TTPs. One user,
say Bob, is probably not aware the identities of all TTPs. In such a scenario, a
dishonest sender Alice can mount the following attack to disturb or even suc-
cessfully cheat the receiver Bob.

0). Before executing the protocol, Alice and Bob have agreed to use a spe-
cific T as their TTP for certified e-mail delivery. However, Alice dishon-
estly exploits T ′’s public key to encrypt session key k by computing EK ′ =
ET ′(A, B, EB(k)), where T ′ is another TTP whose identity is unlikely known
by Bob, for example in another city or country.

1). Then, Alice correctly prepares other values and sends the receiver Bob below
message flow (e1’): (A, T, c, EK ′, sub, SA(B, c, EK ′)).

Generic, Optimistic, and Efficient Schemes for Fair Certified Email Delivery 45

2). According to the IS scheme, message flow (e1’) is correct, so honest Bob
will returns his signature SB(SA(B, c, EK ′)) to Alice.

3). After that, however, Alice refuses to reveal EB(k) to Bob.
4). So Bob contacts the TTP T to get EB(k) by providing c, EK ′, SA(B, c, EK ′)

and SB(SA(B, c, EK ′)). But T will reject Bob’s recovery request, since it
cannot decrypt EK ′ correctly, due to the fact EK ′ is encrypted under the
public key of T ′.

The result of the above attack is that Bob would think the above protocol in-
stance with Alice is unsuccessful (and then may delete related information sooner
or later), but Alice has already gotten Bob’s valid receipt, i.e., (A, B, T ′, m,
k, SA(B, c, EK ′), SB(SA(B, c, EK ′))). By showing this receipt, any judge will
believe that Bob has received message m from Alice. It seems unreasonable to
assume that Bob will contact with all (possible) TTPs for a recovery request.
To avoid this attack, the TTP’s identity T could be added in SA and SB.

We remark that a similar attack applies the schemes in [14].
(3) Efficiency. The IS scheme’s efficiency could be improved in two aspects.

(a) When Bob initiates the recovery protocol, he is required to send the TTP
ciphertext c together other values. However, if m is a file with large size, such
as digital movies, the communication overhead and delay are increased. (b) In
the IS scheme, the non-repudiation evidence for both origin and receipt are the
same, i.e., two embedded signatures (SA(B, c, EK), SB(SA(B, c, EK)). So, to
resolve a dispute the judge has to verify two signatures (and other values). In
our new scheme, the judge only needs to validate one signature, and c will be
replaced by H(c) in our recovery protocol.

4 The Proposed Schemes

In this section, we present two new certified email schemes, which are secure
and more efficient than the IS scheme. As well as the IS scheme, our schemes
are generic optimistic protocols with transparent TTPs, and support fairness,
confidentiality, both NRR and NRO evidences. Moreover, our schemes meet
one more property: timeliness, which is not supported in the IS scheme. More
specifically, one proposed protocol satisfies weak timeliness but with stateless
TTP, while the other guarantees (strong) timeliness but the TTP needs to store
some state information. Naturally, both versions could find their advantages in
different environments.

To support the confidentiality of delivered message, we use the same idea in
the IS scheme, i.e, EB(k) is embedded in EK. However, almost all ingredients
and sub-protocols are re-designed. Of course, in this process we are inspired
by the ideas appear in the literature, especially those in [6,12,9,14]. We assume
that EB(·) and ET (·) are CCA2-secure randomized encryption algorithms. To
emphasize a random number r is used to encrypted a message M , we write
C = Er

T (M). Furthermore, we assume that both EB(·) and ET (·) have the
property of randomness recoverability. Namely, in the procedure of decryption,

46 G. Wang et al.

the owner of the secret decryption key can recover not only the message M but
also the random number r used to produce the ciphertext. For simplicity, we
denote this fact by (M, r) = DT (Er

T (M)). Actually, the OAEP series [15] are
typical examples for such cryptosystems. As usual, the communication channel
between Alice and Bob is assumed to be unreliable, i.e., messages inserted into
such a channel may be lost. However, the TTP is linked with Alice and Bob by
reliable communication channels, i.e., messages inserted into such a channel will
be delivered to the recipient after a finite delay. In real life, such a communication
channel could be implemented via computer networks compensated by other
communication means, such as fax, telephone, or express mail service etc.

In addition, we introduce a new symbol P to denote the unique identifier for
our protocol. P explicitly specifies the protocol name, version, and the crypto-
graphic algorithms employed. By the appearance of P , related signatures can
only be interpreted in a special way according to our definitions. We believe this
is more logical and reasonable in practice. The following notations are re-defined
or newly introduced.

– � = H(P, A, B, T, HC, HK, t): A unique label to identify a protocol instance,
where H(·) is a secure hash function. Label l means that a message m is sup-
posed to be delivered from the sender Alice to the receiver Bob (with/without
the TTP’s help), where m is determined by a ciphertext c and a symmetric
key k such that m = Dk(c), HC = H(c) and HK = H(k). Here, t denotes
a deadline with the meaning that after the expiration of t, the TTP does
not accept a resolution request related to this t anymore. Label � is used to
identify a specific protocol instance, and link all messages generated in this
instance.

– EK = Er2
T (�, EB): Encrypted session key that includes label � and EB =

Er1
B (k), where both r1 and r2 are random numbers. Compared with the IS

scheme, both T and P are embedded in EK via label �.
– SA = SA(P, �, EK), and SB = SB(P, �, EK): In contrast to the IS scheme,

three changes are made here. (1) Non-repudiation evidences are defined as
signatures on (P, �, EK), not on (B, c, EK). However, note that since label �
is determined by (P, A, B, T, H(c), H(k), t), so we have implicitly embedded
the TTP’s identifier T (and other information) in SA and SB. (2) Bob signs
on message (P, �, EK) directly, instead of signing on Alice’s signature SA.
(3) To generate and verify label �, the whole ciphertext c is not needed. So,
in our recovery protocol, only H(c) instead of c is submitted to the TTP. By
doing so, the communication overhead between Bob and the TTP is further
reduced.

4.1 Certified Email Scheme with Weak Timeliness

This new certified scheme consists of a exchange protocol, a recovery protocol,
and a dispute resolution policy. Due to the absence of abort protocol, the TTP
is not supposed to store any information related to a specific protocol instance.
In addition, weak timeliness is achieved by the introduction of deadline t, which

Generic, Optimistic, and Efficient Schemes for Fair Certified Email Delivery 47

could be negotiated by the two parties involved before the protocol executing.
For example, let t be 24 hours after the beginning time of protocol execution.

Exchange Protocol. To send a message m, the sender Alice and receiver
Bob execute the following exchange protocol collectively.

(e1). A −→ B : P, A, B, T, c, HK, EK, t, SA(P, �, EK)
(e2). B −→ A : SB(P, �, EK)
(e3). A −→ B : EB, r2

That is, Alice first selects a session key k and two random numbers (r1, r2), and
then computes the following values: c = Ek(m), HC = H(c), HK = H(k), � =
H(P, A, B, T, HC, HK, t), EB = Er1

B (k), EK = Er2
T (�, EB), and SA(P, �, EK).

After that, message flow (e1) is delivered to Bob. When Bob receives message
flow (e1), he first recovers label � and checks whether SA(P, �, EK) is indeed
Alice’s signature on (P, �, EK). If this true, Bob further evaluates whether the
included deadline t is sufficient for him to apply the TTP’s help. If yes, Bob
can return his signature SB(P, �, EK) to the sender Alice as message flow (e2).
Otherwise, if any of the above checks fails or he does not want to receive this
message from Alice, Bob can simply reject this email without any liability. If
Bob’s valid signature SB(P, �, EK) is received, Alice reveals (EB, r2) to Bob.
Finally, Bob checks whether EK ≡ Er2

T (�, EB). If this true, Bob first decrypts
(k, r1) from EB, and then obtains the message m by computing m = Dk(c).
However, if Bob does not receive correct pair (EB, r2) from Alice timely, he can
execute the recovery protocol with the TTP (see below).

Recovery Protocol I. Whenever before the deadline t, Bob could initiate
the following recovery protocol to get (EB, r2) from the TTP directly.

(r1). B −→ T : P, A, B, T, HC, HK, EK, t, SA(P, �, EK), SB(P, �, EK)
(r2). T −→ B : �, EB, r2

T −→ A : �, SB(P, �, EK)

In detail, Bob first sends all related values to the TTP. Then, the TTP recovers
label �, and checks the validity of deadline t, SA(P, �, EK), and SB(P, �, EK).
If everything is ok, it decrypts EK with its secret key. If the result is the ex-
pected pair (�, EB) with a random number r2, the TTP forwards (�, EB, r2)
and (�, SB(P, �, EK) to Bob and Alice, respectively. However, if EK cannot be
decrypted successfully, the TTP informs Bob that his recovery request is invalid.

Remark 1. Note that as we mentioned before, our recovery protocol has the
following two features. First, in the theory the TTP is not required to store
any information about a specific recovery request. The TTP’s work is just to
check the validity of a request, and then gives the corresponding answer. It
does not need to remember anything except its decryption secret key. This is,
this certified email scheme supports stateless TTP, though it only satisfies weak
timeliness. Second, the overhead of communication between Bob and the TTP
is independent of the size of message m, since only hash value H(c), instead of
c, is delivered to the TTP in the recovery protocol.

48 G. Wang et al.

Remark 2. In the above scheme, Alice may need to wait Bob’s signature SB

until the expiration of deadline t. That is, this certified email scheme only sup-
ports weak timeliness, since Alice cannot terminate a protocol run at any time.
However, once Bob successfully executed the recovery protocol (before deadline
t), Alice will receive the receipt from the TTP correctly. On the other hand,
if Bob does not successfully apply recovery before the expiration of deadline
t, this protocol run is deemed to be cancelled. In this situation, the result is
still fair but unsuccessful, since neither Alice nor Bob can get their expected
items.

Dispute Resolution Policy I.

– Non-Repudiation of Origin. To show that Alice indeed delivered message
m to himself, Bob can provide (P, A, B, T, m, k, r1, r2, t, SA) to a judge. Then,
the judge performs as follows:
1) Compute c = Ek(m), EB = Er1

B (k), � = H(P, A, B, T, H(c), H(k), t),
and EK = Er2

T (�, EB).
2) Check whether SA is Alice’s valid signature on message (P, �, EK). If

yes, accept Bob’s claim. Otherwise, reject Bob’s claim.
– Non-Repudiation of Receipt. Similarly, to show that Bob has already

received message m from herself, Alice can provide (P, A, B, T, m, k, r1, r2,
t, SB) to a judge. Then, the judge performs as follows:
1) Compute c = Ek(m), EB = Er1

B (k), � = H(P, A, B, T, H(c), H(k), t),
and EK = Er2

T (�, EB).
2) Check whether SB is Bob’s valid signature on message (P, �, EK). If yes,

accept Alice’s claim. Otherwise, reject Alice’s claim.

4.2 Certified Email Scheme with (Strong) Timeliness

In this version, the exchange protocol is the same as in the previous version. To
support (strong) timeliness, we need to add an abort protocol, and modified the
recovery protocol so that those two sub-protocols could work consistently.

Abort Protocol II. If Alice already delivered message flow (e1) to Bob but
does not receive the expected SB(P, �, EK) correctly or timely, she can initiate
the following abort protocol to cancel the protocol instance at any time before
deadline t.

(a1). A −→ T : P, A, B, T, HC, HK, EK, t, Er3
T (SA(P, �, abort))

if request is invalid then stop
if (state=aborted) then retrieve �, SA(P, �, abort)

T −→ A : �, confirmation
if (state=recovered) then retrieve �, SB(P, �, EK)

T −→ A : �, SB(P, �, EK)
else set (state=aborted) and store �, SA(P, �, abort)

(a2). T −→ A : �, confirmation
T −→ B : �, SA(P, �, abort)

Generic, Optimistic, and Efficient Schemes for Fair Certified Email Delivery 49

To do so, Alice first sends message flow (a1) to the TTP, where SA(P, �, abort)
serves as an abort token and is encrypted under the TTP’s public key. When the
TTP received such an abort request, it first recovers label �, decrypts the last
item, and then checks the validity of deadline t and signature SA(P, �, abort). If
any of those checks fails, the TTP rejects Alice’s request. Otherwise, it further
checks whether label � is already stored in its database. If yes, this means this
protocol run identified by label � has been aborted or recovered successfully, so
the TTP retrieves corresponding items and forwards them to Alice. Otherwise,
it sets state variable as aborted, stores (�, SA(P, �, abort)) into its database,
forwards (�, SA(P, �, abort)) to Bob, and gives a confirmation to Alice. Here, con-
firmation can be defined as the TTP’s signature on (P, �, SA(P, �, abort)).

Recovery Protocol II. Similarly, if Bob already sent SB(P, �, EK) to Alice
but does not get correct pair (EB, r2) from Alice in a reasonable period before
deadline t, he can get this pair directly from the TTP by executing the following
recovery protocol.

(r1). B −→ T : P, A, B, T, HC, HK, EK, t, SA(P, �, EK), SB(P, �, EK)
if request is invalid then stop
if (state=aborted) then retrieve �, SA(P, �, abort)

T −→ B : �, SA(P, �, abort)
if (state=recovered) then retrieve �, EB, r2

T −→ B : �, EB, r2
else set (state=recovered) and store �, SB(P, �, EK), EB, r2

(r2). T −→ A : �, SB(P, �, EK)
T −→ B : �, EB, r2

That is, Bob initially sends message flow (r1) to the TTP. Upon receiving
such a recovery request, the TTP first recovers label �, checks the deadline, ver-
ifies the signatures, and decrypts the ciphertext EK. If any of the above opera-
tions is unsuccessful, Bob’s request will be rejected. Otherwise, the TTP further
checks whether the protocol instance identified by label � has been aborted or
recovered successfully by searching its database. If yes, it retrieves corresponding
items and forwards them to Bob. Otherwise, it sets state variable as recovered,
stores (�, SB(P, �, EK), EB, r2) into its database, forwards (�, SB(P, �, EK)) and
(�, EB, r2) to Alice and Bob, respectively.

Note that in the above scheme, timeliness is achieved since both Alice and
Bob can terminate a protocol instance unilaterally at any moment before the
deadline t. Different from other schemes supporting timeliness [18,10,13,12], how-
ever, deadline t is used in our scheme to support weak stateless TTP. That is,
after time t the TTP could remove all state information related to deadline t
into a log system. Therefore, the TTP only needs to maintain a relatively small
searching database.

Dispute Resolution Policy II. This policy is almost the same as the
Dispute Resolution Policy I, except the following difference. When the judge
deals with non-repudiation of receipt, it further needs to inquire Bob or the
TTP whether they could provide abort token SA(P, �, abort). If this is true, the

50 G. Wang et al.

judge dismisses Alice’s request. On the other hand, if all evidences are correct
and no valid abort token is provided, the judge accepts Alice’s claim.

Note that, we need to make the above change in our Dispute Resolution
Policy II. Otherwise, Alice could cheat Bob as follows. Upon receiving Bob’s
signature SB, Alice does not reveal (EB, r2) to Bob. At the same time, she
aborts the protocol run by contacting the TTP so that Bob cannot get (EB, r2)
from the TTP. According our new policy, however, in such case Bob can provide
abort token to counteract the power of SB so that the result is still fair for both
parties. Moreover, in the abort protocol, it is also necessary to encrypt abort
token SA(P, �, abort) under the TTP’s public key. Otherwise, the following unfair
situation may happen. After getting message flow (e1), Bob directly obtains
(EB, r2) from the TTP by successfully executing the recovery protocol. However,
Alice may initiate the abort protocol almost simultaneously, since she does not
receive Bob’s signature. By eavesdropping the communication between Alice and
the TTP, it is possible that Bob gets both (EB, r2) and the abort token. So,
Bob can access message m by using (EB, r2), and deny that he already obtained
m by providing abort token.

Remark 3. For simplicity, the same symbol P is used to denote the two protocol
identifiers in the above two schemes. However, according our assumption, pro-
tocol identifier is unique for each protocol, so we actually need to differentiate
them by using two distinct symbols, e.g., P1 and P2.

5 Security Discussion

In this section, we only argue that our second certified email scheme guaran-
tees the fairness, the most important security requirement for all fair-exchange
protocols. There are two reasons for this arrangement: (1) It is easy to see that
other properties are satisfied as we claimed in Table 1; and (2) Fairness is also
guaranteed in our first scheme by a similar but simpler argument. Intuitively,
our schemes support fairness since both SA(P, �, EK) and SB(P, �, EK) can be
explained as valid NRO and NRR evidences if and only if all related values
(c, HC, HK, EB, EK, t etc.) are prepared correctly. We classify our discussion
into two cases: (1) Alice is honest, but Bob is trying to cheat; and (2) Bob is
honest, but Alice is trying to cheat.

Case 1: Alice is honest, but Bob is trying to cheat. Alice is assumed to be
honest now, so message flow (e1) is correctly prepared. When Bob receives such
a valid message flow (e1), he has to ask himself whether he wants to access the
encrypted message. If not, he could ignore this protocol run without loss fairness.
If yes, Bob has to get (EB, r2) at first. However, EB is securely encrypted under
the TTP’s public key, and prepared by Alice, so only Alice or the TTP can reveal
the pair (EB, r2) to Bob. Furthermore, according to the protocol specification,
to get (EB, r2) Bob is required to send his signature SB(P, �, EK) to Bob or
the TTP before deadline t and under the condition that this protocol run is
not aborted yet. In particular, this implies that Bob or anybody else cannot get
(EB, r2) by sending SB(P, �′, EK) or SB′(P, �′, EK) (and related information)

Generic, Optimistic, and Efficient Schemes for Fair Certified Email Delivery 51

to the TTP. Because in such cases the TTP will find the first part of decrypted
content of EK does not match label �. Therefore, Bob cannot access the message
or get valid NRO evidence without issuing receipt. That is, our scheme is fair
for honest initiator (Alice).

Case 2: Bob is honest, but Alice is trying to cheat. The purpose of dishon-
est sender Alice is to get valid NRR evidence (i.e., SB(P, �, EK)) from Bob so
that Bob cannot access the message m or cannot get valid NRO evidence (i.e.,
SB(P, �, EK)). However, this actually implies that Alice has to prepared message
(e1) correctly. Otherwise, even if she got SB(P, �, EK) from Bob, this signature
cannot be explained as valid NRR evidence, due to some inconsistency among
m, c, HC, HK, EB, EK, t. The reason is that in our protocol, SB(P, �, EK) can
be explained as valid NRR evidence showing that Bob indeed received message
m from Alice, if and only if all the following conditions hold:

1) Alice can provide (P, A, B, T, m, k, r1, r2, t, SB(P, �, EK)) such that c =
Ek(m), EB = Er1

B (k), � = H(P, A, B, T, H(c), H(k), t), EK = Er2
T (�, EB),

and SB(P, �, EK) is Bob’s signature on (P, �, EK).
2) Bob cannot provide valid abort token SA(P, �, abort).

Hence, the last cheating strategy for Alice is to thwart Bob getting the pair
(EB, r2) after she obtained Bob’s receipt. Simply refusing to reveal (EB, r2) to
Bob is essentially unharmful to Bob, since the latter can execute the recovery
protocol and then get this pair directly from the TTP before the deadline t. At
the same time, as we mentioned after the description of our policy II, Alice also
cannot achieve her goal by initiating the abort protocol as soon as she received
Bob’s signature SB(P, �, EK). The reason is that in this situation, the only two
possible outputs are both fair: (a) This protocol run has been recovered, so Bob
already received the (EB, r2); or (b) This protocol will be aborted by the TTP,
so Bob will get the abort token SA(P, �, abort), which is supposed to annul Bob’s
receipt SB(P, �, EK). Therefore, once again, our protocol does not enable the
cheater (Alice) taking an advantage over the honest party (Bob). That is, our
certified email scheme is fair for honest receiver.

6 Conclusion

In this paper, we first pointed out some weaknesses in several existing certi-
fied email schemes proposed in [9,14]. After that, we proposed two new generic
optimistic schemes for certified email delivery. As Table 1 demonstrated, our
protocols provide as many as possible desirable properties. At the same, the
proposed solutions achieve better performance than the-state-of-the-art proto-
cols in this field. Specifically, our schemes overcome the security shortcoming in
schemes [9,14]; support transparent TTP while the schemes in [10,12] do not;
provide evidences for non-repudiation of origin while the scheme in [3] does not;
and satisfy timeliness while the schemes in [3,9] do not.

52 G. Wang et al.

References

1. N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair ex-
change. In: Proc. of AMC Conference on Computer and Communications Security
(CCS’97), pp. 7-17. ACM Press, 1997.

2. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signa-
tures. IEEE Journal on Selected Areas in Communications, 18 (4): 591-606, 2000.

3. G. Ateniese and C. Nita-Rotaru. Stateless-receipient certified E-mail system based
on verifiable encryption. In: CT-RSA’02, LNCS 2271, pp. 182-199. Springer-Verlag,
2002.

4. G. Ateniese. Efficient verifiable encryption (and fair exchange) of digital signa-
ture. In: Proc. of AMC Conference on Computer and Communications Security
(CCS’99), pp. 138-146. ACM Press, 1999.

5. F. Bao, R.H. Deng, and W. Mao. Efficient and practical fair exchange protocols
with off-line TTP. In: Proc. of IEEE Symposium on Security and Privacy, pp.
77-85. IEEE Computer Society, 1998.

6. F. Bao, G. Wang, J. Zhou, and H. Zhu. Analysis and improvement of Micali’s
fair contract signing protocol. In: Information Security and Privacy (ACISP’04),
LNCS 3108, pp. 176-187. Springer-Verlag, 2004.

7. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Crypto’98, LNCS 1462, pp.13-25.
Springer-Verlag, 1998.

8. R. Deng, L. Gong, A. Lazar, and W. Wang. Practical protocol for certified elec-
tronic mail. Journal of Network and Systems Management, 1996, 4(3):279-297.

9. K. Imamoto and K. Sakurai. A cerified e-mail system with receiver’s selective usage
of delivery authortiy. In: Indocrypt 2002, LNCS 2551, pp. 326-338. Springer-Verlag,
2002.

10. S. Kremer and O. Markowitch. Selective receipt in cerified e-mail. In: Indocrypt
2001, LNCS 2247, pp. 136-148. Springer-Verlag, 2001.

11. S. Kremer, O. Markowitch, and J. Zhou. An intensive survey of fair non-repudiation
protocols. Computer Communications, 25(17): 1606-1621. Elsevier, Nov. 2002.

12. S. Gürgens, C. Rudolph, and H. Vogt. On the security of fair non-repudiation
protocols. In: Information Security Conference (ISC’03), LNCS 2851, pp. 193-207.
Springer-Verlag, 2003.

13. O. Markowitch and S. Kremer. An optimistic non-repudiation protocol with trans-
parent trusted third party. In: Information Security Conference (ISC’01), LNCS
2200, pp. 363-378. Springer-Verlag, 2001.

14. S. Micali. Simple and fast optimistic protocols for fair electronic exchange. In: Proc.
of 22th Annual ACM Symp. on Principles of Distributed Computing (PODC’03),
pp. 12-19. ACM Press, 2003.

15. V. Shoup. OAEP reconsidered. Journal of Cryptology, 15(4): 223-249, 2002.
16. J. Zhou and D. Gollmann. Certified electronic mail. In: Computer Security - ES-

ORICS’96, LNCS 1146, pp. 160-171. Springer-Verlag, 1996.
17. J. Zhou and D. Gollmann. An efficient non-repudiation protocol. In: Proc. of the

10th Computer Security Foundations Workshop (CSFW’97), pp. 126-132. IEEE
Computer Society Press, 1997.

18. J. Zhou, R. Deng, and F. Bao. Evolution of fair non-repudiation with TTP. In:
Information Security and Privacy (ACISP’99), LNCS 1587, pp. 258-269. Springer-
Verlag, 1999.

Cryptanalysis of a Forward Secure Blind
Signature Scheme with Provable Security

Shuhong Wang1, Feng Bao2, and Robert H. Deng1

1 School of Information Systems, SMU, Singapore 178902
{shwang, robertdeng}@smu.edu.sg

2 Institute for Infocomm Research (I2R), Singapore 119613
baofeng@i2r.a-star.edu.sg

Abstract. A forward secure blind signature scheme was proposed by
Duc, Cheon and Kim, in ICICS 2003. The security of the scheme was
proved to be equivalent to the strong RSA assumption in the random
oracle model. In this paper we present an attack to the scheme by forging
valid signatures with public keys only. The attack is so efficient that
forging a valid signature needs less computation than legally generating
a signature, even considering only the user side. Our result implies that
the security proof of the scheme must be invalid. Furthermore we point
out the fault of the proof and explain why it invalidates the proof.

Keywords: Blind signature, Forward security, Provable security, Strong
RSA assumption, Cryptanalysis.

1 Introduction

Due to some unpredictable security faults of underlying system or errors of
implementation, key exposure is high likely unavoidable. To mitigate the danger
caused by key exposure, the notion of forward security1 was introduced [1] in the
context of signature schemes. It is always obtained by employing the so called
key evolution strategy, which is economical/practical compared with distribution
of keys across multiple systems via secret sharing like threshold methodologies
[9,10]. Informally, key evolution means that different secret keys are used in
different periods of time, and the key for next time period is updated (through
an Update protocol) from the one in previous time period, meanwhile the public
key is kept unchanged over its lifetime. There have been many signature schemes
with forward security [4,2,13].

However, as claimed in [8], there is no instance of Update supporting unlim-
ited periods2 key evolution until the proposal of Duc, Cheon and Kim [8] in a

1 In the context of session key exchange, it was first introduced in [11] known as
forward secrecy, meaning that compromise of the current session key should not
compromise past established session keys.

2 In general, the Update protocols only support T times of key evolutions for some
predefined integer T .

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 53–60, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

54 S. Wang, F. Bao, and R.H. Deng

blind signature context. The scheme is called forward secure blind signature, and
hereinafter, we denote it the DCK scheme for short.

Blind signature, as an extension of digital signature, allows the user to obtain
the signer’s signature on a message of his choice in a blind way such that the
message content is not revealed to the signer. Such a scheme was first proposed by
Chaum [6] for the purpose of digital payments where the user is a consumer and
the signer is a bank. Along with the rapid development of sensitive e-commerce
[16,3,18], blind signature is becoming very concernful. It is unassailable that
forward security will provide really useful features for a blind signature scheme.

Desirably, a forward secure blind signature [8], especially when used for elec-
tronic payment, should at least have following two security features.

– Blindness. Besides “obtaining signature without revealing message”, the
blindness property also implies that the signer cannot statistically distin-
guish signatures, which is like that the bank cannot trace its client’s buying
activities. For the formal definition, please refer to [8].

– Forward security. In the context of blind signature, forward security im-
plies the basic unforgeability as of ordinary signatures. In addition, it implies
the unforgeability of signature to be valid in previous time periods even if
the current secret key of the signer is compromised.

In this paper, we address the security analysis of the attractive DCK scheme
[8] mentioned above. Although the security of the scheme was proved to be
equivalent to the strong RSA assumption in the random oracle model [5], we are
still able to forge valid signatures at will with public keys only. Note that our
attack is so efficient that forging a valid signature needs less computation than
legally generating a signature, even when merely considering the user side. Our
result implies that the security proof of the scheme must be invalid. Furthermore
we point out the fault of the security proof and explain why it invalidates the
proof.

The remainder of the paper is arranged as follows. We first briefly review the
original DCK scheme in section 2, and then describe our signature forgery attack
in section 3. The analysis of their security proof is given in section 4, followed
by conclusion in section 5.

2 Description of the DCK Scheme

The DCK scheme is simply described as follows.

System Setup. k is the security parameter. N = pq are product of two random
safe primes p and q of k/2 bits length. λ is a large prime without nontrivial
common divisor with ϕ(N), where ϕ is the Euler function in number theory. An
element a ∈ Z∗

N is selected to be of order greater than λ. Let r0 ∈R Z∗
λ and

s0 ∈R Z∗
N (with notation x ∈R X , we mean x is randomly chosen from X), and

compute V = a−r0s−λ
0 mod N .

Cryptanalysis of a Forward Secure Blind Signature Scheme 55

Finally, the signer’s initial secret key SK0 is (0, r0, s0, v0 = V, f0 = 1), the
public key PK = (N, λ, a, V). All other parameters are erased. Also, a collision-
free hash function H : {0, 1}∗ → Z∗

λ is assumed and made public.

Secret key Update.Hereafter,we definite a÷b the integer quotient of a−(a mod b)
b .

After each execution of the Update protocol, all parameters except the new secret
key are erased from the memory. See Fig. 1.

Input SKi e ∈R Z∗
N Output SKi+1

fi+1 = f2
i ae mod N

(i, ri, si, fi) ⇒ l = (2ri − e) ÷ λ ⇒ (i+1, ri+1, si+1, fi+1)
ri+1 = (2ri − e) mod λ

si+1 = als2
i mod N

Fig. 1. The key Update protocol

Signature Issuing. This procedure involves two entities: signer and user. The
protocol is illustrated in Fig. 2, where || denotes the string concatenation. Note
that (i, fi) are available to the user when contacting with the signer, but they are
unavailable to verifier. Otherwise, it contradicts the original intention for offline
electronic system, where payments are made available without online communi-
cation with the signer (bank) [8].

Signature Verification. Given the signature (m, i, σ(m)) = (m, i, f, c′, y′, z′)
and PK = (N, λ, a, V), the verifier first computes vi = V 2i

f mod N and x′′ =
ay′

z′λvc′
i , then checks whether or not c′ ?= H(i||f ||m||x′′). If it is right, then

accept; Otherwise reject.

3 The Signature Forgery Attack

In this section we describe our forgery attack on the DCK scheme. The attack
is so strong that anyone can forge signatures on any message valid in any time
period. The only needed information is the public key PK = (N, λ, a, V). The
attack is also very efficient even compared with the computation on the user side
only. The attack behaves as the following.

1. Obtain the public key PK = (N, λ, a, V) and a valid time period i.
2. Choose α, γ ∈R Z∗

λ and β, v ∈R Z∗
N .

3. Compute f = V −2i

vλ mod N .
4. Compute x = aαβλvλγ mod N .
5. Compute c = H(i||f ||m||x), where m is any message of the attacker’s choice.
6. Compute z = vγ−cβ mod N and set y = α.
7. Output the 6-tuple (m, i, f, c, y, z) as the forged signature on m, intending

for the i-th time period.

56 S. Wang, F. Bao, and R.H. Deng

Signer (SKi) User (PK, m)
Get (i, fi) from signer

t ∈R Z∗
λ and u ∈R Z∗

N

x = atuλ mod N
x−−−−−−−−−−→

α, γ ∈R Z∗
λ, β ∈R Z∗

N

vi = V 2i

fi mod N

x′ = xaαβλvγ
i mod N

c′ = H(i||fi||m||x′)
c = (c′ − γ) mod λ

c←−−−−−−−−−
y = (t + cri) mod λ

w = (t + cri) ÷ λ
z = aωusc

i mod N
y, z−−−−−−−−−−→

y′ = (y + α) mod λ
ω′ = (y + α) ÷ λ
ω′′ = (c − c′) ÷ λ

z′ = aω′
v−ω′′

i zβ mod N
σ(m) = (fi, c

′, y′, z′)

Fig. 2. The signature Issuing protocol. As noted in [8], the index i of fi is omitted in
σ(m) on consideration that attackers do not have to use the correct f for a period.
Thus the signature is denoted as (m, i, σ(m)) = (m, i, f, c′, y′, z′).

Theorem 1. (Correctness of the Attack) Suppose an attacker follows above
seven steps and obtains the 6-tuple (m, i, f, c, y, z). Then, the verifier always
accepts (m, i, f, c, y, z) as a valid signature in period i.

Proof. To prove the theorem, we simply simulate what the verifier does with the
signature (m, i, f, c, y, z). He/She first retrieves the public key PK = (N, λ, a, V)
and computes vi = V 2i

f = V 2i

(V −2i

vλ) = vλ mod N . Then he/she computes
x′′ = ayzλvc

i mod N . Because we have

x′′ = ayzλvc
i mod N

= ay(vγ−cβ)λvc
i mod N

= aαv(γ−c)λβλ(vλ)c mod N

= aαβλv(γ−c)λ+cλ mod N

= aαβλvγλ mod N = x,

it is always the case that c = H(i||f ||m||x) = H(i||f ||m||x′′). As a result, the
verifier accepts (m, i, f, c, y, z) as a valid signature in period i. �

Remarks on Efficiency. Roughly speaking, our forgery attack only expends 6
TE (modulo exponentials) and 4 TM (modulo multiplications), while there are 5

Cryptanalysis of a Forward Secure Blind Signature Scheme 57

TE and 6 TM on only the user side for legally obtaining a signature. Both have
a modulo reciprocal and therefore are eliminated. Note that we do not count in
the computation of vi = V si

fi mod N which is assumed to be available for legal
users from the signer. In fact, the attack can also contact with the signer and
get the V −2i

by computing fiv
−1
i mod N , thus 1 TM and 1 reciprocal replace 1

TE and 1 reciprocal. Accordingly, the forgery gains 1 TM efficiency compared to
honestly obtaining a signature by the user (5 TE and 5 TM for forgery to 5 TE

and 6 TM for generation).

4 The Failure of Security Proof

The DCK scheme [8] is constructed from the provably secure Okamoto-Guilou-
Quisquater (OGQ for short) blind signature scheme [15,12]. Using the same
methodology (oracle replay) for proving OGQ scheme due to Pointcheval and
Stern [16], authors of [8] proved the security of DCK scheme under the strong
RSA assumption.

Strong RSA Assumption. The strong RSA assumption is described as follows:
Given a RSA modulus N (which is a product of two large primes) and a random
element c ∈ Z∗

N , it is intractable to find two elements m, r ∈ Z∗
N such that

mr = c mod N . It is a well-known assumption in cryptography and has been
extensively used for security proofs.

4.1 Sketch of the Security Proof

There are two theorems regarding the security of the DCK scheme, one for the
blindness property (Theorem 2 of [8]) and one for the forward security (Theorem
3 of [8]). The later is outlined as follows.

Theorem 3 of [8]. If there exists a forger who can break forward security of
our scheme. Then, with non-negligible probability, we can violate the strong RSA
assumption.

Proof outline. Assume a forger F who obtains PK and SKi of time period i
can output a signature σ(m) valid at some time period j for j < i. Also as-
sume F should query the hashing oracle on (j||f ||m||x′) before its output. Upon
the answer of the oracle say H1, F successfully forge a signature (j, σ1(m)) =
(j, f, x′

1, y
′
1, z

′
1). Then, by replaying another oracle H2 which has the same answer

to oracle H1 until the query of (j||f ||m||x′). With non-negligible probability, F
will again output a forged signature (j, σ2(m)) = (j, f, x′

2, y
′
2, z

′
2) based on or-

acle H2, this is assured by the well-known forking lemma [16]. Since the two
forged signatures have the same verifying equation, it must be the case that
ay′

1z′λ1 (V 2j

f)c′
1 = ay′

2z′λ2 (V 2j

f)c′
2 . By assuming V 2j

f equals to vj and therefore
has the form of a−rj s−λ

j mod N , the authors of [8] claimed being able to come up
with an equation of the form aρ = bλ mod N , and thus the strong RSA problem
is solvable with a high probability, if only gcd(ρ, λ) = 1 (see Lemma 1 of [8]).
Note that it is high likely gcd(ρ, λ) = 1 with λ being prime.

58 S. Wang, F. Bao, and R.H. Deng

4.2 Fault of the Proof

As above mentioned, our result implies that the security proof of the scheme
must be invalid. Although there exists negative examples [7] such that schemes
provably secure in random oracle model [5] may result in insecure ones when the
oracle is implemented by cryptographic hash functions, our attack has nothing
to do with the hash function. In fact, it is on the basis of the problem in the
scheme construction itself.

Keeping our attack in mind to check through the security proof, it is not hard
to find out its fault. For a forged signature, the expectation [8] that V 2j

f mod N
would equal to the correct vj = a−rj s−λ

j mod N as in the Update protocol is
unreliable. In the proposed attack, we have V 2j

f = vγ mod N with γ ∈R Z∗
λ

and v ∈R Z∗
N , clearly it is not in the form of arsλ mod N for some r ∈ Z∗

λ and
s ∈ Z∗

N .
In the following, we show how critical the fault is. To equalize the security of

DCK scheme and the strong RSA assumption, it is sufficient to get an equation
like aρ = bλ mod N . Let us take an observation on the equation obtained by
oracle replay: ay′

1z′λ1 (V 2j

f)c′
1 = ay′

2z′λ2 (V 2j

f)c′
2 , which can be transferred to

ay′
1−y′

2 = (z′2/z′1)
λ · (V 2j

f)c′
2−c′

1 mod N . Obviously, one can get equation aρ =
bλ mod N with some ρ ∈ Z and b ∈ Z∗

N if and only if (V 2j

f)c′
2−c′

1 mod N
can be expressed as arsλ mod N . However, unless with negligible probability
c′2 = c′1 mod λ (then, (V 2j

f)c′
2−c′

1 = [(V 2j

f)(c
′
2−c′

1)÷λ]λ mod N), being able to
express an random elements in Z∗

N as the form of arsλ mod N means that one
can easily break the OGQ scheme [15] by just using (λ− r, as) as an OGQ
signing key pair (arsλ = a−(λ−r)(as)λ mod N). This result contradicts the proof
of Pointcheval and Stern [16]. And if the proof in [16] is correct, expressing an
random element in Z∗

N as arsλ, itself is at least as hard as the strong RSA
problem. In other words, the authors in [8] implicitly assumed the solvability of
the strong RSA problem. Assume a problem has already been solved and then
turn back to solve that problem, which is logically incorrect.

Remarks. However, the proof of [8] still implies the security of the Update
protocol, i.e., it is impossible for an attacker to forge a signature by forging the
secret key in advance. Since in this case, the equation V 2j

f = vj = a−rj s−λ
j mod

N holds.

5 Conclusion

In this paper, we successfully illustrated the insecurity of a forward-secure blind
signature scheme which is proved to be equivalent to the strong RSA assump-
tion. The attack is strong and very efficient. Anyone can forge signatures on any
message valid in any time period using the unchanged public keys only. Further-
more, we also pointed out the fault of the security proof and explained why it
invalidates the proof. Our work implies that regardless of the failure caused by
oracle implementations, the security proof itself still needs time to validate its
correctness.

Cryptanalysis of a Forward Secure Blind Signature Scheme 59

References

1. Ross Anderson, Two Remarks on Public Key Cryptography, Invited Lecture, in
Fourth Annual Conference on Computer and Communications Security, ACM,
1997.

2. Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme.
In Advances in Cryptology - ASIACRYPT 2000, Springer-Verlag, 2000.

3. Feng Bao, Robert H. Deng, and Wenbo Mao, Efficient and practical fair exchange
protocols with off-line TTP, in IEEE Symposium on Security and Privacy, IEEE
Computer Society Press, pp. 77 - 85, 1998.

4. Mihir Bellare and Sara K. Miner, A Forward-Secure Digital Signature Scheme, in
Advances in Cryptology - CRYPTO ’99, LNCS 1666, Springer-Verlag, pp. 431 -
448, 1999.

5. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In Proceedings of the 1st ACM CCS ’93, pages 62 -
73, November 1993.

6. David Chaum, Blind Signatures For Untraceable Payments, in Advances in Cryp-
tology - CRYPTO ’82, Plenum Publishing, pp. 199 - 204, 1982.

7. Ran Canetti, Oded Goldreich, and Shai Halevi, The Random Oracle Methodol-
ogy, Revisited (Extend abstract), in Proc. of the 30th ACM Symp. on Theory of
Computing - STOC’98, pages 209-218, 1998.

8. Dang N. Duc, Jung H. Cheon, and Kwangjo Kim, A Forward-Secure Blind Sig-
nature Scheme Based on the Strong RSA Assumption, in Proceedings of the 5-th
International Conference on Information and Communications Security - ICICS
’03, LNCS 2836, Springer-Verlag, pp. 11 - 21, 2003.

9. Yvo G. Desmedt and Yair Frankel, Threshold cryptosystems, in Advances in Cryp-
tology - Crypto ’89, LNCS 435, Springer-Verlag, pp. 307 - 315, 1989.

10. Y. Desmedt, Y. Frankel and M. Yung, Multi-receiver/Multi-sender network secu-
rity: efficient authenticated multicast/feedback, Proceedings of IEEE Infocom ’92,
pp. 2045 - 2054, 1992.

11. C. Günther, An Identity-based Key-exchange Protocol, in Proceedings of Eurocrypt
’89, LNCS 434, Springer-Verlag, 1989.

12. Louis S. Guillou and Jean J. Quisquater, A Practical Zero-Knowledge Protocol
Fitted to Security Microprocessors Minimizing both Transmission and Memory, in
Advances in Cryptology - EUROCRYPT ’88, LNCS 330, Springer-Verlag, pp. 123
- 128, 1988.

13. Gene Itkis and Leonid Reyzin, Forward-Secure Signatures with Optimal Signing
and Verifying, in Advances in Cryptology - CRYPTO ’01, LNCS 2139, Springer-
Verlag, pp. 332 - 354, 2001.

14. Wenbo Mao and Colin Boyd, Towards Formal Analysis of Security Protocols, In
Proceedings of the 4-th Computer Security Foundations Workshop, Franconia, New-
Hampshire, June 1993.

15. Tatsuki Okamoto, Provably Secure and Practical Identification Schemes and Cor-
responding Signature Schemes, in Advances in Cryptology - CRYPTO ’92, LNCS
740, Springer-Verlag, pp. 31 - 53, 1992.

16. David Pointcheval and Jacques Stern, Security Arguments for Digital Signatures
and Blind Signatures, Journal of Cryptology, Vol. 13(3), pp. 361 - 396, Springer-
Verlag, 2000.
The full version of the authors’ “Security proofs for Signature Schemes” in Euro-
crypt ’96 and “Provably Secure Blind Signature Schemes” in Asiacrypt ’96.

60 S. Wang, F. Bao, and R.H. Deng

17. A. De Santis, Y. Desmedt, Y. Frankel, and M. Yung, How to share a function
securely, in Proceedings of 26th STOC, pp. 522 - 533, 1994.

18. S. Wong and Victor K. Wei, A method for imposing spending limit on electronic
coins, in Proceedings of Int’l Symp. on Information Theory, 1998.

19. Fangguo Zhang and Kwangjo Kim, ID-Based Blind Signature and Ring Signature
from Pairings, in Advances in Cryptology - ASIACRYPT ’02, LNCS 2501, Springer-
Verlag, pp. 533 - 547, 2002.

On Delegatability of Four Designated Verifier Signatures

Yong Li1, Helger Lipmaa2,3, and Dingyi Pei1

1 State Key Laboratory of Information Security (Graduate School of Chinese
Academy of Sciences), Beijing 100049, P.R. China

2 Cybernetica AS, Lai 6, 51005 Tartu, Estonia
3 Institute of Computer Science, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia

Abstract. In a paper recently published in ICALP 2005, Lipmaa, Wang and Bao
identified a new essential security property, non-delegatability, of designated ver-
ifier signature (DVS) schemes. Briefly, in a non-delegatable DVS scheme, neither
a signer nor a designated verifier can delegate the signing rights to any third
party T without revealing their secret keys. We show that the Susilo-Zhang-Mu
identity-based strong DVS scheme, Ng-Susilo-Mu universal designated multi
verifier signature scheme, the Laguillaumie-Vergnaud multi-DVS scheme and the
Zhang-Furukawa-Imai universal DVS scheme are delegatable. Together with the
results of Lipmaa, Wang and Bao, our results show that most of the previously
proposed DVS schemes are delegatable. However, the Laguillaumie-Vergnaud
and Zhang-Furukawa-Imai schemes may still be secure in practice, since there
the only party who can delegate signing is the designated verifier, who may not
have motivation to do so. We finish the paper with some discussion on whether
the non-delegatability notion of Lipmaa, Wang and Bao is appropriate.

Keywords: Designated verifier signatures, non-delegatability.

1 Introduction

A designated verifier signature (DVS) scheme [JSI96, Cha96] enables a signer to sign
a message so that the designated verifier can verify it as coming from the signer. How-
ever, the designated verifier cannot transfer the conviction to others because he himself
is able to generate signatures according to a distribution that is computationally or statis-
tically close to the distribution of signatures, generated by the signer. On the other hand,
nobody else but the signer and the designated verifier can generate valid signatures.

Recently, Lipmaa, Wang and Bao revisited the DVS security in [LWB05]. In par-
ticular, they identified a new security property for DVS, non-delegatability, and showed
that several previously proposed DVS schemes [SKM03, SBWP03, SWP04, LV04a]
are delegatable. Informally speaking, DVS is delegatable if either the signer or the des-
ignated verifier can delegate the signing rights (either with respect to a concrete desig-
nated verifier or with respect to all designated verifiers) to some third party T without
disclosing his or her secret key. Delegatability, especially with respect to a concrete
designated verifier, is highly undesirable in many applications. For example, in an e-
voting scenario where a voter signs messages by using a delegatable DVS scheme (with
the tallier being the designated verifier), one voter can delegate her voting right to a
coercer that can then vote instead of the voter. Therefore, such an e-voting protocol is

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 61–71, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

62 Y. Li, H. Lipmaa, and D. Pei

coercible. Moreover, in many e-commerce applications, one can use a DVS scheme so
that the signer is a subscriber to an e-service provided by a service provider who is the
designated verifier. If the DVS scheme is delegatable, signer can send some delegation
token to a non-subscriber who can then enjoy the service for free.

Our Contributions. In addition to the negative results of [LWB05], we show that
the Susilo-Zhang-Mu ID-based DVS scheme SZM04 [SZM04], the Ng-Susilo-Mu
universal designated multi verifier signature scheme NSM05 [NSM05], the Zhang-
Furikawa-Imai DVS scheme ZFI05 [ZFI05] and the Laguillaumie-Vergnaud MDVS
scheme LV04 [LV04b] are delegatable. Together with [LWB05], our results show that
almost all DVS schemes in the literature are delegatable. In particular, all DVS schemes
based on bilinear maps are delegatable. The only non-delegatable DVS schemes that we
are aware of are the schemes from [JSI96, LWB05] that are both built by using standard
proof of knowledge techniques.

All delegation attacks, proposed in [LWB05], had a similar structure: they showed
that either the signer or the designated verifier can delegate the signing rights by pub-
lishing some Diffie-Hellman key. Our attacks are more varied. In particular, our attacks
against ZFI05 and LV04, while being attacks according to the definitions of Lipmaa,
Wang and Bao, might sometimes be not very serious in practice. Namely, in both cases,
only the designated verifier (in the case of LV04, the coalition of two designated veri-
fiers) can delegate the signing. This means that attacks in the scenarios, outlined above,
will not work. However, there are still some possibilities of cheating. For example, the
service provider can forward the delegation token to a third party, who can then use the
service indistinguishably from the real signer. By doing so, the third party could act in
a way that ruins the reputation of the real signer. Whether this is a real attack or not,
depends on the situation; we will leave it as an open question. For applications where
this is a real attack, one should not use ZFI05 and LV04. In applications where it is not,
one should give an alternative and possibly weaker definition of non-delegatability than
was done in [LWB05].

Inspired on this, we give an informal definition of a weaker notion of delegatability
that we call verifier-only delegatability. Intuitively, a (multi-)DVS scheme is verifier-
only delegatable if the designated verifier (but not the signer) can delegate the signing
rights to some third party. Clearly, a verifier-only delegatable DVS scheme is also del-
egatable. It seems (seems, since we are not going to give proofs that the signer cannot
delegate) that the LV04 and the ZFI05 schemes are verifier-only delegatable.

Moreover, the presented attacks can also be divided into delegation attacks that allow
to delegate the signing rights of a fixed signer w.r.t. a fixed tuple of designated verifiers,
or the rights of any signer w.r.t. a fixed tuple of designated verifiers, or the rights of a fixed
signer w.r.t. any tuple of designated verifiers. According to [LWB05], existence of any
of these attacks makes a scheme delegatable. Again, it can be argued that the first type of
attack is the most serious one since the last two attack types give too much power to the
third party T (and therefore one might be less motivated to delegate the rights). One can
try to modify the delegatability definition so that only the first attack type is classified as
an attack. We will leave it as an open question whether this is reasonable.

Regardless of the previous comments, our own opinion is that our attacks against
all four schemes indicate some weaknesses in them and while the non-delegatability

On Delegatability of Four Designated Verifier Signatures 63

definition of [LWB05] might be too strong in some sense, to avoid any kind of future
attack and unexpected vulnerabilities, it is a good idea to design DVS schemes that are
non-delegatable according to [LWB05].

Road-map. Formal definition of an n-DVS scheme and its security is given in Sect. 2.
In Sect. 3, we review four DVS schemes and present our delegation attacks against
every single one of them. We discuss the different delegation attacks and define the
novel notion verifier-only non-delegatability in Sect. 4.

2 Preliminaries

Let G be a cyclic additive group generated by P , whose order is a prime q, and let
H be a cyclic multiplicative group of the same order q. A bilinear pairing is a map
〈·, ·〉 : G × G → H with the following properties:

Bilinearity: 〈aP, bQ〉 = 〈P, Q〉ab for all P, Q ∈ G and a, b ∈ Z
∗
q ;

Non-degeneracy: There exist P, Q ∈ G such that 〈P, Q〉 �= 1;
Computability: There is an efficient algorithm to compute 〈P, Q〉 for all P, Q ∈ G.

Formal Definition of n-DVS. Next, we present a formal definition of n-DVS for
n ≥ 1, generalising the definition from [LWB05]. Let S be the signer, and D1, . . . , Dn

be n designated verifiers. In the following, we will denote (PKD1 , . . . , PKDn) by PKD ,
(SKD1 , . . . , SKDn) by SKD , and (SimulPKS,PKD,SKD1

, . . . , SimulPKS,PKD ,SKDn
) by

SimulPKS ,PKD,SKD .
Let M be the message space. Given a positive integer n, an n-designated verifier

signature (n-DVS) scheme is defined by the following algorithms:

– Setup is a probabilistic algorithm that outputs the public parameter param;
– KeyGen(param) is a probabilistic algorithm that takes the public parameters as an

input and outputs a secret/public key-pair (SK, PK);
– SignSKS,PKD

(m) takes as inputs signer’s secret key, designated verifiers’ public
keys, a message m ∈ M and a possible random string, and outputs a signature σ;

– For i ∈ [1, n], SimulPKS ,PKD,SKDi
(m) takes as inputs signer’s public key, des-

ignated verifiers’ public keys, secret key of one designated verifier, a message
m ∈M and a possible random string, and outputs a signature σ;

– VerifyPKS ,PKD
(m, σ) is a deterministic algorithm that takes as inputs a signing

public key PKS , public keys of all designated verifiers Di, i ∈ [1, n], a message
m ∈M and a candidate signature σ, and returns accept or reject;

If n = 1, we obtain a designated verifier signature (DVS) scheme. We say that a signa-
ture σ on m is valid if VerifyPKS ,PKD

(m, σ) = accept. As usually, we require that an n-
DVS scheme is correct, that is, for all (SKS , PKS) and (SKD, PKD) output by KeyGen,
for any i ∈ [1, n] and for all m ∈ M we have VerifyPKS ,PKD

(SignSKS ,PKD
(m)) =

VerifyPKS ,PKD
(SimulPKS ,PKD,SKDi

(m)) = accept.
Let Δ = (Setup, KeyGen, Sign, Simul, Verify) be an n-DVS scheme with the mes-

sage space M. Let Ω denote the space from which the random oracle H is selected;

64 Y. Li, H. Lipmaa, and D. Pei

definition without a random oracle is analogous. Let Fm denote the adversary F with
m as its input, and we assume that oracle calls are counted as one step.

It is required that a designated verifier signature satisfies the following three prop-
erties [LWB05]. We give the definitions of unforgeability and non-transferability only
for the sake of completeness since we will not need them in this paper.

Unforgeability: Let F be an adversary against DVS. We define advantage Advforge
Δ (F)

of F to be the next probability:

Pr

⎡⎢⎢⎢⎢⎢⎢⎣

H ← Ω; (SKS , PKS) ← KeyGen;
(SKD1 , PKD1) ← KeyGen; . . . ; (SKDn , PKDn) ← KeyGen;

(m, σ) ← FSignSKS,PKD
(·),SimulPKS,PKD ,SKD

(·),H(·)(PKS , PKD) :
σ �∈ ΣS(m) ∧ σ �∈ ΣD1(m) ∧ · · · ∧ σ �∈ ΣDn(m)∧
VerifyPKS,PKD

(m, σ) = accept

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where ΣS(m) is the set of signatures received from SignSKS ,PKD
(m) and ΣDi(m) is

the set of signatures received from SimulPKS ,PKD,SKDi
(m). F is said to (τ, qh, qs, ε)-

forge σ if F runs in time at most τ , makes at most qh hash queries and in total at most
qs signing and simulation queries, and Advforge

Δ (F) ≥ ε. A designated verifier signature
scheme is (τ, qh, qs, ε)-unforgeable if no forger can (τ, qh, qs, ε)-forge it.

Non-transferability (informal): given a message-signature pair (m, σ) which is ac-
cepted by a designated verifier, and without access to the signer’s secret key, it is com-
putationally infeasible to determine whether the message was signed by the signer, or
the signature was simulated by the designated verifier.

Non-delegatability: Let κ ∈ [0, 1] be the knowledge error. Δ is (τ, κ)-non-delegatable
if there exists a black-box knowledge extractor K that, for every algorithm F and for
every valid signature σ, satisfies the following condition: For every (SKS , PKS) ←
KeyGen, (SKDi , PKDi) ← KeyGen, for i ∈ [1, n], and message m, if F produces a
valid signature on m with probability ε > κ, then on input m and on access to the
oracle Fm, K produces one of the secret keys (SKS , SKD1 , . . . , SKDn) in expected
time τ

ε−κ (without counting the time to make the oracle queries). Here, F ’s probability
is taken over the choice of her random coins and over the choice of H ← Ω.

Variations of n-DVS. We call an n-DVS a strong n-DVS if the verification algorithm
also takes an SKDi , i ∈ [1, n], as an input, and verification without SKDi , for some
i ∈ [i, n], is computationally difficult. An n-DVS scheme is a designated multi verifier
signature scheme if verification can be performed only by the coalition of all n des-
ignated verifiers. An n-DVS scheme is universal if it contains a conventional signing
algorithm (w.r.t. no designated verifier) and an arbitrary entity can convert the conven-
tional signature to a signature w.r.t. an arbitrary designated verifier. An n-DVS scheme
is ID-based if the public key of an arbitrary participant A can be computed from his or
her ID IDA.

On Delegatability of Four Designated Verifier Signatures 65

3 Four DVS Schemes and Attacks on Them

3.1 SZM04 Scheme

Description. The SZM04 strong ID-based universal DVS scheme [SZM04] can be
described as follows:

– Setup: A trusted authority (TA) generates two groups (G, +) and (H, ·) of prime
order q and a bilinear mapping 〈·, ·〉 : G × G → H, together with an arbitrary
generator P ∈ G. TA selects a master key s ∈ Zq and set Ppub ← sP . Let
HG : {0, 1}∗ → G and Hq : {0, 1}∗ → Zq be two random oracles. The system
parameters are (q, G, H, 〈·, ·〉, P, Ppub, HG, Hq).

– KeyGen(param): S and D publish their identities PKS ← HG(IDS) and PKD ←
HG(IDD). Their secret keys are defined by TA as SKS ← s · PKS and SKD ←
s · PKD.

– SignSKS,PKD
(m): to sign a message m for D, S generates two random values k ←

Zq , t ← Z∗
q , and computes c ← 〈PKD, P 〉k, r ← Hq(m, c), T ← t−1kP−r ·SKS .

The signature is (T, r, t).
– SimulPKS ,SKD(m): To simulate the transcript on an arbitrary message m, D gen-

erates random R ∈ G and a ∈ Z
∗
q , and computes c ← 〈R, PKD〉 · 〈PKS , SKD〉a,

r ← Hq(m, c), t ← r−1a mod q, T ← t−1R. The transcript (T, r, t) is indistin-
guishable from the real signature [SZM04, Thm. 3].

– VerifyPKS ,SKD
(m, σ): given (m, T, r, t), D verifies its validity by testing whether

Hq(m, (〈T, PKD〉 · 〈PKS , SKD〉r)t) = r.

First Attack. For both simulation and verification, it is sufficient to know
〈SKS , PKD〉 = 〈PKS , SKD〉. Therefore, either the signer or the verifier can delegate
the signing rights of S w.r.t. a fixed designated verifier D.

Second Attack. Assume that the signer discloses (k, k · SKS) to any third party T ,
where k ← Z∗

q . Given an arbitrary message m̃ and an arbitrary designated verifier
D, T chooses random values R ← G, a ← Z∗

q and computes c̃ ← 〈R, PKD〉 · 〈k ·
SKS , PKD〉a(k−1+1), r̃ ← Hq(m̃, c̃), t̃ ← r̃−1a mod q, T̃ ← t̃−1R + r̃k · SKS ,
obtaining a simulated signature (T̃ , r̃, t̃). D can verify whether Hq(m̃, (〈T̃ , PKD〉 ·
〈PKS , SKD〉r̃)t̃) = r̃. The verification accepts since 〈T̃ , PKD〉t̃ = 〈t̃−1R + r̃k ·
SKS , PKD〉t̃ = 〈R, PKD〉 · 〈k · SKS , PKD〉r̃t̃ = 〈R, PKD〉 · 〈k · SKS , PKD〉a and

(〈T̃ , PKD〉·〈PKS , SKD〉r̃)t̃ = 〈T̃ , PKD〉t̃ · 〈PKS , SKD〉r̃t̃

= 〈R, PKD〉 · 〈k · SKS , PKD〉a · 〈SKS , PKD〉r̃t̃

= 〈R, PKD〉 · 〈k · SKS , PKD〉a · 〈k · SKS , PKD〉ak−1

= 〈R, PKD〉 · 〈k · SKS , PKD〉a(k−1+1) = c̃ .

Therefore, Hq(m̃, (〈T̃ , PKD〉 · 〈PKS , SKD〉r̃)t̃) = Hq(m̃, c̃) = r̃. Thus, according to
this attack, an arbitrary party who knows (k, k ·SKS), for some k, can simulate signer’s
signature w.r.t. all designated verifiers.

66 Y. Li, H. Lipmaa, and D. Pei

3.2 NSM05 Scheme

The Ng-Susilo-Mu [NSM05] universal designated multi-verifier signature (UDMVS)
scheme is as follows (here, M = Z∗

q):

– Setup: Choose a group pair (G, H) of prime order |G| = |H| = q, a bilinear map
〈·, ·〉 : G×G → H, an arbitrary generator P ∈ G and a cryptographic hash function
HG : {0, 1}∗ → G. The common parameter is param = (q, G, H, 〈·, ·〉, P, HG).

– KeyGen(param): Given the common parameter, a participant picks a random
SK ← Z∗

q , and computes PK ← SK · P . The public key is PK and the secret
key is SK. Thus, S has key pair (SKS , PKS) and D has key pair (SKD, PKD).

– SignSKS,PKD
(m): Compute σ̂ ← SKS · HG(m), σ ← 〈σ̂,

∑n
i=1 PKDi〉. Return σ.

– VerifyPKS ,PKD,SKD
(m, σ): Each verifier Di does the following: compute σ̃i ←

SKDi · HG(m) and send it to other n − 1 verifiers. After receiving all σ̃j , j �= i,
validate all σ̃j by verifying that 〈P, σ̃j〉 = 〈PKj , HG(m)〉 for j �= i, j ∈ [1, n].
Return reject if any of the verifications fails. Return accept if σ =

∏n
i=1〈σ̃i, PKS〉,

or reject otherwise.

Attack on NSM05. Denote Psum :=
∑n

i=1 PKDi . If signer leaks SKS · Psum to T ,
then T can compute

σ ← 〈HG(m), SKS · Psum〉 = 〈SKS · HG(m), Psum〉 = 〈σ̂, Psum〉 .

After receiving (m, σ), each verifier i computes σ̃i ← SKDi · HG(m), and verifies
that 〈P, σ̃j〉 = 〈PKj , HG(m)〉 for j �= i, j ∈ [1, n]. Now, σ =

∏n
i=1〈σ̃i, PKS〉 since

σ = 〈HG(m), SKS · Psum〉 = 〈SKS ·HG(m), Psum〉 = 〈σ̂, Psum〉

=
n∏

i=1

〈σ̂, SKDi · P 〉 =
n∏

i=1

〈SKS ·HG(m), SKDi · P 〉

=
n∏

i=1

〈SKDi ·HG(m), SKS · P 〉

=
n∏

i=1

〈σ̃i, PKS〉 .

Therefore, for any message m, T can simulate signer’s signature σ and pass the
verification equation. Note that alternatively, all verifiers can cooperate by leaking∑

SKDi · PKS = SKS · Psum. Therefore, the NSM05 scheme is delegatable.
Additionally, Ng, Susilo and Mu first proposed a “simple” UDMVS scheme that

is based on the universal DVS from [SBWP03]. There, analogously, if signer leaks
SKS · PKDi to T , then T can compute σi = 〈SKS · PKDi , HG(m)〉 = 〈PKDi , σ̂〉,
for i ∈ [1, n]. Verifier will accept σi for that σi = 〈SKS · PKDi , HG(m)〉 =
〈SKSSKDiP, HG(m)〉 = 〈SKS ·P, HG(m)〉SKDi = 〈PKS , HG(m)〉SKDi for i ∈ [1, n].

Furthermore, our attack works also with the MDVS scheme from [NSM05] because
its signing algorithm is same as the signing algorithm in the UDMVS scheme.

On Delegatability of Four Designated Verifier Signatures 67

3.3 ZFI05 Scheme

The next strong DVS scheme ZFI05 was proposed in [ZFI05] (we describe a slightly
simplified version of ZFI05, but our attack works also with the original version):

– Setup: Choose a bilinear group pair (G, H) of prime order |G| = |H| = q, with
a bilinear map 〈·, ·〉 : G × H → H and an isomorphism ψ : H → G. Here, G is
multiplicative. Choose a random generator g2 ∈ H, and compute g1 = ψ(g2) ∈ G.
Then the common parameter is param = (q, G, H, 〈·, ·〉, ψ, g1, g2).

– KeyGen(param): Pick random x, y ← Z
∗
q , compute u ← gx

2 , v ← gy
2 . The public

key is PK ← (u, v) and the secret key is SK ← (x, y). In particular, S has a key
pair with PKS = (uS, vS), SKS = (xS , yS) and D has a key pair with PKD =
(uD, vD), SKD = (xD, yD).

– SignSKS,PKD
(m): Pick a random r ← Z∗

q . If xS + r + ySm ≡ 0 mod q, restart.

Compute σ′ ← g
1/(xS+r+ySm)
1 ∈ G, h ← gr

2 , d ← 〈uD, vr
D〉 ∈ H. Return

σ ← (σ′, h, d).
– SimulPKS ,SKD(m): Pick a random s ∈ Z∗

q and compute σ′ ← gs
2, h ←

g
1/s
2 u−1

S v−m
S and d ← 〈g1, h〉xDyD . Return σ ← (σ′, h, d).

– VerifyPKS ,SKD
(σ′, h, d): Output accept if 〈g1, g2〉 = 〈σ′, uS · h · vm

S 〉 and d =
〈uD, hyD〉. Otherwise, output reject.

Attack on ZFI05. In simulation algorithm, the designated verifier can compute d as
d ← 〈gxDyD

1 , h〉. Thus, designated verifier can reveal gxDyD

1 , and therefore this scheme
is delegatable by the verifier. Note that the delegation token does not depend on the
signer.

3.4 LV04 Scheme

Description. In [LV04b], Laguillaumie and Vergnaud proposed the next 2-DVS
scheme based on bilinear maps. Here, D1 and D2 are two verifiers specified by signer
S. G and H are groups of order q, P generates G, and 〈·, ·〉 : G × G → H is an ad-
missible bilinear map. Let BDHGen be a Bilinear Diffie-Hellman (BDH)-prime order
generator [LV04b].

– Setup: Set (q, G, H, 〈·, ·〉, P) ← BDHGen, and let HG be a random member
of a hash function family from {0, 1}∗ × H → G. The common parameter is
(q, G, H, 〈·, ·〉, P, HG).

– KeyGen(param): Pick a random SK ← Z∗
q , and compute PK ← SK·P . The public

key is PK and the secret key is SK.
– SignSKS,PKD1 ,PKD2

(m): Given a message m ∈ {0, 1}∗, S picks at random

two integers (r, �) ∈ Z∗
q × Z∗

q , computes u ← 〈PKD1 , PKD2〉SKS , Q1 ←
SKS

−1(HG(m, u
) − r(PKD1 + PKD2)) and Q2 ← rP . The signature is σ =
(Q1, Q2, �).

– VerifyPKS ,PKD,SKDi
(m, Q1, Q2, �): Designated verifier Di, where i ∈ {1, 2}, com-

putes u ← 〈PKS , PKD3−i〉SKDi . He or she tests whether 〈Q1, PKS〉 · 〈Q2, PKD1 +
PKD2〉 = 〈HG(m, u
), P 〉.

68 Y. Li, H. Lipmaa, and D. Pei

Attack on LV04. Suppose D1 and D2 collude to leak SKD1 + SKD2 to T . Then T
picks two random integers r̃, �̃ ← Z∗

q , computes M̃ ← HG(m, �̃), Q̃1 ← r̃P , and

Q̃2 ← (SKD1 + SKD2)
−1(M̃ − r̃ ·PKS). The simulated signature is σ̃ ← (Q̃1, Q̃2, �̃).

Verification accepts since

〈Q̃1, PKS〉 · 〈Q̃2, PKD1 + PKD2〉
= 〈r̃P, PKS〉 · 〈(SKD1 + SKD2)

−1(M̃ − r̃ · PKS), SKD1P + SKD2 · P 〉
= 〈r̃P, PKS〉 · 〈(SKD1 + SKD2)

−1(M̃ − r̃ · PKS), P 〉SKD1+SKD2

= 〈r̃P, PKS〉 · 〈M̃ − r̃ · PKS , P 〉
= 〈M̃, P 〉 · 〈r̃ · PKS , P 〉 · 〈−r̃ · PKS , P 〉 = 〈M̃, P 〉 .

Therefore, if D1 and D2 collaborate then they can leak SKD1 + SKD2 to T . After that,
T will be able to simulate signatures of any signer w.r.t. the designated verifier pair
(D1, D2).

Discussion. Our attack is based on the following observation: by the verification
equation 〈Q1, PKS〉 · 〈Q2, PKD1 + PD2〉 = 〈HG(m, u
), P 〉, we have 〈Q1, P 〉SKS ·
〈Q2, P 〉SKD1+SKD2 = 〈HG(m, u
), P 〉. Here, attacker can choose only Q1 and Q2, and
it must hold that SKS ·Q1 + (SKD1 + SKD2)Q2 = HG(m, u
). Due to the random or-
acle assumption, HG(m, u
) is a random value, and thus either Q1 or Q2 must depend
on HG(m, u
). This means that attacker either must know the value SKS (and thus he
can recover S’s secret key), or the value SKD1 + SKD2 . Leaking SKS is not an attack
according to [LWB05], but leaking SKD1 + SKD2 is.

To guarantee the non-transferability, the designated verifier(s) should have the ca-
pability to simulate correct signature transcripts. However, the LV04 scheme does not
include simulation algorithms. The above attack can also be treated as two-party simu-
lation algorithm if D1 and D2 execute it themselves.

Although a third party cannot deduce SKD1 or SKD2 from SKD1 + SKD2 , we need
that two parties D1 and D2 compute SKD1 + SKD2 together. This means that either
these two parties must trust each other, or they have to execute a secure two-party com-
putation.

Finally, note that both this attack and the attack against ZFI05 have the same feature:
if the delegation token revealed by verifier(s) (either SKD1 + SKD2 or g

xD1yD1
1) is not

connected anyhow to the signer. Therefore, after revealing those values, a third party
can simulate the signature of any signer w.r.t. a fixed designated verifier or a fixed pair
of designated verifiers.

4 On Different Delegation Attacks

Who can delegate? In the previous section, we saw at least two kinds of delegation
attacks:

Attack I: Either the signer or one of the designated verifiers can delegate the signing
rights to a third party T without disclosing his or her secret key.

On Delegatability of Four Designated Verifier Signatures 69

Attack II: One of the designated verifiers (or even only the coalition of all verifiers)
can delegate the signing right to a third party without disclosing his or her secret
key, while the signer cannot do it.

The non-delegatability notion introduced in [LWB05] corresponds to security against
Attack I. Next, we will give a somewhat formal definition of what we mean by a vulner-
ability to Attack II. (Intuitively, it says that a n-DVS scheme Δ is verifier-only delegat-
able if it is delegatable but it cannot be delegated by the signer without leaking Signer’s
secret key.)

Verifier-only delegatability: As previously, Fm denotes F with m as its input, and
oracle calls are counted as one step. More precisely, let κ ∈ [0, 1] be the knowledge
error. We say that Δ is verifier-only (τ, κ)-delegatable if it is not (τ, κ)-non-delegatable
and there exists a black-box knowledge extractor K that, for every algorithm F and
for every message m ∈ M satisfies the following condition: for every (SKS , PKS) ←
KeyGen, (SKD1 , PKD1) ← KeyGen, . . . , (SKDn , PKDn) ← KeyGen, for every bit-
string d (delegation token) that does not depend on SKDi for any i ∈ [1, n], and for
any message m, if F produces a valid signature on m with probability ε > κ then,
on input m and on access to the oracle Fm, K produces SKDi for some i ∈ [1, n] in
expected time τ

ε−κ (without counting the time to make the oracle queries). Here again,
F ’s probability is taken over the choice of her random coins and over the choice of the
random oracles.

What exactly can be delegated? The presented attacks can be divided into delegation
attacks that allow to delegate the signing rights of a fixed signer w.r.t. a fixed tuple
of designated verifiers, or the rights of any signer w.r.t. a fixed tuple of designated
verifiers, or the rights of a fixed signer w.r.t. any tuple of designated verifiers. According
to [LWB05], existence of any of these attacks makes a scheme delegatable. Again, it
can be argued that the first type of attack is the most serious one since the last two
attack types give too much power to the third party T (and therefore one might be less
motivated to delegate the rights). One can try to modify the delegatability definition
so that only the first attack type is classified as an attack. We will leave it as an open
question whether this is reasonable.

Final Remarks. Regardless of the previous comments, our own opinion is that our
attacks against all four schemes indicate some weaknesses in them and while the non-
delegatability definition of [LWB05] might be too strong in some sense, to avoid any
kind of future attack and unexpected vulnerabilities, it is a good idea to design DVS
schemes that are non-delegatable according to [LWB05].

Acknowledgements

The first and the third authors are partially supported by the National Grand Fundamen-
tal Research 973 Program of China under Grant No. G1999035804. The second author
is partially supported by the Estonian Science Foundation, grant 6096. The authors
would like to thank Guilin Wang and the anonymous referees for useful comments.

70 Y. Li, H. Lipmaa, and D. Pei

References

[Cha96] David Chaum. Private Signature and Proof Systems, 1996. US-patent no 5,493,614.

[JSI96] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated Verifier
Proofs and Their Applications. In Ueli Maurer, editor, Advances in Cryptology
— EUROCRYPT ’96, volume 1070 of Lecture Notes in Computer Science, pages
143–154, Saragossa, Spain, May 12–16, 1996. Springer-Verlag.

[LV04a] Fabien Laguillaumie and Damien Vergnaud. Designated Verifier Signatures:
Anonymity and Efficient Construction from Any Bilinear Map. In Carlo Blundo
and Stelvio Cimato, editors, Security in Communication Networks, 4th Interna-
tional Conference, SCN 2004, volume 3352 of Lecture Notes in Computer Science,
pages 105–119, Amalfi, Italy, September 8–10, 2004. Springer Verlag.

[LV04b] Fabien Laguillaumie and Damien Vergnaud. Multi-designated Verifiers Signatures.
In Javier Lopez, Sihan Qing, and Eiji Okamoto, editors, Information and Commu-
nications Security, 6th International Conference, ICICS 2004, volume 3269 of Lec-
ture Notes in Computer Science, pages 495–507, Malaga, Spain, October 27–29,
2004. Springer-Verlag.

[LWB05] Helger Lipmaa, Guilin Wang, and Feng Bao. Designated Verifier Signature
Schemes: Attacks, New Security Notions and A New Construction. In Luis Caires,
Guiseppe F. Italiano, Luis Monteiro, Catuscia Palamidessi, and Moti Yung, editors,
The 32nd International Colloquium on Automata, Languages and Programming,
ICALP 2005, volume 3580 of Lecture Notes in Computer Science, pages 459–471,
Lisboa, Portugal, 2005. Springer-Verlag.

[NSM05] Ching Yu Ng, Willy Susilo, and Yi Mu. Universal Designated Multi Verifier Signa-
ture Schemes. In Cheng-Zhong Xu and Laurence T. Yang, editors, The International
Workshop on Security in Networks and Distributed Systems (SNDS 2005), Fukuoka,
Japan, July 20–22, 2005. IEEE Press. To appear.

[SBWP03] Ron Steinfeld, Laurence Bull, Huaxiong Wang, and Josef Pieprzyk. Universal
Designated-Verifier Signatures. In Chi Sung Laih, editor, Advances on Cryptology
— ASIACRYPT 2003, volume 2894 of Lecture Notes in Computer Science, pages
523–542, Taipei, Taiwan, November 30–December 4, 2003. Springer-Verlag.

[SKM03] Shahrokh Saeednia, Steve Kremer, and Olivier Markowitch. An Efficient Strong
Designated Verifier Signature Scheme. In Jong In Lim and Dong Hoon Lee, edi-
tors, Information Security and Cryptology - ICISC 2003, volume 2971 of Lecture
Notes in Computer Science, pages 40–54, Seoul, Korea, November 27–28, 2003.
Springer-Verlag.

[SWP04] Ron Steinfeld, Huaxiong Wang, and Josef Pieprzyk. Efficient Extension of Stan-
dard Schnorr/RSA Signatures into Universal Designated-Verifier Signatures. In
Feng Bao, Robert H. Deng, and Jianying Zhou, editors, Public Key Cryptography
2004, volume 2947 of Lecture Notes in Computer Science, pages 86–100, Singa-
pore, March 1–4, 2004. Springer-Verlag.

[SZM04] Willy Susilo, Fangguo Zhang, and Yi Mu. Identity-Based Strong Designated Ver-
ifier Signature Schemes. In Josef Pieprzyk and Huaxiong Wang, editors, The 9th
Australasian Conference on Information Security and Privacy (ACISP 2004), vol-
ume 3108 of Lecture Notes in Computer Science, pages 313–324, Sydney, Australia,
July 13–15, 2004. Springer-Verlag.

On Delegatability of Four Designated Verifier Signatures 71

[ZFI05] Rui Zhang, Jun Furukawa, and Hideki Imai. Short Signature and Universal Des-
ignated Verifier Signature Without Random Oracles. In John Ioannidis, Ange-
los D. Keromytis, and Moti Yung, editors, Applied Cryptography and Network
Security, Third International Conference, ACNS 2005, volume 3531 of Lecture
Notes in Computer Science, pages 483–498, New York, NY, USA, June 7–10, 2005.
Springer-Verlag.

PIATS: A Partially Sanitizable
Signature Scheme

Tetsuya Izu, Nobuyuki Kanaya, Masahiko Takenaka, and Takashi Yoshioka

Fujitsu Laboratories Ltd.,
4-1-1, Kamikodanaka, Nakahara-ku, Kawasaki, 211-8588, Japan

{izu, kanaya, takenaka, yoshioka}@labs.fujitsu.com

Abstract. In e-government or e-tax payment systems, appropriate al-
terations on digitally signed documents are required to hide personal
information, namely privacy. Standard digital signature schemes do not
allow such alternations on the signed documents since there is no means
to distinguish appropriate alternations from inappropriate forgeries. The
sanitizable signature scheme is a possible solution for such systems in
which sanitizings of partial information are possible, after a signature is
signed on the original (unsanitized) document. However, in previously
proposed schemes, since sanitizers are anonymous, verifiers cannot iden-
tify sanitizers, and thus dishonest sanitizings are possible. This paper
proposes a new sanitizable signature scheme “PIATS” in which partial
information can be sanitized. Moreover, verifiers can identify sanitizers
and thus dishonest sanitizings are eliminated.

Keywords: Sanitizable signature scheme, partial integrity, privacy.

1 Introduction

To governmental, municipal or military offices, there is a strong demand to dis-
close documents they hold or held. In fact, many countries have disclosure laws
for these organizations. However, such disclosed documents should exclude per-
sonal or national secret information because of privacy or diplomatic reasons. In
old days, paper documents were blacked-out by physical maskings to hide infor-
mation. Unfortunately, we have no analogous system for electronic documents.
For example, the New York Times website exposed CIA agents with careless-
ness, since they sanitized the electronic document by hand [Wir02]. Other ex-
ample is an exposure of the Carnivore review team by the Justice Department
of USA [Wir00]. Thus a systematic sanitizing method for electronic documents
are required in this internet era. On the other hand, signatures are very common
technology to assure the integrity of the document, since it detects inappropriate
forgeries on original documents. However, current signature schemes can not dis-
tinguish appropriate alternations, namely sanitizations as mentioned above, and
adversaries’ inappropriate forgeries. Thus we require a new document managing
system which establish the privacy of some part of documents (by sanitizations)
and the integrity of other parts (by enhanced signature technology).

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 72–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

PIATS: A Partially Sanitizable Signature Scheme 73

The sanitizable signature scheme (or the content extractable signature scheme)
is a possible solution in which partial information are sanitizable even after a signa-
ture is signed on the original document [SBZ01, MSI+03, MIM+05, ACM+05]. In
these sanitizable signature schemes, appropriate alternations (sanitizings) and in-
appropriate alternations (forgeries) are distinctly treated, namely, all sanitizations
are allowedbut any forgeries are not. Thus these schemes guarantee the integrity of
the original document with hiding the privacy. However, previously proposed sani-
tizable signature schemes required rather severe limitations or had serious security
problems. In SUMI-1, a sanitization is allowedonly once [MSI+03]. InCESschemes
andSUMI-2,3,4,multiple sanitizations are allowed [SBZ01, MSI+03], however, since
sanitizers are anonymous, verifiers cannot identify sanitizers. More worse, dishon-
est sanitizations are possible in SUMI-4 [MIM+05]. In a recent
scheme SUMI-5 [MIM+05], such dishonestly sanitizations are avoided, but lim-
itations are somewhat strengthened. In fact, SUMI-5 assumes a situation where
sanitizers can control the disclosing criteria of the following sanitizers.

This paper proposes a new partially sanitizable signature scheme “PIATS”
(Partial Information Assuring Technology for Signature) in which dishonestly
sanitizations on any part of closed information are detected. Moreover, for sani-
tized information, verifiers can identify not only which part is sanitized but also
who sanitized from a signer and sanitizers. Since any provably secure digital sig-
nature schemes such as RSA-PSS [PKCS] can be combined with the proposed
scheme, we can establish an electronic document management system which
assures the integrity of the document with hiding personal information.

The rest of the paper is organized as follows: section 2 describes previously
proposed sanitizable signature schemes CES families and SUMI families. Then,
section 3 proposes our sanitizable signature scheme with some discussions. A
comparison of mentioned schemes are in section 4.

2 Preliminaries

In this section, we briefly introduce previously proposed sanitizable signature
schemes CES families [SBZ01] and SUMI families [MSI+03, MIM+05].

2.1 Notations

In this paper, we assume that an original document to be digitally signed is given
as an n-block data {mi}1≤i≤n. Here length of each block can be distinct. For ex-
ample, mi can be minimal components in XML document. A value r is a (pseudo)
random value generated by an appropriate generator. A function Hash(·) is an
arbitrary secure hash function such as SHA-256 1. Functions Sign(·)/Verify(·)
are signing/verifying functions of a non-sanitizable provably secure signature
scheme such as RSA-PSS [PKCS].
1 As in [SBZ01], all hash functions in this paper can be replaced by preimage resistant

and 2nd preimage resistant functions. However, for simplicity, we denote just “hash
functions”.

74 T. Izu et al.

2.2 Three-Party Model

In the followings, we use a three-party model of sanitizable signature schemes
as in previous schemes [MSI+03, MIM+05, SBZ01]. In this model, three parites,
signers, sanitizers and verifiers are considered as players 2.

Signer assures the integrity of an original document by digitally signing a signa-
ture. The signer does not know which part of the document will be sanitized
in future when they sign.

Sanitizers determine which part of the document to be sanitized and actually
sanitize the document, on input a signed document and a signature from the
signer (and a sanitized document if the sanitizer is not the first sanitizer).
Here, we assume that sanitizers cannot create a new document, and sanitizers
cannot change the original document nor signature.

Verifiers confirm the integrity of the document by verifying the original signa-
ture, and confirm whether it was signed by an appropriate signer and was
sanitized by appropriate sanitizers.

2.3 CES

CES (Content Extracting Signature) is a family of sanitizable signature schemes
proposed by Steinfeld-Bull-Zheng [SBZ01]. CES family has four schemes CES-
CV, CES-HT, CES-RSAP, and CES-MERP. CES-CV is a main scheme and
remaining are its variants. CES-CV and CES-HT can be combined with arbitrary
signature schemes, while CES-RSAP and CES-MERP can be combined with
only RSA-type signature schemes. Since CES-CV is very similar to SUMI-4 in
the following section, we do not introduce CES schemes in detail here.

2.4 SUMI

SUMI is a family of sanitizable signature schemes proposed by Miyazaki et al.
successively [MSI+03, MIM+05]. SUMI family has five schemes SUMI-1, SUMI-
2, SUMI-3, SUMI-4, and SUMI-5 3. All of these schemes can be combined with
arbitrary signature schemes.

SUMI-1, SUMI-2, SUMI-3: On an original n-block document, SUMI-1 gen-
erates signatures for all possible subsets of the document (namely, a signer gen-
erates 2n signatures). A sanitizer determines disclosing blocks and publishes a
corresponding subset and a signature. Thus a sanitization is allowed only once in
SUMI-1. In addition, SUMI-1 is far from efficient since it requires 2n signatures,
which is exponential to the size of the original document.

SUMI-2 generates n signatures corresponding to n-blocks. A sanitizer deter-
mines disclosing blocks and publishes a corresponding index set and signatures.
2 In [SBZ01], sanitizers are described as owners.
3 “Sumi (Indian ink)” is a standard writing material in eastern Asian countries in-

cluding Japan, and is used for non-digital sanitizations.

PIATS: A Partially Sanitizable Signature Scheme 75

Table 1. A description of SUMI-4

Signer
1. For a given original document {mi}1≤i≤n, a signer padds random
values ri to each block.
2. For a padded document M = {(mi, ri)}1≤i≤n, generate a set of
hash values H = {hi = Hash(mi, ri)}1≤i≤n for a given hash function
Hash(·).
3. Generate a signature s = Signsigner(H) for a given signer’s signing
function Signsigner(·).
4. Output (M, s) as an original document and a signature.

Sanitizer
1. Determine a disclosing index set D ⊂ {1, . . . , n}, where blocks
(mi, ri) (i ∈ D) will be disclosed.
2. A sanitizer converts the document M to a new document M̃ =
{m̃i}1≤i≤n, where

m̃i =
(mi, ri) if i ∈ D

hi if i /∈ D.

3. Output the sanitized document M̃ and the index set D.

Verifier
1. On input an original signature s, a sanitized document M̃ =
{m̃i}1≤i≤n, and a disclosing index set D, generate a set of hash values
H ′ = {h′

i}1≤i≤n, where

h′
i =

Hash(m̃i) if i ∈ D
m̃i if i /∈ D.

2. Compute Verifysigner(H
′, s) and confirm the integrity of disclosed

parts of the document for a signer’s vefifying function Verifysigner(·).

Thus multiple sanitizations are possible in SUMI-2. But SUMI-2 is not efficient
since it requires n signatures.

SUMI-3 generates n hash values (instead of signatures) corresponding to n-
blocks and a signature on a concatination of these hash values. A sanitizer deter-
mines disclosing blocks and publishes a corresponding index set and the updated
document which consists of original blocks for disclosing parts and hash values
for closing parts. Thus multiple sanitizaions are possible in SUMI-3. Moreover,
SUMI-3 is efficient. However, it is not secure becase the procedure is determin-
istic [MSI+03]. This idea is inherited to the following SUMI-4.

SUMI-4: In SUMI-4, in the beginning, all blocks are padded by random values
to enhance the security. Then a set of hash values of all padded blocks and a
signature on a concatination of these hash values are generated. When a sanitizer
sanitizes a specified block, he/she replaces the block to the corresponding hash

76 T. Izu et al.

Fig. 1. An outline of SUMI-4

PIATS: A Partially Sanitizable Signature Scheme 77

value. Thus multiple sanitizations are possible in SUMI-4. A formal description
of SUMI-4 is in Table 1 (see also Figure 1).

Similar to SUMI-3, SUMI-4 is an efficient sanitizable signature scheme since it
only requires 1 signature. Moreover, multiple sanitizations are possible in SUMI-
4. However, SUMI-4 has the following security problem.

Additional Sanitization Attack: In all of SUMI-2, SUMI-3, SUMI-4, and
CES schemes, multiple sanitizations are possible. In [MIM+05], Miyazaki et al.
observed that this property allows an adversary to the additional sanitization
attack, a variant of the man-in-the-middle attack, in which the adversary inter-
cepts an appropriately sanitized document, and sends the corruptly sanitized
document to a verifier to which dishonestly sanitizations are added. This is be-
cause sanitizers are anonumous in these schemes; in order to resist this kind of
attacks, anonymous sanitizations should be avoided.

SUMI-5: Miyazaki et al. proposed an enhanced sanitizable signature scheme
SUMI-5 in the same paper [MIM+05]. Since SUMI-5 is based on SUMI-4, SUMI-
5 is also very efficient and multiple sanitizations are possible. Moreover, adver-
saries’ dishonestly sanitizations are avoided. A formal description of SUMI-5 is
in Table 2.

In SUMI-5, dishonest sanitizations are avoided by using three sets Dn, Dna,
C. By changing these sets, multiple sanitizations are possible, however, since
each sets should be monotonously increasing or decreasing, latter sanitizers can
prohibit sanitizations beyond the disclosing conditions determined by previous
sanitizers. On the other hand, because the signer cannot determine any con-
ditions on the sanitization, the first sanitizer cannot determine the disclosing
condition.

SUMI-5 is a very interesting scheme because it firstly excludes dishonest san-
itizations. However, since a closing condition should be determined in the begin-
ning, it seems impractical. Our study is motivated by this problem. Similar to
SUMI-5, our proposed scheme “PIATS” is based on SUMI-4 rather than SUMI-5,
but proceeds another direction as in the next section.

3 Proposed Scheme

In this section, we propose a new partially sanitizable signature scheme “PI-
ATS” (Partial Information Assuring Technology for Signature) which supports
multiple sanitizations with avoiding dishonest sanitizations. In order to resist the
additional sanitization attack and solve the problem of SUMI-5 (discussed in the
previous section), we establish three conditions which the sanitizable signature
scheme should satisfy:

(C1) Signers cannot determine disclosed blocks.
(C2) Sanitizers and their sanitizated parts can be identified by verifiers.
(C3) Sanitizers cannot control other blocks than their sanitizing blocks.

Note that SUMI-5 satisfies the condition (C1) and (C2), but not (C3). This may
be a main reason why SUMI-5 requires those severe limitations on index sets.

78 T. Izu et al.

Table 2. A description of SUMI-5

Signer
1. For a given original documnet {mi}1≤i≤n, a signer padds random
values ri to each block. Also generate random values si for each block.
Let M = {(mi, ri)}1≤i≤n be a padded document and S = {si}1≤i≤n

be a set of random values.
2. For an i-th block, draw a line 	i passing two points (1, Hash(mi, ri))
and (2, Hash(si)) for a given hash function Hash(·). Next, compute two
values Pi, Qi such that two points (0, Qi), (3, Pi) are on the line 	i.
Let P = {Pi}1≤i≤n be a set of Pi values.
3. Generate a signature s = Signsigner(Q1|| . . . ||Qn||P1|| . . . ||Pn) for
a signer’s signing function Signsigner(·), where || denotes a concatina-
tion.
4. Output (M, S, P, s) as an original document and a signature.

Sanitizer
1. Determine three index sets (partitions) Da, Dna, C ⊂ {1, . . . , n}
such that Da ∪ Dna ∪ C = {1, . . . , n} and Da ∩ Dna = Dna ∩ C =
C ∩ Da = φ. For an index i ∈ Da, the i-th block is disclosed and
additional sanitization is allowed. For an index i ∈ Dna, the i-th block
is disclosed but additional sanitization is not allowed. On the other
hand, for an index i ∈ C, the i-th block is closed at all times.
2. Let M̃ = M\{(mi, ri)}i∈C , S̃ = S\{si}i∈Dna .
3. Output the sanitized document (M̃, S̃) with the index sets
Dn, Dna, C.

Verifier
1. On input an original signature s, a sanitized document M̃ = {m̃i}
with sets S̃, P , and an index set C, for each block, draw a line 	′

i

passing two points (1, Hash(m̃i)) and (3, Pi) if this block is disclosed
or (2, Hash(si)) and (3, Pi) if this block is closed.
2. For each line 	′

i, compute Q′
i such that a point (0, Q′

i) is on the line
	′
i.

3. Compute Verifysigner(Q
′
1|| . . . ||Q′

n||P1|| . . . ||Pn, s) and confirm the
integrity of disclosed parts of the document for a signer’s vefifying
function Verifysigner(·).

3.1 Approach

After analyzing the previous sanitizable signature schemes, we reached a conclu-
sion that a main reason why dishonest sanitizations are possible is because the
anonymity of the sanitizers, namely there are no identifications in sanitizations.
We consider that identifications of a signer and sanitizers are the most required
property for secure sanitizable signature schemes.

In order to establish a new scheme, we went back to SUMI-4 rather than
SUMI-5. In SUMI-4, a signature scheme assures the integrity of a hash set H ,
and some properties of the hash function (the preimage resistance and the 2nd

PIATS: A Partially Sanitizable Signature Scheme 79

preimage resistance) assures the integrity of the sanitized document. In other
words, previous sanitizable signature schemes generate a sign on a hash value
set H and verify the integrity of H , while standard (non-sanitizable) signature
schemes generate a sign on a document M and verify the integrity of M . With
this property, sanitizable schemes can verify the integrity of the sanitized docu-
ment by veifying the integrity of H without a direct accesse on the document.

3.2 Description of the Proposed Scheme

This section describes a proposed sanitizable signature scheme “PIATS”, in
which a signature on an original document is generated from a hash value set
H and its signature. Closing blocks and corresponding padded random values
are replaced by distinct characters (such as “XXXXXXXX” for example) and
by new random values, respectively, in sanitizations. Corresponding hash values
are also recomputed. Thus a new hash value set H ′ and its signature s′ is ob-
tained. Then the sanitizer publishes the sanitized document and the sanitizer’s
signature s′ in addition to the original signature s. On input these data, a veri-
fier verifies the integrity of the sanitized document. In addition, sanitized blocks
can be identified by comparing two sets H and H ′. Finally, from a disclosed
document and the sanitized index sets, the verifier can verify the correctness
of the sanitizings. An formal description of the proposed sanitizable signature
scheme is in Table 3 (see also Figure 2)D We name the scheme as the Partial
Information Assuring Technology for Signature (PIATS).

By the described procedures, a verifier can verify the integrity of disclosed
blocks, identify the sanitized parts and sanitizers. If a closed block (combined
with former and latter blocks) has a meaning, it can be treated as either a valid
sanitization or a forgery depending on the policy. Thus PIATS allows multiple
sanitizations with avoiding dishonest sanitizations.

3.3 Security Analysis

Let us consider the security of the proposed scheme. The unforgeability (no
forgeability of signatures), secrecey (no leakage of sanitized information), and the
integrity (no forgery on unsanitized parts with valid verification), is established
as in the following observations.

Unforgeability: Combined with secure digital signature schemes such as RSA-
PSS [PKCS], any forgeries can be avoided in the proposed scheme.

Secrecy: Since a signer’s signature S consists of a set of hash values and its
signature, and a sanitizer’s signature S′ consisnts of an updated set of hash
values and its signature, the secrecy of the sanitized information is assured
by the preimage resistance of the hash function.

Integrity: In the proposed scheme, by comparing a hash value set generated
by a signer and by a sanitizer, dishonest sanitizations can be identified by
verifiers. This is assured by the 2nd preimage resistance of the hash function.

80 T. Izu et al.

Fig. 2. An outline of the proposed sanitizable signature scheme “PIATS”

PIATS: A Partially Sanitizable Signature Scheme 81

Table 3. A description of the proposed sanitizable signature scheme “PIATS”

Signer
1. For a given original documnet {mi}1≤i≤n, a signer padds random
values ri to each block.
2. For a padded document M = {(mi, ri)}1≤i≤n, generate a set of
hash values H = {hi = Hash(mi, ri)}1≤i≤n for a given hash function
Hash(·).
3. Generate a signature s = Signsigner(H) for a signer’s signing func-
tion Signsigner(·).
4. Set S = H ||s where || denotes a concatination.
5. Output (M, S) as an original document and a signature.

Sanitizer
1. Determine a disclosing index set D ⊂ {1, . . . , n}, where blocks
(mi, ri) (i ∈ D) will be disclosed.
2. A sanitizer converts the document M to a new document M̃ =
{m̃i}1≤i≤n, defined by

m̃i =
(mi, ri) if i ∈ D
(m′

i, r
′
i) if i /∈ D,

where m′
i is a distinct characters (such as “XXXXXXXX”) and r′

i is
a random value for padding.
3. Generate a set of hash values H ′ = {h′

i = Hash(m̃i)}1≤i≤n. Then
generate a new signature s′ = Signsanitizer(H

′) for a signing function
Signsanitizer(·) and set S′ = H ′||s′

4. Output the sanitized document and a signature (M̃ , S′) with the
index set D.

Verifier
1. On input an original signature s, the sanitized document and a
signature (M̃, S′), recover H, s, H ′, s′.
2. Compute Verifysigner(H, s) and confirm the integrity of the original
document for a vefifying function Verifysigner(·).
3. Compute Verifysanitizer(H

′, s′) and confirm the integrity of the
sanitized document and identify the sanitizer for a vefifying function
Verifysanitizer(·).

3.4 Multiple Sanitization

The proposed scheme allows multiple sanitizaions by adding sanitizers’ signa-
tures. Let (M (0), S(0)) be a pair of the original document and a signer’s signa-
ture on M (0). Similarly, let (M (j), S(j)) be a pair of the j-th sanitized document
and the j-th sanitizer’s signature on M (j) for 1 ≤ j ≤ k. Here k is the ad-
missible number of sanitizers determined in advance as a security parameter of
the scheme. Then the last (k-th) sanitizer publishes (M (k), S(0), S(1), · · · , S(k)).

82 T. Izu et al.

From the published information, a verifier can identify which blocks are sanitized
by the j-th sanitizer (1 ≤ j ≤ k) and which blocks are signed by the signer.

The proposed scheme has a property that the number of disclosing blocks can
be increasing. This property my be required in most situations where sanitizable
signature schemes are used. Conversely and interestingly, the proposed scheme
also has a property that the number of disclosing blocks can be decreasing, if all
sanitizers can access on the original documet.

4 Comparison

In this section, we compare sanitizable signature schemes including CES-CV
[SBZ01], SUMI-4 [MSI+03], SUMI-5 [MIM+05], and the proposed scheme PI-
ATS from viewpoints of the ability of multiple sanitizations, required conditions
for future sanitizations, and combinable signature schemes. A comparison is sum-
marized in Table 4. Note that as described in section 2, CES-CV and CES-HT
are potentialy identical to SUMI-4.

CES-RSAP and CES-MERP are combined to only specified (RSA-type) sig-
nature schemes, while other schemes can be combined with arbitrary secure
signature schemes. All sanitizable schemes but SUMI-1 support multiple sani-
tizations. A main defference between SUMI-2, SUMI-3, SUMI-4 is the number
of required signatures; for signing an n-block document, SUMI-2, SUMI-3, and
SUMI-4 requires 2n, n, 1 signatures, respectively. Thus SUMI-4, its successor
SUMI-5, and PIATS are efficient with regard to the number of required sig-
natures. Only SUMI-5 and PIATS can avoid dishonest sanitizations. However,
as described in section 2, SUMI-5 requires a rather impractical assumption in
which a closing policy should be determined in the beginning. On the other hand.
PIATS avoids dishonest sanitizations without such a limitation.

Table 4. A comparison of sanitizable signature schemes

Scheme Multiple Sanitization Combinable Specifying
(Honest) (Dishonest) Signature Scheme Future Sanitizations

CES-CV Possible Possible Arbitrary Unrequired
CES-HT

CES-RSAP Possible Possible Limited (RSA-type) Unrequired
CES-MEPR (RSA-type)

SUMI-1 Impossible Impossible Arbitrary —
SUMI-2 Possible Possible Arbitrary Unrequired
SUMI-3 Possible Possible Arbitrary Unrequired
SUMI-4 Possible Possible Arbitrary Unrequired
SUMI-5 Possible Partially possible Arbitrary Required
PIATS Possible Impossible Arbitrary Unrequired

PIATS: A Partially Sanitizable Signature Scheme 83

5 Concluding Remarks

This paper proposes a new partially sanitizable signature scheme PIATS which
support multiple sanitizations with avoiding dishonest sanitizations, and there-
fore enables to manage documents with secure and privacy-protected. Obviously,
the proposed scheme is suitable for managing digital documents (described in
XML format for example). However, applying PIATS to scanned documents
is not easy, because scanned documents are recorded in picture formats. Since
there are so many types of formats, we have to consider how to apply PIATS to
each format separately. Recently, we developed an experimental system which
manages a sanitizable signatue schemes on jpeg formats. Intuitively, the system
works well, but there are many problems to overcome. Further experiments and
analysis will be required to use PIATS in practical systems.

Acknowledgments

The authors would like to thank Naoya Torii, Satoru Torii and Takeshi Shi-
moyama for their helpful comments and suggentions on the early version of this
paper.

References

[ACM+05] G. Ateniese, D.H. Chou, B. Medeiros, G. Tsudik, “Sanitizable Signatures”,
ESORICS 2005, LNCS 3679, pp. 159–177, Springer-Verlag, 2005.

[MIM+05] K. Miyazaki, M. Iwamura, T. Matsumoto, R. Sasaki, H. Yoshiura,
S. Tezuka, H. Imai, “Digitally Signed Document Sanitizing Scheme
with Disclosure Condition Control”, The Institute of Electronics, Infor-
mation and Communication Engineers (IEICE) Trans. on Fundamen-
tals, Vol, E88-A, pp. 239–246, No. 1, January 2005. Available from
http://search.ieice.org/index-e.html

[MSI+03] K. Miyazaki, S. Susaki, M. Iwamura, T. Matsumoto, R. Sasaki,
H. Yoshiura, “Digital Documents Sanitizing Problem”, The Institute of
Electronics, Information and Communication Engineers (IEICE) technical
report, ISEC 2003-20, May 2003.

[PKCS] RSA Laboratories, “PKCS #1 v2.1: RSA Encryption standard”,June
14, 2002,Available from http://www.rsasecurity.com/rsalabs/node
.asp?id=2125

[SBZ01] R. Steinfeld, L. Bull, and Y. Zheng, “Content Extraction Signatures”,
ICICS 2001, LNCS 2288, pp. 285–304, Springer-Verlag, 2001.

[Wir00] “Carnivoe Review Team Exposed!”,an article of Wired News Reports,
2000. Available from http://www.wired.com/news/politics/0,1283,
39102,00.html

[Wir02] “NYT Site Exposes CIA Agents”, an article of Wired News Reports,
2002. Available from http://www.wired.com/news/politics/0,1283,
37205,00.html

Ciphertext Comparison, a New Solution to the
Millionaire Problem

Kun Peng1, Colin Boyd1, Ed Dawson1, and Byoungcheon Lee,2

1 Information Security Institute,
Queensland University of Technology,

{k.peng, c.boyd, e.dawson}@qut.edu.au
http://www.isi.qut.edu.au
2 Joongbu University, Korea

sultan@joongbu.ac.kr

Abstract. A new cryptographic protocol —ciphertext comparison—
can compare two ciphertexts without revealing the two encrypted mes-
sages. Correctness of the comparison can be publicly verified. This tech-
nique provides an efficient and publicly verifiable solution to the famous
millionaire problem. It is the first solution to the millionaire problem to
output a precise result (the two messages are equal or which is larger).
Privacy in this new solution is achieved with an overwhelmingly large
probability and strong enough in practice.

Keywords: Ciphertext comparison, the millionaire problem, efficiency.

1 Introduction

In the millionaire problem, two millionaires want to compare their richness with-
out revealing their wealth. This problem can be formulated as a comparison of
two ciphertexts without decrypting them. The millionaire problem is an inten-
sively studied problem in multiparty computation. Since this problem was raised
by Yao [17], many multiparty computation schemes [13, 12, 6, 11, 3, 16, 2, 8, 15]
have been proposed, each of which can be applied to the millionaire problem.
However, none of the currently known multiparty computation schemes provides
an efficient and verifiable solution to the millionaire problem. Moreover, all the
existing solutions to the millionaire problem only output one bit. So they output
an imprecise result (whether a message is larger than the other or no larger than
the other), while a precise result should indicate a message is larger than the
other or equal to the other or smaller than the other. In addition, many of the
existing schemes have various other problems like lack of verifiability.

A new protocol proposed in this paper, ciphertext comparison, can efficiently
implement comparison of two encrypted messages without revealing them. A
distributed homomorphic encryption algorithm is employed to encrypt the two
messages. The ciphertext comparison technique outputs a(m1 −m2) where a is
a random and secret integer. Parameter choice guarantees that a(m1−m2) indi-
cates the comparison result, but does not reveal any information about the two

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 84–96, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Ciphertext Comparison, a New Solution to the Millionaire Problem 85

messages with an overwhelmingly large probability except which one is larger.
The whole protocol is publicly verifiable. Correctness, privacy, robustness, public
verifiability and high efficiency are achieved simultaneously for the first time in
solving the millionaire problem. Moreover, a precise result is output in this new
solution.

The rest of this paper is organised as follows. In Section 2, the millionaire
problem and its previous solutions are recalled. In Section 3, new primitives
needed in this paper are proposed and proved to be secure. In Section 4, the
new ciphertext comparison protocol is described. In Section 5, the new ciphertext
comparison protocol is analysed and compared against previous solutions to the
millionaire problem. The paper is concluded in Section 6.

In the rest of this paper, the following symbols are used.

– || stands for concatenation.
– �x� is the largest integer no more than x.
– PKN(x1, x2, . . . , xn|cond) stands for the proof of knowledge of a set of in-

tegers x1, x2, . . . , xn satisfying a given condition cond.

2 The Millionaire Problem and Related Work

The millionaire problem was raised by Yao [17]. In the millionaire problem, two
millionaires want to compare who is richer without revealing their wealth. This
problem can be formulated as a comparison of two encrypted messages without
revealing them. Some participants (sometimes the two millionaires themselves)
are employed to solve the problem without revealing the two messages. The
following four properties are often desired in a solution protocol to the millionaire
problem.
– Correctness: If the two ciphertexts are decrypted and then compared, the

result is the same as the protocol outputs.
– Precision: A precise result must be output to indicate exactly which of the

three possibilities (whether a message is smaller than or equal to or larger
than the other) occurs.

– Public verifiability: Each participant can be publicly verified to honestly
follow the protocol.

– Privacy: After the computation, no information about the two messages is
revealed except the comparison result.

Solutions to the millionaire problem always employ multiparty computation.
In multiparty computation, multiple participants compute a function with en-
crypted inputs and determine the result of the function without revealing the
inputs. They usually employ an evaluation circuit consisting of some logic gates
to compute the function in ciphertext. Usually the decryption key of the em-
ployed encryption algorithm is shared among the participants, so that privacy
of the encrypted inputs can be protected with an assumption that the number
of malicious participants is not over a threshold. In all the known existing multi-
party computation solutions, only an imprecise result is output (a precise result
should indicate one of the three possible results).

86 K. Peng et al.

According to the computation in every gate in the circuit, they can be divided
into two methods. The first method is based on encrypted truth tables. Namely,
the rows in the truth table of each logic gate in the circuit are encrypted and
shuffled, so that any legal encrypted input to each gate can be matched to an
encrypted output without being revealed. The second method is based on logic
homomorphism of certain encryption schemes. As special encryption algorithms
homomorphic in regard to the logic gates in the circuit are employed, the eval-
uation can be implemented by computing in ciphertext without the help of any
truth table. The recent schemes employing the first method include [13], [12],
[6], [11] and [3]. The recent schemes employing the second method include [16],
[2], [8] and [15]. None of them provides a correct, precise, private, verifiable and
efficient solution to the millionaire problem. Such a solution will be designed in
this paper. The new technique is called ciphertext comparison. It employs the
second method, but in a novel manner.

3 Preliminary Work

Three cryptographic primitives are presented in this section and will be applied
to the new ciphertext comparison protocol. All multiplications in this section
are with a modulus N2 where N is the Paillier composite [14].

3.1 Proof of Knowledge of N th Root modZ∗
N2

Proof of knowledge of root was proposed by Guillou and Quisquater [10], in which
an honest verifier ZK proof of knowledge of vth root with a composite modulus
n was presented and proved to be secure. A variation of the proof protocol of
knowledge of root in [10] is described here. In the protocol in Figure 1, a specific
setting is employed: knowledge of N th root modulo N2 must be proved where
N is a Paillier composite. The protocol is used to prove the knowledge of x,
the N th root of y and an integer in Z∗

N2 , where P and V stand for prover and
verifier. This proof protocol is consistent with the Paillier setting and can be
applied to verify the validity of Paillier encryption. Correctness of this protocol
is straightforward. Namely, when the prover knows a N th root of y, he can pass
the verification. Since the setting is different from the original protocol in [10],
it must be proved that the new protocol is sound with Paillier setting.

P → V : b = rN where r is randomly chosen from ZN .

V → P : e, where |e| = 160.

P → V : w = rxe

Verification: wN = bye

Fig. 1. Proof of Knowledge of N th Root

Ciphertext Comparison, a New Solution to the Millionaire Problem 87

Theorem 1. The proof protocol of knowledge of N th root in Figure 1 is specially
sound if N is correctly generated. More precisely, if the prover can provide correct
responses to two different challenges with a same commitment, he can calculate
a N th root of y efficiently.

Proof: If the prover can provide responses w1 and w2 to a commitment b and
two different challenges e1 and e2 where e1 > e2, such that

wN
1 = bye1 (1)

wN
2 = bye2 (2)

then (1) divided by (2) yields

(w1/w2)N = ye1−e2

According to the Euclidean algorithm, integers α and β can be found, such
that β(e1 − e2) = αN + gcd(N, e1 − e2). As N = pq is correctly generated, p
and q are primes and the length of p and q is much longer than |e1 − e2|, so
gcd(N, e1 − e2) = 1. So

(w1/w2)βN = yβ(e1−e2) = yαN+1

Namely,
y = ((w1/w2)β/yα)N

So, (w1/w2)β/yα is a N th root of y. Note that the prover can calculate α and β
efficiently from N and e1 − e2 using Euclidean algorithm. Therefore, the prover
can get a N th root of y efficiently. �

Theorem 2. The proof protocol of knowledge of N th root in Figure 1 is honest
verifier zero knowledge.

Proof: A simulator with no knowledge of any N th root of y can choose e and w
randomly and calculate b = wN/ye. Thus a simulated transcript composed of
uniformly distributed b, e and w is obtained. The proof transcript generated by
a prover with knowledge of an N th root of y and an honest verifier (who chooses
the challenge randomly and independently) is also composed of uniformly
distributed e, w, b. These two transcripts are indistinguishable. So these two
proof transcripts are indistinguishable. �

According to Theorem 1 and Theorem 2, this proof protocol is a so-called
Σ-protocol [7]. So according to Damgard’s analysis in [7], this proof is sound
(the probability that a prover without the knowledge of a N th root of y can
pass the verification in this protocol is no more than 2−160) and private (the
prover’s knowledge of N th root of y is not revealed). Hash function H() can be
employed to generate the challenge as e = H(y||b), so that the protocol becomes
non-interactive. In the rest of this paper, non-interactive proof of knowledge
of N th root is applied. If H() can be seen as a random oracle, security is not
compromised in the non-interactive proof.

88 K. Peng et al.

3.2 Proof of Knowledge of 1-Out-of-2 N th Root modZ∗
N2

The proof protocol in Figure 2 is a combination of the proof of N th root in
Figure 1 and the proof of partial knowledge [5] to prove the knowledge of x, the
N th root of y1 or y2, integers in Z∗

N2 . For simplicity, it is supposed without losing
generality xN = y2. Correctness of this protocol is straightforward. Namely, when
the prover knows a N th root of either y1 or y2, he can pass the verification. As the
proof of knowledge of N th root modulo N2 in Section 3.1 and the partial proof
technique in [5] are both specially sound and honest verifier ZK, this protocol
is also specially sound and honest verifier ZK. Namely, the probability that a
prover without the knowledge of a N th root of y1 or y2 can pass the verification
in this protocol is no more than 2−160 the prover’s knowledge of N th root of y1
or y2 is not revealed. Moreover, this protocol can also be extended to be non-
interactive without compromising its security when a hash function regarded as
a random oracle is used to generate the challenge e.

1. The prover chooses r, w1 and e1 randomly from Z∗
N , Z∗

N2 and {0, 1}160

respectively. He calculates b1 = wN
1 ye1

1 and b2 = rN .
2. The verifier randomly chooses a 160-bit challenge e.
3. The prover calculates e2 = e − e1 and w2 = r/xe2 .
4. The prover publishes e1, w1, e2 and w2. Anybody can verify e = e1 + e2

and b1 = wN
1 ye1

1 and b2 = wN
2 ye2

2 .

Fig. 2. Proof of Knowledge of 1-out-of-2 N th Root

3.3 A Combined Proof of Equality of Exponents and Knowledge of
N th Root

Let g1, g2, y1 and y2 be in Z∗
N2 . The proof protocol in Figure 3 is used to prove

PKN(x, r1, r2 | x ∈ Z, r1 ∈ Z∗
N , r2 ∈ Z∗

N , y1 = gx
1rN

1 , y2 = gx
2rN

2). Correctness
of this protocol is straightforward. Namely, if the prover knows x, r1, r2 and
follows the protocol, the verifier will accept his proof. Soundness of this protocol
seems at first to be straightforward if it is regarded as a combination of proof of
equality of logarithms [4] and proof of knowledge of N th root in Section 3.1, both

1. The prover chooses v ∈ ZN , u1 ∈ Z∗
N and n2 ∈ Z∗

N randomly and calculates
γ = gv

1uN
1 and θ = gv

2uN
2 . He sends γ and θ to the verifier.

2. The verifier randomly chooses a 160-bit challenge e and sends it to the prover.
3. The prover calculates z1 = v − ex, z2 = u1/re

1, z3 = u2/re
2 and sends them to the

verifier.
4. The verifier verifies γ = gz1

1 zN
2 ye

1 and θ = gz1
2 zN

3 ye
2. He accepts the proof only if

these two equations are correct.

Fig. 3. Combined Proof of Equality of Exponent and Knowledge of N th Root

Ciphertext Comparison, a New Solution to the Millionaire Problem 89

of which are sound. However, in this protocol, g1 and g2 may be in two different
cyclic groups with different orders. As the proof of equality of logarithms in [4]
can only be applied to prove equality of logarithms in a same group or two groups
with a same order, it cannot be applied here. To the authors’ knowledge, the
only technique to prove equality of logarithms in groups with different orders
was proposed by Bao [1]. However, his technique is only sound (passing his
verification guarantee two logarithms in different groups with different orders
are equal with a very large probability) but not correct (lots of equal logarithm
pairs in the two groups cannot pass the verification with a very large probability)
so can only be applied to his special application — a verifiable encryption scheme.
As our protocol must be both correct and sound, our technique is different from
his in that equality of exponents instead of equality of logarithms is proved.
Namely, it is not required in our scheme that the two exponents are equal with
two different moduluses. It is enough that the two exponents are equal without
any modulus. Soundness of our protocol is proved in Theorem 3.

Theorem 3. The proof protocol in Figure 3 is specially sound. More precisely,
if the prover can provide correct responses for two different challenges to a same
commitment, he can efficiently calculate x, r1 and r2, such that x ∈ Z, r1 ∈ Z∗

N ,
r2 ∈ Z∗

N , y1 = gx
1 rN

1 , y2 = gx
2 rN

2 if N is correctly generated.

Proof: If the prover can provide two sets of responses z1,1, z2,1, z3,1 and z1,2,
z2,2, z3,2 for two different challenges e1 and e2 and the same commitment pair
γ, θ, such that

γ = g
z1,1
1 zN

2,1y
e1
1 (3)

θ = g
z1,1
2 zN

3,1y
e1
2 (4)

γ = g
z1,2
1 zN

2,2y
e2
1 (5)

θ = g
z1,2
2 zN

3,2y
e2
2 (6)

(3) divided by (5) yields

g
z1,1
1 zN

2,1y
e1
1 = g

z1,2
1 zN

2,2y
e2
1

So,
g

z1,1−z1,2
1 (z2,1/z2,2)N = ye2−e1

1

(4) divided by (6) yields

g
z1,1−z1,2
2 (z3,1/z3,2)N = ye2−e1

2

According to the Euclidean algorithm, integers α and β can be found, such that
β(e1 − e2) = αN + gcd(N, e1 − e2). So

g
β(z1,1−z1,2)
1 (z2,1/z2,2)βN = y

αN+gcd(N,e1−e2)
1

and
g

β(z1,1−z1,2)
2 (z3,1/z3,2)βN = y

αN+gcd(N,e1−e2)
2

90 K. Peng et al.

As N = pq and the p and q are primes with length much longer than |e1 − e2|
(N is a correctly generated Paillier composite), gcd(N, e1 − e2) = 1. So,

g
β(z1,1−z1,2)
1 ((z2,1/z2,2)β/yα

1)N = y1 (7)

and
g

β(z1,1−z1,2)
2 ((z3,1/z3,2)β/yα

2)N = y2 (8)

Note that the prover can efficiently calculate α and β easily from N and e1 − e2
using Euclidean algorithm. Therefore, the prover can get x = β(z1,1 − z1,2),
r1 = (z2,1/z2,2)β/yα

1 and r2 = (z3,1/z3,2)β/yα
2 efficiently, such that x ∈ Z,

r1 ∈ Z∗
N , r2 ∈ Z∗

N , y1 = gx
1rN

1 , y2 = gx
2rN

2 . �

Theorem 4. The proof protocol in Figure 3 is honest verifier zero knowledge.

This theorem can be proved like Theorem 2.
According to Theorem 3 and Theorem 4, the proof protocol in Figure 3 is

sound (the probability that a prover without the required knowledge can pass
the verification in this protocol is no more than 2−160) and private (the prover’s
secret knowledge is not revealed). A hash function H() can be employed to
generate the challenge as e = H(y1||y2||γ||θ), so that the protocol becomes non-
interactive. In the rest of this paper, the non-interactive version of this proof
is applied. If H() can be seen as a random oracle, security is not compromised
in the non-interactive proof. Note that this protocol does not guarantee the
secret knowledge x is smaller than order(g1) or order(g2). That is why we say
that equality of exponents instead of equality of logarithms is included in this
protocol.

4 Ciphertext Comparison

Suppose two L-bit messages m1 and m2 encrypted in c1 and c2 respectively are to
be compared. The main idea of the comparison is comparing F (m1) and F (m2)
where F () is a monotonely increasing one-way function. Based on this idea, a
comparison technique Com(c1, c2) can be designed, such that Com(c1, c2) = 1
if m1 > m2; Com(c1, c2) = 0 if m1 = m2; Com(c1, c2) = −1 if m1 < m2. The
comparison procedure is as follows.

1. An additive homomorphic encryption algorithm with encryption function
E() is employed, such that E(x1 + x2) = E(x1)E(x2) and E(ax) = E(x)a

for any messages x, x1, x2 and factor a. The public key is published while
the private key is shared by participants A1, A2, . . . , Am. The message space
of the encryption algorithm is {0, 1, . . . , N − 1}, where 2L+mL′

< �N/2� and
L′ is a security parameter.

2. mi is encrypted into ci = E(mi) for i = 1, 2. It is proved that ci is an
encryption of a message with L bits without revealing the message for i =
1, 2.

Ciphertext Comparison, a New Solution to the Millionaire Problem 91

3. Each Al chooses al so that al ∈ {0, 1, . . . , 2L′ − 1} and calculates c′l = c′al

l−1

for i = 1, 2 where c′0 = c1/c2. Al proves logc′
l−1

c′l < 2L′
without revealing al

for l = 1, 2, . . . , m.
4. The authorities cooperate to decrypt c′m.

Com(c1, c2) =

⎧⎨⎩
1 if 0 < D(c′m) ≤ �N/2�
0 if D(c′m) = 0
−1 if D(c′m) > �N/2�

(9)

Any distributed additive homomorphic encryption algorithm can be employed
in this ciphertext comparison. In this section, the ciphertext comparison protocol
is described in detail based on distributed Paillier (see [9]).

4.1 Bit Encryption and Its Validity Verification

Messages m1 and m2 must be encrypted in a special way such that it is publicly
verifiable from their encryptions that they are in the range {0, 1, . . . , 2L−1}. So
the following encryption-by-bit method is employed.

– Paillier encryption with distributed decryption (see [9]) is employed such
that the parameters N , m, L′ and L satisfy 2L+mL′

< (N − 1)/2 where m
is the number of participants and N is the Paillier composite.

– Binary representation of mi is a vector (mi,1, mi,2, . . . , mi,L) for i = 1, 2
where mi,j ∈ {0, 1} and mi =

∑L
j=1 mi,j2j−1.

– Component mi,j is encrypted with Paillier encryption to ci,j = gmi,j rN
i,j mod

N2 for i = 1, 2 and j = 1, 2, . . . , L where ri,j is randomly chosen from Z∗
N .

– The encrypted vectors (ci,1, ci,2, . . . , ci,L) for i = 1, 2 are published.
– The encryptor (millionaire or more generally message provider) proves that

each ci,j is an encryption of 0 or 1 by providing a proof of knowledge of c
1/N
i,j

or (ci,j/g)1/N for i = 1, 2 and j = 1, 2, . . . , L. Proof of knowledge of 1-out-
of-2 N th root in the Paillier setting described in Section 3.2 is employed in
the proof.

– Anybody can verify validity of ci,j for i = 1, 2 and j = 1, 2, . . . , L.
If the verification is passed, two ciphertexts ci =

∏L
j=1 c2j−1

i,j mod N2 =

g
L
j=1 mi,j2j−1

rN
i mod N2 = gmirN

i mod N2 for i = 1, 2 are formed for com-
parison where ri =

∏L
j=1 r2j−1

i,j mod N .

Only if the two ciphertexts are verified to be L bits long, can they be compared.

4.2 The Comparison Function

The authorities A1, A2, . . . , Am compare c1 = gm1rN
1 mod N2 and c2 =

gm2rN
2 mod N2 and validity of the comparison can be publicly verified.

1. al is selected randomly from {0, 1, . . . , 2L′−1} while its validity is guaranteed
by bit encryption and its validity verification.

92 K. Peng et al.

(a) Al chooses al randomly from {0, 1, . . . , 2L′ − 1} with binary representa-
tion
(al,1, al,2, . . . , al,L′) where al =

∑L′

j=1 al,j2j−1. He keeps them secret and
publishes dl,j = gal,j tNl,j mod N2 for j = 1, 2, . . . , L′ where tl,j is ran-
domly chosen from Z∗

N .
(b) Al proves that each dl,j contains 0 or 1 by providing a proof of knowledge

of N th root of either dl,j or dl,j/g modulus N2 as proposed in Section 3.2.
(c) Anybody can verify the validity of dl,j for j = 1, 2, . . . , L′ and calculates

dl =
∏L′

j=1 d2j−1

l,j mod N2, which is a commitment of al.
Only if dl for l = 1, 2, . . . , m are verified to be valid, the comparison contin-
ues.

2. Each Al performs c′l = c′al

l−1s
N
l mod N2 for l = 1, 2, . . . , m where c′0 =

c1/c2 mod N2 and sl is randomly chosen from Z∗
N . Al has to give a proof

PKN(al, tl, sl | al ∈ Z, tl ∈ Z∗
N , sl ∈ Z∗

N , dl = galtN1 mod N2,

c′l = c′al

l−1s
N
l mod N2) (10)

where tl =
∏L′

j=1 t2
j−1

l,j mod N . This proof can be implemented using the
combined proof of equality of exponent and knowledge of N th root proposed
in Section 3.3 and is called monotone proof. Only if the verification is passed,
the comparison continues.

3. The authorities corporately compute Com(c1, c2) by decrypting c′m.
4. Result of comparison

Com(c1, c2) =

⎧⎨⎩
1 if 0 < D(c′m) ≤ (N − 1)/2
0 if D(c′m) = 0
−1 if D(c′m) > (N − 1)/2

(11)

5 Analysis

The ciphertext comparison technique is analysed and compared against the pre-
vious solutions to millionaire problem in this section.

5.1 Security and Efficiency Analysis

Theorem 5. The proposed ciphertext comparison protocol is correct and sound.
More precisely, assume it is infeasible for any Al to find s and t, such
that t �= 1 mod N and gstN = 1 mod N2, then iff m1 < m2 < 2L,
Com(E(m1), E(m2)) = −1; iff m1 = m2 < 2L, Com(E(m1), E(m2)) = 0;
iff m2 < m1 < 2L, Com(E(m1), E(m2)) = 1.

Proof: As the combined proof of equality of exponents and knowledge of N th

root in Section 3.3 is sound, monotone proof (Formula (10)) guarantees that Al

Ciphertext Comparison, a New Solution to the Millionaire Problem 93

knows a′
l, t′l and sl such that a′

l ∈ Z, t′l ∈ Z∗
N , sl ∈ Z∗

N , dl = ga′
lt′N1 mod N2 and

c′l = c′a
′
l

l−1s
N
l mod N2. As Paillier encryption algorithm is additive homomorphic,

D(c′m) = D((c1/c2)
m
l=1 a′

l) =

D(c
m
l=1 a′

l

1 /c
m
l=1 a′

l

2) = D(c
m
l=1 a′

l

1) −D(c
m
l=1 a′

l

2) mod N

= D((gm1rN
1)

m
l=1 a′

l) −D((gm2rN
2)

m
l=1 a′

l) mod N

= D(gm1
m
l=1 a′

l(r
m
l=1 a′

l

1)N) −D(gm2
m
l=1 a′

l(r
m
l=1 a′

l

2)N) mod N

In Section 4.1, validity of dl,j for j = 1, 2, . . . , L′ is proved by Al using the
proof of knowledge of 1-out-of-2 N th root proposed in Section 3.2. As the proof
of knowledge of 1-out-of-2 N th root is sound, it is guaranteed that Al knows
al,j and tl,j for j = 1, 2, . . . , L′, such that tl,j ∈ Z∗

N , al,j ∈ {0, 1} and dl,j =
gal,j tNl,j mod N2. As dl =

∏L′

j=1 d2j−1

l,j mod N2, Al knows al =
∑L′

j=1 al,j2j−1

and tl =
∏L′

j=1 t2
j−1

l,j mod N , such that tl ∈ Z∗
N , al < 2L′

and dl = galtNl mod
N2. Therefore, ga′

lt′N1 = galtNl mod N2. Namely, ga′
l−al(t′l/tl)N = 1 mod N2.

As a result, t′l = tl mod N , otherwise Al can find t′l/tl and a′
l − al, such that

t′l/tl �= 1 mod N and ga′
l−al(t′l/tl)N = 1 mod N2, which is contradictory to the

assumption that it is infeasible to find s and t, such that t �= 1 mod N and
gstN = 1 without knowledge of factorization of N . So al = a′

l mod order(g).
Therefore,

D(c′m) = D(gm1
m
l=1 al(r

m
l=1 al

1)N) −D(gm2
m
l=1 al(r

m
l=1 al

2)N) mod N

= D(E(m1
∏m

l=1 al)) −D(E(m2
∏m

l=1 al)) mod N

= m1
∏m

l=1 al −m2
∏m

l=1 al mod N

Since it has been publicly verified that 2L+mL′
< (N − 1)/2, mi ∈

{0, 1, . . . , 2L − 1} and al ∈ {0, 1, . . . , 2L − 1} for l = 1, 2, . . . , m, function
F (mi) = mi

∏m
l=1 al is monotonely increasing and smaller than �N − 1�/2.

Therefore, if m1, m2 < 2L,

D(c′m)

⎧⎨⎩
∈ (0, (N − 1)/2] iff m1 > m2
= 0 iff m1 = m2
> (N − 1)/2 iff m1 < m2

(12)

�

The assumption that it is infeasible for Al to find s and r, such that r �=
1 mod N and gsrN = 1 mod N2 without knowledge of factorization of N is
correct because it seems reasonable to assume that given a constant z it is
infeasible to find x and y, such that f1(x)f2(y) = z where f1() and f2() are
one-way functions. As factorization of N is kept secret to any single authority,
both f1(x) = gx mod N2 and f2(y) = yN mod N2 are one-way functions to Al.
Moreover, if this assumption is incorrect, any Paillier ciphertext can be decrypted
into multiple different messages, which is contradictory to the wide belief that
Paillier encryption is secure. Therefore, this assumption is reliable.

94 K. Peng et al.

The encryption verification in Section 4.1 is private as illustrated in Sec-
tion 3.2. Privacy of the comparison in Section 4.2 is analysed as follows. If Al

does not reveal al, it is computationally infeasible for any other party to get any
information about al from dl as Paillier encryption is secure when the number
of dishonest authorities is not over the threshold. Validity proof of dl is private
as it is a proof of knowledge of 1-out-of-2 N th root proposed in Section 3.2.
Monotone proof (Formula (10)) is private as it is a combined proof of knowledge
of 1-out-of-2 N th root and equality of exponents proposed in Section 3.3. So al is
not revealed in these two proofs. So m1 −m2 is not revealed from D(c′m), which
is equal to

∏m
l=1 al(m1 − m2) mod N . Therefore, none of m1, m2 or m1 − m2

are revealed. However, when D(c′m) is too near to the boundaries of its value
domain (in (0, 2L), (N−2L, N), (2mL′

, 2L+mL′
) or (N−2L+mL′

, N−2mL′
)) par-

tial information is revealed from m1 −m2. The revelation of partial information
is demonstrated in Table 1. An example is given in Table 1, where N is 1024
bits long (according to the widely accepted security standard) and L = 40 (large
enough for practical applications). As illustrated in Table 1, D(c′m) is usually far
away from the boundaries and is in the four special ranges with an overwhelm-
ingly small probability. So, the ciphertext comparison protocol is private with
an overwhelmingly large probability. Therefore, the whole ciphertext comparison
protocol is private with an overwhelmingly large probability.

Table 1. Partial information revelation from m1 − m2

Phenomenon Revelation Probability

value example

Case 1 D(c′
m) ∈ (0, 2L) m1 − m2 ∈ (0, D(c′

m)] 2L/N 2−984

Case 2 D(c′
m) ∈ (N − 2L, N) m2 − m1 ∈ (0, D(c′

m)] 2L/N 2−984

Case 3 D(c′
m) ∈ (2mL′

, 2L+mL′
) m1 − m2 ∈ [D(c′

m)/2mL′
, 2L) 2L/N 2−984

Case 4 D(c′
m) ∈ (N − 2L+mL′

, N − 2mL′
) m2 − m1 ∈ [D(c′

m)/2mL′
, 2L) 2L/N 2−984

Totally 2L+2/N 2−982

As the encryption verification in Section 4.1 is a proof of knowledge of 1-out-of-
2 N th root proposed in Section 3.2, it is sound, namely a ciphertext containing
an invalid message can pass the verification with a negligible probability. So
the ciphertext comparison protocol is robust. As each step in the ciphertext
comparison protocol is publicly verifiable, public verifiability is achieved. As no
complex circuit is used, the ciphertext comparison scheme is quite efficient.

5.2 Comparison

A comparison between the new solution to the millionaire problem and the ex-
isting solutions is provided in Table 2, where the modular multiplications are
counted in regard to computation and transportation of integers with signif-
icant length (e.g. 1024 bits long) is counted in regard to communication. The

Ciphertext Comparison, a New Solution to the Millionaire Problem 95

schemes in [6] and [2] are similar to [11] and [16] respectively, so are not analysed
separately. K is the full-length of exponent, t is the cutting factor in the cut-and-
choose mechanism in [13] and [12], λ is a parameter in [8] and T is a parameter
in [15]. An example is used in Table 2, where fair values are chosen for the pa-
rameters: |N | = 1024, K = 1024, m = 3, L = 100, L′ = 10, t = 40, λ = 40
and T = 20. According to this comparison, the proposed ciphertext comparison
technique is the only efficient, publicly verifiable, private and precise solution to
millionaire problem.

Table 2. Property comparison

Public Precise Computation Communication

verifiability result cost example cost example

[13] No No ≥ 15KLt ≥ 40960000 ≥ 37Lt + 2t ≥ 148080

[12] Yes No ≥ 15KLt ≥ 40960000 ≥ 37Lt + 2t ≥ 148080

[11] Yes No average 4665KL + 6 477696006 average 1626L + 6 162606

[3] Yes No average ≥ 4039.5KL ≥ 413644800 ≥ 1543L ≥ 154300

[16] No No > L4 > 100000000 ≥ 343L3 ≥ 343000000

[8] No No (1.5λL(L + 3)) + (λ + 1)L(L + 1))/2 516050 L(λ + 2) 4200

[15] Yes No (L + 2)(L − 1)(1 + 0.5T) + 37.5KL 4052058 25L 2500

Proposed Yes Yes 1.5K(5mL′ + 8m + 10L) 1803264 5mL′ + 4m + 10L 1162

6 Conclusion

A new cryptographic technique —ciphertext comparison— is proposed to com-
pare two ciphertexts and determine which contains a larger message. This new
technique is the only efficient and publicly verifiable solution to the millionaire
problem. It is also the only precise solution to the millionaire problem. In the
new scheme privacy of the two messages is protected with an overwhelmingly
large probability.

References

1. Feng Bao. An efficient verifiable encryption scheme for encryption of discrete
logarithms. In the Smart Card Research Conference, CARDIS’98, volume 1820 of
Lecture Notes in Computer Science, pages 213–220, Berlin, 1998. Springer-Verlag.

2. D. Beaver. Minimal-latency secure function evaluation. In EUROCRYPT ’00,
Bruges, Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in
Computer Science, pages 335–350, Berlin, 2000. Springer.

3. Christian Cachin and Jan Camenisch. Optimistic fair secure computation (ex-
tended abstract). In CRYPTO ’00, volume 1880 of Lecture Notes in Computer
Science, pages 94–112, Berlin, 2000. Springer-Verlag.

4. D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO
’92, volume 740 of Lecture Notes in Computer Science, pages 89–105, Berlin, 1992.
Springer-Verlag.

96 K. Peng et al.

5. R. Cramer, I. B. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO ’94, volume 839 of
Lecture Notes in Computer Science, pages 174–187, Berlin, 1994. Springer-Verlag.

6. Ronald Cramer, Ivan Damg̊ard, and Jesper Buus Nielsen. Multiparty computa-
tion from threshold homomorphic encryption. In EUROCRYPT ’01, Innsbruck,
Austria, May 6-10, 2001, Proceeding, volume 2045 of Lecture Notes in Computer
Science, pages 280–299, Berlin, 2001. Springer.

7. Ivan Damg̊ard and Ronald Cramer. On -protocols. Cryptologic Protocol Theory,
2002. Available as http://www.daimi.au.dk/~ivan/Sigma.ps.

8. Marc Fischlin. A cost-effective pay-per-multiplication comparison method for mil-
lionaires. In Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at
RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001, Proceedings,
volume 2020 of Lecture Notes in Computer Science, pages 457–472, Berlin, 2001.
Springer.

9. Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing decryption
in the context of voting or lotteries. In Financial Cryptography 2000, pages 90–104,
Berlin, 2000. Springer-Verlag. Lecture Notes in Computer Science 1962.

10. L. C. Guillou and J. J. Quisquater. A “paradoxical” identity-based signature
scheme resulting from zero-knowledge. In Shafi Goldwasser, editor, CRYPTO ’88,
volume 403 of Lecture Notes in Computer Science, pages 216–231, Berlin, 1989.
Springer-Verlag.

11. M Jakobsson and A Juels. Mix and match: Secure function evaluation via cipher-
texts. In ASIACRYPT ’00, volume 1976 of Lecture Notes in Computer Science,
pages 143–161, Berlin, 2000. Springer-Verlag.

12. A. Juels and M. Szydlo. A two-server, sealed-bid auction protocol. In The Sixth
International Conference on Financial Cryptography 2002, volume 2357 of Lecture
Notes in Computer Science, pages 72–86, Berlin, 2002. Springer-Verlag.

13. Moni Naor, Benny Pinkas, and Reuben Sumner. Privacy perserving auctions and
mechanism design. In ACM Conference on Electronic Commerce 1999, pages 129–
139, 1999.

14. P Paillier. Public key cryptosystem based on composite degree residuosity classes.
In EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pages
223–238, Berlin, 1999. Springer-Verlag.

15. Kun Peng, Colin Boyd, Ed Dawson, and Byoungcheon Lee. An efficient and ver-
ifiable solution to the millionaire problem. In Pre-Proceedings of ICISC 2004,
volume 3506 of Lecture Notes in Computer Science, pages 315–330, Berlin, 2004.
Springer-Verlag.

16. Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocomputing
for NC1. In 40th Annual Symposium on Foundations of Computer Science, New
York, NY, USA, FOCS ’99, pages 554–567, 1999.

17. Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In
IEEE Symposium on Foundations of Computer Science 1982, FOCS 1982, pages
160–164, 1992.

Private Itemset Support Counting

Sven Laur1, Helger Lipmaa2,3, and Taneli Mielikäinen4

1 Helsinki University of Technology, Finland
2 Cybernetica AS, Estonia

3 University of Tartu, Estonia
4 University of Helsinki, Finland

Abstract. Private itemset support counting (PISC) is a basic building block
of various privacy-preserving data mining algorithms. Briefly, in PISC, Client
wants to know the support of her itemset in Server’s database with the usual
privacy guarantees. First, we show that if the number of attributes is small,
then a communication-efficient PISC protocol can be constructed from a
communication-efficient oblivious transfer protocol. The converse is also true:
any communication-efficient PISC protocol gives rise to a communication-
efficient oblivious transfer protocol. Second, for the general case, we propose a
computationally efficient PISC protocol with linear communication in the size of
the database. Third, we show how to further reduce the communication by using
various tradeoffs and random sampling techniques.

Keywords: privacy-preserving data mining, private frequent itemset mining, pri-
vate itemset support counting, private subset inclusion test.

1 Introduction

Frequent itemset mining—also known as frequent pattern mining—is a central task in
data mining that has driven research in data mining for ten years. Nowadays, there are
special workshops on various aspects of frequent itemset mining [BGZ04]. The goal in
frequent itemset mining is to find all frequent itemsets in a given transaction database.
Many kinds of data can be viewed as transaction databases and various data mining
tasks arising in document analysis, web mining, computational biology, software engi-
neering and so on can be modelled as frequent itemset mining. For example, one can use
frequent itemset mining to find which items are usually bought together in a supermar-
ket, or to analyse the correlation between various patterns in the genome database. The
mining of frequent itemsets is a very challenging problem, and it is clearly even more
challenging in the scenarios when one encounters privacy issues. Several researchers
have studied the distributed case with multiple servers, all having a part of the database,
who need to mine frequent itemsets in the joint database without revealing each other
too much extra information.

We are concerned with a slightly different scenario where the database is owned by a
single party, Server, who sells the result of frequent itemset mining (either the collection
of all frequent itemsets or the support of a fixed itemset) to others. That is, we consider
the itemset support counting (ISC) problem, which is often used as a building block of

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 97–111, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

98 S. Laur, H. Lipmaa, and T. Mielikäinen

frequent itemset mining or association rules mining, but is important also by itself. As
an example of ISC, Server could maintain a commercial citation database, and Client
could want to find out how many people cite both herself and Shannon. Other possible
examples include Internet search engines, mining in medical databases, etc. In most
of such applications, some form of privacy must be guaranteed. On the one hand, it
is not in Server’s interests that Client obtains more information than she has paid for;
moreover, in some cases like the medical databases, giving out more information might
even be illegal. On the other hand, Client also does not necessarily want Server to know
which itemset interests her.

To define the private itemset support counting, let us first describe the setting more
formally. Server owns a m×n Boolean database D that can be considered as a multiset
of m subsets of the set [n] = {1, . . . , n}. Every row is D is called a transaction; it might
correspond to a transaction in supermarket, with j ∈ D[i] if jth item was purchased
during the ith transaction. A subset of [n] is called an itemset, it corresponds to the
set of items that can be in the ith transaction (e.g., the set of items that were bought
together). The goal of Client is to determine the support suppD(Q) := |{i : Q ⊆ D[i]}|
of an itemset Q ⊆ [n] in D, i.e., to find out how many of Server’s transactions contain
Q. In an (m × n)-private itemset support counting (PISC) protocol, Client retrieves
suppD(Q), so that (1) she will get no other information about the database D (server-
privacy) and (2) Server gets no information about Q (client-privacy). In the scope of
this paper, we require server-privacy to be information-theoretical and client-privacy to
be computational.

The data mining setting implies a few non-standard considerations, mostly due to
the large amounts of the handled data. First, m and n can be very large (e.g., m, n ≥
10 000), so whenever possible, it is desirable to have communication and computation
of order o(mn). Second, again due to the large amount of data, it is impractical to
have protocols that are verifiable or even provide correctness. Therefore, we only focus
on the privacy issues of the PISC protocols. Thus, we use relaxed security definitions,
standard in the case of computationally-private information retrieval, oblivious transfer
and oblivious keyword search protocols, where the security of the client is only defined
by requiring that his query will remain private. Moreover, we construct protocols that
are private in the semi-honest model since they are usually efficient and may suffice in
the practice. Protocols, private in the malicious model, can be constructed by adding
standard zero-knowledge proofs. In all cases, we put emphasis both on the efficiency of
the protocols and on the provable security.

First, we show a close correspondence between PISC and CPIR by providing tight
two-way reductions between these two problems. More precisely: (a) Given a

(
s
1

)
-CPIR

protocol CPIR of
-bit strings with communication CCPIR(s,
), we show how to con-
struct a (2n×n)-PISC protocol CPIR-PISC with communication CCPIR(2n, n). Taking
the recent

(
s
1

)
-oblivious transfer protocol for
-bit strings of Lipmaa [Lip05] with com-

munication Θ(log2 s +
 · log s), this results in communication Θ(n2). (The use of a
very recent CPIR protocol by Gentry and Ramzan [GR05] results in communication
Θ(n).) However, in the case of CPIR-PISC, Server needs to store a table of 2n · n
bits and then execute the CPIR protocol on 2n elements, which is infeasible when say
n ≥ 20, while in a realistic data mining application, n might be larger than 10 000.

Private Itemset Support Counting 99

(b) Given a (m × n)-PISC protocol PISC with communication CPISC(m, n), we show
how to construct a

(2n−1
1

)
-CPIR protocol PISC-CPIR on 1-bit strings with commu-

nication CPISC(2n, n). This enables us to carry over several standard results on the
CPIR and oblivious transfer protocols to the PISC scenario. Moreover, the reductions
increase communication at most by factor of n, therefore the optimal communication
of the CPIR and PISC protocols can differ only by a logarithmic term in the database
size.

For databases with many attributes, we describe an alternative (m×n)-PISC protocol
PSI-PISC that uses a new private subset inclusion protocol PSI, also described in this
paper, as a subroutine. The resulting protocol has communication (n+m+1) ·k, where
k is the bit-length of a ciphertext, and is private in the semi-honest model assuming that
the used homomorphic cryptosystem (a) has plaintext space with prime cardinality,
and (b) is IND-CPA secure; the Decisional Diffie-Hellman Assumption is sufficient
here. The protocol can be made secure in the malicious model by using standard (non-
interactive) zero-knowledge proofs. The PSI-PISC protocol is computationally feasible
even when n ≈ 10 000, since the computational work of Server is of order Θ(n + m +
w(D)) encryptions and decryptions, where w(D) is the number of 1-bits in the usually
very sparse database D.

In addition, we study imprecise protocols: we discuss the problem of just detecting
whether the given itemset is frequent and study sampling techniques. Random sampling
of the database and approximating the itemset support based on the support in the sam-
ple allows us to cheaply extend the PSI-PISC protocol to huge databases, supposing
that Client is willing to accept approximate answers.

2 Preliminaries

For an integer s, denote [s] := {1, 2, . . . , s}. For a nonnegative integer X , let len(X) :=
�log2(X + 1)� denote the number of bits it takes to store and transfer X . The statisti-
cal difference of two distributions X and Y over the discrete support Z is defined as
Dist (X ||Y) := maxS⊆Z |Pr[X ∈ S]− Pr[Y ∈ S]|.

Data mining setting. Our setting is the following, very common one in data mining.
The Server has a transaction database D over n attributes (or items) A1, A2, . . . , An

and the database consists of m transactions. A transaction is a subset of the attributes.
Alternatively, a transaction database D of m transactions over n attributes can be con-
sidered as a m × n binary matrix D where the entry (i, j) is one iff Aj ∈ D[i]. In a
realistic setting, the resulting 0-1 matrix can have e.g. 100 000 transactions (rows) and
50 000 attributes (columns).

The frequent itemset mining task is, given a transaction database D of m rows
and a minimum frequency threshold σ ∈ (0, 1], to find the subsets of attributes
that are contained in σ-fraction of the transactions, i.e., to determine the col-
lection F = {X ⊆ {A1, . . . , An} : freqD(X) ≥ σ} of σ-frequent itemsets in D
where freqD(X) = |{i ∈ [m] : X ⊆ D[i]}| /m = suppD(X)/m. Alternatively,
the set of frequent itemsets can be specified by the support threshold as F =
{X ⊆ {A1, . . . , An} : suppD(X) ≥ σ · m}. Usually also the frequencies or the sup-

100 S. Laur, H. Lipmaa, and T. Mielikäinen

ports of the frequent itemsets are required. We assume that attribute labels A1, . . . , An

are public and thus can be substituted with canonical labelling {1, . . . , n}.
Although frequent itemset mining can be done in time O(mnκ) [AMS+96], where

κ is the number of frequent itemsets, the running time can easily become intractable,
since κ itself is exponential in the cardinality of the largest frequent itemset due to
the monotonicity of the support. Therefore, various output compaction techniques are
known from the literature, see [BGZ04] for an up-to-date overview of frequent itemset
mining algorithms and references.

Sampling bounds. Let X1, . . . , Xk be independent random 0-1 variables that are
drawn from the same distribution with the expectation μ = Pr [Xi = 1]. Let X be the
average (X1+· · ·+Xk)/k. Then the Chernoff bound Pr [(1− ε)μ ≤ X ≤ (1 + ε)μ] ≤
2 · exp

(
−kμε2

4

)
describes the distribution of relative error and the Hoeffding bound

Pr [|X − μ| ≥ ε] ≤ 2 · exp
(
−2kε2

)
the distribution of absolute error.

IND-CPA secure homomorphic cryptosystems. A public-key cryptosystem is a triple
Π = (G, E, D), where G is the key generation algorithm that returns (sk, pk) consist-
ing of a secret key sk and a public key pk, E is the encryption algorithm and D is the
decryption algorithm. For a fixed public-key cryptosystem Π and a secret key sk, let C
be the ciphertext space, let R be the randomness space and let P be the plaintext space.
Then, Epk : P ×R → C and Dsk : C → P . Define Advindcpa

Π (A) := 2 · |Pr[(sk, pk) ←
G, (m0, m1) ← A(pk), b ← {0, 1} : A(m0, m1, Epk(mb;R)) = b] − 1

2 |. We say that

Π is (τ, ε)-secure in the sense of IND-CPA if Advindcpa
Π (A) ≤ ε for any probabilistic

algorithm A that works in time τ .
Cryptosystem Π is homomorphic if for any key pair (sk, pk), any m, m′ ∈ P and any

r, r′ ∈ R, Epk(m; r) ·Epk(m′; r′) = Epk(m+m′; r ◦ r′), where + is a group operation
in P , and ◦ is a groupoid operation inR. A few homomorphic cryptosystems are proven
to be secure in the sense of IND-CPA under reasonable complexity assumptions.

Definitions of Client and Server privacy. Assume that Client and Server want to se-
curely compute a functionality f , so that Client receives f(Q,D) and Server receives
nothing, where Q is Client’s private input and D is Server’s private input. In our case,
Server’s input is potentially so huge that all currently known cryptographic techniques
fail to provide correctness in tractable time. Therefore, we consider only privacy issues,
i.e., we use relaxed security definitions. Thus, we do not require Server to commit to
or even “know” a database to which Client’s search is effectively applied. Such a relax-
ation is standard in the case of protocols like oblivious transfer, computationally-private
information retrieval and oblivious keyword search; our security definitions correspond
closely to the formalisation given in [FIPR05]. Moreover, in a semi-honest case, all
proposed protocols have two messages and therefore, standard security definitions can
be somewhat simplified.

Denote by Client an honest Client and by Server an honest Server. Let Clientsk(·; ·)
denote Client’s (first) message and Serverpk(·; ·) denote Server’s (second) message.
Let RClient (resp. RServer) be the randomness space of an honest Client (resp. Server).
Then we say that a two-message protocol Π is (τ, ε)-client-private (in the malicious
model), if for any probabilistic algorithm A with the working time τ , Advc−privacy

Π (A) :=

Private Itemset Support Counting 101

2 · max(Q0,Q1)
∣∣Pr [b ← {0, 1} : A(Q0,Q1, Client(Qb;RClient)) = b]− 1

2

∣∣ ≤ ε. Here,
Q0 and Q1 are assumed to be valid client-side inputs, and the probability is taken over
the coin tosses of Client, A and over the choices of b.

We define information-theoretical server-privacy in the semihonest model by requir-
ing that for every unbounded honest-but-curious algorithm A, one can define a sim-
ulator Sim that, given solely A’s private input Q, A’s random coins r, and A’s pri-
vate output f(Q,D), generates output that is statistically indistinguishable from the
view (msg1, msg2) of A that reacts with the honest Server, where msg1 ← A(Q; r)
and msg2 ← Server(D, msg1;RServer). More precisely, the advantage of A is defined
Advs−privacy

Π (A) := max(Q,D) Dist (Simpk(Q, r, f(Q,D))||(msg1, msg2)). Here,D is as-
sumed to be a valid Server-side input. Protocol is ε-server-private (in the semihonest
model), if for all unbounded honest-but-curious A, Advs−privacy

Π (A) < ε. Security in the
malicious model is defined as usually.

Computationally-private information retrieval (CPIR) and oblivious transfer
(OT). During a single-server

(
m
1

)
-computationally-private information retrieval pro-

tocol, Client fetches D[Q] from the database D = (D[1], . . . ,D[m]), D[i] ∈ Z� for
some fixed domain Z�, so that a computationally bounded Server does not know which
entry Client is learning. In the case of a two-message CPIR protocol, we can used
the previously previously given client-privacy definition. An (τ, ε)-client-private

(
m
1

)
-

CPIR is an (computationally) (τ, ε)-client-private and (information-theoretically) ε′-
server-private

(
m
1

)
-OT protocol if it is additionally ε′-server-private. A recent

(
m
1

)
-

CPIR protocol by Lipmaa [Lip05],
(
m
1

)
-LipmaaCPIR, has asymptotic communication

Θ(log2 m + log m ·
) (assuming that the security parameter is a constant). Based on
the Aiello-Ishai-Reingold CPIR-to-OT transform [AIR01], Lipmaa also described an(
m
1

)
-OT protocol with the same asymptotic communication. Lipmaa’s protocols are

client-private assuming that the underlying Damgård-Jurik homomorphic cryptosystem
is IND-CPA secure, or equivalently, if the Decisional Composite Residuosity Problem
is hard. Lipmaa’s protocols are unconditionally server-private. A very recent

(
m
1

)
-CPIR

protocol by Gentry and Ramzan [GR05] has communication Θ(log m +
).

Private Keyword Search. In many data-mining applications, the data is indexed by
a relatively small subset of keys K ⊆ {1, . . . , m}, where the set K itself is private.
Therefore, if a Client wants to privately access D[Q] the straightforward solution, a(
m
1

)
-OT to the database where empty slots are filled with dummy elements is subopti-

mal. Several solutions that improve communication and computation costs in this situa-
tion [CGN97, OK04, FIPR05] have been proposed. Such solutions either combine hash
tables and oblivious transfer, or use oblivious evaluation of pseudo-random functions.

3 Basic Cryptographic Tool: Private Subset Inclusion Protocol

In a private subset inclusion (PSI) protocol, Client has a set Q ⊆ [n], Server has a
set S ⊆ [n], and Client must establish whether Q ⊆ S or not without neither of the
parties obtaining any additional information. More precisely, the protocols must satisfy
client-privacy and server-privacy as formalised in Sect. 2, where for the ease of imple-
mentation we define f(Q,S) = 0, if Q ⊆ S, and f(Q,S) �= 0, otherwise. We use the

102 S. Laur, H. Lipmaa, and T. Mielikäinen

PRIVATE INPUT: Client has a set Q and Server has a set S.
PRIVATE OUTPUT: Client knows whether Q ⊆ S or not.

Message 1, Client Generate a new key pair (sk, pk) ← G. Send pk to Server.
For any i ∈ [n], generate a new nonce ri ←r R. Send ci ← Epk(Q[i]; ri) to Server.

Message 2, Server Draw s ←r P , r ←r R uniformly at random. Set c ← (
∏

i:S[i]=0 ci)s ·
Epk(0; r). Send c to Client.

Post-processing by Client Set t ← Dsk(c). Accept that Q ⊆ S iff t = 0.

Protocol 1. Private homomorphic subset inclusion test protocol

fact that Q ⊆ S ⇐⇒ |Q ∩ S| = |S|. Let Q (resp. S) also denote the characteristic
function of Q (resp. S). That is, Q[i] = 1 ⇐⇒ i ∈ Q and S[i] = 1 ⇐⇒ i ∈ S.

To solve PSI, we could use a recent private set intersection cardinality protocol
by Freedman, Nissim and Pinkas [FNP04]. However, their solution requires a costly
secure-circuit evaluation since the intersection cardinality must remain private. Proto-
col 1, based on ideas from [AIR01, Lip03], is a conceptually simpler and more efficient
alternative, especially when security either in the malicious model is required or the
protocol is used in the context of itemset counting as later in Protocol 3. Here, we ex-
plicitly assume that the plaintext length is at least len(n) bits, where n ≥ |Q ∪ S| is the
a priori fixed domain size. This assumption is always true in practice.

Theorem 1. Let Π be a (τ, ε) IND-CPA secure homomorphic cryptosystem and let n
be smaller than any prime divisor of |P|. Then Protocol 1 is (τ − O(n), nε)-client-
private and 0-server-private in the semi-honest model. Protocol 1 is correct with prob-
ability 1 − |P|−1.

Proof. First, Q ⊆ S iff w :=
∑

i:S[i]=0 Q[i] = 0. Therefore, homomorphic proper-
ties of Π assure that c is a random encryption of zero, if Q ⊆ S. If Q �⊆ S, then
w ≤ |Q| ≤ n is not a divisor of |P| and thus c is a random encryption of a random
plaintext. Consequently, the probability that Q �⊆ S if c is an encryption of zero is
|P|−1. Computational client-privacy follows directly from the IND-CPA security of Π .
As Server sees only n ciphertexts, any adversary A that can distinguish two vectors
of ciphertexts can be used for distinguishing only two ciphertexts. The corresponding
hybrid argument is fairly standard. Server-privacy is guaranteed as the second message
depends only on whether Q ⊆ S or not. ��

Security in the malicious model. A standard way to make the described protocol private
in the malicious model is to let Client to prove the correctness of her actions; that means
proving that (a) pk is a valid public key and that (b) every ci encrypts either 0 or 1.
This can be done by using (non-interactive) zero-knowledge or non-interactive zero-
knowledge proofs of knowledge.

Private Itemset Support Counting 103

4 Exact Private Itemset Support Counting Protocols

LetQ ⊆ [n] be Client’s query,D be the database and m be the number of the rows in the
database; that is, D[i] ⊆ [n] for i ∈ [m]. More precisely, we treat Q as a binary n-tuple
corresponding to the characteristic function of Client’s input and D as an m× n binary
matrix. Recall that in a PISC protocol, Client has to compute, in a privacy-preserving
manner, the value suppD(Q) := |{i : Q ⊆ D[i]}|.

4.1 Relation Between PISC and CPIR

We first show that there are tight reductions between oblivious transfer and PISC pro-
tocols even if n is relatively small. For precise quantification, denote by CCPIR(s,
) the
communication of a

(
s
1

)
-computationally private information retrieval protocol CPIR on

-bit strings. Similarly, let us denote by CPISC(m, n) the communication of an (m×n)-
PISC protocol PISC.

Theorem 2. (a) Let CPIR be a
(2n

1

)
-computationally private information retrieval pro-

tocol on
-bit strings. Assume that len(m) ≤
. Then there exists a client-private
(m × n)-PISC protocol CPIR-PISC with communication CCPIR(2n,
). Server has to
pre-compute and store a table of 2n · len(m) bits; this table can be computed in time
Θ(2n ·m) ignoring logarithmically-small multiplicands.
(b) Let PISC be a client-private (2n × n)-PISC protocol. Then there exists a

(2n−1
1

)
-

CPIR protocol PISC-CPIR on 1-bit strings with communication CPISC(2n, n). Server
has to pre-compute and store a table of ≤ 2n ·n bits; this table can be computed in time
Θ(22n · 2n) ignoring logarithmically-small multiplicands.

Proof. (a) Server computes off-line the support of all 2n itemsets in the database D,
and stores them in a new database D′. Note that the database D′ contains 2n elements,
each len(m) bits. After that, Client and Server use the

(2n

1

)
-CPIR protocol to retrieve

the Qth element of D′. Clearly, Client learns the support of Q, while Server obtains no
new knowledge. If we use an oblivious transfer protocol instead of a CPIR protocol,
then we get a server-private version of the CPIR-PISC protocol,

(b) Let S = S[1] . . .S[2n − 1] be Server’s (2n − 1)-bit input, and let i be Client’s
query in the

(2n−1
1

)
-CPIR protocol. We construct a specific 2n × n binary database D

such that itemset supports in it encode S. More precisely, let χ(a) := (a1, . . . , an) be a
Boolean vector corresponding to the binary representation of a, that is, a =

∑
2j−1aj .

The next algorithm builds a database D such that suppD(χ(a)) ≡ S[a] mod 2 for
every a ∈ {1, . . . , 2n − 1}:

1. Initialise D as a 2n × n all-zero matrix.
2. For w = n downto 1 do

For all a s.t. the vector (a1, . . . , an) ∈ Zn
2 has Hamming weight w do

(a) Set v ← suppD(a1, . . . , an).
(b) If v �≡ S[a] mod 2

then replace the first all-zero row of D with (a1, . . . , an).

104 S. Laur, H. Lipmaa, and T. Mielikäinen

Since this algorithm considers itemsets in the order of decreasing cardinality, subse-
quent changes do not alter the already computed supports; thus, at the end all bits of S
are correctly encoded. Moreover, the number of replaced rows is not greater than 2n−1
and thus step 2b never fails to find an all-zero row. It is straightforward to derive the
complexity bounds for this step.

Let D be the final version of this database. Now, when Client wants to make a
CPIR query i, he instead forms the corresponding PISC query Q := χ(i) and obtains
suppD(Q) by executing PISC. Then, he computes S[i] ← suppD(Q) mod 2. Clearly,
the client-privacy of PISC-CPIR follows directly from the client-privacy of the original
PISC protocol. ��

By using similar but more complicated techniques, one can directly construct an obliv-
ious transfer protocol based on a PISC protocol. In this case, the number of rows of the
database D is still polynomial w.r.t. the number of encoded bits.

Corollary 1. Assume that the Decisional Composite Residuosity Problem is hard. As-
sume that n = polylog(m). There exists a private (m × n)-PISC protocol CPIR-PISC
with communication Θ(n2 · log2 |P|+n · len(m)) and Server’s online work Θ(2n ·m).

The use of a very recent
(
m
1

)
-CPIR protocol by Gentry and Ramzan [GR05] would

result in communication Θ(n + len(m)).
As the communication complexity of non-private itemset support count is roughly

n + len(m), Corollary 1 provides an almost communication-optimal solution. On the
other hand, Thm. 2 indicates that any PISC protocol with optimal communication
O(n+log m) gives a rise to a

(
s
1

)
-CPIR protocol with communication O(log s). More-

over, the known lower and upper bounds on the CPIR protocols can be used to get
lower and upper bounds for the (m×polylog(m))-PISC protocols. For example, given
a trapdoor permutation, there exists an (m × polylog(m))-PISC protocol with com-
munication m − o(m). On the other hand, an (m × polylog(m))-PISC protocol with
communication m − o(m) implies the existence of one-way functions.

4.2 Oblivious Keyword Search-Based PISC

As a serious drawback, note that CPIR-PISC is practical only for small values of n,
e.g., when n ≤ 20, as the pre-computation step becomes quickly infeasible. The same
applies for the CPIR step, as Server’s workload is at least linear in the size of database
in all CPIR protocols.

However, in specific settings the online complexity of CPIR can be drastically re-
duced. The first efficient protocol for oblivious keyword search was proposed by Ogata
and Kurosawa [OK04]; their approach was extended in [FIPR05]. In these two proto-
cols, during the first phase Server transfers the whole database, in an encrypted form,
to Client. In the second phase, Client and Server invoke an oblivious pseudo-random
function evaluation protocol. As the result, Client obtains a secret key that allows her
to decrypt one database element. Though the initial communication of the protocol is
linear in the database size, the second phase has poly-logarithmic communication and
computation in the database size. Such a protocol is especially appealing if the second
phase are repeated many times as it is commonly done in data-mining algorithms.

Private Itemset Support Counting 105

PRIVATE INPUT: Client has a query Q and Server has a database D.
PRIVATE OUTPUT: Client learns suppD(Q) if freqD(Q) ≥ σ.

Setup Phase
Server runs a frequent itemset mining algorithm that outputs F = {X : freqD(X) ≥ σ}.
Server chooses a secret key sk and for all X ∈ F computes Ei ← ObPrfsk(code(X)) ⊕
(0�|| suppD(X)).
Send list {Ei}, in a randomly permuted order, to Client.

Interactive Phase
Client and Server invoke ΠObPrf . At the end Client obtains mask ← ObPrfsk(code(X)).

Post-processing by Client
If there is an Ei such that Ei ⊕ mask = (0�||c) then output c;
else decide that suppD(Q) < σ.

Protocol 2. Protocol for PISC based on oblivious pseudo-random function evaluation

Thm. 2 can be used to transform an oblivious keyword search protocol to a PISC
protocol. If one is interested in the frequencies of all different supports, then the re-
sulting protocol is not really practical since the transfered PISC database must have
2n elements. However, in data-mining applications, Client is often only interested in
the supports of frequent itemsets. In such a case, Server can first run any conventional
frequent itemset mining algorithm on the database using an appropriate minimum fre-
quency threshold σ, and then encrypt supports of the obtained σ-frequent itemsets. In
practice, the minimum frequency threshold σ is chosen to be as low as possible, so that
the mining is still feasible, to get a good approximation of the supports of all itemsets.

Protocol 2 combines this idea with oblivious keyword search. This is relatively
straightforward, but we have included the protocol for the sake of completeness. To
read it, first recall that a two-argument pseudo-random function ObPrf is an OPRF, if
it can be obliviously evaluated by Client and Server [FIPR05]. In other words, there
exist a secure protocol ΠObPrf such that after executing it on Client’s private input x
and Server’s private input sk, Client learns ObPrfsk(x), while Server learns nothing.
Second, we assume that each itemset Q has a short unique code code(Q), this can be a
cryptographic hash of Q.

Theorem 3. Let ObPrf be (τ, ε′1) secure pseudo-random function with appropriate do-
main and range. Let the protocol ΠObPrf (τ, ε1) client-private and (τ, ε′2) server-private.
Then Protocol 2 is (τ, ε1)-client-private and (τ −O(1), ε′1 + ε′2)-server-private PISC
protocol. Protocol 2 yields an incorrect end-result with probability 2−� · |F|. The inter-
active phase can be repeated over the same initially transformed encrypted database
with a linear drop in concrete security.

Proof (Sketch). We do not provide a complete proof, see [FIPR05] for details. Client-
privacy and correctness are evident. Server-privacy follows from the next hybrid argu-
ment. First, consider a protocol Π1, where ΠObPrf is substituted with its ideal implemen-
tation. Let Π2 be the protocol, where also ObPrf is substituted with a random function.
It is clear that Π2 is 0-server-private. The claim follows, since the protocols Π2 and Π1
are computationally ε′1-close and Π1 and Protocol 2 are computationally ε′2-close. ��

106 S. Laur, H. Lipmaa, and T. Mielikäinen

Ogata and Kurosawa used the RSA blinded signature to construct an ObPrf, i.e.,
there ObPrfsk(x) = Prf(BlindSignsk(x)) for a pseudo-random function Prf. However,
the Ogata-Kurosawa protocol is a priori secure only in the random-oracle model. On
the other hand, their protocol has only two messages and Server’s actions are verifiable.
Indeed, any two-message server-verifiable ObPrf can be converted to a blind signature
scheme. Thus, the Ogata-Kurosawa construction is optimal in that sense. Freedman et
al [FIPR05] proposed an alternative OPRF construction that is secure in the standard
model under the Decisional Diffie-Hellman assumption. Unfortunately, their two-round
solution is not a priori server-verifiable; that is, Client cannot test whether the obtained
value is equal to ObPrfsk(x). Therefore, a malicious Server can mount undetectable
denial of service attacks by deviating from ΠObPrf .

If the OPRF is verifiable and the Setup phase is done correctly, then the whole pro-
tocol is verifiable; this is since Server cannot change the committed values Ei. As the
Setup phase is relatively short and well-specified, its correctness can be guaranteed by
non-cryptographic methods. The later does not hold for query-transfer phase as queries
can arrive during a long time period.

Generally, Protocol 2 is well suited for static databases, where Server has to run
frequent itemsets mining algorithm rarely, say once in a month. Otherwise, the large
initial complexity over-weights its possible advantages.

4.3 On-Line Computation with Subset Inclusion

As stated before, the pre-computation cost of CPIR-PISC protocol is too large even
in the case of the databases of moderate size. Limiting the answers only to frequent
itemsets, like in Sect. 4.2, extends the applicability of CPIR-PISC to larger databases
but limits the possible queries. To answer support queries also in large databases, we
give Protocol 3. In this protocol, Server does not perform any pre-computation. Instead,
when Server gets Client’s query as an encrypted binary vector (c1, . . . , cn), he runs a
private subset inclusion test (a version of Protocol 1 that is secure in the semi-honest
model) for every row of D, and finally returns the replies in a randomised order. As a
result, Client receives Dsk(Ci) = 0 for every row where Q was present and Dsk(Ci) is
random element of P for every row where Q was not present. After that, she decrypts
the results and then counts the number of nonzero values. Together with Protocol 1, the
communication of this protocol (in the semi-honest model) is (n + 1 + m) · len(|P|)
bits. (Note that here we implicitly need that |P| > n.) No off-line work is done; Client
performs Θ(n+m) and Server does Θ(w(D)+m) units of online computation, where
w(D) denotes the number of 1-s in the whole database. Again, in the data-mining sce-
narios, the database is usually very sparse and therefore w(D) is small.

Theorem 4. Let Π be (τ, ε) IND-CPA secure homomorphic cryptosystem. Then Pro-
tocol 3 is (τ −O(n), nε) client-private and 0-server-private in the semi-honest model.

Proof. As Server sees only n encryptions, client-privacy follows from standard hybrid
argument: any adversary A that can distinguish two vectors of ciphertexts can be used
for distinguishing only two ciphertexts. Simulation of Client’s view is straightforward,
the simulator must send suppD(Q) encryptions of 0’s and m− suppD(Q) encryptions
of random elements. ��

Private Itemset Support Counting 107

PRIVATE INPUT: Client has a set Q and Server has a database D.
PRIVATE OUTPUT: Client knows count = suppD(Q)

Message 1, Client Generate (sk, pk) ← G and send pk to Server.
For any i ∈ [n], send ci ← Epk(Q[i]; ri) with ri ←r R to Server.

Message 2, Server Generate a random permutation π : [m] �→ [m].
Set d ← ∏n

i=1 ci.
For every transaction j ∈ [m]

Draw sj ←r P and r′
j ←r R uniformly at random.

Send Cj ← (d/
∏

i:D[π(j),i]=1 ci)sj · Epk(0; r′
j) to Client.

Post-processing by Client
Set count ← 0.
For every row j ∈ [m]

If Dsk(Cj) = 0 then count ← count + 1.
Return count.

Protocol 3. Protocol for PISC, based on the private inclusion test

Security against malicious Clients is achieved by letting Client to prove in zero-
knowledge, for every i ∈ [n], that ci is an encryption of either 0 or 1. This is usually
feasible since in reality, n ≤ 100 000.

5 Imprecise Private Itemset Counting Protocols

In practice, it is not usually necessary to give exact supports but accurate approxima-
tions. Sometimes it is even sufficient to know whether a set is frequent or not. In this
section, we consider two approaches to approximate frequency queries. First, we study
protocols to decide whether a given itemset is frequent or not. That gives rise to de-
terministic support approximation techniques. Second, we show how random sampling
can be used together with Protocol 3 to obtain support approximations with quality
guarantees.

5.1 Private Frequent Itemset Detection

The simplest approximation of the support of a frequent itemset is to tell whether or
not the itemset is frequent. At the end of a private frequent itemset detection (PFID)
protocol, Client learns whether freqD(Q) ≥ σ, and nothing else. PFID is a common
subtask in pattern discovery [MT97, GKM+03]. Moreover, PFID can be used as sub-
protocol in different approximate PISC protocols.

One straightforward solution is to use Prot. 2 on a database where one stores some
fixed integer instead of the cardinality of the support. However, this does not decrease
communication or computation significantly.

A more interesting alternative is to modify the database so that it contains only max-
imal frequent sets, i.e., frequent sets that are not subsets of other frequent sets. That is,
every maximal frequent set is added to a new database D′ as a transaction. Afterwards,

108 S. Laur, H. Lipmaa, and T. Mielikäinen

Client and Sever execute a PISC protocol on D′. If suppD′(Q) ≥ 0, then Q is frequent
in the original database. Since the number of maximal itemsets can be exponentially
smaller than the number of frequent itemsets, this idea might give us a significant win
in the practice. Note that instead of just the support of Q, the resulting protocol also
outputs both the number
 of maximal itemsets and the number k of maximal itemsets
that contain Q. This additional information is sometimes desired in data mining. Even
if undesired, however, such a leak is not necessarily very dangerous for the privacy of
the database, since in practice there are always many different alternatives that could be
the collection of the
 maximal itemsets, k of them containing the itemset Q. Namely,
any anti-chain (i.e., a collection A such that (X ⊆ Y ∨ Y ⊆ X) ⇒ X = Y for all
X, Y ∈ A) of
 itemsets on the attributes of the database such that k of the itemsets
contain Q and
− k do not contain Q could be that collection of maximal itemsets.

To show that the number of such possible collections of maximal itemsets is large,
we give a rough lower bound in the case the query contains less than n/2 elements
and there is no prior information on the database content. Let M be a collection of all
itemsets of cardinality �n/2�. Let cQ be the cardinality of {X ∈M : Q ⊆ X} and c
cardinality of M, i.e. c =

(
n

	n/2

)
. Now, there is exactly

(
cQ
k

)
ways to choose maximal

sets fromM containingQ, and
(
c−cQ
�−k

)
ways to choose other
−m elements that cannot

contain Q. Therefore, the lower bound on consistent configurations is huge,(
cQ
k

)(
c− cQ

− k

)
=

((n−|Q|
	n/2
−|Q|

)
k

)((
n

	n/2

)
−

(n−|Q|
	n/2
−|Q|

)

− k

)
.

Furthermore, the exact numbers of maximal itemsets can be hidden by adding adding
some subsets of the maximal itemsets to the database. This does not change the outcome
of the protocol since if an itemset is contained in some subset of a maximal itemset, then
it is obviously contained also in the maximal itemset itself. Note that also the supports
of the itemsets leak information about other itemsets and the underlying database since
each acquired support further restricts the collection of databases compatible with the
known supports [Mie03].

A PFID protocol can be used to answer exact and approximate support queries. Let
0 < σ1 < · · · < σk ≤ 1 be the minimum frequency thresholds for which the frequent
itemset detection problem can be solved. Then Client can find out to which of the inter-
vals (0, mσ1], . . . , (mσk, m] the support of Q belongs. Note that there are at most m
different possible supports and in practice the number is often strictly smaller than that.

5.2 Sampling

A randomly chosen subset of the transactions provides usually a very good summary
of the database. This is true also in the case of frequency estimation. Recall that the
frequency of an itemset in a transaction database is the fraction of the transactions
containing that itemset. Thus, the frequency of an itemset can be estimated from a
set of randomly chosen transactions. Furthermore, the relative and absolute errors of
such an estimation can be bounded by the Chernoff bound and the Hoeffding bound,
respectively. (Note that Protocol 3 can be applied as well to a randomly chosen subset
of transactions of the database as to the database itself.)

Private Itemset Support Counting 109

Let us assume for a moment that we know that the frequency of the itemset is at least
σ. In that case the Chernoff bound gives us the following bound for the relative error ε:

Theorem 5. Let S be a random k-row sample of an n-row database D
with replacement. Then Pr [(1− ε) freqD(Q) ≤ freqS(Q) ≤ (1 + ε) freqD(Q)] ≤
2 exp

(
−ε2kσ/4

)
, when the itemset is frequent, i.e. freqD(Q) ≥ σ.

Proof. Let IQ(S[i]) be IQ be an indicator variable, i.e. IQ(S[i]) = 1 if Q ⊆ S[i] and
0 otherwise. Then the frequency estimator freqS(Q) =

∑k
i=1 IQ(S[i])/k is a random

variable with the expectation E(freqS(Q)) = freqD(Q). As freqS(Q) is a sum of k
i.i.d. random zero-one variables and freqD(Q) ≥ σ by assumption, we can apply the
Chernoff bound and underestimate freqD(Q) by σ. This proves the claim. ��

Theorem 5 allows us to estimate the sufficient number of transactions to bound the
relative error ε and the failure probability δ:

Corollary 2. To guarantee that the relative error is at most ε and the failure probability
is at most δ, it is sufficient to randomly choose k ≥ 4(ln 2/δ)/(ε2σ) transactions from
the database.

Moreover, if we are interested in bounding the absolute error, the number of rows
sufficient to guarantee a certain error bound is even smaller without assuming anything
about the frequencies:

Theorem 6. Let S be a random k-row sample of an n-row database D with replace-
ment. Then Pr [|freqS(Q) − freqD(Q)| ≥ ε] ≤ 2 exp

(
−2ε2k

)
.

Proof. As freqS(Q) is a sum of k i.i.d. random zero-one variables, we can apply the
Hoeffding bound which proves the claim. ��

The number of transaction sufficient in this case is as follows:

Corollary 3. To guarantee that the relative error is at most ε and the failure probability
is at most δ, it is sufficient to randomly choose k ≥ (ln 2/δ)/(2ε2) transactions from
the database.

For example, with failure probability 10−3 and absolute error 1/100, it is sufficient to
have 38 500 rows in the sample and thus PSI-PISC protocol is efficient enough. Hence,
the sampling technique provides an approximation protocol such that the computation
and communication complexity are independent from database size. The complexity
depends only on the desired approximation error ε and the failure probability δ.

The approximation error bounds given above can be used also to obtain approxima-
tions for the frequent itemset detection, i.e., property testers for itemsets being frequent.
More specifically, we can use the above bounds to decide correctly with high probabil-
ity whether the itemset is frequent or not when the correct frequency of the itemset is
above or below the minimum frequency threshold σ at least by error ε; if the correct
frequency is within the error ε from the minimum frequency threshold σ, we might
answer incorrectly with non-negligible probability.

Chernoff and Hoeffding bounds are quite tight when estimating the frequency of a
single itemset from one sample databases, i.e. we re-sample the database before each

110 S. Laur, H. Lipmaa, and T. Mielikäinen

query. This is not the case when several frequencies are estimated, i.e., when Server
generates a single database by sampling the transactions to answer all or many Client’s
queries. In this case, Server might even verify the approximation precision of all fre-
quent itemsets F (or some other collection of itemsets of interest).

The straightforward generalisation of of the Hoeffding bound to a collection F of
itemsets with maximum absolute error guarantee ε for an arbitrary sequence of fre-
quency queries to F yields to sample complexity of (ln 2 |F| /δ)/(2ε2) [Toi96]. How-
ever, this is a worst-case bound. In practice, transaction databases are not as difficult
to sample as possible but have a lot structure. One important measure of complexity of
a transaction database is its Vapnik-Chervonenkis dimension (VC-dimension) w.r.t. the
itemsets whose frequencies want to be able to estimate accurately. If the VC-dimension
is k, then the number of transactions is sufficient to guarantee maximum absolute error
ε with probability 1 − δ is O(k ln 1/(δε)/ε2).

For example, the VC-dimension of the database w.r.t. frequent itemsets can be
bounded above by log |C|, where C is the collection of closed frequent itemsets in
the database [Mie04]. (An itemset is closed in collection F if its support is strictly
higher than the largest support of its supersets.) Using this upper bound for the Vapnik-
Chervonenkis dimension, it is possible to show that a sample of O(ln |C| ln 1/(δε))/ε2

transactions suffices to guarantee with failure probability δ that the maximum absolute
error is at most ε. As the number of closed frequent itemsets can be exponentially
smaller than the number of frequent itemsets, the VC-based sample bound can be
O(ln ln |F| ln 1/(δε))/ε2 at smallest. In practice, one can compute both the Hoeffd-
ing bound and the VC-bound, and take the minimum of them. Also, if the collection
of the itemsets for which the approximation guarantees are required is small enough,
then one can maintain the frequency estimates for all itemsets of interest and stop the
sampling immediately when the frequency estimates are sufficiently accurate.

Acknowledgements. We would like to thank Bart Goethals for proposing this prob-
lem and for many useful discussions and comments, and Aggelos Kiayias and Anton-
ina Mitrofanova for comments. The first author was partially supported by the Finnish
Academy of Sciences. The second author was partially supported by the Estonian Sci-
ence Foundation, grant 6096.

References

[AIR01] William Aiello, Yuval Ishai, and Omer Reingold. Priced Oblivious Transfer: How
to Sell Digital Goods. In Birgit Pfitzmann, editor, Advances in Cryptology — EU-
ROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 119–
135, Innsbruck, Austria, May 6–10, 2001. Springer-Verlag.

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and
A. Inkeri Verkamo. Fast Discovery of Association Rules. In Usama M. Fayyad,
Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining, pages 307–328. AAAI/MIT
Press, 1996.

[BGZ04] Roberto J. Bayardo Jr., Bart Goethals, and Mohammed Javeed Zaki, editors. FIMI
’04, Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Imple-
mentations, volume 126 of CEUR Workshop Proceedings, Brighton, UK, Novem-
ber 1, 2004.

Private Itemset Support Counting 111

[CGN97] Benny Chor, Niv Gilboa, and Moni Naor. Private information retrieval by key-
words. Technical Report TR CS0917, Department of Computer Science, Technion,
1997.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword
Search and Oblivious Pseudorandom Functions. In Joe Kilian, editor, The Second
Theory of Cryptography Conference, TCC 2005, volume 3378 of Lecture Notes in
Computer Science, pages 303–324, Cambridge, MA, USA, February 10–12, 2005.
Springer Verlag.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient Private Matching
and Set Intersection. In Christian Cachin and Jan Camenisch, editors, Advances in
Cryptology — EUROCRYPT 2004, volume 3027 of Lecture Notes in Computer
Science, pages 1–19, Interlaken, Switzerland, May 2–6, 2004. Springer-Verlag.

[GKM+03] Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja, Hannu
Toivonen, and Ram Sewak Sharma. Discovering All Most Specific Sentences.
ACM Transactions on Database Systems, 28(2):140–174, 2003.

[GR05] Craig Gentry and Zulfikar Ramzan. Single-Database Private Information Retrieval
with Constant Communication Rate. In Luis Caires, Guiseppe F. Italiano, Luis
Monteiro, Catuscia Palamidessi, and Moti Yung, editors, The 32nd International
Colloquium on Automata, Languages and Programming, ICALP 2005, volume
3580 of Lecture Notes in Computer Science, pages 803–815, Lisboa, Portugal,
2005. Springer-Verlag.

[Lip03] Helger Lipmaa. Verifiable Homomorphic Oblivious Transfer and Private Equality
Test. In Chi Sung Laih, editor, Advances on Cryptology — ASIACRYPT 2003, vol-
ume 2894 of Lecture Notes in Computer Science, pages 416–433, Taipei, Taiwan,
November 30–December 4, 2003. Springer-Verlag.

[Lip05] Helger Lipmaa. An Oblivious Transfer Protocol with Log-Squared Communica-
tion. In Jianying Zhou and Javier Lopez, editors, The 8th Information Security
Conference (ISC’05), volume 3650 of Lecture Notes in Computer Science, pages
?–?, Singapore, September 20–23, 2005. Springer-Verlag. To appear.

[Mie03] Taneli Mielikäinen. On Inverse Frequent Set Mining. In 2nd Workshop on Pri-
vacy Preserving Data Mining (PPDM), pages 18–23, Melbourne, Florida, USA,
November 19, 2003. IEEE Computer Society.

[Mie04] Taneli Mielikäinen. Separating Structure from Interestingness. In Honghua Dai,
Ramakrishnan Srikant, and Chengqi Zhang, editors, Advances in Knowledge Dis-
covery and Data Mining, 8th Pacific-Asia Conference, PAKDD 2004, volume 3056
of Lecture Notes in Computer Science, pages 476–485, Sydney, Australia, May 24–
28, 2004. Springer.

[MT97] Heikki Mannila and Hannu Toivonen. Levelwise Search and Borders of Theories
in Knowledge Discovery. Data Mining and Knowledge Discovery, 1(3):241–258,
1997.

[OK04] Wakaha Ogata and Kaoru Kurosawa. Oblivious Keyword Search. Journal of Com-
plexity, 20(2–3):356–371, 2004.

[Toi96] Hannu Toivonen. Sampling Large Databases for Association Rules. In T. M.
Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda, edi-
tors, VLDB’96, Proceedings of 22th International Conference on Very Large Data
Bases, pages 134–145, Mumbai, India, September 3–6, 1996. Morgan Kaufmann.

Visual Cryptographic Protocols
Using the Trusted Initializer

Hidenori Kuwakado1, Masakatu Morii1, and Hatsukazu Tanaka2

1 Kobe University,
1-1 Rokkodai Nada Kobe 657-8501, Japan

2 Kobe Institute of Computing,
2-2-7 Kano Chuo Kobe 650-0001, Japan

Abstract. We show how to visualize an oblivious transfer and a com-
mitment scheme with a method similar to that used in a visual secret
sharing scheme. We call them a visual oblivious transfer and a visual com-
mitment scheme, respectively. Data are images printed on transparencies,
and the operation for obtaining information is only overlaying each of the
transparencies over each other. Hence, it is easy for non-expert users to
execute them. The visual oblivious transfer and the visual commitment
scheme proposed in this paper are based on the trusted initializer model.

1 Introduction

The development of multi-party protocols is an active area of research. Due
to many researchers, multi-party protocols that are seemingly impossible have
been developed. Multi-party protocols require several fundamental tools based
on the modern cryptography. Typical fundamental tools are a secret sharing
scheme, an oblivious transfer, and a commitment scheme. There are many ways
of constructing these tools, e.g., [1][2][3][4][5][6] for the secret sharing scheme,
[7][8][9][10][11] for the oblivious transfer, and [12][8][9] for the oblivious transfer.

These tools require users to have cryptographic knowledge and to perform
complicated operations. Such requirements probably cause non-expert users to
hesitate to use these tools. However, Naor and Shamir [13] have shown the secret
sharing scheme that does not require cryptographic knowledge and complicated
operations. Their scheme is called a visual secret sharing scheme. It involves
breaking up the secret image into images printed on transparencies, and the
secret image can be visually recovered by placing the transparencies on top of
each other.

In contrast, there is yet no way to construct the oblivious transfer and the
commitment scheme without such requirements. We show how to visualize the
oblivious transfer and the commitment scheme with a method similar to that
used in the visual secret sharing scheme. We call them a visual oblivious transfer
and a visual commitment scheme. The use of the visual oblivious transfer and
the visual commitment scheme enables users to not only recover information
but also check the validity of data by the human visual system, i.e., without

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 112–122, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Visual Cryptographic Protocols Using the Trusted Initializer 113

cryptographic knowledge and complicated operations. We construct the visual
oblivious transfer and the visual commitment scheme using a trusted initializer
who is active only at the setup of the protocol [14].

The visual secret sharing scheme suggests that executing the secret sharing
scheme does not necessarily require a computer as a physical device. The dif-
ference in physical devices results in the difference in algebraic structures used
for constructing the scheme. The algebraic structure of visual secret sharing
schemes for a black and white image is a monoid, which is a set {0, 1} under
the inclusive-OR operation. That for a color image is a lattice rather than the
monoid [15]. The monoid and the lattice are weaker algebraic structures than a
finite field and a finite group used in modern cryptography. It is significant to
study the construction of cryptographic protocols under weak algebraic struc-
tures because a new physical device for executing cryptographic protocols will
be developed in future. Our results imply that the oblivious transfer and the
commitment scheme can be constructed over the monoid of {0, 1} of the weak
algebraic structure.

We summarize notation. We let ⊕, ∨, and · denote the exclusive-OR operator,
the inclusive-OR operator, and the complement operator. We use these operators
for not only computation of a bit but also that of a binary vector, that of a
binary matrix, and that of a set. We define these computations by those of each
component.

This paper is organized as follows. In Sect. 2 we describe the trusted initializer
model and non-visual protocols In Sect. 3 we show the visual oblivious transfer,
analyze the security and the size of data, and give examples. In Sect. 4 we show
the visual commitment scheme, analyze the security and the size of data, and
give examples. In Sect. 5 we conclude this paper.

2 Protocols Based on the Trusted Initializer Model

2.1 Trusted Initializer

The trusted initializer model has been introduced by Rivest [14]. In this model
there exists a privileged person (called a trusted initializer), and the privileged
person initializes a protocol and after then becomes inactive. Specifically, the
trusted initializer distributes data to users through private channels. Note that
these channels are one-way, i.e., only from the trusted initializer to users. The
step for distributing data is called the initializing step. After then, the trusted
initializer does not participate in the protocol, and users perform the protocol
using data distributed by the trusted initializer. The trusted initializer model
enables us to construct unconditionally secure cryptographic protocols. In this
paper, we discuss only protocols based on the trusted initializer model. We call
the trusted initializer Ted, and call users Alice and Bob.

2.2 Oblivious Transfer

Oblivious transfers are classified into two types. The first-type oblivious transfer
is as follows. When Alice sends information to Bob, he can obtain it with proba-

114 H. Kuwakado, M. Morii, and H. Tanaka

bility 1/2 and she cannot know whether he obtained it or not. The second-type
oblivious transfer is as follows. When Alice sends two pieces of information to
Bob, he can obtain only one of them and cannot obtain any information about
another piece, and she cannot know which piece he obtained. Crépeau [16] has
proved that both types of oblivious transfers are theoretically equivalent.

We show the first-type of a non-visual oblivious transfer since the second-type
of a non-visual oblivious transfer has been given in [14]. For simplicity, suppose
that Alice sends one-bit information to Bob.

Initializing step: Ted randomly chooses a two-dimensional vector v = (v0, v1)
where v0, v1 ∈ {0, 1}. After Ted chose a random bit c, Ted defines uc as uc = v
and determines uc such that uc �= uc and uc ⊕ v �= (1, 1). Since there are
two candidates of uc, Ted chooses one vector from them at random. Ted gives
{u0, u1} and v to Alice and Bob, respectively.
Transferring step: Let b (∈ {0, 1}) be one-bit information that Alice wants to
send to Bob. Alice computes a vector t as follows:

t =
{

(0, 0)⊕ ur, if b = 0;
(1, 1)⊕ ur, otherwise.

Alice sends t to Bob. Bob computes a vector z by z = t ⊕ v. Then, Bob finds
the value of b as follows:

b =

⎧⎨⎩
0, if z = (0, 0);
1, if z = (1, 1);
⊥, otherwise,

where ‘⊥’ indicates that Bob cannot obtain any information about b.

By using a simple check it is not hard to verify that the above oblivious transfer
works well. The size of data obtained by Bob, i.e., the size of z, is the smallest
because two bits is necessary for expressing ‘0’, ‘1’, and ‘⊥’. In this sense the
above oblivious transfer is optimal.

2.3 Commitment Scheme

A commitment scheme based on the trusted initializer must be designed in such
a way that it satisfies the following properties. (i) Correctness: If Alice and Bob
follow the scheme, Bob accepts x to which Alice committed. (ii) Concealment: If
Alice and Bob follow the scheme, Bob cannot know any information about x
before the revealing step. (iii) Cheating probability: Alice cannot succeed in
cheating Bob with probability more than ε (0 ≤ ε < 1).

Blundo, Masucci, Stinson, and Wei [17] have proposed a commitment scheme
(an AP scheme), which is a fixed version of Rivest’s commitment scheme [14].
The AP scheme is constructed over GF(p) where p is a prime. The AP scheme
is unconditionally concealing, and its cheating probability is 1/p [17].

Visual Cryptographic Protocols Using the Trusted Initializer 115

3 Visual Oblivious Transfer

In Sect. 3 and Sect. 4, ‘0’ and ‘1’ mean a white (transparent) pixel and a black
pixel printed on the transparency, respectively. The inclusive-OR operator means
stacking transparencies. For example, “0∨1 = 1” means that stacking the white
pixel on the black pixel results in the black pixel.

3.1 Implementation for One-Bit Information

We show an implementation of the first-type visual oblivious transfer for one-bit
information.

Initializing step: Ted chooses a four-dimensional binary vector v with weight
2 at random where the weight is the number of nonzero components. After
Ted chose a random bit c, he determines two four-dimensional binary vectors
ui (i = 0, 1) as follows. He defines uc by uc = v, and determines uc such that
the weight of uc is two and the weight of uc ∨ v is three. Since such a vector
is not unique, he chooses it from candidates at random. Ted sends the following
U ,V to Alice and Bob through their private channels, respectively.

U = {u0, u1}, V = {v}.

Transferring step: Let us consider that Alice sends one-bit information b (∈
{0, 1}) to Bob. After Alice chose a random bit r, she determines t as follows:

t =

{
ur, if b = 0;
ur, otherwise.

Alice sends T = {t} to Bob. After Bob received it, he stacks t on v, i.e.,

z = t ∨ v.

If the weight of z is two, one-bit information sent by Alice is 0, if the weight of
z is four, it is 1. Otherwise it is ⊥, i.e., Bob does not obtain b.

Bob can visually recognize the result because their contrasts are different. Pre-
cisely, the contrast C, which is defined in [13], of each case is given as follows:

C =

⎧⎪⎨⎪⎩
1/4, between 0 and ⊥;
1/4, between 1 and ⊥;
1/2, between 0 and 1.

We give an example of the above implementation. Suppose that Ted chose v =
(1, 1, 0, 0). Let c = 1. It follows that u1 = v. The set Û of candidates of u0 is
given by

Û = {(0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0)}. (1)

116 H. Kuwakado, M. Morii, and H. Tanaka

Table 1. Communication complexity in oblivious transfers [bits]

Step Non-visual Visual

Initializing Alice 4 (3) 8 (log2 6 + log2 4)
Bob 2 (2) 4 (log2 6)

Transferring 2 (2) 4 (log2 6)

Total complexity 8 (7) 16 (3 log2 6 + log2 4)

Suppose that Ted chose u0 = (0, 1, 0, 1). After Ted randomly chose one vector
from Û as u0, Ted sends U = {u0, u1} and V = {v} to Alice and Bob, respec-
tively. Suppose that Alice wants to send b = 0. After Alice chose r = 1, she
sends T = {(1, 1, 0, 0)} to Bob since t = u1. Since Bob obtains z = (1, 1, 0, 0),
he finds b = 0.

If Alice had chosen r = 0, Bob would not have obtained any information
about b. Specifically, since t = (0, 1, 0, 1), it follows that z = (1, 1, 0, 1). We state
the reason that Bob cannot obtain any information about b when c �= r. When
Alice wants to send b = 1 and r = 0, she sends t = u0 = (1, 0, 1, 0). Notice that
u0 is also an element of Û . We see from Eq. (1) that for any u ∈ Û we have
u ∈ Û . The following theorem formally guarantees that Bob cannot obtain any
information about b when he finds ⊥.

Theorem 1. Let v be a four-dimensional binary vector with weight 2. We de-
note by Û the set of four-dimensional binary vectors u such that the weight of u
is two and the weight of u ∨ v is three. Then, for any u ∈ Û we have u ∈ Û .

We next compare the above visual oblivious transfer to the non-visual oblivi-
ous transfer given in Sect. 2.2 in terms of the communication complexity. Table 1
shows the communication complexity of the oblivious transfers. The value in the
bracket of Table 1 is the essential size of data. For example, in the initializing step
of the non-visual oblivious transfer, Alice receives 4-bit data of {u0, u1}, but the
data can be expressed with 3 bits because u0 and u1 are not independent. The
smallest communication complexity of the transferring step is log2 3 (≈ 1.58)
bits. Since log2 6 ≈ 2.58, the communication complexity of the visual oblivious
transfer is slightly larger than the smallest communication complexity. There
might exist a more efficient visual oblivious transfer.

3.2 Application to the Image

We can construct the first-type visual oblivious transfer of multi-bit information
B = (b1, b2, . . .) by repeating that of one-bit information. We note that Bob
obtains entire B with probability 1/2. It does not mean that Bob obtains each
bit of B with probability 1/2. Hence, random bits c, r described in Sect. 3.1 are
fixed for all bj (j = 1, 2, . . .).

Using a black and white image B of Fig. 1, we give an example of the visual
oblivious transfer. Fig. 2 is an image V of the set of v. Fig. 3 and Fig. 4 are

Visual Cryptographic Protocols Using the Trusted Initializer 117

O
Fig. 1. Image B Fig. 2. Image V from Ted to Bob

Fig. 3. Image T when c = r Fig. 4. Image T when c 	= r

Fig. 5. Image Z (= V ∨ T) when c = r Fig. 6. Image Z (= V ∨ T) when c 	= r

118 H. Kuwakado, M. Morii, and H. Tanaka

images T of the set of t when c = r and c �= r respectively. Fig. 5 and Fig. 6
are images Z of the set of z, which Bob obtains by stacking the image T on the
image V , when c = r and c �= r respectively. Thus, if c = r, then Bob succeeds
in recognizing B visually, otherwise he fails. We note that Bob finds his failure
because Z is uniformly dark, not because no meaningful image is recovered.
Comparing the right-hand area of Fig. 5 with Fig. 6, we finds the difference
in the variance of the number of white pixels of subpixels. The variance of the
right-hand area of Fig. 5 is 1/16 whereas that of Fig. 6 is 0.

The above visual oblivious transfer uses 4 pixels for one-bit information, but
the reviewer of this paper shows the visual oblivious transfer can be constructed
by using 2 pixels for one-bit information in reviewer’s report . Reviewer’s visual
oblivious transfer is useful for data involving much redundancy such as an image
because one-bit information is not recognized precisely.

4 Visual Commitment Scheme

4.1 Implementation for One-Bit Information

We show an implementation of the visual commitment scheme for one-bit infor-
mation.

Initializing step: Ted randomly chooses a matrix u from Û .

Û =
{(

00
11

)
,

(
11
00

)
,

(
10
10

)
,

(
01
01

)}
Ted randomly chooses one of two elements of ‘1’ in u, and produces a matrix v
such that the chosen element is replaced with ‘0’ and the others are done with
‘1’. The resulting matrix v is an element of V .

V̂ =
{(

11
01

)
,

(
11
10

)
,

(
01
11

)
,

(
10
11

)}
Ted sends u and v to Alice and Bob through their private channels.
Committing step: Let b (∈ {0, 1}) be one-bit information to which Alice wants
to commit. If b = 0, then Alice transposes u, and permutes the rows and the
columns of the transposed matrix at random. If b = 1, then Alice permutes the
rows and the columns of u at random. The resulting matrix t is an element of
T̂ . Alice sends t to Bob.

T̂ =
{(

00
11

)
,

(
11
00

)
,

(
10
10

)
,

(
01
01

)}
Revealing step: Alice sends u and b to Bob. Bob first stacks u on v, and checks
that all the pixels are black. If not so, then Bob rejects b. Bob next stacks u on
t, i.e., z = u ∨ t, and counts the number of white pixels of z. If it is one and
b = 0, then Bob accepts b = 0. If it is zero or two and b = 1, then Bob accepts
b = 1. Otherwise, he rejects b.

Visual Cryptographic Protocols Using the Trusted Initializer 119

In spite of one-bit information, Bob obtains the 2 × 2 matrix that is one of the
matrices of Ẑ.

Ẑ =
{(

11
01

)
,

(
11
10

)
,

(
01
11

)
,

(
10
11

)
,

(
11
11

)
,

(
00
11

)
,

(
11
00

)
,

(
10
10

)
,

(
01
10

)}

The first four matrices of Ẑ imply that Alice committed to b = 0, and the last
five ones imply that she committed to b = 1.

We give an example. Suppose that Ted chooses u and v as follows:

u =
(

00
11

)
, v =

(
11
10

)
.

Ted sends u and v to Alice and Bob, respectively. We assume that Alice commits
to b = 0. Alice transposes u, and permutes the rows and the columns of the
transposed matrix at random. Suppose that the resulting matrix t is given by

t =
(

10
10

)
Alice sends t to Bob. In the revealing step, Alice sends u and b = 0 to Bob. Bob
first stacks u on v, i.e., (

00
11

)
∨
(

11
10

)
=

(
11
11

)
.

Since all components are one, i.e., all pixels are black, Bob continues to perform
the verification. Bob next stacks u on t, i.e.,(

10
10

)
∨
(

00
11

)
=

(
10
11

)
.

Since the number of white pixels is one and b = 0, Bob accepts b = 0.
It is easy to confirm the correctness and the concealment of the proposed

scheme. The cheating probability of the proposed scheme is 1/2. It is verified by
checking all possible combinations of u, v, and b. We can decrease the cheating
probability by repeating the proposed scheme. It is effective to use the scheme
described in Sect. 4.2 after transforming one-bit information into an image.

We next compare the proposed scheme to the AP scheme in terms of the
communication complexity. Table 2 shows the communication complexity of both
schemes. We omitted the complexity for sending b in the revealing step of both
schemes. The value in the bracket of Table 2 is the essential size of data. For
example, although the 2×2 matrix that Ted sends to Alice in the initializing step
seems to be 4-bit data, it is essentially 2-bit data because it must be a matrix
in Û . We observe from Table 2 that the essential communication complexity of
the proposed scheme is comparable to that of the AP scheme.

120 H. Kuwakado, M. Morii, and H. Tanaka

CSCSCSCSCS
Fig. 7. Image B Fig. 8. Image U from Ted to Alice

Fig. 9. Image V from Ted to Bob Fig. 10. Image T produced by Alice

Fig. 11. Image given by U ∨ V Fig. 12. Image given by U ∨ T

Visual Cryptographic Protocols Using the Trusted Initializer 121

Table 2. Communication complexity in commitment schemes [bits]

Step AP scheme Proposed scheme

Initializing Alice 2 4 (2)
Bob 2 4 (2)

Committing 1 4 (2)
Revealing 2 4 (1)

Total complexity 7 16 (7)

4.2 Application to the Image

The visual commitment scheme of multi-bit information B can be constructed
by repeating that of one-bit information. Using a black and white image B of
Fig. 7, we give an example of the visual commitment scheme. Fig. 8 is an image
U of the set of u, and Fig. 9 is an image V of the set of v. Fig. 10 is an image T
of the set of t. Fig. 11 is the image given by U ∨ V . Since it is perfectly black,
Bob visually finds that U and V are valid images. Fig. 12 is the image given by
U ∨ T . It follows that Bob can visually recognize the original image B.

Notice that the reason that the original image can be visually recognized is
different from that of the visual secret sharing scheme. In the case of the visual
secret sharing scheme, the original image is visually recognized by the difference
in the number of white pixels of subpixels. In the case of the proposed scheme,
the original image is visually recognized by the difference in the variance of the
number of white pixels of subpixels. When b = 0, the number of white pixels is
always 1 and the variance is 0. When b = 1 the average number of white pixels
is 1 and the variance is 1. The difference in the variance enables us to recognize
the original image from the recovered image.

5 Concluding Remarks

In this paper, we have proposed the visual oblivious transfer and the visual
commitment scheme. The feature of the visual oblivious transfer is that the user
can visually distinguish between success and failure. The feature of the visual
commitment scheme is that the user can visually not only recognize information
but also check the validity of data. To achieve these features we used the fact
that the difference in the variance of the number of white pixels can be visually
recognized. In addition, our results imply that the weakness of the algebraic
structure causes the expansion of data transmitted in protocols.

Acknowledgments

We would like to thank anonymous reviewers for their valuable comments.

122 H. Kuwakado, M. Morii, and H. Tanaka

References

1. Blakley, G.R.: Safeguarding cryptographic keys. Proceedings of the National Com-
puter Conference, American Federation of Information Processing Societies Pro-
ceedings 48 (1979) 313–317

2. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. Ad-
vances in Cryptology - CRYPTO ’88, Lecture Notes in Computer Science 403
(1990) 27–35

3. Brickell, E.F.: Some ideal secret sharing schemes. Journal of Combinatorial Math-
ematics and Combinatorial Computing 6 (1989) 105–113

4. Blundo, C., Santis, A.D., Stinson, D.R., Vaccaro, U.: Graph decompositions and
secret sharing schemes. Advances in Cryptology - EUROCRYPT ’92, Lecture Notes
in Computer Science 658 (1993) 1–24

5. Cramer, R., Fehr, S.: Optimal black-box secret sharing over arbitrary abelian
groups. Advances in Cryptology - CRYPTO 2002, Lecture Notes in Computer
Science 2442 (2002) 272–287

6. Shamir, A.: How to share a secret. Communications of the ACM 22 (1979) 612–613
7. Bellare, M., Micali, S.: Non-interactive oblivious transfer and application. Ad-

vances in Cryptology - CRYPTO ’89, Lecture Notes in Computer Science 435
(1989) 547–559

8. Crépeau, C.: Efficient cryptographic protocols based on noisy channels. Advances
in Cryptology - EUROCRYPT ’97, Lecture Notes in Computer Science 1233 (1997)
306–327

9. Damg̊ard, I., Kilian, J., Salvail, L.: On the (im)possibility of basing oblivious
transfer and bit commitment on weakened security assumptions. Advances in
Cryptology - EUROCRYPT ’99, Lecture Notes in Computer Science 1592 (1999)
56–73

10. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
Communications of the ACM 28 (1985) 637–647

11. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical Report,
Tech. Memo. TR-81, Aiken Computation Laboratory, Harvard University (1981)

12. Blum, M.: Coin flipping by telephone: A protocol for solving impossible problems.
Advances in Cryptology - A Report on CRYPTO ’81, (1982) 11–15

13. Naor, M., Shamir, A.: Visual cryptography. Advances in Cryptology - EURO-
CRYPT ’94, Lecture Notes in Computer Science 950 (1994) 1–12

14. Rivest, R.L.: Unconditionally secure commitment and oblivious transfer schemes
using private channels and a trusted initializer.
http://theory.lcs.mit.edu/~rivest/Rivest-commitment.pdf (1999)

15. Koga, H., Iwamoto, M., Yamamoto, H.: An analytic construction of the visual
secret sharing scheme for color images. IEICE Transactions on Fundamentals of
Electronics, Communications and Computer Sciences E84-A (2001) 262–272

16. Crépeau, C.: Equivalence between two flavours of oblivious transfers. Advances
in Cryptology - CRYPTO ’87, Lecture Notes in Computer Science 293 (1987)
350–368

17. Blundo, C., Masucci, B., Stinson, D.R., Wei, R.: Constructions and bounds for
unconditionally secure non-interactive commitment schemes. Designs, Codes and
Cryptography 26 (2002) 97–110

Admissible Interference by Typing for
Cryptographic Protocols

Alaaeddine Fellah and John Mullins

Département de génie informatique, École Polytechnique de Montréal,
P.O. Box 6079, Station Centre-ville, Montréal (Québec), Canada, H3C 3A7

{alaaeddine.fellah, john.mullins}@polymtl.ca

Abstract. Many security properties of cryptographic protocols can be
expressed by using information flow policies as non-interference. But,
in general it is very difficult to design a system without interference.
For that, many works try to weak the standard definition of the non-
interference. For instance, in [21] Mullins defines the admissible inter-
ference as an interference that admits flow information only through a
dowgrader. Thus, we present in this paper a type system that try to
detect process that allow interference. Then, if we can type a process
we can say that is free interference. Also, we extend the type system of
process with another type system based on a standard message algebra
used in the literature of cryptographic protocols. So, we define the theo-
ric characterization, prove the correctness of our type system and present
an illustration of our result.

Keywords: Admissible interference, Type systems, Process Algebra,
Cryptographic Protocols, Security Properties.

1 Introduction

Since the advent of Internet, the list of intrusions in the information processing
systems and the robbing of information via this network increase continually.
Internet gave not only a perfect window to the tradesmen of the whole world
who find the occasion to benefit from a virtual world market, but also caused
many ideas at all those which seek easy money and those which find a great
pleasure to ransack the computer sites of the others. Thus, the computer security
becomes a requirement of the highest importance.

In such network, the security is enforced by the use of security protocol.
The use of these protocols ensures that one or more properties of security is en-
forced, such as : confidentiality, authentication, integrity, non-repudiation, atom-
icity, etc. Nevertheless, the absence of well established formal methods to ensure
the correction of the cryptographic protocols, task at the same time delicate
and complex, generated undesirable consequences. Several protocols have been
showed flawed many years after their publication and use.

The research on formal method related to security has increased considerably.
However, based on the differences in the techniques and tools used, we can

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 123–135, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

124 A. Fellah and J. Mullins

find several disciplines in this focus of research. A complete bibliography and a
comparative study of these approaches can be found in [7, 19]. In this direction,
some approaches [10, 17] have used non-interference to analyze cryptographic
protocols. If we consider that we have two level of security (High, Low), non-
interference states that no information flow is possible from the High-level of
security to the Low-level of security. So, the behavior of the users of the High-
level (which can handle secret data) doesn’t affect the behavior of the users of
the Low-level (which handle only public data).

However, it’s clear that if computation in public data not interferes with secret
one, we can see that we have the perfect security. But, there is a little of system
that respect this requirement. However, in the least year many works [1, 2, 11, 21]
have tried to weak the standard non-interference, by putting some restriction in
order to adapt this information flow policies more practice in some cases. The
common idea is to ensure that program leaks sensitive information only through
many conditions relative to the design of the system.

We present in this paper a type system that try to detect process that not
respect the admissible interference. Our type system is composed of two parts
: The first part is more general and tries to type a process. In this part we
consider only standard interference, and we suppose that we have the type of
the actions that constitute the process. We proof the correctness of our type
system. Indeed, we proof that if a process can be typed, we can conclude that
this process is free interference. This result is general and not depends on the
structure of any system. The second part shows how to type exchanged message
in a cryptographic protocol, and then how to type actions that may constitute
a process. Thus, we consider implicitly admissible interference in the typing of
encrypted message.

The remainder of the paper is organized as follows: In the section 2 we present
the process algebra used in rest of this paper. In the section 3 we present the
type system of process, and we proof the correctness of it. In the section 4 we
extend the type system of process with another type system based on a standard
message algebra used in the literature of cryptographic protocols. In the section
5 we present an example to illustrate our approach. In the section 6 we present
several related works. We end by a conclusion and possible amelioration of this
work.

2 Process Algebra

2.1 Syntax

The set of all process, denoted by P , is defined by the following grammar :

P ::= Stop Stop | a.P Prefix
| P \ N Restriction | P [F] Relabelling
| P/L Masquing | Z Identifier
| P ||P Parallel | P + P Choice

Admissible Interference by Typing for Cryptographic Protocols 125

The principal entity of a process is the action. We suppose that we have a set
of action, denoted by Act, and contain output action (a, b, . . .) and input action
(a, b, . . .), with (a = a). Latter in this paper, we give more detail in the syntax
of the action used specially in cryptographic protocols.

Stop is the process which doesn’t do anything. α.P is the process which is
ready to execute the action α and then to behave like P . P \ N is the process
which behaves as P , but it can’t execute any action of the set L. P/L is the
process which behaves as P , but it can execute only the action of the set L.
P [F] is the process resulting from the application of the relabelling function F
on the actions which constitute the process P . Z is a constant that must be
associated to a definition of a process. P || Q is the parallel composition of
the two process P and Q. P + Q is the choice composition of the process P
and Q.

2.2 Operational Semantics

The operational semantics is defined through the evolution relation −→ which
we will define on the set of processes. However, we need to arrange the processes
in a form which allows us to use the evolution relation. For that, we will define
the structural equivalence, noted ≡, as the smallest relation which satisfies the
rules given in the table 1.

Table 1. Structural equivalence

P || 0 ≡ P 0[F] ≡ 0 P + Q ≡ Q + P (P + P ′) \ H ≡ P \ H + P ′ \ H
P + 0 ≡ P 0 \ N ≡ 0 P || Q ≡ Q || P

The structural equivalence show that when the process 0 is used in a choice,
parallel communication, we can simplify the whole process by eliminating the
process 0. Also, when we applied the relabelling or restriction operators on the
process 0 the whole process is equivalent to the process 0. We note that the
choice and parallel operators are commutative.

The operational semantics is given in the table 2. The label used in this
semantic belong to Act∪{τ}, with τ represents an inter evolution. Then, in this
table a ∈ Act, b an input action, b′ an output action, N and L sets of actions
and σ a substitution.

3 Typing System for Non-interference

3.1 Types

We presuppose a complete lattice of level of security (Σ,≤) ranged over α, β,
. . .. The order relation ≤ determines an order in the level of security. Thus,

126 A. Fellah and J. Mullins

Table 2. Operational semantics

R.
a.P

a−→ P
RZ

P
a−→ P ′

Z
a−→ P ′ [Z

def
= P]

R\ P
a−→ P ′

P \ N
a−→ P ′ \ N

[a 	∈ N] Rf
P

a−→ P ′

P [F]
F (a)−→ P ′[F]

R/1
P

a−→ P ′

P/L
a−→ P ′/L

[a 	∈ N] R/2
P

a−→ P ′

P/L
τ−→ P ′/L

[a ∈ N]

Rs
||

P
b−→ P ′ Q

b′−→ Q′

P || Q
τ−→ P ′ || Q′σ

[∃ σ. b = b′σ] Re
||

P
a−→ P ′

P || Q
a−→ P ′ || Q

R+
P

a−→ P ′

P + Q
a−→ P ′ R≡

P ≡ P ′ P ′ a−→ Q′ Q′ ≡ Q

P
a−→ Q

an element τ is less than the element τ ′, if the first represents a level of se-
curity less than the second. In other terms, an element of type τ ′ is more se-
cret than an element of type τ . Also, the lattice Σ has � as the greatest ele-
ment (the high level of security) and ⊥ as the lowest element (the low level of
security).

We denote also the type of an action by αpro with α ∈ Σ and pro a suffix
to distinguish between type of action and type of message (that we will present
later in this article). The goal of the type system is to type process and to detect
if this process contains interference. In the type system, the behavior of a process
is related to a static environment. This environment, denoted by γ, associates
a value to a type. The values of the domain of the environment represent the
knowledge necessary and sufficient to be able to type a process. For example,
to type a process which represents a cryptographic protocol, we will need to
know the type of all the atomic messages used in this protocol. Then, we use
judgements of the form :

Γ � P : α

with P ∈ P and α ∈ ΣP . This judgement means that relative to the environment
Γ , the processus P has the type α. This type correspond to the greatest type
of the actions which constitute P . Also, we can say that the process P is free
interference. We can classify the process according to there types, then we denote
the set Pα the set of process whom have the type αpro.

In this paper we investigate two relations : α-bisimulation and (α, β)−test
equivalence. The α-bisimulation is an extension of the standard bisimulation. In
this new relation the bisimulation is made according to a type of actions. Two
process are α-bisimilars if there behaviors are equivalents in the level α. More
formally :

Admissible Interference by Typing for Cryptographic Protocols 127

Definition 1 (α-bisimulation).
Let P, Q ∈ P, α ∈ Σ. we say that P �α Q if :

1. ∀a ∈ Actα if P
a−→ P ′ then ∃δ ∈ Actα

∗
. Q

δ.a=⇒ Q′ with P ′ �α Q′

2. ∀δ ∈ Actα
∗

if P
δ=⇒ P ′ then ∃δ′ ∈ Actα

∗
. Q

δ′
=⇒ Q′ with P ′ �α Q′

Thus, P and Q are α-bisimilars, and we denote P ≈α Q if :

P �α Q ∧ Q �α P

From this relation, we can define an other relation that extend the test equiv-
alence : (α, β)−test equivalence. In this relation, the test is a process that has
the type β. Thus, two process are (α, β)−test equivalence if for all test of type β,
the parallel composition of the two process with the test are α-bisimilars. More
formally :

Definition 2 ((α, β)-test equivalence).
Let P, Q ∈ P, α, β ∈ Σ. we say that P �α

β Q if :

∀R ∈ Pβ : P ||R �α Q||R

Thus, P and Q are (α, β)-test equivalent, and we denote P ≈α
β Q if :

P �α
β Q ∧ Q �α

β P

The definition which follows define another relation that extend the (α, β)-
test equivalence to associate actions and process. We say that the action a don’t
cause the process P , if this action don’t influence the behavior of the process P .
More formally:

Definition 3 (Causality). Let P ∈ P , a ∈ Act, α ∈ Σ. we note a
α� P if :

P �α
α a.P

3.2 Typing System

The rules of the type system are given in the table 3. We note that we doesn’t
need to define rule for each operator, some rule are deductible from the two rules
R.1, R.2, R≡. The intuitive idea underlying each rule are given as follow :

R.1 et R.2: These two rules allow us to type prefixed processes. Thus, if we
suppose that we have an action a of type αpro and a process P of the type
α′pro. Then, the rule R.1 ensures that if the level of security α is lower than
the level α′ then the process a.P will have the type αpro. Also, the condition
of this rule (α " α′) ensures us that there isn’t implicit flow of information.
On the other hand, the rule R.2 affirms that if the level α is higher than the
level α′, then we must make sure that there is not a dependence between the
action a and the process P . The condition a

α� P ensures that. Thus, we
can say that the process a.P has the type α′pro and it is free interference.

128 A. Fellah and J. Mullins

Table 3. Typing System

(R.1)
Γ a : αpro Γ P : α′pro

Γ a.P : αpro
[α � α′]

(R.2)
Γ a : αpro Γ P : α′pro

Γ a.P : α′pro
[α′ � α ∧ a

α� P]

(R||)
Γ a : αpro Γ a′ : α′var Γ P ||Qσ : βpro

Γ a.P ||a′.Q : βpro
[α � α′ ∧ a = a′σ]

(R[_])
Γ P : αpro

Γ P [F] : αpro
(R+) Γ P : αpro Γ P ′ : αpro

Γ P + P ′ : αpro

(R0) Γ 0 : �pro
(R≡) Γ P : αpro P ≡ Q

Γ Q : αpro

R||: This rule allows us to type processes with synchronization. Thus, if a sent
action a has the type αpro, the received corresponding action a′ has the
type α′pro and if the level α is lower than the level α′, then the process
a.P ||a′Q has the same type as the process P ||Qσ, with σ is the substitution
which equalizes the action a with the action a′. With the condition α " α′

we ensure that we don’t have interference in the process.
R[_]: If the process P is of type αpro then the process P [F] has the same type.

The type is safeguarded since the function of renaming is ensured to re-elect
terms in the same way standard.

R0: The process 0 has the � type. This is only a choice to avoid having inter-
ferences between the high level process 0 and any action.

R≡: This rule affirms that if two processes are equivalent structurally then they
have the same type.

3.3 Interference by Typing

In this section, we use the type system given in the preceding section to give
a result on the interference. The definition that we will use for the interference
is based on the basic idea of the non-interference given in [12]: "No flow of
information is possible of a high level user to another of low level". We denote
the set of all actions that have the type �pro by H. Thus, we characterize
formally the non-interference as follows:

Definition 4 (Non-interference).
Let P a process. We say that P is free interference, and we note IF(P), if :

(P/H) �⊥
⊥ P

This definition say that all the behaviors of the process P/H in the low level
(action with the type ⊥) are a behavior of the process P . Then, the behavior of
the high level doesn’t influence the one in the low level.

Admissible Interference by Typing for Cryptographic Protocols 129

Theorem 1 (Correctness). Let P a process and Γ a static environment.

If ∃α ∈ Σ . Γ � P : αpro then IF(P)

Proof. The proof of the theorem and some propositions used to proof it is avail-
able in the web page of the authors in the full version of this paper
(http://www.polymtl.ca/crac/).

4 Admissible Interference in Cryptographic Protocols

In this section we will extend our process algebra with an algebra of message
specific to the cryptographic protocols. Indeed, the goal is to check the non
interference in the cryptographic protocols and to extend this verification to
verify some properties of security such as : confidentiality and authentication.

We use the standard message algebra used in the specification of cryptographic
protocols literature. The set of all messages, denoted by M, is defined by the
grammar given in the table 4. So, a message can be the identity of an agent, a
nonce, a key, a variable. We use also two operators: the pair and the encryption.

Table 4. Messages

M ::= A Agent | N Nonce
| K Key | x Variable
| (M1, M2) Pair | {M}K Encryption

After giving the syntax of the messages, we can detail the form of the actions.
We consider only two type of action : the sent action and the received action.
Thus, an action is identified by three things: The name of the channel of com-
munication, the type of the action and the message exchanged. Thus, the set of
all actions Act is defined as follows :

a ::= να
xy(m) Send action | να

xy(m) Reception action

The action να
xy(m) is the action that send the message m in the channel

charred between the agent x and y during the session α. The same for the
reception action να

xy(m).
The type α of a message represents the level of security of it (α ∈ Σ), and it’s

controlled by two facts : The kind of the action which will handle this message
(reception or send action) and the agent which makes the action. Indeed, the
same message can have two different type dependently of the kind of the action.
Then, we use judgment of the form :

Γ �a
s M : α

130 A. Fellah and J. Mullins

we read this : In the static environment Γ the message m sent by the agent A
has the type α (α ∈ Σ). And also :

Γ �a
r M : α

which we read : In the static environment Γ the message received by the agent
A has the type α (α ∈ Σ). When the kind of the action is not specified, this
means that the message to be typed has the same type if it is sent or received.
In the table 6 we present the rules to type messages.

Table 5. Typing rules for messages

(RTato) E(M) = α
Γ M : α

[M ∈ Mato] (RTpair)
Γ a

M1 : α1 Γ a
M2 : α2

Γ a (M1, M2) : sup(α1, α2)

(RTenc1)
Γ a

s M : α Γ a
s k

−1 : �
Γ a

s {M}k : inf(D, α)
[k ∈ Ca] (RTenc2)

Γ a
s M : α Γ a

s k
−1 : ⊥

Γ a
s {M}k : α

[k ∈ Ca]

(RTenc3) Γ a
s {M}k : ⊥ [k �∈ Ca] (RTsig)

Γ a
s M : α

Γ a
s {M}k−1 : α

(RTdec1)
Γ a

r M : α Γ a
s k : �

Γ a
r {M}k : α

[k ∈ Ca] (RTdec2)
Γ a

r k
−1 : ⊥

Γ a
r {M}k : ⊥ [k ∈ Ca]

(RTdec3) Γ a
r {M}k : ⊥ [k �∈ Ca]

The type of the messages differs between the ⊥ and the � type. It is the case
also for the key of encryption and decryption. Thus, in order to treat the cryp-
tographic protocol with symmetrical or asymmetrical key, we give a particular
signification to the type of the keys. If the type of a key is �, that means that
this key is a secret key which is not known by the intruder. However, if the key
has the ⊥ type, this means that either it is a public key or it is a key used by
an intruder. Thus, we distinguish between the last two cases by using the key
of decryption. Then, if the key of decryption, corresponding to a key of encryp-
tion of the ⊥ type, has the � type, we conclude that it’s a honest agent key.
In the contrary, we conclude that the key is used by an intruder. The intuitive
signification of each rule of the table 6 is given as follow :

RTato: The type of an atomic message (identities, key and nonce) is the type
associates to it in the static environment.

RTpair: The type of a pair is the upper limit of the type of its components.
RTenc1: If the type of a message M sent by an agent A is α, and the key k

has the � type and belongs to the knowledge of A, then the message M
encrypted by the key k sent by the agent A has the type ⊥. Thus, if the
message M has the type � then when we encrypt it with a key which doesn’t
belong to an intruder, we downgrade these data and associate them the type
⊥. Consequently, we admit implicitly the interference which can be between
the secret message M (type �), and the encrypted message (type ⊥).

Admissible Interference by Typing for Cryptographic Protocols 131

RTenc2: If a message is encrypted with the key of the intruder, then we consider
that the message in sent without encryption. Thus, the encrypted message
with the key of the intruder has the same type that the message not en-
crypted.

RTenc3: If an agent sends an encrypted message without having the key of en-
cryption, this means that he received it before, and that he only replicate it.
Thus, we associate the low level type to this message.

RTdec1: If a message M has the type α and it is encrypted by a high level key k
which belongs to agent A, then the message {m}k received by the agent A
has the type α because the agent A has the capacity of decrypting it.

RTdec2: If an agent receives an encrypted message which he doesn’t have the
key of decryption then this message has the type ⊥ .

RTdec3: If an agent receives an encrypted message which the key of encryption
has the type ⊥ and it belong to the knowledge of this agent, then this message
has the type ⊥.

Also we must extend the type system given in the table 3 by the two following
rule, to be able to type action from the type of the message exchanged in this
action.

Table 6. Typing rules for actions

(RTsend)
Γ a

s M : α
Γ νax(M) : αpro

(RTrecp) Γ a
r M : α

Γ νxa(M) : αpro

5 Example: The Woo and Lam Public Key Protocol

5.1 Specification of the Protocol

The Woo-Lam public key protocol is defined in the table 7. We have tree rules
in this protocol : the rule of the agent A (Initiator), the rule of the agent B
(Responder) and the rule of the server. We model the processes of the rule of
the agent A is specified as follows :

Table 7. Woo-Lam public key protocol

1 A → S : A, B
2 S → A : {KB}

K−1
S

3 A → B : {A, NA}KB

4 B → S : A, B, {NA}KS

5 S → B : {KA}
K−1

S
, {{NA, K, A, B}

K−1
S

}KB

6 B → A : {{NA, K, A, B}
K−1

S
, NB}KA

7 A → B : {NB}K

132 A. Fellah and J. Mullins

Init(A) := Cα
ar(A, B).Cα

ra({X}k−1
s

).Cα
ar({A, NA}X).

Cα
ra({{NA, Y, A, B}K−1

S
, Z}KA).Cα

ar({Z}Y)

The other roles (Responder, server) are specified in a similar way.
We need to model a malicious intruder that participates to the protocol. We

suppose that the intruder has the all control in the network : he can intercept
messages, create and send any message from his base of knowledge. However, for
simplify the example we use the following process to represent the intruder :

I := Cα
rb({Y }

K−1
S

, {{X, Z, A, B}
K−1

S
}KB).Cα

sr({KI}K−1
S

, {{X, Z, A, B}
K−1

S
}KB).

Cα
ra({{X, Z, A,B}

K−1
S

, Z}KA).Cα
br({{X, Z, A, B}

K−1
S

, NB}Y)

Thus the process that represents the protocol is the parallel composition of
all the agents that participate at it.

5.2 Verification of the Protocol

The goal of the verification is to detect if the process Pro is free interference.
For that we try to find a type α such as Γ � P : αpro. For this example,
it is sufficient to use only one copy of each agent (Init(A1), Resp(B1)). For
simplify the proof tree we denote Init(A1), Resp(B1) and Ser by A1, B1 and S
respectively. We use the following static environment:

Γ = {A �→ ⊥, B �→ ⊥, S �→ ⊥, I �→ ⊥, KA �→ ⊥, KB �→ ⊥, KS �→ ⊥, KI �→ ⊥
K−1

A �→ �, K−1
B �→ �, K−1

S �→ �, K−1
I �→ ⊥, NA �→ ⊥, NB �→ ⊥, K �→ �}

The table 8 gives the type of some messages exchanged in the protocol.
Thus the proof tree for the typing of the process Pro is given in the table

9. In this tree, each time that a process evolves, we will change its indexation.
Also, to not encumber the proof tree, we will not put the conditions of the rules
if they are checked (such as for the rule R||).

However, we will not be able to type this process. Indeed, in the tree Arb7 we
find that the message sent {{na, K, has, b}k−1

s
, NB}KI by the agent B has the

type �, and the message received by the intruder {{na, K, has, b}k−1
s

, NB}KI

has the type ⊥. Since the condition of the rule R|| imposes that the type of the
send action must be lower than the type of the reception action. Thus, we can
say that the process Pro is not free interference. This problem led to a known
flaw of confidentiality in this protocol [8].

Table 8. Type of some messages exchanged

Γ i
s {KI}

K−1
S

, {{NA, K, A, B}
K−1

S
}KB : ⊥ Γ s

r {KI}
K−1

S
, {{NA, K, A, B}

K−1
S

}KB : ⊥

Γ b
s {{NA, K, A, B}

K−1
S

, NB}KI : � Γ i
r {{NA, K, A, B}

K−1
S

, NB}KI : ⊥

Admissible Interference by Typing for Cryptographic Protocols 133

Table 9. Proof tree

Arb1 :

Γ �a
s A, B : ⊥

Γ � Cα
as(A, B) : ⊥pro

Ract

Γ �s
r A, B : ⊥

Γ � Cα
sa(A, B) : ⊥pro

Ract
Arb2

Γ � A1||B1||S1||I1 :?
R||

Arb2 :

Γ �s
s {KB}

K
−1
S

: ⊥

Γ � Cα
sa({KB}

K
−1
S

) : ⊥pro
Ract

Γ �a
r {KB}

K
−1
S

: ⊥

Γ � Cα
as({KB}

K
−1
S

) : ⊥pro
Ract

Arb3

Γ � A2||B1||S2||I1 :?
R||

Arb3 :

Γ �a
s {A, NA}KB

: ⊥

Γ � Cα
ab({A, NA}KB

) : ⊥pro
Ract

Γ �b
r {A, NA}KB

: ⊥

Γ � Cα
ba

({A, NA}KB
) : ⊥pro

Ract
Arb4

Γ � A3||B1||S3||I1 :?
R||

Arb4 :

Γ �b
s A, B, {NA}KS

: ⊥

Γ � Cα
bs(A, B, {NA}KS

) : ⊥pro
Ract

Γ �s
r A, B, {NA}KS

: ⊥

Γ � Cα
sb

(A, B, {NA}KS
) : ⊥pro

Ract
Arb5

Γ � A4||B2||S3||I1 :?
R||

Arb5 :

Γ �s
s {KA}

K
−1
S

, {{NA, K, A, B}
K

−1
S

}KB
: ⊥

Γ � Cα
si({KA}

K
−1
S

, {{NA, K, A, B}
K

−1
S

}KB
) : ⊥pro

Ract

Γ �i
r {KA}

K
−1
S

, {{NA, K, A, B}
K

−1
S

}KB
: ⊥

Γ � Cα
is

({KA}
K

−1
S

, {{NA, K, A, B}
K

−1
S

}KB
) : ⊥pro

Ract
Arb6

Γ � A4||B3||S4||I1 :?
R||

Arb6 :

Γ �i
s {KI }

K
−1
S

, {{NA, K, A, B}
K

−1
S

}KB
: ⊥

Γ � Cα
ib({KI }

K
−1
S

, {{NA, K, A, B}
K

−1
S

}KB
) : ⊥pro

Ract

Γ �b
r {KA}

K
−1
S

, {{NA, K, A, B}
K

−1
S

}KB
: ⊥

Γ � Cα
bi

({KA}
K

−1
S

, {{NA, K, A, B}
K

−1
S

}KB
) : ⊥pro

Ract
Arb7

Γ � A4||B3||S5||I2 :?
R||

Arb7 :

Γ �b
s {{NA, K, A, B}

K
−1
S

, NB}KI
: �

Γ � Cα
bi({{NA, K, A, B}

K
−1
S

, NB}KI
) : �pro

Ract

Γ �i
r {{NA, K, A, B}

K
−1
S

, NB}KI
: ⊥

Γ � Cα
ib

({{NA, K, A, B}
K

−1
S

, NB}KI
) : ⊥pro

Ract
Arb8

Γ � A4||B4||S5||I3 :?
[Cond]R||

6 Related Work

The research on formal method related to security has increased considerably.
However, based on the differences in the techniques and tools used, we can
find several disciplines in this focus of research. A complete bibliography and a
comparative study of these approaches can be found in [19, 5, 20, 7].

Recently, a promising new approach has been developed for the analyze of
the information flow : The use of the type systems. A general survey of these
approaches can be found in [22]. In a security typed language, the standard type
of expression is increased by some annotations that specify that now information
of a high level can influence the observation of low level. In this direction we found
several work [9, 13, 16].

For instance, in [13] the authors are extended the asynchronous π-calculus
[6, 15] with types: The security π-calculus. The authors use a mild variation of
the I-types of [14]; essentially types are sets of read/write capabilities, where
in addition each capability is annoted by a security level. So, the behavior of
a process is relative to a security level. Then, Hennessy enforce the notion of
non-interference by using a must test equivalence.

Type system are also used for the verification of other properties such that
confidentiality and authentication. For instance we found [4, 18]. In [4], Abadi
extends the spi-calculus [3] with type system that guarantee confidentiality. In

134 A. Fellah and J. Mullins

this approach messages and channels are assigned different types, and security
flaws are identified as type violations. In [18], the authors use a type system that
are based really in a inference system. Indeed, every message is associated to a
sequence of messages that an intruder can send to have it. Thus, the types used
is very sophisticated, compared to general type, and are based on a inference
system that infers the knowledge of an intruder.

Also, many approaches [10, 17] have used non-interference to analyze crypto-
graphic protocols. In [10] a wide range of security properties have been shown to
be expressible in terms of non-interference. In [17] the authors express security
properties by using the admissible interference [21], that is expressed by simply
identifying downgrading actions corresponding to encryption actions occurring
in a protocol.

7 Conclusion and Future Work

In this paper we present a correct type system to detect non interference in a
process. Also, we extend this type system to verify admissible interference in
cryptographic protocol. The rules for typing message in cryptographic are ori-
ented to the verification of the secrecy property. However, we will extend this
work by giving an uniform framework to the verification of some properties of
security as confidentiality, authentication and denial of service. This framework
will be based on a general definition of this properties from the admissible inter-
ference. Consequently, we will be able to verify all this properties with the same
type system. Also, we intend to give a sound inference algorithm that mechanizes
the type system given in this paper.

References

1. C. Piazza A. Bossi and S. Rossi. Modelling downgrading in information flow se-
curity. In Proceedings of the 17th IEEE Computer Security Foundations Workshop
(CSFW’04), page 187. IEEE Computer Society, 2004.

2. A. Sabelfeld A. C. Myers and S. Zdancewic. Enforcing robust declassification.
In Proceedings of the 17th IEEE Computer Security Foundations Workshop, pages
172–186, June 2004.

3. M. Abadi and A. D. Gordon. A Calculus for Cryptographic Protocols: The Spi
Calculus. In Proceedings of the Fourth ACM Conference on Computer and Com-
munications Security. ACM Press, April 1997.

4. Martin Abadi. Secrecy by typing in security protocols. J. ACM, 46(5):749–786,
1999.

5. G. Bella. Inductive Verification of Cryptographic Protocols. PhD thesis, University
of Cambridge, Mars 2000.

6. G. Boudol. Asynchrony and the π-calulus. Technical report, INRIA-Sophia An-
tipolis, 1992.

7. L. Buttyán. Formal methods in the design of cryptographic protocols. Technical
Report SSC/1999/038, Institute for computer Communications and Applications,
November 1999.

Admissible Interference by Typing for Cryptographic Protocols 135

8. U. Carlsen. Cryptographic Protocol Flaws. In Proceedings of the IEEE Computer
Security Foundations Workshop VII, Franconia, pages 192–200. IEEE, June 1994.

9. S. Conchon. Modular information flow analysis for process calculi. In Proc. of
Foundations of Computer Security, pages 23–34, 2002.

10. R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Informa-
tion Flow). In Foundations of Security Analysis and Design - Tutorial Lectures.
LNCS 2171., pages 331–396. Springer, 2001.

11. Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference: parame-
terizing non-interference by abstract interpretation. In POPL ’04: Proceedings of
the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming lan-
guages, pages 186–197. ACM Press, 2004.

12. J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Pro-
ceedings of the 1982 IEEE Symposium on Research in Security and Privacy, pages
11–20. IEEE press, April 1982.

13. M. Hennessy. The Security Picalculus and Non-interference. Journal of Logic and
Algebraic Programming, 2003. To Appear.

14. M. Hennessy and J. Riely. Information flow vs. resource access in the asynchro-
nous π-calculus. ACM Transactions on Programming Languages and Systems,
24(5):566–591, September 2002.

15. K. Honda and M. Tokoro. On asynchronous communication semantics. In Proceed-
ings of the ECOOP’91 Workshop on Object-Based Concurrent Computing, volume
612, pages 21–51. Springer-Verlag, 1992.

16. K. Honda and N. Yoshida. A Uniform Type Structure for Secure Information Flow.
ACM SIGPLAN Notices, 37(1):81–92, January 2002.

17. S. Lafrance and J. Mullins. Bisimulation-based non-deterministic admissible in-
terference and its application to the analysis of cryptographic protocols. In James
Harland, editor, Electronic Notes in Theoretical Computer Science, volume 61. El-
sevier Science Publishers, 2002.

18. M. Mejri M. Debbabi, N. A. Durgin and J. C. Mitchell. Security by typing. Inter-
national Journal on Software Tools for Technology Transfer, 4(4):472–495, 2003.

19. C. Meadows. Formal methods for cryptographic protocol analysis: emerging issues
and trends, 2003.

20. M. Mejri. From type theory to the verification of security protocols. PhD thesis,
Laval University, February 2001.

21. J. Mullins. Nondeterministic Admissible Interference. Journal of Universal Com-
puter Science, 6(11):1054–1070, November 2000.

22. A. Sabelfeld and A. Myers. Language-Based Information-Flow Security. IEEE
Journal on Selected Areas in Communications, 21(1), 2003.

On the Security Bounds of
CMC, EME, EME+ and EME∗

Modes of Operation

Raphael C.-W. Phan1 and Bok-Min Goi2,�

1 Information Security Research (iSECURES) Lab,
Swinburne University of Technology (Sarawak Campus),

93576 Kuching, Malaysia
rphan@swinburne.edu.my

2 Centre for Cryptography and Information Security (CCIS),
Faculty of Engineering, Multimedia University,

63100 Cyberjaya, Malaysia
bmgoi@mmu.edu.my

Abstract. Since 2002, variants of two tweakable block cipher modes of
operation, CMC and EME, have been presented by Halevi and Rogaway
that are suitable for encryption of disk sectors. In this paper, we show
that the security bounds given in their proofs are tight, and hence com-
plement the security proofs of the designers. In particular, we show how
to distinguish the CMC, EME, EME+ and EME∗ modes from random
tweakable permutations with negligible effort and 2n/2 chosen plaintexts,
where n is the block size in bits. Further, we point out that both modes
leak secret information via side-channel attacks (timing and power) due
to the data-dependent internal multiplication operation.

Keywords: Block cipher, modes of operation, tweakable schemes, disk
encryption, security bounds, distinguisher.

1 Introduction

A block cipher is defined as

EK : {0, 1}k × {0, 1}n → {0, 1}n, (1)

where n denotes the block size, and k the length of the secret key, K. Meanwhile,
a block cipher mode of operation is an encryption scheme, EK that makes use
of a block cipher, EK as a basic primitive in order to encrypt a message that is
of length a multiple, m of the block size, n. Formally, this is defined as:

EK : {0, 1}k × {0, 1}mn → {0, 1}mn, (2)

where m denotes the number of n-bit blocks being operated upon.
� The second author acknowledges the Malaysia IRPA grant (04-99-01-00003-EAR).

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 136–146, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

On the Security Bounds of CMC, EME, EME+ and EME∗ 137

In Crypto ’02, Liskov et al. [20] first proposed a new cryptographic primitive
known as a tweakable block cipher. Informally, besides having n-bit plaintexts
and a k-bit secret key, K, a tweakable block cipher also possesses an extra t-bit
input, called a tweak, T . The tweakable block cipher, ET

K is defined as follows:

ET
K : {0, 1}k × {0, 1}t × {0, 1}n → {0, 1}n. (3)

Tweakable block ciphers are tailor-made for special applications such as disk-
sector encryption, which requires the bulk encryption of large amounts of data
for storage in different sectors on the disk. Therefore, tweakable block ciphers
must fulfill the following properties:

– a single bit change in the plaintext should impact the complete ciphertext
sector (variability).

– each sector can be encrypted independently of other sectors (efficiency).

A tweakable block cipher should be viewed as a strong random permutation and
be indistinguishable from any other random tweakable permutation (an oracle
that realizes a T -indexed family of random permutations and their inverses),
even if an attacker has access to encryption and decryption oracles, ability to
obtain adaptive-chosen plaintext/ciphertext queries, and control over the tweak.

Building on this construction, several tweakable block cipher modes of oper-
ation, namely CMC, EME, EME+ and EME∗ were recently presented in [9,10],
[11,12], and [7,8] at Crypto ’03, CT-RSA ’04 and Indocrypt ’04 respectively.
Thus, there is continued interest not only by the designers but the crypto com-
munity in these modes and their variants. Formally, a tweakable block cipher
mode of operation, ET

K is defined as:

ET
K : {0, 1}k × {0, 1}t × {0, 1}mn → {0, 1}mn. (4)

In this paper, we describe how to distinguish the CMC, EME, EME+ and
EME∗ modes from random tweakable permutations, by using 2n/2 chosen plain-
text (CP) queries. Note that even with such queries, one would not be able to
distinguish the underlying block cipher, EK from random permutation.

Our results show that the upper bounds in the security proofs of the modes
are tight. These complement the security proofs of the designers (up to a factor
involving the number of blocks, m), and in this respect are somewhat similar
to those by Ferguson [5] on OCB, and by Mitchell [24] on XCBC, TMAC and
OMAC, respectively. However, in our case it is interesting when comparing our
results with the security proofs of the CMC, EME and EME∗ in [9,10], [11,12],
and [7,8]. The upper bounds on the advantage of an attacker for CMC, EME
and EME∗ are O((mq)2×2−n), O(q2×2−n) and O((m+q)2×2−n), respectively,
where q is the number of text queries made by the attacker. In our case, q = 2n/2

and our results are in line with the upper bound for EME but for CMC and
EME∗, our results show that the upper bound does not need to depend on the
number of blocks, m of the plaintext message. As an aside, we also discuss in the

138 R.C.-W. Phan and B.-M. Goi

Appendix how these modes leak secret information via the timing [18] and power
[19] side-channels due to the data-dependent internal multiplication operation
being used in them.

1.1 Related Work

Tweakable block ciphers were first suggested by Liskov et al. [20] in 2002. Ro-
gaway [25] proposed in 2002 the Encrypt-Mask-Decrypt (EMD), and Encrypt-
Mask-Encrypt (EME) modes of operation, both of which are tweakable schemes.
[25] was in fact the paper that proposed the early versions of the CMC and EME
modes, then known as EMD and EME respectively. However, Joux [15] showed
in 2003 that both these early modes are insecure and fall to simple distinguish-
ing attacks. In particular, they could be distinguished with only 3 adaptively-
chosen plaintexts/ciphertexts (ACPs). Subsequently, Rogaway in collaboration
with Halevi proposed new versions called CMC [9,10] and EME [11,12] respec-
tively. To settle any further confusion, we emphasize here that though EMD
was renamed to CMC, EME remained with the same name. For the rest of
this manuscript, the term “EME” shall refer to the new EME version proposed
in [11,12]. Finally, Halevi on his own recently proposed EME∗ [7,8] as another
variant of EME.

2 The CMC, EME, EME+ and EME∗ Modes

The CBC-Mask-CBC (CMC) mode of operation was presented by Halevi and
Rogaway [9,10]. It operates on a plaintext message, P of m blocks, each block
of n bits, i.e. P = (P1, . . . , Pm) where |Pi| = n, for i ∈ {1, . . . , m}. Besides the
input P , there is also another n-bit input tweak, T . The CMC uses a secret key,

Table 1. CMC Mode Encryption

Algorithm ET
K(P1 . . . Pm)

T = EK2(T)
PPP0 = T
for i ← 1 to m do

PPi ← Pi ⊕ PPPi−1

PPPi ← EK1(PPi)
M ← 2(PPP1 ⊕ PPPm)
for i ∈ [1 . . . m] do

CCCi ← PPPm+1−i ⊕ M
CCC0 ← 0n

for i ∈ [1 . . . m] do
CCi ← EK1(CCCi)
Ci ← CCi ⊕ CCCi−1

C1 ← C1 ⊕ T
return C1 . . . Cm

On the Security Bounds of CMC, EME, EME+ and EME∗ 139

P1

�
T �

�
EK1

PP1

PPP1

�
M �

�

CCC4

EK1

CC4

�

�
C4

�

P2

�
�

�
EK1

PP2

PPP2

�
M �

�

CCC3

EK1

CC3

�

�
C3

�

P3

�
�

�
EK1

PP3

PPP3

�
M �

�

CCC2

EK1

CC2

�

�
C2

�

P4

�
�

�
EK1

PP4

PPP4

�
M �

�

CCC1

EK1

CC1

�

�
C1

� T

Fig.1. Encrypting under the CMC mode for a message of m = 4 blocks, and
where M = 2(PPP1 ⊕ PPP4) = 2(CCC1 ⊕ CCC4), and T = EK2(T)

K = (K1, K2) where K1 is used for encryption of plaintext blocks while K2 is
used to encrypt the tweak, T .

Table 1 gives the algorithm for CMC mode encryption1, while Figure 1 illus-
trates this for m = 4 blocks. For all modes we discuss in this paper, multiplication
by 2 is done in GF(2n). More details of this are in the Appendix and [9,10]. Note
that the output ciphertext blocks in CMC are taken in reverse order from the
input plaintext blocks. This was done by the designers to maintain the symmetry
of the encryption and decryption operations.

Further, note how similar the CMC mode is to the double modes in particular
double CBC [13]. Both require two encryption layers to process each block of
plaintext. The main differences are that CMC uses an extra internal mask, M ,
and only one key is used in the CMC’s block encryptions, in contrast to double
modes where an independent key is used for each different block encryption layer.
A further difference between them is that in the CMC mode, the second layer of
encryption is reversed, i.e. performed right-to-left rather than left-to-right. That
being said, we remark that aside from the single key used for mode encryption,
CMC does use another key to encrypt the tweak. Therefore, both CMC and
double modes effectively use two keys. In terms of efficiency, CBC requires 2m
single EK encryptions to process an m-block plaintext, while CMC requires
2m + 1 single EK encryptions, where one encryption is due to the computation
of T .
1 We have omitted describing the mode decryptions as they are irrelevant to our

attacks. The interested reader is referred to [9,10] for further details.

140 R.C.-W. Phan and B.-M. Goi

Meanwhile, Halevi and Rogaway [11,12] also presented another mode of op-
eration, namely the the Encrypt-Mask-Encrypt (EME). The EME mode encryp-
tion is defined in Table 2, while Figure 2 illustrates this for m = 4 blocks.

Observe that the EME is essentially a double ECB mode [13] except for the
use of extra XOR maskings in between the block encryption layers. While a
double ECB mode would use two unique keys for each encryption layer, EME
only uses one key, and so the keylength of EME is only half that of the double
modes. Further comparing efficiency, double modes would require 2m single EK

encryptions to process an m-block plaintext, while EME requires 2m + 2 single
EK encryptions, where one extra encryption is due to the computation of L
while the other is due to the computation of MC = EK(MP).

Two other variants of the EME are the EME+ and EME∗, proposed re-
spectively in [11,12] and [7,8] for handling long plaintext messages with blocks,
m > n.

Table 2. EME Mode Encryption

Algorithm ET
K(P1 . . . Pm)

L = 2EK(0n)
for i ∈ [1 . . . m] do

PPi ← 2i−1L ⊕ Pi

PPPi ← EK(PPi)
SP ← PPP2 ⊕ · · · ⊕ PPPm

MP ← PPP1 ⊕ SP ⊕ T
MC ← EK(MP)
M ← MP ⊕ MC
for i ∈ [2 . . . m] do

CCCi ← PPPi ⊕ 2i−1M
SC ← CCC2 ⊕ · · · ⊕ CCCm

CCC1 ← MC ⊕ SC ⊕ T
for i ∈ [1 . . . m] do

CCi ← EK(CCCi)
Ci ← CCi ⊕ 2i−1L

return C1 . . . Cm

3 The Security Bounds for CMC, EME, EME+ and
EME∗ Are Tight

In this section, we show that the security bounds for the CMC, EME, EME+

and EME∗ modes are tight by illustrating how to distinguish these modes from
random tweakable permutations.

3.1 The CMC Mode

We start with a basic distinguisher. Obtain the encryptions of 2n/2 messages,
P (i) = (i, 0, . . . , 0) under tweaks, Tj = j where i, j ∈ {1, 2, . . . , 2n/2} and thus

On the Security Bounds of CMC, EME, EME+ and EME∗ 141

P1

�
L �

�
EK

PP1

PPP1

�
SP ⊕ T �

�MP

EK

�
SC ⊕ T �

MC

�

CCC1

EK

CC1

�

�
C1

L �

P2

�
2L �

�
EK

PP2

PPP2

�
2M

�

�

�

CCC2

EK

CC2

�
C2

2L �

P3

�
4L �

�
EK

PP3

PPP3

�
4M

�

�

�

CCC3

EK

CC3

�
C3

4L �

P4

�
8L �

�
EK

PP4

PPP4

�
8M

�

�

�

CCC4

EK

CC4

�
C4

8L �

Fig.2. Encrypting under the EME mode for a message of m = 4 blocks,
where L = 2EK(0n), SP = PPP2 ⊕ PPP3 ⊕ PPP4, M = MP ⊕ MC, and
SC = CCC2 ⊕ CCC3 ⊕ CCC4

obtain 2n pairs (P (i), Tj), (P (i)′, T ′
j) such that if the black box contains the CMC,

then at least one pair has a collision at PP1, and therefore satisfies the conditions:

PPP1 = EK(PP1) = EK(P1 ⊕ EK2(T)) (5)
= EK(PP ′

1) = EK(P ′
1 ⊕ EK2(T

′)) (6)
= PPP ′

1. (7)

This collision propagates through to the other blocks, and so

M = 2(PPP1 ⊕ PPPm) (8)
= 2(PPP ′

1 ⊕ PPPm) (9)
= M ′. (10)

Since all the plaintext blocks in the two messages are equal except for the
first block, and since the only other block affected by the tweak, T is the last
block, then we will observe

Ci = C′
i ; i = 2, . . . , m. (11)

142 R.C.-W. Phan and B.-M. Goi

Checking for this is trivial.
In contrast for a random tweakable permutation, such a condition would

only occur with probability 2−n×(m−1), whereas for CMC, this is satisfied with
probability 2−n. Therefore, one could distinguish between CMC and a random
tweakable permutation.

This allows to distinguish the CMC with 2n chosen plaintexts/tweaks and
negligible effort.

We can do better by noting that a collision at PP1 works as long as one finds
P, P ′, T, T ′ such that

P1 ⊕ P ′
1 = T ⊕ T ′. (12)

By birthday analysis, one should be able to come up with this after seeing
about 2n/2 P, P ′ pairs, i.e. a collision occurs. Note that equation (12) is essen-
tially random since a block cipher primitive was applied to derive these values.
In all, this involves about 2n/2 chosen plaintexts/tweaks.

3.2 The EME, EME+ and EME∗

Distinguishing the EME mode works by obtaining the encryptions of 2n/2 mes-
sages P (i) =(P (i)

1 , P
(i)
2 , P

(i)
3 , . . . , P

(i)
m)= (i, i, P (i)

3 , . . . , P
(i)
m) for i ∈{1, 2, . . . , 2n/2},

where P
(i)
j for j ∈ {3, . . . , m} are any constant fixed value2. These form 2n pairs

of P, P ′ that differ only in their first two blocks and equal in all other blocks.
For any such pair, if the black box contains the EME, then with a probability

2−n a collision occurs at their MP point, that is

PPP1 ⊕ SP ⊕ T = PPP ′
1 ⊕ SP ′ ⊕ T (13)

and so
MP = MP ′. (14)

When this happens, then
MC = MC′, (15)

M = MP ⊕MC = MP ′ ⊕MC′ = M ′ (16)

and this collision propagates to the other blocks via M . Since all the blocks
in the two messages are equal except for the first two blocks, then we will observe

Ci = C′
i ; i = 3, . . . , m. (17)

Note that for a random tweakable permutation, such a condition would only
occur with probability 2−n×(m−2), m > 2, whereas for EME, this is satisfied with

2 In fact, we can use any group of two messages as long as they are distinct in any
two blocks and equal in the other blocks.

On the Security Bounds of CMC, EME, EME+ and EME∗ 143

probability 2−n. Therefore, one could distinguish between EME and a random
tweakable permutation.

In summary, we can distinguish the EME with 2n/2 chosen plaintexts and
negligible effort.

Note that this distinguisher equally applies to both EME+ and EME*, two
very similar variants of EME proposed respectively in [11,12] and [7,8] for han-
dling long plaintext messages with blocks, m > n. In this case, a similar collision
occurs between any such pair with probability 2−n at MP1 halfway through
encrypting their first blocks, propagating further to MC1 and hence M1 = M ′

1
and this propagates through to all other blocks, and the distinguishing attack
proceeds along the same lines as that on EME.

4 Concluding Remarks

We have shown that the upper bounds of the security proofs of the CMC, EME,
EME+ and EME∗ modes are tight, in complement to the designers’ results up
to a factor involving the number of blocks. We list in Table 3 a comparison
between our results and previous ones on the early EMD and old EME modes.
Note that the complexities are given as the number of texts required as well as the
number of single encryptions. We also remark that Joux’s results on the earlier
modes require adaptively-chosen plaintext/ciphertext (ACP) queries, while ours
require the more practical chosen (CP) plaintext queries. Further, Joux’s result
on the old EME requires the attacker to have control over the tweak, T and
hence control over usage of different sectors. In contrast, our results on the new
EME in Section 3.2 makes use of the same T and this can be carried out on the
same disk sector.

Table 3. Comparing Distinguisher Complexities on EMD, CMC, EME, EME+ and
EME∗

Mode Text Complexities Source
EMD [25] 3 ACP s [15]

Old EME [25] 3 ACP s [15]
CMC [9,10] 2n/2 CP s This paper

New EME [11,12] 2n/2 CP s This paper
EME+ [11,12] 2n/2 CP s This paper
EME∗ [7,8] 2n/2 CP s This paper

The upper bounds on the advantage of an attacker for CMC[9,10], EME
[11,12], and EME∗ [7,8] are O((mq)2×2−n), O(q2×2−n) and O((m+q)2×2−n),
respectively. Since q = 2n/2 in our case, our results match the upper bound for
EME but show that the upper bounds of CMC and EME∗ do not need to depend
on the number of blocks, m.

144 R.C.-W. Phan and B.-M. Goi

Acknowledgement

We thank the (past and present) anonymous referees for their constructive com-
ments that have greatly improved this paper. We thank God for His blessings,
and our wives and daughters for their unwavering support.

References

1. E. Biham, “Cryptanalysis of Multiple Modes of Operation”, Asiacrypt ’94, Lecture
Notes in Computer Science, Vol. 917, pp. 278–292, Springer-Verlag, 1994.

2. E. Biham, “Cryptanalysis of Multiple Modes of Operation”, Journal of Cryptology,
Vol. 11, pp. 45–58, Springer-Verlag, 1998.

3. E. Biham, “Cryptanalysis of Triple Modes of Operation”, Journal of Cryptology,
Vol. 12, pp. 161–184, Springer-Verlag, 1999.

4. J. Black and P. Rogaway, “A Block-cipher Mode of Operation for Parallizable
Message Authentication”, Advances in Cryptology - Eurocrypt ’02, Lecture Notes
in Computer Science, Vol. 2332, pp. 384–397, Springer-Verlag, 2002.

5. N. Ferguson, “Collsion Attacks on OCB”. Comments to NIST, February 11, 2002.
Available from NIST’s web page at http://csrc.nist.gov/CryptoToolkit/modes/.

6. FIPS 81, “DES Modes of Operation”, US Department of Commerce, National
Bureau of Standards, 1980.

7. S. Halevi, “EME∗: Extending EME to Handle Arbitrary-length Messages with As-
sociated Data”, Progress in Cryptology - Indocrypt ’04, Lecture Notes in Computer
Science, Vol. 3348, pp. 315–327, Springer-Verlag, 2004.

8. S. Halevi, “EME∗: Extending EME to Handle Arbitrary-length Mes-
sages with Associated Data”, full version, Cryptology ePrint archive,
http://eprint.iacr.org/2004/125/, 2004.

9. S. Halevi and P. Rogaway, “A Tweakable Enciphering Mode”, Advances in Cryp-
tology - Crypto ’03, Lecture Notes in Computer Science, Vol. 2729, pp. 482–499,
Springer-Verlag, 2003.

10. S. Halevi and P. Rogaway, “A Tweakable Enciphering Mode”, full version, Cryp-
tology ePrint archive, http://eprint.iacr.org/2003/148/, 2003.

11. S. Halevi and P. Rogaway, “A Parallelizable Enciphering Mode”, Topics in Cryp-
tology - CT-RSA ’04, Lecture Notes in Computer Science, Vol. 2964, pp. 292–304,
Springer-Verlag, 2004.

12. S. Halevi and P. Rogaway, “A Parallelizable Enciphering Mode”, full version, Cryp-
tology ePrint archive, http://eprint.iacr.org/2003/147/, 2003.

13. H. Handschuh and B. Preneel, “On the Security of Double and 2-key Triple Modes
of Operation”, FSE ’99, Lecture Notes in Computer Science, Vol. 1636, pp. 215-230,
Springer-Verlag, 1999.

14. T. Iwata, “Comments on “On the Security of XCBC, TMAC and OMAC” by
Mitchell”. Comments to NIST, September 19, 2003. Available from NIST’s web
page at http://csrc.nist.gov/CryptoToolkit/modes/.

15. A. Joux, “Cryptanalysis of the EMD Mode of Operation”, Advances in Cryptology
- Eurocrypt ’03, Lecture Notes in Computer Science, Vol. 2656, pp. 1–16, Springer-
Verlag, 2003.

16. J. Kilian and P. Rogaway, “How to Protect DES Against Exhaustive Key Search”,
Advances in Cryptology - Crypto ’96, Lecture Notes in Computer Science,
Vol. 1109, pp. 252–267, Springer-Verlag, 1996.

On the Security Bounds of CMC, EME, EME+ and EME∗ 145

17. J. Kilian and P. Rogaway, “How to Protect DES Against Exhaustive Key Search
(an Analysis of DESX)”, Journal of Cryptology, Vol. 14, No.1, pp. 17–35, 2001.

18. P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems”, Advances in Cryptology - Crypto ’96, Lecture Notes in Computer
Science, Vol. 1109, pp. 104–113, Springer-Verlag, 1996.

19. P. Kocher, J. Jaffe and B. Jun, “Differential Power Analysis,” Advances in Cryp-
tology – Crypto ’99, Lecture Notes in Computer Science, Vol. 1666, pp. 388–397,
Springer-Verlag, 1999.

20. M. Liskov, R. Rivest and D. Wagner, “Tweakable Block Ciphers”, Advances in
Cryptology - Crypto ’02, Lecture Notes in Computer Science, Vol. 2442, pp. 31–
46, Springer-Verlag, 2002.

21. S. Mangard, “A Simple Power-Analysis (SPA) Attack on Implementations of the
AES Key Expansion”, ICISC ’02, Lecture Notes in Computer Science, Vol. 2587,
pp. 343–358, Springer-Verlag, 2003.

22. S. Mangard, “Securing Implementations of Block Ciphers against Side-Channel At-
tacks”, PhD Dissertation, Institute for Applied Information Processing and Com-
munications (IAIK), Graz University of Technology, August 2004.

23. R. Mayer-Sommer, “Smartly Analyzing the Simplicity and the Power of Simple
Power Analysis on Smartcards”, CHES ’00, Lecture Notes in Computer Science,
Vol. 1965, pp. 78–92, Springer-Verlag, 2000.

24. C.J. Mitchell, “On the Security of XCBC, TMAC and OMAC”. Com-
ments to NIST, August 19, 2003. Available from NIST’s web page at
http://csrc.nist.gov/CryptoToolkit/modes/.

25. P. Rogaway, “The EMD Mode of Operation (a Tweaked, Wide-blocksize, Strong
PRP)”, Cryptology ePrint archive, http://eprint.iacr.org/2002/148/, 2002.

Appendix: Timing and Power Attacks on CMC, EME,
EME+ and EME∗

The multiply-by-2 operation used in CMC [9,10], EME [11,12], EME+ and EME∗

[7,8] is data-dependent, in the sense that a conditional XOR is performed depen-
dent on the value of the most significant bit (MSB) of the input data. In more
detail, a multiplication of a 128-bit L = Ln−1 . . . L1L0 ∈ {0, 1}n by 2 is defined
by the designers as:

2L = L # 1 if MSB(L) = 0, (18)

and
2L = L # 1 ⊕ Const87 if MSB(L) = 1, (19)

where L # 1 means Ln−2Ln−3 . . . L1L00, and Const87means a constant decimal
87.

This conditional XOR operation allows for one to mount a timing attack [18]
on these modes. In particular, the operation would take a slightly longer time if
the MSB of L is 1, compared to the case where it is 0. This allows an attacker
to differentiate between the MSB values of the input, L to the multiply-by-2
operation. In fact, since the modes are claimed to be secure against variable
length input queries, an attacker could obtain queries from the modes under
differing input lengths, each time increasing the block length by 1.

146 R.C.-W. Phan and B.-M. Goi

For example, suppose we have m = 2 for EME. We input a plaintext P =
(P1, P2) to the EME oracle. Consider the processing of the second3 block, P2
which involves two 2L operations and one 2M operation. Depending on the
values of L and M , the processing of the second block would require either of
4 cases: two conditional XOR operations (due to an MSB of 1 in the input to
2L), one conditional XOR operation (due to an MSB of 1 in the input to 2M),
all three XORs or neither. This therefore leaks information on the MSBs of L
and M . Further, repeating the query by reusing the same plaintext but with
an extra block (m = 3 in this case), to obtain P = (P1, P2, P3) then this extra
block would entail two additional 2L and one additional 2M operation. Similarly,
observing the difference in time taken to process this plaintext, one could guess
which of the 2L and 2M operations on the block P3 require the conditional XOR
operation, and guess the MSBs of their inputs.

Table 4. Four Cases of Conditional XORs at Each Block

Total XORs MSB of input to 2L MSB of input to 2M

0 0 0
1 0 1
2 1 0
3 1 1

For each block we have 4 cases: one conditional XOR, two, three or none,
then since we are accummulating on all blocks, the sum of the differences (be-
tween whether an XOR is occuring at each multiply-by-2 operation) would be
bigger than the case where only one block is considered. And because each of
the 4 cases is due to a unique cause (as per Table 4), their combinations (af-
ter accummulation) are distinguisable since they do not run through the entire
combinations space.

Note that this leakage of the MSBs of L and M could also be observed via
power analysis [19]. A conditional XOR with Const87 = 10000111B (in binary)
means 4 bits will be complemented hence a state-changing transition (from 0 to
1 or from 1 to 0) would occur. It has been noted in [22,21] that state-changing
transitions dissipate significantly more power than state-preserving (from 0 to
0 or from 1 to 1) transitions, thus an XOR occuring for each multiply-by-2
operation would mean significantly more power dissipation than the case where
the XOR is not done, especially since we would be accummulating on all blocks
with 3 conditional XORs per block.

3 The first block contains only the L computation, which has a fixed input of 0n and
therefore MSB of 0, so no conditional XOR is performed.

On the Security of Encryption Modes of MD4,
MD5 and HAVAL�

(Extended Abstract)

Jongsung Kim1,��, Alex Biryukov1, Bart Preneel1, and Sangjin Lee2

1 Katholieke Universiteit Leuven, ESAT/SCD-COSIC,
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{Kim.Jongsung, Alex.Biryukov, Bart.Preneel}@esat.kuleuven.be
2 Center for Information Security Technologies(CIST),

Korea University, Seoul, Korea
{sangjin}@cist.korea.ac.kr

Abstract. In this paper, we cryptanalyze the compression functions
of MD4, MD5 and 4-, 5-pass HAVAL in encryption mode. We exploit
the recently proposed related-key rectangle and boomerang techniques
to show non-randomness of MD4, MD5 and 4-, 5-pass HAVAL and to
distinguish them from a randomly chosen cipher. The attacks are highly
practical and have been confirmed by our experiments.

1 Introduction

MD4 [14] is a cryptographic hash function introduced in 1990 by Rivest. It uses
basic arithmetic operations and several Boolean functions which are suitable for
fast software implementations on 32-bit processors. After MD4 was published,
several hash functions based on the design philosophy of MD4 have been pro-
posed: MD5 [15], HAVAL [23], RIPEMD [24], RIPEMD-160 [5], SHA-1 [25],
SHA-256 [26], etc.

In 2004 and 2005 several important cryptanalytic articles [1, 2, 18, 19, 20, 21]
have been published that demonstrate collisions for the MD4-family of hash
functions. Especially, a “precise” differential attack proposed by Wang et al.

� This work was supported in part by the Concerted Research Action (GOA) Am-
biorics 2005/11 of the Flemish Government and by the European Commission
through the IST Programme under Contract IST2002507932 ECRYPT and in
part by the MIC(Ministry of Information and Communication), Korea, under the
ITRC(Information Technology Research Center) support program supervised by the
IITA(Institute of Information Technology Assessment).

�� The first author was financed by a Ph.D. grant of the Katholieke Universiteit Leuven
and supported by the Korea Research Foundation Grant funded by the Korean
Government(MOEHRD) (KRF-2005-213-D00077).

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 147–158, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

148 J. Kim et al.

Table 1. Distinguishing Attacks of Encryption Modes of MD4, MD5 and HAVAL

Primitive Type of Number of Data Number of Paper
Attack Source Keys Complexity Weak Keys

MD4 R 2 269RK-CP · This paper
B† 2 218RK-CP/218RK-ACC · This paper
B† 2 2RK-CP/2RK-ACC 2320 This paper
R 4 269RK-CP · This paper
B† 4 26RK-CP/26RK-ACC · This paper
B† 4 2RK-CP/2RK-ACC 2384 This paper

MD5 D 1 250CP · [16]
R 2 2102.8RK-CP · This paper
B 2 280.6RK-CP/278.6RK-ACC · This paper
B† 2 12RK-CP/12RK-ACC 296 This paper
R 4 271.1RK-CP · This paper
B† 4 213.6RK-CP/211.6RK-ACC · This paper
B† 4 6RK-CP/6RK-ACC 2352 This paper

HAVAL D 1 2127CP · [22]
(4 passes) R 2 2148.5RK-CP · This paper

B† 2 237.9RK-CP/235.9RK-ACC · This paper
B† 2 212.3RK-CP/212.3RK-ACC 2576 This paper
R 4 2133RK-CP · This paper
B† 4 211.6RK-CP/29.6RK-ACC · This paper
B† 4 32RK-CP/32RK-ACC 2896 This paper

HAVAL D 1 2170CP · [22]
(5 passes) R 2 2188.6RK-CP · This paper

B 2 2127.9RK-CP/2125.9RK-ACC · This paper
R 4 2158.5RK-CP · This paper
B 4 263RK-CP/261RK-ACC · This paper

†: the attack can be implemented in a real time
D: Differential, B: Boomerang, R: Rectangle
RK: Related-Key, CP: Chosen Plaintexts, ACC: Adaptively Chosen Ciphertexts
Time complexity is the same as the amount of data complexity

enables us to greatly improve previous known collision attacks of MD4, MD5,
HAVAL, RIPEMD, SHA-0 and SHA-1 [18, 19, 20, 21].

There have been also several cryptanalytic articles that investigate non-
randomness of the compression functions of MD5, HAVAL, SHA-1 and SHA-
256 in encryption mode. The encryption modes of SHA-1 and SHA-256 have
been proposed in the NESSIE project, which are called SHACAL-1 and
SHACAL-2 [7], respectively. For the encryption modes of SHA-1 and SHA-
256, the security has been checked against various block cipher cryptanalyses
[3, 6, 8, 9, 10, 12, 13, 16, 17], while differential cryptanalysis has been applied to
the encryption modes of MD5 and HAVAL [16, 22].

In this paper, we check the security of encryption modes of MD4, MD5 and
HAVAL against the recently proposed related-key rectangle and boomerang at-
tacks [4, 9, 10, 13], and we compare our results with the previous ones in terms
of distinguishing attacks. Especially, we can distinguish the encryption modes
of MD4, MD5 and 4-pass HAVAL from a randomly chosen cipher in practice
by using a related-key boomerang attack. Furthermore, we can distinguish them
more efficiently for a large class of weak keys (i.e., special subset of messages in
hash mode). See Table 1 for a summary of our results and a comparison with
the previous attacks.

On the Security of Encryption Modes of MD4, MD5 and HAVAL 149

2 Description of MD4, MD5 and HAVAL

The MD4, MD5 and HAVAL hash functions are message digest algorithms which
compress any arbitrary-bit length message into a hash value with a small and
fixed bit-length. These hash functions are performed based on the well-known
Davies-Meyer construction, which is described as follows. Before applying the
hash function to a message M of arbitrary bit-length, it is divided into l-bit
sub-messages M0, M1, · · · , Mn−1, where l is specified. Then the t-bit hash value
In for the message M is computed as follows:

Table 2. Parameters of MD4, MD5 and HAVAL

Hash Bit-Length of Bit-Length of # of # of Steps Total # of
Functions Message Block (l) Hash Value (t) Passes in a Pass Steps

MD4 512 128 3 16 48
MD5 512 128 4 16 64

HAVAL 1024 256 3,4 or 5 32 96, 128 or 160

Ar Br Cr Dr

(One step of HAVAL)

Er+1

ErBr Cr F rDr Gr HrAr

�������
fr

fr
���

�

≪ sr

�� � �
Ar+1 Br+1 Cr+1 Dr+1

�
�Xr

Ctrr

(One step of MD4)

≫ 7≫ 11
�

Ar Br Cr Dr

fr
���

�

≪ sr

�� �
Br+1 Cr+1 Dr+1

�

�
�Xr

Ctrr

Ar+1

�

(One step of MD5)

� � � � � � � �

�
�Xr

Ctrr

Br+1Cr+1 F r+1Dr+1 Gr+1Hr+1Ar+1

Fig. 1. The r-th Step Functions of MD4, MD5 and HAVAL

150 J. Kim et al.

I0 = IV ; Ii+1 = com(Ii, Mi) = E(Ii, Mi) + Ii for 0 ≤ i < n, (1)

where IV is a t-bit fixed initial value, com is a compression function and E is
an iterative step function. In MD4, MD5 and HAVAL, the function E is com-
posed of 3, 4 or 5 passes and in each pass there are 16 or 32 steps that use
only simple basic operations and Boolean functions on 32-bit words. The t-bit
input Ii is loaded into t/32 32-bit registers denoted (A0, B0, · · ·) and the l-bit
message block is divided into l/32 32-bit words denoted (X0, X1, · · · , X l/32).
The t/32 registers are updated through a number of steps. In each pass, every
message word X i is used exactly once in a specified order, and a fixed Boolean
function f and 32-bit constants Ctr are used. Table 2 shows the parameters
of MD4, MD5 and HAVAL, and Fig. 1 shows the r-th step of MD4, MD5
and HAVAL. In Fig. 1, the rotation amount sr is specified. See [14, 15, 23] for
details.

Each of the steps described in Fig. 1 is an invertible function for each message
word Xr. Hence, if we insert a secret key in the message part of Mi and a
plaintext in the chaining value part of Ii, we get an invertible function from a
compression function by removing the final addition with the previous chaining
value. That is, E(Ii, Mi) of Eq. (1) can be used in encryption mode E(P, K),
where P is a plaintext and K is a secret key. In the encryption modes of MD4,
MD5 and HAVAL, we use the terminology rounds instead of steps and we use
the notation P and K for a plaintext and a key, respectively.

3 Related-Key Rectangle and Boomerang Attacks

Related-key rectangle and boomerang attacks were presented in several papers
[4, 9, 10, 13]. They exploit related-key rectangle and boomerang distinguishers
based on 2, 4 or 256 related keys. In this paper, we use related-key rectangle and
boomerang distinguishers based on 2 or 4 related keys.

The following notations are used to facilitate the descriptions of related-key
rectangle and boomerang distinguishers.

– E : {0, 1}k ×{0, 1}n → {0, 1}n : a block cipher that uses {0, 1}k and {0, 1}n

as key space and plaintext/ciphertext space, respectively.
– E = E1 ◦ E0 (i.e., EK(P) = E1

K ◦ E0
K(P)) : E is composed of E0 and E1

(E first performs E0 and then E1), where K is a master key and P is a
plaintext.

– p(α, β, ΔK) : a probability of a related-key differential α → β for E0

under the related-key difference ΔK, i.e., p(α, β, ΔK) = PrX,K [E0
K(X)

⊕E0
K⊕ΔK(X ⊕ α) = β]. Note that this is same as a probability of a related-

key differential β → α for (E0)−1 under the related-key difference ΔK.
– q(γ, δ, ΔK) : a probability of a related-key differential γ → δ for E1 under the

related-key difference ΔK, i.e., q(γ, δ, ΔK) = PrX,K [E1
K(X) ⊕E1

K⊕ΔK(X ⊕
γ) = δ]. Note that this is same as a probability of a related-key differential
δ → γ for (E1)−1 under the related-key difference ΔK.

On the Security of Encryption Modes of MD4, MD5 and HAVAL 151

– p(D, β, ΔK) : a probability of a related-key truncated differential β → α′ for
(E0)−1 under the related-key difference ΔK, where D is a nonempty set and
α′ ∈ D, i.e., p(D, β, ΔK) = PrX,K [(E0

K)−1(X)⊕ (E0
K⊕ΔK)−1(X ⊕ β) ∈ D].

– q(γ, D, ΔK) : a probability of a related-key truncated differential γ → δ′ for
E1 under the related-key difference ΔK, where D is a nonempty set and
δ′ ∈ D, i.e., q(γ, D, ΔK) = PrX,K [E1

K(X) ⊕ E1
K⊕ΔK(X ⊕ γ) ∈ D].

We first describe a related-key rectangle distinguisher based on two related
keys. The related-key rectangle distinguisher works in the following process.

– Choose two plaintexts P0 and P ∗
1 at random and compute two other plain-

texts P ∗
0 = P0 ⊕ α and P1 = P ∗

1 ⊕ α.
– With a chosen plaintext attack, obtain the corresponding ciphertexts C0 =

EK(P0), C1 = EK(P1), C∗
0 = EK∗(P ∗

0) and C∗
1 = EK∗(P ∗

1), where K⊕K∗ =
ΔK.

– Check if C0 ⊕ C∗
1 , C∗

0 ⊕ C1 ∈ D.

What is the probability that the ciphertext quartet satisfies the last D
test? The probability is computed as follows. Let X0, X1, X

∗
0 and X∗

1 de-
note the encrypted values of P0, P1, P

∗
0 and P ∗

1 under E0, respectively. Then
the probabilities that X0 ⊕ X∗

0 = β and X1 ⊕ X∗
1 = β′ are p(α, β, ΔK)

and p(α, β′, ΔK), respectively. In the above process we randomly choose two
plaintexts P0 and P ∗

1 and thus we expect X0 ⊕ X∗
1 = γ with probability

2−n. Therefore, for any β, β′ and γ, X0 ⊕ X∗
0 = β, X1 ⊕ X∗

1 = β′ and
X0 ⊕X∗

1 = γ (as in these cases X∗
0 ⊕X1 = (X0 ⊕ β)⊕ (X∗

1 ⊕ β′) = β ⊕ β′ ⊕ γ)
hold with probability p(α, β, ΔK) · p(α, β′, ΔK) · 2−n. Since the probabilities
of related-key truncated differentials γ → δ(∈ D) and β ⊕ β′ ⊕ γ → δ′(∈
D) for E1 under related-key difference ΔK are q(γ, D, ΔK) and q(γ ⊕ β ⊕
β′, D, ΔK), the probability that the last D test in the above process is satisfied
equals

P r[REC−2] =
β,β′,γ

p(α, β, ΔK) ·p(α, β′, ΔK) · 2−n· q(γ, D, ΔK) · q(γ ⊕ β ⊕ β′, D, ΔK).

On the other hand, for a random cipher, the D test holds with probability
|D|2 · 2−2n and thus if the above probability is larger than |D|2 · 2−2n for any
triple (α, D, ΔK), the related-key rectangle distinguisher based on two related
keys can be used to distinguish E from a random cipher.

How many plaintext pairs are required to get at least two ciphertext quartets
(this amount of quartets will be used in our attacks) that satisfy the D test? If
the number of plaintext pairs (Pi, P

∗
i) we collect is m, we can generate m2 · 2−1

quartets and thus we have at least m2 ·2−1 ·Pr[REC−2] ciphertext quartets which
satisfy the D test. Therefore, in order to get at least 2 such quartets we need
about 4 · (Pr[REC−2])−1/2 chosen plaintext queries. It means that the number
of required plaintexts to use this distinguisher is at least 2n/2. However, under
an adaptive chosen plaintext and ciphertext attack we can make a related-key

152 J. Kim et al.

boomerang distinguisher which can remove the factor 2n/2 in the data require-
ment. The related-key boomerang distinguisher based on two related keys works
as follows.

– Choose two plaintexts P0 and P ∗
0 such that P0 ⊕ P ∗

0 = α, and obtain the
corresponding ciphertexts C0 = EK(P0) and C∗

0 = EK∗(P ∗
0), where K ⊕

K∗ = ΔK.
– Compute other two ciphertexts C1 = C∗

0 ⊕ δ and C∗
1 = C0 ⊕ δ, and obtain

the corresponding plaintexts P1 = E−1
K (C1) and P ∗

1 = E−1
K∗(C∗

1).
– Check P1 ⊕ P ∗

1 ∈ D.

Similarly, we can check the probability that the last α′ test is satisfied. The
probability that X0⊕X∗

0 = β is p(α, β, ΔK) (in the encryption direction) and the
probabilities that X∗

0⊕X1 = γ and X0⊕X∗
1 = γ′ are q(γ, δ, ΔK) and q(γ′, δ, ΔK)

(in the decryption direction), respectively. Therefore, for any β, γ and γ′, X0 ⊕
X∗

0 = β, X∗
0 ⊕X1 = γ and X0⊕X∗

1 = γ′ (as in these cases X1⊕X∗
1 = (X∗

0 ⊕γ)⊕
(X0⊕γ′) = γ⊕γ′⊕β) hold with probability p(α, β, ΔK)·q(γ, δ, ΔK)·q(γ′, δ, ΔK).
Since the probability of related-key truncated differential γ⊕γ′⊕β → α′(∈ D) for
(E0)−1 under related-key difference ΔK is p(D, γ⊕γ′⊕β, ΔK), the probability
that satisfies the last D test in the above process is

P r[BOO−2] =
β,γ,γ′

p(α,β, ΔK) · q(γ, δ, ΔK) · q(γ′, δ, ΔK) · p(D, β ⊕ γ ⊕ γ′, ΔK) .

Since for a random cipher, the D test holds with probability |D| ·2−n, Pr[BOO−
2] > |D| · 2−n must hold for the related-key boomerang distinguisher to work.
Moreover, 2 · (Pr[BOO−2])−1 chosen plaintext pairs and 2 · (Pr[BOO−2])−1

adaptively chosen ciphertext pairs produce at least 2 quartets that satisfy the
D test.

Related-key rectangle and boomerang distinguishers based on four related
keys are the same as the previous distinguishers except for using four related
keys K, K∗, K ′ and K ′∗ such that K ⊕ K∗ = K ′ ⊕ K ′∗ = ΔK and K ⊕ K ′ =
K∗ ⊕ K ′∗ = ΔK ′, i.e., the plaintexts P0, P

∗
0 , P ∗

1 and P1 in the previous 2-
key rectangle and boomerang processes are encrypted using the keys K, K∗, K ′

and K ′∗, respectively. Similarly, we can calculate the probabilities of related-key
rectangle and boomerang distinguishers and the required data complexity. For
a related-key rectangle distinguisher, the probability is

P r[REC−4]=
β,β′,γ

p(α, β, ΔK) ·p(α, β′, ΔK)· 2−n· q(γ, D, ΔK′)· q(γ ⊕ β ⊕ β′, D,ΔK′) .

If the number of plaintext pairs (Pi, P
∗
i) (related to (K, K∗)) and (P ′

i , P
′∗
i) (re-

lated to (K ′, K ′∗)) we collect is m, respectively, we can generate m2 quartets
and thus we have at least m2 · Pr[REC−4] ciphertext quartets which satisfy
the D test. Therefore, in order to get at least 2 such quartets we need about
4 · (Pr[REC−4])−1/2 · 21/2 chosen plaintext queries.

On the Security of Encryption Modes of MD4, MD5 and HAVAL 153

For a related-key boomerang distinguisher, the probability1 is

P r[BOO−4] =
β,γ,γ′

p(α, β, ΔK) · q(γ, δ, ΔK′) · q(γ′, δ, ΔK′) · p(D, β ⊕ γ ⊕ γ′, ΔK) .

So the data requirement to generate at least two good quartets is about 2 ·
(Pr[BOO−4])−1 chosen plaintext pairs and 2 ·(Pr[BOO−4])−1 adaptively chosen
ciphertext pairs.

4 Related-Key Rectangle and Boomerang Attacks on
Encryption Modes of MD4, MD5 and HAVAL

In this section, we present related-key rectangle and boomerang attacks on the
encryption modes of MD4, MD5 and HAVAL. First, we present related-key rec-
tangle and boomerang distinguishers of MD4 and show how to use them to
distinguish MD4 from a random cipher. Second, we apply related-key rectangle
and boomerang attacks to MD5 and HAVAL.

4.1 Cryptanalysis of MD4

In MD4 the message expansion algorithm is a linear function in each pass every
message word is used exactly once in a specified order. It means that in the en-
cryption mode of MD4 the key scheduling algorithm is the same linear function
of the message expansion algorithm of MD4. We exploit the simple linear key
scheduling algorithm in our distinguishers. The main idea behind our construc-
tions of related-key rectangle and boomerang distinguishers based on two related
keys is to give a difference in one key word whose interval between the first and
third passes is as wide as possible. Let the round numbers involved in such a
key word in the three passes be r1, r2 and r3. Then we can make probability-one
differentials for rounds r1 ∼ r′2 and r′2 ∼ r3 by giving appropriate differences α
and γ, respectively, where r′2 is a certain number between r1 and r2. Therefore,
in order to find distinguishers with high probablilities we should find one key
word for which the interval of r1 ∼ r3 is as wide as possible.

In our observation giving a difference in the 3-rd key word provides the best
probabilities to our distinguishers, which are described as follows. In MD4 there
exist a related-key differential characteristic (0, e31, 0, 0)→(0, 0, 0, 0) for rounds
0 ∼ 27 with probability 2−2 (denoted p) and a related-key differential character-
istic (e31, 0, 0, 0) → (e2, e5,17,26,28, e13,22, e11) for rounds 28 ∼ 47 with probability
2−7 (denoted q) under key difference ΔK = (0, 0, 0, ΔK3 = e31, 0, · · · , 0), where
ei represents a 32-bit word that has 0′s in all bit positions except for bit i and
ei1,···,ik

represents ei1 ⊕· · ·⊕eik
(in our notation the right most bit is referred to

as the 0-th bit, i.e., the least significant bit). See Table 3 for more details. The

1 If the set D has a single element α in P r[BOO−4] and the set D has a single element
δ in P r[REC−4], it holds P r[REC−4] = 2−n · P r[BOO−4]. This relationship also
holds between P r[BOO−2] and P r[REC−2]. We use these relationships to estimate
P r[REC−2] and P r[REC−4] in our attacks.

154 J. Kim et al.

Table 3. Related-Key Distinguishers of MD4 (Two Related Keys)

Round (i) ΔAi ΔBi ΔCi ΔDi ΔKi Prob.
0 0 e31 0 0 0 1
1 0 0 e31 0 0 2−1

2 0 0 0 e31 0 2−1

3 e31 0 0 0 e31(= ΔK3) 1
4 0 0 0 0 0 1
...

...
...

...
...

...
...

27 0 0 0 0 0 1
0 0 0 0 p = 2−2

28 e31 0 0 0 e31(= ΔK3) 1
29 0 0 0 0 0 1
...

...
...

...
...

...
...

43 0 0 0 0 0 1
44 0 0 0 0 e31(= ΔK3) 1
45 0 e2 0 0 0 2−1

46 0 e11 e2 0 0 2−2

47 0 e13,22 e11 e2 0 2−4

e2 e5,17,26,28 e13,22 e11 q = 2−7

REC-2 (0 → 27)2, (28 → 45)2 Pr[REC-2] ≈ 2−134

BOO-2 (0 → 27), (47 → 28)2, (27 → 3) Pr[BOO-2] ≈ 2−16

BOOW -2 Fixed K0,1,2,7,11,15 , (3 → 27), (44 → 28)2, (27 → 3) Pr[BOO-2] = 1

notation used in Table 3 is essential in our distinguishing attacks. The REC-2
and BOO-2 rows represent probabilities which will be used in related-key rec-
tangle and boomerang attacks, respectively and the BOOW -2 row represents
a weak key class as well as a probability which will be used in a related-key
boomerang attack under a weak key class. The notation (r → r′)1 or 2 means
related-key differentials for rounds from r to r′ (which have the fixed difference
in round r or r′ described in the table) used in our distinguishers. Here, the
superscript 1 or 2 represents how many times related-key differentials are used
in our distinguishers. Note that if r > r′ then the related-key differential works
through decryption process.

In order to estimate Pr[BOO−2] we have carried out experiments on a number
of related keys with 223 chosen plaintext pairs and 223 adaptively chosen cipher-
text pairs each and we have observed 136, 115, 136, 125, 132, 130, 132, 131,
119, 144, · · · boomerangs returning for each related-key. This simulation result
provides that the probability Pr[BOO−2] is approximately 2−16 (which can be
also calculated from the probabilities of related-key differential characteristics in
Table 3). We can use the value of Pr[BOO−2] or the probabilities of related-key
differential characteristics in Table 3 to obtain the probability Pr[REC−2].

We now present a distinguishing attack of the encryption mode of MD4 using
a related-key rectangle distinguisher in Table 3. As stated in Table 3, in this
attack we use Pr[REC−2] ≈ 2−134, which is derived from p = 2−2 and q′ = 2−1

(the q′ is the probability for rounds 28 ∼ 45 in Table 3). In order to use p = 2−2

we should collect plaintext pairs (Pi, P
∗
i) which satisfy not only the (0, e31, 0, 0)

On the Security of Encryption Modes of MD4, MD5 and HAVAL 155

difference but also c31 = d31 = 0, where cj and dj represent the j-th bits of words
C and D of Pi, respectively. Moreover, since we use q′ = 2−1 for rounds 28 ∼ 45
in our attack, our desired δ after round 47 can be any one of the differences
which can be derived from the input difference of round 46, (0, e11, e2, 0). It is
easy to see that the number of all possible δ′s is at most 236. We denote the set
of all these possible δ′s by O. Next we describe our distinguishing attack on the
encryption mode of MD4 using the related-key rectangle distinguisher.

1. Prepare 268 plaintext pairs (Pi, P
∗
i), i = 0, 1, · · · , 268 − 1 with difference

(0, e31, 0, 0) and c31 = d31 = 0.
2. With a chosen plaintext attack, obtain the 268 corresponding ciphertext pairs

(Ci, C
∗
i), i.e., Ci = EK(Pi) and C∗

i = EK∗(P ∗
i), where E is either MD4 or a

randomly chosen cipher and K ⊕K∗ = (0, 0, 0, ΔK3 = e31, 0, · · · , 0).
3. If there exists at least one ciphertext quartet such that Ci⊕C∗

j , C∗
i ⊕Cj ∈ O

for 0 ≤ i �= j ≤ 268 − 1, we identify E as MD4. Otherwise, we identify E as
a randomly chosen cipher.

From the 268 plaintext pairs we obtain 2135 quartets. Since our related-key
rectangle distinguisher has a probability of (2−2)2 · (2−1)2 ·2−128 = 2−134, if E is
MD4, this attack will succeed with a probability of 1−(1−2−134)2

135 ≈ 0.86. On
the other hand, in case E is a randomly chosen cipher, the probability that each
ciphertext quartet satisfies one of all possible δ’s is less than (236

2128)2 = 2−184,
so, in this case this attack will succeed with a probability of (1− 2−184)2

135 ≈ 1.
Therefore, the success rate of this attack is about 1

2 · 0.86 + 1
2 · 1 = 0.93.

Based on the foregoing two related-key differentials we can also exploit a
boomerang technique to distinguish MD4 from a randomly chosen cipher. In
a boomerang technique we use Pr[BOO−2] ≈ 2−16. Since we use related-key
differentials for rounds 27 ∼ 3, our desired α before round 0 can be any one
of the differences which can be derived from the input difference of round 3,
(e31, 0, 0, 0), through the inverse direction. It is easy to see that the all possible
α′s are (0, e31, 0, 0), (e31, e31, 0, 0), (0, e31, e31, e31) and (e31, e31, e31, e31). In order
to produce two boomerangs this attack exploits 217 plaintext pairs with desired
conditions and 217 adaptively chosen ciphertext pairs. We distinguish MD4 from
a random cipher by checking whether or not there exists at least one plaintext
pair corresponding to adaptively chosen ciphertext pair that satisfy one of α′s.

Since our related-key boomerang distinguisher has a probability of 2−2 ·
(2−7)2 = 2−16, if E is MD4 this attack will succeed with a probability of
1 − (1 − 2−16)2

17 ≈ 0.86. In order to verify this estimation we have performed
hundreds of simulations using 218 chosen plaintext and adaptively chosen ci-
phertext pairs each (in each simulation we used randomly chosen related keys
and plaintext/ciphetext pairs). In our simulations we could check that about 88
among 100 tests satisfy the above distinguishing attack on average. This result
is quite similar to our estimation.

On the other hand, if E is a randomly chosen cipher, the probability that each
plaintext pair satisfies one of the four α’s is 4

2128 = 2−126, so, in this case this

156 J. Kim et al.

attack will succeed with a probability of (1−2−126)2
17 ≈ 1. Therefore, the success

rate of this attack is almost same as that of the related-key rectangle attack.
Moreover, we can increase the boomerang probability from 2−16 to 1 by using

some weak key class. Assume that the first three and the last three round keys
K0, K1, K2, K7, K11 and K15 are fixed and known to the attacker. Then we
can use p′ = 1 for rounds 3 ∼ 27 and q′ = 1 for rounds 44 ∼ 28 in our attack
under the weak key class assumption. If E is MD4, the distinguishing attack will
succeed with probability one (we have checked with thousands of simulations
that this attack always works in MD4), but if E is a randomly chosen cipher,
this attack will succeed with probability 1 − 2−128. Therefore, the success rate
of this attack is almost 1. The details of the boomerang attack procedures are
given in [11].

Similarly, we can construct related-key rectangle and boomerang distinguish-
ers based on four related keys and distinguish MD4 from a randomly chosen
cipher by using them. As a compensation of the use of four related keys, these
attacks are more efficient than those with two related keys. See the full version
of the paper [11] (Table 5 in Appendix B) for the distinguishers and Table 1 for
the results.

4.2 Cryptanalysis of MD5 and HAVAL

Similarly, in the MD5 and HAVAL attacks, we first find consecutive two related-
key differential characteristics with high probabilities which are independent of
each other, and then we can estimate the probability Pr[BOO−k] on the basis
of those differential characteristics by a series of simulations, where k is 2 or
4. As for 5-pass HAVAL, we can carry out an experiment on a reduced-round
variant (which is truncated for the first and the last several rounds) to get
Pr[BOO−k] for the reduced variant and then we can use the obtained value
as well as probabilities for the truncated rounds of the consecutive two related-
key differential characteristics (which were found in the first stage) to estimate
Pr[BOO−2] for the full 5-pass HAVAL. Once we get the probability Pr[BOO−k],
we can estimate the probability Pr[REC−k] by using the relationship between
them described in Section 3. See [11] (Appendix C and Appendix D) for the
distinguishers of MD5 and HAVAL and Table 1 for the results. We also refer
the readers to [11] (Appendix A) for an example of a boomerang quartet for
MD5.

5 Conclusion

In this paper, we have applied the recently proposed related-key rectangle and
boomerang attacks to the encryption modes of MD4, MD5 and HAVAL. The
MD4, MD5 and HAVAL used in encryption modes are all vulnerable to those
attacks, in particular, they can be broken by related-key boomerang attacks in
a real time. The attacks have been experimentally tested and run milliseconds
on a PC.

On the Security of Encryption Modes of MD4, MD5 and HAVAL 157

Our results show that one should be very careful when using existing hash
functions in encryption mode.

References

1. E. Biham and R. Chen, Near-Collisions of SHA-0, Advances in Cryptology – Pro-
ceedings of CRYPTO 2004, LNCS 3152, pp. 290-305, Springer-Verlag, 2004.

2. E. Biham, R. Chen, A. Joux, P. Carribault, C. Lemuet and W. Jalby, Collisions
of SHA-0 and Reduced SHA-1, Advances in Cryptology – Proceedings of EURO-
CRYPT 2005, LNCS 3494, pp. 22-35, Springer-Verlag, 2005.

3. E. Biham, O. Dunkelman and N. Keller, Rectangle Attacks on 49-Round SHACAL-
1, Proceedings of Fast Software Encryption 2003, LNCS 2887, pp. 22-35, Springer-
Verlag, 2003.

4. E. Biham, O. Dunkelman and N. Keller, Related-Key Boomerang and Rectangle
Attacks, Advances in Cryptology – Proceedings of EUROCRYPT 2005, LNCS 3494,
pp. 507-525, Springer-Verlag, 2005.

5. H. Dobbertin, A. Bosselaers and B. Preneel, RIPEMD-160: A Strengthened Version
of RIPEMD, Proceedings of Fast Software Encryption 1996, LNCS 1039, pp. 71-82,
Springer-Verlag, 1996.

6. H. Handschuh, L.R. Knudsen and M.J. Robshaw, Analysis of SHA-1 in Encryption
Mode, Proceedings of CT-RSA 2001, LNCS 2020, pp. 70-83, Springer-Verlag, 2001.

7. H. Handschuh and D. Naccache, SHACAL : A Family of Block Ciphers, Submission
to the NESSIE project, 2002.

8. J. Kim, D. Moon, W. Lee, S. Hong, S. Lee and S. Jung, Amplified Boomerang
Attack against Reduced-Round SHACAL, Advances in Cryptology – ASIACRYPT
2002, LNCS 2501, pp. 243-253, Springer-Verlag, 2002.

9. J. Kim, G. Kim, S. Hong, S. Lee and D. Hong, The Related-Key Rectangle Attack -
Application to SHACAL-1, Proceedings of Australian International Conference on
Information Security and Privacy 2004, LNCS 3108, pp. 123-136, Springer-Verlag,
2004.

10. J. Kim, G. Kim, S. Lee, J. Lim and J. Song, Related-Key Attacks on Reduced
Rounds of SHACAL-2, Proceedings of INDOCRYPT 2004, LNCS 3348, pp. 175-
189, Springer-Verlag, 2004.

11. J. Kim, A. Biryukov, B. Preneel and S. Lee, On the Security of Encryption Modes of
MD4, MD5 and HAVAL, Cryptology ePrint Archive, Report 2005/327, Available
Online at http://eprint.iacr.org/2005/327.ps.

12. S. Hong, J. Kim, G. Kim, J. Sung, C. Lee and S. Lee, Impossible Differential
Attack on 30-Round SHACAL-2, Proceedings of INDOCRYT 2003, LNCS 2904,
pp. 97-106, Springer-Verlag, 2003.

13. S. Hong, J. Kim, S. Lee and B. Preneel, Related-Key Rectangle Attacks on Reduced
Versions of SHACAL-1 and AES-192, Proceedings of Fast Software Encryption
2005, to appear.

14. R.L. Rivest, The MD4 Message Digest Algorithm, Advances in Cryptology – Pro-
ceedings of CRYPTO 1990, Springer-Verlag, 1991, 303-311.

15. R.L. Rivest, The MD5 Message Digest Algorithm, Request for Comments (RFC
1320), Internet Activities Board, Internet Privacy Task Force, 1992.

16. M.J.O. Saarinen, Cryptanalysis of Block Ciphers Based on SHA-1 and MD5, Pro-
ceedings of Fast Software Encryption 2003, LNCS 2887, pp. 36-44, Springer-Verlag,
2003.

158 J. Kim et al.

17. Y. Shin, J. Kim, G. Kim, S. Hong and S. Lee, Differential-Linear Type Attacks on
Reduced Rounds of SHACAL-2, Proceedings of Australian International Conference
on Information Security and Privacy 2004, LNCS 3108, pp. 110-122, Springer-
Verlag, 2004.

18. X. Wang and H. Yu, How to Break MD5 and Other Hash Functions, Advances in
Cryptology – Proceedings of EUROCRYPT 2005, LNCS 3494, pp. 19-35, Springer-
Verlag, 2005.

19. X. Wang, X. Lai, D. Feng, H. Chen and X. Yu, Cryptanalysis of the Hash Functions
MD4 and RIPEMD, Advances in Cryptology – Proceedings of EUROCRYPT 2005,
LNCS 3494, pp. 1-18, Springer-Verlag, 2005.

20. X. Wang, H. Yu and Y.L. Yin, Efficient Collision Search Attacks on SHA-0, Ad-
vances in Cryptology – Proceedings of CRYPTO 2005, LNCS 3621, pp. 1-16,
Springer-Verlag, 2005.

21. X. Wang, Y.L. Yin and H. Yu, Finding Collisions in the Full SHA-1, Advances
in Cryptology – Proceedings of CRYPTO 2005, LNCS 3621, pp. 17-36, Springer-
Verlag, 2005.

22. H. Yoshida, A. Biryukov, C. De Cannière, J. Lano and B. Preneel, Non-randomness
of the Full 4 and 5-pass HAVAL, Proceedings of SCN 2004, LNCS 3352, pp. 324-
336, Springer-Verlag, 2005.

23. Y. Zheng, J. Pieprzyk and J. Seberry, HAVAL-A One-way Hashing Algorithm with
Variable Length of Output, Advances in Cryptology – Proceedings of AUSCRYPT
1992, LNCS 718, pp. 83-104, Springer-Verlag, 1993.

24. RIPE, Integrity Primitives for Secure Information Systems, Final Report of RACE
Integrity Primitives Evaluation(RIPE-RACE 1040), LNCS 1007, 1995.

25. U.S. Department of Commerce. FIPS 180-1: Secure Hash Standard, Federal Infor-
mation Processing Standards Publication, N.I.S.T., April 1995.

26. U.S. Department of Commerce.FIPS 180-2: Secure Hash Standard ,Federal Infor-
mation Processing Standards Publication, N.I.S.T., August 2002.

Cryptanalysis of PASS II and MiniPass

Bok-Min Goi1, Jintai Ding2, and M.U. Siddiqi1,�

1 Centre for Cryptography and Information Security (CCIS),
Faculty of Engineering, Multimedia University,

63100 Cyberjaya, Malaysia
bmgoi@mmu.edu.my

2 Department of Mathematical Sciences,
University of Cincinnati, Cincinnati,

OH 45221-0025 USA
ding@math.uc.edu

Abstract. In ACISP ’00, Wu et al. proposed attacks to break the Poly-
nomial Authentication and Signature Scheme (PASS), in particular, they
are able to generate valid authentication transcripts and digital signa-
tures without knowing the private key and any previous transcripts/
signatures. They showed that PASS can be broken with around 238.3

trials. In this paper, we analyze the security of the improved versions of
PASS; viz. PASS II and MiniPASS, and extend the Wu et al.’s attacks
to PASS II and MiniPASS to break them. Furthermore, we discuss why
and how these schemes are broken from the view point of the structure
of cryptosystems and point out the fundamental weakness behind.

Keywords: Authentication scheme, digital signature scheme, crypt-
analysis, NTRU, partial polynomial evaluation.

1 Introduction

For electronic communications and commerce in a common networked and open
environment, security issues are always the main concern. In this context, public
key authentication and digital signature schemes that provide authentication and
non-repudiation services to communicating parties have been of steadily increas-
ing interest in cryptographic studies. They are not only need to be secure, but
also have to be fast and can be implemented on low power computing devices,
i.e. low-cost smart cards and RFID devices. Since year 1996, researchers from
NTRU Cryptosystem Inc. have proposed a group of fast public key cryptosystem
based on the hard problems of partial evaluation of constrained polynomial over
polynomial rings. These comprise of NTRU public key encryption algorithm [3],
NTRUSign digital signature scheme [1], Polynomial Authentication and Signa-
ture Scheme, PASS [2], and its variant PASS II [5] and MiniPASS [4]. The hard
problem underlying this group of cryptosystem can be related to short vectors
in a lattice due to properties of short polynomials used in the system.
� The first author acknowledges the Malaysia IRPA grant (04-99-01-00003-EAR).

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 159–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

160 B.-M. Goi, J. Ding, and M.U. Siddiqi

In ACISP ’00, Wu et al. presented two attacks on PASS [6]. In particular,
they are able to generate valid authentication transcripts and digital signatures
without knowing the private key or previous transcripts / signatures. Though
their first attack can be easily prevented with some proper parameter settings,
PASS can still be broken with around 238.3 trials under their second attack.

In this paper, we further analyze the security of the improved versions of
PASS; viz. PASS II and MiniPASS, and extend the Wu et al.’s attacks to PASS
II and MiniPASS, and show how to break them efficiently as well. Further-
more, we discuss how and why these schemes are broken from the point view of
the structure of cryptosystems and point out the fundamental weakness behind
which allows these attacks, namely the participation of a verifier in the process
setting up the challenge. Therefore, though we believe that the concept behind
the construction of PASS, namely the hard problems of partial evaluation of
constrained polynomials over polynomial rings, is still correct and sound, any
new system based on the same idea as that of PASS needs to overcome such
a fundamental weakness in order to work securely, in particular, in terms of
resisting the type of attack like that of the Wu et al.’s attacks.

The paper is organized as following. In the next section, we will outline the
authentications systems PASS, PASS II and MiniPASS [2,5,4]. We then briefly
introduce the basic idea of the Wu et al.’s attacks [6] in Section 3. In Section 4,
we will present the details of our attack to break the PASS II and MiniPASS,
which is an extension of the idea of Wu et al.. Then, we elaborate the structure
analysis of PASS cryptosystems in Section 5. Finally, we conclude in Section 6.

2 An Overview of PASS and PASS II

2.1 Preliminary and Notations

The ring of truncated polynomials is defined as: R = (Z/qZ)[X]/(XN − 1),
where q and N are co-relative prime integer. Note that all arithmetic operations
are in R in this paper. The resultant coefficients are reduced modulo q and
exponents are reduced modulo N . For the proposed schemes in [2, 5, 4], q and
N were chosen be a prime number (i.e., 769) and a divisor of (q − 1) (i.e., 768),
respectively. A element g ∈ R is denoted as a polynomial with degree of (N − 1)
and its coefficients gi ∈ Z/qZ, for i = 0, 1, ..., (N − 1), as g(X) =

∑N−1
i=0 giX

i =
g0 + g1X + g2X

2 + ... + gN−1X
N−1.

For each element α ∈ Z/qZ, g(α) means that substituting the variable X in
the polynomial g with the value α and the result is reduced modulo q. For multi-
plication of two polynomials in R, since the exponents of the product are reduced
modulo N , thus it is a cyclic convolution multiplication. For example, given
f, g ∈ R, the product h = fg in R will be h(X) =

∑N−1
i=0 fiX

i
∑N−1

j=0 gjX
j =∑N−1

k=0 hkXk, where hk =
∑

i+j=k mod N figj . Note that if αN = 1 mod q, then
h(α) = f(α)g(α). Informally, a short polynomial g is a polynomial with small

norm value ‖g‖2 =
√∑N−1

i=0 g2
i . For example, it may contain many zero coeffi-

cients and few coefficients with small value (i.e., -1 or +1). A polynomial g in

Cryptanalysis of PASS II and MiniPass 161

Table 1. The notations

P The prover
V The verifier
co The 80-bit challenge
M The message to be signed
S The set of t distinct non-zero elements of α ∈ Z/qZ, where αN = 1 mod q

and α−1 ∈ S. Note that t ≈ q
2

f1, f2 The private key and its corresponding public key is (f1(α), f2(α)) for α ∈ S.
Note that only one private polynomial f for PASS II

g1, g2 The commitment polynomials with corresponding commitment values
(g1(α), g2(α)) for α ∈ S

di The polynomial i which contains di coefficients equal to each of 1 and −1,
and the rest equal to 0, for i = f, g and c. For example, the suggested
parameters for PASS are df = dg = 256, dc = 1

Li The public special subset of R, for i = f, g, c and h. Note that h is com-
puted based on the private key, commitment polynomials and the outputs
of Hash. In more detail, Lf , Lg and Lc are those special subsets whose ele-
ment polynomials contain df , dg and dc parameters, respectively; whereas,
Lh = h ∈ R : ‖h‖2 ≤ γq

Hash(·) The special hash function which hashes co or M with the commitments to
produce some polynomials in Lc

R is called moderately short if its norm is smaller than a constant times q, such
that ‖g‖2 ≤ γq, where the value of γ is determined by the particular application
via experiment.

For ease of explanation, we use the notations similar to those in [2, 6, 5], as
shown in Table 1.

2.2 PASS

The prover P randomly chooses two polynomial (f1, f2) from Lf as his private
key. Then he generates his public key as (f1(α), f2(α)) for α ∈ S. The private
key is well protected due to the fact that recovering a short polynomial in R
by providing only a certain subset values of the polynomial is a hard problem.
Furthermore, it is also difficult to find another two short polynomials (f ′

1, f
′
2),

which for α ∈ S, must satisfy the conditions:

f ′
1(α) = f1(α) and f ′

2(α) = f2(α). (1)

We refer readers to [2] for more security analysis of PASS. For simplicity, we
depict the PASS authentication scheme and the PASS digital signature scheme
in Fig. 1 and Fig. 2, respectively.

2.3 PASS II and MiniPASS

In [5], Hoffstein and Silverman have proposed another improved version of PASS,
called as PASS II. PASS II only involves single polynomial f in key pair creation

162 B.-M. Goi, J. Ding, and M.U. Siddiqi

Prover, P Verifier, V
P ’s private key: f1, f2 P ’s public key:
g1, g2 ∈R Lg (f1(α), f2(α))α∈S

For α ∈ S,
compute the commitment:
(g1(α), g2(α))

(g1(α),g2(α))α∈S−−−−−−−−−−−→
Randomly select c0

c0←−−−−−−−−−−−−
Hash(g1(α), g2(α), c0) Hash(g1(α), g2(α), c0)
→ c1, c2, c3, c4 ∈ Lc → c1, c2, c3, c4 ∈ Lc

Compute:
h = c1f1g1 + c2f1g2

+c3f2g1 + c4f2g2
h−−−−−−−−−−−−→

Verify:
h ∈ Lh and for α ∈ S,

h(α) = c1(α)f1(α)g1(α) + c2(α)f1(α)g2(α)
+c3(α)f2(α)g1(α) + c4(α)f2(α)g2(α)

Fig. 1. PASS authentication scheme

Prover, P Verifier, V
P ’s private key: f1, f2 P ’s public key:
g1, g2 ∈R Lg (f1(α), f2(α))α∈S

For α ∈ S, compute
(g1(α), g2(α)) and
Hash(g1(α), g2(α), M)
→ c1, c2, c3, c4 ∈ Lc

Compute:
h = c1f1g1 + c2f1g2

+c3f2g1 + c4f2g2
(g1(α),g2(α))α∈S ,h,M−−−−−−−−−−−−−−→ Hash(g1(α), g2(α), M)

→ c1, c2, c3, c4 ∈ Lc

Verify:
h ∈ Lh and for α ∈ S,

h(α) = c1(α)f1(α)g1(α) + c2(α)f1(α)g2(α)
+c3(α)f2(α)g1(α) + c4(α)f2(α)g2(α)

Fig. 2. PASS signature scheme

phase and only one set of values of (g1(α))α∈S required for the verifier V . There-
fore, it can further reduce the computational complexity and communication
requirements. In CHES ’00 [4], based on PASS II, the same authors presented a
scheme which is called as MiniPASS and described how it can be implemented
in highly constrained devices.

Cryptanalysis of PASS II and MiniPass 163

Prover, P Verifier, V
P ’s private key: f P ’s public key:
g1, g2 ∈R Lg (f(α))α∈S

For α ∈ S, compute:
g1(α) and then,
Hash(g1(α), M)
→ c1, c2 ∈ Lc,
where c1(α) 	= 0,
for 2 ≤ α ≤ q − 2 and α /∈ S.
Compute:
h = (f + c1g1 + c2g2)g2

(g1(α))α∈S,h,M−−−−−−−−−−−−−−→ Hash(g1(α), M)
→ c1, c2 ∈ Lc

where c1(α) 	= 0
for 2 ≤ α ≤ q − 2 and α /∈ S

Verify:
h ∈ Lh and for α ∈ S,

(f(α) + c1(α)g1(α))2 + 4c2(α)h(α)
quadratic residue mod q

Fig. 3. PASS II signature scheme

Table 2. Comparison of PASS and PASS II signature scheme

Description Original PASS [2] PASS II [5]

Creating key
pair

Two private polynomials f1 and f2

with the corresponding public val-
ues (f1(α), f2(α))α∈S.

Only one private polynomials f
with the corresponding public val-
ues (f(α))α∈S.

Generating
commitment
polynomials

Two commitment polynomials
(g1, g2). Both (g1(α), g2(α)) have
be sent to the verifier.

Two commitment polynomials
(g1, g2). But only g1(α) is required
to be sent to the verifier.

Computing h h = c1f1g1+c2f1g2+c3f2g1+c4f2g2 h = (f + c1g1 + c2g2)g2

Verification
process

Check h ∈ Lh and the values of
h(α) for α ∈ S

Check h ∈ Lh and (f(α) +
c1(α)g1(α))2 + 4c2(α)h(α) =
quadratic residue mod q, for α ∈ S.

Parameter
settings

df = dg ≈ q
3 , dc = 1, γ = 2.2 df ≈ q

3 , dg ≈ q
6 , dc = 2, γ = 1.8.

Security
level†

With q = 769, PASS is more se-
cure than RSA 1024; With q =
1153, PASS is more secure than
RSA 2048.

With q = 769, PASS II is more
secure than RSA 512; With q =
929, PASS is more secure than RSA
1024.

† : as claimed by the original inventers in [2] and [5].

The PASS II signature scheme is described in Fig. 3. We omit the PASS II
authentication scheme because it can be constructed in a similar way as PASS
authentication scheme.

164 B.-M. Goi, J. Ding, and M.U. Siddiqi

We conclude this section by providing the comparison between the original
PASS and PASS II schemes in Table 2. (Note that this comparison could be
applied directly to the authentication schemes as well.)

3 Two Attacks Due to Wu et al.

In [6], Wu et al. proposed two attacks on the PASS system. For ease of explana-
tion and also lack of better names, we simply denote the first attack proposed
in Section 3 of [6] as Attack 1 and the second attack proposed in Section 4 of [6]
as Attack 2, respectively.

3.1 Wu et al.’s Attack 1

Wu et al. discovered that in order to break PASS which amounts to satisfying
the expression:

h(α) = c1(α)f1(α)g1(α) + c2(α)f1(α)g2(α) +
+c3(α)f2(α)g1(α) + c4(α)f2(α)g2(α)

for α ∈ S in the verification process, is not required to find short polynomials
(f ′

1, f
′
2) satisfying the condition in Eq. (1). However, they claimed that as long

as g1(α) = g2(α) = 0 for certain α ∈ S, then f ′
1(α) and f ′

2(α) can be of any
values for other values of α. They proved that there are at most p non-zero
elements in Z/Zq satisfying g(α) �= 0. Note that p is a divisor of N and the
coefficients of polynomial g from {−1, 0, +1} are with period p. Based on this,
Wu et al. came out with Attack 1 where an attacker can forge the authenti-
cation transcript/signature independent of the sizes of N and t. An attacker,
with such small amount of computation, can fool B into thinking he is a legiti-
mate counterpart A, even without A’s private key and previous communicated
transcripts.

Observations on Attack 1. Here, we correct a typo in the expression in the
proof of Theorem 1 [6], where a polynomial g with period p (obviously, p must
be one of the factor of N) should be denoted as:

g(X) = (g0 + g1X + g2X
2 + · · · + gp−1X

p−1)(1 + Xp + X2p + · · · + XN−p),

but not as:

g(X) = (g0 + g1X + g2X
2 + · · ·+ gp−1X

p−1)(1 + Xp + X2p + · · ·+ XN/p).

We further remark that, in [6], in order to countermeasure Attack 1, Wu
et al. suggested N to be chosen as a prime or with no small factor. However,
PASS only works in the special case where αN = 1 mod q in ring R. This
is to ensure homomorphism mapping. More precisely, N must be a divisor of
(q − 1) and according to the fact of Fermat’s Little Theorem [2], for all non-
zero element, we can well define the homomorphic mapping from R to Z/qZ as:
g(X) → g(α(q−1)/N). Hence, N has to be determined carefully.

Cryptanalysis of PASS II and MiniPass 165

3.2 Wu et al.’s Attack 2

Wu et al. proposed Attack 2 by exploiting the fact that the space of Lc, |Lc| is
small (as dc = 1). Attack 2 on the PASS signature scheme is described as:

1. Randomly select r1, r2 ∈ R such that r1c, r2c ∈ Lc for c ∈ Lc.
2. For α ∈ S, compute the two sets (β1, β2) with no zero element, such that

β1 = f1(α) + r1(α)f2(α) and β2 = f1(α) + r2(α)f2(α). Note that βi =
{βi1, βi2, · · · , βit} where i = {1, 2}.

3. Compute two polynomial (f ′
1, f

′
2) such that f ′

1(α) = β1 and f ′
2(α) = β2.

4. Arbitrarily choose h1, h2 ∈ R and compute the polynomials (g1, g2) which
satisfy h1(α) = f ′

1(α)g1(α) and h2(α) = f ′
2(α)g2(α) for α ∈ S. Note that

(g1, g2) are not required to be short polynomial and fulfill dg requirement.
Wu et al. showed that these two polynomials can be computed easily in
Theorem 3 of [6].

5. Hash(g1(α), g2(α), M) and obtain c1, c2, c3, c4 ∈ Lc.
6. Check whether c3 = r1c1 and c4 = r2c2. If yes, set h′ = c1h1 + c2h2 and

obtain a valid signature of message M . Otherwise, repeat the attack by going
back to Step 3.

Obviously, the obtained h′ is equivalent to h. Attack 2 will succeed with
probability 1

|Lc|2 . More precisely, with the proposed parameters in [2]: N = 768
and dc = 1, the PASS can only achieve the security level of 38.3 bits. Therefore,
the PASS is not secure.

4 Our Attacks on PASS II and MiniPASS

In this section, we extend the Wu et al.’s attacks on PASS II and MiniPASS. We
prove that they face the same problem as PASS. Namely, both with the proposed
parameters cannot achieve 80-bit standard security requirement. Hence, PASS
II and MiniPASS are insecure and not sound.

4.1 Extended Attack 1

Our first extended attack on PASS II works as follows:

1. Calculate the desired polynomials g2 by setting appropriate period p.
2. Determine S1 ⊂ S such that for α ∈ S1, g2(α) = 0. Then, fix S2 = S − S1,

such that for α ∈ S2, g2(α) �= 0.
3. Compute the polynomial f ′, such that f ′(α) = f(α) for α ∈ S2. For α ∈ S1,

due to Step 2, h(α) is always equal to zero regardless of the values of f ′(α).
4. With the three short obtained polynomials (g1, g2, f

′), where g1 can be set
arbitrarily, a valid forged authentication transcript satisfying h ∈ Lh and for
α ∈ S, (f(α) + c1(α)g1(α))2 + 4c2(α)h(α) = quadratic residue (mod q), can
be produced.

166 B.-M. Goi, J. Ding, and M.U. Siddiqi

The Step 3 above, in determining the polynomial f ′ such that f ′(α) = f(α)
for α ∈ S2, is the most costly one. On average, the computation complexity is
about q|S2|, where |S2| is the space of S2 . However, due to the careful selection
of g2 (e.g., with the period p = 6), |S2| is quite small (e.g., |S2| ≈ p

2), thus
computing f ′ turn to be an easy task. In particular, for |S2| = 3, even with
brute-force to randomly search the coefficients of f ′, we only require around
q|S2| = 7693 = 228.8 trials to forge a valid authentication transcripts/signature
in PASS II with the proposed parameters, q = 769 in [5]. Therefore, PASS II
can only provide 28.8-bit security level under this attack. Note that PASS II is
much more vulnerable under our extended attack as compared to Attack 1 on
PASS, because only one private polynomial f ′ needs to be determined.

4.2 Extended Attack 2

In [5], Hoffstein and Silverman have increased the space for Lc by setting dc =
2. (In the original PASS, dc = 1.) This is mainly due to only two challenge
polynomials (c1, c2) are involved in this improved scheme, but not to counter
against Attack 2. They claimed that with the proposed parameters, N = 768,
then |Lc| = 236. Hence, the space of challenge should be the space of pairs (c1, c2)
of elements of |Lc|2 and equal to 272. However, in this subsection, we show that
it is not true.

In the PASS II scheme, the authentication transcript/signature is expressed
as:

h = (f + c1g1 + c2g2)g2

= fg2 + (c1g1 + c2g2)g2

= fg2 + c1(g1 + rg2)g2

= h1 + c1h2

where c2 = rc1, h1 = fg2 and h2 = (g1 + rg2)g2.
Our second extended attack on the PASS II signature scheme works as fol-

lows:

1. Select r ∈R R such that rc ∈ Lc for c ∈ Lc (for simplicity, set r = 1).
2. Arbitrarily choose h2, g2 ∈R R. Then, for α ∈ S, compute the polynomial g1

satisfying h2(α) = (g1(α) + r(α)g2(α))g2(α). Note that g1 is not required to
be short and fulfill dg requirement .

3. Hash(g1(α), M) and obtain c1, c2 ∈ Lc.
4. Check whether c2 = rc1. If yes, compute the polynomials h1, which is not

required to be short, satisfying h1(α) = f(α)g2(α) and set h = h1 + c1h2,
then generate a valid signature of message M which is (g1(α), h)α∈S . Oth-
erwise, repeat the attack by going back to Step 2.

Surprisingly, we found out that our proposed extended attack on PASS II
works even more efficient than the original Attack 2 on PASS, in terms of number
of steps and computational complexity. In particular, there is no need to compute

Cryptanalysis of PASS II and MiniPass 167

the two sets (β1, β2) and the two polynomial (f ′
1, f

′
2) as in the case of PASS, but

only compute one polynomial g1 that satisfies h2(α) = (g1(α)+r(α)g2(α))g2(α).
Furthermore, Attack 2 has to be improved in order to work on PASS for the case
where the two sets (β1, β2) contain zero element. This will affect the success rate
of this attack.

However, in our attack, the attacker just need to check whether c2 = rc1 for
every single trial. The success rate will be 1

|Lc| , but not 1
|Lc|2 as claimed in [5].

More precisely, with the suggested parameters in [5], viz. N = 768 and dc = 2,
the space of Lc, |Lc| = N !

(N−2dc)!(dc!)2
= 236.3. Therefore, PASS II can only offer

the security level of 36-bit, and is insecure and not sound.

SUMMARY: Even with proper parameter settings − on choosing good N − the
PASS and PASS II schemes are still vulnerable under Attack 2. This is mainly
due to the decomposition property of h.

5 Structure Analysis

One of the original intention of our work is to find ways to improve the PASS
cryptosystem and try to make it work, because we think that the basic concept
behind the construction of the PASS, which is based on the hard problems
of partial evaluation of constrained polynomials over polynomial rings, is still
sound. To do so, we start from further understanding why and how the PASS
systems are broken from the viewpoint of the structure of cryptosystems.

The key point of the Attack 2 is that it successfully transforms the difficult
problem of finding the private keys (f1, f2) given f1(α) andf2(α) for α ∈ S to
another easier task − finding (g1, g2) − which does not anymore have to be short
polynomials (binary or trinary polynomials with many zero coefficients) and
fulfill certain requirements on the degree. For example, as stated in [4], by using
Discrete Fourier Transform (DFT) method, every coefficients of a polynomial
G can be determined providing all the values of G via the well-known formula
of DFT. In this case, the Attack 2 shows the system’s security is not really
based on the hard problems of partial evaluation of constrained polynomials
over polynomial rings, but rather something else. If one looks deeper, one should
realize that the story does not just stop here. The real reason behind is that g1
and g2 are actually provided by the prover, which therefore allows the attacker
to choose the g1 and g2. Namely in a PASS authentication system, a prover
actually participates in the process in setting up the challenge. This is
very much like leaking partially the secret automatically to the attacker. Such a
weakness is the real cause why Attack 2 worked from the structure point of view.
Therefore, this, we believe, is a fundamental structure flaw from the point view
of designing a secure cryptosystem, because it gives an attacker automatically
an edge in attacking the system from the very beginning. This teaches us a good
lesson in designing authentication schemes, namely one should not allow a prover
to participate in setting up the challenge.

168 B.-M. Goi, J. Ding, and M.U. Siddiqi

6 Concluding Remarks

In this paper, we have comprehensively analyzed the security of PASS II and
MiniPASS. We have proposed two extended attacks due to Wu et al. [6] and
showed how they work on PASS II and MiniPASS in detail. We have further
pointed out the main reason for PASS and its variant are broken is due to some
flaws in the structure design of the cryptosystems. However, the concept behind
the construction of the PASS, based on the hard problems of partial evaluation
of constrained polynomials over polynomial rings, is correct and secure.

At the very beginning, we had some suggestions to improve the system. For
example: (1) to ensure that the verifier always knows the prover’s commitments
prior to receiving any new signature, so that the attacker is unable to control
the polynomials (g1, g2) and perform Attack 2; (2) to modify the expression of
h so that it won’t face the decomposition problems. However, we realize these
suggestions do not fundamentally eliminate the flaw of the system. As of now,
we have not been able to come up with any good solution, which, we believe, is
a very interesting and challenging question.

Acknowledgement

We would like to thank anonymous referees for their constructive and detailed
comments that have greatly improved this paper.

References

1. J. Hoffstein, N. Graham, J. Pipher, J. Silverman and W. Whyte. NTRUSign: Digital
Signatures Using the NTRU Lattice. In Proceeding of CT-RSA ’03, LNCS, vol. 2612,
Springer-Verlag, pp.122-140, 2003.

2. J. Hoffstein, D. Lieman, J. Silverman. Polynomial Rings and Efficient Public Key
Authentication. In Proceeding of CrypTEC ’99, City University of Hong Kong Press,
pp. 7-19, 1999.

3. J. Hoffstein, J. Pipher and J. Silverman. NTRU: A Ring-Based Public Key Cryp-
tosystem. In Proceeding of ANTS III, LNCS, vol. 1423, Springer-Verlag, pp. 267-288,
1998.

4. J. Hoffstein and J. Silverman. MiniPASS: Authentication and Digital Signatures in
a Constrained Environment. In Proceeding of CHES ’00, LNCS, vol. 1965, Springer-
Verlag, pp. 328-339, 2000.

5. J. Hoffstein and J. Silverman. Polynomial Rings and Efficient Public Key Authen-
tication II. Available at www.ntru.com.

6. Hongjun Wu, Feng Bao, Dingfeng Ye, Robert Deng. Cryptanalysis of Polynomial
Authentication and Signature Scheme. In Proceeding of ACISP ’00, LNCS, vol. 1841.
Springer-Verlag, pp. 278-288, 2000.

Simple Power Analysis on Fast Modular
Reduction with NIST Recommended

Elliptic Curves

Yasuyuki Sakai1 and Kouichi Sakurai2

1 Mitsubishi Electric Corporation,
5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan

ysakai@iss.isl.melco.co.jp
2 Kyushu University,

6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
sakurai@csce.kyushu-u.ac.jp

Abstract. We discuss side channel leakage from modular reduction for
NIST recommended domain parameters. FIPS 186-2 has 5 recommended
prime fields. These primes have a special form which is referred to as gen-
eralized Mersenne prime. These special form primes facilitate especially
efficient implementation. A typical implementation of efficient modular
reduction with such primes includes extra reduction. The extra reduction
in modular reduction can constitute an information channel on the se-
cret exponent. Several researchers have produced unified code for elliptic
point addition and doubling in order to avoid a simple power analysis
(SPA). However, Walter showed that SPA still be possible if Montgomery
multiplication with extra reduction is implemented within the unified
code. In this paper we show SPA on the modular reduction with NIST
recommended primes, combining with the unified code for elliptic point
operations. As Walter stated, our results also indicate that even if the
unified codes are implemented for elliptic point operations, underlying
field operations should be implemented in constant time. The unified
approach in itself cannot be a countermeasure for side channel attacks.

Keywords: Side channel analysis, elliptic curve cryptosystem, modular
reduction, generalized Mersenne prime, unified code.

1 Introduction

Smart cards are one of the major application fields of cryptographic algorithms,
and may contain sensitive data, such as RSA private key. Some implementations
of cryptographic algorithms often leak “side channel information.” Side chan-
nel information includes power consumption, electromagnetic fields and timing to
process. Side channel attacks, which use side channel information leaked from real
implementation of cryptographic algorithms, were first introduced by Kocher [9].
Side channel attacks can be often much more powerful than mathematical crypt-
analysis. Thus, many papers on side channel cryptanalysis have been published.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 169–180, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

170 Y. Sakai and K. Sakurai

1.1 Modular Reduction in RSA vs. ECC

In RSA, the modulus n is a product of two randomly generated primes p and q.
So the modulus n can not have a special form which permits fast implementa-
tion. Montgomery modular multiplication [12], that works with any odd modu-
lus, is a most popular method to achieve fast implementation in the RSA settings.
Montgomery reduction includes, at the final step of the computation, an “extra
reduction” which depends on input value. If the intermediary result of the multi-
plication is greater than the modulus n, an extra reduction has to be performed.
The extra reduction leads to differences between running times needed for various
input values and gives side channel leakage [9,1,7,13,16,17].

On the other hand, in the elliptic curve cryptosystem (ECC) over a prime
field Fp, the modulus is a domain parameter p. Before we implement ECC, we
must select elliptic curve domain parameters so as to secure against mathemati-
cal cryptanalysis. Moreover we must also select domain parameters which permit
efficient implementation. These selection can be influenced by security considera-
tion, application platform, processing speed, memory constraint and gate count.
For ECC over Fp, it is a popular technique to select a special form of prime p for
the field order. The lower level of arithmetics in ECC over Fp are modular arith-
metics of modulo p. Solinas gave fast modular reduction methods for generalized
Mersenne prime [15]. NIST provides 5 recommended prime fields in FIPS 186-2
[2]. All the recommended elliptic curve domain parameters over Fp select gener-
alized Mersenne primes. Montgomery multiplication can also be applied to ECC
over Fp.

1.2 SPA on Unified Code with Modular Reduction: Walter’s Result

The most commonly used algorithm for computing elliptic point multiplication
is the binary method. Suppose that the doubling of a point and the addition of
two different points are implemented with different formulae, these two opera-
tions may then be distinguished by simple power analysis (SPA). A unified ap-
proach [3,6,8,10], which unify the standard formulae for point addition and point
doubling, offers generic solutions for preventing SPA. Brier and Joye proposed
a “unified code”, that unifies the standard formulae for point addition and point
doubling on Weierstrass form of an elliptic curve [3]. However, Walter pointed out
that SPA may still be possible on the unified code combining with Montgomery
multiplication [12] if an extra reduction is included [18]. Walter’s results indicate
that one should use a constant time implementation of modular multiplication,
whatever multiplier is used [18].

1.3 Our Contribution

Walter’s analysis was on Montgomery multiplication for arithmetic in Fp. How-
ever, as we have stated before, in implementation of ECC over Fp, we can apply
a dedicated algorithm of modular reduction for a special form of modulus such as
the generalized Mersenne prime. A dedicated modular reduction provides faster

Simple Power Analysis on Fast Modular Reduction 171

implementation than Montgomery multiplication. As we will see in the later sec-
tion, algorithms of modular reduction for generalized Mersenne prime may also
lead an extra reduction depending on the input value.

In this paper, we discuss SPA against ECC using unified code combining with
dedicated modular reduction algorithms for generalized Mersenne primes. NIST
recommended elliptic domain parameters [2] are examined. We will show that
such an implementation is vulnerable against SPA if the extra reduction is in-
cluded. Assuming the extra reduction can be distinguished by monitoring power
consumption during the elliptic point multiplication, the elliptic point operations,
point addition and doubling, should be revealed to the attacker. We will also show
that p192 = 2192 − 264 − 1 and p384 = 2384 − 2128 − 296 + 232 − 1, which is a field
order of NIST recommended domain parameters, can particularly be susceptible
to SPA.

2 Modular Reduction

The exponentiation is the most expensive part in implementation of public key
cryptosystems. In RSA cryptosystems and ECC over a prime field Fp, modular
multiplication is the dominant operation in the exponentiation. Therefore, it is
very attractive to provide algorithms that allow efficient implementation of mod-
ular multiplication. Montgomery’s method [12] performs modular multiplication
without a division instruction which is an expensive operation in almost proces-
sors. Thus Montgomery multiplication can achieve computational speed-up and
is often used in RSA cryptosystems. In the RSA settings, for security reason, the
modulus n is a product of two randomly generated private primes p and q. Thus
the modulus n can not have a special form.

On the other hand, in ECC over Fp, the modulus is a prime number p which
is a domain parameter. It is not required to select randomly generated p. It is
preferred to generate p of special form to achieve fast implementation. In this
section we give a brief description of fast modular reduction with special modulus
such as the generalized Mersenne prime.

2.1 Generalized Mersenne Prime

In FIPS 186-2 NIST provides 5 recommended prime fields [2]. The order of the
fields are shown below.

P-192: p192 = 2192 − 264 − 1
P-224: p224 = 2224 − 296 + 1
P-256: p256 = 2256 − 2224 + 2192 + 296 − 1
P-384: p384 = 2384 − 2128 − 296 + 232 − 1
P-521: p521 = 2521 − 1

These recommended primes have a special form, which are referred to as gen-
eralized Mersenne prime. This form permits fast modular reduction. Solinas gave
fast reduction algorithms for such the prime [4,15]. The following Algorithms 1,
2, 3, 4 and 5 show the dedicated reduction algorithms for p192 p224, p256, p384 and
p521, respectively.

172 Y. Sakai and K. Sakurai

Algorithm 1 Fast reduction modulo p192 = 2192 − 264 − 1

In integer c = (c5, c4, c3, c2, c1, c0), where each ci is a 64-bit word, and 0 ≤ c < p2
192.

Out c mod p192.

1. Define 192-bit integers:
s0 = (c2, c1, c0)
s1 = (0, c3, c3)
s2 = (c4, c4, 0)
s3 = (c5, c5, c5)

2. Return s0 + s1 + s2 + s3 mod p192

Algorithm 2 Fast reduction modulo p224 = 2224 − 296 + 1

In integer c = (c13, . . . , c1, c0), where each ci is a 32-bit word, and 0 ≤ c < p2
224.

Out c mod p224.

1. Define 224-bit integers:
s0 = (c6, c5, c4, c3, c2, c1, c0)
s1 = (c10, c9, c8, c7, 0, 0, 0)
s2 = (0, c13, c12, c11, 0, 0, 0)
s3 = (c13, c12, c11, c10, c9, c8, c7)
s4 = (0, 0, 0, 0, c13, c12, c11)

2. Return s0 + s1 + s2 − s3 − s4 mod p224

Algorithm 3 Fast reduction modulo p256 = 2256 − 2224 + 2192 + 296 − 1

In integer c = (c15, . . . , c1, c0), where each ci is a 32-bit word, and 0 ≤ c < p2
256.

Out c mod p256.

1. Define 256-bit integers:
s0 = (c7, c6, c5, c4, c3, c2, c1, c0)
s1 = (c15, c14, c13, c12, c11, 0, 0, 0)
s2 = (0, c15, c14, c13, c12, 0, 0, 0)
s3 = (c15, c14, 0, 0, 0, c10, c9, c8)
s4 = (c8, c13, c15, c14, c13, c11, c10, c9)
s5 = (c10, c8, 0, 0, 0, c13, c12, c11)
s6 = (c11, c9, 0, 0, c15, c14, c13, c12)
s7 = (c12, 0, c10, c9, c8, c15, c14, c13)
s8 = (c13, 0, c11, c10, c9, 0, c15, c14)

2. Return s0 + 2s1 + 2s2 + s3 + s4 − s5 − s6 − s7 − s8 mod p256

Simple Power Analysis on Fast Modular Reduction 173

Algorithm 4 Fast reduction modulo p384 = 2384 − 2128 − 296 + 232 − 1

In integer c = (c23, . . . , c1, c0), where each ci is a 32-bit word, and 0 ≤ c < p2
384.

Out c mod p384.

1. Define 384-bit integers:
s0 = (c11,c10, c9, c8, c7, c6, c5, c4, c3, c2, c1, c0)
s1 = (0, 0, 0, 0, 0, c23,c22,c21, 0, 0, 0, 0)
s2 = (c23,c22,c21,c20,c19,c18,c17,c16,c15,c14,c13,c12)
s3 = (c20,c19,c18,c17,c16,c15,c14,c13,c12,c23,c22,c21)
s4 = (c19,c18,c17,c16,c15,c14,c13,c12,c20, 0, c23, 0)
s5 = (0, 0, 0, 0, c23,c22,c21,c20, 0, 0, 0, 0)
s6 = (0, 0, 0, 0, 0, 0, c23,c22,c21, 0, 0, c20)
s7 = (c22,c21,c20,c19,c18,c17,c16,c15,c14,c13,c12,c23)
s8 = (0, 0, 0, 0, 0, 0, 0, c23,c22,c21,c20, 0)
s9 = (0, 0, 0, 0, 0, 0, 0, c23,c23, 0, 0, 0)

2. Return s0 + 2s1 + s2 + s3 + s4 + s5 + s6 − s7 − s8 − s9 mod p384

Algorithm 5 Fast reduction modulo p521 = 2521 − 1

In integer c = (c1041, . . . , c1, c0), where ci ∈ {0, 1}, and 0 ≤ c < p2
521.

Out c mod p521.

1. Define 521-bit integers:
s0 = (c1041, . . . , c522, c521)
s1 = (c520, . . . , c1, c0)

2. Return s0 + s1 mod p521

2.2 Extra Reduction

Algorithms 1∼5 may be executed with conditional branches in Step 2 depending
on the input. A typical implementation of Step 2 in Algorithm 1 with p192 can be
as the following.

2.1. t ← s0 + s1 + s2 + s3

2.2. While t ≥ p192 do: t ← t − p192 (extra reduction)
2.3. Return t

To ensure the output of Algorithm 1 is smaller than p192, when the intermedi-
ate value t in Step 2.1 becomes larger than or equal to the modulus p192, we have
to perform subtraction in Step 2.2. This conditional subtraction is called “extra
reduction.” Extra reduction should be performed depending on the inputs to the
modular multiplication. The extra reduction leads differences between running
times needed for various input values. SPA using this information leakage will be
discussed in Section 4.

174 Y. Sakai and K. Sakurai

2.3 Other Reduction Method for Modulus of Special Form

Standards for Efficient Cryptography Group (SECG) also provides recommended
elliptic curve domain parameters over Fp [14]. Their field order p also has special
forms that permit fast implementation. Their special forms include the form p =
2t − c for some small value of c, as well as generalized Mersenne prime.

An efficient reduction method for the modulus of the form p = 2t − c is also
well known [11]. A typical implementation for such modulus may include an extra
reduction. Therefore, SPA, which will be discussed in Section 4, can be applied
to the implementation of reduction with the special modulus p = 2t − c.

3 Unified Code

Brier and Joye proposed unified code, that unifies the standard formulae for point
addition and point doubling on Weierstrass form of an elliptic curve [3]. Unified
code for projective coordinates, where a triplet (X, Y, Z) corresponds to the affine
coordinates (X/Z, Y/Z) whenever Z �= 0, is given in Algorithm 6.

The unified code can compute addition of two different points or doubling of
a point with the same formulae. A unified approach offers generic solutions for
preventing SPA. However, Walter pointed out that SPA may still be possible on
the unified code combining with Montgomery multiplication if an extra reduction
is included [18].

Algorithm 6 Unified point addition/doubling

In P0 = (X0, Y0, Z0), P1 = (X1, Y1, Z1) ∈ E(Fp)

Out P2 = P0 + P1 = (X2, Y2, Z2) ∈ E(Fp)

1. u1 ← X0Z1, u2 ← X1Z0, t ← u1 + u2

2. s1 ← Y0Z1, s2 ← Y1Z0, m ← s1 + s2

3. z ← Z0Z2, f ← zm, l ← mf , g ← tl

4. r ← t2 − u1u2 + az2, w ← r2 − g

5. X2 ← 2fw

6. Y2 ← r(g − 2w) − l2

7. Z2 ← 2f3

8. Return P2 = (X2, Y2, Z2)

4 Simple Power Analysis

In this section we discuss side channel leakage from the unified code (Algorithm
6) with fast implementation of modular reduction for NIST generalized Mersenne
primes (Algorithms 1∼5). We assume that the left-to-right binary method of el-
liptic point multiplication, shown in Algorithm 7, is used.

Simple Power Analysis on Fast Modular Reduction 175

Algorithm 7 Left-to-right binary method of elliptic point multiplication

In G ∈ E(Fp) and k, where k = (kt−1kt−2 · · · k0)2 and kt−1 = 1

Out R = kG

1. R ← G

2. For i from t − 2 down to 0 do:

3. R ← 2R

4. If ki = 1 then R ← R + G

5. end for

6. Return R

4.1 Probability of Extra Reduction

Firstly we evaluate the probability of extra reduction by our experiments. In this
evaluation we assume the following.

– Two inputs a and b to modular multiplication c ← a× b mod p are uniformly
distributed modulo p.

– Modular multiplication is carried out as follows: firstly compute c ← a × b,
then perform modular reduction c ← c mod p using Algorithm 1∼5.

– Step 2 in Algorithm 1∼5 is performed as illustrated in Section 2.2. That is,
first add (or subtract) si for all i, next if the intermediary result t is greater
than or equal to modulus p, p should subtract from t.

The probability of extra reduction depends on the inputs a and b to the modu-
lar multiplication c ← a×b mod p. The following three cases should be considered:
1) The case that a and b are distinct. 2) The case that a = b. 3) The case that
one of a and b is a constant.

In the third case, a or b is constant, the probability of extra reduction can be
evaluated depending on the value of constant.

We should notice that in signature generation operation of Elliptic Curve Dig-
ital Signature Algorithm (ECDSA), the left-to-right method of elliptic point mul-
tiplication performs point addition with fixed point G, which is a base point on
an elliptic curve (Step 4 of Algorithm 7). Therefore, when point addition with two
different points are computed, in the first two steps of the unified code (Step 1 and
2 in Algorithm 6), modular multiplication should be performed with a constant
value (x, y or z(= 1) coordinates of the base point G).

Random Input. Table 1 shows the probability of extra reduction in the two
cases: 1) two inputs to modular multiplication are different, 2) two inputs are the
same. We have carried out an experiment as follows. We generated 100,000 pairs
of integers a and b (0 ≤ a, b < p), then we examined whether the extra reduction
was performed or not. SHA-1 based pseudo random number generator described
in FIPS 186-2 [2] was used to generate integers.

176 Y. Sakai and K. Sakurai

Table 1. Probability of extra reduction with random inputs, where p is a NIST recom-
mended domain parameter

Curve a × b mod p, (a 	= b) a × a mod p

P-192 0.69 0.73
P-224 0.30 0.27
P-256 0.11 0.20
P-384 0.65 0.69
P-521 0.25 0.33

Table 2. Probability of extra reduction with fixed base point G = (xG, yG, 1), where p
and G are NIST recommended domain parameters

Curve a × xG mod p a × yG mod p

P-192 0.54 0.51
P-224 0.22 0.22
P-256 0.04 0.02
P-384 0.70 0.57
P-521 0.19 0.28

We can observe from Table 1 that in the case of P-192 and P-384, the proba-
bility of extra reduction is significantly large compared to other curves. As we can
see from Step 2 in Algorithms 1∼5, in the case of P-192, all si should be added.
In the case of P-384, relatively large number of si should be added. So the proba-
bility can be large in these two curves. On the other hand, in the cases of P-224,
P-256 and P-521, relatively small number of si should be added. Consequently,
the probability of the extra reduction should be small. P-256 has smallest prob-
ability of extra reduction in consequence of large number of si which should be
subtracted.

Base Point. Table 2 shows the probability of extra reduction in the case that
one input to the modular multiplication is x coordinate or y coordinate of the
NIST recommended base point. As in the case of random inputs, we randomly
generated 100,000 integers a (0 ≤ a < p), then examined the probability.

The value of x coordinate and y coordinate of the NIST base points [2] are
given below in hexadecimal format. Upper digits are shown because of the space
limitation.

P-192: x192 =188da80eb03090f67cbf20eb43a18800f4f0 . . .
y192 =07192b95ffc8da78631011ed6b24cdd573f9 . . .

P-224: x224 =b70e0cbd6bb4bf7f321390b94a03c1d356c2 . . .
y224 =bd376388b5f723fb4c22dfe6cd4375a05a07 . . .

P-224: x224 =b70e0cbd6bb4bf7f321390b94a03c1d356c2 . . .
y224 =bd376388b5f723fb4c22dfe6cd4375a05a07 . . .

P-256: x256 =6b17d1f2e12c4247f8bce6e563a440f27703 . . .
y256 =4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce . . .

Simple Power Analysis on Fast Modular Reduction 177

P-384: x384 =aa87ca22be8b05378eb1c71ef320ad746e1d . . .
y384 =3617de4a96262c6f5d9e98bf9292dc29f8f4 . . .

P-521: x521 =0c6858e06b70404e9cd9e3ecb662395b4429 . . .
y521 =11839296a789a3bc0045c8a5fb42c7d1bd99 . . .

We can observe from Table 2 that in the case of P-192, the probability of extra
reduction is smaller than the case of random inputs (Table 1). The reason is that
the most significant digits of x and y coordinates of the base point have small
value, 1 for x and 0 for y. Therefore, the most significant word (c5 in Algorithm
1) have smaller value with high probability. Consequently, with high probability,
s0 + s1 + s2 + s3 can have smaller value than p192.

On the other hand, in the case of P-224, although the most significant dig-
its of both x and y coordinates have the value 0xb, which is relatively large, the
probability of the extra reduction is small. We can notice from Algorithm 2 that
the most significant word c13 is not included in the most significant word of s0, s1
and s2 (plus terms), and is included only in the most significant word of s3 (minus
term). Consequently, the probability of extra reduction become smaller when an
input to the modular reduction has large value.

We can observe the same facts as P-192 and P-224 in the curves P-256, P-384
and P-521. We will discuss SPA on the modular reduction in next section. We will
show that, in the case of one of inputs to the modular multiplication is x or y co-
ordinate of the base point, an implementation of elliptic point multiplication with
unified code should be susceptible to SPA if the probability of the extra reduction
is large.

We will see in the later section that, in the setting of ECDSA, the probability
of the extra reduction with fixed base point strongly affects the attack, which will
be described in the next section. Therefore, a theoretical analysis of the proba-
bility of the extra reduction is useful to give strict evaluation of security against
the attack.

4.2 The Attacks

Walter proposed SPA against elliptic point multiplication with the unified code
and Montgomery multiplication including extra reduction [18]. In this section, we
will discuss SPA against dedicated fast reduction method for NIST recommended
domain parameters. We assume that implementation of elliptic point multiplica-
tion is based on the following.

– Algorithms 1∼5 are used for dedicated fast modular reduction for NIST rec-
ommended domain parameters. The algorithm described in Section 2.2 is also
used for a sub-routine.

– The unified code, Algorithm 6, is used for elliptic point addition and doubling.
– The left-to-right method, Algorithm 7, is used for the elliptic point multipli-

cation.

We also assume the model of the attacker as follows.

178 Y. Sakai and K. Sakurai

Table 3. An Attack on P-192

k 1001 01 1 001 001 001 01 1 01 1 01 1 1 1 1 0001 01 1 01 . . .

AD DDDADDADADDDADDDADDDADDADADDADADDADADADADADDDDADDADADD . . .

u1 -*-----*-*-*-*-*-**--**-*-**---**-*-*-----****--*---** . . .

u2 -*----**-*-***-*-**--****-**--*****-*-----****--*--*** . . .

s1 -**----*-**--***-**--*--*--*-*-**-*---*---***--*--*-** . . .

s2 -**---*****-*******--*--*--********---*--****-**--*-** . . .

Difference ------Y-Y---Y---Y------Y----Y-Y--Y-------Y----Y----Y-- . . .

Recovered AD -----YYYYY-YYY-YYY----YYY--YYYYYYYY-----YYY--YYY--YYYY . . .

– The attacker has access to a device which calculates elliptic point multiplica-
tion.

– The attacker has knowledge about the implementation.
– The attacker can distinguish the extra reduction in Algorithms 1∼5 by mon-

itoring power consumption during the computation of the elliptic point mul-
tiplication.

When two inputs P0 and P1 to elliptic point addition are the same (i.e. X0 =
X1, Y0 = Y1, Z0 = Z1), the computation of u1 and u2 in Step 1 of the unified code
(Algorithm 6) should be identical. The computation of s1 and s2 (Step 2) should
also be identical. Therefore, both pairs exhibit identical behavior with respect
to the occurrence of the extra reduction. It is the repeated or different behavior
within the pairs which creates the handle for an attack. If the recorded behavior
is different at these points, the point operation must be a point addition [18]. The
attacker should guess the corresponding bit of the secret exponent to be “1” in
such the case.

4.3 Example of the Attack

This section demonstrates an attack on P-192. Table 3 shows a typical example
of the attack by simulation on PC. This table shows the initial few bits. k is the
randomly generated secret exponent to be recovered, which is represented in bi-
nary format. “AD” denotes the sequence of point addition (A) and point doubling
(D) in the left-to-right binary method of elliptic point multiplication (Algorithm
7). The symbol “*” expresses that the extra reduction has been revealed during
the computation of u1, u2, s1 and s2. The symbol “-” expresses that the extra
reduction has not been revealed.

The penultimate row records difference (marked Y) within the computation of
the pair (u1, u2) and the pair (s1, s2). In the place at marked Y, the corresponding
elliptic point operation must be addition of two different points, then the attacker
must guess that the corresponding bit of the secret exponent is “1”. The bottom
row “RecoveredAD” expresses that executed elliptic point operation (A or D) has
been successfully recovered (marked Y). We should notice that once a difference
was observed (at the penultimate row), these must be all point addition, then
point doubling must be performed on either side of a known point addition.

Simple Power Analysis on Fast Modular Reduction 179

In this simulation, the point P1 in the unified code (Algorithm 6) was regarded
as the fixed point G in the binary method (Algorithm 7). In ECDSA, the fixed
point G is the domain parameter. In a typical implementation, G is represented
in affine coordinates. That is Z coordinate is always 1. In such the case, the extra
reduction never be performed within the computation of u1 and s1. Therefore, if
the probability of the extra reduction is large, the large number of bits in the se-
cret exponent should be recovered. As we have already mentioned, the probability
of the extra reduction depends on the value of x and y coordinates.

We have a further work on a theoretical estimation of the probability of suc-
cessfully recovered bits. As we have mentioned in the previous section, a
theoretical analysis of the probability of the extra reduction may useful for this
estimation.

4.4 Countermeasure

Even if the unified code is used for elliptic point operation, underlying modular
operation should also be unified. That is, a conditional operation, which depends
on the inputs, can constitute an information channel, providing the attacker with
valuable information on the secret exponent.

As we have already stated, the probability of the extra reduction and the num-
ber of successfully recovered bits depend on the value of coordinates of the base
point. If we can generate appropriate base point in terms of our attack, the prob-
ability of the extra reduction would be small. However, this strategy may not be
an essential solution of countermeasure.

We should notice that, as Walter stated in [18], Coron’s three countermeasures
against differential power analysis (DPA) [5] are insufficient. The first counter-
measure: randomization of the secret exponent, can not defeat the attack when
the attacker can distinguish the extra reduction from one power trace. The second
countermeasure: blinding the point, and the third countermeasure: randomized
projective coordinates also can not be countermeasures. Changing coordinates
value may affect the probability of the extra reduction, but does not defeat the
attack.

5 Concluding Remarks

In this paper we showed SPA on the fast modular reduction with generalized
Mersenne prime included in NIST recommended domain parameters, combining
with the unified code for elliptic point operations. A practical cryptosystem based
on an elliptic curve over Fp is implemented with such a special form of prime to
achieve fast implementation. A typical implementation of a dedicated modular
reduction method for a special prime includes extra reduction. Such the condi-
tional operation can give side channel leakage.

When we take a unified approach to prevent simple power attacks, it is not
sufficient to take into account only elliptic point operation level. Careful imple-
mentation at lower level, i.e. modular operation level, should be considered.

180 Y. Sakai and K. Sakurai

References

1. J.F. Dhem, F. Koeune, P.A. Leroux, P. Mestré and J.-J. Quisquater, “A practi-
cal implementation of the timing attack,” CARDIS 1998, LNCS 1820, pp.175–190,
Springer-Verlag, 1998.

2. “Digital signature standard (DSS),” FIPS PUB 186-2, U.S. National Institute of
Standards and Technology, 2000.

3. E. Brier and M. Joye, “Weierstrass elliptic curves and side-channel attacks,” Public
Key Cryptography – PKC 2002, LNCS 2274, pp.335–345, Springer-Verlag, 2002.

4. M. Brown, D. Hankerson, J. Lopez and A. Menezes, “Software implementation of
the NIST elliptic curves over prime fields,” Technical Report CORR 2000-56, Uni-
versity of Waterloo, 2000.

5. J.-S. Coron, “Resistance against Differential Power Analysis for Elliptic Curve
Cryptosystems,” Cryptographic Hardware and Embedded Systems – CHES’99,
LNCS 1717, pp.292–302, Springer-Verlag, 1999.

6. C. Gebotys and R. Gebotys, “Secure elliptic curve implementations: an analysis
of resistance to power-attacks in a DSP processor,” Cryptographic Hardware and
Embedded Systems – CHES 2002, LNCS 2523, pp.114–128, Springer-Verlag, 2002.

7. G. Hachez and J.-J. Quisquater, “Montgomery exponentiation with no final sub-
tractions: Improved Results,” Cryptographic Hardware and Embedded Systems –
CHES 2000, LNCS 1965, pp.293–301. Springer-Verlag, 2000.

8. M. Joye and J.-J. Quisquater, “Hessian elliptic curves and side channel attacks,”
Cryptographic Hardware and Embedded Systems – CHES 2001, LNCS 2162,
pp.402–410, Springer-Verlag, 2001.

9. P.C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems,” Advances in Cryptology – CRYPTO ’96, LNCS 1109, pp.104–
113, Springer-Verlag, 1996.

10. P.-Y. Liardet and N.P. Smart, “Preventing SPA/DPA in ECC systems using the Ja-
cobi form,” Cryptographic Hardware and Embedded Systems – CHES 2001, LNCS
2162, pp.391–401, Springer-Verlag, 2001.

11. A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, “Handbook of applied cryp-
tography,” CRC Press, 1966.

12. P.L. Montgomery, “Modular multiplication without trial division,” Mathematics of
Computation, vol. 44, no. 170, pp.519–521, 1885.

13. W. Schindler, “A timing attack against RSA with the Chinese Remainder Theo-
rem,” Cryptographic Hardware and Embedded Systems – CHES 2000, LNCS 1965,
pp.109–124, Springer-Verlag, 2000.

14. Certicom, “Standard for efficient cryptography, SEC2: Recommended elliptic do-
main parameters,” 2000.

15. J.A. Solinas, “Generalized Mersenne numbers,” Technical Report CORR 99-39,
University of Waterloo, 1999.

16. C.D. Walter, “Montgomery exponentiation needs no final subtractions,” Electric
Letters, vol. 35, no. 21, pp.1831–1832, 1999.

17. C.D. Walter and S. Thompson, “Distinguishing exponent digits by observing modu-
lar subtractions,” RSA Conference 2001, LNCS 2020, pp.192–207, Springer-Verlag,
2001.

18. C.D. Walter, “Simple power analysis of unified code for ECC double and add,”
Cryptographic Hardware and Embedded System – CHES 2004, LNCS 3156,
pp.191–204, Springer-Verlag, 2004.

Asymmetric Concurrent Signatures

Khanh Nguyen

Gemplus R&D,
12 Ayer Rajah Crescent,

Singapore 139941
kenny.nguyen-qk@gemplus.com

Abstract. The concept of concurrent signatures allows two entities to
produce two signatures in such a way that, the signer of each signa-
ture is ambiguous from a third party’s point of view until the release
of a secret, known as the keystone. Once the keystone is released, both
signatures become binding to their respective signers concurrently. Pre-
vious concurrent signature schemes use the concept of ring signatures in
their construction. Ring signatures identify the ring and thus concurrent
signatures constructed from ring signature are related and linkable. We
propose a new concurrent signature scheme which is independent of the
ring signature concept. Our concurrent signatures are anonymous. The
ordinary signatures obtained from our concurrent signature protocol are
unlinkable and do not reveal which concurrent signature transaction has
occurred. The price we pay is our concurrent signatures are asymmetric
in the sense that the initial signature and subsequent signatures are not
of the same construction.

1 Introduction

1.1 Concurrent Signatures

The concept of concurrent signatures was introduced in [3]. In a concurrent sig-
nature scheme, two parties A and B interact without the help of any third party
to sign messages MA and MB in such a way that both signatures are ambiguous
without an extra piece of information, known as the keystone. Without the key-
stone, from a third party’s point of view, both signatures are ambiguous as they
could have been generated by either of the parties and thus do not represent any
entity’s commitments to the messages. With the keystone, the signer for each
signature is identified and both signatures become instantly binding to their re-
spective signers. In the original proposal [3], the keystone is a randomly chosen
piece of information and possessed by the protocol’s initiator. During the sig-
nature generation phase, the keystone is not known to other parties. When the
validation of concurrent signatures is required, the initiator reveals the keystone
which validates all the signatures concurrently.

Concurrent signatures find applications in fair exchange of digital signatures
and fair tendering of contracts. To exchange digital signatures, two parties A
and B engage in a concurrent signature protocol by which each party receives

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 181–193, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

182 K. Nguyen

the other’s concurrent signature on the desired message. The exchange is fair in
the sense that without the knowledge of the keystone, both of the concurrent
signatures are ambiguous and non-binding to the signers. To prove the validity
of the concurrent signature generated by party B, party A would need to reveal
the keystone. The revelation of this knowledge in turn would bind the concurrent
signature generated by party A to its signer, i.e., to party A, hence the fairness
is achieved. This notion of fairness is weak as it allows party A to reveal the
keystone in private to another party. In this scenario, the party B who is denied
of the knowledge of the keystone, can not prove the validity of the concurrent
signature generated by party A. However, this weak notion of fairness is accept-
able in many instances, such as contracts for party A to buy physical goods from
party B. The advantage of fair exchange using concurrent signatures is that it
eliminates the requirement of a trusted third party from the protocol and it is
not overly interactive. Previous solutions to the problem of fair exchange of dig-
ital signatures (see [1,2] and references therein for a detailed survey) are either
highly interactive with multiple rounds of exchange or require the existence of a
third party trusted by both parties A and B. Multiple rounds of exchange are
inefficient while the existence of a trusted third party is not always warranted.

Previous concurrent signature proposals [3,10] are based on the concept of
ring signatures. In those schemes, each concurrent signature is a ring signature
[8] generated from the ring consisting of all involved parties. Each ring signature
while identifies that the signer is a member of the ring, does not reveal the actual
signer. The ambiguity of each concurrent signature comes from this anonymous
attribute of the underlying ring signature scheme. Ring signatures while hide
the actual signer identity in the ring, do identify the ring. Hence it does leak
information about the transaction.

Furthermore, in those proposals [3,10], once the keystone is revealed, its
value must be included in each signature in order to bind the signature to its
actual signer. This means all the signatures obtained from a concurrent signature
protocol are linked together. This is not desirable when the anonymity of the
transaction is required.

1.2 Our Contributions

In this paper, we propose a concurrent signature scheme which offers a stronger
notion of anonymity than previous schemes. Under the Decisional Diffie-Hellman
assumption, each of our concurrent signatures could be created by anyone (not
just by a member of the ring as done previously) without the knowledge of the
keystone. Due to this, a set of k concurrent signatures in our scheme is anony-
mous and releases no information about whether the transaction is real or faked.
Once the keystone is revealed, our concurrent signatures could be converted to
ordinary Schnorr-like signatures. Except for one signature issued by the protocol
initiator, our converted signatures do not contain the keystone and thus remain
unlinkable. This is in total contrast to all previous proposals [3,10] in which once
the keystone is revealed, all the signatures obtained from a concurrent signature
transaction are linked by the formation of the ring.

Asymmetric Concurrent Signatures 183

The cost we pay is that our concurrent signatures are asymmetric. The sig-
nature signed by the party who processes the keystone is different from the
other signatures. However, this is not a real issue in most applications where
concurrent signatures find their uses.

1.3 Technical Approach

Each concurrent signature could be viewed as a promise of signature which could
be converted into an ordinary signature by revealing a secret information – the
keystone. In CKP concurrent signatures, a promise of signature is a ring signature
issued by a member of the ring. Upon the release of the keystone information,
it converts the ring signature to a signature that could only be issued by the
identified member. While ring signatures could be used to construct promises of
signatures, it is not a necessary condition.

In [1], Asokan, Shoup and Waidner (ASW) proposed a technique which re-
duces a promise of a signature to a promise of a homomorphic pre-image. With-
out the homomorphic pre-image, the promise of signature looks indistinguishable
from random elements of the signature space as it could have been created by
anyone using solely public information. With the homomorphic pre-image, the
promise of signature could be converted into an ordinary signature. This tech-
nique is applicable to most well-known signature schemes (e.g., Schnorr [9], RSA
[7], DSS [5] and GQ [4] signature schemes). If we view the homomorphic pre-
image as the keystone, then an ASW promise of signature is indeed a concurrent
signature. The advantage of using the ASW construction is that a promise of
signature while contains public information about a single entity, could be cre-
ated by anyone; hence without the keystone, it leaks no information about the
signature. This is a genuine advantage from ring signatures where signatures are
linked together by the nature of the ring.

An ASW promise of a signature could only be constructed with the knowledge
of homomorphic pre-image, i.e., the keystone. In the standard model of the
concurrent signatures, the keystone should only be known to one party and not
to be shared with other parties. Thus except for one party in the protocol, the
ASW promise of signature construction could not be used for others. In those
cases, we need a promise of signature construction that does not require the
knowledge of the keystone. Fortunately, a such new construction is possible for
a variant of the Schnorr signature scheme. This construction is described in
section 2.

1.4 Organization

The remaining of the paper is organized as follows. Section 2 describes the con-
cept of promises of signatures. This concept forms the main basic building block
for our concurrent signature scheme. Section 3 discusses our formal definitions
which include both the definitions for concurrent signature scheme and protocol.
Section 4 gives the security model for our concurrent signature scheme. Here, we
modify the security model from [3] in order to capture the additional security

184 K. Nguyen

properties of anonymity and unlinkability. Section 5 proposes a concrete con-
current signature scheme. It also discusses the security of the construction and
extensions of this proposal to multi-party case.

2 Promises of Signatures

Definition 1. Let f be some cryptographic function. The value σ = 〈s, u〉 is
said to be a valid promise of signature ρ = 〈k, u〉 on some message m if the
following conditions hold:

– Publicly Verifiable: given σ, everyone is convinced that if there exists
k = f−1(s) then ρ = 〈k, u〉 is a valid ordinary signature.

– Anonymity: without the knowledge of k = f−1(s), σ is indistinguishable
from random elements of the signature space.

To convert a promise of signature to an ordinary signature, one only needs to
reveal the value k such that f(k) gives s. The verification s = f(k) is adequate
to verify the signature ρ = 〈k, u〉 provided that σ = 〈s, u〉 is a valid promise of
signature.

2.1 Promises of Schnorr Signatures

The Schnorr signature scheme [9] is constructed as follows:

– Setup: the public parameters are the primes p and q of appropriate size
such that q|(p − 1), and a generator g for the subgroup in Z∗

p of order q.
– Key Generation: select a random x ∈ Zq and compute h = gx mod p. The

public key is {p, q, g, h} and its corresponding private key is x.
– Sign: the signer chooses a random r ∈ Zq and computes k = cx + r mod q

where c = H(gr mod p, m) and H is a hash function. The signature is ρ =
(k, c).

– Verify: to verify the signature ρ = (k, c), one checks c =H(gkh−c mod p, m).

For the remaining of this paper, we omit the modular reduction mod p from
the modular exponentiation ar mod p for any given a ∈ Z∗

p and any arbitrary r.
Instead, we use ar to denote ar mod p whenever the context is clear.

The promise of the Schnorr signature ρ = 〈k, c〉 is σ = 〈s, c〉, where s = f(k)
for f(x) = gx. To verify the promise of signature, one verifies c = H(sh−c, m).
To convert the promise of signature to an ordinary signature, the signer reveals
k. The verification is gk = s which implies c = H(gkh−c, m), and thus ρ = 〈k, c〉
is a valid Schnorr signature.

Lemma 1. The value σ = 〈s, c〉 where c = H(sh−c, m) is a promise of signature
ρ = 〈k, c〉, where s = f(k) for f(x) = gx.

Asymmetric Concurrent Signatures 185

2.2 Promises of Schnorr-Like Signatures

Apart from the above promise of signature. We also need a promise of signature
construction in which the promise of signature could be constructed without the
knowledge of the promise, i.e., without the knowledge of the homomorphic in-
verse. We design such a promise of signature construction for a variant of Schnorr
signature scheme. This variant of Schnorr signature scheme is constructed as fol-
lows:

– Setup: the public parameters are the primes p and q of appropriate size
such that q|(p − 1), and a generator g for the subgroup in Z

∗
p of order q.

– Key Generation: select a random x ∈ Zq and compute h = gx. The public
key is {p, q, g, h} and the corresponding private key is x.

– Sign: the signer chooses two random κ and r ∈ Zq and computes κ =
(r−c)/x mod q where c = H(gr, m) and H is a hash function. The signature
is ρ = (κ, c).

– Verify: to verify the signature ρ = (κ, c), one checks c = H(gchκ, m).

This is a straightforward variant of the Schnorr signature scheme. The difference
here is that the equation r = κx + c mod q is used instead of the standard
equation r = k − cx mod q. Using essentially the same security proof for the
original Schnorr signature scheme [6], we have the following security result:

Lemma 2. In the random oracle model, this Schnorr-like signature scheme is
existentially unforgeable against adaptive chosen message attacks, assuming the
hardness of the discrete logarithm problem.

The promise of the Schnorr-like signature ρ = 〈κ, c〉 is ω = 〈s, κ1, c〉 where
s = f(κ−κ1) for f(x) = hx. To verify this promise of signature, one verifies c =
H(gchκ1s, m). To convert the promise of signature to an ordinary signature, the
signer reveals κ2 = κ− κ1 mod q. The verification is hκ2 = s which implies c =
H(gchκ1+κ2 , m); and hence ω = 〈κ, c〉 = 〈κ1 + κ2 mod q, c〉 is a valid signature.
Note that the knowledge of κ2 is not required in order to create the promise of
signature ω.

Lemma 3. The value ω = 〈s, κ1, c〉 where c = H(gchκ1s, m) is a valid promise
of signature ρ = 〈κ, c〉, where κ = κ1 + κ2 mod q and s = f(κ2) for f(x) = hx.

Proof. The verification c = H(gchκ1s, m) requires only public information. If
there exists κ2 such that hκ2 = s, we have c = H(gchκ1+κ2 , m) and thus ρ =
〈κ, c〉 = 〈κ1 + κ2, c〉 is a valid ordinary signature. Hence, the publicly verifiable
condition is satisfied.

The anonymity property of this promise of signature follows from the fact
that one could generate a valid promise of signature from public information:
the simulator chooses two random r and κ1 ∈ Zq, computes c = H(grhκ1 , m)
and sets s = gr−c. We have ω = 〈s, κ1, c〉 satisfies c = H(gchκ1s, m) and thus is
a valid promise of signature constructed solely from public information.

186 K. Nguyen

3 Formal Definitions

3.1 Asymmetric Concurrent Signatures

In this section, we give a formal definition for concurrent signature schemes.
Our definition is an adaption of the CKP definition with some modification
accommodating the asymmetric property of signatures.

Definition 2. An asymmetric concurrent signature scheme is a digital signature
scheme consisted of the following algorithms:

SETUP: A probabilistic algorithm that on input of a security parameter l, out-
puts: the set of participants U each equipped with a private key xi and the cor-
responding public key Xi. The algorithm also outputs the message space M,
the keystone space K, the keystone fix space F and some additional system
parameters π. The algorithm also defines a function KGEN : K → F , a
set of functions {KGENj : K → F} and a keystone transformation function
KTRAN : F × {xi} → F .

ISIGN: A probabilistic algorithm that on inputs 〈Xi, xi, Mi〉, where Xi is a public
key, xi is the corresponding private key and Mi ∈ M is the message, outputs
a promise of signature σi = 〈s, ui〉 and the relevant keystone k ∈ K, where
s = KGEN(k).

SSIGN: A probabilistic algorithm that on inputs 〈Xj , xj , Mj〉 and s, where Xj

is a public key, xj is the corresponding private key , Mj ∈ M is the message
and s a keystone fix, outputs a promise of signature ωj = 〈s′, vj〉 where s′ =
KTRAN(s, xj).

IVERIFY: An algorithm which takes as input a promise of signature σi = 〈s, ui〉
and a message Mi, and outputs accept or reject. The algorithm outputs accept
if and only if σi is a valid promise of the signature 〈k, σi〉 on message Mi with
f(x) = KGEN(x).

SVERIFY: An algorithm which takes as input a promise of signature ωj =
〈s′, vj〉, a message Mj, and outputs accept or reject. The algorithm outputs accept
if and only if omegaj is a valid promise of the signature 〈k, ωj〉 on message Mj

with f(x) = KGENj(x).

VERIFY: An algorithm which takes as input, a promise of signature σi = 〈s, ui〉
(or ωj = 〈s′, vj〉), a message M and a keystone k ∈ K, and outputs accept or
reject. The algorithm will output accept if and only if s = KGEN(k) and 〈k, σi〉
(or s′ = KGENj(k) and 〈k, ωj〉) forms a valid signature on message M .

We note that our concurrent signature protocol differs from the protocol of [3]
in that the keystone fixes used for A and B are different. This crucial property
allows us to unlink signatures obtained from the same signature protocol. For
this to work, we require the keystone fix transform function KTRAN to be
isomorphic and that s′ leaks no more information about k rather than s. This
security notion is discussed in the following section.

Asymmetric Concurrent Signatures 187

3.2 Concurrent Signature Protocol

Using the above definition, our two-party concurrent signature protocol is as
follows. Let A be the initial signer who initiates the protocol and B be the
matching signer who responds to the initial signer. A and B first run SETUP
algorithm to generate the public key parameters for the system. We assume A’s
public and private keys are XA and xA respectively. Likewise, B’s public and
private keys are XB and xB respectively. Then A and B engage in the following
protocol:

1: To start of the protocol, A runs ISIGN algorithm to generate a promise of
signature σA = 〈s, uA〉 and the relevant keystone k for the message MA. The
values of σA and MA are sent to B.
2: Upon receiving σA and MA, B verifies the validity of σA using IVERIFY. If
σA is a valid promise of signature on message MA, B uses the keystone fix s to
run SSIGN algorithm to generate a promise of signature ωB = 〈s′, vB〉 for the
message MB. The values of ωB and MB are sent to A.
3: Upon receiving ωB and MB, A runs SVERIFY to verify the validity of ωB.
If so, A uses the keystone k to verify the keystone fix s′. If this keystone fix is
valid, A forwards the keystone k to B.

4 Security Model

The original security model of [3] addresses four basic security properties, namely
completeness, fairness, ambiguity and unforgeability. The unforgeability prop-
erty is somewhat redundant as it has already been captured with the fair-
ness property. If concurrent signatures are forgeable, fairness would not be
achieved.

We require our concurrent signature protocol to achieve four security require-
ments, namely completeness, fairness, anonymity and unlinkability. The com-
pleteness and fairness properties are the standard security requirements in the
original model of [3] while the anonymity and unlinkability properties are new.
Our anonymity property replaces the ambiguity property in the original model.
It provides a stronger anonymity attribute for concurrent signatures than what
was originally allowed with the ambiguity property. The unlinkability property
addresses the anonymity of ordinary signatures obtained from the concurrent
signature protocol. This property is new and was not addressed in the original
model.

We note that our anonymity and unlinkability properties are not overlapped.
The anonymity property deals with the concurrent signatures while the unlinka-
bility property deals with the ordinary signatures obtained from the concurrent
signature protocol (upon the revelation of the keystone). It is quite possible that
once the keystone is revealed, it would link the anonymous concurrent signatures
together and thus the obtained (ordinary) signatures are not unlinkable.

188 K. Nguyen

4.1 Completeness

Definition 3. A concurrent signature protocol is complete if the following con-
ditions hold:

– If σi = 〈s, ui〉 = ISIGN(Xi, xi, Mi), then IV ERIFY (s, ui) = accept. More-
over, if KGEN(k) = s for some k ∈ K, V ERIFY (k, s, ui)= accept.

– If ωj = 〈s′, vj〉 = SSIGN(Xj , xj , Mj), then SV ERIFY (k, s′, vj)= accept.
Moreover, if KGENj(k) = s′ for some k ∈ K, V ERIFY (k, s′, vj)= accept.

– If KGEN(k) = s and KGENj(k′) = s′, then k = k′.

4.2 Fairness

The fairness property is defined by the following game between an adversary A
and a challenger C.

GAME 1:

Setup: as SETUP in section 3.1. The challenger C is given the public key X
and its corresponding secret key x. The adversary is given the public key X ′

and its corresponding secret key x′.
Queries: the adversary A is allowed to make a sequence of the following queries

to the challenger C:
– ISIGN query, A will supply the message mi and C will output the

promise of signature σi = 〈si, ui〉 = ISIGN(X, x, mi).
– SSIGN query, A will supply his promise of signature σ̂j = 〈ŝj , ûj〉

with the message mj . If IV ERIFY (ŝj , ûj) = accept, A obtains from C:
ωj = 〈sj , vj〉 = SSIGN(X, x, mj, ŝj); otherwise A obtains nothing.

– KRELEASE query, A requests C to reveal the keystone k ∈ K used to
produce the keystone fix s ∈ F in a previous ISIGN query.

Output: Finally A outputs a string φ and C outputs a string φ̄. The adversary
wins if either of the following conditions hold:
– φ = (k, σ) = (k, s, u), V ERIFY (k, s, u) = accept and A has not made

KRELEASE query for s or,
– φ=(k, ω)=(k, s, v), V ERIFY (k, s, v) = accept, and s = KTRAN(ŝ, x);

φ̄ = (k, σ) = (k, ŝ, û) and V ERIFY (k, ŝ, û) �= accept.

Definition 4. A concurrent signature protocol is fair if the advantage of an
polynomial-bounded adversary in the above game is negligible.

4.3 Anonymity

Definition 5. A concurrent signature is anonymous if the following conditions
hold:

– The value σi = 〈s, ui〉 = ISIGN(Xi, xi, Mi) is indistinguishable from ran-
dom elements of the signature space.

– The tuple (s, ωj) where s is the keystone fix input to SSIGN and ωj =
〈s′, vj〉 = SSIGN(Xj , xj , Mj, s) is indistinguishable from random elements
of the signature space.

Asymmetric Concurrent Signatures 189

4.4 Unlinkability

The unlinkability property is defined by the following game between an adversary
A and a challenger C.

GAME 2:

Setup: as SETUP in section 3.1. The challenger C is also given two pairs of
public and private keys (X, x) and (X ′, x′).

Challenge: The challenger simulates by himself two instances of the concur-
rent signature protocol (using his two different pairs of public and secret
keys (X, x) and (X ′, x′) to obtain two different pairs of converted signatures
(ρ0, ρ

′
0) and (ρ1, ρ

′
1). Here ρ0 and ρ1 are signatures of the same type (Schnorr

or Schnorr-like) issued with the secret key x; and ρ′0 and ρ′1 are signatures of
the same type (Schnorr-like or Schnorr respectively) issued with the secret
key x′. The challenger then chooses a random bit b ∈ {0, 1} and set ρ′ = ρ′b.
The signatures ρ0, ρ1 and ρ′ are then given to the adversary along with the
two private keys x and x′.

Output: Finally A outputs the bit b′. The adversary wins the game if b = b′.

Definition 6. A concurrent signature scheme is unlinkable if the probability of
an adversary to win the above game is not better than 1/2.

This definition captures the intuition that if signatures are unlinkable, the prob-
ability that the adversary to identify the correct pair (ρb, ρ

′
b) must not be non-

negligibly better than a random toss of the coin. By letting the adversary to
have the secret keys after the challenge is created, we essentially allow the ad-
versary to have the complete view of all protocol runs thereafter. Here we made
an implicit assumption that the messages signed are not linked.

5 An Asymmetric Concurrent Signature Scheme

We now proceed to give a concrete asymmetric concurrent signature scheme.

Setup: the public parameters are the primes p and q of appropriate size such
that q|(p−1), and a generator g for the subgroup in Z

∗
p of order q. The space

M is the set of all binary strings {0, 1}∗, K = Zq and F is the subgroup
of Z∗

p generated by g. Private keys xi’s are chosen randomly from Zq. Their
corresponding public keys are Xi’s, each satisfies Xi = gxi . KGEN is defined
as KGEN(x) = gx, each KGENj is defined as KGENj(k) = Xk

j , and
KTRAN is defined as KTRAN(s, xj) = sxj .

ISIGN: on input of 〈Xi, xi, Mi〉, the algorithm generates a random r ∈ Zq and
returns the Schnorr promise of signature σi = 〈s, c〉 where c = H(gr, Mi),
s = gr+cxi.

SSIGN: on input of 〈Xj , xj , Mj〉 and s, the algorithm generates a random r′ ∈
Zq and returns the promise of Schnorr-like signature ωj = 〈s′, κ1, c

′〉 where
s′ = sxj , c′ = H(gr′

s′, Mj) and κ1 = (r′ − c′)/xj mod q.

190 K. Nguyen

IVERIFY: on input of σi = 〈s, c〉, outputs accept if c = H(sX−c
i , Mi) and

reject otherwise.
SVERIFY: on input of ωj = 〈s′, κ1, c

′〉, outputs accept if c′ = H(gc′
Xκ1

i s′, Mj)
and reject otherwise.

VERIFY: on input of the keystone k and the promise of signature σi = 〈s, c〉
(or k and the promise of signature ωj = 〈s′, κ1, c

′〉), the algorithm out-
puts accept if KGEN(k) = s and IV ERIFY (σi) = accept (or respectively
KGENj(k) = s′ and SV ERIFY (ωj) = accept).

5.1 Security

The completeness of the above concurrent signature scheme is by inspection. It
remains to show that our concurrent signature protocol is fair and anonymous
and the converted signatures are unlinkable.

Theorem 1. The concurrent signature protocol constructed from the above con-
current signature scheme is fair, provided that the Schnorr and Schnorr-like sig-
nature schemes are unforgeable.

Proof. The proof is by contradiction. If the concurrent signature protocol is not
fair, by definition it must violate one of these two conditions with non-negligible
probability:

Case 1: the party B can obtain a signature (k, σ) = (k, s, c) such that (k, s, c)
is accepted by V ERIFY without getting the keystone k from A.

Case 2: the party A can obtain a signature (k, ω) = (k, s′, κ1, c
′) such that

(k, s′, κ1, c
′) is accepted by V ERIFY while the output of party B (k, σ) =

(k, s, c) is not accepted by V ERIFY , i.e., V ERIFY (k, s, c) �= accept.

We consider each of the two cases.

Case 1. B is able to obtain a valid signature (k, σ) such that (k, s, c) is accepted
by V ERIFY without getting k from A. This is equivalent to B getting a valid
signature (k, σ) from the promise of signature σ. This implies a Schnorr signature
forgery.

Case 2. A is able to obtain a valid signature (k, ω). A could either receive ω
from B or generate ω by herself. If A does not receive ω from B, A must generate
the whole tuple (k, ω) by herself. This means that A could forge the Schnorr-
like signature (k, ω) which contradicts the unforgeability property of the basic
signature scheme.

If A receives the promise of signature ω = 〈s′, κ1, c
′〉, it means B must have

obtained a promise of signature σ = 〈s, c〉 such that s′ = sxB . Since 〈k, ω〉 is a
valid signature, we have s′ = Xk

B. This means s = s′1/XB = gk; and thus (k, σ)
is a valid signature which contradicts the original assumption.

Theorem 2. In the random oracle model, the concurrent signature protocol con-
structed from the above concurrent signature scheme is anonymous under the
Decisional Diffie-Hellman assumption.

Asymmetric Concurrent Signatures 191

Proof. By definition, our signature protocol is anonymous if these conditions are
both satisfied:

Case 1: the promise of signature σi = 〈s, c〉 outputted by the algorithm
ISSIGN on input (Xi, xi, Mi) is indistinguishable from random elements of
the signature space and,

Case 2: the tuple (s, ωj) where ωj = 〈s′, κ1, c
′〉 is the output of algorithm

SSIGN on input (Xj , xj , Mj, s) is indistinguishable from random elements
of the signature space.

Case 1 comes straight from the anonymity property of the Schnorr promise of
signature. For Case 2, we show that if there is an oracle which distinguishes
(s, ωj) from random elements of the signature space, there is a machine which
could use the oracle to solve the Decisional Diffie-Hellman problem in the random
oracle model.

Our machine interacts with the oracle as follows:

Input: a tuple of 〈g, gx, gy, gr〉.
Operation 1: The machine serves as the hash function for the oracle. The
machine maintains a list of previous hash query definitions. If a hash query
is defined, the machine returns the previous output. Otherwise, the machine
returns a random output and adds the entry pair to the definition list.

Operation 2: The machine chooses random c and κ1 and sets s = gy, Xj =
gx, s′ = gz, and ωj = 〈s′, κ, c〉. The machine adds the pair of (c, gcXκ1

j s) to
the list of hash function definition. Finally the machine sends the pair (s, ωj)
to the oracle. This operation could be initiated by the machine or by the
oracle. We place no restriction on how this operation could be initiated.

Output: If the oracle outputs that one of {(s, ωj)} is a valid promise of
signature, the machine outputs 〈g, gx, gy, gr〉 is a valid Diffie-Hellman tuple,
i.e., r = xy.

If 〈g, gx, gy, gr〉 is a Diffie-Hellman tuple then r = xy and thus (s′, ωj) is a valid
pair (with k = x). If 〈g, gx, gy, gr〉 is not a Diffie-Hellman tuple then logss

′ �= x
and thus (s′, ωj) is not a valid pair. Thus our machine will give a correct answer
to the Decisional Diffie-Hellman problem if the machine would terminate and the
oracle could distinguish a valid (s, ωj) from an invalid one. The latter is by the
assumption of the oracle. For the former, it remains to show that the machine
terminates in a polynomially-bounded number of operations.

It is clear that Operation 1 always terminates. Operation 2 would not termi-
nate only if the hash query is already defined for challenge gcXκ1

j s , i.e., there is
another value c′ �= c such that c′ = H(gcXκ1

j s) is already defined by the machine.
With random c and κ1, gcXκ1

j s is uniformly distributed and the probability that
it appears in a polynomial-bounded list is negligible.

Theorem 3. Assuming the messages are unrelated, when converted to become
ordinary signatures, our concurrent signatures are unlinkable under the random
oracle model.

192 K. Nguyen

Proof. According to definition 4, to prove that our concurrent signatures are
unlinkable, we need to show that the advantage of an adversary to identify the
bit b ∈ {0, 1} in GAME 2 (section 4.4) over the random toss of the coin is
negligible. Since the messages are irrelevant to our discussion, we ignore the
messages in the proof whenever possible.

We shall provide the proof for the case where ρ0 and ρ1 are Schnorr signatures
and ρ′b is a Schnorr-like signature. The case where ρ0 and ρ1 are Schnorr-like
signatures and ρ′b is a Schnorr signature is similar and omitted.

Let ρ0 = (k0, c0) and ρ1 = (k1, c1) where ci = H(X−cigki) (i = 1, 2), and let
ρ′b = (k′

b, c
′
b) where c′b = H(X ′k′

bgc′
b).

Let r0 = k0− c0x mod q and r′0 = (k′
b−k0)xj + c′b mod q. Since c0 and c′b are

outputs of the random oracle H(), the pair 〈r0, r
′
0〉 is uniformly distributed in

Zq ×Zq. It is easy to verify that the concurrent signature protocol in which r0 is
the random input to the algorithm ISIGN(X, x, M0) and r′0 is the random input
to the algorithm SSIGN(X ′, x′, M ′

b) is legitimate and returns the signatures ρ0
and ρ′b.

Similarly, let r1 = k1 − c1x mod q and r′1 = (k′
b − k1)xj + c′b mod q. Since

c1 and c′b are outputs of the random oracle H(), the pair 〈r1, r
′
1〉 is uniformly

distributed in Zq ×Zq. It is likewise easy to verify that the concurrent signature
protocol in which r1 is the random input to the algorithm ISIGN(X, x, M1)
and r′1 is the random input to the algorithm SSIGN(X ′, x′, M ′

b) is legitimate
and returns the signatures ρ1 and ρ′b.

Then the probability for the adversary to identify the bit b is equal to the
probability for the adversary to identify whether the random pair 〈r0, r

′
0〉 or

〈r1, r
′
1〉 is the actual pair 〈rb, r

′
b〉 used in the protocol which generates ρb and ρ′b.

Since rb and r′b are uniformly and independently chosen random values from
Zq, the pair 〈rb, r

′
b〉 is uniformly distributed in Zq×Zq. This means the probabil-

ity that 〈rb, r
′
b〉 = 〈r0, r

′
0〉 is equal to the probability that 〈rb, r

′
b〉 = 〈r1, r

′
1〉, i.e.,

the probability for the adversary to win GAME 2 is no better than a random
toss of the coin.

5.2 Discussion

The benefit of anonymity that our concurrent signature scheme offers might
turn out to be a disadvantage to the matching signer in certain cases. Due to
the anonymity property, the matching signer might not be able to distinguish
faked queries from genuine ones and hence is vulnerable against denial-of-service
attacks. This problem could be overcome by forcing the initial signer to prove
in zero-knowledge the knowledge of the homomorphic inverse. This is easily
accomplished using the standard Schnorr identification protocol [9]. The trade-
off is a reduction in the protocol performance. We note that this problem is not
applicable to the original CKP scheme as due to the nature of ring signatures,
the matching signer can always determine if a signature sent from the initial
signer is genuine or faked.

The protocol could be extended to work with multiple matching signers.
In this model, one initial signer is used as the hub connecting with all multi-

Asymmetric Concurrent Signatures 193

ple matching signers. Each matching signer is assumed to behave like the the
matching signer in the two-party case. It is easy to see that in this scenario, the
anonymity of each and every signer is protected. Each concurrent signature in
this case is still of the same size. When the keystone is revealed, all obtained
signatures still remain unlinkable. We note that the CKP construction would re-
quire extra information proportional to the size of the group embedded in each
signature. This results in concurrent signatures of the size proportional to the
size of the group.

References

1. N. Asokan, V. Shoup, and M. Waidner, Optimistic Fair Exchange of Digital Signa-
tures (Extended Abstract), In K. Nyberg (ed.), EUROCRYPT ’98, Lecture Notes
in Computer Science vol. 1403, Springer-Verlag, Berlin, 1998, pp. 591-606.

2. N. Asokan, V. Shoup, and M. Waidner, Optimistic fair exchange of signatures, In
IEEE Journal on Selected Areas in Communication vol. 18(4), 2000, pp. 593-610.

3. L. Chen, C.J. Kudla and K.G. Paterson, Concurrent Signatures. In C. Cachin and
J. Camenisch (eds.), EUROCRYPT 2004, Lecture Notes in Computer Science vol.
3027, Springer-Verlag, 2004, pp. 287-305.

4. L.C. Guillou and J,-J. Quisquater, A Practical Zero-Knowledge Protocol Fitted
to Security Microprocessor Minimizing Both Transmission and Memory, EURO-
CRYPT 1988, Lecture Notes in Computer Science, Springer-Verlag, 1989, pp. 123-
128.

5. National Institute of Standards and Technology, NST FIPS PUB 186, Digital Sig-
nature Standard, U.S. Department of Commerce, May, 1994.

6. D. Pointcheval and J. Stern, Security Arguments for Digital Signatures and Blind
Signatures, Journal of Cryptology, Volume 13 - Number 3, Springer-Verlag, 2000,
pp. 361-396.

7. R. Rivest, A. Shamir, and L.M. Adleman, A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems, Communicaions of the ACM, vol. 21, no. 2,
Feb 1978, pp. 120-126.

8. R. L. Rivest, A. Shamir, and Y. Tauman, How to Leak a Secret, C. Boyd (Ed.),
ASIACRYPT 2001, Lecture Notes in Computer Science vol. 2248, Springer-Verlag,
2001, pp. 552-565.

9. C.P. Schnorr, Efficient signature generation by smart cards, In Journal of Cryptol-
ogy, vol. 4, no. 3, 1991, pp. 161-174.

10. W. Susilo, Y. Mu and F. Zhang, Perfect Concurrent Signature Schemes, ICICS
2004, Lecture Notes in Computer Science vol. 3269, Springer-Verlag, 2004, pp.
14-27.

Generic Construction of (Identity-Based)
Perfect Concurrent Signatures

Sherman S.M. Chow1 and Willy Susilo2

1 Department of Computer Science,
Courant Institute of Mathematical Sciences,

New York University, NY 10012, USA
schow@cs.nyu.edu

2 Center for Information Security Research,
School of Information Technology and Computer Science,

University of Wollongong, Wollongong 2522, Australia
wsusilo@uow.edu.au

Abstract. The notion of concurrent signatures was recently introduced
by Chen, Kudla and Paterson. In concurrent signature schemes, two enti-
ties can produce two signatures that are not binding, until an extra piece
of information (namely the keystone) is released by one of the parties.
Subsequently, it was noted that the concurrent signature scheme pro-
posed in the seminal paper cannot provide perfect ambiguity. Then, the
notion of perfect concurrent signatures was introduced. In this paper, we
define the notion of identity-based (or ID-based) perfect concurrent sig-
nature schemes. We provide the first generic construction of (ID-based)
perfect concurrent signature schemes from ring signature schemes. Using
the proposed framework, we give two concrete ID-based perfect concur-
rent signature schemes based on two major paradigms of ID-based ring
signature schemes. Security proofs are based on the random oracle model.

Keywords: Concurrent Signatures, Perfect Ambiguity, Fair-Exchange,
Ring Signatures, Identity-based Signatures, Bilinear Pairing.

1 Introduction

Consider the situation where a customer Alice would like to make a purchase
request of a physical item from a shop owner Bob. One of the ways to do the
transaction is asking Alice to firstly sign a payment instruction to pay Bob the
price of the item. Then, Bob agrees by signing a statement that he authorizes
Alice to pick the item up from the store, which will be sent via an email or other
means upon receiving Alice’s signature. We would like to make sure that both
parties (the customer and the shop owner in our case) get the other party’s item,
or no party gets the other party’s item at the end of a transaction, that is, the
principle of fair exchange. For purchase occurred in a face-to-face manner, people
have a higher confidence in getting back the other party’s item shortly after
giving out his or her item to be exchanged. However, to achieve fair exchange
over Internet, in which two parties are mutually distrustful, is not a trivial task.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 194–206, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Generic Construction of (Identity-Based) Perfect Concurrent Signatures 195

Concurrent signature can help when the full power of fair exchange is not
necessary [6]. A pair of concurrent signatures can be made binding at the same
time, i.e. when Alice picks up the item from Bob’s store. At this time, Alice’s
signature (i.e. payment instruction) will be binding and Bob’s signature (to allow
Alice to pick up the item) will also be binding concurrently.

Subsequently, [13] noted that the concurrent signature scheme proposed in [6]
cannot provide perfect ambiguity if both signers are known to be trustworthy.
With the aim to further anonymize the signatures before the signatures are made
binding, the notion of perfect concurrent signatures was introduced.

1.1 Related Work

Fair exchange of signature is a fundamental research problem in cryptography.
Fairness in exchanging signatures is normally achieved with the help of a trusted
third party (TTP) (which is often offline [2]). There were some attempts where
a fair exchange of signatures can be achieved with a “semi-trusted” TTP who
can be called upon to handle disputes between signers [1, 9]. This type of fair
exchange is also referred to as an optimistic fair exchange. The well-known open
problem in fair exchange is the requirement of a dispute resolving TTP whose
role cannot be replaced by a normal certification authority (CA).

In [12], the notion of ring signatures was formalized and an efficient scheme
based on RSA was proposed. A ring signature scheme allows a signer who knows
at least one piece of secret information (or a trapdoor) to produce a sequence of
n random permutations and form them into a ring. This ambiguous signature
can be used to convince any third party that one of the people in the group (who
knows the trapdoor information) has authenticated the message on behalf of the
group. The authentication provides signer ambiguity, in the sense that no one
can identify who has actually signed the message. The ID-based version of ring
signature schemes was introduced in [14]. After that, a number of ID-based ring
signature schemes were proposed. A recent study [7] showed that these schemes
can be classified into two major paradigms, namely, the conversation from non-
ID-based ring signature and the extension from ID-based signature. Please refer
to [7] for a more detailed review of ID-based ring signature schemes.

1.2 Our Contributions

We define the notion of ID-based perfect concurrent signatures, which is the
strongest notion (in terms of privacy) of concurrent signature currently available.
We provide a generic construction of both non-ID-based and ID-based perfect
concurrent signature schemes from ring signatures, which is the first discussion
in the literature. We illustrate our idea by two schemes from each of two major
paradigms of existing ID-based ring signature schemes. Both of them enjoy short
signature length which is only one group element on elliptic curve larger than
most existing ID-based signature schemes, our second scheme is also efficient in
the sense that no pairing operation is required for the generation of signature.

196 S.S.M. Chow and W. Susilo

1.3 Paper Organization

The rest of this paper is organized as follows. The next section reviews some
notions that will be used throughout this paper. Section 3 provides a model of
ID-based perfect concurrent signature schemes together with its security require-
ments. We also present a generic construction of (ID-based) perfect concurrent
signature protocol in this section. In Section 4 and Section 5, we provide two
concrete ID-based perfect concurrent signature schemes. Section 6 concludes the
paper and discusses future research direction.

2 Preliminaries

2.1 Basic Concepts on Bilinear Pairings

Let G1, G2 be cyclic additive groups generated by P1, P2, respectively, whose
order are a prime q. Let GM be a cyclic multiplicative group with the same
order q. We assume there is an isomorphism ψ : G2 → G1 such that ψ(P2) = P1.
Let ê : G1 × G2 → GM be a bilinear mapping with the following properties:

1. Bilinearity: ê(aP, bQ) = ê(P, Q)ab for all P ∈ G1, Q ∈ G2, a, b,∈ ZZq.
2. Non-degeneracy: There exists P ∈ G1, Q ∈ G2 such that ê(P, Q) �= 1.
3. Computability: There exists an efficient algorithm to compute ê(P, Q) for all

P ∈ G1, Q ∈ G2.

For simplicity, hereafter, we set G1 = G2 and P1 = P2. We note that our scheme
can be easily modified for a general case, when G1 �= G2.

A bilinear pairing instance generator is defined as a probabilistic polynomial
time algorithm IG that takes as input a security parameter
 and returns a uni-
formly random tuple param = (p, G1, GM , ê, P) of bilinear parameters, including
a prime number p of size
, a cyclic additive group G1 of order q, a multiplicative
group GM of order q, a bilinear map ê : G1 × G1 → GM and a generator P of
G1. For a group G of prime order, we denote the set G∗ = G \ {O} where O is
the identity element of the group.

2.2 Complexity Assumption

Definition 1. Computational Co-Diffie-Hellman (Co-CDH) Problem.
Given a randomly chosen (P1, P2, aP1, bP2), where P1, P2 ∈ G1, a, b ∈ ZZ∗

q , and
a, b are unknown, compute abP2 ∈ GM .

Definition 2. Co-CDH Assumption.
If IG is a Co-CDH parameter generator, the advantage AdvIG(A) that an al-
gorithm A has in solving the Co-CDH problem is defined to be the probabil-
ity that the algorithm A outputs abP2 on inputs G1, GM , P1, P2, aP1, bP2, where
(G1, GM) is the output of IG for sufficiently large security parameter
, P1, P2
are random generators of G1 and a, b are random elements of ZZ∗

q. The Co-CDH
assumption is that AdvIG(A) is negligible for all efficient algorithms A.

Generic Construction of (Identity-Based) Perfect Concurrent Signatures 197

2.3 Review on Concurrent Signatures

In concurrent signatures, there are two parties involved in the protocol, namely
A and B (or Alice and Bob, respectively). At first, both parties’ signatures are
ambiguous from any third party’s point of view, but they will be simultaneously
binding after an additional information, called a “keystone” is released by one
of the participants. Since one party is required to create a keystone and send
the first message to the other party, we call this party the initial signer. A party
who responds to the initial signature by creating another signature is called a
matching signer. We note that if Alice does not release the keystone, then the
transaction cannot be completed, although Bob would like to do so. Nevertheless,
there are many scenarios where this type of signature schemes is applicable [6].

Similar to the definition in [6], concurrent signatures are digital signature
schemes that consist of the following algorithms:
– SETUP: A probabilistic algorithm that accepts a security parameter
, out-

puts the descriptions of the message space M, the signature space S, the
keystone space K, the keystone fix space F , a function KSGEN : K → F
and any other parameters π.

– KEYGEN: A probabilistic algorithm that accepts a security parameter
,
outputs the public key yi; together with the corresponding private key xi to
be kept secretly.

– ASIGN: A probabilistic algorithm that accepts (yi, yj , xi, h1, h2, m), where
h1, h2 ∈ F , yi, yj �= yi are public keys, xi is the private key corresponding to
yi, and m ∈ M, outputs a signer-ambiguous signature σ = (s, h1, h2) where
s ∈ S, and h1, h2 are the sources of randomness used in generating s.

– AVERIFY: An algorithm that accepts S = (σ, yi, yj, m), where σ = (s, h1, h2),
s ∈ S, h1, h2 ∈ F , yi and yj are public keys, and m ∈ M, outputs accept or
reject. The symmetric property of AVERIFY requires AVERIFY(σ′, yj, yi, m)
= AVERIFY(σ, yi, yj , m) for σ′ = (s, h2, h1).

– VERIFY: An algorithm that accepts (k, S) where k ∈ K is a keystone and S is
of the form S = (σ, yi, yj , m), where σ = (s, h1, h2) with s ∈ S, h1, h2 ∈ F ,
yi and yj are public keys, and m ∈ M. The algorithm verifies whether

KSGEN(k) ?= h2 holds. If it does not hold, then it terminates with output
reject. Otherwise, it runs AVERIFY(S).

As discussed in the introduction, the concrete construction of concurrent sig-
nature schemes in [6] cannot provide perfect ambiguity in certain situations. In
their scheme, the two signatures have an explicit relationship which can be eas-
ily observable by any third party. As a consequence, when the two signers are
well known to be honest that will always conform to the protocol, then any third
party would trust that the signatures are valid. Since the signatures can be iden-
tified even before the keystone is released, it contradicts with the requirement of
concurrent signatures. Concurrent signature schemes with perfect ambiguity was
considered in [13]. They presented two schemes based on the discrete logarithm
problem and bilinear pairings. Their constructions are based on the framework
proposed by [6], and they have not considered the generic construction of perfect
concurrent signature schemes.

198 S.S.M. Chow and W. Susilo

3 Generic Framework and Security Notions

We note that the algorithms listed out by [6] may not be enough to cater for the
need of perfect ambiguity. In view of this, we provide a new generic framework.

3.1 Building Blocks

Firstly, we provide a formal definition of the algorithm used in our generic con-
struction of perfect concurrent signature schemes, by incorporating some el-
ements from the notion introduced in [6]. Notice that to achieve the perfect
ambiguity, we no longer require the matching signer to use the same keystone
fix as the initial signer. Beside, a pair of keystones is used instead of a single one.
We also describe the essential properties of these algorithms for the construction
of perfect concurrent signature schemes.

Definition 3. A perfect concurrent signature scheme is a digital signature
scheme that consists of the following algorithms:

– SETUP: A probabilistic algorithm that on input a security parameter
, out-
puts the system parameters params which is the descriptions of the the mes-
sage space M, the signature space S, the keystone-pair space KI ×KM , the
keystone fix space F and the encrypted keystone space K′. Note that we do
not include params explicitly as the input in the following descriptions.

– KEYGEN: A probabilistic algorithm that is invoked by a participant ID. The
algorithm outputs a public key QID and the corresponding the secret key SID.

– FIX-INITIAL-KEYSTONE: A deterministic algorithm that on input a initial-
keystone kI ∈ KI , it outputs the corresponding keystone fix fI ∈ F .

– ASIGN: A probabilistic algorithm that on inputs (IDi, IDj ,SIDi , α, f, m), where
α, f ∈ F , IDi, IDj are the identities of the participants, SIDi

is the secret
key associated with IDi, and m ∈ M, outputs an ambiguous signature σ =
{Ui, Uj, V } on m.

– ENC-MATCHING-KEYSTONE: A deterministic algorithm that on input a
matching-keystone kM ∈ KM , it outputs the encrypted matching-keystone
KM ∈ K′.

– FIX-SECRET-KEYSTONE: A deterministic algorithm that on inputs an en-
crypted matching-keystone KM ∈ K′ and a secret key SIDi

, outputs a secret
keystone fix fS ∈ F .

– AVERIFY: A deterministic algorithm that takes as input S = (σ, IDi, IDj , m)
and outputs accept or reject. Again we require a symmetric property that
AVERIFY(σ, IDi, IDj , m) = AVERIFY(σ′, IDj , IDi, m) for σ′ = {Uj , Ui, V }.

– VERIFY-INITIAL-KEYSTONE: A deterministic algorithm that on input an
initial-keystone kI ∈ KI and its corresponding fix kI ∈ F , it outputs accept
or reject by checking fI

?= FIX − INITIAL− KEYSTONE(kI).
– VERIFY-SECRET-KEYSTONE: A deterministic algorithm that on input a

matching-keystone kM ∈ KM , a secret keystone fix fS ∈ F and an iden-
tity IDi, it outputs accept or reject depending whether fS = FIX-SECRET-
KEYSTONE(ENC-MATCHING-KEYSTONE(kM),SIDi).

Generic Construction of (Identity-Based) Perfect Concurrent Signatures 199

– VERIFY-CONNECTION: A deterministic algorithm that on input a pair of
signatures σi = {Ui, Uj , V } and σj = {U ′

i , U
′
j, V

′} and a pair of keystone
fix fI and fS, it outputs accept or reject depending whether Uj = fI and
U ′

i = Uj ⊗ fS, where ⊗ is the operator of the group F .
– VERIFY: A deterministic algorithm that takes as input (kI , kM , S′), where

(kI , kM) ∈ KI × KM , S′ = (σi, σj , IDi, IDj , m). The algorithm verifies if
all of VERIFY-INITIAL-STONE, VERIFY-SECRET-KEYSTONE and VERIFY-
CONNECTION are true. If not, it terminates with output reject. Otherwise,
it runs AVERIFY(S) and the output of this algorithm is the output of the
AVERIFY algorithm.

3.2 ID-Based Scenario

For ID-based perfect concurrent signature, we need to modify the SETUP algo-
rithm described and replace KEYGEN algorithm by a new EXTRACT algorithm
in the above definition.

Definition 4. An ID-based perfect concurrent signature scheme requires the fol-
lowing algorithms:

– SETUP: A probabilistic algorithm that on input a security parameter
, out-
puts descriptions of the set of participants U , the message space M, the
signature space S, the keystone-pair space KI × KM , the keystone fix space
F , and the encrypted keystone space K′. The algorithm also outputs the pub-
lic key of the private key generator (PKG) and the master secret key of the
PKG for the extraction of user’s private key.

– EXTRACT: A deterministic algorithm that is invoked by a participant and the
PKG. On input an ID of a participant, the algorithm outputs a participant’s
secret key SID.

3.3 Generic Construction

In this section, we describe a generic construction of (ID-based) concurrent sig-
nature protocol. We highlight the properties of the algorithm involved. There
are two parties, namely A (Alice) and B (Bob) that are involved in the protocol.
Without losing generality, we assume that A is the initial signer and B is the
matching signer. The protocol works as follows.

Firstly, CA/PKG runs the SETUP algorithm to determine the public para-
meters of the scheme. Then, depending on whether the scheme is ID-based, user
invokes the corresponding algorithm to get the public-private key pair.

More specifically, for non-ID-based scenario, both A and B run KEYGEN to
generate a public-private key pair (denoted by (QIDA

,SIDA
) and (QIDB

,SIDB
) re-

spectively), register the public key and the identity with the CA, and possibly
provides a proof-of-knowledge of the private key to the CA as well. After au-
thentication (and the checking of the proof-of-knowledge) the CA issues a digital
certificate binding the relation of the purported identity to the user.

200 S.S.M. Chow and W. Susilo

For the ID-based scenario, both A and B visit the PKG and engage in the
EXTRACT algorithm to obtain their secret key SIDA

and SIDB
, respectively. The

identities of A and B are available publicly as IDA and IDB, together with public
hash functions H0 : {0, 1}∗ → G1. Hence, the public key QIDi

can be computed
by anyone (for instance, by computing QIDi

= H0(IDi)).
After both users got their corresponding key pair, the protocol is as follows.

1. A picks a random keystone (kI , kM) ∈ KI × KM and executes the SET-
INITIAL-KEYSTONE algorithm using kI as the input to obtain fI ∈ F .
A good candidate for SET-INITIAL-KEYSTONE is a cryptographic hash func-
tion, since it is hard to invert, i.e. given y from the range of the function, it
is hard to find the pre-image x.

2. A selects a message mA ∈ M, together with her identity IDA and B’s iden-
tity IDB, and computes her ambiguous signature as σA = {UA, UB, V } ←
ASIGN(IDA, IDB,SIDA

,OF , fI , mA) where OF denotes the identity element
of the group F . (OF is used to unify the list of input parameters used by IDA

and IDB for the ASIGN algorithm, which merely means that A can skip a
certain group operation inside the ASIGN algorithm that is used to connect
B’s signature with A’s.)
We require that the ASIGN algorithm to be able to produce ambiguous sig-
nature σ such that any one can get convinced that either SIDA

or SIDB
is used

as the input but does not know exactly which one with probability greater
than 1/2. Moreover, there are two parts (which can be implicitly) involved
with the signature such that the first part can be chosen arbitrary while the
value of another part must be depending on the first part. Most of existing
ring signature schemes satisfy these properties.

3. A hides the second keystone kM by executing the ENC-MATCHING-
KEYSTONE algorithm using kM as the input to obtain KM ∈ K′, A then
sends KM and σA to B. We require that kM cannot be effectively computable
from KM . The choice of implementation for ENC-MATCHING-KEYSTONE
will be discussed shortly afterward.

4. Upon receiving A’s ambiguous signature σA, B verifies the signature by
testing whether AVERIFY(σA, IDA, IDB, mA) ?= accept holds. Obviously, the
AVERIFY algorithm is simply the one matching with the ASIGN algorithm.

5. B aborts if the above equation does not hold. Otherwise, B picks a mes-
sage mB ∈ M to sign. B firstly executes FIX-SECRET-KEYSTONE with
the encrypted matching keystone KM and his secret key SIDB

as input to
obtain a secret matching keystone fix fS, then computes his ambiguous mes-
sage σB = {U ′

A, U ′
B, V ′} ← ASIGN(IDB, IDA,SIDB , UB, fS , mB) and sends

this value to A. We require that the value of fS is uniquely determined
by kM and SIDB

and cannot be computed without the knowledge of SIDB

or kM (that is why the keystone-fix is called a secret), yet its correctness
can be checked by only knowing kM . All these properties can be achieved
by probabilistic public key encryption, such that kM is the randomness used
in encryption, KM is part of the ciphertext, which can be viewed as a kind of

Generic Construction of (Identity-Based) Perfect Concurrent Signatures 201

session key employed by probabilistic public key encryption. The value of fS

can be verified by using the knowledge of kM and the recipient’s public key
QIDB

.
6. Upon receiving B’s ambiguous signature σB, A verifies it by testing whether

– VERIFY-SECRET-KEYSTONE(kM , fS , QIDB
) ?= accept,

– VERIFY-CONNECTION(fI , fS , σA, σB) ?= accept and
– AVERIFY(σB , IDB, IDA, mB) ?= accept

all hold. If not, then A aborts. Otherwise, A releases the keystone (kI , kM)
to B, and both signatures are binding concurrently.

3.4 Security Notions

As the original model of concurrent signatures in [6], we require a perfect con-
current signatures (either ID-based or not) to satisfy correctness, ambiguity,
unforgeability and fairness. Intuitively, these notions are described as follows.
Note that we follow the definition of ambiguity in [13] instead of the one in [6].

– Correctness: If a signature σ has been generated correctly by invoking ASIGN
algorithm on a message m ∈ M, AVERIFY algorithm will return “accept”
with an overwhelming probability, given a signature σ on m and a secu-
rity parameter
. Moreover, after the keystone-pair (kI , kM) ∈ KI × KM ,
is released, then the output of VERIFY algorithm will be “accept” with an
overwhelming probability.

– Ambiguity: We require that given the two ambiguous signatures (σ1, σ2), any
adversary will not be able to distinguish who was the actual signer of the
signatures before the keystone is released. Any adversary can only conclude
that one of the following events has occurred:
1. Both σ1 and σ2 were generated by the initial signer.
2. Both σ1 and σ2 were generated by the matching signer.
3. The initial signer generated σ1 while the matching signer generated σ2.
4. The matching signer generated σ1 while the initial signer generated σ2.

All these cases are equally probable from the adversary’s view.
– Unforgeability: There are two levels of unforgeability to be considered.

• Level 1: When an adversaryA does not have any knowledge of the respec-
tive secret key SID, then no valid signature that will pass the AVERIFY
algorithm can be produced. Otherwise, one of the underlying hard prob-
lems can be solved by using this adversary’s capability. This requirement
is for the matching signer to get convinced that the signature presented
by the initial signer is indeed originated from her.

• Level 2: Any party cannot frame the other party that he or she has in-
deed signed a message. We require that although both signatures are
ambiguous, any party who would like to frame (or cheat) the others will
not be able to produce a valid keystone with an overwhelming proba-
bility. This means that the first signature can only be generated by the
initial signer and it is unforgeable by anyone else, including the matching

202 S.S.M. Chow and W. Susilo

signer. At the same time, the second signature can only originate from
the matching signer, which is unforgeable by any person other than him,
including the initial signer.

– Fairness: We require that any valid ambiguous signatures generated using
the same keystone will all become binding after the keystone is released.
Hence, a matching signer cannot be left in a position where a keystone
binds his signature to him whilst the initial signer’s signature is not binding
to her. This requirement is important for the case like the initial signer
try to present a signature of another message after the matching signer has
verified the validity of the original message and complete his part of protocol.
However, we do not require that the matching signer will definitely receive
the necessary keystone.

Definition 5. An ID-based perfect concurrent signature scheme is secure if it
is existentially unforgeable under a chosen message attack, ambiguous and fair.

4 A Concrete Instantiation

We present a concrete ID-based perfect concurrent signature scheme using the
above general construction, with the ID-based ring signature scheme proposed
by Zhang and Kim [14] and the basic version of ID-based encryption scheme
with semantic security proposed by Boneh and Franklin [4]. Using our generic
construction in Section 3, we define the required eleven algorithms.

– SETUP: The PKG selects a random number s ∈ ZZ∗
q and sets Ppub = sP .

It selects three cryptographic hash functions H0 : {0, 1}∗ → G1 and
H1 : {0, 1}∗ → ZZq. and H2 : {0, 1}∗ → G1. It publishes system parameters
params = {G1, GM , ê, q, P, Ppub, H0, H1, H2}, and keeps s as the master
secret key. The algorithm also sets M = KI = KM = F = ZZq and K′ = G1.

– EXTRACT: The EXTRACT algorithm is defined as follows.
1. A user Ui submits his or her identity IDi to the PKG.
2. After a successful identification, PKG generates Ui secret key as follows.

• Compute QIDi
= H0(IDi).

• Compute Ui’s secret key as SIDi
= sQIDi

.
• Deliver SIDi as user Ui’s secret key through a private and authenti-

cated channel.
– FIX-INITIAL-KEYSTONE: Assuming a keystone kI ∈ ZZq is randomly se-

lected, this algorithm outputs fI = H1(kI) as the keystone-fix.
– ASIGN: The ASIGN algorithm accepts the following parameters (IDi, IDj ,
SIDi

, α, f, m), where SIDi
is the secret key associated with QIDi

, f ∈ F and
m ∈M is the message. The algorithm will perform the following.
1. Select a random point Z ∈ G∗

1.
2. Set uj ← α · f .
3. Compute u0 = H1

(
H2(m)||(IDi ⊕ IDj)||ê(Z, P)ê(ujQIDj

, Ppub)
)
.

4. Compute V = u−1
0 (Z − (u0 − uj)SIDi

).
5. Output σ = (ui = u0 − uj, uj , V) as the signature on message m.

Generic Construction of (Identity-Based) Perfect Concurrent Signatures 203

– ENC-MATCHING-KEYSTONE: Assuming a keystone kM ∈ ZZq is randomly
selected, this algorithm outputs KM = kMP as the encrypted keystone.

– FIX-SECRET-KEYSTONE: This algorithm returns H1(ê(KM ,SIDj)).
– AVERIFY. The AVERIFY algorithm accepts (σ, IDi, IDj , m), where σ =

(ui, uj , V). The algorithm verifies whether

ui + uj
?= H1 H2(m)||(IDi ⊕ IDj)||ê(V, P)(ui+uj)ê(uiQIDi , Ppub)ê(ujQIDj , Ppub)

holds with equality. If so, then output accept. Otherwise, output reject.
– VERIFY-INITIAL-KEYSTONE: This algorithm outputs accept if fI =

H1(kI), reject otherwise.
– VERIFY-SECRET-KEYSTONE: It outputs accept if fS =

H1(ê(Ppub, QIDj
)kM), reject otherwise.

– VERIFY-CONNECTION: This algorithm outputs accept if U ′
i = Uj · fS ,

reject otherwise.
– VERIFY. The algorithm accepts (kI , kM , S′), where kI ∈ KI and kM ∈ KM

are the keystones and S′ = (m, σi, σj , IDi, IDj), where σ = (ui, uj , V). The
algorithm verifies whether (kI , kM) is valid, by using the above two algo-
rithm. If it does not hold, then output reject. Otherwise, run AVERIFY(S).
The output of VERIFY is the output of AVERIFY algorithm.

Correctness.
The correctness of the above proposed scheme is justified as follows.

ui + uj = H1

(
H2(m)||(IDi ⊕ IDj)||ê(V, P)(ui+uj)ê(uiQIDi , Ppub)ê(ujQIDj , Ppub)

)
u0 = H1

(
H2(m)||(IDi ⊕ IDj)||ê((ui + uj)V + uiSIDi

, P)ê(ujQIDj
, Ppub)

)
= H1

(
H2(m)||(IDi ⊕ IDj)||ê(u0V + (u0 − uj)SIDi

, P)ê(ujQIDj
, Ppub)

)
= H1

(
H2(m)||(IDi ⊕ IDj)||ê(Z, P)ê(ujQIDj

, Ppub)
)

4.1 Security Consideration

The security proofs are omitted due to space limitation. We refer the reader to
the full version of this paper for a more complex account.

Theorem 1. (Ambiguity) Before the keystone k is released, both signatures
are ambiguous.

Lemma 1. When the output of VERIFY is accept, then any third party can
be sure who has generated the signature. Any party cannot frame that the other
party has signed a message without his or her consent assuming the one-way
property of the hash function. This guarantees that the signature is unforgeable.

Theorem 2. (Unforgeability) The scheme presented in this section is exis-
tentially unforgeable under a chosen message attack in the random oracle model,
assuming the one-way property of the hash function, the hardness of the discrete
logarithm problem and the Co-CDH assumption.

204 S.S.M. Chow and W. Susilo

Theorem 3. (Fairness) For all signatures that are generated with the same
keystone will be binding concurrently when the keystone is released.

Theorem 4. Our ID-based perfect concurrent signature scheme presented in
this scheme is secure in the random oracle model, assuming the hardness of the
discrete logarithm problem.

4.2 Signature Length

In the above scheme, each signature is a three-tuple σi = (u1, u2, V), where
u1, u2 ∈ ZZq and V ∈ G1. Using any of the families of curves described in [5],
one can take q to be a 170-bit prime and use a group G1 where each element
is 171 bits. For example, G1 is derived from the curve E/GF (397) defined by
y2 = x3−x+1, which has 923-bit discrete-logarithm security. With these choices,
the total signature length for a pair of signature is 1,022 bits or 128 bytes.

5 A More Efficient Construction

Now we present a more efficient variant of ID-based perfect concurrent signature
which requires no pairing operation in signing without sacrificing the computa-
tional efficiency of verification or other steps. Again, the construction follows
our idea of generic construction in Section 3. We utilize the ID-based ring signa-
ture scheme proposed by Chow et al. [8] and also the basic version of ID-based
encryption scheme with semantic security proposed in [4].

– SETUP: Basically it is the same as our first scheme, but the description of
spaces become M = KI = KM = ZZq, F = K′ = G1.

– EXTRACT: The same as our first scheme.
– FIX-INITIAL-KEYSTONE: Assuming a keystone kI ∈ G2 is randomly se-

lected, this algorithm outputs fI = H2(kI) as the keystone-fix.
– ASIGN: The input of this algorithm includes two identities IDi and IDj , a

private key SIDi
, a message m, a G1 element α, and a G1 element f .

1. Compute Uj = α + f and hj = H1(m||(IDi ⊕ IDj)||Uj).
2. Choose r′i ∈R Z∗

q , compute Ui = r′iQIDi
− Uj − hjQIDj

.
3. Compute hi = H1(m||(IDi ⊕ IDj)||Ui) and V = (hi + r′i)SIDi

.
4. Output the signature σ = {Ui, Uj, V }.

– ENC-MATCHING-KEYSTONE: The same as our first scheme.
– FIX-SECRET-KEYSTONE: This algorithm returns fS = H2(ê(KM ,SIDj

)).
– AVERIFY: The input of this algorithm includes two identities IDi and IDj , a

message m, and a ring signature σ = {Ui, Uj, V }.
1. Compute hi = H1(m||(IDi ⊕ IDj)||Ui) and hj = H1(m||(IDi ⊕ IDj)||Uj).
2. Return accept if ê(Ppub, Ui + hiQIDi + Uj + hjQIDj) = ê(P, V), reject

otherwise.
– VERIFY-INITIAL-KEYSTONE: This algorithm outputs accept if fI =

H2(kI), reject otherwise.

Generic Construction of (Identity-Based) Perfect Concurrent Signatures 205

– VERIFY-SECRET-KEYSTONE: It outputs accept if fS =
H2(ê(Ppub, QIDj

)kM), reject otherwise.
– VERIFY-CONNECTION: This algorithm outputs accept if U ′

i = Uj + fS ,
reject otherwise.

– VERIFY. The algorithm accepts (kI , mI , S
′), where kI ∈ KI and kM ∈ KM

are the keystones and S′ = (m, σi, σj , IDi, IDj), where σ = (Ui, Uj, V). The
algorithm verifies whether (kI , kM) is valid and the connection between σi

and σj is valid by using the above three algorithm. If it does not hold, then
output reject. Otherwise, run AVERIFY(S). The output of VERIFY is the
output of AVERIFY algorithm.

Correctness.
The correctness of our second scheme is justified as follows.

ê(Ppub, Ui + hiQIDi
+ Uj + hjQIDj

)
= ê(Ppub, r

′
iQIDi

− Uj − hjQIDj
+ hiQIDi

+ Uj + hjQIDj
)

= ê(sP, (hi + r′i)QIDi
) = ê(P, (hi + r′i)SIDi

)

5.1 Security Consideration

Theorem 5. (Ambiguity) Before the keystone k is released, both signatures
are ambiguous.

Lemma 2. When the output of VERIFY is accept, then any third party can
be sure who has generated the signature. Any party cannot frame that the other
party has signed a message without his or her consent assuming the one-way
property of the hash function. This guarantees that the signature is unforgeable.

Theorem 6. (Unforgeability) The scheme presented in this section is exis-
tentially unforgeable under a chosen message attack in the random oracle model,
assuming the one-way property of the hash function, the hardness of the discrete
logarithm problem and the Co-CDH assumption.

Theorem 7. (Fairness) For all signatures that are generated with the same
keystone will be binding concurrently when the keystone is released.

Theorem 8. Our ID-based perfect concurrent signature scheme presented in
this scheme is secure in the random oracle model, assuming the hardness of the
discrete logarithm problem.

5.2 Signature Length and Efficiency

In this scheme, each signature is a three-tuple (U1, U2, V), where U1, U2, V ∈ G1.
With the same setting as our first scheme, our second scheme only requires 1,026
bits or 129 bytes for a pair of signatures. Hence, the signature is nearly as short as
that of the first one. This signature length is only one group element on elliptic
curve larger than most existing ID-based signature schemes (for example, see
the review in [3]). Our second scheme inherits the efficiency of the underlying
scheme by Chow et al. [8], such that no pairing operation is needed for signing,
with a normal computational cost for other algorithms of the protocol.

206 S.S.M. Chow and W. Susilo

6 Conclusion and Future Research Direction

We introduced the notion of ID-based perfect concurrent signatures, which is an
extension of the notion of concurrent signatures proposed in [6]. We provided the
first generic construction of (ID-based) perfect concurrent signature protocol in
the literature. We presented two concrete constructions of ID-based perfect con-
current signature schemes based on our generic framework. Our second scheme
requires no pairing operation in signing. We also provided a complete security
analysis for our schemes on their ambiguity, fairness and unforgeability.

Recently, a new ID-based ring signature scheme was proposed [10]. Instead of
following the existing paradigms of ID-based ring signature constructions, the
scheme is constructed using a cryptographic primitive known as accumulator
(e.g. see [10]). It would be interesting to see if concurrent signature could be
realized from cryptographic accumulator.

References

1. N. Asokan, Victor Shoup, and Michael Waidner. Optimistic Fair Exchange of
Digital Signatures. IEEE Journal on Selected Areas in Communications, 18, 2000.

2. Feng Bao, Robert H. Deng, and Wenbo Mao. Efficient and Practical Fair Exchange
Protocols. In IEEE Symposium on Security and Privacy 1998, pp. 77–85, 1998.

3. Mihir Bellare, Chanathip Namprempre, and Gregory Neven. Security Proofs for
Identity-Based Identification and Signature Schemes. In Adv in Cryptology - Eu-
rocrypt 2004, LNCS 3027, pp. 268–286, 2004.

4. Dan Boneh and Matt Franklin. Identity-based Encryption from the Weil Pairing.
In Adv in Cryptology - Crypto 01, LNCS 2139, pp. 213–229, 2001.

5. Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil
Pairing. Adv in Cryptology - Asiacrypt 2001, LNCS 2248, pp. 514–532, 2001.

6. Liqun Chen, Caroline Kudla, and Kenneth G. Paterson. Concurrent Signatures.
In Adv in Cryptology - Eurocrypt 2004, LNCS 3027, pp. 287–305, 2004.

7. Sherman S.M. Chow, Richard W.C. Lui, Lucas C.K. Hui, and Siu Ming Yiu. Iden-
tity Based Ring Signature: Why, How and What Next. EuroPKI 2005, LNCS 3545,
pp. 144-161, 2005.

8. Sherman S.M. Chow, Siu Ming Yiu, and Lucas C.K. Hui. Efficient Identity Based
Ring Signature. Applied Crypto and Network Security - ACNS 2005, LNCS 3531,
pp. 499-512, 2005.

9. Yevgeniy Dodis and Leonid Reyzin. Breaking and Repairing Optimistic Fair Ex-
change from PODC 2003. ACM Workshop on Digital Rights Management, 2003.

10. Lan Nguyen. Accumulators from Bilinear Pairings and Applications. Topics in
Cryptology - CT-RSA 2005, LNCS 3376, pp. 275–292, 2005.

11. David Pointcheval and Jacques Stern. Security Proofs for Signature Schemes. Adv
in Cryptology - Eurocrypt 1996, LNCS 1070, pp. 387 – 398, 1996.

12. Ronald L. Rivest, Adi Shamir, and Yael Tauman: How to Leak a Secret. Adv in
Cryptology - Asiacrypt 2001, LNCS 2248, pp. 552 – 565, 2001.

13. Willy Susilo, Yi Mu and Fangguo Zhang. Perfect Concurrent Signature Schemes.
Inf and Comm Security - ICICS 2004, LNCS 3269, pp. 14–26, 2004.

14. Fangguo Zhang and Kwangjo Kim. ID-based Blind Signature and Ring Signature
from Pairings. Adv in Cryptology - Asiacrypt 2002, LNCS 2501, pp. 533 – 547,
2002.

Sequential Aggregate Signatures Working over
Independent Homomorphic Trapdoor One-Way

Permutation Domains

Huafei Zhu, Feng Bao, and Robert H. Deng

Department of Information Security, I2R, A-Star, Singapore 119613
{huafei, baofeng}@i2r.a-star.edu.sg

School of Information Systems, Singapore Management University
robertdeng@smu.edu.sg

Abstract. The contribution of this paper has two folds. In the first
fold, we propose a generic construction of sequential aggregate signa-
tures from families of certificated trapdoor one-way permutations. We
show that our construction is provably secure in the random oracle model
assuming that the underlying homomorphic permutations are trapdoor
one-way. Compared to Lysyanskaya et al’s generic construction that is
constructed from a trapdoor one-way permutation family working over
the same domain [16], our scheme works over independent trapdoor one-
way permutation domains. The flexible choice of the underlying permu-
tation domains benefits our scheme to its applications in the real world
where individual user may choose its working domain independently. In
the second fold, we instantiate our generic construction with RSA so that
the RSA moduli in our scheme can be chosen independently by individ-
ual user and thus the moduli is not required to be of the same length.
Consequently, our proposed instantiation is the first scheme based on the
RSA problem that works for any moduli − this is the most significant
feature of our scheme different from the best results constructed from
the RSA problem (say, Kawauchi et al’s scheme [14], and Lysyanskaya
et al’s scheme [16]).

Keywords: Homomorphic trapdoor one-way permutation, sequential
aggregate signature, signature scheme.

1 Introduction

In [3], Boneh, Gentry, Lynn and Shacham (BGLS) first introduced and for-
malized a new notion called aggregate signatures, together with a concrete im-
plementation from the bilinear mapping. An aggregate signature scheme is the
following cryptographic primitive: each of n users with a public/private key pair
(PKi, SKi and a message mi) wishes to attest to a message mi. Informally the
procedure can be stated as follows: user ui first signs the correspondent message
mi (1 ≤ i ≤ n) and obtains a signature σi, and then n signatures can be com-
bined by an unrelated party into an aggregate signature. Aggregate signatures
are natural extension of multi-signature schemes. In a multi-signature scheme

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 207–219, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

208 H. Zhu, F. Bao, and R.H. Deng

(e.g., [13], [22], [12], [24], [9], [11], [20] and [21]), a collection of users all sign the
same message m. The result is a single signature (thus the conception of multi-
signature schemes is not so good for practical applications since in certain cases
we must be able to aggregate signatures on different messages, e.g., Certificate
chaining, Secure Border Gateway Protocol). Recently, Micali, Ohta, and Reyzin
[18], presented a clear security model and new constructions for multi-signature
schemes from Schnorr’s signature scheme. Another interesting construction was
presented by Boldyreva [1] from the gap Diffie-Hellman assumption.

Burmester et al [2], Doi, Mambo, and Okamoto [8] (DMO), Mitomi and Miyaji
[17] have already mentioned that when multiple entities sign a document (hence
a set of users all sign the same message), the signing order often reflects the
role of each signer and signatures with different signing orders are regarded as
different multi-signature schemes. Thus a multi-signature scheme with message
flexibility, order flexibility and order verifiability should be required. Burmester
et al’s then proposed an interesting order-specified multi-signature scheme from
modified ElGamal signature scheme while Doi et al’s construction is from the
RSA problem. Notice that the protocol presented in [8] requires that the public
keys corresponding the signing order have to be registered in advance, but it
is not necessary in [17]. Later Kawauchi, Komano, Ohta and Tada [14] studied
the possibility of simulation of Mitomi and Miyaji’s schemes [17] in order to
investigate whether that scheme is secure against active attacks. Unfortunately,
they showed that Mitomi and Miyaji’s scheme cannot be proved secure against
active attacks. Tada [25] then proposed an order-specified multi-signature scheme
based on the hardness of the discrete logarithm problem. The scheme allows
the signing orders to be formed like any series-parallel graphs, which differs
from the scheme [20]. The security is shown by using ID-reduction technique,
which reduces the security of multi-signature schemes to those of multi-round
identification schemes. Finally they constructed alternative RSA-based multi-
signature scheme in order to overcome the problem from which Mitomi and
Miyaji’s scheme suffers.

Very recently, Lysyanskaya et al. [16] presented a clear security model and new
constructions for order-specified multi-signature schemes that allow a collection
of users to sign different messages (i.e., sequential aggregate signatures). In their
paper [16], a generic construction for sequential aggregative signature schemes
based on Full Domain Hash, which again is based on trapdoor permutations,
is presented. They also instantiated the underlying trapdoor permutations with
RSA. Their work is not trivial for several reasons, one being that their generic
construction needs the trapdoor permutation to be over the same domain for
each user, which is not the case for RSA.

1.1 Problem Statement

Sequential aggregate signatures are very useful for many network applications.
They can be used in secure border gateway protocol (S-BGP) [15] for securing the
UPDATE routing messages and in secure Ad Hoc On-Demand Vector Routing
protocol. They can be used in hierarchical public key infrastructure to reduce

Sequential Aggregate Signatures Working 209

the certificate chain as well. To the best of our knowledge, all order-specified
multi-signature schemes (or sequential aggregate signatures if each users signs
different message) proved to be secure against active attacks are based on either
the hardness of the discrete logarithm problem (for example, [18], [20] and [25])
or gap Diffie-Hellman problem (e.g., [1], [3] and [4]) while those based on the
RSA problem suffer from unnecessary restrictions (e.g., [14] and [16]). Thus any
more satisfactory solution to sequential aggregate signature scheme based on the
RSA problem is certainly welcome (the main topic of this paper). Before starting
our works, we would like to review the problems among the best results based
on RSA below which are closely related to our works:

In [14], Kawauchi, Komano, Ohta and Tada proposed their construction from
RSA trapdoor one-way permutations [23]: The key-generation step: Pi has RSA,
which on input 1Ki , randomly selects two distinct Ki/2-bit primes pi and qi, and
calculates the modulus Ni = piqi. It randomly picks up an encryption exponent
ei ∈ Zλ(Ni) and λ(Ni) = LCM(p1−1, qi−1). Also each Pi uses two hash functions
Gi and Hi. The first one, Hi, called the compressor, maps as Hi: {0, 1}∗ →
{0, 1}k2 and the other one, Gi, called the generator, maps as Gi: {0, 1}k2 →
{0, 1}Ki−1+k1 , where Ki =1 + Ki−1 + k1 + k2, K0 = k0

1. Signature generation
step (for the same message m): Suppose that P={ P1, · · ·, Pn } generates a
multi-signature for a message m. P1 picks up an r1 ∈R {0, 1}k1 to compute
ω1 = H1(m, r1). Also P1 computes σ1 =zd1

1 mod N1, where z1 = 0||t1||s1||ω1,
(t1||s1) =(0k0 ||r1) ⊕ G1(ω1). Then P1 sends (m, σ1) as a signature for m to
P2. For each i ∈ [2, n], the following is executed: Pi receives (m, σi−1) from
Pi−1. Pi then checks the validity of received signature which is described below.
If it is invalid, halts, otherwise, Pi picks up an ri ∈R {0, 1}k1 to compute ωi

= Hi(m, ri, σi−1). Also Pi computes σi =zdi

i mod Ni, where zi = 0||ti||si||ωi,
(ti||si) =(σi−1||ri)⊕Gi(ωi). Then Pi sends (m, σi) as a signature for m to Pi+1,
where Pn+1 is a verifier. Verification step: Suppose that the verifier V receives
(m, σn) as a multi-signature for a message m. For each i = n to i = 2, the
following is executed by the verifier. -First, V computes zi =σei

i mod Ni, breaks
up zi as bi||ti||si||ωi. (That is, let bi be the first bit of zi, ti the next Ki−1 bits,
si the next k1 bits, and ωi the remaining k2 bits.) And V calculates (αi||βi) =
(ti||si) ⊕ Gi(ωi). If bi = 0 and ωi = Hi(m, βi, αi), then V computes αi = σi−1
and goes on the step. Finally V obtains σ1, computes z1 = σe1

1 mod N1, breaks
up z1 as b1||t1||s1||ω1, and calculates (α1||β1) = (t1||s1)⊕G1(ω1). If b1 = 0, ω1
= H1(m, β1, α1) and α1= 0k0 , then V returns 1 else return 0.

In [16], Lysyanskaya, Micali, Reyzin, Shacham proposed two approaches to
instantiate their generic construction from RSA trapdoor one-way permutations:
the first approach is to require the user’s moduli to be arranged in increasing
order: N1 < N2 < · · · < Nt. At the verification, it is important to check that the
i-th signature σi is actually less than Ni to ensure the signatures are unique if
H is fixed. As long as log(N1) − log(Nt) is constant, the range of H is a subset
of ZN1 whose size is the constant fraction of N1, the scheme will be secure; the

1 Thus the restriction |Ni|-|Ni−1| = 1+ k1 + k2 is posted. We see that this unpleasant
restriction should be removed from the point of views of practical applications.

210 H. Zhu, F. Bao, and R.H. Deng

second approach does not require the moduli to be arranged in increasing order,
however they are required to be of the same length. The signature will expanded
by n bits b1, · · ·, bn, where n is the total number of users. Namely, during signing,
if σi ≥ Ni+1, let bi =1; else, let bi =0. During the verification, if bi =1, add Ni+1
to σi before proceeding with the verification of σi. Always, check that σi is in
the correct range 0 ≤ σi ≤ Ni to ensure the uniqueness of signatures.

We would like provide the following remarks on KKOT scheme [14] and
Lysyanskaya et al’s scheme [16]: Lysyanskaya et al’s first scheme can be viewed
as improvement of of KKOT scheme [14]. The restriction of moduli in Tada’s
scheme |Ni|-|Ni−1| = 1+ k1 +k2 is weakened by the restriction of users’s moduli
to be arranged in increasing order N1 < N2 < · · · < Nt in Lysyanskaya et al’s
scheme. The second approach of Lysyanskaya et al’s scheme does not require
the moduli to be arranged in increasing order, however they are required to be
of the same length and the signature size will expanded by n bits b1, · · ·, bn,
where n is the total number of users. Namely, during signing, if σi ≥ Ni+1, let
bi =1; else, let bi =0. For applications of sequential aggregate signature schemes
in the scenarios discussed above, the choice of Ni of a host is independent on
the choice of another host Nj in the Internet (in case the underlying protocol is
constructed from RSA). A reasonable assumption should be that the sizes of all
moduli are bounded by a fixed size. Since there is no solution to this problem,
an interesting research problem can be addressed as:

Research problem: how to construct practical and secure sequential aggregate
signatures assuming that all moduli are bounded by a fixed size?

1.2 Our Works

In this paper, we first propose sequential aggregate signatures in which the set
of participants is ordered. The aggregate signature is computed by having each
signer, in turn, add his signature to it. We propose a generic construction of
sequential aggregate signatures from families of certificated trapdoor one-way
permutations. We then show that our construction is provably secure in the ran-
dom oracle model assuming that the underlying homomorphic permutations are
trapdoor one-way. Compared to Lysyanskaya et al’s generic construction that is
constructed from a trapdoor one-way permutation family working over the same
domain [16], our scheme works over independent trapdoor one-way permutation
domains. The flexible choice of the underlying permutation domains benefits our
scheme to its applications in the real world where individual user may choose its
working domain independently. Finally, we instantiate our generic construction
with RSA that enjoys the following nice features: All three signatures are based
on the hardness of RSA problem. Notice that the computation complexity of
our scheme for the i-th users signing a message needs one exponent computation
while the verification processing needs (i − 1) exponent computations. Thus all
three schemes mentioned above have approximate computation complexity; In
our scheme, the moduli are not required to be of the same length, i.e., each RSA
modulus Ni is chosen independently by individual user. Thus our construction
is the first scheme from RSA that works for any moduli − the most significant
feature of our scheme different from all known schemes available in the literature.

Sequential Aggregate Signatures Working 211

2 Standard Signature Schemes Working over Extended
Domains

2.1 Notions

Definition 1: A collection of permutation F ={fi : Di → Di|i ∈ I} over some
index set I ⊂ {0, 1}∗ is said to be a family of trapdoor one-way permutations
if: there is an efficient sampling algorithm S(1k) which outputs a random string
index i ∈ {0, 1}k∩I, and a trapdoor information ski; there is an efficient sampling
algorithm which, on input i, outputs a random x ∈ Di. Notice that there must
be a mathematical structure associated with Di. For simplicity, we assume that
Gi is a group (not necessary a cyclic group, e.g., Di = Z∗

ni
, if fi is the RSA

function); each fi is efficiently computable given i and input x ∈ Di; each fi is
efficiently invertible given the trapdoor information ski and output y ∈ Di; for
any probabilistic algorithm A, A is said (t(k), ε(k))-break F , if A runs in time at
most t(k) and AdvF

A(k) ≥ ε(k), where the advantage of A is defined as AdvF
A(k)

=Pr[x′ = x|(i, ski) ← S(1k), x ← Gi, y = fi(x), x′ ← A(i, y)]. F is said to be
(t(k), ε(k))-secure if no adversary A can (t(k), ε(k))-break it.

Definition 2: A collection of trapdoor one-way permutation F ={fi : Di →
Di|i ∈ I} over some index set I ⊂ {0, 1}∗ is said to be homomorphic if for any
(Di, fi) ← i and x, y ∈ Di, it satisfies fi(xy) = fi(x)fi(y).

We review the well known definition of security of ordinary digital signatures
[10]. Existential unforgeability under a chosen message attack in the random
oracle [5] for a signature scheme (KG, Sig, V f) with a random oracle is defined
using the following game between a challenger and an adv (notice that this
security definition can also be applied to the scenario where a collection of ran-
dom oracles are deployed): the challenger runs KG to obtain a public key pk
and private key sk. The adversary adv is given pk; Proceeding adaptively, adv
requests signatures with pk on at most qsig messages of his choice m1, · · ·, mqsig .
The challenge responds to each query with a signature σi. Algorithm adv also
adaptively asks for at most qH queries of the random oracle H ; adv outputs a
pair (m, σ) and wins the game if m /∈ {m1, · · · , mqsig}, and V f(pk, m, σ)=1 (a
valid signature of the message m).

By AdvSigA, we denote the probability of success of an adversary.

Definition 3: We say a signature scheme is secure against adaptive chosen-
message attack if for every polynomial time Turing machine A, the probabil-
ity AdvSigA that it wins the game is at most a negligible amount, where the
probability is taken over coin tosses of KG and Sig and A.

2.2 Generic Construction

We show that our signature scheme constructed from the extended domain of
homomorphic trapdoor one-way permutations is provably secure against adap-
tive chosen message attack in the random oracle model [5]. We assume that a

212 H. Zhu, F. Bao, and R.H. Deng

permutation used to construct our sequential aggregate signature scheme must
be a certificated one-trapdoor permutation. A certified trapdoor one-way per-
mutation is one such that, for any describing string des, it is easy to determine
whether des can have been output by a trapdoor one-way permutation generator,
and thereby ensure that f(des, ·) is a permutation.

-Key generation algorithm KG: On input a security parameter l, k, KG spec-
ifies two cryptographic hash functions H : {0, 1}∗ → {0, 1}l and G: {0, 1}t →
{0, 1}k, t = l − k. On input k, KG outputs an instance of homomorphic trap-
door one-way permutation {f : D → D}. We assume that each element in D
can be represented by a k-bit string, i.e., D ⊂ {0, 1}k. We further assume that
there is an efficiently computable mapping from {0, 1}k \D to D and given τ(x)
and b, it is easy for one to recover x ∈ {0, 1}k, where τ(x) maps a element
x ∈ {0, 1}k to x modulo |D|, i.e., τ0(x) =x if x ∈ D while τ1(x)=x mod |D|, if
x ∈ {0, 1}k\D (it will be clear in case that the underlying homomorphic one-way
trapdoor permutation is instantiated with RSA, see next for more details).

-Signing algorithm: On input a message m, it computes x = H(m) and then
separates x = y||z, where y ∈ {0, 1}k and z ∈ {0, 1}t, t = l − k. Finally,
it computes g = f−1(τb(y ⊕ G(z)))||z, where τ is an efficient mapping from
{0, 1}k \ D to D. That is, if y ⊕G(z) ∈ D, then the signature σ of the message
m is (g, 0) (b=0); if y ⊕G(z) ∈ {0, 1}k \D, then the signature σ of the message
m is denoted by (g, 1) (b=1).

-The verification algorithm is given as input a signature σ = (g, b), the mes-
sages m, and the correspondent public key pk and proceeds as follows: first it
computes x = H(m) and separates x =y||z and g=v||w and checks whether w is
z, if not, it outputs 0; Else, it checks that pk and f is a certificated permutation.
If both conditions are valid, then it computes y from the equation τb(y ⊕G(z))
=f(v). And output 1, if the test H(m) = y||z is valid.

Lemma 1: Let f be a homomorphic trapdoor one-way permutation defined
over D, and τ be an efficiently computable mapping from {0, 1}k \ D to D and
given τ(x), it is easy for one to recover x ∈ {0, 1}k, then our signature scheme
is secure within the random oracle model.

Proof: We follow Coron’s full domain reduction [7]. Let F be a forger that (t, qsig ,
qH , qG, ε) breaks our sequential aggregate signature scheme. We assume that
F never repeats a hash query and a signature query. We will build an inverter
that can (t′, ε′) breaks underlying one-way trapdoor permutation. The inverter
receives an input D, f , where D and f are public keys and Y ∈ D is chosen
uniformly at random. The inverter tries to find X = f−1(Y). The inverter starts
running F and makes hash oracle queries and signing queries on behalf of the
inverter. The inverter will answer hash oracle queries (H-oracle query and G-
oracle query) and signing oracle queries. We assume for simplicity that when F
requests a signature of the message m, it has already made the corresponding
hash queries on m. If not, the inverter goes ahead to make H-oracle query and
then to make G-oracle query. The inverter uses counter i initially set to zero.
When F makes a H-oracle for m, the inverter increments i, sets mi =m and picks
two random strings yi ∈ {0, 1}k and zi ∈ {0, 1}l−k, where k is the bit length

Sequential Aggregate Signatures Working 213

of D. The output of H-oracle is xi (xi = yi||zi). To make the G-oracle query
of the string zi, the inverter first checks that whether zi has been made the G-
oracle query, and then the inverter will look at the H-oracle table for any query
mi queried to H-oracle with answer (yi, zi). It will output the string vi which
is defined below if zi has already requested (notice that since H is a random
oracle, the probability that the H-oracle will output (∗, zi) for any message
different than mi is negligible assuming that the amount 1/2(l−t) is negligible).
The inverter now picks a random string ri ∈ D then returns vi such that τb

(yi ⊕ vi) =f(ri) with probability p and vi such that τb (vi ⊕ yi) = Y f(ri) with
probability (1− p). Here p is a fixed probability which will be determined later.
When F makes a signing query for m, it has already requested the hash queries
of m, so m = mi for some i. If τb (vi⊕yi) =f(ri), then the inverter returns ri as
the signature, otherwise the process stop and the inverter has failed. Eventually,
F halts and outputs a forgery (m, σ). We assume that m has requested H-oracle
and G-oracle of m before. If not, I goes ahead and makes the hash oracle queries
itself, so that in any case, m =mi for some i. Then if τb (vi ⊕ yi) = Y f(ri), we
can compute f−1(Y) = τb(vi ⊕ yi) ri with probability pqsig (1 − p). Setting p =
1 − 1

qsig+1 , it follows that the probability that the inverter can find y ∈ D such
that f(y) =Y with probability ε=exp(1)qsigε

′ for sufficiently large qsig .

2.3 Instantiated with RSA

Specifically to RSA instance [23], a certificated permutation could be done by
having a trusted certification authority to check that N is a product of two large
primes and e is relative prime to φ(N) before issuing a certificate. This check,
however, requires one to place more trust in the authority than usual. Namely,
the authority must be trusted not just to verify the identity of a key’s purported
owner, but also to perform verification of some complicated properties of the
key. More precisely,

Lemma 2: suppose gcd(e, p−1) =k1k2, gcd(e, q−1) =k2k3, gcd(k1, q−1) =1,
gcd(k3, p− 1) =1 (i.e., we consider the case where k1 is a factor of p− 1, k2 is a
common divisor of p− 1 and q − 1, k3 is a factor of q − 1 and k1, k2 and k3 are
pair wise prime), then the number of set A is k1k2k2k3.

Proof: We consider the following three cases.

– case 1: gcd(e, p − 1)=k �= 1, gcd(e, q − 1) = 1; Since f(x)= xe mod q is
a permutation from Z∗

q to Z∗
q , we will consider g(x) =xe mod p from Z∗

p

to Z∗
p . Let g be a generator of Z∗

p and denote B = {gk : x ∈ Z∗
p}. Since

gcd(e, p − 1)=k �= 1, it follows that gcd(e/k, p − 1) = 1. Denote g(x)= xe

mod p = g1(g2(x)), where g1(x) = xk mod p and g2(x) = xe/k mod p. Notice
that g2 is a permutation from Z∗

p to Z∗
p but g1(x) is a homomorphism from

Z∗
p to Z∗

p . Since order ord(gk) = p−1
gcd(k,p−1) , it follows that the number of

elements of B is k and so the number of the set A is also k.
– case 2: gcd(e, p− 1) = 1, gcd(e, q − 1) = k �= 1; Same claim as case 1.

214 H. Zhu, F. Bao, and R.H. Deng

– case 3: k = k1k2k3, gcd(e, p−1) =k1k2, gcd(e, q−1) =k2k3, gcd(k1, q−1) =1,
gcd(k3, p−1) =1 (i.e., we consider the case where k1 is a factor of p−1, k2 is
a common divisor of p− 1 and q− 1, k3 is a factor of q− 1 and k1, k2 and k3
are pair wise prime). Since Z∗

n and Z∗
p × Z∗

q are isomorphic and f(x)=xe/k

mod n is a permutation from Z∗
p × Z∗

q to Z∗
p × Z∗

q , we will only consider
the function g(x)= xk mod n. Denote fi(x) = xki mod n, then g(x)=f3 (f2
(f1(x))) =xk mod n. Denote B={xk : x ∈ Z∗

p × Z∗
q }. We know that there

are k1k2 elements x1 ∈ Z∗
p such that xk

1 = 1 (this 1 is in Z∗
p). And there are

k2k3 elements x2 ∈ Z∗
q such that xk

2 = 1 (this 1 is in Z∗
q). So the number of

the set A is k1k2k2k3.

Alternative approach may allow one to choose a large prime number e such
that e > N , and then to show that e is a prime number by making use of the
prime test protocol. This approach is attractive and has been used in [16]. Our
sequential aggregate signature scheme will make use of this approach.

We show that our signature scheme described below is provably secure against
adaptive chosen message attack in the random oracle model [5] assuming that
the RSA problem (on input a randomly chosen y ∈ Z∗

N , and the public key
(e, N), outputs x ∈ Z∗

N such that y = xe mod N) is hard.
-Key generation algorithm: On input a security parameter k, it generates an

RSA public key (N, e) and secret key (N, d), ensuring that |N |=k-bit and that
e > N is a prime. Let f−1(x) = xd mod N be the inverse function of RSA
function f(x) = xe mod N (ed ≡ 1 mod φ(N). On input l and k, it also specifies
two cryptographic hash functions H : {0, 1}∗ → {0, 1}l and G: {0, 1}t → {0, 1}k,
t = l − k.

-Signing algorithm: On input a message m, it computes x = H(m) and then
separates x = y||z, where y ∈ {0, 1}k and z ∈ {0, 1}t, t = l − k. Finally, it
computes g = f−1(y ⊕ G(z))||z. If y ⊕ G(z) > N , then the signature σ of the
message m is (g, b), where b = 1; if y ⊕ G(z) < N , then the signature σ of the
message m is denoted by (g, b), where b = 0 (in this case τ(x) = x − bN in
the RSA instantiation); Note that the probability that the event y ⊕G(z) = N
happens is at most negligible amount, therefore we ignore this event in the
following discussions.

-The verification is given as input a signature σ = (g, b), the messages m, and
the correspondent public key (N, e) and proceeds as follows: first it computes
x = H(m) and separates x =y||z and g=v||w and checks whether w is z, if not, it
outputs 0; Else, it checks that e > N and e is a prime number. If both conditions
are valid, then it checks the validity of the equation y =B(f(v) + bN) ⊕ G(z),
where B(x) is the binary representation of x ∈ Z. And output 1, if the equation
is valid.

At first glance it seems that the adversary may have choice whether to use
b = 0 or b = 1. However, this will result in two values y⊕G(z) that are guaranteed
to be different: one is less than N and the other at least N . Hence uniqueness
of σ implies uniqueness of b. Notice that once m is given, the value y ⊕ G(z)
is determined assuming that H(m) and G(z) have already been queried. Fur-
thermore, since the functionality of bit b defined above is to identify whether

Sequential Aggregate Signatures Working 215

y ⊕G(z) > N or not, and f(y ⊕G(z) + N) =f(y ⊕G(z)) (an invariant of RSA
function f(x) = xe mod n), we can simply assume that y ⊕ G(z) < N in the
following security argument. As an immediate application of Lemma 1, we have
the following statement:

Corollary 1: Under the hardness of the RSA problem, the ordinary signature
scheme described above is secure against adaptive chosen message attack in the
random oracle model in the sense of [10].

3 Syntax, Security Definition, Construction of Sequential
Aggregate Signature Scheme from Ordinary Signatures

3.1 Syntax

A sequential signature scheme (KG, AggSign, AggVf) consists of the following
algorithms: Key generation algorithm (KG): On input l and ki, KG outputs sys-
tem parameters param (including an initial value IV , without loss of generality,
we assume that IV is a zero strings with length l-bit), on input param and user
index i ∈ I and ki, it outputs a public key and secret key pair (PKi, SKi) of
a trapdoor one-way permutation fi for a user i. Aggregate signing algorithm
(AggSign): Given a message mi to sign, and a sequential aggregate σi−1 on mes-
sages {m1, · · · , mi−1} under respective public keys PK1, · · ·, PKi−1, where m1
is the inmost message. All of m1, · · ·, mi−1 and PK1, · · ·, PKi−1 must be pro-
vided as inputs. AggSign first verifies that σi−1 is a valid aggregate for messages
{m1, · · · , mi−1} using the verification algorithm defined below (if i=1, the aggre-
gate σ0 is taken to be zero strings 0l). If not, it outputs ⊥, otherwise, it then adds
a signature on mi under SKi to the aggregate and outputs a sequential aggregate
σi on all i messages m1, · · · , mi. Aggregate verifying algorithm (AggVf): Given
a sequential aggregate signature σi on the messages {m1, · · · , mi} under the re-
spective public keys {PK1, · · · , PKi}. If any key appears twice, if any element
PKi does not describe a permutation or if the size of the messages is different
from the size of the respective public keys reject. Otherwise, for j = i, · · · , 1, set
σj−1 = fj(PK1, · · · , PKj, σj). The verification of σi−1 is processed recursively.
The base case for recursion is i = 0, in which case simply check that σ0. Accepts
if σ0 equals the zero strings.

3.2 The Definition of Security

The following security definition of sequential aggregative signature schemes is
due to [16]. The aggregate forger A is provided with a initial value IV , a set of
public keys PK1, · · ·, PKi−1 and PK, generated at random. The adversary also
is provided with SK1, · · ·, SKi−1; PK is called target public key. A requests
sequential aggregate signatures with PK on messages of his choice. For each
query, he supplies a sequential aggregate signature σi−1 on some messages m1,
· · ·, mi−1 under the distinct public keys PK1, · · ·, PKi−1, and an additional
message mi to be signed by the signing oracle under public key PK. Finally,

216 H. Zhu, F. Bao, and R.H. Deng

A outputs a valid signature σi of a message mi which is associated with the
aggregate σi−1. The forger wins if A did not request (mi, σi−1) in the previous
signing oracle queries. By AdvAggSignA, we denote the probability of success of
an adversary.

Definition 4: We say a sequential aggregate signature scheme is secure against
adaptive chosen-message attack if for every polynomial time Turing machine
A, the probability AdvAggSignA that it wins the game is at most a negligible
amount, where the probability is taken over coin tosses of KG and AggSign and A.

3.3 Generic Construction from Independent Homomorphic
Trapdoor One-Way Permutations

We now propose an interesting method to construct aggregate signature schemes
from independent homomorphic trapdoor one-way permutations.

-Key generation: each participant i runs its key generation algorithm KGi on
input l, ki, KGi specifies two cryptographic hash functions H : {0, 1}∗ → {0, 1}l

and Gi: {0, 1}ti → {0, 1}ki, ti=l− ki (notice that the system security parameter
l should be shared by all participants). On input ki, KGi outputs an instance of
homomorphic trapdoor one-way permutation {fi : Di → Di}. We assume that
each element in Di can be represented by a ki-bit string, i.e., Di ⊂ {0, 1}ki. We
further assume that there is an efficiently computable mapping from {0, 1}ki \Di

to Di and given τ(x) and b, it is easy for one to recover x ∈ {0, 1}ki. The public
key pki is (fi, Di, Gi, H); The private key ski is the trapdoor information of
fi;

-Aggregate signing: the input is a private key ski, a message m ∈ {0, 1}∗ to be
signed, and a sequential aggregate σi−1 =(gi−1, b1, · · · , bi−1) on messages m|i−1

1 ,
under the public keys pk|i−1

1 (for a vector x, we denote a sub-vector containing
xa, · · ·, xb by x|ba). Verify that σ′ is a valid signature on m under pk using
the verification algorithm below; if not, output ⊥ indicating error. Otherwise,
compute hi ← H(pk|i1,m|i1). The signer then rewrites hi ⊕ gi−1 = xi: = yi||zi,
and computes gi =f−1

i (τbi (yi ⊕Gi(zi)))||zi. The signature of m|i1 under pk|i1 id
denoted by σi =(gi, b1, · · · , bi);

-Aggregate verification: the input is a sequential aggregate σi on message m|i1
under pk|i1. If any public key appears twice in pk|i1, if any element of pk|i1
does not describe a valid permutation, reject; Otherwise, for j=i, · · ·, 1, the
verification algorithm processes the following steps recursively:

– for a given σi= (gi, bi), setting vi||wi ← gi, zi ← wi;
– computing yi from the equation τbi(yi ⊕wi) =f(vi); and setting xi ← yi||zi;
– computing hi ← H(pk|i1,m|i1), and then gi−1 ← xi ⊕ hi.

-Accept if σ0 is equal to 0l (the initial value of sequential aggregate signature
scheme);

Sequential Aggregate Signatures Working 217

3.4 The Proof of Security

Theorem: Let ∪i∈Ifi be a certificated homomorphic trapdoor permutation fam-
ily. Then our sequential aggregate signature scheme described above is secure in
the random oracle model.

Proof: Suppose adv is a forger algorithm that with non-negligible probability
ε breaks the sequential aggregate signature scheme. We construct an algorithm
F that inverts the permutation given by pki on a given input z ∈ Di which is
chosen uniformly at random. Recall that the security definition of a sequential
aggregate signature scheme allows an adversary to generate a collection of public
keys pkj (j = 1, · · · , i), and obtain the correspondent skj except for the trapdoor
information ski of a target permutation. Thus, the security of the sequential
aggregate signature scheme can be reduced to that of the underlying (ordinary)
signature scheme. Since the simulator knows skj for j �= i, it follows that the
simulation of the j-th user can be trivially simulated while the simulation of
i-th user can be simulated exactly as that described in the proof Lemma 1.
Consequently, the proof of security of the theorem follows from an immediate
application of Lemma 1.

3.5 Instantiated with RSA

Let H : {0, 1}∗ → {0, 1}l be a cryptographic hash function and IV be the initial
vector that should be pre-described by a sequential aggregate signature scheme.
The initial value could be a random l-bit string or an empty string. Without loss
of generality, we assume that the initial value IV is 0l. Our sequential aggregate
signature scheme is described as follows:

-Key generation: Each user i generates an RSA public key (Ni, ei) and secret
key (Ni, di), ensuring that |Ni| = ki and that ei > Ni is a prime. Let Gi: {0, 1}ti

→ {0, 1}ki, be cryptographic hash function specified by each user i, ti = l − ki.
-AggSig: User i is given an aggregate signature gi−1 and (b1, · · ·, bi−1), a

sequence of messages m1, · · ·, mi−1, and the corresponding keys (N1, e1), · · ·,
(Ni−1, ei−1). User i first verifies σi−1, using the verification procedure below,
where σ0 = 0l. If this succeeds, user i computes Hi = H(m1, · · ·, mi, (N1, e1), · · ·,
(Ni, ei)) and computes xi = Hi ⊕ gi−1. Then it separates xi = yi||zi, where yi ∈
{0, 1}ki and zi ∈ {0, 1}ti, ti = l−ki. Finally, it computes gi = f−1

i (yi⊕Gi(zi))||zi.
By σi ← (gi, bi), we denote the aggregate signature(if yi ⊕Gi(zi) > Ni, then bi

=1, if yi⊕Gi(zi) < Ni, then bi = 0; again we do not define the case yi⊕Gi(zi) =
Ni since the probability the event happens is negligible), where f−1

i (y) = ydi

mod Ni, the inverse of the RSA function fi(y) = yei mod Ni defined over the
domain Z∗

Ni
.

-AggVf: The verification is given as input an aggregate signature gi, (b1, · · · ,
bi), the messages m1, · · · , mi, the correspondent public keys (N1, e1), · · ·, (Ni, ei)
and proceeds as follows. Check that no keys appears twice, that ei > Ni is a
prime. Then it computes:

– Hi = H(m1, · · · , mi, (N1, e1), · · · , (Ni, ei));
– Separating gi = vi||wi;

218 H. Zhu, F. Bao, and R.H. Deng

– Recovering xi form the trapdoor one-way permutation by computing zi ←
wi, yi = Bi(fi(vi)+biNi) ⊕ Gi(zi), and xi =yi||zi, where Bi(x) is the binary
representation of x ∈ Z (with ki bits).

– Recovering gi−1 by computing xi ⊕ Hi. The verification of (gi−1, bi−1) is
processed recursively. The base case for recursion is i = 0, in which case
simply check that σ0 =0l.

Corollary 2: Our sequential aggregate signature scheme described above is
secure in the sense of [16] in the random oracle model.

4 Conclusion

In this paper, a generic construction of sequential aggregate signatures has been
constructed from homomorphic trapdoor one-way permutations. We have shown
that our generic constructions are provably secure in the random oracle model
assuming that the underlying homomorphic permutations are trapdoor one-way.
We then instantiate our generic constructions with RSA. Compared the best
results in the literature, say Kawauchi et al’s scheme, and Lysyanskaya et al’s
scheme [16], our protocol has nice feature: the moduli are not required to be
of the same length in our scheme, i.e., in our scheme Ni is chosen by each user
independently. Thus we have proposed the first sequential aggregate signature
scheme from RSA that works for any moduli.

References

1. A. Boldyreva. Efficient threshold signature, multisignature and blind signature
schemes based on the gap-Diffie-Hellman-group signature scheme. In Y. Desmedt,
editor, Proceedings of PKC 2003, volume 2567 of LNCS, pages 31C46. Springer-
Verlag, 2003.

2. M. Burmester, Y. Desmedt, H. Doi, M. Mambo, E. Okamoto, M. Tada, Y. Yoshifuji:
A Structured ElGamal-Type Multisignature Scheme. Public Key Cryptography
2000: 466-483

3. Dan Boneh, Craig Gentry, Ben Lynn, Hovav Shacham: Aggregate and Verifiably
Encrypted Signatures from Bilinear Maps. EUROCRYPT 2003: 416-432.

4. Dan Boneh, Craig Gentry, Ben Lynn, Hovav Shacham: A Survey of Two Signature
Aggregation Techniques. In CryptoBytes Vol. 6, No. 2, 2003.

5. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In D. Denning, R. Pyle, R. Ganesan, R. Sandhu, and V. Ashby,
editors, Proceedings of CCS 1993, pages 62-73. ACM Press, 1993.

6. Jan Camenisch, Markus Michels: Proving in Zero-Knowledge that a Number Is the
Product of Two Safe Primes. EUROCRYPT 1999: 107-122.

7. J. Coron: On the Exact Security of Full Domain Hash. CRYPTO 2000: 229-235.
8. H. Doi, M. Mambo, E. Okamoto: On the Security of the RSA-Based Multisignature

Scheme for Various Group Structures. ACISP 2000: 352-367.
9. H. Doi, E. Okamoto, M. Mambo, and T. Uyematsu, Multisignature Scheme with

Specified Order, Proc. of the 1994 Symposium on Cryptography and Information
Security, SCIS94-2A, January 27 -29, 1994.

Sequential Aggregate Signatures Working 219

10. Shafi Goldwasser, Silvio Micali, Ronald L. Rivest: A Digital Signature Scheme
Secure Against Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2): 281-
308 (1988).

11. P. Horster, M. Michels, and H. Petersen Meta-multisignature schemes based on the
discrete logarithm problem, Information Security -the Next Decade, Proc. of IFIP
Sec95, Chapman-Hall pp. 128 -142 1995.

12. T. Hardjono, and Y. Zheng A practical digital multisignature scheme based on
discrete logarithms, Lecture Notes in Computer Science 718, Proc. of Auscrypt92,
Springer-Verlag, pp. 122-132, 1993.

13. K. Itakura and K. Nakamura. A public key cryptographic suitable for digital mul-
tisignatures. NEC Rearch and Development (71), page 1-8, 1983.

14. K. Kawauchi, Y. Komano, K. Ohta and M. Tada: Probabilistic multi-signature
schemes using a one-way trapdoor permutation, IEICE transactions on fundamen-
tals, vol.E87-A, no5, pp.1141 -1153, 2004. Previous version: Kei Kawauchi, Mitsuru
Tada: On the Extract Security of Multi-signature Schemes Based on RSA. ACISP
2003: 336-349

15. S. Kent, C. Lynn and K. Seo: Secure Border Gateway Protocol (S-BGP). IEEE
Journal on Selected Areas in Communicaitons, Vol. 18, No. 4, Apr. 2000.

16. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, Hovav Shacham: Sequential Ag-
gregate Signatures from trapdoor one-way permutations. EUROCRYPT 2004: 74-
90.

17. S. Mitomi and A. Miyaji, ”A general model of multisignature schemes with message
flexibility, order flexibility, and order verifiability”, IEICE Trans., Fundamentals.
vol. E84-A, No.10(2001), 2488 - 2499. Previous version: S. Mitomi and A. Miyaji,
A multisignature scheme with message flexibility, order flexibility and order verifia-
bility, Information security and privacy-Proceedings of ACISP 2000, Lecture Notes
in Computer Science, 1841(2000), Springer-Verlag, p298 - 312.

18. S. Micali, K. Ohta, and L. Reyzin. Accountable-subgroup multisignatures (ex-
tended abstract). In Proceedings of CCS 2001, pages 245 -254. ACM Press, 2001.

19. K. Ohta, and T. Okamoto, A digital multisignature scheme based on the Fiat-
Shamir scheme, Lecture Notes in Computer Science 739, Advances in Cryptology
-Asiacrypt’91, Springer-Verlag, pp. 139-148, 1993.

20. K. Ohta and T. Okamoto. Multisignature schemes secure against active insider
attacks. IEICE Trans. Fundamentals, E82-A(1):21C31, 1999.

21. K. Ohta and T. Okamoto: Generic construction methods of multi-signature
schemes, Proceedings of The 2001 Symposium on Cryptography and Information
Security (SCIS2001), vol.I, pp.31-36, 2001.

22. T. Okamoto. A digital multisignature scheme using bijective public-key cryptosys-
tems. ACM Trans. Computer Systems, 6(4):432C41, November 1988.

23. R. Rivest, A. Shamir, and L.M. Adleman. A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM 21(2): 120-126
(1978).

24. A. Shimbo, Multisignature Schemes Based on the ElGamal Scheme, Proc. of The
1994 Symposium on Cryptography and Information Security,January 27 - 29, 1994.

25. M. Tada: A secure multisignature scheme with signing order Verifiability, IEICE
transactions on fundamentals, vol.E86-A, no.1, pp.73-88, 2003. Previous version:
M. Tada: An Order-Specified Multisignature Scheme Secure against Active Insider
Attacks. ACISP 2002: 328-345.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 220 – 230, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Session Table Architecture for Defending SYN
Flood Attack

Xin Li, Zhenzhou Ji, and Mingzeng Hu

School of Computer Science and Technology,
Harbin Institute of Technology, Harbin, China

{lixin, jzz, mzhu}@pact518.hit.edu.cn

Abstract. Stateful Inspection has become a classical technology for network
firewall. Existing session table architectures of Stateful Inspection firewalls
cause high time cost of timeout processing. A new architecture is proposed. The
new architecture divides a session entry into two separate parts, and designs dif-
ferent data structures for each other. On the base of multi-queue architecture,
dynamical timeouts according to available resource improve securities of pro-
tected hosts against SYN flood attack. Experimental results show that the new
architecture can work well in Gigabit Ethernet network.

1 Introduction

Stateful Inspection refers to an extension of packet-by-packet filtering process that
tracks individual flows, enabling policy checks that extend across series of packets
[1]. Many firewalls have implemented Stateful Inspection technology, such as Cisico
PIX [2], 3COM Secure Gateway [3], Netsreen Firewall [1] and Checkpoint FW-1 [4].
Stateful Inspection requires a session table whose entries typically record source and
destination IP addresses and port numbers. For each packet, the session table is
looked up for a match. A session entry in the format <src-addr, src-port, dst-addr, dst-
port, ip-p, state, time> is created when the first packet appears from a flow previously
not tracked. Subsequent packets of an established session are checked against the
session table rather than against the Rule Base. The performance of Stateful Inspec-
tion firewall mainly depends on the performance of processing session table.

Under normal operating condition, all session table entries represent a valid flow.
However, abnormal events can create an excessive number of invalid entries in the
table. A representative example is the DoS attack using TCP SYN packets. Suppose
TCP SYN packets from typically spoofed source addresses go out through a Stateful
Inspection firewall in avalanche, triggering the creation of corresponding session
entries in the table. When the session table is inundated with invalid entries, perform-
ance and security become concerns. So timeout processing is essential for TCP to
purge the inactive session [5]. Firewalls are better suited to fight the attack because
they tend to be designed to examine packets and maintain connection and state infor-
mation of session traffic [6].

The TCP connection setup delay is defined to be the time elapsed between the
transmission of the first SYN packet and the reception of the corresponding ACK.

 Session Table Architecture for Defending SYN Flood Attack 221

The connection setup delay is usually much less than 1 second. At 1 second, more
than 93% of the connections are established [5]. Furthermore, after a connection is
established, the timeout is automatically set to 3600 seconds, which may cause ses-
sion table quickly filled up. So the default timeout of some firewall is too long, which
cause the host easy to be crashed. So, shortening TCP idle timeout will decrease the
opportunity to fill session table [5]. But if timeouts are too short, session table will be
inserted and deleted frequently.

Processing session timeout is essential for connection-level monitoring devices
such as Stateful Inspection firewalls in order to minimize security holes. Adequate
session timeouts can improve the security of both protected host and firewall itself.

This paper proposed a new architecture for session processing, which improves the
timeout processing performance of session table effectively, and securities of both
protected hosts and firewall itself.

2 Session Table Processing

Generally, <src-addr, src-port, dst-addr, dst-port, ip-p> is used to identify a unique
session, which is called SID in this paper. For each arriving packets, session table is
looked up for a match. If packets belong to an existing session, session state and ses-
sion time will be updated. If a session entry has overtime, it will be deleted.

Generally, there are 4 kinds of session table operation: match session table with
packets’ sessionID, update an entry’s time and state, insert a new entry and delete an
overtime entry, which are shown in Fig.1. Because an update always is after a match,
we call them a match-and-update operation.

 Fig. 1. Session table operations

Required time for inserting an entry (Tins), deleting an entry (Tdel), and match-and-
update(Tmau) are three key parameters to the performance of Stateful Inspection fire-
walls. Because memory access is most time-consuming, we use the required clock
cycles of memory accesses to measure Tins, Tdel and Tmau.

222 X. Li, Z. Ji, and M. Hu

2.1 Existent Processing Methods of Session Table

Now all existed firewalls put both SID and <state, time> in a single entry, as Fig.2.
Because the number of entries may up to 1 million, and each entry is wider than 128
bits, over 128Mb memory space is required for session table. Generally, DDR
SDRAM is used to store session table.

Fig. 2. General format of session table entry

Because SID is about 128 bits long, comparing a packet SID with session table en-
tries requires an efficient searching algorithm that performs searching without com-
paring the whole 128 SID bits. One such efficient searching algorithm is PATRICIA.
PATRICIA is an algorithm that needn’t compare the whole key. PATRICIA is very
useful for extremely long key. PATRICIA trie compress all nodes which have one-
way branch, it is the lowest trie [7]. But traversing PATRICIA trie to process timeout
is time-consuming. In order to improve traversing performance, leaves should be
linked to a rope. Fig.3 illustrates the data structure in [8] for fixed-length match, and
Fig.4 illustrates the Leaf Rope of PATRICIA trie which is a single linked list. All
leaves in the PATRICIA trie are linked as a rope in inserting time order.

Fig. 3. Data Structure of IBM NP4GS3’s FM [8]

Fig. 4. Leaf Rope structure

 Tsearch, Tinsert and Tdelete are respectively required time of searching, inserting and
deleting an entry in PATRICIA trie. From the processing in Fig.1 and PATRICIA
algorithm in [9], we get the following functions, which have considered the time cost

 Session Table Architecture for Defending SYN Flood Attack 223

 of applying and reclaiming memory block. The Rot is the ratio of the number of over-
time entries to all entries, and TDDR is required clock cycles of accessing DDR
memory.

Tmau(1)= Tsearch + TDDR

Tins(1) = Tinsert + 2TDDR

Tdel(1) = Tdelete + TDDR /Rot

Rot generally is very small, which is far less than 1, so timeout processing is time-
consuming. When processing many overtime entries once, the time cost of timeout
processing is intolerable.

2.2 Doubly Linked List Structure

From the timeouts processing of Fig.1, we know that to improve timeout processing
performance, the rope should be linked in updating time order. If the rope is linked as
a doubly linked list in time order, we need not read many entries when processing
timeout. When an entry does not timeout, all subsequent entries do not timeout too.
Fig.5 shows the data structure.

Fig. 5. PATRICIA based doubly linked list

Tmau(2)=Tsearch+7TDDR
Tins(2) = Tinsert+ 2TDDR
Tdel(2) = Tdelete+ TDDR

This architecture can improve the performance of timeout processing effectively,
but it causes the performance of match-and-update down heavily. The main reason is
that it needs too many memory accesses when updating session table. It needs 7 mem-
ory accesses at least, and DDR is very slow.

2.3 Proposed Architecture

Higher speed memory than DDR can improve the performance of session table. In
this paper, we proposed a new architecture for session table. We use two kinds of
memory to store session table, which can improve the performance of session table
greatly. Because SID is wide and session table generally have too many entries, we
uses DDR SDRAM to store SIDs PATRICIA trie.

In order to decrease Tdel(1), we use a doubly linked list to organize <state, time>.
Fig.6 shows its data structure. ZBT SRAM is used to store the doubly linked list. We
use DS1_addr and DS2_addr to relate the two data structures, as Fig.7.

224 X. Li, Z. Ji, and M. Hu

Fig. 6. Doubly Linked Lists for DS2

Fig. 7. Entries of DS1 and DS2

Algorithm 1. Insert a session entry.
(1) apply a DDR memory block for DS1 and a ZBT memory block for DS2.
(2) fill the DS1 block with sessionID and the DS2 block’s address, and insert it in

PATRICIA trie.
(3) fill the DS2 block with state, time and the DS1 block’s address, insert it in dou-

bly linked list.

Algorithm 2. Match and update a session entry.
(1) search PATRICIA trie for a match, if matched use DS2_addr as address to read

DS2 node.
(2) update the DS2 node with new state and current time.
(3) delete the DS2 node from its old position.
(4) insert the DS2 node in the tail of list, update list’s tail.

Algorithm 3. Timeout processing.
(1) when received a timer interrupt, read out the first DS2 node from its head.
(2) compare the time in DS2 with current time to determine whether it is overtime

or not.
(3) if overtime delete the DS2 node, update list’s head, and delete the correspond-i

ng DS1 node.
(4) process its next node.

Following functions measure the performance parameters of the proposed architec-
ture.

Tmau(3)=Tsearch+7TZBT
Tins(3) = Tinsert+3TZBT
Tdel(3) = Tdelete+2TZBT

 Session Table Architecture for Defending SYN Flood Attack 225

2.4 Pipeline the Proposed Architecture

Tsearch, Tinsert and Tdelete only involve DDR SDRAM. Because TDDR needs about 16
cycles for 32 bits memory data bus and 256 bits data, Tsearch, Tinsert and Tdelete at least
need 32 cycles. TZBT only involves ZBT SRAM, and TZBT only need 2 cycles for 36
bits memory data bus and 72 bits data. We get 7TZBT<Tsearch, 3TZBT<Tinsert and
2TZBT<Tdelete. If we pipeline DS1 operation and DS2 operation, the performance of
session table will only be determined by Tsearch, Tinsert and Tdelete. Following functions
show the performance parameters of the pipelined architecture.

Tmau(4)=Tsearch

Tins(4) =Tinsert

Tdel(4) =Tdelete

2.5 Performance Analysis

In our design, TDDR equals 16 cycles and TZBT equals to 2 cycles. From above analy-
ses, we know that Tdel(4) is much less than Tdel(1), and Tmau(4) is much less than Tmau(2).
We can know that the pipelined architecture is the best architecture.

From above analyses, we know that Tsearch, Tinsert and Tdelete determine session ta-
ble’s performance. So to minimize Tsearch, Tinsert and Tdelete is the most important thing
to improve the performance of session table processing. On the base of traditional
PATRICIA trie we proposed a new PATRICIA trie, which improves the performance
of traditional PATRICIA insertion [9].

3 Dynamical Timeouts

3.1 Queue Structure

An important advantage of the new architecture is that we can easily organize multi-
ple double linked lists in ZBT SRAM, and each double linked list is called a queue in
this paper. We can set dynamical timeouts for each queue, and each queue’s timeouts
can be different, which can improve securities of both protected hosts and firewall
itself.

To illustrate our methods for dynamical timeouts, we use typical topology of net-
work as example, as Fig.8. In this paper, we assume the HTTP serve and FTP serve
need be protected against SYN Flood attack, and firewall itself need defense other
TCP attack.

We use ZBT SRAM to store DS2 data structure. We design four queues for differ-
ent functions. Queue 1 and Queue 2 are respectively used to store session tables
which have received the SYN/ACK from the HTTP server and FTP server. Queue 3 is
used to store session tables which have established TCP connection but not receive
any FIN or RST packets. Queue 4 is used to store all others’ session tables. Fig.9
shows queues and sessions flow examples.

226 X. Li, Z. Ji, and M. Hu

Fig. 8. Typical firewall topology

Fig. 9. Four queues used for storing sessions

3.2 Algorithms for Queues

For each arriving packet, the PATRICIA Trie is looked up for a match.

Algorithm 6: SYN packets processing.
(1) if find a session entry, drop the packet, else lookup in the rule base for a match.
(2) if does not be allowed, drop it, else use Algorithm 1 to insert the new entry in

Queue 1.

Algorithm 7: SYN/ACK packets processing.
(1) if not find a session or the session’s state is wrong, drop the packet.
(2) else if destination IP is HTTP server, move the session table entry from Queue

4 to Queue 1, else if destination IP is FTP server, move the session table entry from
Queue 4 to Queue 2, else move the session table entry to the tail of Queue 4.

Algorithm 8: ACK packets processing.
(1) if not find a session or the session’s state is wrong, drop the packet.
(2) else move the session table entry to the tail of Queue 3.

Algorithm 9: packets with FIN or RST.
(1) if not finding a session or the session’s state is wrong, drop the packet.
(2) else move the session to the tail of Queue 4.

 Session Table Architecture for Defending SYN Flood Attack 227

3.3 Dynamical Timeouts

For the above four queues, the first two queues is mainly related with the security of
protected host, and the last two queue is mainly related with the security of firewall
itself. If defining T is the maximum of timeout, N is the whole resource, and M is
available resource, we proposed a new timeout model. Fig.10 illustrates timeouts
curve with M varying.

⎥⎦
⎥

⎢⎣
⎢

=
M

N
lg

TTimeout

2

1

Fig. 10. Timeouts curve

For timeouts of the first two queues, selecting T is 32 seconds, N is configured
from user which typically is the number of half open host supported, and M is avail-
able resource in protected host. To insure the slow network user can through firewall
normally, minimal timeouts of Queue 1 and Queue 2 are 1 second. The N and T may
different for the two queues according to users’ configuration.

For timeouts of Queue 3, selecting T is 4096 seconds, N equal to the whole space
of ZBT memory, and M is available resource in ZBT SRAM. The minimum of time-
out is 256 seconds.

For timeouts of Queue 4, selecting T is 32 seconds, N equal to the whole space of
ZBT memory, and M is available resource in ZBT SRAM. To insure the slow net-
work user can through firewall normally, its minimum of timeout is 1 second.

When timeouts of any queue has decreased to its minimum, each new connection
will purge an oldest connection in the session table.

3.4 Performances and Securities Analyses

Dynamical timeouts improve securities of both protected host and firewall itself.

(1) when processing timeout as Algorithm 3, only access part of table entries be-
cause the linked list is in the order of updating time, which improves the performance

228 X. Li, Z. Ji, and M. Hu

of timeout processing. By pipelining, the time cost of timeout processing is equal to
the time cost of deleting the DS1 entry.

(2) when updating session table entry as Algorithm 2, By pipelining, the time cost
of updating session is equal to the time cost of matching a DS1 entry.

(3) as Algorithm 2, 6 and 7, firewall uses special queues for protected hosts to de-
fense SYN flood, and sets timeouts of Queue 1 and Queue 2 according to available
resource of the protected host, which can improve protected hosts’ security against
SYN Flood. Furthermore, when timeouts of Queue 1 and Queue 2 down to the mini-
mum, each new inserted entry will cause the oldest entry purged, which can insure the
protected hosts not crashed.

(4) as Algorithm 2, 7, 8 and 9, firewall sets timeouts of Queue 3 and Queue 4 ac-
cording to available resource of firewall itself, which can improve both protected
hosts and firewalls’ security. Furthermore, when timeouts of Queue 3 or Queue 4
down to the minimum, each new inserted entry will cause the oldest entry purged,
which can insure the firewall not crashed.

4 Experimental Design and Performance Analyses

For high speed network, ASIC is often used to improve performance of network de-
vice. We implement an ASIC for the proposed session table architecture and proposed
algorithms. We use two methods to reduce the depth of PAT-FM trie. One is to hash
SID, the other is to make use of 4-ary PATRICIA trie. We use a Xilinx
FPGA(XC2V3000) to implement the whole Stateful Inspection firewall which sup-
ports 3 Gigabit Ethernet ports and a PCI interface. PATRICIA trie is stored in DDR
SDRAM, doubly linked list is stored in ZBT SRAM.

We use random 128 bits data to test the performance of session table insertion,
search and deletion. Table 1 shows the experimental results. We can know that per-
formances of session entries insertion, search and deletion are very close. All of these
performances are mainly determined by PATRICIA’s performance.

Furthermore, we mainly test the performance of lookup session table for a match,
because lookup performance is the most important parameter for Stateful Inspection
firewalls. Fig.11 shows the experimental result, the ASIC for the new architecture and
new algorithms can do 2.78 million lookups even the number of session entries up to
1 million. If all packets are smallest packet (64 bytes), the application-specific hard-
ware can process 1.7 Gbps’ traffic. And when the average size of packets is 128
bytes, the traffic can up to 3.4 Gbps. So, we can know that this ASIC can work well in
the Gigabit edge network device.

Table 1. Operation numbers per second

Search Insertion Deletion
2,464,274 2,796,528 2,471,232

 Session Table Architecture for Defending SYN Flood Attack 229

Fig. 11. Lookup performance of session table

5 Conclusions

The Stateful Inspection technology is a key to network firewall, and the performance
of session table is a key to the Stateful Inspection technology. The new architecture
improves performances of both timeout processing and session updating. Dividing
session entry into two separate parts and designing different data structures for each
other improves the performance of session table. By pipelining operations of the two
parts, the performance of session table is only determined by PATRICIA trie’s per-
formance. The new fixed-length match PATRICIA algorithm can improve insertion
performance effectively.

Because the new architecture sets dynamical timeouts according to available re-
source of both protected host and firewall, which insure both protected hosts and
firewall itself not SYN-Flooded. The specialized hardware for the proposed architec-
ture is implemented in FPGA, which improve firewall’s performance further. By
analyzing the architecture and experimental results, the new session table architecture
can work well in Gigabit Ethernet network.

References

1. Stateful-inspection firewall: The Netscreen way. http://www.netscreen.com/products/fire-
wall_ wpaper.html.

2. David, W., Chapman, Jr., Andy, F.: Cisco Secure PIX Firewalls, Cisco Press (2001)
3. Http://www.3com.com/other/pdfs/products/en_US/ 400742. pdf.
4. Marcus, G., Steven, B.: Check Point Firewall-1 Administration Guide (2001)
5. Inhye, Kang, Hyogon, Kim: Determining embryonic connection timeout in Staeful Inspec-

tion, IEEE 2003 International Conference on Communication. Anchorage, USA (2003)
458–462

230 X. Li, Z. Ji, and M. Hu

6. Noureldien, A.N.: Protecting Web Servers from DoS/DDoS Flooding Attacks, International
Conference on Web-Management for International Organization. Geneva (2002)

7. Okuno, M., Ando, K., Aoe, J.: An efficient compression method for Patricia tries, IEEE
International Conference on Computational Cybernetics and Simulation, Vol.1 (1997) 415–
420

8. IBM Co.: IBM NP4GS3 DATAsheet (2001)
9. Li, X, Hu, M.Z, Ji, Z.Z, A Hardware-Based PATRICIA Algorithm for Fixed-length Match,

Computer Research and Development (2005) 951–957

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 231 – 242, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Behavior-Based Ingress Rate-Limiting Mechanism
Against DoS/DDoS Attacks*

Song Huang, Ling Zhang, and Shou-Ling Dong

Guangdong Key Laboratory of Computer Network,
South China Univ. of Tech. , GZ, P.R. China 510641
{crshuang, ling, sldong}@scut.edu.cn

Abstract. In this paper, the characteristics of Client/Server interaction behaviors
under normal web access and typical DoS/DDoS attack are analyzed. A simple
local rate-limiting method called Behavior-based Ingress Rate-limiting (BIR)
mechanism is proposed, by which the client-end host’s inbound and outbound
traffics are monitored. Bursts of the traffics are suppressed by a local
transmission delay mechanism. The principle and implementation are described.
Simulations are performed to validate its efficacy. Finally, the approach’s
potential and limitations are also discussed.

1 Introduction

DoS/DDoS attacks are easy to launch but hard to prevent. Generally, they are caused by
the imbalance among the Internet between the clients and suppliers. Countermeasures
against DoS/DDoS attacks can be approximately classified into several categories: a)
filtering or rate-limiting mechanisms to decrease the number of requests; b) increasing
the capability of service provider; c) network structure optimization, including upgrade
the architect of the Internet, or improve related protocols.

The request filtering or rate-limiting mechanisms, according to their locations, can
be ascribed to victim-end, intermediate-network based and source-end. Source-end
mechanisms have relatively higher efficiency, but not easy to deploy and control.

DDoS attack is the distributed form of DoS one, which is launched by employing
several masters and many agents. Masters refer to compromised hosts to command
more agents. They receive instructions of the attacker, and retransmit to downstream
agents. Agents receive instructions from masters, and send flooding packets directly to
the victim. Here, the agents act as the sources of the attacking traffics.

Inspired by the simple technique to suppress the fast spread of viruses[1], a similar
approach against DoS/DDoS attacks is proposed in this paper. Its principle is to prevent
Dos/DDoS attacks by rate-limiting burst requests of each individual host. This simple
approach is based on attacker’s behaviors, and may acts as a complementary
mechanism of existing defending system.

* This research was sponsored by National “973” plan(2003CB314805).

232 S. Huang, L. Zhang, and S.-L. Dong

The paper is organized as follows. Section 2 discusses the behavioral patterns based on
experiments. A detailed description on BIR mechanism is given in section 3. Section 4
illustrates the efficacy validation by simulations. Section 5 provides a brief description of
related works. Section 6 concludes the paper, with some discussion of its potential and
limitations.

2 Behavior Patterns

Matthew M. Williamson [1] proposed an approach to restrict virus’s high speed
propagation automatically, which is based on the observation that during virus
propagation, an infected machine will connect to as many different machines as fast as
possible. The approach’s principle is to limit the rate of connections to “new” machines
by both slowing and halting this propagation without affecting normal traffic.

With the similar principle, BIR is designed to limit the rate of requests to a specific
machine. This mechanism is deployed on local source-end host, and keeps monitoring
the local host’s traffic anomaly. Then it performs predefined rate-limiting actions once
needed.

Obviously, the key of this design is to find the common characteristics of agents
sending flooding traffics or are suspected to do so. Inspired by Matthew Williamson’s
throttling method, we wish to find a representative behavior of the attacking traffics. A
simple experimental environment is setup to collect traffics data for typical Internet
services, including web browsing, web mailing and file transferring. Only traffics
above TCP/UDP layer are considered.

2.1 Normal Situations

Sniffer Pro® is used to collect traffics of web browsing services.

Fig. 1. Data collection experiment

The client’s inbound and outbound traffics are saved and plotted for analysis. Three
typical network services are studied: (1) web browsing; (2) web mailing; (3) file
transfer. Part of the data is listed in Table.1, and the plot is shown in fig 2. The client’s
address is 222.16.32.96. The servers’ addresses are 202.205.3.130 and 202.205.3.140.

 A Behavior-Based Ingress Rate-Limiting Mechanism Against DoS/DDoS Attacks 233

Table 1. Interaction Record(segment) of Web Browsing

Time Source Destination
0.77839 202.205.3.130 222.16.32.96
0.778411 222.16.32.96 202.205.3.130
0.778425 202.205.3.130 222.16.32.96
0.77846 202.205.3.130 222.16.32.96
0.778478 222.16.32.96 202.205.3.130
0.778492 202.205.3.130 222.16.32.96
0.778514 202.205.3.130 222.16.32.96
0.77853 222.16.32.96 202.205.3.130
0.783561 222.16.32.96 202.205.3.130
0.78474 222.16.32.96 202.205.3.130
0.792246 202.205.3.140 222.16.32.96
0.79229 222.16.32.96 202.205.3.140
0.793988 202.205.3.140 222.16.32.96
0.794031 222.16.32.96 202.205.3.140
0.79487 202.205.3.140 222.16.32.96
0.794914 222.16.32.96 202.205.3.140

Fig. 2. Source-destination interactions under web browsing scenario

Fig. 3. Source-destination interactions under web mailing scenario

234 S. Huang, L. Zhang, and S.-L. Dong

Fig. 4. Source-destination interactions under file transferring scenario

From these figures, some common characteristics can be derived: the interactions
between a client and a server are fairly balanced. Statistically, the ratio of outbound
traffics to inbound ones of a specific connection approximately remains constant for
each scenario. For normal web browsing service, the ratio is about 1:1. For web mail
with large attachment transferring, the ratio increases up to about 1: 10.

2.2 Under Attacks

During a flooding attack, the client keeps sending requests without caring about the
destination’s responses. This makes the ratio of the outbound to inbound packets
increase rapidly. For cases of source address spoofing, even fewer responses can reach
the source side.

Table 2. Source-destination communication during a Syn-flood

Time(sec) Source Destination
0.000075 201.79.131.49 202.38.192.2
0.000094 201.79.131.50 202.38.192.2
0.000113 201.79.131.51 202.38.192.2
0.000132 201.79.131.52 202.38.192.2
0.000151 201.79.131.53 202.38.192.2
0.000169 201.79.131.54 202.38.192.2
0.000188 201.79.131.55 202.38.192.2
0.000207 201.79.131.56 202.38.192.2
0.000226 201.79.131.57 202.38.192.2
0.000245 201.79.131.58 202.38.192.2
0.000264 201.79.131.59 202.38.192.2
0.000283 201.79.131.60 202.38.192.2
0.000302 201.79.131.61 202.38.192.2
0.000321 201.79.131.62 202.38.192.2
0.00034 201.79.131.63 202.38.192.2

 A Behavior-Based Ingress Rate-Limiting Mechanism Against DoS/DDoS Attacks 235

Table 3. Source-destination during a UDP-flood

Time(sec) Source Destination
0.000722 222.16.32.96 222.16.32.126
0.003115 222.16.32.96 222.16.32.126
0.003129 222.16.32.96 222.16.32.126
0.003225 222.16.32.96 222.16.32.126
0.003232 222.16.32.96 222.16.32.126
0.00598 222.16.32.96 222.16.32.126
0.006007 222.16.32.96 222.16.32.126
0.006099 222.16.32.96 222.16.32.126
0.00611 222.16.32.96 222.16.32.126
0.006207 222.16.32.96 222.16.32.126
0.006214 222.16.32.96 222.16.32.126
0.008961 222.16.32.96 222.16.32.126
0.008977 222.16.32.96 222.16.32.126
0.009077 222.16.32.96 222.16.32.126
0.009092 222.16.32.96 222.16.32.126

Here, a SYN-flood attack with address spoofing and a UDP-flood attack are simulated
in the experimental environment. Interactions between the client and the server are
recorded, and part of which are shown above.

2.3 Result Analysis

The interactions between the client and the server are quite different under normal or
attack scenarios. This is caused by different incentives and behaviors of ordinary users
and attackers. An ordinary user accesses services in an interactive way. When the
response is slow or delayed, he may tend to slow down his requests, or turns to an
alternative website. But an attacker has a different incentive. High intensity requests

Fig. 5. Source-destination interactions during Syn-flood and UDP-flood

236 S. Huang, L. Zhang, and S.-L. Dong

flows are sent to the victim, caring nothing about whether the target is busy, or whether
the link is in congestion. This behavior leads to an inconstant imbalance between inbound
and outbound traffics, and it may become even worse with source address spoofing

3 Behavior-Based Ingress Rate-Limiting

A Behavior-based Ingress Rate-Limiting (BIR) approach is proposed to suppress
flooding requests from the beginning.

Fig. 6. BIR layer in protocol stack

The principle is based on following assumption: If the difference between inbound
and outbound packets of a client-end host remains at approximately constant, it
represents a normal situation. While the difference keeps increasing in a dramatic high
rate, the host may be launching flooding attacks. Then countermeasures should be
taken to suppress suspicious outgoing traffics by delaying the outbound packets . In this
way, a burst flooding requests flow can be flatted to a moderate one.

In BIR, the policy of delaying rather than packet dropping is adopted to avoid
possible negative impacts on legitimate traffics.

BIR can be realized as a sub-layer between TCP/UDP and IP layers in network
protocol stack, performing monitoring and delaying operations.

3.1 Traffic Monitoring

To monitor the host’s traffic, new data structure need be defined at first, which
includes:
the suspicious traffics list

{ }CMaxSddd TNNPIALs ,),,,,((1)

the outbound delaying queue

 A Behavior-Based Ingress Rate-Limiting Mechanism Against DoS/DDoS Attacks 237

}),,...2,1(][{ dMax TKnnqQs = (2)

dA -- destination address,

dI -- port number

dP -- protocol type;

SN --number difference between outbound and inbound packets. 0>SN means the

outbound packets is more than the inbound ones;

Fig. 7. Data structure illustration

MaxN -- upper limit of out / in traffics difference. MaxS NN > representing the

difference exceeds the normal limit, then following outbound packets to the same IP

address and port number will be send to SQ for outbound traffic delaying.

CT -- updating interval of SL ; Each time a CT is running out, the SL will be

refreshed by clearing entries that need not being monitored any longer.

][nq -- subqueue of Qs , and stores the outbound packets for one specific target

address. The delay time range from dT to dMax TK × .

MaxK -- maximum length of][nq .

dT -- basic time delay unit.

The mechanism in pseudo-code is as follows :

1. Once sending a packet, the dest-address, port number, together with the protocol

type are extracted, then matched with (dA , dI , dP) entries in SL .

1.1. If the match fails, the packet’s parameters will be put into SL as a new entry,

and its SN value increases by one.

1.2. If match succeeds, its SN added by one, then:

If MaxS NN > , the packet is inserted into SQ for a delay;

If MaxS NN ≤ , the packet is sent out directly;

238 S. Huang, L. Zhang, and S.-L. Dong

2. Once receiving a packet, the source address, port number, and protocol type will be

extracted, then matched with each entry. If succeed, the entry’s SN value will be

decreased by one.

In order to eliminate accumulation effect, SL is checked periodically, and those

entries’ SN values will be set to zero if their MaxS NN ≤ .

BIR only monitors a fixed number of communications. To prevent SL from

overflowing, once SL is full, new entries will replace the old ones. For example,

entries with 0=SN can be replaced firstly.

3.2 Outbound Delay

All suspicious outbound packets are put into Qs for a delay. The delay time for each

packet in SL is a function of)(MaxS NN − . The more difference between SN and

MaxN , the more likely the outbound packets belong to flooding traffics, then the

longer delay should be performed. The relationship of the time delay and

)(MaxS NN − can be a monotonous increasing functions such as a linear function or

an exponential one, according to the actual algorithm’s implementation.

Qs will be scanned every dT time , to send packets running up their delay time.

Packets in Qs are sent out every dT
time, so the highest transmitting rate is:

AllowedR = dT/1 (3)

delay time is:

dMaxSDelay TNNft ×−=)((4)

)(f is a predefined monotonously increasing function. For a linear increasing

function with proportion of dK , we have xKxf d=)(, where dK represents the

sensitivity to the outbound-inbound difference)(MaxS NN − .

As to normal interactions, the value of)(MaxS NN − remain a low level, therefore

the delayed time is zero. For attacking traffics with real source addresses, the SN

increases rapidly until bigger than MaxN , which make following outbound packets be

put into Qs . For attacking traffics with forged source addresses, fewer responses

returned from the victim makes the increase of SN even more rapidly, which in turn

actuates the rate-limiting mechanism more rapidly.

 A Behavior-Based Ingress Rate-Limiting Mechanism Against DoS/DDoS Attacks 239

4 Simulation

Simulations are carried out using OPNET® software. The network topology is
shown in Fig.8. N1 to N12 denote clients. s1 and s3 denote two switches. r1 and r2
denote two routers. Server is the destination of all flooding traffics, which provides
all services.

Fig. 8. Network’s Topology of the Simulation

Fig. 9. Flooding attack

240 S. Huang, L. Zhang, and S.-L. Dong

In order to distinguish traffics clearly, we perform normal web accessing services on
nodes N1-N6, and perform sudden flooding requests on nodes N7-N12. Therefore, the
traffics of link s1-r1 represent normal web browsing, while traffics of link s3-r1
represent flooding requests. In this way, we can watch the influence of flooding traffics
clearly.

The bandwidth of link r1- r2 is set as 256kbps, which far less than others. This link is
used to simulate the bottle neck of network links under DoS/DDoS flooding attacks.

4.1 Under Attacks

First, we simulate the situation under flooding attacks. The overall simulation last 600
seconds, and four nodes selected from N7-N12 launch TCP flooding requests at
moment of the 300th second.

In Fig.9, Flooding requests to the server are launched at the 300th second. Before the
flooding attacks, TCP delay of N4 comes to almost a stable state around 1.3. Under
attack, TCP delay of N4 keeps increasing to 2.7 seconds, which means slower
responses of web browsing under flooding attacks. The throughput of the link s1-r1
drops significantly, which is mainly caused by bottle neck link between r1 and r2.

Fig. 10. Flooding attack with BIR

 A Behavior-Based Ingress Rate-Limiting Mechanism Against DoS/DDoS Attacks 241

4.2 Suppress the Burst with BIR

With BIR mechanisms deployed on N1-N12, the situation is improved significantly.
When flooding attacks are launched at the 300th second, the traffic of link s1-r1 remains
almost the same stable level. And the throughput uprising of link N7 to s3 is
successfully suppressed to only around 9 packets /second, which is almost one fifth of
the previous uprising magnitude.

5 Related Works

Quite a few source-end filtering or rate-limiting defending schemes have been
developed to suppress flooding attacks from the beginning.

Haining Wang[2] proposes a simple and robust mechanism for detecting SYN
flooding attacks. The approach detects the SYN flooding attacks at leaf routers that
connect end hosts to the Internet. The principle is based on the protocol behavior of
TCP SYN-FIN(RST) pairs. The efficacy of this detection mechanism is validated by
trace-driven simulations. However, as stated in this paper, once the attacker is aware of
the presence of such a detection system, it can paralyze the SYN-FIN detection
mechanism by flooding a mixture of SYNs and FINs(RSTs).

In literature [3], a simple and robust approach called D-SAT system is proposed to
detect SYN flooding attacks by observing network traffic. Instead of managing all
ongoing traffic on the network, D-SAT only monitors SYN count and ratio between
SYN and other TCP packets at first stage. And it detects SYN flooding and finds
victims more accurately in its second stage. The simulation demonstrate that D-SAT
system is efficient and simple to implement and prove that it detects SYN flooding
accurately and finds attack in a very short detection time.

Compared with SYN-FIN(RST) pair or D-SAT, BIR mechanism locates at
individual host rather than leaf routers. A comparatively simple rate-limiting method is
adopted by BIR, while the detection is not so accurate as that of D-SAT. However,
without the need to handle multiple traffic flows at leaf routers, less resource and
computation capability are required.

D-WORD[4][5] is a well known source-end DDoS defense system. D-WARD
detect attacks by the constant monitoring of two-way traffic flows between the network
and the rest of the Internet, and periodic comparison with normal flow models.
Mismatching flows are rate-limiting in proportion to their aggressiveness.

BIR has a similar principle as D-WARD, except that BIR is realized at host, while
D-WARD at source router. If the source router deploying D-WARD is not the only
border router of the source network, it might not see both direction of the flow for
certain peers, and thus will not classify these flows properly.

Generally, most source-end detection systems are actually Intrusion Detection
Systems (IDS), which require at least three main parts deployed across the overall
networks: detector, analyzer and actuator. All these parts basically form a
self-regulating reverse-feedback system. Firstly, their detection and control algorithm
are usually complex and accurate. Most of them are usually implemented at routers,
which may bring negative influence to routers’ performance. Furthermore, the
collaboration of all distributed components across the network is also a challenging
problem.

242 S. Huang, L. Zhang, and S.-L. Dong

BIR is comparatively a kind of simple and light overhead module which is deployed
at individual host. BIR can be deployed as a software patch. Hosts are not required to
collaborate with each other, although it may be possible for source-end hosts to
communicate with the router or the victim in the future. Comparatively, the BIR is not
as accurate as other approaches. In essence, it is a behavior self-restraining mechanism
for hosts of the Internet.

Being different from TCP’s congestion control, which is a reactive mechanism, BIR
is a preventive one. In addition, it detects and reacts in a faster way.

The great complexity of the DDoS problem suggests that its solution will require the
use of multiple defenses, such as rate-limiting, filtering, trace back, push back, and so
forth. BIR is appropriate to be a component in such an integrated defense system.

6 Conclusion

BIR can be deployed by stages. As a behavior self-restraining mechanism, BIR requires
little coordination among hosts and domains. The more hosts equipped with BIR, the
more effects can be achieved.

There are some limitations for BIR. It is not so effective while facing extremely
distributed DDoS attacks, during which each agent generates a moderate traffic while the
aggregate of them can still overwhelm the victim. Another problem occurs if attacker
sends ACKs or other response packets to each agent periodically to bypass BIR
monitoring mechanism. Besides these problems, services analyzed in this paper are all
ordinary ones as web browsing, web mailing, file transfer. While dedicated network
applications may have different interaction model, which still needs further research.

References

1. M. Williamson, "Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile
Code," HP Laboratories Bristol, Tech. Rep. HPL2002 -172, 2002.

2. H. Wang, D. Zhang, and K. G. Shin. Detecting syn flooding attacks. In Proceedings of IEEE
INFOCOM '2002.

3. Seung-won Shin, Ki-young Kim, Jong-soo Jang: D-SAT: Detecting SYN Flooding Attack by
Two-Stage Statistical Approach. Proceedings of the The 2005 Symposium on Applications
and the Internet (SAINT'05), pp.430-436.

4. J. Mirkovic, G. Prier, and P. Reiher. “Attacking DDoS at the Source.” In Proceedings of the
ICNP 2002, November 2002.

5. J. Mirkovic, D-WARD: Source-End Defense Against Distributed Denial-of-Service Attacks,
Ph.D. Thesis, UCLA, August 2003.

Port Scan Behavior Diagnosis by Clustering

Lanjia Wang1, Haixin Duan2, and Xing Li1

1 Department of Electronic Engineering, Tsinghua University,
Beijing, 100084, P.R. China

wanglanjia@ns.6test.edu.cn
xing@cernet.edu.cn

2 Network Research Center, Tsinghua University,
Beijing, 100084, P.R. China

dhx@cernet.edu.cn

Abstract. Detecting and identifying port scans is important for track-
ing malicious activities at early stage. The previous work mainly focuses
on detecting individual scanners, while cares little about their common
scan patterns that may imply important security threats against net-
work. In this paper we propose a scan vector model, in which a scanner
is represented by a vector that combines different scan features online,
such as target ports and scan rate. A center-based clustering algorithm
is then used to partition the scan vectors into groups, and provide a
condense view of the major scan patterns by a succinct summary of the
groups. The experiment on traffic data gathered from two subnets in
our campus network shows that our method can accurately identify the
major scan patterns without being biased by heavy hitters, meanwhile,
possessing simplicity and low computation cost.

Keywords: port scan detection, network security, clustering.

1 Introduction

Port scan, which aims to gather information about hosts in networks, is a funda-
mental step in today’s Internet attacks as well as worm propagation. Therefore,
detecting and identifying scans is useful for tracking these malicious activities
at early stage to minimize damage.

It is a challenging task to detect scans, however. Scans are broadly categorized
into four well known types [13]: vertical scans, horizontal scans, coordinated scans
and stealth scans. In each type, advanced scan techniques can be used to evade
detection.

Another problem is that even if we just focus on the common scans (such as
TCP SYN scan), it is still difficult to confirm the malice of all the sources or give
a comprehensive explanation of the cause of these scans. This situation is mainly
due to the activity of the worms and viruses, which result in the obfuscation of
network operators when they have to deal with a flood of logs of scans.

Much work has been done on scan detection. One simple class is what Snort
[10] and Bro [8] follow, detecting N connections within a time interval T . The sec-
ond class of techniques is statistics-based method [6,12]. Many other approaches

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 243–255, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

244 L. Wang, H. Duan, and X. Li

are built upon the observed fact that scanners are more likely to make failed
connections [3,8,9]. Another research presented in [4] considers scalable detec-
tion. In addition, some work on malicious activity detection, especially worms
[1,7,11,15], is also related to scan detection.

Some of the above approaches show good performance in their special sce-
narios. However, there are still certain weaknesses. The first is about detection
accuracy. Simple threshold based methods [4,8,9,10] often generate many false
alarms and focus on heavy hitters, while methods with good performance are usu-
ally complex, sensitive to parameters or confined to certain context [3,4,6,12]. In
addition, few approaches consider the second problem discussed above, namely,
how to deal with a flood of scan logs.

In this paper, we pay more attention on the further analysis of detected
scans. Our basic idea is that many scanners behave alike, since they scan for
the same or similar causes, such as worm or virus infection. Our approach aims
to provide a global view of important scans and their implication by diagnosing
scan behavior.

As some previous work did, we flag the hosts that have made failed connec-
tions as suspect scanners. To characterize scan behavior, we build a scan vector
model in which a suspect scanner is represented by a vector. Then we cluster the
scan vectors into scan groups. The scanners in one group have similar scan be-
havior, reflecting certain scan pattern. The groups succinctly summarize different
scan patterns that imply security threats against network.

Our method works online. It processes packets sequentially and reports major
scan patterns periodically. We evaluate it on eight days traffic data gathered at
the ingress of two subnets in our campus network. This evaluation shows that our
method can: (i) identify and summarize major scan patterns in network without
being biased by heavy hitters, (ii) effectively limit false alarms, (iii) and at the
same time be easily implemented due to its simple model and low computation
cost.

The paper is organized as follows. In Sect. 2, we show how our clustering
based method diagnoses port scan behavior. Then evaluation on real traffic data
is presented in Sect. 3. We discuss future work and conclude the whole paper in
Sect. 4.

2 Diagnosis Method for Port Scan Behavior

Our method contains two parts: a scan vector model generating vector sequence,
and an extended center-based clustering algorithm, which comprises primary
vector clustering and some optimizing strategies. Fig. 1 shows this framework,
which finally outputs a summary of major scan patterns.

2.1 Scan Vector Model

Method in this paper focuses on TCP SYN scans towards protected network and
is based on failed connections. A failed connection in our method is defined as a
unique destination 〈IP, port〉 pair that a source has never successfully connected

Port Scan Behavior Diagnosis by Clustering 245

Fig. 1. Framework of Scan Behavior Diagnosis Method

(“successful” means that the SYN-ACK packet is observed within a reasonable
period Ta) in a measurement interval (a preset time period Im).

We model a suspect scanner’s behavior during any numbers of measurement
intervals as a vector (or a point) X = (x1, x2, . . . , xJ) = (x1, x2, x3, y0, . . . , yI) (J
= I+4) in a J-dimensional space. Each vector element xj is the value of a feature
of scan behavior as follows:

x1 Address-related feature. It represents the distance from the scan-
ner’s address to the protected network address. If they are in the
same /16, x1 = 2; x1 = 1 for the same /8; otherwise x1 = 0.

x2 Rate-related feature. It is the average number of failed connections
the scanner initiates in a measurement interval. So, x2 > 0.

x3 Targets-related feature. It is the average number of the scanner’s
destination hosts in a measurement interval. Also, x3 > 0.

yi Ports-related feature. It indicates whether port i (i is a real port
number, therefore I = 65535 generally) has been scanned by the
scanner. If so, yi = 1, otherwise yi = 0.

Once a source’s first failed connection is observed, its first measurement in-
terval starts and its vector X will be updated over time. At the end of the mth
(m = 1, 2, . . .) interval, we particularly denote X = Xm = (xm

1 , xm
2 , . . . , xm

J),
which can be derived from its last vector Xm−1 and increment vector ΔXm =
(Δxm

1 , Δxm
2 , . . . , Δxm

J) observed in the mth interval. According to above defini-
tions, ΔXm gives the source’s target ports, the number of failed connections and
destinations during its mth interval. Obviously, X1 = ΔX1, and we compute
Xm (m > 1) from Xm−1 and ΔXm as:

246 L. Wang, H. Duan, and X. Li

⎧⎪⎪⎨⎪⎪⎩
xm

1 = xm−1
1

xm
2 = αxm−1

2 + (1 − α)Δxm
2

xm
3 = αxm−1

3 + (1 − α)Δxm
3

xm
j = max(xm−1

j , Δxm
j) j = 4, 5, . . . , J

. (1)

If we denote operation (1) as ⊕, we can rewrite the whole process as:{
X1 = ΔX1

Xm = Xm−1 ⊕ΔXm m > 1 .

Note that in (1), xm
2 and xm

3 are not precise average of history values. In our
experiment we found that the result is not sensitive to α ∈ (0, 1) and approximate
average values can work well, so we simply set α = 1/2.

In this model, we choose feature set from general knowledge and experience
about scans. Vector X represents the scanner’s scan scheme, strength, desired
information, etc. Method built upon current feature set is effective for scan be-
havior diagnosis in our experiments, while we will try to find whether better
choices exist in our future work. We believe our scan vector model is a gen-
eral framework and can be adopted in many scenarios by choosing appropriate
features.

2.2 Basic Concepts Definition

Following two basic concepts are defined to be used in our clustering algorithm.

Group Center. The center of a scan group denotes the mean value of vec-
tors in it. Suppose group c has Nc points {X1, X2, . . . , XNc}, where Xn =
(xn,1, xn,2, . . . , xn,J) (n = 1, 2, . . . , Nc). The center of group c, Xc = (xc,1, xc,2,
. . . , xc,J), is computed as:

xc,j =
1

Nc

Nc∑
n=1

xn,j j = 1, 2, . . . , J .

From this definition, xc,j (j = 4, 5, . . . , J) indicates the probability of suspect
scanners in group c scanning port j − 4 .

Similarity. Computing the similarity Sim(X1, X2) between two vectors X1 =
(x1,1, x1,2, . . . , x1,J) and X2 = (x2,1, x2,2, . . . , x2,J) is a basic step for clustering.
We define:

Sim(X1, X2) =
J∑

j=1

wjsim(x1,j , x2,j) (
J∑

j=1

wj = 1, wj > 0) , (2)

Port Scan Behavior Diagnosis by Clustering 247

where⎧⎪⎨⎪⎩
sim(x1,1, x2,1) = 1 − |x1,1−x2,1|

2
sim(x1,j , x2,j) = min(x1,j ,x2,j)

max(x1,j ,x2,j)
(max(x1,j , x2,j) > 0, j = 2, 3, . . . , J)

sim(x1,j , x2,j) = 0 (max(x1,j , x2,j) = 0, j = 2, 3, . . . , J)
.

(3)
The values of w1, w2 and w3 can be chosen arbitrarily, and wj (i = 4, 5, . . . , J)
is calculated according to the formula:

wj = (1 − w1 − w2 − w3)
max(x1,j , x2,j)∑J

k=4 max(x1,k, x2,k)
j = 4, 5, . . . , J . (4)

This definition means that the similarity between two vectors is the weighed sum
of similarities between vector element pairs. Combining (2), (3) and (4) yields:

Sim(X1, X2) =
∑3

j=1 wjsim(x1,j , x2,j) +
w0

J
j=4 min(x1,j ,x2,j)

J
j=4 max(x1,j ,x2,j)

(
∑3

j=0 wj = 1, wj > 0) .

(5)

For arbitrary points X1 and X2, we have the similarity Sim(X1, X2) ∈ (0, 1].
It quantifies the resemblance between two types of scan behavior. The closer the
similarity is to 0, the less similar they are. Sim(X1, X2) = 1 is equivalent to X1 =
X2, indicating same behavior. The larger similarity implies larger probability of
the same scan intent or cause, e.g. two scanners aiming to the same service, using
the same tool or infected by the same worm.

2.3 Vector Clustering

Primary vector clustering is the principle component of our center-based clus-
tering algorithm. Suppose there are L scan groups, Xl denotes the center of
group l and group l contains Nl vectors. For any suspect scanner X , once Xm

is generated, we cluster it as one of the following two cases.

(i) m = 1
That means no point representing this scanner already exists. We compute
the similarity between Xm and the center of each group l (l = 1, 2, . . . , L),
then pick out group v whose center Xv is the most similar to Xm as:

Sim(Xm, Xv) = max
1≤l≤L

(Sim(Xm, Xl)) .

Suppose Ts is a preset threshold, then:
• If Sim(Xm, Xv) > Ts, Xm will be put into group v and Xv should be

adjusted to Xv′ = (xv′,1, xv′,2, . . . , xv′,J) as:

xv′,j =
Nvxv,j + xm

j

Nv + 1
(j = 1, 2, . . . , J) .

Meanwhile, updated group v has Nv′ = Nv + 1 points.

248 L. Wang, H. Duan, and X. Li

• If Sim(Xm, Xv) ≤ Ts, a new group u will be created, with its center
Xu = Xm and one member Xm.

(ii) m > 1
Here Xm−1 already belongs to certain group v with center Xv. What we
need to do is replacing point Xm−1 by Xm and adjusting Xv as:

xv′,j = xv,j +
xm

j − xm−1
j

Nv
(j = 1, 2, . . . , J) .

In this case, a question may arise that as any scanner’s point is moving
all along, should we reconsider which group it belongs to? Our scan vector
model and clustering algorithm guarantee the distinct characters of different
scan patterns, thus a point hardly has the chance to move from one group
into another.

2.4 Optimizing Strategies

Besides primary vector clustering, some optimizing strategies are very important
in reducing noise and improving clustering performance.

Vector Pre-checking. This strategy works on ΔXm that satisfies Δxm
2 = 1

(only one destination 〈IP, port〉 pair) before Xm is computed. We record this
〈IP, port〉 pair. If the pair has been recorded for more than Tr times, we add it
to a list called service set, and if it is already in service set, ΔXm is ignored and
X is not updated to Xm.

Simply speaking, the 〈IP, port〉 pairs in service set are connected by a number
of sources that hardly make failed connection to other destinations. Therefore,
these pairs are probably services opened to public and this strategy is used to
reduce false alarms.

Group Merging. It is possible that the first several scanners of certain scan
pattern are clustered into multiple groups, for a few points cannot offer enough
information. As scanners increase and more data are gathered, we can merge
these groups to reduce the amount of groups and improve the accuracy of scan
pattern identification.

For any group u, group merging is operated every checking interval Ic. We
pick out group u’s most similar group v as:

Sim(Xu, Xv) = max
1≤l≤L, l �=u

(Sim(Xu, Xl)) .

If Sim(Xu, Xv) > Ts, group v will merge group u, which means all points in
group u will belong to group v, and the center will move to Xv′ as:

xv′,j =
Nvxv,j + Nuxu,j

Nv + Nu
(j = 1, 2, . . . , J) .

Port Scan Behavior Diagnosis by Clustering 249

Group Obsoleting. Many scan groups, especially those representing individual
attackers, are active (being updated) only in short period. The existence of these
groups increases the computation cost. So we set an obsolete period To. If a group
keeps inactive longer than To, it will be deleted from the group set.

Port Cutting. Although X is a much long vector, in the implementation of our
model we can only record port i that has yi > 0 by using a link, which greatly re-
duces the computation cost. In group center Xc = (xc,1, xc,2, xc,3, yc,0, . . . , yc,I),
if yi is fairly small, port i cannot represent the essential feature of this group but
increase computation cost. Therefore, we set a threshold Tp. If yc,i < Tp, then
set yc,i = 0. This checking is operated every checking interval.

2.5 Scan Patterns Summary

Above algorithm clusters all the vectors into groups. By two types of features,
these groups provide a summary of scan patterns.

The first type of features are represented by group center. Because scanners in
one group have similar scan behavior, group center reveals the common character
of them and we can identify a scan pattern from it.

The other type of features are statistics that assess a scan group’s severity or
threat on network. In our implementation, these statistics are computed along
with clustering and reported together with group center every report interval
Ir. Following six features are defined, of which some are long term features, and
others are restricted in one report interval:

start time when the group is created, indicates its duration.
srcs number of suspect scanners active (scanning) in the current report interval,

reveals the prevalence of this scan pattern.
cnnts total number of failed connections in the current report interval, reveals

the strength of this scan pattern.
sinc difference between the number of active sources for current and previous

report interval, reveals the prevalence trends.
tsrcs total number of scanners since this group was created, reveals long term

prevalence.
tcnts total number of failed connections since this group was created, reveals

long term strength.

As mentioned above, normal network activities also generate failed connec-
tions. Because such connections are mostly random and independent, they are
much likely to be clustered into small groups with a few scanners and connections.
Since the feature tcnts reveals the strength of a scan pattern, we can simply use
it to select major groups and corresponding major scan patterns. If the value of a
group’s feature tcnts is larger than threshold Tm, it is a major group.

In summary, a combination of the two types of features describes the be-
havioral characteristics and assesses the severity or threat of each scan pattern.
Summary of all major groups outlines a scene of port scans in networks, implying
certain aspects of network security situation or trends.

250 L. Wang, H. Duan, and X. Li

3 Evaluation

The evaluation in this section will validate the low false alarm rate, large de-
tection coverage and ability of scan pattern identification of our method. In
addition, some issues related to implementation will also be discussed.

3.1 Data Description

We use three datasets gathered at the ingress of two subnets (A and B) in Ts-
inghua University campus network, both have an address space of 3 ∗ /24, with
average daytime bandwidth of 100Mbps. Each trace l, a line in a dataset, rep-
resenting an inbound SYN packet or an outbound SYN-ACK packet, contains
the fields of time stamp t, source IP s, source port q, destination IP d, des-
tination port p and TCP flag f , thus each trace can be written as a 6-tuple
l = 〈t, s, q, d, p, f〉. Both of the two subnets have only one ingress, so we can
observe bidirectional packets of a connection. Table 1 summarizes our datasets.

Table 1. Summary of datasets

Dataset Period SYN Packets SYN-ACK Packets
A-1 Nov 23-Nov 24 4,146,139 356,754
A-2 Mar 4-Mar 7 5,290,970 492,330
B-1 Nov 23-Nov 24 4,507,755 346,431

In our evaluation procedure, each trace is processed sequentially. Values of
all the parameters are summarized in Table 2 .

Table 2. Summary of parameter values

Parameter Value Parameter Value
Im 5 minutes Ts 0.5
Ic 5 minutes Tr 3
Ir 5 minutes Tp 0.05
w1 0.1 Tm 10
w2 0.15 Ta 3 seconds
w3 0.05 To 2 hours
α 0.5

3.2 Result Analysis

According to our method, a summary of major active scan groups is reported
periodically. Table 3 excluding group 8 is a report sample for dataset A-1. In the
“Scan Behavior” part, “B”, “A” and “R” in “x1” column respectively represents
feature x1 = 2, 1 and others. Due to page limit, we will only present the analysis
on the results of dataset A-1, and the results of other two datasets are similar.

Port Scan Behavior Diagnosis by Clustering 251

Table 3. A report sample(reported at Nov 23 16:01:07)

Scan Behavior
Group No. x1 x2 x3 port i (yi ≥ 0.8) port i (0 < yi < 0.8)

1 B 8.7 8.7 445 44445 135 1957
2 B 13.5 13.4 135 445
3 B 3.0 2.2 1023 5554 1022 445 44445
4 A 3.1 1.0 6129 3127 2745 80
5 R 92.0 92.0 4899
6 R 5.7 5.7 21 248
7 R 1.5 1.5 1433
8 R 1.0 1.0 23672

Severity Assessment
Group No. srcs cnnts sinc tsrcs tcnts start (Nov 23)

1 58 3060 -2 369 308638 00:01:44
2 5 232 -1 51 40819 07:00:58
3 3 11 0 10 375 12:06:55
4 2 4 1 100 317 07:31:47
5 1 92 1 1 92 15:57:24
6 1 3 1 19 956 10:47:05
7 1 1 0 37 58 08:24:53
8 1 2 1 21 46 15:31:59

False Alarm Analysis. We investigated into all the 37 major groups through
out dataset A-1. Table 4 summarizes them as 4 parts and 10 subcategories. Note
that some groups may actually represent one scan pattern emerging at different
time, due to group obsoleting operation. The 31 groups in the first three parts
are important scan patterns in networks, with different intents or causes.

However, the last part is undetermined. Groups with port 113 may be normal
authentication service accesses, and the last four groups with non-well-known
ports possibly represent normal applications such as P2P. Thus, the last 6 groups
may be false alarms. However, since they only involve 1.2% of all the scanners
and much less portion of the connections, the false judgements hardly influence
our macro assessment on network security.

In fact, the design of service set greatly reduces false alarms. Group 8 in
Table 3 is a false alarm generated if service set is not performed. We looked
over all the reports and found some similar cases. Totally, when service set is
performed, the number of sources in dataset A-1 judged as scanner is reduced by
42%, of groups is reduced by 45%. In other two datasets the results are similar.

Detection Coverage. We use following method to obtain a ground truth and
compare our approach’s result with it: (i) we set measurement interval to the
whole period of the dataset and pick out all the suspect scanners, (ii) then we
sort the scanners in descending order of the number of failed connections. Here

252 L. Wang, H. Duan, and X. Li

Table 4. Investigation on major active groupes of dataset A-1

typical target ports x1 groupes scanners connections
445,139 B 3 1307 1358768

Vulnerability 135 B 4 261 325111
6129,3127,1433,... A,R 9 567 1408

Related 1023,5554,9898 B,R 7 64 9484
4899 R 3 3 236

Service 21 R 2 60 2788
Searching 80,1080,8080,... R 1 1 273

By Administrator some important ports B 2 2 1986
113 R 2 17 43

Undetermined non-well-known ports R 4 11 84
Total — 37 2293 1700181

Fig. 2. Scanners detection and distribution in groups

the hypothesis is that failed connections provide strong evidence of scans, and
the much long measurement interval greatly decreases the false alarms caused
by failed normal service accesses.

Fig. 2(a) shows the detection coverage of our method. The x-axis is the rank
of sources in the above order, and the y-axis shows whether a source is detected
by our method. If the capacity of operators paying attention and taking steps
on suspect scanners is 656 or less (in fact, the 656th scanner makes only 8
failed connections and 656 scanners are fairly an large amount to deal with),
our method’s detection coverage is 100%. On the other hand, many scanners
that make a few failed connections are detected in our method, for we make use
of the correlations between scanners’ behavior other than just the number of
connections. Therefore, our method can detect not only the heavy scanners but
also the scanners ignored in the usual scan detection deployment. This point will
be illustrated more specifically in the next subsection.

Scan Pattern Identification. From Table 3 we can see that 7 major active
groups briefly summarize 587 scanners (71 are active at the moment), and each
has its own distinct features.

Port Scan Behavior Diagnosis by Clustering 253

Group 1 and 2 are related to common worm (Sasser, Blaster, Nachi, etc)
scans. Group 3 are probably backdoor scans performed by viruses or attackers.
Group 4 also represents worm (Phatbot and its variants) scans. Port 4899 of
group 5 is a frequently used backdoor port, port 21 of group 6 is the most
common FTP port and port 1433 of group 7 is for Microsoft SQL-Server.

Through out the whole dataset A-1, Table 4 reveals that subcategory 1 and
2 occupy more than 99% of the scan traffic due to their scan preference for
addresses in the same /16, while subcategory 3 (including group 4 in Table 3)
occupies more than 25% of the scanners. Although the scanners in subcategory
3 are far away from the protected subnet, they imply potential threat, therefore
we think they are worthy of notice. However, since each scanner initiates only
a few connections to protected subnet on average, approaches just analyzing a
single scanner’s behavior probably miss such scans.

Therefore, it is an important advantage that our clustering based method
prevents important scan patterns – especially those with low scan rate or total
connections – from being biased by certain scan patterns involving most heavy
hitters. Concept of scan group provides an effective way to assess importance or
threat of scans. Many small scans (a few connections observed) can compose a
noticeable group, representing important scan pattern, while small (non-major)
groups are really negligible.

3.3 Discussion

Fig. 2(b) plots the rank of each major group against its number of scanners and
failed connections. Except the first two groups with both dominant scanners and
connections, other groups have no proportional relation between their numbers
of scanners and connections, which reveals the necessity of characterizing scan
behavior with more than one feature. Also, network administrators should com-
bine various features and their most concerns on network security to assess the
importance of certain scan patterns.

We have mentioned four basic types of scans: vertical scans, horizontal scans,
coordinated scans and stealth scans. The latter two are difficult to detect in most
previous work. Although there are no instances in this evaluation, we believe in
our method’s ability in identifying a great part of such scans. Probably, the scan-
ners participating in one attack of scan have similar behavior and are clustered
into one scan group. Then adding in scanners’ address feature, we may identify
this coordinated scan episode. For stealth scans, they are difficult to detect be-
cause of their low scan rate. In our method, obsolete period To is 2 hours. Thus,
as long as scan rate is larger than 0.5 failed connections per hour, the scan can
be detected and attract attention when it belongs to a major group.

Computation cost is another major issue we are concerned about. The cost
relies on many factors, such as bandwidth, traffic structure and total scans.
Now our method has already been implemented as an online functional module
in the security monitoring system for subnet A and B. In this evaluation, the
computation on each dataset requires about 15 minutes on a 2.6GHz Intel-based

254 L. Wang, H. Duan, and X. Li

PC. Thus from the point of computation cost, our approach has the potential
to scale up to higher speed environment.

4 Conclusion and Future Work

In this paper, we have proposed an approach to diagnose port scan behavior.
Our work aims to provide a succinct summary of important scan patterns in
networks, which is useful for effectively monitoring network security, but little
explored in the pervious work. Our method is based on the fact that scans have
strong correlations because of scanners’ same or similar intents. We model any
suspect scanner as a moving point in a high dimensional space and a center-
based clustering algorithm clusters scanners of similar behavior into one scan
group, which represents a major scan pattern in networks.

We evaluate our method by real network data. All important scan patterns
in our datasets are identified, with negligible false alarms and low computation
cost. The results validate our method’s ability in effectively diagnosing port scan
behavior in networks.

In the future work, we will go on researching on how to design an optimal
vector that catches more essential characters of scan behavior. Beyond TCP SYN
scan, other scan techniques [14] will be also taken into account. Furthermore, as
the information of any scan pattern reported at intervals also forms a timeseries,
we will try to find whether some forecast models that have been widely studied
and applied for traffic anomaly detection [2,5] can work on this scan related
timeseries and draw meaningful conclusions about its developing trends.

Acknowledgement

This work is supported in part by the National High Technology Research and
Development Program of China (863 Program) under Grant No. 2003AA142080
and the National Natural Science Foundation of China under Grant No. 60203004.
The authors are grateful to Jianguang Di and Xueli Yu for their help in building
experiment environment.

References

1. V.H. Berk, R.S. Gray, and G. Bakos: Using sensor networks and data fusion for
early detection of active worms. In Proceedings of the SPIE AeroSense, 2003

2. J. Brutlag: Aberrant Behavior Detection in Timeseries for Network Monitoring. In
Proceedings of USENIX Fourteenth Systems Administration Conference (LISA),
New Orleans, LA, Dec 2000

3. J. Jung, V. Paxson, A. W. Berger, H. Balakrishnan: Fast Portscan Detection Us-
ing Sequential Hypothesis Testing. In Proceedings of 2004 IEEE Symposium on
Security and Privacy, pages 211–225, Berkeley, CA, USA, May 2004

4. R. R. Kompella, S. Singh, and G. Varghese: On Scalable Attack Detection in
the Network. In Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement, pages 187–200, Taormina, Sicily, Italy, Oct 2004

Port Scan Behavior Diagnosis by Clustering 255

5. B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen: Sketch-based Change Detec-
tion: Methods, Evaluation, and Applications. In Proceedings of the 3rd ACM SIG-
COMM conference on Internet measurement, Pages: 234–247, Miami Beach, FL,
USA, Oct 2003

6. C. Leckie and R. Kotagiri: A probabilistic approach to detecting network scans. In
Proceedings of the Eighth IEEE Network Operations and Management Symposium
(NOMS 2002), pages 359–372, Florence, Italy, Apr 2002

7. D. Moore, C. Shannon, G. M. Voelker, and S. Savage: Internet Quarantine: Require-
ments for Containing Self-Propagating Code. In Proceedings of IEEE INFOCOM,
Apr 2003

8. V. Paxson: Bro: A System for Detecting Network Intruders in Real Time. In Pro-
ceedings of the 7th USENIX Security Symposium, 1998

9. S. Robertson, E. V. Siegel, M. Miller, and S. J. Stolfo: Surveillance detection in
high bandwidth environments. In Proceedings of the 2003 DARPA DISCEX III
Conference, pages 130–139, Washington, DC, Apr 2003

10. M. Roesch: Snort: Lightweight intrusion detection for networks. In Proceedings of
the 13th Conference on Systems Administration (LISA-99), pages 229–238, Berke-
ley, CA, Nov 1999. USENIX Association

11. S. E. Schechter, J. Jung, A. W. Berger: Fast Detection of Scan Worm Infections.
In Proceedings of the Seventh International Symposium on Recent Advances in
Intrusion Detection, Sophia Antipolis, France, Sep 2004

12. S. Staniford, J. A. Hoagland, and J. M. McAlerney: Practical automated detection
of stealthy portscans. In Proceedings of the 7th ACM Conference on Computer
and Communications Security, Athens, Greece, 2000

13. V. Yegneswaran, P. Barford, and J. Ullrich: Internet intrusions: global character-
istics and prevalence. In Proceedings of the 2003 ACM SIGMETRICS, volume 31,
1 of Performance Evaluation Review, pages 138–147, New York, Jun 2003. ACM
Press

14. M. de Vivo, E. Carrasco, G. Isern and G. de Vivo: A Review of Port Scan Tech-
niques. Computer Communications Review, 29(2), April 1999, pages 41–48

15. C. C. Zou, L. Gao, W. Gong, and D. Towsley: Monitoring and Early Warning for
Internet Worms. In Proceedings of the 10th ACM conference on Computer and
communications security, Washington, DC, USA, Oct 2003

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 256 – 268, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Network Vulnerability Analysis Through Vulnerability
Take-Grant Model (VTG)

Hamid Reza Shahriari, Reza Sadoddin, Rasool Jalili,
Reza Zakeri, and Ali Reza Omidian

Network Security Center, Department of Computer Engineering,
Sharif University of Technology, Tehran, Iran*

{shahriari, rzakery, omidian}@mehr.sharif.edu
saededdi@ce.sharif.edu, jalili@sharif.edu

Abstract. Modeling and analysis of information system vulnerabilities helps us
to predict possible attacks to networks using the network configuration and vul-
nerabilities information. As a fact, exploiting most of vulnerabilities result in
access rights alteration. In this paper, we propose a new vulnerability analysis
method based on the Take-Grant protection model. We extend the initial Take-
Grant model to address the notion of vulnerabilities and introduce the vulner-
abilities rewriting rules to specify how the protection state of the system can be
changed by exploiting vulnerabilities. Our analysis is based on a bounded poly-
nomial algorithm, which generates the closure of the Take-Grant graph regard-
ing vulnerabilities. The closure helps to verify whether any subject can obtain
an access right over an object. The application of our results have been exam-
ined in a case study which reveals how an attacker can gain an unauthorized ac-
cess right by exploiting chain of vulnerabilities.

1 Introduction

The distribution and complexity of computer networks and the large number of ser-
vices provided by them, makes computer networks vulnerable to cyber attacks. Cur-
rently several tools exist which analyze a host vulnerabilities in isolation, but to pro-
tect networks against attacks, we need to consider the overall network vulnerabilities
and the dependency between services provided by the hosts.

Services may provide an acceptable level of security when considered in isolation,
but a combination of these secure services may lead to subtle attack scenarios. For ex-
ample, the file transfer protocol (ftp) and the hypertext transfer protocol (http) offered
simultaneously in a same host, may allow the attacker to write in a web directory us-
ing the ftp service. This causes the web server to execute a program written by the at-
tacker. Consequently, comprehensive analysis of network vulnerabilities needs con-
sidering individual hosts as well as their relationships.

The complexity of analyzing network vulnerabilities can be augmented as the
number of hosts and services increases. Facing current enormous networks, auto-
mated approaches are necessary to analyze vulnerabilities.

* This research was in part supported by a grant from I.P.M (No. CS1383-4-04).

 Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG) 257

Some approaches have been proposed in the literature to analyze network vulner-
abilities from the point of view of the relations between individual hosts and network
configurations [1], [2], [3], [4], [5] . Such approaches mainly use model checking and
graph-based techniques to generate and analyze an attack graph; the task has been
done in exponential time. In [6], [7] polynomial time approaches have been suggested
for the same problem without any specific upper bound on polynomial degree.

In this paper, we extend the Take-Grant protection model to address the concept of
vulnerabilities, which allow an entity to change the protection state of the system and
violate security policies. We propose a framework to model vulnerabilities based on
their preconditions and postconditions, and an algorithm to analyze the model in
bounded polynomial time with the size of protection system graph. The proposed al-
gorithm can generate possible attack scenarios as well.

The remainder of this paper is organized as follows: Firstly, the previous works on
Take-Grant protection model and network vulnerability analysis are reviewed. Then,
our Vulnerability Take-Grant model is introduced as an extension to the Take-Grant
model. The way to exploit some vulnerabilities can be represented in the extended
model is shown in section 5. Our approach to vulnerability analysis comes in the next
section. The application of Vulnerability Take-Grant model in a real network will be
also examined in section 7. Finally, we conclude and propose future areas of research.

2 Related Work

The Take-Grant protection model was first developed by Jones et al. [8] in which the
safety problem1 could be solved in linear time. They provided the necessary and suffi-
cient conditions under which rights and information could be transferred between two
entities of the protection system and a linear time algorithm to test those conditions.
Applications of the Take-Grant model to various systems have been explored sepa-
rately [9], [10], [11], [12], and [13]. Extending the initial Take-Grant model also has
been experienced by Frank and Bishop [14]. They proposed a method of extending
the Take-Grant model to add notion of the cost of information or right flows and find-
ing the most likely path in order of costs. Besides decidability, time complexity of the
deciding algorithm has also been emphasized in nearly all previous works. These fea-
tures have made the Take-Grant model more attractive than other formal access con-
trol models.

Based on the authors’ knowledge, the Take-Grant protection model has not been
used for host or network vulnerability analysis so far. Previous approaches for net-
work vulnerability analysis mainly used model checking and graph-based techniques
whose time complexity is either exponential or polynomial. Such approaches mainly
depend on some off-the-shelf tools for scanning individual host vulnerabilities. Vul-
nerability scanner tools such as Nessus [15] scan hosts to discover vulnerabilities in
the configuration. However, they do not investigate how a combination of configura-
tions on the same host or among hosts on the same network can contribute to the vul-
nerabilities.

1 The safety problem is defined in [22] as follows: Given an initial configuration of a protection

system, whether a subject s can obtain some access right r over an object o?

258 H.R. Shahriari et al.

The NetKuang system tries to assess beyond host vulnerabilities. It is an extension
to a previous work on building a rule-based expert system, named Kuang [1] .Dacier
[2] proposed the concept of privilege graphs. Privilege graphs are explored to con-
struct an attack state graph, which represents different ways in which an intruder may
reach a certain goal, such as root access on a host.

Ritchey and Ammann [3] used model checking for vulnerability analysis of net-
works via the model checker SMV. They could obtain only one attack corresponding
to an unsafe state. The experiment was restricted to only specific vulnerabilities.
However, the model checking approach has been used in some other researches to
analyze network vulnerabilities [6], [16]. The model checking has the scalability
problem which some researchers tried to overcome [6]. Ramakrishnan and Sekar [4]
used a model checker to analyze a single host system with respect to combinations of
unknown vulnerabilities. The key issue in their research was checking of infinite
space model using model abstraction. Swiler et al. presented a method in [17] for
generating attack graphs. Their tool constructs the attack graph by forward explora-
tion.

In [5] CSP was used to model and analyze TCP protocol vulnerabilities. In this ap-
proach, the model checker FDR2 was used to verify some simple security properties
and find attack scenarios. CSP has been used widely in modeling and analyzing secu-
rity protocols [18] and verifying intrusion detection systems [19].Noel et al. presented
TVA in [7] and [20] and investigated it more in [21]. In this approach, exploits are
modeled as pre/post-conditions and a specific tool has been used to construct the at-
tack graph. Encoding each exploit individually resulted in a large and complex model.

In our approach, similar vulnerabilities are represented in a single model. For ex-
ample, all buffer overflow vulnerabilities are treated similarly. Moreover, this reduces
the size of the model and cost of analysis. Moreover, our approach finds the attack
paths using an algorithm in bounded polynomial time with the size of protection sys-
tem graph.

3 Take-Grant Protection Model

The Take-Grant protection model is a formal access control model, which represents
transformation of rights and information between entities inside a protection system.
This model was presented first by Jones et al. [8] to solve the “Safety Problem”. They
showed that using Take-Grant model, the safety problem is decidable and also can be
solved in linear time according to the number of subjects and objects of the system.

In this model the protection state is represented as a directed finite graph. In the
graph, vertices are entities of the system and edges are labeled. Each label indicates
the rights that the source vertex of the corresponding edge has over the destination
vertex. Entities could be subjects (represented by), objects (represented by) or
play the both roles (represented by ⊗). The set of basic access rights is denoted as
R={t,g,r,w} which t, g, r and w respectively stand for take, grant, read, and write ac-
cess rights. To model the rights transfer, Take-Grant protection model uses a set of
rules called de-jure rules. These rules transfer the Take-Grant graph to a new state
which reflects the modification of protection state in an actual system. The de-jure

 Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG) 259

rules are take, grant, create and remove. The take and grant rules are described
briefly as:

1. Take rule: Let x, y, and z be three distinct vertices in a protection graph G0 and let
x be a subject. Let there is an edge from x to y labeled γ where t∈ γ, an edge from y
to z labeled β. Then the take rule defines a new graph G1 by adding an edge to the
protection graph from x to z labeled α, where α⊆β. Fig 1.(a) shows the take rule
graphically.

2. Grant rule: Let x, y, and z be three distinct vertices in a protection graph G0 and let
x be a subject. Let there is an edge from x to y labeled β where g∈ γ, an edge from
x to z labeled β. Then the grant rule defines a new graph G1 by adding an edge to
the protection graph from y to z labeled α, where α⊆β. Fig.1(b) shows the grant
rule graphically.

Having the take right over another subject or object means that its owner can achieve
all rights of the associated subject or object unconditionally. However, obtaining the
rights through the grant rule requires cooperation of the grantor.

t β t β

α

g β β

α

g

Fig. 1. (a) take rewriting rule. (b) grant rewriting rule.

4 The Vulnerability Take-Grant Model

The initial Take-Grant model is extended to address the notion of vulnerability. To
use advantages of the Take-Grant model, it is critical to preserve the model abstrac-
tion. Without loss of generality, just for simplicity, here we only consider vulnerabili-
ties which increase the attacker access rights.

The set of all possible vulnerabilities for a single host (which henceforth will be re-
ferred as VLN) can be found easily using vulnerability scanner tools such as Nessus.
The vulnerability function associates a set of vulnerabilities to each vertex. More for-
mally:

VLNVnerabilityvul 2: → (1)

where V stands for the Vulnerability Take-Grant graph vertices and 2VLN is the power
set of VLN.

Henceforth, we refer to Vulnerability Take-Grant graph as VTG graph. Beside the
initial Take-Grant rights, we need the following access rights:

260 H.R. Shahriari et al.

1. x, which represents the execution right of a subject over an object.
2. o, which stands for ownership and represents the ownership of a subject over an

object. This right specifies which subject currently owns an object.
3. h, which stands for hosting and represents a machine hosts an entity.

Thus, we extend the right set to be R = {t, g, r, w, x, o, h}.
We define the function rights to show the set of rights each entity has over another

entity. More formally:

RVVvurights 2:),(→× (2)

In this model, vulnerabilities of each entity are denoted by the label of related ver-

tex. We present some examples of the model in the next section.

5 Modeling Vulnerabilities

The Vulnerability Take-Grant model is used to model vulnerabilities which their ex-
ploit can be demonstrated by a change in access rights. The change is represented by
some rules we call them vulnerability rewriting rules (VRR). To demonstrate how
vulnerabilities can be modeled using VTG, some groups of vulnerabilities are used as
examples following by their graphical representation. In later sections of this paper,
we focus more on the model.

5.1 Buffer Overflow Vulnerabilities

Buffer overflow vulnerabilities (BOF) are reported as the most exploited ones among
network attack [23]. We model all vulnerabilities of this type as a rewriting rule. As-
sume a process p (having BOF) is running on the host m with the privilege of user ac-
count a; and the attacker A has the execution right over p. Now A can exploit BOF
and execute his arbitrary code with the privilege of the user account a.

Fig. 2(a) depicts the buffer overflow rewriting rule and demonstrates how exploit-
ing the BOF vulnerability results in a change in access rights. As shown, after exploit-
ing BOF, the attacker achieves the new take access right (t) over user account a. We
use the notation {BOF} as a vertex label to represent this vulnerability.

5.2 Weak Password Vulnerability

The weak password vulnerability (WP) arises when a user account with a weak pass-
word exists on a host m and the host provides a login service to other users (similar to
what is common is web-based services). Assume the user u has an account a on host
m and has chosen a weak password for it. Also assume this host provides a login ser-
vice which provided by process p. Now the attacker A can guess the password of user
u and take all the privileges of user account a.

Fig. 2(b) depicts the password cracking rewriting rule and demonstrates how ex-
ploiting the WP vulnerability results in a change in access rights. As shown, after ex-
ploiting WP, the attacker achieves the take access right (t) over user account a. We
use the notation {WP} as a vertex label to represent this vulnerability. In addition, we

 Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG) 261

use the vertex label {Login} to show the login service provided by process p. In fact,
providing the login service is not a vulnerability, but the same notation is used for Fig.
2(b) depicts the password cracking rewriting rule and demonstrates how exploiting
the WP vulnerability results in a change in access rights. As shown, after exploiting
WP, the attacker achieves the take access right (t) over user account a. We use the no-
tation {WP} as a vertex label to represent this vulnerability. In addition, we use the
vertex label {Login} to show the login service provided by process p. In fact, provid-
ing the login service is not a vulnerability, but the same notation is used for vulner-
abilities and services to preserve consistency and simplicity of the model.

Fig. 2. Modeling vulnerabilities: (a) Buffer Overflow (b)Password Cracking (c) rhost vulnerability

5.3 Trust Vulnerabilities

Sometimes a user trusts another user and allows him/her to access resources. One of
the best examples of such vulnerabilities is the rhost facility in UNIX. The rhost vul-
nerability occurs when a user trusts another user on a host or on the network. On op-
erating systems such as UNIX and Windows NT based operating systems, users are
allowed to define a list of their trustees in a file. In UNIX-based operating systems,
typically this file is named .rhosts and is located in the user’s home directory. These
trustees take all the access rights of the user who trusts them.

The attacker does not need to run any program or malicious code to exploit this
vulnerability. Fig. 2(c) demonstrates how this vulnerability can be modeled in VTG.
Assume user account v is trusted by user account u. This trust is shown in VTG graph
by a take edge from u to v. The vertex label {rhost} is used to represent this vulner-
ability. It should be mentioned that this vulnerability does not need any new rewriting
rule, because no action is required to exploit it and we can add the related edges and
vertex labels while we are building the VTG graph.

262 H.R. Shahriari et al.

6 Analyzing the Model

In this section, we present a method for network vulnerability analysis using VTG
model and investigate its efficiency for a set of vulnerabilities. Our analysis is based
on the following question:

“Is it possible for attacker A to achieve access right r over y or not?”

or more formally, having the initial VTG G0, is there a VTG graph Gk having an
edge in Gk labeled r, and the sequence of transitions * , such that G0 * Gk ?

Rights in the Take-Grant protection model (and of course in VTG), can be trans-

ferred either conditionally or unconditionally. It is also the case in application of this
model in vulnerability analysis. The attacker can exploit some vulnerabilities uncon-
ditionally while some others involve cooperation of other system subjects which grant
some rights either unknowingly or intentionally. Our focus, here, is to consider un-
conditional capability of an attacker to acquire rights. To be precise, we are interested
in the following question:

“Can attacker A achieve access right r over y unconditionally?”

Conditional transformation of rights has been investigated in the previous works on
Take-Grant protection model. Authors in [8] and [24] dealt with this question pro-
vided that all the subjects in the system would cooperate. Snyder introduced the con-
cept of "stealing" of rights and provided the necessary and sufficient conditions under
which rights could be stolen if no owner of right r would grant it to other subjects or
objects.

Grant rules are useless when our focus is on unconditional transformation of
rights. What we mean by unconditional transformation of rights can be defined more
formally in VTG by the predicate can access:

Definition 1. The predicate can access(α, x, y, VTG0) is true for the right α , the
vertex x (as subject), the vertex y (as subject or object), and the graph VTG0; if there
exist protection graphs VTG1, …, VTGn such that VTG0 * VTGn using only take and
vulnerability rewriting rules, and there is an edge from x to y labeled α in VTGn.

To answer the predicate can access(α, x, y, VTG0), it is needed to construct
VTG’s closure regarding to de-jure and vulnerability rewriting rules. First, we define
the concept of closure:

Definition 2. Let A be the set of some rewriting rules. We define GA the closure of G
if all possible rules of A have been applied in GA and no more rewriting rules can be
applied in it.

The initial state of VTG graph is changed by both de-jure and vulnerability rewrit-
ing rules. Let’s Gdejure be the closure of G regarding to de-jure rewriting rules and
GVRR be the closure of G regarding to vulnerability rewriting rules. It may be possible
to apply one set of rewriting rules after constructing a closure using the other set of
rewriting rules.

 Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG) 263

To capture all the possible attack paths, a complete closure is needed. We use the
following psudo-code to construct a complete closure in which all the possible rewrit-
ing rules have been applied and no new rule can be applied anymore.

Gen_complete_Closure(G)
1- Let list F initially contain all ordered pairs of the from (e, r) where e
 denotes edges labeled t, and r denotes the associated right.
2- While (! IsEmpty(F))
 //applying all possible de-jure rules
3- While (! IsEmpty(F))
4- Let (e,r) = head(F)
5- For each take rule applicable through e
6- Add the resulting edge and its associated right to F, if it has
 not been inserted yet.
7- Delete (e,r) from F
 //applying BOF rewriting rules
8- for all v ∈ V
9- if BoF ∈ vulnerability (v) then
10- Add an edge labeled t from all accounts having access to v to
 the owner of v.
11- Add the above edge and its associated right to F, if it has not
 been added yet.
 //applying password cracking rewriting rules
12 - for all M ∈ Hosts //Hosts is the set of all machines in the system

13- Add an edge labeled t from all accounts having login access
 to M to accounts having weak passwords in M.
14- Add the above edge and its associated
 right to F, if it has not been added yet.

Theorem 1 deals with the correctness and time complexity of Gen_complete-

Closure algorithm.

Theorem 1. Gen_Complete_Closure constructs the complete closure of G correctly in
O(V4).

Proof: At first, we prove that lines 2-7 deal with constructing Gi
dejure given the input

graph Gi at the beginning of the ith round of the algorithm. We should prove that the al-
gorithm adds all the possible edges and rights and no multiple edges exist between verti-
ces. Let L={(R1,r1), (R2,r2),…(Rn,rn)} be a sequence of applied rules leading to a correct
Gi

dejure closure, where R and r stand for related rules and rights respectively. Assume
there are some rights in L which are not produced by our algorithm and let
(Rk , rk), nk ≤≤1 , to be the first such ordered pair appearing in L. We define the rights t
in Fig. 1 the basic right of the take rule. The basic right of Rk should have been already
added to graph by one of the rules R1 to Rk-1. These rules have been applied by our algo-
rithm similarly; so the basic right of Rk has been added to F and should be considered by
the algorithm which leads in addition of rk and contradicts the initial assumption that rk

has not been added by Gen_complete_Closure Algorithm. Moreover, the condition of
line 6 in the algorithm makes sure that no ordered pair will be added to F repeatedly.

264 H.R. Shahriari et al.

No we show that lines 9-14 of the algorithm constructs Gi
VRR(closure of G regard-

ing to buffer overflow and password cracking vulnerability rewriting rules) correctly
given the input graph Gi in the ith round of the algorithm. It is obvious that all the
buffer overflow and password cracking rewriting rules are applied once by the algo-
rithm. It’s sufficient to prove that there is no need to consider any vulnerable vertex in
VTG more than once. The applied rewriting rules add an edge labeled t to VTG. This
operation doesn’t make a previously considered vertex a candidate for applying a new
vulnerability rewriting rule, because having an edge labeled t is not a part of precondi-
tion of any vulnerability rewriting rule.

No multiple rights (and their associated edges) will be added by algorithm, hence
the list F will contain O(V2) ordered pairs at most. To apply the necessary take rules
in line 5, it is sufficient to consider all the adjacent edges to the current edge e, and it
will take O(V) at most. The cost of adding new edges and their associated rights
would be of O(1) because it only requires checking the associated edges in the con-
structed graph. Every edge and its associated right will be added to and removed from
list F at most once, thus time complexity of lines 2-7 is O(V3) in overall. The cost of
applying buffer overflow and password cracking rewriting rules will be of O(V) and
O(V2), respectively. We have just shown that the outer loop of the algorithm will be
executed at most V2 times. Thus the time complexity of lines 8-14 will be of O(V4).
Consequently, the time complexity of the algorithm is O(V4).

Having a complete closure, we can answer the can access predicate which was de-
fined at the beginning of this section in O(1). Therefore the following theorem holds:

Theorem 2. Let A be the union of the take and vulnerability rewriting rules. We can
construct GA in polynomial time and verify the can access predicate in constant time.

It is worthy of note that the initial cost of constructing the complete closure will be
paid once and the attacker’s capability to access the network resources can be an-
swered in constant time afterwards. Moreover, the algorithm can be modified to gen-
erate attack path. The attack path can be tracked by assigning text labels to rights
when applying rewriting rules. The assigned text describes how the vulnerabilities are
exploited or the de-jure rules are applied as well as the subjects and objects involved
in the rules. Fig. 3 depicts how we can generate a new label from two previously gen-
erated ones. Assume that rights p and q have been already added by rewriting rules
and text labels Label(p)and Label(q) contain the attack scenarios which lead to addi-
tion of these rights respectively. Moreover, assume we can now apply a new rewriting
rule and obtain the new right r. The associated text label of r, Label(r), can be of the
following form:

Label(r) = {Label(p), Label(q), ”having access rights p and q, we can apply re-
writing rule x and achieve right r” }

Subsequently, Label(r) contains the complete attack scenario acquiring right r.

pq

r
Label(p)Label(q)

Label(r)

Fig. 3. Generating attack scenario labels

 Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG) 265

7 Case Study

In this section, we represent the application of Vulnerability Take-Grant model and
the acquired results in vulnerability analysis of a typical network. Besides the previ-
ously introduced rewriting rules, we need some general rules to analyze the real world
vulnerabilities. One of these general rules which addressed here arises from the fact
that each user’s access rights are subset of root’s access rights. This fact can be shown
in VTG model as a set of take edges drawn from root account to other user accounts
defined on the same host.

Fig. 4 shows a local network. The attacker is outside the network. The firewall
configuration allows remote users to just have access to web and mail services. The
attacker goal is to gain access to Ali’s files hosted on Saman. On the machine NSC,
HTTP and SMTP services are listening to the associated ports. These services are run-
ning with the user privileges apache and root respectively. Also SSH and SMB ser-
vices are running on the machine FS with user privilege root and RPC service is run-
ning on Saman with the same user privilege.

Using the Nessus scanner, we found that the services HTTP on NSC, SMB on
Saman and RPC on FS have buffer overflow vulnerability. Moreover, we found that
the user account root on the machine FS suffers from weak password vulnerability
and the user Ali has added the account manager from machine FS to its .rhost file.

This network’s VTG model is represented in Fig. 5. To avoid congestion, unneces-
sary relations between hosts are ignored in the figure, and the new rights added as the
impacts of the vulnerabilities are showed by dotted edges, and the attacker final path
is showed by dashed edges.

By using Gen_Complete_Closure alghorithm described in the previous section and
applying the rewriting rules on the above VTG graph, GA is generated.

`

`

`
`

`

Attacker

NSC

FS

Devil

SamanDena

Firewall

Fig. 4. The example network topology

As mentioned above, the Attacker’s goal is to access Ali’s file on the Saman. At-
tacker is allowed to access Ali’s file if and only if there is an edge from Attacker to
Ali in GA including right r in its set of access rights. The attack path which brings the
Attacker to the Ali’s file is shown in dashed line in Fig. 5. We can obtain the attack
path by using the previously described technique. One possible attack scenario is as
follows:

266 H.R. Shahriari et al.

Attacker

x

x

h
h

h

h

root

apache

o

o

http

smtp

NSC

Devil

h

h

h

ssh

rpc

root

{BoF}

{WP}

h

h
h

o
smb

f

Saman

{BoF}

manager

h

root

r Ali

h

x

x

x

o

o

{BoF}

{rhost}

t

`

t

t

t

FS

t t

t

r

` t
r

t

Fig. 5. Part of GA, generated for the case study network using Gen_Complete_Closure

1. The Attacker exploits the HTTP buffer overflow vulnerability on the machine
NSC and gains the user privilege apache on this machine.

2. Now the Attacker has access to SSH service on machine FS and can try to guess
root password.

3. After finding the root password, the Attacker has all the rights of user account
manager on machine FS.

4. Pretending to be manager, the Attacker acquires Ali’s access rights on machine
Saman.

5. Consequently, the Attacker reaches its final goal, which is having access to file f
on machine Saman.

8 Conclusions and Future Works

In this paper, we introduced a new method for network venerability analysis which is
based on the Take-Grant protection model. This method affords the possibility of rep-
resenting the protection state of a network with a formal model. The attacker’s capa-
bility to access the resources of network can be analyzed by the model. We also intro-
duced the complete closure concept to address all the possible ways of exploiting
vulnerabilities and presented an algorithm to construct the complete closure graph in
O(V4). With complete closure, the safety problem could be answered in constant time.
Besides analyzing vulnerabilities, the proposed method could generate possible attack
scenarios.

It is possible to use the model for more comprehensive analysis. Answering to
questions such as finding the critical vulnerable path, finding the shortest path of
accessing a right and finding minimum cost path of accessing rights (considering the

 Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG) 267

possibilities or difficulties of exploiting different vulnerabilities) can represent further
applications of Take-Grant model in vulnerability analysis. Reducing the time com-
plexity of the analysis can be considered as well. The proposed algorithm constructs
the complete closure in bounded polynomial time and answers to safety problem in
constant time. Considering the similarity of de-jure and vulnerability rewriting rules,
it may be possible to analyze the vulnerabilities by an algorithm just like can steal in
linear time. The nature of Take-Grant model makes it most suitable for analyzing the
vulnerabilities based on changes in access rights. Extending this model to cover a
broader set of vulnerabilities will be of particular interest. This suggests several ave-
nues of research. First, it can be studied how to model the vulnerabilities which de-
crease the access rights. Secondly, it is interesting to generalize this method for ana-
lyzing vulnerabilities based on a suitable taxonomy of vulnerabilities and their
preconditions and postconditions.

References

1. D. Zerkle, and K. Levitt: NetKuang – A Muti-Host Configuration Vulnerability Checker.
Proceedings of the sixth USENIX UNIX Security Symposium, San Jose, CA, 1996.

2. M. Dacier, Y. Deswarte: Privilege Graph: An Extension to the Typed Access Matrix
Model. Proceedings of Third European Symposium on Research in Computer Security
(ESORICS 94), (Brighton, UK), Lecture Notes in Computer Science: Computer Security,
875, pp.319-334, Springer-Verlag, 1994.

3. R.W. Ritchey, P. Ammann: Using Model Checking to Analyze Network Vulnerabilities.
Proceedings of IEEE Symposium on Security and Privacy, pages 156–165, May 2001.

4. C.R. Ramakrishnan, R. Sekar: Model-Based Analysis of Configuration Vulnerabilities.
Journal of Computer Security, vol. 10, no. 1/2, pp. 189-209, 2002.

5. H. R. Shahriari, R. Jalili: Using CSP to Model and Analyze Transmission Control Vulner-
abilities within the Broadcast Network. Proceedings of the IEEE International Networking
and Communication Conference (INCC'2004), June 2004, pp. 42-47.

6. P. Ammann, D. Wijesekera, S. Kaushik: Scalable Graph-Based Network Vulnerability
Analysis. Proceedings of 9th ACM Conference on Computer and Communications Secu-
rity, Washington, DC, November 2002.

7. S. Noel, B. O’Berry, C. Hutchinson, S. Jajodia, L. Keuthan, A. Nguyen: Combinatorial
Analysis of Network Security. Proceedings of the 16th Annual International Symposium
on Aerospace/Defence Sensing, Simu-lation, and Controls, Orlando, Florida, April 2002.

8. J. R. Lipton, L. Snyder: A Linear Time Algorithm for Deciding Security. Proc 17th Annual
Symp. on the Foundations of Computer Science (Oct. 1976), 33-41.

9. M. Bishop: Hierarchical Take-Grant Protection Systems. Proc. 8th Symp. on Operating
Systems Principals (Dec. 1981), 107-123.

10. A. Jones: Protection Mechanism Models: Their Usefulness. in Foundations of Secure
Computing, Academic Press, New York City, NY (1978), 237-254

11. L. Snyder: On the Synthesis and Analysis of Protection Systems. Proc. Sixth Symp. on
Operating Systems Principals (Nov. 1977), 141-150.

12. M. Wu: Hierarchical Protection Systems. Proc. 1981 Symp. On Security and Privacy
(Apr. 1981), 113-123.

13. M. Bishop: Conspiracy and Information Flow in the Take-Grant Protection Model. Jour-
nal of Computer Security, vol 4(4), 1996, pp 331-360.

14. J. Frank, M. Bishop: Extending The Take-Grant Protection System. Technical Report,
Department of Computer Science, University of California at Davis, 1996.

268 H.R. Shahriari et al.

15. R. Derasion, [online]: The Nessus Attack Scripting Language Reference Guide. 2000.
Available from: http://www.nessus.org.

16. O. Sheyner, J. Haines, S. Jha, R. Lippmann, J.Wing: Automated Generation and Analysis
of Attack Graphs. Proceedings of IEEE Symposium on Security and Privacy, Oakland,
CA, 2002.

17. L. Swiler, C. Phillips, D. Ellis, S. Chakerian: Computer Attack Graph Generation Tool.
Proceedings of DARPA Information Survivability Conference & Exposition II, June
2001.

18. P. Ryan, S. Schneider: Modeling and Analysis of Security Protocols - A CSP Approach.
Addison-Wesley, 2001.

19. G. Rohrmair, G. Lowe: Using Data-Independence in the Analysis of Intrusion Detection
Systems. Workshop on Issues in the Theory of Security (WITS’03), Warsaw, Poland,
April 2003.

20. S. Jajodia, S. Noel, B. O’Berry: Topological Analysis of Network Attack Vulnerability.
Managing Cyber Threats: Issues, Approaches and Challenges. V. Kumar, J. Srivastava, A.
Lazarevic (eds.), Kluwer Academic Publisher, 2003.

21. S. Noel, S. Jajodia: Managing Attack Graph Complexity through Visual Hierarchical Ag-
gregation. Proceedings of the ACM CCS Workshop on Visualization and Data Mining for
Computer Security, Fairfax, Virginia, October 2004.

22. J. S. Shapiro: The Practical Application of a Decidable Access Control Model. Technical
Report SRL-2003-04, John Hopkins University, 2003.

23. SANS Research Center, [online]: The SANS Top 20 Internet Security Vulnerabilities.
Available from: http://www.sans.org/top20/.

24. J. R. Lipton, and L. Snyder: A Linear Time Algorithm for Deciding Subject Security. J.
ACM. 24, 3 (Jul. 1977), 455-464.

Multiplex Encryption: A Practical Approach to
Encrypting Multi-recipient Emails

Wei Wei1, Xuhua Ding2, and Kefei Chen1

1 Computer Science Department, Shanghai JiaoTong University
{www weiwei, kfchen}@sjtu.edu.cn

2 School of Information Systems, Singapore Management University
xhding@smu.edu.sg

Abstract. Efficiently protecting the privacy of multi-recipient emails is
not as trivial as it seems. The approach proposed by S/MIME is to con-
catenate all ciphertexts. However, it suffers from poor scalability due to
its linear computation and communication cost. In this paper, we pro-
pose a new practical and secure scheme, called multiplex encryption. By
combining the ideas of identity-based mediated RSA and re-encryption
mix network, our framework only requires constant computation and
communication cost to encrypt a multi-recipient email.

1 Introduction

The electronic mail is one of the most popular media for data exchange. People
send and read emails from their computers, PDAs or even cellular phones. A huge
volume of information are transferred via emails within an organization or across
organizations. Among them, those with confidential data are encrypted such that
only the intended receivers are able to access the content while an adversary ob-
tains no information about the protected data. With the support of the public
key infrastructure, those emails are encrypted under the recipients’ public keys.
According to S/MIME[14], the current standard for secure emails proposed by
IETF’s S/MIME Working Group, a confidential email is encapsulated by an ”en-
cryption envelop”. Specifically, the content is encrypted by a randomly selected
symmetric key, which is encrypted under the recipient’s public key.

It seems trivial to extend the one-to-one email encryption method to multi-
recipient emails, in which case the same email is sent to a number of receivers
by using carbon-copy. In S/MIME approach, the sender produces different en-
cryption envelops for different recipients. All envelops are pushed into a stack.
The receiver seeks and decrypts the envelop intended for him from the stack.
Unfortunately, this approach has several drawbacks. First, the computation cost
at the sender’s end is linear to the number of recipients. Note that users usually
expect immediate email forwarding. Therefore, the delay incurred by encryption
offsets the user friendliness of emails, since it stalks email delivery. Secondly, the
length of the message to transfer is linear to the number of recipients, which
contradicts the motivation of using carbon-copy. In a SMTP transaction for

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 269–279, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

270 W. Wei, X. Ding, and K. Chen

carbon-copy, the sender first interacts with the SMTP server to confirm every
recipient’s address in the carbon copy list. Then, only one copy of email, instead
of multiple copies, is forwarded to the SMTP server. Although the same protocol
applies to sending an encrypted multi-recipient email, the message to forward
is essentially a concatenation of multiple ciphertexts. Therefore, the communi-
cation cost is not saved. Lastly, not the least, the concatenation of ciphertext
ruins an important feature of carbon copy. Carbon-copy is used not only for the
purpose of cost saving, but usually as a means to imply that the same message
is equally read by all the intended recipients. For instance, a sales representative
sends carbon-copy of a draft of contract to both his supervisor and his clients, so
that all related entities receive consistent information about the contract terms;
a committee chair expresses his opinion to all committee members by sending
a carbon-copy email so that everyone on the committee receive the same state-
ment. We observe that this feature is not preserved when carbon-copy emails
are encrypted. This is due to the fact that each recipient only decrypts his own
part and has no knowledge of the results from others’ decryption.

Encryption of multi-recipient emails is in fact surprisingly challenging. Though
the communication model is similar to multicast, the approach to multicast secu-
rity is infeasible for emails. Multicast encryption requires stable group member-
ship and a key establishment phase. For emails, the recipients are chosen when the
sender composes the email. Therefore, the grouping of recipients is ephemeral. Fur-
thermore, it is impractical to require all recipients to be online to agree on a key. An
ideal solution would be to design a new public key encryption scheme such that the
sender constructs an encryptionkeyPK fromasetof publickeys{PK0, · · · , PKn}.
The ciphertext produced by PK can be decrypted by corresponding private keys
{SK0, · · · , SKn} while the notion of semantic security still preserves. However, it
is an open question whether such an encryption scheme exists.

In this paper we take a systematic approach to encrypting multi-recipient
emails. We present a multiplex encryption system for multi-recipient emails.
Built on top of mediated RSA[5], our scheme enables the sender to multiplex
several ciphertexts into one so that the encryption cost and the length of ci-
phertext is independent of the number of recipients. In the recipient’s end, our
scheme introduces a partially trusted server which, functioning as demultiplexor,
translates the ciphertext and forwards the results to the corresponding recipients
respectively. Note that the server is not fully trusted in the sense that the server
is unable to decrypt the ciphertext by itself.

The rest of the paper is organized as follows. In next section, we show the
related work. The details of multiplex encryption are presented in Section 3. We
discuss its security in Section 4 and its performance in Section 5. A summary is
provided in Section 6, which concludes the paper.

2 Related Work

Our scheme is built on top of identity-based mediated RSA[5]. In [5], a user’s
RSA public key is derived from its identity, e.g. an email address, and the corre-

A Practical Approach to Encrypting Multi-recipient Emails 271

sponding RSA private key is split into two shares. One share is secretly owned
by the user and the other is secretly owned by a partially trusted server. To
produce a signature or decrypt a ciphertext, the user has to collaborate with the
server. The main motivation of their work is for fine-grained control over users’
security capabilities.

Public key encryption in multi-user setting was studied in [1], which discussed
the security relation between single-user setting and multi-user setting. In [9],
Kurosawa shorten the ciphertext by a half for ElGamal and Crammer-Shoup
encryption in multi-user setting. Bellare et. al. further investigated the security
of random reuse in [2] to provide a general test of extending standard encryption
schemes for multiple users.

The function of our de-multiplexer is similar to re-encryption mix servers[7]
in terms of computation model. In a re-encryption mix network, the mix server
transforms a ciphertext into another one in order to provide source and destina-
tion anonymity against traffic analysis.

3 An Multiplex Encryption System

3.1 Architecture

The multiplex encryption system comprises three types of entities: a Certifi-
cation Authority (CA), an encryption de-multiplexer, denoted by DM, and a
group of email users denoted by U1, U2, · · · , Un. The CA governs the other two
types of participants and generates keys for U1, · · · , Un. All the users are in the
same email domain, which is served by DM. Practically, a de-multiplexer can be
a customized SMTP or POP3 server, where users retrieve their emails. Specifi-
cally, DM plays the role of both mail delivery agent and security mediator as in
[5]. DM is partially trusted, in the sense that it is trusted to execute the pro-
tocol honestly and does not collude with any malicious users. We observe that
establishing a fully trusted party would resolve the problem of multi-recipient
encryption in a trivial fashion. However, a fully trusted party (TTP) is usu-
ally unrealistic or undesirable due to its high security risk, i.e. compromising
TTP alone will expose all users’ secrets. We stress that DM is not a TTP since
a compromised or malicious DM is not able to decrypt any user’s encrypted
emails.

Similar to other public key encryption schemes, our construction has three
algorithms KeyGen, Enc and Dec, as shown in following sections.

3.2 Key Generation

CA initializes the system parameters and generates RSA keys for all users.
First, CA chooses two 512-bit random safe primes p and q such that p =

2p′ + 1 and q = 2q′ + 1, where p′, q′ are also primes. It sets N = pq and e = 3
or 65537. CA then selects a collision resistent and division intractable[8] hash
function H(), for instance SHA-256. p, q, p′q′ are kept secret while (N, e) and H
are public.

272 W. Wei, X. Ding, and K. Chen

For 1 ≤ i ≤ n, user Ui’s public key ei is derived from its email address IDi,
exactly in the same fashion as in [5]. Specifically,

ei = H(IDi)‖0 · · ·01,

where ”‖” denotes concatenation of two binary strings. Note that the least sig-
nificant bit is set to 1 to ensure that ei is odd and has overwhelming probability
of being co-prime to φ(N). CA generates ds,i and du,i such that eeids,idu,i =
1 mod φ(N). Then du,i is securely delivered to Ui while ds,i is securely trans-
ferred to DM. The details are shown in Figure 1.

Algorithm KeyGen: Generating keys for Ui (executed by CA).
Let t be a public security parameter.

1. s ← t − |H()| − 1
2. ei ← H(IDi)‖0s‖1, where 0s denotes a s bit binary string of 0-s.
3. ds,i

r← Z
∗
φ(N), i.e. ds,i is a random number in Z

∗
φ(N).

4. du,i ← (eeids,i)−1 mod φ(N)
5. du,i and ds,i are securely distributed to Ui and DM respectively.

Fig. 1. User Key Generation Algorithm

Let DM choose for himself a public key pk and a private key sk for a public
key scheme which is semantically secure under adaptive chosen ciphertext attack.
DM’s encryption setting is independent of the users’ RSA setting. An encryption
on message m using pk is denoted by Epk(m) while a decryption on ciphertext c
using sk is denoted by Dsk(c).

3.3 Multi-recipient Email Encryption

When an email is only delivered to one recipient, its encryption is exactly the
same as in identity-based mRSA[5]. The sender derives the recipient’s public key
from his email address as in Figure 1; then encrypts the email using a normal
RSA encryption defined in PKCS#1[12]. Note that the sender does not need
to load the recipient’s public key certificate by virtue of identity-based RSA
encryption.

To encrypt a multi-recipient email, the sender executes the Algorithm Enc
shown in Figure 2.

It is optional for Ui to sign the email using his private key, depending upon
whether message integrity is in consideration. Ui specifies all intended recipi-
ents’ email address in his carbon-copy list as well as in the ciphertext C′. One
ciphertext is sent to all recipients.

3.4 Multi-recipient Email Decryption

When a recipients, Uj , comes to fetch the mail C′, DM helps him to decrypt the
message. The basic idea is to combine the concept of identity-based mediated

A Practical Approach to Encrypting Multi-recipient Emails 273

Algorithm Enc: Encrypting a multi-recipient mail m for user U1, · · · , Uk

(executed by the sender)

1. Employ (e,N) as an RSA public key and encrypt the mail using
RSA with OAEP padding[4,6] as defined in PKCS#1:
C ← OAEP-ENC(m)e mod N

2. Encrypt C using DM’s public key:
C′ ← Epk(C‖ID1‖ · · · ‖IDk).

3. Prepare S/MIME headers and send C′ to DM with U1, · · · , Uk be-
ing on the carbon-copy list.

Fig. 2. Multi-recipient encryption algorithm

RSA[5] and re-encryption mix server. DM first decrypts C′ into C which is the
RSA encryption of m under the public key (e, N). For user Uj, 1 ≤ j ≤ k, DM
translates C into the ciphertext corresponding to Uj without knowing m. The
details of the decryption algorithm Dec for Uj and DM are shown in Figure 3.

Note that OAEP decoding is involved in Uj ’s step. DM should not, and
actually is unable to, execute OAEP decoding since Ĉ is still a ciphertext.

In Figure 4, we present a conceptual comparison between our multiplex en-
cryption protocol and S/MIME’s approach to multi-recipient encryption. In

Algorithm Dec: Decrypting a multi-recipient mail C′ for U1, · · · Uk

Mail Server:

1. Decrypt C′ into C by computing:

C‖IDr1 · · · ‖IDr′
k

= Dsk(C′)

2. Construct a recipient set R = {IDr1 , · · · , IDr′
k
} for email C′. If R

does not match the carbon-copy list in the SMTP header, abort.
Otherwise,

3. On receiving Uj ’s request for retrieving email C′, check if IDj ∈ R.
If not, the request is rejected. Otherwise,

4. Compute Uj ’s public key ej by computing
ej = H(IDj‖0 · · · 01)

5. Translate C for Uj by computing
Ĉ = Cejds,j mod N

6. Send < C′, Ĉ, IDr1 · · · ‖IDr′
k

> to Uj .

User Uj :

1. Decrypt Ĉ by computing
m̂ = Ĉdu,j mod N

2. Decode the OAEP encoding of m̂ to get message m.
m ← OAEP-DEC(m)

Fig. 3. Multi-recipient decryption algorithm

274 W. Wei, X. Ding, and K. Chen

our scheme, the sender Ui only sends one ciphertext to k recipients while in
S/MIME’s approach, the sender has to send a concatenation of k ciphertexts.
In our approach, only two encryptions are needed, while in S/MIME approach,
k public key encryptions are required.

Sender Recipient U

{ID ,...ID , E (m),..., E (m)}0 LL 0 {E (m),..., E (m)}L0

{ID ,...ID , E (m)}0 L (e,n) { D (m)}
Multiplex Encryption

S/MIME with RSA

i

iSMTP/DM

Fig. 4. Comparison Between Multiplex Encryption and Concatenated Encryptions

4 Security Discussion

Now we proceed to analyze the security of our multi-recipient encryption system.
From the cryptography perspective, our construction is a variant of identity-
based mediated RSA. In [5], the authors discussed several security issues, in-
cluding the semantic security, the issue of public key generation, the issue of
sharing RSA modulus etc. Their observations remain valid for our construction.
Both their scheme and our encryption system share the same notion of semantic
security. Besides those, we further discuss several security issues at the system
level.

Malicious Users

For an email m intended for a set of users, R = {U0, · · · , Ut}, we consider
whether a malicious user Eve, Eve �∈ R, is able to retrieve m. Note that if Eve
knows the ciphertext C = me mod N , she can trivially decrypt it by computing
C′ = Epk(C‖Eve) and sending C′ to DM. However, Eve is unable to obtain C
since C is encrypted under DM’s public key during email forwarding. Eve can
not successfully mount a replay attack either, because the identities of intended
recipients are encrypted together with C using Epk. Note that Epk(·) is seman-
tically secure under CCA2. According to [3], it is non-malleable under CCA2
as well. Therefore, she is unable to construct a ciphertext containing both her
identity and message m without prior knowledge of m.

It is reasonable to assume that the channels between users and DM are au-
thentic, as all email retrieval protocols require user authentication, e.g. asking
for user id and password. Therefore, it is infeasible for Eve to impersonate an-
other user in R to retrieve C. The message returned from DM in Figure 3 is
partially decrypted. However, since di

s is a random number chosen from Z∗
φ(N),

Eve gets no information about m.

A Practical Approach to Encrypting Multi-recipient Emails 275

Malicious De-multiplexer

A malicious DM may attempt to compromise the secrecy of an encrypted
multi-recipient email. DM only has knowledge of a set of random numbers
ds,0, ds,1, · · · , ds,n, which is exactly the same as in ID-based mediated RSA[5].
Given a ciphertext C, GM is unable to obtain any information on m from
Cds,i mod N because he is not capable to distinguish the distribution of cds,i mod
N and cr mod N where r is a random number. Therefore, the presence of a
malicious DM alone would not place a threat to the semantic security of our
encryption.

Collusion Between De-multiplexer and Users

As in [5], our construction is threatened by the collusion attack between a dis-
honest de-multiplexer and a malicious user. The collusion will destroy the whole
system’s security since they can collaboratively recover the factorization of N .
In practice, an organization may alleviate the problem by further splitting ds,i

to several parts or by deploying a proactive threshold RSA scheme so that it is
more challenging for the adversary to compromise several servers at the same
time.

Implication of Carbon Copy

In Section 1, we argue that S/MIME’s approach does not preserve the consis-
tency implication of carbon-copy since all recipients essentially access different
ciphertexts.

With multiplex encryption, this feature of email carbon copy is saved because
the recipients decrypt a common ciphertext, though in their own ways. It is in
the same fashion as an email in plaintext sent to multiple recipients. When two
recipients U0, U1 result in different messages m0, m1 for the same encrypted email
C′, the discrepancy can be resolved in a court following the steps below:

1. Given C′, DM presents C and the randomness used in the encryption, which
verifies that C is the plaintext of C′ under DM’s public key.

2. DM presents Ĉ0 = Ceds,0 mod N and Ĉ1 = Ceds,1 mod N .
3. U0 runs RSA decryption on Ĉ0 using their private keys and obtains the

random seed s0 used for OAEP. U1 does the same on Ĉ1 and obtains his
random seed s1. Both s0 and s1 are presented to the arbitrator.

4. The arbitrator verifies whether C is the RSA-OAEP encryption of m0 with
random seed s0 or of m1 with seed s1, under public key e. Note that only
one of them is the valid plaintext and random seed pair.

5 Performance

5.1 Implementation

To validate our algorithms and evaluate the performance, we implemented a
prototype of the multiplex encryption system by using OpenSSL[10]. It includes

276 W. Wei, X. Ding, and K. Chen

1. CA and Admin Utilities: This is for certificate issuance and revocation. It is
implemented on a Linux platform.

2. De-multiplexer DM: It includes the general functions of SMTP and POP3
protocols. It receives an encrypted email for multi-recipients. In email re-
trieval phase, it transforms the encrypted email properly for the requesting
client. DM is implemented as a daemon running on a Linux host.

3. Outlook[11] plug-in: This is implemented as a Windows Dynamic Link Li-
brary(DLL) which provides encryption and decryption function for Outlook
users.

A screen snapshot of the Outlook 2003 plug-in is shown in Fig. 5.

decrypt a
Multiplex
Encrypted mail

create a mail
with Multiplex
Encryption

Hello

Hello, everyone!

user1@linux.sis; user2@linux.sis;user3@linux.sis;user4@linux.sis;

user5@linux.sis; user6@linux.sis;user7@linux.sis;user8@linux.sis;

creating
multi-recipient
mail form

Fig. 5. Outlook 2003 Plug-in

5.2 Performance Analysis

We conducted a series of experiments to evaluate the computation and communi-
cation cost of our scheme. DM daemon was running on a Linux PC with an Intel
Pentium IV 2.00GHz processor. The client was on a Windows PC with 1.6GHz
Centrino processor. Both of them had 1GByte memory. We ran two groups of
experiments: one with 1024bit RSA modulus and the other with 2048bit RSA
modulus. In each group of experiments, we measured the performance for 1 to
10 recipients, respectively.

Figure 6 shows the RSA encryption time cost in milliseconds for the sender to
encrypt an email for a number of recipients using two multi-recipient encryption
approaches. The X axis indicates the number of recipients and the Y axis is for
the encryption time. Not surprisingly, the two lines for S/MIME approach rise
up linearly with respect to the number of recipients. In contrast, the encryption
time using multiplex encryption almost remains unchanged though the number
of recipients increases. It is straightforward to conclude from the protocol de-
scription in Figure 2 that the computation cost is independent of the number of
recipients.

In Figure 7, we compare the communication cost for encrypted multi-recipient
email delivery using two encryption approaches. We measure the cost in terms of
the number of bytes to send by the sender. The X axis denotes the number of the
recipients and the Y axis denotes the data length in bytes. Since the ciphertexts
of each recipient are concatenated together in S/MIME approach, its data length

A Practical Approach to Encrypting Multi-recipient Emails 277

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10
number of recipients

m
ill

is
e

co
n

d

S/MIME with
1024-bit RSA
modulus

Multiplex
encryption 1024-
bit RSA modulus

S/MIME with
2048-bit RSA
modulus

Multiplex
encryption 2048-
bit RSA modulus

Fig. 6. Computation Cost for Multi-recipient Email Encryption

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10
number of recipients

by
te

s

S/MIME with 1024-bit
RSA modulus

Multiplex encryption
1024-bit RSA
modulus

S/MIME with 2048-bit
RSA modulus

Multiplex encryption
2048-bit RSA
modulus

Fig. 7. Communication Cost for Encrypted Multi-recipient Emails

grows linearly with the number of recipients, as shown by the two rising lines in
Figure 7. In contrast, only one ciphertext is sent in multiplex encryption, where
the length is determined by the RSA modulus used in encryption, and therefore
is almost constant.

Nonetheless, the benefit of our scheme is at the cost of additional computation
load at the both the server end and the recipients’ sides. For every recipient, DM
needs to perform one RSA decryption operation. Inevitably, a recipient performs
oneRSAdecryptionaswell.However, sinceneitherDMnor the recipient knows the
factorization of N , they are not able to take the advantage of Chinese Remainder
Theorem (CRT), which usually facilitates RSA decryption three times faster when
used in standard RSA settings. The partial decryption time forDMand a recipient
are shown in Table 1. We also list the standard RSA decryption time (with CRT)
on the same hosts to demonstrate the additional cost.

We argue that the cost at both DM and the recipient sides is deserved.
First, when the number of recipient is large, the benefit from the sender side
compensates the cost. Second, users usually expect immediate email delivery.
Minimizing the delivery delay keeps the user-friendliness of email application.
On the other hand, the email retrieval takes place periodically and is not a

278 W. Wei, X. Ding, and K. Chen

Table 1. Decryption Time Cost for DM and a Recipient (in ms)

RSA Modular size
(bit)

DM Recipient Standard RSA
Decryption
(DM)

Standard RSA
Decryption
(User)

1024 13 13 5 4
2048 83 79 27 26

real-time application. Therefore, slightly longer delay in retrieval does not affect
the recipients. Moreover, to improve the performance, the partial decryption at
DM end can be computed during idle time, instead of being triggered by the
recipient’s request.

6 Summary

Protecting the privacy of multi-recipient emails is not trivial as it seems. The
approach proposed by S/MIME suffers from poor scalability due to its linear
computation and communication cost. In this paper, we propose a new practi-
cal and secure scheme, called multiplex encryption, by combining the ideas of
identity-based mediated RSA and re-encryption mixnet. Our framework only
requires constant number of RSA encryption operations and constant ciphertext
length for multi-recipient email encryption. We also implemented a prototype
for experiment purpose.

Our scheme has a few drawbacks. First, it introduces a partially trusted third
party. Though compatible with the email application architecture, deploying of
our scheme still requires changes on email servers. Moreover, it limits all users
to be in the same email domain. Secondly, the security relies on an assumption
that DM does not collude with any users. For a large, heterogenous organization,
such assumption might not hold. Our future work will investigate the feasibility
of a new encryption paradigm without the involvement of a third party.

References

1. M. Bellare, A. Boldyreva and S. Micali: Public-key encryption in a multi-user
setting: security proofs and improvements. In Eurocrypto’2000.

2. M. Bellare, A. Boldyreva and J. Staddon: Multi-recipient encryption schemes: se-
curity notions and randomness re-use. In PKC’2003.

3. M. Bellare, A. Sahai: Non-Malleable Encryption: Equivalence between Two No-
tions, and an Indistinguishability-based Charaterization. In Crypto’99

4. M. Bellare and P. Rogaway: Optimal asymmetric encryption – how to encrypt with
RSA.In A.D. Santis, editor, Advances in Cryptology - EUROCRYPT ’94

5. X. Ding, G. Tsudik: Simple identity-based cryptography with mediated RSA. In
2003 RSA Conference, Cryptographers’ Track, April 2003.

6. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is secure under
the rsa assumption. In Advances in Cryptology - CRYPTO ’2001

A Practical Approach to Encrypting Multi-recipient Emails 279

7. P. Golle, M. Jakobsson, Ari Juels and P. Syverson: Universarl Re-encryption for
Mixnets. In CT-RSA 2004

8. R. Gennaro, S. Halevi, and T. Rabin: Secure hash-and-sign signatures without the
random oracle.In J. Stern, editor, Advances in Cryptology – EUROCRYPT ’99

9. K. Kurosawa: Multi-recipient Public-Key Encryption with Shortened Ciphertext.
In 5th International Workshop on Practice and Theory in Public Key Cryptosys-
tems, PKC 2002.

10. OpenSSL User Group. The OpenSSL Project Web Page, http://www.openssl.org/
11. Microsoft.Microsoft Outlook c©, http://www.microsoft.com
12. PKCS#1 v2.1: RSA Cryptography Standard. RSA Laboratories, June 2002
13. PKCS#12: Personal information exchange syntax. RSA Laboratories, 1999. Ver-

sion 1.0.
14. S/MIME: Secure/Multipurpose Internet Mail Extensions. The S/MIME Working

Group: http://www.ietf.org/html.charters/smime-charter.html .

Secure Multicast Using Proxy Encryption�

Yun-Peng Chiu, Chin-Laung Lei, and Chun-Ying Huang

Department of Electrical Engineering,
National Taiwan University

{frank, huangant}@fractal.ee.ntu.edu.tw, lei@cc.ee.ntu.edu.tw

Abstract. In a secure multicast communication environment, only valid
members belong to the multicast group could decrypt the data. In many
previous researches, there is one “group key” shared by all group mem-
bers. However, this incurs the so-called “1 affects n problem,” that is,
an action of one member affects the whole group. We believe this is the
source of scalability problems. Moreover, from the administrative per-
spective, it is desired to confine the impacts of changing membership
events in a local area. In this paper, we propose a new secure multi-
cast architecture without using a group key. We exploit a cryptographic
primitive “proxy encryption.” It allows routers to convert a ciphertext
encrypted under a key to a ciphertext encrypted under another key, with-
out revealing the secret key and the plaintext. By giving proper keys
to intermediate routers, routers could provide separation between sub-
groups. Therefore the goals of scalability and containment are achieved.

Keywords: Secure multicast, multicast key management, cipher se-
quences, proxy encryption, ElGamal cryptosystem.

1 Introduction

Since the commence of multicast communications in the late 1980s [1], se-
cure multicast communication have been frequently addressed in the literature.
Rafaeli and Hutchison’s paper [2] provided a detailed survey on secure multicast.

Quite a few researches in this area made use of a group key, which is shared
among all group members. The sender encrypts the multicast data using this
group key, and all valid members use the same group key to decrypt. However,
the existence of this group-wise key incurs the so-called “1 affects n problem” [3],
which means an action of one member affects the whole group. More specifically,
since the group key is known by all members, whenever a member joins or leaves
the group, everyone remains in the group must acquire a new group key.

To build a practical secure multicast architecture, we focus on scalability
and containment issues. Scalability means that the processing overhead of each
security action should be minimized in terms of number of group members.
Containment means that a security event occurs in one subgroup does not affect
other subgroups.
� This work was supported in part by Taiwan Information Security Center (TWISC),

National Science Council under the grants NSC 94-3114-P-001-001-Y.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 280–290, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Secure Multicast Using Proxy Encryption 281

To aim at the above issues, we adopt two techniques. First, distribute the
computation loads to intermediate routers. This makes the whole architecture
scalable. And second, make a dependency between keying material and the topol-
ogy of the multicast network. This dependency assures the containment of secu-
rity exposures.

A naive method to provide containment is to decrypt and then encrypt again
at intermediate routers [3]. This method requires fully trust to routers because
routers have the ability to decrypt the plaintext, which is an undesirable feature.

In this paper, we propose a new secure multicast architecture for large and
dynamic groups. Specifically, we focus on the one-to-many communication pat-
tern. We exploit a cryptographic primitive “proxy encryption.” By using this
primitive, a proxy (router) could convert the ciphertext for one person into the
ciphertext for another person without revealing secret decryption keys or the
plaintext. Therefore the goal of scalability and containment could be achieved.

The rest of this paper is organized as follows. Related works and the basic
concept of proxy encryption are discussed in Section 2. Section 3 describes the
proposed secure multicast architecture based on proxy encryption. We analyze
the proposed scheme, and compare it with related works in Section 4. Finally,
Section 5 concludes this paper.

2 Related Works

In this section, we discuss some previous researches. Logical Key Hierarchy
(LKH) may be the most representative research in this area; many researches
followed their methodology and tried to enhance it. The cipher sequences frame-
work (CS) tries to solve the multicast security problem using a different method-
ology. The most important advantage of CS is the containment. We also discuss
Mukherjee and Atwood’s researches, which also make use of proxy encryption.

2.1 Logical Key Hierarchy

Logical Key Hierarchy (LKH) is separately proposed by Wallner et al. [4] and
Wong et al. [5]. In this approach, all group members form a “logical” tree.
The root node represents the group key shared by all group members, the leaf
nodes are members, and each inner node represents a key encryption key (KEK).
Besides the group key, a member also has a set of KEKs, including the KEK
of each node in the path from its parent to the root. For example, in Fig. 1,
member u5 will have k5, k56, k58, and the group key, k. Therefore, in a balanced
tree, a member will have (log2 N)+1 keys, where N is the group size, and log2 N
is the height of the tree. When a rekeying is needed, these KEKs could be used
to encrypt new KEKs. For example, if member u5 leaves the group, we must
change those keys it knows. Therefore new KEKs k′

5, k′
56, k′

58 and the new group
key k′ are generated. These new keys are encrypted using KEKs and transmitted
to remaining members. We encrypt new k′

56 using k6, and encrypt new k′
58 using

k′
56 and k78, respectively. Then k′ is encrypted using k′

58 and k14, respectively.

282 Y.-P. Chiu, C.-L. Lei, and C.-Y. Huang

k

k14

k12

k1

u1

k2

u2

k34

k3

u3

k4

u4

k58

k56

k5

u5

k6

u6

k78

k7

u7

k8

u8

Fig. 1. An LKH tree

Finally these encrypted keys are multicast to the whole group. All remaining
members could get new KEKs and the group key from these encrypted keys.

2.2 Cipher Sequences

The cipher sequences framework (CS) was proposed by Molva and Pannetrat [6].
By distributing secure functions to intermediate nodes, keying material has a
dependency on the multicast network topology. Therefore the containment of
security exposures is assured.

Assume S0 is the information to be multicast. Each node Ni is assigned a
secret function fi. Ni receives multicast data from its parent node Nj , computes
Si = fi(Sj), and forwards the result Si to its children. A leaf eventually receives
Si

n. Each leaf is given a reversing function hi, and it can use hi to get the original
multicast data by calculating: S0 = hi(Si

n).
For example, Fig. 2 depicts a simple tree with five cipher sequences. We

follow one cipher sequence from the root to the leaf M5. First, the root computes
f1(S0) and sends the result to its children inner nodes. R2 receives S4

1 = f1(S0),
computes and sends f5(S4

1) to R5. Then R5 receives S4
2 = f5(S4

1) and sends
f6(S4

2) to the leaf M5. Finally, the leaf M4 receives S4
3 = f6(S4

2) and recovers
the original multicast data by computing S0 = h4(S4

3).

2.3 Proxy Encryption

Proxy encryption was first introduced by Blaze, Bleumer, and Strauss in 1998 [7].
The basic idea is that a proxy, given a proxy key, could convert the ciphertext for
one person into the ciphertext for another person without revealing the secret
decryption keys or the plaintext.

In traditional public-key encryption schemes, a message m encrypted using
A’s public key EKA could only be decrypted using A’s private key DKA. On the
contrary, in a proxy encryption scheme, a new role, proxy P , is introduced. P is
given a proxy key πA→B , and P could convert a ciphertext originally for user A
to a message which could be decrypted using user B’s private key. P could not
decrypt the ciphertext, nor gain information about A’s or B’s private keys.

Secure Multicast Using Proxy Encryption 283

S

f1

R1

f2

M1

h1

R3

f3

M3

h2

R4

f4

M4

h3

R2

S4
1

f5 R5S4
2

f6

M5

S4
3

h4

M2

h5

Fig. 2. An example of CS tree

In this paper, we use the “unidirectional ElGamal encryption scheme” pro-
posed by Ivan and Dodis [8] as an example of underlying proxy encryption scheme
in our architecture. Our architecture is not limited to it, and other proxy en-
cryption schemes could also be used.

Assume an ElGamal encryption scheme is defined as a three-tuple: (KeyGen,
Enc, Dec). The key generation algorithm KeyGen outputs a public key EK =
(g, p, q, y) and a private key DK = (x), where q is a prime number, p is a
prime number of the form 2q + 1, g is a generator in Z∗

p, x is randomly cho-
sen from Zq, and y = gx mod p. The encryption algorithm Enc is defined as
c = Enc(m, EK) = (gr mod p, mgxr mod p), where r is randomly chosen from
Zq. r is chosen by the sender, and r should be used only once. The decryption
algorithm Dec decrypts the ciphertext by computing mgxr/(gr)x = m (mod p).

The unidirectional ElGamal encryption scheme proposed in [8] could be de-
fined as (KeyGen, Enc, Dec, ProxyKeyGen, ProxyEnc). The key generation algo-
rithm KeyGen outputs a public/private key pair as the original ElGamal en-
cryption scheme. The encryption and decryption algorithms are also the same
with the original version. ProxyKeyGen splits DKA = x into two parts x1 and x2,
where x = x1 + x2. Then x1 is given to the proxy, and x2 is given to user B.
Using ProxyEnc, P could convert a message originally for user A to a message
for user B. ProxyEnc has two parameters: c and πA→B, here c = Enc(m, EKA),
and πA→B = x1. On receiving c = (gr mod p, mgxr mod p), the proxy computes
mgxr/(gr)x1 = mg(x−x1)r = mgx2r, and then sends (gr mod p, mgx2r mod p) to
user B. Finally, user B can decrypt this converted message as mgx2r/(gr)x2 = m.

2.4 Mukherjee and Atwood’s Researches

Mukherjee and Atwood proposed a key management scheme exploiting the proxy
encryption technique in [9]. In their scheme, there are Group Manager (GM),

284 Y.-P. Chiu, C.-L. Lei, and C.-Y. Huang

Group Controllers (GCs), and participants (members). When a group is created,
a node is set up as the GM. The GM is configured with group and access control
information, and it generates the encryption/decryption keys. In a multicast
tree, there may be several GCs, and each GC is associated with a subtree of the
distribution tree. GCs perform key management functions and transform the
ciphertext using proxy encryption. Participants join the GC nearest to them,
and get keys from the GC.

When a rekeying is required, the GC “splits” the group decryption key to
the “proxy encryption key” and the “proxy decryption key.” For example, in the
unidirecional ElGamal encryption scheme, the group decryption key x is split
into x1 and x2, such that x = x1 + x2. Then the GC applies transformations.

When a member joins, the GC sends the proxy decryption key to the joining
participant over a secure channel protected using a shared key Kg, and multi-
cast the proxy decryption key to other members. When a member leaves, the GC
sends the proxy decryption key to the remaining participants by: unicasting the
proxy decryption key to each participant over separate secure channels, or, en-
crypting the proxy decryption key using each participant’s Kg and multicasting
an aggregated message.

In this scheme, a group key is still used. Proxy encryption is used only be-
tween a membership change event and a periodic rekeying. After a periodical
rekeying, a new group key is used and the transformation is stopped. On the con-
trary, in our scheme, proxy encryption is always used to transmit data. Moreover,
in their scheme, intuitive methods are used to to deliver the proxy decryption
key to participants, which brings a large burden to GCs.

3 The Proposed Scheme

In this section, we propose a new secure multicast architecture making use of the
proxy encryption mechanism discussed in the previous section. In the following
subsections, we first extend the unidirectional ElGamal encryption to a proxy
sequence. Then our multicast model is described in Section 3.2. Finally we extend
the unidirectional ElGamal encryption to a multicast tree in Section 3.3.

3.1 Extend to a Proxy Sequence

In this subsection, we extend the original unidirectional ElGamal encryption
scheme to a case with a sequence of proxies, as shown in Fig. 3. The sender S
sends the message along the path. Routers R1 and R2 play the role of proxies.
The final destination is M .

Here we introduce a new concept “segment key.” Each link between two nodes
is called a “segment.” Each segment is assigned a public/private key pair by a
trusted server (TS). These segment keys are actually stored in TS . Moreover,
TS calculates proxy keys according to segment keys, and distributes proxy keys
to intermediate routers by secure channels.

We show an example of using the unidirectional ElGamal encryption scheme
in Fig. 3. All parameters are the same with those in the unidirectional ElGamal

Secure Multicast Using Proxy Encryption 285

S

gS1

R1

S1 − S2

R2

S2 − SM

M

SM

Segment 1

(gr,mgS1r)

Segment 2

(gr,mgS2r)

Segment M

(gr,mgSM r)

Fig. 3. Proxy sequence using unidirectional ElGamal encryption

encryption scheme. We let the proxy key between Segment A and Segment B be
the difference of their corresponding private key, i.e., πA→B = A − B, where A
and B are private keys of Segment A and Segment B, respectively. At first, S
encrypts message m using Segment 1’s public key, gS1 , and sends the ciphertext
(gr mod p, mgS1r mod p) to R1. TS gives R1 a proxy key, πS1→S2 = (S1 − S2),
therefore R1 computes mgS1r/(gr)(S1−S2) = mgS2r, and then sends (gr mod
p, mgS2r mod p) to R2. Similarly, R2 has πS2→SM = (S2−SM), so it converts the
received ciphertext into (gr mod p, mgSMr mod p). Finally, M has SM , therefore
it could compute mgSMr/(gr)SM = m to decrypt the ciphertext.

3.2 Multicast Model

Our multicast model is similar to that in the cipher sequences framework. We use
Fig. 2 again to describe our multicast model. In a multicast routing protocol,
routers form a multicast tree to transmit multicast traffic. The root S is the
source, intermediate nodes Ri, where i is an integer, are routers, and every leaf
node represents a set of local subgroup members attached to the same router.
Mi is the set of local subgroup members attached to Ri. Each router may have
local subgroup members and/or downstream routers. Note in the cipher sequence
framework, intermediate routers do not have local members.

In LKH schemes, all keying operations are done by senders and members;
routers are not involved. Instead, in our scheme, we make use of routers, because
this reduces the loads of senders and members. The trade-off is that we must
grant some trust to routers. We assume routers faithfully transfer and convert
encrypted multicast data.

3.3 Extend to a Multicast Tree

Based on Section 3.1, now we further extend to a multicast tree, for example as
shown in Fig. 4. We assume that TS knows the overall topology of the multicast
tree. Although TS seems to be centralized, we think the tasks of TS could be
easily distributed over several network entities. As mentioned, TS generates keys
and distributes them to intermediate routers by secure channels.

We define a term “downstream-segment set,” which is a set includes segments
among a given router and all its downstream routers. (Note the segment between
a router and its local subgroup is not included in this set.) For instance, in
Fig. 4, Segment 3 and Segment 4 are in the same downstream-segment set. In
our scheme, segments belong to the same downstream-segment set are given the
same segment key.

286 Y.-P. Chiu, C.-L. Lei, and C.-Y. Huang

S

EKS1

R1

πS1→S3

πS1→SM1Se
gm

en
t
1

En
c(

m
,E

KS 1
)

M1

DKSM1

Enc
(m

,E
KS M1

)

R3

πS3→SM3

Segment 3

Enc(m,EKS3)
M3

DKSM3

Enc(m,EKSM3
)

R4

πS3→SM4

Segment 4

Enc(m
,EK

S
3)

M4

DKSM4

Enc(m,EKSM4
)

R2

πS1→S5

πS1→SM2

Segm
ent

2

Enc(m
,EK

S
1)

R5

πS5→SM5
Segment 5Enc(m,EKS5

) M5

DKSM5

Enc(m,EKSM5
)

M2

DKSM2

Enc(m,EKS
M2)

Fig. 4. Proxy tree

Each intermediate router is given two keys: the downstream routers conver-
sion key and the local subgroup conversion key. The former is used to convert
the upstream ciphertext to another ciphertext for downstream routers; it is cal-
culated according to the upstream segment’s key and the downstream segment’s
key. On the other hand, the latter is used to convert the upstream ciphertext
for its local subgroup members only; it is calculated according to the upstream
segment’s key and the local subgroup key.

Each local subgroup has its own local subgroup key. Members of local sub-
group use this key to decrypt the ciphertext from the attached router. We as-
sume each local subgroup uses its own secure multicast key distribution pro-
tocol. This permits local policy of choosing a key distribution protocol. Every
subgroup could choose its own key distribution protocol independent from other
subgroups. Since the size of a local subgroup is much smaller than that of the
whole group, using LKH is acceptable in local subgroups.

We also assume every subgroup has a “subgroup controller,” who is respon-
sible for local subgroup key management. It maintains logical keys for the local
subgroup, and securely transmits the local subgroup key to TS . After members
of local subgroup have determined their subgroup key, the subgroup controller
securely transports their subgroup key to TS , then TS computes the proxy key
for the attached router according to the local subgroup key.

The key assignment algorithm is described in Algorithm 1. We use Fig. 4 as
an example. S encrypts the message m using Segment 1’s public key, EKS1 , and
sends the ciphertext Enc(m, S1) to both R1 and R2. We send the same encrypted
message to R1 and R2, and this could preserve the benefit of multicast: the same

Secure Multicast Using Proxy Encryption 287

Algorithm 1: Key assignment algorithm
Input: Multicast tree topology
Output: Key assignment on every router
for every segment except that between a router and its local subgroup do

if no segment in the same downstream-segment set is already given a key then
assign a segment key;

end
end
for every router do

if has downstream routers then
assign a downstream routers conversion key according to the upstream segment’s
key and the downstream segment’s key;

end
if has local members then

assign a local subgroup conversion key according to the upstream segment’s key
and the local subgroup key;

end
end

data is sent to different paths. R1 is given πS1→S3 , then it sends Enc(m, EKS3)
to R3 and R4. R1 also has πS1→SM1

, this proxy key allows R1 to convert the
upstream ciphertext into Enc(m, EKSM1

), which could be decrypted only by using
M1’s local subgroup key, DKSM1

. Similarly, R4 is given πS3→SM4
, therefore it

converts Enc(m, EKS3) to Enc(m, EKSM4
). M4 could use its local subgroup key

DKM4 to decrypt the message.
In this way, every intermediate router converts the upstream ciphertext into

the downstream ciphertext or the local subgroup ciphertext. On each link, mul-
ticast data is encrypted, so it is infeasible for an eavesdropper with no proper
keys to decrypt multicast data. Therefore, we achieve secure transmission of
multicast traffic.

3.4 Rekey

When a member joins or leaves the group, the local subgroup key should be
changed. At the same time, the router responsible for this subgroup should also
change a new proxy key according to the new local subgroup key in order to
convert ciphertext for local members use.

When there are downstream nodes/routers interesting to the group, a mul-
ticast router should connect itself (and its downstream routers) to the multi-
cast tree of this group. On the other hand, when a router has no downstream
nodes/routers belong to this group, this router will be removed from the tree.
When a router joins/leaves the tree, related segment keys must be changed;
routers related with these segment keys must also change new proxy keys. New
keys are generated and distributed by TS securely.

In multicast security, forward/backward secrecy are usually discussed, we
follow the definitions in [10]. Forward secrecy is that a passive adversary who
knows a subset of old group keys cannot infer subsequent group keys. Backward
secrecy is that a passive adversary who knows a subset of group keys cannot
infer previous group keys.

288 Y.-P. Chiu, C.-L. Lei, and C.-Y. Huang

Algorithm 2: Rekey when a router joins/leaves
Input: Multicast tree topology, the ID of joined/left router: R
Output: New key assignment on related router
change R’s upstream segment’s key;
change the segment keys in the same downstream-segment set;
change the downstream routers conversion key of routers connected to those changed
segments;

Algorithm 2 describes the rekeying algorithm when a router joins or leaves.
Look Fig. 4 for example, if all members in M4 leave the group, R4 will be deleted
from the tree. In order to achieve forward secrecy, the related segment key S3
should be changed to S′

3, and the related routers R3 and R4 must change their
proxy keys. R3 and R4 get new proxy keys πS′

3→SM3
and πS′

3→SM4
, respectively.

R1 must also change a new proxy key πS1→S′
3
. On the other hand, if a new router

wants to attach himself to R2, in order to preserve backward secrecy, Segment 5
must be rekeyed. Thus R2’s πS1→S5 and R5’s πS5→SM5

must be changed.

4 Analysis

In this section, first we examine the security of our scheme, and then we compare
features and costs of related works and ours.

4.1 Security Analysis

By the definition of proxy encryption, it is infeasible for a proxy to derive traffic
decryption keys with only proxy keys. Therefore intermediate routers could not
decrypt the multicast data.

The local subgroup changes a new key when a member leaves/joins. When a
member joins, the new member cannot infer previous local subgroup keys. Thus
the new member cannot decrypt previous multicast data. On the other hand,
when a member leaves, only remaining subgroup members get this new key.
Thus the left member cannot decrypt subsequent multicast data. When a router
leaves/joins, its upstream segment changes a new key. New keys are given to
related routers by TS securely, and the left/new router cannot infer those keys.
Therefore the router will not be able to transform subsequent/previous multi-
cast data. As we can see, forward/backward secrecy is ensured in our protocol.
Moreover, because every local subgroup is isolated with each other, members in
the different subgroups gain no more information through collusion.

4.2 Comparisons of Features

The comparisons of features are shown in Table 1. In LKH, no intermediate
nodes are involved, so no containment is provided. All other three schemes share
computation loads to routers, and grant limited trust on routers. Thus contain-
ment is provided in these schemes.

Secure Multicast Using Proxy Encryption 289

Table 1. Comparisons of features

Trust to intermediate nodes Containment
LKH No intermediate nodes NO
CS Limited trust YES

Mukherjee Limited trust YES
Our scheme Limited trust YES

4.3 Comparisons of Costs

In this subsection, we analyze various costs of our scheme, and compare with
related works. We assume the size of the whole group is N , and the size of local
subgroup is M. Furthermore, N (M. The number of downstream routers
connected to a router is P . Assume we use LKH as our local key distribution
protocol in our architecture.

In CS, every member needs a reversing function, and the sender and every
intermediate node need a secret function. This seems efficient, but in fact, the
trade-off is that the central server assigns every member a reversing function.
Therefore the rekeying cost of the central server is O(M).

In Mukherjee and Atwood’s scheme, each member stores two keys. One is
group decryption key or proxy decryption key; the other is the key shared with
its GC, Kg. A GC shares Kg with each member, so it stores M keys. And the
sender needs one key.

In our scheme, a member requires (log2 M+ 1) keys. By contrast, a member
in the original LKH scheme stores (log2 N + 1) keys. Because LKH is only used
in local subgroups, and N (M, members in our scheme store fewer keys than
those in the original LKH schemes. Moreover, in our scheme, the sender only
stores one encryption key, and intermediate routers only stores one conversion
key. The result is shown in the left three columns of Table 2. As we can see, our
scheme is efficient in storage.

Table 2. Comparisons of costs

Member storage Sender storage Intermediate node storage Rekeying cost
LKH log2 N + 1 N No intermediate nodes O(log2 N)
CS 1 1 1 O(M)

Mukherjee 2 1 M O(M)
Our scheme log2 M + 1 1 1 O(log2 M)

In our scheme, because we use LKH as our local key distribution protocol,
the cost to rekey a subgroup is O(log2 M). When a router joins/leaves, TS must
change P segments keys, and then change P proxy keys. Therefore the cost of
rekeying when a router joins/leaves is O(P). The result of comparison of rekeying
cost is shown in the last column of Table 2. As we can see, our scheme is also
efficient in rekeying.

5 Conclusions and Future Work

In this paper, we proposed a new secure multicast architecture. We eliminated
the usage of the group key, because it is the source of scalability problems. We

290 Y.-P. Chiu, C.-L. Lei, and C.-Y. Huang

exploited proxy encryption to allow intermediate routers to transform the ci-
phertext without revealing the secret key and the plaintext. By giving proper
conversion keys to intermediate routers, the impacts of changing membership
events are confined in a local area. Thus we achieved the goal of containment
and scalability. Moreover, we have shown the rekeying procedure is secure and ef-
ficient. Therefore, our scheme is scalable for large and dynamic multicast groups.

Our architecture is not limited to the unidirectional ElGamal encryption
scheme; other proxy encryption schemes could also be used. In the future, we will
find more efficient cryptographic primitives suitable for our architecture. For ex-
ample, the unidirectional identity-based encryption scheme proposed in [8] may
be a good candidate. Currently, most proxy encryption schemes are for public-
key cryptosystems, but there is also a research using symmetric ciphers [11].
Because of the efficiency of symmetric ciphers, that would also be a promising
candidate.

References

1. Deering, S.E., Cheriton, D.R.: Multicast routing in datagram internetworks and
extended LANs. ACM Transactions on Computer Systems 8 (1990) 85–110

2. Rafaeli, S., Hutchison, D.: A survey of key management for secure group commu-
nication. ACM Computing Surveys 35 (2003) 309–329

3. Mittra, S.: Iolus: A framework for scalable secure multicasting. In: Proceedings of
the ACM SIGCOMM ’97 conference on Applications, technologies, architectures,
and protocols for computer communication. (1997) 277–288

4. Wallner, D.M., Harder, E.J., Agee, R.C.: Key management for multicast: Issues
and architectures. RFC 2627 (1999)

5. Wong, C.K., Gouda, M., Lam, S.S.: Secure group communications using key graphs.
IEEE/ACM Transactions on Networking 8 (2000) 16–30

6. Molva, R., Pannetrat, A.: Scalable multicast security with dynamic recipient
groups. ACM Transactions on Information and System Security 3 (2000) 136–
160

7. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Proceedings of Advances in Cryptology - EUROCRYPT ’98: Inter-
national Conference on the Theory and Application of Cryptographic Techniques.
Volume 1403 of LNCS. (1998) 127–144

8. Ivan, A., Dodis, Y.: Proxy cryptography revisited. In: Proceedings of the tenth
Network and Distributed System Security Symposium. (2003)

9. Mukherjee, R., Atwood, J.W.: Proxy encryptions for secure multicast key man-
agement. In: Proceedings of the 28th Annual IEEE International Conference on
Local Computer Networks. (2003) 377–384

10. Kim, Y., Perrig, A., Tsudik, G.: Simple and fault-tolerant key agreement for
dynamic collaborative groups. In: Proceedings of the 7th ACM conference on
Computer and communications security. (2000) 235–244

11. Cook, D.L., Keromytis, A.D.: Conversion and proxy functions for symmetric key
ciphers. In: Proceedings of the IEEE International Conference on Information
Technology: Coding and Computing, Information and Security Track. (2005) 662–
667

Efficient and Non-interactive Timed-Release
Encryption

Julien Cathalo�, Benôıt Libert��, and Jean-Jacques Quisquater

UCL Crypto Group,
Place du Levant, 3. B-1348 Louvain-La-Neuve, Belgium

{cathalo, libert, jjq}@dice.ucl.ac.be

Abstract. This paper revisits the important problem of sending a
message “into the future” in such a way that no communication is
needed between the server and other entities. This problem was recently
re-investigated by Blake and Chan who showed a scalable non-interactive
solution without considering a formal security model. We fill this gap
by introducing a new stringent model tailored to the non-interactive
setting. We then propose a new construction fitting our model and we
show that it is more efficient than the recent non-interactive proposal
(for which we also give a security proof in our model). We then explain
how to provide our scheme and the one of Blake and Chan with an
additional security property that strengthens the anonymity of receivers.

Keywords: timed-release encryption, formal models, provable security.

1 Introduction

The problem of sending a message “into the future”, i.e. encrypting a message
so that its recipient cannot decrypt it prior to a pre-determined instant chosen
by the sender, has been found to have many real-world applications such as elec-
tronic auctions, key escrow, scheduled payment methods, sealed-bid auctions,
lotteries, etc.. It was first suggested by May [26] in 1993 and further studied by
Rivest, Shamir and Wagner [29].

Two essential approaches have been investigated to solve the problem: the
time-lock puzzle approach ([6,29,25,14,22,23]) and the trusted server approach
([17,26,29,12]). In the former, the receiver of an encrypted message has to invest
in a significant computational effort to solve a reasonably small-size problem be-
fore obtaining the message. This approach does not involve a server but it turns
out to be computationally expensive for the receiver and only solves the prob-
lem with approximately controllable release-times depending on the receiver’s
computational power and on the moment at which the decryption operation is
started. Sending a message that can be read at a precise moment (say 12:00am,
July 31, 2005 GMT for example) turns out to be difficult using this approach.
� This author’s work is supported by Walloon Region / WIST-MAIS project.

�� This author thanks the DGTRE’s First Europe Program of the Walloon Region and
the European Social Fund.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 291–303, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

292 J. Cathalo, B. Libert, and J.-J. Quisquater

On the other hand, in the trusted server approach, a trusted entity provid-
ing a common and absolute time reference is necessary to synchronize senders
and receivers. Ideally, the server should have as few interactions as possible with
senders and receivers. Up to very recently, the latter requirement was not satis-
fied by server-based solutions. In a system proposed by May ([26]), the server is
an escrow agent storing messages and releasing them at specified times. Another
method used by Rivest et al. [29] also requires interactions between the server
and senders who must reveal their identity and their message’s release-time.

In 1999, Di Crescenzo et al. ([17]) proposed a protocol, supported by a formal
security model, and wherein senders are anonymous and do not have to interact
with the server. Unfortunately, the latter has to engage in a conditional oblivious
transfer protocol with receivers. As a result, the latters are not anonymous and
the protocol is subject to denial-of-service attacks.

In 2001, when Boneh and Franklin published their famous identity based en-
cryption (IBE) scheme ([12]), they also mentioned encryption “for the future” as
a possible application. Their idea was to use identities augmented with release
times as public keys. This solution is not scalable for small time granularities as
the trusted private key generator has to deliver new private keys to each user at
the start of each time period. Other IBE-based approaches ([16,27,11]) consider
release-times as identities and trusted authorities as time servers issuing time-
specific trapdoors at the beginning of each time period. These methods alone
only allow the universal disclosure of encrypted documents.

Encrypting a message for a designated receiver and a specific future moment
is possible by combining IBE-based unlock methods of [16,27,11] with a tradi-
tional public key encryption scheme. Such a composition is especially attractive
with the time-based decryption procedure suggested by Boneh, Boyen and Goh
([11]) which consists in using the tree-like structure of Canetti et al. [15] back-
wards: indeed, it allows recovering past time-specific trapdoors from a current
trapdoor. Nevertheless, the root of the tree-like structure of Canetti et al. ([15])
has to correspond to the last time period which implies an upper bound on the
lifetime of the system. Unless special precautions are taken, such a composition
would also leak information on the release-time of ciphertexts as the hierarchical
IBE system of [11] does not have the receiver-anonymity property in the sense
of Bellare et al. ([5]).

In this paper, we do not only focus on improving the efficiency of generic con-
structions. We also aim at providing TRE systems with the property of release-
time confidentiality according to which ciphertexts do not reveal information to
anyone but the intended receiver about their release-time. We also stress that
the problem that we address is different from the ‘token-controlled public key en-
cryption problem’ ([4]) where a sender encrypts a message using a specific token
before handing it to a semi-trusted agent (that must communicate with senders
who cannot remain anonymous) who stores it until it can be made available to
the receiver for completing the decryption.

In our context, a scalable timed-release encryption (TRE) scheme wherein
the time server never has to interact with the sender nor the receiver was recently

Efficient and Non-interactive Timed-Release Encryption 293

suggested by Blake and Chan ([8]) who were followed by [28,24] and for different
applications by ([19]). In these settings, the sole responsibility of the server is to
periodically issue time-specific trapdoors enabling the decryption of ciphertexts
encrypted “for the future” ([8,28]) or the hatching of signatures ([19]).

It is to be noted that the scalable TRE solution given by Blake and Chan was
not directly supported by a formal security model and only informal security ar-
guments were given in [8] for a scheme that can also be thought of as a particular
case of a solution proposed in [1] to tackle with access control problems using
pairing based cryptography. We believe that security models considered in [1,24]
should be strengthened a little and one of our contributions is to consider a more
stringent formal security model for the specific application of non-interactive
timed-release encryption. We have to mention that, independently of our work,
[28] also considers a security model for authenticated timed-release encryption
schemes. We focus here on the mere public key encryption case and we believe
our model to be stronger than the one in [28] as well.

In this paper, we also propose a more efficient non-interactive TRE scheme
than [8] and [1]. In anonymity enhancing purposes, we then explain how to avoid
having to transmit release-times of ciphertexts in clear through insecure channels
by hiding them from anyone but their intended recipient and we show how to
add this security property to the scheme of [8] for which we also give a security
proof in our model.

Both solutions may find other applications than the timed-decryption of dig-
ital documents. Similarly to the non-interactive solution of Blake and Chan,
ours can be turned into an event-release encryption (ERE) scheme solving the
problem of a sender who wishes to send a message that the recipient can only
decrypt if a specific event occurs. As an example, we think of the context of a
war-correspondent sealing an envelope containing sensitive information with the
instruction “to open only if something happens to me”. In such a situation, the
time server can be turned into a notary that has to verify the occurrence of the
prescribed event before issuing a certificate testifying of the event’s happening.

Before describing our solutions, we formally define the concept of non-
interactive timed-release encryption and we introduce a strong adversarial model
which is inspired from the one of certificateless encryption schemes (CLE) ([2,3]).
Section 3 then explains why a secure TRE scheme cannot be generically obtained
from a secure CLE scheme contrary to what appears at first glance. The new
TRE system is presented in section 4 while section 5 explains how to provide
our system and the one of Blake and Chan with the newly defined release-time
confidentiality property.

2 Formal Definition and Adversarial Models

Our model of timed-release encryption schemes assumes that ciphertexts always
contain information about their release-time. More precisely, for some t ∈ N,
their last t bits are a label indicating the moment at which their receiver will be
allowed to decrypt them.

294 J. Cathalo, B. Libert, and J.-J. Quisquater

Definition 1. A TRE scheme is a 5-uple of algorithms:

TRE.Setup: is a probabilistic algorithm run by a time server to generate
system-wide parameters params that include a public key TSpub for which
the corresponding private key tspriv is stored in order to be used in all time-
specific trapdoor generations.

TRE.User-Keygen: is a probabilistic algorithm taking as input public param-
eters params that is run by each end-user to generate a key pair (upk, usk).
The public keys are required to have a special form and their validity should
be verifiable in polynomial time.

TRE.TS-Release: is an algorithm run by the server that, given tspriv and a
time information T ∈ {0, 1}t, generates and discloses a specific trapdoor sT .
The latter’s validity should be verifiable in polynomial time given T ∈ {0, 1}t

and TSpub.
TRE.Encrypt: is a probabilistic algorithm taking as inputs public param-

eters params, a recipient’s public key upk, a message m ∈ M and
a time information T ∈ {0, 1}t to produce a ciphertext (C, T) =
TRE.Encrypt(m, upk, params, T) that the recipient must be unable to decrypt
before knowing sT = TRE.TS-release(tspriv, T).

TRE.Decrypt: is a deterministic algorithm taking as inputs a ciphertext
(C, T), parameters params, a private key usk and a time-specific trapdoor
sT to return a plaintext m or a distinguished symbol ⊥ if the ciphertext is
not properly formed.

For consistency, we impose that TRE.Decrypt(usk, sT , params, (C, T)) = m
whenever (C, T) = TRE.Encrypt(m, upk, params, T) = m for all messages m ∈
M if sT = TRE.TS-release(tspriv, T).

We distinguish two kinds of adversaries. We first consider malicious receivers
attempting to gain information on the plaintext before its release-time. Such
adversaries do not know the server’s private key but can freely choose the public
key on which they are challenged in a find-then-guess game. In both stages, they
have access to a release-time oracle returning trapdoors for any arbitrary time
periods but the (adversarially-chosen) one for which the challenge ciphertext
is computed. In a chosen-ciphertext scenario, they are also given access to an
oracle decrypting other ciphertexts than the challenge. These adversaries are
called chosen-time period and ciphertext attackers (CTCA) in contrast to weaker
chosen-time period and plaintext attackers (CTPA).

Definition 2. A TRE scheme is secure against chosen-time period and cipher-
text attacks (IND-CTCA) if no probabilistic polynomial time (PPT) attacker has
a non-negligible advantage in the following game:

1. Given a security parameter 1k, the challenger runs TRE.Setup(1k) and gives
the resulting parameters params (that include the server’s public key TSpub)
to A while tspriv is kept secret.

2. A queries a release-time oracle TRE.TS-release(.) returning trapdoors sT

for arbitrary time periods T as well as a decryption oracle TRE.Decrypt(.)

Efficient and Non-interactive Timed-Release Encryption 295

which, given a ciphertext (C, T) and a receiver’s public key upk provided by A,
generates the decryption of C using the trapdoor sT even without knowing the
private key usk corresponding to upk. At some moment, A outputs messages
m0, m1, an arbitrary public key upk∗ and a time-period T∗ that was not
submitted to the TRE.TS-release(.) oracle. She gets the challenge (C∗, T∗) =
TRE.Encrypt(mb, upk

∗, params, T∗), for a hidden bit b R← {0, 1}.
3. A issues new release-time queries for any arbitrary time-period but T∗ and

decryption queries for any ciphertext but the challenge (C∗, T∗) for the public
key upk∗. She eventually outputs a bit b′ and wins if b′ = b. As usual, her
advantage is Advind-ctcaTR−PKE(A) := 2 × Pr[b′ = b]− 1.

The above model of security against receivers is seemingly stronger than its
counterpart in [28] for which target time periods are fixed by the challenger at
the beginning of the game instead of being adaptively chosen by adversaries.
When compared to the notion of ‘recipient security’ defined in [1] or its coun-
terpart in [24], definition 2 also looks stronger as the authors of [1,24] explicitly
omitted to provide the attacker with a decryption oracle and argued that such
an oracle is useless since the receiver’s private key is known to the adversary.
Actually, she might still gain useful information by asking for the decryption of
ciphertexts (C, T∗) �= (C∗, T∗) for the target time period T∗. That is why, al-
though the challenger does not a priori know any private key except the server’s
one, we provide the attacker with an oracle that is more powerful than an usual
decryption oracle: given a time-information string, a receiver’s public key upk
and a ciphertext, it either returns a plaintext or a rejection message even if it
does not know the matching private key usk for upk.

The latter requirement might look too strong in practice but it is to be noted
that a similar constraint was imposed by Al-Riyami and Paterson in their secu-
rity model for certificateless encryption schemes (CLE) ([2,3]). As they did in
their context, we can argue here that an adversary has more power if she can
obtain the decryption of ciphertexts for receivers’s public keys that she simply
observes without knowing the matching private key. Besides, since the scheme
that we propose in section 4.1 perfectly supports this constraint, we do not be-
lieve the latter to be too strong.

Finally, in the model of [1], the challenge key pair (usk∗, upk∗) is chosen by
the challenger at the outset of the game. Our model does not assume usk∗ to be
known to the challenger. It is unclear whether this distinction is of any practical
relevance but it seems more natural to allow adversaries to be challenged on any
receiver’s public key of their choosing without directly revealing the associated
private key (which is not needed to compute the challenge ciphertext after all).
In fact, the knowledge of usk∗ is not needed in the security proof of our scheme.

In a second definition, we consider the threat of curious servers where attack-
ers know the server’s private key but are challenged on a random user’s public
key for which they are equipped with a decryption oracle.

Definition 3. A TRE scheme is said to be secure against chosen-ciphertext
attacks (or IND-CCA secure) if no PPT adversary A has a non-negligible ad-
vantage in the following game:

296 J. Cathalo, B. Libert, and J.-J. Quisquater

1. Given 1k, the challenger CH runs the algorithms TRE.Setup(1k) and
TRE.User-Keygen to obtain a list of public parameters params and a pair
(upk, usk). CH gives params, the server’s private key tspriv and the public
key upk to A while the private key usk is kept secret.

2. A is given access to a decryption oracle TRE.Decrypt(.) which, given a
ciphertext (C, T) and the time-specific trapdoor sT (which is always com-
putable for the adversary who knows tspriv), returns the decryption of C
using the private key usk. At some point, she outputs equal-length messages
m0, m1 and a challenge time-period T∗. She gets a ciphertext (C∗, T∗) =
TRE.Encrypt(mb, upk, params, T

∗), for b R← {0, 1}, computed under the pub-
lic key upk.

3. A issues a new sequence of queries but is prohibited from asking for the
decryption of the challenge for the time period T∗. She eventually outputs a
bit b′ and wins if b′ = b. Her advantage is still defined as Advind-ccaTR−PKE(A) :=
2 × Pr[b′ = b]− 1.

In the full version of this paper, we establish the security of the Blake-Chan
([8]) scheme in our enhanced security model. The IND-CTCA security is proved
under a stronger assumption than its counterpart in a weaker sense in [1].

3 Why CLE Does Not Imply TRE

The model of security formalized in definition 2 is reminiscent of the definition
of security against Type I adversaries against certificateless encryption scheme
(CLE) in that the challenger might have to answer decryption queries on cipher-
texts presumably created using a public key for which it does not even know the
private key. Besides, the scheme that we describe in section 5.2 bears similarities
with a CLE scheme recently proposed in [3] in the same way as the Blake-Chan
scheme ([8]) has salient similarities with the CLE scheme described in [2].

Actually, it turns out that some constructions may provide instantiations of
both primitives but it is very unlikely that a generic transformation can turn
a secure CLE into a secure TRE because of differences between formal models:
in CLE schemes, some principal’s public key is associated to any identity even
though no explicit certificate is used. In contrast, time information strings are
never bound to any public key.

It is very tempting to believe that a TRE scheme can be generically obtained
from a CLE system by turning the Key Generation Center (KGC) into a time
server and transforming the partial key private extraction algorithm (see [2] or
[3] for details on certificateless primitives) into a release-time algorithm.

The problems arise when attempting to establish the security of the obtained
scheme in the sense of definition 3 assuming that the underlying CLE is secure
against malicious KGCs (called Type II adversaries in [2]). In the model of secu-
rity against a Type II adversary ([2]), the latter is disallowed to replace public
keys. Now, in the game of definition 3, consider what happens when the attacker
issues a decryption query (C, T) for a completely arbitrary time period T. In the
game that it plays against its own challenger, the challenger of definition 3 is

Efficient and Non-interactive Timed-Release Encryption 297

stuck as it may not replace the public key assigned to the entity of identity T
with the challenge public key upk since replacement queries are forbidden.

Even worse: when the adversary of definition 3 produces her challenge request
(m0, m1, T∗), it is very likely that the challenge public key upk is not associated
to T∗ in the game played by the challenger against its own ”certificateless chal-
lenger”. It comes that, even in the chosen-plaintext scenario, the security of the
underlying CLE scheme does not imply the security of the obtained TRE.

On the other hand, if the adversary was challenged on a fixed random user’s
key pair (usk∗, upk∗) provided by the challenger in the game of definition 2
as in the definition of ’receiver security’ given in [1], the techniques of Dodis
and Katz ([18]) would certainly yield a secure TRE by suitably combining an
identity based encryption scheme (IBE) with a traditional public key encryption
scheme. Nevertheless, because of the special decryption oracles used in definition
2 where the challenger does not even know adversarially controlled private keys,
it is unclear whether the same techniques also apply here.

4 An Efficient TRE Construction Using Bilinear Maps

This section presents a new efficient timed-release encryption scheme. It makes
use of bilinear map groups which are groups (G1, G2) of prime order p for which
there exists a bilinear map e : G1×G1 → G2 satisfying the following properties:

1. Bilinearity: ∀ u, v ∈ G1, ∀ a, b ∈ Z∗
p, we have e(ua, vb) = e(u, v)ab

2. Non-degeneracy: if g generates G1, then e(g, g) generates G2

3. Computability: ∀ u, v ∈ G1, e(u, v) can be efficiently computed

The security of our construction is proved to rely on the intractability of the
following problem that was introduced in [10].

The q-Bilinear Diffie-Hellman Inversion Problem (q-BDHIP) consists in, given
(g, gα, g(α2), . . . , g(αq)) ∈ G

q+1
1 , computing e(g, g)1/α ∈ G2.

4.1 The Scheme

In the new scheme, called TRE1, time-specific trapdoors are signatures computed
using a signature scheme independently considered in [9] and [30] unlike the
scheme of [8] that uses trapdoors computed according to Boneh et al.’s short
signature algorithm ([13]). The TRE1 scheme has similarities with a selective-
ID secure IBE that was proven secure without random oracles in ([10]) but its
security proofs hold in the random oracle model ([7]). The consistency of the
scheme is easy to check as

e(Xrh1(T)Y r, sT)1/a = e(ga(s+h1(T)), g
1

a(s+h1(T)))r = e(g, g)r.

298 J. Cathalo, B. Libert, and J.-J. Quisquater

TRE.Setup: given security parameters k and k0, where k0 is polynomial in k,
this algorithm outputs a k-bit prime number p, the description of symmetric
bilinear map groups (G1, G2) of order p, a generator g ∈ G1 and hash functions
h1 : {0, 1}t → Z

∗

p, h2 : G2 → {0, 1}n+k0 and h3 : {0, 1}n+k0+t × G
2

1 → Z
∗

p for
some t ∈ N. A private key tspriv := s

R← Z
∗

p and the corresponding public key
TSpub := gs ∈ G

∗

1 are also chosen. The public parameters are

params := {p, k, k0, G1, G2, g, TSpub, e, h1, h2, h3, n,M, C}

for plaintext and ciphertext spaces M := {0, 1}n and C := G
∗

1 × {0, 1}n+k0+t.
TRE.TS-release: uses a time information T ∈ {0, 1}t and the server’s private key

to return a time-specific trapdoor sT = g1/(s+h1(T)) ∈ G
∗

1.
TRE.User-Keygen: this algorithm takes as input params, chooses a private key

usk := a ∈ Z
∗

p and produces A’s public key

upk := 〈X = g
a
, Y = TSa

pub〉 ∈ G
∗

1 × G
∗

1

TRE.Encrypt: to encrypt m ∈ {0, 1}n using the time information T ∈ {0, 1}t and
the public key upk = 〈X = ga, Y = TSa

pub〉, the sender does the following:
1. Check that upk is correctly formed by verifying that e(X, TSpub) = e(g, Y).
2. Choose x

R← {0, 1}k0 , compute r = h3(m||x||T||upk) ∈ Z
∗

p and the ciphertext

C = 〈c1, c2, T〉 = 〈Xrh1(T)
Y

r
, (m||x) ⊕ h2(e(g, g)r), T〉

TRE.Decrypt: given C = 〈c1, c2, T〉 ∈ C, his private key a and the trapdoor sT ,
the receiver computes (m||x) = c2 ⊕ h2(e(c1, sT)1/a) ∈ {0, 1}n+k0 and then
r = h3(m||x||T||upk) ∈ Z

∗

p. The message is accepted if c1 = Xrh1(T)Y r .

Fig. 1. The TRE1 scheme

4.2 Efficiency Discussions

If e(g, g) is included among the public parameters, an exponentiation in G2 and
a multi-exponentiation in G1 are needed for both the sender and the receiver
while the latter must also compute a pairing.

TRE1 is thus significantly more efficient than the scheme recently proposed by
Blake and Chan ([8]) as no pairing must be computed at encryption. It actually
happens to be more practical to encrypt messages with distinct release-times
in succession for the same recipient. Indeed, the TRE scheme of [8] requires the
sender to compute a pairing that depends on the release-time and, if Alice has to
send several ciphertexts with distinct release-times to Bob, she has to compute
a new pairing for each encryption. Moreover, TRE1 does not need a special (and
much less efficient) hash function mapping strings onto a cyclic group (and it thus
benefits from a faster release-time algorithm) while both schemes have similar
complexities at decryption.

As for the scheme proposed in [8], the sender has to verify the validity of the
public key (in step 1 of the encryption algorithm) to ensure that the recipient
will be enabled to decrypt the message. Such a checking is fortunately needed
only once at the first use of the key.

Efficient and Non-interactive Timed-Release Encryption 299

4.3 Security

We stress on the importance of including the public key upk among the inputs
of the hash function h3 because the scheme would be insecure in the game of
definition 2 otherwise (as the adversary could turn the challenge into another
encryption of the same plaintext for a different public key). In a security analysis,
theorems 1 and 2 show that TRE1 is secure in the sense of definitions 2 and 3.
The proofs are detailed in the full version of the paper.

Theorem 1. Assume that an IND-CTCA attacker A has an advantage ε
against TRE1 when running a time τ , making qhi queries to random oracles hi

(i = 1, 2, 3) and qD decryption queries. Then the q-BDHIP can be solved for
q = qh1 with a probability

ε′ >
1

(qh1 + qh3)(qh2 + qh3)
(ε− qh3/2k0−1)(1 − 2−k)qD

within a time τ ′ < τ +O((q2
h1

+qh3)τexp) where τexp is the maximum of the costs
of an exponentiation in G1 and in G2.

Theorem 2. Assume that an IND-CCA attacker A has an advantage ε against
TRE1 when running a time τ , making qhi queries to random oracles hi (i = 1, 2, 3)
and qD decryption queries. Then the 1-BDHIP can be solved with a probability
ε′ > (qh2 + qh3)−1(ε− qh3/2k0−1)(1 − 2−k)qD within a time τ ′ < τ + O(qh3τexp)
where τexp is the maximum time to perform an exponentiation in G1 and in G2.

As TRE1 results from a variant of the first Fujisaki-Okamoto ([20]) transform
applied to a simpler version of the scheme (details are given in the full paper),
the proofs apply a variant of theorem 3 in ([20]).

4.4 Encrypting for Multiple Receivers

Interestingly, the scheme is practical to encrypt messages intended to several
recipients with the same release-time (encrypting with distinct release-times
is forbidden as colluding receivers could decrypt the message without hav-
ing the appropriate trapdoor): given a plaintext m and public keys upk1 =
(X1, Y1), . . . , upkN = (XN , YN), ciphertexts have the form

〈Xrh1(T)
1 Y r

1 , . . . , X
rh1(T)
N Y r

N , (m||x) ⊕ h2(e(g, g)r),L〉

where r = h3(m||x||T||upk1|| . . . ||upkN) and L is a label indicating how each
part of ciphertext is associated to each receiver.

The sender still has no pairing to compute: only a multi-exponentiation per
receiver (in addition to an exponentiation in G2) is needed. The Blake-Chan
scheme and its generalization ([1]) do not enjoy this efficiency as one pairing per
receiver must be computed.

300 J. Cathalo, B. Libert, and J.-J. Quisquater

The security proofs are straightforward adaptations of the proofs of theorems
1 and 2 in a security model which is a simple extension of the one described in
section 3: in the extension of definition 2, the adversary outputs a set of N public
keys at the end of the find stage whereas, in the counterpart of definition 3, she
is challenged a vector of N public keys.

5 Adding Release-Time Confidentiality

In the security model considered by Di Crescenzo et al. ([17]), the time server
is required to interact with the receiver so that the latter obtains the message if
the current time exceeds the release-time but nothing can be learned about the
latter by the server.

However, as release-times appended to ciphertexts are transmitted in clear to
receivers in their model as in ours, nothing can prevent a spying server (or anyone
else) observing release-times of ciphertexts from attempting to gain information
on who their recipient could be upon release of the corresponding trapdoor by
watching who enquires about it within a reasonably small set of users. Such a
threat would hamper the key privacy property ([5]) that TRE1 could be shown
to satisfy in an adapted security model if release-times were scrambled.

We believe that, in order to minimize the server’s knowledge about who is
talking to whom and enhance the protocol’s anonymity, it may be desirable
to even preclude such a scenario and guarantee the confidentiality of release-
times against anyone but intended recipients who can first unmask a part of
the received ciphertext using their private key and learn the release-time before
obtaining the corresponding trapdoor. We thus define a new notion called release-
time confidentiality that captures the inability for the server to decide under
which out of two release-times of its choice a given ciphertext was created.

Definition 4. A TRE scheme is said to provide release-time confidentiality
(or IND-RT-CCA security) if no PPT adversary A has a non-negligible advan-
tage in the game below:

1. Given 1k, the challenger CH runs the algorithms TRE.Setup(1k) and
TRE.User-Keygen to obtain a list of public parameters params and a pair
(upk, usk). CH gives params, the server’s private key tspriv and the public
key upk to A while the private key usk is kept secret.

2. A is given access to a decryption oracle TRE.Decrypt(.) which, given a
ciphertext (C, T) and the time-specific trapdoor sT (which is always com-
putable for the adversary who knows tspriv), returns the decryption of
C using the private key usk. At some moment, she outputs a plain-
text m∗ and two time periods T∗0, T∗1 before getting a challenge C∗ =
TRE.Encrypt(m∗, upk, params, T∗b), for b R← {0, 1}.

3. A issues a new sequence of queries but she is of course prohibited from
requesting the decryption of C∗ under the time periods T∗b . She eventually
outputs a bit b′ and wins if b′ = b. Her advantage is Advind-rt-ccaTR−PKE(A) :=
2 × Pr[b′ = b]− 1.

Efficient and Non-interactive Timed-Release Encryption 301

5.1 The TRE1 Case

The TRE1 construction does not provide the confidentiality of release-times as
they must be appended to ciphertexts and thus transmitted in clear. However,
for applications that would require it, a very simple modification of TRE1 satisfies
the new property at the cost of a slight increase in the workload of the sender
who has to compute an additional multi-exponentiation while the complexity of
the decryption algorithm remains unchanged. The only change is that, instead of
being transmitted in clear within the ciphertext, the release-time T is scrambled
using a hash value of c′1 = grh1(T)TSr

pub (obtained from an additional random

oracle h4) which is also c
1/a
1 so that the receiver can first unmask it before ob-

taining the trapdoor.
In the random oracle model, the modified scheme, called TRE2, has the

release-time confidentiality property under the standard Diffie-Hellman assump-
tion in G1 (in order for this new security notion to rely on the latter assumption,
we need to feed hash function h2 with both c′1 and e(g, g)r in the encryption
algorithm) as claimed by theorem 3.

Theorem 3. Assume that an attacker A has an advantage ε against the release
time confidentiality of TRE2 in the sense of definition 4 when running a time
τ , making qhi queries to random oracles hi (i = 1, . . . , 4) and qD decryption
queries. Then there is an algorithm B solving the computational Diffie-Hellman
problem with a probability

ε′ > (ε− qh3/2k0−1)(1 − 2−k)qD

within a time τ ′ < τ + O(qh3τexp) + O((2qh3 + qh2 + qh4)τp) where τexp is the
maximum time to perform an exponentiation in G1 and in G2 and τp is the cost
of a pairing computation.

5.2 Release-Time Confidentiality in the Blake-Chan TRE

A very simple method allows adding the release time confidentiality property to
the scheme proposed in [8] at a minimal cost: a single additional exponentiation
in G1 is required at encryption while the decryption operation has essentially
the same cost as in the original scheme.

Interestingly, this modification allows proving the security under a weaker
assumption than for the original version (details will be given in the full version of
the paper): the IND-CTPA security is showed under the bilinear Diffie-Hellman
assumption while the IND-CPA and IND-RT-CPA securities both rely on the
hardness of the standard Diffie-Hellman problem. As for TRE1 and TRE2, the
chosen-ciphertext security is obtained via similar transformations to [20,21].

6 Conclusion

We proposed a new stringent security model for non-interactive timed-release
encryption schemes and presented a new efficient construction fitting this model.

302 J. Cathalo, B. Libert, and J.-J. Quisquater

References

1. S.-S. Al-Riyami , J. Malone-Lee, N.P. Smart, Escrow-Free Encryption Supporting
Cryptographic Workflow, available from http://eprint.iacr.org/2004/258.

2. S.-S. Al-Riyami , K.G. Paterson, Certificateless Public Key Cryptography, in Ad-
vances in Cryptology - Asiacrypt’03, LNCS 2894, pp. 452–473, Springer, 2003.

3. S.S. Al-Riyami , K.G. Paterson, CBE from CL-PKE: A Generic Construction and
Efficient Schemes , in proc. of PKC’05, LNCS 3386, pp. 398–415, Springer, 2005.

4. J. Baek, R. Safavi-Naini, W. Susilo, Token-Controlled Public Key Encryption, to
appear in proc. of ISPEC’05, LNCS series, 2005.

5. M. Bellare, A. Boldyreva, A. Desai, D. Pointcheval, Key-Privacy in Public-Key
Encryption, in Advances in Cryptology - Asiacrypt’01, LNCS 2248, pp. 566–582.
Springer, 2001.

6. M. Bellare, S. Goldwasser, Encapsulated key-escrow, 4th ACM Conference on Com-
puter and Communications Security, 1997.

7. M. Bellare, P. Rogaway, Random oracles are practical: A paradigm for designing ef-
ficient protocols, 1st ACM Conference on Computer and Communications Security,
pp. 62-73, 1993.

8. I. Blake, A.-C.-F. Chan, Scalable, Server-Passive, User-Anonymous Timed
Release Public Key Encryption from Bilinear Pairing, available from
http://eprint.iacr.org/2004/211/, 2004.

TRE.Setup: given a security parameters k, this algorithm chooses a a k-bit prime
number p, symmetric bilinear map groups (G1, G2) of order p, a generator g ∈ G1

and hash functions h1 : {0, 1}∗ → G
∗

1, h2 : G1 × G2 → {0, 1}n and h3 : G1 →

{0, 1}t. It also selects a private key tspriv := s
R← Z

∗

p and sets TSpub := gs ∈ G
∗

1

as the corresponding public key. The ciphertext space is C := G
∗

1 × {0, 1}n+t

while the space of plaintexts is M := {0, 1}n. The public parameters are then

params := {k, p, G1, G2, g, TSpub, e, h1, h2, n,M, C}.

TRE.TS-release: given T ∈ {0, 1}t, the server discloses a trapdoor sT = h1(T)s.
TRE.User-Keygen: this algorithm takes as input params, chooses a private key

usk := a ∈ Z
∗

p and produces A’s public key upk := X = ga ∈ G
∗

1.

TRE.Encrypt: to encrypt m ∈ {0, 1}n for the time period T ∈ {0, 1}t and the
public key upk = X = ga, the sender chooses r

R← Z
∗

p and the ciphertext is

C = 〈c1, c2, c3〉 = 〈gr
, m ⊕ h2(Xr||e(TSpub, h1(T))r), T⊕ h3(Xr)〉

TRE.Decrypt: given a ciphertext C = 〈c1, c2, c3〉 ∈ C, a private key a ∈ Z
∗

p, the
receiver computes c′1 = ca

1 ∈ G
∗

1 to obtain T = c3 ⊕ h3(c′1) ∈ {0, 1}t and recover
the plaintext m = c2 ⊕ h2(c′1||e(c1, sT)) ∈ {0, 1}n upon release of sT .

Fig. 2. The BC-TRE2 scheme

We also explained how to enhance the anonymity of ciphertexts at a minimum
cost in our scheme as in Blake and Chan’s one in accordance with a new formally
defined security property.

Efficient and Non-interactive Timed-Release Encryption 303

9. D. Boneh, X. Boyen, Short Signatures Without Random Oracles, in Advances in
Cryptology - Eurocrypt’04, LNCS 3027, Springer, pp. 56–73, 2004.

10. D. Boneh, X. Boyen, Efficient Selective-ID Secure Identity Based Encryption With-
out Random Oracles, in Advances in Cryptology - Eurocrypt’04, LNCS 3027,
Springer,pp. 223–238, 2004.

11. D. Boneh, X. Boyen, E.-J. Goh, Hierarchical Identity Based Encryption with Con-
stant Size Ciphertext , available at http://eprint.iacr.org/2005/015.

12. D. Boneh, M. Franklin, Identity Based Encryption From the Weil Pairing, in Ad-
vances in Cryptology - Crypto’01, LNCS 2139, pp. 213–229, Springer, 2001.

13. D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing, in Ad-
vances in Cryptology - Asiacrypt’01, LNCS 2248, pp. 514–532, Springer, 2001.

14. D. Boneh, M. Naor, Timed Commitments, Advances in Cryptology - Crypto’00,
LNCS 1880, pp. 236–254, Springer, 2000.

15. R. Canetti, S. Halevi, J. Katz, A Forward Secure Public Key Encryption Scheme,
Advances in Cryptology - Eurocrypt’03, LNCS 2656, pp. 254–271, Springer, 2003.

16. L. Chen, K. Harrison, N. Smart, D. Soldera, Applications of Multiple Trust Au-
thorities in Pairing Based Cryptosystems, in Infrasec’02, LNCS 2437, pp. 260–275,
Springer, 2002.

17. G. Di Crescenzo, R. Ostrovsky, S. Rajagopalan, Conditional Oblivious Transfer
and Timed-Release Encryption, in Advances in Cryptology - Eurocrypt’99, LNCS
1592, pp. 74–89, Springer, 1999.

18. Y. Dodis, J. Katz, Chosen-Ciphertext Security of Multiple Encryption, in TCC’05,
LNCS 3378, pp. 188–209, Springer, 2005.

19. Y. Dodis, D.-H. Yum, Time Capsule Signatures, to appear in proc. of Financial
Cryptography 2005, LNCS series, 2005.

20. E. Fujisaki, T. Okamoto, How to Enhance the Security of Public-Key Encryption
at Minimum Cost, in proc. of PKC’99, LNCS 1560, pp. 53–68. Springer, 1999.

21. E. Fujisaki and T. Okamoto, Secure integration of asymmetric and symmetric en-
cryption schemes, in Advances in Cryptology - Crypto’99, LNCS 1666, pp. 537–554.
Springer, 1999.

22. J. Garay, M. Jakobsson, Timed-Release of Standard Digital Signatures, in Financial
Crypto’02, LNCS 2357, pp. 168–182, Springer, 2002.

23. J. Garay, C. Pomerance, Timed Fair Exchange of Standard Signatures, in Financial
Crypto’03, LNCS 2742, pp. 190–207, Springer, 2003.

24. Y. H. Hwang, D. H. Yum, P. J. Lee Timed-Release Encryption with Pre-open Ca-
pability and its Application to Certified E-mail System, to appear in ISC’05, LNCS
series, 2005.

25. W. Mao, Timed-Release Cryptography, in Selected Areas in Cryptography’01,
LNCS 2259, pp. 342–357, Springer, 2001.

26. T. May, Time-release crypto, manuscript, February 1993.
27. M.C. Mont, K. Harrison. M. Sadler, The HP time vault service: Innovating the way

confidential information is disclosed at the right time, in 12th International World
Wide Web Conference, pp. 160–169, ACM Press, 2003.

28. I. Osipkov, Y. Kim, J.-H. Cheon, Timed-Release Public Key Based Authenticated
Encryption, available from http://eprint.iacr.org/2004/231.

29. R. Rivest, A. Shamir, D.A. Wagner, Time-lock puzzles and timed-release crypto,
MIT LCS Tech. Report MIT/LCS/TR-684, 1996.

30. F. Zhang, R. Safavi-Naini, W. Susilo, An Efficient Signature Scheme from Bilinear
Pairings and Its Applications, in proc. of PKC’04, LNCS 2947, pp. 277–290, 2004.

Security Properties of Two Authenticated
Conference Key Agreement Protocols

Qiang Tang and Chris J. Mitchell

Information Security Group, Royal Holloway, University of London,
Egham, Surrey TW20 0EX, UK

{qiang.tang, c.mitchell}@rhul.ac.uk

Abstract. In this paper we analyse the security of two authenticated
group key agreement schemes based on the group key agreement protocol
of Burmester and Desmedt. One scheme was proposed by Burmester and
Desmedt, and uses a separate authentication scheme to achieve authen-
tication among the participants. We show that this scheme suffers from a
number of security vulnerabilities. The other scheme was generated using
the general protocol compiler of Katz and Yung. We show that in some
circumstances, even if key confirmation is implemented, this scheme still
suffers from insider attacks (which are not covered by the security model
used by Katz and Yung).

1 Introduction

Since the pioneering work of Diffie and Hellman [1], key agreement has become a
very active and fruitful research area in cryptography. The case of two-party key
agreement has been well investigated, and a variety of provably secure schemes
have been proposed (e.g., [2,3,4]). However, less attention has been given to
group key agreement, which enables more than two participants to negotiate a
session key. Of especial interest are authenticated group key agreement protocols,
designed for use in a hostile environment where communications are over open
networks which may be fully controlled by an adversary.

Of the existing group key agreement protocols, a number are based on the
idea of extending the two-party Diffie-Hellman protocol [1] to the group set-
ting (e.g., [5,6,7,8,9,10]). Among these schemes, the cyclic group key agreement
protocol due to Burmester and Desmedt (here referred to as the BD scheme) is
particularly efficient; it has been rigorously proved to be secure against a passive
adversary [11]. A number of authenticated group key agreement schemes based
on the BD scheme have been proposed, including those in [5,12,13,14,15,16]. In
this paper, we focus on the enhanced BD scheme [5] and a scheme due to Katz
and Yung [15], referred to below as the KY scheme.

In the enhanced BD scheme, an interactive zero-knowledge proof scheme
is used to achieve authentication among the conference participants, while in
the KY scheme a signature mechanism is used to achieve authentication among
the conference participants. Both schemes are more efficient than the scheme

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 304–314, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Security Properties of Two Authenticated Conference Key Agreement 305

of Bresson et al. [17], which was the first authenticated group key agreement
scheme proved to be secure in a formal model.

The main contribution of this paper lies in analysing the security properties of
the BD scheme, and exhibiting potential security vulnerabilities in the enhanced
BD scheme and the KY scheme. The rest of this paper is organised as follows.
In section 2, we review three group key agreement schemes, namely the BD
scheme, the enhanced BD scheme, and the KY scheme. In section 3, we give our
observations on the security of these three schemes. In section 4, we conclude
this paper.

2 Review of the Target Schemes

In all three schemes, the following parameters are made public during the ini-
tialisation stage: G is a multiplicative group with large prime order q, and g is
a generator of G. We suppose all the potential participants and their identities
are from the set {(U1, IDU1), · · · , (Um, IDUm)}, where m is a sufficiently large
integer and IDUi (1 ≤ i ≤ n ≤ m) is the identity of Ui.

2.1 Description of the BD Scheme

Suppose a set S = {U1, · · · , Un} (n ≤ m) of users wish to establish a session
key; then each user Ui (1 ≤ i ≤ n) performs the following steps. It should be
noted that the indices of users (and values exchanged between users) are taken
modulo n.

1. Ui chooses a random si (0 ≤ si < q), and broadcasts Zi = gsi .
2. After receiving Zi−1 and Zi+1, Ui computes and broadcasts Xi:

Xi = (Zi+1/Zi−1)si

3. After receiving every Xj (1 ≤ j ≤ n), Ui computes the session key Ki as:

Ki = (Zi−1)nsi · (Xi)n−1 · (Xi+1)n−2 · · ·Xi+n−2

= gnsi−1si · (gsisi+1

gsi−1si
)n−1 · (gsi+1si+2

gsisi+1
)n−2 · · · gsi+n−2si+n−1

gsi+n−3si+n−2

= gsi−1si+sisi+1+si+1si+2+···+si+n−2si+n−1

= gs1s2+s2s3+s3s4+···+sns1

If all the participants are honest, then all of them will compute the same
session key because K1 = · · · = Kn. In [11], Burmester and Desmedt prove that
this scheme is secure against a passive adversary.

2.2 Description of the Enhanced BD Scheme

The enhanced BD scheme provides partial authentication for the protocol mes-
sages by using an authentication scheme which is secure against adaptive chosen
text attacks. The authentication scheme and the enhanced BD scheme operate
as follows.

306 Q. Tang and C.J. Mitchell

The authentication scheme. In the initialisation stage, the system selects
four large primes p2, p3, q2, q3 satisfying p2 ≤ q3, q2|(p2 − 1), and q3|(p3 − 1).
Let g2 be a generator of a multiplicative group of order q2 in Z∗

p2
, and g3 be a

generator of a multiplicative group of order q3 in Z∗
p3

. Each user Ui (1 ≤ i ≤ n)
in the system publishes his public key {βi2, βi3, γi3}, where {βi2 = gai2

2 , βi3 =
gai3
3 , γi3 = gbi3

3 }, and keeps {ai2, ai3, bi3} secret as his private key.
Suppose Ui wishes to prove knowledge of z to Uj (j �= i); the authentication

scheme operates as follows. Ui sends z and γi2 = gbi2
2 to Uj, where bi2 is randomly

selected (0 ≤ bi2 ≤ g2). Simultaneously Ui proves to Uj that he knows the
discrete logarithm base g2 of βz

i2γi2 and the discrete logarithm base g3 of βγi2
i3 γi3,

using the zero-knowledge discrete logarithm proof scheme of Chaum et al. [18],
described below. Uj checks that γq2

i2 ≡ 1 (mod p2), gq2
2 ≡ βq2

i2 ≡ 1 (mod p2),
gq3
3 ≡ βq3

i3 ≡ γq3
i3 (mod p3), that q2, q3 are primes, and that p2 ≤ q3. If any of

the checks fail, Uj terminates the protocol. Otherwise Uj now believes that Ui

knows z.
The Chaum et al. zero knowledge discrete logarithm proof scheme [18] oper-

ates as follows. Suppose P is a large prime, and that αx ≡ β (mod P). Suppose
also that P, α, β are made public and x is a secret of Alice. If Alice wants to
prove her knowledge of x to Bob, she performs the following steps.

1. Alice selects T random numbers ei (0 ≤ ei < P − 1, 1 ≤ i ≤ T). Alice
computes and sends hi = αei mod P (1 ≤ i ≤ T) to Bob.

2. Bob chooses and sends T random bits bi ∈ {0, 1} (1 ≤ i ≤ T) to Alice.
3. For each bit bi (1 ≤ i ≤ T), if bi = 0 Alice sets si = ei; otherwise Alice

computes si = ei − ej mod P − 1, where j is the minimal number for which
bj = 1. Finally, Alice sends (x − ej) mod P − 1 and si (1 ≤ i ≤ T) to Bob.

4. For each bit i (1 ≤ i ≤ T), if bi = 0 Bob checks αsi = hi; otherwise Bob
checks that αsi = hih

−1
j . Then Bob checks αx−ej = βh−1

j .

If all the checks succeed, Bob can confirm with a probability of 1− (1
2)T that

Alice knows x [18].
Burmester and Desmedt [5] claim that the above scheme is a secure authen-

tication system, i.e., it has the following three security properties:

1. When only a passive adversary is present, Ui can successfully prove his knowl-
edge of z to Uj with an overwhelming probability.

2. If an attacker impersonates Ui, then Uj can detect it with an overwhelming
probability.

3. If an active attacker substitutes z with z′ (z �= z′), then Uj will reject it with
an overwhelming probability.

The enhanced BD scheme. Suppose a set S = {U1, · · · , Un} (n ≤ m) of
users wish to establish a session key; then each user Ui (1 ≤ i ≤ n) performs the
following steps. Note that the indices of users (and values exchanged between
users) are taken modulo n.

Security Properties of Two Authenticated Conference Key Agreement 307

1. Ui chooses a random si (0 ≤ si ≤ q), and computes and broadcasts Zi = gsi .
2. After receiving Zi−1 and Zi+1, Ui proves his knowledge of si to Ui+1, and

verifies Ui−1’s knowledge of si−1.
If both the proof and the verification succeed, Ui computes and broadcasts
Xi:

Xi = (Zi+1/Zi−1)si

3. After receiving Xj (1 ≤ j ≤ n), Ui computes the session key Ki:

Ki = (Zi−1)nsi · (Xi)n−1 · (Xi+1)n−2 · · ·Xi+n−2

= gnsi−1si · (gsisi+1

gsi−1si
)n−1 · (gsi+1si+2

gsisi+1
)n−2 · · · gsi+n−2si+n−1

gsi+n−3si+n−2

= gsi−1si+sisi+1+si+1si+2+···+si+n−2si+n−1

= gs1s2+s2s3+s3s4+···+sns1

If all the participants are honest, then all of them will compute the same
session key because K1 = · · · = Kn.

Burmester and Desmedt [5] claim that the enhanced BD scheme is a secure
key agreement scheme, i.e., in a protocol instance it is computationally infeasible
for any set of active attackers to compute the same session key as that which is
computed by the honest participants.

2.3 Description of the KY Scheme

Katz and Yung [15] proposed a general protocol compiler that can transform
a group key agreement protocol secure against a passive adversary into an au-
thenticated group key agreement protocol secure against both passive and active
adversaries. As an example, Katz and Yung transformed the unauthenticated BD
scheme into an authenticated group key agreement protocol. Katz and Yung [15]
prove that this protocol is secure against an active adversary, i.e., the advantage
of any probabilistic polynomial time (PPT) active adversary is negligible.

The KY scheme [15] requires that, during the initialisation stage, each user Ui

(1 ≤ i ≤ m) generates a verification/signing key pair (PKUi , SKUi) by running
Gen(1k)1, where k is a security parameter. Suppose a set S = {U1, · · · , Un}
(n ≤ m) of users wish to establish a session key; then each user Ui (1 ≤ i ≤ n)
performs the following steps. It should be noted that, as previously, the indices
of users (and values exchanged between users) are taken modulo n. Throughout
this paper, || represents the string concatenation operator.

1. Ui chooses a random ri (0 ≤ ri < q) and broadcasts IDUi , 0, and ri.
2. After receiving the broadcast messages from all other participants, Ui sets

noncei = ((IDU1 , r1), · · · , (IDUn , rn)) and stores it as part of its state infor-
mation2 .

1 We suppose that Σ = (Gen,Sign,Vrfy) is a signature scheme which is strongly
unforgeable under adaptive chosen message attack (as defined in [15]).

2 If all the messages are transported correctly, every user will possess the same state
information.

308 Q. Tang and C.J. Mitchell

Ui chooses a random number si (0 ≤ si < q) and computes Zi = gsi . Then
Ui computes the signature σi1 = SignSKUi

(1||Zi||noncei) and broadcasts
IDUi , 1, Zi, and σi1.

3. When Ui receives the message IDUj , 1, Zj , and σj1 from user Uj (1 ≤
j ≤ n, j �= i), he checks that: (1) Uj is an intended participant, (2) 1 is
the next expected sequence number for a message from Uj , and (3) σj1
is a valid signature, i.e. VrfyPKUj

(1||Zj ||noncei, σj1) = 1, where an out-
put of 1 signifies acceptance. If any of these checks fail, Ui terminates the
protocol. Otherwise, Ui computes Xi = (Zi+1/Zi−1)si and the signature
σi2 = SignSKUi

(2||Xi||noncei). Then Ui broadcasts IDUi , 2, Xi, and σi2.
4. When Ui receives the message IDUj , 2, Xj , and σj2 from user Uj (1 ≤ j ≤

n, j �= i), he checks that: (1) Uj is an intended participant, (2) 2 is the next
expected sequence number for a message from Uj , and (3) σj2 is a valid
signature, i.e. VrfyPKUj

(2||Xj ||noncei, σj2) = 1. If any of these checks fail,
Ui terminates the protocol. Then Ui computes the session key Ki:

Ki = (Zi−1)nsi · (Xi)n−1 · (Xi+1)n−2 · · ·Xi+n−2

= gnsi−1si · (gsisi+1

gsi−1si
)n−1 · (gsi+1si+2

gsisi+1
)n−2 · · · gsi+n−2si+n−1

gsi+n−3si+n−2

= gsi−1si+sisi+1+si+1si+2+···+si+n−2si+n−1

= gs1s2+s2s3+s3s4+···+sns1

If all the participants are honest, then all of them will compute the same
session key K = K1 = · · · = Kn = gs1s2+s2s3+···+sns1 .

Katz and Yung [15] also proposed the following method (without security
proof) to achieve key confirmation for the authenticated group key agreement
scheme: after computing key K, each player Ui computes xi = FK(IDUi),
signs xi, and broadcasts xi and the corresponding signature, where F repre-
sents a pseudo-random function. However, they did not specify how the sig-
nature is computed. In this paper, we suppose the signature is computed as
σij = SignSKUi

(xi), where j is the next round number.
However, it should be noted that a different key confirmation method is

proposed in the full version of [15], and this method is proved to be secure in a
different security model in [19].

3 Properties of the Target Schemes

In this section we first describe certain security properties of the BD scheme,
and then demonstrate security vulnerabilities in both the enhanced BD scheme
and the KY scheme.

3.1 Security Properties of the BD Scheme

In the BD scheme, a malicious participant, say Uj (1 ≤ j ≤ n), who can manip-
ulate the communications in the network, is able to make any other participant,

Security Properties of Two Authenticated Conference Key Agreement 309

say Ui (1 ≤ i ≤ n, i �= j), compute the session key to be any value K∗ ∈ G
chosen by Uj .

To achieve this, in the second step Uj intercepts the message Xi−n+2 and
prevents it from reaching Ui. Uj then waits until all the other messages have
been received and computes the session key K in the normal way, i.e. as in step
3 of section 2.1. Uj now sends X ′

i+n−2 = Xi+n−2 · K∗
K to Ui, pretending that it

comes from Ui+n−2.

Lemma 1. As a result of the above attack, Ui will compute the session key as
K∗.

Proof. This is immediate, since Ui will compute the session key as K · X′
i+n−2

Xi+n−2
=

K∗, by definition of X ′
i+n−2.

In summary, in the BD scheme any participant capable of manipulating the
messages received by another participant can completely control the value of the
session key obtained by that participant. In the following subsections, we show
that this property means that schemes derived from the BD scheme possess
certain security vulnerabilities.

3.2 Security Vulnerabilities in the Enhanced BD Scheme

The enhanced BD scheme suffers from the following potential security vulnera-
bilities.

Man-in-the-middle attack. To mount a man-in-the-middle attack, an active
adversary proceeds as follows. In the first step of the protocol the adversary
replaces the message Zi+1 sent to Ui with Z ′

i+1 = Z2
i−1, for every i (1 ≤ i ≤ n).

Then we can prove that the protocol will end successfully and the adversary can
compute the session key held by Ui (1 ≤ i ≤ n).

Lemma 2. Under the above attack, the protocol will end successfully, and the
adversary can compute the session key held by Ui for every i (1 ≤ i ≤ n).

Proof. Under the attack, it is clear that the protocol will end successfully, be-
cause it is only required that Ui (1 ≤ i ≤ n) proves his knowledge of si to Ui+1
(while the adversary only changes the message that Ui+1 sends to Ui).

It is also clear that, in the second step, Ui will broadcast Xi = (Z ′
i+1/Zi−1)si=

(Zi−1)si . Then, after intercepting all the broadcast values Xi (1 ≤ i ≤ n), the
adversary can compute the session key held by Ui as

Ki = (Zi−1)nsi · (Xi)n−1 · (Xi+1)n−2 · · ·Xi+n−2

= (Xi)n · (Xi)n−1 · (Xi+1)n−2 · · ·Xi+n−2

which involves only values broadcast by the various recipients. The result follows.

310 Q. Tang and C.J. Mitchell

Insider different key attack. In the enhanced BD scheme, it is only required
that Ui (1 ≤ i ≤ n) proves his knowledge of si to Ui+1. The authentication
requirement can successfully prevent a malicious attacker from impersonating
Ui (1 ≤ i ≤ n) to send a forged message Zi to the honest participant Ui+1.
However, a malicious participant, say Uj (1 ≤ j ≤ n), who can manipulate the
communications in the network, is still able to make any other participant, say
Ui (1 ≤ i ≤ n, i �= j), compute the session key to be any value K∗ ∈ G.

In fact, any active outsider attacker can also mount such an attack by ma-
nipulating Xi (1 ≤ i ≤ n) in step 2 of the protocol run, but the attacker cannot
obtain any information about the session keys obtained by the legitimate par-
ticipants.

Outsider impersonation attack. An outsider attacker can also impersonate
a valid participant, Ui say, in some circumstances, but the attacker cannot obtain
the session key. This attack is based on the following security vulnerability in the
Chaum et al. zero-knowledge discrete logarithm proof scheme3. The vulnerability
arises from the fact that proof scheme does not enable the prover to specify the
verifier.

Suppose Alice wishes to prove her knowledge of x to Bob, then an attacker
can concurrently impersonate Alice to prove knowledge of x to any other entity,
Carol say. The attack can be mounted as follows.

1. Alice selects T random numbers ei (0 ≤ ei ≤ P−1, 1 ≤ i ≤ T), and computes
and sends hi = αei mod P (1 ≤ i ≤ T) to Bob.
The attacker intercepts the message, prevents it from reaching Bob, and
forwards hi = αei mod P (1 ≤ i ≤ T) to Carol pretending to be Alice (i.e.
starting a second run of the protocol).

2. Carol chooses and sends random bits ei ∈ {0, 1} (1 ≤ i ≤ T) to the attacker
as part of the second protocol run. The attacker then impersonates Bob to
forward ei ∈ {0, 1} (1 ≤ i ≤ T) to Alice as the second message of the first
protocol run.

3. For each bit bi (1 ≤ i ≤ T), if bi = 0 Alice sets si = ei; otherwise Alice
computes si = ei−ej mod P − 1, where j is the minimal number that bj = 1.
Alice sends x−ej and si (1 ≤ i ≤ T) to Bob as the third message of the first
protocol run. The attacker intercepts the message, prevents it from reaching
Bob, and forwards it to Carol as the third message of the second protocol
run.

4. For each bit i (1 ≤ i ≤ T), if bi = 0 Carol checks αsi = hi; otherwise Carol
checks that αsi = hih

−1
j . Then Carol checks that αx−ej = βh−1

j .

It is easy to verify that Carol’s checks will succeed and confirm that the
attacker knows x. This attack conflicts with the claim made in [5] that the
authentication technique is secure against any type of attack.

3 It should be noted that this vulnerability exists not only in this specific scheme, but
also exists in all such schemes with only a one-way proof of knowledge.

Security Properties of Two Authenticated Conference Key Agreement 311

We now show how to use the above observation to attack the enhanced
BD scheme. Suppose the attacker detects that a set S = {U1, · · · , Un} of users
is starting the key agreement protocol to negotiate a session key (referred to
below as the first protocol instance). The attacker impersonates Ui to initiate
a second instance of the key agreement protocol among a different set S′ =
{U ′

1, U
′
2, . . . , U

′
n′} of users, where U ′

i = Ui. In these two protocol instances, the
attacker performs the following steps.

1. In the first protocol instance, Ui chooses a random si (0 ≤ si < q), and
computes and broadcasts Zi = gsi . The attacker intercepts the messages
from both Ui−1 and Ui+1 to Ui and prevents them from reaching Ui.
In the second protocol instance, the attacker impersonates Ui to broadcast
Zi = gsi . Other participants perform as required by the protocol. Suppose
the messages sent by U ′

i−1 and U ′
i+1 are Z ′

i−1 and Z ′
i+1.

The attacker impersonates Ui−1 and Ui+1 to send Z ′
i−1 and Z ′

i+1 to Ui in
the first protocol instance.

2. In the first protocol instance, when Ui proves his knowledge of si to Ui+1, the
attacker mounts the above attack against the Chaum et al. zero-knowledge
discrete logarithm proof scheme by impersonating Ui to prove his knowledge
of si to U ′

i+1 in the second protocol instance.
In the second protocol instance, when U ′

i−1 proves his knowledge of s′i−1 to
the attacker, the attacker mounts the above attack against the Chaum et al.
zero-knowledge discrete logarithm proof scheme by impersonating U ′

i−1 to
prove U ′

i−1’s knowledge of s′i−1 to Ui in the first protocol instance.
In the first protocol instance Ui computes and broadcasts Xi as:

Xi = (Z ′
i+1/Z

′
i−1)

si

The attacker intercepts this message and impersonates Ui to broadcast the
same message in the second protocol instance.

3. In the second protocol instance, the users U ′
j (1 ≤ j ≤ n′, j �= i) computes

the common session key. However, the attacker cannot compute the session
key because he does not know si.
The first instance will be terminated because the authentication messages
between Ui and Ui+1 are blocked by the attacker.

In the second protocol instance, the attacker succeeds in impersonating Ui

to the members of the set S′.

Insider impersonation attack. In the above attack, suppose that the attacker
is a legitimate participant in the second protocol instance, i.e. suppose that the
attacker is U ′

j in the set S′ (U ′
j is not required to be a member of the set S). Then

U ′
j can successfully impersonate Ui in the second protocol instance without any

knowledge of the secret key of Ui. In this case, it is clear that U ′
j can compute the

session key agreed by all the participants of S′, since U ′
j is a legitimate member

of S′.
This attack means that, even if authentication is implemented, a malicious

participant can still impersonate another honest participant in a protocol
instance.

312 Q. Tang and C.J. Mitchell

3.3 Potential Security Vulnerability in the KY Scheme

We show that the KY scheme suffers from insider different key attacks even if
key confirmation is implemented. Specifically, we show that any n− 2 malicious
participants can make the other honest participants compute different keys at
the end of the protocol. However, it should be noted that insider attacks are
not covered by the security model in [15]. Recently, insider attacks have been
modelled by Katz and Shin in [19].

For simplicity we describe the attack in three-party case. Suppose, in some
past successful instance of the KY protocol among {U1, U2, U3}, the key con-
firmation message sent by U3 is x∗

3 = FK∗
3
(IDU3) and σ∗

33 = SignSKU3
(x∗

3). U2
can initiate a new instance of the KY protocol among {U1, U2, U3} and mount
a different key attack as follows.

1. Each user Ui (1 ≤ i ≤ 3) begins by choosing a random ri (0 ≤ ri < q) and
broadcasting IDUi , 0, and ri.

2. After receiving the initial broadcast messages, Ui (1 ≤ i ≤ 3) sets noncei =
((IDU1 , r1), (IDU2 , r2), (IDU3 , r3)) and stores it as part of its state informa-
tion. Then Ui chooses a random si (0 ≤ si < q), computes Zi = gsi and the
signature σi1 = SignSKUi

(1||Zi||noncei), and then broadcasts IDUi , 1, Zi,
and σi1.

3. When Ui (1 ≤ i ≤ 3) receives the messages from other participants, he
checks the messages as required by the protocol. It is easy to verify that all
the checks will succeed.
U1 computes and then broadcasts IDU1 , 2, X1, and σ12,where

X1 = (Z2/Z3)s1 , σ12 = SignSKU1
(2||X1||nonce1).

U3 computes and then broadcasts IDU3 , 2, X3, and σ32, where

X3 = (Z1/Z2)r3 , σ32 = SignSKU3
(2||X3||nonce3)

U2 computes and sends IDU2 , 2, X2, and σ22 to U3, where

X2 = (Z3/Z1)s2 , σ22 = SignSKU2
(2||X2||nonce2)

U2 then waits until all the other messages have been received and computes
the session key K in the normal way, i.e. as in step 3 of section 2.1. U2 now
sends IDU2 , 2, X ′

2, and σ′
22 to U1, where

X ′
2 = X2 ·

K∗
3

K
, σ′

22 = SignSKU2
(2||X ′

2||nonce2)

Lemma 3. As a result of the above steps, U1 will compute the session key
as K∗

3 , and U3 will compute the session key as K.

Proof. This is immediate, since U1 will compute the session key as K∗
3 =

(Z3)3s1(X1)2X ′
2 = K · K∗

3
K , and U3 will compute the session key as K =

(Z2)3s3(X3)2X1.

Security Properties of Two Authenticated Conference Key Agreement 313

Hence, as a result, U2 shares the session keys K∗
3 and K (K �= K∗

3) with U1
and U3 respectively.

4. U2 intercepts the confirmation messages between U1 and U3 and prevents
them from reaching their indeed destinations. U2 computes and sends the
confirmation messages x′

2 = FK∗
3
(IDU2) and σ′

23 = SignSKU2
(x′

2) to U1,
and then sends x2 = FK(IDU2) and σ23 = SignSKU2

(x2) to U3. Then U2
impersonates U3 to send x∗

33 and σ∗
33 to U1.

U2 initiates a second instance of the key agreement protocol among the
members of a set S

′′
, which includes U1 and U2. In step 3 of the new instance,

U2 manipulates the communications and forces U1 to compute the session
key as K, and then obtains the confirmation message (x1 = FK(IDU1), σ13 =
SignSKU1

(x1)) from U1.
U2 impersonates U1 to forward (x1 = FK(IDU1), σ13 = SignSKU1

(x1)) to
U3 in the current protocol instance.

5. It is easy to verify that all the key confirmation messages will be checked
successfully by the various participants, and the attack will therefore succeed.

It is clear that this security vulnerability can be removed if every user Ui

(1 ≤ i ≤ 3) is required to compute his key confirmation message as xi =
FK(IDUi), σi3 = SignSKUi

(3||xi||noncei)).

4 Conclusions

In this paper we have shown that a number of security vulnerabilities exist
in both the enhanced BD scheme and the KY scheme. In particular, we have
shown that in the enhanced BD scheme the implementation of the authentica-
tion scheme does not meet the authentication requirement specified in [5]. One
possible way of removing the vulnerabilities in the enhanced BD scheme would
be to authenticate each message using a digital signature, as in the KY scheme.

Acknowledgements

The authors would like to express their deep appreciation for the valuable com-
ments provided by Jonathan Katz and Kenneth G. Paterson.

References

1. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Transactions on
Information Theory IT-22 (1976) 644–654

2. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In Stinson,
D.R., ed.: Advances in Cryptology – Crypto ’93. Volume 773 of Lecture Notes in
Computer Science., Springer-Verlag (1993) 110–125

3. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In Pfitzmann, B., ed.: Advances in Cryptology — Euro-
crypt 2001. Volume 2045 of Lecture Notes in Computer Science., Springer-Verlag
(2001) 453–474

314 Q. Tang and C.J. Mitchell

4. Chen, L., Kudla, C.: Identity based authenticated key agreement protocols from
pairings. In: Proc. of the 16th IEEE Computer Security Foundations Workshop —
CSFW 2003, IEEE Computer Society Press (2003) 219–233

5. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution
system. In Santis, A.D., ed.: Advances in Cryptology—EUROCRYPT ’94. Volume
950 of Lecture Notes in Computer Science., Springer-Verlag (1994) 275–286

6. Ingemarsson, I., Tang, D., Wong., C.: A conference key distribution system. IEEE
Transactions on Information Theory 28 (1982) 714–720

7. Kim, Y., Perrig, A., Tsudik, G.: Communication-efficient group key agreement.
In: Proc. IFIP TC11 16th Annual Working Conference on Information Security.
(2001) 229–244

8. Steer, D., Strawczynski, L., Diffie, W., Wiener, M.: A secure audio teleconference
system. In Krawczyk, H., ed.: Advances in Cryptology — Crypto ’98. Volume 403
of Lecture Notes in Computer Science., Springer-Verlag (1998) 520–528

9. Tzeng, W.: A practical and secure-fault-tolerant conferenc-key agreement proto-
col. In Imai, H., Zheng, Y., eds.: Proceedings of Public Key Cryptography: Third
International Workshop on Practice and Theory in Public Key Cryptosystems,
Springer-Verlag (2000) 1–13

10. Tzeng, W.: A secure fault-tolerant conference-key agreement protocol. IEEE Trans-
actions on Computers 51 (2002) 373–379

11. Burmester, M., Desmedt, Y.: A secure and efficient conference key distribution
system. In Santis, A.D., ed.: Pre–Proceedings of Eurocrypt ’94. (1994) 279–290

12. Choi, K.Y., Hwang, J.Y., Lee, D.H.: Efficient ID-based group key agreement with
bilinear maps. In Bao, F., Deng, R., Zhou, J.Y., eds.: Proceedings of the 2004
International Workshop on Practice and Theory in Public Key Cryptography (PKC
’04). Volume 2947 of Lecture Notes in Computer Science., Springer-Verlag (2004)
130–144

13. Du, X.J., Wang, Y., Ge, J.H., Wang, Y.M.: ID-based authenticated two round
multiparty key agreement. Cryptology ePrint Archive: Report 2003/247 (2003)

14. Du, X.J., Wang, Y., Ge, J.H., Wang, Y.M.: An improved ID-based authenticated
group key agreement scheme. Cryptology ePrint Archive, Report 2003/260 (2003)

15. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In
Boneh, D., ed.: Advances in Cryptology — Crypto 2003. Volume 2729 of Lecture
Notes in Computer Science., Springer-Verlag (2003) 110–125

16. Zhang, F.G., Chen, X.F.: Attacks on two ID-based authenticated group key agree-
ment schemes. Cryptology ePrint Archive, Report 2003/259 (2003)

17. Bresson, E., Chevassut, O., Pointcheval, D., Quisquater, J.J.: Provably authenti-
cated group Diffie-Hellman key exchange. In: Proceedings of the 8th ACM Con-
ference on Computer and Communications Security, ACM Press (2001) 255–264

18. Chaum, D., Evertse, J.H., Graaf, J., Peralta, R.: Demonstrating possession of
a discrete logarithm without revealing it. In Odlyzko, A.M., ed.: Advances in
Cryptology—CRYPTO ’86, Springer-Verlag (1987) 200–212

19. Katz, J., Shin, J.: Modeling insider attacks on group key-exchange protocols.
Cryptology ePrint Archive: Report 2005/163 (2005)

Cryptanalysis of Two User Identification
Schemes with Key Distribution Preserving

Anonymity

Eun-Jun Yoon and Kee-Young Yoo�

Department of Computer Engineering, Kyungpook National University,
Daegu 702-701, South Korea

Tel.: +82-53-950-5553; Fax: +82-53-957-4846
ejyoon@infosec.knu.ac.kr, yook@knu.ac.kr

Abstract. In 2004, Wu-Hsu proposed an efficient identification scheme
preserving anonymity. However, Yang et al. showed that Wu-Hsu’s
scheme has a serious weakness, by which the service provider can learn
the secret token of the user who requests services. To overcome this
limitation, they further proposed a scheme to attain the same set of
objectives as the previous works. Nevertheless, the two schemes still have
other serious weaknesses. Accordingly, the current paper demonstrates
the vulnerability of the two schemes. Furthermore, we present a method
to avoid attack.

Keywords: Cryptography, Password, Key establishment, Forward Se-
crecy.

1 Introduction

In distributed computing environments, it is necessary to maintain user
anonymity. That is, only the service provider can identify the user, while no
other entity can determine any information concerning the user’s identity. In
2000, Lee and Chang [1] proposed a user identification scheme based on the se-
curity of the factoring problem [2][3] and the one-way hash function [3][4]. Their
scheme has the following advantages: (1) Users can request services without re-
vealing their identities to the public; (2) Each user needs to maintain only one
secret; (3) It is not necessary for service providers to record the password files
for the users; (4) No master key updating is needed if a new service provider is
added into the system.

However, in 2004, Wu-Hsu (WH) [5] showed that Lee-Chang’s user identifi-
cation scheme is insecure under two attacks. First, when a user requests service
from a service provider, since only one-way authentication of the user is imple-
mented, an attacker can impersonate the service provider; second, if an expired
session key is disclosed, an attacker can break the user anonymity of the corre-
sponding past session. Then they proposed a more efficient identification scheme
� Corresponding author.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 315–322, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

316 E.-J. Yoon and K.-Y. Yoo

preserving the same merits [5]. The WH scheme not only effectively eliminates
the security leaks of the Lee-Chang scheme, it also reduces computational com-
plexities and communication costs.

Recently, Yang et al. (YWBWD) [6] showed that the WH scheme has a
serious weakness, by which the service provider can learn the secret token of the
user who requests services. To overcome this limitation, they further proposed
a scheme to attain the same set of objectives as the previous works.

However, the WH scheme and YWBWD scheme have other serious weak-
nesses. Accordingly, the current paper demonstrates the vulnerability of two
schemes. Using our attacks, we will show that a malicious user (including the
service provider) can easily obtain a specific legal user’s secret token and im-
personate this specific user to request a service from the service provider and
gain access privilege. Additionally, we will show that a malicious user (including
the legal user) can easily get the service provider’s secret token and imperson-
ate this service provider to exchange a common session key with a legal user.
Furthermore, we present an improvement to repair the security flaws of the two
schemes.

This paper is organized as follows: In Section 2, we briefly review the WH
scheme and YWBWD scheme. Section 3 shows the security flaws of two schemes.
In Section 4, we present an improvement of the two schemes. In Section 5,
we analyze the security of our proposed scheme. Finally, our conclusions are
presented in Section 6.

2 Literature Review

This section separately reviews the WH scheme [5] and YWBWD scheme [6].

2.1 WH Scheme

The WH scheme is composed of two phases: key generation and anonymous user
identification.

Key Generation Phase: The key generation phase of the WH scheme, which is
illustrated in Figure 1, is as follows: A smart card producing center (SCPC) first
chooses two large primes p and q, computes N = pq, picks an element g ∈ Z∗

N

and a hash function h(·), and selects e and d such that ed = 1(modφ(N)),
where φ(N)(= (p− 1)(q − 1)) is the Euler totient function. N , e, g and h(·) are
published and d, p, and q are kept secret by SCPC. Then, SCPC sends each
user Ui (or service provider Pi) a secret token Si with a secure channel, where
Si = IDd

i (modN) and IDi is the identity of Ui (or Pi).

Anonymous User Identification Phase: The anonymous user identification
phase of WH scheme, as illustrated in Figure 2, is as follows:

(1) Ui first submits a service request to Pj to request a service from the service
provider Pj .

Cryptanalysis of Two User Identification Schemes 317

SCPC Ui (or Pi)

Choose: p, q IDi←−−−−− Select: IDi

Compute: N = pq

Pick: g ∈ Z∗
N , h()̇

Compute: φ(N) = (p − 1)(q − 1)
Select: e, d (ed = 1(modφ(N)))
Publish: N , e, g, h(·)
Keep secret: d, p, q

Compute: Si = IDd
i (modN) Si−−−−→ Secret token: Si

(Secure Channel)

Fig. 1. Key Generation Phase of WH scheme

(2) After receiving the request, Pj chooses a random number k and computes
z, where z = gkSj(modN). Then, Pj sends z to Ui.

(3) Ui randomly chooses a number t and computes a, x, and y, where a =
ze/IDj(modN), x = Sih(at||T)(modN), y = get(modN), and T is the
timestamp. Then, Ui sends (x, y, T) to Pj .

(4) Finally, Pj checks T and verifies the equality IDi
?=(x/h(yk||T))e(modN).

If it holds for some IDi existing in the identity list, Ui is accepted as an
authorized user and the service request will be granted.

The user and the service provider share common session key as kij = atx =
ykx = gektx(modN), which can be used in subsequent communications for con-
fidentiality.

Ui Pj

(Service
request)−−−−−−→ k ∈ Z∗

N

a ← ze/IDj(modN) z←−−−−−− z ← gkSj(modN)
t ∈ Z∗

N

x ← Sih(at||T)(modN)
y ← get(modN) (x, y,T)−−−−−−→ Check: T

Verify: IDi
?=(x/h(yk||T))e(modN)

Fig. 2. Anonymous User Identification Phase of WH scheme

318 E.-J. Yoon and K.-Y. Yoo

2.2 YWBWD Scheme

To solve the security problem in the WH scheme, Yang et al. proposed an im-
proved version of the WH scheme. The YWBWD scheme is also composed of
two phases; key generation and anonymous user identification.

Key Generation Phase: The key generation phase in the YWBWD scheme
is similar to that of the WH scheme. The key generation phase of YWBWD
scheme, which is illustrated in Figure 3, is as follows: The smart card producing
center (SCPC) first chooses two large primes p and q, computes N = pq, picks
an element g ∈ Z∗

N (which is the generator of both Zp and Zq) and a hash
function h(·), and selects e and d such that ed = 1(modφ(N)), where φ(N)(=
(p − 1)(q − 1)) is the Euler totient function. Note that e must be sufficiently
large, e.g., 160 bits. Additionally, SCPC picks a symmetric-key cryptosystem
such as DES Schneier, 1996, whose encryption function and decryption function
under the private key K are EK(·) and DK(·), respectively. N , e, g, and h(·) are
published and d, p, and q are kept secret by SCPC. Then, SCPC sends each
user Ui (or service provider Pi) a secret token Si with a secure channel, where
Si = IDd

i (modN) and IDi is the identity of Ui (or Pi).

Anonymous User Identification Phase: The anonymous user identification
phase of the YWBWD scheme, which is illustrated in Figure 4, is as follows:

(1) Ui first submits a service request to Pj to request a service from the service
provider Pj .

(2) After receiving the request, Pj chooses a random number k and computes
z, where z = gkS−1

j (modN). Then, Pj sends z to Ui.
(3) Ui randomly chooses a number t and computes a, Kij , x, s, and y, where a =

zeIDj(modN), Kij = at(modN), x = get(modN), s = gtS
h(x,T)
i (modN),

SCPC Ui (or Pi)

Choose: p, q IDi←−−−−− Select: IDi

Compute: N = pq

Pick: g ∈ Z∗
N , h()̇

Compute: φ(N) = (p − 1)(q − 1)
Select: e, d (ed = 1(modφ(N)))
Pick: EK(·), DK(·)
Publish: N , e, g, h(·)
Keep secret: d, p, q

Compute: Si = IDd
i (modN) Si−−−−→ Secret token: Si

(Secure Channel)

Fig. 3. Key Generation Phase of YWBWD scheme

Cryptanalysis of Two User Identification Schemes 319

Ui Pj

(Service
request)−−−−−−→ k ∈ Z∗

N

a ← zeIDj(modN) z←−−−−−− z ← gkS−1
j (modN)

t ∈ Z∗
N

Kij ← at(modN)
x ← get(modN)

s ← gtS
h(x,T)
i (modN)

y ← Kij(IDi) (x, s, y,T)−−−−−−−−→ Check: T

Kij ← xk(modN)
IDi ← DKij (y)

Verify: xID
h(x,T)
i

?= se(modN)

Fig. 4. Anonymous User Identification Phase of YWBWD scheme

y = Kij(IDi), and T is the timestamp. Then, Ui sends (x, s, y, T) to Pj .
Note that Kij is the common session key.

(4) Finally, Pj first checks T . If it is old, Pj aborts the protocol. Otherwise,
Pj obtains the common session key Kij = xk(modN). With Kij , Pj pro-
ceeds to decrypt y as IDi = DKij (y). Pj then checks whether IDi is on
his maintained list. If IDi is a legitimate user, Pj verifies the equality

xID
h(x,T)
i

?= se(modN). If the verification passes, then the service request
is granted. Otherwise, the request is rejected.

The user and the service provider share common session key as kij = at =
xk = gekt(modN), which can be used in the subsequent communications for
confidentiality.

3 Cryptanalysis of Two Schemes

This section show the security flaws of the WH scheme and YWBWD scheme. In
the schemes, an attacker can freely impersonate the users or the service provider.
This happens because an attacker can obtain the secret token Si(Sj) of the user
(or the service provider) after successful execution of the key generation phase.

3.1 Attack to Ui

Suppose user Uf is an attacker who knows the legal user Ui’s IDi. Usually,
because the legal user’s IDi does not require safety, an attacker can easily get
the target user’s IDi by various attack methods, such as stolen-verifier attacks [7]
and server data eavesdropping [8]. For example, service provider Pj is always the
target of attacker, because numerous users’ secrets are stored in their databases.

320 E.-J. Yoon and K.-Y. Yoo

The user ID table list stored in the service provider Pj can be eavesdropped and
then used to impersonate the original user. By using the legal user Ui’s IDi, in
the key generation phase, Uf can register with SCPC as follows:

(1) Uf obtains his/her identity IDf by IDf = ID−1
i and submits IDf as reg-

istration request to SCPC.
(2) SCPC will compute the secret token Sf of Uf by Sf = IDd

f = ID−d
i =

S−1
i (modN) and send Sf to Uf with a secure channel.

As a result, Uf can obtain the secret token Si of the legal user Ui by com-
puting S−1

f = Si(modN). Then, by using the Si, so obtained, Uf can freely
impersonate Ui to request a service from Pj and thus gain access privilege.

3.2 Attack to Pj

Suppose user Uf is an attacker who knows the the service provider Pj ’s IDj. In
the key generation phase, Uf can register with SCPC as follows:

(1) Uf obtains his/her identity IDf by IDf = ID−1
j and submits IDf as reg-

istration request to SCPC.
(2) SCPC will compute the secret token Sf of Uf by Sf = IDd

f = ID−d
j =

S−1
j (modN) and send Sf to Uf with a secure channel.

As a result, Uf can obtain the secret token Sj of the service provider Pj by
computing S−1

f = Sj(modN). Then, by using obtained Sj , Uf can impersonate
Pj and exchange a common session key with legal user Ui.

3.3 Another Attack

As another attack on two schemes, if a malicious Ui or Pj , who knows his/her
Si or Sj , computes his/her new identity IDf by IDf = IDiIDj and resubmits
IDf as a registration request to SCPC. Then, SCPC will compute the secret
token Sf of Uf by Sf = IDd

f = (IDiIDj)d = SjSj(modN) and send Sf to
Uf with a secure channel. Consequently, a malicious Ui can obtain the secret
token Si of the legal user Ui or Sj of the service provider Pj by computing
Si = SfS−1

j (modN) or Sj = SfS−1
i (modN), respectively.

4 Improved Scheme

This section presents a modification of the two schemes to correct the security
flaws described in Section 3.

The proposed scheme employs the concept of hiding identity to prevent from
above attacks. We only modify the key generation phase which issues a “hashed”
identity for every legal user. That is, in the key generation phase, the smart card

Cryptanalysis of Two User Identification Schemes 321

SCPC Ui (or Pi)

Select: IDi

Choose: p, q HIDi←−−−−−− Compute: HIDi = h(IDi)
Compute: N = pq

Pick: g ∈ Z∗
N , h()̇

Compute: φ(N) = (p − 1)(q − 1)
Select: e, d (ed = 1(modφ(N)))
Pick: EK(·), DK(·)
Publish: N , e, g, h(·)
Keep secret: d, p, q

Compute: Si = HIDd
i (modN) Si−−−−→ Secret token: Si

(Secure Channel)

Fig. 5. Proposed Key Generation Phase

producing center (SCPC) sends each user Ui (or service provider Pi) a secret
token Si = HIDd

i (modN) with a secure channel, where HIDi = h(IDi). The
steps of the anonymous user identification phase are retained except that IDi is
replaced by “hashed” identity HIDi, respectively. The proposed key generation
phase is illustrated in Figure 5.

5 Security Analysis

This section discusses the enhanced security features. The rest are the same
as the original YWBWD scheme as described in the literature [6]. Readers are
referred to [6] for completer references.

Definition 1. One-way hash function assumption [3,4,9]: Let h(·) be an one-
way cryptographic hash function, (1) given y, it is computationally intractable to
find x such that y = h(x); (2) it is computationally intractable to find x1 �= x2
such that h(x1) = h(x2).

Theorem 1. In the proposed key generation phase, an illegal user cannot get
the legal user or service provider’s secret token Si.

Proof. The attacks on WH scheme and YWBWD scheme works because a
malicious user can successfully register a new IDf via IDi or IDj in the
key generation phase. In our improved key generation phase, since the for-
mat of HIDd

f = h(ID−1
i)d(modN) (or h(IDiIDj)d(modN)) is not equal to

IDd
f = ID−d

i (modN) (or SiSj(modN)), a malicious user cannot get the legal
user or service provider’s secret token Si. Therefore, the proposed scheme can
correct the security flaws described in Section 3.

322 E.-J. Yoon and K.-Y. Yoo

6 Conclusions

The current paper demonstrated the security flaws of the WH user identifica-
tion scheme and YWBWD user identification scheme. Using our attacks, we
have shown that a malicious user (including a service provider) can easily get
a specific legal user’s secret token and impersonate this specific user to request
a service from the service provider and gain access privilege. Additionally, we
have shown that a malicious user (including the legal user) can easily get the
service provider’s secret token and impersonate this service provider to exchange
a common session key with a legal user. For the above attacks, we presented an
improvement to repair the security flaws of the two schemes.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments in
improving our manuscript. This research was supported by the MIC (Ministry of
Information and Communication), Korea, under the ITRC (Information Tech-
nology Research Center) support program supervised by the IITA (Institute of
Information Technology Assessment).

References

1. Lee, W.B., Chang, C.C.: User Identification and Key Distribution Maintaining
Anonymity for Distributed Computer Network. Computer Systems Science and En-
gineering. Vol. 15. No. 4. (2000) 113-116

2. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signature and
Public-key Cryptosystem. Commun ACM. Vol. 21. No. 2. (1978) 120-126

3. Schneier, B.: Applied Cryptography. 2nd ed. John Wiley & Sons. Inc. (1996)
4. Diffie, W., Hellman, M.: New Directions in Cryptography. IEEE Trans Inf Theory.

Vol. 22. No. 6. (1976) 644-654
5. Wu, T.S., Hsu, C.L.: Efficient User Identification Scheme with Key Distribution

Preserving Anonymity for Distributed Computer Networks. Computer & Security.
Vol. 23. No. 2. (2004) 120-125

6. Yang, Y.J., Wang, S.H., Bao, F., Wang, J., Deng, R.H.: New Efficient User Iden-
tification and Key Distribution Scheme Providing Enhanced Security. Computer &
Security. Vol. 23. No. 8. (2004) 697-704

7. Lin, C.L., Hwang, T.: A Password Authentication Scheme with Secure Password
Updating. Computers & Security. Vol. 22. No. 1. (2003) 68-72

8. Yang. C.C., Chang. T.Y., Li, J.W.: Security Enhancement for Protecting Password
Transmission. IEICE Transactions on Communications. Vol. E86-B. No. 7. (July
2003) 2178-2181

9. Menezes, A.J., Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptograph.
CRC Press. New York. (1997)

Enhanced ID-Based Authenticated Key Agreement
Protocols for a Multiple Independent PKG

Environment�

Sangjin Kim1, Hoonjung Lee2, and Heekuck Oh3

1 Korea University of Technology and Education,
School of Information and Media Engineering, Republic of Korea

sangjin@kut.ac.kr
2 HANDAN BroadInfoCom, Republic of Korea

hjlee@handan.co.kr
3 Hanyang University, Department of Computer Science and Engineering, Republic of Korea

hkoh@cse.hanyang.ac.kr

Abstract. In 2005, Lee et al. proposed an ID-based 2-party key agreement pro-
tocol between users whose private keys were issued by independent PKGs that
do not share any system parameters. This work was the first kind that assumes
completely independent multiple PKG environment. However, Lee et al. proto-
col has a flaw that allows attackers to impersonate others without knowing their
private keys. In this paper, we propose a modification to the protocol of Lee et
al. that prevents impersonation attacks. We also show a simple technique that can
improve the efficiency of tripartite key agreement protocol of Lee et al. We also
provide analysis of the security and efficiency of the proposed protocols.

Keywords: ID-based cryptosystem, key agreement protocol, multiple PKG
environment.

1 Introduction

Key establishment protocols are widely used to share a common secret key between
entities. This secret key is normally used as a session key to construct a secure channel
between the entities involved. Key establishment protocols can be subdivided into key
transport protocols and key agreement protocols. In a key transport protocol, one of the
participants creates the shared key and distributes it to others securely. On the other
hand, in a key agreement protocol, each entity computes the common secret key using
the information contributed by all the entities involved. In this paper, we are concerned
with key agreement protocols. The famous Diffie and Hellman [1] key agreement pro-
tocol suffered from the man-in-the-middle-attack, which is due to the fact that entities
involved are not authenticated. In short, an authenticated key agreement protocol is
denoted as AK protocol.

In 1984, Shamir introduced the concept of ID-based public key cryptosystem [2]. In
these systems, public keys of users’ are derived from their well-known unique identity

� This work was supported by the Ministry of Information and Communication, Korea, under
the HNRC-ITRC support program supervised by the IITA.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 323–335, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

324 S. Kim, H. Lee, and H. Oh

information such as an email address. In ID-based cryptosystem, a trusted authority
called the PKG (Private Key Generator) generates user’s private keys using the master
key of the system. Therefore, the PKG can inherently decrypt any ciphertext or forge
signatures of any users’. To overcome this problem, many schemes use multiple PKGs
in a threshold manner. In 2001, Boneh and Franklin proposed a practical ID-based en-
cryption scheme based on the Weil pairing [3]. Since then, most researches on ID-based
cryptosystem are based on pairings.

ID-based 2-party AK protocol was first proposed by Smart in 2001 [4]. This protocol
is based on Boneh and Franklin’s work and requires two pairing computations by each
user to compute the session key. Smart’s protocol, however, does not satisfy the PKG
forward secrecy. In 2003, Chen and Kudla [5] introduced a new ID-based 2-party AK
protocol that provided the PKG forward secrecy and reduced the pairing computation
done by each user to one. In the same paper, they also extended Smart’s protocol to a
multiple PKG environment where users who acquired their private keys from different
PKGs can share a common key. In this protocol, although every PKG uses distinct mas-
ter key, they share common system parameters. In 2005, Lee et al. proposed ID-based
2-party AK protocol for a multiple independent PKG environment, where PKGs do not
share common system parameters [6]. This protocol, however, has a serious flaw that
allows attackers to impersonate others freely. Research on tripartite AK protocol was
initiated by Joux in 2000 [7]. A first ID-based tripartite AK protocol was introduced
by Zhang et al. in 2002 [8]. Shim [9] proposed another ID-based tripartite AK protocol
that requires less computation than Zhang et al.’s in 2003. In 2005, Lee et al. proposed
an ID-based tripartite AK protocol for a completely independent multiple PKG envi-
ronment [6]. The protocol, however, uses 2-party protocol that has a flaw.

In ID-based cryptosystems, users acquire their private keys from the PKG. A single
PKG may be responsible for issuing private keys to members of a small-scale organi-
zation, but it is unrealistic to assume that a single PKG will be responsible for issuing
private keys to members of different organizations. Furthermore, it is also unrealistic
to assume that different PKGs will share common system parameters and differ only in
the master key as assumed by Chen and Kudla [5]. Some argue that standardized sys-
tem parameters can be shared by distinct PKGs. This assumption, however, is still too
limited. Therefore, in this paper, we consider a completely independent multiple PKG
environment, where all the PKGs use different system parameters.

To date, most of the ID-based AK protocols are based on a single PKG environ-
ment [4, 8, 9]. As we will explain in section 4, it is not fairly straightforward to extend
these protocols to a setting where multiple independent PKGs exist. In 2005, Lee et
al. proposed ID-based 2-party and tripartite AK protocols for this setting [6]. However,
there is a critical flaw that allows attackers to impersonate others freely. In this paper,
we propose a modification to the protocol of Lee et al. that preserves the efficiency but
removes the flaw of the original protocol. We also show a simple way of improving the
efficiency of tripartite AK protocol of Lee et al. The proposed 2-party and tripartite AK
protocols requires only two and four pairing computations for each users, respectively.
Therefore, only one more additional pairing computation is required compared to the
most efficient protocols for a single PKG environment.

Enhanced ID-Based Authenticated Key Agreement Protocols 325

2 Security Attributes of Key Agreement Protocol

The followings are the security requirements of key agreement protocols, some of which
are specific to only ID-based AK protocols.

– Known-key security: Each run of the key agreement protocol should generate an
unique and independent session key. An adversary must have negligible advantage
on compromising future session keys, even though it has compromised past session
keys.

– Forward secrecy: An adversary must have negligible advantage on compromising
past session keys, even though it has compromised long-term private keys of one
or more participants. The notion of forward secrecy can be further extended to the
following two types of secrecy.
• Perfect forward secrecy: The forward secrecy must be preserved even if long-

term private keys of all the participants involved are compromised.
• PKG forward secrecy: The forward secrecy must be preserved even if the

master key of the PKG is compromised.
– Key-compromise resilience: An adversary must have negligible advantage on im-

personating others to A, even if it has compromised A’s private key.
– Unknown key share resilience: An adversary must have negligible advantage on

coercing others into sharing a key with other entities when it is actually sharing
with a different entity.

– Key control: An adversary must have negligible advantage on forcing the session
key to be a pre-selected value.

3 Mathematical Background

From now on, we will use the following notations: 1) q is a large prime number, 2)
G1 and G2 are two groups with the same order q, where G1 is an additive group on
an elliptic curve, and G2 is a multiplicative group of a finite field, 3) P , Q, and R are
random elements of G1, and 4) a, b, and c are random elements of Z∗

q .

Definition 1 (Admissible Bilinear Map). A map ê : G1 × G1 → G2 is an admissible
bilinear map if and only if it satisfies the following properties.

– Bilinear: Given P , Q, and R, the followings hold.
• ê(P + Q, R) = ê(P, R) · ê(Q, R)
• ê(P, Q + R) = ê(P, Q) · ê(P, R)

– Non-degenerate: The map does not send all pairs in G1×G1 to the identity in G2.
– Computable: There exists an efficient algorithm to compute ê(P, Q) for all P, Q ∈

G1

Definition 2 (Discrete Logarithm Problem (DLP) in G1). DLP is as follows: Given
〈P, aP 〉, compute a ∈ Zq .

Definition 3 (Computational Diffie-Hellman Problem (CDHP) in G1). CDHP is as
follows: Given 〈P, aP, bP 〉, compute abP ∈ G1.

326 S. Kim, H. Lee, and H. Oh

User A User B
a ∈ Z

∗
q , WA = aP WA−−−−−−−−−−−−−→ b ∈ Z

∗
q , WB = bP

KAB = ê(aQB, Ppub)ê(SA, WB) WB←−−−−−−−−−−−−− KBA = ê(bQA, Ppub)ê(SB, WA)
SK = H3(KAB) SK = H3(KBA)

Fig. 1. Smart’s 2-Party ID-based AK Protocol

Definition 4 (Bilinear Diffie-Hellman Problem (BDHP) in G1 and G2). BDHP is as
follows: Given 〈P, aP, bP, cP 〉, compute ê(P, P)abc ∈ G2.

Currently, solving DLP, CDHP, and BDHP is computationally infeasible. For more
detail, refer to [3].

4 Difficulty of Designing ID-Based AK Protocols for a Multiple
PKG Environment

In this section, we will use the following notations additionally to the notations defined
in section 3. 1) g is a generator of G2. 2) The PKG’s master key is s ∈ Z∗

q and the
corresponding public key is Ppub = sP . 3) IDA denotes the identity of the user A. 4)
QA = H1(IDA) is the public key of the user A and SA = sQA is the corresponding
private key, where H1 : {0, 1}∗ → G1 is a collision-resistant hash function. 5) H2 :
{0, 1}∗ → Z∗

q and H3 : {0, 1}∗ → {0, 1}k are also collision-resistant hash functions.
Diffie-Hellman key agreement protocol can be easily converted to an elliptic curve

version by exchanging aP , bP and using abP as the session key. However, this naive
version also suffers from the man-in-the-middle attack. To counter this problem, user
A could send VA = H2(WA)SA + aPpub, which is a digital signature on WA = aP to
user B, with WA. B can verify VA by testing whether ê(VA, P) equals ê(H2(WA)QA+
WA, Ppub). This kind of protocol requires two pairing computations per each user and
the bandwidth of each message is two elliptic curve points.

There is an another way to counter the man-in-the-middle attack which do not require
digitally signing the values exchanged. In this method, the session key is generated in
a way that only the legitimate users can create it. Fig 1 shows the Smart’s protocol that
uses such method [4]. This protocol requires the same amount of pairing computation as
the protocol using signatures. However, it is more efficient with respect to the message
bandwidth. The drawback of this protocol is that the PKG can always compute the
session key using KAB = ê(SA, WB)ê(SB , WA).

Chen and Kudla [5] proposed an ID-based AK protocol depicted in Fig 2. This pro-
tocol requires only a single pairing computation per each participant and provides the
PKG forward secrecy. However, two elliptic curve points are exchanged compared to
one in Smart’s. The PKG forward secrecy is satisfied by computing the session key SK
using the additional input abP . Although, the PKG can compute the other input using
KAB = ê(QA, WB)sê(QB , WA)s, it cannot compute abP due to the infeasibility of

Enhanced ID-Based Authenticated Key Agreement Protocols 327

User A User B
a ∈ Z

∗
q , WA = aP b ∈ Z

∗
q , WB = bP

TA = aQA WA, TA−−−−−−−−−−−−−→ TB = bQB

KAB = ê(SA, TB + aQB) WB, TA←−−−−−−−−−−−−− KBA = ê(SB , TA + bQA)

SK = H3(KAB||abP) SK = H3(KBA||abP)

Fig. 2. Chen and Kudla’s 2-Party AK Protocol for a single PKG environment

User A User B
a ∈ Z

∗
q , WA = aP WA−−−−−−−−−−−−−→ b ∈ Z

∗
q , WB = bP

KAB = ê(SA, WB)ê(QB , aP 2
pub) WB←−−−−−−−−−−−−− KBA = ê(SB , WA)ê(QA, bP 1

pub)
SK = H3(KAB ||abP) SK = H3(KBA||abP)

Fig. 3. Chen and Kudla’s 2-Party AK Protocol for a multiple PKG environment

CDHP. They also proposed a 2-party protocol for a multiple PKG environment shown
in Fig 3. They, however, assumed that PKGs share system parameters and differ only in
their master keys. In this protocol, the master key of PKG1 and PKG2 are s1 ∈ Z∗

q and
s2 ∈ Z∗

q , and the corresponding public keys are P 1
pub = s1P and P 2

pub = s2P , respec-
tively. The user A and B acquired his/her private key SA = s1QA and SB = s2QB

from PKG1 and PKG2, respectively. If the PKG1 and PKG2 do not share system para-
meters, we cannot directly apply this protocol due to the fact that the order of the group
used by each environment is different.

In 2005, Lee et al. proposed an ID-based 2-party AK protocol depicted in Fig 4
for a multiple independent PKG environment [6]. The superscript (1) and (2) denotes
that the values are suitable for the environment of the PKG1 and PKG2, respectively.
If the both parties follow the protocol, no attack on this protocol is possible as was
argued in their paper. However, an attacker who does not know the private key of A can
impersonate A by sending W

′(1)
A = a(1)P (1) instead of W

(1)
A = a(1)P

(1)
pub. In this case,

the two input values of the session key becomes K
(1)
BA = ê(1)(Q(1)

A , P (1))a(1)b(1) and

K
(2)
BA = ê(2)(Q(1)

B , P (2))a(2)b(2)s(2)
, which can be computed by the attacker. This attack

is possible due to the fact that B cannot verify the structure of the values exchanged.
Using a multiplicative group of a finite field, it is difficult for three parties to agree

on a key of the form gabc. However, using the bilinear property of a bilinear map, it is
straightforward for three parties to agree on a key of the form gabc. For example, as pro-
posed by Joux [7], we can construct a tripartite key agreement protocol by exchanging
aP , bP , and cP , and use ê(bP, cP)a = ê(P, P)abc as the session key. However, since
the values exchanged are not authenticated, the protocol will also be susceptible to the
man-in-the-middle attack. To counter this attack, we could digitally sign the values
exchanged or apply the Smart’s approach. However, in the latter case, it is difficult to

328 S. Kim, H. Lee, and H. Oh

User A User B

a(1) ∈ Z
∗
q(1) , a

(2) ∈ Z
∗
q(2) b(1) ∈ Z

∗
q(1) , b

(2) ∈ Z
∗
q(1) ,

T
(2)
A = a(2)P (2), W

(1)
A = a(1)P

(1)
pub T

(2)
A , W

(1)
A−−−−−−−−−−−−−→ T

(1)
B = b(1)P (1), W

(2)
B = a(2)P

(2)
pub

K
(1)
AB = ê(1)(a(1)S

(1)
A , T

(2)
B) T

(1)
B , W

(2)
B←−−−−−−−−−−−−− K

(1)
BA = ê(1)(b(1)Q

(1)
A , W

(1)
A)

K
(2)
AB = ê(2)(a(2)Q

(1)
B , W

(2)
A) K

(2)
BA = ê(2)(b(2)S

(2)
B , T

(2)
A)

SK = H3(K
(1)
AB ||K(2)

AB) SK = H3(K
(1)
BA||K(1)

BA)

Fig. 4. Lee et al. 2-Party Key Agreement Protocol for a multiple PKG environment

Message 1. A → B, C : WA = aP, VA = H2(WA)SA + aPpub

Message 2. B → A, C : WB = bP, VB = H2(WB)SB + bPpub

Message 3. C → A,B : WC = cP, VC = H2(Wc)SC + cPpub

A : ê(P, VB + VC) ?= ê(Ppub, H2(WB)QB + H2(WC)QC + WB + WC)
SK = H3(ê(WB, WC)a) = H3(ê(P, P)abc)

Fig. 5. Shim’s Tripartite Key Agreement Protocol

devise a pairing equation that can be computed only by the three legitimate participants.
In the former case, it requires basically 4 pairing computation to verify signatures on
two values, and one more pairing computation to compute the session key. As a result,
total 5 pairing operations is needed.

In a single PKG environment, we can reduce the pairing computations required to
verify the signature of two values in a single pairing equation as was done by Shim [9].
The protocol proposed by Shim is depicted in Fig 5. We only show how A computes
his/her session key. This reduction technique, however, cannot be applied to multiple
PKG environment, where PKGs do not share the system parameters. As a result, in
such environment, the minimum pairing computation required will be five per each
user. We could also think of using the 2-party AK protocols in tripartite AK protocols.
For example, we could first run 2-party AK protocols between A and B, A and C, and
B and C. Then combine the resulting three keys into a single key. However, A cannot
obtain the shared key between B and C, if it is not explicitly sent to him/her. Therefore,
two runs are required to use this approach. Lee et al. used this approach [6].

5 The Enhanced Protocols

5.1 System Setup

The system setup phase is similar to that of Lee et al. [6]. The n different PKGs, which
do not share common system parameters configure their parameters as follows.

Enhanced ID-Based Authenticated Key Agreement Protocols 329

– PKGi chooses its basic system parameter: 〈G(i)
1 , G

(i)
2 , ê(i)〉, where G

(i)
1 is an addi-

tive group of order q(i), G
(i)
2 is a multiplicative group of the same order q(i), and

ê(i) is admissible bilinear map between G
(i)
1 and G

(i)
2 .

– PKGi chooses P (i), a random generator of G
(i)
1 . It also chooses a collision-resistant

hash functions H
(i)
1 : {0, 1}∗ → G

(i)
1 .

– Finally, PKGi randomly chooses its master key s(i) ∈ Z∗
q(i) . It also computes the

corresponding public key P
(i)
pub = s(i)P (i).

After completing the system setup phase, each PKG publishes its public system pa-
rameters: 〈q(i), G

(i)
1 , G

(i)
2 , P (i), P

(i)
pub, H

(i)
1 , ê(i)〉. We assume that all users agree on the

hash function H3 : {0, 1}∗ → {0, 1}k used to compute the resulting session key, where
k is the length of the session key.

User A User B

a(1) ∈ Z
∗
q(1) , a

(2) ∈ Z
∗
q(2) b(1) ∈ Z

∗
q(1) , b

(2) ∈ Z
∗
q(1) ,

W
(1)
A = a(1)P (1), W

(2)
A = a(2)P (2) W

(1)
A , W

(2)
A−−−−−−−−−−−→ W

(1)
B = b(1)P (1), W

(2)
B = a(2)P (2)

K
(1)
AB = ê(1)(S(1)

A , W
(1)
B) W

(1)
B , W

(2)
B←−−−−−−−−−−− K

(1)
BA = ê(1)(Q(1)

A , b(1)P
(1)
pub)

K
(2)
AB = ê(2)(Q(2)

B , a(2)P
(2)
pub) K

(2)
BA = ê(2)(S(2)

B , W
(2)
A)

SK = H3(K
(1)
AB ||a(1)W

(1)
B || SK = H3(K

(1)
BA||b(1)W

(1)
A ||

K
(2)
AB||a(2)W

(2)
B) K

(2)
BA||b(2)W

(2)
A)

Fig. 6. The 2PAK-MPE Protocol

5.2 The 2PAK-MPE Protocol

In this section, we will introduce a new ID-based 2-party key agreement protocol which
removes the flaw in Lee et al. [6] protocol. We will refer to this protocol as 2PAK-
MPE(2-Party Authenticated Key agreement protocol for Multiple independent PKG
Environment). This protocol is performed between two entities A and B who have
acquired their private key from PKG1 and PKG2, respectively. For example, the public
key of A is Q

(1)
A = H

(1)
1 (IDA) and the corresponding private key is S

(1)
A = s(1)Q

(1)
A ,

where IDA is the identity of A. We assume that there is an efficient way to acquire
authenticated system parameters of PKGi and users knows the other party’s ID and
system parameters before running the protocol. Our 2PAK-MPE protocol is depicted in
Fig 6. The W

(1)
A , W (2)

A of A, W (1)
B , W (2)

B of B can be pre-computed before the protocol

run. The inclusion of a(1)W
(1)
B , a(2)W

(2)
B , b(1)W

(1)
A , and b(2)W

(2)
A in SK is to provide

the PKG forward secrecy. This idea is from Chen and Kudla’s [5]. We can show that
both participant have agreed on the same session key SK by the followings:

330 S. Kim, H. Lee, and H. Oh

Message 1. A → B, C : W
(1)
A = a(1)P (1), W

(2)
A = a(2)P (2), W

(3)
A = a(3)P (3)

Message 2. B → A,C : W
(1)
B = b(1)P (1), W

(2)
B = b(2)P (2), W

(3)
B = b(3)P (3)

Message 3. C → A, B : W
(1)
C = c(1)P (1), W

(2)
C = c(2)P (2), W

(3)
C = c(3)P (3)

Fig. 7. The First Round of 3PAK-MPE

K
(1)
AB = ê(1)(S(1)

A , W
(1)
B) K

(2)
AB = ê(2)(Q(2)

B , a(2)P
(2)
pub)

= ê(1)(s(1)Q
(1)
A , b(1)P (1)) = ê(2)(Q(2)

B , a(2)s(2)P
(2)
pub)

= ê(1)(Q(1)
A , P (1))s(1)b(1) = ê(2)(Q(2)

B , P (2))s(2)a(2)

= ê(1)(Q(1)
A , b(1)s(1)P (1)) = ê(2)(s(2)Q

(2)
B , a(2)P (2))

= ê(1)(Q(1)
A , b(1)P

(1)
pub) = ê(2)(S(2)

B , W
(2)
A)

= K
(1)
BA, = K

(2)
BA.

It is clear that this protocol is a role symmetric protocol. A key agreement protocol is
referred to as role symmetric if the entities involved executes the same operations.

5.3 The 3PAK-MPE Protocol

In this section, we introduce our new ID-based tripartite key agreement protocol called
the 3PAK-MPE. We assume that there are three participants A, B, and C, who have
acquired their private key from PKG1, PKG2, and PKG3, respectively. The notations
used here are the same as the ones used in describing the 2PAK-MPE. The protocol
is divided into two discrete rounds. In the first round, each entity constructs separate
secure and authenticated channels between each other. To achieve this goal, every en-
tity performs 2PAK-MPE with each other individually. We use this method to exploit
our 2PAK-MPE protocol and to reduce the required computation while sacrificing the
required bandwidth. In the second round, each entity exchanges contributions that are
used to compute the session key. These contributions are exchanged in a ciphertext
constructed using the key obtain from running 2PAK-MPE.

The First Round. In this protocol, each user chooses three ephemeral key from each
environment. For example, A chooses a(1) ∈ Z∗

q(1) , a(2) ∈ Z∗
q(2) , and a(3) ∈ Z∗

q(3) . The
messages exchanged in the first round is depicted in Fig 7. After exchanging messages
depicted in Fig 7, each entity computes the partial session keys. In detail, A computes
partial keys KAB and KAC , which are used to construct a secure channel between A
and B and A and C, respectively, as follows:

KAB = H3(ê(1)(S(1)
A , W

(1)
B)||a(1)W

(1)
B ||ê(2)(Q(2)

B , a(2)P
(2)
pub)||a(2)W

(2)
B),

KAC = H3(ê(1)(S(1)
A , W

(1)
C)||a(1)W

(1)
C ||ê(3)(Q(3)

C , a(3)P
(3)
pub)||a(3)W

(3)
C).

Similarly, B and C also computes its partial session keys as follows:

KBA = H3(ê(1)(Q(1)
A , b(1)P

(1)
pub)||b(1)W

(1)
A ||ê(2)(S(2)

B , W
(2)
A)||b(2)W

(2)
A),

KBC = H3(ê(2)(S(2)
B , W

(2)
C)||b(2)W

(2)
C ||ê(3)(Q(3)

C , b(3)P
(3)
pub)||b(3)W

(3)
C),

Enhanced ID-Based Authenticated Key Agreement Protocols 331

Message 1. A → B, C : {RA}KAB , {RA}KAC

Message 2. B → A,C : {RB}KBA , {RB}KBC

Message 3. C → A, B : {RC}KCA , {RC}KCB

Fig. 8. The Second Round of 3PAK-MPE

KCA = H3(ê(1)(Q(1)
A , c(1)P

(1)
pub)||c(1)W

(1)
A ||ê(3)(S(3)

C , W
(3)
A)||c(3)W

(3)
A),

KCB = H3(ê(2)(Q(2)
B , c(2)P

(2)
pub)||c(2)W

(2)
B ||ê(3)(S(3)

C , W
(3)
B)||c(3)W

(3)
B).

At the end of this round, each entity obtains two session keys that can be used between
other entities involved.

The Second Round. In the second round, each entity exchanges the contributions that
will be used to compute the final session key. The message exchanged in this round
is given in Fig 8. Here, RA, RB , and RC denotes nonces chosen by each user, and
{M}K denotes encryption of M using the symmetric key K . Since the values are ex-
changed with a shared key, each user can be confident that these values are from the
corresponding users. We could also include some redundancy in the encrypted mes-
sage, for example {RA||QA||QB}KAB , to allow each user to verify that the correct
keys were used in each encryption. After exchanging the messages, A, B, and C com-
putes the session key as SK = H3(RA||RB||RC). Generally, a session key resulting
from a tripartite AK protocol using pairing is ê(P, P)abc. We deliberately did not use
this form to reduce the required number of pairing computation. If all three entities are
from different environment, it may be difficult to agree on the common P .

6 Analysis

In this section, we analyze the security and the efficiency of the proposed protocols. We
first heuristically argue that our protocols satisfy the security requirements of the AK
protocols. We then discuss the efficiency of our protocols by comparing the number of
pairing computations required with other ID-based AK protocols.

6.1 Security Analysis

We only discuss the security of 2PAK-MPE protocol. Since the 3PAK-MPE uses the
2PAK-MPE, the security of 3PAK-MPE depends on 2PAK-MPE. If 2PAK-MPE proto-
col is secure, it is computationally infeasible for an attacker to obtain the contributions,
which are exchanged encrypted using the keys obtained from 2PAK-MPE, used to com-
pute the final session key.

Lemma 1. Only the legitimate participants of 2PAK-MPE can compute the resulting
session key of 2PAK-MPE.

332 S. Kim, H. Lee, and H. Oh

Proof. The publicly available values are as follows:

Q
(1)
A , Q

(2)
B , s(1)P (1), s(2)P (2), a(1)P (1), a(2)P (2), b(1)P (1), and b(2)P (2).

We can subdivide the possible attackers into passive attackers and active attackers. We
will first consider the following four types of passive attackers.

– Type 1. This type of attacker only knows the publicly available information. To
compute K

(1)
AB , the attacker needs to obtain b(1) from b(1)P (1), s(1) from s(1)P (1),

S
(1)
A , or compute b(1)P

(1)
pub from b(1)P (1) and s(1)P (1). If the attacker can obtain b(1)

or s(1), he/she can compute K
(1)
AB = ê(1)(Q(1)

A , P
(1)
pub)

b(1) = ê(1)(Q(1)
A , b(1)P (1))s(1)

.
However, obtaining these values are computationally infeasible due to the DLP
in G1. Furthermore, computing b(1)P

(1)
pub is computationally infeasible due to the

CDHP in G1.
– Type 2. This type of attacker knows the master key of both PKGs and the pub-

licly available information. This means the attacker knows both s(1) and s(2). As
a result, this type of attacker can compute K

(1)
AB = ê(1)(Q(1)

A , b(1)P (1))s(1)
and

K
(2)
AB = ê(1)(Q(2)

B , a(2)P (2))s(2)
. However, to compute the final session key, the

attacker must be able to compute a(1)W
(1)
B or b(1)W

(1)
A and a(2)W

(2)
B or b(2)W

(2)
A .

Computing these values are computationally infeasible due to the CDHP in G1.
– Type 3. This type of attacker knows the ephemeral key of one of the participants

and the publicly available information. For example, if the attacker, knows a(1)

and a(2), he/she can compute K
(2)
AB = ê(2)(Q(2)

B , P
(2)
pub)

a(2)
. However, this attacker

needs to obtain b(1) from b(1)P (1), s(1) from s(1)P (1), S
(1)
A , or compute b(1)P

(1)
pub

from b(1)P (1) and s(1)P (1) to compute K
(1)
AB. This is identical situation to an at-

tacker of type 1.
– Type 4. This type of attacker knows the private key of one of the participants as

well as the ephemeral key of the opposite participant. Let’s assume the attacker
knows S

(1)
A , b(1), and b(2) in addition to the publicly available information. This

attacker can obviously compute K
(1)
AB = ê(1)(S(1)

A , W
(1)
B). However, with respect

to computing K
(2)
AB , the additional values S

(1)
A , b(1), and b(2) does not help the

attacker in any way. The attacker needs a(2), s(2), a(2)P
(2)
pub or, S

(2)
B to compute

this value. Obtaining the first two values and the third value are computationally
infeasible due to DLP in G1 and CDHP in G1, respectively.

Now, we will consider active attackers. This type of attacker can alter the message and
may not follow the protocol specification. One possible attack is sending P (i), a(i)P

(i)
pub,

or a(i)Q
(i)
A instead of the original form a(i)P (i). Since the recipient cannot verify the

form, this attack will not be detected. However, since K
(1)
BA = ê(1)(Q(1)

A , b(1)P
(1)
pub) is

computed without using any of the values received, this attack does not affect K
(1)
BA.

Moreover, as argued in passive attacker of type 1, it is computationally infeasible for an
active attacker to compute K

(1)
BA using only the publicly available information. There-

fore, an active attacker cannot share a key with a legitimate user by modifying the values

Enhanced ID-Based Authenticated Key Agreement Protocols 333

exchanged. From these arguments, this protocol is secure with respect to both passive
and active attackers. ��

1. Known-key security: In our protocol, ephemeral keys such as a(i) and b(i) are used
to construct the session key. As a result, each run of the protocol creates unique ses-
sion key that is independent of past or future session keys. Therefore, compromise
of past session keys do not affect the security of future session keys.

2. PKG forward secrecy: To satisfy PKG forward secrecy, the compromise of master
keys of PKG1 and PKG2 must not affect the security of past session keys. This
secrecy corresponds to a passive attacker of type 2 discussed in Lemma 1. As a
result, it is computationally infeasible to compute the resulting session key, even if
an attacker obtains the master keys of both PKGs.

3. Key-compromise resilience: This resilience corresponds to a passive attacker of
type 4 and active attackers discussed in Lemma 1. As a result, it is computationally
infeasible for an attacker to impersonate others to A, even if the private key of A is
known to the attacker.

4. Unknown key-share resilience: This resilience corresponds to a passive attacker
of type 4 and active attackers discussed in Lemma 1. As a result, it is computation-
ally infeasible for an attacker to deceive a party into falsely believing the identity
of the opposite party in concern.

5. Key control: Since each party contributes a fresh ephemeral key as one of the input
used to compute the session key, one of the party cannot force the session key to be
some pre-selected value.

6. Man-in-the-middle-attack: If an attacker intercepts the two messages and sends
W

(1)
C = c(1)P (1), W (2)

C = c(2)P 2 to A, the computed partial key will be as follows:

K
(1)
AC = ê(1)(S(1)

A , W
(1)
C) = ê(1)(Q(1)

A , P (1))c(1)s(1)
,

K
(2)
AC = ê(2)(Q(2)

B , a(2)P
(2)
pub) = ê(2)(Q(2)

B , P (2))a(2)s(2)
.

This type of attacker has the same amount of information as a passive attacker
of type 3 discussed in Lemma 1. As a result, although the attacker can compute
K

(1)
AC = ê(1)(Q(1)

A , P
(1)
pub)

c(1)
, it is computationally infeasible for the attacker to

compute K
(2)
AC .

6.2 Efficiency Analysis

In this subsection, since pairing computation out weigh other computations, we first
compare our protocol with others using the number of pairing computations required.
In Table 1, we compare our 2PAK-MPE with Chen and Kudla’s protocol given in Fig 2
and Fig 3. We can see that the efficiency of our protocol is equal to Chen and Kudla’s
even though in our setting each PKGs uses different system parameters. In Table 2, we
compare our 3PAK-MPE protocol with Shim’s protocol given in Fig 5 and a hypothet-
ical protocol for a multiple PKG environment. In the hypothetical protocol, we assume
that the users have agree on which P (i) to use in advance. Our protocol requires only
one more computation than Shim’s even though our protocol is for a multiple PKG en-
vironment. Furthermore, it is more efficient than the hypothetical protocol. With respect

334 S. Kim, H. Lee, and H. Oh

Table 1. Comparison of pairing computation in two-party AK protocol

protocol
single PKG environment multiple PKG environment
pairing(each) pairing(all) pairing(each) pairing(all)

Chen and Kudla’s protocol 1 2 2∗ 4
2PAK-MPE protocol 2∗∗ 4

*: each PKG shares the common system parameters but has distinct master key.
**: each PKG uses different system parameters.

Table 2. Comparison of pairing computation in tripartite key agreement protocol

protocol
single PKG environment multiple PKG environment
pairing(each) pairing(all) pairing(each) pairing(all)

Shim’s protocol 3 9
a hypothetical protocol∗ 5 15
3PAK-MPE protocol 4 12

*: a direct extension of Shim’s to a multiple independent PKG environment with the final session

key of the form ê(i)(P (i), P (i))a(i)b(i)c(i) .

to message bandwidth, both 2PAK-MPE and Chen and Kudla’s exchanges two elliptic
curve points per message. 3PAK-MPE requires three elliptic curve points per message
whereas four points are exchanged in the hypothetical protocol. However, 3PAK-MPE
consists of two separate rounds, whereas only one round is needed in the hypothetical
protocol.

7 Conclusion

In this paper, we provide a modification to Lee et al.’s ID-based AK protocols for a
completely independent multiple PKG environment. The original 2-party AK protocol
contains a flaw that allow attackers to impersonate others freely. We believe that we
have successfully removed this flaw, while preserving the efficiency of the original.
We have also showed a very simple way to reduce the amount of pairing computations
required in tripartite AK protocols. As a result, the efficiency of our protocols are similar
to previous ID-based AK protocols for a single PKG environment. Lastly, we have
provided a more detail analysis of security of the proposed protocols.

References

1. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Trans. on Information The-
ory, Vol. 22, No. 6. IEEE Press (1976) 664–654

2. Shamir, A.: Identity-based Cryptosystems and Signature Schemes. Advances in Cryptology,
Crypto 1984. Lecture Notes in Computer Science, Vol. 196. Springer (1985) 47–53

Enhanced ID-Based Authenticated Key Agreement Protocols 335

3. Boneh, D., Franklin, M.: Identity-based Encryption from the Weil pairing. Advances in Cryp-
tology, Crypto 2001. Lecture Notes in Computer Science, Vol. 2139. Springer (2001) 213–229

4. Smart, N.: An Identity-based Authenticated Key Agreement Protocol Based on Weil Pairing.
Electronic Letters, Vol. 38, No. 13. IEE Press(2002) 630–632

5. Chen, L., Kudla, C.: Identity-based Authenticated Key Agreement Protocols from Pairings.
Proc. of the 16th IEEE Computer Security Foundations Workshop. IEEE Press (2003) 219–
233

6. Lee, H., Kim, D., Kim, S., Oh, H.: Identity-based Key Agreement Protocols in a Multiple PKG
Environment. Proc. of the Int. Conf. on Computational Science and Its Applications, ICCSA
2005. Lecture Notes in Computer Science, Vol. 3483. Springer (2005) 877–886

7. Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. Proc. of Algorithmic Number
Theory Symp., ANTS-IV. Lecture Notes in Computer Science, Vol. 1838. Spinger (2000)
385–394

8. Zhang, F., Liu, S., Kim, K.: ID-Based One Round Authenticated Tripartite Key Agreement
Protocols with Pairings. IACR Cryptology ePrint Archive, Report 2002/122. (2002)

9. Shim, K.: Cryptanalysis of ID-based Tripartite Authenticated Key Agreement Protocols. IACR
Cryptology ePrint Archive, Report 2003/115. (2003)

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 336 – 349, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Enforce Mandatory Access Control Policy on XML
Documents

Lan Li, Xinghao Jiang, and Jianhua Li

School of Information Security Engineering, Shanghai Jiao Tong University,
Shanghai, 200030, China

Key Lab of Integrate Administration Technologies for Information Security,
Shanghai, 200030, China

{lanli, xhjiang, lijh888}@sjtu.edu.cn

Abstract. Information stored in XML documents should be protected from
unauthorized access. In military or other highly secure environments, mandatory
access control (MAC) policy should be enforced on the sensitive information. If
we use XML documents to store or exchange information in these environments,
we should also enforce MAC policy on these XML documents. In this paper, we
discussed a method to enforce fine-grained MAC policy on XML documents.
The model of XML document is extended to contain the security information –
label. Three kinds of labels are defined to determine the labels of the nodes in
XML documents. Security view of XML document under MAC policy is
proposed in this paper. The operations on XML documents will be redirected to
the security views which contain the proper nodes under MAC policy. Validity of
the security views is also described. Four kinds of operations on XML documents
are discussed in details to explain how to enforce mandatory access control. The
problem of polyinstantiation caused by these operations is also discussed. At last
the architecture of enforcing MAC policy on XML documents is presented.

1 Introduction

XML (Extensible Markup Language [16]) documents have been used to store and
exchange information in many environments. The management of XML data is
becoming an important problem when there are many XML documents in the system.
Especially the security of XML data plays an important role in XML data management.
Access control is one of the methods to guarantee the data’s security.

In military or highly secure environments, such as the governments and other huge
organizations, Mandatory Access Control (MAC) has been used to enforce strict
security policy on data. MAC policy controls the authorization of data according to the
users and objects’ security attributes which common users can not modify. In contrast,
Discretionary Access Control (DAC) allows users to manage the authorization of their
own objects. DAC cannot resist the attacks such as Trojan horse because of its inherent
flaws. MAC policy controls all the information flows of the system to avoid the attacks
of Trojan horse. Bell-La Padula (BLP) model [3] is a frequently used MAC model in
many military and highly secure systems. Labels are used to represent the security
attributes of the users and objects. If BLP model is applied in XML environments, the

 Enforce Mandatory Access Control Policy on XML Documents 337

XML document model must be modified to contain the labels. To enforce a
fine-grained access control policy on XML documents, the elements and attributes in
the document are the objects and they all should have labels. Thus different nodes of an
XML document may have different labels. A user can only execute operations on
certain nodes according to MAC policy. We will define three kinds of labels for the
objects to make the management easier. The system can determine the label of an
object by the label assigned to it, the label assigned to its definition or the label of its
container.

Security view is one reasonable method to implement the access control in database
systems and XML-based systems. We will define our security view in this paper. What
a user accesses is not the original document but a security view that only contains parts
of the document constrained by MAC policy. Although many XML-based systems do
not have schema files to validate their documents, more and more systems will process
only valid XML documents in the future. We will discuss the validity of XML security
views under MAC policy. Operation executor will redirect users’ operations to the
proper security views of the documents. We discuss four kinds of operations: query,
insert, delete and modify. The updated contents of a security view will be reflected to
the original document after the successful execution of an update operation. Like
multilevel database, polyinstantiation also emerges after some update operations.

The architecture of enforcing MAC policy on XML documents will be presented in
this paper. The XML technologies can be used in most parts of our architecture. The
existed XML-based systems are easy to be extended to enforce MAC policy because
the nodes’ labels are stored outside the original XML documents. Security view
generator is the critical module in the architecture to enforce MAC policy.

The paper is organized as follows: Section 2 introduces the strict BLP model.
Section 3 presents modified XML document model containing labels and defines three
kinds of labels in XML documents. The security view under MAC policy is proposed in
section 4. The validity of security view is also discussed. Section 5 describes the access
control on the four kinds of operations under MAC policy. The problem of
polyinstantiation is discussed in this section. Section 6 is a description of the
architecture of enforcing MAC policy on XML documents. Section 7 is about related
work. The last section gives the conclusion of this paper.

2 Strict Bell-La Padula Model

Bell-La Padula (BLP) model is the most widely used MAC policy. Subjects (S) are the
active entities that can access the data. Objects (O) are the passive entities that store
information and be accessed by subjects. In BLP model, every entity has the security
attribute called label. Label is denoted by . The label consists of two elements: class
(C) and category (G). Class values from a sequence, and the category is a subset of a
set. A label can be represented by a tuple: (C, G). A label 1(C1, G1) dominates another
label 2(C2, G2) iff C1 C2 and

21 GG ⊇ , and we denoted it by 1 2 or 2 1. If 1 2 and

1 doesn’t equal to 2, we say that 1 strictly dominates 2, and represent it by 1> 2 or
2< 1. Two labels are incomparable if none of them can dominate the other. Two rules

constrain the authorization under BLP model:

338 L. Li, X. Jiang, and J. Li

Rule 1: (simple security property) Subject S can read object O only when (O) (S).

Rule 2: (* property) Subject S can write object O only when (O) (S).
Rule 1 indicates that low-level users cannot read any high-level information. Rule 2

indicates that high-level users cannot write data to low-level objects. However, when
applying BLP policy to data with good structures, such as database, rule 2 have to be
modified to maintain the integrity of the data. In multilevel database, writing data is
allowed only when the users and objects have the same label. The objects in XML
documents also have well-formed structure. So we use strict BLP model for XML
documents. The * property is replaced by the strict * property:

Rule 3: (Strict * property) Subject S can write object O only when (O)= (S).

3 XML Documents Model with Labels

In fine-grained BLP policy on XML documents, every element and attribute is the
object and has the label. We first extend the XML document model to include the label
information.

3.1 Extended XML Documents Model

Definition 1: XDOC=(Ve, vr, Va, Ns, Ls, subelem, attr, name, label), and

− Ve is a set of all the elements in the document.
− vr is the root element of the document, r ev V∈ .
− Va is a set of all the attributes in the document.
− Ns is a set of the names of all the nodes in the documents.
− Ls is a set of all the labels in the documents.
− subelem is a many-to-one binary relation. e esubelem V V⊆ × . If e1 and e2 are the

members of Ve, 1 2(,)e e subelem∈ shows that e1 is a sub-element of e2.
− attrs is a many-to-one binary relation. a eattrs V V⊆ × . 1 1(,)a e attrs∈ shows that a1 is

an attribute of e1. Some attributes of an element may be links to other elements using
REFER,

− name is a one-to-many binary relation. ()s a ename N V V⊆ × U . 1 1(,)n v name∈ shows
that n1 is the name of v1.

− label is a one-to-many binary relation. ()s a elabel L V V⊆ × U . 1 1(,)l v label∈ shows that
l1 is the label of v1. We also represent it by l1= (v1).

Figure 1 shows an example of XML document, and its schema. Employees.xml
contains some information of all the employees in a company, and it is valid against an
XML schema file named “employees.xsd”. Without loss of generality, we will discuss
our method based on this example.

3.2 Labels in XML Documents

We will define three kinds of labels in XML documents to manage the security
attributes of the objects in this section.

 Enforce Mandatory Access Control Policy on XML Documents 339

Fig. 1. Example of XML Document and Its Schema File

3.2.1 Assigned Label
The administrator has the privilege to assign labels to the objects explicitly.

Definition 2: (Assigned Label) Assigned label of a node is the label assigned to it by
the administrator.

The assigned label of an element may dominate, equal to, be dominated by or be
incomparable with the one of its sub-elements and attributes. A node can only have one
assigned label. If the administrator reassigns a label to a node, the new assigned label
will replace the old one.

3.2.2 Propagated Label
Some XML environments have too many XML nodes to assign labels explicitly. In
those systems only processing valid documents, lots of XML documents may conform
to a certain XML schema[18] file. The nodes in these documents may have similar
security attributes. For convenience, we can assign labels to the elements of an XML
schema that defines the nodes in the XML document instances. Then the label
propagates to the instance nodes. We use d-element to represent those elements in XML
schema that are responsible for defining nodes. When a label is assigned to a d-element,
the label will propagate to all the elements or attributes defined by the d-element. This
kind of label is called propagated label in our model.

Definition 3: (Propagated Label) Propagated label of a node is the label assigned to the
d-element that defines the node in the XML schema.

Although an node in XML documents has propagated label, administrator can assign
another label to it. Compare to propagated label, assigned label has higher priority

(a) employee.xml (b) employee.xsd

<employees>
 <employee name=”Bill”>

<department>Manage
</department>

 <office>No.415</office>
 <phone>8215</phone>
 <salary>15000</salary>
 </employee>
 <employee name=”Mary”>

<department>Personnel
</department>

 <office>No.311</office>
 <phone>8327</phone>
 <salary>7000</salary>
 </employee>
 <employee name=”John”>

<department>Sales
</department>

 <office>No.306</office>
 <phone>8364</phone>
 <salary>8000</salary>
 </employee>
</employees>

<? xml version= ”1.0” encoding= ”UTF-8”?>
<xsd:schema targetNamespace=”http://myweb”
xmlns=”http://myweb”
xmlns:xs= “http://www.w3.org/2001/XMLSchema”>
<xsd:element name=”employees>

<xsd:complexType>
 <xs:element name=”employee” maxOccurs=”unbounded”>
 <xs:complexType>
 <xs:sequence>
 <xs:element name=”department” type=”xsd:string”/>
 <xs:element name=”office” type=”xsd:string”/>
 <xs:element name=”phone” type=”xsd:string”/>
 <xs:element name=”salary”

 type=”xsd:positiveinteger”/>
 </xs:sequence>
 <xs:attribute name=”name” type=”xsd:string”/>
 </xs:complexType>
 </xs:element>
</xs:complexType>
<xs:key name=”NameKey” >

 <xs:selector xpath=”.//employee”/>
 <xs:field xpath=”name”/>
 </xs:key>

</xs:element>
</xs:schema>

340 L. Li, X. Jiang, and J. Li

because it is more specifically. However, the value of assigned label is limited by the
propagated label. The propagated label of a node defines its lowest label. Rule 4
constraints the relation of the assigned label and the propagated label.

Rule 4: The assigned label of a node should dominate its propagated label.

3.2.3 Inherited Label
Since the number of the nodes in a XML-based system is very large, some nodes may
have no propagated label or assigned label. However, any object should have the
security attribute. There are two policies to determine the label of these nodes.

− Use the lowest label in the system,
− Use the same label as its container.

Apparently the second policy is more secure than the first one. If the node is an
element but not the root element, the container is its parent element. If the node is an
attribute, the container is the element that it belongs to. As a node is considered to be a
part of its container, we prefer using the second policy. So in our model, a node may
inherit label from its container. We called it “inherited label”.

Definition 4: (Inherited Label) Inherited label of a node is the label of its container.
Root element has no any container. If the root element of an XML document has no

propagated label or assigned label, its label is the lowest label in the system.

3.3 Determining the Labels of the Nodes in XML Documents

Figure 2 gives the algorithm of determining the label of any node in XML documents.
When use this algorithm, the worst situation is that we have to get the labels of all the
nodes in the path from the root to the determining node, so the algorithm will take O(N)
time, where N is the max depth of the XML document tree. The inherited label of a
node can be acquired using this algorithm repeatedly, while the propagated label and
assigned label are stored in some places. If we put propagated labels in XML schema
files or store assigned labels in XML documents, we have to change the structures of
the schema files and documents. Then our system cannot exchange documents with
other applications directly. And we also must modify the structures of existed XML
documents when enforcing MAC policy on them. So we decide to store propagated
labels and assigned labels into other XML documents – Security Attribute Files(SAF).
We will create a SAF to store propagated labels for every XML schema file. All the
documents valid against a schema file can share the same SAF. We create a SAF for an
XML document only when its nodes have the assigned label. The number of SAFs will
be much smaller than the one of the XML documents in a system. And the scale of
SAFs is also largely smaller than the XML documents. Figure 3(a) is a SAF for
employee.xsd. Figure 3(b) is a SAF for employee.xml. Because of rule 4, 3 must
dominate 1. Table 1 gives the labels of some elements in employee.xml determined by
the algorithm in figure 2.

 Enforce Mandatory Access Control Policy on XML Documents 341

Table 1. Labels of some elements of employee.xml

Object Label Source
/employees/employee[name=”Mary”] 1 Propagated Label
/employees/employee[name=”Bill”] 3 Assigned Label
/employees/employee[name=”John”]/salary 2 Propagated Label
/employees/employee[name=”Bill”]/salary 2 Propagated Label
/employees/employee[name=”John”]/office 1 Inherited Label

4 Security Views of XML Documents Under MAC Policy

Under MAC policy, some users can only query a part of an XML document because
their label cannot dominate the one of all the nodes. The part of XML documents is
called “security view” in our model.

4.1 Generation of the Security Views

Our security views are generated according to the labels of the nodes in XML
documents. For every label in the system, we will generate a security view for an XML
documents. If an XML document is represented by d, the security view of d on label is
Vd(). All the users with the label share the same security view Vd().

Definition 5: Vd() is the security view of the XML document d on label under MAC
policy. It contains all the nodes which label is dominated by in d.

Determining the label of the node v1 in the XML

documents:

1. If the node v1 has an assigned label 1, then 1 is the

label of v1. Return 1.

2. If v1 has a propagated label 2, then 2 is the label of

v1. Return 2.

3. If v1 is root element, get the lowest label in the

system. Suppose the lowest label is 3, then 3 is the

label of v1. Return 3.

4. If v1 is not root element, it must be a sub-element or

attribute of another element represented by v2. Get the

label of v2 using this algorithm. Suppose 4 is the label

of v2.

5. 4 is the label of v1. Return 4.

<SecurityAttributes>
<PropagatedLabel>

<Object>//xs:element[name=”employee”]
</Object>
<Label> 1</Label>

</PropagatedLabel>
<PropagatedLabel>
<Object>//xs:element[name=”salary”]
</Object>
<Label> 2</Label>

</PropagatedLabel>
</SecurityAttributes>

<SecurityAttributes>
<AssignedLabel>

 <Object>
/employees/employee[name=”Bill”]
</Object>

 <Label> 3</Label>
</AssignedLabel>

<SecurityAttributes>

(a) SAF Storing Propagated Labels

(b) SAF Storing Assigned Labels
Fig. 2. Algorithm for Determining Labels
of Nodes in XML Documents Fig. 3. Examples of SAFs

342 L. Li, X. Jiang, and J. Li

The structure of a security view will be different with the original document because
those nodes with higher level label will not appear. However, some elements with
higher level label can not be eliminated when it has at least one direct or indirect
sub-element or attribute with lower level label. To ensure the semantics of the view, we
replace these elements by a “dummy” element. The dummy element has not any
information. The details of the function of processing nodes in a document when
generating the security views – ProcessNode() – are presented in figure 4. This function
will call itself recursively to process the sub-elements and attributes. If r is the root
element of the document d, ProcessNode(r,) will process all the nodes in d. Since
every node in a document is processed only once, the algorithm will take the O(D) time,
where D is the size of the document. Suppose 2> 1, 3> 1 and 3 is incomparable with

2. Figure 5 is the graphical representation of Vemployee.xml(2).

4.2 Validity of Security View Under MAC Policy

The security views of a valid document should be also valid. However, a view is only a
part of the document. So it should be valid to only a part of the schema. The dummy
elements will not be considered when we checking the validity of the security view.
Ps() is the part of the schema on label , and Rule 5 describes the meaning of the
validity of security views under MAC policy

Definition 6: Ps() is the part of the schema file s on label . It does not contain those
d-elements which label assigned by the administrator is not dominated by . The
sub-elements (are also d-elements) of those d-elements are not contained yet although
their label may be dominated by .

Rule 5: If a document d is valid against a schema s, Vd() is always valid against Ps()
for any label in the system.

ProcessNode(): Process a node v of document d when
generating the security view Vd().
Input: node v, label . Output: a Boolean value.
1. initialize: a set S = , a Boolean value X = false;
2. determine the label of node v. Suppose the label is 1;
3. if node v is an element, then
4. put all the sub-elements and attributes of v into set S;
5. for any node v’ in S
6. do ProcessNode(v’,);
7. if ProcessNode(v’,) = true, then set X = true;
8. if 1 is dominated by , then add node v into Vd();
9. else
10. if X equals to true, then
11. replace v by a dummy element vd.
12. Add vd. into Vd();
13. else do nothing;
14. return X

Employees Employee

Employee

dummy

Name
(Value =Mary)

Name
(Value =John)

Salary

Department

Phone

Office

Salary

15000

sales

No.306

8364

8000

ponsennel

No.311

8327

7000

Department

Phone

Office

Salary

Fig. 4. Function of Processing Node Fig. 5. Graphical Representation
of Vemployee.xml(2)

 Enforce Mandatory Access Control Policy on XML Documents 343

To maintain the validity of security views under MAC policy, the labels of the nodes
in an XML document have to conform to some extra rules. These rules will constraint
the assignment of the labels.

4.2.1 Rules Related to Elements to Maintain the Validity
The number of sub-elements in an element may be constrained by the minimum and
maximum occurrences. Rule 6 limits the number of the elements that have minimum
occurrence attribute in their definitions.

Rule 6: If n1 is the name of some sub-elements in an element named n2, and the number
of n1 is constrained by the minimum occurrences min in the definition of n2, and if d1 is
any document that is valid against the schema file, in every n2 of d1 there are at least min
sub-elements n1 which label equals to the propagating label of n1 or be dominated by
the label of n2 if n1 has not propagated label.

With the rule 6, if Ps() contains the d-element of the sub-elements n1 in the element
n2, any element n2 in Vd() will have more sub-elements n1 than the value of the
minimum occurrence attribute of the sub-element n1. Another kind of constraints on the
element definitions is maximum occurrence. But the valid security view may violate
this kind of constraints under MAC policy. In some situations we use rule 7 to limit the
number of elements that have maximum occurrence constraints.

Rule 7: If n1 is the name of some sub-elements in an element named n2, and the number
of sub-element n1 is constrained by the maximum occurrences max in the definition. If
d1 is any document that is valid against the schema file, in every element n2 of d1 there
are at most max sub-elements n1 that have the same labels.

Rule 7 don’t constraint the total number of the sub-elements when these
sub-elements have different labels. As the low level security views have not the high
level objects, the users may insert a sub-element into the security views without
knowing the total number of the sub-elements. System cannot reject the insert
operation, because a covert channel based the rejection may be utilized. So the rule 7
only constrains the number of the sub-elements with the same label. However, if the
bandwidth of the covert channel based on the rejection is too small to be harmful, the
rule 7 may not be used. When the administrator assign or reassign labels to the objects,
the results cannot violate the rule 6 and rule 7.

4.2.2 Rules Related to Attributes to Maintain Validity
Two kinds of attributes can be defined in an XML schema – optional and required.
Optional attributes of an element may appear or not appear in the instances of the
element. But required attributes of an element must appear in any instance of the
element. To maintain the validity of security views under MAC policy, system should
guarantee that the required attribute appears in a security view Vd() if Ps() has the
definition of the attribute.

Rule 8: If an element named n1 has a required attribute named n2 in the definition, any
instance of n1 should have an attribute n2 which label equals to the propagated label of
n2 or be dominated by the label of the instance if n2 has not propagated label.

344 L. Li, X. Jiang, and J. Li

5 Access Control on XML Documents Under MAC Policy

All the operations on XML documents either are browse type or update type. Update
operations on XML documents can be divided into many subtypes because of the
complexity structure of XML documents [2, 8]. To make our paper clear, we don’t
discuss those operations that will change the structure of the schema in this paper. In
fact, our discussion will be easy to be extended to include those operations. The
operations we discuss fall into four kinds: query, insert, delete and modify. Table 2 is
the simple descriptions for these operations. We suppose that the users have been
authorized to do these operations. In fact, if the users’ label cannot dominate all the
nodes’ labels in the documents, their operations will be redirected to a security view.
The results of the update operations can not violate the validity of the security view
under MAC policy.

5.1 Query Operations on Elements and Attributes

The simple security property of BLP model limits that the users can read an object only
when their label dominates the one of the object. If a user sends query operations on a
document, the system will return the query results from the a security view generated
according to the document and the user’s label. Because the security view does not
include the nodes which label cannot be dominated by the user’s label, query results
will not contain these nodes. For example, suppose user U with label 1 sends a
XPath[17] query operation “//employee/*” on the document employee.xml. The
operation will be redirected to Vemployee.xml(1). The contents of two “employee”
elements will be returned to U. The “employee” element which name equals to “Bill”
will not returned because it is not in Vemployee.xml(1).

Table 2. Operations on XML Documents

Operation Description
Query Query the content of an element or the value of an attribute
Insert Insert a new sub-element or attribute into an element.
Delete Delete a sub-element or attribute from an element
Modify Modify the content of an element or the value of an attribute

5.2 Insert Operation on Elements

According to the rule 3, the data created by a user will have the same label as the one of
the user. Using above example, suppose user U sends a request to insert a new
“employee” element v1 into employee.xml. v1 will be inserted into Vemployee.xml(1) and
be inserted into employee.xml at last. The label of v1 should be 1 which is the same as
U’s label. System will assign the operator’s label to v1 automatically. The sub-elements
and attributes of v1 inherited label from v1. However, U cannot insert “salary”
sub-element into v1 for the reason that Pemployee.xsd(1) dose not contain the d-element of
“salary”. To keep the validity of employee.xml for the users with higher label, we will
add a “salary” element with empty or default value into v1 when inserting v1 into
employee.xml.

 Enforce Mandatory Access Control Policy on XML Documents 345

5.3 Delete Operation on Elements

Deleting a sub-element or attribute from an element is also a kind of writing operation.
According to rule 3, one can only delete those sub-elements or attributes which label
equals to one’s label. Suppose U is authorized to delete sub-elements of “employees”
element. Then U can delete the two “employee” elements in Vemployee.xml(1). But the two
elements have sub-elements “salary” that are invisible to U. System cannot refuse the
operation directly because users may acquire high-level information through covert
channels based on it. Two policies can be used to solve the problem. One policy is
deleting all the sub-elements and attributes no matter whether they have higher label.
The other policy is lifting up the label of the deleted elements for those users with
higher label.

5.4 Modify Operation on Elements or Attributes

Modify operations will change the content of an element or the value of an attribute. As
long as being authorized, users can modify any nodes in a security view. But the new
data should have the same label as the operators. If the target has the same label as the
operators, we just modify the content or the value. But if the target has the lower label
than the operators, they cannot change content or value directly. There are two ways for
a user to modify the objects that has lower label. The first way is that the user logs on
system using the same label as the objects. In many flexible realization of BLP model, a
user can log on the system with any label dominated by the users’ assigned label. The
second way is conserving the original node and inserting a new node into the XML
document. The new node has the same label as the users.

5.5 Polyinstantiation in XML Document Under MAC Policy

Polyinstantiation may happen after some operations in multilevel database [14]. For
example, two tuples with the same primary key will exist in a table when a high-level
user updates non-key fields of a low-level tuple. Polyinstantiation will also happen in
XML documents under MAC policy. Similar with the tuple, an element also has the
primary key if XML schema defines a key for the element. The value of the key is
unique for every instance of the element in an XML document. For example, the
“name” attribute of element “employee” is the primary key of every “employee” in
employee.xsd. Polyinstantiation occurs if two “employee” elements with different
labels have same value in that attribute. Two kinds of operations may cause
polyinstantiation of the elements. First kind is inserting an element without knowing
that a high-level element has the same key. Another kind is modifying non-key contents
of a low-level element using the second way discussed in section 6.4. Polyinstantiation
in XML documents under MAC policy also occurs if an element has two attributes with
same name but different label. Similarly with the elements, two kinds of operations will
cause polyinstantiation of attributes. One kind is creating a new optional attribute
without knowing that a high-level attribute with same name exists. Another is
modifying the value of a low-level attribute using the second way.

If there is more than one of the polyinstantiation nodes which label is dominated by
the user’s label, how to process those nodes is a problem when generating the security
views. In some strict systems, we will select only one of the polyinstantiation nodes to

346 L. Li, X. Jiang, and J. Li

add into the views. The node with the same label as the user has the most priority to be
selected. If none of these nodes has the same label as the users, system will select one.
The administrator could define a total order relation among the labels in the system.
Then the system is able to select one by comparing their labels. In other systems, they
will add all the proper polyinstantiation nodes into the security views. These nodes will
be marked with their labels. Users can query any one of these nodes.

6 Architecture of Enforcing MAC Policy on XML Documents

Figure 6 is the architecture of enforcing MAC policy on XML documents. As discussed
above in section 4.3, labels of the nodes will be stored in the SAFs. In our architecture,
the SAFs are XML documents. The file used to store the users’ label - UserLabel.xml is
also an XML document. So the XML mechanisms can be used to process these files.
These files can only be accessed or updated by the administrator or kernel modules of
the system.

Fig. 6. Architecture of Enforcing MAC Policy on XML documents

Before sending any request, a user has to login the system through the authentication
server. Then the server queries the user’s label from UserLabel.xml. The user’s label is
one of the inputs of security view generator. When the operation executor receives the
user’s request, it will ask the security view generator to provide a proper security view.
Then the user’s requests are redirected to the security view. If the user’s request
contains any update operation, validity checker will check whether the views and
documents are still validity after the operation. If not, the operation will be refused. The
security view generator is the critical module to enforce MAC policy in our
architecture. The inputs of security view generator include: XML documents, SAFs,
users’ labels and polyinstatiation policy. To improve the efficiency, the security view
generator will save the security view for future use. Only when the original documents
or SAFs have been updated, the security views would be generated once again.

Security
Views

Security View
Generator

Requests Operation
executor

Operation
Redirect

Results

Update
Contents

User

Authentication
Server

Login User Label

XML
DocumentsValidity checker

UserLabel.
xml

Polyinstantiation
policy

Security
Attribute Files

 Enforce Mandatory Access Control Policy on XML Documents 347

7 Related Work

XML access control has been discussed in many papers. XACML [11] is a
specification of OASIS to express and deploy access control policy based on XML. E.
Dimiani and E. Bertino etc discussed access control for XML documents based on
DTD technology [4, 5, 6]. A fine-grained access control model is proposed in [7].
Access privileges on elements are defined in this model. [2] discusses an XML access
control model and propose a technique that supports update operations. The concept of
“Restrict views” to implement security in XML documents is proposed by [1]. All the
models above are based on DAC policies. RBAC for XML has also been discussed.
DTD files to implement RBAC model was given in [12]. M.Hitchens etc [9] presented
a RBAC model for XML document stores, use their own language to describe roles and
permissions. Practical concepts that can be employed in an enterprise environment for
managing security policies using XML were described in [10]. They discussed how to
implement RBAC using Java and XML technologies. An extended RBAC model for
XML security based on XML schema components was presented in [19]. Although
RBAC can be configured to enforce DAC and MAC policies[13], the mechanisms and
technologies of enforcing MAC on XML documents need to be discussed specifically.

This paper discussed the details and architecture of how to enforce MAC policy on
XML documents. Determining the labels of the nodes and processing operation on
XML documents under MAC policy are presented. Our method is based on the XML
security views under MAC policy. [15] proposed the concept of the security view for
XML documents to implement security XML querying. Their XML security views are
generated according to the authorization of the users. Our security views are different
with them. We generated the XML security views according to the labels of the nodes
in XML documents. Our function of generating security views is very easy. The
validity of the security views is also discussed.

8 Conclusion

XML Documents in military and highly secure systems need to be protected by MAC
policy. This paper addresses how to enforce MAC policy on XML documents. An
extended XML document model that contains the labels is presented. Three kinds of
labels will decide the security attributes of the nodes in XML documents. Assigned
labels are those labels assigned by the administrator specifically. The nodes of a valid
document may have propagated labels that are assigned to the definitions of the nodes.
And a node can inherit the label from its container. The algorithm of determining the
label of the nodes in XML documents is also given. The security view under MAC
policy is defined as a part of the XML document. The security view on label contains
only the nodes which label is dominated by . We have also discussed the validity of a
security view against a part of the schema. Once generated the security views, the
operations of a user will be redirected to a view according to the user’s label. We have
discussed four kinds of operations on XML documents under MAC policy.
Polyinstantiation is inevitable when enforcing MAC policy. We described the
polyinstantiation of elements or attributes in XML documents after some operations. At

348 L. Li, X. Jiang, and J. Li

last, we have presented our architecture of enforcing MAC policy on XML documents.
XML technologies are used in most parts of the architecture to make the implementa-
tion more easily.

References

1. Abhilash Gummadi, Jong P. Yoon, Biren Shah, Vijay Raghavan: A Bitmap-based Access
Control for Restricted Views of XML Documents, In Proc. of the 2003 ACM workshop on
XML security, Fairfax, Virginia, USA, October 2003, 60-68.

2. Chung-Hwan Lim, Seog Park, Sang H. Son: Access Control of XML Documents
Considering Update Operations, In Proc. of the 2003 ACM workshop on XML security,
Fairfax, Virginia, USA, October, 2003, 49-59.

3. D. Elliott Bell, Leonard J. LaPadula: Secure Computer Systems: Unified Exposition and
Multics Interpretation” MITRE Corporation, Bedford, MA, USA, ESD-TR-75-306, NTIS
#AD-A023588, March 1976.

4. Elisa Bertino, Silvana Castano, Elena Ferrari, Marco Mesiti: Specifying and Enforcing
Access Control Policies for XML Document Sources. World Wide Web 3(3): 139-151,
2000.

5. E. Beritino, S.Castano, E.Ferrai: Securing XML documents with Author-x, IEEE Internet
Computing, May/June, 2001, 21-31.

6. E. Damiani, S.D.C.Vimercati, S.Paraboschi, and P.Samarati: Design and Implementation of
Access Control Processor for XML Documents. Computer Network, Volume 33, Issue 1-6,
June 2000, 59-75.

7. Ernesto Damiani, Sabrina De Capitani di Vimercati, Stefano Paraboschi, Pierangela
Samarati: A Fine-grained Access Control System for XML Documents. ACM TISSEC 5.2,
May 2002, 169-202.

8. I. Tatarinov, Z. Ives, A. Halevy, D. Weld: Updating XML. In Proc. of the 2001 ACM
SIGMOD International Conference on Management of Data, California, USA, May 2001,
413-424.

9. M.Hitchens, V.Varadharajan: RBAC for XML Document Stores. In Proc. of International
Conference on Information and Communications Security, Xian, China, November, 2001,
131-143.

10. Nathan N. Vuong, Geoffrey Smith, Yi Deng: Managing Security Policies in a Distributed
Environment Using eXtensible Markup Language (XML). In Proc. of Eighth Annual
Workshop on Selected Areas of Cryptography, Toronto, Canada, August, 2001, 405-411.

11. OASIS standard: eXtensible Access Control Markup Language (XACML) Version 1.0.
http://www.oasis-open.org/committees/xacml/repository/oasis-xacml-1.0.pdf, 18 February
2003.

12. R. Chandramouli: Application of XML Tools for Enterprise-Wide RBAC Implementation
Tasks. In Proc. of 5th ACM workshop on Role-based Access Control, Berlin, Germany, July
26-27, 2000, 11-18.

13. S. Osborn, R. Sandhu and Q. Munawer: Configuring Role -Based Access Control to Enforce
Mandatory and Discretionary Access Control Policies. ACM TISSEC, 3(2): 85-106, May
2000.

14. Sushil Jajodia, Ravi S. Sandhu, and Barbara T. Blaustein: Solutions to the Polyinstantiation
Problem. Information Security: An Integrated Collection of Essays, Essay 19. IEEE
Computer Society Press, Los Alamitos, 1995.

 Enforce Mandatory Access Control Policy on XML Documents 349

15. Wenfei Fan, Chee-Yong Chan, Minos Garofalakis: Secure XML querying with security
views, In Proceedings of the 2004 ACM SIGMOD internal conference on the management
of data, Paris, France, June, 2004, 587-598.

16. World Wide Web Consortium (W3C): Extensible Markup Language (XML) 1.0,
http://www.w3.org/TR/REC-xml, October, 2000.

17. World Wide Web Consortium (W3C): XML Path Language (XPath), http://www. w3. org /
TR/xpath20, August, 2002.

18. World Wide Web Consortium (W3C): XML Schema Part 0: Primer, http://www. w3. org/
TR/xmlschema-0, May, 2001.

19. Xinwen Zhang, Jaehong Park and Ravi Sandhu: Schema based XML Security: RBAC
Approach, Technical Report, IFIP WG 11.3, 2003.

Network Access Control for Mobile Ad-Hoc Networks�

Pan Wang, Peng Ning, and Douglas S. Reeves

North Carolina State University,
Raleigh NC 27695, USA

{pwang3, pning, reeves}@ncsu.edu

Abstract. In this paper, we propose to enforce network access control in Mo-
bile Ad Hoc Networks (MANETs) using cryptographic techniques. In the pro-
posed approach, packets are authenticated by means of a network-wide sym-
metric (session) key. Because nodes are mobile and communication paths may
change rapidly, timely distribution of new session keys is challenging (particu-
larly if keys change frequently). Nodes wishing to communicate may therefore
hold different session keys, which must somehow be synchronized. We present
a fully distributed key synchronization method based on stateless group key dis-
tribution, and localized packet retransmission. If nodes A and B wish to com-
municate securely over a path P , all nodes on this path must synchronize keys
with their immediately adjacent neighbors in the path. Any node which is unable
to synchronize keys will not be allowed to forward packets. Simulations and a
functioning prototype demonstrate the proposed system is practical and effective.

1 Introduction

A MANET is an autonomous system formed by a set of wireless mobile nodes that
generally operate with low battery power and with limited bandwidth. Currently, most
MANETs do not have any network access control mechanism. The attackers may thus
easily gain access to the network, and launch various attacks. For instance, an attacker
may inject a large number of “bogus” or spurious packets into the network, simply to
consume network bandwidth and the battery power of mobile nodes.

Firewalls have been typically been used to enforce network access control, using
network topology and service information. They are particularly valuable for guard-
ing against resource consumption. However, the dynamic nature and open (wireless)
medium of MANETs make it difficult to directly apply techniques such as firewalls.

In this paper, we propose to enforce network access control in MANETs using cryp-
tographic techniques. That is, a network-wide access control (secret session) key, which
is only known by approved nodes, is employed to authenticate all the packets transmit-
ted in the network. Each node asked to forward a packet inspects the packet to see if it
has been authenticated with an access control key as recent as the one it (the forwarding
node) holds. Only packets meeting this test are forwarded by the MANET.

A critical challenge is how to manage such access control keys in a MANET. Due to
the need to remove compromised nodes, this access control key may have to be updated

� This work is supported by the US National Science Foundation (NSF) under grants CCR-
0207297 and CAREER-0447761.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 350–362, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Network Access Control for Mobile Ad-Hoc Networks 351

frequently. The dynamic network topology and frequent communication failures make
it difficult to achieve a globally-synchronized key after each key update. To the best of
our knowledge, no existing key distribution schemes can ensure such key synchroniza-
tion, even if the key manager is assumed to be always online.

To address this issue, we propose a distributed key synchronization method that
makes use of stateless group key distribution schemes (e.g., [5,11,13]). These schemes
have the nice property that a legitimate node can get the updated group key from a
received key update message, even if that node has missed several previous rounds of
key updates. The proposed key synchronization method guarantees that whenever le-
gitimate nodes communicate with each other, they will synchronize their access control
keys and agree on the latest one needed to authenticate and verify data packets.

Another challenging problem is how a node deals with received packets that cannot
be verified immediately, i.e., that are authenticated with keys different than the one
it holds. This can happen if a new access control key has not been fully distributed
throughout the network. To address this problem, we present a packet retransmission
scheme. By requiring the sender to locally retransmit the data packet, this scheme limits
the propagation of unverified packets to a single hop, and allows the involved nodes to
synchronize their access control keys and establish or continue communication.

The rest of the paper is organized as follows. Section 2 introduces the underlying
models and cryptographic tools used in this paper. Section 3 discusses the proposed sys-
tem and the critical techniques for synchronizing session keys. Section 4 describes the
preliminary results of implementation and system testing. Section 5 discusses related
work. Section 6 concludes this paper and points out some future research directions.

2 Underlying Models and Cryptographic Tools

2.1 Network Model

We notice that without a logically centralized authority, a faulty entity can behave ar-
bitrarily and thus defeat an access control system. Therefore, we assume all legitimate
nodes come from one domain and their accesses to MANET are controlled by a key
manager that is not required to be always online. We argue that this assumption is rea-
sonable, if we want to enforce access control in MANETs.

All nodes register at the key manager offline before joining the network. Each of
them is pre-configured with a unique (ID), ID certificate, current network access control
key, and a set of personal secret keys used for stateless key distribution purposes. We
also assume neighboring nodes know each other’s ID by verifying the ID certificate.

Whenever a new network access control key needs to be distributed, e.g., after a
compromised node is detected, the key manager broadcasts a key update message to
the network, or gives the key update message to a newly joined node. Note that the
methods for detecting compromised nodes are not in the scope of this paper.

2.2 Attack Model

The proposed network access control system relies on cryptographic techniques to con-
trol the nodes’ access to a MANET. An attacker with unbounded computing capability

352 P. Wang, P. Ning, and D.S. Reeves

is capable of compromising any practical security protocol. We thus assume that the
attackers have bounded computing capability. They cannot break the adopted stateless
group key distribution scheme.

An attacker may wish to inject packets into the network with the goal of depleting
the resources of nodes relaying the packets. Even though neighboring nodes will not
forward bogus packets injected by an attacker, they will have to spend some resources
on verifying these packets. Such a local resource consumption attack is possible and
cannot be prevented by the proposed system.

2.3 Stateless Group Key Distribution

Based on the interdependency of key update messages, group key distribution schemes
can be classified into two categories, stateful [10,14,15] and stateless [5,11,13]. In the
stateless group key distribution schemes, each user is preassigned a unique ID and some
personal secret keys that never change during the lifetime of the group. To revoke a user
or to update the group key, the key manager encrypts a new session key separately, using
a set of secret keys only known to the non-revoked users. The manager creates a key
update message consisting of the resulting ciphertexts and some auxiliary information
(e.g., the IDs of the encryption keys), and then broadcasts this message to the network.
After receiving a key update message, a non-revoked node uses its personal secret key
(or a key derived from its personal secret key) to decrypt a certain part of the message
(indicated by the user’s ID), and from this obtains the new session key. As a result, the
stateless key distribution scheme has two nice properties. First, a legitimate user can
get the update group key as long as the user has the corresponding key update message,
even if the user is offline for a while, or misses several previous rounds of key updates.
Second, a legitimate node can calculate the ID list of all revoked nodes from a received
key update message.

2.4 One-Way Key Chain

A one-way key chain is a chain of keys generated through repeatedly applying a one-
way hash function H on a random number (key seed). For instance, kn−1 = H(kn), ...,
k0 = H(k1). The property of one-way means, given a latest released key ki from a one-
way key chain, it is computationally infeasible for an adversity to find any unreleased
key kj such that Hj−i(kj) equals ki. However, it allows a receiver to easily verify that
a later key kx really belongs to the key chain by checking that Hx−i(kx) equals ki.

3 Network Access Control for MANET

We propose to employ a symmetric key based network access control system to filter
out the bogus packets from a MANET. That is, a key manager (not required to be
always online) controls the nodes’ accesses to the MANET by selectively distributing
a common network access control key. Only authorized nodes which have not been
revoked by the key manager can get such a common key.

Network Access Control for Mobile Ad-Hoc Networks 353

Each node uses this network access control key to authenticate every outgoing
packet, i.e., to insert a Packet Authentication Header (PAH). A possible way of adding
the PAH, which is used in our implementation, is illustrated by Appendix A. Each node
also uses this key to verify the PAH of an incoming packet, either intended for this node
or transiting through it. They will immediately drop any packet not properly authenti-
cated. As a result, a non-authorized node that is either unknown to or revoked by the
key manager is prevented from injecting packets into the MANET.

Clearly, the network access control key may have to be updated due to the revocation
of compromised nodes. Since each key update (rekeying) event defines a key session,
the access control keys are also referred to as session keys. In this paper, we use network
access control key and session key interchangeably, and we assume a legitimate node
only uses the most recent session key it has received.

To make the proposed symmetric key based network access control system practical,
two critical issues need to be solved.

1. The proposed system requires all legitimate nodes agree on the same key at the time
they communicate. However, no existing group key distribution scheme can guar-
antee that all nodes receive the latest session key after a key update. Maintaining a
synchronized session key therefore becomes a non-trivial task, given the dynamic
nature of MANETs and the possibility of intermittent communication failures.

2. Two legitimate nodes cannot communicate in the proposed system, if a more re-
cent key update message only reaches one of them, unless they can agree on one
specific session key. Thus, another challenging problem is how a node handles the
received packets authenticated with different session keys, to ensure secure estab-
lishment/continuation of communication with corresponding senders.

In the following subsections, we present solutions to these two issues. We first in-
troduce a key synchronization method, which exploits the stateless feature of stateless
group key distribution schemes. This method assists in the distribution of the latest ses-
sion key to all legitimate nodes. Next, we introduce a packet retransmission scheme
when two communicating nodes have different session keys. This scheme allows the
involved nodes to synchronize their keys, and ensures the data is delivered and cor-
rectly authenticated. Note that, we use the source and the destination to denote the two
end-hosts along a communication path, i.e., the node where a packet is produced and
the node where the packet ends up, and use the sender and the receiver to denote the
two communicating nodes adjacent to one another.

3.1 Synchronization of Network Access Control Keys

In the proposed network access control system, ideally, all legitimate nodes should use
the same (latest) session key at any time. However, due to communication failures,
the limited range of wireless transmission, and changes in the network topology, a key
update message may fail to propagate across the entire MANET. As a result, two legiti-
mate nodes may simultaneously hold different session keys. We refer to such a scenario
as key un-synchronization. Key un-synchronization is a fatal threat to the proposed net-
work access control system. It prevents key-unsynchronized nodes from establishing
normal communication.

354 P. Wang, P. Ning, and D.S. Reeves

Definition 1. Let U denote a set of legitimate nodes, and K
(t)
U denote the set of session

keys used by the nodes in U at time t. U is key-synchronized at time t, if |K(t)
U | = 1.

Otherwise, we say U is key-unsynchronized.

Several possible methods could be employed to remedy such key un-synchroni-
zation based on assistance from the key manager. For instance, nodes that become aware
they have not received the newest session key could directly contact the key manager to
get the key, or the key manager could periodically rebroadcast the key update messages.
However, such methods are overly-dependent on the key manager. The key manager
could be unreachable by a large fraction of nodes due to temporary partitioning of the
network, even if it is always online. In such a case, nodes that can physically reach each
other by some path will not be able to synchronize their session keys.

In the following, we present a distributed key synchronization method. The detailed
algorithm of the proposed method will be presented in the next subsection, due to the
interaction between key synchronization and data packet transmission.

Proposed Method. The proposed key synchronization method depends upon recent
advances in stateless group key distribution [5, 11, 13]. It helps distribute the latest ses-
sion key to all legitimate nodes, and it guarantees that whenever two legitimate nodes
communicate with each other, they will synchronize their session keys and agree on the
most recent one to use.

In the proposed key synchronization method, each node buffers (without modifica-
tion) the key update message it most recently receives. It directly transmit this buffered
message to other nodes that may be using an older session key. The corresponding
nodes can then extract the new session key from the received message, since a stateless
key distribution scheme allows a legitimate user to get the updated group key as long as
the user has the corresponding key update message, even if the user has been off-line
for a while, or missed several previous rounds of key updates. In this way, two key-
unsynchronized nodes that want to communicate can synchronize their session keys
without relying upon the key manager.

We notice that an attacker may send ‘bogus’ key update messages. This could lead
to a resource consumption attack, if the verification of a key update message involves
expensive operations (e.g., asymmetric cryptographic operations). To mitigate this at-
tack, all session keys in the proposed system are generated from a one-way key chain. It
sequentially uses these session keys for network access control, and pre-distributes k0
or the current session key ki to a legitimate node as the commitment of the key chain.
As discussed earlier, a node thus can verify the authenticity of a new session key (or
a new key update message) with a limited number of hash operations that are much
cheaper than an asymmetric cryptographic operation.

In order to accelerate the convergence of the network access keys in a MANET, we
suggest that each node periodically broadcasts a beacon message. This message can be
either the node’s buffered key update message, or a special, authenticated packet. From
a received beacon message, a local receiver can detect whether it is key-synchronized
with the sender. If not, the receiver can iniitate a procedure of key synchronization. Due
to page limitations, we skip the details of employing beacon messages.

Network Access Control for Mobile Ad-Hoc Networks 355

3.2 Packet Retransmission in Case of Key Un-synchronization

As was mentioned earlier, in the case of key un-synchronization, a legitimate node may
receive some packets authenticated with a different session key than the one it holds. For
convenience, we refer to such received packets as unverified packets, since they cannot
be immediately verified by the receiver. Simply accepting or forwarding an unverified
packet is not acceptable. Otherwise, an attacker can easily defeat the proposed network
access control system by using a spurious PAH.

There are two important design factors: (a) how a receiver synchronizes the session
key with the corresponding sender, and (b) whether a receiver buffers an unverified
packet. A legitimate node has four major options to avoid key un-synchronization or to
handle an unverified packet. These options are:

1. Synchronizes the keys with all nodes along the communication path first, to avoid
the key un-synchronization in future data transmission.

2. Buffers the unverified packets first, then synchronizes the session key with the
sender, and finally verifies these buffered packets.

3. Simply drops the unverified packets in case of key un-synchronization.
4. Drops the unverified packets and asks the sender to retransmit the packets, while a

key synchronization is triggered during the retransmission.

The first three options each have serious drawbacks. The first option cannot exclude
the possibility that a transmission cannot complete because of frequent key updates.
The second option exposes legitimate nodes to memory consumption attacks. That is,
the victim nodes are enforced to buffer the bogus packets authenticated with a “newer”
session key, while waiting to receive the necessary session key update message. The
third option prevents two legitimate nodes from establishing or continuing communica-
tion when they are key-unsynchronized.

In the proposed network access control system, we propose to use the fourth op-
tion. It assists the communicating nodes to reestablish communication in the case they
become key-unsynchronized, constrains the propagation of any unverified packet to a
single hop, and avoids the memory consumption attack since the receiver is not required
to buffer any unverified packets.

Proposed Scheme. In this subsection, we present the details of the proposed packet
retransmission and key synchronization algorithm. We start with the pseudo-code for
unicast data packets, shown in Figure 1.

In the packet receiving part, if the sender and the receiver are key-synchronized,
i.e., the session ID in the received packet is equal to the receiver’s, the latter verifies the
PAH immediately. Otherwise, the receiver needs to synchronize the session key with
the sender and requests a packet retransmission.

The receiver sends a retransmission request to the sender, if the sender has a more
recent session key. After receiving this retransmission request, the sender retransmits
the data packet with its buffered key update message. The receiver then extracts the
new session key from the attached key update message, and verifies the retransmitted
packet. Conversely, the receiver sends a retransmission request to the sender and at-
taches its own buffered key update message. The sender extracts the new session key

356 P. Wang, P. Ning, and D.S. Reeves

from the attached key update message, authenticates the data packet with this key, and
retransmits the data packet. The receiver can then verify the retransmitted packet. Thus,
any unverified unicast packet is prevented from propagating beyond a single hop.

Locally broadcast a beacon message every t time unites

When sending a packet P
insert a PAH to P

When receiving a packet P from sender X

CASE 1: P is a data packet
if P’s session ID > node’s current one

drop P, send a retransmission request to X
along with a key synchronization request

else if P’s session ID < node’s current one
if X is in the list of revoked nodes

do nothing
else send a retransmission request to X

along with the buffered key update message
else verify the PAH in P

if PAH is correct
accept P and send ACK to X

else drop P
CASE 2: P is a key update message
if P is authenticated for a new session key

buffer P, extract new key, forward P,
and calculate the list of revoked nodes

else drop P
CASE 3: P is a retransmission request
if a new key update message is attached

extract the new session key and verify PAH in P
if verification proves correct

send ACK to X
else drop p

else retransmit the data packet
along with the buffered key update message

CASE 4: P is an ACK
remove the acked packet from the buffer

Fig. 1. Pseudo-code for Key Synchronization and Packet
Retransmission

The proposed algorithm
uses an ACK mechanism to en-
sure a data packet is received
correctly. Thus, it requires the
sender to retain a packet until it
is ACKed. If the received packet
is verified, the receiver replies
with an authenticated ACK. The
sender is then free to purge the
acknowledged packet from its
sending buffer.

The proposed algorithm
may allow some packets from a
revoked node to be successfully
delivered and verified, after the
node has been revoked, in the
following way. Assume there
are 3 nodes S, X , and D, all
synchronized with the same ses-
sion key, and suppose S sends a
packet to D through X . X will
verify the packet and forward
it to D, but in the meantime
D may receive a new session
key update message (which re-
vokes S from the group). When
X forwards the packet to D, the
packet will fail to be verified. D
will request retransmission and
send the new session key update
message to X . X will update its
session key, reauthenticate the
packet, and retransmit it to D,
which will verify the packet and
accept it.

A solution to this problem would require an additional check. In essence, each re-
ceiving node must check if the source of a packet has been revoked according to the
session key held by the receiver. If so, the packet is dropped and communication fails.
Otherwise, the receiver synchronizes the session key with the sender and forwards the
packets to the next node in the path. A configuration parameter can be set to implement
this more stringent requirement.

Network Access Control for Mobile Ad-Hoc Networks 357

It is worth noting that the proposed algorithm must be modified slightly in the case of
a broadcast data packet. In this case, we assume ACKs are not used, in order to avoid the
ACK implosion problem (i.e., network bandwidth exhaustion from transmitting too many
ACKs triggered by one broadcast packet). Accordingly, a data packet that is broadcast
is not stored by forwarding nodes. A receiver that requests retransmission therefore has
to send its retransmission request to the source of the broadcast packet. The source can
then perform the normal processing described above, and rebroadcast the packet.

3.3 Analysis

Correctness. In the proposed system, a node can tell whether it is key-synchronized
with the sender by examining the PAH in the received packet. If the sender and the re-
ceiver are key-unsynchronized, the receiver will employ the proposed key synchroniza-
tion algorithm to synchronize their session keys. A more recently buffered key update
message is therefore exchanged between these two nodes. Meanwhile, any improperly
authenticated key update message will be detected and filtered out since a node can eas-
ily verify the authenticity of a key update message based on its current session key. The
corresponding node which holds the old key will extract the new session key from the
received key update message, and as a result, these two nodes converge on the newer of
their two keys.

Suppose source node S communicates with destination node D via n intermediate
nodes, I1...In. Assume all these n + 2 nodes are legitimate (non-revoked), and they
use v session keys, v ≤ n + 2, where kv is the latest session key. For convenience, we
assume the time interval between two consecutive key updates is at least as long as the
propagation delay (including time for key synchronization and retransmission) between
nodes S and D. Otherwise, the nodes in the path may never be able to synchronize their
keys, if new key update messages continually arrive during the delivery of packets.
After a node on the path has been reached which holds kv , all nodes on the path after
that must synchronize on this most recent key, until the destination is finally reached.

Security. The proposed system employs a symmetric key to prevent non-authenticated
packets from propagating beyond a single hop, and thus enforces the network access
control. However, an attacker could launch some attacks against the proposed system.

A malicious node may cause unnecessary communication by broadcasting a forged
beacon message, transmitting a key synchronization request, or sending data packets
with spurious PAH. The legitimate nodes will respond by either sending a key syn-
chronization request or transmitting their buffered key update messages, wasting both
network bandwidth and battery power. It is not possible to completely prevent such at-
tacks in the proposed system. However, a malicious node can only trigger the legitimate
nodes to send a key synchronization request, which generally is much smaller than a
buffered key update message, by declaring a newer session key has been used. So the ef-
fects of such resource consumption attacks are localized. We speculate that identifying
such attacks and the source of the attacks is easier as a result.

An inside attacker, i.e., a compromised but undetected and therefore not revoked
node, may refuse to forward information. This may cause a logical (key) partition of

358 P. Wang, P. Ning, and D.S. Reeves

the MANET. The proposed system cannot prevent such a logical partition caused by an
inside attacker. However, it can be avoided if the MANET is highly-connected. Other-
wise, the issue of nodes which refuse to forward packets is known as a “selfish node”
problem for MANETs, for which several solutions have been proposed (e.g. [9]).

The proposed system cannot guarantee a global key synchronization in the case of
network partitioning. Therefore, a newly revoked node may enter a subnetwork that
still uses an old session key and cause damage. This is a limitation of the proposed
scheme, and no method based on centralized revocation can overcome such a limitation.
However, we argue that the mobility of nodes accelerates the convergence of the session
key of the whole MANET. A revoked node will eventually be excluded in the proposed
system, if a node using the latest session key joins that subnetwork.

Since the total number of sessions is predetermined by the length of the one-way
key chain, an attacker may attempt to deplete the sessions (and thus the lifetime of the
network) by frequently joining and leaving, requiring the key manager to frequently
update the session key. To mitigate this attack, the key manager can generate a long
key chain. Coppersmith and Jakobsson [4] already proposed a scheme to improve the
performance of the one-way key chain, which requires only O(log(N)) storage and
O(log(N)) computation to access an element, where N is the total number of keys.
Furthermore, since a node needs to register at the (centralized) key manager offline to
gain network access, repeated registration can be easily identified.

Overhead. The computation overhead comes from the operations of packet authentica-
tion and verification. A source node needs to calculate a PAH for every outgoing packet,
and a receiver needs to verify this PAH before accepting or forwarding the packet. Since
symmetric cryptography is used, calculating and verifying a PAH will be very fast and
cheap in the proposed system. Such routine operations will not cause a heavy burden.

The communication overhead arises from several sources. First, each packet con-
tains a PAH header, which introduces a message overhead. Second, the periodically
broadcasted beacon message presents another source of communication overhead.
Since the length of a beacon message is quite small (on the order of an IP header plus
a PAH header), such a cost is tolerable. Finally, a node may have to retransmit the data
packet, when it is key-unsynchronized with the receiver. In the worst case, a data packet
may need to be retransmitted l times before it is successfully delivered to the destina-
tion, where l is the length of the path. However, since key un-synchronization generally
does not happen frequently, the communication overhead caused by the packet retrans-
mission is tolerable. In the next section, we present experimental results that investigate
how frequently key-synchronization is required, and the percentage of retransmitted
packets (extra communication delay).

Performance. We evaluated the performance of the proposed method by means of
simulation. We created our own simulator, which implemented the transmission of data
between nodes. For evaluation purposes, we assumed shortest path routing information
was maintained at all times. This level of detail was sufficient to evaluate the effective-
ness and performance tradeoffs of the proposed method.

We generated a MANET with n nodes in a 1km x 1km area. Nodes were initially
placed in a random way. Each node’s movement was simulated as a random walk with a

Network Access Control for Mobile Ad-Hoc Networks 359

0%

20%

40%

60%

80%

100%

20 40 60 80 100
Number of Nodes

Fig. 2. Avg-percentage of
reachable nodes from a
random source node

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8

Round of Key Update (or Minutes)

Stateful Scheme

Original Stateless Scheme

Stateless(1-cycle key syn)

Stateless(2-cycle key syn)

Stateless(3-cycle key syn)

Fig. 3. Avg-percentage of
nodes which received the latest
key (P lost=0, 40 Nodes)

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8
Rounds of Key Update (or Minutes)

Stateful Scheme

Original Stateless Scheme

Stateless(1-cycle key syn)

Stateless(2-cycle key syn)

Stateless(3-cycle key syn)

Fig. 4. Avg-percentage of
nodes which received the latest
key (P lost=0.25, 40 Nodes)

65%

70%

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8
Rounds of Key Updaye (or Minutes)

Stateful Scheme

Original Stateless Scheme

Stateless(1-cycle key syn)

Stateless(2-cycle key syn)

Stateless(3-cycle key syn

Fig. 5. Avg-percentage of
nodes which received the latest
key (P lost=0, 80 Nodes)

65%

70%

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8
Rounds of Key Updates (or Minutes)

Stateful Scheme

Stateless Scheme

Stateless(1-cycle key syn)

Stateless(2-cycle key syn

Stateless(3-cycle key syn

Fig. 6. Avg-percentage of
nodes which received the latest
key (P lost=0.25, 80 Nodes)

0%

2%

4%

6%

8%

10%

12%

14%

0 0.5 1 1.5 2 2.5 3
Packet Sending Rate (# packets / second)

40 nodes

80 nodes

Fig. 7. Percentage of data
packets retransmitted due to
key un-synchronization

maximum speed of 20m/s. The communication range for each node was uniformly set
to 200m. Each data point measured is the average of 2000 simulations, using different
seeds for random number generation. The average percentage of nodes with the latest
session key was then measured after each round of key update for 8 consecutive rounds,
supposing only the session key needs to be updated, and no revoked nodes.

The average percentage of reachable nodes from a randomly-selected source node,
referred to as reachability in this paper, affects the performance of the proposed system.
Figure 2 shows that for a fixed geographic area and transmission range, as the total
number of nodes increases, the reachability increases. In the following experiments,
we simulated a network with either 40 nodes, for which the reachability is 70%, or a
network with 80 nodes, for which the reachability is 98%.

Next, we compared the proposed key synchronization scheme with the stateful and
the original stateless key distribution schemes on the average percentage of nodes that
have the latest session key after key updates. We assume the key manager updates the
session key once each minute. The nodes in the proposed scheme broadcast a beacon
message and synchronize session keys with neighbor nodes (if necessary) once every
15 seconds, i.e., there are 3 cycles of key synchronization between two consecutive key
updates. Each cycle of key synchronization is assumed to complete before the next
one begins. Data packets were not exchanged, so that only the effectiveness of key
distribution was measured. The comparison results are shown in Figure 3 - 6.

360 P. Wang, P. Ning, and D.S. Reeves

From these figures, it is clear that a stateful rekeying scheme performs poorly in a
MANET. After the key manager has updated the session key 6 times, almost no legit-
imate node can get the latest session key, even when they are still connected with the
key manager. This is because a stateful scheme requires that a node receives every pre-
vious key update message, which becomes less and less likely as the number of updates
increases. For the stateless rekeying scheme, the average percentage of nodes that have
the latest session key is close to the average reachability. This is because successful
key update is not dependent on receiving previous key updates. However, the limits on
reachability still leave a substantial fraction of nodes that do not receive the latest ses-
sion key. The proposed key synchronization scheme greatly improves the performance
of key distribution, i.e., almost every node (99%) receives the latest session key after 3
cycles of key synchronization.

Figure 7 shows the packet retransmission ratio (due to key un-synchronization) for
various packet sending rates, given a specific source and destination pair that commu-
nicate over a 100 minute period. It shows that (i) a denser network has a lower retrans-
mission rate due to the lower probability of key un-synchronization, and (ii) the packet
retransmission ratio decreases as the sending rate increases, since more data packets
will be successfully transmitted after each key synchronization.

4 Implementation

We implemented and tested a prototype of the proposed system at the IP layer. Our
implementation consists of two modules, the group rekeying module and the packet
authentication module. The packet retransmission function is still under development.

Pre-
Routing ROUTE Forward Post-

Routing

ROUTE

Local
Out

Verification Authentication

Local
In

Fig. 8. Structure of Implementation on Netfilter

The group rekeying module runs in
the user space. It employs the stateless
group key distribution scheme proposed
in [8]. This module extracts the new ses-
sion key and passes it to the packet au-
thentication module via a kernel mes-
sage. It also buffers the latest key update
message for future key synchronization.

The packet authentication module
runs in kernel space and is based on
the Netfilter [1] architecture. It uses the
HMAC-MD5 authentication algorithm,

and will send a signal to the group rekeying module once receiving an unverified packet.
Figure 8 illustrates how this module is implemented using Netfilter.

We tested our implementation on a small scale test bed consisting of a DELL Pen-
tium IV laptop running Red Hat Linux 9.0 (kernel version 2.4.20), and two COMPAQ
iPAQ 3970 PDAs running Familiar v0.7.2. (kernel version 2.4.19-rmk-pxa1-hh30). All
of these were equipped with Lucent Orinoco wireless cards. The laptop acted as the key
manager and the PDAs acted as regular nodes. We tested the functionalities of packet
authentication, key distribution and synchronization, and revocation mechanism. All
tests performed as expected and demonstrated that access control worked properly.

Network Access Control for Mobile Ad-Hoc Networks 361

5 Related Work

Basagni, et. al [2] suggested using a symmetric key to secure the communication in a
MANET. Their underlying idea is similar to ours. Howevr, they suggested using hierar-
chical key management, and did not give a solution on how to synchronize the session
keys and how to handle the unverified packets in the case of key un-synchronization.

Recently, Zhu, et. al., [16] designed a lightweight hop-by-hop authentication proto-
col (LHAP) for MANETs. LHAP uses the TESLA broadcast authentication [12] tech-
nique and the one-way key chain. It requires clock synchronization between nodes, and
cannot completely prevent the propagation of forged packets. For instance, an attacker
can use TESLA keys eavesdropped from a legitimate node A to authenticate its forged
packets. The attacker can then fool nodes that set up a trust relationship with A, but lose
contact for awhile, to accept these forged packets.

D. Kraft and G. Schafer [7] proposed a distributed access control scheme for con-
sumer operated mobile ad hoc networks. Their scheme relies on a web-of-trust approach
(like PGP [17]) for authentication. Such schemes are not designed for secure group
communication, however, and therefore are not suited for our purpose.

Ioannidis, et. al., [6] presented a distributed firewall system. In their proposed sys-
tem, a centrally defined security policy is propagated to each network endpoint, which
execute this security policy to filter out unwanted packets. IPsec is used to authenti-
cate users, protect traffic, and securely distribute credentials. This approach is likely to
be impractical in a MANET, since IPSec is a point-to-point protocol, and managing a
security association between every pair of nodes will be difficult.

R. Canetti, et. al., [3] proposed a host architecture for secure Internet multicast,
which is somewhat similar to the proposed sytem. However, their architecture requires
each member to set up an IPsec security association with the key manager, and does
not solve the problem of key un-synchronization. Thus, it is impractical to be used as a
network access control system for MANETs.

6 Conclusion and Future Work

In this paper, we introduced a network access control system for MANETs based on
stateless group key distribution. The system synchronizes keys when necessary for suc-
cessful delivery, with proper access control. Simulation and a preliminary implementa-
tion demonstrate the proposed system is practical. Our future work includes designing
a distributed key manager to eliminate this potential single point of failure.

References

1. http://www.netfilter.org.
2. S. Basagni, K. Herrin, D. Bruschi, and E. Rosti. Secure Pebblenets. In Proc of MobiHOC

2001, Long Beach, CA, 2001.
3. R. Canetti, P. Cheng, F. Giraud, and et.al. An IPSec-based Host Architecture for Secure

Internet Multicast. In Proceedings of NDSS’00, San Diego, CA, USA, 2000.
4. D. Coppersmith and M. Jakobsson. Almost Optimal Hash Sequence Traversal. In Proceed-

ings of the Sixth International Conference on Financial Cryptography 2002, 2002.

362 P. Wang, P. Ning, and D.S. Reeves

5. D. Halevy and A. Shamir. The LSD Broadcast Encryption Scheme. Advances in Cryptology-
CRYPTO’02, LNCS 2442:47–60, 2002.

6. S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith. Implementing a Distributed
Firewall. In Proceedings of CCS’00, Athens, Greece, 2000.

7. D. Kraft and G. Schafer. Distributed Access Control for Consumer Operated Nobile Ad-hoc
Networks. In Proceedings of CCNC’04, Las Vegas, Nevada, USA, January 2004.

8. D. Liu and P. Ning. Efficient Self-Healing Group Key Distribution with Revocation Capa-
bility. In Proceedings of CCS ’03, Washington D.C., October 2003.

9. S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating Routing Misbehavior in Mobile Ad
Hoc Networks. In Proceedings of Mobicom, Boston, August 2000.

10. S. Mittra. Iolus: A Framwork for Scalable Secure Multicasting. In Proceedings of ACM
SIGGCOMM’ 97, pages 277–288, Cannes,France, 1997.

11. D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing Schemes for Stateless Receivers.
Advances in Cryptology-CRYPTO’01, LNCS 2139:41–62, 2001.

12. A. Perrig, R. Canetti, J. Tygar, and D. Song. Efficient Authentication and Signing of Multi-
cast Stream over Lossy Channels. In Proceedings of the 21st IEEE Symposium on Security
and Privacy, May 2000.

13. J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin, and D. Dean. Self-Healing Key
Distribution with Revocation. In Proceedings of 2002 IEEE Symposium on Security and
Privacy, Berkeley, California, USA, May 2002.

14. D. Wallner, E. Harder, and R. Agee. Key Management for Multicast: Issues and Architec-
tures. IETF Request For Comments, RFC2627, 1999.

15. C. Wong, M. Gouda, and S. Lam. Secure Group Communications Using Key Graphs. In
Proceedings of the ACM SIGCOMM ’98, pages 68–79, Vancouver, B.C, September 1998.

16. S. Zhu, S. Xu, S. Setia, and S.Jajodia. LHAP:A Lightweight Hop-by-Hop Authentication
Protocol For Ad-hoc Networks. In Proceedings ICDCSW’03, Providence, Rhode Island,
USA, May 2003.

17. P. R. Zimmermann. The Official PGP User’s Guide. MIT Press, Jun 1995.

A Illustration of PAH

IP Header PAH

Type

Session ID

0 31

Header Length

Message Authentication Code (MAC)

Payload

Protocol

Fig. 9. Packet Authentication Header

Figure 9 shows the PAH in our imple-
mentation. The Type field specifies the
type of packet, which is either a con-
trol packet or a data packet. Since the
protocol type in the original IP header
is replaced with an unsigned value (e.g.,
199 in our implementation), its original
value is held by the Protocol field in
PAH so that it can be restored after the
packet is accepted at the destination. The
Header Length field indicates the length
of the PAH. The Session ID field iden-
tifies the key session ID associated with

this packet. The Message Authentication Code (MAC) field holds the authentication
information. Its length depends on the adopted authentication algorithm.

Remotely Keyed Cryptographics
Secure Remote Display Access Using

(Mostly) Untrusted Hardware

Debra L. Cook, Ricardo Baratto, and Angelos D. Keromytis

Department of Computer Science, Columbia University, New York, NY, USA
{dcook, ricardo, angelos}@cs.columbia.edu

Abstract. Software that covertly monitors user actions, also known as spyware,
has become a first-level security threat due to its ubiquity and the difficulty of
detecting and removing it. Such software may be inadvertently installed by a user
that is casually browsing the web, or may be purposely installed by an attacker
or even the owner of a system. This is particularly problematic in the case of
utility computing, early manifestations of which are Internet cafes and thin-client
computing. Traditional trusted computing approaches offer a partial solution to
this by significantly increasing the size of the trusted computing base (TCB) to
include the operating system and other software.

We examine the problem of protecting a user accessing specific services in
such an environment. We focus on secure video broadcasts and remote desktop
access when using any convenient, and often untrusted, terminal as two example
applications. We posit that, at least for such applications, the TCB can be
confined to a suitably modified graphics processing unit (GPU). Specifically, to
prevent spyware on untrusted clients from accessing the user’s data, we restrict
the boundary of trust to the client’s GPU by moving image decryption into GPUs.
This allows us to leverage existing capabilities as opposed to designing a new
component from scratch. We discuss the applicability of GPU-based decryption
in the two scenarios. We identify limitations due to current GPU capabilities and
propose straightforward modifications to GPUs that will allow the realization of
our approach.

Keywords: GPUs, Encryption, Thin Clients, Video Conferencing.

1 Introduction

Spyware has been recognized as a major threat to user privacy. Especially when com-
bined with a large-scale distribution mechanism (such as a popular web site or applica-
tion, or a computer worm), the potential for large-scale security violations is consider-
able. Organizations increasingly spy on their employees’ computer activities using the
same technology, and public computers on Internet cafes are so riddled with such mal-
ware that only the most foolhardy of souls would use them for any sensitive application.

Work on addressing this problem has focused either on detection of spyware activ-
ity on a system or building a trusted system from the bottom-up, using a combination
of hardware support, operating system extensions and application-specific logic. While

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 363–375, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

364 D.L. Cook, R. Baratto, and A.D. Keromytis

promising, these approaches offer only limited security against an adversary that legit-
imately controls the spyware-infected system, or against spyware that does not exhibit
real-time activity (e.g., consider a program that simply takes snapshots of the system’s
screen as the unsuspecting user is accessing some sensitive information). While images,
like any data, can be sent encrypted over networks using existing protocols such as TLS
and IPsec, decryption is performed by the operating system, creating the potential for
the data to be copied by an untrusted client.

We propose to use the system’s Graphics Processing Unit (GPU) as the only trusted
component in our spyware-safe system for displays. By using GPUs, we leverage exist-
ing capabilities within a system as opposed to designing and adding a new component
to protect information sent to remote displays. Sensitive content is directly passed to
the GPU in encrypted form. The GPU decrypts and displays the content without ever
storing the plaintext in the system’s memory or exposing it to the operating system, the
CPU, or any other peripherals. We use a remote-keying protocol to securely convey the
decryption key(s) to the GPU, without exposing them to the underlying system. With
this mechanism as our basic block, we can implement applications such as secure video
broadcasts or remote desktop display access without trusting the rest of the system.

Our work is an initial step of which the main purpose is to propose the concept
and determine the feasibility of GPU-based decryption. We determine that, with careful
design, current GPUs allow for in-GPU image decryption at rates sufficient to support
the example applications. We also identify several obstacles to fully implementing our
scheme on current GPUs. The most difficult aspect of moving decryption into a GPU
is the API and the types of operations supported within the GPU. [4] demonstrated that
the APIs for GPUs are not designed to support operations typically found in symmetric
key ciphers. As a result, we do not focus on forcing an existing symmetric key cipher to
fit within a GPU in order to decrypt the data, but rather implement as many operations
as possible within the GPU and confine the remaining ones to a C program in order
to illustrate the concept. In the future, either a cipher suited for GPUs and/or support
for additional operations in GPUs is required. We have begun work on a stream cipher
designed for GPUs and include an estimate of the performance. We identify straightfor-
ward additions to future GPU designs that will allow for the realization of our scheme,
and its possible integration with the Trusted Computing Group’s proposed architecture.

2 Motivation

Applications to which our work is relevant include remote desktops (a thin-client sce-
nario) and video conferencing displays. In a thin-client scenario, the client connects to
a server which fulfills all of the client’s computing needs [11]. Since all application
logic is executed in the server, the client is completely stateless, and does little more
than display updates sent by the server and forward local user input events. Current
thin-client systems provide secure sessions by encrypting the display protocol before it
is transferred over the network. However, in scenarios where the client terminal is un-
trusted, such as public computers, it may not be desirable for the host operating system
to have access to the unencrypted display updates. Consider the system described in [8],
wherein access to sensitive 3D data was controlled by manipulating the content sent to

Remotely Keyed Cryptographics Secure Remote Display Access 365

the remote display client. Since the display data on the client cannot be secured, a num-
ber of additional mechanisms are devised to prevent the actual client application from
being used as an attack tool on the system. In contrast, if the current display is only in
decrypted form within the GPU, we only need to block reads by other applications.

In video conferencing, we wish to prevent clients from copying the conference dis-
plays. How to secure video recorded at the client and audio is beyond the scope of this
paper, although the concept we demonstrate with GPUs can also be applied to digi-
tal cameras and digital signal processors. While there are existing digital rights man-
agement (DRM) architectures aimed at preventing unauthorized copying of video, the
images are still decrypted within the remote and untrusted OS. DRM includes how to
manage the usage and trade of material [6], and must protect against both unauthorized
access and unauthorized copying. An example is Microsoft’s Windows Media Player
DRM 9 Series, which includes the capability of authenticating and remotely-keying the
media player [10]. The images are decrypted within the operating system by the media
player then sent to the GPU. This architecture’s security depends on using a specific
closed-source media player and no program being able to access the memory utilized
when decrypting the data. Alternative models of using trusted GPUs have been consid-
ered [2], but none has been implemented to our knowledge. The Trusted Computing
Group’s scope includes untrusted clients but its proposed architecture utilizes distinct
trusted platform modules (TPMs), which may be hardware or software, to address mul-
tiple needs and provide a generic solution [14]. For graphical applications, our approach
can be considered as an alternative that avoids specialized system components, or as a
companion to TPMs. In particular, one possibility is for the TPM to handle key negoti-
ation with the remote server, and then provide the session key to the GPU. We should
note that similar concerns arise when handling voice traffic, as noted in [15].

Our main goal in moving decryption of graphics into the GPU is to prevent the
underlying operating system or other software from gaining access to the unencrypted
data. Specifically, we consider malacious software running on the client’s operating
system which attempts to read or modify displays and responses transmitted between
the server and the client. We do not address modifications to the client’s hardware, such
as altering of the GPU. Furthermore, security of the client’s surroundings (e.g, a camera
recording the client’s display) is a separate problem outside the scope of our work.

3 Prototype

3.1 Architecture

Figure 1 depicts our overall architecture. A server encrypts the data and sends it to
the client. The data remains encrypted until it enters the GPU where it is decrypted
and displayed. The GPU’s buffer is locked to prevent the display from being read by
processes external to the GPU, effectively turning the frame buffer into a write-only
memory. The decryption is performed via software running on the client’s operating
system which issues commands to the GPU (as opposed to a compiled program existing
and executing entirely within the GPU’s memory), with the operations performed within
the GPU. This software does not have access to the keys and data contained inside the
GPU; rather, it specifies the transformations (i.e., decryptions steps) that the GPU must

366 D.L. Cook, R. Baratto, and A.D. Keromytis

Fig. 1. Architecture for Remotely Keyed Decryption in the GPU

undertake. Ideally, any intermediate data produced by the decryption program, such as
the keystream, are confined to the GPU. We explain in Section 4 why this is currently
not possible with existing GPUs.

The decryption key changes on a per-session and application basis (and may even
change within a session). Thus, the key must be conveyed to the GPU in a manner that
prevents the client’s operating system from gaining access to it. One way to achieve
this is to remotely key the GPU and decrypt the key therein. The key is used to generate
the keystream directly within the GPU, exposing neither the key nor the keystream to
the OS. The decryption of the key and generation of the keystream can be performed
in a non-visible buffer (back buffer) on the GPU, to avoid visually displaying them.
Reading the encrypted image into the back buffer with the logical operation of XOR
enabled results in the image being decrypted. The result is then swapped to the front
buffer to display the decrypted image to the user.

There are a few possibilities for how the entities involved are authenticated and
how the key is sent to the GPU, depending on which components are trusted. In each
case, it is assumed that the GPU contains a pre-installed certificate and private key. The
certificate may be issued by the manufacturer and hardwired in the GPU. Another option
is to allow writing the certificate to the GPU under circumstances when the client’s OS
is trusted, such as when the GPU is first being installed on a newly configured client.
The first and simplest option for authentication covers the case when the server sending
the images is trusted and there is no need to verify the person viewing the images
(i.e., it is assumed that the fact the viewer was able to start the process on the client
indicates it is safe to send the images) and/or the server is capable of authenticating a
GPU based on its certificate. The server, either by establishing a session key with the
GPU or using the GPU’s public key, encrypts the secret key and sends it to the GPU
via the client. The second, more general scenario, also assumes the server is trusted but
requires verification of the user viewing the images through a proxy entity, such as a
smartcard reader. The user will activate the proxy by inserting a card into the smartcard
reader attached to the untrusted system. The proxy will then establish sessions with
both the server and remote system with the GPU. The server will convey the secret
key to the GPU via the proxy, as shown in Figure 2. The process of converting the
key from being encrypted under the server-proxy session key to being encrypted under

Server

Proxy
(card reader)

Client

Encrypted images/display updates

certificate

GPU

K
ey

st
re

am

ge
ne

ra
ti

on

framebuffer

Establish secure session, server
transmits secret key to proxy.

Insert smartcard

Client transmits GPU’s
certificate to proxy.
Proxy sends secret key
to GPU.

Program on client issues
OpenGL commands to GPU
to generate key stream.

Images or
display updates

secret key(s)

Remotely Keyed Cryptographics Secure Remote Display Access 367

The proxy and the GPU treat the underlying system, including the OS, as part of the
network connecting them to each other and the server. A third scenario assumes that
neither the server nor the client OS are trusted. When the images are encrypted, the
encryption key is recorded on a smartcard. The encrypted images can then be stored on
any server. To view the images on an untrusted system, the smartcard is inserted into a
card reader (the proxy) or the key can be manually recorded and entered into the proxy.
The proxy, using the GPU’s public key, encrypts the secret key and sends it to the GPU
via the client. The proxy does not have to be collocated with the client, but only has to
be capable of exchanging information with the client. If a secret key only works for n
blocks (such as n frames) of data, the remote keying will occur as needed to provide
the key for each data segment.

The protocols used for the remote keying are not new. Refer to [1] and [5] for a
discussion on authentication using smartcards. The novel component of our work is
implementing one in a manner that avoids exposing the secret key outside the GPU.
Any protocol used for the remote keying requires utilizing an asymmetric encryption
algorithm to either encrypt the secret key directly with the GPU’s public key or to
establish a session key which is then used to encrypt the secret key. Obstacles arise
due to the lack of support in GPUs for the operations required for public key ciphers,
such as modular arithmetic for large integers. We discuss the limitations of the GPU in
regards to public key cryptography when describing our prototype.

3.2 Implementation

To determine the feasibility of our scheme, we implemented the second scenario with
3 entities: a server, a proxy and the client. We use a stream cipher, RC4, to encrypt
the images because of the rate of encryption required for streaming video. The proto-
type implemented as many operations as possible in the GPU via OpenGL, with the
remaining operations restricted to a C program and which would be moved into a suit-
able GPU as we discuss in Section 4. Specifically, existing stream ciphers cannot be
efficiently implemented entirely in OpenGL. We use the following notation:

– K = k1, k2...kn is the set of secret keys used to encrypt the data. ki encrypts the
ith subset of data. These keys may be individually pre-determined, or computed
through a master key using a pseudorandom function.

– A frame refers to one frame of video or one display update.
– Rekeying refers to obtaining the next ki. The interval at which rekeying occurs

depends on either the number of frames displayed or the elapsed time.
– r = is the number of frames or requests after which rekeying is required.
– t = is the amount of time before rekeying is required.
– sk = the session key used for communication between the server and proxy.
– kpubk = the GPU’s public RSA key component.
– kprivk = the GPU’s private RSA key component.
– m = the GPU’s RSA modulus.

Figure 2 illustrates the steps for the remote keying and decryption of images in our
prototype. A certificate containing a RSA [13] key is stored in the GPU’s memory. For

the proxy-GPU session key requires that the key be exposed only on the smartcard.

368 D.L. Cook, R. Baratto, and A.D. Keromytis

Server

Proxy

Client

6:Establish sk

4:
 c
er

tif
ic

at
e

1: Start application

5: Session request

7: E
sk (k

1)

8: Dsk(Esk(k1))

14: Write keystream

to framebuffer

and XOR with data.

11: Ready for images or display update request

12: images/display updates

3

certificate 10

9:
 (k

1
)

pu
bk

m
od

 m

13

14

GPU

3: OS reads public

components of GPU

certificate

10: OS writes (k1)pubk mod m

to GPU; GPU computes

(k1)privk mod m, saves for

use in keystream generation.

13: OS writes data from

server to framebuffer

K
ey

st
re

am

g
en

er
at

io
n

framebuffer

2: Enter password

Fig. 2. Remotely Keyed Decryption in GPU Protocol Shown: logical links

then deletes it from the operating system’s memory. Installing a certificate in the GPU
in this manner requires that the process be monitored to ensure that no program on
the client gains access to the private key component of the RSA key while it is being
written to the GPU. The certificate includes a public parameter containing an indication
that the device is a GPU. When the application is started, the client’s OS reads the
public information from the GPU’s certificate and sends it in a request to the proxy. The
proxy, which requires activation either by entering a one-time password or inserting a
smartcard, authenticates the GPU based on the information encoded in its certificate.

The client also sends a connection request to the server. The server contacts the
proxy and a secure session is established between them. This can be accomplished
using any protocol designed for secure session establishment. A single session key may
be used for the entire session, or the session key can be changed periodically, depending
on the protocol. In our prototype, the proxy authenticates the server based on the latter’s
certificate, and uses a single session key, sk. When contacting the proxy, the server
sends a random nonce and its certificate containing its public key for RSA. The proxy
generates a random nonce, encrypts it with the server’s public key and sends it to the
server. The server and proxy both concatenate the two nonces and use a hash of the
result as sk. The server sends k1 encrypted with AES using key sk to the proxy. The
proxy decrypts k1, encrypts it with the GPU’s public key and forwards the result, kpubk

1
mod m, to the client. The client issues the OpenGL command to turn color mapping on
then writes the value received from the proxy to a specific pixel location in the GPU.
The color map corresponds to xprivk mod m, where x is the value being written, and
results in decrypting the value from the proxy to obtain k1. The write operation is done
to the GPU’s back buffer to avoid visually exposing the resulting pixels (and annoy the
user with unnecessary interference). As we explain later, we use a series of one-byte
values for each ki. The resulting pixels are used as the key to the stream cipher.

The client then signals to the server that it is ready to receive data or, for thin-client
applications, makes a request to update a display. The server sends the encrypted data to

our prototype, a program on the client uses OpenGL to write the certificate to the GPU

Remotely Keyed Cryptographics Secure Remote Display Access 369

the client. Ideally, the GPU computes the keystream, writing the resulting bytes directly
to the GPU’s back buffer. As explained in Section 4, when using RC4 some C code
is used to represent operations that will be performed in the GPU if improvements are
made to the GPU’s API. The client issues the OpenGL command to turn the logical
operation of XOR on in the GPU, then writes the data received to the back buffer.
The result is the data XORed with the keystream. The buffers are then swapped so the
unencrypted image appears on the display. It is common practice to create an image in
the back buffer then swap it to the front buffer in order to create a smooth transition
between frames. After n frames or t time, the client must signal to the server that it
needs the next secret key, ski+1, which is conveyed via the proxy as before.

Our prototype uses images encoded with 24 bits per pixel using 8 bits for each
of the Red, Green and Blue components. No Alpha component is encoded since the
image is written to the back buffer (which may not support the Alpha component) to
be decrypted. The pixel format is a parameter used by certain OpenGL commands,
such as the Draw command for writing data to the GPU, and can easily be changed to
accommodate other pixel formats.

4 Design Decisions

We now discuss some of our design and implementation decisions that were guided by
the constraints of existing GPUs. We first describe the limitations on programming a
GPU to perform general keying and decryption operations, and then discuss the current
inability to provide data compression.

GPUs are not designed to perform general arithmetic and byte-level operations.
We refer the reader to [3] and [4] for background on GPU APIs and pixel processing,
including the types of operations supported which are relevant to ciphers and the limi-
tations of GPUs in performing byte level operations. There are no API commands for
common operations such as modular arithmetic, shifts and rotates. Some operations can
be performed by a sequence of other commands under certain circumstances, such as
limiting values to a single byte and reading intermediate results from the GPU to the
operating system to allow the result to be a parameter in a subsequent command. We
describe how these limitations impact the ability to remotely key the GPU and decrypt
data within the GPU, and the workarounds we used to create our prototype. We con-
clude that three enhancements to OpenGL are necessary to fully realize our architecture.
First, a means of performing modular multiplication on values of magnitude typical of
those used for public key ciphers is required to securely implement the remote keying.
Second, a mechanism for using the contents of a pixel (or pixel component) as a pa-
rameter to an OpenGL command without first reading the pixel value from the GPU is
required for the remote keying and keystream generation. Third, the ability to perform
modular arithmetic using values less than 256 directly (i.e. without using color maps)
is desirable to efficiently implement certain ciphers, such as RC4, within the GPU.

4.1 Remote Keying

The lack of modular arithmetic and limitations on the range of values in GPUs impacts
the implementation of the asymmetric cipher used in the remote keying. The proxy

370 D.L. Cook, R. Baratto, and A.D. Keromytis

conveys the secret keys to the GPU via the client’s OS using an asymmetric key cipher.
Since existing public-key algorithms require exponentiation and/or modular arithmetic,
the operations required cannot be emulated in the GPU with existing APIs, except when
trivially small values are used, or when the values involved can be viewed as a series of 8
bits values. The remote keying of the GPU requires only that the GPU be able to perform
the decryption function of the asymmetric algorithm. We note that unless the proxy
and GPU share a secret key in advance, any protocol used to exchange information,
whether by merely having the proxy encrypt information with the GPU’s public key or
by establishing a session key between them, requires use of an asymmetric cipher.

We considered two options for our prototype. First, the operations can be imple-
mented in C code to represent a function that should be in the GPU. Second, restrictions
can be imposed on the size of the asymmetric cipher’s components to allow it to be im-
plemented to run in the GPU. However, in the case of RSA this requires that plaintext
and ciphertext each be restricted to fit in within a single byte, thus requiring the modu-
lus and exponents also each fit within a single byte and resulting in key components too
small to be secure. To illustrate the concept of decryption using public key cryptogra-
phy within the GPU, we used “toy” values less than 256 in the prototype for the private
and public exponents and the modulus. We used a series of 8-bit values to represent the
data, i.e., the secret key for RC4, encrypted with RSA. Each is encrypted with RSA by
the proxy and sent to the GPU. When using RC4 as the keystream generator, up to 256
single-byte values can be in the series for RC4’s secret key.

A third possibility is the integration of a decrypting GPU with a TPM such as the one
proposed by the Trusted Computing Group. This chip could handle certificate storage
and handling, as well a remote attestation and key negotation. Our GPU can then handle
image decryption using the TPM-negotiated session key.

4.2 Decryption of Data in the GPU

To decrypt the images received from the server, the GPU on the client must run a sym-
metric key cipher. As we described previously, we use a stream cipher. We consider two
options for the stream cipher: using an existing stream cipher and designing a stream
cipher suitable for a GPU. With respect to running an existing cipher within a GPU,
operations typically found in symmetric key ciphers make this infeasible either due to
the nature and number of OpenGL commands required to emulate the operations or due
to the infeasibility to convert the operations to execute within the GPU given limita-
tions of the API [4]. Existing stream ciphers, such as LILI, RC4, SEAL, SOBER and
SNOW, are unsuitable for implementation in a GPU. We chose to use RC4 because it is
possible to implement using OpenGL, though not practical due to the specific OpenGL
commands required resulting in poor performance. The use of irregularly clocked feed-
back shift registers in LILI and SOBER, and 32-bit words in SNOW and SEAL, among
other operations such as 9-bit rotations in SEAL, make these either less attractive than
implementing RC4 or impossible to implement in OpenGL.

The operations in RC4 consist entirely of adding two bytes, modulo 256 and swap-
ping two bytes. Thus, the only operation required of RC4 which is lacking in a GPU
is modular arithmetic. Since the modulus is 256, all values can be represented by sin-
gle bytes and can be stored as individual pixel components. Given two integers, a, b in

Remotely Keyed Cryptographics Secure Remote Display Access 371

the range [0,255], a + b mod 256 can be computed using a color map. This requires
knowing either a or b in advance to determine which color map to activate. For each
integer, a, in the range [0,255], create a color map where the ith entry corresponds
to a + i mod 256. To compute a + b mod 256, b is stored as a pixel component, the
color map for a is activated, then the pixel containing b is copied to a new location.
The result written to the new location will be the bth entry of the color map. This poses
two problems. First, while OpenGL is used, the command to activate a color map must
be issued by a program running on the operating system, requiring a to be exposed to
the operating system. While this does not expose the keystream to the OS, it does pro-
vide partial information to the operating system, which may be helpful in determining
keystream values. Second, the copying of pixels between locations in the buffer is one
of the slowest operations within GPUs. In addition to the copy needed to compute the
sum, copies are needed to update the indices and move bytes into the appropriate pixel
components and locations. As a result, implementing RC4 in OpenGL is not a practi-
cal option. Therefore, we opted to implement the keystream generator of RC4 in C to
represent a function that will eventually be moved into the GPU. The keystream bytes
are written to the GPU as they are computed. This requires the C function computing
the keystream to read the secret key from the GPU. We initially wrote each byte of out-
put from RC4 directly to the GPU as it was generated. However, the number of writes
required (750,000 for a 500x500 image) resulted in poor performance. We changed our
prototype to compute the keystream bytes for an entire row of pixels before writing
them to the GPU, reducing the number of writes to the height of the image with the
tradeoff that a segment of the keystream is temporarily stored outside the GPU.

Due to the inability to efficiently generate a keystream within a GPU by using an
existing stream cipher, we are investigating designing a stream cipher utilizing graphics
operations for which GPUs are designed. We briefly describe the concept here. By
mapping a texture exhibiting sufficient randomness to a continuously morphing image
while changing certain variables, such as viewpoint and lighting, and extracting pixels
from the image, a keystream is generated. The keystream is never within the client’s
system memory in this case. We experiment with an initial version in order to estimate
the time to compute the keystream, with the results shown in Section 5. We point out
that while creation of a new stream cipher suitable for current GPUs is feasible (and in
fact may have wider applicability than our applications), the same is not true for public-
key ciphers, since this would require devising a new one-way function that does not
require exponentiation and modular arithmetic on numbers larger than a single byte.

While the proposed approach protects the secrecy of the images sent to the untrusted
system, the integrity of these images is not protected. This could allow an attacker to
change parts of the image, although this would be immediately detectable by the user,
as it would produce corrupt output on the screen (since the attacker does not know
the session key). Adding a message authentication code (MAC) to our scheme is not
currently feasible due to the limits of current GPUs.

5 Experiments

We conducted two sets of experiments to measure the ability of current GPUs to sus-
tain decryption rates compatible with our example applications. We used OpenGL as

372 D.L. Cook, R. Baratto, and A.D. Keromytis

the API to the graphics card driver. We did not use any vendor-specific OpenGL ex-
tensions, making our prototype GPU-independent. We used GLUT to open the display
window. The only requirement is that the GPU must support 32-bit “true color” mode,
as the routine for decrypting the secret key requires representing bytes in a single-pixel
component. The code for the client consists of C, OpenGL and GLUT, compiled using
Visual C++ version 6.0. The processes for the server and proxy are written in JAVA.

The experiments utilized three different clients in order to test different GPUs. The
environments were selected to represent a fairly current computing environment, a lap-
top and a low-end GPU. In all cases, the display was set to use 32-bit true color with
full hardware acceleration. The clients are:

1. A Pentium IV 1.8 GHz PC with 256KB RAM and an Nvidia GeForce3 Ti200
graphics card with 64MB of memory, running MS Windows XP. The GPU driver
uses OpenGL version 1.4.0.

2. A Pentium Centrino 1.3 GHz laptop with 256KB RAM and an ATI Mobility
Radeon 7500 graphics card with 32MB of memory, running MS Windows XP. The
GPU driver uses OpenGL version 1.3.425.

3. A Pentium III 800 Mhz PC with 256KB RAM and an Nvidia TNT32 M64 graph-
ics card with 32MB of memory, running MS Windows 98. The GPU driver uses
OpenGL version 1.4.0.

We simulated streaming video applications, such as NetMeeting, by sending a
stream of images from the server to the client. We tested with frame sizes of 320x240
and 500x500 pixels. The frames were encrypted and stored in individual files on the
server prior to starting the application. To measure thin-client performance, we used the
average update size of 2,112 pixels (a 16x132 pixel area) from the standard i-Bench [7]
web benchmark for thin-clients. The update sizes in i-Bench range from 1x1 areas to
1,007x622 areas (626,354 pixels). All tests used images encoded as 24-bit RGB pixels,
with 8-bits per color component.

For each image size, two types of tests were run. The first set of tests determined the
delay due to the additional computation needed for the remote keying and decryption,
compared to sending unencrypted images. In these tests, all three entities (server, proxy,
and GPU) were run on the same PC or laptop. Each of the three clients was tested. The
results of the first set of tests are shown in Figure 3.

Fig. 3. All Entities on a Single System

Remotely Keyed Cryptographics Secure Remote Display Access 373

The second set of tests involved running each entity on separate systems on a LAN
to determine the overall performance when the data arrival rate was impacted by net-
work delay. The first client with the Nvidia GeForce3 GPU was used for these tests.
Figures 4 and 5 show the results of these experiments. Two tests were run using two
different LANs. In one case, the server and proxy were dedicated to the experiment and
there was no traffic leaving the server and proxy aside from that due to our experiment.
In the second case, we ran our tests on shared servers used for general purpose com-
puting. In both cases, each element had a 100Mbps connection to the LAN. There were
three hops between the client and server, and between the client and proxy; there are
two hops from the proxy to the server.

For all tests, the number of frames per second (fps) for both encrypted and unen-
crypted frames are provided. In video conferencing applications, the fps supported is
important: a minimum rate of 10 fps is required to obtain tolerable video and is typical
in such applications, with 24 fps and higher rates required for better quality. In contrast,
the rate of updates in thin-client applications is dependent on user requests and will be
sporadic. The fps reflects the maximum supported burst rate.

We note that it was not our intention to build a robust streaming video application
using RTP which accounted for delay, rate of transmission and lost packets, but rather
we focus on the remote keying and decryption within the GPU, and determine the re-
sulting overhead. Therefore, TCP was used for all communication between the entities.

At least 99% of the delay when decrypting frames with RC4, compared to using
unencrypted images, is due to the writing of the keystream bytes to the GPU. The
keystream was written to the GPU one row at a time. When the test is run with the
write eliminated (all other operations for the decryption are still performed), the aver-
age time is the same as that for the unencrypted images. The actual computation of the
keystream per frame, enabling the logical operation of XOR in the GPU and swapping
of buffers takes less than 1ms for the 500x500 frames on all clients. When testing the
average thin-client display size update (2,112 pixels), the times for the encrypted up-
dates were the same as for the unencrypted updates because the keystream required only
16 writes to the GPU. In contrast, the 320x240 and a500x500 pixel frames required 240
and 500 writes per frame, respectively.

The limiting factor in the processing of the 2,112-pixel updates is the time for the
server to create the update (read the update from a file in our experiment). To determine
the rate at which the client can process such updates if creation of updates is not a
limiting factor, an array containing 2,112 pixels was stored in memory on the server

Fig. 4. Dedicated Lan and Client 1 Fig. 5. Shared Lan and Client 2

374 D.L. Cook, R. Baratto, and A.D. Keromytis

and repeatedly sent to the client. The client can process over 500 updates per second
on each of the three platforms, indicating that decryption overhead and the GPU are
not limiting factors for small updates. For larger updates in thin-client applications,
we do not consider an increased delay, e.g., when the entire display changes, to be an
issue; such updates are infrequent and, from a human perspective, are no worse than the
loading of some web pages or opening of applications.

When sending images over a LAN, the decreased rate for the 320x240 and 500x500
pixel frames compared to the case when all processes were on the same PC is due to the
rate at which images are sent from the server to the client being limited by the band-
width. Even if no bandwidth is consumed by protocols, a maximum of 16.66 uncom-
pressed 500x500 RGB frames can be transmitted per second on a 100Mbps interface.

To estimate the time required for computing a keystream designed for the GPU as
described at the end of Section 4, we loaded an initial image in the GPU and measured
the time to execute all of the OpenGL operations under consideration. After each series
of executions, the resulting image is the keystream XORed with the current encrypted
frame. The execution per frame is less then 1ms, indicating that any differences in the
time to process encrypted vs. unencrypted frames will be imperceivable.

The time for the remote keying is mainly dependent on the time to enter the pass-
word or insert the smartcard into the proxy, and may take up to a few seconds if a pass-
word must be entered. Aside from this, the time is dependent on the protocol used and
on the transport delay between the entities. Using a public-key encryption algorithm,
generating random nonces and encrypting the secret key with AES requires approxi-
mately two seconds in each environment.

6 Conclusions

We addressed the feasibility of decrypting images and displays within a graphics pro-
cessing unit as a way of combating the rising threat of spyware. Our primary insight
is that a suitably modified GPU can serve as a minimal trusted computing base for
displays in certain types of widely used applications, such as video conferencing and
remote desktop display access. The main mechanism in our scheme is decryption of
frames exclusively inside the GPU, without storing either the key material or the plain-
text on the system’s main memory. Our technique can protect against many types of
spyware, as well as several attacks aimed at the human interface layer [9].

We explained why this scheme cannot fully be realized due to current limitations
of GPU APIs. We identified three straightforward enhancements to GPU APIs that can
overcome these limitations. With our prototype, we demonstrated that the concept is
feasible for thin-client applications and the video broadcast in conferencing applica-
tions. Designing a keystream which runs entirely in the GPU and takes advantage of
typical graphics operations will eliminate overhead and improve performance. To fur-
ther improve performance in these applications, image compression facilities will need
to be implemented inside the GPU, a trend which is already occurring. In addition, our
numbers show that for typical video conferencing frame rates and web browsing using
thin-clients, the lack of compression is not a performance bottleneck.

Our prototype focused on the securing of images sent to an untrusted client. Some
additional items must be considered in a complete system that protects all inputs. For

Remotely Keyed Cryptographics Secure Remote Display Access 375

example, protecting any user keyboard and mouse inputs on the client which must be
conveyed to the server. Also, depending on the application, audio may need to be en-
crypted in a manner that prevents the OS from accessing the plaintext. The types of
operations supported by programmable DSPs make extending our concept to audio rel-
atively easy. We refer the reader to the extended version of this paper [3] for a complete
discussion. Other items discussed in [3] include proxy attacks in relation to our model,
data compression when using GPU based decryption and server-side encryption when
using a GPU based stream cipher. Future work includes developing prototypes that
fully integrate the concept into thin-client applications and expanding the prototype to
include encryption within DSPs.

References

1. M. Abadi, M. Burrows, C. Kaufman, B. Lampson, Authentication and Delegation with
Smart-cards, Theoretical Aspects of Computer Software, 1991.

2. P. Biddle, M. Peinado and D. Flanagan, Privacy, Security and Content Protection,
http: //download.microsoft.com /download /a /f /c /afcf8195-0eda-4190-a46d-aa60b45e0740/
Secure.ppt

3. D. Cook, R. Baratto and A. Keromytis, Remotely Keyed Cryptographics - Secure Remote
Display Access Using (Mostly) Untrusted Hardware (Extended Version), Columbia Uni-
veristy Computer Science Technical Report CUCS 050-04, 2004.

4. D. Cook, J. Ioannidis, A. Keromytis and J. Luck, CryptoGraphics: Secret Key Cryptogra-
phy Using Graphics Cards, RSA Conference, Cryptographer’s Track (CT-RSA), LNCS 3376,
Springer-Verlag, pages 334-350, 2005.

5. H. Gobioff, S. Smith, J. Tygar and B. Yee, Smart Cards in Hostile Environments, 2nd
USENIX Workshop on Electronic Commerce, 1996.

6. R. Iannella, Digital Rights Management (DRM) Architectures, D-Lib Magazine, http://www.
dlib.org/dlib/june01/iannella/06iannella.html vol. 7 (6), June, 2001.

7. i-Bench version 1.5, Ziff-Davis, Inc, http://www.veritest.com/benchmarks /i-bench/.
8. D. Koller, M. Turitzin, M. Levoy, M. Tarini, G. Croccia and P. Cignoni and R. Scopigno,

Protected Interactive 3D Graphics Via Remote Rendering, ACM SIGGRAPH, 2004.
9. E. Levy, Interface Illusions, IEEE Security & Privacy, vol. 2 (6), 2004, pages 66-69.

10. Microsoft Windows 9 Media Series Digital Rights Management, http://www.microsoft.
com/windows/windowsmedia/drm.aspx, 2004.

11. J. Nieh, S. Jae Yang and N. Novik, Measuring Thin-Client Performance Using Slow-Motion
Benchmarking, ACM Transactions on Computer Systems, vol. 21 (1), pages 87-115, 2003.

12. OpenGL Organization, http://www.opengl.org.
13. RSA Laboratories, PKCS #1: RSA Encryption Standard Version 1.5, November, 1993.
14. Trusted Computing Group, Trusted Computing Group Architecture Overview, https://www.

trustedcomputinggroup.org/home, 2004.
15. T. J. Walsh and D. R. Kuhn, Challenges in Securing Voice over IP, IEEE Security & Privacy

Magazine, vol. 3 (3), May/June 2005, pages 44-49.
16. M. Woo, J. Neider, T. Davis and D. Shreiner, The OpenGL Programming Guide, 3rd edition,

Addison-Wesley, Reading, MA, 1999.

Authenticating Query Results in Data Publishing

Di Ma1,3, Robert H. Deng2, Hweehwa Pang2, and Jianying Zhou3

1University of California, Irvine
{dma1}@uci.edu

2Singapore Management University, Singapore
{robertdeng, hhpang}@smu.edu.sg
3Institute for Infocomm Research, Singapore

{madi, jyzhou}@i2r.a-star.edu.sg

Abstract. We propose a communication-efficient authentication scheme to au-
thenticate query results disseminated by untrusted data publishing servers. In our
scheme, signatures of multiple tuples in the result set are aggregated into one
and thus the communication overhead incurred by the signature keeps constant.
Next attr-MHTs (tuple based Merkle Hash Tree) are built to further reduce the
communication overhead incurred by auxiliary authentication information (AAI).
Besides the property of communication-efficiency, our scheme also supports dy-
namic SET operations (UNION, INTERSECTION) and dynamic JOIN with im-
munity to reordering attack.

Keywords: data publishing, authentication, merkle hash tree, aggregated
signature

1 Introduction

1.1 The Third Party Publishing Problem

This paper studies techniques for authenticating query results in the third party publish-
ing scenario shown in Figure 1, where database owners outsource their data manage-
ment to a third party publisher to disseminate data to users on demand. The motivation
of outsourcing is to achieve greater data survivability and higher distribution efficiency:
Firstly, as external servers take care of the data management, organizations can con-
centrate on their core tasks and thus reduce substantial cost on software, hardware and
hiring professionals to maintain the in-house system; Secondly, by adding data process-
ing server(s) near user cluster, users can get faster response to their queries from the
server; Last, secret keys which are used for protection of the database are kept on the
corporate end and not online, so that much better security is achieved.

As valuable information is stored in the third party publishing servers, the servers
as well as the data delivery networks are frequently the targets of malicious attacks.
Furthermore, the server itself might be malicious. A malicious server may attempt to
insert fake records into the database or modify existing records. As a result, the integrity
and origin authenticity of query results coming from these servers must be verified
before a querier can consume them. Especially when the querier is dependent on the
results to make high-stake decisions, she needs strong guarantees of the integrity and
accuracy of the data received.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 376–388, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

.

Authenticating Query Results in Data Publishing 377

Trusted Owner

internet

Trusted
Queriers

low bandwidth channel

high bandwidth channel

Untrusted Publishing Server

Data

Fig. 1. System Set-Up

1.2 Related Work and Our Contributions

We propose a novel scheme to authenticate query results disseminated by an untrusted
third party publishing server. Our scheme is based on the Merkle Hash Tree (MHT) and
aggregated digital signatures. A couple of database authentication schemes employ-
ing MHT (hereafter refereed to as MHT-based schemes) are proposed in the literature
[7,12]. However, the way we make use of MHT is unique. The MHT in previously pro-
posed schemes is constructed over the entire relation, while our MHT (refereed to as
attr-MHT) is constructed on individual tuples in order to reduce communication over-
head incurred by auxiliary authentication information (AAI). In our view, the disad-
vantages of constructing a MHT over the entire relation are as follows: 1) it is very
expensive to perform data update as any change in the relation will have impact on the
whole MHT; 2) as a result of 1), it is not suitable to authenticate frequently changing
data such as stock and sales information; 3) it is difficult to reduce the communica-
tion overhead incurred by AAI and imposes high processing cost on the querier (e. g.,
PROJECT has to be performed by the querier [7]); and 4) it does not support dynamic
JOIN and SET operations.

Our research is motivated by the work done by Mykletun, et. al. [10] (hereafter we
refer to the scheme in [10] as well as our scheme as the aggregated signature based
schemes) which explores the use of aggregated signature schemes in database system
authentication. Their main contribution is the reduction of communication overhead in-
curred by signatures, through an aggregated signature scheme. In this paper, we extend
and improve their work by constructing attr-MHTs over individual tuples to reduce the
communication overhead of AAIs that result mostly from PROJECT operations and ap-
plying to all the relational operations. By using MHT and aggregated signature scheme
synergetically, our scheme is the first authentication scheme which reduces communica-
tion overhead incurred by AAI as well as supports dynamic JOIN and SET operations.
The main contributions of our scheme are: 1) achieve constant communication overhead
for SELECT and allow a querier to verify all the result tuples with just one digital signa-
ture verification operation; 2) minimize communication overhead incurred by AAI for
PROJECT operation through optimized attr-MHT; 3) support dynamic SET operations
(UNION, INTERSECTION); 4) support dynamic JOIN with immunity to reordering
attack.

378 D. Ma et al.

2 Preliminaries

2.1 The Merkle Hash Tree

We illustrate the construction and application of the MHT with a simple example. The
reader is referred to [9] for detailed description. To authenticate data values n1, n2,
. . . , nw, the data source constructs the MHT as depicted in Fig. 2 assuming that w =
4. The values of the four leaf nodes are the message digests, H(ni), i = 1, 2, 3, 4,
respectively, of the data values under a one-way hash function H(·). The value of each
internal node of the tree is derived from its child nodes. For example, the value of
node A is ha = H(H(n1)‖H(n2)) where “‖” denote concatenation. The value of
the root node is hr = H(ha‖hb) which is used to authenticate any subset of the data
values n1, n2, n3, n4, in conjunction with a small amount of AAI. For example, a user,
who is assumed to have the authentic root value hr, requests for n3 and requires the
authentication of the received n3. Besides n3, the source sends the auxiliary information
ha and H(n4) to the user. The user can then check the authenticity of the received n3 as
follows. The user first computes H(n3), hb = H(H(n3)‖H(n4)) and hr = H(ha‖hb),
and then checks if the latter is the same as the authentic root value hr. Only if when this
check is positive, the user accepts n3. The concept of MHT has been used for certifying
query answers over XML documents [6], proving the presence/absence of public key
certificates on revocation lists [8,11], certifying data published by untrusted publishers
[7] and certifying JPEG2000 sub-images [5].

H(n1) H(n2) H(n3) H(n4)

A B

Root

ha hb

hr

Fig. 2. An example Merkle Hash Tree

2.2 Aggregated Signature Scheme

A digital signature algorithm is a cryptographic tool for generating non-repudiation
evidence,for authenticating the integrity of the signed message as well as its origin. An
aggregated signature scheme is a digital signature scheme which allows aggregation
of multiple individual signatures into one unified signature such that verification of
the unified signature is equivalent to verifying individual component signatures. The
concept of aggregated signature is first introduced by Boneh, et al. in [2] (hereafter
referred to as BGLS scheme). According to the ability to aggregate signatures from
different signers, there are single-signer scheme and multi-signer scheme. Single-signer
scheme, like Condensed-RSA [10], aggregates only signatures from the same signer
into one unified signature. Multi-signer scheme, like BGLS, can aggregate signatures
from multiple signers.

Authenticating Query Results in Data Publishing 379

3 System Overview

Our proposed authentication scheme is targeted for the third party publishing model [7]
depicted in Fig. 1. The objective of our scheme is to provide adequate security measures
to protect the stored data from both the malicious outsider attacks and the server itself.

3.1 Trust Model

The owner of data is fully trusted by the queriers. Only the owner knows the private
key for signing individual tuples. Queriers are trusted database clients and a querier
verifies query results by checking the data integrity and data origin based on the owner
signatures. The data processing server is responsible for replication, backup and dis-
semination of the outsourced database that it hosts. However, the server is not trusted
with the integrity of the data.

There are two kinds of attacks: server side attacks and communication channel at-
tack. Server side attacks refers to attacks happening on the server side. The server is
assumed to be unsecured, meaning it is possible for a hacker to tamper (insert, delete,
modify) with the data there. Also, the server itself might be malicious and it may attempt
to tamper with the data it stores or processes. Insertion attack and modification attack of
the data on the sever side can be detected easily at the querier side. Deletion attack is a
bit more complex. There are two kinds of deletion attacks happening on the server side:
permanent deletion of tuples from the database and dynamic deletion of tuples from
the result set (the database remains intact). Dynamic deletion cannot be detected by the
querier. It is an unsolved problem in the literature [7,12,10] and stays unsolved in our
scheme. However we have some methods to detect permanent deletion attack. One way
to detect permanent deletion attack is for the DBMS to maintain a global information
map (such as a MHT on the entire database), and to check the integrity of the database
periodically. How to maintain the global information map for the entire database is be-
yond the scope of this paper. Our strategy is putting the responsibility of integrity check
of the whole database on the owner side. Although the capability provided by perma-
nent deletion detection is limited but still useful, in the sense that users can be sure that
they are working with authentic data, although they cannot be sure they can receive all
the relevant data.

When the querier and the server are not communicating over a secure channel, e.g.,
SSL/TLS, the open communication channel is totally untrusted and the query result set
is vulnerable to communication channel attacks such as deletion of records, insertion
of spurious records, modification of valid records and reordering of query results from
JOIN. Any communication channel attacks can be detected at the querier side.

3.2 Overview of System Operation

Using our scheme, the system in Fig. 1 operates as follows:

1. An owner prepares an authenticated tuple in the database by constructing a MHT
on the tuple. As the leaves of our MHT are the digests of attribute values in the

380 D. Ma et al.

tuple, we refer to such a MHT as attr-MHT to distinguish it from the MHT con-
structed on the entire table. The owner signs on the root value of the attr-MHT. The
authenticated table, consisting of all the tuples and their corresponding signatures,
are then uploaded to the publishing server(s) through a high bandwidth channel.

2. The server executes a client’s query by selecting records that match the query pred-
icate, generates a verification object V O = {σ1,t, Λ} and sends back the V O along
with the result set. A verification object is an object which contains enough infor-
mation for the client to verify the query result set. The V O consists of two parts.
The first part σ1,t is a unified aggregated signature calculated from all the tuple
signatures in the result set. The second part Λ represents authentication auxiliary
information (AAI) which is necessary to authenticate the result set.

3. The client, or the querier, after receiving the result set and the V O, verifies the
authenticity of the result set using the V O. As the queriers may have a diversified
range of computation and communication capabilities, an important design objec-
tive of our authentication scheme is to minimize communication and computation
overhead at the querier side.

4 The Scheme

First, we show how to construct attr-MHT and generate tuple signature over it. Next we
illustrate how to aggregate tuple signatures over a query result set and discuss consid-
erations in choosing one of the aggregated signature schemes. We then present details
on how to construct V Os of result sets from various basic algebraic operations [3].

4.1 The attr-MHT and Calculating Tuple Signature

An attr-MHT is a MHT built on an individual tuple. We use an example to illustrate the
construction of an attr-MHT. Suppose there is a table with 16 attributes, for each tuple in
the table, we construct an attr-MHT. Fig. 3 shows a binary attr-MHT constructed from
one tuple in the table. Though the attr-MHT in our example is a binary and balanced
tree, in general it can be non-binary and unbalanced. In the tree of Fig. 3, a leaf node cor-
responds to an attribute in the tuple and is assigned a value which is the message digest
of the attribute value of this tuple. The internal nodes are assigned with values derived
from its two child nodes. This process continues until the root value h is computed.
The owner generates a tuple digital signature σ on the root value h: σ = SIGN(h). To
verify the authenticity of this tuple, the querier reconstructs the attr-MHT to compute
the root value and then verifies the digital signature using the owners’s public key and
the computed root value. The querier accepts the received tuple as authentic only if the
verification is successful.

The purpose of using attr-MHT in our authentication scheme is to reduce the com-
munication overhead incurred by AAI which is used to verify a record from a PROJECT
operation. For example, without using attr-MHT, if attributes A10 to A16 are filtered out,
to authenticate record < A1, A2, · · · , A9 >, the server needs to send seven hash values
(the hash values of nodes A10 to A16) to the querier. With the help of attr-MHT, only
three hash values (the hash values of nodes A10, N36 and N24) need to be sent out to

Authenticating Query Results in Data Publishing 381

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

N38N31 N32 N33 N34 N35 N36 N37

N24
N21 N22 N23

N11 N12

Root

Sign

σ

Fig. 3. An example attr-MHT

the querier. More details on how to optimize the attr-MHT to further reduce the size of
AAI are discussed in Section 4.3.

When there exist multiple relations in the database, to identify a tuple in a speci-
fied relation, the owner generates a digital signature for this tuple with the relation’s
name. The signature generated with relation’s name is represented as σ̃ = SIGN(h̃),
where h̃ = H(h‖RELATION NAME) (h is the root value of the tuple attr-MHT).
For example, for a tuple in a relation named “R”, its signature with relation’s name is
calculated as: σ̃ = SIGN(H(h‖“R”)). After generating all the tuple signatures in the
database, the owner uploads the authentic database (the original database and all the
tuple signatures) to the server.

4.2 Aggregating Tuple Signatures

A query result set usually includes tens, hundreds or even thousands of records. To
verify these records, a straightforward solution is that the server sends one signature
per record to the querier and the querier verifies these records one by one. This direct
solution is not very attractive on two counts. First it is not efficient because it is ex-
pensive to verify these records one by one. We thus favor a solution that enables the
querier to do batch-verification: verify once and verify all the records. Furthermore,
as the size of a database record can be small (relative to the signature and digest) in
many cases, the communication overhead incurred by tuple signatures is not negligible.
Aggregated signature schemes provide a near perfect solution. Mykletun, et. al. [10]
is the first to use aggregate signature schemes to authenticate query results from out-
sourced databases under three system models, i.e., Unified-Client model, Multi-Querier
model, and Multi-Owner model, to reduce communication overhead. Suppose there are
n tuples in the result set, the server aggregates these tuple signatures. The aggregation
process is depicted in Fig. 4.2 where σi denotes the signature of tuple i in the result set
and σ1,n denotes the aggregated signature of the result set. The aggregated signature
σ1,n, instead of the n individual tuple signatures, is sent to the querier as part of V O
for query result verification.

There are some concerns in choosing one of the two aggregated signature schemes
to be used in an authentication scheme. First, bandwidth cost concern. The Condensed-

382 D. Ma et al.

nσ2σ1σ

Aggregate

n,1σ

Fig. 4. Aggregating tuple signatures

RSA scheme achieves constant bandwidth in both the Unified-Client and Multi-Querier
models but not in the Multi-Owner model while the BGLS scheme achieves constant
bandwidth in all the three models.

Second, verification cost and system model concern. The verification costs of both
schemes are linear to the number of signatures. The Condensed-RSA scheme is not
suitable for the Multi-Owner model, that is, tuples in a database are signed by differ-
ent signers who create them. For example, a McDonalds database would have sales
information from each franchise and each franchise could sign its own sales data. The
BGLS signature scheme can aggregate signatures by distinct users into one short signa-
ture, however the computational complexity is unfortunately quite high Compared with
the Condensed-RSA scheme.

In a Multi-Owner scenario, the BGLS scheme is more favored since it can aggregate
any two or more signatures from different signers. Although Condensed-RSA cannot
aggregate signatures from different signers, to achieve more computation efficiency, it
still can be used in our authentication scheme with a slight modification. If we regard
the whole database as a property of an organization, every tuple is owned by the orga-
nization and should be organization-signed. In a multi-signer application, if we choose
to use organization-signed tuple signatures instead of individual creator signed tuple
signatures, Condensed-RSA can be used in the same way as the BGLS is used. In the
rest of the paper, we use BGLS as the default signature scheme to illustrate our authen-
tication scheme.

4.3 V Os for Relational Algebraic Operations

In the relational data model, queries against a database are formulated in SQL [4]. Such
queries are then typically translated by the DBMS query processing engine into expres-
sions of the relational algebra for the purpose of query optimization and execution. We
mainly concerns about providing V O for query results where the queries are formulated
as expressions of relational algebra. We will illustrate in this Section how to construct
V Os for various relational algebraic operations: SELECT, PROJECT, SET operations
(UNION, INTERSECT), and JOIN. They are the basic algebraic operations in a rela-
tional database system. Although we present a solution for each operation separately,
the solutions for individual operations can be combined together to provide a solution
for complicated queries, e.g. a SELECT-PROJECT-JOIN query.

V O for SELECT. SELECT is defined as: σC(R) := {t|t ∈ R and C(t)} where R is
a relation, C is a condition of the form AiΘc where Ai is an attribute of R, c ∈ Di, Di

Authenticating Query Results in Data Publishing 383

is the domain on which attribute Ai is defined, and Θ ∈ {=, �=, <, >,≤,≥}. It extracts
specified tuples from a target relation.

With the definition of V O given in Section 3, the use of aggregated signature to
construct a V O is straightforward. Suppose there are t tuples in the result set, the V O
for this result set is: V O = {σ1,t, φ}, where σ1,t is the aggregated signature calculated
from signatures of the t tuples in the result set and φ denotes null. To verify the result
set, the querier reconstructs the attr-MHT for each tuple in the result set and calculate
the root value of the attr-MHT: hi, i = 1, 2, · · · , t. Next the querier verifies the query
result with σ1,t and the calculated hi.

V O for PROJECT. PROJECT is defined as: πAk,···,Al(R) := {< t.Ak, · · · , t.Al >
|t ∈ R}. It extracts specified attributes from a target relation. For queries involving
PROJECT operations, some attributes of the tuple are filtered out. In this case, addi-
tional information need to be sent to the querier to reconstruct the attr-MHT. Suppose
there are t records in the result set, the V O for this result set is: V O = {σ1,t, Λ} and
Λ = {Λi|i = 1, 2, · · · , t}. σ1,t is the aggregated signature calculated from the cor-
responding tuple signatures. Λi is the AAI to authenticate record i in the result set.
It consists of all the values of the sibling nodes of those nodes on the path from the
selected leaf attribute nodes to the root.

For filtered attributes, we have a definition of Highest Common Ancestor (HCA):
Several attributes are said to have a HCA if there exist a subtree in the attr-MHT which
has all these attributes and only these attributes as leaf nodes and the root of this subtree
is not an ancestor of any other attribute. The root of the subtree is called the HCA of
these attributes. In a special case, when a filtered attribute has no common ancestor with
all the other filtered attributes, it is said the HCA of this attribute is itself. To illustrate,
in Fig. 3 A10 is the HCA of itself; N36 is the HCA of A11 and A12; N24 is the HCA of
A13, A14, A15 and A16. Apparently, HCAs are the AAI data needed to be sent to the
querier.

To minimize the size of AAI or the number of HCAs, the attr-MHT can be optimized
by sorting the attributes according to the attribute query frequency (AQF): the frequency
at which an attribute is queried, which can be obtained by query statistics. We give
an example to show how to sort the attributes here. Let the most frequently selected
attributes come first in the attr-MHT, and the less frequently requested attributes come
later. The purpose of this sorting is to produce an ordering of the filtered attributes like
A10 to A16 in Fig. 3, to increase the probability that more attributes will have a HCA
and thus reduce the total number of HCAs as far as possible.

V O for SET Operations. We consider SET operations of UNION and INTERSECT.
They are both binary operations which build a new logical relation from two specified
relations. A tuple in the logical relation can be mapped into a tuple in either of the two
specified relations. The construction of V O for these operations over two relations uses
tuple signatures with relation’s name: σ̃.

UNION is defined as: R ∪ S := {t|t ∈ R or t ∈ S}. It builds a logical relation
consisting of all tuples appearing in either or both of two specified relations: R and S.
For a tuple which belongs to both relations, we make the following rule in choosing
which signature for aggregation and verification: if a tuple appears in both relations,

384 D. Ma et al.

its signature generated by a signer in R (or S) is chosen for signature aggregation; the
public key of the signer from R (or S) who signs this tuple is chosen accordingly for
signature verification.

Suppose the query result set from a UNIONed operation contains totally t tuples,
m (inclusive tuples appearing in both relations) from relation R, n (exclusive tuples
appearing in both relations) from relation S, and m + n = t. Let σ̃R

i (i = 1, 2, · · · , m)

denote the signature of tuple i from R, σ̃S
j (j = 1, 2, · · · , n) the signature of tuple

j from S. The V O for this result set is: V O = {σ1,t, φ} where σ1,t is calculated

as σ1,t =
∏m

i=1 σ̃R
i ×

∏n
j=1 σ̃S

j . The querier verifies the result set according to the

equation e(σ1,t, g2) =
∏m

i=1 e(h̃R
i , vR

i) ×
∏n

j=1 e(h̃S
j , vS

j) where h̃R
i = H(hR

i ‖“R”)

and h̃S
j = H(hS

j ‖“S”)). The querier is able to verify the result set containing tuples
from either or both of the two relations.

INTERSECT is defined as: R ∩ S := {t|t ∈ R and t ∈ S}. The INTERSECT
operation builds a logical relation consisting of all tuples appearing in both of two
specified relations. The querier needs to verify that every tuple in the result set appears
in both relations.

Suppose the query result set from a INTERSECTed operation contains totally t tu-
ples. Let hi (i = 1, 2, · · · , t) denote the root value of the attr-MHT for tuple i. Let σ̃R

i

denote its signature with R’s name in R, σ̃S
i its signature with S’s name in S. The V O

for this result set is: V O = {σ1,t, φ}where σ1,t is calculated as σ1,t =
∏t

i=1(σ̃
R
i ×σ̃S

i).
The querier verifies the result set according to the equation e(σ1,t, g2) =∏t

i=1(e(h̃
R
i , vR

i) × e(h̃S
i , vS

i)). The querier is able to verify the result set containing
tuples from both of the two relations.

V O for JOIN. JOIN is defined as: R ��C S := {tq|t ∈ R and q ∈ S and C(t, q)}
where tq is a tuple pair, C is condition of the form AjΘAk , Aj and Ak are attributes
of relations R and S respectively, and Θ ∈ {=, �=, <, >,≤,≥}. It builds a relation
from two specified relations consisting of all possible concatenated pairs of tuples, one
from each of the two specified relations, such that in each pair the two tuples satisfy
the specified condition. Without loss of generality, let T denote the relation resulted
from a JOIN R ��C S, that is: T = R ��C S = {pi|i = 1, 2, · · · , n} = {(tiqi)|i =
1, 2, · · · , n. ti ∈ R, qi ∈ S, and ti.AjΘqi.Ak = TRUE}, where pi is a tuple of
relation T and it is in the form of a fixed tuple pair (tiqi).

The V O for a JOIN is in the form of {σ1,n, φ}. σ1,n is the aggregated signature by
aggregating the signatures of all the n tuples in relation T and is calculated as σ1,n =∏n

i=1 σR
i ×

∏n
i=1 σS

i . The querier uses the equation e(σ1,n, g2) =
∏n

i=1 e(hR
i , vR

i) ×∏n
i=1 e(hS

i , vS
i) to verify the result set from a JOIN. In case that all the tuples are signed

by the same entity, vR
i = vS

i .
However this single step cryptographic signature verification is not enough to au-

thenticate the result set as it cannot detect the reordering attack which is illustrated
in Fig. 5. An attacker switches the q element in the two tuples p1 = (t1q1) and
p2 = (t2q2). After the switch, p1 becomes p′1 = (t1q2) and p2 becomes p′2 = (t2q1)
and the conditions C(t1, q2) and C(t2, q1) may no longer hold. Because p1 and p′1, p2
and p′2 are different in values, they may convey wrong results to the querier and thus en-

Authenticating Query Results in Data Publishing 385

danger the querier’s decisions. The reordering attack can occur both on the server side
when the server behaves maliciously or is compromised by an outside attacker or during
the transmission process when the querier and the server are not communicating over a
secure channel, e.g., SSL/TLS. When the server is compromised, the attacker controls
the server and reorders the result set before the server sends it out to the querier. When
the querier and the server are not communicating over a secure channel, the attacker is
able to eavesdrop on the conversation and reorders the result set without destroying it.
This reordering attack cannot be detected using only cryptographic verification because
the verification of an aggregated signature is order independent and does not check the
validity of JOIN condition.

t1 q1

t2 q2

tn qn

switch
t1 q2

t2 q1

tn qn

Fig. 5. Reordering attack

To detect reordering attacks, besides the cryptographic signature verification, the
querier must also check if the condition C(ti, qi) still holds for each pi in the received
result set. Thus the authentication process for a JOIN consists of two steps: condition
check and signature verification. Before constructing the two attr-MHTs for each tuple
pi in the result set, the querier checks the condition C(ti, qi) in pi first. If the condition
C(ti, qi) does not hold the authentication of the result set fails. If the condition check
for all the tuples in the result set are successful, the querier further cryptographically
verifies the aggregated signature with all the calculated attr-MHT root values. Only
when the condition check and the signature verification are both successful can the
result set be regarded as authenticated.

4.4 Update Operations

As our attr-MTH is built on individual tuple and each tuple in the table is signed sep-
arately and the signature aggregate function is accumulative and communicative, up-
date operations (INSERT, DELETE and UPDATE) can be processed in a direct way:
DELETE can be processed by the server with the owner modifying the database’s global
information map accordingly; INSERT and UPDATE have to be channelled back to the
owner as only the owner possesses the private key for generating new signatures. The
owner signs on the new (updated) tuple and sends the new (updated) tuple with the
newly generated signature to the server. There is no need to lock the whole table during
the updating process. However, to ensure data consistency, the update operations should
be done under a concurrency control mechanism like basic 2PL [1].

386 D. Ma et al.

5 Analysis and Evaluation

We analyze our scheme in terms of the following five overheads as defined in [10]:
querier communication, querier computation, server computation, server storage and
owner computation. The parameters used in the analysis are summarized in Tab. 1:

Table 1. Notations

Notation Meaning Default

|S| Length of a signature (Bytes) 128
|D| Length of a hash value (Bytes) 16
TR Number of tuples/rows in table (million) 1
TA Number of attributes/columns in table 10
QR Number of tuples in the result set -
QA Number of filtered attributes -
|Ai| Size of attribute Ai (Bytes) -

5.1 Querier Communication Overhead

The querier communication overhead consists of two parts: overhead incurred by the
aggregated signature and overhead incurred by AAIs. We analyze these two kinds of
overheads separately.

Overhead Incurred by Signature. The communication overhead incurred by signa-
ture remains constant as |S|, the same as in [10]. It is independent on the number of
records in the result set. In contrast, the communication overhead incurred by signature
in the MHT-based schemes is linear to QR.

Overhead Incurred by Authentication Auxiliary Information. Let NA denote the
number of digests as AAI per tuple in the result. Suppose the QA filtered attributes are
in a continuous sequence in the end of the sorted attribute list. NA can be represented
as:

NA =
{

1, if log2 QA is an integer;
[2, 2	log2 QA
 + 1], if log2 QA is not an integer.

When log2 QA is an integer, that is QA = 1, 2, 4, · · ·, only one digest per record needs
to be sent out. When log2 QA is not an integer, NA is in the range of [2, 2	log2 QA
 +1].
Its maximum value 2	log2 QA
 + 1 is obtained when log2(QA + 1) is an integer. Thus
in the worst case when log2(QA + 1) = n (n is an integer), the ratio of NA/QA is:

NA

QA
=

2	log2 QA
 + 1
QA

=
2	log2(2

n−1)
 + 1
2n − 1

=
2n−1 − 1
2n − 1

<
1
2

(1)

From Eq. 1, we conclude that by employing attr-MHT our scheme reduces the com-
munication overhead incurred by AAI at least by half compared with all the existing
authentication schemes.

Authenticating Query Results in Data Publishing 387

5.2 Querier Computation Cost

The querier computation cost consists of two parts: hashing cost spent on the recon-
struction of the attr-MHTs and verifying cost on the aggregated signature.

Hashing cost on the reconstruction of the attr-MHTs is not significant compared to
the cost on the aggregated signature verification which is a very expensive operation.
Normally, hash functions are about 100 times faster than RSA signature verification
[13], more than 1000 times faster than BGLS signature verification. The cost of hashing
is dependent on the total length of input bits and is represented as: Comphashing =
QR ∗ (2 ∗ (TA − 1) ∗ |D| +

∑TA

i=1 |Ai|).
With signature aggregation the querier only verifies one signature to authenticate

multiple tuples which is very efficient compared with a naive solution which verifies
tuple signatures one by one. To verify a BGLS aggregated signature generated from
these k × t component signatures, it costs k + 1 bilinear mapping plus k × t − 1
multiplication operations, that is: Compaggregated

Q = Multik∗t−1(p) + BM(k + 1).
To authenticate a query result set from a JOIN, there are additional computation cost
incurred by condition check for the querier. However, condition check incurs only a
little computation overhead as the comparison operation is very efficiently implemented
in modern computers.

5.3 Server Computation Cost

Upon a query, besides preparing the result set, the server needs to construct a V O
for the result set by aggregating multiple signatures. The server computation cost is
calculated as: CompS = MultiQR−1(p) = 0.12 × (QR − 1). The multiplication
operation cost involved are not expensive given that Mult1(1) = 0.12ms [10], and can
be easily mitigated with a powerful server machine. Furthermore the resulting savings
in communication overhead and processing cost at the querier side more than justify
our proposed scheme.

5.4 Server Storage Cost

From the system management angle, although the disk units get cheaper, storage man-
agement costs are not getting cheaper and thus the server storage cost is a concern
especially in outsourcing models. The attr-MHT incurs no server storage cost. After the
signature is calculated, the tree structure which stores all the hash values of the inter-
mediate nodes in the attr-MHT is discarded and only the signature is stored with the
physical database. Thus the total cost of server storage of our scheme is calculated as:
StorageS = TR ∗ |S|.

5.5 Owner Computation Cost

To construct an authentic database, the owner needs to construct an attr-MHT and cal-
culate a signature based on the root value of the attr-MHT for each tuple in the database.
The signature generation process can be done off-line. As stated in Section 4.4, because
the signature aggregate function is accumulative and communicative, update operations
can be processed in a simple and direct way and there is no need to lock the whole table.

388 D. Ma et al.

6 Conclusion

In this paper, we proposed a communication-efficient scheme based on aggregated sig-
nature schemes and MHT to authenticate query results disseminated by an untrusted
data processing server. To our knowledge, this is the first work that addresses the is-
sue of reducing communication overhead incurred by AAI and the first authentication
scheme which supports dynamic JOIN and SET operations.

References

1. P. Bernstein and N. Goodman. Concurrency control in districuted database systems. In ACM
Computing Surveys, Volume 13(2), pages 185-221, June 1981.

2. D.Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted signa-
tures from bilinear maps. in Advances in Cryptology - EUROCRYPT’2003 (E. Biham, ed.),
Lecture Notes in Computer Science, International Association for Cryptologic Research,
Springer-verlag. Berlin, Germany, 2003

3. C.J. Date. An introduction to database systems (4th Edition). Addison-Wesley, 1985.
4. C.J. Date and H. Darwen. A guide to the SQL Standard (4th Edition). Addison-Wesley, 1997,
5. R. H. Deng, Y. Wu, D. Ma. Securing JPEG2000 Code-Streams. International Workshop on

Advanced Developments in Software and Systems Security, Dec. 2003
6. P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls and G. Stubblebine. Flexible au-

thentication of XML documents. Proc. of the 8th ACM conference on Computer and Com-
munication Security, pp. 136-145, 2001.

7. P. Devanbu, M. Gertz, A. Kwong, and S. Stubblebine. Authentic data publication over the
internet. In 14th UFIP 11.3 Working Conference in Database Security, Pages 102-112,2002.

8. M. T. Goodrich, R. Tamassia, and A. Schwerin. Implementation of an Authenticated Dictio-
nary with Skip Lists and Commutative Hashing. Proc. of DISCEX II’01, Vol. 2, pp. 1068-
1083, 2001.

9. R. C. Merkle. A certified digital signature. Proc. of Advances in Cryptology-Crypto ’89,
Lecture Notes on Computer Science, Vol. 0435, pp. 218-238, Spriner-Verlag, 1989.

10. E. Mykletun, M. Narasimha, and G. Tsudik, Authentication and integrity in outsourced
databases. NDSS 2004, Feb. 2004.

11. M. Naor and K. Nissim. Certificate Revocation and Certificate Update. Proc. of the 7th
USENIX Security Symposium, pp. 217-230, 1999.

12. H.H. Pang, K.L. Tan. Autehticating query results in edge computing. ICDE 2004, Mar. 2004.
13. R. Rivest and A. Shamir. PayWord and MicroMint–Two Simple Micropayment Schemes

in Proceedings of 1996 International Workshop on Security Protocols, (ed. Mark Lomas),
Lecture Notes in Computer Science No. 1189, pages 69–87. Springer, 1997.

Multi-Source Stream Authentication Framework
in Case of Composite MPEG-4 Stream

Tieyan Li, Huafei Zhu, and Yongdong Wu

Institute for Infocomm Research (I2R),
21 Heng Mui Keng Terrace, Singapore 119613

{litieyan, huafei, wydong}@i2r.a-star.edu.sg

Abstract. Multimedia community is moving from monolithic applica-
tions to more flexible and scalable integrated solutions. Stream authen-
tication is more complex since a stream may consist of multiple sources
and be transcoded by intermediate proxies. In this paper, we propose a
multi-source stream authentication (mSSA) framework based on MPEG-
4 stream format. We describe the overall authentication architecture and
elaborate the encoding, hashing, signing, amortizing and verifying meth-
ods used in the basic scheme. Further on, we utilize advanced crypto-
graphic primitives-aggregate signature schemes, to reduce the signatures’
size and improve the performance. We illustrate the scheme and discuss
the extensions. Our analysis shows that the scheme is secure and efficient.

1 Introduction

Multimedia syndication has been put forward for years, for instance, [1] proposed
an “InfoPyramid” scheme to interrelate different formatting and conversion op-
tions of multimedia objects together with composition strategies for complex
multimedia documents. How to protect (w.r.t. access control and authentica-
tion) these complex media contents is a critical challenge in many applications.
The security requirements are different for end roles: on the one hand, media
providers want to protect the access to their content; on the other hand, the end
users must make sure the authenticity of the content. However, most commer-
cial Multimedia Digital Right Management (DRM) systems, i.e. Windows Media
Rights Manager (WMRM) for Microsoft [2], are built for the former purpose and
ignore the end users’ requirement. We hereby focus on authentication of multi-
source scalable streams. Moreover, instead of working on meta-data descriptions
(e.g. specifying usage rules, XrML [3] in DRM), we work directly on specific
streaming format-MPEG-4 [4,5] so that standard scalable MPEG-4 stream of
multiple sources can be manipulated and verified flexibly.

We give two examples to motivate stream compositions and their respective
authentication requirement. First, suppose a local news channel, authorized to
broadcast live news from CNN, may change the subtitle from English to its local
language. The local channel has to make new commitment on the modified parts
so that the combined media stream can be verified by the end users. Thinking

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 389–401, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

390 T. Li, H. Zhu, and Y. Wu

broadly, any tailoring of the original works such as movie advertisement, multi-
screening, digital art creation etc. are categorized into this class. Second, consider
a more complex mix-an interactive video conference, where multiple sources are
able to synthesis, distribute and display of customized media content. Similarly,
the verification must be robust enough to tolerate various media handlings such
as transcoding, filtering, mixing, tilting and switching.

In this paper, we propose mSSA framework for authenticating multi-source
scalable stream. Our basic stream authentication scheme, relying on traditional
stream authentication mechanisms with signature amortization, enables end-to-
end authentication with the transcoding operations. Furthermore, we identify
two types of transcoding operations: truncation-only with which a proxy is only
allowed to truncate a partial sub-stream of an original stream; and grafting where
a proxy can not only truncate a partial stream, but also insert another sub-
stream. In addition, to save bandwidth, we utilize aggregate signature schemes
to reduce the size of multiple signatures into one. This first proposed multi-
source stream authentication scheme can verify a flexible coded stream in many
ways, extend easily and scale well. It can also be adapted into standard DRM
systems. Our analysis shows that the scheme is secure and cost-effective.

Paper organization: Section 2 reviews some related works on traditional as
well as adaptive stream authentication schemes. We then describe the mSSA
framework in section 3. Section 4 introduces the preliminaries, MPEG-4 stream
format and depicts the basic authentication mechanisms. In section 5 we elab-
orate multi-source authentication schemes with type-1 and type-2 transcoding
operations. Following on, we analyze the security and performance issues in sec-
tion 6. At last, we conclude our paper and point out our future tasks.

2 Related Works

Single source stream authentication schemes. Stream authentication
schemes have been intensively studied [10,11,12,13,14,15,16]. The traditional
schemes can be categorized as hash graph-based [12], tree-based [11] and sym-
metric key-based [10]. Other approaches [13,14,15,16] assume an erasure channel,
such as the emerging wireless networks-Bluetooth, WPAN, etc. where packets
are lost from time to time. Erasure codes [9] are then used to tolerate arbitrary
patterns of packet loss. However, these works concentrate on end-to-end stream
authentication where only single stream source and single receiving end are as-
sumed by default. These traditional stream authentication schemes are failed on
Sender-Proxy-Receiver SPR model where an intermediate proxy can manipulate
the streaming packets for adapting with fluctuant network conditions. However,
these basic works provide us valuable building blocks on stream encoding, pack-
ing, hashing, signing and verifying processes.

Adaptive stream authentication schemes. Recently, stream authentication
in the SPR model was studied in the literature [18,19,20]. [18] proposed a secure
MPEG-4 stream authentication scheme that allows a proxy flexibly manipulate
streaming packets while they can still be verified by the final receiver. Although

Multi-Source Stream Authentication Framework 391

the Unequal Loss Verification (ULV) scheme is secure and efficient, it didn’t
address the multi-source authentication problem in detail. Suzuki et al. in [19]
proposed a multimedia content delivery system that protects the end-to-end au-
thenticity of adaptive multimedia. Moreover, the paper used a multi-hop signa-
ture scheme for aggregation. Unfortunately, the paper didn’t assume an erasure
channel where packets are lost arbitrarily. Also, it worked only on meta-data pro-
cessing, instead of processing streaming content itself. Recently, Gentry et al. in
[20] proposed two new provably secure schemes, LISSA and TRESSA, that en-
sure secure streaming media authentication with adaptive proxies. However, it
didn’t address the multi-source authentication problem. Additionally, it had the
problems similar to [19] as it only considered generic multimedia content simply
as message blocks instead of real stream format like MPEG-4.

3 mSSA Overview

Our basic stream authentication scheme borrows many building blocks from
aforementioned traditional stream authentication schemes. Generally, a stream
is divided into groups of packets and each group is processed independently.
In an erasure channel, the objects/layers of a group at different priority levels
are given unequal protection levels via erasure correction coding (ECC) [7]. The
various layers are then packed into a group of packets. Furthermore, following
the amortizing scheme of SAIDA [13], the producer signs on the hash value of
each group, instead of on every packet. The group hash is generated such that
recipients are able to verify the source of a stream. It is generally believed that
by amortizing the authentication data over a group of packets the verification
overheads are much smaller than that of signing on every packet.

Unlike traditional multicast erasure channel where no packet modification is
allowed, the proxies in our model are not only a passive packet forwarder, but also
have an active role of transcoding and then redistributing the stream into the end
network. The transcoding mechanism allows a proxy to discard data layers from
the lowest priority layer to higher layers until the resource restrictions are met.
For example, Fine Granular Scalability (FGS) [6] is such a scalable mechanism to
distribute an MPEG-4 stream efficiently and flexibly over heterogeneous wired
and wireless networks. This transcoding strategy differs from packet dropping
strategy. Because the transcoded stream can tolerate the same number of packet
loss as the original stream, the error-resilience capability is not decreased. Thus,
a receiver is able to verify authenticity of the packet origin even if the stream is
transcoded. The objective of scalable stream authentication is to authenticate
all possible resulting streams after legitimate manipulations on scalable coded
streams. We further identify the following two types of transcoding operations
(refer to section 5.3 for illustration):

) Type-1 transcoding operation, w.r.t. truncation-only: A proxy is only allowed
to truncate one or multiple sub-streams from an original stream. that is to
say, there is only one valid stream source.

392 T. Li, H. Zhu, and Y. Wu

) Type-2 transcoding operation, w.r.t. grafting: A proxy can selectively trun-
cate one or multiple portions of an original stream, and insert one or more
portions from multiple stream sources. All of them form a new stream with
multiple sources.

Note that for type-1 transcoding operation, a verifier might verify not only
the stream source’s signature, but also the signatures from the proxies for com-
mitting their transcoding operations. For type-2 transcoding operation, a verifier
has more complex verification procedures involving multiple stream sources and
proxies (see section 4 and 5 for details).

Stream

Source

License
Server

mSSA
Proxy

Auth + Enc

mSSA in DRM system

Media
Server

Media
Storage
Metwork

End
Device

$

MICROSO

FT

CORPORA

TION

License

Media
Server

A AEnc

$

MICROSO

FT

CORPORA

TION

New
License

Fig. 1. Multi-Source Stream Authentication (mSSA) Framework

Fig. 1 sketches the overall mSSA framework. It can be embedded into the
current DRM systems as a complimentary media stream authentication scheme.
To process stream authentication, the framework consists of three main parts:
stream preparation by sources, stream transcoding by mSSA proxies and stream
verification by end users. We describe them as follows:

Part 1: Preparation The streaming video objects are first encoded according
to the MPEG-4 standard. Each source prepares the packets for the object
group based on the priorities of the video objects and layers. The source then
generates authentication data including integrity units and its signature. The
authentication data is amortized over the group of packets. The protected
stream as a whole packet group is then ready to be delivered to the proxies1.

Part 2: Transcoding On receiving the protected stream, a proxy can either apply
type-1 transcoding operations to fit the stream into some narrow bandwidth,
or employ another protected stream and apply type-2 transcoding opera-
tions. In either case, or combined transcoding operations, the proxy needs to
sign the new stream with some aggregate signature scheme AggSigning (see

1 The basic authentication scheme is presented in section 4.

Multi-Source Stream Authentication Framework 393

section 5). The process can be repeated and finally, the constructed stream
is ready to be downloaded by the end users.

Part 3: Verification The verification procedure is actually reversing the above
two processes. Suppose a receiver retrieves a stream as well as its authen-
tication data from some proxy. It then unpacks, decodes the packets. With
recovered authentication data, the receiver can verify the stream integrity
and signatures with proper aggregate signature verification scheme AggVfing.

4 Basic MPEG-4 Stream Authentication Scheme

4.1 Preliminaries and Notations

Notations: m denotes a message; h(.) is a collision resistant hash function. Ks

and Kp denote the private key and public key of the producer; Sign is the signing
algorithm: σ = Sign(Ks, m); Vf is the verification algorithm: Vf(Kp, σ, m) out-
puts {true, false}. We also introduce some useful tools like Merkle Hash Tree
(MHT) [8] and Erasure Correction Coding (ECC). Merkle hash tree has been
widely used in many security applications, since it has good security property
that it commits on one hash digest over a set of data items. In this paper, we use
MHT for generating the integrity data. Erasure correcting codes are good means
for error resilience of content dissemination in erasure channel. An ECC system
with symbols in finite field GF (2w) includes two modules: encoding Encn,k(·)
and decoding Decn,k(·), where n is the codeword length and k is the message
length.

4.2 Syntactic Structure of MPEG-4 Stream

The scheme is based on structure of packets, we first introduce the encoding and
packing of an MPEG-4 stream. According to [4,5], an MPEG-4 presentation
is divided into sessions including units of aural, visual, or audiovisual content,
called media objects. A Video Sequence (denoted as VS, or group) includes
a series of Video Objects (VOs). Each VO is encoded into one or more Video
Object Layers (VOLs). Each layer includes information corresponding to a given
level of temporal and spatial resolution, so that scalable transmission and storage
are possible. Each VOL contains a sequence of 2D representations of arbitrary
shapes at different time intervals that is referred to as a Video Object Plane
(VOP). VOPs are divided further into MacroBlocks (MBs) of size 16× 16. Each
MB is encoded into six Blocks B1, B2, · · · , B6 of size 8×8 when a 4:2:0 format is
applied. In an MPEG-4 stream, VOs such as foreground objects and background
objects, may have different priorities, indicated as visual object priority taking
values 1 ∼ 7 from lowest to highest priority. In MPEG-4 syntax, each object
layer has visual object layer priority to represent the importance of different
layers. The layer with the highest priority, called the base layer, contains data
representing the most important features of the video sequence, while additional
layers, called enhancement layers, progressively assigned with lower priorities,

394 T. Li, H. Zhu, and Y. Wu

...

VO1

VO 2

B1

MB b

MB 1

VOP 1

VOL 1

VOL 2

VOP 2

... B6 B1 B6

VO3

VOL3

VOP 3
...

Fig. 2. A typical tree structure of an object group with priority levels from V O1, V O2,
... down to V OLs, V OPs, MBs and Blocks. The shadow part that covers subtrees
(V O2-V O3) can be cut off by the transcoding operation.

contain data that further refine the quality of the base layer. The source generates
a flow for each layer and assigns to it a unique discarding priority. In Fig.2,
we illustrate a typical hierarchical object tree in one visual object group of an
MPEG-4 stream.

4.3 Generating Authentication Data

The very first step of the basic stream authentication scheme is generating au-
thentication data, which relies on some hashing and signing mechanisms on the
packets. Given a group of encoded packets with above tree structure, we are able
to generate the hash values bottom-up [18], which is a method similar to the
TRESSA hashing scheme in [20], as shown in table 1.

Where R is the root of the object group and GID is the group ID. Thus,
the producer can sign the group hash hG using its private key Ks and get the
signature as:

Table 1. Generating authentication data

Authentication Data Generation
At bottom layer, compute hash values of Blocks:

hBi = h(Blocki ‖ i), i ∈ {1, 2, · · · , 6}
Following that, compute hash values of macroblocks:

hMBj = h(hB1 ‖ hB2 ‖ · · · ‖ hB6)
......

Upward, suppose an upper layer node N has a set of child
nodes C = (C1, C2, ..., Cc), compute the hash value as:

hN = h(C1 ‖ C2 ‖ · · · ‖ Cc)
......

At last, we can calculate the group hash as:
hG = h(R ‖ GID)

Multi-Source Stream Authentication Framework 395

σ = Sign(Ks, hG) (1)

By signing once on the root of the object group, the originator actually
commits a whole virtual object group to the receivers. Suppose a stream consists
of n virtual object groups, n signatures are to be generated to authenticate
the stream. Hereafter, we use authentication data (denoted as λ = 〈σ, HG〉) to
represent both the signatures and the whole or partial2 group hash values.

4.4 Amortizing Authentication Data

After generating the authentication data, the authentication data is to be amor-
tized into the packets using existing information dispersal algorithm as in [14].
We employ ECC encoders to encode them and amortize them onto the packets
before sending them out over an erasure channel (We use the method intro-
duced in [15]). For simplicity, we process the authentication data uniformly with
the same encoding rate as of the highest priority layer. For a set of n pack-
ets P = {P1, P2, · · · , Pn} and their authentication data HG and σ in a (k,n)
erasure channel. The encoding procedure uses the systematic ECC algorithms
Enc2n−k,n(·) and Encn,k(·) and computes the codeword Cr as integrity units
r1, r2, · · · , rn, the codeword Cs as signature units s1, s2, · · · , sn, respectively.
Next, we append integrity unit rj and signature unit sj on packet Pj , for all
j = 1, 2, · · · , n.

4.5 Verifying Authentication Data

The verification process includes unpacking, decoding and verifying, which re-
verses the generation process. Based on the erasure coding, at least k out of
n packets of a group should be received in order to recover the authentication
data. Suppose k packets {P1, P2, · · · , Pk} are received successfully. The integrity
units r̂1, r̂2, · · · , r̂k and the signature units ŝ1, ŝ2, · · · , ŝk are recovered from the
received packets. With the decoder Decn,k(.) and Dec2n−k,n(.), the authentica-
tion data is recovered as λ̂ = {σ̂, ĤG}. Then, the signature can be verified with
algorithm Vf(Kp, σ̂, ĤG), where Kp is the public key of the stream source. If
Vf(.) is true, then continue to verify the integrity unit; if not, the object group
is bogus and discarded. To this end, the end user reconstructs the hash tree H ′

G

according to the formulas in table 1 and compares it with the extracted integrity
unit ĤG. We desire H ′

G = ĤG for successful verification.

5 Multi-Source MPEG-4 Stream Authentication

5.1 Basic Transcoding Process

On receiving a stream, a proxy is allowed to do type-1 or type-2 transcoding op-
erations before retransmission. First, we focus on truncate-only transcoding dis-
2 Depending on how much of a hash tree will be taken as the authentication evidence

(the integrity unit), which is the core part of flexible verification [18].

396 T. Li, H. Zhu, and Y. Wu

cussed in section 3. Based on MPEG-4 stream structure of Fig. 2, truncation-only
means that we preserve certain (important) branches of an MHT and truncate
other (unimportant) branches to fit the stream into narrow network bandwidth.
I.e., the shadow part in Fig. 2 could be truncated if necessary. In this example,
we discard the subtree (V O2 − V O3), retain the hash of the subtree root and
keep the subtree (V O1). Apparently, the original authentication data λ has to
be changed to a new one λ′. The new data shall contain the original signature
σ, the new integrity unit HV O1 and the new signature σP (signed by the proxy
on the root of the subtree for committing its modification). We get the new
authentication data λ′ = {σ, σP , HV O1}. Using above amortization method, we
can append them onto the packets and send them out.

Secondly, for grafting transcoding: suppose in above case, the subtree (V O2−
V O3) is replaced by another subtree (TA) with authentication data λA = {σA,
HTA}. Apparently, the authentication data of the composite stream should be
λ′′ = {σ, σP , HV O1 , σA, HTA}. And so forth for additional grafting operations
(with limitations only by the system capabilities). Same as above, λ′′ is amortized
onto the packets and sent out.

Noted that as the above processes continue, the signature size will be lin-
early increased and proportional to the signing parties. The overheads of these
signatures will soon become unaffordable after several transcoding operations.
Fortunately, there are two methods to reduce the size of the authentication data.
Firstly, we can reduce the size of integrity unit by dropping some hash values
of the subtrees. Support we generate a hash tree over totally n leaf nodes. If we
cut off all hash values of those leave nodes, we remain n−1 hash values. Bottom
up, if we cut off lower m levels of the tree, we have only n/2m−1−1 hash values.
However, the tradeoff of using this method is that it can not refine the verifi-
cation. Thus, we hereby concentrate on reducing the signature size that do not
loss any verification granularity as well as security. We employ a cryptographic
primitive, aggregate signature schemes such as [21][22], to significantly reduce
the size of multiple signatures into one only.

5.2 Transcoding with AggSigning and AggVfing

One special variant-a sequential signature scheme [22]3 can be applied into our
type-1 transcoding operation for reducing the signature size. Here, the proxy Pi

takes as inputs the signature σi−1 from its predecessor and all integrity data Σi

as a whole, and outputs aggregate signature σi. Thus, λi = {σi, Σi}. The new
authentication data is amortized onto the packets and sent to the end users.
Suppose an end user received at least k out of n packets of a stream in order
to recover the authentication data. The integrity unit Σ̂i and the signature unit
σ̂i are recovered from the received packets. Then, the signature can be verified
with above algorithm AggVf(σ̂i, Σ̂i) with corresponding public keys {PK1, · · ·,
PKi}. If AggVf(.) is true, then continue to verify the integrity unit; if not, the
object group is bogus and discarded. The end user reconstructs the hash tree Σ′

i

3 Since the scheme is built on standard primitives like RSA, that is widely adopted.

Multi-Source Stream Authentication Framework 397

and compares it with Σ̂i. If Σ′
i = Σ̂i, it means successful verification. If not, it

indicates a mismatch between two hash trees.

5.3 Illustration

In this section we illustrate above transcoding concepts with an encoded MPEG-
4 stream. Shown in Fig. 3, the images are generated artificially with English
characters as foreground objects. The background objects are considered impor-
tant and are coded with Enc5,4(·) ECC, but the foreground objects correspond
to layers of lower priority and are not coded for error resilience. We draw some
assumptions to simplify the demo: 1, we ignore the experiments for packet loss;
2, image pixels are used instead of DCT coefficients for data units in the process
of hash computation which could be sufficient for demonstrating our scheme; 3,
each layer includes two contiguous bit planes; and 4, we consider only two critical
concepts, VO and VOP, in MPEG-4 visual objects. The syntactic structure of
the simplified image sequence is shown in Fig. 4.

In order to allow authentication of the transcoded stream, for type-1 trans
coding, the proxy generates the hash for the covering-subtree value HV F and
incorporates one patch into each packet. For type-2 transcoding, the proxy cuts
and pastes a subtree V F ′ replacing V F . Figure 5 and 6 illustrate the syntactic
structure of type-1 and type-2 transcoded objects, respectively. Then, the proxy
sends the modified packets to the clients.

In type-1 transcoding, e.g., the MPEG-4 stream is adapted to a narrow
bandwidth wireless network, the proxy filters out the foreground objects and

Fig. 3. Sample image sequence. The background images forms the basic layer. While
the foreground objects (English words) form a sentence.

VB

VF

VP 7

VL 0

VL3

VP 0VP 1 VL 3

VP 6

VL0

VP 7 VP 6

VP 1 VP 0

Fig. 4. Syntactic structure of image objects. Where VB denotes the background object,
and VF denotes the foreground object.

398 T. Li, H. Zhu, and Y. Wu

VB

HVF

VP 7

VL 0

VL3

VP 0VP 1

VP 6

Fig. 5. Syntactic structure of type-1
transcoded objects

VB

VF ’

VP 7

VL 0

VL3

VP 0VP 1 VL 3'

VP 6

VL0 '

VP 7' VP 6'

VP 1 ' VP 0 '

Fig. 6. Syntactic structure of type-2
transcoded objects

Fig. 7. Received sample image sequence with transcoded foreground objects

just transmits the background objects to clients. In type-2 transcoding, e.g., the
proxy changes the foreground objects with some advertisements. Fig. 7 illustrates
the image sequence received by the clients for type-2 transcoding.

5.4 Discussions

Above we illustrate how a portion of a stream can be replaced with a portion
of another stream. In fact, multi-source stream can be flexibly composed. For
instance, in case of multi-screening, a super composer can summarize multiple
streams in a big screen, where each stream is scaled down to fit into its small
screen. To sign such a super stream is straightforward, the composer may ag-
gregate the signatures attached with those streams and generate its aggregate
signature. However, if a portion of a stream is grafted as in Fig. 6, i.e. suppose
V F ′ is a subtree rooted at V B′ where only V B′ is signed but not V T ′4, then
where can we sign? Fortunately, the scheme can be extended easily by providing
proof of trust from the signed root to the replacing portion. I.e. we need to
prove V F ′ is indeed a subtree of V B′ by taking as evidence the corresponding
hash values. Another way is to sign on every possible portions of the stream so
that we take that portion directly and generate the aggregate signature. Both
methods may introduce some overheads.

One critical concern is whether the scheme can be embedded into the legacy
DRM systems, as mentioned in section 3. First, let’s review the process of scal-
able multimedia. Raw multimedia stream is compressed once with a scalable
4 In our scheme, each stream is signed once on the root implicitly.

Multi-Source Stream Authentication Framework 399

coding scheme and the resulting codestream can be decoded adaptively. The
protection strategies must conform with the scalability of the codestream, thus
the fundamental property of (generally upper layer’s) authentication and en-
cryption is to preserve the scalability. Current DRM systems are focusing on
protecting illegal access to the content. End users download content from con-
tent distributors and separately, obtain the decryption keys from a license server.
Authentication is applied after the coding phase and normally before the encryp-
tion process. Here, authentication/verification and encryption/decryption is two
separate processes since they are based on different (Asymmetric/symmetric ci-
pher) techniques. In a shared key case, it is also possible to use authenticated
encryption schemes such as OCB [23]5.

6 Security and Performance Analysis

The security of our scheme relies on the security of the Merkle hash tree and the
aggregate signature scheme. Fortunately, Merkle hash tree has very nice security
properties [8] and the security of aggregate signature is analyzed in [21,22]. Thus,
we concentrate on the integrity unit that is how much percentage of a stream is
verifiable. Then, we analyze the computational cost of each party in the scheme.

6.1 Percentage of Verification

Assuming the authentication data is recoverable as it has the highest priority
as the base layer. Additionally, assuming an erasure channel with independent
packet losses, given ρ the packet loss probability. The group of n packets trans-
ferred over the erasure channel may have probably

(
n
k

)
ρn−k(1 − ρ)k packets

received. The verification delay for a group of n packets is O(n). In our defini-
tion, only those recovered content of a received stream can be verified. From the
recovered authentication data λ̂i and AggVf(σ̂i, Σ̂i). We know the validity of the
signatures. Further on, if we don’t receive enough packets to recover all stream,
we are not able to verify the full integrity unit Σ̂i from the reconstructed hash
tree Σ′

i. Let P = Σ′
i/Σ̂i denote the percentage of verification. We claim that

the rate of the reconstructed hash tree Σ′
i over the recovered hash tree Σ̂i from

the received packets directly determines the verification rate P over the object
group, given the signature on Σ̂i is valid.

6.2 Computational Cost

We assume that the computational cost relates to security operations without
encoding/decoding costs. Additionally, the computational cost for signature gen-
eration and verification depends on the signature scheme selected and normally,
the signature verification is considered much faster than signature generation.

5 This will be a totally different scheme and not discussed further due to space limi-
tation.

400 T. Li, H. Zhu, and Y. Wu

And, for an MHT with n leaf items, the total number of hash operations is
roughly 2n.

For type-1 transcoding, there is only one stream source with one signature
generation and 2n hashing operations. Each intermediate proxy Pi must first
verify i−1 former signatures and generate one sequential aggregate signature for
all its transcoding operations. The final receiver has to verify all the signatures
of the aggregate signature, but at relatively lower cost. On the other hand, the
receiver will also spend time on reconstructing the (probably partial) hash tree
over the object group. For type-2 transcoding, each stream source Si generate
one signature and 2ni hashing operations. Each intermediate proxy Pi must first
verify i − 1 former signatures and generate one general aggregate signature for
all its type-2 transcoding operations. The cost at the final receiver is the same
as that of type-1.

7 Conclusions and Future Works

We proposed the first secure multi-source authentication scheme for compos-
ite MPEG-4 stream. The scheme works under the general assumption of “era-
sure channel”, but can be adapted to “polluted erasure channel”, e.g. by using
distillation code [17]. We elaborated how the encoding, hashing, transcoding,
signing and verifying mechanisms are integrated in the mSSA framework. The
scheme extends easily and scales well. Our analysis shows that it is secure and
cost-effective. The detailed scheme can complement to some standard DRM plat-
forms to protect multimedia content. In the futue, we will develop the innovative
prototype within a legacy DRM framework.

References

1. J.R. Smith, R. Mohan, C. S. Li, Scalable Multimedia Delivery for Pervasive Com-
puting. In Proc. ACM Intl. Conf. on Multimedia (ACMM’99), Orlando, FL, 1999.

2. Microsoft, Architecture of Windows Media Rights Manager, http://www.
microsoft.com/windows/windowsmedia/howto/articles/drmarchitecture.aspx

3. eXtensible right Markup Language (XrML). http://www.xrml.org
4. ISO/IEC 14496-1:2001 Information Technology-Coding of Audio-Visual Objects-

Part 1: Systems.
5. ISO/IEC 14496-2:2003 Information Technology-Coding of Audio-Visual Objects-

Part 2: Visual.
6. Weiping Li, Overview of fine granularity scalability in MPEG-4 video standard,

IEEE Trans. on Circuits and Systems for Video Technology, 11(3):301-317, 2001.
7. A. E. Mohr, E. A. Riskin, R.E Ladner, Unequal loss protection: graceful degradation

of image quality over packet erasure channels through forward error correction.
IEEE Journal on Selected Areas in Communications, 18(6):819-828, 2000.

8. R. C. Merkle, A certified digital signature, Crypto’89, Lecture Notes on Computer
Science, Vol. 0435, pp. 218-238, Spriner-Verlag, 1989.

9. M. Luby, M. Mitzenmacher, A. Shokrollahi, D. Spielman, and V. Stemann, Prac-
tical loss-resilient codes, in Proc. 29th Annual ACM Symposium on Theory of
Computing (STOC’97), El Paso, TX, May 1997.

Multi-Source Stream Authentication Framework 401

10. A. Perrig, R. Canetti, J. D. Tygar, and D. Song. Efficient authentication and
signature of multicast streams over lossy channels. In Proceedings of the IEEE
Symposium on Research in Security and Privacy (S&P’00), pages 56-73, May 2000.

11. P. Golle and N. Modadugu, Authenticated streamed data in the presernce of ran-
dom packet loss, in Proc. Network and Distributed System Security Symposium
(NDSS’01), San Diego, CA, Feb. 2001.

12. S. Miner and J. Staddon. Graph-based authentication of digital streams. In Pro-
ceedings of the IEEE Symposium on Research in Security and Privacy (S&P’01),
pages 232-246, May 2001.

13. J. M. Park, E. K. Chong, and H. J. Siegel. Efficient multicast packet authentication
using signature amortization. In Proceedings of the IEEE Symposium on Research
in Security and Privacy (S&P’02), pages 227-240, May 2002.

14. J. M. Park, E. Chong, and H. J. Siegel. Efficient multicast packet authentication
using erasure codes. ACM Transactions on Information and System Security (TIS-
SEC’03), 6(2):258-285, May 2003.

15. A. Pannetrat and R. Molva, Efficient multicast packet authentication, in Proc.
Network and Distributed System Security Symposium (NDSS’03), San Diego, CA,
Feb. 2003.

16. Maxwell N. Krohn, Michael J. Freedman, David Mazires On-the-Fly Verification
of Rateless Erasure Codes for Efficient Content Distribution. IEEE Symposium on
Security and Privacy (S&P’04), California, USA.

17. C. Karlof, N. Sastry, Y. Li, A. Perrig, and J. Tygar, Distillation codes and ap-
plications to DoS resistant multicast authentication, in Proc. 11th Network and
Distributed Systems Security Symposium (NDSS’04), San Diego, CA, Feb. 2004.

18. Tieyan Li, Yongdong Wu, Di Ma, Huafei Zhu, Robert H. Deng, Flexible Verifi-
cation of MPEG-4 Stream in Peer-to-Peer CDN, 6th International Conference on
Information and Communications Security (ICICS’04), LNCS 3269, Spain, 2004.

19. Takashi Suzuki, et al. A system for end-to-end authentication of adaptive mul-
timedia content. Eighth IFIP TC-6 TC-11 Conference on Communications and
Multimedia Security (CMS’04), Sept. 2004.

20. C. Gentry, A. Hevia, R. Jain, T. Kawahara, and Z. Ramzan. End-to-End Security
in the Presence of Intelligent Data Adapting Proxies: the Case of Authenticating
Transcoded Streaming Media. J. Selected Areas of Communication, Q1, 2005.

21. Dan Boneh, Craig Gentry, Ben Lynn, Hovav Shacham. Aggregate and Verifiably
Encrypted Signatures from Bilinear Maps. EUROCRYPT 2003.

22. Anna Lysyanskaya, Silvio Micali, Leonid Reyzin, Hovav Shacham. Sequential Ag-
gregate Signatures from trapdoor one-way permutations. EUROCRYPT 2004.

23. P. Rogaway, M. Bellare, J. Black and T. Krovetz, OCB: A block cipher mode of
operation for efficient authenticated encryption, in Proc. of 8th ACM CCS’01.

Batching SSL/TLS Handshake Improved�

Fang Qi1,2, Weijia Jia1, Feng Bao2, and Yongdong Wu2

1 School of Information Science and Engineering,
Central South University, Changsha 410083, China
csqifang@mail.csu.edu.cn, itjia@cityu.edu.hk

2 Institute for Infocomm Research,
21, Heng Mui Keng Terrace, Singapore, 119613

{stufq, baofeng, wydong}@i2r.a-star.edu.sg

Abstract. Secure socket layer (SSL) is the most popular protocol to
secure Internet communications. Since SSL handshake requires a large
amount of computational resource, batch RSA was proposed to speedup
SSL session initialization. However, the batch method is impractical since
it requires a multiple of certificates. In this paper, we overcome this
problem without modifying SSL protocol. To select the optimal batching
parameters in terms of performance of server and durable waiting time
of the client, we model the connection request with M/D/1 queue. We
validate the solutions of the analytical model through simulation.

1 Introduction

Secure communication such as Internet banking and e-commerce [1] is an in-
trinsic demand of today’s world of online transactions. As the most widely used
method, SSL/TLS [2] runs above existing protocols like TCP. It protects com-
munications by encrypting messages with a secret key negotiated in the SSL
handshake protocol [3]. The SSL Handshake Protocol allows the server and client
to authenticate each other and to negotiate an encryption algorithm and crypto-
graphic keys before transmitting and receiving the first byte of data [4]. However,
SSL handshake protocol needs intensive computational resource due to the cost
of public-key operations. For example, a typical Pentium server (running Linux
and Apache) can handle about 322 HTTP connections per second at full capac-
ity but only 24 SSL connections per second; and a Sun 450 (running Solaris and
Apache) fell from 500 to 3 connections per second [5]. To improve the perfor-
mance of SSL/TLS handshake protocol, there are several ways:

(1) Hardware: Obviously, a specific circuit can improve the performance. This
solution may not be a good solution to middle or small servers [6].

(2) Session Caching : the cache allows subsequent connections to resume an ear-
lier TLS session and thus reuse the result of an earlier computation. Research

� The first author’s work is done during her attachment to Institute for Infocomm
Research under its sponsorship. This effort is partially sponsored by the National
Basic Research Program (973) MOST of China under Grant No. 2003CB317003.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 402–413, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Batching SSL/TLS Handshake Improved 403

has suggested that, indeed, session caching helps web server performance [7].
However, the cache technology has no help to speedup the session setup.

(3) Batching: Fiat [8] presented an algorithmic approach for speeding up SSL’s
performance on a web server by batching the SSL handshake protocol. It
is designed for heavily-loaded web servers handling many concurrent SSL
sessions. Shacham and Boneh [9] improved the batching performance with
batching multiplication-inversion.

In this paper, we focus on the batching technology to improve the perfor-
mance of SSL. Shacham and Boneh [9] prove that it is impossible to use a single
certificate in the present SSL/TLS system. Whereas, we adapt the certificate
mechanism so as to provide SSL/TLS setup with only one certificate issued by
Certificate Authority.

We also model the client request as a M/D/1 queue and use its approximate
solution to optimize the batch size of the server.This optimal batch size satisfies
the client’s requirement for the stability of the batching system and enables the
mean response time of a batch system behaves nicely using the the optimal batch
size.

The rest of the paper is organized as follows. To be self-contained, an overview
of the batch RSA [8] is presented in Section 2. The unique certificate schemes in
batch SSL are presented in Section 3. We propose the method to select optimal
batching parameters in terms of client convenience and server computational
cost in detail in Section 4. Finally, we validate the solutions of the analytical
model through simulation in Section 5.

2 Review of Batch RSA

As a SSL server waits for more than one RSA decryption request and performs
one big computation for all decryptions, it can spare a lot of running time ca-
pacity [8], being able to perform more SSL handshakes.

Given b distinct and pairwise relatively prime public keys e1, . . . , eb, all sharing
a common modulus N = pq.n is the bit length of the public modulus N and k
the bit length of the bigger of ei. Furthermore, we have b encrypted messages
v1, . . . , vb, one encrypted with each key, which we wish to decrypt simultaneously,
to obtain the plaintexts mi = v

1/ei

i .
In the following equations, quantities subscripted by L or R refer to the

corresponding value of the left or right child of the node, respectively. Fiat’s
algorithm consists of three phases: a multiplication computation phase, expo-
nentiation phase and division computation phase. In the multiplicative product
computation phase, we seek to combine the individual encrypted messages vi to
form, at the root of the batch tree, the value v =

∏b
i=1 v

e/ei

i , where e =
∏b

i=1 ei.
Using the binary tree construction, working from the leaves to the root. At

every internal node, each encrypted message vi is placed (as v) in the leaf node
labeled with its corresponding ei. The v’s are percolated up the tree using the
following recursive step, applied at each inner node:

v ← vER

L · vEL

R (1)

404 F. Qi et al.

EL, ER are the left child and right child of each product of internal node.
At the completion of the multiplication computation phase, the root node

contains v =
∏b

i=1 v
e/ei

i . In the exponentiation phase, the eth root of this v is
extracted. The exponentiation yields v1/e =

∏b
i=1 v

1/ei

i , which we store as m in
the root node.

In the division computation phase, each plaintext can be recovered with the
following formula:

Mi =
v

v
(ai−1)/ei

i

∏b
j=1,j �=i v

ai/ej

j

mod N (2)

where ai is calculated using the theory of Chinese remainder theorem.
This batching technique is only worthwhile when the public exponents ei are

very small (e. g. , 3 and 5). Otherwise, the extra arithmetic required is too
expensive. Also, notice that one can only batch-decrypt ciphertexts encrypted
using distinct public exponents. This is essential. Indeed, Shacham and Boneh
[9] showed that it is not possible to batch when the same public key is used.

3 Unique Certificate Scheme in Batch RSA

In the standard SSL protocol, each client encrypts a 48-byte pre-master secret
using ei as the encryption exponents, and the server decrypts the ciphertext
independently so as to get the pre-master secret. But batch RSA obtains the
pre-master secrets from a multiple clients and hence improve the performance
significantly. Unfortunately, batching schemes [8][9] has following disadvantages:
requirement for many different RSA certificates; additional payment for certifi-
cates; extra maintenance works of multiple certifications. There are two ways to
solve this multiple certificates problem in existing [8][9].

(1) The server issues sub-certificates for himself as sub-Certificate Authority.
The public keys of sub-Certificate which is sent to the clients are the encryp-
tion exponents ei using in batch RSA. This method has to ask the client to
check one more certificate.

(2) Another method is to re-use the message serverHello.random in the pro-
tocol as shown in Table 1. For simplicity, We only show the related processes
and the modified information in the standard SSL/TLS handshake protocol.
In this improvement, ei is actually a part of serverHello.random. Server
only need send unique certificate to all the clients. This solution requires no
modification on SSL protocol because the encryption exponents ei is assigned
to the client in serverHello.random. The client will verify the certificate
as usual, but encrypt the pre-master secret with received ei instead of the
public exponent in the certificate. Therefore, no extra charge is required, and
it is easy to manage the certificate. On the other hand, since the certificate
is used to prove the owner who knows the factors of the RSA moduli N only,
this adaption does not undermine the security strength of SSL protocol.

Batching SSL/TLS Handshake Improved 405

Table 1. Unique Certificate for a partial handshake

Client 1 Server
ClientHello −→

←− ServerHello.random including e1

←− Certificate*(N,e)
Certificate*

ClientKeyExchange −→
(v1 = me1

1)

Client 2 Server
ClientHello −→

←− ServerHello.random including e2

←− Certificate* (N,e)
Certificate*

ClientKeyExchange −→
(v2 = me2

2)

4 The Optimization of Batching Parameter

In this section, we propose a method to select optimal batching parameters in
terms of client convenience and server computational cost.

4.1 Batching Queue Model M/D/1

Suppose the client arrival process is Poisson distributed with an arrive rate λ,
and the server response is regarded as an M/D/1 queue. Let the batching service
time be τ which is determined by the batching size b.

The M/D/1 model can be approximated with a semi-Markov process depicted
in Figure 1. The state of semi-Markov process is described by (i) where i indicates
the number of clients waiting in the queue with i=idle indicates the server is idle.
Let the mean residual service time is Tr = 0.5τ [10].

Idle 0 1 2 3 4 .

λ λ λ λ

μ

λ

r1 T r 1 T r 1 T r1 T

Fig. 1. Semi-Markov Process Model of Batching server, μ = 1/τ

406 F. Qi et al.

Let ψ0 be the mean holding time in state idle, ψ1 be the mean holding time
in state (0), and ψ2 be the mean holding time in state (i), for i > 0. Thus

ψ0 =
∫ ∞

0
tλe−λtdt =

1
λ

ψ1 =
∫ τ

0
tλe−λtdt +

∫ ∞

τ

λe−λtdt =
1
λ

η1

ψ2 =
∫ Tr

0
tλe−λtdt +

∫ ∞

Tr

λe−λtdt =
1
λ

η2.

where η1 = 1 − e−λτ denotes the Markov transition Probability from state idle
to state(0), and η2 = 1−e−0.5λτ denotes the Markov transition Probability from
state(i) to state(i+1), for i > 0.

Then, we can solve the steady distribution π∗
0 for semi-Markov due to [11] as

π∗
0 =

(1 − η1)(1 − η2)
1 + η1η2 − η2

(3)

Then we compute the queueing waiting time Tq using the residual service time
Tr and the steady state distribution π∗

0 for semi-Markov when the server is idle.

Tq = (1 − prob(idle))× Tr = (1 − π∗
0) × Tr (4)

4.2 Optimal Parameter

Clearly, the batching size b is related to the quality of server service. Thus, we
need to select an optimal parameter b for optimizing the performance of server
and clients.

Let the batching RSA decryption time in SSL handshake time is TB. Since TB

is the majority of service time, the batching service time of the server is roughly
TB.

Theorem 1: To satisfy the client’s requirement for the stability of the system,the
batching service time is less than the batch size multiply poisson distributed mean
arrival time interval when the time t → ∞ in the Batch Queue Model M/D/1,
thus

τ ≈ TB <
b

λ
(5)

Proof: Let {Xi} (i = 1, 2, . . .) be the arrival time interval of two consecutive
requests, and Y be the time interval of b consecutive requests. According to [10],
if the system achieves the stability when the time t → ∞ for M/D/1 queue
model,

TB < E(Y)

Batching SSL/TLS Handshake Improved 407

where E(Y) is the expected value of Y . Because the Xi are random variable
with independent identical distribution, the average arrival time interval of b
consecutive requests is

E(Y) = E(
b∑

i=1

Xi) = bE(Xi) = b/λ (6)

Then the theorem 1 is proved. ��

Lemma 1:In the Batch Queue Model M/D/1, to satisfy the client’s requirement
for the stability of the system, thus

Tq <
b

2λ
(7)

Proof: In the Batch Queue Model M/D/1,we first continue deriving the value
of Tq following the Eq 4

Tq = (1 − prob(idle))Tr = (1 − π∗
0)Tr

= (1 − (1−η1)(1−η2)
1+η1η2−η2

)Tr = 1−e−λτ

1−e−λτ +e−1.5λτ Tr

= eλτ−1
e−λτ−1+e−0.5λτ Tr = 1

1+ 1
(eλτ −1)e0.5λτ

Tr

< 0.5τ
1+ 1

(eλτ −1)e0.5λτ

(8)

where Tr = 0.5τ < b
2λ .

Due to Theorem 1 λτ < b, it is easily described as

Tq <
1

1 + 1
(eb−1)e0.5b

(9)

Especially, when b = 2, 1
1+ 1

(eb−1)e0.5b

≈ 0.944. The value of this formula is

increased with the b, while not exceed 1. We can get the value bound of the
upper limit of Tq as [0.944 b

2λ , b
2λ). Then the Lemma 1 is proved. ��

From the point of view of the client, the total mean responding time T =
Tq +Tc +TB, where Tc is the time for waiting other client in the same batching.
We can easily derive the max value of Tc is (b − 1)/λ while the arrive rate is λ.
Otherwise, the upper limit of Tb has been estimated as b

λ in Theorem 1.
It is supposed that the total client response time dose not exceed the client’s

psychologically durable waiting time Td. Then, we can construct the following
inequation to estimate the approximate bound of batching size.

T = Tq + Tc + TB <
b

2λ
+

(b− 1)
λ

+
b

λ
< Td =⇒ b <

2
5
(λTd + 1) (10)

In summary, to satisfy the customer’s requirement for the stability of the
system,we can get the optimal solution which satisfy TB < b/λ derived from
theorem 1. On the other hand, it is supposed that the solution of b should

408 F. Qi et al.

satisfy the approximate bound described as Eq 10. which assumes that the total
customer response time will not exceed the customer’s psychologically durable
waiting time. The optimal parameter of batch size can be solved by the following
inequations. The reason to select b as large as possible is to reduce the number
of decryption request to decryption device.{

2 ≤ b ≤ �0.4(λTd + 1)�
TB < b/λ

(11)

Determining Td: If the client’s durable waiting time is known, we can estimate
the upper limit of batch size b according as different arrival rate of the client.
We further consider the constants and practical value of the Td to estimate the
upper limit of the batch size b. On disconnected thinking, 50% people apparently
don’t look beyond the first page of search results, and will wait only 8 seconds
for a website to download before they get fed up and move on [12]. So we assume
durable waiting time Td ≈ 8. That is to say, if the response time Td exceeds 8
seconds, the client will cancel the request.

Estimating TB: Let n be the bit length of the public modulus N and k be
the bit length of the bigger of exponent ei. Because the public exponents ei are
chosen as small as possible to make auxiliary exponentiations cheap, the low-cost
operations in the computation cost estimation can be ignored.

The performance analysis of the batch RSA exponentiation algorithm can be
divided as multiplication, exponentiation and division computation phases as
discussed in Section 2.

We can estimate the cost of e =
∏b

i=1 ei is (b − 1)n2. The cost of computing
1/e is (b−1)n2. The main computation cost is exponentiation costs (3k−2)n2 +
o(n2) with the exponent ei where the bit length of ei is k. The whole cost in
multiplication phase is b(2 + 3k)n2 + o(n2).

In the exponentiation computation phase v1/e mod N =
∏b

i=1 v
1/ei

i mod
N costs 3n3 + n2 + o(n2).

The division computation phase use the theory of Chinese remainder theo-
rem. The phase requires a total of 4 small exponentiations, 2 inversions, and 4
multiplications at each of the (b − 1) inner nodes.

Roughly, the cost for two inversion operations is equivalent to that of 40
multiplications of n-bit integers. Thus, the whole cost in the division phase is
almost (40b + 3kb3 − 1)n2 + o(n2).

As a result, the batching RSA decryption time is

TB = (
3n3 + n2(42b + k(3b3 + 3b) − 1)

b(3n3 + n2)
)bTrsa = (

3n + 42b + k(3b3 + 3b) − 1)
b(3n + 1)

)bTrsa

5 Validation of Analytical Optimal Parameter

In this section we validate our analysis by comparing the analytical results ob-
tained above with the simulation results.

Batching SSL/TLS Handshake Improved 409

5.1 Experiment Configuration

We perform the simulation by executing conventional RSA and batch RSA using
the Cryptix [14] implementation. The time of the conventional RSA and batch
RSA decryption and the other parameters such as the mean responding time
T , mean queueing waiting time Tq, the time waiting other client in the same
batching Tc and batching service time TB of the analytical models are executed
on a machine with an Dell Intel Pentium IV processor clocked at 3. 20GHz and
1GMB RAM.

Specifically, we perform the simulation of batching RSA with very small public
exponents, namely e = 3, 5, 7, 11, etc. The simulation result of the conventional
RSA decryption time Trsa with larger public exponent, namely e = 65537 is
about 32ms which is tested using reiterative results. Both algorithms assume
public modulus N is 1024 bits length. Otherwise, because SSL protocol usually
uses a random 48-bytes string R as Pre-MasterSecret, we assume the length of
plaintext is 384bits.

5.2 Experiment Results

Optimal Batch Size Validation: Figure 2 validates our approximation of
optimal parameter of batch size b described by the inequations 11.

For relative small arrival rates, b is almost uniform calculated by our analytical
model, especially for arrival rates λ < 2 as shown in figure 2. Since arrival rates
are small(i. e. , λ < 0.6),there is very little opportunity to batch, and therefore,
the solution of b are relative small as shown in figure 2. Even at higher arrival
rate, the analytical result and simulation result are very close. As shown in figure
2, the solution of the optimal batch size are increased with λ both in analytic
and simulation when λ < 4 approximately. When 4 < λ < 30, b is 13 and the
optimal batch size reaches Maximum. Although, the speed of batch RSA with
b = 13 compared with b = 4 proposed by Shacham and Boneh [9] (thereafter
we call this SB scheme) is not very fast, we effectively reduce the number of

10
−1

10
0

10
1

10
2

0

2

4

6

8

10

12

14

 λ

O
pt

im
al

 B
at

ch
 S

iz
e

Analytic
Simulation

Fig. 2. Optimal Batch Size Validate

10
0

10
1

10
2

0

1000

2000

3000

4000

5000

6000

 λ

M
ea

n
R

sp
on

se
 T

im
e

(m
s)

Analytic
Simulation
SB

Fig. 3. Mean Response Time Validation
with Optimal Batch Size

410 F. Qi et al.

decryption request to decryption device. Otherwise, the mean response time in
this case is not increased obviously. The solution of the optimal batch size are
decreased with the λ when λ > 30 approximately.

Performance with Optimal Batch Size: Figure 3 illustrates the analytic
mean response time, our simulation mean response time and the the mean re-
sponse time of SB scheme. As show in the figure 3, the mean response time
T of a batched system behaves nicely when using the optimal solution of the
batch size. When λ = 4, T reaches Maximum and decreased with the λ when
using optimal batch size. If we determine b = 4 in the SB scheme [9], the mean
response time of a batched system behaves poorly especially when the arrival
rate does not exceed 1 requests/sec.

Performance with Different Batch Size: Figure 4(a)-(c) show that the
mean response time is almost linearly with the batch size when the arrival rate
is relatively small. This is due to the fact that the total mean responding time
T = Tq + Tc + TB, where Tc is the time for waiting other client in the same

2 3 4 5 6 7 8
1000

2000

3000

4000

5000

6000

7000

8000

 batch size

M
ea

n
R

es
po

ns
e

T
im

e
U

si
ng

 D
iff

er
en

t B
at

ch
 S

iz
e

(m
s)

Analytic
Simulation

(a) λ = 1

2 4 6 8 10 12 14
0

1000

2000

3000

4000

5000

6000

7000

8000

 batch size

M
ea

n
R

es
po

ns
e

T
im

e
U

si
ng

 D
iff

er
en

t B
at

ch
 S

iz
e(

m
s)

Analytic
Simulation

(b) λ = 2

2 4 6 8 10 12 14
0

500

1000

1500

2000

2500

 batch size

M
ea

n
R

es
po

ns
e

T
im

e
U

si
ng

 D
iff

er
en

t B
at

ch
 S

iz
e

(m
s)

Analytic
Simulation

(c) λ = 10

2 4 6 8 10 12 14
0

100

200

300

400

500

600

700

800

900

1000

 batch size

M
ea

n
R

es
po

ns
e

T
im

e
U

si
ng

 D
iff

er
en

t B
at

ch
 S

iz
e

Analytic
Simulation

(d) λ = 80

Fig. 4. Mean Response Time Validation of the Analytic Model against Simulation
Using Different Batch Size

Batching SSL/TLS Handshake Improved 411

batching. When the arrival rate is relatively small, the main contribution to T
is made by Tc. It is evident that the time Tc is increased linearly with the batch
size. Otherwise, the batching service time of the server TB is also increased with
the batch size. Therefore the mean response time is also increased with the batch
size when the arrival rate is relatively large(i. e. , λ = 80).

Performance Speed Against Non-batching Scheme: A non-batched sys-
tem becomes unstable when the arrival rate λ > 1/Trsa = 1/0.032 = 31.25 due to
the fact that a non-batched system becomes unstable when arrival rate higher
than service rate [10]. But with batching, the mean response time of a batch
system behaves nicely even at high loads.

When the non-batching system is stable, the mean response time T’ without
batching in M/D/1 queue model while the mean service time τ ′ is deterministic
can be estimated as Eq 12 as [10] while the mean service time τ ′ is deterministic.
Since Trsa is the majority of service time, the the mean service time τ ′ of the
server is roughly Trsa.

T ′ = τ ′ + τ ′(
τ ′λ

2(1 − τ ′λ)
) (12)

Figure 5(a) and (b) illustrates the comparison of the mean response time of
the batching schemes with the non-batched scheme. The vertical axis in each
graph is the mean response time with different batch size divided by the mean
response time with non-batched scheme.

From the analytic solution and simulation result of b described by the inequa-
tions 11 which is showed in figure 3, we can get b = 3 when λ = 1 and b = 6
when λ = 2.

The speed of mean response time is an optimal one which equal to 2.52 ap-
proximately in figure 5(a). From figure 5(b), it is clear that speed of the mean
response time is also optimal one which equal to 2.86 roughly. It is also clear
that with the optimal batch size the batching system has considerable advantages
whereas costs little.

2 3 4 5 6 7 8
1.6

1.8

2

2.2

2.4

2.6

2.8

3

 batch size

R
es

po
ns

e
T

im
e

S
pe

ed
 a

ga
in

st
 N

on
−

ba
tc

hi
ng

Analytic
Simulation

(a) λ = 1

2 4 6 8 10 12 14
0.5

1

1.5

2

2.5

3

 batch size

R
es

po
ns

e
T

im
e

S
pe

ed
 a

ga
in

st
 N

on
−

ba
tc

hi
ng

Analytic
Simulation

(b) λ = 2

Fig. 5. Mean Response Time Speed Against Non-batching Scheme

412 F. Qi et al.

Multi-server Case Validation: Based on the Theorem 1, a batched system
becomes unstable when the arrival rate λ > 100. In other words,with analytical
model and simulation, we can not find the result of solution of batch size when
the arrival rate λ > 100 requests/sec. In this case, we consider using two batch-
servers to provide service for SSL handshake requests. In figure 6, we give the
result of the optimal batch size using analytical and simulation. In figure 7, we
give the result of mean response time using the optimal batch size in multi-server
system.

100 150 200 250 300 350 400 450 500
5

6

7

8

9

10

11

12

 λ

O
pt

im
al

 B
at

ch
S

iz
e

Analytic
Simulation

Fig. 6. Optimal Batch Size in Multi-server
System

100 150 200 250 300 350 400 450 500
60

80

100

120

140

160

180

200

220

240

 λ

M
ea

n
R

sp
on

se
 T

im
e

(m
s)

Analytic
Simulation

Fig. 7. Mean Response Time Validation in
Multi-server System

6 Conclusion

In this paper, we proposed the new method of assigning the set of public expo-
nents ei only using unique certificate in batching SSL handshake protocol. This
solution improved the multiple certificates scheme without adding any modifi-
cation on SSL protocol and additional information that needs to be sent to the
clients .

We have shown the stability conditions for the batching SSL handshake and
the optimal solution of batch size by developing an analytical model. We also
validated this model with simulation results. We have also demonstrated that
the mean response time etc. is very nice when using the optimal batch size.

References

1. C. Coarfa, P. Druschel, and D. S. Wallach, “Performance Analysis of TLS Web
Servers,” NDSS 2002

2. T. Dierks, and E. Rescorla, “The TLS Protocol, Version 1.1,” IETF Draft, RFC
2246, 2005

3. I. Goldberg, and D. Wagner, “Randomness and the Netscape Browser,” Dr. Dobb’s
Journal, pp. 66-70, January 1996.

Batching SSL/TLS Handshake Improved 413

4. A. O. Freier, P. Karlton, P. C. Kocher, “The SSL Protocol, V3.0”
5. J. Feigenbaum, M. J. Freedman, T. Sander, A. Shostack, “Privacy Engineering

for Digital Rights Management Systems,” 2001 ACM Workshop on Security and
Privacy in Digital Rights Management, LNCS 2320, pp.76-105, 2002.

6. E. Rescorla, A. Cain, and B. Korver, “SSLACC: A Clustered SSL Accelerator,”
Proceedings of the 11th USENIX Security Conference.

7. A. Goldberg, R. Buff, and A. Schmitt, “Secure Web Server Performance Dramat-
ically Improved By Caching SSL Session Keys,” in Workshop on Internet Server
Performance, June 1998.

8. A. Fiat, “Batch RSA,” Crypto’89, pp.175-185, 1989. See also Journal of Cryptol-
ogy, 10(2):75-88, 1997

9. H. Shacham, and D. Boneh, “Improving SSL Handshake Performance via Batch-
ing,” RSA’2001, Lecture Notes in Computer Science, Vol. 2020, pp.28-43, 2001.

10. L.Kleinrock. Queueing Systems, Volume I.Wiley-Interscience,1975.
11. W. C. Cheng, C. -F. Chou, and L. Golubchik,“Performance of Batch-based Digi-

tal Signatures,” 10th IEEE International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems, pp.291-299, 2002.

12. R.Alec, Capitalism Is Dead: Peoplism Rules: Creating Success Out of Corporate
Chaos, McGraw-Hill, 2003.

13. C.Vuillaume, Efficiency Comparison of Several RSA Variants,Studienarbeit,
March 2003. http://www.cdc.informatik.tu-darmstadt.de/reports/reports/
studien.pdf.

14. Cryptix:The Open Source Toolkit.http://www.cryptix.org/

Achieving Efficient Conjunctive Keyword
Searches over Encrypted Data

Lucas Ballard, Seny Kamara, and Fabian Monrose

Department of Computer Science,
Johns Hopkins University,

Baltimore, MD, USA
{lucas, seny, fabian}@cs.jhu.edu

Abstract. We present two provably secure and efficient schemes for
performing conjunctive keyword searches over symmetrically encrypted
data. Our first scheme is based on Shamir Secret Sharing and provides
the most efficient search technique in this context to date. Although the
size of its trapdoors is linear in the number of documents being searched,
we empirically show that this overhead remains reasonable in practice.
Nonetheless, to address this limitation we provide an alternative based
on bilinear pairings that yields constant size trapdoors. This latter con-
struction is not only asymptotically more efficient than previous secure
conjunctive keyword search schemes in the symmetric setting, but incurs
significantly less storage overhead. Additionally, unlike most previous
work, our constructions are proven secure in the standard model.

1 Introduction

Remote and untrusted storage systems [21,14,13] allow clients with limited re-
sources to store and distribute large amounts of data at low cost. However, in
order to preserve confidentiality, the remotely-stored data must be encrypted
prior to transmission. Unfortunately, encryption restricts a client’s ability to se-
lectively access segments of her data, especially when she wishes to only retrieve
specific content (e.g., related to a given keyword). To address this dilemma, a
number of techniques have been recently proposed for achieving a less stringent
storage model, one based on the notion of secure, delegated, searchable encryp-
tion (e.g., [28,17,12,10,29]). Intuitively, in order to provide secure searchable
encryption schemes, most of these approaches associate an index with each doc-
ument that, when combined with a trapdoor for a keyword, returns information
signifying the association of the keyword with the document. Informally, such
keyword searches are considered secure if they leak at most one bit of informa-
tion about each document, namely, whether or not that document contains the
keyword.

While the ability to perform single keyword searches is useful in some set-
tings, clearly, it is more desirable to search on multiple keywords, and in partic-
ular, on boolean combinations of these keywords. Unfortunately, most previous

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 414–426, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Achieving Efficient Conjunctive Keyword Searches over Encrypted Data 415

suggestions for permitting multiple keyword searches either fail to do so effi-
ciently, or leak unnecessary information. To see why, consider that the suggested
approaches for achieving this goal have been to either (i) send a trapdoor for
each keyword and expect the server to return the set intersection (in the case
of conjunctions) or the set union (in the case of disjunctions) of the matching
documents (e.g., see [28,17]), or (ii) store information corresponding to every
possible boolean combination of keywords on the server. The former sugges-
tion leaks information that is linear in the number of conjuncts being searched,
and the latter, while secure, incurs storage overhead that is exponential in the
number of keywords associated with the document.

In this paper, we focus on providing provably-secure conjunctive keyword
search over symmetrically encrypted data, while minimizing the computational
and storage overhead imposed on both the client and server. To this end, we
present two constructions, one based on a non-standard use of Shamir Secret
Sharing [27] and another based on bilinear pairings. We show that our first
construction is the most practical conjunctive keyword search scheme known to
date. Although the size of the trapdoors it generates is linear in the number
of documents being searched, our experiments show that this overhead remains
manageable in practice. For situations where constant sized trapdoors are re-
quired, we provide an alternative construction that is the most asymptotically
efficient scheme we are aware of (in terms of both space and time complexity) in
the symmetric setting. Moreover, both of our constructions are provably secure
in the standard model.

2 Related Work

Song, Wagner, and Perrig introduced the notion of searchable encryption in [28].
In that work, the authors present a new encryption algorithm that embeds extra
information into the ciphertext such that when it is used in conjucntion with a
trapdoor, it discloses whether a particular keyword is stored in a document. Un-
fortunately, search requires computation linear in the size of each document and
reveals statistical information about the distribution of the underlying plaintext.

Both of these shortcomings are addressed by the work of Goh [17], which
presents a construction that uses per-document indexes derived from Bloom fil-
ters [7]. There, each word in the document is processed using a pseudo-random
function and then inserted into a Bloom filter. The client then provides a trap-
door consisting of an indicator of which bits in the filter should be tested, thereby
resulting in constant per-document search time. Moreover, Goh’s work also in-
troduced the notion of semantic security against chosen-keyword attacks (called
IND-CKA), which is the first formal notion of security defined for searchable
encryption.

As discussed earlier, neither of these schemes allow users to perform boolean
keyword searches securely and efficiently. This shortcoming was first addressed
by Golle, Staddon and Waters in [18], where they present two solutions that
achieve the desired level of security. The first is provably secure under the De-

416 L. Ballard, S. Kamara, and F. Monrose

cision Diffie-Hellman assumption [8] and requires two modular exponentiations
per document for searching. Additionally, the size of the trapdoors (referred to as
search capabilities in [18]) is linear in the number of documents being searched.
Although it is shown that portions of the trapdoors can be transmitted before
a search even takes place, this overhead is still undesirable. Furthermore, it re-
quires the client to know the number of searches she wishes to perform a priori.
The second construction is based on bilinear pairings and is proven secure under
a new hardness assumption. That scheme achieves constant sized trapdoors, but
requires a linear number (with respect to keywords) of pairing computations per
document in order to perform a search—an overhead that is arguably unrealistic,
particularly in the presence of a large collection of documents.

More recently, Park, Kim and Lee proposed the first public-key searchable
encryption schemes [10,29,15] that allow for secure conjunctive keyword searches
[25]. Their constructions, based on the Bilinear Decision Diffie-Hellman (BDDH)
and Bilinear Decision Diffie-Hellman Inversion (BDDHI) assumptions, have con-
stant sized trapdoors and are more efficient than the schemes presented in [18].
Since the constructions presented in this paper are more efficient, in terms of
computational and storage overhead, than both of the previous approaches, we
argue that our schemes offer the most pragmatic choice in the symmetric setting.

3 Preliminaries

3.1 Model

We assume the standard model for symmetric searchable encryption schemes (as
used in [28,17,12,18]), which includes a client and a server that can be trusted to
interact in a protocol, but not to abstain from attempting to learn information
that is not explicitly released by the client. The client has a set of m docu-
ments D = (D1, . . . , Dm) that she wishes to store on the server in encrypted
form, while still retaining the ability to search through them. To do so, she first
generates an index Ii for each document Di and stores both the index and the
encrypted document E(Di) on the server. Here, we assume that E is an arbitrary
symmetric encryption scheme, such as AES [16], and is independent of our in-
dex constructions. To search the document collection for a given keyword w, the
client generates and sends a trapdoor T to the server who proceeds to search
each index for w. The server then returns the appropriate set of documents to
the client.

In this work, we also assume the standard model for conjunctive keyword
searches over encrypted data as presented in [18]. Namely, we work in the setting
where each document is associated with a list of keywords. In particular, we
make the following assumptions: (i) the number of keywords associated with a
document remains fixed and (ii) no keyword appears at two different locations
in a list. The first constraint can be satisfied by simply adding null keywords
to the list, while the second can be satisfied by prepending each keyword with
a field name or the value of a counter. As in [18,25], to reduce computational
burden, trapdoors specify which positions should be searched within an index.

Achieving Efficient Conjunctive Keyword Searches over Encrypted Data 417

3.2 Notation

Throughout this paper we use the following notation. Let Γ be a dictionary of
words, and 2Γ be the set of all possible documents. Further, let D ⊆ 2Γ be a
collection of m documents D = (D1, . . . , Dm). We associate a list of keywords
Wi = (wi,1, . . . wi,n) with each document Di. When the associated document is
clear from the context, we simplify the notation as Wi = (w1, . . . , wn). Ii refers
to an index for a document Di, and Tc to a trapdoor for a conjunction of d words
c = (w1, . . . , wd). If a trapdoor is composed of one term for each document in
D (i.e., is linear in the size of D), then we say that Tc is composed of m tokens
(T1, . . . , Tm).

Furthermore, we write x
R← X to represent a random variable x being drawn

uniformly from a set X . The output of a deterministic algorithm A will be
denoted by x ← A and that of a probabilistic algorithm by x

R← A. Finally, let
negl(k) denote a negligible function in k, and || denote concatenation.

4 Definitions

In this section we reintroduce the definition of a secure conjunctive keyword
search scheme and recall the notion of semantic security against chosen-keyword
attacks.

Definition 1 (Secure Conjunctive Keyword Search (SCKS)). Let W =
(W1, . . . , Wm) be a collection of keyword lists. A SCKS scheme consists of four
probabilistic polynomial-time algorithms:

– Keygen(1k): is a probabilistic key generation algorithm that is executed by
the client in order to instantiate the scheme. It takes as input a security
parameter k, and returns a secret key K.

– BuildIndex(K, Wi): is executed by the client to construct an index. It takes
as input a secret key K and a keyword list Wi. It returns Wi’s index Ii.

– Trapdoor(K, �1, . . . , �d, w1, . . . , wd): is executed by the client to generate a
trapdoor for a given conjunction of keywords. It takes as input a secret key
K, the locations in the index to search (�1, . . . �d), and a list of d conjuncts
(w1, . . . , wd). It returns a trapdoor Tc for the conjunction c = (w1∧· · ·∧wd).

– SearchIndex(Ii, Tc): is executed by the server on behalf of the client to search
for the occurrence of a conjunction in an index. It takes as input an index
Ii = BuildIndex(K, Wi), where Wi = (w1, . . . , wn), and a trapdoor Tc for a
conjunction c = (w′

1 ∧ · · · ∧ w′
d). It returns true if w′

j = wj for 1 ≤ j ≤ d;
and false otherwise.

Intuitively, the notion of security we seek to capture can be summarized as
follows: given access to a set of indexes, a server should not be able to learn
any partial information about the associated keyword lists that he cannot learn
from a trapdoor that was explicitly given to him by the client. Note that in the
context of conjunctive keyword searches, this implies that the trapdoor for a

418 L. Ballard, S. Kamara, and F. Monrose

given conjunction c = (w1 ∧ · · · ∧wd) should not help the server in generating a
trapdoor for any other conjunction c′ = (w′

1 ∧ · · · ∧ w′
δ), even if {w′

1, . . . , w
′
δ} ⊂

{w1, . . . , wd}. In addition, this notion of security should hold even against a
server that can mount chosen keyword attacks, or in other words, against a server
that can trick the client into generating trapdoors for keywords of its choice. More
formally, this notion of security is known as semantic security against chosen
keyword-attacks as introduced in [17]. Golle, Staddon and Waters [18] present
three games that formally capture semantic security against chosen-keyword
attacks for SCKS schemes and show that they are all asymptotically equivalent.
In this work, we only make use of two of these games, namely indistinguishability
of ciphertext from ciphertext and indistinguishability of ciphertext from random,
which we briefly review below.

Definition 2 (Indistinguishability of ciphertext from ciphertext (ICC)
[18]). For all probabilistic polynomial-time adversaries A:

Pr

⎡⎢⎢⎢⎢⎣
b′ = b : K ← Keygen(1k);

(W0, W1) ← ABuildIndex(K,·),Trapdoor(K,·);

b
R← {0, 1}; Ib ← BuildIndex(K, Wb);

b′ ← ABuildIndex(K,·),Trapdoor(K,·)(Ib)

⎤⎥⎥⎥⎥⎦ ≤ 1
2

+ negl(k)

with the restriction that A must choose (W0, W1) such that |W0| = |W1| and
such that SearchIndex(I0, T) = SearchIndex(I1, T) for all T generated using its
Trapdoor oracle.

Definition 3 (Indistinguishability of ciphertext from random (ICR)
[18]). For all probabilistic polynomial-time adversaries A:

Pr

⎡⎢⎢⎢⎢⎢⎣
b′ = b : K ← Keygen(1k);

W0 ← ABuildIndex(K,·),Trapdoor(K,·); W1
R← 2Γ ;

b
R← {0, 1}; Ib ← BuildIndex(K, Wb);

b′ ← ABuildIndex(K,·),Trapdoor(K,·)(Ib)

⎤⎥⎥⎥⎥⎥⎦ ≤ 1
2

+ negl(k)

with the restriction that W1 must be chosen such that |W0| = |W1| and such that
SearchIndex(I0, T) = SearchIndex(I1, T) for all T generated using its Trapdoor
oracle.

Theorem 1 ([18]). If there exists an adversary A that wins game ICC with
non-negligible probability, then there exists another adversary B that wins game
ICR with the same probability.

5 A Construction Based on Secret Sharing

In this section we describe our first secure conjunctive keyword search scheme,
denoted as SCKS-SS. It is based on Shamir’s threshold secret sharing scheme

Achieving Efficient Conjunctive Keyword Searches over Encrypted Data 419

(SSS) and is provably secure in the standard model. We note that this construc-
tion does not take advantage of SSS’s threshold properties, which suggests that
similar constructions could be achieved using random oracles or other secret
sharing schemes. We chose SSS due to its universal familiarity and efficiency.

In [27], Shamir proposed a (k, n)-threshold secret sharing scheme based on
polynomial interpolation in the field Zp. Informally, the scheme is composed of
two algorithms SSS = (share, recover) defined as follows. If S ∈ Zp is a secret
value we wish to share between n players, and if we require that at least k
shares are needed to recover S, share operates as follows: a dealer generates
a random k − 1 degree polynomial P such that P(0) = S; it then chooses n
random points on P and distributes them as shares. In order to recover the
secret P(0) = S, the recover algorithm simply requires that at least k players
pool their shares, perform standard polynomial interpolation, and evaluate the
resulting polynomial at 0. The unconditional security of SSS follows from the
fact that one cannot interpolate a k − 1 degree polynomial with fewer than k
points.

5.1 Our Construction

Our construction makes use of a pseudo-random function f : {0, 1}k ×{0, 1}l →
Zp×Zp, where l is the length of the longest word in Γ . Each keyword list has an
associated identifier, i, which is never reused. In particular, even if two lists have
the same set of keywords at the same locations, their identifier will be different.
Given a list Wi, we write f i

K(w), where w ∈ Wi, to refer to the following opera-
tion: f(K, i||w). Let W = (W1, . . . , Wm) be a collection of m keyword lists, each
composed of n words. SCKS-SS = (Keygen, BuildIndex, Trapdoor, SearchIndex) is
then given as follows:

– Keygen(1k): Generate a secret key K
R← {0, 1}k and a random prime p > n.

– BuildIndex(K, Wi): For each word wj ∈ Wi, let σj = f i
K(wj) = (xj , yj).

Output Ii = (σ1, . . . , σn)
– Trapdoor(K, �1, . . . , �d, w

′
1, . . . , w

′
d): For each Wi ∈ W, let

Si = recover(f i
K(w′

1), . . . , f
i
K(w′

d)). Output T = (S1, . . . , Sm, �1, . . . , �d).
– SearchIndex(Ii, T): If Si = recover(σ1 , . . . , σd

), then output true, otherwise
output false.

5.2 Security

Since correctness follows from the description of the scheme, we provide only a
proof of security. To show that SCKS-SS is semantically secure against chosen-
keyword attacks, we first state two useful lemmas. Due to space considerations,
we omit the proofs of these lemmas, but refer the reader to the full version of this
paper [3]. The first states that given two arbitrary keyword lists, their indexes
are independent to any probabilistic polynomial-time adversary. We note that
this holds even if the lists are composed of the same keywords. The second lemma
states that given two different conjunctions, their corresponding trapdoors will

420 L. Ballard, S. Kamara, and F. Monrose

be indepedent (also to any probabilistic polynomial-time adversary), even if they
are generated in order to search the same keyword list.

The usefulness of these lemmas will become apparent in our main theorem
(Theorem 2), where we claim that since the adversary cannot learn anything
about its challenge index from access to its BuildIndex and Trapdoor oracles, we
need only consider semantic security against chosen plaintext attacks.

Lemma 1. Let Wa and Wb be two keyword lists such that a �= b. If fK is
a pseudo-random function, then Ia is independent of Ib for all probabilistic
polynomial-time adversaries.

Lemma 2. Let W = (W1, . . . , Wm) be a collection of m keyword lists and let
c = (w1 ∧ · · · ∧wd) and c′ = (w′

1 ∧ · · · ∧w′
δ) be two conjunctions of length d and

δ, respectively. If fK is a pseudo-random function and if c �= c′, then for any
probabilistic polynomial-time adversary A, Tc is independent of Tc′ .

Theorem 2. If fK is a pseudo-random function, then SCKS-SS is semantically
secure against chosen-keyword attacks.

Proof. Since the identifier of a keyword list is never repeated, we know from
Lemma 1 that if fK is a pseudo-random function then no two indexes will be
correlated even if they contain the same keywords. It follows that A cannot learn
anything about its ICC challenge index Ib from any of the indexes returned by
its BuildIndex oracle.

Furthermore, consider the restriction imposed on A’s choice of keyword lists
in the ICC game, namely that it must choose two lists W0 and W1, such that
SearchIndex(I0, T) = SearchIndex(I1, T) for all trapdoors T returned by its
Trapdoor oracle. This implies that any such trapdoor will be useless to A in
distinguishing whether Ib is the index for W0 or W1. In addition, by Lemma
2, we know that if fK is a pseudo-random function, then trapdoors generated
for different conjunctions are independent. Taken together, the two preceding
statements imply that A cannot use the results of its Trapdoor queries to either
search over its challenge index Ib, or to generate any new trapdoors with which
it can try to search over Ib.

From the previous discussion, it is then safe to only consider A’s challenge
index. If f is a random function, then I0 and I1 are independent of W0 and
W1, respectively. If we replace f by a pseudo-random function fK , then to any
probabilistic polynomial-time adversary, Ib will be independent of its associated
keyword list Wb. Thus A will not be able to distinguish between W0 and W1
given Ib, otherwise we could build an adversary B that could distinguish between
fK and a random function. ��

6 A Construction Based on Bilinear Maps

Our second construction, SCKS-XDH, achieves constant transmission overhead
at the cost of placing a larger computational burden on the server. The security

Achieving Efficient Conjunctive Keyword Searches over Encrypted Data 421

of the scheme is based on a new variant of the External Diffie-Hellman (XDH)
assumption. The XDH assumption was first introduced in [26] and formalized in
[9,2]. It has been used more recently as a hardness assumption in [?,11]

Assumption 1 (Decision Diffie-Hellman (DDH)). Let 〈g〉 = G be a cyclic
group of order p and c

R← Zp. The Decision Diffie-Hellman assumption holds in
G if no probabilistic polynomial-time adversary A can distinguish between tuples
(g, ga, gb, gab) and (g, ga, gb, gc), with probability non-negligibly greater than 1

2 :

∣∣Pr
[
A(ga, gb, gab) = 1

]
− Pr

[
A(ga, gb, gc) = 1

]∣∣ ≤ 1
2

+ negl(|p|)

Assumption 2 (External Diffie-Hellman (XDH) [2]). Let 〈P 〉 = G1 and
〈Q〉 = G2 be two disjoint cyclic subgroups of order p of an elliptic curve, and let
ê be a non-degenerate bilinear map ê : G1 × G2 → GT . The XDH assumption
holds across G1 and G2 if the DDH assumption holds within G1.

A concrete algebraic setting where this assumption holds is discussed further in
[2]. To prove the security of our construction, we make use of a slightly stronger
variant of the XDH assumption which we call the Mixed XDH assumption.

Assumption 3 (Mixed External Diffie-Hellman (MXDH)). Let 〈P 〉 =
G1 and 〈Q〉 = G2 be two groups of order p, and let ê be a non-degenerate
bilinear map ê : G1 × G2 → GT . The MXDH assumption holds across G1 and
G2 if given (P, aP, bP, cP, aQ, bQ), no probabilistic polynomial-time adversary A
can distinguish between tuples (P, aP, bP, abP) and (P, aP, bP, cP), where c

R← Zp

(i.e., the DDH assumption holds within G1).

6.1 Our Construction

Let 〈P 〉 = G1 and 〈Q〉 = G2 be two groups of prime order p and ê be a non-
degenerate bilinear map ê : G1×G2 → GT such that the XDH assumption holds
accross G1 and G2. Additionally, let f : {0, 1}k × {0, 1}l → Zp be a pseudo-
random function, where l is the length of the longest word in Γ . Recall that
in our model we assume that all keywords are distinct and that this can be
achieved by simply concatenating the value of a counter to each keyword. We
define SCKS-XDH = (Keygen, BuildIndex, Trapdoor, SearchIndex) as follows:

– Keygen(1k): Generate a secret key K
R← {0, 1}k, and choose two points P

and Q such that 〈P 〉 = G1 and 〈Q〉 = G2. Q is kept private.
– BuildIndex(K, Wi): Choose ri

R← Zp. For each word wj ∈ Wi, let sj = fK(wj).
Output Ii = (riP, ris1P, . . . , risnP).

– Trapdoor(K, �1, . . . , �d, w
′
1, . . . , w

′
d): Choose ρ

R← Zp. Let t =(
ρ
∑d

j=1 fK(w′
j)
)

Q. Output T = (t, ρQ, �1, . . . , �d).

– SearchIndex(Ii, T): If ê(t, riP) = ê(ρQ,
∑d

j=1 risj P), then output true, oth-
erwise output false.

422 L. Ballard, S. Kamara, and F. Monrose

To demonstrate correctness, consider a user that wishes to search for a con-
junction c = (w′

1 ∧ · · · ∧ w′
d) over the index locations specified by the sequence

of integers (�1, . . . , �d). Let T = Trapdoor(K, �1, . . . , �d, w
′
1, . . . , w

′
d) be the trap-

door enabling the server to search for c. Furthermore, let Wi = (w1, . . . , wn)
be a keyword list, and Ii = BuildIndex(K, Wi) be its index. If Wi is such that
wj = w′

j for 1 ≤ j ≤ d (i.e. Wi includes all the words in the conjunction
c at the appropriate locations) then: ê(t, riP) = ê((ρ

∑d
j=1 fK(w′

j))Q, riP) =

ê(Q, P)riρ
d
j=1 fK(w′

j) = ê(Q, P)ρ d
j=1 ris�j = ê(ρQ,

∑d
j=1 risj P) and

SearchIndex(Ii, T) will return true.

6.2 Security

Theorem 3. If the Mixed XDH assumption holds, then SCKS-XDH is semanti-
cally secure against chosen-keyword attacks.

Proof. Given an adversary A that wins the ICR game with non-negligible prob-
ability over 1

2 , we describe an adversary B that uses A to break the MXDH
assumption with the same probability. By theorem 1 this implies that there
exists another adversary that can win game ICC also with non-negligible proba-
bility over 1

2 . Let 〈P 〉 = G1, 〈Q〉 = G2, and ê : G1×G2 → GT be an appropriate
XDH setting, and let (P, aP, bP, cP, aQ, bQ) be B’s MXDH challenge. B’s goal is
to solve the DDH problem in G1, or in other words to decide whether c = ab.

B begins by simulating A. To start, A will make a polynomial number of
BuildIndex queries which B will answer as follows. Let A’s query keyword list be
Wi = (wi,1 ∧ · · · ∧ wi,n), where 0 ≤ i ≤ poly(k). B chooses a value ri

R← Zp and

for each word wi,j ∈ Wi, where 1 ≤ j ≤ n, it picks a random value zi,j
R← Zp

and computes rizi,jbP . To be consistent across different queries, B keeps track
of the correspondence between keywords wi,j ∈ Wi and the random zi,j values it
chooses. Notice that if B is given bP as part of its MXDH challenge, it can compute
rizi,jbP . Finally, it returns the index Ii = (riP, rizi,1bP, . . . , rizi,nbP) to A.

When A makes a Trapdoor query with index locations (�1, . . . , �d) and con-
junction c = (w′

1 ∧ · · · ∧ w′
d), B begins by choosing a random value ρ

R← Zp. It
then computes t = ρ(

∑d
λ=1 γλbQ) where γλ = zi,j if w′

λ previously appeared at

some position in one of A’s queries, and γλ
R← Zp otherwise. Observe that while

B does not know b, it can compute zi,jbQ (and thus t), since bQ is part of its
MXDH challenge.

Finally, B returns the trapdoor T = (t, ρQ, �1, . . . , �d) to A. Note that T is a
valid trapdoor for c = (w′

1∧. . . ,∧w′
n), and in particular, that since B consistently

uses the same value zi,j for word wj , SearchIndex(Ii, T) will return true if and
only if Wi includes all the words in the conjunction c at the locations specified
by (�1, . . . , �d).

After polynomially many BuildIndex and Trapdoor queries, A submits a key-
word list W ∗ = (w∗

1 , . . . , w∗
n). B returns to A the challenge index I∗ = (aP, γ∗

1cP,
. . . , γ∗

ncP), where γ∗
λ = zi,j if w∗

λ previously appeared in one of A’s queries to

Achieving Efficient Conjunctive Keyword Searches over Encrypted Data 423

either its BuildIndex or Trapdoor oracles, and γ∗
λ

R← Zp otherwise. Observe that
if c = ab, then I∗ is a correct index for W ∗, while if c �= ab then I∗ is a correct
index for some other arbitrary keyword list. In particular, if c is random then
I∗ is an index for a random set of keywords. After the challenge, A is allowed
to make more Trapdoor and BuildIndex queries (with the same restrictions as
before), which B answers as it did in the previous steps.

Finally, A outputs a bit β that represents its decision as to whether I∗ is
an index for W ∗ or some random keyword list. B then returns β as its own
answer to its MXDH challenge. It follows that B’s probability in breaking its
MXDH challenge is equal to A’s probability in breaking the ICR game, which
we assumed holds with non-negligible probability over 1

2 . ��

7 Efficiency

Comparison with Previous Constructions. We now consider the compu-
tational and space complexity of our constructions. In particular, we compare
their efficiency to the work of Park, Kim and Lee [25]. We note that while
the schemes in [25] are in the public-key setting, they are still more efficient
than previous symmetric constructions presented in [18]. Since any public-key
searchable encryption scheme can be converted to a symmetric one, we focus our
comparison with the schemes in [25].

We refer to the first and second constructions in [25] as PKL-1 and PKL-2, re-
spectively. Recall that m denotes the number of documents stored on the server,
n the number of keywords associated with each document, and d the number of
keywords comprising a search. Unless otherwise specified, measurements are in
terms of the requirements to process all documents on the server.

In what follows we discuss the running time and storage overhead for all
relevant operations, including building indexes, generating trapdoors, searching
and storing indexes, and sending trapdoors. First, we note that SCKS-SS is the
most computationally efficient construction for index generation and searching,
requiring only m polynomial interpolations on d points. Furthermore, though
both the size of its trapdoors and the running time of the trapdoor generation
algorithm are linear in the number of documents, we show that this overhead
still remains practical. Storage requirements for indexes are less than previous
approaches [25,18], requiring only 2mn points in Zp (where p is only 128 bits).
We also note that SCKS-XDH incurs significantly less storage and transmission
overhead than PKL-1 and PKL-2 as it need not store or send elements in integer
groups. Additionally, SCKS-XDH is more efficient than both PKL-1 and PKL-2
for BuildIndex as it requires only m(n + 1) multiplications in G1, is faster than
PKL-1 for trapdoor generation, and is comparable to PKL-2 (but slower than
PKL-1) for SearchIndex.

Empirical Evaluation of SCKS-SS and SCKS-XDH. To evaluate the feasi-
bility of our constructions, we implemented and benchmarked the relevant oper-
ations. All tests were performed on a 3.0 GHz Pentium 4 machine running Fedora

424 L. Ballard, S. Kamara, and F. Monrose

Core 3 Linux. Our implementations are in C++ and made use of the MIRACL
[24] library for multi-precision and curve-based operations, and OpenSSL [23]
for all other cryptographic primitives.

Our implementation of SCKS-SS performs all operations in the field Zp, where
p is a 128-bit prime. We chose to instantiate f using HMAC-SHA1 [6]. In partic-
ular, we let f i

K(w) = (hK(w||i||0), hK(w||i||1)) where hK(·) denotes the last 128
bits of HMAC-SHA1’s output under the key K. And though polynomial interpo-
lation can be done as efficiently as O(d log2 d) [20], we use standard Lagrangian
interpolation [20], which is O(d2) to generate trapdoors and perform searches.
Our implementation of SCKS-XDH uses a 160 bit curve, which gives security
comparable to that of Diffie-Hellman in 1024 bit integer groups [22]. Due to the
algebraic setting of the MXDH assumption, we can represent points in G1 using
161 bits, but require 481 bits for points in G2 [5]. Accordingly, operations in G2
are slower than in G1

1.
To evaluate the efficacy of our constructions, we present the time required

to create 10,000 indexes of 10 keywords each, to generate trapdoors, and to
search these indexes. In both constructions index generation grows linearly in the
number of keywords. SCKS-SS requires slightly less than 2 seconds to generate
10, 000 indexes with 10 keywords each, while SCKS-XDH requires 445 seconds.

The SCKS-SS operations that require interpolation, namely Trapdoor and
SearchIndex, incur time that is quadratic in the number of keywords being
searched. We note, however, that according to [19], user queries on the Web typ-
ically contain at most 3 keywords. If we assume such a setting, SCKS-SS is able
to search 10, 000 files in about 0.86 seconds, while trapdoor generation requires
less than 1.5 seconds. The time required for SCKS-XDH to generate trapdoors
and search a given index is essentially constant. Trapdoor generation requires
111 ms while searching 10,000 indexes requires approximately 720 seconds.

Although SCKS-SS requires trapdoors linear in the number of documents,
since each token is only 16 bytes long, a trapdoor for 10, 000 documents is merely
156 KB in size. The space required to store the indexes associated with a collec-
tion of 10, 000 documents of 10 keywords each is 3.1 MB—which is much more
space efficient than any previously known construction.

Although SCKS-XDH is less efficient in terms of index generation and search-
ing than SCKS-SS, it requires less storage and only incurs constant transmission
overhead. In fact, to store an index, the server need only need keep a point in G1 for
each keyword of each document. As such, the indexes associated to a collection of
10, 000 documents with 10 keywords each can be stored in approximately 2.1 MB.
Also, since trapdoors are pairs of points in G2 they can be represented in 0.12 KB.

Acknowledgements. The authors thank Avi Rubin for fruitful discussions and
Eu-Jin Goh for comments on an earlier draft of this paper. This work was sup-
ported in part by a Bell Labs Graduate Research Fellowship and NSF award
0430338.

1 Although SCKS-XDH could benefit from reusing line function coefficients in Miller’s
algorithm [4] (as suggested in [25]) we did not implement this optimization.

Achieving Efficient Conjunctive Keyword Searches over Encrypted Data 425

References

1. G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable rfid tags via insub-
vertible encryption. In 12th ACM Conference on Computer and Communications
Security (CCS 2005), 2005.

2. L. Ballard, M. Green, B. de Medeiros, and F. Monrose. Correlation resistant
storage. Technical Report TR-SP-BGMM-050507, Johns Hopkins University De-
partment of Computer Science, 2005.

3. L. Ballard, S. Kamara, and F. Monrose. Achieving efficient conjunctive keyword
searches over encrypted data. Technical Report TR-SP-BKM-050920, Johns Hop-
kins University Department of Computer Science, 2005.

4. P. Barreto, H. Kim, B. Lynn, and M. Scott. Efficient algorithms for pairing-based
cryptosystems. In Advances in Cryptology - CRYPTO 2002, volume 2442 of Lecture
Notes in Computer Science, pages 354–369. Springer-Verlag, 2002.

5. P. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly groups.
In Selected Areas in Cryptography - SAC ’03, volume 3006 of Lecture Notes in
Computer Science, pages 17–25. Springer-Verlag, 2004.

6. M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for message
authentication. In Advances in Cryptology - CRYPTO 1996, volume 1109 of Lecture
Notes in Computer Science, pages 1–15. Springer, 1996.

7. B. Bloom. Space/time trade-offs in hash coding with allowable errors. Communi-
cations of the ACM, 13(7):422–426, 1970.

8. D. Boneh. The Decision-Diffie Hellman Problem. In Third International Sympo-
sium on Algorithmic Number Theory (ANTS-III), volume 1423 of Lecture Notes in
Computer Science, pages 48–63. Springer-Verlag, 1998.

9. D. Boneh, X. Boyen, and H. Sacham. Short group signatures. In Advances in
Cryptology - CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science,
pages 41–55. Springer-Verlag, 2004.

10. D. Boneh, G. di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In Advances in Cryptology - Eurocrypt 2004, volume 3027 of
Lecture Notes in Computer Science, pages 506–522. Springer-Verlag, 2004.

11. Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. Compact e-cash. In
Advances in Cryptology – EUROCRYPT 2005, Lecture Notes in Computer Science,
pages 302–321. Springer, 2005.

12. Y. Chang and M. Mitzenmacher. Privacy preserving keyword searches on remote
encrypted data. In Third International Conference on Applied Cryptography and
Network Security (ACNS 2005), volume 3531 of Lecture Notes in Computer Sci-
ence, pages 442–455. Springer-Verlag, 2005.

13. I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: a distributed anony-
mous information storage and retrieval system. In Workshop on Design Issues in
Anonymity and Unobservability, volume 2009 of Lecture Notes in Computer Sci-
ence, pages 46–66, 2001.

14. Microsoft Corp. Federated, available and reliable storage for an incompletely
trusted environment (Farsite). See http://research. microsoft.com/sn/Farsite/.

15. D. Davis, F. Monrose, and M. Reiter. Time-scoped searching of encrypted audit
logs. In 6th International Conference on Information and Communications Security
(ICICS 2004), volume 3269 of Lecture Notes in Computer Science, pages 532–545.
Springer-Verlag, 2004.

16. Federal Information Processing Standards. Advanced Encryption Standard (AES) –
FIPS 197, November 2001.

426 L. Ballard, S. Kamara, and F. Monrose

17. E-J. Goh. Secure indexes. Technical Report 2003/216, IACR ePrint Cryptography
Archive, 2003. See http://eprint.iacr.org/2003/216.

18. P. Golle, J. Staddon, and B. Waters. Secure conjunctive keyword search over en-
crypted data. In Applied Cryptography and Network Security Conference (ACNS),
volume 3089 of Lecture Notes in Computer Science, pages 31–45. Springer, 2004.

19. B. Jansen, A. Spink, J. Bateman, and T. Saracevic. Real life information retrieval:
a study of user queries on the web. SIGIR Forum, 32(1):5–17, 1998.

20. D. Knuth. The Art of Computer Programming, volume 2. Addison-Wesley, Read-
ing, Mass., 2nd edition, 1981.

21. J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels, R. Gum-
madi, S. Rhea, H. Weatherspoon, C. Wells, and B. Zhao. Oceanstore: an ar-
chitecture for global-scale persistent storage. In Ninth international conference
on Architectural support for programming languages and operating systems, pages
190–201. ACM Press, 2000.

22. A. Lenstra and E. Verheul. Selecting cryptographic key sizes. In 3rd International
Workshop on Practice and Theory in Public Key Cryptography (PKC 2000), vol-
ume 1751 of Lecture Notes in Computer Science, pages 446–465. Springer-Verlag,
2000.

23. The OpenSSL Library. See http://www.openssl.org.
24. Shamus Software Ltd. Multiprecision integer and rational arithmetic C/C++ li-

brary (MIRACL). See http://indigo.ie/∼mscott.
25. D. Park, K. Kim, and P. Lee. Public key encryption with conjunctive field key-

word search. In 5th International Workshop on Information Security Applications
(WISA 2004), volume 3325 of Lecture Notes in Computer Science, pages 73–86.
Springer-Verlag, 2004.

26. M. Scott. Authenticated ID-based key exchange and remote log-in with simple to
ken and PIN number. Technical Report 2002/164, International Association for
Cryptological Research, 2002. Available at http://eprint.iacr.org/2002/164.

27. A. Shamir. How to share a secret. Communications of the ACM, 22:612–613,
November 1979.

28. D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted
data. In IEEE Symposium on Research in Security and Privacy, pages 44–55. IEEE
Computer Society, May 2000.

29. B. Waters, D. Balfanz, G. Durfee, and D. Smetters. Building an encrypted and
searchable audit log. In Network and Distributed System Security Symposium
(NDSS 2004). The Internet Society, 2004.

Total Disclosure of the Embedding and Detection
Algorithms for a Secure Digital Watermarking

Scheme for Audio

David Megı́as, Jordi Herrera-Joancomartı́, and Julià Minguillón

Estudis d’Informàtica i Multimèdia,
Universitat Oberta de Catalunya,

Av. Tibidabo 39–43, 08035 Barcelona
Tel. (+34) 93 253 7523, Fax (+34) 93 417 6495

{dmegias, jordiherrera, jminguillona}@uoc.edu

Abstract. This paper discusses the modification of a robust digital audio water-
marking scheme to allow the disclosure of the embedding and detection algo-
rithms. The chosen scheme uses MPEG 1 Layer 3 compression to determine the
position of the mark bits in the frequency domain. The marking positions would
be exposed if the original embedding algorithm was disclosed. In fact, it is shown
that even if an attacker did not know the exact tuning parameters used for em-
bedding, he or she could still produce an approximate superset of the marking
frequencies from only a marked copy and successfully attack the file. To avoid
this problem, a secret key is introduced in the embedding and detection processes.
The secret key includes the seed of a pseudo-random number generator which is
used to compute the exact marking positions. The modification is then analysed
in terms of capacity, imperceptibility, robustness and security. The experiments
show that the modified scheme preserves most of the properties of the original
one, such as robustness against MP3 compression for the most frequently used
bit rates, and does introduce additional security as the mark is more difficult to
erase when the embedding and detection algorithms are disclosed.

Keywords: Audio Watermarking, Information Hiding, Intellectual Property Pro-
tection

1 Introduction

Digital watermarking deals with the problem of embedding information (a mark) into
a digital object (the cover object). Depending on the application, digital watermarking
has different goals. For instance, for copyright protection, the embedded mark should
not be removed when modifying the cover object unless the cover object itself becomes
unusable. For authentication purposes, the watermark should be fragile in the sense that
a minor change in the cover object should produce the loss of the mark.

The first few digital watermarking applications were focused on the copyright pro-
tection problem. Within this scenario, the major concern about watermarking was ro-
bustness, since the embedded mark should not be able to be removed. To measure
the robustness of watermarking schemes, different benchmark tools were developed

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 427–440, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

.

428 D. Megı́as, J. Herrera-Joancomartı́, and J. Minguillón

(for example [6]) and the schemes were exhaustively tested against the attacks in-
cluded in those benchmarks. At this time, no existing watermarking scheme supports
the vast range of attacks included in all those benchmarks. However, a deep study on
the survived attacks shows that some of the suggested watermarking schemes are ro-
bust against a moderate number of attacks. In fact, the survived attacks are enough for
many specific applications. In the light of these results, the next benchmark generation
is focused on defining application-oriented benchmarks [15].

At this first stage, the problem of removing the mark from a marked object was
only dealt from the robustness point of view. This means that only attacks produced in
an unintentional manner were considered. However, it was then pointed out that other
attacks could be envisaged, such as the sensitive attack [4], in which the knowledge of
the watermarking system could be exploited to erase the mark. In fact, in [4], attacks
were classified between signal transformations and intentional attacks. With this classi-
fication, there are different approaches to define watermarking security [13,10,1,3], but
there is no consensus at this time about this issue.

The main problem is whether the set of robustness attacks and the set of security
attacks are disjoint or not and, then, some robustness attacks can be considered also as
security attacks. Such a situation arises when we consider the definition proposed in
[10], where the difference between robustness and security is defined in terms of the
intentionality of the attack. Clearly, with this definition, the intersection between ro-
bustness and security attacks is not empty, since their classification only depends on the
intention but not on the attack itself. However, some type of attacks can be uniquely
classified using the distinction based on intentionality. For instance, any attack which
exploits the knowledge of the watermarking embedding or detecting algorithm is inten-
tional and can be labeled as a security attack. From a security point of view, the best
strategy to protect any secure system against attacks which exploit the knowledge of the
scheme’s construction is to ensure the Kerckhoffs’ principle [14]. Such principle estab-
lishes that the security of any system (cryptosystems in particular) must only depend on
a secret key whereas all the other information concerning the system is public.

This paper is organised as follows. Section 2 describes the audio watermarking
scheme. In Section 3, the ad-hoc attack for the watermarking scheme is presented and
the modification to overcome this attack is suggested. Section 4 presents the perfor-
mance of the modified scheme in terms of imperceptibility, capacity, robustness and
security. Finally, Section 5 summarises the conclusions and the future research.

2 Audio Watermarking Scheme

The watermarking scheme (referred to as Watermarking of Audio Content, WAUC)
presented in [18] (and improved in [19]) is described in the following sections.

2.1 Mark Embedding

Let the signal S to be marked be a collection of PCM samples. If the signal to be marked
is stereo: Sstereo = [Sleft, Sright], both channels (left and right) must be added into a
new “working” signal S = Sleft + Sright. In the case of a mono signal, this step is not

Total Disclosure of the Embedding and Detection Algorithms 429

required. The spectrum of S, denoted as SF , is computed with a Fast Fourier Trans-
form (FFT) algorithm. Then, the signal S is compressed using an MP3 algorithm with
a rate of R kbps and decompressed again to PCM format. The result of this compres-
sion/decompression operation is a new signal S′, and its spectrum S′

F is obtained1. In
the stereo case, the modified signal S′ is obtained by adding the S′

left and S′
right which

result after the compression and decompression operation.
Now, the set of marking frequencies Fmark is chosen as follows. Firstly, all fmark ∈

Fmark must belong to the relevant frequencies Frel of the original signal SF :

Frel = {f ∈ [0, fmax] : |SF (f)| ≥ (p/100) |SF |max} , (1)

where fmax denotes the maximum frequency of the spectrum, which depends on the
sampling rate and the sampling theorem2, p ∈ [0, 100] is a percentage and |SF |max
is the maximum magnitude of the spectrum SF . Note that the spectrum values in the
interval [−fmax, 0] are the complex-conjugate of those in [0, fmax].

Secondly, the frequencies to be marked are those for which the magnitude remains
“unchanged” after lossy compression and decompression, where “unchanged” means a
relative error below a given threshold ε :

Fmark = {f1, f2, . . . , fn} = {f ∈ Frel : |(SF (f)− S′
F (f)) /SF (f)| < ε} . (2)

Similarly as done in the image watermarking scheme of [8], a 70-bit stream mark,
W (|W | = 70), is firstly extended to a 434-bit stream WECC (|WECC| = 434) using a
dual Hamming Error Correcting Code (ECC). This coding makes it possible to apply
the watermarking scheme as a fingerprinting scheme robust against collusion of two
buyers [7]. Finally, a pseudo-random binary stream (PRBS), generated with a crypto-
graphic key k, is added to the extended mark as it is embedded into the original signal.

Once the frequencies in Fmark have been chosen, the spectrum of the marked signal
is computed as:

ŜF (f) =
{

SF (f), f �∈ Fmark,

SF (f) · 10±d/20 f ∈ Fmark, to embed ‘1’ (+d/20) or ‘0’ (−d/20).

Since spectrum components in SF are paired (pairs of complex-conjugate values), the
same transformation (increase or decrease d dB) must be performed to SF (fmark) and
to its conjugate. In this process, the mark WECC is replicated as many times as required.
In the stereo case, the magnitude modification step is applied to both Sleft and Sright
independently at the same frequencies. Finally, the marked audio signal is converted
to the time domain Ŝ applying an inverse FFT (IFFT) algorithm. As discussed in [18],
this scheme has been designed to provide with “natural” robustness against lossy com-
pression attacks.

2.2 Mark Detection

The objective of the mark detection algorithm is to determine whether an audio test
signal T is a (possibly attacked) version of the marked signal Ŝ. It is assumed that T is

1 Throughout this paper, the Blade codec [12] (coder/decoder) for the MP3 algorithm has been
chosen and, thus, the psychoacoustic model of this codec is implicitly used.

2 fmax = 1
2Ts

, where Ts is the sampling time.

430 D. Megı́as, J. Herrera-Joancomartı́, and J. Minguillón

in PCM format or can be converted to it. Note that working signals adding the left and
the right channels must be used in the stereo case.

First of all, the spectrum TF is obtained applying the FFT algorithm and, then,
|TF (fmark)|, the magnitude at the marking frequencies, is computed for all fmark ∈
Fmark. Note that this method is strictly positional and, because of this, it is required that
the number of samples in Ŝ and T is the same. If there is only a little difference in the
number of samples, it is possible to complete the sequences with zeroes.

When the magnitudes |TF (fmark)| are available, a scaling (Least Squares) step can
be undertaken in order to minimize the distance between the sequences λ |TF (fmark)|
and

∣∣∣ŜF (fmark)
∣∣∣ (see [18] for details). This LS step implicitly uses the embedded mark

(since SF (fmark) is needed) but it can be omitted (λ = 1) or performed with the original
signal SF (fmark) instead of the marked one Ŝ(fmark).

Now, the ratios ri = λ |TF (fi)| / |SF (fi)|, are computed to decide whether a ‘0’, a
‘1’ or a ‘*’ (not identified) might be embedded at the i-th position. Given the interval

I =
[
10

d
20 (100− q)/100, 10

d
20 (100 + q)/100

]
,

if ri ∈ I ⇒ b̂i := ‘1’, if 1/ri ∈ I ⇒ b̂i := ‘0’ and, otherwise, b̂i := ‘*’. Here,
q ∈ [0, 100] is a percentage and b̂i is the i-th component of the vector b̂ which contains
a sequence of “detected bits”. Finally, the PRBS signal is removed from the bits b̂ to
recover the true embedded bits b. This operation must preserve unaltered the ‘*’ marks.

Once b has been obtained, its length n will be greater than the length of the extended
mark. Hence, each bit of the mark appears at different positions in b. A voting scheme
(see [18] for details) is applied to choose whether the i-th bit of the mark is ‘1’, ‘0’ or
unidentified (‘*’). As a result of this voting scheme, an identified extended mark W ′

ECC
is obtained and the error correcting algorithm is used to recover an identified 70-bit
stream mark, W ′, which will be compared with the true mark W .

The suggested scheme is informed (not blind) since the original signal is needed by
the mark detection process. However, the bit sequence which forms the embedded mark
is not required for detection (if the LS step is omitted or performed using SF), which
makes this method suitable also for fingerprinting [2].

3 Security Issues

In this section, we focus on attacks which exploit the knowledge of the embedding and
detection algorithms. More specifically, we consider the case referred to as Watermark
Only Attack, in which the attacker has only access to marked contents [5,1]. An ad-hoc
strategy can be specifically defined for the WAUC watermarking scheme once the mark
embedding and detection algorithms are disclosed.

Concerning the WAUC watermarking scheme presented in the previous section, the
disclosure of the mark embedding and detection algorithms has an obvious drawback
from a security point of view: given the embedding parameters R, ε and p, and the MP3
encoder/decoder, the position of the embedded bits (Fmark) is absolutely determined.
Therefore, a malicious attacker (Mallory) with knowledge about the embedding pro-

Total Disclosure of the Embedding and Detection Algorithms 431

cess, could design an ad-hoc attack to disturb the spectrum of Ŝ at those frequencies
and try to erase the mark. The following section presents such attack.

3.1 Ad-Hoc Security Attack

Assuming that Mallory knows the embedding and detection algorithms, an ad-hoc se-
curity attack for this watermarking scheme can be described in the following way:

1. Mallory obtains the marked signal Ŝ.
2. Mallory computes the spectrum ŜF applying the FFT.
3. Mallory encodes/decodes the marked signal Ŝ with an MP3 encoder/decoder and

gets a modified signal Ŝ′. Here, he uses the bit rate R′ for the MP3 encoder/decoder.
Now, he applies the FFT to the signal Ŝ′ and gets the spectrum Ŝ′

F .
4. Mallory computes the set F̂mark applying the criteria of Equations 1 and 2 using the

spectra ŜF instead of SF , using Ŝ′
F instead of S′

F , and the parameters p′ and ε′.
Note that Mallory does not have the original signal S neither the modified signal
S′.

5. Finally, Mallory disturbs the magnitude of the spectrum at the frequencies. F̂mark.
For example, he could decide to disturb ±d′ dB at those frequencies randomly.

Note that, even if Mallory knew the mark W and the extended mark WECC, the use
of the PRBS generated with a secret key k in the embedding process prevents Mallory
from knowing which exact bit is embedded at each position. So, even if Mallory got
the exact set Fmark (which is impossible unless he had the original signal), he would not
know whether if a binary ‘0’ or a binary ‘1’ is embedded at each position. Therefore,
the best strategy to disturb the marked signal is to add or subtract d′ dB randomly.

Of course, Mallory should gain knowledge of the embedding parameters in order to
have all the information required to construct his approximation to Fmark. If the parame-
ters R, p and ε were public, the attack would be easier, since Mallory could set R′ = R,
p′ = p and ε′ = ε. In fact, the sets Fmark and F̂mark cannot be exactly the same, since
Mallory should have access to the original signal S to obtain Fmark. However, as Ŝ is
expected to be quite similar to S (since the WAUC scheme has a good imperceptibility
level), the constructed set F̂mark will contain many of the frequencies in the original
Fmark, possibly enough to be able to delete the mark.

In addition, it must be noticed that although Mallory does not know the exact values
of the embedding parameters, he can construct an approximate superset F̂mark following
these guidelines:

1. Choose a large enough parameter R′. The larger R′ is, the more similar Ŝ and Ŝ′

become and, thus, the more frequencies will be included in F̂mark.
2. Choose a small enough percentage p′. This way, more frequencies satisfy the crite-

rion of Equation 1.
3. Choose a large enough relative error ε′. This way, more frequencies satisfy the

criterion of Equation 2.

Here, the parameter d′ should be chosen in such a way that the binary ‘1’s and ‘0’s
are erased. Thus, an advisable choice for d′ is d′ > d. Since the imperceptibility of the

432 D. Megı́as, J. Herrera-Joancomartı́, and J. Minguillón

mark requires that d is not very large [20], usually d ≤ 1 dB will be chosen for mark
embedding. Hence, Mallory decides to use d′ = 2 dB. As a consequence of Mallory’s
attack, the perceptual quality of T will be reduced with respect to that of Ŝ, but this is
the price an attacker has to pay in order to delete the mark.

3.2 Security Enhancement

The main idea to solve the security problem described above is to “hide” the marking
positions as much as possible by computing them using a secret key, as detailed be-
low. Then, the watermarking scheme can be considered secure under the Kerckhoffs’
assumption. On the other hand, such modification should preserve as many properties
as possible compared to the original “non-secure” scheme. Special attention should be
devoted to robustness, imperceptibility and capacity.

If these two conditions are met, it would be possible to make the watermarking
scheme publicly known except for the secret key. The unavailability of the key should
make it very difficult to proceed with the attack presented in section 3.1. In order to
meet these conditions, the embedding process can be modified in such a way that the
marking frequencies depend on a secret key as follows:

– Proceed with the mark embedding process described in Section 2.1 until the set
Fmark is obtained. Now, define fM = maxFrel (the maximum frequency that satis-
fies the criterion of Equation 1) and Fperc = Fmark. The set Fmark obtained in Section
2.1 is a temporary variable (Fperc) which stores the most perceptually relevant part
of the spectrum, hence the subindex perc.

– Define the set of candidate marking frequencies as Fcand = [0, fM]. This prevents
very high frequencies, which are not usually good for embedding the mark as ro-
bustness is concerned, to be chosen. Let m be the cardinality of the set Fcand, i.e.
m = |Fcand|. Note that Fperc ⊆ Fcand

3.
– Choose a pseudo-random number generator in the range [0, 1] and a secret key

ksec as the (initial) seed4.
– Choose two probabilities p1, p2 ∈ [0, 1] such that a given frequency which belongs

to the set Fperc will be chosen for marking with a probability p1, and p2 is the
probability of choosing a frequency in the set Fcand − Fperc, where “−” stands for
the set subtraction operation.

– Reset the random number generator with the seed ksec. Let Fmark be the empty set,
and proceed as follows. For all the frequencies f in the set Fcand do:
1. Generate a random number r ∈ [0, 1].
2. If (f ∈ Fperc and r < p1) or (f �∈ Fperc and r < p2) then Fmark := Fmark ∪{f}

(the frequency f is included into the set of marking frequencies).
3. Otherwise, discard the frequency f .

Once the set Fmark has been generated, it is possible to apply the mark embedding
process presented in Section 2.1 with this new set. The mark reconstruction process

3 Usually, the set Fcand has many more elements than Fperc, i.e. |Fperc| � |Fcand|.
4 The subindex sec is used to distinguish from the secret key k which was already used in the

embedding process described in Section 2.1.

Total Disclosure of the Embedding and Detection Algorithms 433

should be also modified accordingly, since the mark embedding detection must repeat
the first few steps of the mark embedding process in order to obtain Fmark (and Ŝ).

It is worth pointing out some remarks about the modification suggested above.
Firstly, note that the frequencies in Fperc are included into the set Fmark with a prob-
ability p1 and those in Fcand − Fperc are included with a probability p2. Secondly, any
pseudo-random number generator can be used and, thus, the length of the secret key ksec

will depend on it. In this paper, the Mersenne Twist method presented in [17] is used.
In addition, in the original watermarking scheme presented in Section 2, the number of
marked bits is n = |Fperc| (remember that Fmark is now referred to as Fperc). It is pos-
sible to define p1 and p2 such that the expected value of the final number of elements
in Fmark is the same as in the scheme presented in Section 2. The expected value of the
number of elements in Fmark is the following: E (|Fmark|) = np1 + (m− n)p2. In order
to get E (|Fmark|) = n, p2 should be chosen as:

np1 + (m− n)p2 = n ⇔ p2 = (1 − p1)
n

m − n
,

which is considered as the default value for p2 hereafter. With this default value for
p2, the number of marking frequencies n′ = |Fmark| will be (in average) equal to n
(since E(n′) = n). In addition, the ratios of frequencies in Fmark belonging to Fperc and
Fcand − Fperc will be (in average) p1 and 1 − p1, respectively. Thus, p1 determines the
balance between the marking frequencies inside and outside Fperc. For example, with
p1 = 0.2 (and p2 equal to the default value), a 20% (in average) of the frequencies in
Fmark belong to the set Fperc and the other 80% belong to Fcand − Fperc.

Note, also, that if p1 = 1 and the default value is chosen for p2, then p2 = 0. In this
case, the set Fmark becomes identical to Fperc and the modified watermarking scheme
becomes identical to the one presented in [19].

The robustness of the modified scheme will depend on the value of p1. A priori, the
frequencies in the set Fperc are better for mark embedding, since they have been chosen
in such a way that MP3 compression attacks can be overcome [19]. It is expected that
p1 = 1 is the best value for robustness, but such a value is not advisable for security.
Thus, a trade-off solution between robustness and security must be attained. As imper-
ceptibility is concerned, the frequencies Fperc refer to the most perceptible part of the
spectrum and, thus, the lower p1 is, the better imperceptibility is expected.

One may think that Mallory could distort not only the frequencies in the set Fperc,
but all the frequencies in the set Fcand. Note that, if it were the case, the mark would
very probably be erased, but the distortion introduced to the signal would be so large
(the spectrum would be distorted at all the low frequencies) that the attacked signal
would be unusable in most typical situations.

Last, but not least, note that p1 should not be chosen too small or, at least, Mallory
should not have knowledge about p1. If p1 is so small that most of the marking frequen-
cies lie outside the set Fperc, then Mallory would do better attacking at the frequencies
in Fcand − F̂perc. If he attacked at those frequencies, he would be able to delete more bits
and, in addition, he would disturb the least perceptible part of the spectrum resulting in
an attacked signal with very good audio quality.

The secret key K of the modified watermarking scheme in order to increase se-
curity should be formed, at least, by the pseudo-random seeds k and ksec, and the

434 D. Megı́as, J. Herrera-Joancomartı́, and J. Minguillón

probabilities p1 and p2. Here, we consider that the secret key is the following: K =
{R, p, ε, d, k, ksec, p1, p2}, which is required for both mark embedding and detection.
The decision whether R, p, ε and d are part of the secret key or public values can de-
pend on the application. In any case, these parameters should not be used to enhance
security but rather for tuning reasons [20]. Note, also, that the parameter q does not
affect the mark embedding process. Thus, q in not a part of the secret key. Hereafter,
the modified scheme is referred to as WAUC-sec.

4 Performance Evaluation

In this section, the WAUC and the WAUC-sec schemes are evaluated in terms of ca-
pacity, imperceptibility, robustness and security. Both the WAUC and the WAUC-sec
schemes have been implemented using a dual binary Hamming code DH(31, 5) as
ECC and the PRBS has been generated with the a DES cryptosystem in an Output
Feedback (OFB) mode. A 70-bit mark W (|WECC| = 434) was embedded. In addition,
the following values have been chosen for the embedding and detection parameters:
R = 128 kbps, p = 2, ε = 0.05, d = 1 dB and q = 10.

To test the performance of the audio watermarking schemes described in the previ-
ous sections, different audio files provided in the Sound Quality Assessment Material
(SQAM) page [9] have been used. In order to summarise the results as much as pos-
sible, only the experiments performed for the (stereo) violoncello (melodious phase)
file5 are shown. Completely analogous results have been obtained for the other files in
the SQAM corpus set. The properties of the WAUC-sec scheme have been tested for
nine values of the probability p1 ∈ {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1}
and the default value for p2. In addition, eight different values of the secret key ksec

have been chosen randomly. Different values of ksec are used in order to avoid biased
results which could arise with some sequences of pseudo-random numbers. Note that
the original WAUC scheme is also considered, since it is identical to WAUC-sec with
p1 = 1 and p2 = 0.

4.1 Capacity

Capacity (C) is the amount of information that may be embedded and recovered in the
audio stream and it is measured in bits per second (bps). It must be taken into account
that the true capacity C is not the number of marked bits n′ (the size of the set Fmark).
Hence, C = 70 · n′/(434 · l), where l is the length of the marked signal.

Table 1 shows the capacity results obtained for the WAUC (the column with p1 = 1)
and the WAUC-sec (0 ≤ p1 ≤ 0.875) schemes. Since eight different values of the key
ksec have been chosen, three different measures are shown in the table: the maximum,
the minimum and the average. It can be observed that all the values are very similar,
as the modification has been designed in such a way that the capacity of the original
scheme is preserved when the default value is chosen for p2. If more than eight values
of the secret key ksec had been used, the average value of C in each column would be

5 In fact, only the first ten seconds (441000×2 samples) of the file have been taken into account.

Total Disclosure of the Embedding and Detection Algorithms 435

Table 1. Capacity results for WAUC and WAUC-sec

WAUC-sec WAUC

Capacity
p1 p1 = 1

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

Maximum C (bps) 62.56 62.42 61.68 61.39 61.76 61.69 62.05 61.76 61.08
Minimum C (bps) 59.06 58.60 59.32 59.31 59.47 59.55 59.73 60.34 61.08
Average C (bps) 60.93 60.86 60.70 60.46 60.64 60.68 60.85 61.07 61.08

closer to that of the original scheme (61.08 bps). It must be taken into account that
capacity also depends on the original signal, as discussed in [19].

4.2 Imperceptibility

Imperceptibility is concerned with the audio quality of the marked signal Ŝ with respect
to S. Here, to measure such property, the Objective Difference Grade (ODG) based on
the ITU-R Recommendation standard BS.1387 [11] and the signal-to-noise ratio (SNR)
are used. The BS.1287 standard is used for Perceptual Evaluation of Audio Quality
(PEAQ) [21]. In particular, the implementation provided in the tool EAQUAL [16] has
been used in this paper. The computed ODG values are in the range [−4, 0], where
0 means imperceptible, −1 means perceptible but not annoying, −2 means slightly
annoying, −3 means annoying and −4 means very annoying. The SNR values make it
possible to compare these results with those presented in previous papers [19,20].

Table 2. Imperceptibility results for WAUC and WAUC-sec

WAUC-sec WAUC

Imperceptibility p1 p1 = 1
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

Maximum ODG −0.46 −0.88 −1.17 −1.31 −1.53 −1.72 −1.81 −1.85 −1.96
Minimum ODG −0.53 −0.96 −1.30 −1.58 −1.70 −1.80 −1.92 −2.01 −1.96
Average ODG −0.50 −0.92 −1.24 −1.45 −1.64 −1.77 −1.87 −1.95 −1.96

Maximum SNR (dB) 39.76 28.58 25.77 23.95 22.23 21.15 20.42 19.71 18.95
Minimum SNR (dB) 39.18 26.69 24.50 23.13 21.86 20.75 19.94 19.47 18.95
Average SNR (dB) 39.47 27.85 25.10 23.49 22.00 20.96 20.19 19.55 18.95

In Table 2, the SNR and ODG measures obtained with both WAUC and WAUC-sec
are shown. It is observed that the ODG values increase from imperceptible for p1 = 0
to slightly annoying for p1 = 1, and analogous results are obtained in terms of SNR.
These results are quite satisfying in general. For values of p1 ≤ 0.5, a listener is not
expected to notice any remarkable difference between the original and the marked files,
since the ODG values range between imperceptible and perceptible but not annoying.

Imperceptibility has been improved with respect to the original scheme. Thus, the
modifications do not only enhance security, but also imperceptibility. These results were
expectable, since the changes introduced to the scheme decrease the number of relevant
frequencies at which the magnitude is disturbed. Finally, note that the imperceptibility
results might be further improved by tuning the embedding parameters carefully [20].

436 D. Megı́as, J. Herrera-Joancomartı́, and J. Minguillón

4.3 Robustness

Robustness is the resistance to accidental removal of the embedded bits. The robust-
ness of the resulting scheme has been tested against the version 0.2 of the StirMark
Benchmark for Audio (SMBA) [6] and also against MP3 compression. In particular,
43 different attacks of the SMBA have been tested, since the attacks which modify
the number of samples in a significant way cannot be tested with the current version
of the scheme. Robustness has been assessed using a correlation measure between the
embedded and the identified marks (W and W ′):

Correlation =
1

|W |

|W |∑
i=1

βi.

where βi = 1 if Wi = W ′
i and −1 otherwise. In this paper, we consider that the

watermarking scheme survives an attack if the Correlation ≥ 0.8.

Table 3. Robustness results against the SMBA for WAUC and WAUC-sec

WAUC-sec WAUC

Robustness p1 p1 = 1
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

SMBA test 34/43 35/43 36/43 36/43 36/43 37/43 37/43 35/43 35/43

The robustness of WAUC and WAUC-sec are not very different with respect to the
SMBA. Table 3 shows the robustness results obtaiend for the WAUC and WAUC-sec
schemes with a value for the key ksec (analogous results have been obtained with other
keys). The values in the table are given in a x/43 ratio meaning how many SMBA
attacks out of the 43 attacks performed have been survived. It can be noticed that the
survival ratio varies from 34/43 to 37/43 but there is not a monotonic pattern for this
variation. This result is not very surprising since the SMBA attacks are not specifically
designed to disturb the most perceptually significant frequencies of the spectrum.

However, the robustness of the WAUC and WAUC-sec schemes against MP3 com-
pression attacks are quite different. Table 4 summarises the robustness results against
MP3 compression using all eight random values for the key ksec. The attacks have been
performed with a Blade codec and all the allowed bit rates: 32, 40, 48, 56, 64, 80, 96,
112, 128, 160, 192, 224, 256 and 320 kbps. The scores given in the table are in the form:
Score = # Survived attacks/# Performed attacks. Therefore, scores of 1 mean that the
scheme survives the compression attack for all the values of the key ksec, whereas 0
means that the compression attack has successfully erased the mark for all values of
ksec. In the WAUC scheme (which does not depend on the key ksec), the only possible
scores are 0 and 1, whereas intermediate results are possible for the WAUC-sec scheme.
As it can be observed, both schemes are able to overcome MP3 compression attacks for
all bit rates of 128 kbps and higher. The robustness against the other bit rates increases
as p1 is larger, as expected, since more marking frequencies belong to the most percep-
tually significant part of spectrum.

Total Disclosure of the Embedding and Detection Algorithms 437

Table 4. Robustness results against MP3 compression attacks for WAUC and WAUC-sec

WAUC-sec WAUC

MP3 bit rate
p1 p1 = 1

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875

32 kbps 0 0 0 0 0 0 0 0 0
40 kbps 0 0 0 0 0 0 0 0.25 0
48 kbps 0 0 0 0 0 0 0.375 0.625 1
56 kbps 0 0 0 0 0.125 0.5 0.625 1 1
64 kbps 0 0 0 0.125 0.75 1 1 1 1
80 kbps 0 0 0.5 1 1 1 1 1 1
96 kbps 0.125 1 1 1 1 1 1 1 1
112 kbps 0.375 1 1 1 1 1 1 1 1

[128, 320] kbps 1 1 1 1 1 1 1 1 1

Table 5. Security results for WAUC and WAUC-sec

WAUC-sec WAUC

p1 p1 = 1
0.25 0.5

Attack #1
Correlation 1 > 0.8 (*) 0.9077 > 0.8 (*) −0.0462 < 0.8

ODG −2.1845 −2.0159 −1.6894

Attack #2
Correlation 1 > 0.8 (*) 0.6308 < 0.8 0.2308 < 0.8

ODG −2.4946 −2.3492 −2.1868

As MP3 compression is concerned, the WAUC scheme performs better than WAUC-
sec, since it survives attacks for all bit rates greater to or equal to 48 kbps. The WAUC-
sec scheme is not that robust, but it still produces good enough results for many values
of p1. For example, with p1 = 0.5 the WAUC-sec scheme is able to overcome all the
attacks with bit rates greater to or equal to 80 kbps, and a 75% of the attacks performed
with 64 kbps. If high quality is required (for example for music audio files), it is not
expected that an attacker would use MP3 bit rates lower than 80 kbps.

4.4 Security

In this section, two different kinds of experiments are presented. Firstly, false positive
results are shown and, secondly, the resistance of both WAUC and WAUC-sec against
the ad-hoc attack presented in section 3.1 is examined.

As false positives are concerned, the experiments consist of using different values
for the key ksec in the embedding and the detection processes. For these experiments,
the value p1 = 0.5 has been chosen. The correlation measure described in the previ-
ous section has been computed to assess the similarity between the embedded mark W
and the recovered one W ′. Since eight different values have been used for ksec, seven
correlation values are obtained for each ksec. Thus, 8 × 7 = 56 experiments have been
performed. If any of these 56 correlation values were too close to 1, then the false pos-
itive rate would be relatively large. In these 56 experiments, the maximum correlation
value obtained is 0.3231, quite far from the required survival threshold (0.8). The aver-
age of the absolute values of all these 56 correlation measures is lower than 0.1.

The results for two settings of the ad-hoc attack depicted in Section 3.1 are given
below. Attack #1: performed assuming that Mallory correctly guesses the parameters

438 D. Megı́as, J. Herrera-Joancomartı́, and J. Minguillón

used by the embedder: R′ = R = 128 kbps, p′ = p = 2 and ε′ = ε = 0.05.
The magnitude modification parameter d′ = 2 dB has been chosen. Attack #2: it is
assumed that Mallory does not know the parameters used by the embedder and he tries
to produce an approximate superset of Fperc by choosing: R′ = R = 128 kbps, p′ = 1
(p = 2) and ε′ = 0.1 (ε = 0.05). Again, d′ = 2 dB is used. This attack will affect more
frequencies than the previous one.

For these attacks, the LS step mentioned in Section 2.2 has not been used (λ = 1).
The experiments have been carried out for two values of p1 (0.25 and 0.5) and the same
secret key ksec. The results obtained for this ad-hoc attack are summarised in Table 5,
where the ODG results do not refer to the original (unmarked) file but to the marked sig-
nal. The ODG values with respect to the original file are obviously worse. The star sign
“(*)” shows which attacks are not successful, i.e. when the correlation is larger than or
equal to the threshold 0.8. The WAUC-sec scheme is able to survive Attack #1 for both
values of p1, whereas the original WAUC scheme fails to recover the mark. Note, also
that the ODG values are worse than those obtained for mark embedding (see Table 2).
Thus the WAUC-sec scheme survives attacks which introduce more distortion into the
attacked signal than what the embedder does in the marking process. The situation is a
bit more difficult with the Attack #2, since the spectrum is disturbed at more frequen-
cies. Because of this, the ODG values are worse than those of the Attack #1. Now the
WAUC-sec scheme does not survive the attack with p1 = 0.5, though the correlation
value is not too far from the threshold. These results show that the modification works
exactly as predicted in Section 3, since the ad-hoc attack fails to erase the mark as the
probability p1 is decreased.

Two final experiments have been performed to test a worse attack scenario. Firstly, it
is assumed that Mallory wants to disturb not only the frequencies in the set Fperc, but all
the frequencies in Fcand. Such attack successfully erases the mark even for p1 = 0.25,
since the obtained correlation is −0.1692. However, in such a situation, the ODG value
between the marked file and the attacked one is−2.6933, i.e. the noise introduced by the
attack is quite annoying according to the ODG scale defined above. Secondly, if Mallory
guesses (or discovers) that p1 = 0.25 has been chosen, he would do better attacking
Fcand − Fperc, as already remarked in Section 3.2. Such attack has been performed with
R′ = R = 128 kbps, p′ = p = 2, ε′ = ε = 0.05 and d′ = 2 dB, disturbing the
spectrum at the frequencies Fcand − F̂perc. In this case, the correlation is 0.3538, but
audio quality is very good according to the ODG measure: −1.2195.

The main conclusion after all these experiments is that the value of p1 should be
chosen in some interval centred at 0.5 and too small values should be avoided. For
example, p1 should be in the interval [0.3, 0.7]. This way, a good trade-off between
robustness and security would be obtained.

5 Conclusions

In this paper, several security issues related to a watermarking scheme for audio
(WAUC) are discussed. On the first hand, it has been shown that the original WAUC
scheme is not suitable for the disclosure of the embedding and detection algorithms,
since the marking positions could be exposed to a malicious user, making it possible

Total Disclosure of the Embedding and Detection Algorithms 439

to design a successful ad-hoc attack. A modification, WAUC-sec, has been described
in such a way that the embedding and the detection processes depend on a secret key
without which the marking positions cannot be exactly determined.

The experiments show that it is possible to tune the modification so that the capac-
ity of the original scheme can be preserved. In addition, the WAUC-sec scheme obtains
better imperceptibility results (both in ODG and SNR measures) than the original coun-
terpart for the same capacity. As robustness is concerned, both schemes produce similar
results against the SMBA, but the original WAUC scheme is more robust against MP3
compression. Finally, concerning security, both false positive experiments and ad-hoc
attacks have been performed. On the one hand, it has been shown that false positives
are quite improbable if different secret keys are used for embedding and detection. On
the other hand, the ad-hoc attacks can be survived by the WAUC-sec scheme whereas
they successfully erase the mark when the original WAUC scheme is used. In short, the
WAUC-sec scheme provides with a trade-off solution between security and robustness
against MP3 compression.

There are several directions to further the research presented in this paper. The first
one is to take into account some attacks which are not included in the version 0.2 of
the SMBA, such as play speed variance attacks. Secondly, the development of a real
application would require working with frames (blocks of samples) instead of the whole
file, which would imply some reformulation. Finally, the possibility of obtaining a blind
detector should be investigated.

Acknowledgements and Disclaimer

This work is partially supported by the Spanish MCYT and the FEDER funds
under grants TIC2003-08604-C04-04 MULTIMARK and SEG2004-04352-C04-04
PROPRIETAS-WIRELESS. The work described in this paper has been supported in
part by the European Commission through the IST Programme under Contract IST-
2002-507932 ECRYPT. The information in this document reflects only the author’s
views, is provided as is and no guarantee or warranty is given that the information is
fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

References

1. M. Barni, F. Bartolini, and T. Furon. A general framework for robust watermarking security.
Signal Process., 83(10):2069–2084, 2003.

2. D. Boneh and J. Shaw. Collusion-secure fingerprinting for digital data. In Advances in
Cryptology-CRYPTO’95, LNCS 963, pages 452–465. Springer-Verlag, 1995.

3. F. Cayre, C. Fontaine, and T. Furon. Watermarking attack: Security of wss techniques. In
Digital Watermarking: Third International Workshop, volume LNCS 3304, pages 197–208,
Seoul, Korea, Oct 2004.

4. I. Cox and J.-P. Linnartz. Some general methods for tampering with watermarks. IEEE
Journal on Selected Areas in Communications, 16:587–593, May 1998.

5. W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans. on Information
Theory, 22(6):644–654, November 1976.

440 D. Megı́as, J. Herrera-Joancomartı́, and J. Minguillón

6. J. Dittman, M. Steinebach, A. Lang, and S. Zmudzinski. Advanced audio watermarking
benchmarking. In Proceedings of the IS&T/SPIE’s 16th Annual Symposium on Electronic
Imaging, volume 5306 - Security, Steganography, and Watermarking of Multimedia Contents
VI, Sant Jose, CA, US, January 2004.

7. J. Domingo-Ferrer and J. Herrera-Joancomartı́. Short collusion-secure fingerprinting based
on dual binary hamming codes. Electronics Letters, 36(20):1697–1699, September 2000.

8. J. Domingo-Ferrer and J. Herrera-Joancomartı́. Simple collusion-secure fingerprinting
schemes for images. In Proceedings of the Information Technology: Coding and Computing
ITCC’2000, pages 128–132. IEEE Computer Society, 2000.

9. EBU. SQAM - Sound Quality Assessment Material, 2001. http://sound.media.
mit.edu/mpeg4/audio/sqam/.

10. T. Furon et al. Security analysis. Deliverable 5. 5, 2002. IST project CERTIMARK (IST-
1999-10987).

11. ITU-R. Recommendation BS.1387. Method for objective measurements of perceived audio
quality, December 1998.

12. T. Jansson. Homepage for BladeEnc, 2001. http://bladeenc.mp3.no/.
13. T. Kalker. Considerations on watermarking security. In Proceedings of the IEEE Fourth

Workshop on Multimedia Signal Processing, pages 201–206, Cannes, France, Oct. 2001.
14. A. Kerckhoffs. La cryptographie militaire. Journal des Sciences Militaires, 9:5–38, January

1883.
15. A. Lang, J. Dittmann, and E. J. Delp. Application-oriented audio watermark benchmark

service. In Proceedings of the IS&T/SPIE’s 17th annual symposium on Electronic Imaging,
volume 5681, San Jose, CA, Jan. 2005.

16. A. Lerch. EAQUAL - Evaluate Audio QUALity. http://www.mp3-tech.org/programmer/
sources/eaqual.tgz.

17. M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed
uniform pseudo-random number generator. ACM Transactions on Modeling and Computer
Simulation, 8(1):3–30, 1998.

18. D. Megı́as, J. Herrera-Joancomartı́, and J. Minguillón. A robust audio watermarking scheme
based on MPEG 1 layer 3 compression. In Communications and Multimedia Security - CMS
2003, Lecture Notes in Computer Science 2828, pages 226–238, Turin (Italy), October 2003.
Springer-Verlag.

19. D. Megı́as, J. Herrera-Joancomartı́, and J. Minguillón. An audio watermarking scheme robust
against stereo attacks. In Proceedings of the Multimedia and Security Workshop, pages 206–
213, Magdeburg (Germany), September 2004. ACM.

20. D. Megı́as, J. Herrera-Joancomartı́, and J. Minguillón. Robust frequency domain audio wa-
termarking: a tuning analysis. In International Workshop on Digital Watermarking - IWDW
2004, Lecture Notes in Computer Science 3304, pages 244–258, Seoul (Korea), November
2004. Springer-Verlag.

21. T. Thiede, W. C. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J. G. Beerends, C. Colomes,
M. Keyhl, G. Stoll, K. Brandeburg, and B. Feiten. PEAQ – The ITU standard for objective
measurement of perceived audio quality. J. Audio Eng. Soc., 48(1-2):3–29, Jan.-Feb. 2000.

Reversible Watermark with Large Capacity
Using the Predictive Coding

Minoru Kuribayashi1, Masakatu Morii1, and Hatsukazu Tanaka2

1 Department of Electrical and Electronics Engineering,
Faculty of Engineering, Kobe University,

1-1, Rokkodai-cho, Nada-ku, Kobe, 657-8501 Japan
{kminoru, mmorii}@kobe-u.ac.jp

2 Kobe Institute of Computing,
2-2-7, Kanou-cho, Chuo-ku, Kobe, 650-0001 Japan

tanaka@kic.ac.jp

Abstract. A reversible watermarking algorithm with large capacity has
been developed by applying the difference expansion of a generalized
integer transform. In this algorithm, a watermark signal is inserted in the
LSB of the difference values among pixels. In this paper, we apply the
prediction errors calculated by a predictor in JPEG-LS for embedding a
watermark signal, which contributes to increase the amount of embedded
information with less degradation. As one of the drawbacks discovered in
the above conventional method is a large size of the embedded location
map introduced to make it reversible, we decrease the large size of the
location map by vectorization, and then modify the composition of the
map using the local characteristic in order to enhance the performance
of JBIG2.

1 Introduction

In a data-hiding technique[1], the embedding causes irreversible degradation to
an image. Although the degradation is perceptually slight, it may not be ac-
cepted to some applications such as medical or military images. For the coun-
termeasure, lossless data-hiding techniques, which is called reversible(invertible)
watermark, have been developed. The reversible watermark techniques might be
classified into two methods. One compresses features of an image and transmits
the compressed bit-stream as a part of the embedding information. At the decod-
ing, the embedded information including the compressed bit-stream is extracted,
and the original image is restored by replacing the modified features with the
decompressed original features. In [2], each pixel is first quantized by a quanti-
zation step size L, and appends the embedding information to the compressed
quantization noise. Then, the information is added to the quantized image. The
scheme tends to be superior when the watermarked image keeps high quality.
However, for a large amount of information, the capacity would be inadequate.

The other method uses reversible integer transforms to the spatial domain of
an image, and embeds a watermark information in the transformed signal values.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 441–453, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

442 M. Kuribayashi, M. Morii, and H. Tanaka

Tian[3] presented a difference expansion transform of pair of pixels, which is haar
wavelet transform, to devise a reversible watermark with a large capacity and
low degradation. His algorithm divides an image into pairs of pixels, then it
inserted one bit into the difference of the pixels of each pair from those pairs
that are not expected to causes an overflow or underflow. So as to recover the
original image, a location map that indicates the modified pairs is embedded
as a part of the embedding information after compression. Heijmans et al.[4]
improves the capacity for high quality images by performing low pass filtering
to an image to predict a location map. Alattar[5] extends Tian’s method to the
difference expansion of a vector of several pixels to achieve larger capacity. The
algorithm can insert several bits in the difference expansion of each vector of
adjacent pixels. As each element in the location map indicates the embedding
position of the corresponding pair/vector, the size of the map depends on the
number of the pairs/vectors. Even if the location map is compressed, the size is
still large, and hence the capacity is restricted in the above schemes. In addition,
the positions where a watermark signal is embedded is mainly at a flat region of
an image for the property of the algorithm, which causes perceptual degradation.

In this paper, we propose a new technique to embed a large amount of in-
formation with less degradation. Our main idea is to embed a watermark in
prediction errors calculated by a well-designed predictor in JPEG-LS[6]. Since
the average value of the prediction errors is small, our scheme can spread out
the positions where a watermark signal can be embedded without causing both
overflow and underflow. Such positions are not restricted only in a flat region,
but also in a noisy one, and hence the distortions caused by our embedding may
be less perceived. One of the drawbacks in the conventional schemes[3]-[5] is the
size of the location map even if it is compressed. First, we reduce the size of the
map itself by making a vector which treats several pixels as one cluster. And
we study the characteristic of the local conditions of pixels, and find that at
some pixels the location map is not necessary if a certain condition is satisfied.
Such characteristic is exploited to enhance the performance of the compression
algorithm. As the results, our scheme achieves very large capacity with less dis-
tortions. Since the operation is reversible, multiple embedding is possible and
hence the capacity may be increased further.

2 Preliminary

2.1 Modeling in JPEG-LS

JPEG-LS[6] is the algorithm at the core of the new ISO/ITU standard for loss-
less and near-lossless compression. The algorithm attains significantly better
compression ratios, similar or superior to those obtained with state-of-the art
schemes based on arithmetic coding, but at a fraction of the complexity.

Lossless image compression schemes, in general, consist of two distinct and
independent components: modeling and coding. The modeling part is formulated
as an inductive inference problem, in which an image is observed sample by
sample in some predefined order. In JPEG-LS, the sample points are defined as

Reversible Watermark with Large Capacity Using the Predictive Coding 443

xa
c b d

Fig. 1. The sample points of the
fixed predictors

ε

LSB

1 bit shift

w
information bit

ε′

Fig. 2. Expanding of the prediction error
to embed a watermark

a, b, c, and d depicted in Fig.1. And the current sample x is predicted as x̂ using
the four samples. In the coding part, the predictive error ε

ε = x − x̂ (1)

is encoded with an extended family of Golomb-type code[8] which is adaptive
symbol-by-symbol coding at very low complexity.

The distribution of the prediction error ε is well modeled by a two-sided
geometric distribution (TSGD)[7] centered at zero. And ε is also extremely sen-
sitive for the changes in the previously occurred samples. Note that the change
occurred in one sample is propagating to the following every prediction error.

2.2 Expanding

The main idea of our scheme is to utilize the prediction errors calculated by
the predictor in JPEG-LS to embed information bits in an image. Since the
prediction errors follow TSGD centered at zero, the average value might be
small. Based on the characteristic, a lossless embedding could obtain a better
performance than that of haar wavelet transform[3][4] and generalized integer
transform[5]. In JPEG-LS, only the prediction errors are preserved assisted by
entropy coding[8]. Therefore, if the original prediction error can be recovered
from a watermarked image, the embedding operation is reversible.

When an information bit w is embedded, a prediction error ε is expanded
so as to insert w without loss of original information of ε. The basic embedding
operation is to double ε, and to put w on its LSB(See Fig.2).

ε′ = 2ε + w, (2)

It is the same operation as that of the conventional schemes[3]-[5]. Those schemes
calculate the difference among neighboring pixels, and embed a watermark in-
formation bit if its difference is less than a certain threshold. However, they have
a trouble to embed a watermark in a noisy region because most of the differ-
ences in such a region are large. Such trouble is also occurred at the embedding
in prediction errors, but it may not so serious compared with the conventional
ones because the predictor may be able to output relatively small prediction
errors for noisy regions. In order to apply the basic embedding operation for

444 M. Kuribayashi, M. Morii, and H. Tanaka

the prediction errors, several parameters must be modified carefully. Thodi and
Rodrfguez[9] applied a predicted value, but the predictor is not a well-designed
one. Although their results show that the capacity is large, their method is not
reversible because a location map is not considered.

2.3 Definitions

On the expansion of the differences in the conventional schemes, overflow and
underflow of pixel values are avoided by carefully selecting the target pair/vector
of pixels. The selection is based on the definitions of expandable and changeable,
and it is performed in the transformed domain. Since the definitions and classi-
fications are essentially same as that of our scheme, we describe the detail of our
definitions. The main concern of our scheme is the embedding capacity for each
pixel/vector. Tian’s algorithm is capable of embedding as high as 1/2 bits/pixel
because one bit is embedded in the difference of pair of pixels, and Alattar’s one
is as high as (n − 1)/n bits/pixel for each difference of n pixels. On the other
hand, our scheme can be at most 1 bits/pixel as pixel-wise operation is possible
by applying the prediction error instead of differences among pixels.

It seems difficult to modify the prediction error using the previously occurred
pixels a, b, c, and d because those pixels are also used for the prediction of other
pixels. Instead, we modify the current target pixel x, which is easily calculated
from Eq.(1).

xe = x + ε + w (3)

Here, it must be considered that the pixel value must be in [0, 255], otherwise
it causes overflow(more than 255) or underflow(less than 0). In order to control
the embedding operation, the following definition is introduced.

Definition 1. The pixel x is said to be expandable if, for any w ∈ {0, 1}, x can
be modified to xe without causing overflow and underflow.

If a pixel is expandable, it is possible to embed an information bit in the LSB
by expanding the prediction error ε. However, when one wants to extract an
information, it is impossible to find if the pixel was expandable or not before
the embedding. By considering the extraction, the prediction errors of the pixels
which are not expandable are modified to even number by the following equation.

x� =
{

x − 1 if ε is odd
x otherwise.

(4)

Then the LSB of the prediction error is removed, and the information is em-
bedded with a watermark information in an image so as to be reversible. Here,
the overflow and underflow of x� must be considered. Therefore, the following
definition is also introduced.

Definition 2. The pixel x is said to be changeable if, for any w ∈ {0, 1}, x can
be modified to xc without causing overflow and underflow.

xc = x� + w (5)

Reversible Watermark with Large Capacity Using the Predictive Coding 445

Notice that all expandable pixels are changeable and they are still changeable af-
ter the embedding. Based on the characteristic, for both expandable and change-
able pixels, information bits are embedded into the LSBs of their prediction
errors, which can be extracted from all changeable pixels of the watermarked
image. Although the watermark can be extracted, it is impossible to determine
if each pixel was expandable or changeable before embedding. Hence, the infor-
mation about the original conditions of pixels which is called location map is
embedded in addition to a watermark. Here, a lossless compression algorithm,
such as JBIG2 and an arithmetic compression algorithm, is performed to reduce
the size of the map. As the consequence, the embedding information bits are
composed of three parts; a compressed location map, LSB of ε of changeable
pixel, and a watermark information.

In general, there is a trade-off between the distortions and the capacity in
watermarking technique, and it is desirable that the trade-off is controlled for
applications. It is achieved by introducing a threshold T for the determination
of expandable or not. If the absolute value of a prediction error is less than
T and Definition 1 is satisfied, the pixel is regarded as expandable. Since the
changes caused by the operation at expandable pixels are restricted less than T ,
the degradation of the quality is controlled.

Each pixel can be classified into three groups according to the Definition 1
and 2. The first group S1 contains all expandable pixels whose prediction errors
less than a predefined threshold T . The second group S2 contains all changeable
pixels that are not in S1. The third group S3 contains the rest of the pixels which
implies not changeable. Also, let S4 denote all changeable pixels (S4 = S1∪S2).

3 Proposed Reversible Watermarking Algorithm

In this section, we propose a new reversible watermark scheme using the predic-
tive coding technique in JPEG-LS. A basic algorithm of the reversible operation
for the embedding is shown.

3.1 Embedding a Reversible Watermark

The proposed algorithm is composed of two parts for the embedding of a wa-
termark, one is formatting, and the other is embedding. The summary of the
operation is shown below.

Formatting: For a scanned pixel xi,j , (0 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1) by a
raster scan order, the following operations are performed.

1. Calculate the prediction error εi,j .
2. Modify xi,j to x̄i,j based on the following three conditions.

x̄i,j =

⎧⎨⎩
xi,j + εi,j if xi,j ∈ S1
xi,j − 1 if xi,j ∈ S2 and εi,j is odd
xi,j otherwise

(6)

446 M. Kuribayashi, M. Morii, and H. Tanaka

The modification implies,

ε̄i,j =

⎧⎨⎩
2εi,j if xi,j ∈ S1
εi,j − 1 if xi,j ∈ S2 and εi,j is odd
εi,j otherwise.

(7)

After the above modification, the prediction error ε̄i,j becomes even number
if xi,j ∈ S4.

3. The location map is set to Li,j = 0 if xi,j ∈ S1, otherwise Li,j = 1.
4. If xi,j ∈ S2, then the LSB of εi,j is added to a vector B as one element.

Note that for the prediction of a current pixel xi,j , the previously formatted
four pixels which are specified in Fig.1 are used.

The bit-stream of the location map Li,j is compressed by JBIG2. We call the
bit-stream of the compressed map L. Then, L, B, and a watermark informa-
tion bit-stream W are embedded. Combining those bit-streams, the embedding
information w is produced.

w = {head||L||B||W } (8)
= {wt|1 ≤ t ≤ σ} (9)

Where head is a header file of the embedding information, || means concatena-
tion, and σ is the bit-length of w. Here, σ can be represented as

σ = len(head) + len(B) + len(L) + len(W), (10)
= N1 + N2, (11)

where the function len(x) outputs the bit-length of x, and N1 and N2 are the
number of pixels in S1 and S2 respectively.

Embedding: After the above formatting operation, every prediction error, not
pixel value, becomes even number. The embedding operation is simply to add
wt directly to each pixel xi,j ∈ S4 by a raster scan order, which implies to insert
wt into the LSB of the formatted prediction error ε̄i,j .

By setting a counter t = 1, the following operations are performed repeatedly
for each formatted pixel x̄i,j .

1. Modify x̄i,j to x′
i,j using the embedding information bit wt

x′
i,j =

{
x̄i,j + wt if xi,j ∈ S4
x̄i,j otherwise

(12)

2. Increment t = t + 1 if xi,j ∈ S4.
3. If t ≤ σ, go back to the step 1, otherwise quit.

3.2 Extraction and Recovery

On a reversible watermark, an original image is recovered from a watermarked
image using an embedded information. Therefore, a watermark is first extracted
from a watermarked image, and then the original image is recovered.

Reversible Watermark with Large Capacity Using the Predictive Coding 447

Extraction: On the prediction of JPEG-LS, the scanning order is very impor-
tant to recover the original image, and it is performed by a raster scan order.
When the embedded information is extracted, each information bit is extracted
by this order. Since each prediction error is calculated from the previously for-
matted four pixels, the same pixels are required for the prediction at the ex-
traction. Therefore, the extraction is performed by the following steps for each
raster scanned pixel.

1. Set a counter t = 1.
2. Calculate the prediction error εi,j for a target pixel x′

i,j .
3. If x′

i,j is changeable, which implies xi,j ∈ S4, then the following operations
are performed.

3-1. Extract the LSB of ε′i,j as t-th embedding information bit wt.

wt = ε′i,j (mod 2), (13)

3-2. In order to make the prediction error even number, subtract wt from
x′

i,j .
x̄i,j = x′

i,j − wt (14)
3-3. Store the re-formatted prediction error ε̄i,j .

ε̄i,j = ε′i,j − wt (15)

3-4. Increment t = t + 1.
4. Perform the above step 2 and step 3 using the re-formatted four pixels until

all pixels are checked.

Recovery: If the embedding information w is completely extracted and the
original formatted image is recovered, then the original image is recovered using
w and each re-formatted prediction error ε̄i,j . The procedure is described below.

1. w is divided into three bit-streams, L, B, and W using the header file head
which is predefined bits from the top of w.

2. Stretch L to obtain a location map Li,j .
3. Using B = {Bt|1 ≤ t ≤ len(B)}, each original pixel xi,j is recovered.

xi,j =
{

x̄i,j − ε̄i,j

2 if Li,j = 0
x̄i,j + Bt if Li,j = 1 and x′

i,j is changeable
(16)

3.3 Capacity

The capacity of our scheme is dependent on the number of pixels in S1 and the
compression ratio of the location map. In our scheme, each embedding informa-
tion bit wt is inserted into the LSB of the prediction error of the corresponding
pixel in S4. Notice that for a pixel in S2, the LSB is just replaced by wt and the
LSB is preserved in B, which can not be compressed in theory because of its
randomness. B is, therefore, directly embedded and the bit-length len(B) must
be equal to N2. As the result, the bit-length of the watermark information is
represented as follows using Eq.(10) and Eq.(11).

len(W) = N1 − len(head) − len(L). (17)

448 M. Kuribayashi, M. Morii, and H. Tanaka

4 Enhancement of the Performance

For the improvement of the capacity, one simple method is to increase N1 in
Eq.(17) by enlarging a threshold T , but it causes the degradation of an image.
In order to increase the capacity without degrading the perceptual quality, we
propose two methods to reduce the size of compressed location map, len(L), in
this section.

4.1 Vectorization

Since the embedding operation is performed for each pixel in the basic scheme,
each pixel needs the corresponding location map, which becomes the same size
of an image. Although it is compressed, the size may be still large. In order to
decrease the location map itself, several pixels are put together into one vector
which is judged expandable if all pixels in the vector are in S1. Such pixels should
be selected carefully from an image in our scheme, because the raster scan order
must be followed. Generally, there is a strong mutual relation among neighboring
pixels, the vectorization can increase the capacity efficiently.

1. For successive m pixels, the formatting operation is performed.
2. If all m pixels are in S1, a reduced location map is set to �i,j/m = 0 and go

to the next m pixels. Otherwise, �i,j/m = 1 and performs the step 3 to step
5 using the original m pixels successively.

3. Calculate the prediction error εi,j based on Eq.(1).
4. Modify xi,j to x̄i,j based on the following two conditions.

x̄i,j =
{

xi,j − 1 if xi,j ∈ S4 and εi,j is odd
xi,j otherwise

(18)

5. If xi,j ∈ S4, then the LSB of εi,j is added to a vector B as one element.

After the above operations, the produced location map consists of N × M/m
elements. Therefore, the size of the location map becomes 1/m compared with
the basic one. The vectorization method reduces the size of location map with
a little sacrifice of the capacity.

In the vectorized scheme, each vector is classified according to the Definition
1, Definition 2, and a threshold T . The threshold controls the trade-off between
the capacity of a watermark information and the distortions caused by the em-
bedding. If at least one pixel in a vector is not in S1, the vector is regarded as
non-expandable. Then, instead of expansion, each pixel in the vector is modi-
fied as a changeable or non-changeable ones. It is remarkable that the decoder
of the vectorized scheme can apply the same one as the basic scheme because
the embedded information is extracted from the LSB of the prediction errors of
pixels in S4. In order to recover the original image, the applied method must be
informed, which is easily realized by adding such information to the header file
head.

Reversible Watermark with Large Capacity Using the Predictive Coding 449

4.2 Composition of Location Map

In order to reduce the size of L more effectively, we reconsider the composition of
the map. In the basic scheme, the map is merely produced by putting “0” or “1”
symbol to each element if a target pixel is in S1 or not, and the information is
required for the recovery for the original pixel because the operation is dependent
on the pixel if it was in S1 or not. Here, it is remarkable that several pixels are
still in S1 after the embedding. For such pixels, the location map is not required
for the recovery operation because they are determined by themselves.

When a pixel x is in S1 and its prediction error ε satisfies an inequality
|ε| < T/2, the formatted pixel x̄ also belongs to a group S1 for the formatted
prediction error ε̄(= 2ε) if xae,

xae = x̄ + 2ε + w, (19)
= x + 3ε + w, (20)

dose not cause overflow and underflow, where w ∈ {0, 1}. In order to classify
such pixels, we define absolutely expandable.

Definition 3. The pixel x is said to be absolutely expandable if, for any w ∈
{0, 1}, x can be modified to xae without causing overflow and underflow, and
|ε| < T/2 is satisfied.

For a pixel x′ ∈ S2, there are two possible candidates for the group to which
the original pixel x belonged, namely S1 and S2. There are also several pixels in
S2 that the original group can be determined by themselves if those prediction
error satisfy an inequality |ε| > 2T because of the following reason. When a
pixel x belongs to a group S1, the prediction error ε is less than T . It means
that after the formatting operation, the modified prediction error ε̄(= 2ε) must
be less than 2T . Therefore, if |ε| > 2T , such a pixel must be in S2, which is
also hold in the recovery operation. For the classification, we define absolutely
changeable as follows.

Definition 4. The pixel x is said to be absolutely changeable if x is changeable
and |ε| > 2T is satisfied.

By introducing the Definition 3 and 4, several pixels in S1 and S2 can be
belongs to an extra group S5 which contains absolutely expandable pixels and
absolutely changeable pixels. Although each pixel xi,j has a corresponding lo-
cation map Li,j in the basic scheme, the map in pixels in S5 can be omitted,
which contributes on the reduction of the size of len(B). One simple method
for the reduction is merely to remove the corresponding information of the map.
Considering the compression algorithm of JBIG2, however, the map should be
two-dimensional and hence it causes problem. Instead, we manage to compose
the location map in order to enhance the performance of JBIG2.

First, we compose the location map by the following rules.

Li,j =

⎧⎨⎩
∗ if xi,j ∈ S5
0 if xi,j ∈ S1 except xi,j ∈ S5
1 otherwise

(21)

450 M. Kuribayashi, M. Morii, and H. Tanaka

Where the symbol “*” indicates “0” or “1” dependent on the contexts. It is
certain that higher compression ratio can be achieved by adaptively setting the
symbol “*”. In this paper, for the adaptive modification of the map, the following
method is applied. We merely set all the symbols to “0” or “1”, compress the
two types of the modified map, and adopt the better one. Such selection is very
simple, but it contributes greatly for the reduction of the compressed data size.

If the location map is composed by the above procedure, each pixel x̄i,j must
be checked whether xi,j is in S5 before a recovery operation is performed. If
x̄i,j is expandable for its prediction error ε̄i,j which is less than T , xi,j must
be absolutely expandable. And if |ε̄i,j | is more than T , xi,j must be absolutely
changeable. For such cases, the recovered location map from the extracted w is
not referred for the recovery of the pixels. Notice that a threshold T is necessary
to judge a pixel absolutely expandable/changeable. Therefore, such information
should be added to the header file head.

5 Experimental Results

We have implemented our algorithm and estimated the capacity and distortions
with the basic scheme and the enhanced scheme. The images used in the eval-
uation are “lena”, “baboon”, “fruits”, and “F16” with RGB color of 512× 512
pixels. We tested the algorithm for each RGB color components respectively with
the same threshold T . In the following simulation, the capacity is calculated by
omitting the size of head as it is negligibly small (It may be less than 100 bits).

The capacity obtained with various vector size m for the image “lena” is plot-
ted against the PSNR in Fig.3. This figure reveals that the capacity is increased
according to the increase of the vector size m. The similar results are obtained from
other images. To achieve a large capacity, the vectorization seems one method for
the improvement of the basic scheme. Next, the capacity of the enhanced scheme
which modifies the composition of the location map is shown in Fig.4. It is clear

 0

 100

 200

 300

 400

 500

 600

 700

 800

C
ap

ac
ity

 [
kb

its
]

 30 35 40 45 50 55

PSNR [dB]

m = 1

m = 2

m = 4
m = 8

Fig. 3. The comparison of the perfor-
mance for the number of element of the
composed vector for an image “lena”

 30 35 40 45 50 55
 0

 100

 200

 300

 400

 500

 600

 700

 800

C
ap

ac
ity

 [
kb

its
]

PSNR [dB]

m = 1

m = 2

m = 4
m = 8

Fig. 4. The capacity improved by the
modification of a location map for an
image “lena”

Reversible Watermark with Large Capacity Using the Predictive Coding 451

 0

 50

 100

 150

 200

 250

 30 35 40 45 50 55

PSNR [dB]

T
he

 S
iz

e
of

 [
kb

its
]

L

original
enhanced

Fig. 5. The comparison with the com-
pressed data size of a location map for
an image “lena”

 25 30 35 40 45 50 55
 0

 100

 200

 300

 400

 500

 600

 700

 800

C
ap

ac
ity

 [
kb

its
]

PSNR [dB]

lena

baboon

fruits

f16

Fig. 6. The capacity of embedding in-
formation versus PSNR

 0

 20

 40

 60

 80

 100

 120

 140

 25 30 35 40 45 50 55

In
cr

ea
se

d
C

ap
ac

ity
 [

kb
its

]

PSNR [dB]

lena
baboon

fruits
f16

Fig. 7. The improved capacity by re-
ducing the size of the location map.

 25

 30

 35

 40

 45

 50

 55

 0 5 10 15 20 25 30

PS
N

R
 [

dB
]

Threshold T

lena
baboon

fruits
f16

Fig. 8. The relation between PSNR and
threshold T .

that the capacity is improved at all range compared with the basic scheme and its
vectorized scheme. It is remarkable that the largest capacity can be achieved for
a basic non-vectorized scheme even if it can not make a space to embed a water-
mark when the value of PSNR is high. If one wants to get better performance for
overall range, we recommend to use m = 4. In the rest of this section, the results
are obtained for the constant parameter m = 4.

The effects of the compression in the modified location map is numerically
estimated. Figure 5 shows the size of the compressed location map for both the
basic scheme and the enhanced scheme. From the result, the location map is
well compressed by JBIG2 when the the map is adaptively composed. Since our
method simply assigns “0” or “1” symbol to the location map based on the new
conditions absolutely expandable and absolutely changeable, a further optimiza-
tion can be achieved by composing the map more adaptively considering the
applied compression algorithm, which is our future work. For the evaluation of
other images, the capacity of the enhanced scheme is shown in Fig.6. The results

452 M. Kuribayashi, M. Morii, and H. Tanaka

 0

 100

 200

 300

 400

 500

 600

 700

 800

 25 30 35 40 45 50 55

PSNR [dB]

C
ap

ac
ity

 [
kb

its
]

alattar
proposed
enhanced

(a) lena

 0

 100

 200

 300

 400

 500

 600

 700

 800

 25 30 35 40 45 50 55

PSNR [dB]

C
ap

ac
ity

 [
kb

its
]

alattar
proposed
enhanced

(b) baboon

 0

 100

 200

 300

 400

 500

 600

 700

 800

 25 30 35 40 45 50 55

PSNR [dB]

C
ap

ac
ity

 [
kb

its
]

alattar
proposed
enhanced

(c) fruits

 0

 100

 200

 300

 400

 500

 600

 700

 800

 25 30 35 40 45 50 55

PSNR [dB]

C
ap

ac
ity

 [
kb

its
]

alattar
proposed
enhanced

(d) f16

Fig. 9. The comparison of the capacity, where the vector is composed from 4 pixels
(m = 4)

reveal that the capacity is variable for images. Although the performance of the
predictor in JPEG-LS at a flat region is superior to noisy region in a image, a
watermark is spread all over the image. The effects caused by the modification of
the location map is numerically estimated, and the amount of increased capacity
is shown in Fig.7. The contribution in the increase of the capacity is dynami-
cally changed for each image and each PSNR because of the characteristic of the
compression algorithm of JBIG2.

When a watermark is embedded, a kind of sharpening effects is appeared
and the effects grow stronger for the increase of the amount of watermark infor-
mation. For the numerical evaluation of the image quality, the relation between
PSNR and threshold T is shown in Fig.8. The size of threshold implies the
amount of maximum changes caused by the embedding. As the images “lena”,
“fruits”, and “f16” contains a lot of flat regions, the prediction errors are dis-
tributed in a small range, and hence the curve is slowly decreased and reached
its lower band for rather small T . On the other hand, as most parts of the image
“baboon” are noisy, the curve becomes rapidly down.

We also compare the performance of our scheme with that of Alattar[5] which
achieves a large capacity at the state-of-art schemes. In the work, largest capacity

Reversible Watermark with Large Capacity Using the Predictive Coding 453

can be obtained when three bits are embedded in each vector of four pixels, which
is similar to our scheme as a better performance is obtained for m = 4. Under
such conditions, the comparisons are shown in Fig. 9. The results clarify that
our enhanced scheme is superior to the conventional one for all test images.

6 Conclusion

In this paper, a reversible watermark with a very large capacity based on the
prediction errors calculated in JPEG-LS has been proposed. Since the predic-
tion errors follow TSGD model centered at zero, the distortions caused by our
embedding is kept small. In addition, a watermark is spread all over the image
in our scheme, though the conventional schemes embed mainly in the flat re-
gion. Those properties contribute to the improvement of the perceptual quality.
In order to improve the capacity, we compose a vector from several pixels and
the size of location map is decreased effectively exploiting the characteristic of a
pixel/vector. From our simulation results, a better performance can be obtained
when successive four pixels are treated as a vector. Our future work is to produce
a location map adaptively considering the applied compression algorithm, and
to try other predictive coding for our technique.

References

1. S. Katzenbeisser and F. A. P. Petitcolas, Information hiding techniques for steganog-
raphy and digital watermarking. Artech house publishers, Jan. 2000.

2. M. U. Celik, G. Sharma, A. M. Tekalp, and E. Saber, “Lossless generalized-LSB
data embedding,” IEEE Trans. Image Process., vol.14, no.2, pp.253-266, 2005.

3. J. Tian, “Reversible data embedding using a difference expansion,” IEEE Trans.
Circuits Syst. Video Technol., vol.13, no.9, pp.890-896, 2003.

4. H. Heijmans and L. Kamstra, “Reversible data embedding based on the haar wavelet
decomposition,” Proc. of DICTA2003, pp.5-14, 2005.

5. A. M. Alattar, “Reversible watermark using the difference expansion of a generalized
integer transform,” IEEE Trans. Image Process., vol.13, no.8, pp.1147-1156, 2004.

6. M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compres-
sion algorithm: Principles and standardization into JPEG-LS,” IEEE Trans. Image
Process., vol.9, no.8, pp.1309-1324, 2000.

7. A. Netravali and J. O. Limb, “Picture coding: a review,” Proc. of IEEE, vol.68,
pp.366-406, 1980.

8. S. W. Golomb, “Run-length encodings,” IEEE Trans. Inform. Theory, vol.IT-12,
pp.399-401, 1966.

9. D. M. Thodi and J. J. Rodrfguez, “Reversible watermark by prediction-error ex-
pansion,” Proc. of 6th IEEE Southwest Symposium on Image Analysis and Inter-
pretation, pp.21-25, 2004.

PCAV: Internet Attack Visualization on Parallel
Coordinates�

Hyunsang Choi and Heejo Lee ��

Korea University, Seoul 136-713, South Korea
{realchs, heejo}@korea.ac.kr

Abstract. This paper presents PCAV (Parallel Coordinates Attack Visualizer), a
real-time visualization system for detecting large-scale Internet attacks including
Internet worms, DDoS attacks and network scanning activities. PCAV displays
network traffic on the plane of parallel coordinates using the source IP address,
destination IP address, destination port and the average packet length in a flow.
These four values are used to draw each flow as a connected line on the plane
and surprisingly a group of lines forms a particular shape in case of attack. Thus,
a simple but novel way of displaying traffic reveals ongoing attacks. From the
fact that numerous types of attacks form a specific pattern of graphs, we have de-
veloped nine signatures and their detection mechanism using an efficient hashing
algorithm. Using the graphical signatures, PCAV can quickly detect new attacks
and enables network administrators to instantly recognize and respond to the at-
tacks. Another strength of PCAV comes from handling flows instead of packets.
Per-flow visualization greatly reduces the processing time and further provides
compatibility with legacy routers which export flow information such as Net-
Flow in Cisco routers. We have demonstrated the effectiveness of PCAV using
real attack traffics.

1 Introduction

Explosive expansion of computer networks has the benefit of providing much improved
accessibility to a wide array of valuable data. However, the number of incidents is in-
creasing over time. Many intrusion detection technologies have been proposed, but still
have some inherent weaknesses. Conventional intrusion detection systems, which are
based on known attack signatures, cannot detect unknown attacks. Further, intrusion
detection systems based on anomaly detection mechanisms often generate a huge num-
ber of false alarms which overwhelm security engineers. Moreover, conventional mon-
itoring systems such as IDS’s and firewalls, provide a rudimentary level of displaying
results visually.

One promising approach is visualization to handle complex situations, using a sim-
ple and intuitive method [4]. Several approaches to information visualization are stud-
ied widely [2], due to the well-known advantages resulting from visualization. Visual

� This work was supported in part by the ITRC program of the Korea Ministry of Information
& Communications.

�� To whom all correspondence should be addressed.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 454–466, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

PCAV: Internet Attack Visualization on Parallel Coordinates 455

images can be obtained from raw data using computer graphics techniques and algo-
rithms. From these images, valuable insights can be acquired. It is the efficient link
from the human mind to the modern computer, which represents key technology for
extracting information. This visual representation is becoming more and more essential
in the field of network intrusion detection [10].

We introduce a simple but novel way for visualizing Internet attacks on parallel co-
ordinates. Parallel coordinates have many good properties such as representing more
than three fields in a two dimensional space [1]. In order to visualize most notorious at-
tacks such as Internet worms, we have carefully selected four important fields available
on each flow. As a result, we can develop nine graphical signatures to detect ongoing
attacks, which include Internet worms, DDoS attacks and network scanning attacks. As
well, we devise an O(1) hashing algorithm to identify these signatures. The effective-
ness of the proposed visualization approach is shown by running on real network traffic
and revealing hidden attacks as a visual way.

We use flows for input data, instead of packets, because of system performance and
compatibility with legacy routers. A flow is a single network connection and can consist
of millions of packets. Handling flow-level information greatly reduces the processing
time so that enables to run on high-speed links. Furthermore, many legacy routers pro-
vide flow information and they are widely deployed, which includes Net-Flow in Cisco
routers. This compatibility with legacy routers greatly enhances the usability of the vi-
sualization mechanism.

The aim of this study is not to propose a new visualization technique. The main
contribution is how to use parallel coordinates to display Internet attacks. Displaying
network flows using carefully chosen values forms a unique graphical image for each
attack. It is shown that this mechanism works for detecting notorious Internet attacks
such as rapidly spreading Internet worms.

The following section shows the benefits of visualization approaches. The charac-
teristics of Internet attacks are discussed, in particular, what data should be visualized
and how this data should be visualized to make a unique shape. Section 3 describes
some patterns of visualized graphs and signatures from the patterns. Then, we discuss
several data structures and propose a hash algorithm to identify attack signatures. The
evaluation of the mechanism is done in Section 4.

2 Attack Visualization

Humans, as a visual being, can easily recognize and infer patterns from visual aids
intuitively. This section describes the benefits of attack visualization, and the principles
of our visualization approaches used to display Internet attacks.

2.1 Benefits of Attack Visualization

There are four main benefits when applying information visualization to the problem of
intrusion detection. First, attack visualization can easily deal with highly heterogeneous
and noisy data. Network traffic is extremely complex and must be correlated with sev-
eral variables such as source address, destination address, port number, packet length,

456 H. Choi and H. Lee

and TCP flag, but attack visualization enables us to present the traffic situation in an
intuitive way. Second, attack visualization requires no understanding of complex math-
ematical or statistical algorithms. Visual images give perceptual clues faced with an
attack. Third, attack visualization allows us to gain valuable insight into the analyzed
data and deduce new hypotheses. Therefore, even though an unknown attack may have
occurred, if an image pattern (signature) from the unknown attack is obtained, the at-
tack can be quickly detected. Finally, attack visualization can be much faster than other
anomaly detection approaches. Many anomaly detections require training and compar-
ing with history, but attack visualization can quickly identify an attack using pre-defined
image patterns.

2.2 Attack Characteristics

In order to devise a visual mechanism for most popular Internet attacks such as DDoS
attacks, worm attacks, or network scans, their characteristics must be considered in
terms of visualization. Fortunately, these notorious attacks have one common char-
acteristic, which is called ”one-to-many relationship” between attackers and victims.
While legitimate flows have one-to-one relationship, attack flows have a one-to-many
relationship. This is a good point for visualizing the attacks.

A DoS attack is an attack on a computer system or network that causes a loss of
service to users, typically the loss of network connectivity and services by consuming
the bandwidth of the targeted network or overloading the computational resources of
the targeted system. In a distributed DoS attack, the attacking hosts are often personal
computers with broadband connections to the Internet that have been compromised
by viruses or Trojan horse programs, allowing the perpetrator to remotely control the
machine and direct the attack, often through a botnet. With enough slave hosts, the
services of even the largest and most well connected website can be denied. Therefore,
in a DDoS attack, there are many attackers and one victim, which forms a one-to-many
relationship between a victim (destination) and the attackers (source).

A worm is defined as self-propagating malicious code. Once a machine is infected,
target hosts are acquired by pseudo random number generators, or host scans to detect
vulnerable machines (usually with a single vulnerability) in a certain network. If targets
are decided at a previous step, an infected machine propagates worm code to targets.
Therefore, a worm represents a one-to-many relationship between the infected machine
(source) and the victims (destination).

Network scanning, used by hackers to probe hosts, also exhibits steps in worm prop-
agation, and has a one-to-many relationship between a hacker (source) and scanned net-
work hosts (destination). Port scanning is a method used for probing available services
of a certain host. There is one attacker, one or many hosts, and many scanned ports.
Therefore, a port scan is also characterized as a one-to-many relationship.

2.3 Four Fields as Attack Parameters

In the previous subsection, an important characteristic was presented, namely, one-to-
many relationship. Now, we should consider which manifested variables display these
important characteristics of attacks.

PCAV: Internet Attack Visualization on Parallel Coordinates 457

First, an attack may consist of attacker(s) and victim(s), therefore, we select the
source IP address and destination IP address in a flow information. These two values
can be used to visualize the particular characteristic of attacks. These values are also
stored in the fields of every packet header so that they can be used to distinguish the
attacking packets from legitimate packets.

Second, an attack usually targets one or more ports in TCP or UDP protocols so that
the destination port number is selected as a parameter. This value identifies the targeted
service of an attack and verifies port scanning attacks. On the contrary, the source port
number is less meaningful than the destination port number since the source port is
chosen randomly among available ports.

Third, the average size of packets in a flow can be used as a parameter. This in-
formation gives some clues whether the flow is suspicious or not. Network scanning
and DDoS attacks exploit a flooding procedure and the procedure normally uses empty
packets without payload. These attacking packets usually have a packet length of 40 or
48 bytes. Contrarily, Internet worms have a payload to exploit the vulnerabilities they
can use. These worms are characterized by a fixed length of code because the worm
codes on the payload are unique for each worm. Polymorphic worms may change their
code, as an attempt to evade signature-based systems, but until now, every active worm
has characterized by a unique payload.

Finally, we picked the TCP flag as an additional parameter. Network scanning and
DDoS attacks may send one packet repeatedly so that its TCP flag has the same value.
Thus, we can classify attack traffic or normal traffic using its TCP flag. For instance,
some normal traffic have a one-to-many relationship, such as P2P communications, and
they can be considered as legitimate traffic after comparing their TCP flag with that of
a normal TCP handshaked flow.

2.4 Per-Flow Visualization

A visualization system can use a flow, instead of a packet, as a basic unit of data be-
cause it drastically reduces processing time without loss of necessary information. Fur-
thermore, per-flow visualization provides the compatibility with legacy routers so that
we can deploy the system without the change of current networks. One good example
is to run a visualization system with Cisco routers which exports NetFlow information
[5]. This implies the visualization system can use Cisco routers as sensors.

A flow can be defined as a set of packets with the same source IP, destination IP,
source port and destination port that can be thought of as a connection between two
computers. Available information on each flow includes the above mentioned attack pa-
rameters which are source address, destination address, destination port, average packet
length, and the cumulative OR of TCP flags.

2.5 Parallel Coordinates

One important aspect of information visualization is scalability. Parallel coordinates
provide great scalability to multiple dimensions. Parallel coordinates are not complex
and allow multi-parameter patterns to be analyzed. We use parallel coordinates and
a scattered plot matrix on the coordinates as the initial plane for visualizing Internet

458 H. Choi and H. Lee

attacks. This combined method also results in a quicker understanding and a more in-
formational graph over that of a scattered plot matrix.

This visualization technique has many advantages and they are listed as follows.
First, this technique does not give preference to any specific dimension. An important
feature, if there is no evidence regarding which dimension is more important, is that by
default there is no bias towards any specific dimension. Second, both methods have no
limit to the number of parameters that can be visualized. Therefore, we can deal with
a number of variables that we desire to visualize and can easily add new visualization
parameters. Third, both mechanisms prominently show trends, correlations and diver-
gences from the raw data. Therefore, this advantage enables us to gain critical insight
into the flow of data and present reliable intuitive hypotheses. Using this method, even
if an unknown attack occurs, a specific image pattern is obtained from the unknown
attack and the attack can be detected in a timely manner. Fourth, both techniques can
handle even continuous and categorical data (though some of the important benefits
may be lost).

3 Parallel Coordinates Attack Visualization (PCAV)

3.1 Attack Signatures

Here we show how parallel coordinates can be used to describe an attack in a more
informational graph pattern. The coordinates represent four different parameters in a
flow. The first represents the source address of each flow, the second represents the
destination address, the third represents the destination port and the fourth represents the
average packet length of each flow. These four values shown in each flow, enables the
flow to be shown as a connected line with parallel coordinates. Therefore, one connected
line represents one connection. As shown in Section 2.2, the attack characteristics, of
each attack have a one-to-many or many-to-one relationship with each parameter.

Fig. 1. The attack graph of a host scan

PCAV: Internet Attack Visualization on Parallel Coordinates 459

In order to know the graph pattern for each attack, let us consider a host scanning
attack. In a host scan, an attacker may want to know which hosts are alive in the target
network. The sequence of a host scan progresses gradually to check the targeted desti-
nation port of each host. Every packet usually has no payload, for more effective scans.
Thus, the sizes of scanning packets can be 40 or 48 bytes only for TCP and IP headers.
Occasionally scanning programs also use the TCP option of selective acknowledgment
(SACK), which is commonly used to allow senders’ TCP to employ more advanced loss
recovery and congestion control. In these cases, the sizes of scanning packets become
48 bytes. The graph of host scans looks like a fish (diamond-line pattern) as shown in
Fig. 1.

Table 1. Attack signatures of nine attacks

Not only host scans but also other attacks in one-to-many relationships show an
interesting graph pattern, which are shown in Table 1. This table describes the attack
signature of each implied attack and its divergences (patterns of one-to-many and many-
to-one relationships). For example, in a port scan, there is one attacker and one victim,
and the attacker wants to know which ports are open. To accomplish this, the attacker
may use a port scanning program which checks the destination port of the victim one
by one, sequentially or randomly. This behavior represents 1:1:many:1 patterns and the
signature graph pattern looks similar to a kite (line-diamond) as shown in Table 1.

Average packet lengths can be used to distinguish similar attack patterns. A worm
and a host scan have the same graph patterns (diamond-line). But a host scan may have
no payload, whereas a worm should have a payload to infect other machines. Thus, the
average packet lengths of all flows in a worm epidemic are constant and relatively larger
than the average packet length of a flow in a host scan, which is 48 bytes in Fig. 1.

460 H. Choi and H. Lee

Backscatter is not actually an attack, but a reflective state. This state can be used to
detect attacks, so it is added to the signature table. The source spoofed DoS (port fixed)
is a DDoS attack using a fixed port. Usually the attack has no payload so the graph
pattern is represented as a triangle with a connected line. However, a source spoofed
DoS (port varied) is a DDoS attack using randomly chosen destination ports and as
usual, has no payload. Therefore, the represented graph looks like a rightward looking
fish. A distributed host scan is multiple host scanning behavior. Network-directed DoS
is a DDoS attack targeted at a specific network, so destination addresses (victims) are
network scale.

3.2 System Design

In order to display and detect ongoing attacks using the attack signatures, we propose
parallel coordinates attack visualization (PCAV). PCAV has two main modules, the an-
alyzer and the visualizer as shown in Fig. 2. The analyzer receives the flow information
from the sensor, and checks whether it contains a pattern matched with an attack sig-
nature. If a set of flows form a pattern matched with an attack signature, then it implies
that the attack is currently ongoing. After that, the attack data is sent to the visualizer.

The visualizer displays flow data using parallel coordinates, where flow data can
be obtained from the sensor or the analyzer. Flow data including both of legitimate
and attack flows comes together from the sensor. But only attack data comes from the
analyzer. We can store the attack data in a database for recording the attack and it can
be useful for further investigation of the incident.

The sensor can be a host or a router which generates flow-level data from network
traffic. A host can run a monitor program such as nProbe [7]. A router can be enabled
to generate flow data such as NetFlow information in Cisco routers.

Rescaling properties of parallel coordinates can be used to magnify an attack graph.
In absolute coordinates, the top and bottom values of each coordinate are fixed in con-
stant. Thus, it has an advantage to estimate the region of the four parameters in an attack
graph. However, the unfolded portion in a coordinate is too narrow to be recognizable

Fig. 2. System design of PCAV

PCAV: Internet Attack Visualization on Parallel Coordinates 461

by human, then, even if a detected attack was visualized, the attack graph may not show
an obvious attack signature. Therefore, the visualizer in PCAV provides the rescaling
operation by fitting the minimum and maximum value of each coordinates so that we
can see an apparent attack signature in the attack graph.

3.3 Data Structure

In this subsection, we explain an attack detection algorithm which is running in the
analyzer. The detection algorithm uses three hash tables for storing flows with respect
to their source address, destination address and destination port, respectively. Then, the
hash tables are used to determine which pattern in the attack signatures the flows have.

There are several data structures for storing flow information, which include linked
lists, trees, and hash tables. A particular type of tree called MULTOPS [3] was also
proposed for storing IP addresses efficiently. A comparison of hash tables with other
structures such as linked lists, balanced binary trees, and MULTOPS trees, is shown in
Table 2. From this comparison, we chose hash tables because they do not require huge
memory space but provide fast lookup.

Fig. 3 shows the proposed attack detection algorithm. This algorithm consists of two
parts. The first part is to generate a flow ID for an input flow using three hash tables,
which is described at Step 1 ∼ 12 in Fig. 3. The second part is to handle suspicious
flows using the flow ID, which is described at Step 13 ∼ 30 in Fig. 3. A flow ID has
three tuples and a legitimate flow ID is either [0, 0, 0] or [1, 1, 1]. Otherwise, the flow is
suspicious. If one flow comes from the sensor, the detection algorithm in the analyzer
inserts the source address, destination address and destination port of the flow to each
hash table. Then, the three hash tables are used to generate the three tuples of the flow
ID. If an input value already exists in its hash table, then the tuple value becomes 1.
Otherwise, becomes 0. For example, at time T1, if an input flow has a source IP address
1.2.3.4, destination address 5.6.7.8 and destination port 80, and at time T2, an input

Table 2. Comparisons of data structures

462 H. Choi and H. Lee

Fig. 3. Attack detection algorithm in the analyzer

flow has a source IP address 1.2.3.4, destination address 5.5.5.5 and destination port
21, then the second flow at T2 has a flow ID of [1, 0, 0]. If at time T3, an input flow has
source IP address 3.4.5.6, destination address 5.6.7.8 and destination port 80, then its
flow ID becomes [0, 1, 1].

There are 6 prepared queues for each detectable attack. Once the input flow is clas-
sified into a suspicious flow in the first phase, then the suspicious flow is inserted into
an attack queue corresponding to the flow ID. For instance, if a flow ID is [0, 1, 1], then
we insert it to the DDoS (port fixed) queue. If the size of an attack queue exceeds its
threshold for a given period, then it is considered as the occurrence of the attack. Fig. 4
shows whole stages of the attack detection algorithm in the analyzer.

PCAV: Internet Attack Visualization on Parallel Coordinates 463

Fig. 4. Algorithm of PCAV

4 Evaluation

4.1 Attack Graphs

In order to evaluate the effectiveness of PCAV, we have implemented the PCAV system
on Microsoft Windows. Attack situations are generated by replaying recorded real at-
tack traffic. The attack traffic includes DoS attacks, SQL Slammer worms and network
scanning traffic. DDoS attacks and SQL Slammer worms were captured during the in-
cidents at one company network, and network scanning traffic was captured by using a
public scanning tool. The PCAV system detects these attacks effectively and displays
proper attack graphs as shown in Fig. 5.

All attack graphs are well-matched with the signature patterns shown in Table 1.
The first graph is the DoS attack generated by a Blaster worm. Notice that the traffic
is not a worm traffic but DoS traffic which generated by worm. The DoS attack uses
a fixed destination port so the pattern represents a triangle with a connected line. The
second graph is the attack graph by a Slammer worm, representing a noticeable pattern.
The Slammer worm attempts to infect other machines chosen randomly so that the
destination addresses should be in a random distribution. However, the pattern of the
represented graph looks like a subnet scanning in the range of multicast IP addresses.
This is due to a bug at the part of random number generation in the Slammer code, which
generates only multicast address ranges in a certain condition. Even in this unusual
situation, PCAV also detects the worm on the limited range of destination addresses.

464 H. Choi and H. Lee

Fig. 5. Rescaled attack graphs

Fig. 6. Screenshot of PCAV 1.0

PCAV: Internet Attack Visualization on Parallel Coordinates 465

The third graph is generated by the PCAV system and it is the rescaled attack graph of
the host scan in Fig. 1. The fourth graph is an attack graph of a port scan.

PCAV is implemented as a Windows application. PCAV can get flow data locally or
import NetFlow data from remote routers. PCAV version 1.0 is shown in Fig. 6.

4.2 False Alarm Reduction

The rate of false alarm is an important metric used to measure the performance of an
intrusion detection system. PCAV is sensitive to the threshold, which is closely related
to the rate of false alarms. If a threshold is too high, then false positive will decrease
but false negative will increase, and visa versa. Thus, we need to determine a proper
threshold with the consideration of the size and the bandwidth of a monitoring network.
Larger networks need to have the higher threshold.

We can further reduce false alarms by using additional parameters such as the cumu-
lative OR of TCP flags. As well, more parameters can be added to parallel coordinates
if they can enhance the correctness of attack detection.

5 Related Work

There are a number of popular monitoring tools such as FlowScan [8] and AutoFo-
cus [9], used as traffic analyzers. Flowscan is a open source software that analyzes
Net-Flow data and provides visualization graphs over five-minute intervals. AutoFocus
automatically clusters traffic flows and infers patterns from the traffic.

In addition, there are several academic and commercial attempts to bridge informa-
tion visualization to the field of intrusion detection. However, few of them provide real-
time visualization and analyzing functionalities. One related work, regarded as previous
work of this research, is 3-D visualization using a source address, destination address,
destination port for detecting scanning and DDoS attacks [10]. But they cannot de-
tect Internet worms properly and unable to distinguish legitimate traffic, such as P2P
communications, from attacks.

Ourmon, which is developed at Penn State University, is an anomaly detection sys-
tem using TCP flags and traffic volume as visualization sources. Ourmon presents simple
bar graphs, however PCAV provides graphs which can be much more intuitively under-
stood. Mazu Network’s ProfilerTM [11], a commercial product, uses graphical profiling
ability for network traffic in terms of IP address, protocols, ports, and flow volume.

Parallel coordinates are also used in other studies such as SHADOW [12], which
was created at the Dahlgren Division of the Naval Surface Warfare Center. Packet head-
ers meeting certain pre-defined boolean rules are dumped to a web-based file for exam-
ination by a human operator. SHADOW provides two visualization methods of colored
histograms, parallel coordinates, and clustering methods are also used to solve various
intrusion detection problems.

6 Conclusion

PCAV is a real-time visualization system for anomaly detection of Internet attacks.
PCAV visualizes Internet attacks using four header fields (source IP address, destina-

466 H. Choi and H. Lee

tion IP address, destination port, packet length) from a flow and displays on parallel
coordinates. Attack graphs generated from PCAV have specific patterns because the
visual nature of the generated graphs is specific to each attack. PCAV enables the net-
work administrator to rapidly detect and respond to malicious attacks. Even though an
unknown attack may occur, specific characteristics are represented visually, and are de-
tectable by PCAV. A plan to adopt pattern recognition methods in computer graphics
areas, recognizing signatures generated by PCAV, is currently being designed. Also,
visualization research regarding Spam mail distributions, P2P traffics, botnets and new
types of DDoS and worm attack, is currently being undertaken.

References

1. A. Inselberg: The plane with parallel coordinates. The Visual Computer 1(1985) 69–91
2. Information visualization resources, http://www.infovis.org
3. T. Gil, M. Poletto.: MULTOPS: a data-structure for bandwidth attack detection. USENIX

Security Symposium (2001)
4. D. Keim.: Visual exploration of large databases. Communications of the ACM (2001) 38–44
5. Cisco NetFlow, http://www.cisco.com/warp/public/732/Tech/netflow
6. S. Axelsson.: Visualization for intrusion detection: Hooking the worm. ESORICS (2003)
7. nProbe, http://www.ntop.org/nProbe.html
8. D. Plonka.: Flowscan: A Network Traffic Flow Reporting and Visualization Tool. USENIX

LISA (2000)
9. C.Estan, S.Savage and G.Varghese.: Automatically Inferring Patterns of Resource Consump-

tion in Network Traffic. ACM SIGCOMM (2003)
10. H. Kim, I. Kang, and S. Bahk.: Real-time Visualization of Network Attacks on High-speed

Link. IEEE Network Magazine (2004)
11. Mazu Network Profiler, http://www.mazunetwork.com
12. J. L. Solka, D. L. Marchette, and B. Wallet.: Statistical visualization methods for intrusion

detection. Computing Science and Statistics (2000)

Implementation of Packet Filter Configurations
Anomaly Detection System with SIERRA

Yi Yin, R.S. Bhuvaneswaran, Yoshiaki Katayama, and Nao shi Takahashi

Department of Computer Science and Engineering Graduate School of Engineering,
Nagoya Institute of Technology,

Gokiso, Showa-ku, Nagoya, 466-8555, Japan
{yinyi, bhuvan, katayama, naohisa}@moss.elcom.nitech.ac.jp

Abstract. Packet filtering in a firewall is one of the useful tools for
network security. Packet filtering examines network packet and decides
whether to accept, or deny it and this decision is determined by a
packet filtering configuration developed by the network administra-
tor. An administrator may find hard to understand and maintain
a configuration, and this burden will furthermore be increased to
find anomalies between two configurations, especially when the size
of filters in a configuration increased. This difficulty may leave the
administrator with less confidence that the configurations are correctly
and completely implemented. This paper presents a system with
SIERRA (A systolic filter sieve array) which can detect the anomalies
between two configurations. It provides three functions, side-effects
analysis function, equality judgment function, and composition anal-
ysis function. Experimental results show that the proposed system is
suitable for small network and configurations with large number of filters.

Keywords: Network security, Packet filtering, configuration, filter,
anomaly detection.

1 Introduction

Network security has gained significant attention in recent years. Firewalls have
become important integrated elements in our society. Packet filtering in firewall
is used as a tool for improving network security and performance.

According to the configurations developed by the administrator, packet fil-
tering is a decision of acceptance or denial of a packet. It is difficult for an
administrator to understand and maintain configurations in different cases, such
as to modify filters in configurations, or to replace one configuration with an-
other configuration written in different language, or to find whether there exist
redundant filters in hierarchical structure configurations.

The administrator always has to wonder if the configurations are really ac-
complishing what was intended, or if the configuration has some inadvertent hole
in it that the administrator has somehow overlooked.

In this paper, we proposed an anomaly detection system to help administer
to yield correct configurations with greater confidence.

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 467–480, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

a

468 Y. Yin et al.

We have used four primitive operations based on SIERRA (A Systolic Filter
Sieve Array used for high-speed packet classification[1]) to implement the pro-
posed system. In our paper, we use SIERRA as the data structure mainly to
explain and compare two configurations[6]. The anomaly detection system has
three functions as follows and we will discuss in section 4 in detail:

1. Side effects Analysis function.
2. Equality Judgment function.
3. Composition Analysis function.

The rest of the paper is organized as follows. In section 2, we introduce some
background work of firewall and configuration. In section 3, we present about
SIERRA, and explain the implementation steps of SIERRA. In section 4, we
describe primitive operations and discuss three functions in detail. In Section 5,
we first describe the experimental system, and findings. We discuss the related
work in section 6. Finally, in section 7, we show our conclusions.

2 Background

A firewall is an intelligent device based on configurations between two or more
networks for security purposes. A firewall configuration is a list of ordered filter-
set that define the actions performed on network packets based on specific con-
ditions. A filter is composed of some key fields (we called these key fields as
predicates) and an action field.

The predicates of a filter represent the possible values of the corresponding
fields in actual network packet that matches this filter. Each predicate could
be a single value or range of values. The most commonly used predicates are:
protocol type, source IP addresses, destination IP addresses, source port number,
destination port number. The actions of a filter are either ”accept” or ”deny”.

The packet is permitted or blocked by a specific filter if the packet header
information matches all the predicates of this filter. Otherwise, the following
filter is examined and the process is repeated until a matching filter is found,
or else, the default filter action is performed. An example of a typical firewall
configuration is shown in Fig.1.

Fig. 1. Configuration example Fig. 2. Sieve function

Implementation of Packet Filter Configurations Anomaly Detection System 469

3 SIERRA

3.1 Problem of Point-Location

SIERRA (A Systolic filter Sieve Array) is used in a high-speed packet classifier.
A packet classifier that deals with n key fields (header fields) is modeled as
an n-dimensional point location problem in computational geometry. The n-
dimensional point location problem is described as follows: given a point in
n-dimensional space, and a set of m n-dimensional objects, find the object that
the point belongs to. In a packet classifier, a packet corresponds to the point
and m filters correspond to the m objects.

3.2 Sieve

Sieve is a function that can reduce an n-dimensional point-location problem to
an n-1 dimensional problem[1].

Given a filter-set F, sieve according to k-th (k=1,2,,n) key field value xk of
a packet to remove infeasible filters and return feasible filters. Infeasible filters
are filters whose predicates corresponding to the key fields are false, and feasible
filters are filters whose predicates corresponding to the key fields are true. Sieve
is represented by sieve (F, k, xk) and the sieve function is shown as in Fig.2.

3.3 Structure of SIERRA

Fig.3 shows that if all the key fields are given as inputs in a pipelined sieve
array, a filter-set in which predicates for all key fields are true is derived, that
is, the feasible filter-set F’ as the output of the final stage of the pipeline. This
is represented as:

F ′ = Fn−1 provided that
F0 = sieve(F, 0, x0),
F1 = sieve(F0, 1, x1), ...,
Fn−1 = sieve(Fn−2, n− 1, xn−1),

Fig. 3. A sieve array

470 Y. Yin et al.

3.4 Implementation of SIERRA

We use table (that we called sieve table) to implement SIERRA. We consider
an abstract filter-set is shown below, F={f1, f2, ..., fm}
f1 : p1,1 p1,2 · · · p1,n

f2 : p2,1 p2,2 · · · p2,n

...
ff : pf,1 pf,2 · · · pf,n

...
fm : pm,1 pm,2 · · · pm,n

Here,f1, f2, ..., fm are filter identifiers, and pf,i (f=1,...,m and i=1,...,n) is the
i-th predicate of filter. In order to make sieve table, we need several steps shown
as follows:

Step1: Represent the i-th predicate pf,i (f=1,...,m and i=1,...,n) of all
the filters by 256-bit vectors whose elements are either T(true) or
F(false).

In our system, we define that the each predicate value, say xi is 8-bit
long(0 ≤ xi ≤ 255). Any point in this vector whose value changes from ”T”
to ”F” or from ”F” to ”T” is called a boundary.

Step2: Partition the domain at all boundaries and make domain de-
scriptor at each sub-domain.

The domain of the predicate value (0 ≤ xi ≤ 255) is partitioned into intervals
at all boundaries of all predicates. An order set of values within each interval is
called a sub-domain. The set of sub-domains has the following properties.

1. Disjoint: There are no pairs of sub-domains that have common elements.
2. Direct sum: The union of all sub-domains equal to the original domain.
3. Unique: When a sub-domain is determined, the filter-sets for which a ”T”

predicates is given are uniquely determined.

Each sub-domain is assigned an identifier number, which is called domain
descriptor. Whenever there is a boundary, the domain descriptor is increased.

Step3: Find the feasible filters at each sub-domain.

Step4: Check whether i is equal to n; if i �= n, according to feasible
filters that get from Step3, execute Step1 through Step4 recursively.

For example, we have a filter-set is shown as Fig.4. For simplicity, the filter-set
have two filters and the predicate value of each filter is three bits long, that is
the predicate value range is 0 ≤ xi ≤ 7, and can use a 8-bit vectors to present
the predicate value. According to step1, we represent the first predicate of all
filters into bit vectors. The first predicate pf,1 of all filters is shown in Fig.5. The
bit vectors of the first predicate of all filters is shown as in Fig.6.

According to step2, we partition the domain of Fig.6 into 5 sub-domains
shown in Fig.7 and each domain gives a domain descriptor.

Implementation of Packet Filter Configurations Anomaly Detection System 471

Fig. 4. Example filter-set Fig. 5. The first
predicate of all filters
in Fig.4

Fig. 6. Bit vectors of Fig.5

Fig. 7. Domain partition of
Fig.6

Fig. 8. Make feasible filters of Fig.7

In step3, according to ”T” or ”F”, we can find the feasible filters of all sub-
domains. For example, when the SrcIP value is ”3”, at this column in Fig.7, the
bit vector’s element of filter ”f1” and ”f2” are all ”T”, so when SrcIP value is ”3”,
the feasible filters are {f1,f2}. In this example, the feasible filter sets of all sub-
domains are shown at the last line in Fig.8. According to step1 through step3,
we can get sieve table of SrcIP in Table1. In step4, according to the feasible
filters, we make the sieve table about next predicate to all the sub-domains.
For example, in the third sub-domain (Domain descriptor=2), since the feasible
filters are {f1,f2}, so we take the next predicate value of the feasible filters, and
shown as follows.

f1:1 ≤ DesIP ≤ 4
f2:3 ≤ DesIP ≤ 6

Table 1. Sieve table of SrcIP

SrcIP Domain Feasible
value descriptor Filters

0 0 {}
1 1 {f1}
2 1 {f1}
3 2 {f1,f2}
4 2 {f1,f2}
5 2 {f1,f2}
6 3 {f2}
7 4 {}

Table 2. Sieve table of DesIP when Do-
main descriptor=2 in Table1

DesIP Domain Feasible
value descriptor Filters

0 0 {}
1 1 {f1}
2 1 {f1}
3 2 {f1,f2}
4 2 {f1,f2}
5 3 {f2}
6 3 {f2}
7 4 {}

472 Y. Yin et al.

According to step1 through step3 again, we can get the sieve table of DesIP in
Table 2, like this, we make the next predicate’s sieve table for all sub-domains,
and for the space is limited, we don’t list all the sieve tables.

4 Proposed System

The proposed system uses four primitive operations based on SIERRA. In this
section, we first introduce the four primitive operations, and then explain three
functions in detail.

4.1 Primitive Operations

Create, merge, mark and list-up are the four primitive operations which are
discussed below.

Create Operation. Create operation can create sieve table for a given
configuration according to the implementation steps of SIERRA discussed in
section 3.4.

That is to say, we use sieve table to explain the meaning of configuration.
For example, let us consider two configurations, Configuration A and Con-

figuration B, shown in Fig.9 and Fig.10. For simplicity, each configuration has
”DesIP” and ”Port” number. A part of sieve table of each configuration is shown
in Fig.11 and Fig.12.

Fig. 9. Configuration
A

Fig. 10. Configura-
tion B

Fig. 11. Sieve table of Fig.9

Merge Operation. If we have two sieve tables (sieve1 and sieve2), we merge
two sieve tables into a new one. A new boundary is made in the merged sieve
table where there is a boundary in sieve1 or sieve2. In the merged sieve table, the
decision of feasible filters is according to the feasible filters in sieve1 and sieve2.
For example, the merged sieve table of the first predicate ”DesIP” is shown as
in Fig.13 (a).

For example, when DesIP value is 10.0.0.0, the feasible filters in config-
uration A are {A3,A4}, while in configuration B are {B3,B4}, hence, when
DesIP=10.0.0.0 in the merged sieve table, the feasible filters are{{A3,A4}
{B3,B4}}.

Implementation of Packet Filter Configurations Anomaly Detection System 473

Fig. 12. Sieve table of Fig.10 Fig. 13. Merged sieve table of Fig.11 and
Fig.12

Mark Operation. In the merged sieve table of the last predicate, to each
predicate value, we have feasible filters of two configurations, we take the highest
priority filter of each configuration from feasible filters, and then compare the
actions of the two filters. If the actions are the same, we do nothing, or else, the
place with different actions between two configurations is made a mark.

For example, When the port number is 177, the feasible filters are {A2,A4}
and {B2,B4}, the highest priority filter of configuration A is ”A2”, and the
highest priority filter of configuration B is ”B2”, the action of A2 is ”deny”,
while the action of B2 is ”accept”, hence, at this place, two configurations have
different setting, and we make a mark ”*” at the place where the port number
is 177 in Fig.13(b).

List-up Operation. The operation that list all marked places from the first
predicate value to the last predicate value is called list-up operation.

For example, according to the marked place in Fig.13(b), we can list the
predicate value range from the first predicate to the last predicate, it is shown
as below.

DesIP Port
10.0.0.2 177

4.2 Function of Proposed System

The proposed system has three functions which are discussed below:
Side Effects Analysis. When an administrator changed (add, delete, re-

place, or modify) filters in a configuration, changed filters may cause some po-
tential problems, that is, a changed filter can cause side effects to other filters
in configuration.

The side effects analysis function wants to find this kind of potential problems
that caused by the changed filters. We present three pieces information as the
output of this function.

474 Y. Yin et al.

1. The range of predicate value that influenced by the changed filter.
2. The action setting of each configuration to the range mentioned in 1.
3. Display the changed filters and the influenced filters in the configuration.

According to the result of this function, the administrator is able to master the
influence caused by the changed filter, and correctly change the configurations
according to the administrator’s intents.

For example, we have a configuration in Fig.14, and when the administrator
wishes to add a piece of filter (shown as below), the original configuration as file1
and the changed configuration as file2, are considered as input of the proposed
system, and the result is shown in Fig.15:

Type SrcIP DesIP SrcPort DesPort Action
tcp * 123.4.5.7 ≥ 1023 25 Deny

Fig. 14. Configuration Fig. 15. Result of side effect analysis for
the configuration shown in Fig.14

From the result, the administrator noticed that if he wants to add a filter, he
should add this filter before A2 in the original configuration, or else, the added
filter is no meaning, or the added filter can’t take its effect to packet.

We can implement this function using four primitive operations that intro-
duced in section 4.1, and the implementation steps are shown as follows:

Step1: Make sieve table of configuration. (Create operation)
Step2: Make sieve table of the changed configuration. (Create operation)
Step3: Merge two sieve tables get from step1 and step2 and seek feasible filters.
(Merge operation)
Step4: Compare two configurations and make a mark at the places where exist
different setting. (Mark operation)
Step5: Get the range of predicate value and the filters corresponding to the
extracted place as the side effect analysis result. (List-up operation)

Equality Judgment. Configurations can be written in different description
languages, for example, the iptables of Linux system, the access-list of cisco
router, and etc. If the administrator wants to replace one configuration with

Implementation of Packet Filter Configurations Anomaly Detection System 475

another configuration written in different language, the administrator always
wonder whether the two configurations have the same meaning.

The equality judgment function can judge whether two configurations have
the same meaning, even if two configurations are written in different description
languages.

The equality judgment function can present three pieces of information as
follows:

1. The range of predicate value that with different setting between two config-
urations.

2. The action setting in each configuration to the range mentioned in 1.
3. Display filters that caused the difference between two configurations.

Using the above information the administrator is able to detect the mistakes
by the replaced device with different description languages.

For example, when the administrator wants to replace the iptables (Fig.16)
by access-list of Cisco router (Fig.17), the proposed system can find whether
there exist the different places between two configurations.

Fig. 16. Configuration1(iptables) Fig. 17. Configuration2(access-list)

The analysis result is shown in Fig.18:

Fig. 18. Result of equality judgment for configurations shown in Fig16 and Fig17

476 Y. Yin et al.

According to this result, if administrator wants to make configuration2’s set-
ting the same as to configuration1, a rule can be added (shown as below, for
simplicity we only show the rule with simple style) before B1.

Type SrcIP DesIP SrcPort DesPort Action
tcp * * 140 * Deny

And if administrator wants to make configuration1’s setting the same as to
configuration2, a rule can be added before A2 (shown as below).

Type SrcIP DesIP SrcPort DesPort Action
tcp * * 140 * Accept

We can implement this function using four primitive operations, and the im-
plementation steps are shown as follows:

Step1: Make sieve table of one configuration. (Create operation)
Step2: Make sieve table of another configuration. (Create operation)
Step3: Perform merge operation like Step3 in function1. (Merge operation)
Step4: Perform mark operation like Step4 in function1. (Mark operation)
Step5: Get the range of predicate value and filters of extracted place with differ-
ent settings as an analysis result of equivalence judgment. (List-up operation)

Composition Analysis. In hierarchical structure configurations, each level
has a configuration with its own set of filters. Hence, there is a possibility of
contradictory or redundant filters among lower and higher levels, which is highly
difficult to verify by an administrator.

The composition analysis function is used to find whether contradiction or
redundant filters are existing between two configurations that are successively
used to filter a packet. This composition analysis function can present three
pieces of information as follows:

1. Display the range of predicate value with contradiction setting.
2. Analyze and display the action of contradictive range in each configuration.
3. Display the filter pairs in each configuration that caused the contradiction.

Based on this information, the administrator can able to recognize the un-
foreseen problem such as the packet that wanted to pass through the lower-class
firewall that is abandoned by the upper-class firewall.

For example: We have the upper-class configuration in Fig.19 and the lower-
class configuration in Fig.20, the analysis output is shown as in Fig.21.

In this example, according to this result, the administrator can notice that at
the range of

Type SrcIP DesIP Port
udp * 10.0.0.2 117

the action to all the packets in that range in upper-class configuration is
”deny”, while in lower-class configuration is ”accept”, and at the same time the
administrator can find the filters in upper-class and lower-class configurations
that caused the problem.

Implementation of Packet Filter Configurations Anomaly Detection System 477

Fig. 19. Upper-class Configuration Fig. 20. Lower-class Configuration

Fig. 21. Result of composition analysis for configuration shown in Fig.19 and Fig20

We can implement this function using four primitive operations, and the im-
plementation steps are shown as below:

Step1 ∼ Step4: The same as Step1 ∼ Step4 in function2.
Step5: From extract division chose the division that the upper-class configura-
tion has ”deny” setting while the lower-class configuration has ”accept” setting.
Step6: Get the range of predicate value and filters corresponding to the place se-
lectedwithStep5 as the analysis result of composition analysis. (List-up operation)

5 Experimental Evaluation

We implemented the proposed system with C program on a generic computer.
In order to evaluate the feasibility and usability of our proposed system, we
measure the synthesis time and memory usage of sieve table when we execute
each function.

The synthesis time is the time of taken to create, merge, mark and list up
operations. Memory usage of sieve table is the sieve table size that created by
each function.

5.1 Experimental Items

We use two experimental items to measure the feasibility and the usability.

1. When the number of predicates increases, and the number of filters is fixed,
measure the synthesis time and sieve table size of each function.

2. When the number of filters increases, and the number of predicates is fixed,
measure the synthesis time and sieve table size of each function.

478 Y. Yin et al.

5.2 Test Data

We produce configurations with random filters in order to represent the realistic
configurations. The filters number in a configuration are range from 5 to 30 for
small network firewall, and the filters used in this experiment is that they be
stateless.

Each filter can include at most 16 predicates (16-byte) shown as follow:

Source and destination address(es): 8 byte
Source and destination port number: 4 byte

Protocol type: 1 byte
Length: 2 byte

TCP flags: 1 byte

In order to represent all kinds of configurations in practical firewall, in our
experiment we select predicate number is equal to 6, 11, 16 to evaluate synthesis
time and sieve table size of each function.

5.3 Experimental Results and Consideration

The experiment results are shown as in Table3 to Table 5.
From the result in Table3 to 5, we can see that even in the worst case (in

Table4), the synthesis time and sieve table size are acceptable. In the worst case
(in Table 4), the experimental system will take 0.97s ∼ 4.51s and 1.45kb ∼
5.62kb memory size to detect anomalies between two configurations with filters
from 5 ∼ 30. And in the best case (in Table 5), we take 0.81s ∼ 3.71s and
1.00kb ∼ 3.18kb memory size to detect anomalies. Hence, our proposed system
is feasible for small network firewall.

Table 3. The synthesis time and Sieve table size of Side effect

Width 6 11 16
File1 num 5 12 20 30 5 12 20 30 5 12 20 30
File2 num 6 13 21 31 6 13 21 31 6 13 21 31
Time(sec) 0.82 1.39 2.04 2.70 1.54 2.40 2.91 3.27 2.17 3.09 3.42 3.98
Size(KB) 1.25 2.04 2.91 3.59 2.00 3.04 3.66 3.99 2.31 2.93 3.56 4.18

When the number of predicates is fixed, and the number of filters increases,
the needed synthesis time and sieve table will increase, this kind of increase is
called ”increase A”.

When the number of predicates increases, and the number filter is fixed, the
needed synthesis time and sieve table will increase, this kind of increase is called
”increase B”.

Through Table3 to 5, we can find that ”increase A” is smaller than ”increase
B”. From this result we can confirm that only the predicates number is fixed,
and the filter number increases, the synthesis time and sieve table size will not
increase very quickly. Hence our proposed system can be usable for configurations
with large number of filters.

Implementation of Packet Filter Configurations Anomaly Detection System 479

Table 4. The synthesis time and Sieve table size of Equality Judgment

Width 6 11 16
File1 num 5 10 20 30 5 10 20 30 5 12 20 30
File2 num 5 10 20 30 5 10 20 30 5 13 20 30
Time(sec) 0.97 1.10 0.99 1.65 1.49 2.35 2.60 3.49 2.07 2.70 4.06 4.51
Size(KB) 1.45 1.53 1.53 2.31 2.00 2.94 3.40 4.50 3.12 3.44 5.15 5.62

Table 5. The synthesis time and Sieve table size of Composition Analysis

Width 6 11 16
File1 num 5 10 20 30 5 10 20 30 5 12 20 30
File2 num 5 10 20 30 5 10 20 30 5 13 20 30
Time(sec) 0.81 0.93 1.67 2.04 1.27 1.56 2.08 2.52 1.51 2.05 2.80 3.71
Size(KB) 1.00 1.31 1.93 2.56 1.62 1.93 2.56 3.18 1.62 1.93 2.56 3.18

6 Related Work

The similar work of ours has been done by Hazelhurst at et al. [2]. The paper de-
scribes a method for transforming a firewall filter specified in a Cisco-like access
list language into a BDD(Binary Decision Diagrams), including the handling of
issues with overlapping rules. Although this work is capable of answering ques-
tions on the types of packets allowed or excluded by a set of firewall rules and
even able to display the redundant rules between two configurations, it has many
limitations as follows:

1. This tool is insufficient to represent the anomaly detection to various sit-
uations of modern firewalls, while in our proposed system, through three
functions can provide anomaly detection in detail.

2. This tool has not efficiently implemented in software, while through the ex-
periment result we had evaluate the feasibility and usability of our proposed
system.

Another similar work has been done by Pasi Eronen and Jukka Zitting in
an expert system for analyzing firewall rules [5]. The expert system is used for
verifying the functionality of filtering rules by performing queries.

This work is based on the use of the principle of expert system where firewall
access-lists are converted directly into an expert system knowledge base. The
resulting knowledge base is then manipulated using the underlying inference
engine of readily available Logic Programming language interpreters.

Although this research can address four main areas of problems that is net-
work properties, configuration properties, access-list properties and defining new
predicates for higher level queries, this research also has limitations as follows:

1. This tool does not provide comparison function between two configurations,
while our proposed system can detect anomaly between two configurations
in detail.

480 Y. Yin et al.

2. This tool requires high user expertise to write the proper queries to identify
different configuration problems, while our proposed is simple to user to find
anomaly easily.

7 Conclusion

This paper presents a system with SIERRA, used to detect anomalies among
packet filter configurations.

This proposed system provides three functions, side-effects analysis function
when modify a configuration, equality judgment function between two configu-
rations written in different description languages, and the composition analysis
function configurations in a hierarchical structure.

Experimental results show that although the synthesis time and sieve table
size will increase when the filter number and predicate number increase, the
proposed system is suitable for small network and useable for configurations
with large number of filters.

Acknowledgment. This research was partially supported by the Min-
istry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for
JSPS Fellows 1604285 and Scientific Research (C) 16500028.

References

1. N.Takahashi, ”A Systolic Sieve Array for Real-time Packet Classification,” IPSJ
Journal, Vol.42, No.2, pp.146-166(2001)

2. Soctt Hazelhurst, Anton Fatti,and Andrew Henwood. Binary decision diagram rep-
resentations of firewall and router access lists. Technical Report TR-Wits-CS-1998-
3, Department of Computer Science, University of the Witwatersrad, South Africa
October 1998

3. Randal E. Bryant. Symbolic Boolean manipulation with ordered binary-decision
diagrams. ACM Computing Surveys, 24(3):293-318, 1992.

4. Lakshman,T.V.and Stiliads,D.:High-Speed Policy-based Packet Forwarding Using
Efficient Multi-dimensional Range Matching, Proc.SIGCOMM 98,pp203-214 (1998).

5. P.Eronen and .J.Zitting. An expert system for analyzing firewall rules. In Proc.6th
Nordic Workshop on Secure IT Systems(NordSec 2001), pages 100-107, Nov.2001.

6. Yin Yi, Yosshiaki katayama, Naohisa Takahashi. ”A system for Comparing Packet
Filter Configuration Files with SIERRA”. 2004. Tokai branch rengo conference. (In
Japanese)

7. Gupta, P. and Mckeown, N.:Packet classification on multiple fields, Proc. SIG-
COMM 99, pp.147-160(1999).

8. Takahashi, N.: Real-time packet classification based on the partial evaluation of
filter-sieve functions (in Japanese), Proc. Workshop on Internet Technologies 99,
pp.190-197, JSSST (1999).

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 481 – 490, 2005.
© Springer-Verlag Berlin Heidelberg 2005

D_DIPS: An Intrusion Prevention System for Database
Security

Jiazhu Dai and Huaikou Miao

College of Computer Science and Engineering
Shanghai University,

Shanghai, P.R. China, 200072
{daijz, hkmiao}@staff.shu.edu.cn

Abstract. There is a growing security concern on the increasing number of da-
tabases that are accessible through the Internet because a variety of attacks do
succeed to fool the existed database protection mechanisms in many applica-
tions. Defense-in-depth strategies like intrusion prevention is urgently needed
for database security. Most of research on intrusion prevention focuses on pre-
venting attacks on operating systems and computer networks. Few efforts have
been put on database intrusion prevention. Design and implementation of a da-
tabase intrusion prevention system D_DIPS is presented. The goal of D_DIPS
is to detect attacks caused by malicious transactions and cancel them timely be-
fore they succeed. The D_DIPS prototype shows D_DIPS can detect and stop
attacks of malicious transaction in real time with low false alarm rate.

1 Introduction

Database systems form the core of the information systems infrastructure in large
organizations. These databases support a large variety of applications such as elec-
tronic commerce, management information systems, hospital information systems.
Data stored in these databases ranges from personal information and commercial
secrets to banking transactions and medical records. Any breach of security to these
databases may cause losses for customers and organizations. Therefore, It is very
important that the data stored in the database systems must be protected from unau-
thorized access and modification.

Although security mechanisms such as authentication, access control, inference
control, encryption, multilevel secure databases have been deployed to protect data-
base systems, a variety of attacks have fooled these security mechanisms and caused
unauthorized access and modification of data stored in databases. One solution in face
of these attacks is intrusion prevention techniques. Intrusion prevention is a proactive
defense technique which is extension of intrusion detection. Intrusion prevention
systems detect ongoing attacks in real time and stop the attacks before they succeed,
thus, avoid damage caused by the attacks.

Most of research on intrusion prevention focuses on preventing attacks on operat-
ing systems and computer networks [1],[2],[3],[4],[5]. Although auditing tools are

,

482 J. Dai and H. Miao

provided by most of popular DBMS and there are some works on database intrusion
detection[6],[7],[8],[9],[10],[11],[12],[13], these methods focus on detecting attacks
after the event, so they can not realize intrusion prevention for database. To our best
of knowledge, few efforts have been put on database intrusion prevention. Ulf T.
Mattsson presented an intrusion prevention system for database in [14], [15],[16]. His
researches focus on monitoring database objects (such as tables, attributes, etc) access
rates associating each user, if the access rates exceed the threshold , notifying the
access control system to make the user’s request an unauthorized request before the
result is transmitted to the user. Our work in this paper is different from that of Ulf
T.Mattsson in that we focus on monitoring transactions rather than access rates, and
proactive protection is based on atomicity of transactions rather than modification of
users’ authorization.

Design and implementation of database intrusion prevention system D_DIPS is
presented in this paper. The D_DIPS focuses on detection and prevention of malicious
transactions. Malicious transactions are transactions that access database without
authorization, or transactions that are issued by users who are authorized but abuse
their privileges. The D_DIPS monitors transactions issued by users and malicious
transactions are viewed as intrusion behaviors. If a malicious transaction is identified,
the D_DIPS cancel the transaction before it succeeds, thus minimize damage caused
by malicious transactions. The paper is organized as follows: a brief review of intru-
sion detection and intrusion prevention is described in section 2.The next section
presents intrusion prevention model of D_DIPS. The architecture of D_DIPS is pre-
sented in section 4.The intrusion detection in D_DIPS is described in section 5.The
implementation of D_DIPS prototype and its performance is presented in section 6.
We conclude our paper in section 7.

2 Intrusion Detection and Intrusion Prevention

Intrusion detection is the process of monitoring the events occurring in a computer
system or network and analyzing them for signs of intrusions, defined as attempts to
compromise the confidentiality, integrity, availability, or to bypass the security
mechanisms of a computer or network. Intrusions are caused by attackers who exploit
vulnerabilities in hardware or software to gain unauthorized access or to exceed their
privileges in the computer system.

Intrusion detection approaches can be divided into misuse detection, anomaly de-
tection and specification-based detection. Misuse detection techniques detect attacks
as instances of attack signatures. This approach can detect known attacks accurately,
but is ineffective against previously unseen attacks, as no signatures are available for
such attacks. Anomaly detection overcomes the limitation of misuse detection by
focusing on normal system behaviors, rather than attack behaviors. The profiles of
normal system behaviors are usually created by machine learning techniques. Any
deviation from normal system behaviors is treated as potential attacks. Specification-
based techniques detect attacks as deviations from a norm, which is similar to anom-
aly detection. However, instead of relying on machine learning techniques, specifica-
tion-based approaches are based on manually developed specifications that capture
legitimate (rather than previously seen) system behaviors. They avoid the high rate of

 D_DIPS: An Intrusion Prevention System for Database Security 483

false alarms caused by legitimate-but- unseen-behavior in the anomaly detection ap-
proach. Their shortcoming is their time-consuming development of detailed specifica-
tion.

Intrusion detection techniques make computer systems attack-aware but not attack-
resistant, that is , intrusion detection itself can not maintain confidentiality and integ-
rity of the computer system in face of attacks. Intrusion prevention techniques are
extension of intrusion detection, they not only monitor events in computer systems to
detect potential attacks, but timely stop the attacks when they are detected to mini-
mize losses caused by the attacks.

In this paper, database intrusion prevention focuses on detecting and preventing
application layer attacks which exist in the form of malicious transactions.

3 The Database Intrusion Prevention Model

The database intrusion prevention model of D_DIPS is depicted in figure 1. The
model is integration of intrusion detection and access control. The main idea of the
model is that intrusion detection is passive defense-in-depth solution which is able to
monitor users’ activities but unable to prevent unauthorized activities when they are
detected., while access control is able to prevent users’ unauthorized access to data-
base but unable to monitor users’ activities when access permits are granted. If we
integrate these two technologies, we can overcome disadvantages of both technolo-
gies and provide more secure defense-in-depth protection for database security.

In order to realize application layer intrusion prevention ,the database intrusion
prevention model should provide following functions:

 Interception: The database intrusion prevention system should intercept any trans-
actions issued by client applications to access the database.

 Analysis and decision: The intercepted transactions’ information should be ana-
lyzed to determine whether they are malicious transactions.

 Response: If the analyzed transactions are identified as malicious transactions, the
database intrusion prevention system should cancel them before they succeed, thus
intrusion prevention is achieved.

The database intrusion prevention model consists of mediator and intrusion detec-
tor. The mediator acts as proxy between the clients and the database. It captures trans-

Clients Database

Intrusion Detector

Mediator

?Transactions

Responses

Fig. 1. The D_DIPS Mode

484 J. Dai and H. Miao

actions’ information for intrusion detector while proxying each users’ transactions
from the clients to the database. When intrusions are detected , the mediator responds
to the intrusion alarms by canceling the malicious transactions before they are fin-
ished. The intrusion detector realizes analyzing function in the model. It analyzes
transactions submitted from clients to database, if a malicious transaction is detected,
the intrusion detector informs the mediator immediately to cancel the transaction
before it succeeds. The diamond with question mark represents mediator passes or
cancels a transaction according to intrusion detector’s detecting results.

4 The Architecture of D_DIPS

The deployment of D_DIPS in database application is depicted in figure 2. There are
following assumption about D_DIPS:

Client
Applications Network D_DIPS DBMS

Secure domain

Fig. 2. The Deployment of D_DIPS

 All database users must interact through D_DIPS with database. There are no di-
rect interactive ways for database users to bypass the D_DIPS. That is , all users’
accesses to database are monitored by D_DIPS.

 All client applications access database through transactions generated by client
applications and manipulating logic of these transactions is secret from attackers.
This assumption satisfies typical database application cases as most database appli-
cations do not allow users issue their SQL queries/statements. Users typically spec-
ify their requirements through a client interface and SQL statements are generated
by client applications.

The architecture of D_DIPS is depicted in figure 3. The intrusion detector detects
malicious transactions based on transaction trails at three levels: sessional level,
schematic level and semantic level. Transactions are checked at the divided levels by
D_DIPS according to the preset detecting granularities. If a malicious transaction is
detected at one of these three levels, the intrusion detector informs alarm module to
send a alarm to security administrator and informs mediator to cancel the malicious
transaction immediately before it succeeds. The transactions’ trails and any informa-
tion of malicious transactions is recorded by audit module for future analysis. The
configuration module sets security rules, normal behaviors’ profiles and detecting
granularities for intrusion detector according to security policies.

 D_DIPS: An Intrusion Prevention System for Database Security 485

Mediator

Alarm
Module

Audit&
Configuration

Module

Schema level detection
Module

Clients Database

Semantic level detection
Module

Session level detection
Module

Intrusion Detector
DIPS

Fig. 3. Architecture of D_DIPS

5 Intrusion Detection in D_DIPS

The intrusion detector detects malicious transactions based on transaction trails at
three levels: sessional level, schematic level and semantic level. Sessional level detec-
tion checks whether a transaction is authorized or not based on the validity of ses-
sional level trails such as session time of the transaction , the database username or
computer name issuing the transaction. Specification-based intrusion detection ap-
proach is used in sessional level detection. A lookup table containing legitimate be-
haviors’ parameters(authorized user name, authorized computer name, valid accessing
time period)like table 1 is maintained for sessional level detection. There are three
columns in it. When a transaction is issued, the database username, computer name
issuing the transaction and the session time of the transaction are compared with the
corresponding columns in each records in table 1. Any deviations from these parame-
ters or non-existence are treated as intrusion.

Table 1. The lookup table used for sessional level detection

Username Computer Name Valid time period
U1 C1 T1s – T2e

.

.

Un Cn Tns – Tne

486 J. Dai and H. Miao

The schematic level detection is based on schematic information of SQL state-
ments contained in transactions. The schematic level detection consists of two parts:

 Detecting whether SQL statements in transactions violate predefined access control
policies. Specification-based intrusion detection approach is used which define au-
thorized accessing privileges for every database user as access control matrix as ta-
ble 2 shows. Users are denoted by U. Database objects such tables and attributes
are denoted by O, A(Ui,Oj) means authorized accessing privileges for user Ui to ac-
cess database object Oj .Any violation of these privileges means attacks.

Table 2. Access Control Matrix

��������� O1 O2 . . . On

� � A(U1,O1) A(U1,O2)
. . . A(U1,On)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

� � A(Um,O1) A(Um,O2)
. . . A(Um,On)

 Detecting whether schematic structure of every SQL statement in a transaction
matches with corresponding part in profiles. Anomaly detection approach is used
which consists of training phase and detecting phase as shown in figure 4.

Interception

Pattern
Matching

Pattern
Table

Pattern
Extraction

Translation

Interception

Training
Transactions

User’s
Transactions

Training Phase

Intrusion Detection Phase

Training System

Intrusion Detection
System

Fig. 4. Intrusion detection based on schematic patterns of SQL statements

The intrusion detection based on schematic structures of SQL statements
must be trained first in the training phase without existence of any intrusion be-
haviors. In the training phase, the users issue transactions accessing database
through client application. The SQL statements in transactions are captured and
transformed into regular expressions stored in pattern table. For example, the fol-
lowing SQL statement:

 D_DIPS: An Intrusion Prevention System for Database Security 487

Select product_no,order_date
from Order

 Where order_no=”A123456” AND amount>10000
 is transformed into following regular expression:

^Select product_no,order_date
from Order
Where order_no=“[[:alnum:]]+”AND amount> :digit: +$
In intrusion detection phase, SQL statements in users’ transactions are inter-

cepted and compared with corresponding regular expressions in the pattern table.
Any mismatch indicates intrusion.

In current research, we assume schematic structures of every SQL statement
in one transaction is invariable every time when the same transaction is issued by
client application. For example, let following SQL statement be one in a transac-
tion:

Select Username, Address, Balance
from Credit-card
where Accountnumber= “123456” AND Company= “ABC Company” AND
Address=“Maple Street”

Every time when the same transaction is issued by client application, the struc-
ture of the SQL statement is fixed, only parameters in the condition part such as
“123456” ,“ABC Company” ,“Maple Street” are variable, so following variable
schematic structures of this example are not considered in current research:

Select Username, Balance
from Credit-card
where Accountnumber= “123456”

or
Select Address, Balance
from Address= “ABC Company”

As assumed previously, client users access database through transactions generated
by client applications. So the schematic structures of SQL statements in transaction
have following features under the above assumption:

 Regularity: Users can not create SQL statements by themselves. What they have to
do is to specify their requirements through a client interface. SQL statements are
generated by client applications according to the users’ requirements. So such SQL
statements are regular.

 Stability: The schematic structures of SQL statements in transactions generated by
client application are stable unless client application is changed. This feature and
the first feature help us reduce false positive alarm rate.

 Limited: Different transactions generated by client application are limited. This
feature make it feasible for us to collect schematic structures’ information of all
SQL statements contained in different transactions in training phase to achieve low
false negative alarm rate.

Semantic level detection is based on such trails as attributes values or statistical re-
sults of attributes in SQL statements. These trails indicate the operation semantics of
SQL statements in transactions. Misuse detection is used in semantic level intrusion
detection. Every SQL statement in a transaction is assigned a value called anomaly

488 J. Dai and H. Miao

measure value(AMV) during semantic level checking. If attributes values or statistical
results of attributes in one SQL statement contained in a transaction match predefined
detecting rules, that indicates a possible attack may be exist, a non-zero AMV is set
for that SQL statement. Otherwise zero is set. If the sum of AMV of all SQL state-
ments in a transaction is larger than preset threshold, that is, if the following equation
holds:(let m be the number of SQL statements contained in the transaction and iA be
the AMV of ith SQL statement)

Thresholdimi
≥∑

≤≤ 1
A .

then the whole transaction is anomaly and actions should be taken to cancel it.
There are two reasons why transaction trails are divided into sessional level, sche-

matic level and semantic level. The first reason is that we can make good use of
transaction information at different levels to detect malicious transactions accurately.
The second reason is that we can set different detecting granularity for different data-
base objects to achieve trade-off between impact of D_DIPS on database perform-
ance and database security. For example,we can set D_DIPS to monitor transactions
manipulating some trivial database tables only at sessional level for high performance
and monitor transactions manipulating some important database tables at sessional
level, schematic level and semantic level to achieve high security.

When a intrusion is detected. D_DIPS cancel the transaction based on atomicity of
transactions, that is, the attack of the intrusion can be stopped as follows: The SQL
statements in a transaction except the last one indicating commit or rollback
(COMMIT WORK, ROLLBACK WORK) of this transaction are proxyed to DBMS
by the mediator. Whether a transaction is committed or cancelled is determined by
detecting results of intrusion detector. If a malicious transaction is identified, the
mediator rollbacks the malicious transaction to cancel its operation, otherwise, the
mediator commits the transaction.

6 Implementation and Performance

We have implemented a D_DIPS prototype based on open source database Post-
greSQL. The mediator proxies transactions from clients application to PostgreSQL
through PostgreSQL client interface libpq.

One concern of deploying D_DIPS is its impact on database performance. We test
the D_DIPS prototype in following testbed: the client machine is Intel PentiumIV
500Hz with 128MB of RAM, the machine running D_DIPS is Intel PentiumIV 1GHz
with 128MB of RAM ,the machine hosting database server is Intel PentiumIV 1GHz
with 128MB of RAM. All the machines run redhat linux 7.0 .The database system is
PostgreSQL 7.3.3.

We define transaction size is the number of SQL statements contained in a transac-
tion. The performance of PostgreSQL is measured by throughput which is defined by
the ratio of the number of transactions to the time to finish all the transactions. In
testing environment with and without D_DIPS enforcement ,1000 transactions with
different size (size 3,5,8,10) are issued by client application to PostgreSQL respec-
tively. The transactions are checked by D_DIPS at sessional level, schematic level

 D_DIPS: An Intrusion Prevention System for Database Security 489

Database throughput of different transaction size

Transaction size

D
at

ab
as

e
th

ro
ug

hp
ut

Fig. 5. Database throughput with and without D_DIPS enforcement

and semantic level. The database throughput with and without D_DIPS enforcement
is shown in figure 5.

The performance penalty caused by D_DIPS is about 42% in average. But the re-
sult is measured under environment of checking every SQL statement in transactions
at sessional level, schematic level and semantic level. We can achieve higher per-
formance by setting different detecting granularities for transactions accessing differ-
ent database tables.

Intrusion prevention effect of D_DIPS is another concern when deploying
D_DIPS. As described previously, the characteristics we use to detect malicious
transactions at sessional level, schematic level and semantic level is stable and regu-
lar. Therefore, in our experimental environment, the intrusion detector raises very few
false alarms and malicious transactions are stopped by D_DIPS before they succeed.

7 Conclusion

Defense-in-depth solutions are urgently needed in protecting confidentiality and in-
tegrity of data stored in database due to frequent reports on breach of database secu-
rity. Database intrusion prevention is extension of database intrusion detection, which
makes database attack-aware but not attack-resistant. Database intrusion prevention
turns passive defense of intrusion detection into proactive defense through detecting
and responsing ongoing attacks in real time. Design and implementation of a database
intrusion prevention system D_DIPS is presented in this paper. The D_DIPS proto-
type shows our D_DIPS can detect and stop database application layer attacks caused
by malicious transactions in real time with low false alarm, thus minimize loss caused
by malicious transactions. The impact of D_DIPS on database system can be mini-
mized by suitable detecting granularity configuration. Our future research directions
include (a) automatic summarizing schematic regular expression from variable sche-

490 J. Dai and H. Miao

matic structures of same SQL statement; (b) extending the D_DIPS prototype from
client/server architecture to three-lier architecture (c) Integrating database intrusion
prevention techniques with COTS database products to improve their security.

References

1. Cholter L W,Narasimhan P,Sterne D,Balupari R, Djahandari K, Mani A, Murphy S.
IBAN: intrusion blocker based on active networks. Proceedings of DARPA Active Net-
works Conference and Exposition(2002) 182–192

2. Janakiraman R, Waldvogel M, Zhang Q. Indra: a peer-to-peer approach to network intru-
sion detection and prevention. Proceedings of Enabling Technologies: Infrastructure for
Collaborative Enterprises(2003) 226–231

3. Ryutov T,Neuman C,Kim D,Li Z.Integrated access control and intrusion detection for web
servers. IEEE transactions on parallel and distributed systems, 14(9),(2003) 841–850

4. Sekar R, Uppuluri P. Synthesizing fast intrusion prevention/detection system from high-level
specifications. Proceedings of the 8th USENIX security symposium,Washington ,D.C.(1999)

5. Stevens J,Saniepour S. SecureDirect: proactive security through content based traffic con-
trol. Proceedings of 17th International Conference on Advanced Information Networking
and Applications(2003) 704–709

6. Ammann P, Jajodia S, McCollum C.D, et al. Surviving information warfare attacks on da-
tabases. Proceedings of the IEEE Symposium on Security and Privacy(1997) 164 –174

7. Chung C Y, Gertz M, Levitt K. DEMIDS: A misuse detection system for database sys-
tems. Proceedings of the 3rd International IFIP TC-11 WG11.5 Working Conference on In-
tegrity and Internal Control in Information Systems(1999) 159–178

8. Ingsriswang S, Liu P. AAID: An application aware transaction-level database intrusion de-
tection system. Technical Report, Dept. of Information Systems, UMBC(2001)

9. Lee S Y, Low W L, Wong P Y. Learning fingerprints for a database intrusion detection
system.ESORICS 2002,LNCS 2502(2002) 264 –279.

10. Lee V, Stankovic J, Son S. Intrusion detection in real-time database systems via time sig-
natures. Proceedings of the 6th IEEE Sympoisum on Real Time Technology and Applica-
tions(2000) 124 –133

11. Low W L,Lee S Y.Teoh P.DIDAFIT:Detecting inrusion in databases through fingerprint-
ing transactions.proceedings of the 4th international conference on enterprise information
system(ICEIS)(2002)

12. Shun W H, Daniel, T.T.H. A novel intrusion detection system model for securing web-
based database systems. Proceedings - IEEE Computer Society's International Computer
Software and Applications Conference(2001) 249–254

13. Stolfo S, Fan D, Lee W,et al. Credit card fraud detection using meta-learning: issues and
initial results. Proceedings of AAAI Workshop: AI approach to fraud detection and risk
management(1997)

14. Ulf T.Mattsson. A practical implementation of a real-time intrusion prevention system for
commercial enterprise databases. Management Information Systems, v 10, Data Mining V:
Data Mining, Text Mining and their Business Applications(2004) 263–272

15. Ulf T.Mattsson. A real-time intrusion prevention system for commercial enterprise data-
bases and file systems. Proceedings of the Third IASTED International Conference on
Communications, Internet, and Information Technology (2004) 189–194

16. Ulf T.Mattsson. A real-time intrusion prevention system for enterprise databases. http://www.
quest- pipelines.com /newsletter- v5/1104_B.htm

Author Index

Ballard, Lucas 414
Bao, Feng 40, 53, 207, 402
Baratto, Ricardo 363
Bhuvaneswaran, R.S. 467
Biryukov, Alex 147
Boyd, Colin 84

Cathalo, Julien 291
Cederquist, J. 27
Chen, Kefei 269
Chiu, Yun-Peng 280
Choi, Hyunsang 454
Chow, Sherman S.M. 194
Cook, Debra L. 363
Corin, R. 27

Dai, Jiazhu 481
Dawson, Ed 84
Deng, Robert H. 53, 207, 376
Ding, Jintai 159
Ding, Xuhua 269
Dong, Shou-Ling 231
Duan, Haixin 243

Fellah, Alaaeddine 123
Feng, Dengguo 14

Goi, Bok-Min 136, 159

Herrera-Joancomart́ı, Jordi 427
Hu, Mingzeng 220
Huang, Chun-Ying 280
Huang, Song 231

Imamoto, Kenji 1, 40
Izu, Tetsuya 72

Jalili, Rasool 256
Ji, Zhenzhou 220
Jia, Weijia 402
Jiang, Xinghao 336

Kamara, Seny 414
Kanaya, Nobuyuki 72
Katayama, Yoshiaki 467

Keromytis, Angelos D. 363
Kim, Jongsung 147
Kim, Sangjin 323
Kuribayashi, Minoru 441
Kuwakado, Hidenori 112

Laur, Sven 97
Lee, Byoungcheon 84
Lee, Heejo 454
Lee, Hoonjung 323
Lee, Sangjin 147
Lei, Chin-Laung 280
Li, Jianhua 336
Li, Lan 336
Li, Tieyan 389
Li, Xin 220
Li, Xing 243
Li, Yong 61
Libert, Benôıt 291
Lipmaa, Helger 61, 97

Ma, Di 376
Meǵıas, David 427
Miao, Huaikou 481
Mielikäinen, Taneli 97
Minguillón, Julià 427
Mitchell, Chris J. 304
Monrose, Fabian 414
Morii, Masakatu 112, 441
Mullins, John 123

Nguyen, Khanh 181
Ning, Peng 350

Oh, Heekuck 323
Omidian, Ali Reza 256

Pang, Hweehwa 376
Pei, Dingyi 61
Peng, Kun 84
Phan, Raphael C.-W. 136
Preneel, Bart 147

Qi, Fang 402
Quisquater, Jean-Jacques 291

Reeves, Douglas S. 350

492 Author Index

Sadoddin, Reza 256
Sakai, Yasuyuki 169
Sakurai, Kouichi 1, 40, 169
Shahriari, Hamid Reza 256
Siddiqi, M.U. 159
Susilo, Willy 194

Takahashi, Naohisa 467
Takenaka, Masahiko 72
Tanaka, Hatsukazu 112, 441
Tang, Qiang 304
Torabi Dashti, M. 27

Wang, Guilin 40
Wang, Lanjia 243
Wang, Pan 350
Wang, Shuhong 53

Wei, Wei 269
Wu, Yongdong 389, 402

Xu, Jing 14

Yin, Yi 467
Yoo, Kee-Young 315
Yoon, Eun-Jun 315
Yoshioka, Takashi 72

Zakeri, Reza 256
Zhang, Ling 231
Zhang, Zhenfeng 14
Zhou, Jianying 1, 376
Zhou, Yongbin 14
Zhu, Huafei 207, 389

	Frontmatter
	Fair Exchange
	An Evenhanded Certified Email System for Contract Signing
	Efficient ID-Based Optimistic Fair Exchange with Provable Security
	On the Quest for Impartiality: Design and Analysis of a Fair Non-repudiation Protocol
	Generic, Optimistic, and Efficient Schemes for Fair Certified Email Delivery

	Digital Signatures I
	Cryptanalysis of a Forward Secure Blind Signature Scheme with Provable Security
	On Delegatability of Four Designated Verifier Signatures
	PIATS: A Partially Sanitizable Signature Scheme

	Cryptographic Protocols
	Ciphertext Comparison, a New Solution to the Millionaire Problem
	Private Itemset Support Counting
	Visual Cryptographic Protocols Using the Trusted Initializer
	Admissible Interference by Typing for Cryptographic Protocols

	Cryptanalysis
	On the Security Bounds of CMC, EME, EME<Superscript> + </Superscript> and EME<Superscript>*</Superscript> Modes of Operation
	On the Security of Encryption Modes of MD4, MD5 and HAVAL
	Cryptanalysis of PASS II and MiniPass
	Simple Power Analysis on Fast Modular Reduction with NIST Recommended Elliptic Curves

	Digital Signatures II
	Asymmetric Concurrent Signatures
	Generic Construction of (Identity-Based) Perfect Concurrent Signatures
	Sequential Aggregate Signatures Working over Independent Homomorphic Trapdoor One-Way Permutation Domains

	Network Security
	Session Table Architecture for Defending SYN Flood Attack
	A Behavior-Based Ingress Rate-Limiting Mechanism Against DoS/DDoS Attacks
	Port Scan Behavior Diagnosis by Clustering
	Network Vulnerability Analysis Through Vulnerability Take-Grant Model (VTG)

	Applied Cryptography
	Multiplex Encryption: A Practical Approach to Encrypting Multi-recipient Emails
	Secure Multicast Using Proxy Encryption
	Efficient and Non-interactive Timed-Release Encryption

	Key Management
	Security Properties of Two Authenticated Conference Key Agreement Protocols
	Cryptanalysis of Two User Identification Schemes with Key Distribution Preserving Anonymity
	Enhanced ID-Based Authenticated Key Agreement Protocols for a Multiple Independent PKG Environment

	Access Control
	Enforce Mandatory Access Control Policy on XML Documents
	Network Access Control for Mobile Ad-Hoc Networks
	Remotely Keyed Cryptographics Secure Remote Display Access Using (Mostly) Untrusted Hardware

	Applications
	Authenticating Query Results in Data Publishing
	Multi-Source Stream Authentication Framework in Case of Composite MPEG-4 Stream
	Batching SSL/TLS Handshake Improved
	Achieving Efficient Conjunctive Keyword Searches over Encrypted Data

	Watermarking
	Total Disclosure of the Embedding and Detection Algorithms for a Secure Digital Watermarking Scheme for Audio
	Reversible Watermark with Large Capacity Using the Predictive Coding

	System Security
	PCAV: Internet Attack Visualization on Parallel Coordinates
	Implementation of Packet Filter Configurations Anomaly Detection System with SIERRA
	D_DIPS: An Intrusion Prevention System for Database Security

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

