
An Optimization Problem Related to VoD
Broadcasting

Tsunehiko Kameda1, Yi Sun1, and Luis Goddyn2

1 School of Computing Science
2 Department of Mathematics,

Simon Fraser University, Burnaby, B.C. Canada V5A 1S6

Abstract. Consider a tree T of depth 2 whose root has s child nodes
and the kth child node from left has nk child leaves. Considered as a
round-robin tree, T represents a schedule in which each page assigned to
a leaf under node k (1 ≤ k ≤ s) appears with period snk. By varying s,
we want to maximize the total number n =

�s
k=1 nk of pages assigned

to the leaves with the following constraints: for 1 ≤ k ≤ s, nk = �(m +�k−1
j=1 nj)/s�, where m is a given integer parameter. This problem arises

in the optimization of a video-on-demand scheme, called Fixed-Delay
Pagoda Broadcasting.

Due to the floor functions involved, the only known algorithm for
finding the optimal s is essentially exhaustive, testing m/2 different po-
tential optimal values of size O(m) for s. Since computing n for a given
value of s incurs time O(s), the time complexity of finding the optimal s
is O(m2). This paper analyzes this combinatorial optimization problem
in detail and limits the search space for the optimal s down to κ

√
m

different values of size O(
√

m) each, where κ ≈ 0.9, thus improving the
time complexity down to O(m).

1 Introduction

Recently, Bar-Noy et al. have formulated a combinatorial problem called the
windows scheduling problem [1]. This problem is defined by positive integers c and
w1, w2, . . . , wn, where c is the number of slotted channels and, for i = 1, 2, . . . , n,
a window of size wi is associated with page i. A valid schedule assigns page
i to slots such that it appears at least once in every window of wi slots (not
necessarily in the same channel).

Recently, there has been much interest in the broadcast-based delivery of
popular videos, in order to address the scalability issue in video-on-demand
(VoD). A VoD broadcasting scheme, called Fixed-Delay Pagoda Broadcasting
(FDPB), was proposed by Pâris [5].1

A channel consists of a sequence of time slots of duration d (sec) each. The
viewer initially downloads pages for md (sec) before s/he starts viewing the
1 It has been implemented in a prototype video-on-demand (VOD) system [6]. Holler-

mann and Holzscherer [3] had also conceived a scheme similar to FDPB. A recent
survey on VoD can be found in [4].

X. Deng and D. Du (Eds.): ISAAC 2005, LNCS 3827, pp. 116–125, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

An Optimization Problem Related to VoD Broadcasting 117

video. FDPB has the following constraints: (a) there is just one channel2 that is
divided into s subchannels, each subchannel consisting of every sth slot of the
channel; (b) wi = m+i−1; (c) each page must be transmitted in one subchannel
with a fixed period, and (d) all pages appearing in a given subchannel must be
consecutive and have the same period. Our objective is to maximize the number
of pages n that can be scheduled, by choosing the optimal value for s, which
depends on m.

The author of [5] originally conjectured that s =
√

m would be the optimal
s value, but later found that it was not always the case among the examples
he tested. Recently, Bar-Noy et al. [2] considered this problem and proposed
a method whereby they could find the optimal value by testing m/2 different
values of s. We analyze this dependency in detail in this paper and show that the
optimal value of s is guaranteed to be one of roughly 0.9

√
m possible values. We

thus can avoid time-consuming exhaustive search for the optimal s. The limited
range for s reduced the running time of a computer program to compute the
optimal value for s rather dramatically from a few hours down to a few seconds
when m = 10000.3

The rest of the paper is organized as follows. Sect. 2 describes a useful tool,
called the round-robin tree, introduced in [2]. In Sect. 3, we derive a formula for
the optimal number sopt of subchannels that maximizes the number of pages
that can be scheduled under the constraints adopted by FDPB. We then find
in Sect. 4 a small range for s in terms of m that needs to be searched, in order
to find sopt. Finally, in Sect. 5, we mention implications of our results, and also
propose a new method of subchanneling such that a subchannel is divided into
subsubchannels.

2 Preliminaries

2.1 Round-Robin Tree

The round-robin (RR) tree is a useful tool to represent a cyclic schedule [2]. Fig.
1 shows an example of a 2-level round-robin tree whose leaves are labeled by
pages. A round-robin tree represents a schedule as follows:

1. Initially the root gets a “turn”.
2. When a non-leaf node gets a turn, it passes the turn to its “next” child node.

The leftmost child node gets a turn first and the order “next” means the next
sibling to the right, wrapping around back to the leftmost child node.

3. When a leaf gets a turn, its associated page is scheduled and the turn goes
back to the root. ��

Example 1. Applying the above rules, it is seen that Fig. 1 represents the sched-
ule, 〈P1, P4, P8, P2, P5, P9, . . .〉. Note that pages P1, P2 and P3 have period 9
2 For the purpose of our discussion, this can be assumed without loss of generality.

The general case is considered in the discussions section of this paper.
3 Measured for a Java program running on a Pentium II CPU.

118 T. Kameda, Y. Sun, and L. Goddyn

3 P4 P5 P6 P7 8P PP P P9 10 12112P P P1

Fig. 1. A round-robin tree representation of FDPB with s = 3 subchannels

(= 3s), pages P4, . . . , P7 have period 12 (= 4s), and pages P8, . . . , P12 have pe-
riod 15 (= 5s). ��

Lemma 1. [1] Suppose the root of a 2-level RR tree T has s subtrees and for
k = 1, 2, . . . , s, the kth subtree from left has nk child leaves. Then T repre-
sents a schedule in which each page assigned to a leaf in the kth subtree ap-
pears with period nk × s, and the minimum cycle of the schedule is given by
s × LCM(n1, n2, . . . , nk), where LCM stands for the least common multiple of
the arguments. ��

2.2 Model

The kth subtree of an RR tree T gets one “turn” out of every s “turns”. We
thus consider that the given channel is divided into s subchannels such that
subchannel k consists of the time slots t satisfying (t mod s) + 1 = k, where
time slots are numbered t = 0, 1, 2, . . . [5].

Lemma 2. [1, 5] In FDPB with parameter m, in order for the viewer to be able
to view the video continuously, page i must be broadcast (scheduled) at least once
in each window of size wi = m + i − 1. ��

Example 2. Let us suppose m = 9 and choose s = 3. Page P1 can be scheduled
in every w1 = 9 + 1 − 1 = 9th slot. Since s = 3, subchannel 1 consists of every
3rd slot, and P1 needs only 1/3 of it, and P2 and P3 can also be scheduled in
subchannel 1, Thus we create a subtree with three leaves and label them by
P1, P2 and P3. See Fig. 1. These three pages will each have period 9 (= 3s),
which is adequate, since w2 > 9 and w3 > 9. Page P4 must have period at most
w4 = m + 4 − 1 = 12 (= 4s). Thus, we create the second subtree (representing
subchannel 2) as shown in Fig. 1. Similarly for the last subtree. In summary,
by dividing a channel into three subchannels, we can now pack 12, instead of 9
(when s = 1), pages in a channel. ��

Let nk denote the number of leaves of the kth subtree. In order for P1 to appear
within every window of size w1 = m, we must satisfy sn1 ≤ m by Lemma 1.
We thus get n1 = �m/s� as the maximum integer satisfying this inequality. Now
that the first n1 pages have been scheduled in subchannel 1, the next page, i.e.,
the n1 + 1st page must have period at most wn1+1 = m + (n1 + 1) − 1, hence
sn2 ≤ m + n1, from which we get n2 = �(m + n1)/s�. In general, we have the
following formula for nk:

An Optimization Problem Related to VoD Broadcasting 119

nk = �(m + n1 + n2 + · · · + nk−1)/s� (1)

Let n(m, s) denote the total number of pages that can be scheduled by a 2-level
RR tree with s subtrees, i.e.,

n(m, s) =
s∑

k=1

nk. (2)

3 Optimization for FDPB

3.1 Problem

Fig. 2(a) plots n(100, s) computed from (1) and (2) by varying s in the range
1 ≤ s ≤ 100 (the rugged curve). It is seen that s = 10 maximizes n(100, s).

In Fig. 2(b), n(m, s) is plotted for many different values of m (1 ≤ m ≤ 130).
For each value of m, a curve is drawn by varying s within the range 1 ≤ s ≤ m.
This can be considered as exhaustive search by which to find the optimal s that
maximizes n(m, s).4 Note that the optimal value of s that maximizes n(m, s)
grows with m. Our main interest in this paper is to analyze the dependency of
the optimal value of s on m in the hope of finding the optimal value without
resorting to exhaustive search.

From what we have seen, we can use subtrees and subchannels almost syn-
onymously. From now on, we will mainly use the term subtree. In reference to
(1), for k = 1, · · · , s, we define rk (0 ≤ rk ≤ s − 1) by

m +
k−1∑

j=1

nj = snk + rk. (3)

We thus have for k ≥ 2

nk = �(nk−1s + rk−1 + nk−1)/s� = nk−1 + �(nk−1 + rk−1)/s�
rk = nk−1 + rk−1 (mod s). (4)

In order to find the optimal value of s that maximizes n(m, s) by differentiation,
we try to approximate n(m, s) by a function that doesn’t contain any floor
function. Let r̄ denote the average of {rk | k = 1, 2, . . . , s} in (3).

Lemma 3. The total number of pages that can be assigned to the s subtrees is
approximated by the following formula when s (< m) is sufficiently large:

n(m, s) ≈ (m − r̄)
(

(1 +
1
s
)s − 1

)
. (5)

4 The four dotted curves in Fig. 2(b) correspond to m = 9, 21, 51 and 128. (See Sect. 5.)

120 T. Kameda, Y. Sun, and L. Goddyn

 80

 90

 100

 110

 120

 130

 140

 150

 160

 0 10 20 30 40 50 60 70 80 90 100

Number of subchannels (s)

Number of pages packed (n(100,s))

Actual data for m=100
Approximation (r/s=0.5)

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

Number of subchannels (s)

Number of pages packed into one channel (n)

Each curve represents an intial period m
Four channels used

Fig. 2. (a) The rugged curve shows n(100, s) for 1 ≤ s ≤ m = 100. The smooth dashed
curve is an approximation using (5) with r̄/s = 0.5; (b) n(m, s) for m = 1, 2, . . . , 130.

Proof. Let n0 = m and rewrite (3) as follows: rk =
∑k−1

j=0 nj − snk, and hence
rk

s (1 + 1/s)s−k = (1 + 1/s)s−k
∑k−1

j=0 nj/s − (1 + 1/s)s−knk. Summing this from
k = 1 to s, we get

s∑

k=1

rk

s
(1 + 1/s)s−k =

s∑

k=1

(1 + 1/s)s−k
k−1∑

j=0

nj/s −
s∑

k=1

(1 + 1/s)s−knk.

We can rewrite the right hand side as follows:
∑s−1

j=0(nj/s)
∑s

k=j+1(1+1/s)s−k−
∑s

k=1(1 + 1/s)s−knk =
∑s−1

j=0 nj [(1 + 1/s)s−j − 1] −
∑s

k=1(1 + 1/s)s−knk =
m[(1 + 1/s)s − 1] − n(m, s). We thus obtain

n(m, s) = m[(1 + 1/s)s − 1] −
s∑

k=1

rk

s
(1 + 1/s)s−k. (6)

We notice that n(m, 1) = n(m, m) = m and that n(m, s) increases with s for
small (relative to m) values of s. We now estimate n(m, s) for large s (< m).
For sufficiently large s, we assume that the remainders r1, · · · , rs are uniformly
distributed in the range [0, s−1]. Substituting ri = r̄ into (6), we obtain (5). ��

3.2 Solution

Corollary 1. For sufficiently large s, the total number of pages n(m, s) can be
bounded as follows:

(m − s + 1)
(

(1 +
1
s
)s − 1

)
≤ n(m, s) ≤ m

(
(1 +

1
s
)s − 1

)

Proof. Follows directly from Lemma 3 by setting r̄ = s−1 (for the lower bound)
and r̄ = 0 (for the upper bound). ��

An Optimization Problem Related to VoD Broadcasting 121

In order to find the optimal value of s that maximizes n(m, s), one needs to
evaluate (2) for s ranging 2 ≤ s ≤ m/2 [2]. This is time-consuming when m
gets large. In what follows, we show that the optimal solution sopt can be found
within a range containing O(

√
m) possible values of s. The following theorem

shows how sopt grows with m for large m.

Theorem 1. The optimal number of subtrees sopt grows roughly linearly with√
m.

Proof. Let r̄ = a(s − 1) in (5), where the range of parameter a is 0 < a < 1.
The optimal s satisfies the differential equation, ∂n(m,s)

∂s = 0. Therefore, we have

(1 + 1/s)s
[
ln(1 + 1/s) +

s2(1/s−(s+1)/s2)
s+1

]
(m−a(s−1))−a ((1 + 1/s)s − 1) = 0.

If s is sufficiently large, we can approximate the above equation as follows:

em/2 + 23
24ea

s2 − (e − 1)a ≈ 0.

By solving the above quadratic equation, using the assumption s2 � a, we obtain

sopt ≈
√

em

2a(e − 1)
. (7)

��

Fig. 3 plots the optimal number of subtrees, sopt, computed by exhaustive
search, varying s from 1 to m for each period m of the first page in the range
up to 10000. It is observed that, despite the assumption s � 1 made to derive
(5), practically all the data points are within an area bounded by

√
m − 3 and

1.54
√

m+6. By reducing the range of search from s ∈ [1, m/2] to s ∈ [max{√
m−

3, 1}, 1.54
√

m + 6], the execution time of our search program for all values of m
between 1 and 50000 went down rather drastically from more than one day to
less than a minute. This range is roughly (1.54 − 1)

√
m ≈ 0.54

√
m.

4 Theoretical Bounds

Although the results obtained in the previous section are quite satisfactory, there
is no guarantee that nothing strange will happen beyond m = 10000. In order
to dispel such misgivings, we shall derive theoretical upper and lower bounds in
this section. They are shown in Fig. 3 as the top and bottom curves.

The formula (7) is not directly useful, since a = a(m, s) is a function of s. In
order to overcome this problem, let S denote a range for s such that sopt ∈ S
for large m. Define aup = Sups∈S{a(m, s)} and alow = Inf s∈S{a(m, s)} Then
from (7), we have

√
em

2aup(e − 1)
≤ sopt ≤

√
em

2alow (e − 1)
. (8)

122 T. Kameda, Y. Sun, and L. Goddyn

 0

 50

 100

 150

 200

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
pt

im
al

 n
um

be
r

of
 s

ub
tr

ee
s

Period of first page (m)

Optimal no of subchannels
1.78* SQRT(m)

1.54* SQRT(m)+6
SQRT(m)-3

0.89*SQRT(m)

Fig. 3. The optimal number of subtrees (sopt) vs. the period (m) of the first page. The
actual optima are plotted as data points.

Since a < 1, we obviously have aup < 1. In the rest of this section, we shall find
a lower bound on alow . Fig. 4(a) plots the computation results for a(10000, s)
for s in the range 1 ≤ s ≤ m = 10000. The initial part of the graph is blown up
in Fig. 4(b).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

a(
10

00
0,

s)
 =

 (
A

ve
ra

ge
 r

em
ai

nd
er

)/
(s

-1
)

Number of subchannels (s)

(a) 1 < s < 10000

Normalized average remainder

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 50 100 150 200 250 300

a(
10

00
0,

s)
 =

 (
A

ve
ra

ge
 r

em
ai

nd
er

)/
(s

-1
)

Number of subchannels (s)

(b) 1 < s < 300

Normalized average remainder

Fig. 4. (a) Quantity a(10000, s) = r̄/(s − 1) vs. s (1 ≤ s ≤ 10000); (b) Quantity
a(10000, s) = r̄/(s − 1) vs. s (1 ≤ s ≤ 300)

In order to find alow for given m, we want to investigate how the remainder
changes in the vicinity of s =

√
m, where the optimal value for s is to be found.

Example 3. Fig. 5 illustrates the case where m = 10000 and the number of
subtrees s = 150. (The optimal number of subtrees in this case is sopt = 132.)
The horizontal axis represents the 150 subtrees, i.e., subtrees k = 1 to k =

An Optimization Problem Related to VoD Broadcasting 123

150. Each number in Fig. 5 is nk of (1) for some k, and its height represents
rk of (3). The lower horizontal line is the average of all the remainders {rk |
k = 1, 2, . . . , s}, while the upper horizontal line is at height (s − 1)/2. The
dotted curves (each “dot” is represented by symbol “+”) in Fig. 5 represent the
difference |rk+1 − rk| for k = 1, 2, . . . , s − 1. For example, let index k be such
that nk = 137 and rk = 5. (Of the two points in Fig. 5 that are labeled by
137, this point is the one close to the bottom.) Then by (4) we can compute
nk+1 = 137+�(137+5)/150� = 137 and rk+1 = 137+5 (mod 150) = 142, which
correspond to the other point labeled by 137. The difference rk+1 − rk = 137 is
seen as a “+” just below this 137. Similarly, we can compute nk+2 = 138 and
rk+2 = 129, and hence |rk+2 − rk+1| = 8. This explains the position of the point
labeled by 138 and the height of the next “+”. ��

One striking feature in Fig. 5 is the presence of quadratic curves (parabo-
las).We now examine the cause of the parabolas observed in the above example.
For m = 10000 and s >

√
m = 100, after computing n1, n2, . . . , suppose we

reach i − 2 such that ni−2 = s − 1 and ri−2 = r for some r. Using (4), we get
ni−1 = s − 1 + �(s − 1 + r)/s� = s, ri−1 = r − 1; ni = s + 1, ri = r − 1;
(ni = s + 1 appears at the bottom of the right parabola in Fig. 5. If s is chosen
too large, this parabola will move to the right out of range.) ni+1 = s+2, ri+1 =
r = (r − 1)+1 ; ni+2 = s+3, ri+2 = (r − 1)+1+2, and so forth, and in general,

ri+j = (r − 1) +
j∑

h=1

h = (r − 1) + j(j + 1)/2, (9)

for 0 ≤ j ≤ p, where p is the maximum number such that (r − 1) + p(p + 1)/2 ≤
s − 1. It is seen that ri+j is a quadratic function of j.

Lemma 4. For sufficiently large m, if s >
√

m then the average remainder
r̄ > (s − 1)/4.

Proof. Fix the value s >
√

m near
√

m,5 and assume the worst case, where
the remainders are concentrated near 0, i.e., the remainder in (9) has the form
ri+j = j(j + 1)/2 (i.e., r = 1) for 0 ≤ j ≤ p. Thus the remainders take one of
the p + 1 values, 0, 1, 3, . . . , p(p + 1)/2, because this leads to the most skewed
distribution of remainders towards 0. Note that p satisfies (p+1)(p+2)/2 > s−1.
Then the average value of all the p + 1 remainders is given by R = (1/(p +
1))

∑p
j=1 j(j + 1)/2 = p(p + 2)/6. Using (p + 1)(p + 2)/2 > s − 1, we can derive

R > (1 − 1/(p + 1))(s − 1)/3 > [1 − 1/(
√

2(s − 1) − 1)](s − 1)/3. For s ≥ 14, we
have [1 − 1/(

√
2(s − 1) − 1)] > 3/4, and therefore r̄ > R > (s − 1)/4. ��

Quadratic growth is not clearly discernible in the middle part of Fig. 5, but
it is there. For example, there is a parabolic curve segment on which the points
5 As commented earlier, if s is chosen too large, the parabola that contains a point

labeled by nk = s at its bottom won’t appear. In such a case, see the comments
after this lemma.

124 T. Kameda, Y. Sun, and L. Goddyn

178

177

176

175

173

172

171

170

169

168

167

166

164

163

162

161

160

159

158
157
156
155
154
153152151150149148

147
146
145
144
143

142

141

140

139

138

137

137

136

135

134

133

132

131

130

129

129

128

127

126

125

124

124

123

122

121

120

120

119

118

117

116

116

115

114

113

113

112

111

110

110

109

108

107

107

106

105

105

104

103

103

102

101

101

100

99

99

98

97

97

96

95

95

94

93

93

92

92

91

90

90

89

89

88

87

87

86

86

85

85

84

84

83

82

82

81

81

80

80

79

79

78

78

77

77

76

76

75

75

74

74

73

73

72

72

71

71

70

70

69

69

68

68

68

67

67

66

0

20

40

60

80

100

120

140

20 40 60 80 100 120 140

Fig. 5. Above k (1 ≤ k ≤ s = 150) on the horizontal axis, a point with label nk is
plotted at height rk

labeled by 95, 96 and 97 lie. It is easy to see that in general the average of
the remainders on such a parabolic curve segment is larger than (s − 1)/4. In
particular, if there are only two points on a parabolic curve segment, then their
difference in height must be > (s − 1)/2, and hence their average should be
> (s− 1)/4. There may be one or two points, e.g., the point labeled by 101 near
the bottom of the graph, which do not share a parabolic curve segment with
any other points. But their influence on lowering the average remainder can be
compensated for by other large remainders. Note that on the left part of Fig. 5
there are parabola-like patterns, but they are not parabolas in the sense the
term is used here. Two points labeled by 80, for example, form a parabolic curve
segment.

Theorem 2. For sufficiently large m, the optimal number of subtrees sopt that
maximizes n(m, s) can be bounded as follows:

√
em

2(e − 1)
< sopt <

√
2em

(e − 1)
.

Proof. Lemma 4 implies alow > 1/4. Plug it and aup < 1 into (8). ��

According to the above theorem, only
√

2em/(e − 1) −
√

em/2(e − 1) ≈
1.78

√
m − 0.89

√
m = 0.89

√
m different values of s need be tested to find sopt.

The bounds given by the above theorem are shown as the top and bottom curves
in Fig. 3.

An Optimization Problem Related to VoD Broadcasting 125

5 Discussions

Let us consider the general case, where we have c channels, C1, C2, . . . , Cc. Sup-
pose the maximum period of the initial page for channel C1 is m1. Then we have
m2 = m1+(i1+1)−1 for first page of channel C2, if pages 1 to i1 are packed into
channel C1. Thus by varying the parameter m in our previous analysis, we can
determine how many pages can be packed into the second, third, . . . channels.
For example, the four dotted curves in Fig. 2(b) correspond to m = 9, 21, 51 and
128. The curve for m1 = 9 reaches its peak 12 at s = 3, which implies that 12
pages can be packed into C1 if the period of the first page is 9 and three subtrees
are used. Thus page 13 is the first page to be packed in C2, and therefore we
should look at the curve for m2 = 9+13−1 = 21. This curve has the peak value
of 30, and thus 30 pages can be packed into C2, and so forth.

We could use recursive subchanneling. Namely, we first divide a channel into
s subchannels of equal bandwidth as before, and then further divide each of the
s subchannels into subsubchannels, and so forth. In other words, instead of a
2-level RR tree, we use a RR tree with 3 or higher levels. It turns out that we
are able to fit only slightly more pages into a channel for some values of m.
Recursive subchanneling becomes more beneficial for larger values of m.

Although the problem addressed in this paper is rather special, we believe the
approach we used could be applied to many other optimization problems that
involve the floor or ceiling function.

Acknowledgement

We thank the members of the Distributed Computing Laboratory in the School
of Computing Science at Simon Fraser University for stimulating discussions.

References

1. Bar-Noy, A., Ladner, R.E.: Windows scheduling problems for broadcast systems.
Proc. 13th ACM-SIAM Symposium on Discrete Algorithms (2002) 433–442

2. Bar-Noy, A., R.E. Ladner, R.E., Tamir, T.: Scheduling Techniques for Media-on-
Demand. Proc. 14th ACM-SIAM Symposium on Discrete Algorithms (2003) 791–
800

3. Hollmann, H.D.L., Holzscherer, C.D.: Philips Tech. Rept. (1991) European Patent
(1991) and US patent No. 5524271 (1995)

4. Kameda, T., Sun, T.: Survey on VoD broadcasting schemes. School of
Computing Science, SFU (2003) http://www.cs.sfu.ca/∼tiko/ publications/
VODsurveyPt1.pdf

5. Pâris, J.-F.: A fixed-delay broadcasting protocol for video-on-demand. 10th Int’l
Conf. on Computer Communications and Networks (2001) 418–423

6. Thirumalai, K., Pâris, J.-F., Long, D.D.E.: Tabbycat: an inexpensive scalable server
for video-on-demand. Proc. IEEE International Conference on Communications
(2003) 896–900

	Introduction
	Preliminaries
	Round-Robin Tree
	Model

	Optimization for FDPB
	Problem
	Solution

	Theoretical Bounds
	Discussions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

