
The Layered Net Surface Problems in Discrete

Geometry and Medical Image Segmentation

Xiaodong Wu1,�, Danny Z. Chen2,��, Kang Li3, and Milan Sonka4,� � �

1 Departments of Electrical & Computer Engineering and Radiation Oncology,
University of Iowa, Iowa City, Iowa 52242, USA

xiaodong-wu@uiowa.edu
2 Department of Computer Science and Engineering,

University of Notre Dame, Notre Dame, IN 46556, USA
chen@cse.nd.edu

3 Dept. of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA 15213, USA

kangl@cmu.edu
4 Dept. of Electrical and Computer Engineering, University of Iowa,

Iowa City, IA 52242-1595, USA
sonka@engineering.uiowa.edu

Abstract. Efficient detection of multiple inter-related surfaces repre-
senting the boundaries of objects of interest in d-D images (d ≥ 3) is
important and remains challenging in many medical image analysis ap-
plications. In this paper, we study several layered net surface (LNS) prob-
lems captured by an interesting type of geometric graphs called ordered
multi-column graphs in the d-D discrete space (d ≥ 3). The LNS prob-
lems model the simultaneous detection of multiple mutually related sur-
faces in three or higher dimensional medical images. Although we prove
that the d-D LNS problem (d ≥ 3) on a general ordered multi-column
graph is NP-hard, the (special) ordered multi-column graphs that model
medical image segmentation have the self-closure structures, and admit
polynomial time exact algorithms for solving the LNS problems. Our
techniques also solve the related net surface volume (NSV) problems of
computing well-shaped geometric regions of an optimal total volume in
a d-D weighted voxel grid. The NSV problems find applications in med-
ical image segmentation and data mining. Our techniques yield the first
polynomial time exact algorithms for several high dimensional medical
image segmentation problems. The practical efficiency and accuracy of
the algorithms are showcased by experiments based on real medical data.

� This research was supported in part by a faculty start-up fund from University of
Iowa.

�� This research was supported in part by the National Science Foundation under
Grants CCR-9988468 and CCF-0515203.

� � � This research was supported in part by NIH-NHLBI research grants R01-HL063373
and R01-HL071809.

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 17–27, 2005.
© Springer-Verlag Berlin Heidelberg 2005

18 X. Wu et al.

1 Introduction

In this paper, we study the layered net surface (LNS) problems and their exten-
sions in discrete geometry. These problems arise in d-D medical image segmen-
tation (d ≥ 3) and other applications.

As a central problem in image analysis, image segmentation aims to define
accurate boundaries for the objects of interest captured by image data. Accurate
3-D image segmentation techniques promise to improve medical diagnosis and
revolutionize the current medical imaging practice. Although intensive research
has been done on image segmentation in several decades, efficient and effective
high dimensional image segmentation still poses one of the major challenges in
image understanding. As one common practice, to identify surface represent-
ing the boundary of the sought 3-D object, 2-D image slices are more or less
analyzed independently, and the 2-D results are stacked together to form the
3-D segmentation. One most successful and widely used technique is based on
2-D dynamic programming and optimal graph searching [11]. These approaches
have inherent limitations – the most fundamental one stems from the lack of
contextual slice-to-slice information when analyzing a sequence of consecutive
2-D images. Performing the segmentation directly on a 3-D image can produce
a more consistent segmentation result, yielding 3-D surfaces for object bound-
aries instead of a set of individual 2-D contours. Another active and far-reaching
line of research in this area rely on variational calculus and numerical methods,
e.g. level set methods and deformable models [9]. Although these approaches
are theoretically powerful, the interfacing between continuous formulations and
discrete solutions involve numerical approximation and stability issues.

We present a novel graph-theoretic technique for the problem of simultaneous
segmentation of multiple inter-related surfaces in three or higher dimensional
medical images, namely, the LNS problem. This technique is practically sig-
nificant since many surfaces in medical images appear in mutual relations. A
number of medical imaging problems can benefit from an efficient method for
simultaneous detection of multiple inter-related 3-D surfaces [11, 15, 9].

The simultaneous detection of multiple inter-related surfaces has been stud-
ied by the medical image analysis community for a long time. For the 2-D case,
there are several satisfactory results [11, 1, 14]. However, little work has been
done on the three and higher dimensional cases. Previous attempts [12, 3] on
extending graph-search based segmentation methods for the 2-D case to identi-
fying even a single optimal surface in 3-D medical images either made the meth-
ods computationally intractable or traded their ability to achieve global optima
for computational efficiency. Motivated by this segmentation problem, Wu and
Chen [13] introduced the optimal net surface problems and presented efficient
polynomial time exact algorithms for them. But, the algorithms in [13] can de-
tect only one optimal surface in 3-D. An implementation of their algorithms and
experimental validation based on real 3-D medical images were presented in [7].
More recently, Li et al. [8] extended the approach [13,7] to segmenting multiple
inter-related surfaces in 3-D. However, their new method does not consider the
very important region information (e.g., homogeneity) for the surface detection.

The LNS Problems in Discrete Geometry and Medical Image Segmentation 19

Modeling the simultaneous detection of multiple inter-related surfaces in high
dimensional medical images, we introduce the layered net surface (LNS) prob-
lems on an interesting type of geometric graphs, called ordered multi-column
graphs, embedded in the d-D discrete space for d ≥ 3 (to be defined in Section
2). We further extend the LNS problems to a more general ordered multi-column
graph (Section 5). Motivated by segmenting anatomical structures with a rela-
tively regular geometric shape, such as the left ventricles, kidneys, livers, and
lungs, we also study several net surface volume (NSV) problems, which aim to
find well-shaped regions of an optimal “volume” in a d-D weighted voxel grid.
These well-shaped geometric regions are closely related to monotonicity and
convexity in d-D discrete spaces (Section 4). Our main results in this paper are
summarized as follows.

– We develop an efficient algorithm for solving the LNS problem on an interest-
ing type of ordered multi-column graphs in polynomial time, by formulating
it as computing a minimum closed set in a vertex-weighted directed graph.

– We extend our LNS technique to solving the NSV problems of computing
several classes of optimal well-shaped geometric regions in a d-D weighted
voxel grid. These NSV problems arise in data mining [2], image segmentation
[1], and data visualization. The classes of regions that we study can be viewed
as generalizations of some of the pyramid structures in [2].

– We prove that the LNS problem on a general ordered multi-column graph
is NP-hard. However, the (special) ordered multi-column graphs that model
medical image segmentation applications have additional properties, and the
LNS problem on such graphs is polynomially solvable.

– We apply our polynomial time LNS algorithms to segmenting multiple inter-
related object boundaries in 3-D medical images.

We omit the proofs of the lemmas and theorems due to the page limit.

2 The Layered Net Surface (LNS) Problems

A multi-column graph G = (V, E) embedded in the d-D discrete space is defined
as follows. For a given undirected graph B = (VB , EB) embedded in (d − 1)-
D (called the net model) and an integer κ > 0, G is an undirected graph
in d-D generated by B and κ. For each vertex v = (x0, x1, . . . , xd−2) ∈ VB ,
there is a sequence Col(v) of κ vertices in G corresponding to v; Col(v) =
{(x0, x1, . . . , xd−2, k) : k = 0, 1, . . . , κ− 1}, called the v-column of G. We denote
the vertex (x0, x1, . . . , xd−2, k) of Col(v) by vk. If an edge (v, u) ∈ EB , then
we say that the v-column and u-column in G are adjacent to each other. For
each vertex vk ∈ Col(v), vk has edges in G to a non-empty list of consecutive
vertices in every adjacent u-column Col(u) of Col(v), say uk′ , uk′+1, . . . , uk′+s

(s ≥ 0); we call (uk′ , uk′+1, . . . , uk′+s), in this order, the edge interval of vk on
Col(u), denoted by I(vk, u). For an edge interval I, we denote by Bottom(I)
(resp., Top(I)) the d-th coordinate of the first (resp., last) vertex in I (e.g.,
Bottom(I(vk, u)) = k′ and Top(I(vk, u)) = k′ + s in the above example).

20 X. Wu et al.

(c)

1Col()1vCol() u3Col()3vCol()

u1

1v

u3

3v
��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

(b)

u

2v v

u2

(a)
0

u0

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��������������������

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
���������������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

Fig. 1. (a) A 2-D net model B. (b) A 3-D properly ordered multi-column graph G
generated by B and κ = 4 (the edges between Col(ui) and Col(ui+1), i = 0, 1, 2, are
symmetric to those between Col(vi) and Col(vi+1), and the edges between Col(vj) and
Col(uj), j = 1, 2, are symmetric to those between Col(v3) and Col(u3); all these edges
are omitted for a better readability). (c) Two (1, 2)-separate net surfaces in G marked
by heavy edges. (d) Two net surfaces divide the vertex set of G into three disjoint
vertex subsets.

Two adjacent columns Col(v) and Col(u) in G are said to be in proper order if
for any two vertices vk and vk+1 in Col(v),Bottom(I(vk , u))≤ Bottom(I(vk+1, u))
and Top(I(vk, u)) ≤ Top(I(vk+1, u)), and if the same holds for any two vertices
uk and uk+1 of Col(u) on Col(v). The corresponding edge (v, u) ∈ EB is called
a proper edge. If all pairs of adjacent columns in G are in proper order, then we
call G a properly ordered multi-column graph (briefly, a properly ordered graph).
Figures 1(a)–1(b) show a net model and a properly ordered graph.

Note that in medical image segmentation, the boundaries of the target objects
(e.g., organs) are often sufficiently “smooth”. The smoothness constraint on the
sought surfaces is modeled by the proper ordering of the edges in a multi-column
graph G, that is, the edges connecting each vertex vk in G to every adjacent
column Col(u) of Col(v) form an edge interval on Col(u), and such edge intervals
for any two adjacent columns of G are in proper order.

A net surface in G (also called a net) is a subgraph of G defined by a function
N : VB → {0, 1, . . . , κ− 1}, such that for every edge (v, u) ∈ EB, (vk′ , uk′′), with
k′ = N (v) and k′′ = N (u), is also an edge in G. For simplicity, we denote a net
by its function N . Intuitively, a net N in G is a special mapping of the (d−1)-D
net model B to the d-D space, such that N “intersects” each v-column of G at
exactly one vertex and N preserves all topologies of B. N can be viewed as a
functional “surface” of B in d-D defined on the (d − 1)-D space in which B is
embedded.

Given two integers L and U , 0 < L < U , two nets N 1 and N 2 of a properly
ordered graph G are said to be (L, U)-separate if L ≤ N 2(v)−N 1(v) ≤ U for
every vertex v ∈ VB . Roughly speaking, N 1 and N 2 do not cross each other and
are within a specified range of distance (see Figure 1(c)). For a given set of l−1
integer parameter pairs {(Li, Ui) : 0 < Li < Ui, 1 ≤ i < l}, l ≥ 2, we consider l
net surfaces NS = {N 1,N 2, . . . ,N l} in G such that N i+1 is “on top” of N i (i.e.,
∀v ∈ VB, N i+1(v) > N i(v)), and N i and N i+1 are (Li, Ui)-separate. Then, these
l net surfaces partition the vertex set V of G into l+1 disjoint subsets Ri, with
R0 = {vk : v ∈ VB , 0 ≤ k ≤ N 1(v)}, Ri = {vk : v ∈ VB ,N i(v) < k ≤ N i+1(v)}
for i = 1, 2, . . . , l−1, and Rl = {vk : v ∈ VB ,N l(v) < k < κ} (see Figure 1(d)).

The LNS Problems in Discrete Geometry and Medical Image Segmentation 21

Motivated by medical image segmentation [11,16,9], we assign costs to every
vertex of G as follows. Each vertex vk ∈ V has an on-surface cost b(vk), which
is an arbitrary real value. For each region Ri (i = 0, 1, . . . , l), every vertex
vk ⊆ V is assigned a real-valued in-region cost ci(vk). The on-surface cost of
each vertex is inversely related to the likelihood that it may appear on a desired
net surface, while the in-region costs ci(·) (i = 0, 1, . . . , l) measure the inverse
likelihood of a given vertex preserving the expected regional properties of the
partition {R0, R1, . . . , Rl}. Both the on-surface and in-region costs for image
segmentation can be determined using low-level image features [9, 11, 16].

The layered net surface (LNS) problem seeks l net surfaces NS = {N 1,N 2,
. . . ,N l} in G such that the total cost α(NS) induced by the l net surfaces in
NS, with

α(NS) =
l∑

i=1

b(N i) +
l∑

i=0

ci(Ri) =
l∑

i=1

∑

u∈V (Ni)

b(u) +
l∑

i=0

∑

u∈Ri

ci(u),

is minimized, where V (H) denotes the vertex set of a graph H .
In fact, our algorithmic framework is general enough for the cases in which

each vertex has only an on-surface cost, only in-region costs, or both. We will
present our approach for the case where each vertex has both the on-surface and
in-region costs.

3 Algorithm for the Layered Net Surface (LNS) Problem

This section gives our polynomial time algorithm for the layered net surface
problem on a d-D properly ordered graph G = (V, E). We first exploit the self-
closure structure of the LNS problem, and then model it as a minimum-cost
closed set problem based on a nontrivial graph transformation scheme.

A closed set C in a directed graph with arbitrary vertex costs w(·) is a subset
of vertices such that all successors of any vertex in C are also contained in C [10].
The cost of a closed set C, denoted by w(C), is the total cost of all vertices in
C. Note that a closed set can be empty (with a cost zero). The minimum-cost
closed set problem seeks a closed set in the graph whose cost is minimized.

3.1 The Self-closure Property of the LNS Problem

Our algorithm for the LNS problem hinges on the following observations about
the self-closure structure of any feasible LNS solution. Recall that in a set of l
feasible net surfaces NS = {N 1,N 2, . . . ,N l} in G, N i+1 is “on top” of N i, for
each i = 1, 2, . . . , l − 1.

For a vertex vk ∈ V (i.e., v ∈ VB and 0 ≤ k < κ) and each adjacent column
Col(u) of Col(v) (i.e., (v, u) ∈ EB), the lower-eligible-neighbor of vk on Col(u) is
the vertex in Col(u) with the smallest d-th coordinate that has an edge to vk in
G (i.e., the vertex in Col(u) with the smallest d-th coordinate that can possibly
appear together with vk on a same feasible net surface in G).

22 X. Wu et al.

Given the surface separation constraints, we define below the upstream and
downstream vertices of any vertex in G, to help characterize the spatial relations
between feasible net surfaces in G. For every vertex vk ∈ V and 1 ≤ i < l (resp.,
1 < i ≤ l), the i-th upstream (resp., downstream) vertex of vk is vk+Li (resp.,
vmax{0,k−Ui−1}) if k + Li < κ (resp., k − Li−1 ≥ 0). Intuitively, if vk ∈ N i, then
the i-th upstream (resp., downstream) vertex of vk is the vertex in Col(v) with
the smallest d-th coordinate that can be on N i+1 (resp., N i−1).

We say that a vertex vk is below (resp., above) a net surface N i if N i(v) > k
(resp., N i(v) < k), and denote by LO(N i) the subset of all vertices of G that
are on or below N i. For every vertex vk ∈ LO(N i), consider its lower-eligible-
neighbor uk′ on any adjacent Col(u) of Col(v). Let r = N i(v) and uk′′ be the
lower-eligible-neighbor of vr on Col(u) (vr ∈ Col(v) is on N i). Then by the
definition of net surfaces, k′′ ≤ N i(u). Since k ≤ N i(v), we have k′ ≤ k′′ due to
the proper ordering. Thus, k′ ≤ N i(u), and further, uk′ ∈ LO(N i). Hence, we
have the following observation.

Observation 1. For any feasible net surface N i in G, if a vertex vk is in
LO(N i), then every lower-eligible-neighbor of vk is also in LO(N i).

Observation 1 characterizes the self-closure property of every set LO(N i).
However, our task is more involved since the l net surfaces in NS are inter-related.
We need to further examine the closure structure between the LO(N i)’s.

Observation 2. Given any set NS = {N 1,N 2, . . . ,N l} of l feasible net sur-
faces in G, the i-th upstream (resp., downstream) vertex of each vertex in LO(N i)
is in LO(N i+1) (resp., LO(N i−1)), for every 1 ≤ i < l (resp., 1 < i ≤ l).

Observations 1 and 2 show an important self-closure structure of the LNS
problem, which is crucial to our LNS algorithm and suggests a connection be-
tween our target problem and the minimum-cost closed set problem [10]. In
our LNS approach, instead of directly searching for an optimal set of l net sur-
faces, NS∗ = {N ∗

1,N ∗
2, . . . ,N ∗

l }, we look for l optimal subsets of vertices in G,
LO(N ∗

1) ⊂ LO(N ∗
2) ⊂ . . . ⊂ LO(N ∗

l), such that each LO(N ∗
i) uniquely defines

the net surface N ∗
i ∈ NS∗.

3.2 The Graph Transformation Scheme

Our LNS algorithm is based on a sophisticated graph transformation scheme,
which enables us to simultaneously identify l > 1 optimal inter-related net sur-
faces as a whole by computing a minimum closed set in a weighted directed
graph G′ that we transform from G. This section presents the construction of
G′, which crucially relies on the self-closure structure shown in Section 3.1.

We construct the vertex-weighted directed graph G′ = (V ′, E′) from the d-
D properly ordered graph G = (V, E), as follows. G′ contains l vertex-disjoint
subgraphs {G′

i = (V ′
i , E′

i) : i = 1, 2, . . . , l}; each G′
i is for the search of the i-th

net surface N i. V ′ =
⋃l

i=1 V ′
i and E′ =

⋃l
i=1 E′

i ∪ E′
s. The surface separation

The LNS Problems in Discrete Geometry and Medical Image Segmentation 23

constraints between any two consecutive net surfaces N i and N i+1 are enforced
in G′ by a subset of edges in E′

s, which connect the subgraphs G′
i and G′

i+1.
The construction of each subgraph G′

i = (V ′
i , E′

i) is similar to that in [13].
For G′

i, every vertex vk in G corresponds to exactly one vertex vi
k ∈ V ′

i . Each
column Col(v) in G associates with a chain vi

κ−1 → vi
κ−2 → · · · → vi

0 in G′
i.

We then put directed edges into E′
s between G′

i and G′
i+1, to enforce the surface

separation constraints. For each vertex vi
k with k < κ − Li on the chain Chi(v)

in G′
i, a directed edge is put in E′

s from vi
k to vi+1

k+Li
on Chi+1(v) in G′

i+1.
On the other hand, each vertex vi+1

k with k ≥ Li on Chi+1(v) has a directed
edge in E′

s to vi
k′ on Chi(v) with k′ = max{0, k − Ui} (note that vk′ in G is

the (i + 1)-th downstream vertex of vk). Note that in this construction, each
vertex vi

k with k ≥ κ − Li has no edge to any vertex on Chi+1(v), and each
vertex vi+1

k with k < Li has no edge to any vertex on Chi(v). These vertices
of G′ are called deficient vertices, whose corresponding vertices in G cannot
possibly appear in any feasible solution for the LNS problem. By exploiting
the geometric properties of the properly ordered graphs, all deficient vertices
in G′ can be pruned in linear time. We simply denote the graph thus resulted
also by G′. Then, for every v ∈ VB and i = 1, 2, . . . , l, let µi(v) and κi(v) be
the smallest and largest d-th coordinates of the vertices on the chain Chi(v)
of G′

i, respectively. We then assign a cost w(vi
k) for each vertex vi

k in G′
i: If

k = µi(v), then w(vi
k) = b(vk) +

∑k
j=0[ci−1(vj) − ci(vj)]; otherwise, w(vi

k) =
[b(vk) − b(vk−1)] + [ci−1(vk) − ci(vk)]. This completes the construction of G′.

3.3 Computing Optimal Layered Net Surfaces for the LNS Problem

The graph G′ thus constructed allows us to find l optimal net surfaces in G,
by computing a non-empty minimum-cost closed set in G′. Given any closed set
C 	= ∅ in G′, we define l feasible net surfaces, NS = {N 1,N 2, . . . ,N l}, in G,
as follows. Recall that we search for each net N i in the subgraph G′

i = (V ′
i , E′

i).
Let Ci = C ∩ V ′

i . For each vertex v ∈ VB, denote by Ci(v) the set of vertices of
Ci on the chain Chi(v) of G′

i. Based on the construction of G′
i, it is not hard to

show that Ci(v) 	= ∅. Let ri(v) be the largest d-th coordinate of the vertices in
Ci(v). Define the function N i as N i(v) = ri(v) for every v ∈ VB. The following
lemma is a key to our algorithm.

Lemma 1. Any closed set C 	= ∅ in G′ specifies l feasible net surfaces in G
whose total cost differs from that of C by a fixed value cl(V).

Next, we argue that any l feasible net surfaces, NS = {N 1,N 2, . . . ,N l}, in
G correspond to a closed set C 	= ∅ in G′. Based on the construction of G′,
every vertex vk on the net N i corresponds to a vertex vi

k in G′
i (vi

k is not a
deficient vertex). We construct a closed set Ci 	= ∅ in G′

i for each net N i, as
follows. Initially, let Ci = ∅. For each vertex v ∈ VB, we add to Ci the subset
Ci(v) = {vi

k : k ≤ N i(v)} of vertices on Chi(v) of G′
i.

Lemma 2. Any set NS of l feasible net surfaces in G defines a closed set C 	= ∅

in G′ whose cost differs from that of NS by a fixed value.

24 X. Wu et al.

By Lemmas 1 and 2, we compute a minimum-cost closed set C∗ 	= ∅ in G′,
which specifies l optimal net surfaces in G. Note that G′ has O(l ·n) vertices and
O(l ·n · mB

nB
) edges, where n = |V | is the number of vertices in G, and nB = |VB |

and mB = |EB| for the net model B. By using the minimum s-t cut algorithm
in [5] to compute a minimum-cost closed set in G′, we have the following result.

Theorem 1. The LNS problem can be solved in O(l2n2 mB

nB
log(l·n·nB

mB
)) time.

4 Algorithms for the Net Surface Volume (NSV)
Problems

This section presents our algorithms for several optimal net surface volume
(NSV) problems. Specifically, instead of looking for multiple inter-related net
surfaces as in Section 3, for a given d-D voxel grid Γ = [0..N − 1]d of n = Nd

cells, with each cell x(x0, x1, . . . , xd−1) ∈ Γ having an arbitrary real “volume”
value vol(x), we seek multiple surfaces that enclose a well-shaped region R ⊆ Γ ,
such that the volume vol(R) of R, vol(R) =

∑
x∈R vol(x), is minimized (or

maximized). Note that even the case of the NSV problem on finding an optimal
simple polygon in a weighted 2-D grid is in general NP-hard [1].

We consider two classes of regions, called weakly watershed-monotone regions
and watershed-monotone shells, defined as follows. For any integers 0 ≤ i < d
and 0 ≤ c < N , let Γi(c) denote all voxels of Γ whose xi-coordinate is c (note that
Γi(c) is orthogonal to the xi-axis). A region R in Γ is said to be xi-monotone
if for any line l parallel to the xi-axis, the intersection R ∩ l is either empty
or a continuous segment. Further, we say that R is watershed-monotone with
respect to Γi(c) if (1) R is xi-monotone, and (2) for any line l orthogonal to
Γi(c), if the intersection R ∩ l 	= ∅, then R ∩ l intersects a voxel of R ∩ Γi(c).
(Intuitively, the intersection of R and Γi(c) is equal to the projection of R onto
Γi(c), and is like a “watershed” of R.) If for every i = 0, 1, . . . , d − 1, R is
watershed-monotone to a Γi(ci) for an integer 0 ≤ ci < N , then we say that R
is watershed-monotone. A region R ⊆ Γ is weakly watershed-monotone if R is
watershed-monotone to every axis in a set of d − 1 axes of Γ and is monotone
(but need not be watershed-monotone) to the remaining axis. Clearly, watershed-
monotone regions are a subclass of weakly watershed-monotone regions. Suppose
R is watershed-monotone with respect to some Γi(ci), for each i = 0, 1, . . . , d−1;
then it is easy to see that ∩d−1

i=0 Γi(ci) 	= ∅. A voxel in ∩d−1
i=0 Γi(ci) is called a kernel

voxel of R. Our second region class is called the watershed-monotone shells. For
any two watershed-monotone regions R1 and R2 such that R1 and R2 have a
common kernel voxel c and R2 ⊆ R1, the region R in Γ bounded between R1

and R2, i.e., R = R1 − R2, is a watershed-monotone shell.

Theorem 2. (1) The optimal weakly watershed-monotone region problem is
solvable in O(dn2 log n

d) time. (2) The optimal watershed-monotone shell prob-
lem is solvable in O(dn2 log n

d) time.

The LNS Problems in Discrete Geometry and Medical Image Segmentation 25

5 Algorithm for the Bipartite LNS (BLNS) Problem

In this section, we consider the layered net surface problem on a more general
ordered multi-column graph. Recall that any two adjacent columns of a properly
ordered multi-column graph are in proper order (Section 2). We now define the
reverse order on two adjacent columns Col(v) and Col(u) in a d-D multi-column
graph G = (V, E) generated by a (d − 1)-D net model B = (VB , EB): If for any
two vertices vk and vk+1 in Col(v), Bottom(I(vk, u)) ≥ Bottom(I(vk+1 , u)) and
Top(I(vk, u)) ≥ Top(I(vk+1, u)), and if the same holds for any two vertices uk

and uk+1 of Col(u) on Col(v), then we say that Col(u) and Col(v) are in reverse
order. If every two adjacent columns in G are in either proper order or reverse
order, then we call G a d-D ordered multi-column graph. Further, for two (L, U)-
separate nets N 1 and N 2 in G, if two adjacent columns Col(v) and Col(u) are
in reverse order, then L ≤ N 1(v) − N 2(v) ≤ U and L ≤ N 2(u) − N 1(u) ≤ U .
In this section, we assume that each vertex in G has only an on-surface cost.

We can prove that the LNS problem on a general d-D ordered multi-column
graph (d ≥ 3) is NP-hard, by reducing to it the minimum vertex cover problem
that is known to be NP-complete [4].

Next, we consider the LNS problem on a d-D ordered multi-column graph
G = (V, E) with a special net model B = (VB , EB), defined as follows. First,
remove from B all reverse edges; the remaining B is a set CC of connected
components with proper edges only. Then, contract each connected component
of CC into a single vertex. Finally, for each (removed) reverse edge (v, u) ∈ EB ,
say, v in C′ ∈ CC and u in C′′ ∈ CC (C′ = C′′ is possible), add an edge
between the contracted vertices of C′ and C′′. The resulting graph is called the
p-contracted graph of B. The bipartite LNS (BLNS) problem is defined on a
d-D ordered multi-column graph with a net model B whose p-contracted graph
is bipartite. Let n = |V |, mB = |EB|, and nB = |VB |.
Theorem 3. The general BLNS problem can be solved in O(l2n2 mB

nB
log(l·n·nB

mB
))

time, where l is the number of sought net surfaces.

6 Implementation and Experiments

To further examine the behavior and performance of our LNS algorithm, we
implemented it in standard C++ templates. After the implementation, we ex-
tensively experimented with 3-D synthetic and real medical image data, and
compared with a previously validated slice-by-slice 2-D segmentation approach
based on graph search techniques [14]. Our LNS program was tested on an AMD
Athlon MP 2000+ Dual CPU workstation running MS Windows XP.

The experiments showed that our LNS algorithm and software are computa-
tionally efficient and produce highly accurate and consistent segmentation re-
sults. The average execution time of our simultaneous 3-surface detection algo-
rithm on images of size 200× 200× 40 is 401.3 seconds. An accuracy assessment
on images of physical phantom tubes revealed that the overall signed errors for
the inner and outer diameters derived from the tube boundaries were (mean ±

26 X. Wu et al.

standard deviation) −0.36 ± 2.47% and −0.08 ± 1.35%, respectively. Our LNS
approach was tested on segmenting both the inner and outer airway wall surfaces
in CT images, in which outer wall surfaces are very difficult to detect due to their
blurred and discontinuous appearance and the presence of adjacent blood ves-
sels. The CT images had a nearly isotropic resolution of 0.7×0.7×0.6mm3. The
currently used 2-D dynamic programming method is unsuitable for the segmen-
tation of the outer airway wall. Our new approach produces good segmentation
results for both airway wall surfaces in a robust manner. Comparing to manual
tracing on 39 randomly selected slices, our LNS technique yielded signed border
positioning errors of −0.01±0.15mm and 0.01±0.17mm for the inner and outer
wall surfaces, respectively.

References

1. T. Asano, D.Z. Chen, N. Katoh, and T. Tokuyama, Efficient algorithms for
optimization-based image segmentation, Int. Journal of Computational Geometry
& Applications, 11(2)(2001), pp. 145-166.

2. D.Z. Chen, J. Chun, N. Katoh, and T. Tokuyama, Efficient algorithms for approxi-
mating a multi-dimensional voxel terrain by a unimodal terrain, Proc. 10th Annual
Int. Computing and Combinatorics Conf., Jeju Island, Korea, 2004, pp. 238-248.

3. R.J. Frank, D.D. McPherson, K.B. Chandran, and E.L. Dove, Optimal surface
detection in intravascular ultrasound using multi-dimensional graph search, Com-
puters in Cardiology, IEEE, Los Alamitos, 1996, pp. 45-48.

4. M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the The-
ory of NP-Completeness, Freeman, San Francisco, CA, 1979.

5. A.V. Goldberg and R.E. Tarjan, A new approach to the maximum-flow problem,
J. Assoc. Comput. Mach., 35(1988), pp. 921-940.

6. X. Huang, D. Metaxas, and T. Chen, MetaMorphs: Deformable shape and tex-
ture models, Proc. IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR), vol. I, June 2004, pp. 496-503.

7. K. Li, X. Wu, D.Z. Chen, and M. Sonka, Efficient optimal surface detection: Theory,
implementation and experimental validation, Proc. SPIE’s Int. Symp. on Medical
Imaging: Imaging Processing, Vol. 5370, San Diego, CA, 2004, pp. 620-627.

8. K. Li, X. Wu, D.Z. Chen, and M. Sonka, Optimal Surface Segmentation in Vol-
umetric Images — A Graph-Theoretic Approach, accepted to IEEE Trans. on
Pattern Analysis and Machine Intelligence, 2005.

9. S. Osher and N. Paragios, Eds., Geometric Level Set Methods in Imaging, Vision
and Graphics. Springer, 2003.

10. J.C. Picard, Maximal closure of a graph and applications to combinatorial prob-
lems, Management Science, 22(1976), 1268-1272.

11. M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine
Vision, 2nd edition, Brooks/Cole Publishing Company, Pacific Grove, CA, 1999.

12. D.R. Thedens, D.J. Skorton, and S.R. Fleagle, Methods of graph searching for bor-
der detection in image sequences with applications to cardiac magnetic resonance
imaging, IEEE Trans. on Medical Imaging, 14(1)(1995), pp. 42-55.

13. X. Wu and D.Z. Chen, Optimal net surface problems with applications, Proc. 29th
International Colloquium on Automata, Languages and Programming (ICALP),
2002, pp. 1029-1042.

The LNS Problems in Discrete Geometry and Medical Image Segmentation 27

14. F. Yang, G. Holzapfel, C. Schulze-Bauer, R. Stollberger, D. Thedens, L. Bolinger,
A. Stolpen, and M. Sonka, Segmentation of wall and plaque in in-vitro vascular MR
image, International Journal on Cardiovascular Imaging, 19(5)(2003), pp. 419-428.

15. X. Zeng, L.H. Staib, R.T. Schultz, and J.S. Duncan, Segmentation and measure-
ment of the cortex from 3-D MR images using coupled surfaces propagation, IEEE
Trans. Med. Imag., 18(1999), pp. 927-937.

16. S. Zhu and A. Yuille, Region competition: Unifying snakes, region growing, and
Bayes/MDL for multiband images segmentation, IEEE Trans. on Pattern Analysis
and Machine Intelligence, 18(1996), pp. 884-900.

	Introduction
	The Layered Net Surface (LNS) Problems
	Algorithm for the Layered Net Surface (LNS) Problem
	The Self-closure Property of the LNS Problem
	The Graph Transformation Scheme
	Computing Optimal Layered Net Surfaces for the LNS Problem

	Algorithms for the Net Surface Volume (NSV) Problems
	Algorithm for the Bipartite LNS (BLNS) Problem
	Implementation and Experiments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

