
An Improved ˜O(1.234m)-Time

Deterministic Algorithm for SAT

Masaki Yamamoto

Tokyo Institute of Technology
masaki.yamamoto@is.titech.ac.jp

Abstract. We improve an upper bound by Hirsch on a deterministic
algorithm for solving general CNF satisfiability problem. With more de-
tail analysis of Hirsch’s algorithm, we give some improvements, by which
we can prove an upper bound �O(1.234m) w.r.t. the number m of input

clauses, which improves Hirsch’s bound �O(1.239m).

1 Introduction

During the past decades, many algorithms for Boolean satisfiability problems
have been proposed, and some of them were proved to improve the nontrivial
worst-case upper bounds for the problems. Such worst-case analysis was initiated
by Monien and Speckenmeyer [6] for k-SAT. Given a formula F in conjunctive
normal form (in short, a CNF formula), the problem of deciding whether F
is satisfiable is called SAT ; for CNF formulas consisting of clauses at most k-
literals (in short, k-CNF formulas), the problem is called k-SAT. Since the work
of Monien and Speckenmeyer, k-SAT problems, in particular 3-SAT, have been
studied intensively, and various interesting algorithms have been proposed. On
the other hand, not so much improvements have been done for the general SAT
problem, the satisfiability problem for general CNF formulas. Note that CNF for-
mulas with no clause size restriction are useful for expressing some combinatorial
problems such as graph problems. In this paper, we focus on such general CNF
formulas and propose an improved algorithm for the general SAT. Throughout
this paper, we denote by n and m, the number of variables and the number of
clauses, respectively.

We briefly summarize a history of improving the bounds for SAT: randomized
algorithms and deterministic algorithms, respectively. We below give only the
exponential parts of the bounds, omitting polynomial factors.

1.1 Randomized Algorithms for SAT

The first nontrivial upper bound was given by Pudlák [7]: 2n−0.5
√

n. A slightly
better bound was given by Dantsin et al. [1]: 2n−0.712

√
n. These are bounds with

respect to the number of variables. Schuler gave an algorithm with respect to
the number of variables and clauses [8]: 2n(1−1/ log 2m). This bound is better than
2n−c

√
n for any constant c when m = o(2n).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 644–653, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Improved �O(1.234m)-Time Deterministic Algorithm for SAT 645

1.2 Deterministic Algorithms for SAT

The first nontrivial upper bound was given by Dantsin et al. [1]: 2n(1−2
√

1/n log m).
A better algorithm was given by Dantsin and Wolpert [2]: 2n(1−1/ log 2m).
This was obtained by derandomizing Schuler’s algorithm [8]. These bounds
are asymptotically 2n as m gets large. Hirsch gave an algorithm of running
time: 20.30897m ≈ 1.239m. This works better than the above algorithms when
m < n/0.30897.

In this paper, we improve on Hirsch’s algorithm [5], and obtain a better algo-
rithm with 1.234m running time, which has not been improved for a few years.
The basic approach of our algorithm is the same as Hirsch’s; in fact, our al-
gorithm is almost the same. By more careful analysis, we guarantees that this
almost the same algorithm indeed achieves the desired upper bound. The ad-
vantage of our analysis is to guarantee some paths of the recursion tree of an
execution reaching a trivial formula while the recursion tree by Hirsch’s analysis
is of depth only two. See Fig. 3.

2 Preliminaries

We give some basic notions and notations, and briefly review how we analyze
the running time of splitting algorithms. Then we present Hirsch’s algorithm [5],
which we will improve in the next section.

2.1 Basic Notions and Notations

Let X be a finite set of Boolean variables. A literal is a variable x ∈ X or
its negation x̄. A clause is a disjunction of literals. We alternatively regard a
clause as a set of literals. The empty clause is interpreted as false. The size
of a clause C (denoted by |C|) is the number of literals in C. A k-clause is a
clause of size k. A k+-clause and a k−-clause are clauses of size at least k and
at most k, respectively. A conjunctive normal form (CNF for short) formula is a
conjunction of clauses. Again, we alternatively regard a CNF formula as a set of
clauses. The empty formula is interpreted as true. The size of a CNF formula F
(denoted by |F |) is the number of clauses in F . A truth assignment (assignment
for short) to X is a mapping from X to {true, false}. We denote true by 1
and false by 0. A clause is said to be satisfied by an assignment if at least
one literal in the clause is assigned 1 by the assignment. A formula is said to
be satisfied by an assignment if every clause in the formula is satisfied by the
assignment. A formula is said to be satisfiable if there exists an assignment by
which the formula is satisfied, otherwise, unsatisfiable. Given a CNF formula F ,
SAT is a problem of deciding whether F is satisfiable.

Let F be a CNF formula, and l be a literal in F . We denote by F |l=1, a formula
obtained from F by an assignment l = 1, that is, a formula transformed from
F by eliminating clauses which contain l and by eliminating l̄. Formula F |l=0 is
defined similarly. For any literal l, if it occurs positively (i.e., as l) occurs i times

646 M. Yamamoto

and occurs negatively (i.e., as l̄) j times in F , then we say that l is a (i, j)-literal.
It is equivalent to saying that l̄ is a (j, i)-literal. We sometimes call a (i, j)-literal
a i-literal for short. Also by, e.g., “(i+, j−)-literal”, we mean a (i′, j′)-literal for
any i′ ≥ i and j′ ≤ j.

As many heuristic algorithms for SAT, our algorithm (as well as Hirsch’s
algorithm) is based on “splitting” [4,3]: Given a CNF formula F . Choose an
appropriate literal l (depending on the heuristics) in F , and split F on l, that is,
obtain two sub-formulas F |l=1 and F |l=0. Then, we have that F is satisfiable iff
one of F |l=1 and F |l=0 is satisfiable. Hence, the splitting algorithm can decide
whether F is satisfiable by recursively calling this procedure above.

Sub-formulas produced by splitting can be simplified by simple transformation
rules: “pure literal elimination”, and “unit clause propagation” [4,3]. The pure
literal elimination is to assign l = 1 for any pure literal, a literal l such that l̄
never occurs in F . The unit clause propagation is to assign l = 1 if F has a clause
consisting only this literal l. Another standard rule for simplifying formulas is
“resolution”. For any literal, let C and C′ be clauses such that l ∈ C and l̄ ∈ C′
1. Then, we call (C ∪ C′)\{l, l̄} the resolvent by l of C′ and C. Given a formula
F and a literal l in F , the resolution on l is the following procedure: (1) add to
F all resolvents by l, and (2) eliminate from F all clauses containing l or l̄. Note
that all these three operations do not change the satisfiability of a given formula
F ; that is, letting F ′ be a formula obtained by one of these operation to F , we
have F is satisfiable iff F ′ is satisfiable [4].

The pure literal elimination and unit clause propagation always decrease the
number of variables as well as the formula size, i.e., the number of clauses of
a formula. On the other hand, the resolution does not necessarily decreases
formula size while the number of variables does decrease. There are, however,
we can guarantee some formula size reduction; when a resolution is made on
some 1-literal, then the number of clauses gets decreased. Such a resolution is
called 1-literal resolution.

Hirsch’s algorithm makes use of one more simplification rule, which is based on
the black-and-white literal principle [?]. For a given formula F , suppose that all
(2, 3)-literals appear with some (3, 2)-literals in F ’s clauses; that is, every clause
containing a (2, 3)-literal also has some (3, 2)-literal. Then we can simply assign
false to all (2, 3)-literals, which does not change the satisfiability of F . This is be-
cause by this assignment, any clause containing (2, 3)-literal is satisfied by some
co-existing (3, 2)-literal that is the negation of some (2, 3)-literal and hence is as-
signed true. We call this simplification (2, 3)-literal elimination by the black-and-
white literal principle. Though the case where this simplification is applicable is
rare, it removes one special case, which helps us to design a splitting algorithm.

2.2 Analysis of the Running Time of Splitting Algorithms

An execution of a splitting algorithm can be considered as a branching tree, whose
nodes are labelled with formulas. That is, given a formula F and a variable x

1 In the standard definition of resolution, it is also required that l is the only literal
such that l ∈ C and l̄ ∈ C′. But here we may remove this restriction.

An Improved �O(1.234m)-Time Deterministic Algorithm for SAT 647

which an execution of the splitting algorithm is split on. Then, in the branching
tree, a node labelled with F has two children labelled with F |x=1 and F |x=0,
respectively. We abuse a formula as a node labelled with the formula. Note
that the running time of a splitting algorithm is a polynomial of input length
times the number of leaves of the branching tree. Let F be a formula labelling
a node of a branching tree, and F1, · · · , Fs be its children. A branching vector
of a node is an s-tuple (t1, · · · , ts), where ti is a positive number bounded by
|F | − |Fi|. The characteristic polynomial of a branching vector t is defined by
ht(x) = 1−∑s

i=1 x−ti . Then, the equation ht = 0 has exactly one positive root,
which means that it is the largest root of the equation. We denote this root by
τ(t), and call it the branching number at the node of F . The branching number
of a branching tree is the largest branching numbers among all its nodes, denoted
by τmax. The following lemma proved by Kullmann and Luckhardt allows us to
estimate the number of leaves in a branching tree. (See [5] for the details.)

Lemma 1. Let τmax be the branching number of a branching tree representing
an execution of a splitting algorithm which has taken as input a CNF formula
F with m clauses. Then the number of leaves in the branching tree does not
exceed (τmax)m.

2.3 Hirsch’s Algorithm

We now review Hirsch’s algorithm [5], which we denote HIRSCH(·) in this paper.
Hirsch’s algorithm (see below for the description2) makes two types of splits. For
both splits, split literals are chosen among all possible ones so that a branching
number satisfies some specified bounds3. For each splitting (i.e., after fixing
split literal value(s)), the simplification explained above is made on formulas.
For any formula F , let REDUCE(F) be a formula obtained by applying to F
one of the following operations until no further simplification is made: pure
literal elimination, unit clause propagation, resolution such that the number of
clauses doesn’t increase, and (2, 3)-literal elimination by the black-and-white
literal principle.

Function HIRSCH(F)
If F = ∅ (meaning F is satisfiable), then return true.
If ∅ ∈ F (meaning F is unsatisfiable), then return false.

(S1) Splitting into two sub-problems.
For any literal l in F , consider the following split.

F1 = REDUCE(F |l=1) and F0 = REDUCE(F |l=0).

2 For our later explanation, we state a description slightly different from the original
one; but it is not so hard to check that they are equivalent.

3 Intuitively, splitting is better if more clauses are removed with smaller branching
variables, and the optimal one should be chosen. But for our target upper bound,
we only have to choose one satisfying the specified bounds.

648 M. Yamamoto

If there exists some literal l with branching number τ(|F | − |F1|, |F | − |F0|)
≤ τ(3, 4), then execute this split, i.e., call HIRSCH(F1) and HIRSCH(F0)
and return HIRSCH(F1) ∨ HIRSCH(F0).

(S2) (If the condition of (S1) fails, then) Splitting into four sub-problems.
For any literal l in F , and any literals l′ and l′′ in F |l=1 and F |l=0 respec-
tively, consider the following split.

F11 = REDUCE(F |l=1,l′=1), F10 = REDUCE(F |l=1,l′=0), and
F01 = REDUCE(F |l=0,l′′=1), F01 = REDUCE(F |l=0,l′′=0).

Then, as it is shown in [5], there must be some split satisfying τ(|F | −
|F11|, |F | − |F10|, |F | − |F01|, |F | − |F00|) ≤ τ(6, 7, 6, 7). Choose one of such
splits, call HIRSCH(F11), HIRSCH(F10), HIRSCH(F01), and HIRSCH(F00),
and return true iff one of these calls yields true.

Note that τ(6, 7, 6, 7) < τ(3, 4), and in [5], it is shown that branching
number ≤ τ(6, 7, 6, 7) can be achieved at each split in the recursive execution
HIRSCH(F) for any formula F . This proves the following bound.

Theorem 1. (Hirsch [5]) Given a CNF formula F with m clauses as input. The
algorithm HIRSCH(F) decides whether F is satisfiable in time τ(6, 7, 6, 7)m =
20.30897m ≈ 1.239m.

3 Improving on Hirsch’s Algorithm

In this section, we give an algorithm and prove that it runs in time 1.234m. Our
algorithm is almost the same as Hirsch’s, with some very minor modification on
the function HIRSCH(·). What is important is that by careful analysis we prove
that this almost the same algorithm indeed achieves the desired upper bound.
Let us define some terminologies to give an overview of our analysis.

Definition 1. Let F be a CNF formula, and let l and l′ be literals of F such
that a clause of F contains l and l′ both. We say that l and l′ are coincident
(alternatively say that l is coincident with l′) if there is another clause in F
containing l and l′ both.

Definition 2. Let F be a CNF formula. We say that F is normal if there are
only (3−, 3−)-literals in F , and there is no pair of coincident literals in F .

Consider any recursive execution of HIRSCH(·). Suppose that a formula F
input to HIRSCH(F) consists of only (3, 3)-literals. If there exists a pair (l, l′)
of coincident literals in F , we can proceed into step (S1) (not into (S2)), where
we split F on l and resolve F |l=1 on l′ into a formula with size one fewer. Thus,
the branching number at F is τ(3, 4). Otherwise, i.e., if there exists no pair of
coincident literals in F , that is, F is normal with no 2−-literals, then we proceed
into step (S2), where we split F on an arbitrary literal l. and then we choose

An Improved �O(1.234m)-Time Deterministic Algorithm for SAT 649

an appropriate literal for each of F1 = F |l=1 and F0 = F |l=0, which has the
branching number τ(3, 4). Since each assignment l = 1 and l = 0 eliminates three
clauses, we can obtain F has the branching number τ(6, 7, 6, 7). This analysis of
the worst case is exactly Hirsch’s, and the recursion tree corresponding to the
analysis is of depth two. See the tree enclosed with the dotted line in Fig. 3. We
will show that in the worst case, for each root node of F1 and F0 there exists at
least one path from the root to a leaf such that every node of the path has the
branching number τ(3, 4). See the recursion tree below in Fig 3. The following
lemma guarantees such a bound.

Lemma 2. Given a CNF formula H with h clauses. Suppose that H is normal,
and contains at least one 2−-literal. Then, one of the followings is satisfied: (a)
H has a 1−-literal, (b) H has one of the following branching numbers: τ(4, 4)
and τ(3, 5), and (c) we have sub-formulas H ′ with |H ′| = h − 3 and H ′′ with
|H ′′| = h − 4 (meaning H has the branching number τ(3, 4)) such that H ′ and
H ′′ are two children of H and at least one of H ′ and H ′′ is normal with a
2−-literal.

This lemma works in our algorithm as follows. Consider the previous formulas
F1 and F0, which are normal with a 2−-literal. Then, we can apply the lemma
to F1 and F0, and split each of F1 and F0 as (a), (b), or (c) of the lemma.
The precise algorithm of the splitting is stated in the proof of the lemma. (We
denote our algorithm by HIRSCH′(·).) According to the lemma, if H only has the
branching number τ(3, 4), then at least one of the two children has the branching
number τ(3, 4). Furthermore, this recursively repeats to a leaf (meaning a trivial
formula), or until a node with the branching number (3, 5) or (4, 4) (or even
better) found. We call such a path (3, 4)-path. It is not hard to see that the
worst case of possible branching trees is a tree as shown below: a node with the
branching number τ(3, 4) continues to grow along the branch where four clauses
are eliminated.

We call such a tree structure in Fig. 3 the worst case branching tree. In the
branching tree, a black node represents a formula F at which the worst case
branching tree resume, and a white node represents a formula of an inner node
of the worst case branching tree. The number which an edge has in the figure is
the number of eliminated clauses in the transformation from a parent node to
its child node.

The proof of the lemma
We first assume that there is no 1−-literal in H . (We have excluded (a).) Thus,
we only have the following types of literals in H : (3, 3)-literals, (2, 3)-literals,
(3, 2)-literals, and (2, 2)-literals.

We first consider the case that there exists a (2, 3)-literal in H . Let x be a
(2, 3)-literal. We further consider the following sub-cases:

(1) : x occurs with a (3, 3)-literal in any clause
(2) : x occurs with a (2, 2+)-literal in a 2-clause
(3) : x occurs with only (2, 2+)-literals in a 3+-clause

650 M. Yamamoto

F

3 3

3 4

3 4

3 4

3 4

3 4

3 4

F1 F0

Hirsch’s Bound

Fig. 1. The branching tree in the worst case

Let y be a (3, 3)-literal of (1). Branching on y, the assignment y = 1 makes
x become a 1-literal (since exactly one occurrence of x is eliminated because
of no coincidence). Thus, that decreases at least one additional clause by the
resolution on x, and this branch y = 1 totally decreases at least four clauses.
Let H ′′ = resx(H |y=1) where resw(W) is a formula derived from W by the
resolution on w. On the other hand, the assignment y = 0 eliminates three clauses
containing ȳ, that results in H ′ = H |y=0. It is clear that H ′ is normal (since
H ′ is obtained from H just by eliminating literals and clauses). Suppose (on the
contrary to (c)) that H ′ (as well as H ′′) has no 2−-literals, which means that
H ′ consists of only (3, 3)-literals. On this assumption, clauses of H containing ȳ
must have contained a 1-literal since any literal but (1, 1)-literals, (1, 0)-literals,
and (0, 1)-literals becomes a 2−-literal in H ′ (because of no coincidence). This
is a contradiction to our assumption (which is there is no 1-literal in H). Thus,
H ′ is normal with a 2−-literal. (This case satisfies (c).)

Let y be a (2, 2+)-literal of (2), i.e., the 2-clause C is x ∨ y. Branching on x,
the assignment x = 1 makes y become a 1-literal. Thus, this branch x = 1 totally
decreases at least three clauses. (Let H ′ = resy(H |x=1).) On the other hand, the
assignment x = 0 makes C become a unit clause, i.e., C = (y), forcing y = 1.
Thus, the assignment x = 0 and y = 1 eliminates at least four clauses (three
clauses containing x̄ and C itself), that results in H ′′ = H |x=0,y=1. It is clear
that H ′′ is normal. If the other occurrence of y doesn’t occur with x̄ in H , then
the assignment x = 0 and y = 1 eliminates five clauses (|H ′′| = h−5), therefore,
H has the branching number τ(3, 5). Otherwise (i.e., the other occurrence of y
occurs with x̄ in H), the assignment x = 0 and y = 1 eliminates exactly four

An Improved �O(1.234m)-Time Deterministic Algorithm for SAT 651

clauses. Suppose (again on the contrary to (c)) that H ′′ (as well as H ′) has no
2−-literals. On this assumption, clauses of H containing x̄ must have contained
a 1-literal. This is a contradiction to our assumption. Thus, H ′′ is normal with
a 2−-literal. (This case satisfies (c).)

Let y and z be those (2, 2+)-literals of (3), i.e., the 3+-clause C is x∨y∨z∨· · · .
Branching on x, the assignment x = 1 makes y and z become 1-literals. Thus,
that decrease at least additional two clauses by each resolution on y and z
(because of no coincidence), and this branch x = 1 totally decreases at least four
clauses. (Let H ′′ = resy,z(H |x=1).) On the other hand, the assignment x = 0
eliminates three clauses containing x̄, that results in H ′ = H |x=0. By the same
argument as the previous, we can conclude that H ′′ is normal with a 2−-literal.
(This case satisfies (c).)

If there is no such (2, 3)-literal x as (1), (2), or (3) above, that means, each
(2, 3)-literal occurs with some (3, 2)-literal, then we can assign true to all of
(3, 2)-literals with no effect on satisfiability of H . (This is by the black-and-
white literals principle.)

We next consider the case that there is no (2, 3)-literal in H , which means
that there are only (2, 2)-literals and (3, 3)-literals in H . Let x be a (2, 2)-literal.
If x occurs with a (3, 3)-literal in any clause, it is the same case as (1). Otherwise,
that is, every (2, 2)-literal occurs with only (2, 2)-literals, let C1, C2 be clauses
containing x, and let D1, D2 be clauses containing x̄. We consider the following
sub-cases:

(4) : for one of Ci, |Ci| ≥ 3 and for one of Di, |Di| ≥ 3
(5) : |C1| = |C2| = 2 and |D1| = |D2| = 2
(6) : either |C1| = |C2| = 2 or |D1| = |D2| = 2

For (4), let |C1| ≥ 3 and |D1| ≥ 3, i.e., C1 = (x∨ y ∨ z ∨ · · ·) for some literals
y, z, and D1 = (x̄ ∨ y′ ∨ z′ ∨ · · ·) for some literals y′, z′. Branching on x, the
assignment x = 1 makes y and z become 1-literals. Thus, this branch x = 1
totally decreases at least four clauses. The assignment x = 0 is the same as
x = 1. Therefore, H has the branching number τ(4, 4).

For (5), let C1 = (x∨y), C2 = (x∨z) for some literals y, z, and D1 = (x̄∨y′),
D1 = (x̄∨z′) for some literals y′, z′. Branching on x, the assignment x = 1 makes
D1 and D2 become unit clauses, i.e., D1 = (y′) and D2 = (z′), forcing y′ = 1
and z′ = 1. Thus, this branch x = 1 totally decreases at least four clauses. The
assignment x = 0 is the same as x = 1. Therefore, H has the branching number
τ(4, 4).

For (6), let |C1| = |C2| = 2, i.e., C1 = (x ∨ y) and C2 = (x ∨ z) for some
literal y, z. Note that for at least one of D1 and D2, the size is at least three.
Branching on x, the assignment x = 1 makes y and z become 1-literals. That
only guarantees to decrease at least one additional clause by the resolution on y
or z because the other occurrences of y and z could be in the same clause. Thus,
this branch x = 1 totally decreases at least three clauses. On the other hand,
the assignment x = 0 makes C1 and C2 become unit clauses, i.e., C1 = (y) and
C2 = (z), forcing y = 1 and z = 1. If one of the other occurrences of y and z
doesn’t occur with x̄, this branch x = 0 totally decreases at least five clauses.

652 M. Yamamoto

Then, H has the branching number τ(3, 5). Otherwise, i.e., the other occurrences
of y and z both occur with x̄, it only guarantees that this branch x = 0 totally
decreases at least four clauses. However, there should be another (2, 2)-literal w
occurring with x̄ (since |D1| ≥ 3 or |D2| ≥ 3). The literal w becomes a 1-literal
by x = 0 and y = z = 1. Thus, the assignment x = 0 decreases at least one more
additional clause by the resolution on w, and this branch x = 0 totally decreases
at least five clauses. Therefore, H has the branching number τ(3, 5). �

Remark 1. We should apply REDUCE(·) where the resolution which doesn’t
decrease the number of clauses is prohibited, to the transformation between
formulas on the (3, 4)-path. This is because otherwise, the resolution could spoil
the coincidence of formulas while the number of clauses does not decrease by
that resolution.

Lemma 3. The number of leaves in the worst case branching tree shown in Fig.
3 whose root is a formula with size m, is at most O(1.234m).

Proof. Let T (m) be the number of leaves in the sub-tree whose root is a black
node with m clauses. Let S(m) be the number of leaves in the sub-tree whose
root is a white node with m clauses. Then, we have recurrent equations:

T (m) = 2S(m − 3)
S(m − 3) = T (m − 6) + S(m − 7)

From two equations above, we obtain T (m) = O(1.234m). (This comes from
the following calculation: We first obtain S(m) = S(m − 4) + 2S(m − 6) from
the equations, and then the characteristic polynomial 1− 1/x4 − 2/x6 = 0 is de-
rived from the recurrent equation. This polynomial corresponds to the branching
number τ(4, 6, 6) ≈ 1.234, which means S(m) = O(1.234m).) �

Theorem 2. Given a CNF formula F with m clauses. The upper bound of the
running time of HIRSCH′(F) is ˜O(1.234m).

4 Conclusion

We have shown the bound 1.234m for m clauses by improving on the case of
formulas consisting of only (3, 3)-clauses. We have so far obtained the branching
number τ(3, 4) except for such case. Thus, if we also obtained the same branching
number for that case, we could improve our bound to τ(3, 4)m ≈ 1.221m.

Acknowledgement

I thank Prof. Osamu Watanabe for all his support: giving valuable comments,
discussing elaborately, and improving this paper. I also thank Prof. Kazuhisa
Makino for discussing about what this paper concerns.

An Improved �O(1.234m)-Time Deterministic Algorithm for SAT 653

References

1. Dantsin E., Hirsch E. A., and Wolpert A., “Algorithms for SAT based on search in
Hamming balls”, Proc. of the 21st Annual Symposium on Theoretical Aspects of
Computer Science (STACS04), 141-151, 2004.

2. Dantsin E. and Wolpert A., “Derandomization of Schuler’s algorithms for SAT”,
Proc. of the 7th International Conference on Theory and Applications of Satisfia-
bility Testing (SAT04), 69-75, 2004.

3. Davis M., Logemann G., and Loveland D., “’A machine program for theorem-
proving”, Comm. ACM(5), 394-397, 1962.

4. Davis M., and Putnam H., “A computing procedure for quantification theory”, J.
of ACM(7), 201-215, 1960.

5. Hirsch E. A., “New Worst-Case Upper Bounds for SAT”, J. of Automated Reason-
ing, 24, 397-420, 2000. (It is also in Proc. of the 9th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA98), 521-530, 1998.)

6. Monien B, and Speckenmeyer E., “Solving satisfiability in less than 2n steps”, Dis-
crete Appl. Math.(10), 287-295, 1985.

7. Pudlák P., “Satisfiability - algorithm and logic”, Proc. of the 23rd International
Symposium on Mathematical Foundations of Computer Science (MFCS98), 129-
141, 1998.

8. Schuler R., “An algorithm for the satisfiability problem of formulas in conjunctive
normal form”, J. of Algorithms, 54 40-44, 2005.

	Introduction
	Randomized Algorithms for SAT
	Deterministic Algorithms for SAT

	Preliminaries
	Basic Notions and Notations
	Analysis of the Running Time of Splitting Algorithms
	Hirsch's Algorithm

	Improving on Hirsch's Algorithm
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

