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Abstract. Transportation networks model facilities for fast movement
on the plane. A transportation network, together with its underlying dis-
tance, induces a new distance. Previously, only the Euclidean and the
L1 distances have been considered as such underlying distances. How-
ever, this paper first considers distances induced by general distances
and transportation networks, and present a unifying approach to com-
pute Voronoi diagrams under such a general setting. With this approach,
we show that an algorithm for convex distances can be easily obtained.

1 Introduction

Transportation networks model facilities for fast movement on the plane. They
consist of roads and nodes; roads are assumed to be segments along which one
can move at a certain fixed speed and nodes are endpoints of roads. We assume
that there are no crossings among roads but roads can share their endpoints as
nodes. We thus define a transportation network as a plane graph whose vertices
are nodes and whose edges are roads with speeds assigned. Also, we assume that
one can access or leave a road through any point on the road. This, as Aichholzer
et al. [3] pointed out, makes the problem distinguishable from and more difficult
than those in other similar settings such as the airlift distance.

In the presence of a transportation network, the distance between two points
is defined to be the shortest elapsed time among all possible paths joining the
two points using the roads of the network. We call such an induced distance a
transportation distance. (In other literature [2, 3], it is called a time distance or a
city metric.) More precisely, a transportation distance is induced on the plane by
a transportation network and its underlying distance that measures the distance
between two points without roads.

Since early considerations for roads [7, 17, 20], fundamental geometric prob-
lems, such as shortest paths and Voronoi diagrams, under transportation dis-
tances have been receiving much attention recently [1, 2, 3, 4, 8, 18]. However,
underlying distances considered in the literature were only the Euclidean dis-
tance [2, 4] and the L1 distance [1, 3, 8]. Since transportation distances have
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quite different properties depending on their underlying distances, there has not
been a common approach to extend such problems to more general underlying
distances. This paper thus considers geometric problems, in particular, short-
est paths and Voronoi diagrams under transportation distances induced from
general distances.

The Results. This paper presents, to the best of our knowledge, the first result
that studies general underlying distances and gives algorithms for computing
Voronoi diagrams with transportation networks, in Section 3. More precisely,
we classify transportable distance functions where transportation networks and
transportation distances are well-defined. Transportable distances include asym-
metric convex distances, nice metrics, and even transportation distances. In this
general setting, a unifying approach to compute Voronoi diagrams is presented.

As a special case of transportable distances, we take the convex distances into
account in Section 4. Based on the approach in Section 3 together with geometric
and algorithmic observations on convex distances, we first obtain an efficient and
practical algorithm that computes the Voronoi diagram with a transportation
network under a convex distance.

For the L1 metric, previous work considered only isothetic networks and a
single or a constant number of speeds for roads [3, 8]. Our results first deal
with more general transportation networks, which have no restriction except for
straightness; the roads can have arbitrarily fixed speeds and directions. For the
Euclidean metric, we obtain the same time and space bounds as those of the
previously best results [4].

Note that a resulting diagram of our algorithm is in fact a refined diagram
of the real Voronoi diagram so that it consists of shortest-paths information in
each cell and it can also serve as a shortest path map structure.

2 Preliminaries

2.1 Transportation Networks Under General Distances

Here, we let d : R
2 ×R

2 → R be a total distance function. For the Euclidean and
the L1 distances, a transportation network can be sufficiently represented as a
planar straight-line graph. If, however, we consider more general distances, the
meaning of “straight” should be reconsidered. Note that a straight segment is a
shortest path or a geodesic on the Euclidean plane or on the L1 plane. Geodesics,
in general, naturally generalize straight segments, and a road can be defined to
be a segment along a geodesic. Thus, in order to build a transportation network
under d, d needs to admit a geodesic between any two points on the plane.

In this step, we define a transportable distance that satisfies several axioms. It
is easy to observe that distances that admit geodesics and are possibly asymmet-
ric are transportable. We will show that transportable distances admit a geodesic
between any two points on the plane. We call a distance d over R

2 transportable
if the following properties hold:
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1. d is non-negative and d(p, q) = d(q, p) = 0 iff p = q and d satisfies the
triangle inequality.

2. The backward topology induced by d on X induces the Euclidean topology.
3. The backward d-balls are bounded with respect to the Euclidean metric.
4. For any two points p and r, there exists a point q /∈ {p, r} such that d(p, q)+

d(q, r) = d(p, r).

Distances with Condition 1 are called quasi-metrics and they induce two
associated topologies by two families of open balls, B+

d (x, ε) = {y|d(x, y) < ε}
and B−

d (x, ε) = {y|d(y, x) < ε}, called forward and backward, respectively [9, 16].
Here, we consider only the backward case since we shall take only the inward
Voronoi diagrams into account; Voronoi sites are supposed to be static and fixed.
In fact, Conditions 2-4 of the definition of transportable distances mimic those of
nice metrics in the sense of Klein and Wood [13]. By these conditions, (R2, d) is
known to be backward-complete [16]. Also, we can find a geodesic, whose length
is the same as the distance, between two points in R

2.

Lemma 1. Let d be a transportable distance. Then, for any two points p and
r, there exists a path π from p to r such that for each point q on π the equality
d(p, r) = d(p, q) + d(q, r) holds.

Such paths are called d-straight and they generalize straight line segments
with respect to the Euclidean metric, indeed. This lemma can be shown by
Menger’s Verbindbarkeitssatz that implies the existence of d-straight paths in a
complete metric space [19].

Now, we are able to define a transportation network under a transportable
distance d. Since d can be asymmetric, roads in a transportation network may
have an orientation. Thus, throughout this paper, a transportation network un-
der d is defined to be a directed plane graph G = (V, E) such that any edge e in
E is a segment of a d-straight line and has its own weight v(e) > 1, called speed.
We note that an edge has an orientation so that it can be regarded as a one-way
road. And we call edges in E roads and vertices in V nodes, and roads and nodes
may denote d-straight paths and points by themselves referenced. Two incident
nodes of a road e is identified by p1(e) and p2(e), where e has the orientation
toward p2(e) from p1(e). Note that any crossings among roads can be removed
by introducing additional nodes. An anomaly occurs when we think of a two-way
road. Thus, we allow coincidence only for two roads having the same incident
nodes.

Now, we consider a distance dG induced by a transportable distance d and a
transportation network G = (V, E) under d, which can be defined as follows:

dG(p, q) = min
P=(p1,··· ,p�)∈P(p,q)

�−1∑

i=1

1
vi

d(pi, pi+1),

where P(p, q) is the set of all piecewise d-straight paths from p to q and vi = v(e)
if there exists an oriented road e ∈ E such that the path from pi to pi+1 passes
along e, otherwise, vi = 1. We call dG the transportation distance induced by d
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and G. Note that transportable distances include nice metrics, convex distances,
and even transportation distances.

2.2 Needles

Bae and Chwa [4, 4] defined a needle as a generalized Voronoi site, which is
very useful for a transportation network. In fact, the concept of needles was
first proposed by Aichholzer, Aurenhammer, and Palop [3] but needles were not
thought of as Voronoi sites in their results.

Here, we consider a needle under a transportable distance d. A needle p
under d can be represented by a 4-tuple (p1(p), p2(p), t1(p), t2(p)) with t2(p) ≥
t1(p) ≥ 0, where p1(p), p2(p) are two endpoints and t1(p), t2(p) are additive
weights of the two endpoints, respectively. In addition, a needle under d is d-
straight in a sense that it can be viewed as a set of weighted points on the
d-straight path from p2(p) to p1(p). Other terms associated with a needle under
d are determined in a similar way with the Euclidean case. Thus, let s(p) be the
set of points on the d-straight path from p2(p) to p1(p), and v(p) be the speed
of p, defined by d(p2(p), p1(p))/(t2(p) − t1(p)).

The distance from any point x to a needle p is measured as d(x,p) =
miny∈s(p){d(x, y) +wp(y)}, where wp(y) is the weight assigned to y on p, given
as wp(y) = t1(p) + d(y, p1(p))/v(p), for all y ∈ s(p).

For the Euclidean case, the Voronoi diagram for pairwise non-piercing needles
has been shown to be an abstract Voronoi diagram. Two needles are called non-
piercing if, and only if, the bisector between them contains at most one connected
component. For more details, we refer to [4, 4].

3 Voronoi Diagrams Under Transportation Distances

3.1 dG-Straight Paths and Needles

As noted in the previous section, a transportable distance d and a transportation
network G induce a new distance dG and dG-straight paths. The structure of
any dG-straight path can be represented by a string of {S, T}, where S denotes
a d-straight path without using any road and T denotes that along a road.

Let us consider a single road e as a simpler case. Given a transportation
network G with only one road e, a dG-straight path is of the form STS or its
substring except for SS. This is quite immediate; paths represented by longer
strings than STS can be reduced since a road is d-straight and d satisfies the
triangle inequality. Thus, any dG-straight path P from p to q using a road e
can be represented as P = (p, p′, q′, q), where p′ is the entering point to e and
q′ is the exiting point to q. We then call q′ a footpoint of q on e. A point may
have several or infinitely many footpoints on a road. Let FPe(q) be the set of
footpoints of q on e for all dG-straight paths from any point to q using e. Let us
consider a total order ≺e on the points on a road e, where x ≺e y for x, y ∈ e
if the orientation of the d-straight path from x to y is equivalent to that of e.
Then, the following property of footpoints can be shown.
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Lemma 2. Let F ⊆ e be connected. Then, the following are equivalent.

1. F is a connected component of FPe(q).
2. F has the least point q0 with respect to ≺e such that q0 ∈ FPe(q), and

d(q1, q) = d(q1, q2)/v(e) + d(q2, q) for any q1, q2 ∈ F with q1 ≺e q2.

For such a shortest path P = (p, p′, q′, q), we can find a needle q such that
d(p,q) = dG(p, q). Such a needle q is said to be produced on a road e from a
point q for a footpoint q′, and can be defined by setting parameters as follows;
p1(q) = q′, p2(q) = p1(e), t1(q) = d(q′, q), and t2(q) = d(p′q′)/v(e) + d(q′, q).
We let σe(q) be the set of needles produced on e from q for the least footpoint
of every connected component in FPe(q). Also, both of FPe(·) and σe(·) can be
naturally extended for needles since shortest paths to a needle under dG are also
dG-straight paths.

Lemma 3. If a transportation network G under d contains only one road e, for
a point x and a needle p, dG(x,p) = d(x, σe(p) ∪ {p}).

Now, we consider multiple roads. Let σG(p) =
⋃

e∈E σe(p) and σG(A) =⋃
p∈A σG(p) for a set A of needles. Since dG-straight paths may pass through

several roads, we apply σG(·) repeatedly. We thus let σk
G(p) = σG(σk−1

G (p)) and
σ0

G(p) = {p}. Also, we let Sk
p denote

⋃k
i=0 σi

G(p) and Sp denote S∞
p .

Theorem 4. Given a transportable distance d and a transportation network G
under d, for a point x and a needle p,

dG(x,p) = d(x, Sp).

Proof. We first define dk
G(p, q) be the length of a shortest path from p to q where

the path passes through at most k roads in G. Surely, dG(p, q) = d∞G (p, q).
We claim that dk

G(x,p) = d(x, Sk
p), which directly implies the theorem. We

prove this by induction. Lemma 3 gives us an inductive basis.We haved(x,S�+1
p )=

min{d(x, S�
p), d(x, σ�+1

G (p))} = min{d(x, S�
p), d(x, σG(σ�

G(p)))}. By inductive hy-
pothesis and Lemma 3, the equation is evaluated as d(x, S�+1

p ) = min{d�
G(x,p),

d1
G(x, σ�

G(p))}.
As pointed out in the proof of Lemma 3, d1

G(x, σ�
G(p)) implies a shortest path

to a needle in σ�
G(p) using exactly one road in G, and further a shortest path

to p using exactly � + 1 roads. Therefore, we conclude d(x, S�+1
p ) = d�+1

G (x,p),
implying the theorem. ��

Theorem 4 says a nice relation between needles and roads. Furthermore, it di-
rectly implies that the Voronoi diagram Vd(S) under d for S induces the Voronoi
diagram VdG(S) under dG for S, where S denotes

⋃
p∈S Sp. In other words, any

Voronoi region in Vd(S) is completely contained in a Voronoi region in VdG(S),
i.e., VdG(S) is a sub-diagram of Vd(S).

Corollary 5. VdG(S) can be extracted from Vd(S) in time linear in the size of
Vd(S).
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3.2 Computing Effective Needles

In this subsection, we present an algorithm for computing the Voronoi diagram
VdG(S) for a given set S of sites under dG. The algorithm consists of three phases;
it first computes the set S of needles from G and S, secondly, the Voronoi diagram
Vd(S) for S under d is constructed, and the Voronoi diagram VdG(S) for S under
dG is finally obtained from Vd(S).

The second phase, computing Vd(S), would be solved by several technics and
general approaches to compute Voronoi diagrams, such as the abstract Voronoi
diagram [10]. Also, the third phase can be done by Corollary 5. We therefore
focus on the first phase, computing S—in fact, its finite subset—from G and S.

Recall that S is defined as all the needles recursively produced from given
sites and contains infinitely many useless needles, that is, needles that do not
constitute the Voronoi diagram Vd(S). We call a needle p ∈ S effective with
respect to S if the Voronoi region of p in Vd(S) is not empty. Let S∗ ⊆ S be
the largest set of effective needles with respect to S, i.e., Vd(S∗) = Vd(S). Our
algorithm computes S∗ from G and S.

The algorithm works with handling events, which are defined by a certain
situation at a time. Here, at each time t, we implicitly maintain the (backward)
dG-balls of the given sites, where the backward dG-ball of a site p is defined as
the set B−

dG
(p, t) = {x|dG(x, p) < t}, and dG-balls expand as time t increases.

Here, we have only one kind of events, called birth events which occur when a
dG-ball touches any footpoint on a road during their expansions; at that time a
new needle will be produced in the algorithm. We can determine a birth event
associated with a footpoint of a needle on a road. In order to handle events, we
need two data structures: Let Q be an event queue implemented as a priority
queue such that the priority of an event e is its occurring time and Q supports in-
serting, deleting, and extracting-minimum in logarithmic time with linear space.
And, let T1, T2, · · · , Tm be balanced binary search trees, each associated with ei,
where the road set E is given as {e1, e2, · · · , em}. Each Ti stores needles on
ei in order and the precedence for a needle p follows from that of p1(p) with
respect to ≺ei . Ti supports inserting and deleting of a needle in logarithmic time,
and also a linear scan for needles currently in Ti in linear time and space.

Now, we are ready to describe the algorithm ComputeEffectiveNeedles.
First, the algorithm computes σG(S) and the associating birth events, and insert
events into Q. Then, while the event queue Q is not empty, repeat the following
procedure: (1)Extract the next upcoming event b, say that b is a birth event on
a road ei associated with a needle p. (2)Test the effectiveness of p and, (3)if
the test has passed, compute birth events associated with σG(p), and insert the
events into Q.

ComputeEffectiveNeedles returns exactly S∗ by the effectiveness test in
(2). This test can be done by checking if the associating footpoint of the current
event has been already dominated by dG-balls of other sites. Thus, if the test is
passed, we decide that the new needle should be effective and insert it into Ti.
The following lemma shows that the effectiveness test is necessary and sufficient
to compute S∗.
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Lemma 6. For every birth event and its associating needle p, p is effective with
respect to S if and only if it passes the effectiveness test of Algorithm Compute-

EffectiveNeedles.

The algorithm always ends, which can be shown by the finiteness of S∗. The
effectiveness test always fails if all the roads are covered with the dG-balls after
some large time T and there exists such T since distances between any two
points in the space are always defined. Hence, S∗ contains a finite number of
needles. Moreover, the number of events handled while running the algorithm is
also bounded by the following lemma.

Lemma 7. S∗ is finite and the number of handled events is O(s · |S∗|), where
s is the maximum cardinality of σG(p) for any needle p.

We end this section with the following conclusion.

Theorem 8. Given a transportable distance d, a transportation network G un-
der d, and a set S of sites, S∗ can be computed in O(ε(log ε + Tef )) time, where
ε is the number of events handled while running the algorithm, the same as
O(s · |S∗|), and Tef denotes time taken to test the effectiveness.

In most natural cases, such as the Euclidean metric and convex distances,
sufficiently Tef = O(log ε) so that the total running time becomes O(ε log ε).

4 Transportation Networks Under Convex Distances

In this section, we deal with convex distances as a special case of transportable
distances. We thus investigate geometric and algorithmic properties of the in-
duced distance by a convex distance and a transportation network, and construct
algorithms that compute the Voronoi diagram for given sites under the induced
distance.

In order to devise such an algorithm, we apply the abstract scheme described
in the previous section; a bundle of properties have to be shown: how to compute
needles produced from a needle, how to check the effectiveness of needles, how
many needles and events to handle, how to compute the Voronoi diagram for
needles, and some technical lemmas to reduce the complexity.

A convex distance is defined by a compact and convex body C containing the
origin, or the center, and is measured as the factor that C centered at the source
should be expanded or contracted for its boundary to touch the destination.
Note that a convex distance is symmetric, i.e. being a metric, if and only if C is
symmetric at its center.

We consider the convex C as a black box which supports some kinds of ele-
mentary operations. These are finding the Euclidean distance from the center to
the boundary in a given direction, finding two lines which meet at a given point
and are tangent to C, finding the footpoint for a needle and a road, and com-
puting the bisecting curve between two sites under the convex distance based on
C. Here, we assume that these operations consume reasonable time bounds.
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Throughout this section, for a convex body C, we denote by C+p a translation
of C by a vector p and by λC an expansion or a contraction of C by a factor λ.
And, we may denote by C′ the reflected body of C at its center and by ∂C the
boundary of C.

4.1 Roads and Needles Under a Convex Distance

For the Euclidean distance, to take a shortest path with a road e, one should
enter or exit e with angle π/2±α, where sinα = 1/v(e) [2]. For a convex distance
d based on C, there also exist such entering or exiting angles for a road that they
lead to a shortest path. We can obtain these angles by simple operations on C.
First, we pick a point x on e not p2(e) and consider (d(x, p2(e))/v(e))C′ +p2(e),
say D. We then compute two lines which meet at x and are tangent to D. Each
of the two lines is above or below e. We let α+

e and α−
e be two inward directions

perpendicular to the two lines. And, let us consider two directions from p2(e)
to two meeting points between the two lines and D. We then let β+

e and β−
e be

reflections of the two directions at the center of D. The symbols + and − mean
“above” and “below” with respect to e, respectively. See Figure 1(a).

Lemma 9. Given a road e under a convex distance d, any shortest path from p
to q passing through e has the following properties:

– If p is above e, either the access direction is α+
e or the access point is p1(e).

– If p is below e, either the access direction is α−
e or the access point is p1(e).

– If q is above e, either the leaving direction is β+
e or the exiting point is p2(e).

– If q is below e, either the leaving direction is β−
e or the exiting point is p2(e).

α+
e

α−
e

β−
e

β+
e

→ e

D

p

q

p1(e) p2(e)

(a) A road e and a shortest
path from p to q

α+
p

α−
p

β−
p

β+
p

p
p2(p) p1(p)

p

(b) A needle p and a shortest
path from p to p

Fig. 1. Directions defined for a road and for a needle

By the observation of Lemma 9, we can easily find a shortest path with one
road. For instance, Figure 1(a) shows a shortest path from p to q using road e.

We can define similar terms for a needle as we did for a road. The (backward)
d-ball B−

d (p, t) of p can be computed as follows: If 0 < t ≤ t1(p), B−
d (p, t) is

empty. If t1(p) < t ≤ t2(p), B−
d (p, t) is the convex hull of (t−t1(p))C′+p1(p) and

the point x on p such that d(x, p1(p))/v(t) = wp(x) − t1(p). And, if t > t2(p),
B−

d (p, t) is the convex hull of (t−t1(p))C′+p1(p) and (t−t2(p))C′+p2(p). Thus,
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when t > t1(p), ∂B−
d (p, t) contains two line segments tangent to two scaled C′

and the slopes of these line segments do not change even if t changes. Hence, the
meeting points between the line segments and the convex bodies scaled from C′

make 4 rays, and they have two directions −β+
p and −β−

p . Then, we can define
α+

p , α−
p , β+

p , and β−
p , equivalently as for a road, see Figure 1(b). Note that if

p ∈ σe(q) for any needle q, then α+
p = α+

e , α−
p = α−

e , β+
p = β+

e , and β−
p = β−

e ,
by definition of σe(q).

4.2 Computing S∗

In this subsection, we discuss how to compute S∗ for given sites S from the
algorithm ComputeEffectiveNeedles described in the previous section.

The footpoints. Under a convex distance, any needle has at most one connected
component of footpoints on a road. Actually, Lemma 9 tells us how to compute
the least footpoint of a point p on a road e; it can be obtained as either the
intersecting point of the road e and the ray with direction −β+

e or −β−
e from p,

or just p2(e).

Lemma 10. Let d be a convex distance based on a convex C and G be a trans-
portation network under d. For a road e in G and a needle p, the number of
connected components of footpoints of p on e is at most one and the least foot-
point is either the least footpoint of p1(p) or p2(p), or just p2(e).

The effectiveness test. At every time a birth event occurs, the effectiveness test
is done by testing if the point where the event occurs is dominated by other
already produced effective needles at that time. Under a convex distance, d-balls
of any needle are convex so that we can test the effectiveness in logarithmic
time by maintaining the tree structures Ti and doing a couple of operations on
them.

The number of needles and events. By convexity of convex distances, we can show
a couple of lemmas that prove the number of needles and events we handle.

Lemma 11. Let p be a needle produced on a road e from a needle q. For another
road e′ ∈ E, if p does not dominate any node of e or e′, no needles in σe′(p)
are effective with respect to S.

Lemma 12. S∗ contains at most O(m(n + m)) needles, where n is the number
of sites in S and m is the number of roads in G. Further, the number of handled
events while the algorithm ComputeEffectiveNeedles running is O(m2(n+
m)).

Remarks. Consequently, we have an algorithm to compute S∗ in O(m2(n +
m)(log(n + m) + Top(C))) time with O(m2(n + m)) space by Theorem 8, where
Top(C) is time taken during a simple operation on C. This complexity, however,
can be reduced by small modifications on the algorithm. For the Euclidean case,
Bae and Chwa [4] additionally maintains node events, which occur when B−

dG
(p, t)
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first touches a node, to reduce the number of events to O(m(n + m)). Here, we
also can apply the approach by Lemma 11.

The authors also introduced primitive paths; a path is called primitive if the
path contains no nodes in its interior and passes through at most one road. We
can show the lemma of primitive paths in our setting, following from Lemma 11.

Lemma 13. Given a transportation network G under a convex distance d, for
two points p and q, there exists a dG-straight path P from p to q such that P is
a sequence of shortest primitive paths whose endpoints are p, q, or nodes in V .

By Lemma 13 together with node events, we can improve our algorithm to be
more efficient. Indeed, we can compute a shortest path for two given points
by constructing an edge-weighted complete graph such that vertices are nodes
and two given points, and edges are shortest primitive paths among vertices.
Furthermore, we can use the graph to avoid useless computations during the
algorithm. For more details, we refer to [4].

Lemma 14. One can compute S∗ in O(m(n + m)(m + log n + Top(C))) time
with O(m(n + m)) space.

4.3 Voronoi Diagrams for Needles

In general, bisectors between two needles under a convex distance can be parted
into two connected components. However, it will be shown that S∗ can be re-
placed by such nice needles, so called non-piercing, that the Voronoi diagram
for them is an abstract Voronoi diagram which can be computed in the optimal
time and space.

Computing the Voronoi diagrams for non-piercing needles. The abstract Voronoi
diagram is a unifying approach to define and compute general Voronoi diagrams,
introduced by Klein [10]. In this model, we deal with not a distance but bisecting
curves J(p, q) defined in an abstract fashion between two sites p and q. A system
(S, {J(p, q)|p, q ∈ S, p 
= q}) of bisecting curves for S is called admissible if the
following conditions are fulfilled: (1) J(p, q) is homeomorphic to a line or empty,
(2) R(p, q) ∩ R(q, r) ⊂ R(p, r), (3) for any subset S′ ⊆ S and p ∈ S′, R(p, S′) is
path-connected if it is nonempty, and (4) the intersection of any two bisectors
consists of finitely many components, where R(p, q) = {x ∈ R

2|d(x, p) < d(x, q)},
R(p, S) =

⋂
q∈S,p�=q R(p, q), and J(p, q) is the bisector between p and q.

In fact, the first three conditions are enough to handle abstract Voronoi di-
agrams theoretically but the fourth one is necessary in a technical sense [11].
Though all convex distances satisfy the first three ones, there exist convex dis-
tances violating the fourth one. We guarantee the fourth condition by postulating
that ∂C is semialgebraic [5]. We also note that two-dimensional bisectors can be
avoided by a total order on given sites [13].

Lemma 15. Let S be a set of pairwise non-piercing needles under a convex
distance d based on C whose boundary is semialgebraic. Then, the system (S,
{J(p,q)| p,q ∈ S, p 
= q}) of bisecting curves for S is admissible.
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There are several optimal algorithms computing abstract Voronoi diagrams
[10, 15, 12, 6]. These algorithms assume that the bisector between two sites can
be computed in constant time, and construct the Voronoi diagram in O(n log n)
time with O(n) space when n sites are given. In our setting, we assume that
a representation of the bisector between two needles has the complexity Sb(C),
and can be computed in Tb(C) time.

Corollary 16. Let S be a set of n pairwise non-piercing needles under a convex
distance d based on a convex C. Then, the Voronoi diagram Vd(S) for S can be
computed in O(Tb(C) · n log n) time and O(Sb(C) · n) space.

Making S∗ pairwise non-piercing. We can make S∗ pairwise non-piercing by the
procedure introduced in the proof of Lemma 2 in [4]. The only difference arises
when we consider non-piercing needles as input sites; the produced needles on
the roads may pierce the original needles. This problem can be solved by cutting
a pierced original needle into two non-pierced needles. Since these piercing cases
can occur only between original needles and produced needles dominating a node,
we can check all the cases in O(Top(C) · mn) time and the asymptotic number
of needles does not increase. We denote by S∗

np the resulting set of pairwise non-
piercing needles for a given set S of pairwise non-piercing needles. Note that
Vd(S∗

np) is a refined diagram of Vd(S∗).

4.4 Putting It All Together

From the previous discussions, we finally conclude the following theorem.

Theorem 17. Let d be a convex distance based on a convex C whose boundary
is semialgebraic, G be a transportation network with m roads under d, and S be
a set of n sites. Then, the Voronoi diagram VdG(S) under dG can be computed
in O(m(n + m)(m + Tb(C) log(n + m) + Top(C))) time with O(Sb(C)m(n + m))
space, where Top(C), Tb(C), and Sb(C) are defined as before.

If C is a k-gon, we can see that Top(C) = O(log k), Tb(C) = Sb(C) = O(k) [14].

Corollary 18. Let d be a convex distance based on a convex k-gon C, G be a
transportation network with m roads under d, and S be a set of n sites. Then,
the Voronoi diagram VdG(S) under dG can be computed in O(m(n + m)(m +
k log(n + m))) time with O(km(n + m)) space.
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