
Casting an Object with a Core�

Hee-Kap Ahn1, Sang Won Bae1, Siu-Wing Cheng2, and Kyung-Yong Chwa1

1 Division of Computer Science,
Korea Advanced Institute of Science and Technology,

Daejon, Korea
{heekap, swbae, kychwa}@jupiter.kaist.ac.kr

2 Dept. of Computer Science, Hong Kong University of Science and Technology,
Hong Kong, China
scheng@cs.ust.hk

Abstract. In casting, molten material is poured into the cavity of the
cast and allowed to solidify. The cast has two main parts to be removed in
opposite parting directions. To manufacture more complicated objects,
the cast may also have a side core to be removed in a direction skewed
to the parting directions. In this paper, given an object and the parting
and side core directions, we give necessary and sufficient conditions to
verify whether a cast can be constructed for these directions. In the case
of polyhedral objects, we develop a discrete algorithm to perform the
test in O(n3 log n) time, where n is the object size. If the test result is
positive, a cast with complexity O(n3) can be constructed within the
same time bound. We also present an example to show that a cast may
have Θ(n3) complexity in the worst case. Thus, the complexity of our
cast is worst-case optimal.

1 Introduction

Casting or injection molding [7, 12, 14] is ubiquitous in the manufacturing in-
dustry for producing consumer products. A cast can be viewed as a box with a
cavity inside. Molten material (such as iron, glass or polymer) is poured into the
cavity and allowed to solidify. The cast has two main parts and the hardened
object is taken out by removing the two parts in opposite parting directions.
Many common objects need a side core in additional to the two main parts in
order to be manufactured. (For simplicity, we will refer to the side core as core
in the rest of the paper.) For example, consider a coffee mug in Figure 1(a). The
handle of the mug can only be produced using the two main parts. However,
these two main parts cannot produce the cavity. Figure 1(b) shows how the cof-
fee mug can be manufactured by incorporating a core into the cast. Cores are
used widely in prevailing modes of production, and the class of castable objects
may be enlarged through the use of cores [6, 12, 14, 15]. Cores naturally increase

� Work by Ahn, Bae and Chwa was supported by the Brain Korea 21 Project, The
School of Information Technology, KAIST, in 2005. Work by Cheng was supported
by Research Grant Council, Hong Kong, China (DAG04/05.EG21).

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 40–49, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Casting an Object with a Core 41

(a) (b)

Fig. 1. (a) A coffee mug is unattainable using a 2-part cast. (b) By incorporating a
core to the cast, the cavity of the coffee mug can be manufactured.

manufacturing costs and decrease production capacity [7]. Besides, the core re-
traction mechanism takes up much of extra space. In this paper, we deal with
the case where one core is allowed.

We require that the main parts and the core should be removed without being
blocked by the cast or the object. This ensures that the given object can be mass
produced by re-using the same cast. This paper is concerned with the verification
of the geometric feasibility, castability, of the cast given the parting and core
directions. There has been a fair amount of work on the castability problem [1,
3, 4, 5, 9, 10, 11] for the case that there is no core. Chen, Chou and Woo [6]
described a heuristic to compute a parting direction to minimize the number
of cores needed. However, the parting direction returned need not be feasible.
Based on the approach of Chen, Chou and Woo, Hui presented exponential time
algorithms to construct a cast [8]. However, there is no guarantee that a feasible
cast will be found if there is one. Ahn et al. [2] proposed a hull operator, reflex-
free hull, to define cavities in polyhedron. The motivation is that the cavities
limit the search space for parting and core directions.

In this paper, we give the first exact characterization of the castability of an
object given the parting and core directions, assuming that the removal order of
the parts and the core is immaterial. The core is often removed first in practice,
so our assumption is stronger than necessary. Nevertheless, our result is the first
known characterization of castability when a core is allowed. For a polyhedron
of size n, we develop an O(n3 log n)-time algorithm for performing this test. The
cast can be constructed within the same time bound. This paper presents, to
the best of our knowledge, the first polynomial time algorithm for the problem.

2 Preliminaries

Let A be a subset of R
3. We say that A is open if for any point p ∈ A, A

contains some ball centered at p with positive radius. We say that A is closed if
its complement is open. For all points p ∈ R

3, p is a boundary point of A, if any
ball centered at p with positive radius intersects both A and its complement. The
boundary of A, denoted by bd(A), is the set of boundary points. The interior of
A, int(A), is A \ bd(A). Note that int(A) must be open.

We assume that the outer shape of the cast equals a box denoted by B. The
cavity of B has the shape of the object Q to be manufactured. We assume that

42 H.-K. Ahn et al.

Q is an open set so that the cast B \Q is a closed set. The box B is large enough
so that Q is contained strictly in its interior. We use dm and −dm to denote the
given opposite parting directions, and dc to denote the given core direction.

We call the main part to be removed in direction dm the red cast part and
denote it by Cr. We call the other main part the blue cast part and denote it by
Cb. We denote the core by Cc. We require each cast part and the core to be a
connected subset of B such that B \Q = Cr ∪Cb ∪ Cc and these three pieces only
overlap along their boundaries.

Given the object Q and the directions dm and dc, our problem is to decide if
Q is castable. That is, whether B can be partitioned into Cr, Cb and Cc so that
they can be translated to infinity in their respective directions without colliding
with Q and the other pieces. We assume that the order of removing the parts
and the core is immaterial. In other words, if Q is castable, the parts and the
core can be removed in any order without colliding with Q or the other pieces.

3 The Characterization of Castability

In this section, we develop the exact characterization of the castability of Q
given the parting and core directions dm and dc. Recall that we assume Q to
be open but we do not require Q to be polyhedral. We first need some visibility
and monotonicity concepts.

Consider the illumination of Q by light sources at infinity in directions dm

and −dm. We denote by Vm the subset of points of B \ Q that do not receive
light from the direction dm or the direction −dm. That is, both rays emitting
from p in directions dm and −dm intersect Q. We use Vc

m to denote the points in
R

3 \ Q encountered when we sweep Vm to infinity in direction dc. Note that Vc
m

includes Vm itself. Consider the illumination of Q∪Vc
m by light sources at infinity

in directions dm and −dm. We use Vo to denote those points in B \ (Q ∪ Vc
m)

that do not receive light from the direction dm or the direction −dm. That is,
both rays emitting from p in directions dm and −dm intersect Q ∪ Vc

m. Then Vc
o

denotes the points in R
3 \ (Q ∪ Vc

m) encountered when we sweep Vo to infinity
in direction dc. Note that Vc

o includes Vo itself.
An object is monotone in direction d if for any line � parallel to d , the inter-

section between � and the interior of the object is a single interval. Notice that
although Vc

m is constructed by sweeping Vm in direction dc, the points inside Q
are excluded. Therefore, Vc

m needs not be monotone in direction dc in general.
So does Vc

o .
We will need the following lemmas. We skip the proof of the first one due to

space limitation.

Lemma 1. Q ∪ Vc
m ∪ Vc

o is monotone in dm.

Lemma 2. Given dm and dc, if Q is castable, then Vc
m∩B ⊆ Cc and Vc

o ∩B ⊆ Cc.

Proof. Let p be a point in Vm. By the definition of Vm, if we move p in direc-
tion dm or −dm to infinity, p will hit Q. So p cannot be a point in Cr or Cb.

Casting an Object with a Core 43

Thus, Vm ⊆ Cc. Since Q is castable, Cc can be translated to infinity in direction
dc without colliding with Q and the red and blue cast parts. This implies that
Vc

m ∩ B ⊆ Cc. By the definition of Vo, if we move a point q ∈ Vo in direction dm

or −dm, q will hit Q ∪ Vc
m. So q must be a point in Cc, implying that Vo ⊆ Cc.

Thus, the same reasoning shows that Vc
o ∩ B ⊆ Cc.

Theorem 1. Given dm and dc, Q is castable if and only if Vc
m ∪Vc

o is monotone
in dc.

Proof. If Q is castable, then for any point p ∈ Cc, moving p to infinity in
direction dc will not hit Q, Cr, or Cb. By Lemma 2, (Vc

m ∪ Vc
o) ∩ B is contained

in Cc. Therefore, by considering the movement of all points in (Vc
m ∪ Vc

o) ∩ B
in direction dc, we conclude that Vc

m ∪ Vc
o is monotone in dc. This proves the

necessity of the condition.
We prove the sufficiency by showing the construction of a cast for Q. Ahn et

al. [4] proved that an object is castable using a 2-part cast (without any side
core) in parting direction d if and only if the object is monotone in direction
d . Thus, Lemma 1 implies that Q ∪ Vc

m ∪ Vc
o is castable using a 2-part cast in

direction dm. We use the construction by Ahn et. al [4] to build Cr and Cb with
the necessary modification for handling the side core. The details are as follows.
Without loss of generality, we assume that dm is the upward vertical direction,
dc makes angle of at most π/2 with dm, and the horizontal projection of dc aligns
with the positive x-axis.

Recall that the cast is made from a rectangular axis-parallel box B. We make B
sufficiently large and position Q inside B so that Vc

m ∪ Vc
o intersects the interior

of one vertical side facet of B only. Let S be that side facet of B. Thicken S
slightly to form a slab S+. Let T be the top horizontal facet of B. Thicken T
slightly to form one slab T +.

We move Q ∪Vc
m ∪Vc

o upward to infinity to form one swept volume. Then we
subtract Q∪Vc

m ∪Vc
o from this swept volume to form a shape X . We can almost

make X ∩ B the red cast part, but it is possible that X ∩ B is disconnected.
So we add T + to connect the components of X ∩ B to form one red cast part
Cr. Similarly, we can almost make (Vc

m ∪ Vc
o) ∩ B the side core, but it may be

disconnected. So we add S+ \T + to connect the components in (Vc
m ∪Vc

o)∩B to
form the side core Cc. Lastly, we construct the blue cast part Cb as B\(Q∪Cr∪Cc).

We argue that any part or the side core can be removed without colliding
with Q, the other part or the side core. Since Vc

m ∪ Vc
o is monotone in direction

dc, the core Cc can be removed first without colliding with Q or the other cast
parts. Consider Cr. As Q ∪ Vc

m ∪ Vc
o is monotone in direction dm, the removal of

Cr cannot collide with Q or Cc. Clearly, the removal of Cr cannot collide with Cb

by construction. The argument that Cb can be removed first is similar.

If we are given a CAD system that is equipped with visibility computation,
volume sweeping, and monotonicity checking operation, the characterization in
Theorem 1 can be used directly to check the castability of any object. The proof
also yields the construction of the cast.

44 H.-K. Ahn et al.

4 An Algorithm for Polyhedra

In this section, we apply Theorem 1 to check the castability of a polyhedron.
The goal is to obtain a discrete algorithm whose running time depends on the
combinatorial complexity of the polyhedron. To be consistent with the previous
section, our object is the interior of the polyhedron and we denote it by P . The
combinatorial complexity n of P is the sum of the numbers of vertices, edges,
and facets in bd(P). We present an O(n3 log n)-time algorithm for testing the
castability of P given dm and dc. During the verification, we compute Vc

m ∪ Vc
o ,

from which the cast C can be easily obtained as mentioned in the proof of
Theorem 1.

Throughout this section, we assume that dm is the upward vertical direction.
We also make two assumptions about non-degeneracy. First, no facet in bd(P)
is vertical. Second, the vertical projections of two polyhedron edges are either
disjoint or they cross each other. These non-degeneracy assumptions simplify
the presentation and they can be removed by a more detailed analysis. We call
a facet of P an up-facet if its outward normal points upward, and a down-facet
if its outward normal points downward.

Let H be a horizontal plane below P . We project all facets of P onto H.
The projections may self-intersect and we insert vertices at the crossings. The
resulting subdivision has O(n2) size and we denote it by M. For each cell of
M, we keep the set of polyhedron facets that cover it. We can compute M in
O(n2 log n) time using a plane-sweep algorithm and the association of polyhedron
facets to cells can also be done in O(n3 log n) time during the plane sweep.

After computing M, we test whether Vc
m ∪ Vc

o is monotone in dc (see The-
orem 1). We partition H into 2D slabs by taking vertical planes parallel to dc

through all vertices of M. Since there are O(n2) vertices in M and a vertical
plane parallel to dc intersects O(n) edges of P , there are O(n3) intersections in
total. So the overlay of M and the slabs can be computed in O(n3 log n) time
using a plane-sweep algorithm.

Consider a slab Σ on H. From the construction, Σ contains no vertex in
its interior and is partitioned into O(n) regions by the edges of M. Let d be
the projection of dc on H. The regions in Σ are linearly ordered in direction d
and we label them by ∆0, ∆1, . . . in this order. Notice that ∆0 is unbounded
in direction −d and the last region is unbounded in direction d . We use ζi to
denote the boundary edge between ∆i−1 and ∆i. For each region ∆i, we keep
the set of polyhedron facets that cover it. We cannot do this straightforwardly.
Otherwise, since there are O(n3) regions over all slabs and we may keep O(n)
polyhedron facets per region, the total time and space needed to do this would
be O(n4). The key observation is that if we walk from ∆0 along Σ in direction
d and record the changes in the set of facets whenever we cross a boundary
edge ζi, then the total number of changes in Σ is O(n). Therefore, we can use a
persistent search tree [13] to store the sets of polyhedron facets for all regions in
Σ. This takes O(n log n) time and O(n) space to build per slab. Hence, it takes
a total of O(n3 log n) time and O(n3) space.

Casting an Object with a Core 45

We employ an inductive strategy for testing the monotonicity of Vc
m ∪ Vc

0
in dc within the unbounded 3D slab Σ × [∞, −∞] for each 2D slab Σ on H.
Repeating this test for all 2D slabs on H gives the final answer. We scan the
regions in Σ in the order ∆0, ∆1, During the scanning, we incrementally
grow a volume Vc. The volume Vc is initially empty and Vc will be equal to
(Vc

m ∪ Vc
o) ∩ (Σ × [∞, −∞]) in the end.

We first discuss the data structures that we need to maintain during the
scanning. Consider the event that we cross the boundary ζi and that the portion
of Vc

m ∪Vc
o encountered so far is monotone in dc. Take the vertical strip through

ζi. We translate this strip slightly into ∆i−1 (resp. ∆i) and denote the perturbed
strip by H−

i (resp. H+
i). Let I−i denote the intersection H−

i ∩ (Vc
m ∪ Vc

o) and
let I+

i denote the intersection H+
i ∩ (Vc

m ∪ Vc
o). Both I−i and I+

i consist of O(n)
trapezoids. We call the upper and lower sides of each trapezoid its ceiling and
floor, respectively. The ceiling of each trapezoid τ lies on a boundary facet of
Vc

m ∪ Vc
o . We call this boundary facet the ceiling-facet of τ . This ceiling-facet

may lie within a down-facet in bd(P) or it may be parallel to dc and disjoint
from bd(P). The latter kind of facets are generated by the sweeping towards
dc. Therefore, it suffices to store a polyhedron facet or a plane parallel to dc

to represent the ceiling-facet. We denote this representation by fu(τ). Similarly,
the floor of τ lies on a boundary facet of Vc

m ∪ Vc
o . This boundary facet may lie

within a up-facet of P or it may be parallel to dc and disjoint from bd(P). We
call it the floor-facet of τ and denote its representation by f�(τ).

We are ready to describe the updating strategy when we reach a new region
∆i. We first discuss the monotonicity test. Later, we discuss how to grow Vc

if the test is passed. Note that there is a change in the polyhedron facets that
cover ∆i−1 and ∆i. There are several cases.

1. For any trapezoid τ ∈ I−i , neither fu(τ) nor f�(τ) is about to vanish above
ζi. Then some polyhedron edge e must project vertically onto ζi. Also, the
vertical projections of the two incident polyhedron facets of e cover ∆i but
not ∆i−1. Consider the projection e− of e in direction −dc onto H−

i . Since the
monotonicity test has been passed so far, the space between two trapezoids
in I−i is the polyhedron interior. Thus the projection e− cannot lie between
two trapezoids in I−i . So there are only two cases:

(a) The projection e− cuts across the interior of a trapezoid τ ∈ I−i . In this
case, we abort and report that P is not castable. The reason is that one
polyhedron facet incident to e must block the sweeping of τ towards dc.
It follows that Vc

m ∪ Vc
o is not monotone in dc and so P is not castable

by Theorem 1.
(b) The projection e− lies above all trapezoids. The case that e− lies below

all trapezoids can be handled symmetrically. Let f be the down-facet
incident to e. If we project e vertically downward, the projection either
lies on some up-facet f ′, or a boundary facet of Vc

m ∪ Vc
o that is parallel

to dc, or lies at infinity. The last case happens when I−i is empty (e.g.,
when we cross the boundary ζ1 between ∆1 and ∆0) and there is nothing

46 H.-K. Ahn et al.

to be done for this case. We discuss the other two cases. Let e′ denote
this vertical downward projection of e.
i. If e′ lies on a up-facet f ′, then e and e′ define a new trapezoid τ

that lies above all trapezoids in I−i and that fu(τ) = f and f�(τ) =
f ′. I+

i contains all trapezoids in I−i as well as τ . However, if the
outward normal of f makes an obtuse angle with dc, then f blocks
the sweeping of τ towards dc and we should abort and conclude as
before that P is not castable.

ii. If e′ lies on a boundary facet of Vc
m ∪ Vc

o that is parallel to dc, then
e′ actually lies on fu(τ) where τ is the topmost trapezoid in I−i .
Thus, we should grow τ upward and set fu(τ) = f . I+

i contains this
updated trapezoid τ and the other trapezoids in I−i . There is no
change in the monotonicity status.

2. For some trapezoid τ ∈ I−i , fu(τ) or f�(τ) is about to vanish above ζi. In this
case, a polyhedron edge e bounds fu(τ) or f�(τ) and e projects vertically
onto ζi. There are two cases:
(a) The polyhedron facets incident to e lie locally on different sides of the

vertical plane through ζi. Let f be the incident facet of e that lies locally
in direction dc from e. In this case, the vanishing fu(τ) or f�(τ) should
be replaced by f . However, if the outward normal of f makes an obtuse
angle with dc, we should abort and conclude as before that P is not
castable.

(b) Otherwise, both incident facets of e lie locally in direction −dc from
e. There is no change in monotonicity status, but we need to perform
update as follows. Let f be the vanishing fu(τ) or f�(τ) of τ . There are
two cases:
i. There are trapezoids in I−i that lie above and below f . Clearly, τ is

one of them. Let τ ′ be the other trapezoid. Then fu(τ ′) or f�(τ ′) is
about to vanish above ζi too. In this case, we should merge τ and τ ′

into one trapezoid. The ceiling-facet and floor-facet of this merged
trapezoid are the non-vanishing ceiling-facet and floor-facet of τ and
τ ′. I+

i contains this merged trapezoid and the trapezoids in I−i other
than τ and τ ′.

ii. All trapezoids in I−i lie on one side of f . Assume that τ is the topmost
trapezoid in I−i . The other case can be handled symmetrically. Then
f = fu(τ). It means that we are about to sweep the shadow volume
below f and bounded by τ into the space above ∆i. Thus, we should
set fu(τ) to be the plane that passes through e and is parallel to dc.
I+
i contains this updated trapezoid τ and the other trapezoids in I−i .

By representing each trapezoid in I−i combinatorially by its ceiling-facet and
floor-facet, the above description tells us how to update I−i combinatorially to
produce I+

i . Notice that I+
i will be treated as I−i+1 when we are about to cross

the boundary ζi+1 in the future. By storing the trapezoids in I−i in a balanced
binary search tree, the update at ζi can be performed in O(log n) time. Since

Casting an Object with a Core 47

there are O(n) regions in Σ, scanning Σ takes O(n log n) time. Summing over
all 2D slabs on H gives a total running time of O(n3 log n).

What about growing Vc into the space above ∆i? After the update, for each
trapezoid τ ∈ I+

i , fu(τ) and f�(τ) cut ∆i × [∞, −∞] into two unbounded solid
and one bounded solid Bτ . Conceptually, we can grow Vc by attaching Bτ for
each trapezoid τ ∈ I+

i , but this is too consuming. Observe that if I+
i merely

inherits a trapezoid τ from I−i , there is no hurry to sweep τ into the space above
∆i. Instead, we wait until ζj for the smallest j > i such that I+

j does not inherit
τ from I−j−1. Then fu(τ) and f�(τ) cut R × [∞, −∞] into two unbounded solids
and one bounded solid Sτ , where R is the area within Σ bounded by ζi and ζj .
We attach Sτ to grow Vc. By adopting this strategy, we spend O(1) time to grow
Vc when we cross a region boundary. Hence, we spend a total of O(n3) time to
construct Vc

m ∪Vc
o . Once Vc

m ∪Vc
o is available, we can construct the cast in O(n3)

time as explained in the proof of Theorem 1.

Theorem 2. Given dm and dc, the castability of a polyhedron with size n can
be determined in O(n3 log n) time and O(n3) space. If castable, the cast can be
constructed in the same time and space bounds.

Fig. 2. The boundary of each object is partitioned into three groups in accordance
with the removal directions in which the object has been verified castable

We developed a preliminary implementation of the algorithm of Theorem 2.
Figure 2 shows the output of our implementation on two polyhedra: the direction
dm is the upward vertical direction and the direction dc is the leftward direc-
tion. In the figure, the boundary of each object is partitioned into three groups
depending on which cast part they belong to. For the ease of visualization, each
boundary group is translated slightly in its corresponding removal direction.

5 Worst-Case Example

In this section, we present a lower bound construction showing that a castable
polyhedron of size n can require a cast of Ω(n3) size. Thus the space complexity
in Theorem 2 is worst-case optimal and the time complexity of our algorithm is
at most a log n factor off the worst-case optimum. Throughout this section, we
assume that dm is the upward vertical direction and dc is the leftward direction.

Figure 3 shows our lower bound construction. The polyhedron consists of two
parts: the upper part has four horizontal legs in a staircase and three slanted

48 H.-K. Ahn et al.

Fig. 3. The lower bound example in a perspective view

legs sitting on a horizontal leg. The lower part is an almost identical copy of
the upper part, except that it has three small holes as shown in the figure. The
upper hole can only be covered by the red cast part to be removed vertically
upward, and the other two holes only be covered each by the core and the blue
cast part. Figure 4(a) shows the front view (when we look at it from the left) and
the top view of the polyhedron P . In both projections, all three horizontal legs
cross the other three slanted legs in the upper part as well as in the lower part.

Clearly, the polyhedron is castable with respect to the given dm and dc. We
put Θ(n) horizontal legs and Θ(n) slanted legs in both the upper and the lower
parts. In the upper part, each slanted leg must be in contact with both Cr and Cc.
Moreover, the contacts with Cr and Cc alternate Θ(n) times along the slanted leg.

front view

a b a b

top view

�dc

�dm

(a)

(b)

p
q

Fig. 4. (a) A top view and a side view of the lower bound construction. (b) Two cross
sections along a (left) and b (right). The only way to remove p (resp. q) is translating
it in dm (resp. dc).

Casting an Object with a Core 49

As a result, the slanted legs in the upper part have a total of Θ(n2) contacts with
Cc. These contacts sweep in direction dc and generate Θ(n2) swept volumes. The
merging of any two such swept volumes is forbidden by the alternate appearances
of the left cross-section in Figure 4(b). Each swept volume projects vertically
and produces a shadow on each horizontal leg that lies below it. Thus, the total
complexity of Cc is Ω(n3).

References

1. H.K. Ahn, S.W. Cheng, and O. Cheong. Casting with skewed ejection direction.
In Proc. 9th Annu. International Symp. on Algorithms and Computation,, volume
1533 of Lecture Notes in Computer Science, pages 139–148. Springer-Verlag, 1998.

2. H.K. Ahn, S.W. Cheng, O. Cheong, and J. Snoeyink. The reflex-free hull. In-
ternational Journal of Computational Geometry and Applications, 14(6):453–474,
2004.

3. H.K. Ahn, O. Cheong, and R. van Oostrum. Casting a polyhedron with directional
uncertainty. Computational Geometry: Theory and Applications, 26(2):129–141,
2003.

4. H.K. Ahn, M. de Berg, P. Bose, S.W. Cheng, D. Halperin, J. Matoušek, and
O. Schwarzkopf. Separating an object from its cast. Computer-Aided Design,
34:547–559, 2002.

5. P. Bose and G. Toussaint. Geometric and computational aspects of gravity casting.
Computer-Aided Design, 27(6):455–464, 1995.

6. L.L. Chen, S.Y. Chou, and T.C. Woo. Parting directions for mould and die design.
Computer-Aided Design, 25:762–768, 1993.

7. R. Elliot. Cast Iron Technology. Butterworths, London, 1988.
8. K. Hui. Geometric aspects of mouldability of parts. Computer Aided Design,

29(3):197–208, 1997.
9. K.C. Hui and S.T. Tan. Mould design with sweep operations—a heuristic search

approach. Computer-Aided Design, 24:81–91, 1992.
10. K. K. Kwong. Computer-aided parting line and parting surface generation in mould

design. PhD thesis, The University of Hong Kong, Hong Kong, 1992.
11. J. Majhi, P. Gupta, and R. Janardan. Computing a flattest, undercut-free parting

line for a convex polyhedron, with application to mold design. Computational
Geometry: Theory and Applications, 13:229–252, 1999.

12. W.I. Pribble. Molds for reaction injection, structural foam and expandable styrene
molding. In J.H. DuBois and W.I. Pribble, editors, Plastics Mold Engineering
Handbook. Van Nostrand Reinhold Company, New York, 1987.

13. N. Sarnak and R.E. Tarjan. Planar point location using persistent search trees.
Communications of the ACM, 29:669–679, 1986.

14. C.F. Walton and T.J. Opar, editors. Iron Castings Handbook. Iron casting society,
Inc., 1981.

15. E. C. Zuppann. Castings made in sand molds. In J. G. Bralla, editor, Handbook of
Product Design for Manufacturing, pages 5.3–5.22. McGraw-Hill, New York, 1986.

	Introduction
	Preliminaries
	The Characterization of Castability
	An Algorithm for Polyhedra
	Worst-Case Example

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

