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Abstract. Let G be a graph with a nonnegative integral function w
defined on V (G). A family F of subsets of V (G) (repetition is allowed)
is called a feedback vertex set packing in G if the removal of any member
of F from G leaves a forest, and every vertex v ∈ V (G) is contained
in at most w(v) members of F . The weight of a cycle C in G is the
sum of w(v), over all vertices v of C. In this paper we characterize all
graphs with the property that, for any nonnegative integral function w,
the maximum cardinality of a feedback vertex set packing is equal to the
minimum weight of a cycle.

1 Introduction

We begin with a brief introduction to the theory of packing and covering. More
details on this subject can be found in [6]. A hypergraph H is an ordered pair
(V, E), where V is a finite set and E is a set of subsets of V . Members of V and E
are called vertices and edges of H , respectively. An edge is minimal if none of its
proper subsets is an edge. A clutter is a hypergraph whose edges are all minimal.
The blocker of hypergraph H = (V, E) is the clutter b(H) = (V, E ′), where E ′ is
the set of all minimal subsets B ⊆ V such that B ∩A �= ∅ for all A ∈ E . We also
define b(H)↑ = (V, E ′′), where E ′′ consists of all B ⊆ V such that B ∩ A �= ∅ for
all A ∈ E . It is well known that b(b(C)) = C = b(b(C)↑) holds for every clutter C.

Let I be a set and let α be a function with domain I. Then, for any finite
subset S of I, we denote by α(S) the sum of α(s), over all s ∈ S. Let R+

(resp. Z+) denote the sets of nonnegative real numbers (resp. integers). Let M
be the E-V incidence matrix of a hypergraph H = (V, E). For any w ∈ ZV

+ ,
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let ν∗
w(H) = max{xT 1 : x ∈ RE

+, xT M ≤ wT }, τ∗
w(H) = min{wT y : y ∈

RV
+, My ≥ 1}, νw(H) = max{xT 1 : x ∈ ZE

+, xT M ≤ wT }, τw(H) = min{wT y :
y ∈ ZV

+ , My ≥ 1}. Combinatorially, each vector x ∈ ZE
+ with xT M ≤ wT can

be interpreted as a family F of edges (repetition is allowed) of H , for which
each vertex v ∈ V belongs at most w(v) members of F . Such a family is called
a w-packing of H . It is clear that νw(H) is the maximum size of a w-packing of
H . Similarly, τw(H) is the minimum of w(B), over all edges B of b(H)↑. Notice
from the LP Duality Theorem that

νw(H) ≤ ν∗
w(H) = τ∗

w(H) ≤ τw(H). (1)

One of the fundamental problems in combinatorial optimization is to identify
scenarios under which either one or two of the above inequalities holds with
equality. In particular, H is ideal if τ∗

w(H) = τw(H), for all w ∈ ZV
+, while H

is Mengerian if ν∗
w(H) = νw(H), for all w ∈ ZV

+. Obviously b(H) is Mengerian
iff so is b(H)↑. It is well known that being Mengerian is actually equivalent to
νw(H) = τw(H) for all w ∈ ZV

+ [3]. Thus every Mengerian hypergraph is ideal.
Our present work is a continuation of [1,2]. To clarify our motivation, we

summarize the main results in [1]. For any simple graph G = (V, E), let CG =
(V, E) denote the clutter in which E consists of V (C), for all induced cycles C of
G. A Θ-graph is a subdivision of K2,3. A wheel is obtained from a cycle by adding
a new vertex and making it adjacent to all vertices of the cycle. A W -graph is
a subdivision of a wheel. An odd ring is a graph obtained from an odd cycle
by replacing each edge e = uv with either a cycle containing e or two triangles
uabu, vcdv together with two additional edges ac and bd. A subdivision of an odd
ring is called an R-graph. Let L be the class of simple graphs G such that no
induced subgraph of G is isomorphic to a Θ-graph, a W -graph, or an R-graph.

Theorem 1. [1] The following are equivalent for every simple graph G: (i) CG

is Mengerian; (ii) CG is ideal; (iii) G ∈ L.

Fulkerson [4] proved that a hypergraph is ideal iff its blocker is ideal. There-
fore, the equivalence of (ii) and (iii) in Theorem 1 implies the following

Corollary 1. b(CG)↑ is ideal if and only if G ∈ L.

At this point, Guenin [5] suggested a natural question: When is b(CG)↑ Men-
gerian? In general, the blocker of a Mengerian hypergraph does not have to be
Mengerian (see [6]). However, the following theorem, our main result in this
paper, says that CG, b(CG)↑, and hence b(CG) are always Mengerian together.

Theorem 2. b(CG)↑ is Mengerian if and only if CG is.

Let G = (V, E) be a simple graph and let w ∈ ZV
+ . A subset of V is called an

feedback vertex set (FVS) in G if it meets every cycle in G. Since the edge set
of b(CG)↑ is exactly the set of feedback vertex sets (FVSs) in G, we also call a
w-packing of b(CG)↑ a w-packing of FVSs in G, or simply an FVS packing. The
min-max relation in our main result can be restated as follows: if G = (V, E) is
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a simple graph, then the maximum cardinality of a w-packing of FVSs equals
the minimum weight of a cycle in G for any w ∈ ZV

+ iff G ∈ L.
The rest of the paper is devoted to the proof of Theorem 2. In section 2, we

prove some results on how Mengerian hypergraphs can be put together to get
a larger Mengerian hypergraph. Then, in Section 3, we explain results from [1],
which describe how graphs in L can be constructed from some “prime” graphs by
“summing” operations. Finally, we establish Theorem 2 in Section 4 by showing
that all prime graphs have the required Mengerian property.

2 Sums of Hypergraphs

The purpose of this section is to prove a few lemmas, which claim that being
Mengerian is preserved under some natural summing operations.

Let H = (V, E) be a hypergraph and w∈ ZV
+ . It is easy to see that τw(b(H)↑)=

min
A∈E

w(A). Denoting rw(H) = min
A∈E

w(A), we have

b(H)↑ is Mengerian iff b(H)↑ has a w-packing of size rw(H), ∀ w ∈ ZV
+. (1)

Let H1 = (V1, E1) and H2 = (V2, E2) be two hypergraphs. If |V1∩V2| ∈ {0, 1},
then (V1∪V2, E1∪E2) is called the |V1∩V2|-sum of H1 and H2. If V1∩V2 = {x1, x2}
and for i = 1, 2, Hi has an edge Ai = {x1, x2, yi} that is the only edge containing
yi, then ((V1 ∪V2)−{y1, y2}, (E1 ∪E2)−{A1, A2}) is called the 2-sum of H1 and
H2. If V1 ∩V2 = {x1, x2, x3} and A = {x1, x2, x3} is an edge of H1 and H2, then
(V1 ∪ V2, E1 ∪ E2) is called the 3-sum of H1 and H2 over A. The notations given
here will be used implicitly in the proofs of Lemma 1 and Lemma 2 below.

Lemma 1. Let H be a k-sum (k ∈ {0, 1, 2}) of H1 and H2. If both b(H1)↑ and
b(H2)↑ are Mengerian, then so is b(H)↑.

Proof. The conclusion is obvious when k ∈ {0, 1}. We consider the case of k = 2.
Suppose H = (V, E). By (1), it suffices to show that (∗ ) b(H)↑ has a w-packing
of size rw(H) for all w ∈ ZV

+ . Suppose otherwise, (∗ ) were false for some w ∈ ZV
+

with w(V ) minimum. Let r = rw(H).

(1.1) w(v) ≤ r for all v ∈ V .
Suppose (1.1) fails. Then w′ ∈ ZV

+ with w′(v) = min{r, w(v)} for all v ∈ V
satisfies rw′(H) = r and w′(V ) < w(V ), and therefore b(H)↑ has a w′-packing
of size r, which is also a w-packing of b(H)↑, a contradiction. So (1.1) holds.

Let i = 1, 2, define wi ∈ ZV
+ with wi(yi) = max{0, r − w(x1) − w(x2)} and

wi(v) = w(v) for all v ∈ Vi − {yi}. Then rwi(Hi) ≥ r, and by (1), b(Hi)↑ has a
wi-packing Bi of size r. Choosing such Bi with maximum

∑
B∈Bi

|B|, we have
(1.2) For any j ∈ {1, 2}, xj is contained in exactly w(xj) members of Bi.

Suppose B1∩{x1, x2} = B2∩{x1, x2} for some B1 ∈ B1 and B2 ∈ B2. Let χ1,
χ2, and χ be the characteristic vectors of B1, B2, and B = (B1 ∪B2)−{y1, y2},
which are considered as subsets of V1, V2, and V , respectively. Define w′

1 =
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w1−χ1, w′
2 = w2−χ2, and w′ = w−χ. For i = 1, 2, since b(Hi)↑ has a w′

i-packing
Bi − {Bi} of size r − 1, it follows from (1) that rw′

i
(Hi) = τw′

i
(b(Hi)↑) ≥ r − 1.

Therefore rw′(H) ≥ r − 1. Since w′(V ) < w(V ), b(H)↑ has a w′-packing B′ of
size r − 1, which yields a w-packing B′ ∪ {B} of b(H)↑. This contradiction gives
(1.3) B1 ∩ {x1, x2} �= B2 ∩ {x1, x2}, for all B1 ∈ B1 and B2 ∈ B2.

It can be deduced from (1.2) and (1.3) that w(x1) + w(x2) < r. Recalling
wi(Ai) = r, we have |Bi ∩Ai| = 1, for all Bi ∈ Bi, i = 1, 2, which, together with
(1.2), implies a contradiction to (1.3). The lemma is proved. ��
Lemma 2. Let H is be a 3-sum of H1 and H2 over A = {x1, x2, x3}. For i = 1, 2
and 1 ≤ j < k ≤ 3, let Hijk be obtained from Hi by adding a new vertex xijk and
a new edge Aijk ={xijk, xj , xk}. If all b(Hijk)↑ are Mengerian, then so is b(H)↑.

Proof. Let H = (V, E). As in the proof of Lemma 1, we shall prove: (∗ ) b(H)↑

has a w-packing of size rw(H) for all w ∈ ZV
+ . Suppose that (∗ ) were false for a

w ∈ ZV
+ with w(V ) minimum. Writing r = rw(H), we have

(2.1) w(v) ≤ r for all v ∈ V .

Let 1 ≤ i ≤ 2, 1 ≤ j < k ≤ 3, Vijk = Vi∪{xijk}, and define wijk ∈ Z
Vijk

+ with
wi(xijk) = max{0, r − w(xj) − w(xk)} and wijk(v) = w(v) for all v ∈ Vi. Then
b(Hijk)↑ has a wijk-packing Bijk of size r. Choosing such Bijk with

∑
B∈Bi

|B|
as large as possible, we have
(2.2) For any 1 ≤ h ≤ 3, 1 ≤ i ≤ 2, and 1 ≤ j < k ≤ 3, xh is contained in

exactly w(xh) members of Bijk.
(2.3) B ∩ A �= B′ ∩ A, for all B ∈ B1jk and B′ ∈ B2j′k′ with 1 ≤ j < k ≤ 3 and

1 ≤ j′ < k′ ≤ 3.

(2.4) w(xj) + w(xk) > r for all 1 ≤ j < k ≤ 3.
Suppose otherwise. By symmetry, we assume w(x1) + w(x2) ≤ r. Then, for
i = 1, 2, wi12(Ai12) = r, and hence no member of Bi12 can contain {x1, x2}.

If w(x1) + w(x3) > r, then, by (2.2), some Bi12 in Bi12 (i = 1, 2) contains
both x1 and x3, which implies B112 ∩ A = {x1, x3} = B212 ∩ A contradicting
(2.3). Hence w(x1)+w(x3) ≤ r, and by symmetry, w(x2)+w(x3) ≤ r. Therefore
|B ∩ {xj , xk}| ≤ 1 for all B ∈ Bijk.

Obviously w(A) ≥ rw(H) = r. Furthermore w(A) > r as w(A) = r implies
a contradiction to (2.3). It follows from (2.2) that each Bijk has an edge Bijk

with |Bijk ∩ A| ≥ 2. Thus, by (2.3), for 1 ≤ j < k ≤ 3, {B1jk ∩ A, B2jk ∩ A} =
{{xj, x�}, {xk, x�}} where � ∈ {1, 2, 3} − {j, k}. Without loss of generality, let
B112∩A = {x1, x3} and B212∩A = {x2, x3}. By (2.3), B113∩A �= {x2, x3}. Thus
B113 = {x1, x2} and B213 ∩ A = {x2, x3}. Now B223 ∩ A ∈ {{x1, x2}, {x1, x3}}
violates (2.3), which proves (2.4).

(2.5) |B ∩ A| ≤ 2 for all B ∈ Bijk, where 1 ≤ i ≤ 2 and 1 ≤ j < k ≤ 3.

Suppose otherwise. Without loss of generality, we assume that some B1j0k0 has
a member B0 with B0 ⊇ A. It follows from (2.3) that |B ∩ A| ≤ 2 for all
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B ∈ B212 ∪ B213 ∩ B223. Let 1 ≤ j < k ≤ 3. Since, by (2.4), w(xj) + w(xk) > r,
it follows from (2.2) that B2jk has a member B2jk that contains both xj and
xk, implying B2jk ∩ A = {xj, xk}. Therefore, by (2.3), |B ∩ A| �= 2 for all
B ∈ B112 ∪ B113 ∪ B123.

Let {j, k, �} = {1, 2, 3} with j < k, and let B′
1jk consist of members of B1jk

that contains x�. By (2.2), |B′
1jk| = w(x�). As, by (2.4), w1jk(x1jk) = 0, we

have |B ∩ {xj, xk}| ≥ 1 and hence B ⊇ A for all B ∈ B′
1jk. Consequently,

w(xj) ≥ w(x�) and w(xk) ≥ w(x�). Since j, k, � were chosen arbitrarily, it follows
that w(x1) = w(x2) = w(x3), B′

1jk = B1jk and thus w(x1) = w(x2) = w(x3) = r.
On the other hand, since by (2.3), |B ∩A| ≤ 2 for all B ∈ B212, we deduce from
(2.2) that r = |B212| ≥ w(A)/2 = 3r/2, a contradiction, which proves (2.5).

Finally, let i ∈ {1, 2}. By (2.4), w(x1) + w(x2) > r, which, together with
(2.2), implies that Bi12 has a member Bi12 that contains both x1 and x2. Now
by (2.5), we must have Bi12 = {x1, x2}, contradicting (2.3) and establishing the
lemma. ��

3 Graphical Structures

In this section, we summarize some results form [1] that describe how graphs in
L can be constructed from “prime” graphs.

All graphs considered are undirected, finite, and simple, unless otherwise
stated. Let G = (V, E) be a graph. For any U ⊆ V or U ⊆ E, let G\U be
the graph obtained from G by deleting U , and let G[U ] be the subgraph of G
induced by U ; when U is a single to {u}, we simply write G\u instead of G\{u}.
A rooted graph consists of a graph G and a specified set R of edges such that
each edge of R belongs to a triangle and each triangle in G contains at most one
edge from R. By adding pendent triangles to the rooted graph G we mean the
following operation: to each edge uv in R, we introduce a new vertex tuv and
two new edges utuv and vtuv. The readers are referred to [1] for the definitions
of sums of graphs.

Lemma 3. [1] For any graph G ∈ L, at least one of the following holds.

(i) G is a k-sum of two smaller graphs, for k ∈ {0, 1, 2, 3};
(ii) G is obtained from a rooted 2-connected line graph by adding pendent triangles.

Let G be a k-sum (k = 0, 1, 2, 3) of graphs G1 and G2, then H = CG is the k-
sum of H1 = CG1 and H2 = CG2 , and each hypergraph Hijk defined in Lemma 2
is precisely CGijk

, where Gijk is the graph defined in the following lemma.

Lemma 4. [1] Let G ∈ L be a k-sum of two smaller graphs. Then

(i) If k ∈ {0, 1, 2}, then G is a k-sum of two smaller graphs that belong to L.
(ii) If G is a 3-sum of G1 and G2 over a triangle x1x2x3x1, then all Gijk (1 ≤

i ≤ 2, 1 ≤ j < k ≤ 3)) are in L, where Gijk is obtained from Gi by adding
a new vertex xijk and two new edges xijkxj and xijkxk.



A Min-Max Relation on Packing Feedback Vertex Sets 131

Two distinct edges are called in series if they form a minimal edge cut. Every
edge is also considered as being series with itself. Being in series is an equiva-
lence relation. Each equivalence class is called a series family. A series family
is nontrivial if it has at least two edges. A graph G is weakly even if, for every
nontrivial series family F of G with |F | odd, there are two distinct edges xy and
xz such that they are the only two edges of G that are incident with vertex x. A
graph is subcubic if the degree of each vertex is at most three. A graph is chord-
less if every cycle of the graph in an induced cycle. Let K−

4 be obtained from
K4 by deleting an edge, W−

4 be obtained a wheel on five vertices by deleting a
rim edge, and K+

2,3 be obtained from K2,3 by adding an edge between the two
vertices of degree three. As usual, L(G) stands for the line graph of G.

Lemma 5. [1] Suppose G ∈ L is not a 2-sum of two smaller graphs. If G is
obtained from a rooted 2-connected line graph L(Q) by adding pendent triangles,
where Q has no isolated vertices, then the following statements hold: (i) if Q
has a triangle, then G ∈ {K3, K

−
4 , W−

4 , K+
2,3}; (ii) Q is connected, subcubic, and

chordless; (iii) every cut edge of Q is a pendent edge; (iv) Q is weakly even.

Lemma 6. [1] If Q is subcubic and chord chordless, then every noncut edge
belongs to a nontrivial series family.

A path with end vertices u and v is called a u-v path. If a vertex v has degree
three, then the subgraph formed by the three edges incident with v is called a
triad with center v. In the next lemma, the sum of the indices is taken mod t.

Lemma 7. [1] Suppose Q is connected and subcubic, and all its cut edges are
pendent edges. If F = {e1, . . . , et} is a nontrivial series family of Q, then Q\F
has precisely t components Q1, . . . , Qt. The indices can be renamed such that
each ei is between V (Qi) and V (Qi+1). In addition, if |V (Qi)| = 2, then the
only edge in E(Qi) is a pendent edge of Q and it forms a triad with ei−1 and ei;
if |V (Qi)| > 2, and u and v are the ends of ei−1 and ei in Qi, then u �= v and
Qi has two internally vertex-disjoint u-v paths.

Let G = (V, E) be a graph. The degree of a vertex v ∈ V is denoted by dG(v).
A 2-edge coloring of G is an assignment of two colors to every edge in E. We
say that a color is represented at vertex v if at least one edge incident with v is
assigned that color.

Lemma 8. Let G = (V, E) be a graph and let U ⊆ V . Suppose G[U ] is bipartite
and dG(u) ≥ 2 for all u ∈ U . Then G has a 2-edge coloring such that both colors
are represented at every vertex in U .

Let G′ be a connected subgraph of G. Then the contraction of G′ in G is
obtained from G\E(G[V (G′)]) by identifying all vertices in V (G′). This is the
same as the ordinary contraction except we also delete the resulting loops.

Lemma 9. Let G = (V, E) be subcubic, chordless, and weakly even. If G′ =
(V ′, E′) is obtained from G by repeatedly contracting induced cycles, and U =
(V ′ − V ) ∪ {v ∈ V ∩ V ′ : dG(v) = 3}, then G′[U ] is bipartite.
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4 Packing Feedback Vertex Sets

The goal of this section is to prove Theorem 2, the main result of this paper.
The major part of our proof consists of the following two lemmas.

Lemma 10. Let G be obtained from a rooted 2-connected line graph L(Q)
by adding pendent triangles, where Q is triangle-free and satisfies (ii)-(iv) in
Lemma 5. Let C be a collection of induced cycles in G, which include all trian-
gles in G. Suppose S ⊆ V (G) with |S ∩ V (C)| ≥ 2 for every C ∈ C. Then S
can be partitioned into R and B such that R ∩ V (C) �= ∅ �= B ∩ V (C) for every
C ∈ C.

Proof. Let us call a pair (R, B) satisfying the conclusion of the lemma a cer-
tificate for (G, C, S). Suppose the lemma is false. Then we can choose a coun-
terexample Ω = (G, C, S) such that (a) |C| is minimized; (b) subject to (a),
tΩ = |C ∈ C : |V (C)| = 3 and V (C) ⊆ S}| is minimized; (c) subject to (a) and
(b), dΩ = |{v : v ∈ V (G) and dG(v) = 4}| is minimized. Clearly we have
(10.1) |C| ≥ 2.

By (a)-(c), we shall define Ω′ = (G′, C′, S′) such that Ω′ satisfies the hypoth-
esis of the lemma with G′, C′, S′ in place of G, C, S, respectively, and Ω′ has a
certificate (R′, B′), from which we deduce contradiction to the assumption that
Ω has no certificate.

(10.2) If x ∈ V (G) belongs to a triangle T of G and dG(x) = 2, then x �∈ S; in
particular S ∈ E(Q).

Otherwise, Ω′ = (G\x, C −{T }, S−{x}) has a certificate (R′, B′), and therefore
either (R′ ∪ {x}, B′) or (R′, B′ ∪ {x}) is a certificate for Ω. So (10.2) holds.

(10.3) If x is a pendent edge of Q, then x �∈ S.
By (10.1) and (10.2), we may assume that x are contained in both a triangle
T in L(Q) and a pendent triangle T ′ in G. Since Ω′ = (G\((V (T ′) ∩ E(Q)) −
{x}), C − {T, T ′}, S −{x}) has a certificate (R′, B′), we have x �∈ S as otherwise
either (R′ ∪ {x}, B′) or (R′, B′ ∪ {x}) is a certificate for Ω. Thus (10.3) holds.

Given x ∈ E(Q), Qx is obtained from Q by subdividing x with a new vertex
wx. There is a natural 1-1 correspondence between triangles in L(Q) and tri-
angles in L(Qx). Additionally, L(Qx) can be rooted the same way as L(Q) was
rooted. Let Gx be obtained from the rooted L(Qx) by adding pendent triangles.
For every C ∈ C, we define cycle Cx in Gx as follows: if C is a triangle, then
Cx is a triangle in Gx that naturally corresponds to C; if C has length at least
four, then Cx = C when C avoids x, and Cx = L(Dx) when C = L(D) for cycle
D through x in Q, and Dx is obtained from D by subdividing x with wx. Set
Cx = {Cx : C ∈ Cx}. An edge in Q is called maximum if its both ends have
degree 3.

(10.4) Every maximum edge of Q belong to S.
If x �∈ S for some maximum edge x, then the certificate for Ω′ = (Gx, Cx, S) is
a certificate for Ω. Hence (10.4) holds.
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(10.5) tΩ = 0. That is, |S ∩ V (T )| = 2 for all triangles T of G.
If (10.5) fails for T , then, by (10.2), T is a triad in Q with center u and contains
edge x = uv which is not a root edge. As, by (10.3), x is not a pendent edge,
Ω′ = (Gx, Cx, (S − {x}) ∪ {wxv}) has a certificate (R′, B′). Now replacing wxv
with x in (R′, B′) results in a certificate for Ω. This contradiction proves (10.5).

(10.6) G = L(Q).
If G has a pendent triangle T , then, by (10.2) and (10.5), the certificate for
Ω′ = (G, C − {T }, S) is a certificate for Ω. So we have (10.6).

By (10.5), every triad T of Q contains precisely two edges in S. Let ST

be the set of these two edges. Let D be the set of cycles D of Q such that
L(D) ∈ C. If ST ⊆ E(D) for some triad T and D ∈ D, then the certificate for
Ω′ = (G, C − {L(D)}, S) is a certificate for Ω. Therefore we have
(10.7) |ST ∩ E(D)| < 2 for all triads T of Q and all cycles D ∈ D.

(10.8) No cycle in D contains a maximum edge.
Suppose some D ∈ D contains a maximum edge x. Then by Lemma 6 and
Lemma 5(iii), x is contained in a nontrivial series family F = {e1, . . . , et} of
Q. Let components Q1, . . . , Qt of Q\F be indexed as in Lemma 7. It can be
deduced from Lemma 7 and (10.3), (10.7) that |V (Qi)| �= 2 for all i. Notice that
I = {i : 1 ≤ i ≤ t and |V (Qi)| > 2} is of size at least two.

In case of |I| = t, (10.4) implies F ⊆ S. Let Z1 = Q\V (Q2) and Z2 = Q2. For
i = 1, 2, let Q′

i be obtained from Q by contracting Z3−i into a vertex zi, and then
adding a pendent edge fi at zi, let Gi = L(Q′

i), Ci = {C ∈ C, V (C) ⊆ V (Gi)} ∪
{fie1e2fi}, and Si = (S ∩ E(Zi)) ∪ {e1, e2}. Each (Gi, Ci, Si) has a certificate
(Ri, Bi), which gives a certificate (R1 ∪ R2, B1 ∪ B2) for Ω. In case of |I| < t,
suppose 1 �∈ I. For every i ∈ I, let Q′

i = Q[E(Qi)∪E(D)], Gi = L(Q′
i), Ci = {C ∈

C : V (C) ⊆ E(Qi)∪ {ei−1, ei}} ∪ {L(D)} and Si = S ∩E(Qi)∪ {ei−1, ei}. Then
every (Gi, Ci, Si), i ∈ I has a certificate (Ri, Si) such that for all {i, i + 1} ⊆ I,
if Si ∩Si+1 �= ∅, then ei belongs to either Ri ∩Ri+1 or Bi ∩Bi+1. It follows that
(∪i∈IRi, S −∪i∈IRi) is a certificate for Ω. The contradiction establishes (10.8).

For each D ∈ D, edges of Q that have precisely one end in V (D) are called
connectors of D. The combination of (10.3) and (10.7) implies
(10.9) Every D ∈ D has at least two connectors.

(10.10) Cycles in D are pairwise vertex-disjoint.
Suppose otherwise, D and D′ are distinct cycles in D that share a common
vertex. As the certificate (R′, B′) for Ω′ = (G, C − {L(D)}, S) cannot be a
certificate for Ω, we may assume S∩E(D) ⊆ R′, and by (10.7), all connectors of
D belong to B′. Observe that D′ contains at least two connector x1, x2 of D. For
i = 1, 2, let yi be the edge in D ∩R′ that has a common end with xi. By (10.8),
y1 �= y2, and it can be verified that ((R′ − {y1})∪ {x1}, (B′ − {x1})∪ {y1}) is a
certificate for Ω. Hence we have (10.10).

Let QD be obtained from Q by contracting D, for every D ∈ D, into a vertex
vD. Let U = {vD : D ∈ D} ∪ {v ∈ V (Q) − ∪D∈DV (D) : dQ(v) = 3} and let
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Q′ = QD[S′], where S′ ⊆ E(QD) is the set of edges corresponding to those in
S − ∪D∈DE(D). By Lemma 9, Q′[U ] is bipartite, and by (10.5), (10.7), (10.9),
dQ′(u) ≥ 2 for all u ∈ U . Thus Lemma 8 guarantees a 2-edge coloring of Q′ in
which both colors are represented at every vertex in U . Let R′ and B′ be the
two color classes. We view S′ = R′ ∪B′ as a subset of S. Then by (10.8), R′ and
B′ can be easily extended to be R and B, respectively, such that (R, B) forms
a certificate for Ω. The contradiction completes the proof of the lemma. ��
Lemma 11. Let G be obtained from a rooted 2-connected line graph L(Q)
by adding pendent triangles, where Q is triangle-free and satisfies (ii)-(iv) in
Lemma 5. Then b(CG)↑ is Mengerian.

Proof. Let w ∈ ZV
+ and r = rw(CG). By (1), we only need to show that b(CG)↑

has w-packing of size r. We may assume that r ≥ 2, and w(v) ≤ r for all v ∈ V .
Let C′ consist of all triangles in G and C′′ consist of all other cycles in G. For any
F ⊆ V , let α(F ) and β(F ) be the number of cycles in C′ and C′′, respectively,
that F meets. Clearly, there is a collection F of subsets of V such that (a)
|F| = r; and (b) every v ∈ V is contained in exactly w(v) members of F . We
chose such an F such that (c) α(F) =

∑
F∈F α(F ) is maximum, and (d) subject

to (c), β(F) =
∑

F∈F β(F ) is maximum. We prove that every member of F is
an FVS of G, and thus F is a w-packing of b(CG)↑ of size r.

(11.1) F ∩ V (C) �= ∅, for all F ∈ F and C ∈ C′.
Suppose otherwise, F0 ∩ V (C0) = ∅ for some F0 ∈ F and C0 ∈ C′. It follows
that |F1 ∩ V (C0)| ≥ 2 for some F1 ∈ F . Let F0∆F1 = (F0 − F1) ∪ (F1 − F0),
FQ

01 = (F0∆F1)∩E(Q) and FG
01 = (F0∆F1)−E(Q). Let C′

0 be the set of all cycles
C ∈ C′ with V (C)∩(F0∩F1) = ∅ and |V (C)∩FQ

01| ≥ 2. For each C ∈ C′
0, certain

triad in Q contains all members of V (C) ∩ FQ
01. Let U be the set of the centers

of all these triads. For each pendent triangle C ∈ C′
0, we perform the following

operations on Q. Let x, y be the two edges in V (C)∩FQ
01, let u be their common

end, and let z = uv be the other edge incident with u. We replace z with u′v,
where u′ is a new vertex. Let Q′ be the resulting graph, after performing this
operation over all pendent triangles C ∈ C′

0. Let Q′′ = Q′[FQ
01]. By Lemma 9,

Q′′[U ] is bipartite, and by Lemma 8, Q′′ has a 2-edge coloring so that both colors
are represented at each vertex of U . Let R0 and R1 denote the two color classes.
For each z ∈ V (G)−E(Q), let Tz denote the pendent triangle of G that contains
z. Let S0 = {z ∈ FG

01 : |V (Tz) ∩ R0| < |V (Tz) ∩ R1|} and S1 = FG
01 − S0. For

i = 0, 1, let F ′
i = (F1 ∩ F0) ∪ Ri ∪ Si. Let F ′ = (F − {F0, F1}) ∪ {F ′

0, F
′
1}. Then

F ′ satisfies (a) and (b), and α(F ′) > α(F) contradicts (c), yielding (11.1).

(11.2) For any x ∈ V , if G′ is a block of G\x, then there exists a triangle-free
graph Q′, which satisfies (ii)-(iv) in Lemma 5, such that G′ is obtained
from L(Q′) by adding pendent triangles.

We may assume that |V (G′)| ≥ 3, and for each z ∈ V (G′) − E(Q), the pendent
triangle Tz containing z is contained in G′. Let Q1 = Q[V (G′)∩E(Q)]. We may
assume that some Tz\z is not contained in any triangle of L(Q1) for otherwise
Q′ = Q1 is as desired. Let Z be the set of all such z. Construct Q′ from Q1 by
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adding |Z| pendent edges such that L(Q′) is isomorphic to G′\(V (G′)−E(Q)−
Z). It can be deduced from Lemma 5 that Q′ is as desired. Thus we have (11.2).

Now we prove that each member of F is an FVS of G. Suppose otherwise. By
(11.1) and (b), we have F0, F1 ∈ F and C0 ∈ C′′ such that F0 ∩ V (C0) = ∅ and
|F1∩V (C0)| ≥ 2. Suppose that G1, . . . , Gk are all blocks of G\(F0∩F1). By (11.2),
Gi is obtained from L(Qi) by adding pendent triangles, where Qi is triangle-free
and satisfies (ii)-(iv) in Lemma 5. Let i ∈ {1, . . . , k}. Let Si = (F0∆F1)∩ V (Gi)
and let Ci be the set of cycles C of Gi with |V (C)∩Si| ≥ 2. By (11.1), Lemma 10
applies and provides a partition (Ri, Bi) of Si such that each cycle in Ci meets
both Ri and Bi. By interchanging Ri with Bi if necessary, it can be assumed
that if any distinct Si and Sj have a common vertex v then either v ∈ Ri∩Rj or
v ∈ Bi∩Bj . Let F ′

0 = (F0∩F1)∪(R1∪· · ·∪Rk), F ′
1 = (F0∩F1)∪(B1∪· · ·∪Bk),

and F ′ = (F−{F0, F1})∪{F ′
0, F

′
1}. Then F ′ satisfies (a) and (b), α(F ′) ≥ α(F),

and β(F ′) > β(F), contradicting to (d). The lemma is established. ��

Proof of Theorem 2. Since every Mengerian hypergarph is ideal, the “only if”
part follows from Corollary 1 and Theorem 1. To establish the “if” part, we only
need to show that, if G ∈ L then b(CG)↑ is Mengerian. We apply induction on
|V (G)|. The base case |V (G)| = 1 is trivial, so we proceed to the induction step.
By Lemma 4 and Lemma 1, 2, we may assume that G cannot be represented
as a k-sum (k = 0, 1, 2, 3) of two smaller graphs, for otherwise we are done by
induction. Then we conclude from Lemma 3 that G is obtained from a rooted 2-
connected line graph L(Q) by adding pendent triangles. It can be assumed that
Q has no isolated vertices. If Q has a triangle, then we are done by Lemma 5(i)
and (1) since for any K = (V, E) ∈ {K3, K

−
4 , W−

4 , K+
2,3} and w ∈ ZV

+ , it is not
hard to find a w-packing of FVSs in K of size equal to the minimum weight of
a cycle in K. So we may assume that Q is a triangle-free and satisfies (ii)-(iv)
in Lemma 5. Now the result follows from Lemma 11. ��
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