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Abstract. We study how to label the vertices of a tree in such a way that we can
decide the distance of two vertices in the tree given only their labels. For trees,
Gavoille et al. [7] proved that for any such distance labelling scheme, the maxi-
mum label length is at least 1

8 log2 n−O(log n) bits. They also gave a separator-
based labelling scheme that has the optimal label length Θ(log n · log(Hn(T ))),
where Hn(T ) is the height of the tree. In this paper, we present two new dis-
tance labelling schemes that not only achieve the optimal label length Θ(log n ·
log(Hn(T ))), but also have a much smaller expected label length under certain
tree distributions. With these new schemes, we also can efficiently find the least
common ancestor of any two vertices based on their labels only.

1 Introduction

For commonly used graph representations such as adjacency matrices and lists [15],
one cannot determine whether or not two vertices are adjacent in the graph only based
on the names of the two vertices. In contrast, Breuer and Folkman [5, 6] proposed to
label the vertices in such a way that there exists a polynomial-time algorithm that can
determine the adjacency of two vertices given only their labels. Such a labelling scheme
is generally known as an adjacency labelling scheme. If the length of a label is allowed
to be arbitrarily large, then one can encode any desired information. However, for a
labelling scheme to be useful, the label length should be relatively short (say, polylog-
arithmic in the size of the graph) and yet allows one to decode the adjacency efficiently
(say, time polynomial in the input label lengths). Breuer and Folkman [5, 6] proposed to
use Hamming distances to label general graph. An (m, t)-labelling scheme labels each
vertex with an m-bit label such that two vertices are adjacent if and only if their labels
are at Hamming distance t or less of each other. Breuer and Folkman [6] showed that
every n-vertex graph has a (2n∆, 4∆ − 4)-labelling scheme, where ∆ is the maximum
vertex degree in the graph. Kannan et al. [14] gave adjacency labelling schemes with
O(log n)-bit labels for several families of graphs, including graphs of bounded degrees,
graphs of bounded genuses, trees, and various intersection-based graphs such as inter-
nal graphs and c-decomposable graphs. Alstrup and Rauhe [4] improved the bound to
k log n + O(log∗ n) for the family Ak of graphs with arboricity k and n vertices.
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It is useful and possible to design a more general labelling scheme that also contains
the distance information. A distance labelling scheme permits one to determine the
distance between two vertices efficiently based only on their labels [7, 12]. Peleg [12]
gave an O(log2 n)-bit distance labelling scheme for general trees and c-decomposable
graphs. He showed [12] that for a family of n-vertices graphs with Ω(exp(n1+ε)) non-
isomorphic graphs, any distance labelling scheme must use labels with a total length
Ω(n1+ε). Gavoille et al. [7] studied the bounds for the label length of the distance la-
belling schemes for several graph families. For general graphs, they gave a tight bound
of Θ(n) bits; for planar graphs, an upper bound of O(

√
n log n) and a lower bound of

Ω(n1/3); for bounded-degree graphs, a lower bound of Ω(
√

n); and for trees, a tight
bound of Θ(log n · log(Hn(T ))), where Hn(T ) is the height of the tree. Alstrup and
Rauhe [3] built the lower-bounds of length of the label for supporting ancestor, sibling
and connectivity. Recently, several distance labelling schemes considering bounded dis-
tance and weighted distance have been devised and surveyed by Gavoille and Peleg
[10]. Alstrup et al. [2] designed a labelling scheme for a rooted tree to compute in
constant time the least common ancestor from the labels of any two vertices. The la-
bels assigned are of size O(log n) bits for a tree of n vertices. Alstrup et al. [1] studied
labelling schemes for trees, supporting various relationships (ancestor, sibling, and con-
nectivity) between vertices at small distance.

In this paper, we study distance labelling schemes for unweighted trees. For trees,
Gavoille et al. [7] proved that for any distance labelling scheme, the label length is
at least 1

8 log2 n − O(log n); they also gave a separator-based labelling scheme that
has a label length O(log2 n). Gavoille [9] improved the label scheme to O(log n ·
log(Hn(T ))). Here, we present two new distance labelling schemes- backbone-based
scheme and rake-based scheme, that not only achieve the asymptotically optimal label
length O(log n · log(Hn(T ))) but also have a much smaller expected label length under
certain tree distributions. With these new schemes, we can also find the least common
ancestor of any two vertices based on their labels only. Table 1 summarizes our main
results, where k is the maximum vertex degree, E(Hn) is the expected height of a tree.

2 Preliminaries

Unless explicitly stated otherwise, a tree is always rooted at vertex r. The relative posi-
tions of the children are significant. The size of a tree T , denoted as |T |, is the number
of the vertices in T . Given two vertices u and v in a tree T , the unique simple path be-
tween u and v in T is denoted as P(u, v, T ), and the number of edges on P(u, v, T ) is
the distance between u and v, denoted as dT (u, v). The level of a vertex u is dT (u, r).
The height of a tree T with n vertices, denoted as Hn(T ), is maxu∈T dT (u, r). A vertex
w is an ancestor of a vertex u if it is on the path P(u, r, T ); the vertex u is then called a
descendant of w. A vertex w is the least common ancestor of two vertices u, v if w has
the largest level among all common ancestors of u and v. For a tree T and a vertex u,
let T u denote the subtree of T formed by u and all its descendants in T .

A vertex labelling for a tree T is a function L that assigns an integer L(u, T ) to
each vertex in the tree T . A distance calculator is a function f that computes the dis-
tance of two vertices u,v in tree T given only their labels L(u, T ) and L(v, T ) but
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Table 1. Summary of the main results of this paper

tree labelling schemes separator-based backbone-based rake-based
worst case Θ(log n · log(Hn(T ))) Θ(log n · log(Hn(T ))) Θ(log n · log(Hn(T )))

deterministic analysis Theorem 5 Theorem 2 Theorem 4

upper
O(log n · log log n) O(log n· log log n) O(log n· log log log n)

binary search Theorem 7 Theorem 7 Theorem 10
tree Distribution

lower
Ω(log n · log log n) Ω( log n·log log n

log log log n
) Ω(log n)

Theorem 9 Theorem 8 Lemma 1

upper
O(log2 n) O(log2 n) O(log2 n)

uniform tree Theorem 5 Theorem 2 Theorem 4

distribution
lower

Ω(log2 n) Ω( log2 n
log log n

) Ω( log2 n
log log n

)
Theorem 13 Theorem 12 Theorem 11

upper
O(log n · log log n) O(log n· log log n) O(log n· log log n)

distributions with Theorem 14 Theorem 14 Theorem 14
(Hn) = O(logε n)

lower
Ω( log n·log log n

log k
) Ω(log n) Ω(log n)

Theorem 6 Lemma 1 Lemma 1

Upper
O(log2 n) O(log2 n) O(log2 n)

distributions with Theorem 5 Theorem 2 Theorem 4
(Hn) = Ω(nε)

lower
Ω(log2 n) Ω(log n) Ω(log n)
Lemma 1 Lemma 1 Lemma 1

not T . A distance labelling scheme is a two-component tuple L = 〈L, f〉 such that
f(L(u, T ), L(v, T )) = dT (u, v) for any pair of vertices u, v ∈ T . The length of a
labelling scheme L for a tree T with n vertices, denoted as �n(L, T ), is defined as
�n(L, T ) = maxu∈T |L(u, T )|, where |x| is the number of bits in the integer x. The
length �n(L) of a labelling scheme L is defined as �n(L) = maxT �n(L, T ). All loga-
rithmic functions ln in this paper are in base 2. It is easy to show that

Lemma 1. For any tree labelling scheme L and tree distribution, E(�n(L)) ≥ log n.

3 Three Tree Labelling Schemes

In this section, we first present two new tree labelling schemes, namely, the backbone-
based labelling scheme and the rake-based labelling scheme. We then review the
separator-based labelling scheme and discuss the worst case performances of these three
schemes.

3.1 Backbone-Based Labelling

Given a tree T with root r, a backbone B(T ) is a path from the root r to leaf formed
recursively as follows. If r has no child, then the backbone is r itself. If r has one
child, say h1, then the backbone is the path of r concatenated by B(T h1), i.e., B(T ) =
r⊕B(T h1). If r has more than one child, then the backbone is the path of r concatenated
by B(T h1) where h1 is the child of r such that |T h1 | is maximum among all r’s children,
i.e., B(T ) = r ⊕ B(T h1). Here P1 ⊕ P2 stands for the concatenatation of two paths.

Given a forest F , let B(F ) =
⋃

T∈F B(T ). Define a d-backbone operation as first re-
moving the edges in B(F ) from F and then removing the resulting isolated vertices in F
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Algorithm 1: Backbone-Based Vertex Labelling
1: for each internal vertex vi do
2: Assign a unique positive label µ(vi, vj) between 1 and Wi, where Wi is the number of

vi’s child, for every vertex vj that is vi’s child.
3: for i = 0 to CB(T ) − 1 do
4: for each tree Tj in forest D(i)(T ) do
5: Let vj be Tj’s root and B(Tj) be its backbone, and v� be vj’s parent if it exists.
6: for every vertex vk ∈ B(Tj) do
7: Set LB(vk, T ) = LB(v�, T ) ◦ 〈dT (vk, vj), µ(v�, vj)〉 if v� exists and set

LB(vk, T ) = 〈dT (vk, vj), 0〉 otherwise. Here, the ◦ separates the label into chunks.

Algorithm 2: Backbone-Based Distance Decoder
1: Without loss of generality, we assume LB(u, T ) = L0(u) ◦ · · · ◦ La(u) and LB(v, T ) =

L0(v) ◦ · · · ◦ Lb(v) with a ≥ b. Here, Li(u) is the i + 1 part of the label LB(u, T ).
2: Assume Lc(u) = 〈x, y〉. For notational simplicity, we let Lc(u)[1] = x and Lc(u)[2] = y.
3: Set dis = 0 and find the smallest index c such that Lc(u) �= Lc(v) if such c exists.
4: if c does not exist then
5: dis = dis + Li(v)[1] for i = b + 1 to a.
6: else
7: dis = dis + Li(v)[1] for i = c + 1 to a and dis = dis + Li(u)[1] for i = c + 1 to b.
8: Set dis = dis + Lc(u)[1] + Lc(v)[1] if Lc(u)[2] �= Lc(v)[2] and set dis = dis +

|Lc(u)[1] − Lc(v)[1]| otherwise.
9: Output fB(LB(u, T ), LB(v, T )) = dis.

Fig. 1. The Backbone-Based Distance Labelling Scheme

from F to produce a forest D(F ). For simplicity, we denote D(k)(F ) = D(D(k−1)(F )),
i.e., D(k)(F ) is the forest after k d-backbone operations on the original forest F . Let
CB(T ) denote the number of d-backbone operations needed to separate a tree T into
isolated vertices. We have the following theorem (proof omitted):

Theorem 1. For a tree T of n vertices, CB(T ) ≤ log n.

Figure 1 presents our backbone-based labelling scheme LB = 〈LB, fB〉. Given a
vertex u, its label LB(u, T ) is a series of two element tuples separated by the “ ◦ ”
symbol. We call each two element tuple a chunk of the label. Let LB(u, T ) = L0(u) ◦
. . . ◦ Li(u) ◦ . . . La(u), where Li(u) is the ith chunk of the label. Let c be the smallest
index such that Lc(u) 	= Lc(v) if it exists. Without loss of generality, assume that
Lc(u) < Lc(v). A key observation is that the vertex with label L0(u) ◦ · · · ◦ Lc(u) is
the least common ancestor of vertices with label LB(u, T ) and LB(v, T ).

In Algorithm 1, for every vertex vi, when we assign child-label to vj who is vi’s
child, we assume the label length is log Wi, where Wi is the number of children of
vi. However, given Wi children, when you assign a label �, the label length is log �
instead of log Wi. With this observation [9], we can reduce the total tree label length
by applying the following reshuffle process. First, we apply Algorithm 1 to obtain a
label LB(u, T ) for every vertex u. Initially, we mark all the internal vertices as “un-



140 M.-Y. Kao, X.-Y. Li, and W. Wang

processed” and all leaf vertices as “processed”. While there is an “unprocessed” ver-
tex , we pick one vertex v such that all of its children are processed. Without loss of
generality, we assume that vi1 , vi2 , . . . , vik

are v’s children who are not on the same
backbone of v. For any vertex w in tree T vij , the label of LB(w, T ) should contain
LB(v, T ) as a common prefix and the second element of (a + 1)th chunk is also the
same. Assume that LB(w, T ) = LB(v, T ) ◦ La+1(w) ◦ La+2(w) ◦ . . . ◦ Lc(w). Define
κ(w) =

∑c
i=a+2 log(Li(w)[2]), and γ(vij ) = max

w∈T
vij κ(w). We sort the vertices

vi1 , vi2 , . . . , vik
according to the size of their subtrees T vij in an ascending order, and

let σ be the index of the sorted list, i.e., |T viσ(j) | is the jth largest. Then we reassign
La+1(v)[2] = j to each vertex v if v is in the tree T

viσ(j) . Observe that this reassign
process does not affect the label of the first element of any chunks and the correctness
is straightforward. Following Lemma reveals a property of the reshuffle process (proof
omitted due to space limit).

Lemma 2. After the reshuffle process, γ(r) ≤ 2 logn for LB , where r is the root.

Notice that the reshuffle process does not depend the any specific properties of
the Backbone-Based Distance Labelling Scheme. Thus, even we change the labelling
scheme for the first element, as long as the label contains at most log n chunks, Lemma
2 still holds. Recall that the label of vertex u is LB(u, T ) = L0(u) ◦ . . . ◦Lk(u), where
Li(u) is tuple composed of two integers. Since

∑k
i=1 log(Li(u)[2]) ≤ γ(r), we have

Theorem 2. �n(LB , T ) and the time complexity of decoding is O(log n · log Hn(T ))
for any tree T with n vertices.

PROOF. From the definition of tree label length, �n(LB) = maxT �n(LB , T ) ≤
log(max{Hn(T )} · CB(T ) + γ(r) ≤ log n · [log(max{Hn(T )} + 2].

3.2 Rake-Based Scheme

In this section, we present a new tree labelling scheme based on the tree decomposition
scheme by Kao [11]. A chain of T is a path in T such that every vertex of the given path
has at most one child in T . A tube of T is a maximal chain of T . A root path of a tree
is a tree path whose head is the root of that tree; similarly, a leaf path is one ending at a
leaf. A leaf tube of T is a tube that is also a leaf path. Let LT (T ) denote the set of leaf
tubes in T . Let R(T ) = T − LT (T ), i.e., the subtree of T obtained by deleting from T
all its leaf tubes. The operation R is called the rake operation.

A tube system of a tree T is a set of tree paths P1, · · · , Pm in T such that
T h1, · · · , T hm are pairwise disjoint, where hi is the head of Pi. We can iteratively
rake T to obtain tube systems. Every rake operation produces a tube system of T until
T is raked to empty. Given a tree T , let R(i)(T ) be the remaining tree after ith rake
operation and CR(T ) be the number of rake operations needed to make the tree empty.
Similarly, we have

Theorem 3. For any tree T of n vertices, CR(T ) ≤ log n.

Based on the rake operation, we define a labelling scheme LR = (LR, fR) as
follows. For the rake-based labelling scheme defined in Algorithm 3 and Algorithm
4,similar to the backbone scheme, by assuming that dc(u) < dc(v), a key observation
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Algorithm 3: Rake-Based Vertex Labelling

1: for each internal vertex vi do
2: Assign a unique positive ID µ(vi, vj) for every vertex vj that is vi’s child, i.e., µ(vi, va) �=

µ(vi, vb) if va and vb are vi’s children.
3: Let CR(T ) be the number of rake operations needed to make T empty.
4: for i = CR(T ) − 1 down to 0 do
5: for each tube S in LT(Ri(T )) do
6: Let h be the head of the tube S, i.e., the vertex with the smallest level in the tube, and

let h′ be the parent of h in the tree T if such h′ exists.
7: for each vertex vj in tube S do
8: Set the label of vj as LR(vj , T ) = LR(vk, T ) ◦ 〈dT (vj , h

′), µ(h′, h)〉 if h′ exists
and set LR(vj , T ) = 〈dT (vj , r), 0〉 otherwise.

9: Apply the reshuffle process to modify the second element of the chunks of the label.

Algorithm 4: Rake-Based Distance Decoder

1: For any pair of vertices u �= v, we assume LR(u, T ) = L0(u)◦· · ·◦La(u) and LR(v, T ) =
L0(v) ◦ · · · ◦ Lb(v) with a ≥ b. Assume Lc(u) = 〈x, y〉. For notational simplicity, we let
Lc(u)[1] = x and Lc(u)[2] = y.

2: Set dis = 0 and find the smallest index c such that Lc(u) �= Lc(v) if such c exists.
3: if c does not exist then
4: dis = dis + a

i=b+1 di(v).
5: else
6: Set dis = dis + a

i=c+1 di(v) + b
i=c+1 di(u).

7: Set dis = dis+Lc(u)[1]+Lc(v)[1] if Lc(u)[2] �= Lc(v)[2] and dis = dis+|Lc(u)[1]−
Lc(v)[1]| otherwise.

8: Output fR(LR(u, T ), LR(v, T )) = dis.

Fig. 2. The Rake-Based Distance Labelling Scheme

about vertex u, v’s least common ancestor is that the vertex with label L0(u)◦· · ·◦Lc(u)
is the least common ancestor of vertices with label LR(u, T ) and LR(v, T ).

From Lemma 2 and Theorem 3, �n(LR) = maxT �n(LR, T ) ≤ log(Hn(T )) ·
CR(T ) + γ(r) ≤ log n · (log(Hn(T )) + 2). We thus have

Theorem 4. The length of �n(LR, T ) is O(log n · log Hn(T )) and the time complexity
of decoding is O(log n · log Hn(T )) for any tree T with n vertices.

3.3 Separator-Based Labelling

In this section, we review a tree labelling scheme first proposed by Peleg [12] and then
improved by Gavoille [9]. The key idea is to find a separator, i.e., a vertex here, of a
tree such that the removal of the separator breaks the tree into several subtrees each
with at most half of the vertices in the original tree. Iteratively remove separators of the
remaining trees until all vertices are disconnected. For more details of the separator-
based labelling scheme please refer to [12] and [9].
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Again, a key observation here is that the vertex with label L0(u) ◦ · · · ◦ Lc(u) is
the least common ancestor of vertices with label LS(u, T ) and LS(v, T ). Regarding
the length of the separator-based labelling scheme, we have the following two theorems
(their proofs are omitted here due to space limit).

Theorem 5. �n(LS , T ) is O(log n · log(Hn(T ))) for any tree T with n vertices.

Theorem 6. �n(LS , T ) is Ω(max{ log n·log log n
log k , log2(Hn(T )}) for any tree T with n

vertices and bounded degree k.

4 Expected Label Length Under Binary Search Tree Distribution

In Section 3, we presented two tree labelling schemes which have the worst case length
Θ(log2 n) for any binary tree. We focus on the expected label length under binary search
tree distribution in this section and under uniform tree distribution in the next section.

4.1 General Upper Bound

In this subsection, we build a general but not too bad upper bound for the expected
length of �n(LR, T ) and �n(LB , T ) when the trees are binary search trees with usual
randomization; that is, the binary search tree is constructed in a standard fashion (n con-
secutive insertions) from a random permutation of {1, 2, · · · , n}, where each permuta-
tion is equally likely. It has been proved in [13] that the expected height of a random bi-
nary search tree is E(Hn) = α log n−β log log n+O(1), where α log

( 2e
α

)
= 1, α ≥ 2

and β = 3
2 log α

2
. Numerically, α = 4.311 · · · , and β = 1.953 · · · . With the above fact,

we can give an upper bound for the expected length of both backbone-based labelling
scheme and rake-based labelling scheme, and this technique can be applied to other tree
randomization also. The proof is omitted due space limit.

Theorem 7. The expected label lengths for both backbone-based scheme, rake-based
scheme, and separator based scheme are at most log n · log log n + log α log n, where
α is a constant satisfying the equation α log

( 2e
α

)
= 1, α ≥ 2.

4.2 Lower Bound of the Expected Length for Backbone-Based Scheme and
Separator-Based Scheme

Given the upper bound of expected length for backbone-based scheme, we would like to
compute the lower bound for E(�n(LB), T ) and find the gap between them. Following
theorem gives a lower bound for the expected length of a random binary search tree
based on backbone-based scheme.

Theorem 8. The expected label length of a random binary search tree based on the
backbone-based scheme is Ω( log n·log log n

log log log n ), i.e., E(�(LB), T ) = Ω( log n·log log n
log log log n ).

The proof of Theorem 8 is omitted here due to space limit. Theorem 8 gives a lower
bound that is very close to the upper bound. The gap is only log log log n, and we
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conjecture that the lower bound is Ω(log n · log log n) which is tight. Similarly, we
have a lower bound of the expected length for separator-based Scheme, and it can be
obtained directly from Theorem 6 since for a a binary search tree, the degree of the
vertex is bounded by 3 and �(LB) = Ω(log n · log log n) from Theorem 6.

Theorem 9. The expected label length of a random binary search tree based on the
separator-based scheme is Ω(log n·log log n), i.e., E(�(LB), T ) = Ω(log n·log log n).

Theorem 9 and Theorem 7 together shows that the expected length for separator-
based scheme for random binary search tree is exactly Θ(log n · log log n).

4.3 Upper Bound of Expected Length for Rake-Based Scheme

In this section, we give a tighter upper bound of the expected tree label length for rake-
based scheme. We first present the following theorem (proof omitted here).

Theorem 10. The expected label length of a random binary search tree for rake-
based scheme is log n · log log log n + log α · log n + o(1), where α = 213 + 1, i.e.,
E(�n(LB , T )) = log n · log log log n + log α · log n + o(1).

Remember that for a tree with n vertices, we need at least log n bits to represent the
vertices even without the requirement to recover the distance. Thus, from Theorem 10,
our rake-based Scheme is almost tight. Our conjecture is that the upper bound could
be improved to O(log n), which matches the lower bound. An interesting result drawn
from Theorem 8 and Theorem 10 is that under the binary search tree distribution, usu-
ally the rake-based Scheme is better than backbone-based scheme. Recall that for the
backbone based scheme, the length of the backbone B(T ) is at least log(|T |). However,
for rake based scheme, every rake operation decreases the height of the tree at least
by 1 and most often more than 1. Thus, the last tube of the tree T , as we proved, is
O(log log n) with high probability, compared with O(log n) for the backbone. There-
fore, it is natural that the rake-based scheme outperforms the backbone-based scheme.

5 Expected Label Length Under Uniform Binary Tree Distribution

In this section, we consider the binary trees with uniform distribution; that is every
distinct binary tree with n vertices has the same probability. It is well known that there
are Cn of enumeration of different binary trees with n vertex, where Cn is Catalan
Number. Based on this fact, we have the following lower bounds for the backbone-
based scheme, rake-based scheme and separator-based scheme.

Theorem 11. The expected tree label length of backbone-based scheme is Ω( log2 n
log log n ).

Theorem 12. The expected tree label length of rake-based scheme is Ω( log2 n
log log n ).

Theorem 13. The expected tree label length of separator-based scheme is Θ(log2 n).
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The lower bound of the expected label length of backbone-based, rake-based and

separator-based are Ω( log2 n
log log n ), Ω( log2 n

log log n ) and Ω(log2 n) respectively. These lower

bounds either are very close to or match the upper bounds log2 n, and we conjecture
that the lower bounds for both the backbone-based and rake-based schemes are also
Ω(log2 n), which is asymptotically tight.

6 Expected Label Length Under Several Other Tree Distributions

We then discuss the upper and lower bounds in a more general setting. Generally, we
have the following results on the expected label length for any tree distribution:

Theorem 14. Under any tree distribution, we have (1) E(�n(LR, T )) ≤
log E(Hn(T )) · log n; (2) E(�n(LB , T )) ≤ log E(Hn(T )) · log n; (3) E(�n(LS , T )) ≤
log E(Hn(T )) · log n.

Theorem 14 reveals an important information about the expected label length: the
upper bound of expected label length relates to the expected height of the tree. For the
lower bound of the expected label length, we have the following theorem.

Theorem 15. For any degree bounded tree distribution, if the probability P(Hn(T ) ≥
E(Hn(T )) = α where α is some constant, then the expected length of separator-based
scheme is Ω( log(n)·log(E(Hn(T ))

log k ), where k is the degree bound.

From the previous two sections, one may observe that for bounded degree tree dis-
tribution, the label length depends on the expected tree height and size of the largest
subtree. When the expected tree height is O(nε) where ε is some constant, the label
length for the backbone-based, rake-based and separator-based are most likely to be
similar, which is close to O(log2 n), under most distributions. When the expected tree
height is O(logε n), the backbone-based, rake-based and separator-based schemes can
achieve a better expected label length, which is O(log n · log log n). We also conjecture
that the label length of rake-based scheme can achieve O(log n · log log log n) or even
O(log n) under certain tree distributions, which is tight.

7 Conclusion

In this paper, we studied how to label the vertices of a tree such that we can de-
cide, given only the labels of two vertices, their distance in the tree. Specifically, we
present two new distance labelling schemes that can achieve asymptotic optimal length
O(log n · log(Hn(T )) and have a much smaller expected label length under certain tree
distributions. In the meanwhile, we also show how to find the least common ances-
tor of any two vertices based on their labels only. Rake-based labelling scheme usu-
ally achieves a smaller expected label length than backbone-based and separator-based
schemes for most tree distributions with average low height. A remaining future work
is to close the gaps between the upper bounds and the lower bounds for various tree dis-
tributions, and to prove the conjectures listed in our full version [17]. For more details
of the proof, please refer [17] also.
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