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Abstract. Let S be a set of points in the plane. What is the minimum
possible dilation of all plane graphs that contain S? Even for a set S as
simple as five points evenly placed on the circle, this question seems hard
to answer; it is not even clear if there exists a lower bound > 1. In this
paper we provide the first upper and lower bounds for the embedding
problem.

1. Each finite point set can be embedded into the vertex set of a finite
triangulation of dilation ≤ 1.1247.

2. Each embedding of a closed convex curve has dilation ≥ 1.00157.
3. Let P be the plane graph that results from intersecting n infinite

families of equidistant, parallel lines in general position. Then the
vertex set of P has dilation ≥ 2/

√
3 ≈ 1.1547.

Keywords: Dilation, geometric network, lower bound, plane graph,
spanning ratio, stretch factor.

1 Introduction

Transportation networks like railway systems can be modeled by geometric
graphs: stations correspond to vertices, and the tracks between stations are rep-
resented by arcs. One measure of the performance of such a network P is given
by its vertex-to-vertex dilation. For any two vertices, p and q, let π(p, q) be a
shortest path from p to q in P . Then,

δP (p, q) :=
|π(p, q)|
|pq|

measures the detour one encounters in using P , in order to get from p to q,
instead of traveling straight; here |.| denotes the Euclidean length. The dilation
of P is given by

δ(P ) := sup
p,q vertices of P

δP (p, q).
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1.1 Problem Statement

Suppose we are given a set of stations, and we want to build a network connecting
them whose dilation is as low as possible. In this work we are assuming that
bridges cannot be used. That is, where two or more tracks cross each other, a
station is required, that must also be considered in evaluating the dilation of the
network.

More precisely, we are given a set S of points in the plane, and we are inter-
ested in plane graphs P = (V, E) whose vertex set V contains S, such that the
dilation δ(P ) is as small as possible. At this point we are not concerned with
the algorithmic cost of computing P , nor with its building cost in terms of the
total length of all edges in E, or the size of V —only the dilation of P matters.
However, to rule out degenerate solutions like the complete graph over all points
in the real plane, we require that the vertex set V of P contains only a finite
number of vertices in addition to S. This leads to the following definition.

Definition 1. Let S be a set of points in the plane. Then the dilation of S is
given by

∆(S) = inf { δ(P ); P = (V, E) plane graph & S ⊆ V & V \ S finite } .

The challenge is in computing the dilation of a given point set. Even for a
set as simple as S5, the vertices of a regular 5-gon, ∆(S5) is not known. It is
not even clear if ∆(S5) > 1 holds.1 Figure 1 depicts some attempts to find good
embeddings for S5.

(i) (ii) (iii)

Fig. 1. Embedding five points in regular position into the vertex set of a plane graph
of low dilation. (i) Constructing the complete graph results in a new 5-gon. (ii) A star
yields dilation ≈ 1.05146. (iii) Using a 4-gon around an off-center point gives dilation
≈ 1.02046, as was shown by Lorenz [17].

1 While S5 is not contained in the vertex set of any plane graph of dilation 1, according
to the characterization of dilation-free graphs given by D. Eppstein [12], there could
be a sequence of plane graphs, each containing S5, whose dilation shrinks towards 1.
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1.2 Related Work

In the context of spanners, the dilation is often called the stretch factor or the
spanning ratio of a graph P ; see Eppstein’s handbook chapter [11], Arikati et
al. [3], or the forthcoming monograph [18] by Narasimhan and Smid. However,
spanners are usually allowed to contain edge crossings, unlike the plane graphs
considered here.

Substantial work has been done on proving upper bounds to the dilation of
certain plane graphs. For example, Dobkin et al. [5] and Keil and Gutwin [16]
have shown that the Delaunay triangulation of a finite point set has a dilation
bounded from above by a small constant. The best upper bound known is 2.42,
but a better bound of π/2 is conjectured to hold. Moreover, there are structural
properties of plane graphs, like the good polygon and diamond properties, which
imply that the dilation is bounded from above, see Das and Joseph [4]. This
result implies that the minimum weight and the greedy triangulations also have
a dilation bounded by a constant. Our approach differs from this work, in that
the use of extra vertices is allowed. This will lead to an upper bound considerably
smaller than π/2.

Quite recently, a related measure called geometric dilation has been intro-
duced, see [10,8,1,6,9,7], where all points of the graph, vertices and interior edge
points alike, are considered. The small difference in definition leads to rather dif-
ferent results which do not apply here. For example, plane graphs of minimum
geometric dilation tend to have curved edges, whereas for the vertex-to-vertex
dilation, straight edges work best.

1.3 New Results

In this paper we provide the first lower and upper bounds to the dilation of point
sets, as defined in Definition 1. First, in Section 2, we prove a structural property
similar in spirit to the good polygon and diamond properties mentioned above.
If a plane graph P contains a face R whose diameter is a weak local maximum,
so that each face in a certain neighborhood of R has a diameter at most a few
percents larger than R, then the dilation of P can be bounded away from 1. We
will derive the following consequence. If C denotes a closed convex curve then
∆(C) > 1.00157 holds for the set of points on C, i.e., each point on curve C is
considered a degree 2 vertex; see Figure 2 (i). Another consequence: If P is a
plane graph whose faces have diameters bounded from above by some constant
then δ(P ) > 1.00156 holds.

When looking for plane graphs of low dilation that can accommodate a set of
given points, grids come to mind. Even the simple quadratic grid consisting of
equidistant vertical and horizontal lines has a vertex-to-vertex dilation of only√

2 ≈ 1.414, and we can force its vertex set to contain any finite number of
points with rational coordinates, by choosing the cell size appropriately. How to
accommodate points with real coordinates is discussed in the full paper. If we
use three families of lines, as in the tiling of the plane by equilateral triangles, a
smaller dilation of only 2/

√
3 ≈ 1.1547 can be achieved; see Figure 3.
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(i) (ii) (iii)

Fig. 2. Results. (i) Each embedding of a closed convex curve has dilation > 1.00157.
(ii) Each such arrangement has dilation > 1.1547. (iii) Each finite point set has dilation
< 1.1247.

An interesting question is if the dilation can be decreased even further by using
lines of more than three different slopes. The answer is somewhat surprising,
because parallel highways, a mile apart, for each orientation 2πi/n, would in fact
provide very low dilation to long distance traffic. But there are always vertices
relatively close to each other, for which the dilation is at least 2/

√
3 as we shall

prove in Section 3.
Yet in Section 4 we introduce a way of getting below the 2/

√
3 bound offered

by the equitriangular tiling depicted in Figure 3. One can modify this tiling by
replacing each vertex with a triangle, and by connecting neighboring triangles
as shown in Figure 2 (iii). The resulting graph has a dilation less than 1.1247.
We can scale, and slightly deform this graph, so that its vertex set contains any
given finite set of points; then we cut off the unbounded part which does not
host any point. These operations increase the dilation by some factor that can
be made arbitrarily small. Thus we obtain that ∆(S) < 1.1247 holds, for every
finite point set S.

Finally, in Section 5, we address some of the questions left open and discuss
future work.

2 A Lower Bound

First, we introduce some notations. Let P be a plane graph, and let R be a face
of P with boundary ∂(R). As usual, let

diam(R) = sup{ |ef | ; e, f vertices of R}
be the diameter of R; unbounded faces have infinite diameter. Now let R be a
bounded face of P . For any positive number r, the r-neighborhood of face R is
defined as the set of all faces of P that have non-empty intersection with a disk
of radius r centered at the midpoint of a segment ef , where e, f are vertices on
∂(R) satisfying |ef | = diam(R); see Figure 4. If there are more than one pair
e, f of vertices of this kind we break ties arbitrarily. One should observe that the
r-neighborhood of a bounded face may include unbounded faces of P .
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e

f

d< cd
R

ρd

Fig. 3. The tiling by equilateral tri-
angles is of dilation 2/

√
3 ≈ 1.1547

Fig. 4. No face intersected by the disk is
of diameter > cd

The results of this section are based on the following lemma.

Lemma 1. For each parameter c ∈ [1, 1.5) there exist numbers ρ > 1 and δ > 1
such that the following holds. Suppose that the plane graph P contains a bounded
face R of diameter d, such that all faces in the ρd-neighborhood of R have diam-
eter less than cd.2 Then the dilation of P is at least δ.

e
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Fig. 5. Constructing a lower bound

Proof. We may assume that face R is of diameter d = 1. Also, we assume that
ef is vertical and that its midpoint equals the origin; see Figure 5. As no vertex
of ∂(R) has a distance > 1 from e or from f , face R is completely contained in
the lune spanned by e and f .3

Now we place two axis-parallel boxes of width c and height a symmetrically
on the X-axis, at a distance of v + κ to either side of the origin; these boxes
are denoted by G in Figure 5. The parameters a, v, and κ will be chosen later.
2 This implies that only bounded faces can be included in the ρd-neighborhood of R.
3 The lune spanned by e and f equals the intersection of the two circles of radius |ef |

centered at e and f , respectively.



10 A. Ebbers-Baumann et al.

Suppose that all faces of P that intersect the disk of radius ρ := v + c + κ about
the origin have a diameter less than c.

Now, let us consider such a box, G. As its width equals c, there cannot
exist two points on the left and on the right vertical side of G, respectively,
that are contained in the same face R′ of the graph, because this would imply
diam(R′) ≥ c. Thus, the vertical sides of G must be separated by P , i. e., there
must be a sequence of edges, or a single edge, cutting through the upper and
lower horizontal sides of G. In the first case, box G must contain a vertex of P ,
as shown on the right hand side in the figure. In the second case, the edge that
crosses G top-down must itself be of length < c, because it belongs to a face
intersected by the disk of radius ρ. We enclose G in the smallest axis-parallel
box B which contains all line segments of length c that cross both horizontal
sides of G. The outer box B is of height 2c− a, its width exceeds the width c of
G by κ = κ(a, c) on either side, to include all slanted segments. The analysis of
κ(a, c) can be found in the full paper. By construction, both the upper and the
lower half of B must contain a vertex of P in the second case, as shown on the
left hand side of Figure 5.

Now we discuss how to choose the parameters v and a such as to guarantee a
dilation of δ > 1 in either possible case. First, we let v >

√
3/2 so that the boxes

B are disjoint from the lune; consequently, every shortest path in P connecting
vertices in the two boxes B has to go around the face R.

Case 1. Each of the boxes G contains a vertex of P . If a is less than |ef | = 1
then these vertices cause a dilation of at leas t a certain value δ > 1 which
depends only on a, c, v and κ.

Case 2. Each of the boxes B contains two vertices of P , one above, and one
below the X-axis. Let p and r denote vertices in the upper part of the left and
in the lower part of the right box B, respectively. We assume w. l. o. g. that the
shortest path in P connecting them runs below vertex f , so that its length is
at least |pf |+ |fr|. If we make sure that, even at the extreme position depicted
in Figure 5, vertex r lies above the line L through p and f , a dilation δ > 1 is
guaranteed. The equation of L is given by

Y = − 1
2(v + c + 2κ)

X − 1
2
.

Thus, we must ensure that

−(c − a

2
) > − 1

2(v + c + 2κ)
v − 1

2

or, equivalently,

a > 2c − 1 − v

v + c + 2κ

holds. Together with the condition 1 > a from Case 1 we obtain
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3 − 2c > a + 2 − 2c >
c + 2κ

v + c + 2κ
> 0. (*)

Case 3. There exist at least one vertex of P in the left box G, and at least
two vertices in the right box B, above and below the X-axis. Since the vertex
in the box G must reside in either the upper or the lower part of the enclosing
box B, Case 2 applies.

Clearly, the above conditions can be fulfilled for each given c ∈ [1, 1.5). First,
we pick a ∈ (2c−2, 1), which guarantees 3−2c > a+2−2c > 0. Then we choose
v >

√
3/2 so large that the second inequality in condition (*) is satisfied. This

proves Lemma 1.

It is quite straightforward to derive quantitative results from the above con-
struction, by adjusting the values of the parameters a and v. The following
numerical values for ρ and δ have been obtained using Maple.

c 1.0 1.001 1.1 1.2 1.3 1.4
δ 1.00157 1.00156 1.00043 1.000092 1.000012 1.00000056
ρ 1.923 1.925 2.46 3.9 6.9 16.5

As a first consequence, we get the following result.

Theorem 1. Let P be a infinite graph whose faces cover the whole plane and
have a diameter bounded from above by some constant. Then δ(P ) > 1.00156
holds for its dilation.

Proof. By assumption, d∗ := sup{diam(R) : R face of P} is finite. For each
ε > 0 there exists a face R of P such that diam(R) > (1 − ε)d∗ holds. By the
assumption on graph P , all faces R′ of P , in particular those in any neighborhood
of R, satisfy

diam(R′) ≤ d∗ <
1

1 − ε
diam(R) ≤ 1.001 diam(R),

if ε is small enough. Thus, graph P has dilation at least 1.00156.

The second consequence of Lemma 1 is a lower bound to the ∆ function.

Theorem 2. Let C denote the set of points on a closed convex curve. Then
∆(C) > 1.00157 holds for its dilation.

Proof. (Sketch) If curve C intersects or encircles a box G, we can argue as before.
If C passes between G and ef it becomes even easier to provide two points of
high dilation.

For the circle one can find an embedding of dilation (1 + ε)/ sin 1 ≈ 1.188
by placing a single vertex at the center and adding many equidistant radial
segments.
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3 A Lower Bound for Line Arrangements

A lower bound much stronger than 1.00157 can be shown for graphs that result
from intersecting n families Fi of infinitely many equidistant parallel lines. Each
family is defined by three parameters, its orientation αi, the distance wi in X-
direction between consecutive lines, and the offset distance ei from the origin to
the first line in positive X-direction. We say that such families are in general
position if the numbers w−1

i are linearly independent over the rationals4.

Theorem 3. Given n families Fi, 2 ≤ i ≤ n, each consisting of infinitely many
equidistant parallel lines. Suppose that these families are in general position.
Then their intersection graph P is of dilation at least 2/

√
3.

One should observe that this lower bound is attained by the equitriangular
grid shown in Figure 3.

Proof. For n ≤ 3 the claim can be proven quite easily without assuming general
position, as shown in the full paper.

Now let n > 3. We shall prove the existence of a face R of P that represents
so large a barrier between two vertices p and p′ of P that even the Euclidean
shortest path from p to p′ around R is of dilation at least 2/

√
3. In fact, we shall

provide such a face and two vertices that are symmetric about the same center
point, which greatly helps with our analysis; see Figure 6. To this end we use the
general position assumption, and apply Kronecker’s theorem [2] on simultaneous
approximation in its following form.

Theorem 4. (Kronecker) Let L be a line in Rn that passes through the origin
and through some point (y1, . . . , yn) whose coordinates are linearly independent
over the rationals. For each point t ∈ Rn, and for each ε > 0, there is an integer
translate t + m, m ∈ Zn, of t whose ε−neighborhood is visited by L.

In other words, line L is dense on the torus Rn/Zn. Proofs can be found in,
e. g., Apostol [2] or Hlawka [15].

Since the families of lines are in general position, the real numbers yi :=
w−1

i , 1 ≤ i ≤ n, do not satisfy a linear equation with rational coefficients. Kro-
necker’s theorem, applied to ti := ei/wi + 1/2 and ε > 0 yields the existence of
integers mi and of a real number x satisfying

| ei

wi
+

1
2

+ mi − x
1
wi

| < ε

that is,

|ei +
1
2

wi + mi wi − x| < ε wi.

Consequently, the point (x, 0) lies, for each family Fi, halfway between two neigh-
boring lines, so that it is center of symmetry for some face R in P—up to an
error that can be made arbitrarily small since the numbers wi are fixed.
4 This means, if

�n
i=1 ai w−1

i = 0 holds for rational coefficients ai then each ai must
be zero.
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From now on, we assume that R is symmetric about the origin, and that its
longest diagonal, d, is vertical and of length 2. Let us assume that the dilation
of graph P is less than 2/

√
3. We shall derive a contradiction by proving that

there exist two families of lines that contribute to the boundary of R and have
symmetric intersection vertices p, p′ that cause a dilation > 2/

√
3 in the presence

of the barrier R. Since R is symmetric, it is sufficient to provide one such vertex
p satisfying

|pa| + |pb|
2|p| ≥ 2/

√
3

where a and b are the endpoints of diagonal d, and |p| = |p0| denotes the distance
from p to the origin, as shown in Figure 6.

To this end, consider the locus E of all points where equality holds in the
above inequality, see Figure 7. E satisfies the quartic equation (X2 +Y 2− 3

2 )2 =
9
4 (1−Y 2). We want to show that the right part of its interior—referred to as an
ear, due to its shape—contains a vertex p of P .

R

p′

p

d

0

a

b

K L(e)

a = (0, 1)

b = (0,−1)

0

E

α

R

s

t

v

p

p′ d

L(e)

earwidth(e)

right ear

λ

Fig. 6. A symmetric face
acting as barrier

Fig. 7. The locus E of all points that cause dilation
2/

√
3 in the presence of line segment ab. The halfline

L(e) extends the edge e = bv to the right.

Since d is the longest diagonal of the symmetric face R, the vertices of R are
contained in the circle spanned by d. On the other hand, R itself is of dilation
< 2/

√
3, by assumption. Hence, the vertices of R must be outside of the locus

curve. This leaves only the small caps at a, b for the remaining vertices of R, and
∂(R) must contain two long edges.

First, assume that R is a parallelogram, as shown in Figure 7. Its shape is de-
termined by the position of its lower right vertex v in the bottom cap. Consider
the edge e from vertex b to v. Its extension beyond v, L(e), intersects the right ear
in a segment of length earwidth(e). In Figure 7 we have earwidth(e) = |st|, while
the length of the intersection of L(e) with the lower cap equals |bs|. The ratio
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|st|/|bs| takes on its minimum value 3.11566 . . . > 1 at the angle α ≈ 9.74◦, when
L(e) hits the intersection point, λ, of the locus curve with the circle. Because of

earwidth(e) > 3.11|bs| ≥ 3.11|bv| > |bv|

the segment of L(e) passing through the ear must contain a vertex p of the two
line families bounding R. This proves Theorem 3 in case face R is a parallelogram.

It is interesting to observe that in the limiting case α = 0, when R degenerates
into its diagonal d, the largest possible dilation 2/

√
3 is only attainable by picking

p as the bottommost point of the ear. This shows why these arguments would
not work for any lower bound larger than 2/

√
3.

Now let R be a general symmetric convex polygon. We may assume that its
two long edges have non-positive slope. Let K denote the convex boundary chain
of R that starts at vertex b and leads to the right until it hits the rightmost long
edge of R. In this situation the following holds.

Lemma 2. There exists an edge e in chain K such that the line L(e) passing
through e has the following property. The intersection of L(e) with the the right
ear of the locus curve is at least twice as long as the vertical projection of chain
K onto L(e).

The proof of Lemma 2 requires some technical effort; we skip it due to space
limitations. Consider Figure 8. Let cut(e) denote the length of the segment of
L(e) that is cut out by the extensions of the long edges of face R, and let projK(e)
be the length of the vertical projection of chain K onto L(e). By translating L(e)
to the endpoint of K, we can see cut(e) ≤ 2 projK(e), so Lemma 2 implies

cut(e) ≤ 2 projK(e) ≤ earwidth(e).

This guarantees the existence of a vertex of P in the interior of the locus curve
and completes the proof of Theorem 3 in the general case.

4 An Upper Bound to the Dilation of Finite Point Sets

First, we show how to modify the equitriangular grid, H , displayed in Figure 3,
in order to decrease its dilation. The construction is shown in Figure 9.

We replace each vertex v of H with an equilateral triangle T that has one
vertex on each of the three lines passing through v in H . The distance, a, between
the vertices and the center v of T is a parameter of our construction. Next, we
connect by an edge each vertex of T to the two visible vertices of its neighboring
triangle T ′. Afterwards, all vertices and edges of the old graph H are removed.
Let HA = HA(a) denote the resulting graph.

Theorem 5. Within the family HA(a), the minimum dilation of 1.1246 . . . is
attained for a ≈ 0.2486.
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projK(e)

cut(e)
e

earwidth(e)

R

K

L(e)
√

3γ

γ

Fig. 8. Vertically projecting the convex chain K onto the
line L(e). The intersection of L(e) with the right ear of
the locus curve is of length earwidth(e).

Fig. 9. The new graph HA

of dilation ≈ 1.1246

Proving this result requires considerable technical effort. For example, it is in
general not true that the dilation of an unbounded graph is attained by vertices
that are close to each other, as a rectangular grid of irrational aspect ratio shows.
After introducing global and local coordinates for the vertices of HA, one has to
distinguish 45 shortest path types. Closer inspection leads to four functions of
the integer coordinates i, j, whose maximum must be minimized by a suitable
choice of parameter a.

A vertex pair causing maximum dilation is shown in Figure 9, together with
two shortest paths connecting the two vertices. We obtain the following conse-
quence of Theorem 5.

Theorem 6. Each finite point set S is of dilation ∆(S) < 1.1247.

The proof uses a technique introduced in [8] which is also based on the approx-
imation of reals by rationals. It allows us to scale HA, and distort it carefully,
without affecting the dilation by more than a factor arbitrary close to 1, so that
the points of S can be accommodated in a finite part of the graph that contains,
for any two vertices, the shortest path connecting them in the original graph HA.

5 Conclusion

We have introduced the notion of the dilation of a set of points, and proven a
non-trivial lower bound to the dilation of the points on a closed curve. The big
challenge is in proving a similar lower bound for a finite set of points like, e.g.,
S5. As to the arrangements of lines, we conjecture that our lower bound holds
without the assumption of general position. Another interesting question is the
following. What is the lowest possible dilation of a graph whose faces cover the
whole plane and have bounded diameter? Our results place this value into the
interval (1.00157, 1.1247). Any progress on the upper bound might lead to an
improvement of Theorem 6.
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